Science.gov

Sample records for acid c-terminal fragment

  1. Antimicrobial activity of pleurocidin is retained in Plc-2, a C-terminal 12-amino acid fragment.

    PubMed

    Souza, Andre L A; Díaz-Dellavalle, Paola; Cabrera, Andrea; Larrañaga, Patricia; Dalla-Rizza, Marco; De-Simone, Salvatore G

    2013-07-01

    An analysis of a series of five peptides composed of various portions of the pleurocidin (Plc) sequence identified a l2-amino acid fragment from the C-terminus of Plc, designated Plc-2, as the smallest fragment that retained a antimicrobial activity comparable to that of the parent compound. MIC tests in vitro with low-ionic-strength medium showed that Plc-2 has potent activity against Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus but not against Enterococcus faecalis. The antifungal activity of the synthetic peptides against phytopathogenic fungi, such as Fusarium oxysporum, Colletotrichum sp., Aspergillus niger and Alternaria sp., also identified Plc-2 as a biologically active peptide. Microscopy studies of fluorescently stained fungi treated with Plc-2 demonstrated that cytoplasmic and nuclear membranes were compromised in all strains of phytopathogenic fungi tested. Together, these results identify Plc-2 as a potential antimicrobial agent with similar properties to its parent compound, pleurocidin. In addition, it demonstrated that the KHVGKAALTHYL residues are critical for the antimicrobial activity described for pleurocidin.

  2. C-Terminal Protein Characterization by Mass Spectrometry: Isolation of C-Terminal Fragments from Cyanogen Bromide-Cleaved Protein

    PubMed Central

    Nika, Heinz; Hawke, David H.; Angeletti, Ruth Hogue

    2014-01-01

    A sample preparation method for protein C-terminal peptide isolation from cyanogen bromide (CNBr) digests has been developed. In this strategy, the analyte was reduced and carboxyamidomethylated, followed by CNBr cleavage in a one-pot reaction scheme. The digest was then adsorbed on ZipTipC18 pipette tips for conjugation of the homoserine lactone-terminated peptides with 2,2′-dithiobis (ethylamine) dihydrochloride, followed by reductive release of 2-aminoethanethiol from the derivatives. The thiol-functionalized internal and N-terminal peptides were scavenged on activated thiol sepharose, leaving the C-terminal peptide in the flow-through fraction. The use of reversed-phase supports as a venue for peptide derivatization enabled facile optimization of the individual reaction steps for throughput and completeness of reaction. Reagents were replaced directly on the support, allowing the reactions to proceed at minimal sample loss. By this sequence of solid-phase reactions, the C-terminal peptide could be recognized uniquely in mass spectra of unfractionated digests by its unaltered mass signature. The use of the sample preparation method was demonstrated with low-level amounts of a whole, intact model protein. The C-terminal fragments were retrieved selectively and efficiently from the affinity support. The use of covalent chromatography for C-terminal peptide purification enabled recovery of the depleted material for further chemical and/or enzymatic manipulation. The sample preparation method provides for robustness and simplicity of operation and is anticipated to be expanded to gel-separated proteins and in a scaled-up format to high-throughput protein profiling in complex biological mixtures. PMID:24688319

  3. Occurrence of C-terminal residue exclusion in peptide fragmentation by ESI and MALDI tandem mass spectrometry.

    PubMed

    Dupré, Mathieu; Cantel, Sonia; Martinez, Jean; Enjalbal, Christine

    2012-02-01

    By screening a data set of 392 synthetic peptides MS/MS spectra, we found that a known C-terminal rearrangement was unexpectedly frequently occurring from monoprotonated molecular ions in both ESI and MALDI tandem mass spectrometry upon low and high energy collision activated dissociations with QqTOF and TOF/TOF mass analyzer configuration, respectively. Any residue localized at the C-terminal carboxylic acid end, even a basic one, was lost, provided that a basic amino acid such arginine and to a lesser extent histidine and lysine was present in the sequence leading to a fragment ion, usually depicted as (b(n-1) + H(2)O) ion, corresponding to a shortened non-scrambled peptide chain. Far from being an epiphenomenon, such a residue exclusion from the peptide chain C-terminal extremity gave a fragment ion that was the base peak of the MS/MS spectrum in certain cases. Within the frame of the mobile proton model, the ionizing proton being sequestered onto the basic amino acid side chain, it is known that the charge directed fragmentation mechanism involved the C-terminal carboxylic acid function forming an anhydride intermediate structure. The same mechanism was also demonstrated from cationized peptides. To confirm such assessment, we have prepared some of the peptides that displayed such C-terminal residue exclusion as a C-terminal backbone amide. As expected in this peptide amide series, the production of truncated chains was completely suppressed. Besides, multiply charged molecular ions of all peptides recorded in ESI mass spectrometry did not undergo such fragmentation validating that any mobile ionizing proton will prevent such a competitive C-terminal backbone rearrangement. Among all well-known nondirect sequence fragment ions issued from non specific loss of neutral molecules (mainly H(2)O and NH(3)) and multiple backbone amide ruptures (b-type internal ions), the described C-terminal residue exclusion is highly identifiable giving raise to a single fragment

  4. Occurrence of C-Terminal Residue Exclusion in Peptide Fragmentation by ESI and MALDI Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Dupré, Mathieu; Cantel, Sonia; Martinez, Jean; Enjalbal, Christine

    2012-02-01

    By screening a data set of 392 synthetic peptides MS/MS spectra, we found that a known C-terminal rearrangement was unexpectedly frequently occurring from monoprotonated molecular ions in both ESI and MALDI tandem mass spectrometry upon low and high energy collision activated dissociations with QqTOF and TOF/TOF mass analyzer configuration, respectively. Any residue localized at the C-terminal carboxylic acid end, even a basic one, was lost, provided that a basic amino acid such arginine and to a lesser extent histidine and lysine was present in the sequence leading to a fragment ion, usually depicted as (bn-1 + H2O) ion, corresponding to a shortened non-scrambled peptide chain. Far from being an epiphenomenon, such a residue exclusion from the peptide chain C-terminal extremity gave a fragment ion that was the base peak of the MS/MS spectrum in certain cases. Within the frame of the mobile proton model, the ionizing proton being sequestered onto the basic amino acid side chain, it is known that the charge directed fragmentation mechanism involved the C-terminal carboxylic acid function forming an anhydride intermediate structure. The same mechanism was also demonstrated from cationized peptides. To confirm such assessment, we have prepared some of the peptides that displayed such C-terminal residue exclusion as a C-terminal backbone amide. As expected in this peptide amide series, the production of truncated chains was completely suppressed. Besides, multiply charged molecular ions of all peptides recorded in ESI mass spectrometry did not undergo such fragmentation validating that any mobile ionizing proton will prevent such a competitive C-terminal backbone rearrangement. Among all well-known nondirect sequence fragment ions issued from non specific loss of neutral molecules (mainly H2O and NH3) and multiple backbone amide ruptures (b-type internal ions), the described C-terminal residue exclusion is highly identifiable giving raise to a single fragment ion in

  5. Crystallization and preliminary X-ray analysis of a C-terminal TonB fragment from Escherichia coli.

    PubMed

    Koedding, Jiri; Polzer, Patrick; Killig, Frank; Howard, S Peter; Gerber, Kinga; Seige, Peter; Diederichs, Kay; Welte, Wolfram

    2004-07-01

    The TonB protein located in the cell wall of Gram-negative bacteria mediates the proton motive force from the cytoplasmic membrane to specific outer membrane transporters. A C-terminal fragment of TonB from Escherichia coli consisting of amino-acid residues 147-239 (TonB-92) has been purified and crystallized. Crystals grew in space group P2(1) to dimensions of about 1.0 x 0.12 x 0.12 mm. A native data set has been obtained to 1.09 A resolution.

  6. Collision-Induced Dissociation Fragmentation Inside Disulfide C-Terminal Loops of Natural Non-Tryptic Peptides

    NASA Astrophysics Data System (ADS)

    Samgina, Tatiana Y.; Vorontsov, Egor A.; Gorshkov, Vladimir A.; Artemenko, Konstantin A.; Zubarev, Roman A.; Ytterberg, Jimmy A.; Lebedev, Albert T.

    2013-07-01

    Collision-induced dissociation (CID) spectra of long non-tryptic peptides are usually quite complicated and rather difficult to interpret. Disulfide bond formed by two cysteine residues at C-terminus of frog skin peptides precludes one to determine sequence inside the forming loop. Thereby, chemical modification of S-S bonds is often used in "bottom up" sequencing approach. However, low-energy CID spectra of natural non-tryptic peptides with C-terminal disulfide cycle demonstrate an unusual fragmentation route, which may be used to elucidate the "hidden" C-terminal sequence. Low charge state protonated molecules experience peptide bond cleavage at the N-terminus of C-terminal cysteine. The forming isomeric acyclic ions serve as precursors for a series of b-type ions revealing sequence inside former disulfide cycle. The reaction is preferable for peptides with basic lysine residues inside the cycle. It may also be activated by acidic protons of Asp and Glu residues neighboring the loop. The observed cleavages may be quite competitive, revealing the sequence inside disulfide cycle, although S-S bond rupture does not occur in this case.

  7. The preparation and partial characterization of N-terminal and C-terminal iron-binding fragments from rabbit serum transferrin.

    PubMed Central

    Heaphy, S; Williams, J

    1982-01-01

    Two iron-binding fragments of Mr 36 000 and 33 000 corresponding to the N-terminal domain of rabbit serum transferrin were prepared. One iron-binding fragment of Mr 39 000 corresponding to the C-terminal domain was prepared. The N-terminal amino acid sequence of rabbit serum transferrin is: Val-Thr-Glu-Lys-Thr-Val-Asn-Trp-?-Ala-Val-Ser. One glycan unit is presented in rabbit serum transferrin and it is located in the C-terminal domain. Images Fig. 2. Fig. 3. Fig. 4. PMID:6816218

  8. Expression and purification of the C-terminal fragments of TRPV5/6 channels.

    PubMed

    Kovalevskaya, Nadezda V; Schilderink, Nathalie; Vuister, Geerten W

    2011-11-01

    The transient receptor potential vanniloid 5 and 6 (TRPV5 and TRPV6) Ca(2+)-ion channels are crucial for the regulation of minute-to-minute whole body calcium homeostasis. They act as the gatekeepers of active Ca(2+) reabsorption in kidney and intestine, respectively. In spite of the great progress in the TRP channels characterization, very little is known at the atomic level about their structure and interactions with other proteins. To the major extent it is caused by difficulties in obtaining suitable samples. Here, we report expression and purification of 36 intracellular C-terminal fragments of TRPV5 and TRPV6 channels, for which no structural information is reported thus far. We demonstrate that these proteins contain intrinsically disordered regions and identify fragments suitable for biophysical characterization. By combining bioinformatic predictions and experimental results, we propose several criteria that may aid in designing a scheme for large-scale production of difficult proteins. PMID:21664972

  9. Combining protein identification and quantification: C-terminal isotope-coded tagging using sulfanilic acid.

    PubMed

    Panchaud, Alexandre; Guillaume, Elisabeth; Affolter, Michael; Robert, Fabien; Moreillon, Philippe; Kussmann, Martin

    2006-01-01

    Two methods of differential isotopic coding of carboxylic groups have been developed to date. The first approach uses d0- or d3-methanol to convert carboxyl groups into the corresponding methyl esters. The second relies on the incorporation of two 18O atoms into the C-terminal carboxylic group during tryptic digestion of proteins in H(2)18O. However, both methods have limitations such as chromatographic separation of 1H and 2H derivatives or overlap of isotopic distributions of light and heavy forms due to small mass shifts. Here we present a new tagging approach based on the specific incorporation of sulfanilic acid into carboxylic groups. The reagent was synthesized in a heavy form (13C phenyl ring), showing no chromatographic shift and an optimal isotopic separation with a 6 Da mass shift. Moreover, sulfanilic acid allows for simplified fragmentation in matrix-assisted laser desorption/ionization (MALDI) due the charge fixation of the sulfonate group at the C-terminus of the peptide. The derivatization is simple, specific and minimizes the number of sample treatment steps that can strongly alter the sample composition. The quantification is reproducible within an order of magnitude and can be analyzed either by electrospray ionization (ESI) or MALDI. Finally, the method is able to specifically identify the C-terminal peptide of a protein by using GluC as the proteolytic enzyme.

  10. Age-dependent loss of the C-terminal amino acid from alpha crystallin

    NASA Technical Reports Server (NTRS)

    Emmons, T.; Takemoto, L.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    Antiserum made against the C-terminal region of alpha-A crystallin was used to monitor the purification of a tryptic peptide containing the C-terminus of the molecule from fetal versus adult bovine lenses. Mass spectral analysis of the peptide preparations obtained from these lenses demonstrated the presence of a peptide (T20) containing an intact C-terminus from fetal lenses and the presence of an additional peptide (T20') from older lenses that contained a cleaved C-terminal serine. These results demonstrate an age-dependent processing of alpha-A crystallin in the bovine lens, resulting in removal of the C-terminal amino acid residue.

  11. The C-terminal proteolytic fragment of the breast cancer susceptibility type 1 protein (BRCA1) is degraded by the N-end rule pathway.

    PubMed

    Xu, Zhizhong; Payoe, Roshani; Fahlman, Richard P

    2012-03-01

    The breast cancer susceptibility type 1 gene product (BRCA1) is cleaved by caspases upon the activation of apoptotic pathways. After proteolysis the C-terminal fragment has been reported to translocate to the cytoplasm and promote cell death. Here we report that the C-terminal fragment is unstable in cells as it is targeted for degradation by the N-end rule pathway. The data reveals that mutating the wild type N-terminal aspartate, of the C-terminal fragment, to valine stabilizes the fragment. If the N terminus is mutated to another N-terminal destabilizing residue, like arginine, the C-terminal fragment remains unstable in cells. Last, the C-terminal fragment of BRCA1 is stable in cells lacking ATE1, a component of the N-end rule pathway.

  12. The C-terminal Proteolytic Fragment of the Breast Cancer Susceptibility Type 1 Protein (BRCA1) Is Degraded by the N-end Rule Pathway*

    PubMed Central

    Xu, Zhizhong; Payoe, Roshani; Fahlman, Richard P.

    2012-01-01

    The breast cancer susceptibility type 1 gene product (BRCA1) is cleaved by caspases upon the activation of apoptotic pathways. After proteolysis the C-terminal fragment has been reported to translocate to the cytoplasm and promote cell death. Here we report that the C-terminal fragment is unstable in cells as it is targeted for degradation by the N-end rule pathway. The data reveals that mutating the wild type N-terminal aspartate, of the C-terminal fragment, to valine stabilizes the fragment. If the N terminus is mutated to another N-terminal destabilizing residue, like arginine, the C-terminal fragment remains unstable in cells. Last, the C-terminal fragment of BRCA1 is stable in cells lacking ATE1, a component of the N-end rule pathway. PMID:22262859

  13. Crystallization and preliminary X-ray analysis of the C-terminal fragment of Ski7 from Saccharomyces cerevisiae

    PubMed Central

    Lee, Ji-Young; Park, Si Hoon; Jeong, Byung-Cheon; Song, Hyun Kyu

    2014-01-01

    Ski7 (superkiller protein 7) plays a critical role in the mRNA surveillance pathway. The C-terminal fragment of Ski7 (residues 520–747) from Saccharo­myces cerevisiae was heterologously expressed in Escherichia coli and purified to homogeneity. It was successfully crystallized and preliminary X-ray data were collected to 2.0 Å resolution using synchrotron radiation. The crystal belonged to a trigonal space group, either P3121 or P3221, with unit-cell parameters a = b = 73.5, c = 83.6 Å. The asymmetric unit contains one molecule of the C-terminal fragment of Ski7 with a corresponding crystal volume per protein mass (V M) of 2.61 Å3 Da−1 and a solvent content of 52.8% by volume. The merging R factor is 6.6%. Structure determination by MAD phasing is under way. PMID:25195903

  14. Skin-Derived C-Terminal Filaggrin-2 Fragments Are Pseudomonas aeruginosa-Directed Antimicrobials Targeting Bacterial Replication

    PubMed Central

    Hansmann, Britta; Schröder, Jens-Michael; Gerstel, Ulrich

    2015-01-01

    Soil- and waterborne bacteria such as Pseudomonas aeruginosa are constantly challenging body surfaces. Since infections of healthy skin are unexpectedly rare, we hypothesized that the outermost epidermis, the stratum corneum, and sweat glands directly control the growth of P. aeruginosa by surface-provided antimicrobials. Due to its high abundance in the upper epidermis and eccrine sweat glands, filaggrin-2 (FLG2), a water-insoluble 248 kDa S100 fused-type protein, might possess these innate effector functions. Indeed, recombinant FLG2 C-terminal protein fragments display potent antimicrobial activity against P. aeruginosa and other Pseudomonads. Moreover, upon cultivation on stratum corneum, P. aeruginosa release FLG2 C-terminus-containing FLG2 fragments from insoluble material, indicating liberation of antimicrobially active FLG2 fragments by the bacteria themselves. Analyses of the underlying antimicrobial mechanism reveal that FLG2 C-terminal fragments do not induce pore formation, as known for many other antimicrobial peptides, but membrane blebbing, suggesting an alternative mode of action. The association of the FLG2 fragment with the inner membrane of treated bacteria and its DNA-binding implicated an interference with the bacterial replication that was confirmed by in vitro and in vivo replication assays. Probably through in situ-activation by soil- and waterborne bacteria such as Pseudomonads, FLG2 interferes with the bacterial replication, terminates their growth on skin surface and thus may contributes to the skin’s antimicrobial defense shield. The apparent absence of FLG2 at certain body surfaces, as in the lung or of burned skin, would explain their higher susceptibility towards Pseudomonas infections and make FLG2 C-terminal fragments and their derivatives candidates for new Pseudomonas-targeting antimicrobials. PMID:26371476

  15. Activation of human acid sphingomyelinase through modification or deletion of C-terminal cysteine.

    PubMed

    Qiu, Huawei; Edmunds, Tim; Baker-Malcolm, Jennifer; Karey, Kenneth P; Estes, Scott; Schwarz, Cordula; Hughes, Heather; Van Patten, Scott M

    2003-08-29

    One form of Niemann-Pick disease is caused by a deficiency in the enzymatic activity of acid sphingomyelinase. During efforts to develop an enzyme replacement therapy based on a recombinant form of human acid sphingomyelinase (rhASM), purified preparations of the recombinant enzyme were found to have substantially increased specific activity if cell harvest media were stored for several weeks at -20 degrees C prior to purification. This increase in activity was found to correlate with the loss of the single free thiol on rhASM, suggesting the involvement of a cysteine residue. It was demonstrated that a variety of chemical modifications of the free cysteine on rhASM all result in substantial activation of the enzyme, and the modified cysteine responsible for this activation was shown to be the C-terminal residue (Cys629). Activation was also achieved by copper-promoted dimerization of rhASM (via cysteine) and by C-terminal truncation using carboxypeptidase Y. The role of the C-terminal cysteine in activation was confirmed by creating mutant forms of rhASM in which this residue was either deleted or replaced by a serine, with both forms having substantially higher specific activity than wild-type rhASM. These results indicate that purified rhASM can be activated in vitro by loss of the free thiol on the C-terminal cysteine via chemical modification, dimerization, or deletion of this amino acid residue. This method of activation is similar to the cysteine switch mechanism described previously for matrix metalloproteinases and could represent a means of posttranslational regulation of ASM activity in vivo.

  16. Membrane tethering of APP c-terminal fragments is a prerequisite for T668 phosphorylation preventing nuclear sphere generation.

    PubMed

    Bukhari, Hassan; Kolbe, Katharina; Leonhardt, Gregor; Loosse, Christina; Schröder, Elisabeth; Knauer, Shirley; Marcus, Katrin; Müller, Thorsten

    2016-11-01

    A central molecular hallmark of Alzheimer's disease (AD) is the β- and γ-secretase-mediated cleavage of the amyloid precursor protein (APP), which causes the generation of different c-terminal fragments like C99, AICD57, or AICD50 that fully or in part contain the APP transmembrane domain. In this study, we demonstrate that membrane-tethered C99 is phosphorylated by JNK3A at residue T668 (APP695 numbering) to a higher extent than AICD57, whereas AICD50 is not capable of being phosphorylated. The modification decreases the turnover of APP, while the blockade of APP cleavage increases APP phosphorylation. Generation of nuclear spheres, complexes consisting of the translocated AICD, FE65 and other proteins, is significantly reduced as soon as APP c-terminal fragments are accessible for phosphorylation. This APP modification, which we identified as significantly reduced in high plaque-load areas of the human brain, is linearly dependent on the level of APP expression. Accordingly, we show that APP abundance is likewise capable of modulating nuclear sphere generation. Thus, the precise and complex regulation of APP phosphorylation, abundance, and cleavage impacts the generation of nuclear spheres, which are under discussion of being of relevance in neurodegeneration and dementia. Future pharmacological manipulation of nuclear sphere generation may be a promising approach for AD treatment.

  17. Biological Activity and Antidiabetic Potential of C-Terminal Octapeptide Fragments of the Gut-Derived Hormone Xenin

    PubMed Central

    Martin, Christine M.; Parthsarathy, Vadivel; Hasib, Annie; Ng, Ming T.; McClean, Stephen; Flatt, Peter R.; Gault, Victor A.; Irwin, Nigel

    2016-01-01

    Xenin is a peptide that is co-secreted with the incretin hormone, glucose-dependent insulinotropic polypeptide (GIP), from intestinal K-cells in response to feeding. Studies demonstrate that xenin has appetite suppressive effects and modulates glucose-induced insulin secretion. The present study was undertaken to determine the bioactivity and antidiabetic properties of two C-terminal fragment xenin peptides, namely xenin 18–25 and xenin 18–25 Gln. In BRIN-BD11 cells, both xenin fragment peptides concentration-dependently stimulated insulin secretion, with similar efficacy as the parent peptide. Neither fragment peptide had any effect on acute feeding behaviour at elevated doses of 500 nmol/kg bw. When administered together with glucose to normal mice at 25 nmol/kg bw, the overall insulin secretory effect was significantly enhanced in both xenin 18–25 and xenin 18–25 Gln treated mice, with better moderation of blood glucose levels. Twice daily administration of xenin 18–25 or xenin 18–25 Gln for 21 days in high fat fed mice did not affect energy intake, body weight, circulating blood glucose or body fat stores. However, circulating plasma insulin concentrations had a tendency to be elevated, particularly in xenin 18–25 Gln mice. Both treatment regimens significantly improved insulin sensitivity by the end of the treatment period. In addition, sustained treatment with xenin 18–25 Gln significantly reduced the overall glycaemic excursion and augmented the insulinotropic response to an exogenous glucose challenge on day 21. In harmony with this, GIP-mediated glucose-lowering and insulin-releasing effects were substantially improved by twice daily xenin 18–25 Gln treatment. Overall, these data provide evidence that C-terminal octapeptide fragments of xenin, such as xenin 18–25 Gln, have potential therapeutic utility for type 2 diabetes. PMID:27032106

  18. Biological Activity and Antidiabetic Potential of C-Terminal Octapeptide Fragments of the Gut-Derived Hormone Xenin.

    PubMed

    Martin, Christine M; Parthsarathy, Vadivel; Hasib, Annie; Ng, Ming T; McClean, Stephen; Flatt, Peter R; Gault, Victor A; Irwin, Nigel

    2016-01-01

    Xenin is a peptide that is co-secreted with the incretin hormone, glucose-dependent insulinotropic polypeptide (GIP), from intestinal K-cells in response to feeding. Studies demonstrate that xenin has appetite suppressive effects and modulates glucose-induced insulin secretion. The present study was undertaken to determine the bioactivity and antidiabetic properties of two C-terminal fragment xenin peptides, namely xenin 18-25 and xenin 18-25 Gln. In BRIN-BD11 cells, both xenin fragment peptides concentration-dependently stimulated insulin secretion, with similar efficacy as the parent peptide. Neither fragment peptide had any effect on acute feeding behaviour at elevated doses of 500 nmol/kg bw. When administered together with glucose to normal mice at 25 nmol/kg bw, the overall insulin secretory effect was significantly enhanced in both xenin 18-25 and xenin 18-25 Gln treated mice, with better moderation of blood glucose levels. Twice daily administration of xenin 18-25 or xenin 18-25 Gln for 21 days in high fat fed mice did not affect energy intake, body weight, circulating blood glucose or body fat stores. However, circulating plasma insulin concentrations had a tendency to be elevated, particularly in xenin 18-25 Gln mice. Both treatment regimens significantly improved insulin sensitivity by the end of the treatment period. In addition, sustained treatment with xenin 18-25 Gln significantly reduced the overall glycaemic excursion and augmented the insulinotropic response to an exogenous glucose challenge on day 21. In harmony with this, GIP-mediated glucose-lowering and insulin-releasing effects were substantially improved by twice daily xenin 18-25 Gln treatment. Overall, these data provide evidence that C-terminal octapeptide fragments of xenin, such as xenin 18-25 Gln, have potential therapeutic utility for type 2 diabetes. PMID:27032106

  19. Biased signaling favoring gi over β-arrestin promoted by an apelin fragment lacking the C-terminal phenylalanine.

    PubMed

    Ceraudo, Emilie; Galanth, Cécile; Carpentier, Eric; Banegas-Font, Inmaculada; Schonegge, Anne-Marie; Alvear-Perez, Rodrigo; Iturrioz, Xavier; Bouvier, Michel; Llorens-Cortes, Catherine

    2014-08-29

    Apelin plays a prominent role in body fluid and cardiovascular homeostasis. We previously showed that the C-terminal Phe of apelin 17 (K17F) is crucial for triggering apelin receptor internalization and decreasing blood pressure (BP) but is not required for apelin binding or Gi protein coupling. Based on these findings, we hypothesized that the important role of the C-terminal Phe in BP decrease may be as a Gi-independent but β-arrestin-dependent signaling pathway that could involve MAPKs. For this purpose, we have used apelin fragments K17F and K16P (K17F with the C-terminal Phe deleted), which exhibit opposite profiles on apelin receptor internalization and BP. Using BRET-based biosensors, we showed that whereas K17F activates Gi and promotes β-arrestin recruitment to the receptor, K16P had a much reduced ability to promote β-arrestin recruitment while maintaining its Gi activating property, revealing the biased agonist character of K16P. We further show that both β-arrestin recruitment and apelin receptor internalization contribute to the K17F-stimulated ERK1/2 activity, whereas the K16P-promoted ERK1/2 activity is entirely Gi-dependent. In addition to providing new insights on the structural basis underlying the functional selectivity of apelin peptides, our study indicates that the β-arrestin-dependent ERK1/2 activation and not the Gi-dependent signaling may participate in K17F-induced BP decrease.

  20. C-terminal fragment of amebin promotes actin filament bundling, inhibits acto-myosin ATPase activity and is essential for amoeba migration.

    PubMed

    Jóźwiak, Jolanta; Rzhepetskyy, Yuriy; Sobczak, Magdalena; Kocik, Elżbieta; Skórzewski, Radosław; Kłopocka, Wanda; Rędowicz, Maria Jolanta

    2011-02-01

    Amebin [formerly termed as ApABP-FI; Sobczak et al. (2007) Biochem. Cell Biol. 85] is encoded in Amoeba proteus by two transcripts, 2672-nt and 1125-nt. A product of the shorter transcript (termed as C-amebin), comprising C-terminal 375 amino-acid-residue fragment of amebin, has been expressed and purified as the recombinant GST-fusion protein. GST-C-amebin bound both to monomeric and filamentous actin. The binding was Ca(2+)-independent and promoted filament bundling, as revealed with the transmission electron microscopy. GST-C-amebin significantly decreased MgATPase activity of rabbit skeletal muscle acto-S1. Removal with endoproteinase ArgC of a positively charged C-terminal region of GST-amebin containing KLASMWEQ sequence abolished actin-binding and bundling as well as the ATPase-inhibitory effect of C-amebin, indicating that this protein region was involved in the interaction with actin. Microinjection of amoebae with antibody against C-terminus of amebin significantly affected amoebae morphology, disturbed cell polarization and transport of cytoplasmic granules as well as blocked migration. These data indicate that amebin may be one of key regulators of the actin-cytoskeleton dynamics and actin-dependent motility in A. proteus.

  1. Presence and in vivo biosynthesis of fragments of CPP (the C-terminal glycopeptide of the rat vasopressin precursor) in the hypothalamo-neurohypophyseal system

    SciTech Connect

    Seger, M.A.; Burbach, J.P.

    1987-09-01

    The existence and rate of formation of fragments of the 39-residue C-terminal glycopeptide of propressophysin (CPP1-39) was investigated in the hypothalamo-neurohypophyseal system. Newly-prepared antisera to CPP were used to confirm the existence of smaller C-terminal fragments derived from CPP1-39. Radiolabelled fucose was injected into rats in vivo into the area of the supraoptic nucleus, and the labelled peptides formed in the neurohypophysis were examined at various time intervals up to five weeks after the injection. The products derived from the neurohypophyseal hormone precursors were separated by high-performance liquid chromatography. The level of the major immunoreactive C-terminal fragment (CPP22-39) was constant and represented about 5% of the intact CPP1-39 in the neurohypophysis. The appearance of newly-synthesized N-terminal fragment of CPP1-39 occurred only after 3 or 4 days. This fucose labelled fragment increased slowly thereafter until it reached the same level as the CPP C-terminal fragment immunoreactivity between 21 and 28 days after injection. The results suggest that CPP1-39 is extremely stable in the hypothalamo-neurohypophyseal neurons, and that the cleavage at Arg21-Leu22 is a delayed proteolytic event in the magnocellular neurons of the SON.

  2. Crystal structure of a 92-residue C-terminal fragment of TonB from Escherichia coli reveals significant conformational changes compared to structures of smaller TonB fragments.

    PubMed

    Ködding, Jiri; Killig, Frank; Polzer, Patrick; Howard, S Peter; Diederichs, Kay; Welte, Wolfram

    2005-01-28

    Uptake of siderophores and vitamin B(12) through the outer membrane of Escherichia coli is effected by an active transport system consisting of several outer membrane receptors and a protein complex of the inner membrane. The link between these is TonB, a protein associated with the cytoplasmic membrane, which forms a large periplasmic domain capable of interacting with several outer membrane receptors, e.g. FhuA, FecA, and FepA for siderophores and BtuB for vitamin B(12.) The active transport across the outer membrane is driven by the chemiosmotic gradient of the inner membrane and is mediated by the TonB protein. The receptor-binding domain of TonB appears to be formed by a highly conserved C-terminal amino acid sequence of approximately 100 residues. Crystal structures of two C-terminal TonB fragments composed of 85 (TonB-85) and 77 (TonB-77) amino acid residues, respectively, have been previously determined (Chang, C., Mooser, A., Pluckthun, A., and Wlodawer, A. (2001) J. Biol. Chem. 276, 27535-27540 and Koedding, J., Howard, S. P., Kaufmann, L., Polzer, P., Lustig, A., and Welte, W. (2004) J. Biol. Chem. 279, 9978-9986). In both cases the TonB fragments form dimers in solution and crystallize as dimers consisting of monomers tightly engaged with one another by the exchange of a beta-hairpin and a C-terminal beta-strand. Here we present the crystal structure of a 92-residue fragment of TonB (TonB-92), which is monomeric in solution. The structure, determined at 1.13-A resolution, shows a dimer with considerably reduced intermolecular interaction compared with the other known TonB structures, in particular lacking the beta-hairpin exchange.

  3. The structure of Abeta42 C-terminal fragments probed by a combined experimental and theoretical study.

    PubMed

    Wu, Chun; Murray, Megan M; Bernstein, Summer L; Condron, Margaret M; Bitan, Gal; Shea, Joan-Emma; Bowers, Michael T

    2009-03-27

    The C-terminus of amyloid beta-protein (Abeta) 42 plays an important role in this protein's oligomerization and may therefore be a good therapeutic target for the treatment of Alzheimer's disease. Certain C-terminal fragments (CTFs) of Abeta42 have been shown to disrupt oligomerization and to strongly inhibit Abeta42-induced neurotoxicity. Here we study the structures of selected CTFs [Abeta(x-42); x=29-31, 39] using replica exchange molecular dynamics simulations and ion mobility mass spectrometry. Our simulations in explicit solvent reveal that the CTFs adopt a metastable beta-structure: beta-hairpin for Abeta(x-42) (x=29-31) and extended beta-strand for Abeta(39-42). The beta-hairpin of Abeta(30-42) is converted into a turn-coil conformation when the last two hydrophobic residues are removed, suggesting that I41 and A42 are critical in stabilizing the beta-hairpin in Abeta42-derived CTFs. The importance of solvent in determining the structure of the CTFs is further highlighted in ion mobility mass spectrometry experiments and solvent-free replica exchange molecular dynamics simulations. A comparison between structures with solvent and structures without solvent reveals that hydrophobic interactions are critical for the formation of beta-hairpin. The possible role played by the CTFs in disrupting oligomerization is discussed.

  4. Synthesis of the blood circulating C-terminal fragment of insulin-like growth factor (IGF)-binding protein-4 in its native conformation. Crystallization, heparin and IGF binding, and osteogenic activity.

    PubMed

    Fernández-Tornero, Carlos; Lozano, Rosa M; Rivas, Germán; Jiménez, M Angeles; Ständker, Ludger; Díaz-Gonzalez, Diana; Forssmann, Wolf-Georg; Cuevas, Pedro; Romero, Antonio; Giménez-Gallego, Guillermo

    2005-05-13

    Insulin-like growth factor-binding proteins play a critical role in a wide variety of important physiological processes. It has been demonstrated that both an N-terminal and a C-terminal fragment of insulin-like growth factor-binding protein-4 exist and accumulate in the circulatory system, these fragments accounting for virtually the whole amino acid sequence of the protein. The circulating C-terminal fragment establishes three disulfide bridges, and the binding pattern of these has recently been defined. Here we show that the monodimensional 1H NMR spectrum of the C-terminal fragment is typical of a protein with a relatively close packed tertiary structure. This fragment can be produced in its native conformation in Escherichia coli, without the requirement of further refolding procedures, when synthesis is coupled to its secretion from the cell. The recombinant protein crystallizes with the unit cell parameters of a hexagonal system. Furthermore, it binds strongly to heparin, acquiring a well defined oligomeric structure that interacts with insulin-like growth factors, and promotes bone formation in cultures of murine calvariae.

  5. Effects of a one year physical activity program on serum C Terminal Agrin Fragment (CAF) concentrations among mobility limited older adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    OBJECTIVES: C terminal Agrin Fragment (CAF) has been proposed as a potential circulating biomarker for predicting changes in physical function among older adults. To determine the effect of a one year PA intervention on changes in CAF concentrations and to evaluate baseline and longitudinal associat...

  6. Significance of the C-terminal amino acid residue in mengovirus RNA-dependent RNA polymerase.

    PubMed

    Dmitrieva, Tatiana M; Alexeevski, Andrei V; Shatskaya, Galina S; Tolskaya, Elena A; Gmyl, Anatoly P; Khitrina, Elena V; Agol, Vadim I

    2007-08-15

    Replication of picornavirus genomes is accomplished by the virally encoded RNA-dependent RNA polymerase (RdRP). Although the primary structure of this enzyme exhibits a high level of conservation, there are several significant differences among different picornavirus genera. In particular, a comparative alignment indicates that the C-terminal sequences of cardiovirus RdRP (known also as 3D(pol)), are 1-amino-acid residue (arginine or tryptophan) longer than that of the enterovirus or rhinovirus enzymes. Here, it is shown that alterations of the last codon of the RdRP-encoding sequence of mengovirus RNA leading to deletion of the C-terminal Trp460 or its replacement by Ala or Phe dramatically impaired viral RNA replication and, in the former case, resulted in a quasi-infectious phenotype (i.e., the mutant RNA might generate a low yield of pseudorevertants acquiring a Tyr residue in place of the deleted Trp460). The replacement of Trp460 by His or Tyr did not appreciably alter the viral growth potential. Homology modeling of three-dimensional structure of mengovirus RdRP suggested that Trp460 may be involved in interaction between the thumb and palm domains of the enzyme. Specifically, Trp460 of the thumb may form a hydrogen bond with Thr219 and hydrophobically interact with Val216 of the palm. The proposed interactions were consistent with the results of in vivo SELEX experiment, which demonstrated that infectious virus could contain Ser or Thr at position 219 and hydrophobic Val, Leu, Ile, as well as Arg (whose side chain has a nonpolar part) at position 216. A similar thumb-palm domain interaction may be a general feature of several RdRPs and its possible functional significance is discussed. PMID:17467026

  7. The biological function of DMP-1 in osteocyte maturation is mediated by its 57-kDa C-terminal fragment.

    PubMed

    Lu, Yongbo; Yuan, Baozhi; Qin, Chunlin; Cao, Zhengguo; Xie, Yixia; Dallas, Sarah L; McKee, Marc D; Drezner, Marc K; Bonewald, Lynda F; Feng, Jian Q

    2011-02-01

    Dentin matrix protein 1 (DMP-1) is a key molecule in controlling osteocyte formation and phosphate homeostasis. Based on observations that full-length DMP-1 is not found in bone, but only cleaved fragments of 37 and 57 kDa are present, and in view of the finding that mutations in the 57-kDa fragment result in disease, we hypothesized that the 57-kDa C-terminal fragment is the functional domain of DMP-1. To test this hypothesis, a 3.6-kb type I collagen promoter was used to express this 57-kDa C-terminal fragment for comparison with full-length DMP-1 in Dmp1 null osteoblasts/osteocytes. Not only did expression of the full-length DMP-1 in bone cells fully rescue the skeletal abnormalities of Dmp1 null mice, but the 57-kDa fragment also had similar results. This included rescue of growth plate defects, osteomalacia, abnormal osteocyte maturation, and the abnormal osteocyte lacunocanalicular system. In addition, the abnormal fibroblast growth factor 23 (FGF-23) expression in osteocytes, elevated circulating FGF-23 levels, and hypophosphatemia were rescued. These results show that the 57-kDa C-terminal fragment is the functional domain of DMP-1 that controls osteocyte maturation and phosphate metabolism.

  8. An insoluble frontotemporal lobar degeneration-associated TDP-43 C-terminal fragment causes neurodegeneration and hippocampus pathology in transgenic mice.

    PubMed

    Walker, Adam K; Tripathy, Kalyan; Restrepo, Clark R; Ge, Guanghui; Xu, Yan; Kwong, Linda K; Trojanowski, John Q; Lee, Virginia M-Y

    2015-12-20

    Frontotemporal dementia (FTD) causes progressive personality, behavior and/or language disturbances and represents the second most common form of dementia under the age of 65. Over half of all FTD cases are classified pathologically as frontotemporal lobar degeneration (FTLD) with TAR DNA-binding protein of 43 kDa (TDP-43) pathology (FTLD-TDP). In FTLD-TDP brains, TDP-43 is phosphorylated, C-terminally cleaved, lost from the nucleus and accumulates in the cytoplasm and processes of neurons and glia. However, the contribution of TDP-43 C-terminal fragments (CTFs) to pathogenesis remains poorly understood. Here, we developed transgenic (Tg) mice with forebrain Camk2a-controlled doxycycline-suppressible expression of a TDP-43 CTF (amino acids 208-414, designated 208 TDP-43 CTF), previously identified in FTLD-TDP brains. In these 208 TDP-43 Tg mice, detergent-insoluble 208 TDP-43 CTF was present in a diffuse punctate pattern in neuronal cytoplasm and dendrites without forming large cytoplasmic inclusions. Remarkably, the hippocampus showed progressive neuron loss and astrogliosis in the dentate gyrus (DG). This was accompanied by phosphorylated TDP-43 in the CA1 subfield, and ubiquitin and mitochondria accumulations in the stratum lacunosum moleculare (SLM) layer, without loss of endogenous nuclear TDP-43. Importantly, 208 TDP-43 CTF and phosphorylated TDP-43 were rapidly cleared when CTF expression was suppressed in aged Tg mice, which ameliorated neuron loss in the DG despite persistence of ubiquitin accumulation in the SLM. Our results demonstrate that Camk2a-directed 208 TDP-43 CTF overexpression is sufficient to cause hippocampal pathology and neurodegeneration in vivo, suggesting an active role for TDP-43 CTFs in the pathogenesis of FTLD-TDP and related TDP-43 proteinopathies.

  9. C-Terminal Fragment of Agrin (CAF): A Novel Marker for Progression of Kidney Disease in Type 2 Diabetics

    PubMed Central

    Devetzis, Vasilios; Daryadel, Arezoo; Roumeliotis, Stefanos; Theodoridis, Marios; Wagner, Carsten A.; Hettwer, Stefan; Huynh-Do, Uyen; Ploumis, Passadakis; Arampatzis, Spyridon

    2015-01-01

    Background Diabetes is the leading cause of CKD in the developed world. C-terminal fragment of agrin (CAF) is a novel kidney function and injury biomarker. We investigated whether serum CAF predicts progression of kidney disease in type 2 diabetics. Methods Serum CAF levels were measured in 71 elderly patients with diabetic nephropathy using a newly developed commercial ELISA kit (Neurotune®). Estimated glomerular filtration rate (eGFR) and proteinuria in spot urine were assessed at baseline and after 12 months follow up. The presence of end stage renal disease (ESRD) was evaluated after 24 months follow-up. Correlation and logistic regression analyses were carried out to explore the associations of serum CAF levels with GFR, proteinuria, GFR loss and incident ESRD. Renal handling of CAF was tested in neurotrypsin-deficient mice injected with recombinant CAF. Results We found a strong association of serum CAF levels with eGFR and a direct association with proteinuria both at baseline (r = 0.698, p<0.001 and r = 0. 287, p = 0.02) as well as after 12 months follow-up (r = 0.677, p<0.001 and r = 0.449, p<0.001), respectively. Furthermore, in multivariate analysis, serum CAF levels predicted eGFR decline at 12 months follow-up after adjusting for known risk factors (eGFR, baseline proteinuria) [OR (95%CI) = 4.2 (1.2–14.5), p = 0.024]. In mice, injected CAF was detected in endocytic vesicles of the proximal tubule. Conclusion Serum CAF levels reflect renal function and are highly associated with eGFR and proteinuria at several time points. Serum CAF was able to predict subsequent loss of renal function irrespective of baseline proteinuria in diabetic nephropathy. CAF is likely removed from circulation by glomerular filtration and subsequent endocytosis in the proximal tubule. These findings may open new possibilities for clinical trial design, since serum CAF levels may be used as a selection tool to monitor kidney function in high-risk patients with diabetic

  10. Amino acid residues 201-205 in C-terminal acidic tail region plays a crucial role in antibacterial activity of HMGB1

    PubMed Central

    2009-01-01

    Background Antibacterial activity is a novel function of high-mobility group box 1 (HMGB1). However, the functional site for this new effect is presently unknown. Methods and Results In this study, recombinant human HMGB1 A box and B box (rHMGB1 A box, rHMGB1 B box), recombinant human HMGB1 (rHMGB1) and the truncated C-terminal acidic tail mutant (tHMGB1) were prepared by the prokaryotic expression system. The C-terminal acidic tail (C peptide) was synthesized, which was composed of 30 amino acid residues. Antibacterial assays showed that both the full length rHMGB1 and the synthetic C peptide alone could efficiently inhibit bacteria proliferation, but rHMGB1 A box and B box, and tHMGB1 lacking the C-terminal acidic tail had no antibacterial function. These results suggest that C-terminal acidic tail is the key region for the antibacterial activity of HMGB1. Furthermore, we prepared eleven different deleted mutants lacking several amino acid residues in C-terminal acidic tail of HMGB1. Antibacterial assays of these mutants demonstrate that the amino acid residues 201-205 in C-terminal acidic tail region is the core functional site for the antibacterial activity of the molecule. Conclusion In sum, these results define the key region and the crucial site in HMGB1 for its antibacterial function, which is helpful to illustrating the antibacterial mechanisms of HMGB1. PMID:19751520

  11. Oligomerization, Conformational Stability and Thermal Unfolding of Harpin, HrpZPss and Its Hypersensitive Response-Inducing C-Terminal Fragment, C-214-HrpZPss

    PubMed Central

    Tarafdar, Pradip K.; Vedantam, Lakshmi Vasudev; Sankhala, Rajeshwer S.; Purushotham, Pallinti; Podile, Appa Rao; Swamy, Musti J.

    2014-01-01

    HrpZ—a harpin from Pseudomonas syringae—is a highly thermostable protein that exhibits multifunctional abilities e.g., it elicits hypersensitive response (HR), enhances plant growth, acts as a virulence factor, and forms pores in plant plasma membranes as well as artificial membranes. However, the molecular mechanism of its biological activity and high thermal stability remained poorly understood. HR inducing abilities of non-overlapping short deletion mutants of harpins put further constraints on the ability to establish structure-activity relationships. We characterized HrpZPss from Pseudomonas syringae pv. syringae and its HR inducing C-terminal fragment with 214 amino acids (C-214-HrpZPss) using calorimetric, spectroscopic and microscopic approaches. Both C-214-HrpZPss and HrpZPss were found to form oligomers. We propose that leucine-zipper-like motifs may take part in the formation of oligomeric aggregates, and oligomerization could be related to HR elicitation. CD, DSC and fluorescence studies showed that the thermal unfolding of these proteins is complex and involves multiple steps. The comparable conformational stability at 25°C (∼10.0 kcal/mol) of HrpZPss and C-214-HrpZPss further suggest that their structures are flexible, and the flexibility allows them to adopt proper conformation for multifunctional abilities. PMID:25502017

  12. G-protein-coupled receptors for neurotransmitter amino acids: C-terminal tails, crowded signalosomes.

    PubMed Central

    El Far, Oussama; Betz, Heinrich

    2002-01-01

    G-protein-coupled receptors (GPCRs) represent a superfamily of highly diverse integral membrane proteins that transduce external signals to different subcellular compartments, including nuclei, via trimeric G-proteins. By differential activation of diffusible G(alpha) and membrane-bound G(beta)gamma subunits, GPCRs might act on both cytoplasmic/intracellular and plasma-membrane-bound effector systems. The coupling efficiency and the plasma membrane localization of GPCRs are regulated by a variety of interacting proteins. In this review, we discuss recently disclosed protein interactions found with the cytoplasmic C-terminal tail regions of two types of presynaptic neurotransmitter receptors, the group III metabotropic glutamate receptors and the gamma-aminobutyric acid type-B receptors (GABA(B)Rs). Calmodulin binding to mGluR7 and other group III mGluRs may provide a Ca(2+)-dependent switch for unidirectional (G(alpha)) versus bidirectional (G(alpha) and G(beta)gamma) signalling to downstream effector proteins. In addition, clustering of mGluR7 by PICK1 (protein interacting with C-kinase 1), a polyspecific PDZ (PSD-95/Dlg1/ZO-1) domain containing synaptic organizer protein, sheds light on how higher-order receptor complexes with regulatory enzymes (or 'signalosomes') could be formed. The interaction of GABA(B)Rs with the adaptor protein 14-3-3 and the transcription factor ATF4 (activating transcription factor 4) suggests novel regulatory pathways for G-protein signalling, cytoskeletal reorganization and nuclear gene expression: processes that may all contribute to synaptic plasticity. PMID:12006104

  13. Peptide sweeteners. 6. Structural studies on the C-terminal amino acid of L-aspartyl dipeptide sweeteners.

    PubMed

    Tsang, J W; Schmied, B; Nyfeler, R; Goodman, M

    1984-12-01

    Stereochemical and structural aspects of the variations in the C-terminal residue of L-aspartyl-L-phenylalanine methyl ester have been investigated. Novel configurational analogues such as L-aspartyl-D-alanine benzyl ester and L-aspartyl-D-alpha-aminobutyric acid benzyl ester were found to be sweet. In addition, chiral and achiral alpha, alpha-dialkylglycine and alpha-aminocycloalkanecarboxylic acids were incorporated into the dipeptides. The L-aspartic acid based dipeptide derivatives of alpha-aminoisobutyric acid methyl ester, alpha-aminocyclopropanecarboxylic acid methyl ester, alpha-aminocyclobutanecarboxylic acid methyl ester, and alpha-aminocyclopentanecarboxylic acid methyl ester are sweet. Dipeptides with alpha-aminocyclohexanecarboxylic acid methyl ester and alpha-aminocycloheptanecarboxylic acid methyl ester are bitter, whereas the analogues with alpha-aminocyclooctanecarboxylic acid methyl ester, alpha, alpha-diethylglycine methyl ester, and alpha-aminoisobutyric acid benzyl ester are tasteless. Aspects on chirality and effective volume of the C-terminal residue are discussed and correlated with taste.

  14. Studies of the binding of different iron donors to human serum transferrin and isolation of iron-binding fragments from the N- and C-terminal regions of the protein.

    PubMed Central

    Evans, R W; Williams, J

    1978-01-01

    1. Trypsin digestion of human serum transferrin partially saturated with iron(III)-nitrilotriacetate at pH 5.5 or pH 8.5 produces a carbohydrate-containing iron-binding fragment of mol.wt. 43000. 2. When iron(III) citrate, FeCl3, iron (III) ascorabate and (NH4)2SO4,FeSO4 are used as iron donors to saturate the protein partially, at pH8.5, proteolytic digestion yields a fragment of mol.wt. 36000 that lacks carbohydrate. 3. The two fragments differ in their antigenic structures, amino acid compositions and peptide 'maps'. 4. The fragment with mol.wt. 36000 was assigned to the N-terminal region of the protein and the other to the C-terminal region. 5. The distribution of iron in human serum transferrin partially saturated with various iron donors was examined by electrophoresis in urea/polyacrylamide gels and the two possible monoferric forms were unequivocally identified. 6. The site designated A on human serum transferrin [Harris (1977) Biochemistry 16, 560--564] was assigned to the C-terminal region of the protein and the B site to the N-terminal region. 7. The distribution of iron on transferrin in human plasma was determined. Images Fig. 1. Fig. 3. Fig. 5. Fig. 6. PMID:100104

  15. The recombinant C-terminal fragment of tetanus toxin protects against cholinotoxicity by intraseptal injection of β-amyloid peptide (25-35) in rats.

    PubMed

    Patricio-Martínez, A; Mendieta, L; Martínez, I; Aguilera, J; Limón, I D

    2016-02-19

    The recombinant C-terminal domain of tetanus toxin (Hc-TeTx) is a new non-toxic peptide of the tetanus toxin that exerts a protective action against glutamate excitotoxicity in motoneurons. Moreover, its efficacy as a neuroprotective agent has been demonstrated in several animal models of neurodegeneration. The eleven amino acids in the β amyloid peptide (Aβ25-35) mimic the toxic effects of the full β amyloid peptide (Aβ1-42), causing the impairment of the cholinergic system in the medial septum (MS) which, in turn, alters the septo-hippocampal pathway and leads to learning and memory impairments. The aim of this study was to examine the neuroprotective effects of the Hc-TeTx fragment against cholinotoxicity. The Hc-TeTx fragment (100 ng) was injected into the rats intercranially, with the Aβ(25-35) (2 μg) then injected into their MS. The animals were tested for spatial learning and memory in the eight-arm radial maze. The brains were removed to assess cholinergic markers, such as choline acetyltransferase (ChAT) and acetylcholinesterase (AChE), and to explore neurodegeneration in the MS and hippocampus, using amino-cupric silver and H&E staining. Finally, capase-3, a marker of apoptosis, was examined in the MS. Our results clearly demonstrate that the application of Hc-TeTx prevents the loss of cholinergic markers (ChAT and AChE), the activation of capase-3, and neurodegeneration in the MS and the CA1 and CA3 subfields of the hippocampus. All these improvements were reflected in spatial learning and memory performance, and were significantly higher compared with animals treated with Aβ(25-35). Interestingly, the single administration of Hc-TeTx into the MS modified the ChAT and AChE expression that affect cognitive processes, without inducing neurodegeneration or an increase in capase-3 expression in the MS and hippocampus. In summary, our findings suggest that the recombinant Hc-TeTx fragment offers effective protection for the septo-hippocampal pathway

  16. Thrombin cleavage of osteopontin disrupts a pro-chemotactic sequence for dendritic cells, which is compensated by the release of its pro-chemotactic C-terminal fragment.

    PubMed

    Shao, Zhifei; Morser, John; Leung, Lawrence L K

    2014-09-26

    Thrombin cleavage alters the function of osteopontin (OPN) by exposing an integrin binding site and releasing a chemotactic C-terminal fragment. Here, we examined thrombin cleavage of OPN in the context of dendritic cell (DC) migration to define its functional domains. Full-length OPN (OPN-FL), thrombin-cleaved N-terminal fragment (OPN-R), thrombin- and carboxypeptidase B2-double-cleaved N-terminal fragment (OPN-L), and C-terminal fragment (OPN-CTF) did not have intrinsic chemotactic activity, but all potentiated CCL21-induced DC migration. OPN-FL possessed the highest potency, whereas OPNRAA-FL had substantially less activity, indicating the importance of RGD. We identified a conserved (168)RSKSKKFRR(176) sequence on OPN-FL that spans the thrombin cleavage site, and it demonstrated potent pro-chemotactic effects on CCL21-induced DC migration. OPN-FLR168A had reduced activity, and the double mutant OPNRAA-FLR168A had even lower activity, indicating that these functional domains accounted for most of the pro-chemotactic activity of OPN-FL. OPN-CTF also possessed substantial pro-chemotactic activity, which was fully expressed upon thrombin cleavage and its release from the intact protein, because OPN-CTF was substantially more active than OPNRAA-FLR168A containing the OPN-CTF sequence within the intact protein. OPN-R and OPN-L possessed similar potency, indicating that the newly exposed C-terminal SVVYGLR sequence in OPN-R was not involved in the pro-chemotactic effect. OPN-FL and OPN-CTF did not directly bind to the CD44 standard form or CD44v6. In conclusion, thrombin cleavage of OPN disrupts a pro-chemotactic sequence in intact OPN, and its loss of pro-chemotactic activity is compensated by the release of OPN-CTF, which assumes a new conformation and possesses substantial activity in enhancing chemokine-induced migration of DCs. PMID:25112870

  17. A mutant streptokinase lacking the C-terminal 42 amino acids is less immunogenic.

    PubMed

    Torrèns, I; Ojalvo, A G; Seralena, A; Hayes, O; de la Fuente, J

    1999-12-01

    Streptokinase (SK) is the most widely used compound for the treatment of myocardial infarction and the least expensive thrombolytic agent, but a drawback to its use is the widespread presence of anti-SK antibodies (Abs). Clinical failure of the activation of the fibrinolytic system by SK has been reported due to the presence of a high titer of anti-SK neutralizing Abs. Patients receiving SK therapy develop high anti-SK antibody titers, which might provoke severe allergic reactions. These Abs are sufficient to neutralize a standard dose of SK up to four years after initial SK administration. This is a clinical problem because of the increasing number of patients who have been treated once with SK for acute myocardial infarction (AMI) and are likely to require plasminogen activator treatment in the future. In previous in vitro studies, we have shown that a deletion mutant (mut-C42), lacking the 42 C-terminal residues, was significantly less antigenic when compared with the native molecule (SKC-2). In this study, 14 monkeys were subjected to treatment with SKC-2 and mut-C42 in order to compare their humoral response by determining SK neutralizing activity in monkey's sera. All monkeys developed anti-SKC-2 Ab titers, but in the case where treatment induced Abs directed against the C-terminus of SKC-2, neutralizing activity against the native protein was significantly higher than that developed against mutant SK mut-C42. PMID:10656677

  18. Structure of a C-terminal fragment of its Vps53 subunit suggests similarity of Golgi-associated retrograde protein (GARP) complex to a family of tethering complexes

    SciTech Connect

    Vasan, Neil; Hutagalung, Alex; Novick, Peter; Reinisch, Karin M.

    2010-08-13

    The Golgi-associated retrograde protein (GARP) complex is a membrane-tethering complex that functions in traffic from endosomes to the trans-Golgi network. Here we present the structure of a C-terminal fragment of the Vps53 subunit, important for binding endosome-derived vesicles, at a resolution of 2.9 {angstrom}. We show that the C terminus consists of two {alpha}-helical bundles arranged in tandem, and we identify a highly conserved surface patch, which may play a role in vesicle recognition. Mutations of the surface result in defects in membrane traffic. The fold of the Vps53 C terminus is strongly reminiscent of proteins that belong to three other tethering complexes - Dsl1, conserved oligomeric Golgi, and the exocyst - thought to share a common evolutionary origin. Thus, the structure of the Vps53 C terminus suggests that GARP belongs to this family of complexes.

  19. Evaluation of the C-Terminal Fragment of Entamoeba histolytica Gal/GalNAc Lectin Intermediate Subunit as a Vaccine Candidate against Amebic Liver Abscess

    PubMed Central

    Guan, Yue; Man, Suqin; Fu, Yongfeng; Cheng, Xunjia; Tachibana, Hiroshi

    2016-01-01

    Background Entamoeba histolytica is an intestinal protozoan parasite that causes amoebiasis, including amebic dysentery and liver abscesses. E. histolytica invades host tissues by adhering onto cells and phagocytosing them depending on the adaptation and expression of pathogenic factors, including Gal/GalNAc lectin. We have previously reported that E. histolytica possesses multiple CXXC sequence motifs, with the intermediate subunit of Gal/GalNAc lectin (i.e., Igl) as a key factor affecting the amoeba's pathogenicity. The present work showed the effect of immunization with recombinant Igl on amebic liver abscess formation and the corresponding immunological properties. Methodology/Principal Findings A prokaryotic expression system was used to prepare the full-length Igl and the N-terminal, middle, and C-terminal fragments (C-Igl) of Igl. Vaccine efficacy was assessed by challenging hamsters with an intrahepatic injection of E. histolytica trophozoites. Hamsters intramuscularly immunized with full-length Igl and C-Igl were found to be 92% and 96% immune to liver abscess formation, respectively. Immune-response evaluation revealed that C-Igl can generate significant humoral immune responses, with high levels of antibodies in sera from immunized hamsters inhibiting 80% of trophozoites adherence to mammalian cells and inducing 80% more complement-mediated lysis of trophozoites compared with the control. C-Igl was further assessed for its cellular response by cytokine-gene qPCR analysis. The productions of IL-4 (8.4-fold) and IL-10 (2-fold) in the spleen cells of immunized hamsters were enhanced after in vitro stimulation. IL-4 expression was also supported by increased programmed cell death 1 ligand 1 gene. Conclusions/Significance Immunobiochemical characterization strongly suggests the potential of recombinant Igl, especially the C-terminal fragment, as a vaccine candidate against amoebiasis. Moreover, protection through Th2-cell participation enabled effective

  20. A cytoplasmic C-terminal fragment of syndecan-1 is generated by sequential proteolysis and antagonizes syndecan-1 dependent lung tumor cell migration

    PubMed Central

    Pasqualon, Tobias; Pruessmeyer, Jessica; Jankowski, Vera; Babendreyer, Aaron; Groth, Esther; Schumacher, Julian; Koenen, Andrea; Weidenfeld, Sarah; Schwarz, Nicole; Denecke, Bernd; Jahr, Holger; Dreymueller, Daniela; Jankowski, Joachim; Ludwig, Andreas

    2015-01-01

    Syndecan-1 is a surface expressed heparan sulphate proteoglycan, which is upregulated by several tumor types and involved in tumor cell migration and metastasis. Syndecan-1 is shed from the cell surface and the remaining transmembrane fragment undergoes intramembrane proteolysis by γ-secretase. We here show that this generates a cytoplasmic C-terminal fragment (cCTF). In epithelial lung tumor A549 cells the endogenously produced cCTF accumulated when its proteasomal degradation was blocked with bortezomib and this accumulation was prevented by γ-secretase inhibition. Overexpression of the cCTF suppressed migration and invasion of A549 cells. This inhibitory effect was only seen when endogenous syndecan-1 was present, but not in syndecan-1 deficient cells. Further, overexpression of syndecan-1 cCTF increased the basal activation of Src kinase, focal adhesion kinase (FAK) and Rho GTPase. This was associated with increased adhesion to fibronectin and collagen G and an increased recruitment of paxillin to focal adhesions. Moreover, lung tumor formation of A549 cells in mice was reduced by overexpression of syndecan-1 cCTF. Finally, delivery of a synthetic peptide corresponding to the syndecan-1 cCTF suppressed A549 cell migration and increased basal phosphorylation of Src and FAK. Our data indicate that the syndecan-1 cCTF antagonizes syndecan-1 dependent tumor cell migration in vitro and in vivo by dysregulating proadhesive signaling pathways and suggest that the cCTF can be used as an inhibitory peptide. PMID:26378057

  1. A C-terminal acidic domain regulates degradation of the transcriptional coactivator Bob1.

    PubMed

    Lindner, John M; Wong, Christina S F; Möller, Andreas; Nielsen, Peter J

    2013-12-01

    Bob1 (Obf-1 or OCA-B) is a 34-kDa transcriptional coactivator encoded by the Pou2af1 gene that is essential for normal B-cell development and immune responses in mice. During lymphocyte activation, Bob1 protein levels dramatically increase independently of mRNA levels, suggesting that the stability of Bob1 is regulated. We used a fluorescent protein-based reporter system to analyze protein stability in response to genetic and physiological perturbations and show that, while Bob1 degradation is proteasome mediated, it does not require ubiquitination of Bob1. Furthermore, degradation of Bob1 in B cells appears to be largely independent of the E3 ubiquitin ligase Siah. We propose a novel mechanism of Bob1 turnover in B cells, whereby an acidic region in the C terminus of Bob1 regulates the activity of degron signals elsewhere in the protein. Changes that make the C terminus more acidic, including tyrosine phosphorylation-mimetic mutations, stabilize the instable murine Bob1 protein, indicating that B cells may regulate Bob1 stability and activity via signaling pathways. Finally, we show that expressing a stable Bob1 mutant in B cells suppresses cell proliferation and induces changes in surface marker expression commonly seen during B-cell differentiation.

  2. Structure of C-terminal fragment of merozoite surface protein-1 from Plasmodium vivax determined by homology modeling and molecular dynamics refinement.

    PubMed

    Serrano, María Luisa; Pérez, Hilda A; Medina, J D

    2006-12-15

    One current vaccine candidate against Plasmodium vivax targeting asexual blood stage is the major merozoite surface protein-1 of P. vivax (PvMSP-1). Vaccine trials with PvMSP-1(19) and PvMSP-1(33) have succeeded in protecting monkeys and a large proportion of individuals, naturally exposed to P. vivax transmission, develop specific antibodies to PvMSP-1(19). This study presents a model for the three-dimensional structure of the C-terminal 19kDa fragment of P. vivax MSP-1 determined by means of homology modeling and molecular dynamics refinement. The structure proved to be consistent with MSP-1(19) of known crystal or solution structures. The presence of a main binding pocket, well suited for protein-protein interactions, was determined by CASTp. Corrections reported to the sequence of PvMSP-1(19) Belem strain were also inspected. Our model is currently used as a basis to understand antibody interactions with PvMSP-1(19).

  3. [Critical amino acids of ornitin decarboxylase degron: the presence and C-terminal arrangement is insufficient for alfa-fetoprotein degradation].

    PubMed

    Morozov, A V; Timofeev, A V; Morozov, V A; Karpov, V L

    2011-01-01

    Mouse ornithine decarboxylase (ODC) degrades in proteasome in an ubiquitin-independent manner with an averagehalf-life of 2 h. The 37 amino acid long C-terminal fragment known as a degradation signal (degron) is responsible for the effective degradation of ODC. Recently, amino acids being critical for degradation in the ODC-degron have been mapped. Mutations of Cys441 and Ala442 led to protein stabilization, while a substitution of other amino acids composing ODC-degron had almost no effect on the protein turnover; whereas insertions or deletions in region between Ala442 and ODC C-terminus diminished greatly rate of protein degradation, e.g. positioning of the key amino acids from the C-terminus was shown to be crucial. Using these data we introduced both key amino acids into the alfa-fetoprotein with truncated exportation signal (deltaAFP), at the same distance from the C-terminus as they being in the ODC (deltaAFPCAG and deltaAFPLCAG). Removal of N-terminal exportation signal prevented secretion of modified proteins. Using in silico approach we demonstrated no significant difference in hydrophobicity or secondary structure between C-terminus of deltaAFP and mutated proteins. The degradation kinetics of deltaAFP, deltaAFPCAG, deltaAFPLCAG in cyloheximide-chase and proteasome inhibition assay (using MG132) was identical. Obtained results suggest that introduced substitutions are insufficient for effective recognition of mutated deltaAFP by26S proteasome. We assume thatadditional amino aci ds composing ODC-degron or their combine action could also affect degradation. Besides that, one cannot exclude that conformation of the mutated deltaAFP limits its C-terminus accessibility to proteasome. PMID:21790016

  4. Identification of two Amino Acids in the C-terminal Domain of Mouse CRY2 Essential for PER2 Interaction

    PubMed Central

    2010-01-01

    Background Cryptochromes (CRYs) are a class of flavoprotein blue-light signaling receptors found in plants and animals, and they control plant development and the entrainment of circadian rhythms. They also act as integral parts of the central circadian oscillator in humans and other animals. In mammals, the CLOCK-BMAL1 heterodimer activates transcription of the Per and Cry genes as well as clock-regulated genes. The PER2 proteins interact with CRY and CKIε, and the resulting ternary complexes translocate into the nucleus, where they negatively regulate the transcription of Per and Cry core clock genes and other clock-regulated output genes. Recent studies have indicated that the extended C-termini of the mammalian CRYs, as compared to photolyase proteins, interact with PER proteins. Results We identified a region on mCRY2 (between residues 493 and 512) responsible for direct physical interaction with mPER2 by mammalian two-hybrid and co-immunoprecipitation assays. Moreover, using oligonucleotide-based degenerate PCR, we discovered that mutation of Arg-501 and Lys-503 of mCRY2 within this C-terminal region totally abolishes interaction with PER2. Conclusions Our results identify mCRY2 amino acid residues that interact with the mPER2 binding region and suggest the potential for rational drug design to inhibit CRYs for specific therapeutic approaches. PMID:20840750

  5. Five glutamic acid residues in the C-terminal domain of the ChlD subunit play a major role in conferring Mg(2+) cooperativity upon magnesium chelatase.

    PubMed

    Brindley, Amanda A; Adams, Nathan B P; Hunter, C Neil; Reid, James D

    2015-11-10

    Magnesium chelatase catalyzes the first committed step in chlorophyll biosynthesis by inserting a Mg(2+) ion into protoporphyrin IX in an ATP-dependent manner. The cyanobacterial (Synechocystis) and higher-plant chelatases exhibit a complex cooperative response to free magnesium, while the chelatases from Thermosynechococcus elongatus and photosynthetic bacteria do not. To investigate the basis for this cooperativity, we constructed a series of chimeric ChlD proteins using N-terminal, central, and C-terminal domains from Synechocystis and Thermosynechococcus. We show that five glutamic acid residues in the C-terminal domain play a major role in this process.

  6. Cytoplasmic location of α1A voltage-gated calcium channel C-terminal fragment (Cav2.1-CTF) aggregate is sufficient to cause cell death.

    PubMed

    Takahashi, Makoto; Obayashi, Masato; Ishiguro, Taro; Sato, Nozomu; Niimi, Yusuke; Ozaki, Kokoro; Mogushi, Kaoru; Mahmut, Yasen; Tanaka, Hiroshi; Tsuruta, Fuminori; Dolmetsch, Ricardo; Yamada, Mitsunori; Takahashi, Hitoshi; Kato, Takeo; Mori, Osamu; Eishi, Yoshinobu; Mizusawa, Hidehiro; Ishikawa, Kinya

    2013-01-01

    The human α1A voltage-dependent calcium channel (Cav2.1) is a pore-forming essential subunit embedded in the plasma membrane. Its cytoplasmic carboxyl(C)-tail contains a small poly-glutamine (Q) tract, whose length is normally 4∼19 Q, but when expanded up to 20∼33Q, the tract causes an autosomal-dominant neurodegenerative disorder, spinocerebellar ataxia type 6 (SCA6). A recent study has shown that a 75-kDa C-terminal fragment (CTF) containing the polyQ tract remains soluble in normal brains, but becomes insoluble mainly in the cytoplasm with additional localization to the nuclei of human SCA6 Purkinje cells. However, the mechanism by which the CTF aggregation leads to neurodegeneration is completely elusive, particularly whether the CTF exerts more toxicity in the nucleus or in the cytoplasm. We tagged recombinant (r)CTF with either nuclear-localization or nuclear-export signal, created doxycyclin-inducible rat pheochromocytoma (PC12) cell lines, and found that the CTF is more toxic in the cytoplasm than in the nucleus, the observations being more obvious with Q28 (disease range) than with Q13 (normal-length). Surprisingly, the CTF aggregates co-localized both with cAMP response element-binding protein (CREB) and phosphorylated-CREB (p-CREB) in the cytoplasm, and Western blot analysis showed that the quantity of CREB and p-CREB were both decreased in the nucleus when the rCTF formed aggregates in the cytoplasm. In human brains, polyQ aggregates also co-localized with CREB in the cytoplasm of SCA6 Purkinje cells, but not in other conditions. Collectively, the cytoplasmic Cav2.1-CTF aggregates are sufficient to cause cell death, and one of the pathogenic mechanisms may be abnormal CREB trafficking in the cytoplasm and reduced CREB and p-CREB levels in the nuclei. PMID:23505410

  7. HC fragment (C-terminal portion of the heavy chain) of tetanus toxin activates protein kinase C isoforms and phosphoproteins involved in signal transduction.

    PubMed Central

    Gil, C; Chaib-Oukadour, I; Blasi, J; Aguilera, J

    2001-01-01

    A recent report [Gil, Chaib-Oukadour, Pelliccioni and Aguilera (2000) FEBS Lett. 481, 177-182] describes activation of signal transduction pathways by tetanus toxin (TeTx), a Zn(2+)-dependent endopeptidase synthesized by the Clostridium tetani bacillus, which is responsible for tetanus disease. In the present work, specific activation of protein kinase C (PKC) isoforms and of intracellular signal-transduction pathways, which include nerve-growth-factor (NGF) receptor trkA, phospholipase C(PLC)gamma-1 and extracellular regulated kinases (ERKs) 1 and 2, by the recombinant C-terminal portion of the TeTx heavy chain (H(C)-TeTx) is reported. The activation of PKC isoforms was assessed through their translocation from the soluble (cytosolic) compartment to the membranous compartment, showing that clear translocation of PKC-alpha, -beta, -gamma and -delta isoforms exists, whereas PKC-epsilon showed a slight decrease in its soluble fraction immunoreactivity. The PKC-zeta isoform showed no consistent response. Using immunoprecipitation assays against phosphotyrosine residues, time- and dose-dependent increases in tyrosine phosphorylation were observed in the trkA receptor, PLCgamma-1 and ERK-1/2. The effects shown by the H(C)-TeTx fragment on tyrosine phosphorylation were compared with the effects produced by NGF. The trkA and ERK-1/2 activation were corroborated using phospho-specific antibodies against trkA phosphorylated on Tyr(490), and antibodies against Thr/Tyr phosphorylated ERK-1/2. Moreover, PLCgamma-1 phosphorylation was supported by its H(C)-TeTx-induced translocation to the membranous compartment, an event related to PLCgamma-1 activation. Since H(C)-TeTx is the domain responsible for membrane binding and lacks catalytic activity, the activations described here must be exclusively triggered by the interaction of TeTx with a membrane component. PMID:11336640

  8. Cytoplasmic Location of α1A Voltage-Gated Calcium Channel C-Terminal Fragment (Cav2.1-CTF) Aggregate Is Sufficient to Cause Cell Death

    PubMed Central

    Takahashi, Makoto; Obayashi, Masato; Ishiguro, Taro; Sato, Nozomu; Niimi, Yusuke; Ozaki, Kokoro; Mogushi, Kaoru; Mahmut, Yasen; Tanaka, Hiroshi; Tsuruta, Fuminori; Dolmetsch, Ricardo; Yamada, Mitsunori; Takahashi, Hitoshi; Kato, Takeo; Mori, Osamu; Eishi, Yoshinobu; Mizusawa, Hidehiro; Ishikawa, Kinya

    2013-01-01

    The human α1A voltage-dependent calcium channel (Cav2.1) is a pore-forming essential subunit embedded in the plasma membrane. Its cytoplasmic carboxyl(C)-tail contains a small poly-glutamine (Q) tract, whose length is normally 4∼19 Q, but when expanded up to 20∼33Q, the tract causes an autosomal-dominant neurodegenerative disorder, spinocerebellar ataxia type 6 (SCA6). A recent study has shown that a 75-kDa C-terminal fragment (CTF) containing the polyQ tract remains soluble in normal brains, but becomes insoluble mainly in the cytoplasm with additional localization to the nuclei of human SCA6 Purkinje cells. However, the mechanism by which the CTF aggregation leads to neurodegeneration is completely elusive, particularly whether the CTF exerts more toxicity in the nucleus or in the cytoplasm. We tagged recombinant (r)CTF with either nuclear-localization or nuclear-export signal, created doxycyclin-inducible rat pheochromocytoma (PC12) cell lines, and found that the CTF is more toxic in the cytoplasm than in the nucleus, the observations being more obvious with Q28 (disease range) than with Q13 (normal-length). Surprisingly, the CTF aggregates co-localized both with cAMP response element-binding protein (CREB) and phosphorylated-CREB (p-CREB) in the cytoplasm, and Western blot analysis showed that the quantity of CREB and p-CREB were both decreased in the nucleus when the rCTF formed aggregates in the cytoplasm. In human brains, polyQ aggregates also co-localized with CREB in the cytoplasm of SCA6 Purkinje cells, but not in other conditions. Collectively, the cytoplasmic Cav2.1-CTF aggregates are sufficient to cause cell death, and one of the pathogenic mechanisms may be abnormal CREB trafficking in the cytoplasm and reduced CREB and p-CREB levels in the nuclei. PMID:23505410

  9. The C-Terminal Fragment of Agrin (CAF), a Novel Marker of Renal Function, Is Filtered by the Kidney and Reabsorbed by the Proximal Tubule

    PubMed Central

    Daryadel, Arezoo; Haubitz, Monika; Figueiredo, Marta; Steubl, Dominik; Roos, Marcel; Mäder, Armin; Hettwer, Stefan

    2016-01-01

    Agrin, a multidomain proteoglycan and neurotrypsin, a neuronal serine protease, are important for forming (neuromuscular) synapses. Proteolytical activity of neurotrypsin produces a C-terminal fragment of agrin, termed CAF, of approximately 22 kDA molecular size which also circulates in blood. The presence of CAF in urine suggests either glomerular filtration or secretion into urine. Blood levels of CAF have been identified as a potential novel marker of kidney function. Here we describe that several nephron segments in the mouse kidney express agrin and neutrotrypsin in addition to the localization of both protein in the glomerulum. Agrin mRNA and protein was detected in almost all nephron segments and mRNA abundance was highest in the inner medullary collecting duct. Neurotrypsin mRNA was mostly detected in the thick ascending limb of the loop of Henle, the distal convoluted tubule, and the inner medullary collecting duct. Moreover, we show that the proximal tubule absorbs injected recombinant CAF by a process shared with receptor-mediated and fluid phase endocytosis. Co-injection of CAF with recombinant human transferrin, a substrate of the receptor-mediated endocytic pathway as well as with FITC-labelled dextran (10 kDa), a marker of fluid phase endocytosis, showed partial colocalization of CAF with both markers. Further colocalization of CAF with the lysosomal marker cathepsin B suggested degradation of CAF by the lysosome in the proximal tubule. Thus, the murine kidney expresses agrin and neurotrypsin in nephron segments beyond the glomerulum. CAF is filtered by the glomerulum and is reabsorbed by endocytosis by the proximal tubule. Thus, impaired kidney function could impair glomerular clearance of CAF and thereby increase circulating CAF levels. PMID:27380275

  10. C-terminal Domains of N-Methyl-d-aspartic Acid Receptor Modulate Unitary Channel Conductance and Gating*

    PubMed Central

    Maki, Bruce A.; Aman, Teresa K.; Amico-Ruvio, Stacy A.; Kussius, Cassandra L.; Popescu, Gabriela K.

    2012-01-01

    NMDA receptors (NRs) are glutamate-gated calcium-permeable channels that are essential for normal synaptic transmssion and contribute to neurodegeneration. Tetrameric proteins consist of two obligatory GluN1 (N1) and two GluN2 (N2) subunits, of which GluN2A (2A) and GluN2B (2B) are prevalent in adult brain. The intracellularly located C-terminal domains (CTDs) make a significant portion of mass of the receptors and are essential for plasticity and excitotoxicity, but their functions are incompletely defined. Recent evidence shows that truncation of the N2 CTD alters channel kinetics; however, the mechanism by which this occurs is unclear. Here we recorded activity from individual NRs lacking the CTDs of N1, 2A, or 2B and determined the gating mechanisms of these receptors. Receptors lacking the N1 CTDs had larger unitary conductance and faster deactivation kinetics, receptors lacking the 2A or 2B CTDs had longer openings and longer desensitized intervals, and the first 100 amino acids of the N2 CTD were essential for these changes. In addition, receptors lacking the CTDs of either 2A or 2B maintained isoform-specific kinetic differences and swapping CTDs between 2A and 2B had no effect on single-channel properties. Based on these results, we suggest that perturbations in the CTD can modify the NR-mediated signal in a subunit-dependent manner, in 2A these effects are most likely mediated by membrane-proximal residues, and the isoform-specific biophysical properties conferred by 2A and 2B are CTD-independent. The kinetic mechanisms we developed afford a quantitative approach to understanding how the intracellular domains of NR subunits can modulate the responses of the receptor. PMID:22948148

  11. Amino acid sequence homology between N- and C-terminal halves of a carbonic anhydrase in Porphyridium purpureum, as deduced from the cloned cDNA.

    PubMed

    Mitsuhashi, S; Miyachi, S

    1996-11-01

    Carbonic anhydrase (CA) from Porphyridium purpureum, a unicellular red alga, was purified >209-fold to a specific activity of 1,147 units/mg protein. cDNA clones for this CA were isolated. The longest clone, comprising 1,960 base pairs, contained an open reading frame which encoded a 571-amino acid polypeptide with a calculated molecular mass of 62,094 Da. The N- and C-terminal halves of the putative mature Porphyridium CA have amino acid sequence homology to each other (>70%) and to other prokaryotic-type CAs. Both regions contain, at equivalent positions, one set of three possible zinc-liganding amino acid residues conserved among prokaryotic-type CAs. CA purified from Porphyridium contained two atoms of zinc per molecule. We propose that the Porphyridium CA has evolved by duplication of an ancestral CA gene followed by the fusion of the duplicated CA gene. The CA truncated into the putative mature form was overexpressed in Escherichia coli, and the expressed protein was active. Clones expressing separately the N- and C-terminal halves of the CA were constructed. CA activity was present in extracts of E. coli cells expressing the N-terminal half, while no detectable activity was found in cells expressing the C-terminal half.

  12. Identification of potent 11mer glucagon-like peptide-1 receptor agonist peptides with novel C-terminal amino acids: Homohomophenylalanine analogs.

    PubMed

    Haque, Tasir S; Lee, Ving G; Riexinger, Douglas; Lei, Ming; Malmstrom, Sarah; Xin, Li; Han, Songping; Mapelli, Claudio; Cooper, Christopher B; Zhang, Ge; Ewing, William R; Krupinski, John

    2010-05-01

    We report the identification of potent agonists of the Glucagon-Like Peptide-1 Receptor (GLP-1R). These compounds are short, 11 amino acid peptides containing several unnatural amino acids, including (in particular) analogs of homohomophenylalanine (hhPhe) at the C-terminal position. Typically the functional activity of the more potent peptides in this class is in the low picomolar range in an in vitro cAMP assay, with one example demonstrating excellent in vivo activity in an ob/ob mouse model of diabetes.

  13. Improvement of the thermostability and activity of halohydrin dehalogenase from Agrobacterium radiobacter AD1 by engineering C-terminal amino acids.

    PubMed

    Wang, Xiong; Han, Shaoqiang; Yang, Zujun; Tang, Lixia

    2015-10-20

    In the current study, a three-tiered mutagenesis strategy was employed to simultaneously improve the thermostability and activity of halohydrin dehalogenase from Agrobacterium radiobacter AD1 (HheC) by engineering the last ten amino acids (Met245∼Glu254) of its C-terminal region. Initially, truncated mutagenesis results displayed that C-terminal deletions decreased the thermostability and/or activity of HheC. Then ten residues were subjected to single-site saturation mutagenesis, resulting in 20 beneficial single-point variants related to the thermostability or activity of HheC. The results clearly indicated that residues Met252∼Glu254 and Trp249 are crucial for regulating enzyme thermostability and activity, respectively. Finally, the beneficial substitutions were combined using efficient multi-site combinatorial mutagenesis approaches, leading to an outstanding variant PX14 (Trp249Pro/Met252Leu/Pro253Asp), which had a 17.8-fold higher half-life and a 4.0-fold higher kcat value than that of wild-type HheC. These results indicated that the C-terminal residues play an important role in modulating both the thermostability and activity of HheC.

  14. Characterisation of the isolated Che Y C-terminal fragment (79-129)--Exploring the structure/stability/folding relationship of the alpha/beta parallel protein Che Y.

    PubMed

    Bruix, M; Muñoz, V; Campos-Olivas, R; Del Bosque, J R; Serrano, L; Rico, M

    1997-01-15

    To gain insight into how the three-dimensional structure, stability and folding of the protein Che Y are related to one another, we have performed a conformational analysis of a long fragment of this protein, encompassing its C-terminal 51 residues (79-129). This fragment consists of residues in the beta-strands 4 and 5 and alpha-helices 4 and 5 of native Che Y. The study has been performed by two-dimensional NMR and far-ultraviolet circular dichroism in aqueous solution and in 30% (by vol.) trifluoroethanol/ water at 273 K and 298 K. We observe little structure for this fragment in aqueous solution which could be due to low helical populations in the regions corresponding to helices 4 and 5. Within the limits of the residual helical structure experimentally detected, helix 4 appears to extend beyond the N-terminus observed in the native structure by over four residues belonging to the preceding loop. In 30% trifluoroethanol the helical content of both helices increase and helix 4 extends further to include the preceding beta-strand 4. None of the long-range NOEs present in native Che Y are observed under the explored experimental conditions. The conformational shifts of the H(alpha) protons within the alpha-helices of fragment 79-129 are identical to those of shorter synthetic peptides corresponding to the isolated alpha-helices. Thus, the fragment 79-129 appears to behave as an open chain with low local helical populations. The very low intrinsic ability for structure formation displayed by this region of Che Y at pH 2.5 suggests that in the folded protein this region could be mainly stabilised by interactions with the N-terminal Che Y region. This is in accordance with the contact map of Che Y, which shows that the strongest non-local contacts of C-terminal residues are with residues of the N-terminal region, while those within the C-terminal region are very weak. More importantly, the relationship appears to be possibly extended to the folding properties of the

  15. Direct influence of C-terminally substituted amino acids in the Dmt-Tic pharmacophore on delta-opioid receptor selectivity and antagonism.

    PubMed

    Balboni, Gianfranco; Salvadori, Severo; Guerrini, Remo; Negri, Lucia; Giannini, Elisa; Bryant, Sharon D; Jinsmaa, Yunden; Lazarus, Lawrence H

    2004-07-29

    A series of 17 analogues were developed on the basis of the general formula H-Dmt-Tic-NH-CH(R)-R' (denotes chirality; R = charged, neutral, or aromatic functional group; R' = -OH or -NH(2)). These compounds were designed to test the following hypothesis: the physicochemical properties of third-residue substitutions C-terminal to Tic in the Dmt-Tic pharmacophore modify delta-opioid receptor selectivity and delta-opioid receptor antagonism through enhanced interactions with the mu-opioid receptor. The data substantiate the following conclusions: (i) all compounds had high receptor affinity [K(i)(delta) = 0.034-1.1 nM], while that for the mu-opioid receptor fluctuated by orders of magnitude [K(i)(mu) = 15.1-3966 nM]; (ii) delta-opioid receptor selectivity [K(i)(mu)/K(i)(delta)] declined 1000-fold from 22,600 to 21; (iii) a C-terminal carboxyl group enhanced selectivity but only as a consequence of the specific residue; (iv) amidated, positive charged residues [Lys-NH(2) (6), Arg-NH(2) (7)], and a negatively charged aromatic residue [Trp-OH (11)] enhanced mu-opioid affinity [K(i)(mu) = 17.0, 15.1, and 15.7 nM, respectively], while Gly-NH(2) (8), Ser-NH(2) (10), and His-OH (12) were nearly one-tenth as active; and (v) D-isomers exhibited mixed effects on mu-opioid receptor affinity (2' < 3' < 4' < 1' < 5') and decreased delta-selectivity in D-Asp-NH(2) (1') and D-Lys(Ac)-OH (5'). The analogues exhibited delta-opioid receptor antagonism (pA(2) = 6.9-10.07) and weak mu-opioid receptor agonism (IC(50) > 1 microM) except H-Dmt-Tic-Glu-NH(2) (3), which was a partial delta-opioid receptor agonist (IC(50) = 2.5 nM). Thus, these C-terminally extended analogues indicated that an amino acid residue containing a single charge, amino or guanidino functionality, or aromatic group substantially altered the delta-opioid receptor activity profile (selectivity and antagonism) of the Dmt-Tic pharmacophore, which suggests that the C-terminal constituent plays a major role in determining

  16. Crystallization and preliminary X-ray analysis of the C-terminal fragment of PorM, a subunit of the Porphyromonas gingivalis type IX secretion system.

    PubMed

    Stathopulos, Julien; Cambillau, Christian; Cascales, Eric; Roussel, Alain; Leone, Philippe

    2015-01-01

    PorM is a membrane protein involved in the assembly of the type IX secretion system (T9SS) from Porphyromonas gingivalis, a major bacterial pathogen responsible for periodontal disease in humans. The periplasmic domain of PorM was overexpressed in Escherichia coli and purified. A fragment of the purified protein was obtained by limited proteolysis. Crystals of this fragment belonged to the tetragonal space group P4(3)2(1)2. Native and MAD data sets were recorded to 2.85 and 3.1 Å resolution, respectively, using synchrotron radiation. PMID:25615973

  17. Interaction of angiotensin II with the C-terminal 300-320 fragment of the rat angiotensin II receptor AT1a monitored by NMR.

    PubMed

    D'Amelio, Nicola; Gaggelli, Elena; Gaggelli, Nicola; Lozzi, Luisa; Neri, Paolo; Valensin, Daniela; Valensin, Gianni

    2003-10-01

    Interaction between angiotensin II (Ang II) and the fragment peptide 300-320 (fCT300-320) of the rat angiotensin II receptor AT1a was demonstrated by relaxation measurements, NOE effects, chemical shift variations, and CD measurements. The correlation times modulating dipolar interactions for the bound and free forms of Ang II were estimated by the ratio of the nonselective and single-selective longitudinal relaxation rates. The intermolecular NOEs observed in NOESY spectra between HN protons of 9Lys(fCT) and 6His(ang), 10Phe(fCT) and 8Phe(ang), HN proton of 3Tyr(fCT) and Halpha of 4Tyr(ang), 5Phe(fCT)Hdelta and Halpha of 4Tyr(ang) indicated that Ang II aromatic residues are directly involved in the interaction, as also verified by relaxation data. Some fCT300-320 backbone features were inferred by the CSI method and CD experiments revealing that the presence of Ang II enhances the existential probability of helical conformations in the fCT fragment. Restrained molecular dynamics using the simulated annealing protocol was performed with intermolecular NOEs as constraints, imposing an alpha-helix backbone structure to fCT300-320 fragment. In the built model, one strongly preferred interaction was found that allows intermolecular stacking between aromatic rings and forces the peptide to wrap around the 6Leu side chain of the receptor fragment.

  18. Functional Role of N- and C-Terminal Amino Acids in the Structural Subunits of Colonization Factor CS6 Expressed by Enterotoxigenic Escherichia coli

    PubMed Central

    Debnath, Anusuya; Sabui, Subrata; Wajima, Takeaki; Hamabata, Takashi; Banerjee, Rajat

    2016-01-01

    ABSTRACT CS6 is a common colonization factor expressed by enterotoxigenic Escherichia coli. It is a two-subunit protein consisting of CssA and CssB in an equal stoichiometry, assembled via the chaperone-usher pathway into an afimbrial, oligomeric assembly on the bacterial cell surface. A recent structural study has predicted the involvement of the N- and C-terminal regions of the CS6 subunits in its assembly. Here, we identified the functionally important residues in the N- and C-terminal regions of the CssA and CssB subunits during CS6 assembly by alanine scanning mutagenesis. Bacteria expressing mutant proteins were tested for binding with Caco-2 cells, and the results were analyzed with respect to the surface expression of mutant CS6. In this assay, many mutant proteins were not expressed on the surface while some showed reduced expression. It appeared that some, but not all, of the residues in both the N and C termini of CssA and CssB played an important role in the intermolecular interactions between these two structural subunits, as well as chaperone protein CssC. Our results demonstrated that T20, K25, F27, S36, Y143, and V147 were important for the stability of CssA, probably through interaction of CssC. We also found that I22, V29, and I33 of CssA and G154, Y156, L160, V162, F164, and Y165 of CssB were responsible for CssA-CssB intermolecular interactions. In addition, some of the hydrophobic residues in the C terminus of CssA and the N terminus of CssB were involved in the stabilization of higher-order complex formation. Overall, the results presented here might help in understanding the pathway used to assemble CS6 and predict its structure. IMPORTANCE Unlike most other colonization factors, CS6 is nonfimbrial, and in a sense, its subunit composition and assembly are also unique. Here we report that both the N- and C-terminal amino acid residues of CssA and CssB play a critical role in the intermolecular interactions between them and assembly proteins

  19. The primary fibrin polymerization pocket: Three-dimensional structure of a 30-kDa C-terminal γ chain fragment complexed with the peptide Gly-Pro-Arg-Pro

    PubMed Central

    Pratt, K. P.; Côté, H. C. F.; Chung, D. W.; Stenkamp, R. E.; Davie, E. W.

    1997-01-01

    After vascular injury, a cascade of serine protease activations leads to the conversion of the soluble fibrinogen molecule into fibrin. The fibrin monomers then polymerize spontaneously and noncovalently to form a fibrin gel. The primary interaction of this polymerization reaction is between the newly exposed N-terminal Gly-Pro-Arg sequence of the α chain of one fibrin molecule and the C-terminal region of a γ chain of an adjacent fibrin(ogen) molecule. In this report, the polymerization pocket has been identified by determining the crystal structure of a 30-kDa C-terminal fragment of the fibrin(ogen) γ chain complexed with the peptide Gly-Pro-Arg-Pro. This peptide mimics the N terminus of the α chain of fibrin. The conformational change in the protein upon binding the peptide is subtle, with electrostatic interactions primarily mediating the association. This is consistent with biophysical experiments carried out over the last 50 years on this fundamental polymerization reaction. PMID:9207064

  20. Ubiquilin-2 (UBQLN2) binds with high affinity to the C-terminal region of TDP-43 and modulates TDP-43 levels in H4 cells: characterization of inhibition by nucleic acids and 4-aminoquinolines.

    PubMed

    Cassel, Joel A; Reitz, Allen B

    2013-06-01

    Recently, it was reported that mutations in the ubiquitin-like protein ubiquilin-2 (UBQLN2) are associated with X-linked amyotrophic lateral sclerosis (ALS), and that both wild-type and mutant UBQLN2 can co-localize with aggregates of C-terminal fragments of TAR DNA binding protein (TDP-43). Here, we describe a high affinity interaction between UBQLN2 and TDP-43 and demonstrate that overexpression of both UBQLN2 and TDP-43 reduces levels of both exogenous and endogenous TDP-43 in human H4 cells. UBQLN2 bound with high affinity to both full length TDP-43 and a C-terminal TDP-43 fragment (261-414 aa) with KD values of 6.2nM and 8.7nM, respectively. Both DNA oligonucleotides and 4-aminoquinolines, which bind to TDP-43, also inhibited UBQLN2 binding to TDP-43 with similar rank order affinities compared to inhibition of oligonucleotide binding to TDP-43. Inhibitor characterization experiments demonstrated that the DNA oligonucleotides noncompetitively inhibited UBQLN2 binding to TDP-43, which is consistent with UBQLN2 binding to the C-terminal region of TDP-43. Interestingly, the 4-aminoquinolines were competitive inhibitors of UBQLN2 binding to TDP-43, suggesting that these compounds also bind to the C-terminal region of TDP-43. In support of the biochemical data, co-immunoprecipitation experiments demonstrated that both TDP-43 and UBQLN2 interact in human neuroglioma H4 cells. Finally, overexpression of UBQLN2 in the presence of overexpressed full length TDP-43 or C-terminal TDP-43 (170-414) dramatically lowered levels of both full length TDP-43 and C-terminal TDP-43 fragments (CTFs). Consequently, these data suggest that UBQLN2 enhances the clearance of TDP-43 and TDP-43 CTFs and therefore may play a role in the development of TDP-43 associated neurotoxicity.

  1. Variable protection against experimental broiler necrotic enteritis after immunization with the C-terminal fragment of Clostridium perfringens alpha-toxin and a non-toxic NetB variant

    PubMed Central

    Fernandes da Costa, Sérgio P.; Mot, Dorien; Geeraerts, Sofie; Bokori-Brown, Monika; Van Immerseel, Filip; Titball, Richard W.

    2016-01-01

    ABSTRACT Necrotic enteritis toxin B (NetB) is a pore-forming toxin produced by Clostridium perfringens and has been shown to play a key role in avian necrotic enteritis, a disease causing significant costs to the poultry production industry worldwide. The aim of this work was to determine whether immunization with a non-toxic variant of NetB (NetB W262A) and the C-terminal fragment of C. perfringens alpha-toxin (CPA247–370) would provide protection against experimental necrotic enteritis. Immunized birds with either antigen or a combination of antigens developed serum antibody levels against NetB and CPA. When CPA247–370 and NetB W262A were used in combination as immunogens, an increased protection was observed after oral challenge by individual dosing, but not after in-feed-challenge. PMID:26743457

  2. Biochemical Characterization of Mycobacterium smegmatis RnhC (MSMEG_4305), a Bifunctional Enzyme Composed of Autonomous N-Terminal Type I RNase H and C-Terminal Acid Phosphatase Domains

    PubMed Central

    Jacewicz, Agata

    2015-01-01

    ABSTRACT Mycobacterium smegmatis encodes several DNA repair polymerases that are adept at incorporating ribonucleotides, which raises questions about how ribonucleotides in DNA are sensed and removed. RNase H enzymes, of which M. smegmatis encodes four, are strong candidates for a surveillance role. Here, we interrogate the biochemical activity and nucleic acid substrate specificity of M. smegmatis RnhC, a bifunctional RNase H and acid phosphatase. We report that (i) the RnhC nuclease is stringently specific for RNA:DNA hybrid duplexes; (ii) RnhC does not selectively recognize and cleave DNA-RNA or RNA-DNA junctions in duplex nucleic acid; (iii) RnhC cannot incise an embedded monoribonucleotide or diribonucleotide in duplex DNA; (iv) RnhC can incise tracts of 4 or more ribonucleotides embedded in duplex DNA, leaving two or more residual ribonucleotides at the cleaved 3′-OH end and at least one or two ribonucleotides on the 5′-PO4 end; (v) the RNase H activity is inherent in an autonomous 140-amino-acid (aa) N-terminal domain of RnhC; and (vi) the C-terminal 211-aa domain of RnhC is an autonomous acid phosphatase. The cleavage specificity of RnhC is clearly distinct from that of Escherichia coli RNase H2, which selectively incises at an RNA-DNA junction. Thus, we classify RnhC as a type I RNase H. The properties of RnhC are consistent with a role in Okazaki fragment RNA primer removal or in surveillance of oligoribonucleotide tracts embedded in DNA but not in excision repair of single misincorporated ribonucleotides. IMPORTANCE RNase H enzymes help cleanse the genome of ribonucleotides that are present either as ribotracts (e.g., RNA primers) or as single ribonucleotides embedded in duplex DNA. Mycobacterium smegmatis encodes four RNase H proteins, including RnhC, which is characterized in this study. The nucleic acid substrate and cleavage site specificities of RnhC are consistent with a role in initiating the removal of ribotracts but not in single

  3. Escherichia coli methionyl-tRNA formyltransferase: role of amino acids conserved in the linker region and in the C-terminal domain on the specific recognition of the initiator tRNA.

    PubMed

    Gite, S; Li, Y; Ramesh, V; RajBhandary, U L

    2000-03-01

    The formylation of initiator methionyl-tRNA by methionyl-tRNA formyltransferase (MTF) is important for the initiation of protein synthesis in eubacteria. We are studying the molecular mechanisms of recognition of the initiator tRNA by Escherichia coli MTF. MTF from eubacteria contains an approximately 100-amino acid C-terminal extension that is not found in the E. coli glycinamide ribonucleotide formyltransferase, which, like MTF, use N(10)-formyltetrahydrofolate as a formyl group donor. This C-terminal extension, which forms a distinct structural domain, is attached to the N-terminal domain through a linker region. Here, we describe the effect of (i) substitution mutations on some nineteen basic, aromatic and other conserved amino acids in the linker region and in the C-terminal domain of MTF and (ii) deletion mutations from the C-terminus on enzyme activity. We show that the positive charge on two of the lysine residues in the linker region leading to the C-terminal domain are important for enzyme activity. Mutation of some of the basic amino acids in the C-terminal domain to alanine has mostly small effects on the kinetic parameters, whereas mutation to glutamic acid has large effects. However, the deletion of 18, 20, or 80 amino acids from the C-terminus has very large effects on enzyme activity. Overall, our results support the notion that the basic amino acid residues in the C-terminal domain provide a positively charged channel that is used for the nonspecific binding of tRNA, whereas some of the amino acids in the linker region play an important role in activity of MTF.

  4. The C-terminal 165 amino acids of the plasma membrane Ca(2+)-ATPase confer Ca2+/calmodulin sensitivity on the Na+,K(+)-ATPase alpha-subunit.

    PubMed Central

    Ishii, T; Takeyasu, K

    1995-01-01

    The C-terminal 165 amino acids of the rat brain plasma membrane (PM) Ca(2+)-ATPase II containing the calmodulin binding auto-inhibitory domain was connected to the C-terminus of the ouabain sensitive chicken Na+,K(+)-ATPase alpha 1 subunit. Expression of this chimeric molecule in ouabain resistant mouse L cells was assured by the high-affinity binding of [3H]ouabain. In the presence of Ca2+/calmodulin, this chimeric molecule exhibited ouabain inhibitable Na+,K(+)-ATPase activity; the putative chimeric ATPase activity was absent in the absence of Ca2+/calmodulin and activated by Ca2+/calmodulin in a dose-dependent manner. Furthermore, this chimeric molecule could bind monoclonal IgG 5 specific to the chicken Na+,K(+)-ATPase alpha 1 subunit only in the presence of Ca2+/calmodulin, suggesting that the epitope for IgG 5 in this chimera is masked in the absence of Ca2+/calmodulin and uncovered in their presence. These results propose a direct interaction between the calmodulin binding auto-inhibitory domain of the PM Ca(2+)-ATPase and the specific regions of the Na+,K(+)-ATPase alpha 1 subunit that are structurally homologous to the PM Ca(2+)-ATPase. A comparison of the deduced amino acid sequences revealed several possible regions within the Na+,K(+)-ATPase that might interact with the auto-inhibitory domain of the PM Ca(2+)-ATPase. Images PMID:7828596

  5. 157 nm Photodissociation of a Complete Set of Dipeptide Ions Containing C-Terminal Arginine

    NASA Astrophysics Data System (ADS)

    He, Yi; Webber, Nathaniel; Reilly, James P.

    2013-05-01

    Twenty singly-charged dipeptide ions with C-terminal arginine were photodissociated with 157 nm light and their tandem mass spectra recorded. Many of the small product ions that were observed are standard peptide fragments that have been commonly seen in VUV photodissociation studies. However, the study of a library of dipeptides containing all 20 N-terminal amino acids enabled the recognition of trends associated with the occurrence of w-, v-, and immonium ions, the observation of competition between forming N- and C-terminal fragments in dipeptide RR, and the identification of some unusual fragment ions appearing at masses of 183, 187, 196, and 197 Da. A highly accurate internal calibration of the photodissociation TOF-TOF data enabled molecular formulae for these four product ions to be derived. Their proposed structures reflect the rather high-energy nature of this fragmentation phenomenon.

  6. Serum Concentrations of Ubiquitin C-Terminal Hydrolase-L1 and Glial Fibrillary Acidic Protein after Pediatric Traumatic Brain Injury.

    PubMed

    Mondello, Stefania; Kobeissy, Firas; Vestri, Annarita; Hayes, Ronald L; Kochanek, Patrick M; Berger, Rachel P

    2016-06-20

    Objective reliable markers to assess traumatic brain injury (TBI) and predict outcome soon after injury are a highly needed tool for optimizing management of pediatric TBI. We assessed serum concentrations of Glial Fibrillary Acidic Protein (GFAP) and Ubiquitin C-Terminal Hydrolase-L1 (UCH-L1) in a cohort of 45 children with clinical diagnosis of TBI (Glasgow Coma Scale [GCS] 3-15) and 40 healthy subjects, evaluated their associations with clinical characteristics and outcomes, and compared their performance to previously published data on two well-studied blood biomarkers, S100B and MBP. We observed higher serum levels of GFAP and UCH-L1 in brain-injured children compared with controls and also demonstrated a step-wise increase of biomarker concentrations over the continuum of severity from mild to severe TBI. Furthermore, while we found that only the neuronal biomarker UCH-L1 holds potential to detect acute intracranial lesions as assessed by computed tomography (CT), both markers were substantially increased in TBI patients even with a normal CT suggesting the presence of undetected microstructural injuries. Serum UCH-L1 and GFAP concentrations also strongly predicted poor outcome and performed better than S100B and MBP. Our results point to a role of GFAP and UCH-L1 as candidate biomarkers for pediatric TBI. Further studies are warranted.

  7. Serum Concentrations of Ubiquitin C-Terminal Hydrolase-L1 and Glial Fibrillary Acidic Protein after Pediatric Traumatic Brain Injury.

    PubMed

    Mondello, Stefania; Kobeissy, Firas; Vestri, Annarita; Hayes, Ronald L; Kochanek, Patrick M; Berger, Rachel P

    2016-01-01

    Objective reliable markers to assess traumatic brain injury (TBI) and predict outcome soon after injury are a highly needed tool for optimizing management of pediatric TBI. We assessed serum concentrations of Glial Fibrillary Acidic Protein (GFAP) and Ubiquitin C-Terminal Hydrolase-L1 (UCH-L1) in a cohort of 45 children with clinical diagnosis of TBI (Glasgow Coma Scale [GCS] 3-15) and 40 healthy subjects, evaluated their associations with clinical characteristics and outcomes, and compared their performance to previously published data on two well-studied blood biomarkers, S100B and MBP. We observed higher serum levels of GFAP and UCH-L1 in brain-injured children compared with controls and also demonstrated a step-wise increase of biomarker concentrations over the continuum of severity from mild to severe TBI. Furthermore, while we found that only the neuronal biomarker UCH-L1 holds potential to detect acute intracranial lesions as assessed by computed tomography (CT), both markers were substantially increased in TBI patients even with a normal CT suggesting the presence of undetected microstructural injuries. Serum UCH-L1 and GFAP concentrations also strongly predicted poor outcome and performed better than S100B and MBP. Our results point to a role of GFAP and UCH-L1 as candidate biomarkers for pediatric TBI. Further studies are warranted. PMID:27319802

  8. Truncation of C-terminal 20 amino acids in PA-X contributes to adaptation of swine influenza virus in pigs.

    PubMed

    Xu, Guanlong; Zhang, Xuxiao; Sun, Yipeng; Liu, Qinfang; Sun, Honglei; Xiong, Xin; Jiang, Ming; He, Qiming; Wang, Yu; Pu, Juan; Guo, Xin; Yang, Hanchun; Liu, Jinhua

    2016-02-25

    The PA-X protein is a fusion protein incorporating the N-terminal 191 amino acids of the PA protein with a short C-terminal sequence encoded by an overlapping ORF (X-ORF) in segment 3 that is accessed by + 1 ribosomal frameshifting, and this X-ORF exists in either full length or a truncated form (either 61-or 41-condons). Genetic evolution analysis indicates that all swine influenza viruses (SIVs) possessed full-length PA-X prior to 1985, but since then SIVs with truncated PA-X have gradually increased and become dominant, implying that truncation of this protein may contribute to the adaptation of influenza virus in pigs. To verify this hypothesis, we constructed PA-X extended viruses in the background of a "triple-reassortment" H1N2 SIV with truncated PA-X, and evaluated their biological characteristics in vitro and in vivo. Compared with full-length PA-X, SIV with truncated PA-X had increased viral replication in porcine cells and swine respiratory tissues, along with enhanced pathogenicity, replication and transmissibility in pigs. Furthermore, we found that truncation of PA-X improved the inhibition of IFN-I mRNA expression. Hereby, our results imply that truncation of PA-X may contribute to the adaptation of SIV in pigs.

  9. Serum Concentrations of Ubiquitin C-Terminal Hydrolase-L1 and Glial Fibrillary Acidic Protein after Pediatric Traumatic Brain Injury

    PubMed Central

    Mondello, Stefania; Kobeissy, Firas; Vestri, Annarita; Hayes, Ronald L.; Kochanek, Patrick M.; Berger, Rachel P.

    2016-01-01

    Objective reliable markers to assess traumatic brain injury (TBI) and predict outcome soon after injury are a highly needed tool for optimizing management of pediatric TBI. We assessed serum concentrations of Glial Fibrillary Acidic Protein (GFAP) and Ubiquitin C-Terminal Hydrolase-L1 (UCH-L1) in a cohort of 45 children with clinical diagnosis of TBI (Glasgow Coma Scale [GCS] 3–15) and 40 healthy subjects, evaluated their associations with clinical characteristics and outcomes, and compared their performance to previously published data on two well-studied blood biomarkers, S100B and MBP. We observed higher serum levels of GFAP and UCH-L1 in brain-injured children compared with controls and also demonstrated a step-wise increase of biomarker concentrations over the continuum of severity from mild to severe TBI. Furthermore, while we found that only the neuronal biomarker UCH-L1 holds potential to detect acute intracranial lesions as assessed by computed tomography (CT), both markers were substantially increased in TBI patients even with a normal CT suggesting the presence of undetected microstructural injuries. Serum UCH-L1 and GFAP concentrations also strongly predicted poor outcome and performed better than S100B and MBP. Our results point to a role of GFAP and UCH-L1 as candidate biomarkers for pediatric TBI. Further studies are warranted. PMID:27319802

  10. Truncation of C-terminal 20 amino acids in PA-X contributes to adaptation of swine influenza virus in pigs

    PubMed Central

    Xu, Guanlong; Zhang, Xuxiao; Sun, Yipeng; Liu, Qinfang; Sun, Honglei; Xiong, Xin; Jiang, Ming; He, Qiming; Wang, Yu; Pu, Juan; Guo, Xin; Yang, Hanchun; Liu, Jinhua

    2016-01-01

    The PA-X protein is a fusion protein incorporating the N-terminal 191 amino acids of the PA protein with a short C-terminal sequence encoded by an overlapping ORF (X-ORF) in segment 3 that is accessed by + 1 ribosomal frameshifting, and this X-ORF exists in either full length or a truncated form (either 61-or 41-condons). Genetic evolution analysis indicates that all swine influenza viruses (SIVs) possessed full-length PA-X prior to 1985, but since then SIVs with truncated PA-X have gradually increased and become dominant, implying that truncation of this protein may contribute to the adaptation of influenza virus in pigs. To verify this hypothesis, we constructed PA-X extended viruses in the background of a “triple-reassortment” H1N2 SIV with truncated PA-X, and evaluated their biological characteristics in vitro and in vivo. Compared with full-length PA-X, SIV with truncated PA-X had increased viral replication in porcine cells and swine respiratory tissues, along with enhanced pathogenicity, replication and transmissibility in pigs. Furthermore, we found that truncation of PA-X improved the inhibition of IFN-I mRNA expression. Hereby, our results imply that truncation of PA-X may contribute to the adaptation of SIV in pigs. PMID:26912401

  11. DNA vaccines targeting heavy chain C-terminal fragments of Clostridium botulinum neurotoxin serotypes A, B, and E induce potent humoral and cellular immunity and provide protection from lethal toxin challenge.

    PubMed

    Scott, Veronica L; Villarreal, Daniel O; Hutnick, Natalie A; Walters, Jewell N; Ragwan, Edwin; Bdeir, Khalil; Yan, Jian; Sardesai, Niranjan Y; Finnefrock, Adam C; Casimiro, Danilo R; Weiner, David B

    2015-01-01

    Botulinum neurotoxins (BoNTs) are deadly, toxic proteins produced by the bacterium Clostridium botulinum that can cause significant diseases in humans. The use of the toxic substances as potential bioweapons has raised concerns by the Centers for Disease Control and Prevention and the United States Military. Currently, there is no licensed vaccine to prevent botulinum intoxication. Here we present an immunogenicity study to evaluate the efficacy of novel monovalent vaccines and a trivalent cocktail DNA vaccine targeting the heavy chain C-terminal fragments of Clostridium botulinum neurotoxin serotypes A, B, and E. These synthetic DNA vaccines induced robust humoral and polyfunctional CD4(+) T-cell responses which fully protected animals against lethal challenge after just 2 immunizations. In addition, naïve animals administered immunized sera mixed with the lethal neurotoxin were 100% protected against intoxication. The data demonstrate the protective efficacy induced by a combinative synthetic DNA vaccine approach. This study has importance for the development of vaccines that provide protective immunity against C. botulinum neurotoxins and other toxins.

  12. DNA vaccines targeting heavy chain C-terminal fragments of Clostridium botulinum neurotoxin serotypes A, B, and E induce potent humoral and cellular immunity and provide protection from lethal toxin challenge

    PubMed Central

    Scott, Veronica L; Villarreal, Daniel O; Hutnick, Natalie A; Walters, Jewell N; Ragwan, Edwin; Bdeir, Khalil; Yan, Jian; Sardesai, Niranjan Y; Finnefrock, Adam C; Casimiro, Danilo R; Weiner, David B

    2015-01-01

    Botulinum neurotoxins (BoNTs) are deadly, toxic proteins produced by the bacterium Clostridium botulinum that can cause significant diseases in humans. The use of the toxic substances as potential bioweapons has raised concerns by the Centers for Disease Control and Prevention and the United States Military. Currently, there is no licensed vaccine to prevent botulinum intoxication. Here we present an immunogenicity study to evaluate the efficacy of novel monovalent vaccines and a trivalent cocktail DNA vaccine targeting the heavy chain C-terminal fragments of Clostridium botulinum neurotoxin serotypes A, B, and E. These synthetic DNA vaccines induced robust humoral and polyfunctional CD4+ T-cell responses which fully protected animals against lethal challenge after just 2 immunizations. In addition, naïve animals administered immunized sera mixed with the lethal neurotoxin were 100% protected against intoxication. The data demonstrate the protective efficacy induced by a combinative synthetic DNA vaccine approach. This study has importance for the development of vaccines that provide protective immunity against C. botulinum neurotoxins and other toxins. PMID:26158319

  13. Cell bank characterization and fermentation optimization for production of recombinant heavy chain C-terminal fragment of botulinum neurotoxin serotype E (rBoNTE(H(c)): antigen E) by Pichia pastoris.

    PubMed

    Sinha, Jayanta; Inan, Mehmet; Fanders, Sarah; Taoka, Shinichi; Gouthro, Mark; Swanson, Todd; Barent, Rick; Barthuli, Ardis; Loveless, Bonnie M; Smith, Leonard A; Smith, Theresa; Henderson, Ian; Ross, John; Meagher, Michael M

    2007-01-10

    A process was developed for production of a candidate vaccine antigen, recombinant C-terminal heavy chain fragment of the botulinum neurotoxin serotype E, rBoNTE(H(c)) in Pichia pastoris. P. pastoris strain GS115 was transformed with the rBoNTE(H(c)) gene inserted into pHILD4 Escherichia coli-P. pastoris shuttle plasmid. The clone was characterized for genetic stability, copy number, and BoNTE(H(c)) sequence. Expression of rBoNTE(H(c)) from the Mut(+) HIS4 clone was confirmed in the shake-flask, prior to developing a fed-batch fermentation process at 5 and 19 L scale. The fermentation process consists of a glycerol growth phase in batch and fed-batch mode using a defined medium followed by a glycerol/methanol transition phase for adaptation to growth on methanol and a methanol induction phase resulting in the production of rBoNTE(H(c)). Specific growth rate, ratio of growth to induction phase, and time of induction were critical for optimal rBoNTE(H(c)) production and minimal proteolytic degradation. A computer-controlled exponential growth model was used for process automation and off-gas analysis was used for process monitoring. The optimized process had an induction time of 9 h on methanol and produced up to 3 mg of rBoNTE(H(c)) per gram wet cell mass as determined by HPLC and Western blot analysis.

  14. Claudin-4 Overexpression in Epithelial Ovarian Cancer Is Associated with Hypomethylation and Is a Potential Target for Modulation of Tight Junction Barrier Function Using a C-Terminal Fragment of Clostridium perfringens Enterotoxin1

    PubMed Central

    Litkouhi, Babak; Kwong, Joseph; Lo, Chun-Min; Smedley, James G; McClane, Bruce A; Aponte, Margarita; Gao, Zhijian; Sarno, Jennifer L; Hinners, Jennifer; Welch, William R; Berkowitz, Ross S; Mok, Samuel C; Garner, Elizabeth I O

    2007-01-01

    Background Claudin-4, a tight junction (TJ) protein and receptor for the C-terminal fragment of Clostridium perfringens enterotoxin (C-CPE), is overexpressed in epithelial ovarian cancer (EOC). Previous research suggests DNA methylation is a mechanism for claudin-4 overexpression in cancer and that C-CPE acts as an absorption-enhancing agent in claudin-4-expressing cells. We sought to correlate claudin-4 overexpression in EOC with clinical outcomes and TJ barrier function, investigate DNA methylation as a mechanism for overexpression, and evaluate the effect of C-CPE on the TJ. Methods Claudin-4 expression in EOC was quantified and correlated with clinical outcomes. Claudin-4 methylation status was determined, and claudin-4-negative cell lines were treated with a demethylating agent. Electric cell-substrate impedance sensing was used to calculate junctional (paracellular) resistance (Rb) in EOC cells after claudin-4 silencing and after C-CPE treatment. Results Claudin-4 overexpression in EOC does not correlate with survival or other clinical endpoints and is associated with hypomethylation. Claudin-4 overexpression correlates with Rb and C-CPE treatment of EOC cells significantly decreased Rb in a dose- and claudin-4-dependent noncytotoxic manner. Conclusions C-CPE treatment of EOC cells leads to altered TJ function. Further research is needed to determine the potential clinical applications of C-CPE in EOC drug delivery strategies. PMID:17460774

  15. Microsecond Deprotonation of Aspartic Acid and Response of the α/β Subdomain Precede C-Terminal Signaling in the Blue Light Sensor Plant Cryptochrome.

    PubMed

    Thöing, Christian; Oldemeyer, Sabine; Kottke, Tilman

    2015-05-13

    Plant cryptochromes are photosensory receptors that regulate various central aspects of plant growth and development. These receptors consist of a photolyase homology region (PHR) carrying the oxidized flavin adenine dinucleotide (FAD) cofactor, and a cryptochrome C-terminal extension (CCT), which is essential for signaling. Absorption of blue/UVA light leads to formation of the FAD neutral radical as the likely signaling state, and ultimately activates the CCT. Little is known about the signal transfer from the flavin to the CCT. Here, we investigated the photoreaction of the PHR by time-resolved step-scan FT-IR spectroscopy complemented by UV-vis spectroscopy. The first spectrum at 500 ns shows major contributions from the FAD anion radical, which is demonstrated to then be protonated by aspartic acid 396 to the neutral radical within 3.5 μs. The analysis revealed the existence of three intermediates characterized by changes in secondary structure. A marked loss of β-sheet structure is observed in the second intermediate evolving with a time constant of 500 μs. This change is accompanied by a conversion of a tyrosine residue, which is identified as the formation of a tyrosine radical in the UV-vis. The only β-sheet in the PHR is located within the α/β subdomain, ∼25 Å away from the flavin. This subdomain has been previously attributed a role as a putative antenna binding site, but is now suggested to have evolved to a component in the signaling of plant cryptochromes by mediating the interaction with the CCT.

  16. Repression of the Arabidopsis thaliana jasmonic acid/ethylene-induced defense pathway by TGA-interacting glutaredoxins depends on their C-terminal ALWL motif.

    PubMed

    Zander, Mark; Chen, Shuxia; Imkampe, Julia; Thurow, Corinna; Gatz, Christiane

    2012-07-01

    Glutaredoxins are small heat-stable oxidoreductases that transfer electrons from glutathione (GSH) to oxidized cysteine residues, thereby contributing to protein integrity and regulation. In Arabidopsis thaliana, floral glutaredoxins ROXY1 and ROXY2 and pathogen-induced ROXY19/GRX480 interact with bZIP transcription factors of the TGACG (TGA) motif-binding family. ROXY1, ROXY2, and TGA factors PERIANTHIA, TGA9, and TGA10 play essential roles in floral development. In contrast, ectopically expressed ROXY19/GRX480 negatively regulates expression of jasmonic acid (JA)/ethylene (ET)-induced defense genes through an unknown mechanism that requires clade II transcription factors TGA2, TGA5, and/or TGA6. Here, we report that at least 17 of the 21 land plant-specific glutaredoxins encoded in the Arabidopsis genome interact with TGA2 in a yeast-two-hybrid system. To investigate their capacity to interfere with the expression of JA/ET-induced genes, we developed a transient expression system. Activation of the ORA59 (OCTADECANOID-RESPONSIVE ARABIDOPSIS AP2/ERF-domain protein 59) promoter by transcription factor EIN3 (ETHYLENE INSENSITVE 3) was suppressed by co-expressed ROXY19/GRX480. Suppression depended on the L**LL motif in the C-terminus of ROXY19/GRX480. This putative protein interaction domain was recently described as being essential for the TGA/ROXY interaction. Ten of the 17 tested ROXY proteins suppressed ORA59 promoter activity, which correlated with the presence of the C-terminal ALWL motif, which is essential for ROXY1 function in flower development. ROXY19/GRX480-mediated repression depended on the GSH binding site, suggesting that redox modification of either TGA factors or as yet unknown target proteins is important for the suppression of ORA59 promoter activity.

  17. Structure of the C-terminal fragment 300-320 of the rat angiotensin II AT1A receptor and its relevance with respect to G-protein coupling.

    PubMed

    Franzoni, L; Nicastro, G; Pertinhez, T A; Tatò, M; Nakaie, C R; Paiva, A C; Schreier, S; Spisni, A

    1997-04-11

    Angiotensin II AT1A receptor is coupled to G-protein, and the molecular mechanism of signal transduction is still unclear. The solution conformation of a synthetic peptide corresponding to residues 300-320 of the rat AT1A receptor, located in the C-terminal cytoplasmic tail and indicated by mutagenesis work to be critical for the G-protein coupling, has been investigated by circular dichroism (CD), nuclear magnetic resonance (NMR) and restrained molecular dynamics calculations. The CD data indicate that, in acidic water, at concentration below 0.8 mM, the peptide exists in a predominantly coil structure while at higher concentration it can form helical aggregates; addition of small amounts of trifluoroethanol induces a secondary structure, mostly due to the presence of helical elements. Using NMR-derived constraints, an ensemble of conformers for the peptide has been determined by restrained molecular dynamics calculations. Analysis of the converged three-dimensional structures indicates that a significant population of them adopts an amphipathic alpha-helical conformation that, depending upon experimental conditions, presents a variable extension in the stretch Leu6-Tyr20. An equilibrium with nonhelical structured conformers is also observed. We suggest that the capability of the peptide to modulate its secondary structure as a function of the medium dielectric constant, as well as its ability to form helical aggregates by means of intermolecular hydrophobic interactions, can play a significant role for G-protein activation.

  18. The inhibition of the GTPase activating protein-Ha-ras interaction by acidic lipids is due to physical association of the C-terminal domain of the GTPase activating protein with micellar structures.

    PubMed Central

    Serth, J; Lautwein, A; Frech, M; Wittinghofer, A; Pingoud, A

    1991-01-01

    The effects of fatty acids and phospholipids on the interaction of the full-length GTPase activating protein (GAP) as well as its isolated C-terminal domain and the Ha-ras proto-oncogene product p21 were studied by various methods, viz. GTPase activity measurements, fluorescence titrations and gel permeation chromatography. It is shown that all fatty acids and acidic phospholipids tested, provided the critical micellar concentration and the critical micellar temperature are reached, inhibit the GAP stimulated p21 GTPase activity. This is interpreted to mean that it is not the molecular structure of acidic lipid molecules per se but rather their physical state of aggregation which is responsible for the inhibitory effect of lipids on the GTPase activity. The relative inhibitory potency of various lipids was measured under defined conditions with mixed Triton X-100 micelles to follow the order: unsaturated fatty acids greater than saturated acids approximately phosphatidic acids greater than or equal to phosphatidylinositol phosphates much greater than phosphatidylinositol and phosphatidylserine. GTPase experiments with varying concentrations of p21 and constant concentrations of GAP and lipids indicate that the binding of GAP by the lipid micelles is responsible for the inhibition, a finding which was confirmed by fluorescence titrations and gel filtrations which show that the C-terminal domain of GAP is bound by lipid micelles. PMID:2026138

  19. Crystallization of the C-terminal domain of the bacteriophage T7 fibre protein gp17.

    PubMed

    Garcia-Doval, Carmela; van Raaij, Mark J

    2012-02-01

    Bacteriophage T7 attaches to its host using the C-terminal domains of its six fibres, which are trimers of the gp17 protein. A C-terminal fragment of gp17 consisting of amino acids 371-553 has been expressed, purified and crystallized. Crystals of two forms were obtained, belonging to space group P2(1)2(1)2(1) (unit-cell parameters a = 61.2, b = 86.0, c = 118.4 Å) and space group C222(1) (unit-cell parameters a = 68.3, b = 145.6, c = 172.1 Å). They diffracted to 1.9 and 2.0 Å resolution, respectively. Both crystals are expected to contain one trimer in the asymmetric unit. Multiwavelength anomalous dispersion phasing with a mercury derivative is in progress. PMID:22297990

  20. Crystallization of the C-terminal domain of the bacteriophage T7 fibre protein gp17

    PubMed Central

    Garcia-Doval, Carmela; van Raaij, Mark J.

    2012-01-01

    Bacteriophage T7 attaches to its host using the C-terminal domains of its six fibres, which are trimers of the gp17 protein. A C-terminal fragment of gp17 consisting of amino acids 371–553 has been expressed, purified and crystallized. Crystals of two forms were obtained, belonging to space group P212121 (unit-cell parameters a = 61.2, b = 86.0, c = 118.4 Å) and space group C2221 (unit-cell parameters a = 68.3, b = 145.6, c = 172.1 Å). They diffracted to 1.9 and 2.0 Å resolution, respectively. Both crystals are expected to contain one trimer in the asymmetric unit. Multiwavelength anomalous dispersion phasing with a mercury derivative is in progress. PMID:22297990

  1. Identification of the in vivo truncation sites at the C-terminal region of alpha-A crystallin from aged bovine and human lens

    NASA Technical Reports Server (NTRS)

    Takemoto, L. J.; Spooner, B. S. (Principal Investigator)

    1995-01-01

    Total alpha-A crystallin was purified from young versus old lens, followed by digestion with cyanogen bromide. Laser desorption mass spectrometry of the C-terminal fragment demonstrated age-dependent loss of one and five amino acids from the C-terminus of alpha-A crystallin from both bovine and human lens. These results demonstrate specific peptide bonds of alpha-A crystallin are cleaved during the aging process of the normal lens. The C-terminal region is cleaved in two places between the two hydroxyl-containing amino acids present in the sequence -P-S(T)-S-.

  2. The C-terminal 18 Amino Acid Region of Dengue Virus NS5 Regulates its Subcellular Localization and Contains a Conserved Arginine Residue Essential for Infectious Virus Production

    PubMed Central

    Ng, Ivan H. W.; Chan, Kitti W. K.; Zhao, Yongqian; Ooi, Eng Eong; Lescar, Julien; Jans, David A.; Forwood, Jade K.

    2016-01-01

    Dengue virus NS5 is the most highly conserved amongst the viral non-structural proteins and is responsible for capping, methylation and replication of the flavivirus RNA genome. Interactions of NS5 with host proteins also modulate host immune responses. Although replication occurs in the cytoplasm, an unusual characteristic of DENV2 NS5 is that it localizes to the nucleus during infection with no clear role in replication or pathogenesis. We examined NS5 of DENV1 and 2, which exhibit the most prominent difference in nuclear localization, employing a combination of functional and structural analyses. Extensive gene swapping between DENV1 and 2 NS5 identified that the C-terminal 18 residues (Cter18) alone was sufficient to direct the protein to the cytoplasm or nucleus, respectively. The low micromolar binding affinity between NS5 Cter18 and the nuclear import receptor importin-alpha (Impα), allowed their molecular complex to be purified, crystallised and visualized at 2.2 Å resolution using x-ray crystallography. Structure-guided mutational analysis of this region in GFP-NS5 clones of DENV1 or 2 and in a DENV2 infectious clone reveal residues important for NS5 subcellular localization. Notably, the trans conformation adopted by Pro-884 allows proper presentation for binding Impα and mutating this proline to Thr, as present in DENV1 NS5, results in mislocalizaion of NS5 to the cytoplasm without compromising virus fitness. In contrast, a single mutation to alanine at NS5 position R888, a residue conserved in all flaviviruses, resulted in a completely non-viable virus, and the R888K mutation led to a severely attenuated phentoype, even though NS5 was located in the nucleus. R888 forms a hydrogen bond with Y838 that is also conserved in all flaviviruses. Our data suggests an evolutionarily conserved function for NS5 Cter18, possibly in RNA interactions that are critical for replication, that is independent of its role in subcellular localization. PMID:27622521

  3. The C-terminal 18 Amino Acid Region of Dengue Virus NS5 Regulates its Subcellular Localization and Contains a Conserved Arginine Residue Essential for Infectious Virus Production.

    PubMed

    Tay, Moon Y F; Smith, Kate; Ng, Ivan H W; Chan, Kitti W K; Zhao, Yongqian; Ooi, Eng Eong; Lescar, Julien; Luo, Dahai; Jans, David A; Forwood, Jade K; Vasudevan, Subhash G

    2016-09-01

    Dengue virus NS5 is the most highly conserved amongst the viral non-structural proteins and is responsible for capping, methylation and replication of the flavivirus RNA genome. Interactions of NS5 with host proteins also modulate host immune responses. Although replication occurs in the cytoplasm, an unusual characteristic of DENV2 NS5 is that it localizes to the nucleus during infection with no clear role in replication or pathogenesis. We examined NS5 of DENV1 and 2, which exhibit the most prominent difference in nuclear localization, employing a combination of functional and structural analyses. Extensive gene swapping between DENV1 and 2 NS5 identified that the C-terminal 18 residues (Cter18) alone was sufficient to direct the protein to the cytoplasm or nucleus, respectively. The low micromolar binding affinity between NS5 Cter18 and the nuclear import receptor importin-alpha (Impα), allowed their molecular complex to be purified, crystallised and visualized at 2.2 Å resolution using x-ray crystallography. Structure-guided mutational analysis of this region in GFP-NS5 clones of DENV1 or 2 and in a DENV2 infectious clone reveal residues important for NS5 subcellular localization. Notably, the trans conformation adopted by Pro-884 allows proper presentation for binding Impα and mutating this proline to Thr, as present in DENV1 NS5, results in mislocalizaion of NS5 to the cytoplasm without compromising virus fitness. In contrast, a single mutation to alanine at NS5 position R888, a residue conserved in all flaviviruses, resulted in a completely non-viable virus, and the R888K mutation led to a severely attenuated phentoype, even though NS5 was located in the nucleus. R888 forms a hydrogen bond with Y838 that is also conserved in all flaviviruses. Our data suggests an evolutionarily conserved function for NS5 Cter18, possibly in RNA interactions that are critical for replication, that is independent of its role in subcellular localization. PMID:27622521

  4. Crystallization of the C-terminal globular domain of avian reovirus fibre

    SciTech Connect

    Raaij, Mark J. van; Hermo Parrado, X. Lois; Guardado Calvo, Pablo; Fox, Gavin C.; Llamas-Saiz, Antonio L.; Costas, Celina; Martínez-Costas, José; Benavente, Javier

    2005-07-01

    Partial proteolysis of the avian reovirus cell-attachment protein σC yields a major homotrimeric C-terminal fragment that presumably contains the receptor-binding domain. This fragment has been crystallized in the presence and absence of zinc sulfate and cadmium sulfate. One of the crystal forms diffracts synchrotron X-rays to 2.2–2.3 Å. Avian reovirus fibre, a homotrimer of the σC protein, is responsible for primary host-cell attachment. Using the protease trypsin, a C-terminal σC fragment containing amino acids 156–326 has been generated which was subsequently purified and crystallized. Two different crystal forms were obtained, one grown in the absence of divalent cations and belonging to space group P6{sub 3}22 (unit-cell parameters a = 75.6, c = 243.1 Å) and one grown in the presence of either zinc or cadmium sulfate and belonging to space group P321 (unit-cell parameters a = 74.7, c = 74.5 Å and a = 73.1, c = 69.9 Å for the Zn{sup II}- and Cd{sup II}-grown crystals, respectively). The first crystal form diffracted synchrotron radiation to 3.0 Å resolution and the second form to 2.2–2.3 Å. Its closest related structure, the C-terminal fragment of mammalian reovirus fibre, has only 18% sequence identity and molecular-replacement attempts were unsuccessful. Therefore, a search is under way for suitable heavy-atom derivatives and attempts are being made to grow protein crystals containing selenomethionine instead of methionine.

  5. Unsaturated fatty acids as high-affinity ligands of the C-terminal Per-ARNT-Sim domain from the Hypoxia-inducible factor 3α

    PubMed Central

    Fala, Angela M.; Oliveira, Juliana F.; Adamoski, Douglas; Aricetti, Juliana A.; Dias, Marilia M.; Dias, Marcio V. B.; Sforça, Maurício L.; Lopes-de-Oliveira, Paulo S.; Rocco, Silvana A.; Caldana, Camila; Dias, Sandra M. G.; Ambrosio, Andre L. B.

    2015-01-01

    Hypoxia-inducible transcription factors (HIF) form heterodimeric complexes that mediate cell responses to hypoxia. The oxygen-dependent stability and activity of the HIF-α subunits is traditionally associated to post-translational modifications such as hydroxylation, acetylation, ubiquitination, and phosphorylation. Here we report novel evidence showing that unsaturated fatty acids are naturally occurring, non-covalent structural ligands of HIF-3α, thus providing the initial framework for exploring its exceptional role as a lipid sensor under hypoxia. PMID:26237540

  6. Regulation of Chk1 by Its C-terminal Domain

    PubMed Central

    Kosoy, Ana

    2008-01-01

    Chk1 is a protein kinase that is the effector molecule in the G2 DNA damage checkpoint. Chk1 homologues have an N-terminal kinase domain, and a C-terminal domain of ∼200 amino acids that contains activating phosphorylation sites for the ATM/R kinases, though the mechanism of activation remains unknown. Structural studies of the human Chk1 kinase domain show an open conformation; the activity of the kinase domain alone is substantially higher in vitro than full-length Chk1, and coimmunoprecipitation studies suggest the C-terminal domain may contain an autoinhibitory activity. However, we show that truncation of the C-terminal domain inactivates Chk1 in vivo. We identify additional mutations within the C-terminal domain that activate ectopically expressed Chk1 without the need for activating phosphorylation. When expressed from the endogenous locus, activated alleles show a temperature-sensitive loss of function, suggesting these mutations confer a semiactive state to the protein. Intragenic suppressors of these activated alleles cluster to regions in the catalytic domain on the face of the protein that interacts with substrate, suggesting these are the regions that interact with the C-terminal domain. Thus, rather than being an autoinhibitory domain, the C-terminus of Chk1 also contains domains critical for adopting an active configuration. PMID:18716058

  7. Age-related changes in the content of the C-terminal region of aggrecan in human articular cartilage.

    PubMed Central

    Dudhia, J; Davidson, C M; Wells, T M; Vynios, D H; Hardingham, T E; Bayliss, M T

    1996-01-01

    The content of the C-terminal region of aggrecan was investigated in samples of articular cartilage from individuals ranging in age from newborn to 65 years. This region contains the globular G3 domain which is known to be removed from aggrecan in mature cartilage, probably by proteolytic cleavage, but the age-related changes in its abundance in human cartilage have not been described previously. The analysis was performed by immunosorbant assay using an antiserum (JD5) against recombinant amino acid residues of human aggrecan, on crude extracts of cartilage without further purification of aggrecan. The results showed that the content of the C-terminal region decreased with age relative to the G1 domain content (correlation coefficient = 0.463). This represented a 92% fall in the content of this region of the molecule from newborn to 65 years of age. furthermore, when the G1 content of the cartilage extracts was corrected to only include the G1 attached to aggrecan and to exclude the G1 fragments which accumulate as a by-product of normal aggrecan turnover (free G1), the age-related decrease in the C-terminal region remained very pronounced. Analysis by composite agarose/PAGE showed that the number of subpopulations of aggrecan resolved increased from one in newborn to three in adult cartilage. All of these reacted with an antiserum to the human G1 domain, but only the slowest migrating species reacted with the C-terminal region antiserum (JD5). Similar analysis by SDS/PAGE confirmed the presence of high-molecular-mass (200 kDa) proteins reactive with JD5, but no reactive fragments of lower electrophoretic mobility were detected. In contrast, when probed with the antiserum to the human G1 domain, the immunoblots showed protein species corresponding to the free G1 and G1-G2 fragments, which were present at high concentrations in adult cartilage. The results suggest that the loss of the C-terminal region is not directly part of the process of aggrecan turnover, but

  8. Recombinant C-terminal 311 amino acids of HapS adhesin as a vaccine candidate for nontypeable Haemophilus influenzae: A study on immunoreactivity in Balb/C mouse.

    PubMed

    Tabatabaee Bafroee, Akram Sadat; Siadat, Seyed Davar; Mousavi, Seyed Fazlollah; Aghasadeghi, Mohammad Reza; Khorsand, Hashem; Nejati, Mehdi; Sadat, Seyed Mehdi; Mahdavi, Mehdi

    2016-09-01

    Hap, an auto-transporter protein, is an antigenically conserved adhesion protein which is present on both typeable and nontypeable Haemophilus influenzae. This protein has central role in bacterial attachment to respiratory tract epithelial cells. A 1000bp C-terminal fragment of Hap passenger domain (HapS) from nontypeable Haemophilus influenzae was cloned into a prokaryotic expression vector, pET-24a. BALB/c mice were immunized subcutaneously with purified rC-HapS. Serum IgG responses to purified rC-HapS, serum IgG subclasses were determined by ELISA and functional activity of antibodies was examined by Serum Bactericidal Assay. The output of rC-HapS was approximately 62% of the total bacterial proteins. Serum IgG responses were significantly increased in immunized group with rC-HapS mixed with Freund's adjuvant in comparison with control groups. Analysis of the serum IgG subclasses showed that the IgG1 subclass was predominant after subcutaneous immunization in BALB/c mice (IgG2a/IgG1 < 1). The sera from rC-HapS immunized animals were strongly bactericidal against nontypeable Haemophilus influenzae. These results suggest that rC-HapS may be a potential vaccine candidate for nontypeable Haemophilus influenzae.

  9. Recombinant C-terminal 311 amino acids of HapS adhesin as a vaccine candidate for nontypeable Haemophilus influenzae: A study on immunoreactivity in Balb/C mouse.

    PubMed

    Tabatabaee Bafroee, Akram Sadat; Siadat, Seyed Davar; Mousavi, Seyed Fazlollah; Aghasadeghi, Mohammad Reza; Khorsand, Hashem; Nejati, Mehdi; Sadat, Seyed Mehdi; Mahdavi, Mehdi

    2016-09-01

    Hap, an auto-transporter protein, is an antigenically conserved adhesion protein which is present on both typeable and nontypeable Haemophilus influenzae. This protein has central role in bacterial attachment to respiratory tract epithelial cells. A 1000bp C-terminal fragment of Hap passenger domain (HapS) from nontypeable Haemophilus influenzae was cloned into a prokaryotic expression vector, pET-24a. BALB/c mice were immunized subcutaneously with purified rC-HapS. Serum IgG responses to purified rC-HapS, serum IgG subclasses were determined by ELISA and functional activity of antibodies was examined by Serum Bactericidal Assay. The output of rC-HapS was approximately 62% of the total bacterial proteins. Serum IgG responses were significantly increased in immunized group with rC-HapS mixed with Freund's adjuvant in comparison with control groups. Analysis of the serum IgG subclasses showed that the IgG1 subclass was predominant after subcutaneous immunization in BALB/c mice (IgG2a/IgG1 < 1). The sera from rC-HapS immunized animals were strongly bactericidal against nontypeable Haemophilus influenzae. These results suggest that rC-HapS may be a potential vaccine candidate for nontypeable Haemophilus influenzae. PMID:27377430

  10. Evolutionary bridges to new protein folds: design of C-terminal Cro protein chameleon sequences.

    PubMed

    Anderson, William J; Van Dorn, Laura O; Ingram, Wendy M; Cordes, Matthew H J

    2011-09-01

    Regions of amino-acid sequence that are compatible with multiple folds may facilitate evolutionary transitions in protein structure. In a previous study, we described a heuristically designed chameleon sequence (SASF1, structurally ambivalent sequence fragment 1) that could adopt either of two naturally occurring conformations (α-helical or β-sheet) when incorporated as part of the C-terminal dimerization subdomain of two structurally divergent transcription factors, P22 Cro and λ Cro. Here we describe longer chameleon designs (SASF2 and SASF3) that in the case of SASF3 correspond to the full C-terminal half of the ordered region of a P22 Cro/λ Cro sequence alignment (residues 34-57). P22-SASF2 and λ(WDD)-SASF2 show moderate thermal stability in denaturation curves monitored by circular dichroism (T(m) values of 46 and 55°C, respectively), while P22-SASF3 and λ(WDD)-SASF3 have somewhat reduced stability (T(m) values of 33 and 49°C, respectively). (13)C and (1)H NMR secondary chemical shift analysis confirms two C-terminal α-helices for P22-SASF2 (residues 36-45 and 54-57) and two C-terminal β-strands for λ(WDD)-SASF2 (residues 40-45 and 50-52), corresponding to secondary structure locations in the two parent sequences. Backbone relaxation data show that both chameleon sequences have a relatively well-ordered structure. Comparisons of (15)N-(1)H correlation spectra for SASF2 and SASF3-containing proteins strongly suggest that SASF3 retains the chameleonism of SASF2. Both Cro C-terminal conformations can be encoded in a single sequence, showing the plausibility of linking different Cro folds by smooth evolutionary transitions. The N-terminal subdomain, though largely conserved in structure, also exerts an important contextual influence on the structure of the C-terminal region.

  11. The C-terminal 50 amino acid residues of dengue NS3 protein are important for NS3-NS5 interaction and viral replication.

    PubMed

    Tay, Moon Y F; Saw, Wuan Geok; Zhao, Yongqian; Chan, Kitti W K; Singh, Daljit; Chong, Yuwen; Forwood, Jade K; Ooi, Eng Eong; Grüber, Gerhard; Lescar, Julien; Luo, Dahai; Vasudevan, Subhash G

    2015-01-23

    Dengue virus multifunctional proteins NS3 protease/helicase and NS5 methyltransferase/RNA-dependent RNA polymerase form part of the viral replication complex and are involved in viral RNA genome synthesis, methylation of the 5'-cap of viral genome, and polyprotein processing among other activities. Previous studies have shown that NS5 residue Lys-330 is required for interaction between NS3 and NS5. Here, we show by competitive NS3-NS5 interaction ELISA that the NS3 peptide spanning residues 566-585 disrupts NS3-NS5 interaction but not the null-peptide bearing the N570A mutation. Small angle x-ray scattering study on NS3(172-618) helicase and covalently linked NS3(172-618)-NS5(320-341) reveals a rigid and compact formation of the latter, indicating that peptide NS5(320-341) engages in specific and discrete interaction with NS3. Significantly, NS3:Asn-570 to alanine mutation introduced into an infectious DENV2 cDNA clone did not yield detectable virus by plaque assay even though intracellular double-stranded RNA was detected by immunofluorescence. Detection of increased negative-strand RNA synthesis by real time RT-PCR for the NS3:N570A mutant suggests that NS3-NS5 interaction plays an important role in the balanced synthesis of positive- and negative-strand RNA for robust viral replication. Dengue virus infection has become a global concern, and the lack of safe vaccines or antiviral treatments urgently needs to be addressed. NS3 and NS5 are highly conserved among the four serotypes, and the protein sequence around the pinpointed amino acids from the NS3 and NS5 regions are also conserved. The identification of the functionally essential interaction between the two proteins by biochemical and reverse genetics methods paves the way for rational drug design efforts to inhibit viral RNA synthesis.

  12. C-Terminal Amino Acids 471-507 of Avian Hepatitis E Virus Capsid Protein Are Crucial for Binding to Avian and Human Cells

    PubMed Central

    Zhang, Xinquan; Bilic, Ivana; Marek, Ana; Glösmann, Martin; Hess, Michael

    2016-01-01

    The infection of chickens with avian Hepatitis E virus (avian HEV) can be asymptomatic or induces clinical signs characterized by increased mortality and decreased egg production in adult birds. Due to the lack of an efficient cell culture system for avian HEV, the interaction between virus and host cells is still barely understood. In this study, four truncated avian HEV capsid proteins (ORF2-1 – ORF2-4) with an identical 338aa deletion at the N-terminus and gradual deletions from 0, 42, 99 and 136aa at the C-terminus, respectively, were expressed and used to map the possible binding site within avian HEV capsid protein. Results from the binding assay showed that three truncated capsid proteins attached to avian LMH cells, but did not penetrate into cells. However, the shortest construct, ORF2-4, lost the capability of binding to cells suggesting that the presence of amino acids 471 to 507 of the capsid protein is crucial for the attachment. The construct ORF2-3 (aa339-507) was used to study the potential binding of avian HEV capsid protein to human and other avian species. It could be demonstrated that ORF2-3 was capable of binding to QT-35 cells from Japanese quail and human HepG2 cells but failed to bind to P815 cells. Additionally, chicken serum raised against ORF2-3 successfully blocked the binding to LMH cells. Treatment with heparin sodium salt or sodium chlorate significantly reduced binding of ORF2-3 to LMH cells. However, heparinase II treatment of LMH cells had no effect on binding of the ORF2-3 construct, suggesting a possible distinct attachment mechanism of avian as compared to human HEV. For the first time, interactions between avian HEV capsid protein and host cells were investigated demonstrating that aa471 to 507 of the capsid protein are needed to facilitate interaction with different kind of cells from different species. PMID:27073893

  13. The 18-kilodalton Chlamydia trachomatis histone H1-like protein (Hc1) contains a potential N-terminal dimerization site and a C-terminal nucleic acid-binding domain.

    PubMed

    Pedersen, L B; Birkelund, S; Holm, A; Ostergaard, S; Christiansen, G

    1996-02-01

    The Chlamydia trachomatis histone H1-like protein (Hc1) is a DNA-binding protein specific for the metabolically inactive chlamydial developmental form, the elementary body. Hc1 induces DNA condensation in Escherichia coli and is a strong inhibitor of transcription and translation. These effects may, in part, be due to Hc1-mediated alterations of DNA topology. To locate putative functional domains within Hc1, polypeptides Hc1(2-57) and Hc1(53-125), corresponding to the N- and C-terminal parts of Hc1, respectively, were generated. By chemical cross-linking with ethylene glycol-bis (succinic acid N-hydroxysuccinimide ester), purified recombinant Hc1 was found to form dimers. The dimerization site was located in the N-terminal part of Hc1 (Hc1(2-57)). Moreover, circular dichroism measurements indicated an overall alpha-helical structure of this region. By using limited proteolysis, Southwestern blotting, and gel retardation assays, Hc1(53-125) was shown to contain a domain capable of binding both DNA and RNA. Under the same conditions, Hc1(2-57) had no nucleic acid-binding activity. Electron microscopy of Hc1-DNA and Hc1(53-125)-DNA complexes revealed differences suggesting that the N-terminal part of Hc1 may affect the DNA-binding properties of Hc1. PMID:8576073

  14. Activation of Shiga toxin type 2d (Stx2d) by elastase involves cleavage of the C-terminal two amino acids of the A2 peptide in the context of the appropriate B pentamer.

    PubMed

    Melton-Celsa, Angela R; Kokai-Kun, John F; O'Brien, Alison D

    2002-01-01

    Shiga toxins (Stx) are potent ribosome-inactivating toxins that are produced by Shigella dysenteriae type 1 or certain strains of Escherichia coli. These toxins are composed of one A subunit that can be nicked and reduced to an enzymatically active A1(approximately 27 kDa) and an A2 peptide (approximately 4 kDa) as well as a pentamer of B subunits (approximately 7 kDa/monomer) that binds the eukaryotic cell. Purified Shiga toxin type 2d is activated 10- to 1000-fold for Vero cell toxicity by preincubation with mouse or human intestinal mucus or purified mouse elastase, whereas Stx2, Stx2c, Stx2e and Stx1 are not activatable. E. coli strains that produce the activatable Stx2d are more virulent in a streptomycin (str)-treated mouse model of infection [lethal dose 50% (LD50) = 101] than are E. coli strains that produce any other type of Stx (LD50 = 1010). To identify the element(s) of Stx2d that are required for mucus-mediated activation, toxin genes were constructed such that the expressed mutant toxins consisted of hybrids of Stx2d and Stx1, Stx2 or Stx2e, contained deletions of up to six amino acids from the C-terminus of the A2 of Stx2d or were altered in one or both of the two amino acids of the A2 of Stx2d that represent the only amino acid differences between the activatable Stx2d and the non-activatable Stx2c. Analysis of these mutant toxins revealed that the A2 portion of Stx2d is required for toxin activation and that activation is abrogated if the Stx1 or Stx2e B subunit is substituted for the Stx2d B polypeptide. Furthermore, mass spectrometry performed on buffer- or elastase-treated Stx2d indicated that the A2 peptide of the activated Stx2d was two amino acids smaller than the A2 peptide from buffer-treated Stx2d. This finding, together with the toxin hybrid results, suggests that activation involves B pentamer-dependent cleavage by elastase of the C-terminal two amino acids from the Stx2d A2 peptide.

  15. Mammalian Bcnt/Cfdp1, a potential epigenetic factor characterized by an acidic stretch in the disordered N-terminal and Ser250 phosphorylation in the conserved C-terminal regions.

    PubMed

    Iwashita, Shintaro; Suzuki, Takehiro; Yasuda, Takeshi; Nakashima, Kentaro; Sakamoto, Taiichi; Kohno, Toshiyuki; Takahashi, Ichiro; Kobayashi, Takayasu; Ohno-Iwashita, Yoshiko; Imajoh-Ohmi, Shinobu; Song, Si-Young; Dohmae, Naoshi

    2015-06-12

    The BCNT (Bucentaur) superfamily is classified by an uncharacteristic conserved sequence of ∼80 amino acids (aa) at the C-terminus, BCNT-C (the conserved C-terminal region of Bcnt/Cfdp1). Whereas the yeast Swc5 and Drosophila Yeti homologues play crucial roles in chromatin remodelling organization, mammalian Bcnt/Cfdp1 (craniofacial developmental protein 1) remains poorly understood. The protein, which lacks cysteine, is largely disordered and comprises an acidic N-terminal region, a lysine/glutamic acid/proline-rich 40 aa sequence and BCNT-C. It shows complex mobility on SDS/PAGE at ∼50 kDa, whereas its calculated molecular mass is ∼33 kDa. To characterize this mobility discrepancy and the effects of post-translational modifications (PTMs), we expressed various deleted His-Bcnt in E. coli and HEK cells and found that an acidic stretch in the N-terminal region is a main cause of the gel shift. Exogenous BCNT/CFDP1 constitutively expressed in HEK clones appears as a doublet at 49 and 47 kDa, slower than the protein expressed in Escherichia coli but faster than the endogenous protein on SDS/PAGE. Among seven in vivo phosphorylation sites, Ser(250), which resides in a region between disordered and ordered regions in BCNT-C, is heavily phosphorylated and detected predominantly in the 49 kDa band. Together with experiments involving treatment with phosphatases and Ser(250) substitutions, the results indicate that the complex behaviour of Bcnt/Cfdp1 on SDS/PAGE is caused mainly by an acidic stretch in the N-terminal region and Ser(250) phosphorylation in BCNT-C. Furthermore, Bcnt/Cfdp1 is acetylated in vitro by CREB-binding protein (CBP) and four lysine residues including Lys(268) in BCNT-C are also acetylated in vivo, revealing a protein regulated at multiple levels.

  16. Mammalian Bcnt/Cfdp1, a potential epigenetic factor characterized by an acidic stretch in the disordered N-terminal and Ser250 phosphorylation in the conserved C-terminal regions

    PubMed Central

    Iwashita, Shintaro; Suzuki, Takehiro; Yasuda, Takeshi; Nakashima, Kentaro; Sakamoto, Taiichi; Kohno, Toshiyuki; Takahashi, Ichiro; Kobayashi, Takayasu; Ohno-Iwashita, Yoshiko; Imajoh-Ohmi, Shinobu; Song, Si-Young; Dohmae, Naoshi

    2015-01-01

    The BCNT (Bucentaur) superfamily is classified by an uncharacteristic conserved sequence of ∼80 amino acids (aa) at the C-terminus, BCNT-C (the conserved C-terminal region of Bcnt/Cfdp1). Whereas the yeast Swc5 and Drosophila Yeti homologues play crucial roles in chromatin remodelling organization, mammalian Bcnt/Cfdp1 (craniofacial developmental protein 1) remains poorly understood. The protein, which lacks cysteine, is largely disordered and comprises an acidic N-terminal region, a lysine/glutamic acid/proline-rich 40 aa sequence and BCNT-C. It shows complex mobility on SDS/PAGE at ∼50 kDa, whereas its calculated molecular mass is ∼33 kDa. To characterize this mobility discrepancy and the effects of post-translational modifications (PTMs), we expressed various deleted His–Bcnt in E. coli and HEK cells and found that an acidic stretch in the N-terminal region is a main cause of the gel shift. Exogenous BCNT/CFDP1 constitutively expressed in HEK clones appears as a doublet at 49 and 47 kDa, slower than the protein expressed in Escherichia coli but faster than the endogenous protein on SDS/PAGE. Among seven in vivo phosphorylation sites, Ser250, which resides in a region between disordered and ordered regions in BCNT-C, is heavily phosphorylated and detected predominantly in the 49 kDa band. Together with experiments involving treatment with phosphatases and Ser250 substitutions, the results indicate that the complex behaviour of Bcnt/Cfdp1 on SDS/PAGE is caused mainly by an acidic stretch in the N-terminal region and Ser250 phosphorylation in BCNT-C. Furthermore, Bcnt/Cfdp1 is acetylated in vitro by CREB-binding protein (CBP) and four lysine residues including Lys268 in BCNT-C are also acetylated in vivo, revealing a protein regulated at multiple levels. PMID:26182435

  17. The β-secretase derived C-terminal fragment of βAPP, C99, but not Aβ, is a key contributor to early intraneuronal lesions in triple transgenic mouse hippocampus

    PubMed Central

    Bauer, Charlotte; Brigham, Elizabeth; Abraham, Jean-Daniel; Ranaldi, Sébastien; Fraser, Paul; St-George-Hyslop, Peter; Le Thuc, Ophelia; Espin, Vanessa; Chami, Linda; Dunys, Julie; Checler, Frédéric

    2016-01-01

    Triple-transgenic mice (3xTgAD) overexpressing Swedish-mutated β-amyloiḍprecursoṛprotein (βAPPswe), P310L-Tau (TauP301L) and physiological levels of M146V-presenilin-1 (PS1M146V) display extracellular amyloid-β peptides (Aβ) deposits and Tau tangles. More disputed is the observation that these mice accumulate intraneuronal Aβ that has been linked to synaptic dysfunction and cognitive deficits. Here, we provide immunohistological, genetic and pharmacological evidences for early, age-dependent and hippocampus-specific accumulation of the β-secretase-derived βAPP fragment C99 that is observed in 3 month-old mice and enhanced by pharmacological blockade of γ-secretase. Notably, intracellular Aβ is only detectable several months later and appears, as is the case for C99, in enlarged cathepsin B-positive structures, while extracellular Aβ deposits are detected around 12 months of age and beyond. Early C99 production occurs mainly in the CA1/subicular interchange area of the hippocampus corresponding to the first region exhibiting plaques and tangles in old mice. The examination of two other mice models harboring mutated βAPP but endogenous wild type PS1 and Tau protein (TgCRND8 or Tg2576) indicate that C99 levels are largely higher in all animal models than in their respective control mice. Furthermore, the comparison of 3xTgAD mice with double transgenic mice bearing the βAPPswe and TauP301L mutations but expressing endogenous PS1 (2xTgAD) demonstrate that C99 accumulation could not be accounted for by a loss of function triggered by PS1 mutation that would have prevented C99 secondary cleavage by γ-secretase. Altogether, our work identifies C99 as the earliest βAPP catabolite and main contributor to the intracellular βAPP-related immunoreactivity in 3xTgAD mice, suggesting its implication as an initiator of the neurodegenerative process and cognitive alterations taking place in this mice model. PMID:23152608

  18. Ability of Serum Glial Fibrillary Acidic Protein, Ubiquitin C-Terminal Hydrolase-L1, and S100B To Differentiate Normal and Abnormal Head Computed Tomography Findings in Patients with Suspected Mild or Moderate Traumatic Brain Injury.

    PubMed

    Welch, Robert D; Ayaz, Syed I; Lewis, Lawrence M; Unden, Johan; Chen, James Y; Mika, Valerie H; Saville, Ben; Tyndall, Joseph A; Nash, Marshall; Buki, Andras; Barzo, Pal; Hack, Dallas; Tortella, Frank C; Schmid, Kara; Hayes, Ronald L; Vossough, Arastoo; Sweriduk, Stephen T; Bazarian, Jeffrey J

    2016-01-15

    Head computed tomography (CT) imaging is still a commonly obtained diagnostic test for patients with minor head injury despite availability of clinical decision rules to guide imaging use and recommendations to reduce radiation exposure resulting from unnecessary imaging. This prospective multicenter observational study of 251 patients with suspected mild to moderate traumatic brain injury (TBI) evaluated three serum biomarkers' (glial fibrillary acidic protein [GFAP], ubiquitin C-terminal hydrolase-L1 [UCH-L1] and S100B measured within 6 h of injury) ability to differentiate CT negative and CT positive findings. Of the 251 patients, 60.2% were male and 225 (89.6%) had a presenting Glasgow Coma Scale score of 15. A positive head CT (intracranial injury) was found in 36 (14.3%). UCH-L1 was 100% sensitive and 39% specific at a cutoff value >40 pg/mL. To retain 100% sensitivity, GFAP was 0% specific (cutoff value 0 pg/mL) and S100B had a specificity of only 2% (cutoff value 30 pg/mL). All three biomarkers had similar values for areas under the receiver operator characteristic curve: 0.79 (95% confidence interval; 0.70-0.88) for GFAP, 0.80 (0.71-0.89) for UCH-L1, and 0.75 (0.65-0.85) for S100B. Neither GFAP nor UCH-L1 curve values differed significantly from S100B (p = 0.21 and p = 0.77, respectively). In our patient cohort, UCH-L1 outperformed GFAP and S100B when the goal was to reduce CT use without sacrificing sensitivity. UCH-L1 values <40 pg/mL could potentially have aided in eliminating 83 of the 215 negative CT scans. These results require replication in other studies before the test is used in actual clinical practice.

  19. The photoreaction of the photoactive yellow protein domain in the light sensor histidine kinase Ppr is influenced by the C-terminal domains.

    PubMed

    Kamikubo, Hironari; Koyama, Tomonori; Hayashi, Michihiro; Shirai, Kumiko; Yamazaki, Yoichi; Imamoto, Yasushi; Kataoka, Mikio

    2008-01-01

    To study the role of the C-terminal domains in the photocycle of a light sensor histidine kinase (Ppr) having a photoactive yellow protein (PYP) domain as the photosensor domain, we analyzed the photocycles of the PYP domain of Ppr (Ppr-PYP) and full-length Ppr. The gene fragment for Ppr-PYP was expressed in Escherichia coli, and it was chemically reconstituted with p-coumaric acid; the full-length gene of Ppr was coexpressed with tyrosine ammonia-lyase and p-coumaric acid ligase for biosynthesis in cells. The light/dark difference spectra of Ppr-PYP were pH sensitive. They were represented as a linear combination of two independent difference spectra analogous to the PYP(L)/dark and PYP(M)/dark difference spectra of PYP from Halorhodospira halophila, suggesting that the pH dependence of the difference spectra is explained by the equilibrium shift between the PYP(L)- and PYP(M)-like intermediates. The light/dark difference spectrum of Ppr showed the equilibrium shift toward PYP(L) compared with that of Ppr-PYP. Kinetic measurements of the photocycles of Ppr and Ppr-PYP revealed that the C-terminal domains accelerate the recovery of the dark state. These observations suggest an interaction between the C-terminal domains and the PYP domain during the photocycle, by which light signals captured by the PYP domain are transferred to the C-terminal domains.

  20. Energetics and dynamics of the fragmentation reactions of protonated peptides containing methionine sulfoxide or aspartic acid via energy- and time-resolved surface induced dissociation.

    PubMed

    Lioe, Hadi; Laskin, Julia; Reid, Gavin E; O'Hair, Richard A J

    2007-10-25

    The surface-induced dissociation (SID) of six model peptides containing either methionine sulfoxide or aspartic acid (GAILM(O)GAILR, GAILM(O)GAILK, GAILM(O)GAILA, GAILDGAILR, GAILDGAILK, and GAILDGAILA) have been studied using a specially configured Fourier transform ion-cyclotron resonance mass spectrometer (FT-ICR MS). In particular, we have investigated the energetics and dynamics associated with (i) preferential cleavage of the methionine sulfoxide side chain via the loss of CH3SOH (64 Da), and (ii) preferential cleavage of the amide bond C-terminal to aspartic acid. The role of proton mobility in these selective bond cleavage reactions was examined by changing the C-terminal residue of the peptide from arginine (nonmobile proton conditions) to lysine (partially mobile proton conditions) to alanine (mobile proton conditions). Time- and energy-resolved fragmentation efficiency curves (TFECs) reveal that selective cleavages due to the methionine sulfoxide and aspartic acid residues are characterized by slow fragmentation kinetics. RRKM modeling of the experimental data suggests that the slow kinetics is associated with large negative entropy effects and these may be due to the presence of rearrangements prior to fragmentation. It was found that the Arrhenius pre-exponential factor (A) for peptide fragmentations occurring via selective bond cleavages are 1-2 orders of magnitude lower than nonselective peptide fragmentation reactions, while the dissociation threshold (E0) is relatively invariant. This means that selective bond cleavage is kinetically disfavored compared to nonselective amide bond cleavage. It was also found that the energetics and dynamics for the preferential loss of CH3SOH from peptide ions containing methionine sulfoxide are very similar to selective C-terminal amide bond cleavage at the aspartic acid residue. These results suggest that while preferential cleavage can compete with amide bond cleavage energetically, dynamically, these processes

  1. Energetics and Dynamics of the Fragmentation Reactions of Protonated Peptides Containing Methionine Sulfoxide or Aspartic Acid via Energy- and Time-Resolved Surface Induced Dissociation

    SciTech Connect

    Lioe, Hadi; Laskin, Julia; Reid, Gavin E.; O'Hair, Richard Aj

    2007-10-25

    The surface-induced dissociation (SID) of six model peptides containing either methionine sulfoxide or aspartic acid (GAILM(O)GAILR, GAILM(O)GAILK, GAILM(O)GAILA, GAILDGAILR, GAILDGAILK, and GAILDGAILA) have been studied using a specially configured Fourier transform ion-cyclotron resonance mass spectrometer (FT-ICR MS). In particular, we have investigated the energetics and dynamics associated with (i) preferential cleavage of the methionine sulfoxide side chain via the loss of CH3SOH (64Da), and (ii) preferential cleavage of the amide bond C-terminal to aspartic acid. The role of proton mobility on these selective bond cleavage reactions was examined by changing the C-terminal residue of the peptide from arginine (non-mobile proton conditions) to lysine (partially-mobile proton conditions) to alanine (mobile proton conditions). Time- and energy-resolved fragmentation efficiency curves (TFEC) reveals that selective cleavages due to the methionine sulfoxide and aspartic acid residues are characterized by slow fragmentation kinetics. RRKM modeling of the experimental data suggests that the slow kinetics is associated with large negative entropy effects and these may be due to the presence of rearrangements prior to fragmentation. It was found that the Arrhenius pre-exponential factor (A) for peptide fragmentations occurring via selective bond cleavages are 1–2 orders of magnitude lower than non-selective peptide fragmentation reactions, while the dissociation threshold (E0) is relatively invariant. This means that selective bond cleavage is kinetically disfavored compared to non-selective amide bond cleavage. It was also found that the energetics and dynamics for the preferential loss of CH3SOH from peptide ions containing methionine sulfoxide are very similar to selective C-terminal amide bond cleavage at the aspartic acid residue. These results suggest that while preferential cleavage can compete with amide bond cleavage energetically, dynamically, these

  2. Ability of Serum Glial Fibrillary Acidic Protein, Ubiquitin C-Terminal Hydrolase-L1, and S100B To Differentiate Normal and Abnormal Head Computed Tomography Findings in Patients with Suspected Mild or Moderate Traumatic Brain Injury.

    PubMed

    Welch, Robert D; Ayaz, Syed I; Lewis, Lawrence M; Unden, Johan; Chen, James Y; Mika, Valerie H; Saville, Ben; Tyndall, Joseph A; Nash, Marshall; Buki, Andras; Barzo, Pal; Hack, Dallas; Tortella, Frank C; Schmid, Kara; Hayes, Ronald L; Vossough, Arastoo; Sweriduk, Stephen T; Bazarian, Jeffrey J

    2016-01-15

    Head computed tomography (CT) imaging is still a commonly obtained diagnostic test for patients with minor head injury despite availability of clinical decision rules to guide imaging use and recommendations to reduce radiation exposure resulting from unnecessary imaging. This prospective multicenter observational study of 251 patients with suspected mild to moderate traumatic brain injury (TBI) evaluated three serum biomarkers' (glial fibrillary acidic protein [GFAP], ubiquitin C-terminal hydrolase-L1 [UCH-L1] and S100B measured within 6 h of injury) ability to differentiate CT negative and CT positive findings. Of the 251 patients, 60.2% were male and 225 (89.6%) had a presenting Glasgow Coma Scale score of 15. A positive head CT (intracranial injury) was found in 36 (14.3%). UCH-L1 was 100% sensitive and 39% specific at a cutoff value >40 pg/mL. To retain 100% sensitivity, GFAP was 0% specific (cutoff value 0 pg/mL) and S100B had a specificity of only 2% (cutoff value 30 pg/mL). All three biomarkers had similar values for areas under the receiver operator characteristic curve: 0.79 (95% confidence interval; 0.70-0.88) for GFAP, 0.80 (0.71-0.89) for UCH-L1, and 0.75 (0.65-0.85) for S100B. Neither GFAP nor UCH-L1 curve values differed significantly from S100B (p = 0.21 and p = 0.77, respectively). In our patient cohort, UCH-L1 outperformed GFAP and S100B when the goal was to reduce CT use without sacrificing sensitivity. UCH-L1 values <40 pg/mL could potentially have aided in eliminating 83 of the 215 negative CT scans. These results require replication in other studies before the test is used in actual clinical practice. PMID:26467555

  3. Ability of Serum Glial Fibrillary Acidic Protein, Ubiquitin C-Terminal Hydrolase-L1, and S100B To Differentiate Normal and Abnormal Head Computed Tomography Findings in Patients with Suspected Mild or Moderate Traumatic Brain Injury

    PubMed Central

    Ayaz, Syed I.; Lewis, Lawrence M.; Unden, Johan; Chen, James Y.; Mika, Valerie H.; Saville, Ben; Tyndall, Joseph A.; Nash, Marshall; Buki, Andras; Barzo, Pal; Hack, Dallas; Tortella, Frank C.; Schmid, Kara; Hayes, Ronald L.; Vossough, Arastoo; Sweriduk, Stephen T.; Bazarian, Jeffrey J.

    2016-01-01

    Abstract Head computed tomography (CT) imaging is still a commonly obtained diagnostic test for patients with minor head injury despite availability of clinical decision rules to guide imaging use and recommendations to reduce radiation exposure resulting from unnecessary imaging. This prospective multicenter observational study of 251 patients with suspected mild to moderate traumatic brain injury (TBI) evaluated three serum biomarkers' (glial fibrillary acidic protein [GFAP], ubiquitin C-terminal hydrolase-L1 [UCH-L1] and S100B measured within 6 h of injury) ability to differentiate CT negative and CT positive findings. Of the 251 patients, 60.2% were male and 225 (89.6%) had a presenting Glasgow Coma Scale score of 15. A positive head CT (intracranial injury) was found in 36 (14.3%). UCH-L1 was 100% sensitive and 39% specific at a cutoff value >40 pg/mL. To retain 100% sensitivity, GFAP was 0% specific (cutoff value 0 pg/mL) and S100B had a specificity of only 2% (cutoff value 30 pg/mL). All three biomarkers had similar values for areas under the receiver operator characteristic curve: 0.79 (95% confidence interval; 0.70–0.88) for GFAP, 0.80 (0.71–0.89) for UCH-L1, and 0.75 (0.65–0.85) for S100B. Neither GFAP nor UCH-L1 curve values differed significantly from S100B (p = 0.21 and p = 0.77, respectively). In our patient cohort, UCH-L1 outperformed GFAP and S100B when the goal was to reduce CT use without sacrificing sensitivity. UCH-L1 values <40 pg/mL could potentially have aided in eliminating 83 of the 215 negative CT scans. These results require replication in other studies before the test is used in actual clinical practice. PMID:26467555

  4. Characterization of a pseudoachondroplasia-associated mutation (His587-->Arg) in the C-terminal, collagen-binding domain of cartilage oligomeric matrix protein (COMP).

    PubMed Central

    Spitznagel, Luitgard; Nitsche, D Patric; Paulsson, Mats; Maurer, Patrik; Zaucke, Frank

    2004-01-01

    We have introduced a pseudoachondroplasia-associated mutation (His(587)-->Arg) into the C-terminal collagen-binding domain of COMP (cartilage oligomeric matrix protein) and recombinantly expressed the full-length protein as well as truncated fragments in HEK-293 cells. CD spectroscopy revealed only subtle differences in the overall secondary structure of full-length proteins. Interestingly, the mutant COMP did not aggregate in the presence of calcium, as does the wild-type protein. The binding site for collagens was recently mapped to amino acids 579-595 and it was assumed that the His(587)-->Arg mutation influences collagen binding. However full-length mutant COMP bound to collagens I, II and IX, and the binding was not significantly different from that of wild-type COMP. Also a COMP His(587)-->Arg fragment encompassing the calcium-binding repeats and the C-terminal collagen-binding domain bound collagens equally well as the corresponding wild-type protein. The recombinant fragments encompassing the C-terminal domain alone showed multiple bands following SDS/PAGE, although their theoretical molecular masses could be verified by MS. A temperature-induced conformational change was observed in CD spectroscopy, and negative-staining electron microscopy demonstrated that both wild-type and mutant proteins formed defined elongated aggregates after heating to 60 degrees C. Our results suggest that the His(587)-->Arg mutation is not itself deleterious to the structure and collagen-binding of COMP. PMID:14580238

  5. Metal ion-catalyzed nucleic acid alkylation and fragmentation.

    PubMed

    Browne, Kenneth A

    2002-07-10

    Nucleic acid microarrays are a growing technology in which high densities of known sequences are attached to a substrate in known locations (addressed). Hybridization of complementary sequences leads to a detectable signal such as an electrical impulse or fluorescence. This combination of sequence addressing, hybridization, and detection increases the efficiency of a variety of genomic disciplines including those that profile genetic expression, search for single nucleotide polymorphisms (SNPs), or diagnose infectious diseases by sequencing portions of microbial or viral genomes. Incorporation of reporter molecules into nucleic acids is essential for the sensitive detection of minute amounts of nucleic acids on most types of microarrays. Furthermore, polynucleic acid size reduction increases hybridization because of increased diffusion rates and decreased competing secondary structure of the target nucleic acids. Typically, these reactions would be performed as two separate processes. An improvement to past techniques, termed labeling-during-cleavage (LDC), is presented in which DNA or RNA is alkylated with fluorescent tags and fragmented in the same reaction mixture. In model studies with 26 nucleotide-long RNA and DNA oligomers using ultraviolet/visible and fluorescence spectroscopies as well as high-pressure liquid chromatography and mass spectrometry, addition of both alkylating agents (5-(bromomethyl)fluorescein, 5- or 6-iodoacetamidofluorescein) and select metal ions (of 21 tested) to nucleic acids in aqueous solutions was critical for significant increases in both labeling and fragmentation, with >or=100-fold increases in alkylation possible relative to metal ion-free reactions. Lanthanide series metal ions, Pb(2+), and Zn(2+) were the most reactive ions in terms of catalyzing alkylation and fragmentation. While oligonucleotides were particularly susceptible to fragmentation at sites containing phosphorothioate moieties, labeling and cleavage reactions

  6. Crystallization of the C-terminal globular domain of avian reovirus fibre

    PubMed Central

    van Raaij, Mark J.; Hermo Parrado, X. Lois; Guardado Calvo, Pablo; Fox, Gavin C.; Llamas-Saiz, Antonio L.; Costas, Celina; Martínez-Costas, José; Benavente, Javier

    2005-01-01

    Avian reovirus fibre, a homotrimer of the σC protein, is responsible for primary host-cell attachment. Using the protease trypsin, a C-terminal σC fragment containing amino acids 156–326 has been generated which was subsequently purified and crystallized. Two different crystal forms were obtained, one grown in the absence of divalent cations and belonging to space group P6322 (unit-cell parameters a = 75.6, c = 243.1 Å) and one grown in the presence of either zinc or cadmium sulfate and belonging to space group P321 (unit-cell parameters a = 74.7, c = 74.5 Å and a = 73.1, c = 69.9 Å for the ZnII- and CdII-grown crystals, respectively). The first crystal form diffracted synchrotron radiation to 3.0 Å resolution and the second form to 2.2–2.3 Å. Its closest related structure, the C-­terminal fragment of mammalian reovirus fibre, has only 18% sequence identity and molecular-replacement attempts were unsuccessful. Therefore, a search is under way for suitable heavy-atom derivatives and attempts are being made to grow protein crystals containing selenomethionine instead of methionine. PMID:16511119

  7. Fmoc solid-phase synthesis of C-terminal modified peptides by formation of a backbone cyclic urethane moiety.

    PubMed

    Elashal, Hader E; Cohen, Ryan D; Raj, Monika

    2016-08-11

    C-terminally modified peptides are of high significance due to the therapeutic properties that accompany various C-terminal functional groups and the ability to manipulate them for further applications. Thus, there is a great necessity for an effective solid phase technique for the synthesis of C-terminally modified peptides. Here, we report a universal solid phase strategy for the synthesis of various C-terminal modified peptides which is independent of the type of resins, linkers, and unnatural moieties typically needed for C-terminal modifications. The technique proceeds by the modification of C-terminal serine to a cyclic urethane moiety which results in the activation of the backbone amide chain for nucleophilic displacement by various nucleophiles to generate C-terminally modified acids, esters, N-aryl amides, and alcohols. This cyclic urethane technique (CUT) also provides a general strategy for synthesis of C-terminal protected peptides that can be used for convergent synthesis of large peptides. The C-terminal protecting groups are cleaved by facile hydrolysis to release the free peptide.

  8. Fmoc solid-phase synthesis of C-terminal modified peptides by formation of a backbone cyclic urethane moiety.

    PubMed

    Elashal, Hader E; Cohen, Ryan D; Raj, Monika

    2016-08-11

    C-terminally modified peptides are of high significance due to the therapeutic properties that accompany various C-terminal functional groups and the ability to manipulate them for further applications. Thus, there is a great necessity for an effective solid phase technique for the synthesis of C-terminally modified peptides. Here, we report a universal solid phase strategy for the synthesis of various C-terminal modified peptides which is independent of the type of resins, linkers, and unnatural moieties typically needed for C-terminal modifications. The technique proceeds by the modification of C-terminal serine to a cyclic urethane moiety which results in the activation of the backbone amide chain for nucleophilic displacement by various nucleophiles to generate C-terminally modified acids, esters, N-aryl amides, and alcohols. This cyclic urethane technique (CUT) also provides a general strategy for synthesis of C-terminal protected peptides that can be used for convergent synthesis of large peptides. The C-terminal protecting groups are cleaved by facile hydrolysis to release the free peptide. PMID:27407005

  9. Hevea brasiliensis prohevein possesses a conserved C-terminal domain with amyloid-like properties in vitro.

    PubMed

    Berthelot, Karine; Lecomte, Sophie; Coulary-Salin, Bénédicte; Bentaleb, Ahmed; Peruch, Frédéric

    2016-04-01

    Prohevein is a wound-induced protein and a main allergen from latex of Hevea brasiliensis (rubber tree). This 187 amino-acid protein is cleaved in two fragments: a N-terminal 43 amino-acids called hevein, a lectin bearing a chitin-binding motif with antifungal properties and a C-terminal domain (C-ter) far less characterized. We provide here new insights on the characteristics of prohevein, hevein and C-terminal domain. Using complementary biochemical (ThT/CR/chitin binding, agglutination) and structural (modeling, ATR-FTIR, TEM, WAXS) approaches, we show that this domain clearly displays all the characteristics of an amyloid-like proteins in vitro, that could confer agglutination activity in synergy with its chitin-binding activity. Additionally, this C-ter domain is highly conserved and present in numerous plant prohevein-like proteins or pathogenesis-related (PR and WIN) proteins. This could be the hallmark of the eventual presence of proteins with amyloid properties in plants, that could potentially play a role in defense through aggregation properties. PMID:26805576

  10. Multifunctional role of the Pitx2 homeodomain protein C-terminal tail.

    PubMed

    Amendt, B A; Sutherland, L B; Russo, A F

    1999-10-01

    Pitx2 is a newly described bicoid-like homeodomain transcription factor that is defective in Rieger syndrome and shows a striking leftward developmental asymmetry. We have previously shown that Pitx2 (also called Ptx2 and RIEG) transactivates a reporter gene containing a bicoid enhancer and synergistically transactivates the prolactin promoter in the presence of the POU homeodomain protein Pit-1. In this report, we focused on the C-terminal region which is mutated in some Rieger patients and contains a highly conserved 14-amino-acid element. Deletion analysis of Pitx2 revealed that the C-terminal 39-amino-acid tail represses DNA binding activity and is required for Pitx2-Pit-1 interaction and Pit-1 synergism. Pit-1 interaction with the Pitx2 C terminus masks the inhibitory effect and promotes increased DNA binding activity. Interestingly, cotransfection of an expression vector encoding the C-terminal 39 amino acids of Pitx2 specifically inhibits Pitx2 transactivation activity. In contrast, the C-terminal 39-amino-acid peptide interacts with Pitx2 to increase its DNA binding activity. These data suggest that the C-terminal tail intrinsically inhibits the Pitx2 protein and that this inhibition can be overcome by interaction with other transcription factors to allow activation during development. PMID:10490637

  11. Multifunctional Role of the Pitx2 Homeodomain Protein C-Terminal Tail

    PubMed Central

    Amendt, Brad A.; Sutherland, Lillian B.; Russo, Andrew F.

    1999-01-01

    Pitx2 is a newly described bicoid-like homeodomain transcription factor that is defective in Rieger syndrome and shows a striking leftward developmental asymmetry. We have previously shown that Pitx2 (also called Ptx2 and RIEG) transactivates a reporter gene containing a bicoid enhancer and synergistically transactivates the prolactin promoter in the presence of the POU homeodomain protein Pit-1. In this report, we focused on the C-terminal region which is mutated in some Rieger patients and contains a highly conserved 14-amino-acid element. Deletion analysis of Pitx2 revealed that the C-terminal 39-amino-acid tail represses DNA binding activity and is required for Pitx2-Pit-1 interaction and Pit-1 synergism. Pit-1 interaction with the Pitx2 C terminus masks the inhibitory effect and promotes increased DNA binding activity. Interestingly, cotransfection of an expression vector encoding the C-terminal 39 amino acids of Pitx2 specifically inhibits Pitx2 transactivation activity. In contrast, the C-terminal 39-amino-acid peptide interacts with Pitx2 to increase its DNA binding activity. These data suggest that the C-terminal tail intrinsically inhibits the Pitx2 protein and that this inhibition can be overcome by interaction with other transcription factors to allow activation during development. PMID:10490637

  12. Mutational Analysis Defines a C-Terminal Tail Domain of Rap1 Essential for Telomeric Silencing in Saccharomyces Cerevisiae

    PubMed Central

    Liu, C.; Mao, X.; Lustig, A. J.

    1994-01-01

    Alleles specifically defective in telomeric silencing were generated by in vitro mutagenesis of the yeast RAP1 gene. The most severe phenotypes occur with three mutations in the C-terminal 28 amino acids. Two of the alleles are nonsense mutations resulting in truncated repressor/activator protein 1 (RAP1) species lacking the C-terminal 25-28 amino acids; the third allele is a missense mutation within this region. These alleles define a novel 28-amino acid region, termed the C-terminal tail domain, that is essential for telomeric and HML silencing. Using site-directed mutagenesis, an 8-amino acid region (amino acids 818-825) that is essential for telomeric silencing has been localized within this domain. Further characterization of these alleles has indicated that the C-terminal tail domain also plays a role in telomere size control. The function of the C-terminal tail in telomere maintenance is not mediated through the RAP1 interacting factor RIF1: rap1 alleles defective in both the C-terminal tail and RIF1 interaction domains have additive effects on telomere length. Overproduction of SIR3, a dose-dependent enhancer of telomeric silencing, suppresses the telomeric silencing, but not length, phenotypes of a subset of C-terminal tail alleles. In contrast, an allele that truncates the terminal 28 amino acids of RAP1 is refractory to SIR3 overproduction. These results indicate that the C-terminal tail domain is required for SIR3-dependent enhancement of telomeric silencing. These data also suggest a distinct set of C-terminal requirements for telomere size control and telomeric silencing. PMID:7896088

  13. Bacteriophage endolysin Lyt μ1/6: characterization of the C-terminal binding domain.

    PubMed

    Tišáková, Lenka; Vidová, Barbora; Farkašovská, Jarmila; Godány, Andrej

    2014-01-01

    The gene product of orf50 from actinophage μ1/6 of Streptomyces aureofaciens is a putative endolysin, Lyt μ1/6. It has a two-domain modular structure, consisting of an N-terminal catalytic and a C-terminal cell wall binding domain (CBD). Comparative analysis of Streptomyces phage endolysins revealed that they all have a modular structure and contain functional C-terminal domains with conserved amino acids, probably associated with their binding function. A blast analysis of Lyt μ1/6 in conjunction with secondary and tertiary structure prediction disclosed the presence of a PG_binding_1 domain within the CBD. The sequence of the C-terminal domain of lyt μ1/6 and truncated forms of it were cloned and expressed in Escherichia coli. The ability of these CBD variants fused to GFP to bind to the surface of S. aureofaciens NMU was shown by specific binding assays.

  14. Deletion of extra C-terminal segment and its effect on the function and structure of artemin.

    PubMed

    Shirzad, Fatemeh; Sajedi, Reza H; Shahangian, S Shirin; Rasti, Behnam; Mosadegh, Bita; Taghdir, Majid; Hosseinkhani, Saman

    2011-10-01

    Artemin acts as a molecular chaperone by protecting Artemia embryos undergoing encystment from damage, caused by heat or other forms of stress. According to the amino acid sequence alignment, although artemin shows a fair amount of homology with ferritin, it also contains an extra C-terminal. Analysis of the C-terminal extension of artemin model in previous studies has shown that there are some favorable interactions between this region and its surrounding cleft. In the current study we tried to investigate the role of this C-terminal in chaperone activity of artemin. This extra C-terminal (39 residues) was deleted and the truncated gene was cloned and expressed in Escherichia coli. According to in vivo chaperone-like activity studies, both full-length and C-terminal truncated artemin conferred thermotolerance on transfected E. coli cells. However, bacteria expressing truncated derivative of artemin was less resistant than those producing native artemin against heat. Moreover, the activity recovery on carbonic anhydrase (CA), as protein substrate, was less in the presence of truncated artemin than that of full-length artemin. The results demonstrated that C-terminal deletion decreases the ability of artemin for chaperone-like activity. Theoretical investigations showed that deletion of artemin C-terminal extension makes substantial structural alterations in a way that structural stability and overall integrity of artemin decrease. PMID:21600915

  15. Significance of the C-terminal domain of Erwinia uredovora ice nucleation-active protein (Ina U).

    PubMed

    Michigami, Y; Abe, K; Obata, H; Arai, S

    1995-12-01

    Ice nucleation-active (Ina) proteins of bacterial origin comprise three distinct domains, i.e., N-terminal (N-), central repeat (R-), and C-terminal (C-) domains, among which the R-domain is essential, and its length may be correlated with the ice nucleation activity. In addition, the short C-terminal domain of about 50 amino acid residues is indispensable for the activity. Using the Ina U protein of Erwinia uredovora, we carried out precise mutational analyses of its C-terminus. The ice nucleation activity (T50) assay showed that the C-terminal 12 amino acids were not necessary, and a deletion mutant (delta C29) with a new C-terminal, Met29 (numbered from the first amino acid residue of the C-domain and corresponding to Met1022), exhibited almost the same activity as the wild-type Ina U protein did. However, deletion of the C-terminal 13 residues including Met29 resulted in almost complete loss of the activity. In the deletion mutant (delta C29), amino acid replacement of the C-terminus, Met29, showed that the activity was retained when Met29 was replaced with a neutral, aromatic, or basic amino acid (Gly, Phe, or Lys), but was lost on the replacement with an acidic amino acid (Asp or Glu). In addition, two other residues in the C-terminal region commonly present in all Ina proteins were examined as to their importance, and it was shown that one of these residues, Tyr27, is important for the activity, although it is not exclusively required; the activity was lost to a great extent when this residue was replaced with Gly or Ala, but to a lesser extent when it was replaced with Leu. These results suggest that significance of the secondary and/or tertiary structure of the C-terminal region of the Ina U protein for the ice nucleation activity. PMID:8720147

  16. Order of amino acids in C-terminal cysteine-containing peptide-based chelators influences cellular processing and biodistribution of 99mTc-labeled recombinant Affibody molecules.

    PubMed

    Altai, Mohamed; Wållberg, Helena; Orlova, Anna; Rosestedt, Maria; Hosseinimehr, Seyed Jalal; Tolmachev, Vladimir; Ståhl, Stefan

    2012-05-01

    Affibody molecules constitute a novel class of molecular display selected affinity proteins based on non-immunoglobulin scaffold. Preclinical investigations and pilot clinical data have demonstrated that Affibody molecules provide high contrast imaging of tumor-associated molecular targets shortly after injection. The use of cysteine-containing peptide-based chelators at the C-terminus of recombinant Affibody molecules enabled site-specific labeling with the radionuclide 99mTc. Earlier studies have demonstrated that position, composition and the order of amino acids in peptide-based chelators influence labeling stability, cellular processing and biodistribution of Affibody molecules. To investigate the influence of the amino acid order, a series of anti-HER2 Affibody molecules, containing GSGC, GEGC and GKGC chelators have been prepared and characterized. The affinity to HER2, cellular processing of 99mTc-labeled Affibody molecules and their biodistribution were investigated. These properties were compared with that of the previously studied 99mTc-labeled Affibody molecules containing GGSC, GGEC and GGKC chelators. All variants displayed picomolar affinities to HER2. The substitution of a single amino acid in the chelator had an appreciable influence on the cellular processing of 99mTc. The biodistribution of all 99mTc-labeled Affibody molecules was in general comparable, with the main difference in uptake and retention of radioactivity in excretory organs. The hepatic accumulation of radioactivity was higher for the lysine-containing chelators and the renal retention of 99mTc was significantly affected by the amino acid composition of chelators. The order of amino acids influenced renal uptake of some conjugates at 1 h after injection, but the difference decreased at later time points. Such information can be helpful for the development of other scaffold protein-based imaging and therapeutic radiolabeled conjugates.

  17. A single amino acid change (substitution of the conserved Glu-590 with alanine) in the C-terminal domain of rat liver carnitine palmitoyltransferase I increases its malonyl-CoA sensitivity close to that observed with the muscle isoform of the enzyme.

    PubMed

    Napal, Laura; Dai, Jia; Treber, Michelle; Haro, Diego; Marrero, Pedro F; Woldegiorgis, Gebre

    2003-09-01

    Carnitine palmitoyltransferase I (CPTI) catalyzes the conversion of long-chain fatty acyl-CoAs to acylcarnitines in the presence of l-carnitine. To determine the role of the highly conserved C-terminal glutamate residue, Glu-590, on catalysis and malonyl-CoA sensitivity, we separately changed the residue to alanine, lysine, glutamine, and aspartate. Substitution of Glu-590 with aspartate, a negatively charged amino acid with only one methyl group less than the glutamate residue in the wild-type enzyme, resulted in complete loss in the activity of the liver isoform of CPTI (L-CPTI). A change of Glu-590 to alanine, glutamine, and lysine caused a significant 9- to 16-fold increase in malonyl-CoA sensitivity but only a partial decrease in catalytic activity. Substitution of Glu-590 with neutral uncharged residues (alanine and glutamine) and/or a basic positively charged residue (lysine) significantly increased L-CPTI malonyl-CoA sensitivity to the level observed with the muscle isoform of the enzyme, suggesting the importance of neutral and/or positive charges in the switch of the kinetic properties of L-CPTI to the muscle isoform of CPTI. Since a conservative substitution of Glu-590 to aspartate but not glutamine resulted in complete loss in activity, we suggest that the longer side chain of glutamate is essential for catalysis and malonyl-CoA sensitivity. This is the first demonstration whereby a single residue mutation in the C-terminal region of the liver isoform of CPTI resulted in a change of its kinetic properties close to that observed with the muscle isoform of the enzyme and provides the rationale for the high malonyl-CoA sensitivity of muscle CPTI compared with the liver isoform of the enzyme. PMID:12826662

  18. The C-terminal loop of aldehyde reductase determines the substrate and inhibitor specificity.

    PubMed

    Barski, O A; Gabbay, K H; Bohren, K M

    1996-11-12

    Human aldehyde reductase has a preference for carboxyl group-containing negatively charged substrates. It belongs to the NADPH-dependent aldo-keto reductase superfamily whose members are in part distinguished by unique C-terminal loops. To probe the role of the C-terminal loops in determining substrate specificities in these enzymes, two arginine residues, Arg308 and Arg311, located in the C-terminal loop of aldehyde reductase, and not found in any other C-terminal loop, were replaced with alanine residues. The catalytic efficiency of the R311A mutant for aldehydes containing a carboxyl group is reduced 150-250-fold in comparison to that of the wild-type enzyme, while substrates not containing a negative charge are unaffected. The R311A mutant is also significantly less sensitive to inhibition by dicarboxylic acids, indicating that Arg311 interacts with one of the carboxyl groups. The inhibition pattern indicates that the other carboxyl group binds to the anion binding site formed by Tyr49, His112, and the nicotinamide moiety of NADP+. The correlation between inhibitor potency and the length of the dicarboxylic acid molecules suggests a distance of approximately 10 A between the amino group of Arg311 and the anion binding site in the aldehyde reductase molecule. The sensitivity of inhibition of the R311A mutant by several commercially available aldose reductase inhibitors (ARIs) was variable, with tolrestat and zopolrestat becoming more potent inhibitors (30- and 5-fold, respectively), while others remained the same or became less potent. The catalytic properties, substrate specificity, and susceptibility to inhibition of the R308A mutant remained similar to that of the wild-type enzyme. The data provide direct evidence for C-terminal loop participation in determining substrate and inhibitor specificity of aldo-keto reductases and specifically identifies Arg311 as the basis for the carboxyl-containing substrate preference of aldehyde reductase. PMID:8916913

  19. Effect of C-terminal truncation on enzyme properties of recombinant amylopullulanase from Thermoanaerobacter pseudoethanolicus.

    PubMed

    Lin, Fu-Pang; Ho, Yi-Hsuan; Lin, Hsu-Yang; Lin, Hui-Ju

    2012-05-01

    The smallest and enzymatically active molecule, TetApuQ818, was localized within the C-terminal Q818 amino acid residue after serial C-terminal truncation analysis of the recombinant amylopullulanase molecule (TetApuM955) from Thermoanaerobacter pseudoethanolicus. Kinetic analyses indicated that the overall catalytic efficiency, k (cat)/K (m), of TetApuQ818 was 8-32% decreased for the pullulan and the soluble starch substrate, respectively. Changes to the substrate affinity, K (m), and the turnover rate, k (cat), were decreased significantly in both enzymatic activities of TetApuQ818. TetApuQ818 exhibited less thermostability than TetApuM955 when the temperature was raised above 85°C, but it had similar substrate-binding ability and hydrolysis products toward various substrates as TetApuM955 did. Both enzymes showed similar spectroscopies of fluorescence and circular dichroism, suggesting the active folding conformation was maintained after this C-terminal Q818 deletion. This study suggested that the binding ability of insoluble starch by TetApuM955 did not rely on the putative C-terminal carbohydrate binding module family 20 (CBM20) and two FnIII regions of TetApu, though the integrity of the AamyC module of TetApuQ818 was required for the enzyme activity. PMID:22392283

  20. Motifs in the C-terminal region of the Penicillium chrysogenum ACV synthetase are essential for valine epimerization and processivity of tripeptide formation.

    PubMed

    Wu, Xiaobin; García-Estrada, Carlos; Vaca, Inmaculada; Martín, Juan-Francisco

    2012-02-01

    The first step in the penicillin biosynthetic pathway is the non-ribosomal condensation of L-α-aminoadipic acid, L-cysteine and L-valine into the tripeptide δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine (ACV). This reaction is catalysed by the multienzyme ACV synthetase (ACVS), which is encoded in the filamentous fungus Penicillium chrysogenum by the pcbAB gene. This enzyme contains at least ten catalytic domains. The precise role of the C-terminal domain of this multidomain NRPS still remains obscure. The C-terminal region of ACVS bears the epimerase and the thioesterase domains and may be involved in the epimerization of LLL-ACV to LLD-ACV and in the hydrolysis of the thioester bond. In this work, the conserved motifs (3371)EGHGRE(3376) (located in the putative epimerase domain) and (3629)GWSFG(3633) (located in the thioesterase domain) were changed by site-directed-mutagenesis to LGFGLL and GWAFG, respectively. In addition, the whole thioesterase domain (230 amino acids) and the different parts of this domain were deleted. The activity of these mutant enzymes was assessed in vivo by two different procedures: i) through the quantification of bisACV produced by the fungus and ii) by quantifying the benzylpenicillin production using tailored strains of P. chrysogenum, which lack the pcbAB gene, as host strains. All indicated mutant enzymes showed lower or null activity than the control strain confirming that E3371, H3373, R3375 and E3376 belong to the epimerase active centre. Different fragments included in the C-terminal region of ACVS control thioester hydrolysis. Overexpression of the sequence encoding the ACVS integrated thioesterase domain as a separate (stand-alone) transcriptional unit complemented mutants lacking the integrated thioesterase domain, although with low ACV releasing activity, suggesting that the stand-alone thioesterease interacts with the other ACVS domains.

  1. Structural differences between C-terminal regions of tropomyosin isoforms

    PubMed Central

    Śliwińska, Małgorzata

    2013-01-01

    Tropomyosins are actin-binding regulatory proteins which overlap end-to-end along the filament. High resolution structures of the overlap regions were determined for muscle and non-muscle tropomyosins in the absence of actin. Conformations of the junction regions bound to actin are unknown. In this work, orientation of the overlap on actin alone and on actin–myosin complex was evaluated by measuring FRET distances between a donor (AEDANS) attached to tropomyosin and an acceptor (DABMI) bound to actin’s Cys374. Donor was attached to the Cys residue introduced by site-directed mutagenesis near the C-terminal half of the overlap. The recombinant alpha-tropomyosin isoforms used in this study – skeletal muscle skTM, non-muscle TM2 and TM5a, and chimeric TM1b9a had various amino acid sequences of the N- and C-termini involved in the end-to-end overlap. The donor-acceptor distances calculated for each isoform varied between 36.4 Å and 48.1 Å. Rigor binding of myosin S1 increased the apparent FRET distances of skTM and TM2, but decreased the distances separating TM5a and TM1b9a from actin. The results show that isoform-specific sequences of the end-to-end overlaps determine orientations and dynamics of tropomyosin isoforms on actin. This can be important for specificity of tropomyosin in the regulation of actin filament diverse functions. PMID:24167776

  2. A Mechanistic Investigation of the C-Terminal Redox Motif of Thioredoxin Reductase from Plasmodium falciparum

    PubMed Central

    2015-01-01

    High-molecular mass thioredoxin reductases (TRs) are pyridine nucleotide disulfide oxidoreductases that catalyze the reduction of the disulfide bond of thioredoxin (Trx). Trx is responsible for reducing multiple protein disulfide targets in the cell. TRs utilize reduced β-nicotinamide adenine dinucleotide phosphate to reduce a bound flavin prosthetic group, which in turn reduces an N-terminal redox center that has the conserved sequence CICVNVGCCT, where CIC is denoted as the interchange thiol while the thiol involved in charge-transfer complexation is denoted as CCT. The reduced N-terminal redox center reduces a C-terminal redox center on the opposite subunit of the head-to-tail homodimer, the C-terminal redox center that catalyzes the reduction of the Trx-disulfide. Variations in the amino acid sequence of the C-terminal redox center differentiate high-molecular mass TRs into different types. Type Ia TRs have tetrapeptide C-terminal redox centers of with a GCUG sequence, where U is the rare amino acid selenocysteine (Sec), while the tetrapeptide sequence in type Ib TRs has its Sec residue replaced with a conventional cysteine (Cys) residue and can use small polar amino acids such as serine and threonine in place of the flanking glycine residues. The TR from Plasmodium falciparum (PfTR) is similar in structure and mechanism to type Ia and type Ib TRs except that the C-terminal redox center is different in its amino acid sequence. The C-terminal redox center of PfTR has the sequence G534CGGGKCG541, and we classify it as a type II high-molecular mass TR. The oxidized type II redox motif will form a 20-membered disulfide ring, whereas the absence of spacer amino acids in the type I motif results in the formation of a rare eight-membered ring. We used site-directed mutagenesis and protein semisynthesis to investigate features of the distinctive type II C-terminal redox motif that help it perform catalysis. Deletion of Gly541 reduces thioredoxin reductase activity by

  3. Molecular cloning of the C-terminal domain of Escherichia coli D-mannitol permease: expression, phosphorylation, and complementation with C-terminal permease deletion proteins.

    PubMed

    White, D W; Jacobson, G R

    1990-03-01

    We have subcloned a portion of the Escherichia coli mtlA gene encoding the hydrophilic, C-terminal domain of the mannitol-specific enzyme II (mannitol permease; molecular mass, 68 kilodaltons [kDa]) of the phosphoenolpyruvate-dependent carbohydrate phosphotransferase system. This mtlA fragment, encoding residues 379 to 637 (residue 637 = C terminus), was cloned in frame into the expression vector pCQV2 immediately downstream from the lambda pr promoter of the vector, which also encodes a temperature-sensitive lambda repressor. E. coli cells carrying a chromosomal deletion in mtlA (strain LGS322) and harboring this recombinant plasmid, pDW1, expressed a 28-kDa protein cross-reacting with antipermease antibody when grown at 42 degrees C but not when grown at 32 degrees C. This protein was relatively stable and could be phosphorylated in vitro by the general phospho-carrier protein of the phosphotransferase system, phospho-HPr. Thus, this fragment of the permease, when expressed in the absence of the hydrophobic, membrane-bound N-terminal domain, can apparently fold into a conformation resembling that of the C-terminal domain of the intact permease. When transformed into LGS322 cells harboring plasmid pGJ9-delta 137, which encodes a C-terminally truncated and inactive permease (residues 1 to ca. 480; molecular mass, 51 kDa), pDW1 conferred a mannitol-positive phenotype to this strain when grown at 42 degrees C but not when grown at 32 degrees C. This strain also exhibited phosphoenolpyruvate-dependent mannitol phosphorylation activity only when grown at the higher temperature. In contrast, pDW1 could not complement a plasmid encoding the complementary N-terminal part of the permease (residues 1 to 377). The pathway of phosphorylation of mannitol by the combined protein products of pGJ9-delta 137 and pDPW1 was also investigated by using N-ethylmaleimide to inactivate the second phosphorylation sites of these permease fragments (proposed to be Cys-384). These results

  4. GBNV encoded movement protein (NSm) remodels ER network via C-terminal coiled coil domain

    SciTech Connect

    Singh, Pratibha; Savithri, H.S.

    2015-08-15

    Plant viruses exploit the host machinery for targeting the viral genome–movement protein complex to plasmodesmata (PD). The mechanism by which the non-structural protein m (NSm) of Groundnut bud necrosis virus (GBNV) is targeted to PD was investigated using Agrobacterium mediated transient expression of NSm and its fusion proteins in Nicotiana benthamiana. GFP:NSm formed punctuate structures that colocalized with mCherry:plasmodesmata localized protein 1a (PDLP 1a) confirming that GBNV NSm localizes to PD. Unlike in other movement proteins, the C-terminal coiled coil domain of GBNV NSm was shown to be involved in the localization of NSm to PD, as deletion of this domain resulted in the cytoplasmic localization of NSm. Treatment with Brefeldin A demonstrated the role of ER in targeting GFP NSm to PD. Furthermore, mCherry:NSm co-localized with ER–GFP (endoplasmic reticulum targeting peptide (HDEL peptide fused with GFP). Co-expression of NSm with ER–GFP showed that the ER-network was transformed into vesicles indicating that NSm interacts with ER and remodels it. Mutations in the conserved hydrophobic region of NSm (residues 130–138) did not abolish the formation of vesicles. Additionally, the conserved prolines at positions 140 and 142 were found to be essential for targeting the vesicles to the cell membrane. Further, systematic deletion of amino acid residues from N- and C-terminus demonstrated that N-terminal 203 amino acids are dispensable for the vesicle formation. On the other hand, the C-terminal coiled coil domain when expressed alone could also form vesicles. These results suggest that GBNV NSm remodels the ER network by forming vesicles via its interaction through the C-terminal coiled coil domain. Interestingly, NSm interacts with NP in vitro and coexpression of these two proteins in planta resulted in the relocalization of NP to PD and this relocalization was abolished when the N-terminal unfolded region of NSm was deleted. Thus, the NSm

  5. Fragmentation of amino acids induced by collisions with low-energy highly charged ions

    NASA Astrophysics Data System (ADS)

    Piekarski, D. G.; Maclot, S.; Domaracka, A.; Adoui, L.; Alcamí, M.; Rousseau, P.; Díaz-Tendero, S.; Huber, B. A.; Martín, F.

    2014-04-01

    Fragmentation of amino acids NH2-(CH2)n-COOH (n=1 glycine; n=2 β-alanine and n=3 γ-aminobutyric acid GABA) following collisions with slow highly charged ions has been studied in the gas phase by a combined experimental and theoretical approach. In the experiments, a multi-coincidence detection method was used to deduce the charge state of the molecules before fragmentation. Quantum chemistry calculations have been carried out in the basis of the density functional theory and ab initio molecular dynamics. The combination of both methodologies is essential to unambiguously unravel the different fragmentation pathways.

  6. The pro-enzyme C-terminal processing domain of Pholiota nameko tyrosinase is responsible for folding of the N-terminal catalytic domain.

    PubMed

    Moe, Lai Lai; Maekawa, Saya; Kawamura-Konishi, Yasuko

    2015-07-01

    Pholiota nameko (Pholiota microspore) tyrosinase is expressed as a latent 67-kDa pro-tyrosinase, comprising a 42-kDa N-terminal catalytic domain with a binuclear copper centre and a 25-kDa C-terminal domain and is activated by proteolytic digestion of the C-terminal domain. To investigate the role of the C-terminal processing domain of pro-tyrosinase, we constructed a recombinant tyrosinase lacking the C-terminal domain and four recombinant pro-tyrosinase mutants (F515G, H539N, L540G and Y543G) carrying substituted amino acid residues on the C-terminal domain. The recombinant tyrosinase lacking the C-terminal domain had no catalytic activity; whereas the mutant L540G was copper depleted, the other mutants had copper contents similar to that of the wild-type pro-tyrosinase. Proteolytic digestion activated the mutants H539N and Y543G following release of the C-terminal domain, and the resulting tyrosinases had higher K m values for t-butyl catechol than the wild-type pro-tyrosinase. The mutants F515G and L540G were degraded by proteolytic digestion and yielded smaller proteins with no activity. These data suggest that the C-terminal processing domain of P. nameko pro-tyrosinase is essential for correct folding of the N-terminal catalytic domain and acts as an intramolecular chaperone during assembly of the active-site conformation.

  7. Crystallization of the C-terminal domain of the bacteriophage T5 L-shaped fibre

    PubMed Central

    Garcia-Doval, Carmela; Luque, Daniel; Castón, José R.; Boulanger, Pascale; van Raaij, Mark J.

    2013-01-01

    Tails of bacteriophage T5 (a member of the Siphoviridae family) were studied by electron microscopy. For the distal parts of the L-shaped tail fibres, which are involved in host cell receptor binding, a low-resolution volume was calculated. Several C-terminal fragments of the fibre were expressed and purified. Crystals of two of them were obtained that belonged to space groups P63 and R32 and diffracted synchrotron radiation to 2.3 and 2.9 Å resolution, respectively. A single-wavelength anomalous dispersion data set to 2.5 Å resolution was also collected from a selenomethionine-derivatized crystal of one of the fragments, which belonged to space group C2. PMID:24316831

  8. Structure of the C-terminal end of the nascent peptide influences translation termination.

    PubMed Central

    Björnsson, A; Mottagui-Tabar, S; Isaksson, L A

    1996-01-01

    The efficiency of translation termination at NNN NNN UGA A stop codon contexts has been determined in Escherichia coli. No general effects are found which can be attributed directly to the mRNA sequences itself. Instead, termination is influenced primarily by the amino acids at the C-terminal end of the nascent peptide, which are specified by the two codons at the 5' side of UGA. For the penultimate amino acid (-2 location), charge and hydrophobicity are important. For the last amino acid (-1 location), alpha-helical, beta-strand and reverse turn propensities are determining factors. The van der Waals volume of the last amino acid can affect the relative efficiency of stop codon readthrough by the wild-type and suppressor forms of tRNA(Trp) (CAA). The influence of the -1 and -2 amino acids is cooperative. Accumulation of an mRNA degradation intermediate indicates mRNA protection by pausing ribosomes at contexts which give inefficient UGA termination. Highly expressed E.coli genes with the UGA A termination signal encode C-terminal amino acids which favour efficient termination. This restriction is not found for poorly expressed genes. Images PMID:8612594

  9. Molecular Features of Phosphatase and Tensin Homolog (PTEN) Regulation by C-terminal Phosphorylation.

    PubMed

    Chen, Zan; Dempsey, Daniel R; Thomas, Stefani N; Hayward, Dawn; Bolduc, David M; Cole, Philip A

    2016-07-01

    PTEN is a tumor suppressor that functions to negatively regulate the PI3K/AKT pathway as the lipid phosphatase for phosphatidylinositol 3,4,5-triphosphate. Phosphorylation of a cluster of Ser/Thr residues (amino acids 380-385) on the C-terminal tail serves to alter the conformational state of PTEN from an open active state to a closed inhibited state, resulting in a reduction of plasma membrane localization and inhibition of enzyme activity. The relative contribution of each phosphorylation site to PTEN autoinhibition and the structural basis for the conformational closure is still unclear. To further the structural understanding of PTEN regulation by C-terminal tail phosphorylation, we used protein semisynthesis to insert stoichiometric and site-specific phospho-Ser/Thr(s) in the C-terminal tail of PTEN. Additionally, we employed photo-cross-linking to map the intramolecular PTEN interactions of the phospho-tail. Systematic evaluation of the PTEN C-tail phospho-cluster showed autoinhibition, and conformational closure was influenced by the aggregate effect of multiple phospho-sites rather than dominated by a single phosphorylation site. Moreover, photo-cross-linking suggested a direct interaction between the PTEN C-tail and a segment in the N-terminal region of the catalytic domain. Mutagenesis experiments provided additional insights into how the PTEN phospho-tail interacts with both the C2 and catalytic domains.

  10. Akt kinase C-terminal modifications control activation loop dephosphorylation and enhance insulin response

    PubMed Central

    Chan, Tung O.; Zhang, Jin; Tiegs, Brian C.; Blumhof, Brian; Yan, Linda; Keny, Nikhil; Penny, Morgan; Li, Xue; Pascal, John M.; Armen, Roger S.; Rodeck, Ulrich; Penn, Raymond B.

    2015-01-01

    The Akt protein kinase, also known as protein kinase B, plays key roles in insulin receptor signalling and regulates cell growth, survival and metabolism. Recently, we described a mechanism to enhance Akt phosphorylation that restricts access of cellular phosphatases to the Akt activation loop (Thr308 in Akt1 or protein kinase B isoform alpha) in an ATP-dependent manner. In the present paper, we describe a distinct mechanism to control Thr308 dephosphorylation and thus Akt deactivation that depends on intramolecular interactions of Akt C-terminal sequences with its kinase domain. Modifications of amino acids surrounding the Akt1 C-terminal mTORC2 (mammalian target of rapamycin complex 2) phosphorylation site (Ser473) increased phosphatase resistance of the phosphorylated activation loop (pThr308) and amplified Akt phosphorylation. Furthermore, the phosphatase-resistant Akt was refractory to ceramide-dependent dephosphorylation and amplified insulin-dependent Thr308 phosphorylation in a regulated fashion. Collectively, these results suggest that the Akt C-terminal hydrophobic groove is a target for the development of agents that enhance Akt phosphorylation by insulin. PMID:26201515

  11. Akt kinase C-terminal modifications control activation loop dephosphorylation and enhance insulin response.

    PubMed

    Chan, Tung O; Zhang, Jin; Tiegs, Brian C; Blumhof, Brian; Yan, Linda; Keny, Nikhil; Penny, Morgan; Li, Xue; Pascal, John M; Armen, Roger S; Rodeck, Ulrich; Penn, Raymond B

    2015-10-01

    The Akt protein kinase, also known as protein kinase B, plays key roles in insulin receptor signalling and regulates cell growth, survival and metabolism. Recently, we described a mechanism to enhance Akt phosphorylation that restricts access of cellular phosphatases to the Akt activation loop (Thr(308) in Akt1 or protein kinase B isoform alpha) in an ATP-dependent manner. In the present paper, we describe a distinct mechanism to control Thr(308) dephosphorylation and thus Akt deactivation that depends on intramolecular interactions of Akt C-terminal sequences with its kinase domain. Modifications of amino acids surrounding the Akt1 C-terminal mTORC2 (mammalian target of rapamycin complex 2) phosphorylation site (Ser(473)) increased phosphatase resistance of the phosphorylated activation loop (pThr(308)) and amplified Akt phosphorylation. Furthermore, the phosphatase-resistant Akt was refractory to ceramide-dependent dephosphorylation and amplified insulin-dependent Thr(308) phosphorylation in a regulated fashion. Collectively, these results suggest that the Akt C-terminal hydrophobic groove is a target for the development of agents that enhance Akt phosphorylation by insulin.

  12. Structural and Functional Characterization of the C-terminal Transmembrane Region of NBCe1-A*

    PubMed Central

    Zhu, Quansheng; Kao, Liyo; Azimov, Rustam; Abuladze, Natalia; Newman, Debra; Pushkin, Alexander; Liu, Weixin; Chang, Connie; Kurtz, Ira

    2010-01-01

    NBCe1-A and AE1 both belong to the SLC4 HCO3− transporter family. The two transporters share 40% sequence homology in the C-terminal transmembrane region. In this study, we performed extensive substituted cysteine-scanning mutagenesis analysis of the C-terminal region of NBCe1-A covering amino acids Ala800–Lys967. Location of the introduced cysteines was determined by whole cell labeling with a membrane-permeant biotin maleimide and a membrane-impermeant 2-((5(6)-tetramethylrhodamine)carboxylamino) ethyl methanethiosulfonate (MTS-TAMRA) cysteine-reactive reagent. The results show that the extracellular surface of the NBCe1-A C-terminal transmembrane region is minimally exposed to aqueous media with Met858 accessible to both biotin maleimide and TAMRA and Thr926–Ala929 only to TAMRA labeling. The intracellular surface contains a highly exposed (Met813–Gly828) region and a cryptic (Met887–Arg904) connecting loop. The lipid/aqueous interface of the last transmembrane segment is at Asp960. Our data clearly determined that the C terminus of NBCe1-A contains 5 transmembrane segments with greater average size compared with AE1. Functional assays revealed only two residues in the region of Pro868–Leu967 (a functionally important region in AE1) that are highly sensitive to cysteine substitution. Our findings suggest that the C-terminal transmembrane region of NBCe1-A is tightly folded with unique structural and functional features that differ from AE1. PMID:20837482

  13. Effects of C-terminal truncations on trafficking of the yeast plasma membrane H+-ATPase.

    PubMed

    Mason, A Brett; Allen, Kenneth E; Slayman, Carolyn W

    2006-08-18

    Within the large family of P-type cation-transporting ATPases, members differ in the number of C-terminal transmembrane helices, ranging from two in Cu2+-ATPases to six in H+-, Na+,K+-, Mg2+-, and Ca2+-ATPases. In this study, yeast Pma1 H+-ATPase has served as a model to examine the role of the C-terminal membrane domain in ATPase stability and targeting to the plasma membrane. Successive truncations were constructed from the middle of the major cytoplasmic loop to the middle of the extended cytoplasmic tail, adding back the C-terminal membrane-spanning helices one at a time. When the resulting constructs were expressed transiently in yeast, there was a steady increase in half-life from 70 min in Pma1 delta452 to 348 min in Pma1 delta901, but even the longest construct was considerably less stable than wild-type ATPase (t(1/2) = 11 h). Confocal immunofluorescence microscopy showed that 11 of 12 constructs were arrested in the endoplasmic reticulum and degraded in the proteasome. The only truncated ATPase that escaped the ER, Pma1 delta901, traveled slowly to the plasma membrane, where it hydrolyzed ATP and supported growth. Limited trypsinolysis showed Pma1 delta901 to be misfolded, however, resulting in premature delivery to the vacuole for degradation. As model substrates, this series of truncations affirms the importance of the entire C-terminal domain to yeast H+-ATPase biogenesis and defines a sequence element of 20 amino acids in the carboxyl tail that is critical to ER escape and trafficking to the plasma membrane.

  14. The disordered C-terminal domain of human DNA glycosylase NEIL1 contributes to its stability via intramolecular interactions.

    PubMed

    Hegde, Muralidhar L; Tsutakawa, Susan E; Hegde, Pavana M; Holthauzen, Luis Marcelo F; Li, Jing; Oezguen, Numan; Hilser, Vincent J; Tainer, John A; Mitra, Sankar

    2013-07-10

    NEIL1 [Nei (endonuclease VIII)-like protein 1], one of the five mammalian DNA glycosylases that excise oxidized DNA base lesions in the human genome to initiate base excision repair, contains an intrinsically disordered C-terminal domain (CTD; ~100 residues), not conserved in its Escherichia coli prototype Nei. Although dispensable for NEIL1's lesion excision and AP lyase activities, this segment is required for efficient in vivo enzymatic activity and may provide an interaction interface for many of NEIL1's interactions with other base excision repair proteins. Here, we show that the CTD interacts with the folded domain in native NEIL1 containing 389 residues. The CTD is poised for local folding in an ordered structure that is induced in the purified fragment by osmolytes. Furthermore, deletion of the disordered tail lacking both Tyr and Trp residues causes a red shift in NEIL1's intrinsic Trp-specific fluorescence, indicating a more solvent-exposed environment for the Trp residues in the truncated protein, which also exhibits reduced stability compared to the native enzyme. These observations are consistent with stabilization of the native NEIL1 structure via intramolecular, mostly electrostatic, interactions that were disrupted by mutating a positively charged (Lys-rich) cluster of residues (amino acids 355-360) near the C-terminus. Small-angle X-ray scattering (SAXS) analysis confirms the flexibility and dynamic nature of NEIL1's CTD, a feature that may be critical to providing specificity for NEIL1's multiple, functional interactions.

  15. Structure of the C-terminal domain of Saccharomyces cerevisiae Nup133, a component of the nuclear pore complex

    SciTech Connect

    Sampathkumar, Parthasarathy; Gheyi, Tarun; Miller, Stacy A.; Bain, Kevin T.; Dickey, Mark; Bonanno, Jeffrey B.; Kim, Seung Joong; Phillips, Jeremy; Pieper, Ursula; Fernandez-Martinez, Javier; Franke, Josef D.; Martel, Anne; Tsuruta, Hiro; Atwell, Shane; Thompson, Devon A.; Emtage, J. Spencer; Wasserman, Stephen R.; Rout, Michael P.; Sali, Andrej; Sauder, J. Michael; Burley, Stephen K.

    2012-10-23

    Nuclear pore complexes (NPCs), responsible for the nucleo-cytoplasmic exchange of proteins and nucleic acids, are dynamic macromolecular assemblies forming an eight-fold symmetric co-axial ring structure. Yeast (Saccharomyces cerevisiae) NPCs are made up of at least 456 polypeptide chains of {approx}30 distinct sequences. Many of these components (nucleoporins, Nups) share similar structural motifs and form stable subcomplexes. We have determined a high-resolution crystal structure of the C-terminal domain of yeast Nup133 (ScNup133), a component of the heptameric Nup84 subcomplex. Expression tests yielded ScNup133(944-1157) that produced crystals diffracting to 1.9{angstrom} resolution. ScNup133(944-1157) adopts essentially an all {alpha}-helical fold, with a short two stranded {beta}-sheet at the C-terminus. The 11 {alpha}-helices of ScNup133(944-1157) form a compact fold. In contrast, the previously determined structure of human Nup133(934-1156) bound to a fragment of human Nup107 has its constituent {alpha}-helices are arranged in two globular blocks. These differences may reflect structural divergence among homologous nucleoporins.

  16. The Truncated C-terminal RNA Recognition Motif of TDP-43 Protein Plays a Key Role in Forming Proteinaceous Aggregates*

    PubMed Central

    Wang, Yi-Ting; Kuo, Pan-Hsien; Chiang, Chien-Hao; Liang, Jhe-Ruei; Chen, Yun-Ru; Wang, Shuying; Shen, James C. K.; Yuan, Hanna S.

    2013-01-01

    TDP-43 is the major pathological protein identified in the cellular inclusions in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. The pathogenic forms of TDP-43 are processed C-terminal fragments containing a truncated RNA-recognition motif (RRM2) and a glycine-rich region. Although extensive studies have focused on this protein, it remains unclear how the dimeric full-length TDP-43 is folded and assembled and how the processed C-terminal fragments are misfolded and aggregated. Here, using size-exclusion chromatography, pulldown assays, and small angle x-ray scattering, we show that the C-terminal-deleted TDP-43 without the glycine-rich tail is sufficient to form a head-to-head homodimer primarily via its N-terminal domain. The truncated RRM2, as well as two β-strands within the RRM2, form fibrils in vitro with a similar amyloid-negative staining property to those of TDP-43 pathogenic fibrils in diseases. In addition to the glycine-rich region, the truncated RRM2, but not the intact RRM2, plays a key role in forming cytoplasmic inclusions in neuronal cells. Our data thus suggest that the process that disrupts the dimeric structure, such as the proteolytic cleavage of TDP-43 within the RRM2 that removes the N-terminal dimerization domain, may produce unassembled truncated RRM2 fragments with abnormally exposed β-strands, which can oligomerize into high-order inclusions. PMID:23372158

  17. Identification and Investigation of Novel Binding Fragments in the Fatty Acid Binding Protein 6 (FABP6).

    PubMed

    Hendrick, Alan G; Müller, Ilka; Willems, Henriëtte; Leonard, Philip M; Irving, Steve; Davenport, Richard; Ito, Takashi; Reeves, Jenny; Wright, Susanne; Allen, Vivienne; Wilkinson, Stephen; Heffron, Helen; Bazin, Richard; Turney, Jennifer; Mitchell, Philip J

    2016-09-01

    Fatty acid binding protein 6 (FABP6) is a potential drug discovery target, which, if inhibited, may have a therapeutic benefit for the treatment of diabetes. Currently, there are no published inhibitors of FABP6, and with the target believed to be amenable to fragment-based drug discovery, a structurally enabled program was initiated. This program successfully identified fragment hits using the surface plasmon resonance (SPR) platform. Several hits were validated with SAR and were found to be displaced by the natural ligand taurocholate. We report the first crystal structure of human FABP6 in the unbound form, in complex with cholate, and with one of the key fragments. PMID:27500412

  18. A crystallographic fragment screen identifies cinnamic acid derivatives as starting points for potent Pim-1 inhibitors.

    PubMed

    Schulz, Michèle N; Fanghänel, Jörg; Schäfer, Martina; Badock, Volker; Briem, Hans; Boemer, Ulf; Nguyen, Duy; Husemann, Manfred; Hillig, Roman C

    2011-03-01

    A crystallographic fragment screen was carried out to identify starting points for the development of inhibitors of protein kinase Pim-1, a potential target for tumour therapy. All fragment hits identified via soaking in this study turned out to bind to the unusually hydrophobic pocket at the hinge region. The most potent fragments, two cinnamic acid derivatives (with a best IC(50) of 130 µM), additionally form a well defined hydrogen bond. The balance between hydrophobic and polar interactions makes these molecules good starting points for further optimization. Pim-2 inhibitors from a recently reported high-throughput screening campaign also feature a cinnamic acid moiety. Two of these Pim-2 inhibitors were synthesized, their potencies against Pim-1 were determined and their cocrystal structures were elucidated in order to determine to what degree the binding modes identified by fragment screening are conserved in optimized inhibitors. The structures show that the cinnamic acid moieties indeed adopt the same binding mode. Fragment screening thus correctly identified binding modes which are maintained when fragments are grown into larger and higher affinity inhibitors. The high-throughput screening-derived compound (E)-3-{3-[6-(4-aminocyclohexylamino)-pyrazin-2-yl]phenyl}acrylic acid (compound 1) is the most potent inhibitor of the cinnamic acid series for which the three-dimensional binding mode is known (IC(50) = 17 nM, K(d) = 28 nM). The structure reveals the molecular basis for the large gain in potency between the initial fragment hit and this optimized inhibitor.

  19. The vacuolar targeting signal of the 2S albumin from Brazil nut resides at the C terminus and involves the C-terminal propeptide as an essential element.

    PubMed Central

    Saalbach, G; Rosso, M; Schumann, U

    1996-01-01

    Genetic constructs in which different N- and C-terminal segments of Brazil nut (Bertholletia excelsa H.B.K.) 2S albumin were fused to secretory yeast invertase were transformed into tobacco (Nicotiana tabacum) plants to investigate the vacuolar targeting signal of the 2S albumin. None of the N-terminal segments, including the complete precursor containing all propeptides, was able to direct the invertase to the vacuoles. However, a short C-terminal segment comprising the last 20 amino acids of the precursor was sufficient for efficient targeting of yeast invertase to the vacuoles of the transformed tobacco plants. Further analyses showed that peptides of 16 and 13 amino acids of the C-terminal segment were still sufficient, although they had slightly lower efficiency. When segments of 9 amino acids or shorter were analyzed, a decrease to approximately 30% was observed. These segments included the C-terminal propeptide of four amino acids (Ile-Ala-Gly-Phe). When the 2S albumin was expressed in tobacco, it was also localized to the vacuoles of mesophyll cells. If the C-terminal propeptide was deleted from the 2S albumin precursor, all of this truncated 2S albumin was secreted from the tobacco cells. These results indicate that the C-terminal propeptide is necessary but not sufficient for vacuolar targeting. In addition, an adjacent segment of at least 12 amino acids of the mature protein is needed to form the complete signal for efficient targeting. PMID:8938406

  20. BS69/ZMYND11 C-Terminal Domains Bind and Inhibit EBNA2

    PubMed Central

    Shen, Chih-Lung; Gonzalez-Hurtado, Elsie; Zhang, Zhi-Min; Xu, Muyu; Martinez, Ernest; Peng, Chih-Wen; Song, Jikui

    2016-01-01

    Epstein-Barr virus (EBV) nuclear antigen 2 (EBNA2) plays an important role in driving immortalization of EBV-infected B cells through regulating the expression of many viral and cellular genes. We report a structural study of the tumor suppressor BS69/ZMYND11 C-terminal region, comprised of tandem coiled-coil-MYND domains (BS69CC-MYND), in complex with an EBNA2 peptide containing a PXLXP motif. The coiled-coil domain of BS69 self-associates to bring two separate MYND domains in close proximity, thereby enhancing the BS69 MYND-EBNA2 interaction. ITC analysis of BS69CC-MYND with a C-terminal fragment of EBNA2 further suggests that the BS69CC-MYND homodimer synergistically binds to the two EBNA2 PXLXP motifs that are respectively located in the conserved regions CR7 and CR8. Furthermore, we showed that EBNA2 interacts with BS69 and down-regulates its expression at both mRNA and protein levels in EBV-infected B cells. Ectopic BS69CC-MYND is recruited to viral target promoters through interactions with EBNA2, inhibits EBNA2-mediated transcription activation, and impairs proliferation of lymphoblastoid cell lines (LCLs). Substitution of critical residues in the MYND domain impairs the BS69-EBNA2 interaction and abolishes the BS69 inhibition of the EBNA2-mediated transactivation and LCL proliferation. This study identifies the BS69 C-terminal domains as an inhibitor of EBNA2, which may have important implications in development of novel therapeutic strategies against EBV infection. PMID:26845565

  1. Characterization of the C-terminal ER membrane anchor of PTP1B

    SciTech Connect

    Anderie, Ines Schulz, Irene; Schmid, Andreas

    2007-09-10

    The tyrosine phosphatase PTP1B is an important regulator of cell function. In living cells PTP1B activity is restricted to the vicinity of the endoplasmic reticulum (ER) by post-translational C-terminal attachment of PTP1B to the ER membrane network. In our study we investigated the membrane anchor of PTP1B by use of EGFP fusion proteins. We demonstrate that the membrane anchor of PTP1B cannot be narrowed down to a unique amino acid sequence with a defined start and stop point but rather is moveable within several amino acids. Removal of up to seven amino acids from the C-terminus, as well as exchange of single amino acids in the putative transmembrane sequence did not influence subcellular localization of PTP1B. With the method of bimolecular fluorescence complementation we could demonstrate dimerization of PTP1B in vivo. Homodimerization was, in contrast to other tail-anchored proteins, not dependent on the membrane anchor. Our data demonstrate that the C-terminal membrane anchor of PTP1B is formed by a combination of a single stretch transmembrane domain (TMD) followed by a tail. TMD and tail length are variable and there are no sequence-specific features. Our data for PTP1B are consistent with a concept that explains the ER membrane anchor of tail-anchored proteins as a physicochemical structure.

  2. Structure of the C-Terminal Helical Repeat Domain of Eukaryotic Elongation Factor 2 Kinase.

    PubMed

    Will, Nathan; Piserchio, Andrea; Snyder, Isaac; Ferguson, Scarlet B; Giles, David H; Dalby, Kevin N; Ghose, Ranajeet

    2016-09-27

    Eukaryotic elongation factor 2 kinase (eEF-2K) phosphorylates its only known physiological substrate, elongation factor 2 (eEF-2), which reduces the affinity of eEF-2 for the ribosome and results in an overall reduction in protein translation rates. The C-terminal region of eEF-2K, which is predicted to contain several SEL-1-like helical repeats (SLRs), is required for the phosphorylation of eEF-2. Using solution nuclear magnetic resonance methodology, we have determined the structure of a 99-residue fragment from the extreme C-terminus of eEF-2K (eEF-2K627-725) that encompasses a region previously suggested to be essential for eEF-2 phosphorylation. eEF-2K627-725 contains four helices, of which the first (αI) is flexible, and does not pack stably against the ordered helical core formed by the last three helices (αII-αIV). The helical core is structurally similar to members of the tetratricopeptide repeat (TPR) family that includes SLRs. The two penultimate helices, αII and αIII, comprise the TPR, and the last helix, αIV, appears to have a capping function. The eEF-2K627-725 structure illustrates that the C-terminal deletion that was shown to abolish eEF-2 phosphorylation does so by destabilizing αIV and, therefore, the helical core. Indeed, mutation of two conserved C-terminal tyrosines (Y712A/Y713A) in eEF-2K previously shown to abolish eEF-2 phosphorylation leads to the unfolding of eEF-2K627-725. Preliminary functional analyses indicate that neither a peptide encoding a region deemed crucial for eEF-2 binding nor isolated eEF-2K627-725 inhibits eEF-2 phosphorylation by full-length eEF-2K. Taken together, our data suggest that the extreme C-terminal region of eEF-2K, in isolation, does not provide a primary docking site for eEF-2.

  3. EIMS Fragmentation Pathways and MRM Quantification of 7α/β-Hydroxy-Dehydroabietic Acid TMS Derivatives

    NASA Astrophysics Data System (ADS)

    Rontani, Jean-François; Aubert, Claude; Belt, Simon T.

    2015-09-01

    EI mass fragmentation pathways of TMS derivatives οf 7α/β-hydroxy-dehydroabietic acids resulting from NaBH4-reduction of oxidation products of dehydroabietic acid (a component of conifers) were investigated and deduced by a combination of (1) low energy CID-GC-MS/MS, (2) deuterium labeling, (3) different derivatization methods, and (4) GC-QTOF accurate mass measurements. Having identified the main fragmentation pathways, the TMS-derivatized 7α/β-hydroxy-dehydroabietic acids could be quantified in multiple reaction monitoring (MRM) mode in sea ice and sediment samples collected from the Arctic. These newly characterized transformation products of dehydroabietic acid constitute potential tracers of biotic and abiotic degradation of terrestrial higher plants in the environment.

  4. Distinguishing Aspartic and Isoaspartic Acids in Peptides by Several Mass Spectrometric Fragmentation Methods

    NASA Astrophysics Data System (ADS)

    DeGraan-Weber, Nick; Zhang, Jun; Reilly, James P.

    2016-09-01

    Six ion fragmentation techniques that can distinguish aspartic acid from its isomer, isoaspartic acid, were compared. MALDI post-source decay (PSD), MALDI 157 nm photodissociation, tris(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPP) charge tagging in PSD and photodissociation, ESI collision-induced dissociation (CID), electron transfer dissociation (ETD), and free-radical initiated peptide sequencing (FRIPS) with CID were applied to peptides containing either aspartic or isoaspartic acid. Diagnostic ions, such as the y-46 and b+H2O, are present in PSD, photodissociation, and charge tagging. c•+57 and z-57 ions are observed in ETD and FRIPS experiments. For some molecules, aspartic and isoaspartic acid yield ion fragments with significantly different intensities. ETD and charge tagging appear to be most effective at distinguishing these residues.

  5. EIMS Fragmentation Pathways and MRM Quantification of 7α/β-Hydroxy-Dehydroabietic Acid TMS Derivatives.

    PubMed

    Rontani, Jean-François; Aubert, Claude; Belt, Simon T

    2015-09-01

    EI mass fragmentation pathways of TMS derivatives οf 7α/β-hydroxy-dehydroabietic acids resulting from NaBH(4)-reduction of oxidation products of dehydroabietic acid (a component of conifers) were investigated and deduced by a combination of (1) low energy CID-GC-MS/MS, (2) deuterium labeling, (3) different derivatization methods, and (4) GC-QTOF accurate mass measurements. Having identified the main fragmentation pathways, the TMS-derivatized 7α/β-hydroxy-dehydroabietic acids could be quantified in multiple reaction monitoring (MRM) mode in sea ice and sediment samples collected from the Arctic. These newly characterized transformation products of dehydroabietic acid constitute potential tracers of biotic and abiotic degradation of terrestrial higher plants in the environment.

  6. The sea urchin mitochondrial transcription factor A binds and bends DNA efficiently despite its unusually short C-terminal tail.

    PubMed

    Malarkey, Christopher S; Lionetti, Claudia; Deceglie, Stefania; Roberti, Marina; Churchill, Mair E A; Cantatore, Palmiro; Loguercio Polosa, Paola

    2016-07-01

    Mitochondrial transcription factor A (TFAM) is a key component for the protection and transcription of the mitochondrial genome. TFAM belongs to the high mobility group (HMG) box family of DNA binding proteins that are able to bind to and bend DNA. Human TFAM (huTFAM) contains two HMG box domains separated by a linker region, and a 26 amino acid C-terminal tail distal to the second HMG box. Previous studies on huTFAM have shown that requisites for proper DNA bending and specific binding to the mitochondrial genome are specific intercalating residues and the C-terminal tail. We have characterized TFAM from the sea urchin Paracentrotus lividus (suTFAM). Differently from human, suTFAM contains a short 9 amino acid C-terminal tail, yet it still has the ability to specifically bind to mtDNA. To provide information on the mode of binding of the protein we used fluorescence resonance energy transfer (FRET) assays and found that, in spite of the absence of a canonical C-terminal tail, suTFAM distorts DNA at a great extent and recognizes specific target with high affinity. Site directed mutagenesis showed that the two Phe residues placed in corresponding position of the two intercalating Leu of huTFAM are responsible for the strong bending and the great binding affinity of suTFAM. PMID:27101895

  7. Nonlinear dynamics of C-terminal tails in cellular microtubules

    NASA Astrophysics Data System (ADS)

    Sekulic, Dalibor L.; Sataric, Bogdan M.; Zdravkovic, Slobodan; Bugay, Aleksandr N.; Sataric, Miljko V.

    2016-07-01

    The mechanical and electrical properties, and information processing capabilities of microtubules are the permanent subject of interest for carrying out experiments in vitro and in silico, as well as for theoretical attempts to elucidate the underlying processes. In this paper, we developed a new model of the mechano-electrical waves elicited in the rows of very flexible C-terminal tails which decorate the outer surface of each microtubule. The fact that C-terminal tails play very diverse roles in many cellular functions, such as recruitment of motor proteins and microtubule-associated proteins, motivated us to consider their collective dynamics as the source of localized waves aimed for communication between microtubule and associated proteins. Our approach is based on the ferroelectric liquid crystal model and it leads to the effective asymmetric double-well potential which brings about the conditions for the appearance of kink-waves conducted by intrinsic electric fields embedded in microtubules. These kinks can serve as the signals for control and regulation of intracellular traffic along microtubules performed by processive motions of motor proteins, primarly from kinesin and dynein families. On the other hand, they can be precursors for initiation of dynamical instability of microtubules by recruiting the proper proteins responsible for the depolymerization process.

  8. Molecular resolution and fragmentation of fulvic acid by electrospray ionization/multistage tandem mass spectrometry

    USGS Publications Warehouse

    Leenheer, J.A.; Rostad, C.E.; Gates, Paul M.; Furlong, E.T.; Ferrer, I.

    2001-01-01

    Molecular weight distributions of fulvic acid from the Suwannee River, Georgia, were investigated by electrospray ionization/quadrupole mass spectrometry (ESI/QMS), and fragmentation pathways of specific fulvic acid masses were investigated by electrospray ionization/ion trap multistage tandem mass spectrometry (ESI/MST/MS). ESI/QMS studies of the free acid form of low molecular weight poly(carboxylic acid) standards in 75% methanol/25% water mobile phase found that negative ion detection gave the optimum generation of parent ions that can be used for molecular weight determinations. However, experiments with poly(acrylic acid) mixtures and specific high molecular weight standards found multiply charged negative ions that gave a low bias to molecular mass distributions. The number of negative charges on a molecule is dependent on the distance between charges. ESI/MST/MS of model compounds found characteristic water loss from alcohol dehydration and anhydride formation, as well as CO2 loss from decarboxylation, and CO loss from ester structures. Application of these fragmentation pathways to specific masses of fulvic acid isolated and fragmented by ESI/MST/MS is indicative of specific structures that can serve as a basis for future structural confirmation after these hypothesized structures are synthesized.

  9. Crystal structure of the C-terminal domain of the RAP74 subunit of human transcription factor IIF

    SciTech Connect

    Kamada, Katsuhiko; De Angelis, Jacqueline; Roeder, Robert G.; Burley, Stephen K.

    2012-12-13

    The x-ray structure of a C-terminal fragment of the RAP74 subunit of human transcription factor (TF) IIF has been determined at 1.02-{angstrom} resolution. The {alpha}/{beta} structure is strikingly similar to the globular domain of linker histone H5 and the DNA-binding domain of hepatocyte nuclear factor 3{gamma} (HNF-3{gamma}), making it a winged-helix protein. The surface electrostatic properties of this compact domain differ significantly from those of bona fide winged-helix transcription factors (HNF-3{gamma} and RFX1) and from the winged-helix domains found within the RAP30 subunit of TFIIF and the {beta} subunit of TFIIE. RAP74 has been shown to interact with the TFIIF-associated C-terminal domain phosphatase FCP1, and a putative phosphatase binding site has been identified within the RAP74 winged-helix domain.

  10. Androgen deprivation causes truncation of the C-terminal region of androgen receptor in human prostate cancer LNCaP cells.

    PubMed

    Harada, Naoki; Inoue, Kaoru; Yamaji, Ryoichi; Nakano, Yoshihisa; Inui, Hiroshi

    2012-06-01

    The androgen receptor (AR) acts as a ligand-dependent transcription factor, whereas mutant AR lacking the C-terminal ligand-binding domain functions in a ligand-independent manner. In the present study we report that the C-terminal truncated AR, which we named AR-NH1 (the N-terminal fragment of AR cleaved in the neighborhood of helix 1 of the ligand-binding domain), is produced in LNCaP prostatic carcinoma cells. The AR-NH1 of ~90 kDa was observed in an androgen-independent LNCaP subline and was further accumulated by the proteasome inhibitor MG132. MG132 treatment caused the accumulation of AR-NH1 even in parent LNCaP cells. AR-NH1 was produced in the absence of ligand or in the presence of the AR antagonist bicalutamide, whereas AR agonists suppressed its production. AR-NH1 was detected with different AR antibodies recognizing amino acid residues 1-20 and 300-316 and was also generated from exogenous AR. Both siRNA-mediated AR knockdown and treatment with a serine protease inhibitor (4-(2-aminoethyl)-benzenesulfonyl fluoride) reduced AR-NH1 levels. According to the predicted cleavage site (between amino acid residues 660-685) and its nuclear localization, it is assumed that AR-NH1 functions as a constitutively active transcription factor. These data suggest that AR-NH1 is produced under hormone therapy and contributes to the development of castration-resistant prostate cancer due to its ligand-independent transcriptional activity.

  11. Leptospira Immunoglobulin-Like Protein B (LigB) Binds to Both the C-Terminal 23 Amino Acids of Fibrinogen αC Domain and Factor XIII: Insight into the Mechanism of LigB-Mediated Blockage of Fibrinogen α Chain Cross-Linking

    PubMed Central

    Hsieh, Ching-Lin; Chang, Eric; Tseng, Andrew; Ptak, Christopher; Wu, Li-Chen; Su, Chun-Li; McDonough, Sean P.; Lin, Yi-Pin; Chang, Yung-Fu

    2016-01-01

    The coagulation system provides a primitive but effective defense against hemorrhage. Soluble fibrinogen (Fg) monomers, composed of α, β and γ chains, are recruited to provide structural support for the formation of a hemostatic plug. Fg binds to platelets and is processed into a cross-linked fibrin polymer by the enzymatic clotting factors, thrombin and Factor XIII (FXIII). The newly formed fibrin-platelet clot can act as barrier to protect against pathogens from entering the bloodstream. Further, injuries caused by bacterial infections can be confined to the initial wound site. Many pathogenic bacteria have Fg-binding adhesins that can circumvent the coagulation pathway and allow the bacteria to sidestep containment. Fg expression is upregulated during lung infection providing an attachment surface for bacteria with the ability to produce Fg-binding adhesins. Fg binding by leptospira might play a crucial factor in Leptospira-associated pulmonary hemorrhage, the main factor contributing to lethality in severe cases of leptospirosis. The 12th domain of Leptospira immunoglobulin-like protein B (LigB12), a leptospiral adhesin, interacts with the C-terminus of FgαC (FgαCC). In this study, the binding site for LigB12 was mapped to the final 23 amino acids at the C-terminal end of FgαCC (FgαCC8). The association of FgαCC8 with LigB12 (ELISA, KD = 0.76 μM; SPR, KD = 0.96 μM) was reduced by mutations of both charged residues (R608, R611 and H614 from FgαCC8; D1061 from LigB12) and hydrophobic residues (I613 from FgαCC8; F1054 and A1065 from LigB12). Additionally, LigB12 bound strongly to FXIII and also inhibited fibrin formation, suggesting that LigB can disrupt coagulation by suppressing FXIII activity. Here, the detailed binding mechanism of a leptospiral adhesin to a host hemostatic factor is characterized for the first time and should provide better insight into the pathogenesis of leptospirosis. PMID:27622634

  12. Leptospira Immunoglobulin-Like Protein B (LigB) Binds to Both the C-Terminal 23 Amino Acids of Fibrinogen αC Domain and Factor XIII: Insight into the Mechanism of LigB-Mediated Blockage of Fibrinogen α Chain Cross-Linking.

    PubMed

    Hsieh, Ching-Lin; Chang, Eric; Tseng, Andrew; Ptak, Christopher; Wu, Li-Chen; Su, Chun-Li; McDonough, Sean P; Lin, Yi-Pin; Chang, Yung-Fu

    2016-09-01

    The coagulation system provides a primitive but effective defense against hemorrhage. Soluble fibrinogen (Fg) monomers, composed of α, β and γ chains, are recruited to provide structural support for the formation of a hemostatic plug. Fg binds to platelets and is processed into a cross-linked fibrin polymer by the enzymatic clotting factors, thrombin and Factor XIII (FXIII). The newly formed fibrin-platelet clot can act as barrier to protect against pathogens from entering the bloodstream. Further, injuries caused by bacterial infections can be confined to the initial wound site. Many pathogenic bacteria have Fg-binding adhesins that can circumvent the coagulation pathway and allow the bacteria to sidestep containment. Fg expression is upregulated during lung infection providing an attachment surface for bacteria with the ability to produce Fg-binding adhesins. Fg binding by leptospira might play a crucial factor in Leptospira-associated pulmonary hemorrhage, the main factor contributing to lethality in severe cases of leptospirosis. The 12th domain of Leptospira immunoglobulin-like protein B (LigB12), a leptospiral adhesin, interacts with the C-terminus of FgαC (FgαCC). In this study, the binding site for LigB12 was mapped to the final 23 amino acids at the C-terminal end of FgαCC (FgαCC8). The association of FgαCC8 with LigB12 (ELISA, KD = 0.76 μM; SPR, KD = 0.96 μM) was reduced by mutations of both charged residues (R608, R611 and H614 from FgαCC8; D1061 from LigB12) and hydrophobic residues (I613 from FgαCC8; F1054 and A1065 from LigB12). Additionally, LigB12 bound strongly to FXIII and also inhibited fibrin formation, suggesting that LigB can disrupt coagulation by suppressing FXIII activity. Here, the detailed binding mechanism of a leptospiral adhesin to a host hemostatic factor is characterized for the first time and should provide better insight into the pathogenesis of leptospirosis. PMID:27622634

  13. C-terminal methylation of truncated neuropeptides: an enzyme-assisted extraction artifact involving methanol.

    PubMed

    Stemmler, Elizabeth A; Barton, Elizabeth E; Esonu, Onyinyechi K; Polasky, Daniel A; Onderko, Laura L; Bergeron, Audrey B; Christie, Andrew E; Dickinson, Patsy S

    2013-08-01

    Neuropeptides are the largest class of signaling molecules used by nervous systems. Today, neuropeptide discovery commonly involves chemical extraction from a tissue source followed by mass spectrometric characterization. Ideally, the extraction procedure accurately preserves the sequence and any inherent modifications of the native peptides. Here, we present data showing that this is not always true. Specifically, we present evidence showing that, in the lobster Homarus americanus, the orcokinin family members, NFDEIDRSGFG-OMe and SSEDMDRLGFG-OMe, are non-native peptides generated from full-length orcokinin precursors as the result of a highly selective peptide modification (peptide truncation with C-terminal methylation) that occurs during extraction. These peptides were observed by MALDI-FTMS and LC-Q-TOFMS analyses when eyestalk ganglia were extracted in a methanolic solvent, but not when tissues were dissected, co-crystallized with matrix, and analyzed directly with methanol excluded from the sample preparation. The identity of NFDEIDRSGFG-OMe was established using MALDI-FTMS/SORI-CID, LC-Q-TOFMS/MS, and comparison with a peptide standard. Extraction substituting deuterated methanol for methanol confirmed that the latter is the source of the C-terminal methyl group, and MS/MS confirmed the C-terminal localization of the added CD3. Surprisingly, NFDEIDRSGFG-OMe is not produced via a chemical acid-catalyzed esterification. Instead, the methylated peptide appears to result from proteolytic truncation in the presence of methanol, as evidenced by a reduction in conversion with the addition of a protease-inhibitor cocktail; heat effectively eliminated the conversion. This unusual and highly specific extraction-derived peptide conversion exemplifies the need to consider both chemical and biochemical processes that may modify the structure of endogenous neuropeptides.

  14. Temperature dependence of C-terminal carboxylic group IR absorptions in the amide I‧ region

    NASA Astrophysics Data System (ADS)

    Anderson, Benjamin A.; Literati, Alex; Ball, Borden; Kubelka, Jan

    2015-01-01

    Studies of structural changes in peptides and proteins using IR spectroscopy often rely on subtle changes in the amide I‧ band as a function of temperature. However, these changes can be obscured by the overlap with other absorptions, namely the side-chain and terminal carboxylic groups. The former were the subject of our previous report (Anderson et al., 2014). In this paper we investigate the IR spectra of the asymmetric stretch of α-carboxylic groups for amino acids representing all major types (Gly, Ala, Val, Leu, Ser, Thr, Asp, Glu, Lys, Asn, His, Trp, Pro) as well as the C-terminal groups of three dipeptides (Gly-Gly, Gly-Ala, Ala-Gly) in D2O at neutral pH. Experimental temperature dependent IR spectra were analyzed by fitting of both symmetric and asymmetric pseudo-Voigt functions. Qualitatively the spectra exhibit shifts to higher frequency, loss in intensity and narrowing with increased temperature, similar to that observed previously for the side-chain carboxylic groups of Asp. The observed dependence of the band parameters (frequency, intensity, width and shape) on temperature is in all cases linear: simple linear regression is therefore used to describe the spectral changes. The spectral parameters vary between individual amino acids and show systematic differences between the free amino acids and dipeptides, particularly in the absolute peak frequencies, but the temperature variations are comparable. The relative variations between the dipeptide spectral parameters are most sensitive to the C-terminal amino acid, and follow the trends observed in the free amino acid spectra. General rules for modeling the α-carboxylic IR absorption bands in peptides and proteins as the function of temperature are proposed.

  15. Temperature dependence of C-terminal carboxylic group IR absorptions in the amide I' region.

    PubMed

    Anderson, Benjamin A; Literati, Alex; Ball, Borden; Kubelka, Jan

    2015-01-01

    Studies of structural changes in peptides and proteins using IR spectroscopy often rely on subtle changes in the amide I' band as a function of temperature. However, these changes can be obscured by the overlap with other absorptions, namely the side-chain and terminal carboxylic groups. The former were the subject of our previous report (Anderson et al., 2014). In this paper we investigate the IR spectra of the asymmetric stretch of α-carboxylic groups for amino acids representing all major types (Gly, Ala, Val, Leu, Ser, Thr, Asp, Glu, Lys, Asn, His, Trp, Pro) as well as the C-terminal groups of three dipeptides (Gly-Gly, Gly-Ala, Ala-Gly) in D₂O at neutral pH. Experimental temperature dependent IR spectra were analyzed by fitting of both symmetric and asymmetric pseudo-Voigt functions. Qualitatively the spectra exhibit shifts to higher frequency, loss in intensity and narrowing with increased temperature, similar to that observed previously for the side-chain carboxylic groups of Asp. The observed dependence of the band parameters (frequency, intensity, width and shape) on temperature is in all cases linear: simple linear regression is therefore used to describe the spectral changes. The spectral parameters vary between individual amino acids and show systematic differences between the free amino acids and dipeptides, particularly in the absolute peak frequencies, but the temperature variations are comparable. The relative variations between the dipeptide spectral parameters are most sensitive to the C-terminal amino acid, and follow the trends observed in the free amino acid spectra. General rules for modeling the α-carboxylic IR absorption bands in peptides and proteins as the function of temperature are proposed.

  16. Structure of the C-terminal domain of nsp4 from feline coronavirus

    SciTech Connect

    Manolaridis, Ioannis; Wojdyla, Justyna A.; Panjikar, Santosh; Berglind, Hanna; Nordlund, Pär; Coutard, Bruno; Tucker, Paul A.

    2009-08-01

    The structure of the cytosolic C-terminal domain of nonstructural protein 4 from feline coronavirus has been determined and analyzed. Coronaviruses are a family of positive-stranded RNA viruses that includes important pathogens of humans and other animals. The large coronavirus genome (26–31 kb) encodes 15–16 nonstructural proteins (nsps) that are derived from two replicase polyproteins by autoproteolytic processing. The nsps assemble into the viral replication–transcription complex and nsp3, nsp4 and nsp6 are believed to anchor this enzyme complex to modified intracellular membranes. The largest part of the coronavirus nsp4 subunit is hydrophobic and is predicted to be embedded in the membranes. In this report, a conserved C-terminal domain (∼100 amino-acid residues) has been delineated that is predicted to face the cytoplasm and has been isolated as a soluble domain using library-based construct screening. A prototypical crystal structure at 2.8 Å resolution was obtained using nsp4 from feline coronavirus. Unmodified and SeMet-substituted proteins were crystallized under similar conditions, resulting in tetragonal crystals that belonged to space group P4{sub 3}. The phase problem was initially solved by single isomorphous replacement with anomalous scattering (SIRAS), followed by molecular replacement using a SIRAS-derived composite model. The structure consists of a single domain with a predominantly α-helical content displaying a unique fold that could be engaged in protein–protein interactions.

  17. RAD51AP2, a novel vertebrate- and meiotic-specific protein, sharesa conserved RAD51-interacting C-terminal domain with RAD51AP1/PIR51

    SciTech Connect

    Kovalenko, Oleg V.; Wiese, Claudia; Schild, David

    2006-07-25

    Many interacting proteins regulate and/or assist the activities of RAD51, a recombinase which plays a critical role in both DNA repair and meiotic recombination. Yeast two-hybrid screening of a human testis cDNA library revealed a new protein, RAD51AP2 (RAD51 Associated Protein 2), that interacts strongly with RAD51. A full-length cDNA clone predicts a novel vertebrate specific protein of 1159 residues, and the RAD51AP2 transcript was observed only in meiotic tissue (i.e. adult testis and fetal ovary), suggesting a meiotic-specific function for RAD51AP2. In HEK293 cells the interaction of RAD51 with an ectopically-expressed recombinant large fragment of RAD51AP2 requires the C-terminal 57 residues of RAD51AP2. This RAD51-binding region shows 81% homology to the C-terminus of RAD51AP1/PIR51, an otherwise totally unrelated RAD51-binding partner that is ubiquitously expressed. Analyses using truncations and point mutations in both RAD51AP1 and RAD51AP2 demonstrate that these proteins use the same structural motif for RAD51 binding. RAD54 shares some homology with this RAD51-binding motif, but this homologous region plays only an accessory role to the adjacent main RAD51-interacting region, which has been narrowed here to 40 amino acids. A novel protein, RAD51AP2, has been discovered that interacts with RAD51 through a C-terminal motif also present in RAD51AP1.

  18. Crystal structure of mouse Elf3 C-terminal DNA-binding domain in complex with type II TGF-β receptor promoter DNA

    PubMed Central

    Agarkar, Vinod B.; Babayeva, Nigar D.; Wilder, Phillip J.; Rizzino, Angie; Tahirov, Tahir H.

    2010-01-01

    The Ets family of transcription factors is composed of more than 30 members. One of its members, Elf3, is expressed in virtually all epithelial cells as well as in many tumors, including breast tumors. Several studies observed that the promoter of the type II TGF-β receptor gene (TβR-II) is strongly stimulated by Elf3 via two adjacent Elf3 binding sites, A-site and B-site. Here we report the 2.2 Å resolution crystal structure of a mouse Elf3 C-terminal fragment, containing the DNA-binding Ets domain, in complex with the B-site of mouse type II TGF-β receptor promoter DNA (mTβR-IIDNA). Elf3 contacts the core GGAA motif of the B-site from major groove similar to that of known Ets proteins. However, unlike other Ets proteins, Elf3 also contacts sequences of the A-site from the minor groove of the DNA. DNA binding experiments and cell-based transcription studies indicate that minor groove interaction by Arg349 located in the Ets domain is important for Elf3 function. Equally interesting, previous studies have shown that the C-terminal region of Elf3, which flanks the Ets domain, is required for Elf3 binding to DNA. In this study, we determined that Elf3 amino acid residues within this flanking region, including Trp361, are important for the structural integrity of the protein as well as for the Efl3 DNA binding and transactivation activity. PMID:20079749

  19. Effect of N-terminal glutamic acid and glutamine on fragmentation of peptide ions.

    PubMed

    Godugu, Bhaskar; Neta, Pedatsur; Simón-Manso, Yamil; Stein, Stephen E

    2010-07-01

    A prominent dissociation path for electrospray generated tryptic peptide ions is the dissociation of the peptide bond linking the second and third residues from the amino-terminus. The formation of the resulting b(2) and y(n-2) fragments has been rationalized by specific facile mechanisms. An examination of spectral libraries shows that this path predominates in diprotonated peptides composed of 12 or fewer residues, with the notable exception of peptides containing glutamine or glutamic acid at the N-terminus. To elucidate the mechanism by which these amino acids affect peptide fragmentation, we synthesized peptides of varying size and composition and examined their MS/MS spectra as a function of collision voltage in a triple quadrupole mass spectrometer. Loss of water from N-terminal glutamic acid and glutamine is observed at a lower voltage than any other fragmentation, leading to cyclization of the terminal residue. This cyclization results in the conversion of the terminal amine group to an imide, which has a lower proton affinity. As a result, the second proton is not localized at the N-terminus but is readily transferred to other sites, leading to fragmentation near the center of the peptide. Further confirmation was obtained by examining peptides with N-terminal pyroglutamic acid and N-acetyl peptides. Peptides with N-terminal proline maintain the trend of forming b(2) and y(n-2) because their ring contains an imine rather than imide and has sufficient proton affinity to retain the proton at the N-terminus.

  20. Kar1 binding to Sfi1 C-terminal regions anchors the SPB bridge to the nuclear envelope

    PubMed Central

    Seybold, Christian; Elserafy, Menattallah; Rüthnick, Diana; Ozboyaci, Musa; Neuner, Annett; Flottmann, Benjamin; Heilemann, Mike; Wade, Rebecca C.

    2015-01-01

    The yeast spindle pole body (SPB) is the functional equivalent of the mammalian centrosome. The half bridge is a SPB substructure on the nuclear envelope (NE), playing a key role in SPB duplication. Its cytoplasmic components are the membrane-anchored Kar1, the yeast centrin Cdc31, and the Cdc31-binding protein Sfi1. In G1, the half bridge expands into the bridge through Sfi1 C-terminal (Sfi1-CT) dimerization, the licensing step for SPB duplication. We exploited photo-activated localization microscopy (PALM) to show that Kar1 localizes in the bridge center. Binding assays revealed direct interaction between Kar1 and C-terminal Sfi1 fragments. kar1Δ cells whose viability was maintained by the dominant CDC31-16 showed an arched bridge, indicating Kar1’s function in tethering Sfi1 to the NE. Cdc31-16 enhanced Cdc31–Cdc31 interactions between Sfi1–Cdc31 layers, as suggested by binding free energy calculations. In our model, Kar1 binding is restricted to Sfi1-CT and Sfi1 C-terminal centrin-binding repeats, and centrin and Kar1 provide cross-links, while Sfi1-CT stabilizes the bridge and ensures timely SPB separation. PMID:26076691

  1. The C-terminal region of thermophilic tRNA (m7G46) methyltransferase (TrmB) stabilizes the dimer structure and enhances fidelity of methylation.

    PubMed

    Tomikawa, Chie; Ochi, Anna; Hori, Hiroyuki

    2008-05-15

    Transfer RNA (m(7)G46) methyltransferase catalyzes methyl-transfer from S-adenosyl-L-methionine to N(7) atom of the semi-conserved G46 base in tRNA. Aquifex aeolicus is a hyper thermophilic eubacterium that grows at close to 95 degrees C. A. aeolicus tRNA (m(7)G46) methyltransferase [TrmB] has an elongated C-terminal region as compared with mesophilic counterparts. In this study, the authors focused on the functions of this C-terminal region. Analytic gel filtration chromatography and amino acid sequencing reveled that the start point (Glu202) of the C-terminal region is often cleaved by proteases during purification steps and the C-terminal region tightly binds to another subunit even in the presence of 6M urea. Because the C-terminal region contains abundant basic amino acid residues, the authors assumed that some of these residues might be involved in tRNA binding. To address this idea, the authors prepared eight alanine substitution mutant proteins. However, measurements of initial velocities of these mutant proteins suggested that the basic amino acid residues in the C-terminal region are not involved in tRNA binding. The authors investigated effects of the deletion of the C-terminal region. Deletion mutant protein of the C-terminal region (the core protein) was precipitated by incubation at 85 degrees C, while the wild type protein was soluble at that temperature, demonstrating that the C-terminal region contributes to the protein stability at high temperatures. The core protein had a methyl-transfer activity to yeast tRNA(Phe) transcript. Furthermore, the core protein slowly methylated tRNA transcripts, which did not contain G46 base. Moreover, the modified base was identified as m(7)G by two-dimensional thin layer chromatography. Thus, the deletion of the C-terminal region causes nonspecific methylation of N(7) atom of guanine base(s) in tRNA transcripts.

  2. Structure of the Trichomonas vaginalis Myb3 DNA-binding domain bound to a promoter sequence reveals a unique C-terminal β-hairpin conformation.

    PubMed

    Wei, Shu-Yi; Lou, Yuan-Chao; Tsai, Jia-Yin; Ho, Meng-Ru; Chou, Chun-Chi; Rajasekaran, M; Hsu, Hong-Ming; Tai, Jung-Hsiang; Hsiao, Chwan-Deng; Chen, Chinpan

    2012-01-01

    Trichomonas vaginalis Myb3 transcription factor (tvMyb3) recognizes the MRE-1 promoter sequence and regulates ap65-1 gene, which encodes a hydrogenosomal malic enzyme that may play a role in the cytoadherence of the parasite. Here, we identified tvMyb3(53-180) as the essential fragment for DNA recognition and report the crystal structure of tvMyb3(53-180) bound to MRE-1 DNA. The N-terminal fragment adopts the classical conformation of an Myb DNA-binding domain, with the third helices of R2 and R3 motifs intercalating in the major groove of DNA. The C-terminal extension forms a β-hairpin followed by a flexible tail, which is stabilized by several interactions with the R3 motif and is not observed in other Myb proteins. Interestingly, this unique C-terminal fragment does not stably connect with DNA in the complex structure but is involved in DNA binding, as demonstrated by NMR chemical shift perturbation, (1)H-(15)N heteronuclear-nuclear Overhauser effect and intermolecular paramagnetic relaxation enhancement. Site-directed mutagenesis also revealed that this C-terminal fragment is crucial for DNA binding, especially the residue Arg(153) and the fragment K(170)KRK(173). We provide a structural basis for MRE-1 DNA recognition and suggest a possible post-translational regulation of tvMyb3 protein. PMID:21908401

  3. Interaction of the Tim44 C-terminal domain with negatively charged phospholipids.

    PubMed

    Marom, Milit; Safonov, Roman; Amram, Shay; Avneon, Yoav; Nachliel, Esther; Gutman, Menachem; Zohary, Keren; Azem, Abdussalam; Tsfadia, Yossi

    2009-12-01

    The translocation of proteins from the cytosol into the mitochondrial matrix is mediated by the coordinated action of the TOM complex in the outer membrane, as well as the TIM23 complex and its associated protein import motor in the inner membrane. The focus of this work is the peripheral inner membrane protein Tim44. Tim44 is a vital component of the mitochondrial protein translocation motor that anchors components of the motor to the TIM23 complex. For this purpose, Tim44 associates with the import channel by direct interaction with the Tim23 protein. Additionally, it was shown in vitro that Tim44 associates with acidic model membranes, in particular those containing cardiolipin. The latter interaction was shown to be mediated by the carboxy-terminal domain of Tim44 [Weiss, C., et al. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 8890-8894]. The aim of this study was to determine the precise recognition site for negative lipids in the C-terminal domain of Tim44. In particular, we wanted to examine the recently suggested hypothesis that acidic phospholipids associate with Tim44 via a hydrophobic cavity that is observed in the high-resolution structure of the C-terminal domain of the protein [Josyula, R., et al. (2006) J. Mol. Biol. 359, 798-804]. Molecular dynamics simulations suggest that (i) the hydrophobic tail of lipids may interact with Tim44 via the latter's hydrophobic cavity and (ii) a region, located in the N-terminal alpha-helix of the C-terminal domain (helices A1 and A2), may serve as a membrane attachment site. To validate this assumption, N-terminal truncations of yeast Tim44 were examined for their ability to bind cardiolipin-containing phospholipid vesicles. The results indicate that removal of the N-terminal alpha-helix (helix A1) abolishes the capacity of Tim44 to associate with cardiolipin-containing liposomes. We suggest that helices A1 and A2, in Tim44, jointly promote the association of the protein with acidic phospholipids. PMID:19863062

  4. Serpin A1 C-Terminal Peptides as Collagen Turnover Modulators.

    PubMed

    Pascarella, Simona; Tiberi, Caterina; Sabatino, Giuseppina; Nuti, Francesca; Papini, Anna Maria; Giovannelli, Lisa; Rovero, Paolo

    2016-08-19

    The modulation of collagen turnover can be a relevant pharmacological target in the context of treating either pathological or pathophysiological conditions, such as collagen-related diseases and skin aging. Our recent work has focused on the search for short-chain peptides as lead compounds for further development of compounds that enhance the production of type I collagen. In this study we selected and synthesized overlapping peptides of the C-terminal portion of serpin A1 (residues 393-418), the impact of which on collagen production has been reported previously, in order to identify shorter and still active fragments and to provide insight on the mechanisms involved. The biological activity of each fragment was evaluated with cultured normal human dermal fibroblasts, and changes in the amounts of collagen were monitored in collected culture media by a sandwich ELISA technique developed in house. Interestingly, we identified a decapeptide, termed SA1-III (Ac-MGKVVNPTQK-NH2 ), as a promising candidate for our purposes; it is able to induce a significant increase in type I collagen levels in the culture medium of treated cells at micromolar concentrations. PMID:26615979

  5. Factor D of the alternative pathway of human complement. Purification, alignment and N-terminal amino acid sequences of the major cyanogen bromide fragments, and localization of the serine residue at the active site.

    PubMed Central

    Johnson, D M; Gagnon, J; Reid, K B

    1980-01-01

    The serine esterase factor D of the complement system was purified from outdated human plasma with a yield of 20% of the initial haemolytic activity found in serum. This represented an approx. 60 000-fold purification. The final product was homogeneous as judged by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis (with an apparent mol.wt. of 24 000), its migration as a single component in a variety of fractionation procedures based on size and charge, and its N-terminal amino-acid-sequence analysis. The N-terminal amino acid sequence of the first 36 residues of the intact molecule was found to be homologous with the N-terminal amino acid sequences of the catalytic chains of other serine esterases. Factor D showed an especially strong homology (greater than 60% identity) with rat 'group-specific protease' [Woodbury, Katunuma, Kobayashi, Titani, & Neurath (1978) Biochemistry 17, 811-819] over the first 16 amino acid residues. This similarity is of interest since it is considered that both enzymes may be synthesized in their active, rather than zymogen, forms. The three major CNBr fragments of factor D, which had apparent mol.wts. of 15 800, 6600 and 1700, were purified and then aligned by N-terminal amino acid sequence analysis and amino acid analysis. By using factor D labelled with di-[1,3-14C]isopropylphosphofluoridate it was shown that the CNBr fragment of apparent mol.wt. 6600, which is located in the C-terminal region of factor D, contained the active serine residue. The amino acid sequence around this residue was determined. Images Fig. 1. Fig. 2. PMID:6821372

  6. Molecular insight of DREAM and presenilin 1 C-terminal fragment interactions.

    PubMed

    Pham, Khoa; Miksovska, Jaroslava

    2016-04-01

    Interactions between downstream regulatory element antagonist modulator (DREAM) and presenilin 1 (PS1) are related to numerous neuronal processes. We demonstrate that association of PS1 carboxyl peptide (residues 445-467, HL9) with DREAM is calcium dependent and stabilized by a cluster of three aromatic residues: F462 and F465 from PS1 and F252 from DREAM. Additional stabilization is provided by residues in a loop connecting α helices 7 and 8 in DREAM and residues of PS1, namely cation-π interactions between R200 in DREAM and F465 in PS1 and the salt bridges formed by R207 in DREAM and D450 and D458 in PS1. PMID:27009418

  7. Differential Contributions of Tacaribe Arenavirus Nucleoprotein N-Terminal and C-Terminal Residues to Nucleocapsid Functional Activity

    PubMed Central

    D'Antuono, Alejandra; Loureiro, Maria Eugenia; Foscaldi, Sabrina; Marino-Buslje, Cristina

    2014-01-01

    ABSTRACT The arenavirus nucleoprotein (NP) is the main protein component of viral nucleocapsids and is strictly required for viral genome replication mediated by the L polymerase. Homo-oligomerization of NP is presumed to play an important role in nucleocapsid assembly, albeit the underlying mechanism and the relevance of NP-NP interaction in nucleocapsid activity are still poorly understood. Here, we evaluate the contribution of the New World Tacaribe virus (TCRV) NP self-interaction to nucleocapsid functional activity. We show that alanine substitution of N-terminal residues predicted to be available for NP-NP interaction strongly affected NP self-association, as determined by coimmunoprecipitation assays, produced a drastic inhibition of transcription and replication of a TCRV minigenome RNA, and impaired NP binding to RNA. Mutagenesis and functional analysis also revealed that, while dispensable for NP self-interaction, key amino acids at the C-terminal domain were essential for RNA synthesis. Furthermore, mutations at these C-terminal residues rendered NP unable to bind RNA both in vivo and in vitro but had no effect on the interaction with the L polymerase. In addition, while all oligomerization-defective variants tested exhibited unaltered capacities to sustain NP-L interaction, NP deletion mutants were fully incompetent to bind L, suggesting that, whereas NP self-association is dispensable, the integrity of both the N-terminal and C-terminal domains is required for binding the L polymerase. Overall, our results suggest that NP self-interaction mediated by the N-terminal domain may play a critical role in TCRV nucleocapsid assembly and activity and that the C-terminal domain of NP is implicated in RNA binding. IMPORTANCE The mechanism of arenavirus functional nucleocapsid assembly is still poorly understood. No detailed information is available on the nucleocapsid structure, and the regions of full-length NP involved in binding to viral RNA remain to be

  8. Mitochondrial DNA Fragmentation to Monitor Processing Parameters in High Acid, Plant-Derived Foods.

    PubMed

    Caldwell, Jane M; Pérez-Díaz, Ilenys M; Harris, Keith; Hassan, Hosni M; Simunovic, Josip; Sandeep, K P

    2015-12-01

    Mitochondrial DNA (mtDNA) fragmentation was assessed in acidified foods. Using quantitative polymerase chain reaction, Ct values measured from fresh, fermented, pasteurized, and stored cucumber mtDNA were determined to be significantly different (P > 0.05) based on processing and shelf-life. This indicated that the combination of lower temperature thermal processes (hot-fill at 75 °C for 15 min) and acidified conditions (pH = 3.8) was sufficient to cause mtDNA fragmentation. In studies modeling high acid juices, pasteurization (96 °C, 0 to 24 min) of tomato serum produced Ct values which had high correlation to time-temperature treatment. Primers producing longer amplicons (approximately 1 kb) targeting the same mitochondrial gene gave greater sensitivity in correlating time-temperature treatments to Ct values. Lab-scale pasteurization studies using Ct values derived from the longer amplicon differentiated between heat treatments of tomato serum (95 °C for <2 min). MtDNA fragmentation was shown to be a potential new tool to characterize low temperature (<100 °C) high acid processes (pH < 4.6), nonthermal processes such as vegetable fermentation and holding times of acidified, plant-derived products. PMID:26556214

  9. Mitochondrial DNA Fragmentation to Monitor Processing Parameters in High Acid, Plant-Derived Foods.

    PubMed

    Caldwell, Jane M; Pérez-Díaz, Ilenys M; Harris, Keith; Hassan, Hosni M; Simunovic, Josip; Sandeep, K P

    2015-12-01

    Mitochondrial DNA (mtDNA) fragmentation was assessed in acidified foods. Using quantitative polymerase chain reaction, Ct values measured from fresh, fermented, pasteurized, and stored cucumber mtDNA were determined to be significantly different (P > 0.05) based on processing and shelf-life. This indicated that the combination of lower temperature thermal processes (hot-fill at 75 °C for 15 min) and acidified conditions (pH = 3.8) was sufficient to cause mtDNA fragmentation. In studies modeling high acid juices, pasteurization (96 °C, 0 to 24 min) of tomato serum produced Ct values which had high correlation to time-temperature treatment. Primers producing longer amplicons (approximately 1 kb) targeting the same mitochondrial gene gave greater sensitivity in correlating time-temperature treatments to Ct values. Lab-scale pasteurization studies using Ct values derived from the longer amplicon differentiated between heat treatments of tomato serum (95 °C for <2 min). MtDNA fragmentation was shown to be a potential new tool to characterize low temperature (<100 °C) high acid processes (pH < 4.6), nonthermal processes such as vegetable fermentation and holding times of acidified, plant-derived products.

  10. Autoinhibition of Bacteriophage T4 Mre11 by Its C-terminal Domain*

    PubMed Central

    Gao, Yang; Nelson, Scott W.

    2014-01-01

    Mre11 and Rad50 form a stable complex (MR) and work cooperatively in repairing DNA double strand breaks. In the bacteriophage T4, Rad50 (gene product 46) enhances the nuclease activity of Mre11 (gene product 47), and Mre11 and DNA in combination stimulate the ATPase activity of Rad50. The structural basis for the cross-activation of the MR complex has been elusive. Various crystal structures of the MR complex display limited protein-protein interfaces that mainly exist between the C terminus of Mre11 and the coiled-coil domain of Rad50. To test the role of the C-terminal Rad50 binding domain (RBD) in Mre11 activation, we constructed a series of C-terminal deletions and mutations in bacteriophage T4 Mre11. Deletion of the RBD in Mre11 eliminates Rad50 binding but only has moderate effect on its intrinsic nuclease activity; however, the additional deletion of the highly acidic flexible linker that lies between RBD and the main body of Mre11 increases the nuclease activity of Mre11 by 20-fold. Replacement of the acidic residues in the flexible linker with alanine elevates the Mre11 activity to the level of the MR complex when combined with deletion of RBD. Nuclease activity kinetics indicate that Rad50 association and deletion of the C terminus of Mre11 both enhance DNA substrate binding. Additionally, a short peptide that contains the flexible linker and RBD of Mre11 acts as an inhibitor of Mre11 nuclease activity. These results support a model where the Mre11 RBD and linker domain act as an autoinhibitory domain when not in complex with Rad50. Complex formation with Rad50 alleviates this inhibition due to the tight association of the RBD and the Rad50 coiled-coil. PMID:25077970

  11. Chaperone-like effect of the linker on the isolated C-terminal domain of rabbit muscle creatine kinase.

    PubMed

    Chen, Zhe; Chen, Xiang-Jun; Xia, Mengdie; He, Hua-Wei; Wang, Sha; Liu, Huihui; Gong, Haipeng; Yan, Yong-Bin

    2012-08-01

    Intramolecular chaperones (IMCs), which are specific domains/segments encoded in the primary structure of proteins, exhibit chaperone-like activity against the aggregation of the other domains in the same molecule. In this research, we found that the truncation of the linker greatly promoted the thermal aggregation of the isolated C-terminal domain (CTD) of rabbit muscle creatine kinase (RMCK). Either the existence of the linker covalently linked to CTD or the supply of the synthetic linker peptide additionally could successfully protect the CTD of RMCK against aggregation in a concentration-dependent manner. Truncated fragments of the linker also behaved as a chaperone-like effect with lower efficiency, revealing the importance of its C-terminal half in the IMC function of the linker. The aggregation sites in the CTD of RMCK were identified by molecular dynamics simulations. Mutational analysis of the three key hydrophobic residues resulted in opposing effects on the thermal aggregation between the CTD with intact or partial linker, confirming the role of linker as a lid to protect the hydrophobic residues against exposure to solvent. These observations suggested that the linkers in multidomain proteins could act as IMCs to facilitate the correct folding of the aggregation-prone domains. Furthermore, the intactness of the IMC linker after proteolysis modulates the production of off-pathway aggregates, which may be important to the onset of some diseases caused by the toxic effects of aggregated proteolytic fragments.

  12. Requirement for the E1 Helicase C-Terminal Domain in Papillomavirus DNA Replication In Vivo

    PubMed Central

    Bergvall, Monika; Gagnon, David; Titolo, Steve; Lehoux, Michaël; D'Abramo, Claudia M.

    2016-01-01

    ABSTRACT The papillomavirus (PV) E1 helicase contains a conserved C-terminal domain (CTD), located next to its ATP-binding site, whose function in vivo is still poorly understood. The CTD is comprised of an alpha helix followed by an acidic region (AR) and a C-terminal extension termed the C-tail. Recent biochemical studies on bovine papillomavirus 1 (BPV1) E1 showed that the AR and C-tail regulate the oligomerization of the protein into a double hexamer at the origin. In this study, we assessed the importance of the CTD of human papillomavirus 11 (HPV11) E1 in vivo, using a cell-based DNA replication assay. Our results indicate that combined deletion of the AR and C-tail drastically reduces DNA replication, by 85%, and that further truncation into the alpha-helical region compromises the structural integrity of the E1 helicase domain and its interaction with E2. Surprisingly, removal of the C-tail alone or mutation of highly conserved residues within the domain still allows significant levels of DNA replication (55%). This is in contrast to the absolute requirement for the C-tail reported for BPV1 E1 in vitro and confirmed here in vivo. Characterization of chimeric proteins in which the AR and C-tail from HPV11 E1 were replaced by those of BPV1 indicated that while the function of the AR is transferable, that of the C-tail is not. Collectively, these findings define the contribution of the three CTD subdomains to the DNA replication activity of E1 in vivo and suggest that the function of the C-tail has evolved in a PV type-specific manner. IMPORTANCE While much is known about hexameric DNA helicases from superfamily 3, the papillomavirus E1 helicase contains a unique C-terminal domain (CTD) adjacent to its ATP-binding site. We show here that this CTD is important for the DNA replication activity of HPV11 E1 in vivo and that it can be divided into three functional subdomains that roughly correspond to the three conserved regions of the CTD: an alpha helix, needed

  13. A TRPV4 Channel C-terminal Folding Recognition Domain Critical for Trafficking and Function*

    PubMed Central

    Lei, Lei; Cao, Xu; Yang, Fan; Shi, Di-Jing; Tang, Yi-Quan; Zheng, Jie; Wang, KeWei

    2013-01-01

    The Ca2+-permeable transient receptor potential vanilloid subtype 4 (TRPV4) channel mediates crucial physiological functions, such as calcium signaling, temperature sensing, and maintaining cell volume and energy homeostasis. Noticeably, most disease-causing genetic mutations are concentrated in the cytoplasmic domains. In the present study, we focused on the role of the TRPV4 C terminus in modulating protein folding, trafficking, and activity. By examining a series of C-terminal deletions, we identified a 20-amino acid distal region covering residues 838–857 that is critical for channel folding, maturation, and trafficking. Surface biotinylation, confocal imaging, and fluorescence-based calcium influx assay demonstrated that mutant proteins missing this region were trapped in the endoplasmic reticulum and unglycosylated, leading to accelerated degradation and loss of channel activity. Rosetta de novo structural modeling indicated that residues 838–857 assume a defined conformation, with Gly849 and Pro851 located at critical positions. Patch clamp recordings confirmed that lowering the temperature from 37 to 30 °C rescued channel activity of folding-defective mutants. Moreover, biochemical tests demonstrated that, in addition to participating in C-C interaction, the C terminus also interacts with the N terminus. Taken together, our findings indicate that the C-terminal region of TRPV4 is critical for channel protein folding and maturation, and the short distal segment plays an essential role in this process. Therefore, selectively disrupting the folding-sensitive region may present therapeutic potential for treating overactive TRPV4-mediated diseases, such as pain and skeletal dysplasias. PMID:23457335

  14. Sir3 C-Terminal Domain Involvement in the Initiation and Spreading of Heterochromatin▿

    PubMed Central

    Liaw, Hungjiun; Lustig, Arthur J.

    2006-01-01

    Heterochromatin is nucleated at a specific site and subsequently spreads into distal sequences through multiple interactions between modified histones and nonhistone proteins. In the yeast Saccharomyces cerevisiae, these nonhistone proteins include Sir2, Sir3, and Sir4. We have previously shown that loss of the C-terminal Rap1 domain containing Sir3 and Sir4 association sites can be overcome by tethering a 144-amino-acid C-terminal domain (CTD) of Sir3 adjacent to the telomere. Here, we explore the substructure and functions of the CTD. We demonstrate that the CTD is the minimum domain for Sir3 homodimerization, a function that is conserved in related yeasts. However, CTD heterodimers associate at only low efficiencies and correspondingly have low levels of tethered silencing, consistent with an essential role for dimerization in tethered silencing. Six missense alleles were generated, with ctd-Y964A producing the most extreme phenotypes when tethered to the LexA binding sites. Although ctd-Y964A is capable of dimerization, telomere silencing is abrogated, indicating that the CTD serves a second essential function in silencing. Chromatin immunoprecipitation analyses of wild-type and ctd-Y964A mutant cells indicate an association of the CTD with the deacetylated histone tails of H3 and H4 that is necessary for the recruitment of Sir3. The efficiency of spreading depends upon the apparent stoichiometry and stability during the initiation event. The predicted Cdc6 domain III winged-helix structure may well be responsible for dimerization. PMID:16908543

  15. Spatial structure of oligopeptide PAP(248-261), the N-terminal fragment of the HIV enhancer prostatic acid phosphatase peptide PAP(248-286), in aqueous and SDS micelle solutions

    NASA Astrophysics Data System (ADS)

    Blokhin, Dmitriy S.; Filippov, Andrei V.; Antzutkin, Oleg N.; Karataeva, Farida Kh.; Klochkov, Vladimir V.

    2014-07-01

    Prostatic acid phosphatase (PAP) is an enzyme that facilitates infection of cells by HIV. Its peptide fragment PAP(248-286) forms amyloid fibrils known as SEVI, which enhance attachment of the virus by viral adhesion to the host cell prior to receptor-specific binding via reducing the electrostatic repulsion between the membranes of the virus and the target cell. The secondary structure of PAP(248-286) in aqueous and SDS solutions can be divided into an N-terminal disordered region, an α-helical central part and an α/310-helical C-terminal region (Nanga et al., 2009). In this work, we used NMR spectroscopy to study the spatial structure of the isolated N-terminal fragment of PAP(248-286), PAP(248-261) (GIHKQKEKSRLQGG), in aqueous and SDS micelle solutions. Formation of a PAP(248-261)-SDS complex was confirmed by chemical shift alterations in the 1H NMR spectra of the peptide, as well as by the signs and values of Nuclear Overhauser Effect (NOE). In addition, the PAP(248-261) peptide does not form any specified secondary structure in either aqueous or SDS solutions.

  16. Fragmentation of D- and L-enantiomers of amino acids through interaction with 3He2+ ions

    NASA Astrophysics Data System (ADS)

    Smirnov, O. V.; Basalaev, A. A.; Boitsov, V. M.; Vyaz'min, S. Yu.; Orbeli, A. L.; Dubina, M. V.

    2014-11-01

    The relative cross section of processes attendant on the capture of an electron by 12-keV 3He2+ ions are measured by time-of-flight mass spectrometry for leucine (C6H13NO2), methionine (C5H11NO2S), and glutmic acid (C5H9NO4) molecules. No differences between the formation relative cross sections of different fragment ions for the D- and L-enantiomeric forms of the amino acids are revealed. The spectrum of glutamic acid fragments taken at temperatures above 110°C is explained by decomposition of the acid with the formation of pyroglutamic acid (C5H7NO3) and water. The results are compared with published data on fragmentation of the same molecules via electron-impact ionization.

  17. Crystal Structure of the C-terminal Domain of Splicing Factor Prp8 Carrying Retinitis Pigmentosa Mutants

    SciTech Connect

    Zhang,L.; Shen, J.; Guarnieri, M.; Heroux, A.; Yang, K.; Zhao, R.

    2007-01-01

    Prp8 is a critical pre-mRNA splicing factor. Prp8 is proposed to help form and stabilize the spliceosome catalytic core and to be an important regulator of spliceosome activation. Mutations in human Prp8 (hPrp8) cause a severe form of the genetic disorder retinitis pigmentosa, RP13. Understanding the molecular mechanism of Prp8's function in pre-mRNA splicing and RP13 has been hindered by its large size (over 2000 amino acids) and remarkably low-sequence similarity with other proteins. Here we present the crystal structure of the C-terminal domain (the last 273 residues) of Caenorhabditis elegans Prp8 (cPrp8). The core of the C-terminal domain is an / structure that forms the MPN (Mpr1, Pad1 N-terminal) fold but without Zn{sup 2+} coordination. We propose that the C-terminal domain is a protein interaction domain instead of a Zn{sup 2+}-dependent metalloenzyme as proposed for some MPN proteins. Mapping of RP13 mutants on the Prp8 structure suggests that these residues constitute a binding surface between Prp8 and other partner(s), and the disruption of this interaction provides a plausible molecular mechanism for RP13.

  18. Conformation and concerted dynamics of the integrin-binding site and the C-terminal region of echistatin revealed by homonuclear NMR

    PubMed Central

    Monleón, Daniel; Esteve, Vicent; Kovacs, Helena; Calvete, Juan J.; Celda, Bernardo

    2004-01-01

    Echistatin is a potent antagonist of the integrins αvβ3, α5β1 and αIIbβ3. Its full inhibitory activity depends on an RGD (Arg-Gly-Asp) motif expressed at the tip of the integrin-binding loop and on its C-terminal tail. Previous NMR structures of echistatin showed a poorly defined integrin-recognition sequence and an incomplete C-terminal tail, which left the molecular basis of the functional synergy between the RGD loop and the C-terminal region unresolved. We report a high-resolution structure of echistatin and an analysis of its internal motions by off-resonance ROESY (rotating-frame Overhauser enhancement spectroscopy). The full-length C-terminal polypeptide is visible as a β-hairpin running parallel to the RGD loop and exposing at the tip residues Pro43, His44 and Lys45. The side chains of the amino acids of the RGD motif have well-defined conformations. The integrin-binding loop displays an overall movement with maximal amplitude of 30°. Internal angular motions in the 100–300 ps timescale indicate increased flexibility for the backbone atoms at the base of the integrin-recognition loop. In addition, backbone atoms of the amino acids Ala23 (flanking the R24GD26 tripeptide) and Asp26 of the integrin-binding motif showed increased angular mobility, suggesting the existence of major and minor hinge effects at the base and the tip, respectively, of the RGD loop. A strong network of NOEs (nuclear Overhauser effects) between residues of the RGD loop and the C-terminal tail indicate concerted motions between these two functional regions. A full-length echistatin–αvβ3 docking model suggests that echistatin's C-terminal amino acids may contact αv-subunit residues and provides new insights to delineate structure–function correlations. PMID:15535803

  19. C-Terminal Alpha-1 Antitrypsin Peptide: A New Sepsis Biomarker with Immunomodulatory Function.

    PubMed

    Blaurock, Nancy; Schmerler, Diana; Hünniger, Kerstin; Kurzai, Oliver; Ludewig, Katrin; Baier, Michael; Brunkhorst, Frank Martin; Imhof, Diana; Kiehntopf, Michael

    2016-01-01

    Systemic inflammatory response syndrome (SIRS) is a life threatening condition and the leading cause of death in intensive care units. Although single aspects of pathophysiology have been described in detail, numerous unknown mediators contribute to the progression of this complex disease. The aim of this study was to elucidate the pathophysiological role of CAAP48, a C-terminal alpha-1 antitrypsin fragment, that we found to be elevated in septic patients and to apply this peptide as diagnostic marker for infectious and noninfectious etiologies of SIRS. Incubation of human polymorphonuclear neutrophils with synthetic CAAP48, the SNP-variant CAAP47, and several control peptides revealed intense neutrophil activation, induction of neutrophil chemotaxis, reduction of neutrophil viability, and release of cytokines. We determined the abundance of CAAP48 in patients with severe sepsis, severe SIRS of noninfectious origin, and viral infection. CAAP48 levels were 3-4-fold higher in patients with sepsis compared to SIRS of noninfectious origin and allowed discrimination of those patients with high sensitivity and specificity. Our results suggest that CAAP48 is a promising discriminatory sepsis biomarker with immunomodulatory functions, particularly on human neutrophils, supporting its important role in the host response and pathophysiology of sepsis. PMID:27382189

  20. Adolescent Femoral Chondral Fragment Fixation With Poly-L-Lactic Acid Chondral Darts.

    PubMed

    Morris, John K; Weber, Alexander E; Morris, Mark S

    2016-01-01

    Large chondral injuries without attached bone are uncommon. This report describes a 14-year-old boy who had a unique stress reaction between the bone and the overlying cartilage, predominantly of the anterior lateral femoral condyle, during a week-long basketball camp, resulting in complete displacement of a 2.5 × 2.5-cm full-thickness articular cartilage lesion. There was a 6-day interval from the time of the injury to the first office appointment. Scheduling of magnetic resonance imaging and insurance approval took another week, and then surgery scheduling, including insurance approval and arranging for surgical supplies, took another week. Three weeks after the initial injury, the patient underwent diagnostic arthroscopy and open arthrotomy, and the cartilage-free fragment was returned to the donor site and fixed with poly-L-lactic acid chondral darts. Considerable delamination of the shoulders of the defect was noted on preoperative magnetic resonance imaging and at the time of surgery, suggesting an unusual prodromal stress reaction. Although there was no underlying subchondral bone on the free cartilage fragment, the injury healed. The patient had return of full knee range of motion and strength. Magnetic resonance imaging performed 3 months postoperatively showed healed cartilage. At 1 year of clinical follow-up, the patient had no clinical sequelae from the initial injury and had returned to competitive basketball. Prompt recognition of this injury pattern and subsequent surgical repair are necessary because the window of opportunity closes as fibrous healing occurs and the cartilage fragment deforms. The poly-L-lactic acid chondral dart system was instrumental to the success of this case. PMID:26840696

  1. Adolescent Femoral Chondral Fragment Fixation With Poly-L-Lactic Acid Chondral Darts.

    PubMed

    Morris, John K; Weber, Alexander E; Morris, Mark S

    2016-01-01

    Large chondral injuries without attached bone are uncommon. This report describes a 14-year-old boy who had a unique stress reaction between the bone and the overlying cartilage, predominantly of the anterior lateral femoral condyle, during a week-long basketball camp, resulting in complete displacement of a 2.5 × 2.5-cm full-thickness articular cartilage lesion. There was a 6-day interval from the time of the injury to the first office appointment. Scheduling of magnetic resonance imaging and insurance approval took another week, and then surgery scheduling, including insurance approval and arranging for surgical supplies, took another week. Three weeks after the initial injury, the patient underwent diagnostic arthroscopy and open arthrotomy, and the cartilage-free fragment was returned to the donor site and fixed with poly-L-lactic acid chondral darts. Considerable delamination of the shoulders of the defect was noted on preoperative magnetic resonance imaging and at the time of surgery, suggesting an unusual prodromal stress reaction. Although there was no underlying subchondral bone on the free cartilage fragment, the injury healed. The patient had return of full knee range of motion and strength. Magnetic resonance imaging performed 3 months postoperatively showed healed cartilage. At 1 year of clinical follow-up, the patient had no clinical sequelae from the initial injury and had returned to competitive basketball. Prompt recognition of this injury pattern and subsequent surgical repair are necessary because the window of opportunity closes as fibrous healing occurs and the cartilage fragment deforms. The poly-L-lactic acid chondral dart system was instrumental to the success of this case.

  2. Expression and characterization of an enantioselective antigen-binding fragment directed against α-amino acids

    PubMed Central

    Eleniste, Pierre P.; Hofstetter, Heike; Hofstetter, Oliver

    2013-01-01

    This work describes the design and expression of a stereoselective Fab that possesses binding properties comparable to those displayed by the parent monoclonal antibody. Utilizing mRNA from hybridoma clones that secrete a stereoselective anti-L-amino acid antibody, a corresponding biotechnologically produced Fab was generated. For that, appropriate primers were designed based on extensive literature and databank searches. Using these primers in PCR resulted in successful amplification of the VH, VL, CL and CH1 gene fragments. Overlap PCR was utilized to combine the VH and CH1 sequences and the VL and CL sequences, respectively, to obtain the genes encoding the HC and LC fragments. These sequences were separately cloned into the pEXP5-CT/TOPO expression vector and used for transfection of BL21(DE3) cells. Separate expression of the two chains, followed by assembly in a refolding buffer, yielded an Fab that was demonstrated to bind to L-amino acids but not to recognize the corresponding D-enantiomers. PMID:23827208

  3. Probing the structural flexibility of the human copper metallochaperone Atox1 dimer and its interaction with the CTR1 c-terminal domain.

    PubMed

    Levy, Ariel R; Yarmiayev, Valeria; Moskovitz, Yoni; Ruthstein, Sharon

    2014-06-01

    Both the essentiality and the toxicity of copper in human, yeast, and bacteria cells require precise mechanisms for acquisition, intimately linked to controlled distribution, which have yet to be fully understood. This work explores one aspect in the copper cycle, by probing the interaction between the human copper chaperone Atox1 and the c-terminal domain of the copper transporter, CTR1, using electron paramagnetic resonance (EPR) spectroscopy and circular dichroism (CD). The data collected here shows that the Atox1 keeps its dimer nature also in the presence of the CTR1 c-terminal domain; however, two geometrical states are assumed by the Atox1. One is similar to the geometrical state reported by the crystal structure, while the latter has not yet been constructed. In the presence of the CTR1 c-terminal domain, both states are assumed; however, the structure of Atox1 is more restricted in the presence of the CTR1 c-terminal domain. This study also shows that the last three amino acids of the CTR1 c-terminal domain, HCH, are important for maintaining the crystal structure of the Atox1, allowing less structural flexibility and improved thermal stability of Atox1.

  4. C-terminal sequence of amyloid-resistant type F apolipoprotein A-II inhibits amyloid fibril formation of apolipoprotein A-II in mice

    PubMed Central

    Sawashita, Jinko; Zhang, Beiru; Hasegawa, Kazuhiro; Mori, Masayuki; Naiki, Hironobu; Kametani, Fuyuki; Higuchi, Keiichi

    2015-01-01

    In murine senile amyloidosis, misfolded serum apolipoprotein (apo) A-II deposits as amyloid fibrils (AApoAII) in a process associated with aging. Mouse strains carrying type C apoA-II (APOA2C) protein exhibit a high incidence of severe systemic amyloidosis. Previously, we showed that N- and C-terminal sequences of apoA-II protein are critical for polymerization into amyloid fibrils in vitro. Here, we demonstrate that congenic mouse strains carrying type F apoA-II (APOA2F) protein, which contains four amino acid substitutions in the amyloidogenic regions of APOA2C, were absolutely resistant to amyloidosis, even after induction of amyloidosis by injection of AApoAII. In vitro fibril formation tests showed that N- and C-terminal APOA2F peptides did not polymerize into amyloid fibrils. Moreover, a C-terminal APOA2F peptide was a strong inhibitor of nucleation and extension of amyloid fibrils during polymerization. Importantly, after the induction of amyloidosis, we succeeded in suppressing amyloid deposition in senile amyloidosis-susceptible mice by treatment with the C-terminal APOA2F peptide. We suggest that the C-terminal APOA2F peptide might inhibit further extension of amyloid fibrils by blocking the active ends of nuclei (seeds). We present a previously unidentified model system for investigating inhibitory mechanisms against amyloidosis in vivo and in vitro and believe that this system will be useful for the development of novel therapies. PMID:25675489

  5. Native Chemical Ligation Strategy to Overcome Side Reactions during Fmoc-Based Synthesis of C-Terminal Cysteine-Containing Peptides.

    PubMed

    Lelièvre, Dominique; Terrier, Victor P; Delmas, Agnès F; Aucagne, Vincent

    2016-03-01

    The Fmoc-based solid phase synthesis of C-terminal cysteine-containing peptides is problematic, due to side reactions provoked by the pronounced acidity of the Cα proton of cysteine esters. We herein describe a general strategy consisting of the postsynthetic introduction of the C-terminal Cys through a key chemoselective native chemical ligation reaction with N-Hnb-Cys peptide crypto-thioesters. This method was successfully applied to the demanding peptide sequences of two natural products of biological interest, giving remarkably high overall yields compared to that of a state of the art strategy.

  6. Thermal stability and activity improvements of a Ca-independent α-amylase from Bacillus subtilis CN7 by C-terminal truncation and hexahistidine-tag fusion.

    PubMed

    Wang, Chenghua; Wang, Qingyan; Liao, Siming; He, Bingfang; Huang, Ribo

    2014-01-01

    Simultaneous improvements of thermostability and activity of a Ca-independent α-amylase from Bacillus subtilis CN7 were achieved by C-terminal truncation and his₆-tag fusion. C-terminal truncation, which eliminates C-terminal 194-amino-acid residues from the intact mature α-amylase, raised the turnover number by 35% and increased the thermostability in terms of half-life at 65 °C by threefold. A his₆-tag fusion at either the C- or N-terminus of truncated α-amylase further enhanced its turnover number by 59% and 37%, respectively. Molecular modeling revealed that these improvements could be attributed to structural rearrangement and reorientation of the catalytic residues.

  7. Mass spectrometry-based sequencing of protein C-terminal peptide using α-carboxyl group-specific derivatization and COOH capturing.

    PubMed

    Nakajima, Chihiro; Kuyama, Hiroki; Tanaka, Koichi

    2012-09-15

    An approach to mass spectrometry (MS)-based sequence analysis of selectively enriched C-terminal peptide from protein is described. This approach employs a combination of the specific derivatization of α-carboxyl group (α-COOH), enzymatic proteolysis using endoproteinase GluC, and enrichment of C-terminal peptide through the use of COOH-capturing material. Highly selective derivatization of α-COOH was achieved by a combination of specific activation of α-COOH through oxazolone chemistry and amidation using 3-aminopropyltris-(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPP-propylamine). This amine component was used to simplify fragmentation in tandem mass spectrometry (MS/MS) measurement, which facilitated manual sequence interpretation. The peptides produced after GluC digestion were then treated with a COOH scavenger to enrich the C-terminal peptide that is only devoid of COOH groups, and the obtained C-terminal peptide was readily sequenced by matrix-assisted laser desorption/ionization (MALDI)-MS/MS due to the TMPP mass tag.

  8. C-terminal region of DNA ligase IV drives XRCC4/DNA ligase IV complex to chromatin

    SciTech Connect

    Liu, Sicheng; Liu, Xunyue; Kamdar, Radhika Pankaj; Wanotayan, Rujira; Sharma, Mukesh Kumar; Adachi, Noritaka; Matsumoto, Yoshihisa

    2013-09-20

    Highlights: •Chromatin binding of XRCC4 is dependent on the presence of DNA ligase IV. •C-terminal region of DNA ligase IV alone can recruit itself and XRCC4 to chromatin. •Two BRCT domains of DNA ligase IV are essential for the chromatin binding of XRCC4. -- Abstract: DNA ligase IV (LIG4) and XRCC4 form a complex to ligate two DNA ends at the final step of DNA double-strand break (DSB) repair through non-homologous end-joining (NHEJ). It is not fully understood how these proteins are recruited to DSBs. We recently demonstrated radiation-induced chromatin binding of XRCC4 by biochemical fractionation using detergent Nonidet P-40. In the present study, we examined the role of LIG4 in the recruitment of XRCC4/LIG4 complex to chromatin. The chromatin binding of XRCC4 was dependent on the presence of LIG4. The mutations in two BRCT domains (W725R and W893R, respectively) of LIG4 reduced the chromatin binding of LIG4 and XRCC4. The C-terminal fragment of LIG4 (LIG4-CT) without N-terminal catalytic domains could bind to chromatin with XRCC4. LIG4-CT with W725R or W893R mutation could bind to chromatin but could not support the chromatin binding of XRCC4. The ability of C-terminal region of LIG4 to interact with chromatin might provide us with an insight into the mechanisms of DSB repair through NHEJ.

  9. Asparagine 326 in the extremely C-terminal region of XRCC4 is essential for the cell survival after irradiation

    SciTech Connect

    Wanotayan, Rujira; Fukuchi, Mikoto; Imamichi, Shoji; Sharma, Mukesh Kumar; Matsumoto, Yoshihisa

    2015-02-20

    XRCC4 is one of the crucial proteins in the repair of DNA double-strand break (DSB) through non-homologous end-joining (NHEJ). As XRCC4 consists of 336 amino acids, N-terminal 200 amino acids include domains for dimerization and for association with DNA ligase IV and XLF and shown to be essential for XRCC4 function in DSB repair and V(D)J recombination. On the other hand, the role of the remaining C-terminal region of XRCC4 is not well understood. In the present study, we noticed that a stretch of ∼20 amino acids located at the extreme C-terminus of XRCC4 is highly conserved among vertebrate species. To explore its possible importance, series of mutants in this region were constructed and assessed for the functionality in terms of ability to rescue radiosensitivity of M10 cells lacking XRCC4. Among 13 mutants, M10 transfectant with N326L mutant (M10-XRCC4{sup N326L}) showed elevated radiosensitivity. N326L protein showed defective nuclear localization. N326L sequence matched the consensus sequence of nuclear export signal. Leptomycin B treatment accumulated XRCC4{sup N326L} in the nucleus but only partially rescued radiosensitivity of M10-XRCC4{sup N326L}. These results collectively indicated that the functional defects of XRCC4{sup N326L} might be partially, but not solely, due to its exclusion from nucleus by synthetic nuclear export signal. Further mutation of XRCC4 Asn326 to other amino acids, i.e., alanine, aspartic acid or glutamine did not affect the nuclear localization but still exhibited radiosensitivity. The present results indicated the importance of the extremely C-terminal region of XRCC4 and, especially, Asn326 therein. - Highlights: • Extremely C-terminal region of XRCC4 is highly conserved among vertebrate species. • XRCC4 C-terminal point mutants, R325F and N326L, are functionally deficient in terms of survival after irradiation. • N326L localizes to the cytoplasm because of synthetic nuclear export signal. • Leptomycin B restores the

  10. Formation and Fragmentation of Unsaturated Fatty Acid [M - 2H + Na]- Ions: Stabilized Carbanions for Charge-Directed Fragmentation

    NASA Astrophysics Data System (ADS)

    Thomas, Michael C.; Kirk, Benjamin B.; Altvater, Jens; Blanksby, Stephen J.; Nette, Geoffrey W.

    2013-12-01

    Fatty acids are long-chain carboxylic acids that readily produce [M - H]- ions upon negative ion electrospray ionization (ESI) and cationic complexes with alkali, alkaline earth, and transition metals in positive ion ESI. In contrast, only one anionic monomeric fatty acid-metal ion complex has been reported in the literature, namely [M - 2H + FeIICl]-. In this manuscript, we present two methods to form anionic unsaturated fatty acid-sodium ion complexes (i.e., [M - 2H + Na]-). We find that these ions may be generated efficiently by two distinct methods: (1) negative ion ESI of a methanolic solution containing the fatty acid and sodium fluoride forming an [M - H + NaF]- ion. Subsequent collision-induced dissociation (CID) results in the desired [M - 2H + Na]- ion via the neutral loss of HF. (2) Direct formation of the [M - 2H + Na]- ion by negative ion ESI of a methanolic solution containing the fatty acid and sodium hydroxide or bicarbonate. In addition to deprotonation of the carboxylic acid moiety, formation of [M - 2H + Na]- ions requires the removal of a proton from the fatty acid acyl chain. We propose that this deprotonation occurs at the bis-allylic position(s) of polyunsaturated fatty acids resulting in the formation of a resonance-stabilized carbanion. This proposal is supported by ab initio calculations, which reveal that removal of a proton from the bis-allylic position, followed by neutral loss of HX (where X = F- and -OH), is the lowest energy dissociation pathway.

  11. Formation and fragmentation of unsaturated fatty acid [M - 2H + Na]- ions: stabilized carbanions for charge-directed fragmentation.

    PubMed

    Thomas, Michael C; Kirk, Benjamin B; Altvater, Jens; Blanksby, Stephen J; Nette, Geoffrey W

    2014-02-01

    Fatty acids are long-chain carboxylic acids that readily produce [M - H](-) ions upon negative ion electrospray ionization (ESI) and cationic complexes with alkali, alkaline earth, and transition metals in positive ion ESI. In contrast, only one anionic monomeric fatty acid-metal ion complex has been reported in the literature, namely [M - 2H  +  Fe(II)Cl](-). In this manuscript, we present two methods to form anionic unsaturated fatty acid-sodium ion complexes (i.e., [M - 2H  +  Na](-)). We find that these ions may be generated efficiently by two distinct methods: (1) negative ion ESI of a methanolic solution containing the fatty acid and sodium fluoride forming an [M - H  +  NaF](-) ion. Subsequent collision-induced dissociation (CID) results in the desired [M - 2H  +  Na](-) ion via the neutral loss of HF. (2) Direct formation of the [M - 2H  +  Na](-) ion by negative ion ESI of a methanolic solution containing the fatty acid and sodium hydroxide or bicarbonate. In addition to deprotonation of the carboxylic acid moiety, formation of [M - 2H  +  Na](-) ions requires the removal of a proton from the fatty acid acyl chain. We propose that this deprotonation occurs at the bis-allylic position(s) of polyunsaturated fatty acids resulting in the formation of a resonance-stabilized carbanion. This proposal is supported by ab initio calculations, which reveal that removal of a proton from the bis-allylic position, followed by neutral loss of HX (where X = F(-) and (-)OH), is the lowest energy dissociation pathway. PMID:24338213

  12. Formation and Fragmentation of Protonated Molecules after Ionization of Amino Acid and Lactic Acid Clusters by Collision with Ions in the Gas Phase.

    PubMed

    Poully, Jean-Christophe; Vizcaino, Violaine; Schwob, Lucas; Delaunay, Rudy; Kocisek, Jaroslav; Eden, Samuel; Chesnel, Jean-Yves; Méry, Alain; Rangama, Jimmy; Adoui, Lamri; Huber, Bernd

    2015-08-01

    Collisions between O(3+) ions and neutral clusters of amino acids (alanine, valine and glycine) as well as lactic acid are performed in the gas phase, in order to investigate the effect of ionizing radiation on these biologically relevant molecular systems. All monomers and dimers are found to be predominantly protonated, and ab initio quantum-chemical calculations on model systems indicate that for amino acids, this is due to proton transfer within the clusters after ionization. For lactic acid, which has a lower proton affinity than amino acids, a significant non-negligible amount of the radical cation monomer is observed. New fragment-ion channels observed from clusters, as opposed to isolated molecules, are assigned to the statistical dissociation of protonated molecules formed upon ionization of the clusters. These new dissociation channels exhibit strong delayed fragmentation on the microsecond time scale, especially after multiple ionization.

  13. Disulfide assignment of the C-terminal cysteine knot of agouti-related protein (AGRP) by direct sequencing analysis.

    PubMed

    Young, Y; Zeni, L; Rosenfeld, R D; Stark, K L; Rohde, M F; Haniu, M

    1999-12-01

    We have assigned the disulfide structure of Md-65 agouti-related protein (Md65-AGRP) using differential reduction and alkylation followed by direct sequencing analysis. The mature human AGRP is a single polypeptide chain of 112 amino acid residues, consisting of an N-terminal acidic region and a unique C-terminal cysteine-rich domain. The C-terminal domain, a 48 amino acid peptide named Md65-AGRP, was expressed in Escherichia coil cells and refolded under different conditions from the mature recombinant protein. The disulfide bonds in the cystine knot structure of Md65-AGRP were partially reduced using tris(2-carboxyethyl) phosphine (TCEP) under acidic conditions, followed by alkylation with N-ethylmaleimide (NEM). The procedure generated several isoforms with varying degrees of NEM alkylation. The multiple forms of Md65-AGRP generated by partial reduction and NEM modification were then completely reduced and carboxymethylated to identify unreactive disulfide bonds. Differentially labeled Md65-AGRP were directly sequenced and analyzed by MALDI mass spectrometry. The results confirmed that Md65-AGRP contained the same disulfide structure as that of Md5-AGRP reported previously [Bures, E. J., Hui, J. O., Young, Y. et al. (1998) Biochemistry 37, 12172-12177].

  14. Design, Synthesis and Biological Evaluation of Biphenylamide Derivatives as Hsp90 C-terminal Inhibitors

    PubMed Central

    Zhao, Huiping; Garg, Gaurav; Zhao, Jinbo; Moroni, Elisabetta; Girgis, Antwan; Franco, Lucas S.; Singh, Swapnil; Colombo, Giorgio; Blagg, Brian S. J.

    2015-01-01

    Modulation of Hsp90 C-terminal function represents a promising therapeutic approach for the treatment of cancer and neurodegenerative diseases. Current drug discovery efforts toward Hsp90 C-terminal inhibition focus on novobiocin, an antibiotic that was transformed into an Hsp90 inhibitor. Based on structural information obtained during the development of novobiocin derivatives and molecular docking studies, scaffolds containing a biphenyl moiety in lieu of the coumarin ring present in novobiocin were identified as new Hsp90 C-terminal inhibitors. Structure-activity relationship studies produced new derivatives that inhibit the proliferation of breast cancer cell lines at nanomolar concentrations, which corresponded directly with Hsp90 inhibition. PMID:25462258

  15. Fragmentation and dimerization of aliphatic amino acid films induced by vacuum ultraviolet irradiation

    NASA Astrophysics Data System (ADS)

    Tanaka, Masahito; Kaneko, Fusae; Koketsu, Toshiyuki; Nakagawa, Kazumichi; Yamada, Toru

    2008-10-01

    The chemical reaction of aliphatic amino acid, such as alanine (Ala) and leucine (Leu), in the solid phase induced by vacuum ultraviolet (VUV) irradiation was studied by high-performance liquid chromatography technique and mass spectroscopic method. Quantum efficiencies of dimerization of Ala in the solid phase obviously showed irradiated VUV wavelength dependence. The values of quantum efficiencies of formation of Ala dimer were determined to be 5.7×10-5, 1.3×10-3, and 2.4×10-4 for 208, 183, and 87 nm irradiation, respectively. VUV-induced fragment desorption from Ala and Leu films has also been examined by mass spectroscopic method. Observed mass spectra clearly indicated that both the deamination and decarboxylation reactions were common in both Ala and Leu films, and the dissociation of side chain occurred only in Leu film.

  16. Concise synthesis of the A/BCD-ring fragment of gambieric acid A

    PubMed Central

    Fuwa, Haruhiko; Fukazawa, Ryo; Sasaki, Makoto

    2014-01-01

    Gambieric acid A (GAA) and its congeners belong to the family of marine polycyclic ether natural products. Their highly complex molecular architecture and unique biological activities have been of intense interest within the synthetic community. We have previously reported the first total synthesis, stereochemical reassignment, and preliminary structure–activity relationships of GAA. Here we disclose a concise synthesis of the A/BCD-ring fragment of GAA. The synthesis started from our previously reported synthetic intermediate that represents the A/B-ring. The C-ring was synthesized via an oxiranyl anion coupling and a 6-endo cyclization, and the D-ring was forged by means of an oxidative lactonization and subsequent palladium-catalyzed functionalization of the lactone ring. In this manner, the number of linear synthetic steps required for the construction of the C- and D-rings was reduced from 22 to 11. PMID:25629027

  17. Biochemical and virological analysis of the 18-residue C-terminal tail of HIV-1 integrase

    PubMed Central

    Dar, Mohd J; Monel, Blandine; Krishnan, Lavanya; Shun, Ming-Chieh; Di Nunzio, Francesca; Helland, Dag E; Engelman, Alan

    2009-01-01

    Background The 18 residue tail abutting the SH3 fold that comprises the heart of the C-terminal domain is the only part of HIV-1 integrase yet to be visualized by structural biology. To ascertain the role of the tail region in integrase function and HIV-1 replication, a set of deletion mutants that successively lacked three amino acids was constructed and analyzed in a variety of biochemical and virus infection assays. HIV-1/2 chimers, which harbored the analogous 23-mer HIV-2 tail in place of the HIV-1 sequence, were also studied. Because integrase mutations can affect steps in the replication cycle other than integration, defective mutant viruses were tested for integrase protein content and reverse transcription in addition to integration. The F185K core domain mutation, which increases integrase protein solubility, was furthermore analyzed in a subset of mutants. Results Purified proteins were assessed for in vitro levels of 3' processing and DNA strand transfer activities whereas HIV-1 infectivity was measured using luciferase reporter viruses. Deletions lacking up to 9 amino acids (1-285, 1-282, and 1-279) displayed near wild-type activities in vitro and during infection. Further deletion yielded two viruses, HIV-11-276 and HIV-11-273, that displayed approximately two and 5-fold infectivity defects, respectively, due to reduced integrase function. Deletion mutant HIV-11-270 and the HIV-1/2 chimera were non-infectious and displayed approximately 3 to 4-fold reverse transcription in addition to severe integration defects. Removal of four additional residues, which encompassed the C-terminal β strand of the SH3 fold, further compromised integrase incorporation into virions and reverse transcription. Conclusion HIV-11-270, HIV-11-266, and the HIV-1/2 chimera were typed as class II mutant viruses due to their pleiotropic replication defects. We speculate that residues 271-273 might play a role in mediating the known integrase-reverse transcriptase interaction, as

  18. Crystallization and preliminary X-ray diffraction studies of the C-terminal domain of Chlamydia trachomatis CdsD

    PubMed Central

    Meriläinen, Gitte; Wierenga, Rik K.

    2014-01-01

    The inner membrane ring of the bacterial type III secretion system (TTSS) is composed of two proteins. In Chlamydia trachomatis this ring is formed by CdsD (gene name CT_664) and CdsJ (gene name CTA_0609). CdsD consists of 829 amino acids. The last 400 amino acids at its C-terminal end relate it to the type III secretion system YscD/HrpQ protein family. The C-terminal domain, consisting of amino acids 558–771, of C. trachomatis CdsD was overexpressed in Escherichia coli and purified using immobilized metal-affinity chromatography (IMAC) and size-exclusion chromatography. The protein was crystallized using the vapour-diffusion method. A data set was collected to 2.26 Å resolution. The crystals have the symmetry of space group C2, with unit-cell parameters a = 106.60, b = 23.91, c = 118.65 Å, β = 104.95°. According to the data analysis there is expected to be one molecule in the asymmetric unit, with a Matthews coefficient of 3.0 Å3 Da−1. PMID:25286957

  19. C-terminal motif prediction in eukaryotic proteomes using comparative genomics and statistical over-representation across protein families

    PubMed Central

    Austin, Ryan S; Provart, Nicholas J; Cutler, Sean R

    2007-01-01

    kingdoms and across eukaryotes. Motifs of note include a serine-acidic peptide (DSD*) as well as several lysine enriched motifs found in nearly all eukaryotic genomes examined. Conclusion We have successfully generated a high confidence representation of eukaryotic motifs anchored at the C-terminus. A high incidence of true-positives in our results suggests that several previously unidentified tripeptide patterns are strong candidates for representing novel peptide motifs of a widely employed nature in the C-terminal biology of eukaryotes. Our application of comparative genomics, statistical over-representation and the adjustment for protein family homology has generated several hypotheses concerning the C-terminal topology as it pertains to sorting and potential protein interaction signals. This approach to background reduction could be expanded for application to protein motif prediction in the protein interior. A parallel N-terminal analysis is presented as supplementary data. PMID:17594486

  20. Characterization of a Synaptic Vesicle Binding Motif on the Distal CaV2.2 Channel C-terminal.

    PubMed

    Gardezi, Sabiha R; Nath, Arup R; Li, Qi; Stanley, Elise F

    2016-01-01

    Neurotransmitter is released from synaptic vesicles (SVs) that are gated to fuse with the presynaptic membrane by calcium ions that enter through voltage-gated calcium channels (CaVs). There is compelling evidence that SVs associate closely with the CaVs but the molecular linking mechanisms remain poorly understood. Using a cell-free, synaptic vesicle-pull-down assay method (SV-PD) we have recently demonstrated that SVs can bind both to the intact CaV2.2 channel and also to a fusion protein comprising the distal third, C3 segment, of its long C-terminal. This site was localized to a 49 amino acid region just proximal to the C-terminal tip. To further restrict the SV binding site we generated five, 10 amino acid mimetic blocking peptides spanning this region. Of these, HQARRVPNGY effectively inhibited SV-PD and also inhibited SV recycling when cryoloaded into chick brain nerve terminals (synaptosomes). Further, SV-PD was markedly reduced using a C3 fusion protein that lacked the HQARRVPNGY sequence, C3HQless. We zeroed in on the SV binding motif within HQARRVPNGY by means of a palette of mutant blocking peptides. To our surprise, peptides that lacked the highly conserved VPNGY sequence still blocked SV-PD. However, substitution of the HQ and RR amino acids markedly reduced block. Of these, the RR pair was essential but not sufficient as the full block was not observed without H suggesting a CaV2.2 SV binding motif of HxxRR. Interestingly, CaV2.1, the other primary presynaptic calcium channel, exhibits a similar motif, RHxRR, that likely serves the same function. Bioinformatic analysis showed that variations of this binding motif, +(+) xRR (where + is a positively charged aa H or R), are conserved from lung-fish to man. Further studies will be necessary to identify the C terminal motif binding partner on the SV itself and to determine the role of this molecular interaction in synaptic transmission. We hypothesize that the distal C-terminal participates in the capture

  1. Characterization of a Synaptic Vesicle Binding Motif on the Distal CaV2.2 Channel C-terminal

    PubMed Central

    Gardezi, Sabiha R.; Nath, Arup R.; Li, Qi; Stanley, Elise F.

    2016-01-01

    Neurotransmitter is released from synaptic vesicles (SVs) that are gated to fuse with the presynaptic membrane by calcium ions that enter through voltage-gated calcium channels (CaVs). There is compelling evidence that SVs associate closely with the CaVs but the molecular linking mechanisms remain poorly understood. Using a cell-free, synaptic vesicle-pull-down assay method (SV-PD) we have recently demonstrated that SVs can bind both to the intact CaV2.2 channel and also to a fusion protein comprising the distal third, C3 segment, of its long C-terminal. This site was localized to a 49 amino acid region just proximal to the C-terminal tip. To further restrict the SV binding site we generated five, 10 amino acid mimetic blocking peptides spanning this region. Of these, HQARRVPNGY effectively inhibited SV-PD and also inhibited SV recycling when cryoloaded into chick brain nerve terminals (synaptosomes). Further, SV-PD was markedly reduced using a C3 fusion protein that lacked the HQARRVPNGY sequence, C3HQless. We zeroed in on the SV binding motif within HQARRVPNGY by means of a palette of mutant blocking peptides. To our surprise, peptides that lacked the highly conserved VPNGY sequence still blocked SV-PD. However, substitution of the HQ and RR amino acids markedly reduced block. Of these, the RR pair was essential but not sufficient as the full block was not observed without H suggesting a CaV2.2 SV binding motif of HxxRR. Interestingly, CaV2.1, the other primary presynaptic calcium channel, exhibits a similar motif, RHxRR, that likely serves the same function. Bioinformatic analysis showed that variations of this binding motif, +(+) xRR (where + is a positively charged aa H or R), are conserved from lung-fish to man. Further studies will be necessary to identify the C terminal motif binding partner on the SV itself and to determine the role of this molecular interaction in synaptic transmission. We hypothesize that the distal C-terminal participates in the capture

  2. Key Role for the 12-Hydroxy Group in the Negative Ion Fragmentation of Unconjugated C24 Bile Acids.

    PubMed

    Lan, Ke; Su, Mingming; Xie, Guoxiang; Ferslew, Brian C; Brouwer, Kim L R; Rajani, Cynthia; Liu, Changxiao; Jia, Wei

    2016-07-19

    Host-gut microbial interactions contribute to human health and disease states and an important manifestation resulting from this cometabolism is a vast diversity of bile acids (BAs). There is increasing interest in using BAs as biomarkers to assess the health status of individuals and, therefore, an increased need for their accurate separation and identification. In this study, the negative ion fragmentation behaviors of C24 BAs were investigated by UPLC-ESI-QTOF-MS. The step-by-step fragmentation analysis revealed a distinct fragmentation mechanism for the unconjugated BAs containing a 12-hydroxyl group. The unconjugated BAs lacking 12-hydroxylation fragmented via dehydration and dehydrogenation. In contrast, the 12-hydroxylated ones, such as deoxycholic acid (DCA) and cholic acid (CA), employed dissociation routes including dehydration, loss of carbon monoxide or carbon dioxide, and dehydrogenation. All fragmentations of the 12-hydroxylated unconjugated BAs, characterized by means of stable isotope labeled standards, were associated with the rotation of the carboxylate side chain and the subsequent rearrangements accompanied by proton transfer between 12-hydroxyl and 24-carboxyl groups. Compared to DCA, CA underwent further cleavages of the steroid skeleton. Accordingly, the effects of stereochemistry on the fragmentation pattern of CA were investigated using its stereoisomers. Based on the knowledge gained from the fragmentation analysis, a novel BA, 3β,7β,12α-trihydroxy-5β-cholanic acid, was identified in the postprandial urine samples of patients with nonalcoholic steatohepatitis. The analyses used in this study may contribute to a better understanding of the chemical diversity of BAs and the molecular basis of human liver diseases that involve BA synthesis, transport, and metabolism. PMID:27322813

  3. Characterization of the Trypanosoma cruzi ortholog of the SBDS protein reveals an intrinsically disordered extended C-terminal region showing RNA-interacting activity.

    PubMed

    de Oliveira, Juliana Ferreira; Castilho, Beatriz A; Sforça, Mauricio L; Krieger, Marco Aurélio; Zeri, Ana Carolina; Guimarães, Beatriz G; Zanchin, Nilson I T

    2009-04-01

    The human SBDS gene and its yeast ortholog SDO1 encode essential proteins that are involved in ribosome biosynthesis. SDO1 has been implicated in recycling of the ribosomal biogenesis factor Tif6p from pre-66S particles as well as in translation activation of 60S ribosomes. The SBDS protein is highly conserved, containing approximately 250 amino acid residues in animals, fungi and Archaea, while SBDS orthologs of plants and a group of protists contain an extended C-terminal region. In this work, we describe the characterization of the Trypanosoma cruzi SBDS ortholog (TcSBDS). TcSBDS co-fractionates with polysomes in sucrose density gradients, which is consistent with a role in ribosome biosynthesis. We show that TcSBDS contains a C-terminal extension of 200 amino acids that displays the features of intrinsically disordered proteins as determined by proteolytic, circular dichroism and NMR analyses. Interestingly, the C-terminal extension is responsible for TcSBDS-RNA interaction activity in electrophoretic mobility shift assays. This finding suggests that Trypanosomatidae and possibly also other organisms containing SBDS with extended C-terminal regions have evolved an additional function for SBDS in ribosome biogenesis.

  4. A tandem mass spectrometric study of bile acids: interpretation of fragmentation pathways and differentiation of steroid isomers.

    PubMed

    Qiao, Xue; Ye, Min; Liu, Chun-fang; Yang, Wen-zhi; Miao, Wen-juan; Dong, Jing; Guo, De-an

    2012-02-01

    Bile acids are steroids with a pentanoic acid substituent at C-17. They are the terminal products of cholesterol excretion, and play critical physiological roles in human and animals. Bile acids are easy to detect but difficult to identify by using mass spectrometry due to their poly-ring structure and various hydroxylation patterns. In this study, fragmentation pathways of 18 free and conjugated bile acids were interpreted by using tandem mass spectrometry. The analyses were conducted on ion trap and triple quadrupole mass spectrometers. Upon collision-induced dissociation, the conjugated bile acids could cleave into glycine or taurine related fragments, together with the steroid skeleton. Fragmentations of free bile acids were further elucidated, especially by atmospheric pressure chemical ionization mass spectrometry in positive ion mode. Aside from universally observed neutral losses, eliminations occurred on bile acid carbon rings were proposed for the first time. Moreover, four isomeric 5β-cholanic acid hydroxyl derivatives (3α,6α-, 3α,7β-, 3α,7α-, and 3α,12α-) were differentiated using electrospray ionization in negative ion mode: 3α,7β-OH substituent inclined to eliminate H(2)O and CH(2)O(2) groups; 3α,6α-OH substituent preferred neutral loss of two H(2)O molecules; 3α,12α-OH substituent apt to lose the carboxyl in the form of CO(2) molecule; and 3α,7α-OH substituent exhibited no further fragmentation after dehydration. This study provided specific interpretation for mass spectra of bile acids. The results could contribute to bile acid analyses, especially in clinical assays and metabonomic studies.

  5. C-Terminal Modification of Fully Unprotected Peptide Hydrazides via in Situ Generation of Isocyanates.

    PubMed

    Vinogradov, Alexander A; Simon, Mark D; Pentelute, Bradley L

    2016-03-18

    A method for chemo- and regioselective conjugation of nucleophiles to fully unprotected peptides and proteins via in situ generation of C-terminal isocyanates is reported. Oxidation of C-terminal peptide hydrazides in aqueous media followed by Curtius rearrangement of acyl azides reliably generates isocyanates, which react with a variety of external nucleophiles, such as hydrazines, hydrazides, aromatic thiols, and hydroxylamines. Multiple peptides and a 53 kDa protein hydrazide were conjugated to different nucleophiles using this reaction. PMID:26948719

  6. C-Terminal Modification of Fully Unprotected Peptide Hydrazides via in Situ Generation of Isocyanates.

    PubMed

    Vinogradov, Alexander A; Simon, Mark D; Pentelute, Bradley L

    2016-03-18

    A method for chemo- and regioselective conjugation of nucleophiles to fully unprotected peptides and proteins via in situ generation of C-terminal isocyanates is reported. Oxidation of C-terminal peptide hydrazides in aqueous media followed by Curtius rearrangement of acyl azides reliably generates isocyanates, which react with a variety of external nucleophiles, such as hydrazines, hydrazides, aromatic thiols, and hydroxylamines. Multiple peptides and a 53 kDa protein hydrazide were conjugated to different nucleophiles using this reaction.

  7. Ligand-induced Ordering of the C-terminal Tail Primes STING for Phosphorylation by TBK1.

    PubMed

    Tsuchiya, Yuko; Jounai, Nao; Takeshita, Fumihiko; Ishii, Ken J; Mizuguchi, Kenji

    2016-07-01

    The innate immune protein Stimulator of interferon genes (STING) promotes the induction of interferon beta (IFN-β) production via the phosphorylation of its C-terminal tail (CTT) by TANK-binding kinase 1 (TBK1). Potent ligands of STING are, therefore, promising candidates for novel anti-cancer drugs or vaccine adjuvants. However, the intrinsically flexible CTT poses serious problems in in silico drug discovery. Here, we performed molecular dynamics simulations of the STING fragment containing the CTT in ligand-bound and unbound forms and observed that the binding of a potent ligand cyclic GMP-AMP (cGAMP) induced a local structure in the CTT, reminiscent of the known structure of a TBK1 substrate. The subsequent molecular biological experiments confirmed the observed dynamics of the CTT and identified essential residues for the activation of the IFN-β promoter, leading us to propose a new mechanism of STING activation. PMID:27333035

  8. Radical generating coordination complexes as tools for rapid and effective fragmentation and fluorescent labeling of nucleic acids for microchip hybridization.

    SciTech Connect

    Kelly, J. J.; Chernov, B. N.; Mirzabekov, A. D.; Bavykin, S. G.; Biochip Technology Center; Northwestern Univ.; Engelhardt Inst. of Molecular Biology

    2002-01-01

    DNA microchip technology is a rapid, high-throughput method for nucleic acid hybridization reactions. This technology requires random fragmentation and fluorescent labeling of target nucleic acids prior to hybridization. Radical-generating coordination complexes, such as 1,10-phenanthroline-Cu(II) (OP-Cu) and Fe(II)-EDTA (Fe-EDTA), have been commonly used as sequence nonspecific 'chemical nucleases' to introduce single-strand breaks in nucleic acids. Here we describe a new method based on these radical-generating complexes for random fragmentation and labeling of both single- and double-stranded forms of RNA and DNA. Nucleic acids labeled with the OP-Cu and the Fe-EDTA protocols revealed high hybridization specificity in hybridization with DNA microchips containing oligonucleotide probes selected for identification of 16S rRNA sequences of the Bacillus group microorganisms.We also demonstrated cDNA- and cRNA-labeling and fragmentation with this method. Both the OP-Cu and Fe-EDTA fragmentation and labeling procedures are quick and inexpensive compared to other commonly used methods. A column-based version of the described method does not require centrifugation and therefore is promising for the automation of sample preparations in DNA microchip technology as well as in other nucleic acid hybridization studies.

  9. Correlations Between Amino Acids at Different Sites in Local Sequences of Protein Fragments with Given Structural Patterns

    NASA Astrophysics Data System (ADS)

    Lu, Wen; Liu, Hai-yan

    2007-02-01

    Ample evidence suggests that the local structures of peptide fragments in native proteins are to some extent encoded by their local sequences. Detecting such local correlations is important but it is still an open question what would be the most appropriate method. This is partly because conventional sequence analyses treat amino acid preferences at each site of a protein sequence independently, while it is often the inter-site interactions that bring about local sequence-structure correlations. Here a new scheme is introduced to capture the correlation between amino acid preferences at different sites for different local structure types. A library of nine-residue fragments is constructed, and the fragments are divided into clusters based on their local structures. For each local structure cluster or type, chi-square tests are used to identify correlated preferences of amino acid combinations at pairs of sites. A score function is constructed including both the single site amino acid preferences and the dual-site amino acid combination preferences, which can be used to identify whether a sequence fragment would have a strong tendency to form a particular local structure in native proteins. The results show that, given a local structure pattern, dual-site amino acid combinations contain different information from single site amino acid preferences. Representative examples show that many of the statistically identified correlations agree with previously-proposed heuristic rules about local sequence-structure correlations, or are consistent with physical-chemical interactions required to stabilize particular local structures. Results also show that such dual-site correlations in the score function significantly improves the Z-score matching a sequence fragment to its native local structure relative to non-native local structures, and certain local structure types are highly predictable from the local sequence alone if inter-site correlations are considered.

  10. Piezo1 ion channel pore properties are dictated by C-terminal region.

    PubMed

    Coste, Bertrand; Murthy, Swetha E; Mathur, Jayanti; Schmidt, Manuela; Mechioukhi, Yasmine; Delmas, Patrick; Patapoutian, Ardem

    2015-05-26

    Piezo1 and Piezo2 encode mechanically activated cation channels that function as mechanotransducers involved in vascular system development and touch sensing, respectively. Structural features of Piezos remain unknown. Mouse Piezo1 is bioinformatically predicted to have 30-40 transmembrane (TM) domains. Here, we find that nine of the putative inter-transmembrane regions are accessible from the extracellular side. We use chimeras between mPiezo1 and dPiezo to show that ion-permeation properties are conferred by C-terminal region. We further identify a glutamate residue within a conserved region adjacent to the last two putative TM domains of the protein, that when mutated, affects unitary conductance and ion selectivity, and modulates pore block. We propose that this amino acid is either in the pore or closely associates with the pore. Our results describe important structural motifs of this channel family and lay the groundwork for a mechanistic understanding of how Piezos are mechanically gated and conduct ions.

  11. Piezo1 ion channel pore properties are dictated by C-terminal region

    NASA Astrophysics Data System (ADS)

    Coste, Bertrand; Murthy, Swetha E.; Mathur, Jayanti; Schmidt, Manuela; Mechioukhi, Yasmine; Delmas, Patrick; Patapoutian, Ardem

    2015-05-01

    Piezo1 and Piezo2 encode mechanically activated cation channels that function as mechanotransducers involved in vascular system development and touch sensing, respectively. Structural features of Piezos remain unknown. Mouse Piezo1 is bioinformatically predicted to have 30-40 transmembrane (TM) domains. Here, we find that nine of the putative inter-transmembrane regions are accessible from the extracellular side. We use chimeras between mPiezo1 and dPiezo to show that ion-permeation properties are conferred by C-terminal region. We further identify a glutamate residue within a conserved region adjacent to the last two putative TM domains of the protein, that when mutated, affects unitary conductance and ion selectivity, and modulates pore block. We propose that this amino acid is either in the pore or closely associates with the pore. Our results describe important structural motifs of this channel family and lay the groundwork for a mechanistic understanding of how Piezos are mechanically gated and conduct ions.

  12. NMR Determines Transient Structure and Dynamics in the Disordered C-Terminal Domain of WASp Interacting Protein

    PubMed Central

    Haba, Noam Y.; Gross, Renana; Novacek, Jiri; Shaked, Hadassa; Zidek, Lukas; Barda-Saad, Mira; Chill, Jordan H.

    2013-01-01

    WASp-interacting protein (WIP) is a 503-residue proline-rich polypeptide expressed in human T cells. The WIP C-terminal domain binds to Wiskott-Aldrich syndrome protein (WASp) and regulates its activation and degradation, and the WIP-WASp interaction has been shown to be critical for actin polymerization and implicated in the onset of WAS and X-linked thrombocytopenia. WIP is predicted to be an intrinsically disordered protein, a class of polypeptides that are of great interest because they violate the traditional structure-function paradigm. In this first (to our knowledge) study of WIP in its unbound state, we used NMR to investigate the biophysical behavior of WIPC, a C-terminal domain fragment of WIP that includes residues 407–503 and contains the WASp-binding site. In light of the poor spectral dispersion exhibited by WIPC and the high occurrence (25%) of proline residues, we employed 5D-NMR13C-detected NMR experiments with nonuniform sampling to accomplish full resonance assignment. Secondary chemical-shift analysis, 15N relaxation rates, and protection from solvent exchange all concurred in detecting transient structure located in motifs that span the WASp-binding site. Residues 446–456 exhibited a propensity for helical conformation, and an extended conformation followed by a short, capped helix was observed for residues 468–478. The 13C-detected approach allows chemical-shift assignment in the WIPC polyproline stretches and thus sheds light on their conformation and dynamics. The effects of temperature on chemical shifts referenced to a denatured sample of the polypeptide demonstrate that heating reduces the structural character of WIPC. Thus, we conclude that the disordered WIPC fragment is comprised of regions with latent structure connected by flexible loops, an architecture with implications for binding affinity and function. PMID:23870269

  13. NMR determines transient structure and dynamics in the disordered C-terminal domain of WASp interacting protein.

    PubMed

    Haba, Noam Y; Gross, Renana; Novacek, Jiri; Shaked, Hadassa; Zidek, Lukas; Barda-Saad, Mira; Chill, Jordan H

    2013-07-16

    WASp-interacting protein (WIP) is a 503-residue proline-rich polypeptide expressed in human T cells. The WIP C-terminal domain binds to Wiskott-Aldrich syndrome protein (WASp) and regulates its activation and degradation, and the WIP-WASp interaction has been shown to be critical for actin polymerization and implicated in the onset of WAS and X-linked thrombocytopenia. WIP is predicted to be an intrinsically disordered protein, a class of polypeptides that are of great interest because they violate the traditional structure-function paradigm. In this first (to our knowledge) study of WIP in its unbound state, we used NMR to investigate the biophysical behavior of WIP(C), a C-terminal domain fragment of WIP that includes residues 407-503 and contains the WASp-binding site. In light of the poor spectral dispersion exhibited by WIP(C) and the high occurrence (25%) of proline residues, we employed 5D-NMR(13)C-detected NMR experiments with nonuniform sampling to accomplish full resonance assignment. Secondary chemical-shift analysis, (15)N relaxation rates, and protection from solvent exchange all concurred in detecting transient structure located in motifs that span the WASp-binding site. Residues 446-456 exhibited a propensity for helical conformation, and an extended conformation followed by a short, capped helix was observed for residues 468-478. The (13)C-detected approach allows chemical-shift assignment in the WIP(C) polyproline stretches and thus sheds light on their conformation and dynamics. The effects of temperature on chemical shifts referenced to a denatured sample of the polypeptide demonstrate that heating reduces the structural character of WIP(C). Thus, we conclude that the disordered WIP(C) fragment is comprised of regions with latent structure connected by flexible loops, an architecture with implications for binding affinity and function.

  14. The C-terminal propeptide of a plant defensin confers cytoprotective and subcellular targeting functions

    PubMed Central

    2014-01-01

    Background Plant defensins are small (45–54 amino acids), basic, cysteine-rich proteins that have a major role in innate immunity in plants. Many defensins are potent antifungal molecules and are being evaluated for their potential to create crop plants with sustainable disease resistance. Defensins are produced as precursor molecules which are directed into the secretory pathway and are divided into two classes based on the absence (class I) or presence (class II) of an acidic C-terminal propeptide (CTPP) of about 33 amino acids. The function of this CTPP had not been defined. Results By transgenically expressing the class II plant defensin NaD1 with and without its cognate CTPP we have demonstrated that NaD1 is phytotoxic to cotton plants when expressed without its CTPP. Transgenic cotton plants expressing constructs encoding the NaD1 precursor with the CTPP had the same morphology as non-transgenic plants but expression of NaD1 without the CTPP led to plants that were stunted, had crinkled leaves and were less viable. Immunofluorescence microscopy and transient expression of a green fluorescent protein (GFP)-CTPP chimera were used to confirm that the CTPP is sufficient for vacuolar targeting. Finally circular dichroism and NMR spectroscopy were used to show that the CTPP adopts a helical confirmation. Conclusions In this report we have described the role of the CTPP on NaD1, a class II defensin from Nicotiana alata flowers. The CTPP of NaD1 is sufficient for vacuolar targeting and plays an important role in detoxification of the defensin as it moves through the plant secretory pathway. This work may have important implications for the use of defensins for disease protection in transgenic crops. PMID:24495600

  15. Properties of Rab5 N-terminal domain dictate prenylation of C-terminal cysteines.

    PubMed Central

    Sanford, J C; Pan, Y; Wessling-Resnick, M

    1995-01-01

    Rab5 is a Ras-related GTP-binding protein that is post-translationally modified by prenylation. We report here that an N-terminal domain contained within the first 22 amino acids of Rab5 is critical for efficient geranylgeranylation of the protein's C-terminal cysteines. This domain is immediately upstream from the "phosphate binding loop" common to all GTP-binding proteins and contains a highly conserved sequence recognized among members of the Rab family, referred to here as the YXYLFK motif. A truncation mutant that lacks this domain (Rab5(23-215) fails to become prenylated. However, a chimeric peptide with the conserved motif replacing cognate Rab5 sequence (MAYDYLFKRab5(23-215) does become post-translationally modified, demonstrating that the presence of this simple six amino acid N-terminal element enables prenylation at Rab5's C-terminus. H-Ras/Rab5 chimeras that include the conserved YXYLFK motif at the N-terminus do not become prenylated, indicating that, while this element may be necessary for prenylation of Rab proteins, it alone is not sufficient to confer properties to a heterologous protein to enable substrate recognition by the Rab geranylgeranyl transferase. Deletion analysis and studies of point mutants further reveal that the lysine residue of the YXYLFK motif is an absolute requirement to enable geranylgeranylation of Rab proteins. Functional studies support the idea that this domain is not required for guanine nucleotide binding since prenylation-defective mutants still bind GDP and are protected from protease digestion in the presence of GTP gamma S. We conclude that the mechanism of Rab geranylgeranylation involves key elements of the protein's tertiary structure including a conserved N-terminal amino acid motif (YXYLFK) that incorporates a critical lysine residue. Images PMID:7749197

  16. Interpretation of sucrose gradient sedimentation pattern of deoxyribonucleic acid fragments resulting from random breaks.

    PubMed

    Litwin, S; Shahn, E; Kozinski, A W

    1969-07-01

    Mass distribution in a sucrose gradient of deoxyribonucleic acid (DNA) fragments arising as a result of random breaks is predicted by analytical means from which computer evaluations are plotted. The analytical results are compared with the results of verifying experiments: (i) a Monte Carlo computer experiment in which simulated molecules of DNA were individuals of unit length subjected to random "breaks" applied by a random number generator, and (ii) an in vitro experiment in which molecules of T4 DNA, highly labeled with (32)P, were stored in liquid nitrogen for variable periods of time during which a precisely known number of (32)P atoms decayed, causing single-stranded breaks. The distribution of sizes of the resulting fragments was measured in an alkaline sucrose gradient. The profiles obtained in this fashion were compared with the mathematical predictions. Both experiments agree with the analytical approach and thus permit the use of the graphs obtained from the latter as a means of determining the average number of random breaks in DNA from distributions obtained experimentally in a sucrose gradient. An example of the application of this procedure to a previously unresolved problem is provided in the case of DNA from ultraviolet-irradiated phage which undergoes a dose-dependent intracellular breakdown. The relationship between the number of lethal hits and the number of single-stranded breaks was not previously established. A comparison of the calculated number of nicks per strand of DNA with the known dose in phage-lethal hits reveals a relationship closely approximating one lethal hit to one single-stranded break. PMID:5804949

  17. Structural implications of the C-terminal tail in the catalytic and stability properties of manganese peroxidases from ligninolytic fungi.

    PubMed

    Fernández-Fueyo, Elena; Acebes, Sandra; Ruiz-Dueñas, Francisco J; Martínez, María Jesús; Romero, Antonio; Medrano, Francisco Javier; Guallar, Victor; Martínez, Angel T

    2014-12-01

    The genome of Ceriporiopsis subvermispora includes 13 manganese peroxidase (MnP) genes representative of the three subfamilies described in ligninolytic fungi, which share an Mn(2+)-oxidation site and have varying lengths of the C-terminal tail. Short, long and extralong MnPs were heterologously expressed and biochemically characterized, and the first structure of an extralong MnP was solved. Its C-terminal tail surrounds the haem-propionate access channel, contributing to Mn(2+) oxidation by the internal propionate, but prevents the oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS), which is only oxidized by short MnPs and by shortened-tail variants from site-directed mutagenesis. The tail, which is anchored by numerous contacts, not only affects the catalytic properties of long/extralong MnPs but is also associated with their high acidic stability. Cd(2+) binds at the Mn(2+)-oxidation site and competitively inhibits oxidation of both Mn(2+) and ABTS. Moreover, mutations blocking the haem-propionate channel prevent substrate oxidation. This agrees with molecular simulations that position ABTS at an electron-transfer distance from the haem propionates of an in silico shortened-tail form, while it cannot reach this position in the extralong MnP crystal structure. Only small differences exist between the long and the extralong MnPs, which do not justify their classification as two different subfamilies, but they significantly differ from the short MnPs, with the presence/absence of the C-terminal tail extension being implicated in these differences.

  18. The C-terminal extension of bacterial flavodoxin-reductases: involvement in the hydride transfer mechanism from the coenzyme.

    PubMed

    Bortolotti, Ana; Sánchez-Azqueta, Ana; Maya, Celia M; Velázquez-Campoy, Adrián; Hermoso, Juan A; Medina, Milagros; Cortez, Néstor

    2014-01-01

    To study the role of the mobile C-terminal extension present in bacterial class of plant type NADP(H):ferredoxin reductases during catalysis, we generated a series of mutants of the Rhodobacter capsulatus enzyme (RcFPR). Deletion of the six C-terminal amino acids beyond alanine 266 was combined with the replacement A266Y, emulating the structure present in plastidic versions of this flavoenzyme. Analysis of absorbance and fluorescence spectra suggests that deletion does not modify the general geometry of FAD itself, but increases exposure of the flavin to the solvent, prevents a productive geometry of FAD:NADP(H) complex and decreases the protein thermal stability. Although the replacement A266Y partially coats the isoalloxazine from solvent and slightly restores protein stability, this single change does not allow formation of active charge-transfer complexes commonly present in the wild-type FPR, probably due to restraints of C-terminus pliability. A proton exchange process is deduced from ITC measurements during coenzyme binding. All studied RcFPR variants display higher affinity for NADP(+) than wild-type, evidencing the contribution of the C-terminus in tempering a non-productive strong (rigid) interaction with the coenzyme. The decreased catalytic rate parameters confirm that the hydride transfer from NADPH to the flavin ring is considerably hampered in the mutants. Although the involvement of the C-terminal extension from bacterial FPRs in stabilizing overall folding and bent-FAD geometry has been stated, the most relevant contributions to catalysis are modulation of coenzyme entrance and affinity, promotion of the optimal geometry of an active complex and supply of a proton acceptor acting during coenzyme binding.

  19. Crystal Structures of the S. cerevisiae Spt6 Core and C-Terminal Tandem SH2 Domain

    SciTech Connect

    Close, D.; Robinson, H.; Johnson, S. J.; Sdano, M. A.; McDonald, S. M.; Formosa, T.; Hill, C. P.

    2011-05-13

    The conserved and essential eukaryotic protein Spt6 functions in transcription elongation, chromatin maintenance, and RNA processing. Spt6 has three characterized functions. It is a histone chaperone capable of reassembling nucleosomes, a central component of transcription elongation complexes, and is required for recruitment of RNA processing factors to elongating RNA polymerase II (RNAPII). Here, we report multiple crystal structures of the 168-kDa Spt6 protein from Saccharomyces cerevisiae that together represent essentially all of the ordered sequence. Our two structures of the {approx} 900-residue core region reveal a series of putative nucleic acid and protein-protein interaction domains that fold into an elongated form that resembles the bacterial protein Tex. The similarity to a bacterial transcription factor suggests that the core domain performs nucleosome-independent activities, and as with Tex, we find that Spt6 binds DNA. Unlike Tex, however, the Spt6 S1 domain does not contribute to this activity. Crystal structures of the Spt6 C-terminal region reveal a tandem SH2 domain structure composed of two closely associated SH2 folds. One of these SH2 folds is cryptic, while the other shares striking structural similarity with metazoan SH2 domains and possesses structural features associated with the ability to bind phosphorylated substrates including phosphotyrosine. Binding studies with phosphopeptides that mimic the RNAPII C-terminal domain revealed affinities typical of other RNAPII C-terminal domain-binding proteins but did not indicate a specific interaction. Overall, these findings provide a structural foundation for understanding how Spt6 encodes several distinct functions within a single polypeptide chain.

  20. Crystal Structures of the S. cerevisiae Spt6 Core and C-terminal Tandem SH2 Domain

    SciTech Connect

    D Close; S Johnson; M Sdano; S McDonald; H Robinson; T Formosa; C Hill

    2011-12-31

    The conserved and essential eukaryotic protein Spt6 functions in transcription elongation, chromatin maintenance, and RNA processing. Spt6 has three characterized functions. It is a histone chaperone capable of reassembling nucleosomes, a central component of transcription elongation complexes, and is required for recruitment of RNA processing factors to elongating RNA polymerase II (RNAPII). Here, we report multiple crystal structures of the 168-kDa Spt6 protein from Saccharomyces cerevisiae that together represent essentially all of the ordered sequence. Our two structures of the {approx} 900-residue core region reveal a series of putative nucleic acid and protein-protein interaction domains that fold into an elongated form that resembles the bacterial protein Tex. The similarity to a bacterial transcription factor suggests that the core domain performs nucleosome-independent activities, and as with Tex, we find that Spt6 binds DNA. Unlike Tex, however, the Spt6 S1 domain does not contribute to this activity. Crystal structures of the Spt6 C-terminal region reveal a tandem SH2 domain structure composed of two closely associated SH2 folds. One of these SH2 folds is cryptic, while the other shares striking structural similarity with metazoan SH2 domains and possesses structural features associated with the ability to bind phosphorylated substrates including phosphotyrosine. Binding studies with phosphopeptides that mimic the RNAPII C-terminal domain revealed affinities typical of other RNAPII C-terminal domain-binding proteins but did not indicate a specific interaction. Overall, these findings provide a structural foundation for understanding how Spt6 encodes several distinct functions within a single polypeptide chain.

  1. Effects of the C-terminal truncation in NS1 protein of the 2009 pandemic H1N1 influenza virus on host gene expression.

    PubMed

    Tu, Jiagang; Guo, Jing; Zhang, Anding; Zhang, Wenting; Zhao, Zongzheng; Zhou, Hongbo; Liu, Cheng; Chen, Huanchun; Jin, Meilin

    2011-01-01

    The 2009 pandemic H1N1 influenza virus encodes an NS1 protein with 11 amino acids (aa) truncation at the C-terminus. The C-terminal tail of influenza virus NS1 protein constitutes a nucleolar localization signal (NoLS) and is the binding domain of the cellular pre-mRNA processing protein, poly(A)-binding protein II (PABII). Here, our studies showed that the C-terminal-truncated NS1 of the 2009 pandemic virus was inefficient at blocking host gene expression, extension of the truncated NS1 to its full length increased the inhibition of host gene expression. Mechanistically, this increased inhibition of host gene expression by the full-length NS1 was not associated with nucleolar localization, but was due to the restoration of NS1's binding capacity to PABII. Furthermore, in vitro and in vivo characterization of two recombinant viruses encoding either the C-terminal 11-aa truncated or full-length NS1 of the 2009 pandemic virus showed that the C-terminal 11-aa truncation in NS1 did not significantly alter virus replication, but increased virus pathogenicity in mice.

  2. Effects of the C-Terminal Truncation in NS1 Protein of the 2009 Pandemic H1N1 Influenza Virus on Host Gene Expression

    PubMed Central

    Zhang, Wenting; Zhao, Zongzheng; Zhou, Hongbo; Liu, Cheng; Chen, Huanchun; Jin, Meilin

    2011-01-01

    The 2009 pandemic H1N1 influenza virus encodes an NS1 protein with 11 amino acids (aa) truncation at the C-terminus. The C-terminal tail of influenza virus NS1 protein constitutes a nucleolar localization signal (NoLS) and is the binding domain of the cellular pre-mRNA processing protein, poly(A)-binding protein II (PABII). Here, our studies showed that the C-terminal-truncated NS1 of the 2009 pandemic virus was inefficient at blocking host gene expression, extension of the truncated NS1 to its full length increased the inhibition of host gene expression. Mechanistically, this increased inhibition of host gene expression by the full-length NS1 was not associated with nucleolar localization, but was due to the restoration of NS1's binding capacity to PABII. Furthermore, in vitro and in vivo characterization of two recombinant viruses encoding either the C-terminal 11-aa truncated or full-length NS1 of the 2009 pandemic virus showed that the C-terminal 11-aa truncation in NS1 did not significantly alter virus replication, but increased virus pathogenicity in mice. PMID:22022552

  3. The TREX1 C-terminal Region Controls Cellular Localization through Ubiquitination*

    PubMed Central

    Orebaugh, Clinton D.; Fye, Jason M.; Harvey, Scott; Hollis, Thomas; Wilkinson, John C.; Perrino, Fred W.

    2013-01-01

    TREX1 is an autonomous 3′-exonuclease that degrades DNA to prevent inappropriate immune activation. The TREX1 protein is composed of 314 amino acids; the N-terminal 242 amino acids contain the catalytic domain, and the C-terminal region (CTR) localizes TREX1 to the cytosolic compartment. In this study, we show that TREX1 modification by ubiquitination is controlled by a highly conserved sequence in the CTR to affect cellular localization. Transfection of TREX1 deletion constructs into human cells demonstrated that this sequence is required for ubiquitination at multiple lysine residues through a “non-canonical” ubiquitin linkage. A proteomic approach identified ubiquilin 1 as a TREX1 CTR-interacting protein, and this interaction was verified in vitro and in vivo. Cotransfection studies indicated that ubiquilin 1 localizes TREX1 to cytosolic punctate structures dependent upon the TREX1 CTR and lysines within the TREX1 catalytic core. Several TREX1 mutants linked to the autoimmune diseases Aicardi-Goutières syndrome and systemic lupus erythematosus that exhibit full catalytic function were tested for altered ubiquitin modification and cellular localization. Our data show that these catalytically competent disease-causing TREX1 mutants exhibit differential levels of ubiquitination relative to WT TREX1, suggesting a novel mechanism of dysfunction. Furthermore, these differentially ubiquitinated disease-causing mutants also exhibit altered ubiquilin 1 co-localization. Thus, TREX1 post-translational modification indicates an additional mechanism by which mutations disrupt TREX1 biology, leading to human autoimmune disease. PMID:23979357

  4. Asparagine 326 in the extremely C-terminal region of XRCC4 is essential for the cell survival after irradiation.

    PubMed

    Wanotayan, Rujira; Fukuchi, Mikoto; Imamichi, Shoji; Sharma, Mukesh Kumar; Matsumoto, Yoshihisa

    2015-02-20

    XRCC4 is one of the crucial proteins in the repair of DNA double-strand break (DSB) through non-homologous end-joining (NHEJ). As XRCC4 consists of 336 amino acids, N-terminal 200 amino acids include domains for dimerization and for association with DNA ligase IV and XLF and shown to be essential for XRCC4 function in DSB repair and V(D)J recombination. On the other hand, the role of the remaining C-terminal region of XRCC4 is not well understood. In the present study, we noticed that a stretch of ∼20 amino acids located at the extreme C-terminus of XRCC4 is highly conserved among vertebrate species. To explore its possible importance, series of mutants in this region were constructed and assessed for the functionality in terms of ability to rescue radiosensitivity of M10 cells lacking XRCC4. Among 13 mutants, M10 transfectant with N326L mutant (M10-XRCC4(N326L)) showed elevated radiosensitivity. N326L protein showed defective nuclear localization. N326L sequence matched the consensus sequence of nuclear export signal. Leptomycin B treatment accumulated XRCC4(N326L) in the nucleus but only partially rescued radiosensitivity of M10-XRCC4(N326L). These results collectively indicated that the functional defects of XRCC4(N326L) might be partially, but not solely, due to its exclusion from nucleus by synthetic nuclear export signal. Further mutation of XRCC4 Asn326 to other amino acids, i.e., alanine, aspartic acid or glutamine did not affect the nuclear localization but still exhibited radiosensitivity. The present results indicated the importance of the extremely C-terminal region of XRCC4 and, especially, Asn326 therein.

  5. Structural Studies of Geosmin Synthase, a Bifunctional Sesquiterpene Synthase with αα Domain Architecture That Catalyzes a Unique Cyclization-Fragmentation Reaction Sequence.

    PubMed

    Harris, Golda G; Lombardi, Patrick M; Pemberton, Travis A; Matsui, Tsutomu; Weiss, Thomas M; Cole, Kathryn E; Köksal, Mustafa; Murphy, Frank V; Vedula, L Sangeetha; Chou, Wayne K W; Cane, David E; Christianson, David W

    2015-12-01

    Geosmin synthase from Streptomyces coelicolor (ScGS) catalyzes an unusual, metal-dependent terpenoid cyclization and fragmentation reaction sequence. Two distinct active sites are required for catalysis: the N-terminal domain catalyzes the ionization and cyclization of farnesyl diphosphate to form germacradienol and inorganic pyrophosphate (PPi), and the C-terminal domain catalyzes the protonation, cyclization, and fragmentation of germacradienol to form geosmin and acetone through a retro-Prins reaction. A unique αα domain architecture is predicted for ScGS based on amino acid sequence: each domain contains the metal-binding motifs typical of a class I terpenoid cyclase, and each domain requires Mg(2+) for catalysis. Here, we report the X-ray crystal structure of the unliganded N-terminal domain of ScGS and the structure of its complex with three Mg(2+) ions and alendronate. These structures highlight conformational changes required for active site closure and catalysis. Although neither full-length ScGS nor constructs of the C-terminal domain could be crystallized, homology models of the C-terminal domain were constructed on the basis of ∼36% sequence identity with the N-terminal domain. Small-angle X-ray scattering experiments yield low-resolution molecular envelopes into which the N-terminal domain crystal structure and the C-terminal domain homology model were fit, suggesting possible αα domain architectures as frameworks for bifunctional catalysis.

  6. Structural implications of the C-terminal tail in the catalytic and stability properties of manganese peroxidases from ligninolytic fungi

    SciTech Connect

    Fernández-Fueyo, Elena; Acebes, Sandra; Ruiz-Dueñas, Francisco J.; Martínez, María Jesús; Romero, Antonio; Medrano, Francisco Javier; Guallar, Victor; Martínez, Angel T.

    2014-12-01

    The variable C-terminal tail of manganese peroxidases, a group of enzymes involved in lignin degradation, is implicated in their catalytic and stability properties, as shown by new crystal structures, molecular-simulation and directed-mutagenesis data. Based on this structural–functional evaluation, short and long/extralong manganese peroxidase subfamilies have been accepted; the latter are characterized by exceptional stability, while it is shown for the first time that the former are able to oxidize other substrates at the same site where manganese(II) is oxidized. The genome of Ceriporiopsis subvermispora includes 13 manganese peroxidase (MnP) genes representative of the three subfamilies described in ligninolytic fungi, which share an Mn{sup 2+}-oxidation site and have varying lengths of the C-terminal tail. Short, long and extralong MnPs were heterologously expressed and biochemically characterized, and the first structure of an extralong MnP was solved. Its C-terminal tail surrounds the haem-propionate access channel, contributing to Mn{sup 2+} oxidation by the internal propionate, but prevents the oxidation of 2, 2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS), which is only oxidized by short MnPs and by shortened-tail variants from site-directed mutagenesis. The tail, which is anchored by numerous contacts, not only affects the catalytic properties of long/extralong MnPs but is also associated with their high acidic stability. Cd{sup 2+} binds at the Mn{sup 2+}-oxidation site and competitively inhibits oxidation of both Mn{sup 2+} and ABTS. Moreover, mutations blocking the haem-propionate channel prevent substrate oxidation. This agrees with molecular simulations that position ABTS at an electron-transfer distance from the haem propionates of an in silico shortened-tail form, while it cannot reach this position in the extralong MnP crystal structure. Only small differences exist between the long and the extralong MnPs, which do not justify their

  7. Co-localization of neuropeptide tyrosine (NPY) and its C-terminal flanking peptide (C-PON).

    PubMed

    Gulbenkian, S; Wharton, J; Hacker, G W; Varndell, I M; Bloom, S R; Polak, J M

    1985-01-01

    Neuropeptide tyrosine (NPY) is one of the most abundant and widespread peptides in the mammalian nervous system. Recent isolation and sequencing of the DNA encoding NPY has predicted the existence of a 97 amino acid precursor peptide. Proteolytic processing of this precursor could yield three separate peptide products, an N-terminal signal peptide, neuropeptide tyrosine and a 30 amino acid C-terminal flanking peptide (C-PON). Here, we present evidence that the predicted C-flanking peptide of NPY is widely distributed in both the central and peripheral nervous systems of several mammalian species including man, and has an identical distribution to NPY. It was also demonstrated, using correlative light microscopic immunostaining on serial sections and double electron microscopic immunocytochemistry, that C-PON and NPY immunoreactivities are co-localized in neuronal cell bodies of the brain cortex, sympathetic ganglion cells, norepinephrine-containing granules of the adrenal medulla and in human pheochromocytoma tumor cells.

  8. Crystallization of the C-terminal domain of the mouse brain cytosolic long-chain acyl-CoA thioesterase

    SciTech Connect

    Serek, Robert; Forwood, Jade K.; Hume, David A.; Martin, Jennifer L.; Kobe, Bostjan

    2006-02-01

    The C-terminal domain of the mouse long-chain acyl-CoA thioesterase has been expressed in bacteria and crystallized by vapour diffusion. The crystals diffract to 2.4 Å resolution. The mammalian long-chain acyl-CoA thioesterase, the enzyme that catalyses the hydrolysis of acyl-CoAs to free fatty acids, contains two fused 4HBT (4-hydroxybenzoyl-CoA thioesterase) motifs. The C-terminal domain of the mouse long-chain acyl-CoA thioesterase (Acot7) has been expressed in bacteria and crystallized. The crystals were obtained by vapour diffusion using PEG 2000 MME as precipitant at pH 7.0 and 290 K. The crystals have the symmetry of space group R32 (unit-cell parameters a = b = 136.83, c = 99.82 Å, γ = 120°). Two molecules are expected in the asymmetric unit. The crystals diffract to 2.4 Å resolution using the laboratory X-ray source and are suitable for crystal structure determination.

  9. Adaptive Evolution Has Targeted the C-Terminal Domain of the RXLR Effectors of Plant Pathogenic Oomycetes[W

    PubMed Central

    Win, Joe; Morgan, William; Bos, Jorunn; Krasileva, Ksenia V.; Cano, Liliana M.; Chaparro-Garcia, Angela; Ammar, Randa; Staskawicz, Brian J.; Kamoun, Sophien

    2007-01-01

    Oomycete plant pathogens deliver effector proteins inside host cells to modulate plant defense circuitry and to enable parasitic colonization. These effectors are defined by a conserved motif, termed RXLR (for Arg, any amino acid, Leu, Arg), that is located downstream of the signal peptide and that has been implicated in host translocation. Because the phenotypes of RXLR effectors extend to plant cells, their genes are expected to be the direct target of the evolutionary forces that drive the antagonistic interplay between pathogen and host. We used the draft genome sequences of three oomycete plant pathogens, Phytophthora sojae, Phytophthora ramorum, and Hyaloperonospora parasitica, to generate genome-wide catalogs of RXLR effector genes and determine the extent to which these genes are under positive selection. These analyses revealed that the RXLR sequence is overrepresented and positionally constrained in the secretome of Phytophthora relative to other eukaryotes. The three examined plant pathogenic oomycetes carry complex and diverse sets of RXLR effector genes that have undergone relatively rapid birth and death evolution. We obtained robust evidence of positive selection in more than two-thirds of the examined paralog families of RXLR effectors. Positive selection has acted for the most part on the C-terminal region, consistent with the view that RXLR effectors are modular, with the N terminus involved in secretion and host translocation and the C-terminal domain dedicated to modulating host defenses inside plant cells. PMID:17675403

  10. Insights into the Functional Roles of N-Terminal and C-Terminal Domains of Helicobacter pylori DprA

    PubMed Central

    Dwivedi, Gajendradhar R.; Srikanth, Kolluru D.; Anand, Praveen; Naikoo, Javed; Srilatha, N. S.; Rao, Desirazu N.

    2015-01-01

    DNA processing protein A (DprA) plays a crucial role in the process of natural transformation. This is accomplished through binding and subsequent protection of incoming foreign DNA during the process of internalization. DprA along with Single stranded DNA binding protein A (SsbA) acts as an accessory factor for RecA mediated DNA strand exchange. H. pylori DprA (HpDprA) is divided into an N-terminal domain and a C- terminal domain. In the present study, individual domains of HpDprA have been characterized for their ability to bind single stranded (ssDNA) and double stranded DNA (dsDNA). Oligomeric studies revealed that HpDprA possesses two sites for dimerization which enables HpDprA to form large and tightly packed complexes with ss and dsDNA. While the N-terminal domain was found to be sufficient for binding with ss or ds DNA, C-terminal domain has an important role in the assembly of poly-nucleoprotein complex. Using site directed mutagenesis approach, we show that a pocket comprising positively charged amino acids in the N-terminal domain has an important role in the binding of ss and dsDNA. Together, a functional cross talk between the two domains of HpDprA facilitating the binding and formation of higher order complex with DNA is discussed. PMID:26135134

  11. Insights into the Functional Roles of N-Terminal and C-Terminal Domains of Helicobacter pylori DprA.

    PubMed

    Dwivedi, Gajendradhar R; Srikanth, Kolluru D; Anand, Praveen; Naikoo, Javed; Srilatha, N S; Rao, Desirazu N

    2015-01-01

    DNA processing protein A (DprA) plays a crucial role in the process of natural transformation. This is accomplished through binding and subsequent protection of incoming foreign DNA during the process of internalization. DprA along with Single stranded DNA binding protein A (SsbA) acts as an accessory factor for RecA mediated DNA strand exchange. H. pylori DprA (HpDprA) is divided into an N-terminal domain and a C- terminal domain. In the present study, individual domains of HpDprA have been characterized for their ability to bind single stranded (ssDNA) and double stranded DNA (dsDNA). Oligomeric studies revealed that HpDprA possesses two sites for dimerization which enables HpDprA to form large and tightly packed complexes with ss and dsDNA. While the N-terminal domain was found to be sufficient for binding with ss or ds DNA, C-terminal domain has an important role in the assembly of poly-nucleoprotein complex. Using site directed mutagenesis approach, we show that a pocket comprising positively charged amino acids in the N-terminal domain has an important role in the binding of ss and dsDNA. Together, a functional cross talk between the two domains of HpDprA facilitating the binding and formation of higher order complex with DNA is discussed. PMID:26135134

  12. RAD51AP2, a novel vertebrate- and meiotic-specific protein, shares a conserved RAD51-interacting C-terminal domain with RAD51AP1/PIR51

    PubMed Central

    Kovalenko, Oleg V.; Wiese, Claudia; Schild, David

    2006-01-01

    Many interacting proteins regulate and/or assist the activities of RAD51, a recombinase which plays a critical role in both DNA repair and meiotic recombination. Yeast two-hybrid screening of a human testis cDNA library revealed a new protein, RAD51AP2 (RAD51 Associated Protein 2), that interacts strongly with RAD51. A full-length cDNA clone predicts a novel vertebrate-specific protein of 1159 residues, and the RAD51AP2 transcript was observed only in meiotic tissue (i.e. adult testis and fetal ovary), suggesting a meiotic-specific function for RAD51AP2. In HEK293 cells the interaction of RAD51 with an ectopically-expressed recombinant large fragment of RAD51AP2 requires the C-terminal 57 residues of RAD51AP2. This RAD51-binding region shows 81% homology to the C-terminus of RAD51AP1/PIR51, an otherwise totally unrelated RAD51-binding partner that is ubiquitously expressed. Analyses using truncations and point mutations in both RAD51AP1 and RAD51AP2 demonstrate that these proteins use the same structural motif for RAD51 binding. RAD54 shares some homology with this RAD51-binding motif, but this homologous region plays only an accessory role to the adjacent main RAD51-interacting region, which has been narrowed here to 40 amino acids. A novel protein, RAD51AP2, has been discovered that interacts with RAD51 through a C-terminal motif also present in RAD51AP1. PMID:16990250

  13. Biochemical characterization of Yarrowia lipolytica LIP8, a secreted lipase with a cleavable C-terminal region.

    PubMed

    Kamoun, Jannet; Schué, Mathieu; Messaoud, Wala; Baignol, Justine; Point, Vanessa; Mateos-Diaz, Eduardo; Mansuelle, Pascal; Gargouri, Youssef; Parsiegla, Goetz; Cavalier, Jean-François; Carrière, Frédéric; Aloulou, Ahmed

    2015-02-01

    Yarrowia lipolytica is a lipolytic yeast possessing 16 paralog genes coding for lipases. Little information on these lipases has been obtained and only the major secreted lipase, namely YLLIP2, had been biochemically and structurally characterized. Another secreted lipase, YLLIP8, was isolated from Y. lipolytica culture medium and compared with the recombinant enzyme produced in Pichia pastoris. N-terminal sequencing showed that YLLIP8 is produced in its active form after the cleavage of a signal peptide. Mass spectrometry analysis revealed that YLLIP8 recovered from culture medium lacks a C-terminal part of 33 amino acids which are present in the coding sequence. A 3D model of YLLIP8 built from the X-ray structure of the homologous YLLIP2 lipase shows that these truncated amino acids in YLLIP8 belong to an additional C-terminal region predicted to be mainly helical. Western blot analysis shows that YLLIP8 C-tail is rapidly cleaved upon enzyme secretion since both cell-bound and culture supernatant lipases lack this extension. Mature recombinant YLLIP8 displays a true lipase activity on short-, medium- and long-chain triacylglycerols (TAG), with an optimum activity at alkaline pH on medium chain TAG. It has no apparent regioselectivity in TAG hydrolysis, thus generating glycerol and FFAs as final lipolysis products. YLLIP8 properties are distinct from those of the 1,3-regioselective YLLIP2, acting optimally at acidic pH. These lipases are tailored for complementary roles in fatty acid uptake by Y. lipolytica. PMID:25449652

  14. Biochemical characterization of Yarrowia lipolytica LIP8, a secreted lipase with a cleavable C-terminal region.

    PubMed

    Kamoun, Jannet; Schué, Mathieu; Messaoud, Wala; Baignol, Justine; Point, Vanessa; Mateos-Diaz, Eduardo; Mansuelle, Pascal; Gargouri, Youssef; Parsiegla, Goetz; Cavalier, Jean-François; Carrière, Frédéric; Aloulou, Ahmed

    2015-02-01

    Yarrowia lipolytica is a lipolytic yeast possessing 16 paralog genes coding for lipases. Little information on these lipases has been obtained and only the major secreted lipase, namely YLLIP2, had been biochemically and structurally characterized. Another secreted lipase, YLLIP8, was isolated from Y. lipolytica culture medium and compared with the recombinant enzyme produced in Pichia pastoris. N-terminal sequencing showed that YLLIP8 is produced in its active form after the cleavage of a signal peptide. Mass spectrometry analysis revealed that YLLIP8 recovered from culture medium lacks a C-terminal part of 33 amino acids which are present in the coding sequence. A 3D model of YLLIP8 built from the X-ray structure of the homologous YLLIP2 lipase shows that these truncated amino acids in YLLIP8 belong to an additional C-terminal region predicted to be mainly helical. Western blot analysis shows that YLLIP8 C-tail is rapidly cleaved upon enzyme secretion since both cell-bound and culture supernatant lipases lack this extension. Mature recombinant YLLIP8 displays a true lipase activity on short-, medium- and long-chain triacylglycerols (TAG), with an optimum activity at alkaline pH on medium chain TAG. It has no apparent regioselectivity in TAG hydrolysis, thus generating glycerol and FFAs as final lipolysis products. YLLIP8 properties are distinct from those of the 1,3-regioselective YLLIP2, acting optimally at acidic pH. These lipases are tailored for complementary roles in fatty acid uptake by Y. lipolytica.

  15. C-terminal-truncated apolipoprotein (apo) E4 inefficiently clears amyloid-β (Aβ) and acts in concert with Aβ to elicit neuronal and behavioral deficits in mice

    PubMed Central

    Bien-Ly, Nga; Andrews-Zwilling, Yaisa; Xu, Qin; Bernardo, Aubrey; Wang, Charles; Huang, Yadong

    2011-01-01

    Apolipoprotein (apo) E4 is the major known genetic risk factor for Alzheimer's disease (AD). We have shown in vitro and in vivo that apoE4 preferentially undergoes aberrant cleavage in neurons, yielding neurotoxic C-terminal-truncated fragments. To study the effect of these fragments on amyloid-β (Aβ) clearance/deposition and their potential synergy with Aβ in eliciting neuronal and behavioral deficits, we cross-bred transgenic mice expressing apoE3, apoE4, or apoE4(Δ272–299) with mice expressing human amyloid protein precursor (APP) harboring familial AD mutations (hAPPFAD). At 6–8 mo of age, hAPPFAD mice expressing apoE3 or apoE4 had lower levels of hippocampal Aβ (94% and 89%, respectively) and less Aβ deposition (89% and 87%) than hAPPFAD mice without apoE, whereas hAPPFAD mice expressing mouse apoE had higher Aβ levels. Thus, human apoE stimulates Aβ clearance, but mouse apoE does not. Expression of apoE4(Δ272–299) reduced total Aβ levels by only 63% and Aβ deposition by 46% compared with hAPPFAD mice without apoE. Unlike apoE3 and apoE4, the C-terminal-truncated apoE4 bound poorly with Aβ peptides, leading to decreased Aβ clearance and increased Aβ deposition. Despite their lower levels of Aβ and Aβ deposition, hAPPFAD/apoE4(Δ272–299) mice accumulated pathogenic Aβ oligomers and displayed neuronal and behavioral deficits similar to or more severe than those in hAPPFAD mice. Thus, the C-terminal-truncated apoE4 fragment inefficiently clears Aβ peptides and acts in concert with low levels of Aβ to elicit neuronal and behavioral deficits in mice. PMID:21368138

  16. C-terminal residues of plant glutamate decarboxylase are required for oligomerization of a high-molecular weight complex and for activation by calcium/calmodulin.

    PubMed

    Zik, Moriyah; Fridmann-Sirkis, Yael; Fromm, Hillel

    2006-05-01

    Bacterial glutamate decarboxylase (GAD) is a homohexameric enzyme of about 330 kDa. Plant GAD differs from the bacterial enzyme in having a C-terminal extension of 33 amino acids within which resides a calmodulin (CaM)-binding domain. In order to assess the role of the C-terminal extension in the formation of GAD complexes and in activation by Ca2+/CaM, we examined complexes formed with the purified full-length recombinant petunia GAD expressed in E. coli, and with a 9 amino acid C-terminal deletion mutant (GADDeltaC9). Size exclusion chromatography revealed that the full-length GAD formed complexes of about 580 kDa and 300 kDa in the absence of Ca2+/CaM, whereas in the presence of Ca2+/CaM all complexes shifted to approximately 680 kDa. With deletion of 9 amino acids from the C-terminus (KKKKTNRVC(500)), the ability to bind CaM in the presence of Ca2+, and to purify it by CaM-affinity chromatography was retained, but the formation of GAD complexes larger than 340 kDa and enzyme activation by Ca2+/CaM were completely abolished. Hence, responsiveness to Ca2+/CaM is associated with the formation of protein complexes of 680 kDa, and requires some or all of the nine C-terminal amino acid residues. We suggest that evolution of plant GAD from a bacterial ancestral enzyme involved the formation of higher molecular weight complexes required for activation by Ca2+/CaM.

  17. Critical role for Orai1 C-terminal domain and TM4 in CRAC channel gating

    PubMed Central

    Palty, Raz; Stanley, Cherise; Isacoff, Ehud Y

    2015-01-01

    Calcium flux through store-operated calcium entry is a major regulator of intracellular calcium homeostasis and various calcium signaling pathways. Two key components of the store-operated calcium release-activated calcium channel are the Ca2+-sensing protein stromal interaction molecule 1 (STIM1) and the channel pore-forming protein Orai1. Following calcium depletion from the endoplasmic reticulum, STIM1 undergoes conformational changes that unmask an Orai1-activating domain called CAD. CAD binds to two sites in Orai1, one in the N terminal and one in the C terminal. Most previous studies suggested that gating is initiated by STIM1 binding at the Orai1 N-terminal site, just proximal to the TM1 pore-lining segment, and that binding at the C terminal simply anchors STIM1 within reach of the N terminal. However, a recent study had challenged this view and suggested that the Orai1 C-terminal region is more than a simple STIM1-anchoring site. In this study, we establish that the Orai1 C-terminal domain plays a direct role in gating. We identify a linker region between TM4 and the C-terminal STIM1-binding segment of Orai1 as a key determinant that couples STIM1 binding to gating. We further find that Proline 245 in TM4 of Orai1 is essential for stabilizing the closed state of the channel. Taken together with previous studies, our results suggest a dual-trigger mechanism of Orai1 activation in which binding of STIM1 at the N- and C-terminal domains of Orai1 induces rearrangements in proximal membrane segments to open the channel. PMID:26138675

  18. Prediction of bacterial type IV secreted effectors by C-terminal features

    PubMed Central

    2014-01-01

    Background Many bacteria can deliver pathogenic proteins (effectors) through type IV secretion systems (T4SSs) to eukaryotic cytoplasm, causing host diseases. The inherent property, such as sequence diversity and global scattering throughout the whole genome, makes it a big challenge to effectively identify the full set of T4SS effectors. Therefore, an effective inter-species T4SS effector prediction tool is urgently needed to help discover new effectors in a variety of bacterial species, especially those with few known effectors, e.g., Helicobacter pylori. Results In this research, we first manually annotated a full list of validated T4SS effectors from different bacteria and then carefully compared their C-terminal sequential and position-specific amino acid compositions, possible motifs and structural features. Based on the observed features, we set up several models to automatically recognize T4SS effectors. Three of the models performed strikingly better than the others and T4SEpre_Joint had the best performance, which could distinguish the T4SS effectors from non-effectors with a 5-fold cross-validation sensitivity of 89% at a specificity of 97%, based on the training datasets. An inter-species cross prediction showed that T4SEpre_Joint could recall most known effectors from a variety of species. The inter-species prediction tool package, T4SEpre, was further used to predict new T4SS effectors from H. pylori, an important human pathogen associated with gastritis, ulcer and cancer. In total, 24 new highly possible H. pylori T4S effector genes were computationally identified. Conclusions We conclude that T4SEpre, as an effective inter-species T4SS effector prediction software package, will help find new pathogenic T4SS effectors efficiently in a variety of pathogenic bacteria. PMID:24447430

  19. A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2.

    PubMed

    Wong, Swee Kee; Li, Wenhui; Moore, Michael J; Choe, Hyeryun; Farzan, Michael

    2004-01-30

    The coronavirus spike (S) protein mediates infection of receptor-expressing host cells and is a critical target for antiviral neutralizing antibodies. Angiotensin-converting enzyme 2 (ACE2) is a functional receptor for the coronavirus (severe acute respiratory syndrome (SARS)-CoV) that causes SARS. Here we demonstrate that a 193-amino acid fragment of the S protein (residues 318-510) bound ACE2 more efficiently than did the full S1 domain (residues 12-672). Smaller S protein fragments, expressing residues 327-510 or 318-490, did not detectably bind ACE2. A point mutation at aspartic acid 454 abolished association of the full S1 domain and of the 193-residue fragment with ACE2. The 193-residue fragment blocked S protein-mediated infection with an IC(50) of less than 10 nm, whereas the IC(50) of the S1 domain was approximately 50 nm. These data identify an independently folded receptor-binding domain of the SARS-CoV S protein.

  20. Crystal Structure of the C-terminal Region of Streptococcus mutans Antigen I/II and Characterization of Salivary Agglutinin Adherence Domains

    SciTech Connect

    Larson, Matthew R.; Rajashankar, Kanagalaghatta R.; Crowley, Paula J.; Kelly, Charles; Mitchell, Tim J.; Brady, L. Jeannine; Deivanayagam, Champion

    2012-05-29

    The Streptococcus mutans antigen I/II (AgI/II) is a cell surface-localized protein that adheres to salivary components and extracellular matrix molecules. Here we report the 2.5 {angstrom} resolution crystal structure of the complete C-terminal region of AgI/II. The C-terminal region is comprised of three major domains: C{sub 1}, C{sub 2}, and C{sub 3}. Each domain adopts a DE-variant IgG fold, with two {beta}-sheets whose A and F strands are linked through an intramolecular isopeptide bond. The adherence of the C-terminal AgI/II fragments to the putative tooth surface receptor salivary agglutinin (SAG), as monitored by surface plasmon resonance, indicated that the minimal region of binding was contained within the first and second DE-variant-IgG domains (C{sub 1} and C{sub 2}) of the C terminus. The minimal C-terminal region that could inhibit S. mutans adherence to SAG was also confirmed to be within the C{sub 1} and C{sub 2} domains. Competition experiments demonstrated that the C- and N-terminal regions of AgI/II adhere to distinct sites on SAG. A cleft formed at the intersection between these C{sub 1} and C{sub 2} domains bound glucose molecules from the cryo-protectant solution, revealing a putative binding site for its highly glycosylated receptor SAG. Finally, electron microscopy images confirmed the elongated structure of AgI/II and enabled building a composite tertiary model that encompasses its two distinct binding regions.

  1. Competitive fragmentation pathways of acetic acid dimer explored by synchrotron VUV photoionization mass spectrometry and electronic structure calculations

    SciTech Connect

    Guan Jiwen; Hu Yongjun; Zou Hao; Cao Lanlan; Liu Fuyi; Shan Xiaobin; Sheng Liusi

    2012-09-28

    In present study, photoionization and dissociation of acetic acid dimers have been studied with the synchrotron vacuum ultraviolet photoionization mass spectrometry and theoretical calculations. Besides the intense signal corresponding to protonated cluster ions (CH{sub 3}COOH){sub n}{center_dot}H{sup +}, the feature related to the fragment ions (CH{sub 3}COOH)H{sup +}{center_dot}COO (105 amu) via {beta}-carbon-carbon bond cleavage is observed. By scanning photoionization efficiency spectra, appearance energies of the fragments (CH{sub 3}COOH){center_dot}H{sup +} and (CH{sub 3}COOH)H{sup +}{center_dot}COO are obtained. With the aid of theoretical calculations, seven fragmentation channels of acetic acid dimer cations were discussed, where five cation isomers of acetic acid dimer are involved. While four of them are found to generate the protonated species, only one of them can dissociate into a C-C bond cleavage product (CH{sub 3}COOH)H{sup +}{center_dot}COO. After surmounting the methyl hydrogen-transfer barrier 10.84 {+-} 0.05 eV, the opening of dissociative channel to produce ions (CH{sub 3}COOH){sup +} becomes the most competitive path. When photon energy increases to 12.4 eV, we also found dimer cations can be fragmented and generate new cations (CH{sub 3}COOH){center_dot}CH{sub 3}CO{sup +}. Kinetics, thermodynamics, and entropy factors for these competitive dissociation pathways are discussed. The present report provides a clear picture of the photoionization and dissociation processes of the acetic acid dimer in the range of the photon energy 9-15 eV.

  2. Alpha-A crystallin: quantitation of C-terminal modification during lens aging

    NASA Technical Reports Server (NTRS)

    Takemoto, L.; Gopalakrishnan, S.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Previous studies have demonstrated that the C-terminal region of alpha-A crystallin is susceptible to age-dependent, posttranslational modification. To quantitate the amount of modification, alpha-A crystallin was purified from total proteins of the aging bovine lens, then digested with lys-C endoproteinase. Reverse phase, high pressure liquid chromatography was used to resolve and quantitate the resulting peptides, to determine the amount of C-terminal peptide relative to peptides from other regions of the protein that have not been reported to undergo modification. The results indicate that relative to alpha-A crystallin from newborn lens, posttranslational modification has occurred in approximately 45-55% of the C-terminal region from mature lens. These results demonstrate extensive modification of the C-terminal region of alpha-A crystallin from the mature lens, indicating that during the aging process, posttranslational modifications in this region may make significant contributions to the aggregated state and/or molecular chaperone properties of the molecule.

  3. Defining the Intrinsically Disordered C-Terminal Domain of SSB Reveals DNA-Mediated Compaction.

    PubMed

    Green, Matthew; Hatter, Louise; Brookes, Emre; Soultanas, Panos; Scott, David J

    2016-01-29

    The bacterial single-stranded DNA (ssDNA) binding protein SSB is a strictly conserved and essential protein involved in diverse functions of DNA metabolism, including replication and repair. SSB comprises a well-characterized tetrameric core of N-terminal oligonucleotide binding OB folds that bind ssDNA and four intrinsically disordered C-terminal domains of unknown structure that interact with partner proteins. The generally accepted, albeit speculative, mechanistic model in the field postulates that binding of ssDNA to the OB core induces the flexible, undefined C-terminal arms to expand outwards encouraging functional interactions with partner proteins. In this structural study, we show that the opposite is true. Combined small-angle scattering with X-rays and neutrons coupled to coarse-grained modeling reveal that the intrinsically disordered C-terminal arms are relatively collapsed around the tetrameric OB core and collapse further upon ssDNA binding. This implies a mechanism of action, in which the disordered C-terminal domain collapse traps the ssDNA and pulls functional partners onto the ssDNA. PMID:26707201

  4. The C-terminal tail of the polycystin-1 protein interacts with the Na,K-ATPase alpha-subunit.

    PubMed

    Zatti, Alessandra; Chauvet, Veronique; Rajendran, Vanathy; Kimura, Thoru; Pagel, Phillip; Caplan, Michael J

    2005-11-01

    Polycystin-1 (PC-1) is the product of the PKD1 gene, which is mutated in autosomal dominant polycystic kidney disease. We show that the Na,K-ATPase alpha-subunit interacts in vitro and in vivo with the final 200 amino acids of the polycystin-1 protein, which constitute its cytoplasmic C-terminal tail. Functional studies suggest that this association may play a role in the regulation of the Na,K-ATPase activity. Chinese hamster ovary cells stably expressing the entire PC-1 protein exhibit a dramatic increase in Na,K-ATPase activity, although the kinetic properties of the enzyme remain unchanged. These data indicate that polycystin-1 may contribute to the regulation of Na,K-ATPase activity in kidneys in situ, thus modulating renal tubular fluid and electrolyte transport.

  5. The C-Terminal Tail of the Polycystin-1 Protein Interacts with the Na,K-ATPase α-Subunit

    PubMed Central

    Zatti, Alessandra; Chauvet, Veronique; Rajendran, Vanathy; Kimura, Thoru; Pagel, Phillip; Caplan, Michael J.

    2005-01-01

    Polycystin-1 (PC-1) is the product of the PKD1 gene, which is mutated in autosomal dominant polycystic kidney disease. We show that the Na,K-ATPase α-subunit interacts in vitro and in vivo with the final 200 amino acids of the polycystin-1 protein, which constitute its cytoplasmic C-terminal tail. Functional studies suggest that this association may play a role in the regulation of the Na,K-ATPase activity. Chinese hamster ovary cells stably expressing the entire PC-1 protein exhibit a dramatic increase in Na,K-ATPase activity, although the kinetic properties of the enzyme remain unchanged. These data indicate that polycystin-1 may contribute to the regulation of Na,K-ATPase activity in kidneys in situ, thus modulating renal tubular fluid and electrolyte transport. PMID:16107561

  6. Requirement of novel amino acid fragments of orphan nuclear receptor TR3/Nur77 for its functions in angiogenesis

    PubMed Central

    Grant, Marianne A.; Peng, Jin; Ye, Taiyang; Zhao, Dezheng; Zeng, Huiyan

    2015-01-01

    Pathological angiogenesis is a hallmark of many diseases. We demonstrated that TR3/Nur77 is an excellent target for pro-angiogenesis and anti-angiogenesis therapies. Here, we report that TR3 transcriptionally regulates endothelial cell migration, permeability and the formation of actin stress fibers that is independent of RhoA GTPase. 1) Amino acid residues 344-GRR-346 and de-phosphorylation of amino acid residue serine 351 in the DNA binding domain, and 2) phosphorylation of amino acid residues in the 41-61 amino acid fragment of the transactivation domain, of TR3 are required for its induction of the formation of actin stress fibers, cell proliferation, migration and permeability. The 41-61 amino acid fragment contains one of the three potential protein interaction motifs in the transactivation domain of TR3, predicted by computational modeling and analysis. These studies further our understanding of the molecular mechanism, by which TR3 regulates angiogenesis, identify novel therapeutic targeted sites of TR3, and set the foundation for the development of high-throughput screening assays to identify compounds targeting TR3/Nur77 for pro-angiogenesis and anti-angiogenesis therapies. PMID:26155943

  7. Purification, crystallization and X-ray diffraction analysis of the C-terminal protease domain of Venezuelan equine encephalitis virus nsP2

    PubMed Central

    Russo, Andrew T.; Watowich, Stanley J.

    2006-01-01

    The C-terminal region of Venezuelan equine encephalitis virus (VEEV) nsP2 is responsible for proteolytic processing of the VEEV polyprotein replication complex. This action regulates the activity of the replication complex and is essential for viral replication, thus making nsP2 a very attractive target for development of VEEV therapeutics. The 338-amino-acid C-terminal region of VEEV nsP2 has been overexpressed in Escherichia coli, purified and crystallized. Crystals diffract to beyond 2.5 Å resolution and belong to the orthorhombic space group P212121. Isomorphous heavy-atom derivatives suitable for phase analysis have been obtained and work on building a complete structural model is under way. PMID:16754969

  8. C-terminal truncation of RAP1 results in the deregulation of telomere size, stability, and function in Saccharomyces cerevisiae.

    PubMed Central

    Kyrion, G; Boakye, K A; Lustig, A J

    1992-01-01

    The Saccharomyces cerevisiae DNA-binding protein RAP1 is capable of binding in vitro to sequences from a wide variety of genomic loci, including upstream activating sequence elements, the HML and HMR silencer regions, and the poly(G1-3T) tracts of telomeres. Recent biochemical and genetic studies have suggested that RAP1 physically and functionally interacts with the yeast telomere. To further investigate the role of RAP1 at the telomere, we have identified and characterized three intragenic suppressors of a temperature-sensitive allele of RAP1, rap1-5. These telomere deficiency (rap1t) alleles confer several novel phenotypes. First, telomere tract size elongates to up to 4 kb greater than sizes of wild-type or rap1-5 telomeres. Second, telomeres are highly unstable and are subject to rapid, but reversible, deletion of part or all of the increase in telomeric tract length. Telomeric deletion does not require the RAD52 or RAD1 gene product. Third, chromosome loss and nondisjunction rates are elevated 15- to 30-fold above wild-type levels. Sequencing analysis has shown that each rap1t allele contains a nonsense mutation within a discrete region between amino acids 663 and 684. Mobility shift and Western immunoblot analyses indicate that each allele produces a truncated RAP1 protein, lacking the C-terminal 144 to 165 amino acids but capable of efficient DNA binding. These data suggest that RAP1 is a central regulator of both telomere and chromosome stability and define a C-terminal domain that, while dispensable for viability, is required for these telomeric functions. Images PMID:1406688

  9. Evidence for new C-terminally truncated variants of α- and β-tubulins.

    PubMed

    Aillaud, Chrystelle; Bosc, Christophe; Saoudi, Yasmina; Denarier, Eric; Peris, Leticia; Sago, Laila; Taulet, Nicolas; Cieren, Adeline; Tort, Olivia; Magiera, Maria M; Janke, Carsten; Redeker, Virginie; Andrieux, Annie; Moutin, Marie-Jo

    2016-02-15

    Cellular α-tubulin can bear various carboxy-terminal sequences: full-length tubulin arising from gene neosynthesis is tyrosinated, and two truncated variants, corresponding to detyrosinated and Δ2 α‑tubulin, result from the sequential cleavage of one or two C-terminal residues, respectively. Here, by using a novel antibody named 3EG that is highly specific to the -EEEG C-terminal sequence, we demonstrate the occurrence in neuronal tissues of a new αΔ3‑tubulin variant corresponding to α1A/B‑tubulin deleted of its last three residues (EEY). αΔ3‑tubulin has a specific distribution pattern: its quantity in the brain is similar to that of αΔ2-tubulin around birth but is much lower in adult tissue. This truncated α1A/B-tubulin variant can be generated from αΔ2-tubulin by the deglutamylases CCP1, CCP4, CCP5, and CCP6 but not by CCP2 and CCP3. Moreover, using 3EG antibody, we identify a C‑terminally truncated β-tubulin form with the same -EEEG C-terminal sequence. Using mass spectrometry, we demonstrate that β2A/B-tubulin is modified by truncation of the four C-terminal residues (EDEA). We show that this newly identified βΔ4-tubulin is ubiquitously present in cells and tissues and that its level is constant throughout the cell cycle. These new C-terminally truncated α- and β-tubulin variants, both ending with -EEEG sequence, are expected to regulate microtubule physiology. Of interest, the αΔ3-tubulin seems to be related to dynamic microtubules, resembling tyrosinated-tubulin rather than the other truncated variants, and may have critical function(s) in neuronal development. PMID:26739754

  10. Evidence for new C-terminally truncated variants of α- and β-tubulins

    PubMed Central

    Aillaud, Chrystelle; Bosc, Christophe; Saoudi, Yasmina; Denarier, Eric; Peris, Leticia; Sago, Laila; Taulet, Nicolas; Cieren, Adeline; Tort, Olivia; Magiera, Maria M.; Janke, Carsten; Redeker, Virginie; Andrieux, Annie; Moutin, Marie-Jo

    2016-01-01

    Cellular α-tubulin can bear various carboxy-terminal sequences: full-length tubulin arising from gene neosynthesis is tyrosinated, and two truncated variants, corresponding to detyrosinated and Δ2 α‑tubulin, result from the sequential cleavage of one or two C-terminal residues, respectively. Here, by using a novel antibody named 3EG that is highly specific to the –EEEG C-terminal sequence, we demonstrate the occurrence in neuronal tissues of a new αΔ3‑tubulin variant corresponding to α1A/B‑tubulin deleted of its last three residues (EEY). αΔ3‑tubulin has a specific distribution pattern: its quantity in the brain is similar to that of αΔ2-tubulin around birth but is much lower in adult tissue. This truncated α1A/B-tubulin variant can be generated from αΔ2-tubulin by the deglutamylases CCP1, CCP4, CCP5, and CCP6 but not by CCP2 and CCP3. Moreover, using 3EG antibody, we identify a C‑terminally truncated β-tubulin form with the same –EEEG C-terminal sequence. Using mass spectrometry, we demonstrate that β2A/B-tubulin is modified by truncation of the four C-terminal residues (EDEA). We show that this newly identified βΔ4-tubulin is ubiquitously present in cells and tissues and that its level is constant throughout the cell cycle. These new C-terminally truncated α- and β-tubulin variants, both ending with –EEEG sequence, are expected to regulate microtubule physiology. Of interest, the αΔ3-tubulin seems to be related to dynamic microtubules, resembling tyrosinated-tubulin rather than the other truncated variants, and may have critical function(s) in neuronal development. PMID:26739754

  11. A Conserved Interaction between a C-Terminal Motif in Norovirus VPg and the HEAT-1 Domain of eIF4G Is Essential for Translation Initiation.

    PubMed

    Leen, Eoin N; Sorgeloos, Frédéric; Correia, Samantha; Chaudhry, Yasmin; Cannac, Fabien; Pastore, Chiara; Xu, Yingqi; Graham, Stephen C; Matthews, Stephen J; Goodfellow, Ian G; Curry, Stephen

    2016-01-01

    Translation initiation is a critical early step in the replication cycle of the positive-sense, single-stranded RNA genome of noroviruses, a major cause of gastroenteritis in humans. Norovirus RNA, which has neither a 5´ m7G cap nor an internal ribosome entry site (IRES), adopts an unusual mechanism to initiate protein synthesis that relies on interactions between the VPg protein covalently attached to the 5´-end of the viral RNA and eukaryotic initiation factors (eIFs) in the host cell. For murine norovirus (MNV) we previously showed that VPg binds to the middle fragment of eIF4G (4GM; residues 652-1132). Here we have used pull-down assays, fluorescence anisotropy, and isothermal titration calorimetry (ITC) to demonstrate that a stretch of ~20 amino acids at the C terminus of MNV VPg mediates direct and specific binding to the HEAT-1 domain within the 4GM fragment of eIF4G. Our analysis further reveals that the MNV C terminus binds to eIF4G HEAT-1 via a motif that is conserved in all known noroviruses. Fine mutagenic mapping suggests that the MNV VPg C terminus may interact with eIF4G in a helical conformation. NMR spectroscopy was used to define the VPg binding site on eIF4G HEAT-1, which was confirmed by mutagenesis and binding assays. We have found that this site is non-overlapping with the binding site for eIF4A on eIF4G HEAT-1 by demonstrating that norovirus VPg can form ternary VPg-eIF4G-eIF4A complexes. The functional significance of the VPg-eIF4G interaction was shown by the ability of fusion proteins containing the C-terminal peptide of MNV VPg to inhibit in vitro translation of norovirus RNA but not cap- or IRES-dependent translation. These observations define important structural details of a functional interaction between norovirus VPg and eIF4G and reveal a binding interface that might be exploited as a target for antiviral therapy.

  12. A Conserved Interaction between a C-Terminal Motif in Norovirus VPg and the HEAT-1 Domain of eIF4G Is Essential for Translation Initiation

    PubMed Central

    Leen, Eoin N.; Sorgeloos, Frédéric; Correia, Samantha; Chaudhry, Yasmin; Cannac, Fabien; Pastore, Chiara; Xu, Yingqi; Graham, Stephen C.; Matthews, Stephen J.; Goodfellow, Ian G.; Curry, Stephen

    2016-01-01

    Translation initiation is a critical early step in the replication cycle of the positive-sense, single-stranded RNA genome of noroviruses, a major cause of gastroenteritis in humans. Norovirus RNA, which has neither a 5´ m7G cap nor an internal ribosome entry site (IRES), adopts an unusual mechanism to initiate protein synthesis that relies on interactions between the VPg protein covalently attached to the 5´-end of the viral RNA and eukaryotic initiation factors (eIFs) in the host cell. For murine norovirus (MNV) we previously showed that VPg binds to the middle fragment of eIF4G (4GM; residues 652–1132). Here we have used pull-down assays, fluorescence anisotropy, and isothermal titration calorimetry (ITC) to demonstrate that a stretch of ~20 amino acids at the C terminus of MNV VPg mediates direct and specific binding to the HEAT-1 domain within the 4GM fragment of eIF4G. Our analysis further reveals that the MNV C terminus binds to eIF4G HEAT-1 via a motif that is conserved in all known noroviruses. Fine mutagenic mapping suggests that the MNV VPg C terminus may interact with eIF4G in a helical conformation. NMR spectroscopy was used to define the VPg binding site on eIF4G HEAT-1, which was confirmed by mutagenesis and binding assays. We have found that this site is non-overlapping with the binding site for eIF4A on eIF4G HEAT-1 by demonstrating that norovirus VPg can form ternary VPg-eIF4G-eIF4A complexes. The functional significance of the VPg-eIF4G interaction was shown by the ability of fusion proteins containing the C-terminal peptide of MNV VPg to inhibit in vitro translation of norovirus RNA but not cap- or IRES-dependent translation. These observations define important structural details of a functional interaction between norovirus VPg and eIF4G and reveal a binding interface that might be exploited as a target for antiviral therapy. PMID:26734730

  13. The importance of L1 ORF2p cryptic sequence to ORF2p fragment-mediated cytotoxicity.

    PubMed

    Christian, Claiborne M; Kines, Kristine J; Belancio, Victoria P

    2016-01-01

    The Long Interspersed Element 1 (LINE1 or L1) ORF2 protein (ORF2p) can cause DNA damage through the activity of its endonuclease domain (EN). The DNA double-strand breaks (DSB) introduced by the ORF2p EN have the potential to be mutagenic. Previously, our lab has shown that ORF2p fragments containing the EN domain could be expressed in mammalian cells and have variable cytotoxicity. Inclusion of the ORF2p sequence C-terminal to the EN domain in these fragments both reduced the cytotoxicity of these fragments and increased their presence in the nucleus as detected by Western blot analysis. Here, we identify the amino acids (aa 270-274) in the newly-identified ORF2p Cryptic region (Cry) that may be important to the subcellular localization and cytotoxic potential of these EN-containing ORF2p fragments. PMID:27583184

  14. Relationship between pregnancy, embryo development, and sperm deoxyribonucleic acid fragmentation dynamics.

    PubMed

    Wdowiak, Artur; Bojar, Iwona

    2016-09-01

    The way the dynamics of DNA fragmentation affects the growth of embryos in real time, and effectiveness of infertility treatment using the ICSI procedure were determined in 148 couples treated with the ICSI technique. The percentage of sperm with fragmented DNA (known as the DNA fragmentation index [DFI]) in semen samples was determined at 3, 6 and 12 h. Embryo culture was assessed continuously during 12 h of observation monitoring. Statistically significant difference was found in DFI at 12 h and outcome of treatment. For the remaining time intervals, no statistically significant differences were noted. An analysis of relationship between the DFI dynamics over time at individual measurements and achievement of pregnancy, confirmed a statistically significant relationship between the rate measured at 6-12 h of observations of DFI changes (DFI 12 h%/h), and achieving pregnancy. Correlation was observed between DFI (during 0, 3, 6 and 12 h), the growth rate in DFI, and time of embryo development. A statistically significant relationship was found between the rate from the start to the end of observations of the DFI, and outcome of treatment. Intensity level regarding fragmentation of sperm DNA and its growth rate affected the time of embryo development in the ICSI procedure. The most significant prognostic factor for achieving pregnancy was intensification of sperm DNA fragmentation after 12 h. PMID:27579009

  15. Internal energy distribution of the NCO fragment from near-threshold photolysis of isocyanic acid, HNCO

    SciTech Connect

    Brown, S.S.; Berghout, H.L.; Crim, F.F.

    1996-05-09

    We report the first measurement of the vibrational- and rotational-state distributions in the NCO fragment resulting from photolysis of HNCO. Recent studies have drawn conclusions about the photochemistry of HNCO and the vibrational distribution in the NCO fragment from observations of kinetic energy distribution of the H atom produced in this photolysis; however, there has been no direct observation of the NCO fragment itself. We use laser-induced fluorescence to detect the nascent NCO photoproducts and spectral simulations to extract vibrational-state populations. The rotational distributions, where we can measure them, show little excitation, and the vibrational energy preferentially appears in the bending mode. The vibrational-state distribution results directly from the excited-state geometry of the HNCO parent, in which the NCO group is bent. The dissociation proceeds from this bent NCO group to a linear NCO fragment, strongly exciting the bending mode. We find about 65% of the total energy in relative translation of the fragments, while 30% goes into vibration and 5% into rotation of NCO. 49 refs., 7 figs., 2 tabs.

  16. Low Mass MS/MS Fragments of Protonated Amino Acids Used for Distinction of Their 13C- Isotopomers in Metabolic Studies

    NASA Astrophysics Data System (ADS)

    Ma, Xin; Dagan, Shai; Somogyi, Árpád; Wysocki, Vicki H.; Scaraffia, Patricia Y.

    2013-04-01

    Glu, Gln, Pro, and Ala are the main amino acids involved in ammonia detoxification in mosquitoes. In order to develop a tandem mass spectrometry method (MS2) to monitor each carbon of the above isotopically-labeled 13C-amino acids for metabolic studies, the compositions and origins of atoms in fragments of the protonated amino acid should be first elucidated. Thus, various electrospray (ESI)-based MS2 tools were employed to study the fragmentation of these unlabeled and isotopically-labeled amino acids and better understand their dissociation pathways. A broad range of fragments, including previously-undescribed low m/z fragments was revealed. The formulae of the fragments (from m/z 130 down to m/z 27) were confirmed by their accurate masses. The structures and conformations of the larger fragments of Glu were also explored by ion mobility mass spectrometry (IM-MS) and gas-phase hydrogen/deuterium exchange (HDX) experiments. It was found that some low m/z fragments ( m/z 27-30) are common to Glu, Gln, Pro, and Ala. The origins of carbons in these small fragments are discussed and additional collision induced dissociation (CID) MS2 fragmentation pathways are proposed for them. It was also found that small fragments (≤ m/z 84) of protonated, methylated Glu, and methylated Gln are the same as those of the underivatized Glu and Gln. Taken together, the new approach of utilizing low m/z fragments can be applied to distinguish, identify, and quantify 13C-amino acids labeled at various positions, either in the backbone or side chain.

  17. Identification of purple acid phosphatase inhibitors by fragment-based screening: promising new leads for osteoporosis therapeutics.

    PubMed

    Feder, Daniel; Hussein, Waleed M; Clayton, Daniel J; Kan, Meng-Wei; Schenk, Gerhard; McGeary, Ross P; Guddat, Luke W

    2012-11-01

    Purple acid phosphatases are metalloenzymes found in animals, plants and fungi. They possess a binuclear metal centre to catalyse the hydrolysis of phosphate esters and anhydrides under acidic conditions. In humans, elevated purple acid phosphatases levels in sera are correlated with the progression of osteoporosis and metabolic bone malignancies, making this enzyme a target for the development of new chemotherapeutics to treat bone-related illnesses. To date, little progress has been achieved towards the design of specific and potent inhibitors of this enzyme that have drug-like properties. Here, we have undertaken a fragment-based screening approach using a 500-compound library identifying three inhibitors of purple acid phosphatases with K(i) values in the 30-60 μm range. Ligand efficiency values are 0.39-0.44 kcal/mol per heavy atom. X-ray crystal structures of these compounds in complex with a plant purple acid phosphatases (2.3-2.7 Å resolution) have been determined and show that all bind in the active site within contact of the binuclear centre. For one of these compounds, the phenyl ring is positioned within 3.5 Å of the binuclear centre. Docking simulations indicate that the three compounds fit into the active site of human purple acid phosphatases. These studies open the way to the design of more potent and selective inhibitors of purple acid phosphatases that can be tested as anti-osteoporotic drug leads.

  18. Exploration of structure-activity relationships at the two C-terminal residues of potent 11mer Glucagon-Like Peptide-1 receptor agonist peptides via parallel synthesis.

    PubMed

    Haque, Tasir S; Martinez, Rogelio L; Lee, Ving G; Riexinger, Douglas G; Lei, Ming; Feng, Ming; Koplowitz, Barry; Mapelli, Claudio; Cooper, Christopher B; Zhang, Ge; Huang, Christine; Ewing, William R; Krupinski, John

    2010-07-01

    We report the identification of potent agonists of the Glucagon-Like Peptide-1 receptor (GLP-1R) via evaluation of two positional scanning libraries and a two-dimensional focused library, synthesized in part on SynPhase Lanterns. These compounds are 11 amino acid peptides containing several unnatural amino acids, including (in particular) analogs of biphenylalanine (Bip) at the two C-terminal positions. Typical activities of the most potent peptides in this class are in the picomolar range in an in vitro functional assay using human GLP-1 receptor.

  19. The C-Terminal Zwitterionic Sequence of CotB1 Is Essential for Biosilicification of the Bacillus cereus Spore Coat

    PubMed Central

    Motomura, Kei; Matsuyama, Satoshi; Abdelhamid, Mohamed A. A.; Tanaka, Tatsuya; Ishida, Takenori; Hirota, Ryuichi; Kuroda, Akio

    2015-01-01

    ABSTRACT Silica is deposited in and around the spore coat layer of Bacillus cereus, and enhances the spore's acid resistance. Several peptides and proteins, including diatom silaffin and silacidin peptides, are involved in eukaryotic silica biomineralization (biosilicification). Homologous sequence search revealed a silacidin-like sequence in the C-terminal region of CotB1, a spore coat protein of B. cereus. The negatively charged silacidin-like sequence is followed by a positively charged arginine-rich sequence of 14 amino acids, which is remarkably similar to the silaffins. These sequences impart a zwitterionic character to the C terminus of CotB1. Interestingly, the cotB1 gene appears to form a bicistronic operon with its paralog, cotB2, the product of which, however, lacks the C-terminal zwitterionic sequence. A ΔcotB1B2 mutant strain grew as fast and formed spores at the same rate as wild-type bacteria but did not show biosilicification. Complementation analysis showed that CotB1, but neither CotB2 nor C-terminally truncated mutants of CotB1, could restore the biosilicification activity in the ΔcotB1B2 mutant, suggesting that the C-terminal zwitterionic sequence of CotB1 is essential for the process. We found that the kinetics of CotB1 expression, as well as its localization, correlated well with the time course of biosilicification and the location of the deposited silica. To our knowledge, this is the first report of a protein directly involved in prokaryotic biosilicification. IMPORTANCE Biosilicification is the process by which organisms incorporate soluble silicate in the form of insoluble silica. Although the mechanisms underlying eukaryotic biosilicification have been intensively investigated, prokaryotic biosilicification was not studied until recently. We previously demonstrated that biosilicification occurs in Bacillus cereus and its close relatives, and that silica is deposited in and around a spore coat layer as a protective coating against acid

  20. Key Functional Regions in the Histone Variant H2A.Z C-Terminal Docking Domain ▿

    PubMed Central

    Wang, Alice Y.; Aristizabal, Maria J.; Ryan, Colm; Krogan, Nevan J.; Kobor, Michael S.

    2011-01-01

    The incorporation of histone variants into nucleosomes represents one way of altering the chromatin structure to accommodate diverse functions. Histone variant H2A.Z has specific roles in gene regulation, heterochromatin boundary formation, and genomic integrity. The precise features required for H2A.Z to function and specify an identity different from canonical H2A remain to be fully explored. Analysis of the C-terminal docking domain of H2A.Z in Saccharomyces cerevisiae using epistatic miniarray profile (E-MAP) uncovered nuanced requirements of the H2A.Z C-terminal region for cell growth when additional genes were compromised. Moreover, the H2A.Z(1–114) truncation, lacking the last 20 amino acids of the protein, did not support regular H2A.Z functions, such as resistance to genotoxic stress, restriction of heterochromatin in its native context, GAL1 gene activation, and chromatin anchoring. The corresponding region of H2A could fully rescue the strong defects caused by loss of this functionally essential region in the C terminus of H2A.Z. Despite the dramatic reduction in function, the H2A.Z(1–114) truncation still bound the H2A.Z deposition complex SWR1-C, the histone chaperone Chz1, and histone H2B. These data are consistent with a model in which retaining the variant in chromatin after its deposition by SWR1-C is a crucial determinant of its function. PMID:21791612

  1. Identifying possible sites for antibody neutralization escape: Implications for unique functional properties of the C-terminal tail of Human Immunodeficiency Virus Type 1 gp41.

    PubMed

    Lu, Zhifeng; Huang, Yushen; Tan, Yue; Yu, Yang; Wang, Junyi; Chen, Ying-Hua

    2016-07-01

    A previous amino acid sequence analyses from our laboratory reported nine potential sites in gp41 glycoprotein of HIV-1 that may contribute to virus escape from antibody neutralization. Besides four sites found outside the membrane of HIV-1 virus, five located in the C-terminal tail of gp41 specifically in the lentivirus lytic peptides motifs (LLPs). To further study the bioinformatical results, the virus infectivity assay and the standard neutralization assay were conducted on conservatively mutated virus. Two sites in the LLP3 domain stood out with the ability to alter the resistance of HIV-1 virus to certain broadly neutralizing antibodies (bNAbs). While the glycoprotein incorporation on the viral membrane and the interaction of the LLP3 domain with the lipid membrane remained unaltered, the increase in neutralization resistance of the mutant virus was associated with the changes on Env conformation. Our findings demonstrate different sensibility of bNAbs to mutations in the C-terminal tail and indicate an unrecognized potential role for even minor sequence variation in the C-terminal tail in modulating the antigenicity of the ectodomain of HIV-1 envelope glycoprotein complex.

  2. Purification, crystallization and X-ray diffraction analysis of the C-terminal protease domain of Venezuelan equine encephalitis virus nsP2

    SciTech Connect

    Russo, Andrew T.; Watowich, Stanley J.

    2006-06-01

    The C-terminal protease domain of Venezuelan equine encephalitis virus (VEEV) nsP2 has been overexpressed in E. coli, purified and successfully crystallized. Native crystals diffract to beyond 2.5 Å resolution and isomorphous heavy-atom derivatives suitable for phase analysis have been identified. The C-terminal region of Venezuelan equine encephalitis virus (VEEV) nsP2 is responsible for proteolytic processing of the VEEV polyprotein replication complex. This action regulates the activity of the replication complex and is essential for viral replication, thus making nsP2 a very attractive target for development of VEEV therapeutics. The 338-amino-acid C-terminal region of VEEV nsP2 has been overexpressed in Escherichia coli, purified and crystallized. Crystals diffract to beyond 2.5 Å resolution and belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}. Isomorphous heavy-atom derivatives suitable for phase analysis have been obtained and work on building a complete structural model is under way.

  3. The 14-3-3 protein interacts directly with the C-terminal region of the plant plasma membrane H(+)-ATPase.

    PubMed Central

    Jahn, T; Fuglsang, A T; Olsson, A; Brüntrup, I M; Collinge, D B; Volkmann, D; Sommarin, M; Palmgren, M G; Larsson, C

    1997-01-01

    Accumulating evidence suggests that 14-3-3 proteins are involved in the regulation of plant plasma membrane H(+)-ATPase activity. However, it is not known whether the 14-3-3 protein interacts directly or indirectly with the H(+)-ATPase. In this study, detergent-solubilized plasma membrane H(+)-ATPase isolated from fusicoccin-treated maize shoots was copurified with the 14-3-3 protein (as determined by protein gel blotting), and the H(+)-ATPase was recovered in an activated state. In the absence of fusicoccin treatment, H(+)-ATPase and the 14-3-3 protein were well separated, and the H(+)-ATPase was recovered in a nonactivated form. Trypsin treatment removed the 10-kD C-terminal region from the H(+)-ATPase as well as the 14-3-3 protein. Using the yeast two-hybrid system, we could show a direct interaction between Arabidopsis 14-3-3 GF14-phi and the last 98 C-terminal amino acids of the Arabidopsis AHA2 plasma membrane H(+)-ATPase. We propose that the 14-3-3 protein is a natural ligand of the plasma membrane H(+)-ATPase, regulating proton pumping by displacing the C-terminal autoinhibitory domain of the H(+)-ATPase. PMID:9368417

  4. Autoproteolysis and Intramolecular Dissociation of Yersinia YscU Precedes Secretion of Its C-Terminal Polypeptide YscUCC

    PubMed Central

    Frost, Stefan; Ho, Oanh; Login, Frédéric H.; Weise, Christoph F.; Wolf-Watz, Hans; Wolf-Watz, Magnus

    2012-01-01

    Type III secretion system mediated secretion and translocation of Yop-effector proteins across the eukaryotic target cell membrane by pathogenic Yersinia is highly organized and is dependent on a switching event from secretion of early structural substrates to late effector substrates (Yops). Substrate switching can be mimicked in vitro by modulating the calcium levels in the growth medium. YscU that is essential for regulation of this switch undergoes autoproteolysis at a conserved N↑PTH motif, resulting in a 10 kDa C-terminal polypeptide fragment denoted YscUCC. Here we show that depletion of calcium induces intramolecular dissociation of YscUCC from YscU followed by secretion of the YscUCC polypeptide. Thus, YscUCC behaved in vivo as a Yop protein with respect to secretion properties. Further, destabilized yscU mutants displayed increased rates of dissociation of YscUCC in vitro resulting in enhanced Yop secretion in vivo at 30°C relative to the wild-type strain.These findings provide strong support to the relevance of YscUCC dissociation for Yop secretion. We propose that YscUCC orchestrates a block in the secretion channel that is eliminated by calcium depletion. Further, the striking homology between different members of the YscU/FlhB family suggests that this protein family possess regulatory functions also in other bacteria using comparable mechanisms. PMID:23185318

  5. Dual Thermosensitive Hydrogels Assembled from the Conserved C-Terminal Domain of Spider Dragline Silk.

    PubMed

    Qian, Zhi-Gang; Zhou, Ming-Liang; Song, Wen-Wen; Xia, Xiao-Xia

    2015-11-01

    Stimuli-responsive hydrogels have great potentials in biomedical and biotechnological applications. Due to the advantages of precise control over molecular weight and being biodegradable, protein-based hydrogels and their applications have been extensively studied. However, protein hydrogels with dual thermosensitive properties are rarely reported. Here we present the first report of dual thermosensitive hydrogels assembled from the conserved C-terminal domain of spider dragline silk. First, we found that recombinant C-terminal domain of major ampullate spidroin 1 (MaSp1) of the spider Nephila clavipes formed hydrogels when cooled to approximately 2 °C or heated to 65 °C. The conformational changes and self-assembly of the recombinant protein were studied to understand the mechanism of the gelation processes using multiple methods. It was proposed that the gelation in the low-temperature regime was dominated by hydrogen bonding and hydrophobic interaction between folded protein molecules, whereas the gelation in the high-temperature regime was due to cross-linking of the exposed hydrophobic patches resulting from partial unfolding of the protein upon heating. More interestingly, genetic fusion of the C-terminal domain to a short repetitive region of N. clavipes MaSp1 resulted in a chimeric protein that formed a hydrogel with significantly improved mechanical properties at low temperatures between 2 and 10 °C. Furthermore, the formation of similar hydrogels was observed for the recombinant C-terminal domains of dragline silk of different spider species, thus demonstrating the conserved ability to form dual thermosensitive hydrogels. These findings may be useful in the design and construction of novel protein hydrogels with tunable multiple thermosensitivity for applications in the future. PMID:26457360

  6. Dual Thermosensitive Hydrogels Assembled from the Conserved C-Terminal Domain of Spider Dragline Silk.

    PubMed

    Qian, Zhi-Gang; Zhou, Ming-Liang; Song, Wen-Wen; Xia, Xiao-Xia

    2015-11-01

    Stimuli-responsive hydrogels have great potentials in biomedical and biotechnological applications. Due to the advantages of precise control over molecular weight and being biodegradable, protein-based hydrogels and their applications have been extensively studied. However, protein hydrogels with dual thermosensitive properties are rarely reported. Here we present the first report of dual thermosensitive hydrogels assembled from the conserved C-terminal domain of spider dragline silk. First, we found that recombinant C-terminal domain of major ampullate spidroin 1 (MaSp1) of the spider Nephila clavipes formed hydrogels when cooled to approximately 2 °C or heated to 65 °C. The conformational changes and self-assembly of the recombinant protein were studied to understand the mechanism of the gelation processes using multiple methods. It was proposed that the gelation in the low-temperature regime was dominated by hydrogen bonding and hydrophobic interaction between folded protein molecules, whereas the gelation in the high-temperature regime was due to cross-linking of the exposed hydrophobic patches resulting from partial unfolding of the protein upon heating. More interestingly, genetic fusion of the C-terminal domain to a short repetitive region of N. clavipes MaSp1 resulted in a chimeric protein that formed a hydrogel with significantly improved mechanical properties at low temperatures between 2 and 10 °C. Furthermore, the formation of similar hydrogels was observed for the recombinant C-terminal domains of dragline silk of different spider species, thus demonstrating the conserved ability to form dual thermosensitive hydrogels. These findings may be useful in the design and construction of novel protein hydrogels with tunable multiple thermosensitivity for applications in the future.

  7. Effects of C-terminal domain truncation on enzyme properties of Serratia marcescens chitinase C.

    PubMed

    Lin, Fu-Pang; Wu, Chun-Yi; Chen, Hung-Nien; Lin, Hui-Ju

    2015-04-01

    A chitinase gene (SmChiC) and its two C-terminal truncated mutants, SmChiCG426 and SmChiCG330 of Serratia marcescens, were constructed and cloned by employing specific polymerase chain reaction (PCR) techniques. SmChiCG426 is derived from SmChiC molecule without its C-terminal chitin-binding domain (ChBD) while SmChiCG330 is truncated from SmChiC by its C-terminal deletion of both ChBD and fibronectin type III domain (FnIII). To study the role of the C-terminal domains of SmChiC on the enzyme properties, SmChiC, SmChiCG426, and SmChiCG330 were expressed in Escherichia coli by using the pET-20b(+) expression system. The His-tag affinity-purified SmChiC, SmChiCG426, and SmChiCG330 enzymes had a calculated molecular mass of 51, 46, and 36 kDa, respectively. Certain biochemical characterizations indicated that the enzymes had similar physicochemical properties, such as the optimum pH (5), temperature (37 °C), thermostability (50 °C), and identical hydrolyzing product (chitobiose) from both the soluble and insoluble chitin substrates. The overall catalytic efficiency k cat /K M was higher for both truncated enzymes toward the insoluble α-chitin, whereas the binding abilities toward the insoluble α-chitin substrate were reduced moderately. The fluorescence and circular dichroism (CD) spectroscopy data suggested that both mutants retained a similar folding conformation as that of the full-length SmChiC enzyme. However, a CD-monitored melting study showed that the SmChiCG330 had no obvious transition temperature, unlike the SmChiC and SmChiCG426.

  8. Study on the C-terminal beta-hairpin of protein G in AB heteropolymer model

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Yeon

    2016-08-01

    The off-lattice AB heteropolymer model, consisting of the hydrophobic (A) and hydrophilic (B) polymers, is one of popular protein models. Its energy function includes the bending energy and the van der Waals interaction energy. The properties and the energy landscape of the C-terminal beta-hairpin of protein G are studied in the off-lattice AB heteropolymer model with conformational space annealing, a powerful global optimization method.

  9. Cleavage of the JunB transcription factor by caspases generates a carboxyl-terminal fragment that inhibits activator protein-1 transcriptional activity.

    PubMed

    Lee, Jason K H; Pearson, Joel D; Maser, Brandon E; Ingham, Robert J

    2013-07-26

    The activator protein-1 (AP-1) family transcription factor, JunB, is an important regulator of proliferation, apoptosis, differentiation, and the immune response. In this report, we show that JunB is cleaved in a caspase-dependent manner in apoptotic anaplastic lymphoma kinase-positive, anaplastic large cell lymphoma cell lines and that ectopically expressed JunB is cleaved in murine RAW 264.7 macrophage cells treated with the NALP1b inflammasome activator, anthrax lethal toxin. In both cases, we identify aspartic acid 137 as the caspase cleavage site and demonstrate that JunB can be directly cleaved in vitro by multiple caspases at this site. Cleavage of JunB at aspartic acid 137 separates the N-terminal transactivation domain from the C-terminal DNA binding and dimerization domains, and we show that the C-terminal cleavage fragment retains both DNA binding activity and the ability to interact with AP-1 family transcription factors. Furthermore, this fragment interferes with the binding of full-length JunB to AP-1 sites and inhibits AP-1-dependent transcription. In summary, we have identified and characterized a novel mechanism of JunB post-translational modification and demonstrate that the C-terminal JunB caspase cleavage product functions as a potent inhibitor of AP-1-dependent transcription.

  10. A C-terminal Membrane Anchor Affects the Interactions of Prion Proteins with Lipid Membranes*

    PubMed Central

    Chu, Nam K.; Shabbir, Waheed; Bove-Fenderson, Erin; Araman, Can; Lemmens-Gruber, Rosa; Harris, David A.; Becker, Christian F. W.

    2014-01-01

    Membrane attachment via a C-terminal glycosylphosphatidylinositol anchor is critical for conversion of PrPC into pathogenic PrPSc. Therefore the effects of the anchor on PrP structure and function need to be deciphered. Three PrP variants, including full-length PrP (residues 23–231, FL_PrP), N-terminally truncated PrP (residues 90–231, T_PrP), and PrP missing its central hydrophobic region (Δ105–125, ΔCR_PrP), were equipped with a C-terminal membrane anchor via a semisynthesis strategy. Analyses of the interactions of lipidated PrPs with phospholipid membranes demonstrated that C-terminal membrane attachment induces a different binding mode of PrP to membranes, distinct from that of non-lipidated PrPs, and influences the biochemical and conformational properties of PrPs. Additionally, fluorescence-based assays indicated pore formation by lipidated ΔCR_PrP, a variant that is known to be highly neurotoxic in transgenic mice. This finding was supported by using patch clamp electrophysiological measurements of cultured cells. These results provide new evidence for the role of the membrane anchor in PrP-lipid interactions, highlighting the importance of the N-terminal and the central hydrophobic domain in these interactions. PMID:25217642

  11. Mutagenic Analysis of the C-Terminal Extension of Lsm1

    PubMed Central

    Tharun, Sundaresan

    2016-01-01

    The Sm-like proteins (also known as Lsm proteins) are ubiquitous in nature and exist as hexa or heptameric RNA binding complexes. They are characterized by the presence of the Sm-domain. The Lsm1 through Lsm7 proteins are highly conserved in eukaryotes and they form a hetero-octameric complex together with the protein Pat1. The Lsm1-7-Pat1 complex plays a key role in mRNA decapping and 3’-end protection and therefore is required for normal mRNA decay rates in vivo. Lsm1 is a key subunit that is critical for the unique RNA binding properties of this complex. We showed earlier that unlike most Sm-like proteins, Lsm1 uniquely requires both its Sm domain and its C-terminal extension to contribute to the function of the Lsm1-7-Pat1 complex and that the C-terminal segment can associate with the rest of the complex and support the function even in trans. The studies presented here identify a set of residues at the very C-terminal end of Lsm1 to be functionally important and suggest that these residues support the function of the Lsm1-7-Pat1 complex by facilitating RNA binding either directly or indirectly. PMID:27434131

  12. Conserved C-terminal domain of spider tubuliform spidroin 1 contributes to extensibility in synthetic fibers.

    PubMed

    Gnesa, Eric; Hsia, Yang; Yarger, Jeffery L; Weber, Warner; Lin-Cereghino, Joan; Lin-Cereghino, Geoff; Tang, Simon; Agari, Kimiko; Vierra, Craig

    2012-02-13

    Spider silk is renowned for its extraordinary mechanical properties, having a balance of high tensile strength and extensibility. To date, the majority of studies have focused on the production of dragline silks from synthetic spider silk gene products. Here we report the first mechanical analysis of synthetic egg case silk fibers spun from the Latrodectus hesperus tubuliform silk proteins, TuSp1 and ECP-2. We provide evidence that recombinant ECP-2 proteins can be spun into fibers that display mechanical properties similar to other synthetic spider silks. We also demonstrate that silks spun from recombinant thioredoxin-TuSp1 fusion proteins that contain the conserved C-terminal domain exhibit increased extensibility and toughness when compared to the identical fibers spun from fusion proteins lacking the C-terminus. Mechanical analyses reveal that the properties of synthetic tubuliform silks can be modulated by altering the postspin draw ratios of the fibers. Fibers subject to increased draw ratios showed elevated tensile strength and decreased extensibility but maintained constant toughness. Wide-angle X-ray diffraction studies indicate that postdrawn fibers containing the C-terminal domain of TuSp1 have more amorphous content when compared to fibers lacking the C-terminus. Taken together, these studies demonstrate that recombinant tubuliform spidroins that contain the conserved C-terminal domain with embedded protein tags can be effectively spun into fibers, resulting in similar tensile strength but increased extensibility relative to nontagged recombinant dragline silk proteins spun from equivalently sized proteins. PMID:22176138

  13. Structure of the Escherichia coli RNA polymerase α subunit C-terminal domain

    SciTech Connect

    Lara-González, Samuel; Birktoft, Jens J.; Lawson, Catherine L.

    2010-07-01

    The crystal structure of the dimethyllysine derivative of the E. coli RNA polymerase α subunit C-terminal domain is reported at 2.0 Å resolution. The α subunit C-terminal domain (αCTD) of RNA polymerase (RNAP) is a key element in transcription activation in Escherichia coli, possessing determinants responsible for the interaction of RNAP with DNA and with transcription factors. Here, the crystal structure of E. coli αCTD (α subunit residues 245–329) determined to 2.0 Å resolution is reported. Crystals were obtained after reductive methylation of the recombinantly expressed domain. The crystals belonged to space group P2{sub 1} and possessed both pseudo-translational symmetry and pseudo-merohedral twinning. The refined coordinate model (R factor = 0.193, R{sub free} = 0.236) has improved geometry compared with prior lower resolution determinations of the αCTD structure [Jeon et al. (1995 ▶), Science, 270, 1495–1497; Benoff et al. (2002 ▶), Science, 297, 1562–1566]. An extensive dimerization interface formed primarily by N- and C-terminal residues is also observed. The new coordinates will facilitate the improved modeling of αCTD-containing multi-component complexes visualized at lower resolution using X-ray crystallography and electron-microscopy reconstruction.

  14. Conserved C-Terminal Domain of Spider Tubuliform Spidroin 1 Contributes to Extensibility in Synthetic Fibers

    SciTech Connect

    Gnesa, Eric; Hsia, Yang; Yarger, Jeffery L.; Weber, Warner; Lin-Cereghino, Joan; Lin-Cereghino, Geoff; Tang, Simon; Agari, Kimiko; Vierra, Craig

    2012-05-24

    Spider silk is renowned for its extraordinary mechanical properties, having a balance of high tensile strength and extensibility. To date, the majority of studies have focused on the production of dragline silks from synthetic spider silk gene products. Here we report the first mechanical analysis of synthetic egg case silk fibers spun from the Latrodectus hesperus tubuliform silk proteins, TuSp1 and ECP-2. We provide evidence that recombinant ECP-2 proteins can be spun into fibers that display mechanical properties similar to other synthetic spider silks. We also demonstrate that silks spun from recombinant thioredoxin-TuSp1 fusion proteins that contain the conserved C-terminal domain exhibit increased extensibility and toughness when compared to the identical fibers spun from fusion proteins lacking the C-terminus. Mechanical analyses reveal that the properties of synthetic tubuliform silks can be modulated by altering the postspin draw ratios of the fibers. Fibers subject to increased draw ratios showed elevated tensile strength and decreased extensibility but maintained constant toughness. Wide-angle X-ray diffraction studies indicate that postdrawn fibers containing the C-terminal domain of TuSp1 have more amorphous content when compared to fibers lacking the C-terminus. Taken together, these studies demonstrate that recombinant tubuliform spidroins that contain the conserved C-terminal domain with embedded protein tags can be effectively spun into fibers, resulting in similar tensile strength but increased extensibility relative to nontagged recombinant dragline silk proteins spun from equivalently sized proteins.

  15. A C-terminal membrane anchor affects the interactions of prion proteins with lipid membranes.

    PubMed

    Chu, Nam K; Shabbir, Waheed; Bove-Fenderson, Erin; Araman, Can; Lemmens-Gruber, Rosa; Harris, David A; Becker, Christian F W

    2014-10-24

    Membrane attachment via a C-terminal glycosylphosphatidylinositol anchor is critical for conversion of PrP(C) into pathogenic PrP(Sc). Therefore the effects of the anchor on PrP structure and function need to be deciphered. Three PrP variants, including full-length PrP (residues 23-231, FL_PrP), N-terminally truncated PrP (residues 90-231, T_PrP), and PrP missing its central hydrophobic region (Δ105-125, ΔCR_PrP), were equipped with a C-terminal membrane anchor via a semisynthesis strategy. Analyses of the interactions of lipidated PrPs with phospholipid membranes demonstrated that C-terminal membrane attachment induces a different binding mode of PrP to membranes, distinct from that of non-lipidated PrPs, and influences the biochemical and conformational properties of PrPs. Additionally, fluorescence-based assays indicated pore formation by lipidated ΔCR_PrP, a variant that is known to be highly neurotoxic in transgenic mice. This finding was supported by using patch clamp electrophysiological measurements of cultured cells. These results provide new evidence for the role of the membrane anchor in PrP-lipid interactions, highlighting the importance of the N-terminal and the central hydrophobic domain in these interactions.

  16. The C-terminal tail of protein kinase D2 and protein kinase D3 regulates their intracellular distribution

    SciTech Connect

    Papazyan, Romeo; Rozengurt, Enrique; Rey, Osvaldo . E-mail: orey@mednet.ucla.edu

    2006-04-14

    We generated a set of GFP-tagged chimeras between protein kinase D2 (PKD2) and protein kinase D3 (PKD3) to examine in live cells the contribution of their C-terminal region to their intracellular localization. We found that the catalytic domain of PKD2 and PKD3 can localize to the nucleus when expressed without other kinase domains. However, when the C-terminal tail of PKD2 was added to its catalytic domain, the nuclear localization of the resulting protein was inhibited. In contrast, the nuclear localization of the CD of PKD3 was not inhibited by its C-terminal tail. Furthermore, the exchange of the C-terminal tail of PKD2 and PKD3 in the full-length proteins was sufficient to exchange their intracellular localization. Collectively, these data demonstrate that the short C-terminal tail of these kinases plays a critical role in determining their cytoplasmic/nuclear localization.

  17. Lewis acid fragmentation of a lithium aryloxide cage: generation of new heterometallic aluminium-lithium species.

    PubMed

    Muñoz, Ma Teresa; Urbaneja, Carmen; Temprado, Manuel; Mosquera, Marta E G; Cuenca, Tomás

    2011-11-14

    Heterometallic aluminium-lithium species were prepared by the fragmentation reaction of the hexametallic cage compound [Li{2,6-(MeO)(2)C(6)H(3)O}](6) (1) with alkyl aluminium derivatives. Depending on the aluminium precursor, the species formed present different nuclearities in the solid state as shown by single crystal X-ray analysis. Spectroscopic and computational studies have been performed to study the nuclearity of the synthesized compounds in solution.

  18. Probing the Impact of the EchinT C-Terminal Domain on Structure and Catalysis

    SciTech Connect

    S Bardaweel; J Pace; T Chou; V Cody; C Wagner

    2011-12-31

    Histidine triad nucleotide binding protein (Hint) is considered as the ancestor of the histidine triad protein superfamily and is highly conserved from bacteria to humans. Prokaryote genomes, including a wide array of both Gram-negative bacteria and Gram-positive bacteria, typically encode one Hint gene. The cellular function of Hint and the rationale for its evolutionary conservation in bacteria have remained a mystery. Despite its ubiquity and high sequence similarity to eukaryote Hint1 [Escherichia coli Hint (echinT) is 48% identical with human Hint1], prokaryote Hint has been reported in only a few studies. Here we report the first conformational information on the full-length N-terminal and C-terminal residues of Hint from the E. coli complex with GMP. Structural analysis of the echinT-GMP complex reveals that it crystallizes in the monoclinic space group P2{sub 1} with four homodimers in the asymmetric unit. Analysis of electron density for both the N-terminal residues and the C-terminal residues of the echinT-GMP complex indicates that the loops in some monomers can adopt more than one conformation. The observation of conformational flexibility in terminal loop regions could explain the presence of multiple homodimers in the asymmetric unit of this structure. To explore the impact of the echinT C-terminus on protein structure and catalysis, we conducted a series of catalytic radiolabeling and kinetic experiments on the C-terminal deletion mutants of echinT. In this study, we show that sequential deletion of the C-terminus likely has no effect on homodimerization and a modest effect on the secondary structure of echinT. However, we observed a significant impact on the folding structure, as reflected by a significant lowering of the T{sub m} value. Kinetic analysis reveals that the C-terminal deletion mutants are within an order of magnitude less efficient in catalysis compared to wild type, while the overall kinetic mechanism that proceeds through a fast step

  19. Does the marine biotoxin okadaic acid cause DNA fragmentation in the blue mussel and the pacific oyster?

    PubMed

    McCarthy, Moira; O'Halloran, John; O'Brien, Nora M; van Pelt, Frank F N A M

    2014-10-01

    Two bivalve species of global economic importance: the blue mussel, Mytilus edulis and the pacific oyster, Crassostrea gigas were exposed in vivo, to the diarrhoetic shellfish toxin okadaic acid (OA), and impacts on DNA fragmentation were measured. Shellfish were exposed using two different regimes, the first was a single (24 h) exposure of 2.5 nM OA (∼0.1 μg/shellfish) and algal feed at the beginning of the trial (T0), after which shellfish were only fed algae. The second was daily exposure of shellfish to two different concentrations of OA mixed with the algal feed over 7 days; 1.2 nM OA (∼0.05 μg OA/shellfish/day) and 50 nM OA (∼2 μg OA/shellfish/day). Haemolymph and hepatopancreas cells were extracted following 1, 3 and 7 days exposure. Cell viability was measured using the trypan blue exclusion assay and remained above 85% for both cell types. DNA fragmentation was examined using the single-cell gel electrophoresis (comet) assay. A significant increase in DNA fragmentation was observed in the two cell types from both species relative to the controls. This increase was greater in the pacific oyster at the higher toxin concentration. However, there was no difference in the proportion of damage measured between the two cell types, and a classic dose response was not observed, increasing toxin concentration did not correspond to increased DNA fragmentation. PMID:25440785

  20. Differentiating chondroitin sulfate glycosaminoglycans using collision-induced dissociation; uronic acid cross-ring diagnostic fragments in a single stage of tandem mass spectrometry.

    PubMed

    Kailemia, Muchena J; Patel, Anish B; Johnson, Dane T; Li, Lingyun; Linhardt, Robert J; Amster, I Jonathan

    2015-01-01

    The stereochemistry of the hexuronic acid residues of the structure of glycosaminoglycans (GAGs) is a key feature that affects their interactions with proteins and other biological functions. Electron based tandem mass spectrometry methods, in particular electron detachment dissociation (EDD), have been able to distinguish glucuronic acid (GlcA) from iduronic acid (IdoA) residues in some heparan sulfate tetrasaccharides by producing epimer-specific fragments. Similarly, the relative abundance of glycosidic fragment ions produced by collision-induced dissociation (CID) or EDD has been shown to correlate with the type of hexuronic acid present in chondroitin sulfate GAGs. The present work examines the effect of charge state and degree of sodium cationization on the CID fragmentation products that can be used to distinguish GlcA and IdoA containing chondroitin sulfate A and dermatan sulfate chains. The cross-ring fragments (2,4)A(n) and (0,2)X(n) formed within the hexuronic acid residues are highly preferential for chains containing GlcA, distinguishing it from IdoA. The diagnostic capability of the fragments requires the selection of a molecular ion and fragment ions with specific ionization characteristics, namely charge state and number of ionizable protons. The ions with the appropriate characteristics display diagnostic properties for all the chondroitin sulfate and dermatan sulfate chains (degree of polymerization of 4-10) studied.

  1. Differentiation of mixed lactic acid bacteria communities in beverage fermentations using targeted terminal restriction fragment length polymorphism.

    PubMed

    Bokulich, Nicholas A; Mills, David A

    2012-08-01

    Lactic acid bacteria (LAB) are an important group of bacteria in beer and wine fermentations both as beneficial organisms and as spoilage agents. However, sensitive, rapid, culture-independent methods for identification and community analyses of LAB in mixed-culture fermentations are limited. We developed a terminal restriction fragment length polymorphism (TRFLP)-based assay for the detection and identification of lactic acid bacteria and Bacilli during wine, beer, and food fermentations. This technique can sensitively discriminate most species of Lactobacillales, and most genera of Bacillales, in mixed culture, as indicated by both bioinformatic predictions and empirical observations. This method was tested on a range of beer and wine fermentations containing mixed LAB communities, demonstrating the efficacy of this technique for discriminating LAB in mixed culture. PMID:22475950

  2. Decreased Adherence of Enterohemorrhagic Escherichia coli to HEp-2 Cells in the Presence of Antibodies That Recognize the C-Terminal Region of Intimin

    PubMed Central

    Gansheroff, Lisa J.; Wachtel, Marian R.; O'Brien, Alison D.

    1999-01-01

    Antiserum raised against intimin from enterohemorrhagic Escherichia coli (EHEC) O157:H7 strain 86-24 has been shown previously by our laboratory to inhibit adherence of this strain to HEp-2 cells. In the present study, we sought to identify the region(s) of intimin important for the effect of anti-intimin antisera on EHEC adherence and to determine whether antisera raised against intimin from an O157:H7 strain could reduce adherence of other strains. Compared to preimmune serum controls, polyclonal sera raised against the histidine-tagged intimin protein RIHisEae (intiminO157) or against His-tagged C-terminal fragments of intimin from strain 86-24 reduced adherence of this strain. Furthermore, an antibody fraction purified from the anti-RIHisEae serum that contained antibodies to the C-terminal third of intimin, the putative receptor-binding domain, also reduced adherence of strain 86-24, but a purified fraction containing antibodies to the N-terminal two-thirds of intimin did not inhibit adherence. The polyclonal anti-intiminO157 serum raised against RIHisEae inhibited, to different degrees, the adherence of another O157:H7 strain, an EHEC O55:H7 strain, one of two independent EHEC O111:NM isolates tested, and one of two EHEC O26:H11 strains tested. Adherence of the other O26:H11 and O111:NM strains and an EPEC O127:H6 strain was not reduced. Finally, immunoblot analysis indicated a correlation between the antigenic divergence in the C-terminal third of intimins from different strains and the capacity of anti-intiminO157 antiserum to reduce adherence of heterologous strains. Taken together, these data suggest that intiminO157 could be used as an immunogen to elicit adherence-blocking antibodies against O157:H7 strains and closely-related EHEC. PMID:10569757

  3. A ‘resource allocator’ for transcription based on a highly fragmented T7 RNA polymerase

    PubMed Central

    Segall-Shapiro, Thomas H; Meyer, Adam J; Ellington, Andrew D; Sontag, Eduardo D; Voigt, Christopher A

    2014-01-01

    Synthetic genetic systems share resources with the host, including machinery for transcription and translation. Phage RNA polymerases (RNAPs) decouple transcription from the host and generate high expression. However, they can exhibit toxicity and lack accessory proteins (σ factors and activators) that enable switching between different promoters and modulation of activity. Here, we show that T7 RNAP (883 amino acids) can be divided into four fragments that have to be co-expressed to function. The DNA-binding loop is encoded in a C-terminal 285-aa ‘σ fragment’, and fragments with different specificity can direct the remaining 601-aa ‘core fragment’ to different promoters. Using these parts, we have built a resource allocator that sets the core fragment concentration, which is then shared by multiple σ fragments. Adjusting the concentration of the core fragment sets the maximum transcriptional capacity available to a synthetic system. Further, positive and negative regulation is implemented using a 67-aa N-terminal ‘α fragment’ and a null (inactivated) σ fragment, respectively. The α fragment can be fused to recombinant proteins to make promoters responsive to their levels. These parts provide a toolbox to allocate transcriptional resources via different schemes, which we demonstrate by building a system which adjusts promoter activity to compensate for the difference in copy number of two plasmids. PMID:25080493

  4. C-terminal clipping of chemokine CCL1/I-309 enhances CCR8-mediated intracellular calcium release and anti-apoptotic activity.

    PubMed

    Denis, Catherine; Deiteren, Kathleen; Mortier, Anneleen; Tounsi, Amel; Fransen, Erik; Proost, Paul; Renauld, Jean-Christophe; Lambeir, Anne-Marie

    2012-01-01

    Carboxypeptidase M (CPM) targets the basic amino acids arginine and lysine present at the C-terminus of peptides or proteins. CPM is thought to be involved in inflammatory processes. This is corroborated by CPM-mediated trimming and modulation of inflammatory factors, and expression of the protease in inflammatory environments. Since the function of CPM in and beyond inflammation remains mainly undefined, the identification of natural substrates can aid in discovering the (patho)physiological role of CPM. CCL1/I-309, with its three C-terminal basic amino acids, forms a potential natural substrate for CPM. CCL1 plays a role not only in inflammation but also in apoptosis, angiogenesis and tumor biology. Enzymatic processing differently impacts the biological activity of chemokines thereby contributing to the complex regulation of the chemokine system. The aim of the present study was to investigate whether (i) CCL1/I-309 is prone to trimming by CPM, and (ii) the biological activity of CCL1 is altered after C-terminal proteolytic processing. CCL1 was identified as a novel substrate for CPM in vitro using mass spectrometry. C-terminal clipping of CCL1 augmented intracellular calcium release mediated by CCR8 but reduced the binding of CCL1 to CCR8. In line with the higher intracellular calcium release, a pronounced increase of the anti-apoptotic activity of CCL1 was observed in the BW5147 cellular model. CCR8 signaling, CCR8 binding and anti-apoptotic activity were unaffected when CPM was exposed to the carboxypeptidase inhibitor DL-2-mercaptomethyl-3-guanidino-ethylthiopropanoic acid. The results of this study suggest that CPM is a likely candidate for the regulation of biological processes relying on the CCL1-CCR8 system. PMID:22479563

  5. Design, synthesis, and biological evaluation of substrate-competitive inhibitors of C-terminal Binding Protein (CtBP).

    PubMed

    Korwar, Sudha; Morris, Benjamin L; Parikh, Hardik I; Coover, Robert A; Doughty, Tyler W; Love, Ian M; Hilbert, Brendan J; Royer, William E; Kellogg, Glen E; Grossman, Steven R; Ellis, Keith C

    2016-06-15

    C-terminal Binding Protein (CtBP) is a transcriptional co-regulator that downregulates the expression of many tumor-suppressor genes. Utilizing a crystal structure of CtBP with its substrate 4-methylthio-2-oxobutyric acid (MTOB) and NAD(+) as a guide, we have designed, synthesized, and tested a series of small molecule inhibitors of CtBP. From our first round of compounds, we identified 2-(hydroxyimino)-3-phenylpropanoic acid as a potent CtBP inhibitor (IC50=0.24μM). A structure-activity relationship study of this compound further identified the 4-chloro- (IC50=0.18μM) and 3-chloro- (IC50=0.17μM) analogues as additional potent CtBP inhibitors. Evaluation of the hydroxyimine analogues in a short-term cell growth/viability assay showed that the 4-chloro- and 3-chloro-analogues are 2-fold and 4-fold more potent, respectively, than the MTOB control. A functional cellular assay using a CtBP-specific transcriptional readout revealed that the 4-chloro- and 3-chloro-hydroxyimine analogues were able to block CtBP transcriptional repression activity. This data suggests that substrate-competitive inhibition of CtBP dehydrogenase activity is a potential mechanism to reactivate tumor-suppressor gene expression as a therapeutic strategy for cancer.

  6. Design, synthesis, and biological evaluation of substrate-competitive inhibitors of C-terminal Binding Protein (CtBP).

    PubMed

    Korwar, Sudha; Morris, Benjamin L; Parikh, Hardik I; Coover, Robert A; Doughty, Tyler W; Love, Ian M; Hilbert, Brendan J; Royer, William E; Kellogg, Glen E; Grossman, Steven R; Ellis, Keith C

    2016-06-15

    C-terminal Binding Protein (CtBP) is a transcriptional co-regulator that downregulates the expression of many tumor-suppressor genes. Utilizing a crystal structure of CtBP with its substrate 4-methylthio-2-oxobutyric acid (MTOB) and NAD(+) as a guide, we have designed, synthesized, and tested a series of small molecule inhibitors of CtBP. From our first round of compounds, we identified 2-(hydroxyimino)-3-phenylpropanoic acid as a potent CtBP inhibitor (IC50=0.24μM). A structure-activity relationship study of this compound further identified the 4-chloro- (IC50=0.18μM) and 3-chloro- (IC50=0.17μM) analogues as additional potent CtBP inhibitors. Evaluation of the hydroxyimine analogues in a short-term cell growth/viability assay showed that the 4-chloro- and 3-chloro-analogues are 2-fold and 4-fold more potent, respectively, than the MTOB control. A functional cellular assay using a CtBP-specific transcriptional readout revealed that the 4-chloro- and 3-chloro-hydroxyimine analogues were able to block CtBP transcriptional repression activity. This data suggests that substrate-competitive inhibition of CtBP dehydrogenase activity is a potential mechanism to reactivate tumor-suppressor gene expression as a therapeutic strategy for cancer. PMID:27156192

  7. The C-terminal extension of PrhG impairs its activation of hrp expression and virulence in Ralstonia solanacearum.

    PubMed

    Zhang, Yong; Luo, Feng; Hikichi, Yasufumi; Kiba, Akinori; Yasuo, Igarashi; Ohnishi, Kouhei

    2015-04-01

    Ralstonia solanacearum is the second most destructive bacterial plant pathogens worldwide and HrpG is the master regulator of its pathogenicity. PrhG is a close paralogue of HrpG and both belong to OmpR/PhoB family of two-component response regulators. Despite a high similarity (72% global identity and 96% similarity in helix-loop-helix domain), they display distinct roles in pathogenicity. HrpG is necessary for the bacterial growth in planta and pathogenicity, while PrhG is dispensable for bacterial growth in planta and contributes little to pathogenicity. The main difference between HrpG and PrhG is the 50-amino-acid-long C-terminal extension in PrhG (amino-acid residues 230-283), which is absent in HrpG. When this extension is deleted, truncated PrhGs (under the control of its native promoter) allowed complete recovery of bacterial growth in planta and wild-type virulence of hrpG mutant. This novel finding demonstrates that the extension region in PrhG is responsible for the functional difference between HrpG and PrhG, which may block the binding of PrhG to target promoters and result in impaired activation of hrp expression by PrhG and reduced virulence of R. solanacearum.

  8. Carboxypeptidase D is the only enzyme responsible for antibody C-terminal lysine cleavage in Chinese hamster ovary (CHO) cells.

    PubMed

    Hu, Zhilan; Zhang, Henry; Haley, Benjamin; Macchi, Frank; Yang, Feng; Misaghi, Shahram; Elich, Joseph; Yang, Renee; Tang, Yun; Joly, John C; Snedecor, Bradley R; Shen, Amy

    2016-10-01

    Heterogeneity of C-terminal lysine levels often observed in therapeutic monoclonal antibodies is believed to result from the proteolysis by endogenous carboxypeptidase(s) during cell culture production. Identifying the responsible carboxypeptidase(s) for C-terminal lysine cleavage in CHO cells would provide valuable insights for antibody production cell culture processes development and optimization. In this study, five carboxypeptidases, CpD, CpM, CpN, CpB, and CpE, were studied for message RNA (mRNA) expression by qRT-PCR analysis in two most commonly used blank hosts (DUXB-11 derived DHFR-deficient DP12 host and DHFR-positive CHOK1 host), used for therapeutic antibody production, as well an antibody-expressing cell line derived from each host. Our results showed that CpD had the highest mRNA expression. When CpD mRNA levels were reduced by RNAi (RNA interference) technology, C-terminal lysine levels increased, whereas there was no obvious change in C-terminal lysine levels when a different carboxypeptidase mRNA level was knocked down suggesting that carboxypeptidase D is the main contributor for C-terminal lysine processing. Most importantly, when CpD expression was knocked out by CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) technology, C-terminal lysine cleavage was completely abolished in CpD knockout cells based on mass spectrometry analysis, demonstrating that CpD is the only endogenous carboxypeptidase that cleaves antibody heavy chain C-terminal lysine in CHO cells. Hence, our work showed for the first time that the cleavage of antibody heavy chain C-terminal lysine is solely mediated by the carboxypeptidase D in CHO cells and our finding provides one solution to eliminating C-terminal lysine heterogeneity for therapeutic antibody production by knocking out CpD gene expression. Biotechnol. Bioeng. 2016;113: 2100-2106. © 2016 Wiley Periodicals, Inc.

  9. Scandium triflate-catalyzed nucleophilic additions to indolylmethyl Meldrum's acid derivatives via a gramine-type fragmentation: synthesis of substituted indolemethanes.

    PubMed

    Armstrong, Erin L; Grover, Huck K; Kerr, Michael A

    2013-10-18

    Treatment of indolylmethyl Meldrum's acids with catalytic scandium triflate and a variety of nucleophiles results in the nucleophilic displacement of the Meldrum's acid moiety via a gramine-type fragmentation. The reaction is useful for the generation of heterocyclic compounds of significant molecular complexity.

  10. Reversible phospholipid nanogels for deoxyribonucleic acid fragment size determinations up to 1500 base pairs and integrated sample stacking.

    PubMed

    Durney, Brandon C; Bachert, Beth A; Sloane, Hillary S; Lukomski, Slawomir; Landers, James P; Holland, Lisa A

    2015-06-23

    Phospholipid additives are a cost-effective medium to separate deoxyribonucleic acid (DNA) fragments and possess a thermally-responsive viscosity. This provides a mechanism to easily create and replace a highly viscous nanogel in a narrow bore capillary with only a 10°C change in temperature. Preparations composed of dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) self-assemble, forming structures such as nanodisks and wormlike micelles. Factors that influence the morphology of a particular DMPC-DHPC preparation include the concentration of lipid in solution, the temperature, and the ratio of DMPC and DHPC. It has previously been established that an aqueous solution containing 10% phospholipid with a ratio of [DMPC]/[DHPC]=2.5 separates DNA fragments with nearly single base resolution for DNA fragments up to 500 base pairs in length, but beyond this size the resolution decreases dramatically. A new DMPC-DHPC medium is developed to effectively separate and size DNA fragments up to 1500 base pairs by decreasing the total lipid concentration to 2.5%. A 2.5% phospholipid nanogel generates a resolution of 1% of the DNA fragment size up to 1500 base pairs. This increase in the upper size limit is accomplished using commercially available phospholipids at an even lower material cost than is achieved with the 10% preparation. The separation additive is used to evaluate size markers ranging between 200 and 1500 base pairs in order to distinguish invasive strains of Streptococcus pyogenes and Aspergillus species by harnessing differences in gene sequences of collagen-like proteins in these organisms. For the first time, a reversible stacking gel is integrated in a capillary sieving separation by utilizing the thermally-responsive viscosity of these self-assembled phospholipid preparations. A discontinuous matrix is created that is composed of a cartridge of highly viscous phospholipid assimilated into a separation matrix

  11. Host-Pathogen interactions. 25. Endopolygalacturonic acid lyase from Erwinia carotovora elicits phytoalexin accumulation by releasing plant cell wall fragments

    SciTech Connect

    Davis, K.R.; Lyon, G.D.; Darvill, A.G.; Albersheim, P.

    1984-01-01

    Heat-labile elicitors of phytoalexin accumulation in soybeans (Glycine max L. Merr. cv Wayne) were detected in culture filtrates of Erwinia carotovora grown on a defined medium containing citrus pectin as the sole carbon source. The heat-labile elicitors were highly purified by cation-exchange chromatography on a CM-Sephadex (C-50) column, followed by agarose-affinity chromatography on a Bio-Gel A-0.5m gel filtration column. The heat-labile elicitor activity co-purified with two ..cap alpha..-1,4-endopolygalacturonic acid lyases (EC 4 x 2 x 2 x 2). Endopolygalacturonic acid lyase activity appeared to be necessary for elicitor activity because heat-inactivated enzyme preparations did not elicit phytoalexins. The purified endopolygalacturonic acid lyases elicited pterocarpan phytoalexins at microbial-inhibitory concentrations in the soybean-cotyledon bioassay when applied at a concentration of 55 nanograms per milliliter (1 x 10/sup -9/ molar). One of these lyases released heat-stable elicitors from soybean cell walls, citrus pectin, and sodium polypectate. The heat-stable elicitor-active material solubilized from soybean cell walls by the lyase was composed of at least 90% (w/v) uronosyl residues. These results demonstrate that endopolygalacturonic acid lyase elicits phytoalexin accumulation by releasing fragments from pectic polysaccharides in plant cell walls.

  12. C-terminal domain of p42 Ebp1 is essential for down regulation of p85 subunit of PI3K, inhibiting tumor growth

    PubMed Central

    Hwang, Inwoo; Kim, Chung Kwon; Ko, Hyo Rim; Park, Kye Won; Cho, Sung-Woo; Ahn, Jee-Yin

    2016-01-01

    Potential tumor suppressor p42, ErbB3-binding protein 1 (EBP1) inhibits phosphoinositide 3-kinase (PI3K) activity reducing the p85 regulatory subunit. In this study, we demonstrated that overexpression of p42 promoted not only a reduction of wild type of p85 subunit but also oncogenic mutant forms of p85 which were identified in human cancers. Moreover, we identified the small fragment of C-terminal domain of p42 is sufficient to exhibit tumor suppressing activity of p42-WT, revealing that this small fragment (280–394) of p42 is required for the binding of both HSP70 and CHIP for a degradation of p85. Furthermore, we showed the small fragment of p42 markedly inhibited the tumor growth in mouse xenograft models of brain and breast cancer, resembling tumor suppressing activity of p42. Through identification of the smallest fragment of p42 that is responsible for its tumor suppressor activity, our findings represent a novel approach for targeted therapy of cancers that overexpress PI3K. PMID:27464702

  13. The role of the C-terminal region in phosphoglycerate mutase.

    PubMed Central

    Walter, R A; Nairn, J; Duncan, D; Price, N C; Kelly, S M; Rigden, D J; Fothergill-Gilmore, L A

    1999-01-01

    Removal of the C-terminal seven residues from phosphoglycerate mutase from Saccharomyces cerevisiae by limited proteolysis is associated with loss of mutase activity, but no change in phosphatase activity. The presence of the cofactor 2, 3-bisphosphoglycerate, or of the cofactor and substrate 3-phosphoglycerate together, confers protection against proteolysis. The substrate alone offers no protection. Replacement of either or both of the two lysines at the C-terminus by glycines has only limited effects on the kinetic properties of phosphoglycerate mutase, indicating that these residues are unlikely to be involved in crucial electrostatic interactions with the substrate, intermediate or product in the reaction. However, the double-mutant form of the enzyme is more sensitive to proteolysis and is no longer protected against proteolysis by the presence of cofactor. The proteolysed wild-type and two of the mutated forms of the enzyme show a reduced response to 2-phosphoglycollate, which enhances the instability of the phospho form of the native enzyme. The phosphoglycerate mutase from Schizosaccharomyces pombe, which lacks the analogous C-terminal tail, has an inherently lower mutase activity and is also less responsive to stimulation by 2-phosphoglycollate. It is proposed that the C-terminal region of phosphoglycerate mutase helps to maintain the enzyme in its active phosphorylated form and assists in the retention of the bisphosphoglycerate intermediate at the active site. However, its role seems not to be to contribute directly to ligand binding, but rather to exert indirect effects on the transfer of the phospho group between substrate, enzyme, intermediate and product. PMID:9854029

  14. Apoptotic Activity of MeCP2 Is Enhanced by C-Terminal Truncating Mutations.

    PubMed

    Williams, Alison A; Mehler, Vera J; Mueller, Christina; Vonhoff, Fernando; White, Robin; Duch, Carsten

    2016-01-01

    Methyl-CpG binding protein 2 (MeCP2) is a widely abundant, multifunctional protein most highly expressed in post-mitotic neurons. Mutations causing Rett syndrome and related neurodevelopmental disorders have been identified along the entire MECP2 locus, but symptoms vary depending on mutation type and location. C-terminal mutations are prevalent, but little is known about the function of the MeCP2 C-terminus. We employ the genetic efficiency of Drosophila to provide evidence that expression of p.Arg294* (more commonly identified as R294X), a human MECP2 E2 mutant allele causing truncation of the C-terminal domains, promotes apoptosis of identified neurons in vivo. We confirm this novel finding in HEK293T cells and then use Drosophila to map the region critical for neuronal apoptosis to a small sequence at the end of the C-terminal domain. In vitro studies in mammalian systems previously indicated a role of the MeCP2 E2 isoform in apoptosis, which is facilitated by phosphorylation at serine 80 (S80) and decreased by interactions with the forkhead protein FoxG1. We confirm the roles of S80 phosphorylation and forkhead domain transcription factors in affecting MeCP2-induced apoptosis in Drosophila in vivo, thus indicating mechanistic conservation between flies and mammalian cells. Our findings are consistent with a model in which C- and N-terminal interactions are required for healthy function of MeCP2.

  15. C-terminal tyrosine residues modulate the fusion activity of the Hendra virus fusion protein.

    PubMed

    Popa, Andreea; Pager, Cara Teresia; Dutch, Rebecca Ellis

    2011-02-15

    The paramyxovirus family includes important human pathogens such as measles, mumps, respiratory syncytial virus, and the recently emerged, highly pathogenic Hendra and Nipah viruses. The viral fusion (F) protein plays critical roles in infection, promoting both the virus-cell membrane fusion events needed for viral entry as well as cell-cell fusion events leading to syncytia formation. We describe the surprising finding that addition of the short epitope HA tag to the cytoplasmic tail (CT) of the Hendra virus F protein leads to a significant increase in the extent of cell-cell membrane fusion. This increase was not due to alterations in surface expression, cleavage state, or association with lipid microdomains. Addition of a Myc tag of similar length did not alter Hendra F protein fusion activity, indicating that the observed stimulation was not solely a result of lengthening the CT. Three tyrosine residues within the HA tag were critical for the increase in the extent of fusion, suggesting C-terminal tyrosines may modulate Hendra fusion activity. The effects of addition of the HA tag varied with other fusion proteins, as parainfluenza virus 5 F-HA showed a decreased level of surface expression and no stimulation of fusion. These results indicate that additions to the C-terminal end of the F protein CT can modulate protein function in a sequence specific manner, reinforcing the need for careful analysis of epitope-tagged glycoproteins. In addition, our results implicate C-terminal tyrosine residues in the modulation of the membrane fusion reaction promoted by these viral glycoproteins.

  16. Apoptotic Activity of MeCP2 Is Enhanced by C-Terminal Truncating Mutations

    PubMed Central

    Mehler, Vera J.; Mueller, Christina; Vonhoff, Fernando; White, Robin; Duch, Carsten

    2016-01-01

    Methyl-CpG binding protein 2 (MeCP2) is a widely abundant, multifunctional protein most highly expressed in post-mitotic neurons. Mutations causing Rett syndrome and related neurodevelopmental disorders have been identified along the entire MECP2 locus, but symptoms vary depending on mutation type and location. C-terminal mutations are prevalent, but little is known about the function of the MeCP2 C-terminus. We employ the genetic efficiency of Drosophila to provide evidence that expression of p.Arg294* (more commonly identified as R294X), a human MECP2 E2 mutant allele causing truncation of the C-terminal domains, promotes apoptosis of identified neurons in vivo. We confirm this novel finding in HEK293T cells and then use Drosophila to map the region critical for neuronal apoptosis to a small sequence at the end of the C-terminal domain. In vitro studies in mammalian systems previously indicated a role of the MeCP2 E2 isoform in apoptosis, which is facilitated by phosphorylation at serine 80 (S80) and decreased by interactions with the forkhead protein FoxG1. We confirm the roles of S80 phosphorylation and forkhead domain transcription factors in affecting MeCP2-induced apoptosis in Drosophila in vivo, thus indicating mechanistic conservation between flies and mammalian cells. Our findings are consistent with a model in which C- and N-terminal interactions are required for healthy function of MeCP2. PMID:27442528

  17. Substrate recognition by gelatinase A: the C-terminal domain facilitates surface diffusion.

    PubMed Central

    Collier, I E; Saffarian, S; Marmer, B L; Elson, E L; Goldberg, G

    2001-01-01

    An investigation of gelatinase A binding to gelatin produced results that are inconsistent with a traditional bimolecular Michaelis-Menten formalism but are effectively accounted for by a power law characteristic of fractal kinetics. The main reason for this inconsistency is that the bulk of the gelatinase A binding depends on its ability to diffuse laterally on the gelatin surface. Most interestingly, we show that the anomalous lateral diffusion and, consequently, the binding to gelatin is greatly facilitated by the C-terminal hemopexin-like domain of the enzyme whereas the specificity of binding resides with the fibronectin-like gelatin-binding domain. PMID:11566806

  18. The crystal structures of the synthetic C-terminal octa- and dodecapeptides of trichovirin.

    PubMed

    Gessmann, R; Benos, P; Brückner, H; Kokkinidis, M

    1999-02-01

    The structures of two synthetic peptides with sequences corresponding to the C-terminal region of the naturally occurring 14-residue peptaibol trichovirin have been determined. The crystal structures of 8- and 12-residue segments are presented and are compared with the structures of the tetrapeptide and of the 9-residue segment, which have been reported earlier. A comparison between these segments leads to the hypothesis that the three-dimensional structure of trichovirin is to a large extent determined by the properties of a periodically repeating -Aib-Pro- pattern in the sequence of the peptide.

  19. On the specificity of lipid hydroperoxide fragmentation by fatty acid hydroperoxide lyase from Arabidopsis thaliana.

    PubMed

    Kandzia, Romy; Stumpe, Michael; Berndt, Ekkehardt; Szalata, Marlena; Matsui, Kenji; Feussner, Ivo

    2003-07-01

    Fatty acid hydroperoxide lyase (HPL) is a membrane associated P450 enzyme that cleaves fatty acid hydroperoxides into aldehydes and omega-oxo fatty acids. One of the major products of this reaction is (3Z)-hexenal. It is a constituent of many fresh smelling fruit aromas. For its biotechnological production and because of the lack of structural data on the HPL enzyme family, we investigated the mechanistic reasons for the substrate specificity of HPL by using various structural analogues of HPL substrates. To approach this 13-HPL from Arabidopsis thaliana was cloned and expressed in E. coli utilising a His-Tag expression vector. The fusion protein was purified by affinity chromatography from the E. coli membrane fractions and its pH optimum was detected to be pH 7.2. Then, HPL activity against the respective (9S)- and (13S)-hydroperoxides derived either from linoleic, alpha-linolenic or gamma-linolenic acid, respectively, as well as that against the corresponding methyl esters was analysed. Highest enzyme activity was observed with the (13S)-hydroperoxide of alpha-linolenic acid (13alpha-HPOT) followed by that with its methyl ester. Most interestingly, when the hydroperoxy isomers of gamma-linolenic acid were tested as substrates, 9gamma-HPOT and not 13gamma-HPOT was found to be a better substrate of the enzyme. Taken together from these studies on the substrate specificity it is concluded that At13HPL may not recognise the absolute position of the hydroperoxy group within the substrate, but shows highest activities against substrates with a (1Z4S,5E,7Z)-4-hydroperoxy-1,5,7-triene motif. Thus, At13HPL may not only be used for the production of C6-derived volatiles, but depending on the substrate may be further used for the production of Cg-derived volatiles as well. PMID:12940547

  20. In vivo import of firefly luciferase into the glycosomes of Trypanosoma brucei and mutational analysis of the C-terminal targeting signal.

    PubMed Central

    Sommer, J M; Cheng, Q L; Keller, G A; Wang, C C

    1992-01-01

    The compartmentalization of glycolytic enzymes into specialized organelles, the glycosomes, allows the bloodstream form of Trypanosoma brucei to rely solely on glycolysis for its energy production. The biogenesis of glycosomes in these parasites has been studied intensively as a potential target for chemotherapy. We have adapted the recently developed methods for stable transformation of T. brucei to the in vivo analysis of glycosomal protein import. Firefly luciferase, a peroxisomal protein in the lantern of the insect, was expressed in stable transformants of the procyclic form of T. brucei, where it was found to accumulate inside the glycosomes. Mutational analysis of the peroxisomal targeting signal serine-lysine-leucine (SKL) located at the C-terminus of luciferase showed that replacement of the serine residue (Serine548) with a small neutral amino acid (A, C, G, H, N, P, T) still resulted in an import efficiency of 50-100% of the wild-type luciferase. Lysine549 could be substituted with an amino acid capable of hydrogen bonding (H, M, N, Q, R, S), whereas the C-terminal leucine550 could be replaced with a subset of hydrophobic amino acids (I, M, Y). Thus, a peroxisome-like C-terminal SKL-dependent targeting mechanism may function in T. brucei to import luciferase into the glycosomes. However, a few significant differences exist between the glycosomal targeting signals identified here and the tripeptide sequences that direct proteins to mammalian or yeast peroxisomes. Images PMID:1515676

  1. Influence of N- and/or C-terminal regions on activity, expression, characteristics and structure of lipase from Geobacillus sp. 95.

    PubMed

    Gudiukaitė, Renata; Gegeckas, Audrius; Kazlauskas, Darius; Citavicius, Donaldas

    2014-01-01

    GD-95 lipase from Geobacillus sp. strain 95 and its modified variants lacking N-terminal signal peptide and/or 10 or 20 C-terminal amino acids were successfully cloned, expressed and purified. To our knowledge, GD-95 lipase precursor (Pre-GD-95) is the first Geobacillus lipase possessing more than 80% lipolytic activity at 5 °C. It has maximum activity at 55 °C and displays a broad pH activity range. GD-95 lipase was shown to hydrolyze p-NP dodecanoate, tricaprylin and canola oil better than other analyzed substrates. Structural and sequence alignments of bacterial lipases and GD-95 lipase revealed that the C-terminus forms an α helix, which is a conserved structure in lipases from Pseudomonas, Clostridium or Staphylococcus bacteria. This work demonstrates that 10 and 20 C-terminal amino acids of GD-95 lipase significantly affect stability and other physicochemical properties of this enzyme, which has never been reported before and can help create lipases with more specific properties for industrial application. GD-95 lipase and its modified variants GD-95-10 can be successfully applied to biofuel production, in leather and pulp industries, for the production of cosmetics or perfumes. These lipases are potential biocatalysts in processes, which require extreme conditions: low or high temperature, strongly acidic or alkaline environment and various organic solvents.

  2. Okadaic acid induces DNA fragmentation via caspase-3-dependent and caspase-3-independent pathways in Chinese hamster ovary (CHO)-K1 cells.

    PubMed

    Kitazumi, Ikuko; Maseki, Yoko; Nomura, Yoshiko; Shimanuki, Akiko; Sugita, Yumi; Tsukahara, Masayoshi

    2010-01-01

    DNA fragmentation is a hallmark of apoptosis that occurs in a variety of cell types; however, it remains unclear whether caspase-3 is required for its induction. To investigate this, we produced caspase-3 knockout Chinese hamster ovary (CHO)-K1 cells and examined the effects of gene knockout and treatment with caspase-3 inhibitors. Okadaic acid (OA) is a potent inhibitor of the serine/threonine protein phosphatases (PPs) PP1 and PP2A, which induce apoptotic cellular reactions. Treatment of caspase-3(-/-) cells with OA induced DNA fragmentation, indicating that caspase-3 is not an essential requirement. However, in the presence of benzyloxycarbonyl-Asp-Glu-Val-Asp (OMe) fluoromethylketone (z-DEVD-fmk), DNA fragmentation occurred in CHO-K1 cells but not in caspase-3(-/-) cells, suggesting that caspase-3 is involved in OA-induced DNA fragmentation that does not utilize DEVDase activity. In the absence of caspase-3, DEVDase activity may play an important role. In addition, OA-induced DNA fragmentation was reduced but not blocked in CHO-K1 cells, suggesting that caspase-3 is involved in caspase-independent OA-induced DNA fragmentation. Furthermore, OA-induced cleavage of caspase-3 and DNA fragmentation were blocked by pretreatment with the wide-ranging serine protease inhibitor 4-(2-aminoethyl)-benzenesulfonyl fluoride hydrochloride. These results suggest that serine proteases regulate DNA fragmentation upstream of caspase-3.

  3. Structure of a plant β-galactosidase C-terminal domain.

    PubMed

    Rimlumduan, Thipwarin; Hua, Yan-Ling; Tanaka, Toshiyuki; Ketudat Cairns, James R

    2016-10-01

    Most plant β-galactosidases, which belong to glycoside hydrolase family 35, have a C-terminal domain homologous to animal galactose and rhamnose-binding lectins. To investigate the structure and function of this domain, the C-terminal domain of the rice (Oryza sativa L.) β-galactosidase 1 (OsBGal1 Cter) was expressed in Escherichia coli and purified to homogeneity. The free OsBGal1 Cter is monomeric with a native molecular weight of 15kDa. NMR spectroscopy indicated that OsBGal1 Cter comprises five β-strands and one α-helix. The structure of this domain is similar to lectin domains from animals, but loops A and C of OsBGal1 Cter are longer than the corresponding loops from related animal lectins with known structures. In addition, loop A of OsBGal1 Cter was not well defined, suggesting it is flexible. Although OsBGal1 Cter was predicted to be a galactose/rhamnose-binding domain, binding with rhamnose, galactose, glucose, β-1,4-d-galactobiose and raffinose could not be observed in NMR experiments. PMID:27451952

  4. Structure of the C-terminal Domain of Transcription Facto IIB from Trypanosoma brucei

    SciTech Connect

    Ibrahim, B.; Kanneganti, N; Rieckhof, G; Das, A; Laurents, D; Palenchar, J; Bellofatto, V; Wah, D

    2009-01-01

    In trypanosomes, the production of mRNA relies on the synthesis of the spliced leader (SL) RNA. Expression of the SL RNA is initiated at the only known RNA polymerase II promoter in these parasites. In the pathogenic trypanosome, Trypanosoma brucei, transcription factor IIB (tTFIIB) is essential for SL RNA gene transcription and cell viability, but has a highly divergent primary sequence in comparison to TFIIB in well-studied eukaryotes. Here we describe the 2.3 A resolution structure of the C-terminal domain of tTFIIB (tTFIIBC). The tTFIIBC structure consists of 2 closely packed helical modules followed by a C-terminal extension of 32 aa. Using the structure as a guide, alanine substitutions of basic residues in regions analogous to functionally important regions of the well-studied eukaryotic TFIIB support conservation of a general mechanism of TFIIB function in eukaryotes. Strikingly, tTFIIBC contains additional loops and helices, and, in contrast to the highly basic DNA binding surface of human TFIIB, contains a neutral surface in the corresponding region. These attributes probably mediate trypanosome-specific interactions and have implications for the apparent bidirectional transcription by RNA polymerase II in protein-encoding gene expression in these organisms.

  5. The spt5 C-terminal region recruits yeast 3' RNA cleavage factor I.

    PubMed

    Mayer, Andreas; Schreieck, Amelie; Lidschreiber, Michael; Leike, Kristin; Martin, Dietmar E; Cramer, Patrick

    2012-04-01

    During transcription elongation, RNA polymerase II (Pol II) binds the general elongation factor Spt5. Spt5 contains a repetitive C-terminal region (CTR) that is required for cotranscriptional recruitment of the Paf1 complex (D. L. Lindstrom et al., Mol. Cell. Biol. 23:1368-1378, 2003; Z. Zhang, J. Fu, and D. S. Gilmour, Genes Dev. 19:1572-1580, 2005). Here we report a new role of the Spt5 CTR in the recruitment of 3' RNA-processing factors. Chromatin immunoprecipitation (ChIP) revealed that the Spt5 CTR is required for normal recruitment of pre-mRNA cleavage factor I (CFI) to the 3' ends of Saccharomyces cerevisiae genes. RNA contributes to CFI recruitment, as RNase treatment prior to ChIP further decreases CFI ChIP signals. Genome-wide ChIP profiling detected occupancy peaks of CFI subunits around 100 nucleotides downstream of the polyadenylation (pA) sites of genes. CFI recruitment to this defined region may result from simultaneous binding to the Spt5 CTR, to nascent RNA containing the pA sequence, and to the elongating Pol II isoform that is phosphorylated at serine 2 (S2) residues in its C-terminal domain (CTD). Consistent with this model, the CTR interacts with CFI in vitro but is not required for pA site recognition and transcription termination in vivo.

  6. The C-terminal region of OVGP1 remodels the zona pellucida and modifies fertility parameters

    PubMed Central

    Algarra, B.; Han, L.; Soriano-Úbeda, C.; Avilés, M.; Coy, P.; Jovine, L.; Jiménez-Movilla, M.

    2016-01-01

    OVGP1 is the major non-serum glycoprotein in the oviduct fluid at the time of fertilization and early embryo development. Its activity differs among species. Here, we show that the C-terminal region of recombinant OVGP1 regulates its binding to the extracellular zona pellucida and affects its activity during fertilization. While porcine OVGP1 penetrates two-thirds of the thickness of the zona pellucida, shorter OVGP1 glycoproteins, including rabbit OVGP1, are restricted to the outer one-third of the zona matrix. Deletion of the C-terminal region reduces the ability of the glycoprotein to penetrate through the zona pellucida and prevents OVGP1 endocytosis. This affects the structure of the zona matrix and increases its resistance to protease digestion. However, only full-length porcine OVGP1 is able to increase the efficiency rate of in vitro fertilization. Thus, our findings document that the presence or absence of conserved regions in the C-terminus of OVGP1 modify its association with the zona pellucida that affects matrix structure and renders the zona matrix permissive to sperm penetration and OVGP1 endocytosis into the egg. PMID:27601270

  7. Intrinsic Disorder of the C-Terminal Domain of Drosophila Methoprene-Tolerant Protein

    PubMed Central

    Kolonko, Marta; Ożga, Katarzyna; Hołubowicz, Rafał; Taube, Michał; Kozak, Maciej; Ożyhar, Andrzej; Greb-Markiewicz, Beata

    2016-01-01

    Methoprene tolerant protein (Met) has recently been confirmed as the long-sought juvenile hormone (JH) receptor. This protein plays a significant role in the cross-talk of the 20-hydroxyecdysone (20E) and JH signalling pathways, which are important for control of insect development and maturation. Met belongs to the basic helix-loop-helix/Per-Arnt-Sim (bHLH-PAS) family of transcription factors. In these proteins, bHLH domains are typically responsible for DNA binding and dimerization, whereas the PAS domains are crucial for the choice of dimerization partner and the specificity of target gene activation. The C-terminal region is usually responsible for the regulation of protein complex activity. The sequence of the Met C-terminal region (MetC) is not homologous to any sequence deposited in the Protein Data Bank (PDB) and has not been structurally characterized to date. In this study, we show that the MetC exhibits properties typical for an intrinsically disordered protein (IDP). The final averaged structure obtained with small angle X-ray scattering (SAXS) experiments indicates that intrinsically disordered MetC exists in an extended conformation. This extended shape and the long unfolded regions characterise proteins with high flexibility and dynamics. Therefore, we suggest that the multiplicity of conformations adopted by the disordered MetC is crucial for its activity as a biological switch modulating the cross-talk of different signalling pathways in insects. PMID:27657508

  8. Structure of the Escherichia coli RNA polymerase a Subunit C-terminal Domain

    SciTech Connect

    Lara-Gonzalez, S.; Birktoft, J; Lawson, C

    2010-01-01

    The {alpha} subunit C-terminal domain ({alpha}CTD) of RNA polymerase (RNAP) is a key element in transcription activation in Escherichia coli, possessing determinants responsible for the interaction of RNAP with DNA and with transcription factors. Here, the crystal structure of E. coli {alpha}CTD ({alpha} subunit residues 245-329) determined to 2.0 {angstrom} resolution is reported. Crystals were obtained after reductive methylation of the recombinantly expressed domain. The crystals belonged to space group P2{sub 1} and possessed both pseudo-translational symmetry and pseudo-merohedral twinning. The refined coordinate model (R factor = 0.193, R{sub free} = 0.236) has improved geometry compared with prior lower resolution determinations of the {alpha}CTD structure [Jeon et al. (1995), Science, 270, 1495-1497; Benoff et al. (2002), Science, 297, 1562-1566]. An extensive dimerization interface formed primarily by N- and C-terminal residues is also observed. The new coordinates will facilitate the improved modeling of {alpha}CTD-containing multi-component complexes visualized at lower resolution using X-ray crystallography and electron-microscopy reconstruction.

  9. Structure of a plant β-galactosidase C-terminal domain.

    PubMed

    Rimlumduan, Thipwarin; Hua, Yan-Ling; Tanaka, Toshiyuki; Ketudat Cairns, James R

    2016-10-01

    Most plant β-galactosidases, which belong to glycoside hydrolase family 35, have a C-terminal domain homologous to animal galactose and rhamnose-binding lectins. To investigate the structure and function of this domain, the C-terminal domain of the rice (Oryza sativa L.) β-galactosidase 1 (OsBGal1 Cter) was expressed in Escherichia coli and purified to homogeneity. The free OsBGal1 Cter is monomeric with a native molecular weight of 15kDa. NMR spectroscopy indicated that OsBGal1 Cter comprises five β-strands and one α-helix. The structure of this domain is similar to lectin domains from animals, but loops A and C of OsBGal1 Cter are longer than the corresponding loops from related animal lectins with known structures. In addition, loop A of OsBGal1 Cter was not well defined, suggesting it is flexible. Although OsBGal1 Cter was predicted to be a galactose/rhamnose-binding domain, binding with rhamnose, galactose, glucose, β-1,4-d-galactobiose and raffinose could not be observed in NMR experiments.

  10. The C-terminal region of OVGP1 remodels the zona pellucida and modifies fertility parameters.

    PubMed

    Algarra, B; Han, L; Soriano-Úbeda, C; Avilés, M; Coy, P; Jovine, L; Jiménez-Movilla, M

    2016-01-01

    OVGP1 is the major non-serum glycoprotein in the oviduct fluid at the time of fertilization and early embryo development. Its activity differs among species. Here, we show that the C-terminal region of recombinant OVGP1 regulates its binding to the extracellular zona pellucida and affects its activity during fertilization. While porcine OVGP1 penetrates two-thirds of the thickness of the zona pellucida, shorter OVGP1 glycoproteins, including rabbit OVGP1, are restricted to the outer one-third of the zona matrix. Deletion of the C-terminal region reduces the ability of the glycoprotein to penetrate through the zona pellucida and prevents OVGP1 endocytosis. This affects the structure of the zona matrix and increases its resistance to protease digestion. However, only full-length porcine OVGP1 is able to increase the efficiency rate of in vitro fertilization. Thus, our findings document that the presence or absence of conserved regions in the C-terminus of OVGP1 modify its association with the zona pellucida that affects matrix structure and renders the zona matrix permissive to sperm penetration and OVGP1 endocytosis into the egg. PMID:27601270

  11. Investigating the Roles of the C-Terminal Domain of Plasmodium falciparum GyrA

    PubMed Central

    Nagano, Soshichiro; Seki, Eiko; Lin, Ting-Yu; Shirouzu, Mikako; Yokoyama, Shigeyuki; Heddle, Jonathan G.

    2015-01-01

    Malaria remains as one of the most deadly diseases in developing countries. The Plasmodium causative agents of human malaria such as Plasmodium falciparum possess an organelle, the apicoplast, which is the result of secondary endosymbiosis and retains its own circular DNA. A type II topoisomerase, DNA gyrase, is present in the apicoplast. In prokaryotes this enzyme is a proven, effective target for antibacterial agents, and its discovery in P. falciparum opens up the prospect of exploiting it as a drug target. Basic characterisation of P. falciparum gyrase is important because there are significant sequence differences between it and the prokaryotic enzyme. However, it has proved difficult to obtain soluble protein. Here we have predicted a new domain boundary in P. falciparum GyrA that corresponds to the C-terminal domain of prokaryotic GyrA and successfully purified it in a soluble form. Biochemical analyses revealed many similarities between the C-terminal domains of GyrA from E. coli and P. falciparum, suggesting that despite its considerably larger size, the malarial protein carries out a similar DNA wrapping function. Removal of a unique Asn-rich region in the P. falciparum protein did not result in a significant change, suggesting it is dispensable for DNA wrapping. PMID:26566222

  12. VGF Protein and Its C-Terminal Derived Peptides in Amyotrophic Lateral Sclerosis: Human and Animal Model Studies

    PubMed Central

    Noli, Barbara; Boido, Marina; Boi, Andrea; Puddu, Roberta; Borghero, Giuseppe; Marrosu, Francesco; Bongioanni, Paolo; Orrù, Sandro; Manconi, Barbara; D’Amato, Filomena; Messana, Irene; Vincenzoni, Federica; Vercelli, Alessandro; Ferri, Gian-Luca; Cocco, Cristina

    2016-01-01

    VGF mRNA is widely expressed in areas of the nervous system known to degenerate in Amyotrophic Lateral Sclerosis (ALS), including cerebral cortex, brainstem and spinal cord. Despite certain VGF alterations are reported in animal models, little information is available with respect to the ALS patients. We addressed VGF peptide changes in fibroblast cell cultures and in plasma obtained from ALS patients, in parallel with spinal cord and plasma samples from the G93A-SOD1 mouse model. Antisera specific for the C-terminal end of the human and mouse VGF proteins, respectively, were used in immunohistochemistry and enzyme-linked immunosorbent assay (ELISA), while gel chromatography and HPLC/ESI-MS/MS were used to identify the VGF peptides present. Immunoreactive VGF C-terminus peptides were reduced in both fibroblast and plasma samples from ALS patients in an advanced stage of the disease. In the G93A-SOD1 mice, the same VGF peptides were also decreased in plasma in the late-symptomatic stage, while showing an earlier down-regulation in the spinal cord. In immunohistochemistry, a large number of gray matter structures were VGF C-terminus immunoreactive in control mice (including nerve terminals, axons and a few perikarya identified as motoneurons), with a striking reduction already in the pre-symptomatic stage. Through gel chromatography and spectrometry analysis, we identified one form likely to be the VGF precursor as well as peptides containing the NAPP- sequence in all tissues studied, while in the mice and fibroblasts, we revealed also AQEE- and TLQP- peptides. Taken together, selective VGF fragment depletion may participate in disease onset and/or progression of ALS. PMID:27737014

  13. Chemical and thermal unfolding of a global staphylococcal virulence regulator with a flexible C-terminal end.

    PubMed

    Mahapa, Avisek; Mandal, Sukhendu; Biswas, Anindya; Jana, Biswanath; Polley, Soumitra; Sau, Subrata; Sau, Keya

    2015-01-01

    SarA, a Staphylococcus aureus-specific dimeric protein, modulates the expression of numerous proteins including various virulence factors. Interestingly, S. aureus synthesizes multiple SarA paralogs seemingly for optimizing the expression of its virulence factors. To understand the domain structure/flexibility and the folding/unfolding mechanism of the SarA protein family, we have studied a recombinant SarA (designated rSarA) using various in vitro probes. Limited proteolysis of rSarA and the subsequent analysis of the resulting protein fragments suggested it to be a single-domain protein with a long, flexible C-terminal end. rSarA was unfolded by different mechanisms in the presence of different chemical and physical denaturants. While urea-induced unfolding of rSarA occurred successively via the formation of a dimeric and a monomeric intermediate, GdnCl-induced unfolding of this protein proceeded through the production of two dimeric intermediates. The surface hydrophobicity and the structures of the intermediates were not identical and also differed significantly from those of native rSarA. Of the intermediates, the GdnCl-generated intermediates not only possessed a molten globule-like structure but also exhibited resistance to dissociation during their unfolding. Compared to the native rSarA, the intermediate that was originated at lower GdnCl concentration carried a compact shape, whereas, other intermediates owned a swelled shape. The chemical-induced unfolding, unlike thermal unfolding of rSarA, was completely reversible in nature. PMID:25822635

  14. C-Terminally modified peptides via cleavage of the HMBA linker by O-, N- or S-nucleophiles.

    PubMed

    Hansen, J; Diness, F; Meldal, M

    2016-03-28

    A large variety of C-terminally modified peptides was obtained by nucleophilic cleavage of the ester bond in solid phase linked peptide esters of 4-hydroxymethyl benzamide (HMBA). The developed methods provided peptides, C-terminally functionalized as esters, amides and thioesters, with high purity directly from the resin in a single reaction step. A comprehensive screening of the reaction conditions and scope for nucleophilic cleavage of peptides from the HMBA linker was performed. PMID:26924021

  15. Function of streptokinase fragments in plasminogen activation.

    PubMed Central

    Shi, G Y; Chang, B I; Chen, S M; Wu, D H; Wu, H L

    1994-01-01

    Several peptide fragments of streptokinase (SK) were prepared by incubating SK with immobilized human plasmin (hPlm) and purified by h.p.l.c. with a reverse-phase phenyl column. The N-terminal sequences, amino acid compositions and molecular masses of these peptide fragments were determined. The SK peptide fragment of 36 kDa consisting of Ser60-Lys387 (SK-p), was the only peptide fragment that could be tightly bound to immobilized hPlm. Another three large SK peptide fragments, SK-m, SK-n and SK-o, with molecular masses of 7 kDa, 18 kDa and 30 kDa, and consisting of Ile1-Lys59, Glu148-Lys333, Ser60-Lys333 respectively, were also obtained from the supernatant of the reaction mixture. The purified SK-p had high affinity with hPlm and could activate human plasminogen (hPlg) with a kPlg one-sixth that of the native SK. SK-o had low affinity with hPlm and could also activate hPlg, although the catalytic constant was less than 1% of the native SK. SK-n, as well as SK-m, which is the N-terminal 59 amino acid peptide of the native SK, had no activator activity. However, SK-m could enhance the activator activity of both SK-o and SK-p and increase their second-order rate constants by two- and six-fold respectively. It was concluded from these studies that (1) SK-o, the Ser60-Lys333 peptide of SK, was essential for minimal SK activator activity, (2) the C-terminal peptide of SK-p, Ala334-Lys387, was essential for high affinity with hPlm, and (3) the N-terminal 59-amino-acid peptide was important in maintaining the proper conformation of SK to have its full activator activity. Images Figure 1 Figure 2 PMID:7998939

  16. Helicity of alpha(404-451) and beta(394-445) tubulin C-terminal recombinant peptides.

    PubMed Central

    Jimenez, M. A.; Evangelio, J. A.; Aranda, C.; Lopez-Brauet, A.; Andreu, D.; Rico, M.; Lagos, R.; Andreu, J. M.; Monasterio, O.

    1999-01-01

    We have investigated the solution conformation of the functionally relevant C-terminal extremes of alpha- and beta-tubulin, employing the model recombinant peptides RL52alpha3 and RL33beta6, which correspond to the amino acid sequences 404-451(end) and 394-445(end) of the main vertebrate isotypes of alpha- and beta-tubulin, respectively, and synthetic peptides with the alpha-tubulin(430-443) and beta-tubulin(412-431) internal sequences. Alpha(404-451) and beta(394-445) are monomeric in neutral aqueous solution (as indicated by sedimentation equilibrium), and have circular dichroism (CD) spectra characteristic of nearly disordered conformation, consistent with low scores in peptide helicity prediction. Limited proteolysis of beta(394-445) with subtilisin, instead of giving extensive degradation, resulted in main cleavages at positions Thr409-Glu410 and Tyr422-Gln423-Gln424, defining the proteolysis resistant segment 410-422, which corresponds to the central part of the predicted beta-tubulin C-terminal helix. Both recombinant peptides inhibited microtubule assembly, probably due to sequestration of the microtubule stabilizing associated proteins. Trifluoroethanol (TFE)-induced markedly helical CD spectra in alpha(404-451) and beta(394-445). A substantial part of the helicity of beta(394-445) was found to be in the CD spectrum of the shorter peptide beta(412-431) with TFE. Two-dimensional 1H-NMR parameters (nonsequential nuclear Overhauser effects (NOE) and conformational C alphaH shifts) in 30% TFE permitted to conclude that about 25% of alpha(404-451) and 40% of beta(394-451) form well-defined helices encompassing residues 418-432 and 408-431, respectively, flanked by disordered N- and C-segments. The side chains of beta(394-451) residues Leu418, Val419, Ser420, Tyr422, Tyr425, and Gln426 are well defined in structure calculations from the NOE distance constraints. The apolar faces of the helix in both alpha and beta chains share a characteristic sequence of

  17. Extreme C-terminal sites are posttranslocationally glycosylated by the STT3B isoform of the OST.

    PubMed

    Shrimal, Shiteshu; Trueman, Steven F; Gilmore, Reid

    2013-04-01

    Metazoan organisms assemble two isoforms of the oligosaccharyltransferase (OST) that have different catalytic subunits (STT3A or STT3B) and partially nonoverlapping roles in asparagine-linked glycosylation. The STT3A isoform of the OST is primarily responsible for co-translational glycosylation of the nascent polypeptide as it enters the lumen of the endoplasmic reticulum. The C-terminal 65-75 residues of a glycoprotein will not contact the translocation channel-associated STT3A isoform of the OST complex before chain termination. Biosynthetic pulse labeling of five human glycoproteins showed that extreme C-terminal glycosylation sites were modified by an STT3B-dependent posttranslocational mechanism. The boundary for STT3B-dependent glycosylation of C-terminal sites was determined to fall between 50 and 55 residues from the C terminus of a protein. C-terminal NXT sites were glycosylated more rapidly and efficiently than C-terminal NXS sites. Bioinformatics analysis of glycopeptide databases from metazoan organisms revealed a lower density of C-terminal acceptor sites in glycoproteins because of reduced positive selection of NXT sites and negative selection of NXS sites.

  18. Phosphorylation in the C-terminal domain of Aquaporin-4 is required for Golgi transition in primary cultured astrocytes

    SciTech Connect

    Kadohira, Ikuko; Abe, Yoichiro Nuriya, Mutsuo; Sano, Kazumi; Tsuji, Shoji; Arimitsu, Takeshi; Yoshimura, Yasunori; Yasui, Masato

    2008-12-12

    Aquaporin-4 (AQP4) is expressed in the perivascular and subpial astrocytes end-feet in mammalian brain, and plays a critical component of an integrated water and potassium homeostasis. Here we examine whether AQP4 is phosphorylated in primary cultured mouse astrocytes. Astrocytes were metabolically labeled with [{sup 32}P]phosphoric acid, then AQP4 was immunoprecipitated with anti-AQP4 antibody. We observed that AQP4 was constitutively phosphorylated, which is reduced by treatment with protein kinase CK2 inhibitors. To elucidate the phosphorylation of AQP4 by CK2, myc-tagged wild-type or mutant AQP4 was transiently transfected in primary cultured astrocytes. Substitution of Ala residues for four putative CK2 phosphorylation sites in the C terminus abolished the phosphorylation of AQP4. Immunofluorescent microscopy revealed that the quadruple mutant was localized in the Golgi apparatus. These observations indicate that the C-terminal domain of AQP4 is constitutively phosphorylated at least in part by protein kinase CK2 and it is required for Golgi transition.

  19. Solution structure of the C-terminal domain of Ole e 9, a major allergen of olive pollen

    PubMed Central

    Treviño, Miguel Á.; Palomares, Oscar; Castrillo, Inés; Villalba, Mayte; Rodríguez, Rosalía; Rico, Manuel; Santoro, Jorge; Bruix, Marta

    2008-01-01

    Ole e 9 is an olive pollen allergen belonging to group 2 of pathogenesis-related proteins. The protein is composed of two immunological independent domains: an N-terminal domain (NtD) with 1,3-β-glucanase activity, and a C-terminal domain (CtD) that binds 1,3-β-glucans. We have determined the three-dimensional structure of CtD-Ole e 9 (101 amino acids), which consists of two parallel α-helices forming an angle of ∼55°, a small antiparallel β-sheet with two short strands, and a 3–10 helix turn, all connected by long coil segments, resembling a novel type of folding among allergens. Two regions surrounded by aromatic residues (F49, Y60, F96, Y91 and Y31, H68, Y65, F78) have been localized on the protein surface, and a role for sugar binding is suggested. The epitope mapping of CtD-Ole e 9 shows that B-cell epitopes are mainly located on loops, although some of them are contained in secondary structural elements. Interestingly, the IgG and IgE epitopes are contiguous or overlapped, rather than coincident. The three-dimensional structure of CtD-Ole e 9 might help to understand the underlying mechanism of its biochemical function and to determine possible structure–allergenicity relationships. PMID:18096638

  20. Structure of FIV capsid C-terminal domain demonstrates lentiviral evasion of genetic fragility by coevolved substitutions.

    PubMed

    Khwaja, Aya; Galilee, Meytal; Marx, Ailie; Alian, Akram

    2016-01-01

    Viruses use a strategy of high mutational rates to adapt to environmental and therapeutic pressures, circumventing the deleterious effects of random single-point mutations by coevolved compensatory mutations, which restore protein fold, function or interactions damaged by initial ones. This mechanism has been identified as contributing to drug resistance in the HIV-1 Gag polyprotein and especially its capsid proteolytic product, which forms the viral capsid core and plays multifaceted roles in the viral life cycle. Here, we determined the X-ray crystal structure of C-terminal domain of the feline immunodeficiency virus (FIV) capsid and through interspecies analysis elucidate the structural basis of co-evolutionarily and spatially correlated substitutions in capsid sequences, which when otherwise uncoupled and individually substituted into HIV-1 capsid impair virion assembly and infectivity. The ability to circumvent the deleterious effects of single amino acid substitutions by cooperative secondary substitutions allows mutational flexibility that may afford viruses an important survival advantage. The potential of such interspecies structural analysis for preempting viral resistance by identifying such alternative but functionally equivalent patterns is discussed. PMID:27102180

  1. The APC tumor suppressor binds to C-terminal binding protein to divert nuclear beta-catenin from TCF.

    PubMed

    Hamada, Fumihiko; Bienz, Mariann

    2004-11-01

    Adenomatous polyposis coli (APC) is an important tumor suppressor in the colon. APC antagonizes the transcriptional activity of the Wnt effector beta-catenin by promoting its nuclear export and its proteasomal destruction in the cytoplasm. Here, we show that a third function of APC in antagonizing beta-catenin involves C-terminal binding protein (CtBP). APC is associated with CtBP in vivo and binds to CtBP in vitro through its conserved 15 amino acid repeats. Failure of this association results in elevated levels of beta-catenin/TCF complexes and of TCF-mediated transcription. Notably, CtBP is neither associated with TCF in vivo nor does mutation of the CtBP binding motifs in TCF-4 alter its transcriptional activity. This questions the idea that CtBP is a direct corepressor of TCF. Our evidence indicates that APC is an adaptor between beta-catenin and CtBP and that CtBP lowers the availability of free nuclear beta-catenin for binding to TCF by sequestering APC/beta-catenin complexes. PMID:15525529

  2. A large plant beta-tubulin family with minimal C-terminal variation but differences in expression.

    PubMed

    Jost, Wolfgang; Baur, Armin; Nick, Peter; Reski, Ralf; Gorr, Gilbert

    2004-09-29

    Tubulins, as the major structural component of microtubules (MT), are highly conserved throughout the entire eukaryotic kingdom. They consist of alpha/beta heterodimers. Both monomers, at least in multicellular organisms, are encoded by gene families. In higher plants up to eight beta-tubulin isotypes, mostly differing in their very C-termini, have been described. These variable beta-tubulin C-termini have been discussed in the context of functional microtubule diversity. However, in plants, in contrast to vertebrates, functional isotype specificity remains yet to be demonstrated. Unlike higher plants, unicellular green algae in general do not exhibit isotypic variations. The moss Physcomitrella patens is a phylogenetic intermediate between higher plants and green algae. We isolated six beta-tubulin genes from Physcomitrella, named PpTub1 to 6. We show that the exon/intron structure, with the exception of one additional intron in PpTub6, is identical with that of higher plants, and that some members of the family are differentially expressed. Moreover, we find that all Physcomitrella isotypes are highly conserved and, most strikingly, are almost identical within their C-terminal amino acids (aa). This evolutionary ancient and large beta-tubulin gene family without significant isotypic sequence variation points to a role of differential regulation in the evolution of plant tubulin isotypes. PMID:15556303

  3. The C-terminal domain of the Arabidopsis AtMBD7 protein confers strong chromatin binding activity

    SciTech Connect

    Zemach, Assaf; Paul, Laju K.; Stambolsky, Perry; Efroni, Idan; Rotter, Varda; Grafi, Gideon

    2009-12-10

    The Arabidopsis MBD7 (AtMBD7) - a naturally occurring poly MBD protein - was previously found to be functional in binding methylated-CpG dinucleotides in vitro and localized to highly methylated chromocenters in vivo. Furthermore, AtMBD7 has significantly lower mobility within the nucleus conferred by cooperative activity of its three MBD motifs. Here we show that besides the MBD motifs, AtMBD7 possesses a strong chromatin binding domain located at its C-terminus designated sticky-C (StkC). Mutational analysis showed that a glutamic acid residue near the C-terminus is essential though not sufficient for the StkC function. Further analysis demonstrated that this motif can render nuclear proteins highly immobile both in plant and animal cells, without affecting their native subnuclear localization. Thus, the C-terminal, StkC motif plays an important role in fastening AtMBD7 to its chromosomal, CpG-methylated sites. It may be possible to utilize this motif for fastening nuclear proteins to their chromosomal sites both in plant and animal cells for research and gene therapy applications.

  4. Crystal Structures of GCN2 Protein Kinase C-terminal Domains Suggest Regulatory Differences in Yeast and Mammals*

    PubMed Central

    He, Hongzhen; Singh, Isha; Wek, Sheree A.; Dey, Souvik; Baird, Thomas D.; Wek, Ronald C.; Georgiadis, Millie M.

    2014-01-01

    In response to amino acid starvation, GCN2 phosphorylation of eIF2 leads to repression of general translation and initiation of gene reprogramming that facilitates adaptation to nutrient stress. GCN2 is a multidomain protein with key regulatory domains that directly monitor uncharged tRNAs which accumulate during nutrient limitation, leading to activation of this eIF2 kinase and translational control. A critical feature of regulation of this stress response kinase is its C-terminal domain (CTD). Here, we present high resolution crystal structures of murine and yeast CTDs, which guide a functional analysis of the mammalian GCN2. Despite low sequence identity, both yeast and mammalian CTDs share a core subunit structure and an unusual interdigitated dimeric form, albeit with significant differences. Disruption of the dimeric form of murine CTD led to loss of translational control by GCN2, suggesting that dimerization is critical for function as is true for yeast GCN2. However, although both CTDs bind single- and double-stranded RNA, murine GCN2 does not appear to stably associate with the ribosome, whereas yeast GCN2 does. This finding suggests that there are key regulatory differences between yeast and mammalian CTDs, which is consistent with structural differences. PMID:24719324

  5. Drosophila DBT Autophosphorylation of Its C-Terminal Domain Antagonized by SPAG and Involved in UV-Induced Apoptosis.

    PubMed

    Fan, Jin-Yuan; Means, John C; Bjes, Edward S; Price, Jeffrey L

    2015-07-01

    Drosophila DBT and vertebrate CKIε/δ phosphorylate the period protein (PER) to produce circadian rhythms. While the C termini of these orthologs are not conserved in amino acid sequence, they inhibit activity and become autophosphorylated in the fly and vertebrate kinases. Here, sites of C-terminal autophosphorylation were identified by mass spectrometry and analysis of DBT truncations. Mutation of 6 serines and threonines in the C terminus (DBT(C/ala)) prevented autophosphorylation-dependent DBT turnover and electrophoretic mobility shifts in S2 cells. Unlike the effect of autophosphorylation on CKIδ, DBT autophosphorylation in S2 cells did not reduce its in vitro activity. Moreover, overexpression of DBT(C/ala) did not affect circadian behavior differently from wild-type DBT (DBT(WT)), and neither exhibited daily electrophoretic mobility shifts, suggesting that DBT autophosphorylation is not required for clock function. While DBT(WT) protected S2 cells and larvae from UV-induced apoptosis and was phosphorylated and degraded by the proteasome, DBT(C/ala) did not protect and was not degraded. Finally, we show that the HSP-90 cochaperone spaghetti protein (SPAG) antagonizes DBT autophosphorylation in S2 cells. These results suggest that DBT autophosphorylation regulates cell death and suggest a potential mechanism by which the circadian clock might affect apoptosis.

  6. Functional analysis of the C-terminal region of human adenovirus E1A reveals a misidentified nuclear localization signal

    SciTech Connect

    Cohen, Michael J.; King, Cason R.; Dikeakos, Jimmy D.; Mymryk, Joe S.

    2014-11-15

    The immortalizing function of the human adenovirus 5 E1A oncoprotein requires efficient localization to the nucleus. In 1987, a consensus monopartite nuclear localization sequence (NLS) was identified at the C-terminus of E1A. Since that time, various experiments have suggested that other regions of E1A influence nuclear import. In addition, a novel bipartite NLS was recently predicted at the C-terminal region of E1A in silico. In this study, we used immunofluorescence microscopy and co-immunoprecipitation analysis with importin-α to verify that full nuclear localization of E1A requires the well characterized NLS spanning residues 285–289, as well as a second basic patch situated between residues 258 and 263 ({sup 258}RVGGRRQAVECIEDLLNEPGQPLDLSCKRPRP{sup 289}). Thus, the originally described NLS located at the C-terminus of E1A is actually a bipartite signal, which had been misidentified in the existing literature as a monopartite signal, altering our understanding of one of the oldest documented NLSs. - Highlights: • Human adenovirus E1A is localized to the nucleus. • The C-terminus of E1A contains a bipartite nuclear localization signal (NLS). • This signal was previously misidentified to be a monopartite NLS. • Key basic amino acid residues within this sequence are highly conserved.

  7. Structure of FIV capsid C-terminal domain demonstrates lentiviral evasion of genetic fragility by coevolved substitutions

    PubMed Central

    Khwaja, Aya; Galilee, Meytal; Marx, Ailie; Alian, Akram

    2016-01-01

    Viruses use a strategy of high mutational rates to adapt to environmental and therapeutic pressures, circumventing the deleterious effects of random single-point mutations by coevolved compensatory mutations, which restore protein fold, function or interactions damaged by initial ones. This mechanism has been identified as contributing to drug resistance in the HIV-1 Gag polyprotein and especially its capsid proteolytic product, which forms the viral capsid core and plays multifaceted roles in the viral life cycle. Here, we determined the X-ray crystal structure of C-terminal domain of the feline immunodeficiency virus (FIV) capsid and through interspecies analysis elucidate the structural basis of co-evolutionarily and spatially correlated substitutions in capsid sequences, which when otherwise uncoupled and individually substituted into HIV-1 capsid impair virion assembly and infectivity. The ability to circumvent the deleterious effects of single amino acid substitutions by cooperative secondary substitutions allows mutational flexibility that may afford viruses an important survival advantage. The potential of such interspecies structural analysis for preempting viral resistance by identifying such alternative but functionally equivalent patterns is discussed. PMID:27102180

  8. Cloning, purification and preliminary X-ray analysis of the C-terminal domain of Helicobacter pylori MotB

    SciTech Connect

    Roujeinikova, Anna

    2008-04-01

    The cloning, overexpression, purification, crystallization and preliminary X-ray diffraction analysis of a putative peptidoglycan-binding domain of H. pylori MotB, a stator component of the bacterial flagellar motor, are reported. The C-terminal domain of MotB (MotB-C) contains a putative peptidoglycan-binding motif and is believed to anchor the MotA/MotB stator unit of the bacterial flagellar motor to the cell wall. Crystals of Helicobacter pylori MotB-C (138 amino-acid residues) were obtained by the hanging-drop vapour-diffusion method using polyethylene glycol as a precipitant. These crystals belong to space group P2{sub 1}, with unit-cell parameters a = 50.8, b = 89.5, c = 66.3 Å, β = 112.5°. The crystals diffract X-rays to at least 1.6 Å resolution using a synchrotron-radiation source. Self-rotation function and Matthews coefficient calculations suggest that the asymmetric unit contains one tetramer with 222 point-group symmetry. The anomalous difference Patterson maps calculated for an ytterbium-derivative crystal using diffraction data at a wavelength of 1.38 Å showed significant peaks on the v = 1/2 Harker section, suggesting that ab initio phase information could be derived from the MAD data.

  9. Ubiquitin C-terminal hydrolase L1 (UCH-L1): structure, distribution and roles in brain function and dysfunction

    PubMed Central

    Bishop, Paul; Rocca, Dan; Henley, Jeremy M.

    2016-01-01

    Ubiquitin C-terminal hydrolase L1 (UCH-L1) is an extremely abundant protein in the brain where, remarkably, it is estimated to make up 1–5% of total neuronal protein. Although it comprises only 223 amino acids it has one of the most complicated 3D knotted structures yet discovered. Beyond its expression in neurons UCH-L1 has only very limited expression in other healthy tissues but it is highly expressed in several forms of cancer. Although UCH-L1 is classed as a deubiquitinating enzyme (DUB) the direct functions of UCH-L1 remain enigmatic and a wide array of alternative functions has been proposed. UCH-L1 is not essential for neuronal development but it is absolutely required for the maintenance of axonal integrity and UCH-L1 dysfunction is implicated in neurodegenerative disease. Here we review the properties of UCH-L1, and how understanding its complex structure can provide new insights into its roles in neuronal function and pathology. PMID:27515257

  10. Specific in vitro binding of a new (99m)Tc-radiolabeled derivative of the C-terminal decapeptide of prothymosin alpha on human neutrophils.

    PubMed

    Karachaliou, Chrysoula-Evangelia; Liolios, Christos; Triantis, Charalampos; Zikos, Christos; Samara, Pinelopi; Tsitsilonis, Ourania E; Kalbacher, Hubert; Voelter, Wolfgang; Papadopoulos, Minas; Pirmettis, Ioannis; Livaniou, Evangelia

    2015-01-01

    Prothymosin alpha (ProTα) is a conserved mammalian polypeptide with intracellular functions associated with cell proliferation and apoptosis and an extracellular role associated with immunopotentiation. The N-terminal fragment [1-28], which is identical with the immunostimulating peptide thymosin α1 (Tα1), was earlier considered as the immunoactive region of the polypeptide; however, recent data suggest that ProTα may exert a discrete immunomodulating action through its central or C-terminal region, via targeting Toll-like receptor- 4 (TLR4). In this work, a derivative of the C-terminal fragment ProTα[100-109] (ProTα-D1) that can be radiolabeled with (99m)Tc was developed. The biological activity of the non-radioactive (185/187)rhenium-complex of this derivative ([(185/187)Re]ProTα-D1, structurally similar with [(99m)Tc]ProTα-D1) was verified through suitable in vitro bioassays on human neutrophils. Subsequent cell-binding studies revealed specific, time-dependent and saturable binding of [(99m)Tc]ProTα-D1 on neutrophils, which was inhibited by intact ProTα and ProTα[100-109], as well as by a "prototype" TLR4-ligand (lipopolysaccharide from Escherichia coli). Overall, our results support the existence of ProTα-binding sites on human neutrophils, recognizing [(99m)Tc]ProTα-D1, which might involve TLR4. [(99m)Tc]ProTα-D1 may be a useful tool for conducting further in vitro and in vivo studies, aiming to elucidate the extracellular mode of action of ProTα and, eventually, develop ProTα-based immunotherapeutics.

  11. β-secretase cleavage is not required for generation of the intracellular C-terminal domain of the amyloid precursor family of proteins

    PubMed Central

    Frigerio, Carlo Sala; Fadeeva, Julia V.; Minogue, Aedín M.; Citron, Martin; Leuven, Fred Van; Stufenbiel, Matthias; Paganetti, Paolo; Selkoe, Dennis J.; Walsh, Dominic M.

    2010-01-01

    Summary The amyloid precursor family of proteins are of considerable interest both because of their role in Alzheimer’s disease pathogenesis and because of their normal physiological functions. In mammals, the amyloid precursor protein (APP) has two homologs, amyloid precursor-like protein 1 and amyloid precursor-like protein 2. All 3 proteins undergo ectodomain shedding and regulated intramembrane proteolysis, and important functions have been impunged to the full-length proteins, shed ectodomains, C-terminal fragments and intra-cellular domains (ICDs). One of the proteases known to cleave APP and which is essential for generation of the amyloid β-protein is the β-site APP cleaving enzyme 1 (BACE1). Here we investigated the effects of genetic manipulation of BACE1 on the processing of the APP family of proteins. BACE1 expression regulated the levels and species of full-length APLP1, APP and APLP2, of their shed ectodomains and membrane-bound C-terminal fragments. In particular, APP processing appears to be tightly regulated, with changes in APPsβ being compensated with changes in APPsα. In contrast, the total levels of soluble cleaved APLP1 and APLP2 species were less tightly regulated and fluctuated depending on BACE1 expression. Importantly, the production of ICDs for all three proteins was not decreased by loss of BACE1 activity. These results indicate that BACE1 is involved in regulating ectodomain shedding, maturation and trafficking of the APP family of proteins. Consequently, while inhibition of BACE1 is unlikely to adversely affect potential ICD-mediated signalling it may alter other important facets of APLP/APP biology. PMID:20163459

  12. Characterizing the N- and C-terminal Small Ubiquitin-like Modifier (SUMO)-interacting Motifs of the Scaffold Protein DAXX*

    PubMed Central

    Escobar-Cabrera, Eric; Okon, Mark; Lau, Desmond K. W.; Dart, Christopher F.; Bonvin, Alexandre M. J. J.; McIntosh, Lawrence P.

    2011-01-01

    DAXX is a scaffold protein with diverse roles that often depend upon binding SUMO via its N- and/or C-terminal SUMO-interacting motifs (SIM-N and SIM-C). Using NMR spectroscopy, we characterized the in vitro binding properties of peptide models of SIM-N and SIM-C to SUMO-1 and SUMO-2. In each case, binding was mediated by hydrophobic and electrostatic interactions and weakened with increasing ionic strength. Neither isolated SIM showed any significant paralog specificity, and the measured μm range KD values of SIM-N toward both SUMO-1 and SUMO-2 were ∼4-fold lower than those of SIM-C. Furthermore, SIM-N bound SUMO-1 predominantly in a parallel orientation, whereas SIM-C interconverted between parallel and antiparallel binding modes on an ms to μs time scale. The differences in affinities and binding modes are attributed to the differences in charged residues that flank the otherwise identical hydrophobic core sequences of the two SIMs. In addition, within its native context, SIM-N bound intramolecularly to the adjacent N-terminal helical bundle domain of DAXX, thus reducing its apparent affinity for SUMO. This behavior suggests a possible autoregulatory mechanism for DAXX. The interaction of a C-terminal fragment of DAXX with an N-terminal fragment of the sumoylated Ets1 transcription factor was mediated by SIM-C. Importantly, this interaction did not involve any direct contacts between DAXX and Ets1, but rather was derived from the non-covalent binding of SIM-C to SUMO-1, which in turn was covalently linked to the unstructured N-terminal segment of Ets1. These results provide insights into the binding mechanisms and hence biological roles of the DAXX SUMO-interacting motifs. PMID:21383010

  13. Urea Unfolding Study of E. coli Alanyl-tRNA Synthetase and Its Monomeric Variants Proves the Role of C-Terminal Domain in Stability

    PubMed Central

    Banerjee, Baisakhi; Banerjee, Rajat

    2015-01-01

    E. coli alanyl-tRNA exists as a dimer in its native form and the C-terminal coiled-coil part plays an important role in the dimerization process. The truncated N-terminal containing the first 700 amino acids (1–700) forms a monomeric variant possessing similar aminoacylation activity like wild type. A point mutation in the C-terminal domain (G674D) also produces a monomeric variant with a fivefold reduced aminoacylation activity compared to the wild type enzyme. Urea induced denaturation of these monomeric mutants along with another alaRS variant (N461 alaRS) was studied together with the full-length enzyme using various spectroscopic techniques such as intrinsic tryptophan fluorescence, 1-anilino-8-naphthalene-sulfonic acid binding, near- and far-UV circular dichroism, and analytical ultracentrifugation. Aminoacylation activity assay after refolding from denatured state revealed that the monomeric mutants studied here were unable to regain their activity, whereas the dimeric full-length alaRS gets back similar activity as the native enzyme. This study indicates that dimerization is one of the key regulatory factors that is important in the proper folding and stability of E. coli alaRS. PMID:26617997

  14. Crystallization of the C-terminal domain of the addiction antidote CcdA in complex with its toxin CcdB

    SciTech Connect

    Buts, Lieven; De Jonge, Natalie; Loris, Remy Wyns, Lode; Dao-Thi, Minh-Hoa

    2005-10-01

    The CcdA C-terminal domain was crystallized in complex with CcdB in two crystal forms that diffract to beyond 2.0 Å resolution. CcdA and CcdB are the antidote and toxin of the ccd addiction module of Escherichia coli plasmid F. The CcdA C-terminal domain (CcdA{sub C36}; 36 amino acids) was crystallized in complex with CcdB (dimer of 2 × 101 amino acids) in three different crystal forms, two of which diffract to high resolution. Form II belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 37.6, b = 60.5, c = 83.8 Å and diffracts to 1.8 Å resolution. Form III belongs to space group P2{sub 1}, with unit-cell parameters a = 41.0, b = 37.9, c = 69.6 Å, β = 96.9°, and diffracts to 1.9 Å resolution.

  15. Effects of an acidic fibroblast growth factor fragment analog on learning and memory and on medial septum cholinergic neurons in senescence-accelerated mice.

    PubMed

    Sasaki, K; Tooyama, I; Li, A J; Oomura, Y; Kimura, H

    1999-01-01

    We examined the effects of repeated subcutaneous injections of an acidic fibroblast growth factor fragment analog, [Ala16] acidic fibroblast growth factor (1-29), on learning and memory and on the choline acetyltransferase immunoreactivity of forebrain neurons in senescence-accelerated mice. One group of accelerated senescence-prone mice (accelerated senescence-prone-8) received [Ala16] acidic fibroblast growth factor (1-29), whereas the other group of accelerated senescence-prone-8 mice and a group of accelerated senescence-resistant mice (control) received vehicle solution. Injections began at three weeks after birth and were given weekly for 10 months. In a passive avoidance test, the mean retention latency at three, six and nine months of age was significantly longer in controls (vehicle-treated accelerated senescence-resistant-1) and acidic fibroblast growth factor fragment-treated accelerated senescence-prone-8 than in vehicle-treated accelerated senescence-prone-8 mice, and the latency in acidic fibroblast growth factor fragment-treated accelerated senescence-prone-8 mice was significantly shorter than that in controls only at nine months of age. In the Morris water maze task, the mean latency to climb onto the platform was significantly longer in acidic fibroblast growth factor fragment- and vehicle-treated accelerated senescence-prone-8 mice than in controls. However, the mean latency in the third and fourth trial blocks was significantly shorter for acidic fibroblast growth factor fragment-treated accelerated senescence-prone-8 than for vehicle-treated accelerated senescence-prone-8 mice. In the probe trials, controls and acidic fibroblast growth factor fragment-treated accelerated senescence-prone-8 mice spent significantly more time in the quadrant in which the platform had previously been located than in the other three quadrants. In acidic fibroblast growth factor fragment-treated accelerated senescence-prone-8 mice, the density of medial septum

  16. The 60-Kilodalton Protein Encoded by orf2 in the cry19A Operon of Bacillus thuringiensis subsp. jegathesan Functions Like a C-Terminal Crystallization Domain

    PubMed Central

    Barboza-Corona, J. Eleazar; Park, Hyun-Woo; Bideshi, Dennis K.

    2012-01-01

    The cry19A operon of Bacillus thuringiensis subsp. jegathesan encodes two proteins, mosquitocidal Cry19A (ORF1; 75 kDa) and an ORF2 (60 kDa) of unknown function. Expression of the cry19A operon in an acrystalliferous strain of B. thuringiensis (4Q7) yielded one small crystal per cell, whereas no crystals were produced when cry19A or orf2 was expressed alone. To determine the function of the ORF2 protein, different combinations of Cry19A, ORF2, and the N- or C-terminal half of Cry1C were synthesized in strain 4Q7. Stable crystalline inclusions of these fusion proteins similar in shape to those in the strain harboring the wild-type operon were observed in sporulating cells. Comparative analysis showed that ORF2 shares considerable amino acid sequence identity with the C-terminal region of large Cry proteins. Together, these results suggest that ORF2 assists in synthesis and crystallization of Cry19A by functioning like the C-terminal domain characteristic of Cry protein in the 130-kDa mass range. In addition, to determine whether overexpression of the cry19A operon stabilized its shape and increased Cry19A yield, it was expressed under the control of the strong chimeric cyt1A-p/STAB-SD promoter. Interestingly, in contrast to the expression seen with the native promoter, overexpression of the operon yielded uniform bipyramidal crystals that were 4-fold larger on average than the wild-type crystal. In bioassays using the 4th instar larvae of Culex quinquefasciatus, the strain producing the larger Cry19A crystal showed moderate larvicidal activity that was 4-fold (95% lethal concentration [LC95] = 1.9 μg/ml) more toxic than the activity produced in the strain harboring the wild-type operon (LC95 = 8.2 μg/ml). PMID:22247140

  17. A functional C-terminal TRAF3-binding site in MAVS participates in positive and negative regulation of the IFN antiviral response.

    PubMed

    Paz, Suzanne; Vilasco, Myriam; Werden, Steven J; Arguello, Meztli; Joseph-Pillai, Deshanthe; Zhao, Tiejun; Nguyen, Thi Lien-Anh; Sun, Qiang; Meurs, Eliane F; Lin, Rongtuan; Hiscott, John

    2011-06-01

    Recognition of viral RNA structures by the cytosolic sensor retinoic acid-inducible gene-I (RIG-I) results in the activation of signaling cascades that culminate with the generation of the type I interferon (IFN) antiviral response. Onset of antiviral and inflammatory responses to viral pathogens necessitates the regulated spatiotemporal recruitment of signaling adapters, kinases and transcriptional proteins to the mitochondrial antiviral signaling protein (MAVS). We previously demonstrated that the serine/threonine kinase IKKε is recruited to the C-terminal region of MAVS following Sendai or vesicular stomatitis virus (VSV) infection, mediated by Lys63-linked polyubiquitination of MAVS at Lys500, resulting in inhibition of downstream IFN signaling (Paz et al, Mol Cell Biol, 2009). In this study, we demonstrate that C-terminus of MAVS harbors a novel TRAF3-binding site in the aa450-468 region of MAVS. A consensus TRAF-interacting motif (TIM), 455-PEENEY-460, within this site is required for TRAF3 binding and activation of IFN antiviral response genes, whereas mutation of the TIM eliminates TRAF3 binding and the downstream IFN response. Reconstitution of MAVS(-/-) mouse embryo fibroblasts with a construct expressing a TIM-mutated version of MAVS failed to restore the antiviral response or block VSV replication, whereas wild-type MAVS reconstituted antiviral inhibition of VSV replication. Furthermore, recruitment of IKKε to an adjacent C-terminal site (aa 468-540) in MAVS via Lys500 ubiquitination decreased TRAF3 binding and protein stability, thus contributing to IKKε-mediated shutdown of the IFN response. This study demonstrates that MAVS harbors a functional C-terminal TRAF3-binding site that participates in positive and negative regulation of the IFN antiviral response.

  18. A C-terminal translocation signal required for Dot/Icm-dependent delivery of the Legionella RalF protein to host cells.

    PubMed

    Nagai, Hiroki; Cambronne, Eric D; Kagan, Jonathan C; Amor, Juan Carlos; Kahn, Richard A; Roy, Craig R

    2005-01-18

    The Legionella pneumophila Dot/Icm system is a type IV secretion apparatus that transfers bacterial proteins into eukaryotic host cells. The RalF protein is a substrate engaged and translocated into host cells by the Dot/Icm system. In this study, the mechanism of Dot/Icm-mediated translocation of RalF has been investigated. It was determined that RalF translocation into host cells occurs before bacterial internalization. Sequences essential for RalF translocation were located at the C terminus of the RalF protein. A fusion protein consisting of a 20-aa C-terminal RalF peptide appended to the calmodulin-dependent adenylate cyclase domain of the Bordetella pertussis adenylate cyclase protein was translocated into host cells by the Dot/Icm system. A leucine (L372) residue at the -3 position in relation to the RalF C terminus was critical for translocation. Consistent with RalF L372 playing an important role in substrate recognition by the Dot/Icm system, most other Dot/Icm substrates were found to have amino acid residues with similar physical properties at their -3 or -4 C-terminal positions. These data demonstrate that the Dot/Icm system can transfer bacterial proteins that modulate host cellular functions before uptake and indicate that substrate recognition involves a C-terminal translocation signal. Thus, Legionella has the ability to engage synthesized substrate proteins and transfer them into host cells on contact, enabling Legionella to rapidly alter transport of the vacuole in which it resides. PMID:15613486

  19. Radical-generating coordination complexes as tools for rapid and effective fragmentation and fluorescent labeling of nucleic acids for microchip hybridization.

    SciTech Connect

    Kelly, J. J.; Chernov, B. K.; Tovstanovsky, I.; Mirzabekov, A. D.; Bavykin, S. G.; Biochip Technology Center; Northwestern Univ.; Engelhardt Inst. of Molecular Biology

    2002-12-15

    DNA microchip technology is a rapid, high-throughput method for nucleic acid hybridization reactions. This technology requires random fragmentation and fluorescent labeling of target nucleic acids prior to hybridization. Radical-generating coordination complexes, such as 1,10-phenanthroline-Cu(II) (OP-Cu) and Fe(II)-EDTA (Fe-EDTA), have been commonly used as sequence nonspecific 'chemical nucleases' to introduce single-strand breaks in nucleic acids. Here we describe a new method based on these radical-generating complexes for random fragmentation and labeling of both single- and double-stranded forms of RNA and DNA. Nucleic acids labeled with the OP-Cu and the Fe-EDTA protocols revealed high hybridization specificity in hybridization with DNA microchips containing oligonucleotide probes selected for identification of 16S rRNA sequences of the Bacillus group microorganisms.We also demonstrated cDNA- and cRNA-labeling and fragmentation with this method. Both the OP-Cu and Fe-EDTA fragmentation and labeling procedures are quick and inexpensive compared to other commonly used methods. A column-based version of the described method does not require centrifugation and therefore is promising for the automation of sample preparations in DNA microchip technology as well as in other nucleic acid hybridization studies.

  20. Addition of positive charges at the C-terminal peptide region of CssII, a mammalian scorpion peptide toxin, improves its affinity for sodium channels Nav1.6.

    PubMed

    Estrada, Georgina; Restano-Cassulini, Rita; Ortiz, Ernesto; Possani, Lourival D; Corzo, Gerardo

    2011-01-01

    CssII is a β-scorpion peptide that modifies preferentially sodium currents of the voltage-dependent Na(+) channel (Nav) sub-type 1.6. Previously, we have found that the C-terminal amidation of CssII increases its affinity for Nav, which opens at more negative potentials in the presence of CssII. Although C-terminal amidation in vitro conditions is possible, five CssII peptide toxin variants with C-terminal residues modified were heterologously expressed (rN66S, rN66H, rN66R, r[T64R/N66S] and r[T64R/N66R], in which r stands for recombinant, the capital letters to the amino acid residues and the numbers indicate the position of the given residue into the primary sequence of the toxin) and correctly folded. A secondary structure prediction of CssII agrees with the experimental secondary structure obtained by circular dichroism; so all bacterial expressed neurotoxin variants maintained the typical α/β secondary structure motif of most Na(+) channel scorpion toxins. The electrophysiological properties of all recombinant variants were examined, and it was found that substitutions of threonine (T) and asparagine (N) at the C-terminal region for arginine (R) (r[T64R/N66R]) increase their affinity for Nav1.6. Although, the molecular interactions involved in this mechanism are still not clearly determined, there is experimental evidence supporting the suspicion that incorporation of basic charged amino acid residues at the C-terminal tail of a group of α-scorpion toxin was favored by natural selection.

  1. Lactic acid bacterial population dynamics during fermentation and storage of Thai fermented sausage according to restriction fragment length polymorphism analysis.

    PubMed

    Wanangkarn, Amornrat; Liu, Deng-Cheng; Swetwiwathana, Adisorn; Jindaprasert, Aphacha; Phraephaisarn, Chirapiphat; Chumnqoen, Wanwisa; Tan, Fa-Jui

    2014-09-01

    This study applied restriction fragment length polymorphism (RFLP) analysis to identify the lactic acid bacteria (LAB) isolated from "mum" Thai fermented sausages during fermentation and storage. A total of 630 lactic acid bacteria were isolated from the sausages prepared using 2 methods. In Method 1, after stuffing, the sausages were stored at 30 °C for 14 days. In Method 2, after stuffing and storage at 30 °C for 3 days, the sausages were vacuum-packed and stored at 4 °C until Day 28. The sausages were sampled on Days 0, 3, 14, and 28 for analyses. The 16S rDNA was amplified and digested using restriction enzymes. Of the restriction enzymes evaluated, Dde I displayed the highest discrimination capacity. The LAB were classified and 7 species were identified For Methods 1 and 2, during fermentation, the Lactobacillus sakei and Lactobacillus plantarum species were dominant. For Method 2, the proportion of Leuconostoc mesenteroides markedly increased during storage, until L. sakei and Ln. mesenteroides represented the dominant species. The identification of LAB in the sausage samples could facilitate the selection of appropriate microorganisms for candidate starter cultures for future controlled mum production.

  2. Nucleation process of a fibril precursor in the C-terminal segment of amyloid-β.

    PubMed

    Baftizadeh, Fahimeh; Pietrucci, Fabio; Biarnés, Xevi; Laio, Alessandro

    2013-04-19

    By extended atomistic simulations in explicit solvent and bias-exchange metadynamics, we study the aggregation process of 18 chains of the C-terminal segment of amyloid-β, an intrinsically disordered protein involved in Alzheimer's disease and prone to form fibrils. Starting from a disordered aggregate, we are able to observe the formation of an ordered nucleus rich in beta sheets. The rate limiting step in the nucleation pathway involves crossing a barrier of approximately 40 kcal/mol and is associated with the formation of a very specific interdigitation of the side chains belonging to different sheets. This structural pattern is different from the one observed experimentally in a microcrystal of the same system, indicating that the structure of a "nascent" fibril may differ from the one of an "extended" fibril.

  3. Nucleation Process of a Fibril Precursor in the C-Terminal Segment of Amyloid-β

    NASA Astrophysics Data System (ADS)

    Baftizadeh, Fahimeh; Pietrucci, Fabio; Biarnés, Xevi; Laio, Alessandro

    2013-04-01

    By extended atomistic simulations in explicit solvent and bias-exchange metadynamics, we study the aggregation process of 18 chains of the C-terminal segment of amyloid-β, an intrinsically disordered protein involved in Alzheimer’s disease and prone to form fibrils. Starting from a disordered aggregate, we are able to observe the formation of an ordered nucleus rich in beta sheets. The rate limiting step in the nucleation pathway involves crossing a barrier of approximately 40kcal/mol and is associated with the formation of a very specific interdigitation of the side chains belonging to different sheets. This structural pattern is different from the one observed experimentally in a microcrystal of the same system, indicating that the structure of a “nascent” fibril may differ from the one of an “extended” fibril.

  4. The C-terminal region of E1A: a molecular tool for cellular cartography.

    PubMed

    Yousef, Ahmed F; Fonseca, Gregory J; Cohen, Michael J; Mymryk, Joe S

    2012-04-01

    The adenovirus E1A proteins function via protein-protein interactions. By making many connections with the cellular protein network, individual modules of this virally encoded hub reprogram numerous aspects of cell function and behavior. Although many of these interactions have been thoroughly studied, those mediated by the C-terminal region of E1A are less well understood. This review focuses on how this region of E1A affects cell cycle progression, apoptosis, senescence, transformation, and conversion of cells to an epithelial state through interactions with CTBP1/2, DYRK1A/B, FOXK1/2, and importin-α. Furthermore, novel potential pathways that the C-terminus of E1A influences through these connections with the cellular interaction network are discussed.

  5. C-terminal phosphorylation is essential for regulation of ethylene synthesizing ACC synthase enzyme.

    PubMed

    Choudhury, Swarup Roy; Roy, Sujit; Sengupta, Dibyendu N

    2013-02-01

    The genetic and molecular biological studies mainly in Arabidopsis and in some other plants have begun to uncover the various components of ripening signaling pathway in plants. Although transcriptional regulation of major ripening genes have been studied in detail, information on role of phosphorylation in regulating the activity and stability of core ripening pathway associated proteins in relation to ethylene biosynthesis during fruit ripening is still limited. Recently we have demonstrated the evidence for post-translational regulation of MA-ACS1 (Musa acuminata ACC synthase 1), the rate limiting step enzyme regulating ripening ethylene production in banana, through phosphorylation at the C-terminal Ser 476 and 479 residues by a 41-kDa Ser/Thr protein kinase. (1) Here we have further discussed role of protein phosphorylation in regulation of stability and activity of ACS enzymes and the mechanistic and evolutionary perspective of phosphorylation pattern of Type I ACC synthase enzymes. PMID:23221778

  6. C-Terminal-oriented Immobilization of Enzymes Using Sortase A-mediated Technique.

    PubMed

    Hata, Yuto; Matsumoto, Takuya; Tanaka, Tsutomu; Kondo, Akihiko

    2015-10-01

    In the present study, sortase A-mediated immobilization of enzymes was used for the preparation of immobilized enzymes. Thermobifida fusca YX β-glucosidase (BGL) or Streptococcus bovis 148 α-amylase (AmyA) were produced with C-terminal sortase A recognition sequences. The resulting fusion proteins were successfully immobilized on nanoparticle surfaces using sortase A. Some properties (activity, stability, and reusability) of the immobilized fusion proteins were evaluated. Both immobilized BGL and immobilized AmyA prepared by the sortase A-mediated technique retained their catalytic activity, exhibiting activities 3.0- or 1.5-fold (respectively) of those seen with the same enzymes immobilized by chemical crosslinking. Immobilized enzymes prepared by the sortase A-mediated technique did not undergo dramatic changes in stability compared with the respective free enzymes. Thus, the sortase A-mediated technique provides a promising method for immobilization of active, stable enzymes.

  7. Control of cytoplasmic dynein force production and processivity by its C-terminal domain

    NASA Astrophysics Data System (ADS)

    Nicholas, Matthew P.; Höök, Peter; Brenner, Sibylle; Wynne, Caitlin L.; Vallee, Richard B.; Gennerich, Arne

    2015-02-01

    Cytoplasmic dynein is a microtubule motor involved in cargo transport, nuclear migration and cell division. Despite structural conservation of the dynein motor domain from yeast to higher eukaryotes, the extensively studied S. cerevisiae dynein behaves distinctly from mammalian dyneins, which produce far less force and travel over shorter distances. However, isolated reports of yeast-like force production by mammalian dynein have called interspecies differences into question. We report that functional differences between yeast and mammalian dynein are real and attributable to a C-terminal motor element absent in yeast, which resembles a ‘cap’ over the central pore of the mammalian dynein motor domain. Removal of this cap increases the force generation of rat dynein from 1 pN to a yeast-like 6 pN and greatly increases its travel distance. Our findings identify the CT-cap as a novel regulator of dynein function.

  8. Control of cytoplasmic dynein force production and processivity by its C-terminal domain.

    PubMed

    Nicholas, Matthew P; Höök, Peter; Brenner, Sibylle; Wynne, Caitlin L; Vallee, Richard B; Gennerich, Arne

    2015-02-11

    Cytoplasmic dynein is a microtubule motor involved in cargo transport, nuclear migration and cell division. Despite structural conservation of the dynein motor domain from yeast to higher eukaryotes, the extensively studied S. cerevisiae dynein behaves distinctly from mammalian dyneins, which produce far less force and travel over shorter distances. However, isolated reports of yeast-like force production by mammalian dynein have called interspecies differences into question. We report that functional differences between yeast and mammalian dynein are real and attributable to a C-terminal motor element absent in yeast, which resembles a 'cap' over the central pore of the mammalian dynein motor domain. Removal of this cap increases the force generation of rat dynein from 1 pN to a yeast-like 6 pN and greatly increases its travel distance. Our findings identify the CT-cap as a novel regulator of dynein function.

  9. Functionalization with C-terminal cysteine enhances transfection efficiency of cell-penetrating peptides through dimer formation

    SciTech Connect

    Amand, Helene L.

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer Reversible CPP dimerisation is a simple yet efficient strategy to improve delivery. Black-Right-Pointing-Pointer Dimer formation enhances peptiplex stability, resulting in increased transfection. Black-Right-Pointing-Pointer By dimerisation, the CPP EB1 even gain endosomal escape properties while lowering cytotoxicity. -- Abstract: Cell-penetrating peptides have the ability to stimulate uptake of macromolecular cargo in mammalian cells in a non-toxic manner and therefore hold promise as efficient and well tolerated gene delivery vectors. Non-covalent peptide-DNA complexes ('peptiplexes') enter cells via endocytosis, but poor peptiplex stability and endosomal entrapment are considered as main barriers to peptide-mediated delivery. We explore a simple, yet highly efficient, strategy to improve the function of peptide-based vectors, by adding one terminal cysteine residue. This allows the peptide to dimerize by disulfide bond formation, increasing its affinity for nucleic acids by the 'chelate effect' and, when the bond is reduced intracellularly, letting the complex dissociate to deliver the nucleic acid. By introducing a single C-terminal cysteine in the classical CPP penetratin and the penetratin analogs PenArg and EB1, we show that this minor modification greatly enhances the transfection capacity for plasmid DNA in HEK293T cells. We conclude that this effect is mainly due to enhanced thermodynamic stability of the peptiplexes as endosome-disruptive chloroquine is still required for transfection and the effect is more pronounced for peptides with lower inherent DNA condensation capacity. Interestingly, for EB1, addition of one cysteine makes the peptide able to mediate transfection in absence of chloroquine, indicating that dimerisation can also improve endosomal escape properties. Further, the cytotoxicity of EB1 peptiplexes is considerably reduced, possibly due to lower concentration of free peptide dimer resulting from

  10. Structure of the nisin leader peptidase NisP revealing a C-terminal autocleavage activity.

    PubMed

    Xu, Yueyang; Li, Xin; Li, Ruiqing; Li, Shanshan; Ni, Hongqian; Wang, Hui; Xu, Haijin; Zhou, Weihong; Saris, Per E J; Yang, Wen; Qiao, Mingqiang; Rao, Zihe

    2014-06-01

    Nisin is a widely used antibacterial lantibiotic polypeptide produced by Lactococcus lactis. NisP belongs to the subtilase family and functions in the last step of nisin maturation as the leader-peptide peptidase. Deletion of the nisP gene in LAC71 results in the production of a non-active precursor peptide with the leader peptide unremoved. Here, the 1.1 Å resolution crystal structure of NisP is reported. The structure shows similarity to other subtilases, which can bind varying numbers of Ca atoms. However, no calcium was found in this NisP structure, and the predicted calcium-chelating residues were placed so as to not allow NisP to bind a calcium ion in this conformation. Interestingly, a short peptide corresponding to its own 635-647 sequence was found to bind to the active site of NisP. Biochemical assays and native mass-spectrometric analysis confirmed that NisP possesses an auto-cleavage site between residues Arg647 and Ser648. Further, it was shown that NisP mutated at the auto-cleavage site (R647P/S648P) had full catalytic activity for nisin leader-peptide cleavage, although the C-terminal region of NisP was no longer cleaved. Expressing this mutant in L. lactis LAC71 did not affect the production of nisin but did decrease the proliferation rate of the bacteria, suggesting the biological significance of the C-terminal auto-cleavage of NisP. PMID:24914961

  11. Insulin resistance uncoupled from dyslipidemia due to C-terminal PIK3R1 mutations

    PubMed Central

    Huang-Doran, Isabel; Tomlinson, Patsy; Payne, Felicity; Gast, Alexandra; Sleigh, Alison; Bottomley, William; Harris, Julie; Daly, Allan; Rocha, Nuno; Rudge, Simon; Clark, Jonathan; Kwok, Albert; Romeo, Stefano; McCann, Emma; Müksch, Barbara; Dattani, Mehul; Zucchini, Stefano; Wakelam, Michael; Foukas, Lazaros C.; Savage, David B.; Murphy, Rinki; O’Rahilly, Stephen; Semple, Robert K.

    2016-01-01

    Obesity-related insulin resistance is associated with fatty liver, dyslipidemia, and low plasma adiponectin. Insulin resistance due to insulin receptor (INSR) dysfunction is associated with none of these, but when due to dysfunction of the downstream kinase AKT2 phenocopies obesity-related insulin resistance. We report 5 patients with SHORT syndrome and C-terminal mutations in PIK3R1, encoding the p85α/p55α/p50α subunits of PI3K, which act between INSR and AKT in insulin signaling. Four of 5 patients had extreme insulin resistance without dyslipidemia or hepatic steatosis. In 3 of these 4, plasma adiponectin was preserved, as in insulin receptor dysfunction. The fourth patient and her healthy mother had low plasma adiponectin associated with a potentially novel mutation, p.Asp231Ala, in adiponectin itself. Cells studied from one patient with the p.Tyr657X PIK3R1 mutation expressed abundant truncated PIK3R1 products and showed severely reduced insulin-stimulated association of mutant but not WT p85α with IRS1, but normal downstream signaling. In 3T3-L1 preadipocytes, mutant p85α overexpression attenuated insulin-induced AKT phosphorylation and adipocyte differentiation. Thus, PIK3R1 C-terminal mutations impair insulin signaling only in some cellular contexts and produce a subphenotype of insulin resistance resembling INSR dysfunction but unlike AKT2 dysfunction, implicating PI3K in the pathogenesis of key components of the metabolic syndrome. PMID:27766312

  12. Structure of the C-terminal head domain of the fowl adenovirus type 1 long fiber.

    PubMed

    Guardado-Calvo, Pablo; Llamas-Saiz, Antonio L; Fox, Gavin C; Langlois, Patrick; van Raaij, Mark J

    2007-09-01

    Avian adenovirus CELO (chicken embryo lethal orphan virus, fowl adenovirus type 1) incorporates two different homotrimeric fiber proteins extending from the same penton base: a long fiber (designated fiber 1) and a short fiber (designated fiber 2). The short fibers extend straight outwards from the viral vertices, whilst the long fibers emerge at an angle. In contrast to the short fiber, which binds an unknown avian receptor and has been shown to be essential to the invasiveness of this virus, the long fiber appears to be unnecessary for infection in birds. Both fibers contain a short N-terminal virus-binding peptide, a slender shaft domain and a globular C-terminal head domain; the head domain, by analogy with human adenoviruses, is likely to be involved mainly in receptor binding. This study reports the high-resolution crystal structure of the head domain of the long fiber, solved using single isomorphous replacement (using anomalous signal) and refined against data at 1.6 A (0.16 nm) resolution. The C-terminal globular head domain had an anti-parallel beta-sandwich fold formed by two four-stranded beta-sheets with the same overall topology as human adenovirus fiber heads. The presence in the sequence of characteristic repeats N-terminal to the head domain suggests that the shaft domain contains a triple beta-spiral structure. Implications of the structure for the function and stability of the avian adenovirus long fiber protein are discussed; notably, the structure suggests a different mode of binding to the coxsackievirus and adenovirus receptor from that proposed for the human adenovirus fiber heads.

  13. Structure of the nisin leader peptidase NisP revealing a C-terminal autocleavage activity.

    PubMed

    Xu, Yueyang; Li, Xin; Li, Ruiqing; Li, Shanshan; Ni, Hongqian; Wang, Hui; Xu, Haijin; Zhou, Weihong; Saris, Per E J; Yang, Wen; Qiao, Mingqiang; Rao, Zihe

    2014-06-01

    Nisin is a widely used antibacterial lantibiotic polypeptide produced by Lactococcus lactis. NisP belongs to the subtilase family and functions in the last step of nisin maturation as the leader-peptide peptidase. Deletion of the nisP gene in LAC71 results in the production of a non-active precursor peptide with the leader peptide unremoved. Here, the 1.1 Å resolution crystal structure of NisP is reported. The structure shows similarity to other subtilases, which can bind varying numbers of Ca atoms. However, no calcium was found in this NisP structure, and the predicted calcium-chelating residues were placed so as to not allow NisP to bind a calcium ion in this conformation. Interestingly, a short peptide corresponding to its own 635-647 sequence was found to bind to the active site of NisP. Biochemical assays and native mass-spectrometric analysis confirmed that NisP possesses an auto-cleavage site between residues Arg647 and Ser648. Further, it was shown that NisP mutated at the auto-cleavage site (R647P/S648P) had full catalytic activity for nisin leader-peptide cleavage, although the C-terminal region of NisP was no longer cleaved. Expressing this mutant in L. lactis LAC71 did not affect the production of nisin but did decrease the proliferation rate of the bacteria, suggesting the biological significance of the C-terminal auto-cleavage of NisP.

  14. Structure and properties of chimeric small heat shock proteins containing yellow fluorescent protein attached to their C-terminal ends.

    PubMed

    Datskevich, Petr N; Gusev, Nikolai B

    2014-07-01

    Recombinant chimeras of small heat shock proteins (sHsp) HspB1, HspB5, and HspB6 containing enhanced yellow fluorescent protein (EYFP) attached to their C-terminal ends were constructed and purified. Some properties of these chimeras were compared with the corresponding properties of the same chimeras containing EYFP attached to the N-terminal end of sHsp. The C-terminal fluorescent chimeras of HspB1 and HspB5 tend to aggregate and form a heterogeneous mixture of oligomers. The apparent molecular weight of the largest C-terminal chimeric oligomers was higher than that of the corresponding N-terminal chimeras or of the wild-type proteins; however, both homooligomers of N-terminal chimeras and homooligomers of C-terminal chimeras contained fewer subunits than the wild-type HspB1 or HspB5. Both N-terminal and C-terminal chimeras of HspB6 form small oligomers with an apparent molecular weight of 73-84 kDa. The C-terminal chimeras exchange their subunits with homologous wild-type proteins. Heterooligomers formed by the wild-type HspB1 (or HspB5) and the C-terminal chimeras of HspB6 differ in size and composition from heterooligomers formed by the corresponding wild-type proteins. As a rule, the N-terminal chimeras possess similar or slightly higher chaperone-like activity than the corresponding wild-type proteins, whereas the C-terminal chimeras always have a lower chaperone-like activity than the wild-type proteins. It is concluded that attachment of EYFP to either N-terminal or C-terminal ends of sHsp affects their oligomeric structure, their ability to form heterooligomers, and their chaperone-like activity. Therefore, the data obtained with fluorescent chimeras of sHsp expressed in the cell should be interpreted with caution.

  15. The C-terminal region of alpha-crystallin: involvement in protection against heat-induced denaturation

    NASA Technical Reports Server (NTRS)

    Takemoto, L.; Emmons, T.; Horwitz, J.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Recent studies have demonstrated that the alpha-crystallins can protect other proteins against heat-induced denaturation and aggregation. To determine the possible involvement of the C-terminal region in this activity, the alpha-crystallins were subjected to limited tryptic digestion, and the amount of cleavage from the N-terminal and C-terminal regions of the alpha-A and alpha-B crystallin chains was assessed using antisera specific for these regions. Limited tryptic digestion resulted in cleavage only from the C-terminal region of alpha-A crystallin. This trypsin-treated alpha-A crystallin preparation showed a decreased ability to protect proteins from heat-induced aggregation using an in vitro assay. Together, these results demonstrate that the C-terminal region of alpha-A crystallin is important for its ability to protect against heat-induced aggregation, which is consistent with the hypothesis that post-translational changes that are known to occur at the C-terminal region may have significant effects on the ability of alpha-A crystallin to protect against protein denaturation in vivo.

  16. The effect of C-terminal helix on the stability of FF domain studied by molecular dynamics simulation.

    PubMed

    Zhao, Liling; Cao, Zanxia; Wang, Jihua

    2012-01-01

    To investigate the effect of C-terminal helix on the stability of the FF domain, we studied the native domain FF3-71 from human HYPA/FBP11 and the truncated version FF3-60 with C-terminal helix being deleted by molecular dynamics simulations with GROMACS package and GROMOS 43A1 force field. The results indicated that the structures of truncated version FF3-60 were evident different from those of native partner FF3-71. Compared with FF3-71, the FF3-60 lost some native contacts and exhibited some similar structural characters to those of intermediate state. The C-terminal helix played a major role in stabilizing the FF3-71 domain. To a certain degree, the FF domain had a tendency to form an intermediate state without the C-terminal helix. In our knowledge, this was the first study to examine the role of C-terminal helix of FF domain in detail by molecular dynamics simulations, which was useful to understand the three-state folding mechanism of the small FF domain.

  17. Antibody against the C-terminal portion of dystrophin crossreacts with the 400 kDa protein in the pia mater of dystrophin-deficient mdx mouse brain.

    PubMed

    Ishiura, S; Arahata, K; Tsukahara, T; Koga, R; Anraku, H; Yamaguchi, M; Kikuchi, T; Nonaka, I; Sugita, H

    1990-04-01

    The mdx mouse is an animal model for X-linked Duchenne muscular dystrophy. A polyclonal antibody against a synthetic peptide IV equivalent to the C-terminal portion (amino acids 3495-3544) of dystrophin crossreacted with a 400 kDa protein in the brain and the spinal cord of mdx mouse, as well as in the control B10 mouse. However, the protein did not crossreact with the polyclonal antibody raised against the N-terminal portion of dystrophin peptide I (amino acids 215-264). Immunofluorescent micrography revealed that the outside of the small arteries and the pia mater of the brain strongly reacted with the anti-peptide IV antibody. These results strongly suggest the presence of a crossreactive protein other than dystrophin, possibly a dystrophin-related autosomal gene product, in the pia mater.

  18. Solution structure of At3g04780.1-des15, an Arabidopsis thaliana ortholog of the C-terminal domain of human thioredoxin-like protein.

    PubMed

    Song, Jikui; Tyler, Robert C; Wrobel, Russell L; Frederick, Ronnie O; Vojtek, Frank C; Jeon, Won Bae; Lee, Min S; Markley, John L

    2005-04-01

    The structure of At3g04780.1-des15, an Arabidopsis thaliana ortholog of the C-terminal domain of human thioredoxin-like protein, was determined by NMR spectroscopy. The structure is dominated by a beta-barrel sandwich. A two-stranded anti-parallel beta-sheet, which seals off one end of the beta-barrel, is flanked by two flexible loops rich in acidic amino acids. Although this fold often provides a ligand binding site, the structure did not reveal an appreciable cavity inside the beta-barrel. The three-dimensional structure of At3g04780.1-des15 provides an entry point for understanding its functional role and those of its mammalian homologs.

  19. Serine-scanning mutagenesis studies of the C-terminal heptad repeats in the SARS coronavirus S glycoprotein highlight the important role of the short helical region

    SciTech Connect

    Follis, Kathryn E.; York, Joanne; Nunberg, Jack H. . E-mail: jack.nunberg@umontana.edu

    2005-10-10

    The fusion subunit of the SARS-CoV S glycoprotein contains two regions of hydrophobic heptad-repeat amino acid sequences that have been shown in biophysical studies to form a six-helix bundle structure typical of the fusion-active core found in Class I viral fusion proteins. Here, we have applied serine-scanning mutagenesis to the C-terminal-most heptad-repeat region in the SARS-CoV S glycoprotein to investigate the functional role of this region in membrane fusion. We show that hydrophobic sidechains at a and d positions only within the short helical segment of the C-terminal heptad-repeat region (I1161, I1165, L1168, A1172, and L1175) are critical for cell-cell fusion. Serine mutations at outlying heptad-repeat residues that form an extended chain in the core structure (V1158, L1179, and L1182) do not affect fusogenicity. Our study provides genetic evidence for the important role of {alpha}-helical packing in promoting S glycoprotein-mediated membrane fusion.

  20. Expression, purification, and C-terminal amidation of recombinant human glucagon-like peptide-1.

    PubMed

    Zhang, Zhi-Zhen; Yang, Sheng-Sheng; Dou, Hong; Mao, Ji-Fang; Li, Kang-Sheng

    2004-08-01

    Human glucagon-like peptide-1 (hGLP-1) (7-36) amide, a gastrointestinal hormone with a pharmaceutical potential in treating type 2 diabetes mellitus, is composed of 30 amino acid residues as a mature protein. We report here the development of a method for high-level expression and purification of recombinant hGLP-1 (7-36) amide (rhGLP-1) through glutathione S-transferase (GST) fusion expression system. The cDNA of hGLP-1-Leu, the 31st-residue leucine-extended precursor peptide, was prepared by annealing and ligating of artificially synthetic oligonucleotide fragments, inserted into pBluescript SK (+/-) plasmid, and then cloned into pGEX-4T-3 GST fusion vector. The fusion protein GST-hGLP-1-Leu, expressed in Escherichia coli strain BL21 (DE3), was purified by affinity chromatography after high-level culture and sonication of bacteria. Following cleavage of GST-hGLP-1-Leu by cyanogen bromide, the recombinant hGLP-1-Leu was released from fusion protein, and purified using QAE Sepharose ion exchange and RP C(18) chromatography. After purification, the precursor hGLP-1-Leu was transacylated by carboxypeptidase Y, Arg-NH(2) as a nucleophile, to produce rhGLP-1. Electrospray ionization mass spectrometry showed the molecular weight was as expected. The biological activity of rhGLP-1 in a rat model demonstrated that plasma glucose concentrations were significantly lower and insulin concentrations higher after intraperitoneal injection of rhGLP-1 together with glucose compared with glucose alone (P < 0.001). PMID:15249052

  1. DMP1 C-Terminal Mutant Mice Recapture the Human ARHR Tooth Phenotype

    PubMed Central

    Jiang, Baichun; Cao, Zhengguo; Lu, Yongbo; Janik, Carol; Lauziere, Stephanie; Xie, Yixia; Poliard, Anne; Qin, Chunlin; Ward, Leanne M; Feng, Jian Q

    2010-01-01

    DMP1 mutations in autosomal recessive hypophosphatemic rickets (ARHR) patients and mice lacking Dmp1 display an overlapping pathophysiology, such as hypophosphatemia. However, subtle differences exist between the mouse model and human ARHR patients. These differences could be due to a species specificity of human versus mouse, or it may be that the mutant DMP1 in humans maintains partial function of DMP1. In this study we report a deformed tooth phenotype in a human DMP1 deletion mutation case. Unexpectedly, the deletion of nucleotides 1484 to 1490 (c.1484_1490delCTATCAC, delMut, resulting in replacement of the last 18 residues with 33 random amino acids) showed a severe dentin and enamel defect similar to a dentinogenesis imperfecta (DI) III–like phenotype. To address the molecular mechanism behind this phenotype, we generated delMut transgenic mice with the endogenous Dmp1 gene removed. These mutant mice did not recapture the abnormal phenotype observed in the human patient but displayed a mild rachitic tooth phenotype in comparison with that in the Dmp1-null mice, suggesting that the DI III–like phenotype may be due to an as-yet-undetermined acquired gene modifier. The mechanism studies showed that the mutant fragment maintains partial function of DMP1 such as stimulating MAP kinase signaling in vitro. Last, the in vitro and in vivo data support a role of odontoblasts in the control of fibroblast growth factor 23 (FGF-23) regulation during early postnatal development, although this regulation on Pi homeostasis is likely limited. © 2010 American Society for Bone and Mineral Research. PMID:20499360

  2. New aspects in fragmentation of peptide nucleic acids: comparison of positive and negative ions by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Ziehe, Matthias; Grossmann, Tom N; Seitz, Oliver; Linscheid, Michael W

    2009-04-01

    The use of peptide nucleic acids (PNAs) is steadily increasing in biochemistry and diagnostics. So far, PNAs have mostly been investigated using cationic conditions in mass spectrometry. Furthermore, the use of fragmentation techniques developed for peptides and proteins like infrared multiphoton dissociation (IRMPD) and electron capture dissociation (ECD) has barely been examined. However, especially the fragmentation behavior of PNA oligomers in negative ion mode is of high importance, due to the ability to interact with nucleic acids which are almost exclusively analyzed in the negatively charged state. In the current study PNA fragmentations under cationic and anionic conditions were investigated and different fragmentation techniques like collision-induced dissociation (CID), IRMPD and ECD were applied. Especially when using CID and IRMPD, amide bonds were broken, whereas ECD resulted in the elimination of nucleobases. Differences were also observed between positive and negative ionization, while the sequence coverage for the negative ions was superior to positive ions. The fragmentation behavior using IRMPD led to almost complete sequence coverage. Additionally, in anions the interesting effect of multiple eliminations of HNCO was found. PMID:19280610

  3. Investigation of the C-Terminal Redox Center of High Mr Thioredoxin Reductase by Protein Engineering and Semisynthesis†

    PubMed Central

    Eckenroth, Brian E.; Lacey, Brian M.; Lothrop, Adam P.; Harris, Katharine M.; Hondal, Robert J.

    2013-01-01

    High molecular weight thioredoxin reductases (TRs) catalyze the reduction of the redoxactive disulfide bond of thioredoxin, but an important difference in the TR family is the sequence of the C-terminal redox-active tetrapeptide that interacts directly with thioredoxin, especially the presence or absence of a selenocysteine (Sec) residue in this tetrapeptide. In this study we have employed protein engineering techniques to investigate the C-terminal redox active tetrapeptides of three different TRs: mouse mitochondrial TR (mTR3), Drosophila melanogaster TR (DmTR), and the mitochondrial TR from C. elegans (CeTR2), which have C-terminal tetrapeptide sequences of Gly-Cys-Sec-Gly, Ser-Cys-Cys-Ser, and Gly-Cys-Cys-Gly, respectively. PMID:17661444

  4. C-Terminal Tyrosine Residue Modifications Modulate the Protective Phosphorylation of Serine 129 of α-Synuclein in a Yeast Model of Parkinson's Disease

    PubMed Central

    Lázaro, Diana F.; Pinho, Raquel; Valerius, Oliver; Outeiro, Tiago F.; Braus, Gerhard H.

    2016-01-01

    Parkinson´s disease (PD) is characterized by the presence of proteinaceous inclusions called Lewy bodies that are mainly composed of α-synuclein (αSyn). Elevated levels of oxidative or nitrative stresses have been implicated in αSyn related toxicity. Phosphorylation of αSyn on serine 129 (S129) modulates autophagic clearance of inclusions and is prominently found in Lewy bodies. The neighboring tyrosine residues Y125, Y133 and Y136 are phosphorylation and nitration sites. Using a yeast model of PD, we found that Y133 is required for protective S129 phosphorylation and for S129-independent proteasome clearance. αSyn can be nitrated and form stable covalent dimers originating from covalent crosslinking of two tyrosine residues. Nitrated tyrosine residues, but not di-tyrosine-crosslinked dimers, contributed to αSyn cytotoxicity and aggregation. Analysis of tyrosine residues involved in nitration and crosslinking revealed that the C-terminus, rather than the N-terminus of αSyn, is modified by nitration and di-tyrosine formation. The nitration level of wild-type αSyn was higher compared to that of A30P mutant that is non-toxic in yeast. A30P formed more dimers than wild-type αSyn, suggesting that dimer formation represents a cellular detoxification pathway in yeast. Deletion of the yeast flavohemoglobin gene YHB1 resulted in an increase of cellular nitrative stress and cytotoxicity leading to enhanced aggregation of A30P αSyn. Yhb1 protected yeast from A30P-induced mitochondrial fragmentation and peroxynitrite-induced nitrative stress. Strikingly, overexpression of neuroglobin, the human homolog of YHB1, protected against αSyn inclusion formation in mammalian cells. In total, our data suggest that C-terminal Y133 plays a major role in αSyn aggregate clearance by supporting the protective S129 phosphorylation for autophagy and by promoting proteasome clearance. C-terminal tyrosine nitration increases pathogenicity and can only be partially detoxified by

  5. Improving the osteogenic potential of BMP-2 with hyaluronic acid hydrogel modified with integrin-specific fibronectin fragment.

    PubMed

    Kisiel, Marta; Martino, Mikaël M; Ventura, Manuela; Hubbell, Jeffrey A; Hilborn, Jöns; Ossipov, Dmitri A

    2013-01-01

    While human bone morphogenetic protein-2 (rhBMP-2) is a promising growth factor for bone regeneration, its clinical efficacy has recently shown to be below expectation. In order to improve the clinical translation of rhBMP-2, there exists strong motivation to engineer better delivery systems. Hyaluronic acid (HA) hydrogel is a suitable carrier for the delivery of rhBMP-2, but a major limitation of this scaffold is its low cell adhesive properties. In this study, we have determined whether covalent grafting of an integrin-specific ligands into HA hydrogel could improve cell attachment and further enhance the osteogenic potential of rhBMP-2. A structurally stabilized fibronectin (FN) fragment containing the major integrin-binding domain of full-length FN (FN III9*-10) was engineered, in order to be incorporated into HA hydrogel. Compared to non-functionalized HA hydrogel, HA-FN hydrogel remarkably improved the capacity of the material to support mesenchymal stem cell attachment and spreading. In an ectopic bone formation model in the rat, delivery of rhBMP-2 with HA-FN hydrogel resulted in the formation of twice as much bone with better organization of collagen fibers compared to delivering the growth factor in non-functionalized HA hydrogel. This engineered hydrogel carrier for rhBMP-2 can be relevant in clinical bone repair.

  6. Fragmentation of mycosporine-like amino acids by hydrogen/deuterium exchange and electrospray ionisation tandem mass spectrometry.

    PubMed

    Cardozo, Karina H M; Carvalho, Valdemir M; Pinto, Ernani; Colepicolo, Pio

    2006-01-01

    The determination and identification of mycosporine-like amino acids (MAAs) from algae remain a major challenge due to the low concentration. Mass spectrometry (MS) can make an invaluable contribution in the search and identification of MAAs because of its high sensitivity, possibility of coupling with liquid chromatography, and the availability of powerful tandem mass spectrometric techniques. However, the unequivocal determination of the presence and location of important functional groups present on the basic skeleton of the MAAs is often elusive due to their inherent instability under MS conditions. In this study, the use of hydrogen/deuterium (H/D) exchange and electrospray ionisation tandem mass spectrometry (ESI-MS/MS) for characterisation of four MAAs (palythine, asterina, palythinol and shinorine) isolated from the macroalgae Gracilaria tenuistipitata Chang et Xia was investigated. The accurate-mass confirmation of the protonated molecules was performed on a Q-TOF instrument. We demonstrate that employing deuterium labelling in ESI-MS/MS analysis provides a convenient tool for the determination of new MAAs. Although the fragmentation patterns of MAAs were discussed earlier, to our knowledge, this is the first time that mechanisms are proposed.

  7. Alleles of the maize P gene with distinct tissue specificities encode Myb-homologous proteins with C-terminal replacements.

    PubMed Central

    Chopra, S; Athma, P; Peterson, T

    1996-01-01

    The maize P gene is a transcriptional regulator of genes encoding enzymes for flavonoid biosynthesis in the pathway leading to the production of a red phlobaphene pigment. Multiple alleles of the P gene confer distinct patterns of pigmentation to specific floral organs, such as the kernel pericarp and cob tissues. To determine the basis of allele-specific pigmentation, we have characterized the gene products and transcript accumulation patterns of the P-wr allele, which specifies colorless pericarps and red cob tissues. RNA transcripts of P-wr are present in colorless pericarps as well as in the colored cob tissues; however, the expression of P-wr in pericarp does not induce the accumulation of transcripts from the C2 and A1 genes, which encode enzymes for flavonoid pigment biosynthesis. The coding sequences of P-wr were compared with the P-rr allele, which specifies red pericarp and red cob. The P-wr and P-rr cDNA sequences are very similar in their 5' regions. There are only two nucleotide changes that result in amino acid differences; both are outside of the Myb-homologous DNA binding domain. In contrast, the 3' coding region of P-rr is replaced by a unique 210-bp sequence in P-wr. The predicted P-wr protein has a C-terminal sequence resembling a cysteine-containing metal binding domain that is not present in the P-rr protein. These results indicate that the differential pericarp pigmentation specified by the P-rr and P-wr alleles does not result from an absence of P-wr transcripts in pericarps. Rather, the allele-specific patterns of P-rr and P-wr pigmentation may be associated with structural differences in the proteins encoded by each allele. PMID:8768374

  8. Interactions of the C-terminal Domain of Human Ku70 with DNA Substrate: A Molecular Dynamics Study

    NASA Technical Reports Server (NTRS)

    Hu, Shaowen; Huff, Janice; Pluth, Janice M.; Cucinotta, Francis A.

    2007-01-01

    NASA is developing a systems biology approach to improve the assessment of health risks associated with space radiation. The primary toxic and mutagenic lesion following radiation exposure is the DNA double strand break (DSB), thus a model incorporating proteins and pathways important in response and repair of this lesion is critical. One key protein heterodimer for systems models of radiation effects is the Ku(sub 70/80) complex. The Ku70/80 complex is important in the initial binding of DSB ends following DNA damage, and is a component of nonhomologous end joining repair, the primary pathway for DSB repair in mammalian cells. The C-terminal domain of Ku70 (Ku70c, residues 559-609), contains an helix-extended strand-helix motif and similar motifs have been found in other nucleic acid-binding proteins critical for DNA repair. However, the exact mechanism of damage recognition and substrate specificity for the Ku heterodimer remains unclear in part due to the absence of a high-resolution structure of the Ku70c/DNA complex. We performed a series of molecular dynamics (MD) simulations on a system with the subunit Ku70c and a 14 base pairs DNA duplex, whose starting structures are designed to be variable so as to mimic their different binding modes. By analyzing conformational changes and energetic properties of the complex during MD simulations, we found that interactions are preferred at DNA ends, and within the major groove, which is consistent with previous experimental investigations. In addition, the results indicate that cooperation of Ku70c with other subunits of Ku(sub 70/80) is necessary to explain the high affinity of binding as observed in experiments.

  9. C-terminal mutations destabilize SIL1/BAP and can cause Marinesco-Sjögren syndrome.

    PubMed

    Howes, Jennifer; Shimizu, Yuichiro; Feige, Matthias J; Hendershot, Linda M

    2012-03-01

    Marinesco-Sjögren syndrome (MSS) is an autosomal recessive, neurodegenerative, multisystem disorder characterized by severe phenotypes developing in infancy. Recently, mutations in the endoplasmic reticulum (ER)-associated co-chaperone SIL1/BAP were identified to be the major cause of MSS. SIL1 acts as a nucleotide exchange factor for BiP, the ER Hsp70 orthologue, which plays an essential role in the folding and assembly of nascent polypeptide chains in the ER. SIL1 facilitates the release of BiP from unfolded protein substrates, enabling the subsequent folding and transport of the protein. Although most mutations leading to MSS result in deletion of the majority of the protein, three separate mutations have been identified that disrupt only the last five or six amino acids of the protein, which were assumed to encode a divergent ER retention motif. This study presents an in depth analysis of two of these mutants and reveals that the phenotype in the affected individuals is not likely to be due to depletion of SIL1 from the ER via secretion. Instead, our analyses show that the mutant proteins are particularly unstable and either form large aggregates in the ER or are rapidly degraded via the proteasome. In agreement with our findings, homology modeling suggests that the very C-terminal residues of SIL1 play a role in its structural integrity rather than its localization. These new insights might be a first step toward a possible pharmacological treatment of certain types of MSS by specifically stabilizing the mutant SIL1 protein.

  10. Crystal structures of the S. cerevisiae Spt6 core and C-terminal tandem SH2 domain

    PubMed Central

    Close, Devin; Johnson, Sean J; Sdano, Matthew A; McDonald, Seth M; Robinson, Howard; Formosa, Tim; Hill, Christopher P

    2011-01-01

    The conserved and essential eukaryotic protein Spt6 functions in transcription elongation, chromatin maintenance, and RNA processing. Spt6 has three characterized functions. It is a histone chaperone capable of reassembling nucleosomes, a central component of transcription elongation complexes, and is required for recruitment of RNA processing factors to elongating RNA polymerase II (RNAPII). Here, we report crystal structures of the 168 kDa Spt6 protein from Saccharomyces cerevisiae that together represent essentially all of the ordered sequence. Our two structures of the ~900 residue core region reveal a series of putative nucleic acid and protein-protein interaction domains that fold into an elongated form that resembles the bacterial protein Tex. The similarity to a bacterial transcription factor suggests that the core domain performs nucleosome-independent activities, and as with Tex we find that Spt6 binds DNA. Unlike Tex, however, the Spt6 S1 domain does not contribute to this activity. Crystal structures of the Spt6 C-terminal region reveal a tandem SH2 domain structure comprised of two closely associated SH2 folds. One of these SH2 folds is cryptic, while the other shares striking structural similarity with metazoan SH2 domains and possesses structural features associated with the ability to bind phosphorylated substrates including phosphotyrosine. Binding studies with phosphopeptides that mimic the RNAPII CTD revealed affinities typical of other RNAPII CTD-binding proteins but did not indicate a specific interaction. Overall, these findings provide a structural foundation for understanding how Spt6 encodes several distinct functions within a single polypeptide chain. PMID:21419780

  11. Solution structure and dynamics of C-terminal regulatory domain of Vibrio vulnificus extracellular metalloprotease

    SciTech Connect

    Yun, Ji-Hye; Kim, Heeyoun; Park, Jung Eun; Lee, Jung Sup; Lee, Weontae

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer We have determined solution structures of vEP C-terminal regulatory domain. Black-Right-Pointing-Pointer vEP C-ter100 has a compact {beta}-barrel structure with eight anti-parallel {beta}-strands. Black-Right-Pointing-Pointer Solution structure of vEP C-ter100 shares its molecular topology with that of the collagen-binding domain of collagenase. Black-Right-Pointing-Pointer Residues in the {beta}3 region of vEP C-ter100 might be important in putative ligand/receptor binding. Black-Right-Pointing-Pointer vEP C-ter100 interacts strongly with iron ion. -- Abstract: An extracellular metalloprotease (vEP) secreted by Vibrio vulnificus ATCC29307 is a 45-kDa proteolytic enzyme that has prothrombin activation and fibrinolytic activities during bacterial infection. The action of vEP could result in clotting that could serve to protect the bacteria from the host defense machinery. Very recently, we showed that the C-terminal propeptide (C-ter100), which is unique to vEP, is involved in regulation of vEP activity. To understand the structural basis of this function of vEP C-ter100, we have determined the solution structure and backbone dynamics using multidimensional nuclear magnetic resonance spectroscopy. The solution structure shows that vEP C-ter100 is composed of eight anti-parallel {beta}-strands with a unique fold that has a compact {beta}-barrel formation which stabilized by hydrophobic and hydrogen bonding networks. Protein dynamics shows that the overall structure, including loops, is very rigid and stabilized. By structural database analysis, we found that vEP C-ter100 shares its topology with that of the collagen-binding domain of collagenase, despite low sequence homology between the two domains. Fluorescence assay reveals that vEP C-ter100 interacts strongly with iron (Fe{sup 3+}). These findings suggest that vEP protease might recruit substrate molecules, such as collagen, by binding at C-ter100 and that vEP participates

  12. Different roles of the C-terminal end of Stx1A and Stx2A for AB5 complex integrity and retrograde transport of Stx in HeLa cells.

    PubMed

    Kymre, Linn; Simm, Roger; Skotland, Tore; Sandvig, Kirsten

    2015-12-01

    Shiga toxin 1 (Stx1) and Shiga toxin 2 (Stx2) differ regarding receptor affinity, cellular toxicity and clinical outcome. To this date, it is not clarified in detail why the subtypes display these differences. Even though the crystal structures of Stx1 and Stx2 share overall similarities, significant differences were found in the C-terminal end of the A-subunits. The aim of this study was to investigate the role of the C-terminal end of the A-subunit in complex stability and retrograde transport by generating truncated mutants where 2, 4, 6 and 8 amino acids were removed from the C-terminal end of Stx1A and Stx2A. The results obtained show that removal of 6 or 8 amino acids from the Stx1A C-terminus abolishes the AB5 complex integrity, while removing up to 8 amino acids from Stx2A does not affect the complex in vivo (in the bacteria). We also present results showing different levels of A1-subunit in HeLa cells after exposure to Stx1, Stx2 and their truncated mutants.

  13. Formation and structure of a NAIP5-NLRC4 inflammasome induced by direct interactions with conserved N- and C-terminal regions of flagellin.

    PubMed

    Halff, Els F; Diebolder, Christoph A; Versteeg, Marian; Schouten, Arie; Brondijk, T Harma C; Huizinga, Eric G

    2012-11-01

    The NOD-like receptors NAIP5 and NLRC4 play an essential role in the innate immune response to the bacterial tail protein flagellin. Upon flagellin detection, NAIP5 and NLRC4 form a hetero-oligomeric inflammasome that induces caspase-1-dependent cell death. So far, both the mechanism of formation of the NAIP5-NLRC4 inflammasome and its structure are poorly understood. In this study we combine inflammasome reconstitution in HEK293 cells, purification of inflammasome components, and negative stain electron microscopy to address these issues. We find that a Salmonella typhimurium flagellin fragment comprising the D0 domain and the neighboring spoke region is able to co-precipitate NAIP5 and induce formation of the NAIP5-NLRC4 inflammasome. Comparison with smaller fragments indicates that flagellin recognition is mediated by its C-terminal residues as well as the spoke region. We reconstitute the inflammasome from purified flagellin, NAIP5, and NLRC4, thus proving that no other cellular components are required for its formation. Electron micrographs of the purified inflammasome provide unprecedented insight into its architecture, revealing disk-like complexes consisting of 11 or 12 protomers in which NAIP5 and NLRC4 appear to occupy equivalent positions. On the basis of our data, we propose a model for inflammasome formation wherein direct interaction of flagellin with a single NAIP5 induces the recruitment and progressive incorporation of NLRC4, resulting in the formation of a hetero-oligomeric inflammasome. PMID:23012363

  14. Aberrant C-terminal domain of polymerase η targets the functional enzyme to the proteosomal degradation pathway.

    PubMed

    Ahmed-Seghir, Sana; Pouvelle, Caroline; Despras, Emmanuelle; Cordonnier, Agnès; Sarasin, Alain; Kannouche, Patricia L

    2015-05-01

    Xeroderma pigmentosum variant (XP-V) is a rare genetic disease, characterized by sunlight sensitivity and predisposition to cutaneous malignancies. XP-V is caused by a deficiency in DNA polymerase eta (Polη) that plays a pivotal role in translesion synthesis by bypassing UV-induced pyrimidine dimers. Previously we identified a new Polη variant containing two missense mutations, one mutation within the bipartite NLS (T692A) and a second mutation on the stop codon (X714W) leading to a longer protein with an extra 8 amino acids (721 instead of 713 AA). First biochemical analysis revealed that this Polη missense variant was barely detectable by western blot. As this mutant is extremely unstable and is nearly undetectable, a definitive measure of its functional deficit in cells has not been explored. Here we report the molecular and cellular characterization of this missense variant. In cell free extracts, the extra 8 amino acids in the C-terminal of Polη(721) only slightly reduce the bypass efficiency through CPD lesions. In vivo, Polη(721) accumulates in replication factories and interacts with mUb-PCNA albeit at lower level than Polη(wt). XP-V cells overexpressing Polη(721) were only slightly UV-sensitive. Altogether, our data strongly suggest that Polη(721) is functional and that the patient displays a XP-V phenotype because the mutant protein is excessively unstable. We then investigated the molecular mechanisms involved in this excessive proteolysis. We showed that Polη(721) is degraded by the proteasome in an ubiquitin-dependent manner and that this proteolysis is independent of the E3 ligases, CRL4(cdt2) and Pirh2, reported to promote Polη degradation. We then demonstrated that the extra 8 amino acids of Polη(721) do not act as a degron but rather induce a conformational change of the Polη C-terminus exposing its bipartite NLS as well as a sequence close to its UBZ to the ubiquitin/proteasome system. Interestingly we showed that the clinically

  15. Multiple kinesin family members expressed in teleost retina and RPE include a novel C-terminal kinesin.

    PubMed

    Bost-Usinger, L; Chen, R J; Hillman, D; Park, H; Burnside, B

    1997-05-01

    Kinesins comprise a large superfamily of microtubule-based motor proteins, individual members of which mediate specific types of motile processes. To identify kinesin family members (KIFs) that are critical to retinal function and thus to vision, a reverse transcriptase polymerase chain reaction (RT-PCR) cloning strategy was used to isolate putative KIFs expressed in the neural retina and retinal pigmented epithelium (RPE) of the striped bass, Morone saxatilus. Eleven fish KIFs (FKIFs) were isolated from neural retina and six of the same FKIFs were also isolated from RPE. One of the KIFs identified in this screen, FKIF2, was the most prevalent clone detected both in the retina (41% of clones) and RPE (72% of clones). Based on predicted amino acid sequence homology within the motor domain, seven of the FKIFs have been tentatively assigned to known kinesin families: the kinesin heavy chain family (FKIF1, 5 and 9), the unc104/KIF1 family (FKIF3 and 8), the KIF2 family (FKIF4), and the cKIF family (FKIF2). Northern blot analysis revealed that each detectable FKIF exhibited a unique tissue-specific expression pattern. Since FKIF2 was more highly expressed in retina than in any other tissue tested, including brain, and was the most abundant KIF message expressed in both retina and RPE, it was examined in more detail and the complete approximately 2.3 kb open reading frame for FKIF2 was cloned and sequenced. The predicted amino acid sequence indicates that FKIF2 has a C-terminal motor domain, and thus is a member of the cKIF family. FKIF2 is only 36.5% identical at the amino acid level to the most closely related cKIF in the database, suggesting that FKIF2 may be a novel member of this family. Antibodies raised against a unique peptide specific to FKIF2 recognize an approximately 80 kd protein in homogenates of retina, RPE, brain and kidney. The pronounced expression of FKIF2 in retina and RPE suggests that FKIF2 may play an important role in microtubule-dependent motile

  16. Effects of Sorafenib on C-Terminally Truncated Androgen Receptor Variants in Human Prostate Cancer Cells

    PubMed Central

    Zengerling, Friedemann; Streicher, Wolfgang; Schrader, Andres J.; Schrader, Mark; Nitzsche, Bianca; Cronauer, Marcus V.; Höpfner, Michael

    2012-01-01

    Recent evidence suggests that the development of castration resistant prostate cancer (CRPCa) is commonly associated with an aberrant, ligand-independent activation of the androgen receptor (AR). A putative mechanism allowing prostate cancer (PCa) cells to grow under low levels of androgens, is the expression of constitutively active, C-terminally truncated AR lacking the AR-ligand binding domain (LBD). Due to the absence of a LBD, these receptors, termed ARΔLBD, are unable to respond to any form of anti-hormonal therapies. In this study we demonstrate that the multikinase inhibitor sorafenib inhibits AR as well as ARΔLBD-signalling in CRPCa cells. This inhibition was paralleled by proteasomal degradation of the AR- and ARΔLBD-molecules. In line with these observations, maximal antiproliferative effects of sorafenib were achieved in AR and ARΔLBD-positive PCa cells. The present findings warrant further investigations on sorafenib as an option for the treatment of advanced AR-positive PCa. PMID:23109869

  17. Effects of sorafenib on C-terminally truncated androgen receptor variants in human prostate cancer cells.

    PubMed

    Zengerling, Friedemann; Streicher, Wolfgang; Schrader, Andres J; Schrader, Mark; Nitzsche, Bianca; Cronauer, Marcus V; Höpfner, Michael

    2012-01-01

    Recent evidence suggests that the development of castration resistant prostate cancer (CRPCa) is commonly associated with an aberrant, ligand-independent activation of the androgen receptor (AR). A putative mechanism allowing prostate cancer (PCa) cells to grow under low levels of androgens, is the expression of constitutively active, C-terminally truncated AR lacking the AR-ligand binding domain (LBD). Due to the absence of a LBD, these receptors, termed ARΔLBD, are unable to respond to any form of anti-hormonal therapies. In this study we demonstrate that the multikinase inhibitor sorafenib inhibits AR as well as ARΔLBD-signalling in CRPCa cells. This inhibition was paralleled by proteasomal degradation of the AR- and ARΔLBD-molecules. In line with these observations, maximal antiproliferative effects of sorafenib were achieved in AR and ARΔLBD-positive PCa cells. The present findings warrant further investigations on sorafenib as an option for the treatment of advanced AR-positive PCa. PMID:23109869

  18. A C-terminal truncated mutation of spr-3 gene extends lifespan in Caenorhabditis elegans.

    PubMed

    Yang, Ping; Sun, Ruilin; Yao, Minghui; Chen, Weidong; Wang, Zhugang; Fei, Jian

    2013-07-01

    The lifespan of Caenorhabditis elegans is determined by various genetic and environmental factors. In this paper, spr-3, a C. elegans homologous gene of the mammalian neural restrictive silencing factor (NRSF/REST), is reported to be an important gene regulating lifespan of C. elegans. A deletion mutation of spr-3, spr-3(ok2525), or RNAi inhibition of spr-3 expression led to the short lifespan phenotype in C. elegans. However, a nonsense mutation of spr-3, spr-3(by108), increased the lifespan by 26% when compared with that of wild-type nematode. The spr-3(by108) also showed increased resistance to environmental stress. The spr-3(by108) mutated gene encodes a C-terminal truncated protein with a structure comparable with the REST4, a splice variant of the NRSF/REST in mammalian. The long lifespan phenotype of spr-3(by108) mutant is confirmed as a gain of function and dependent on normal functions of daf-16 and glp-1. The lifespan of the spr-3(by108) can be synergistically enhanced by inducing a mutation in daf-2. Quantitative polymerase chain reaction results showed that the expression of daf-16 as well as its target gene sod-3, mtl-1, and sip-1 was up-regulated in the spr-3(by108) mutant. These results would be helpful to further understand the complex function of NRSF/REST gene in mammalian, especially in the aging process and longevity determination. PMID:23692984

  19. Interaction of chromatin with a histone H1 containing swapped N- and C-terminal domains

    PubMed Central

    Hutchinson, Jordana B.; Cheema, Manjinder S.; Wang, Jason; Missiaen, Krystal; Finn, Ron; Gonzalez Romero, Rodrigo; Th’ng, John P. H.; Hendzel, Michael; Ausió, Juan

    2015-01-01

    Although the details of the structural involvement of histone H1 in the organization of the nucleosome are quite well understood, the sequential events involved in the recognition of its binding site are not as well known. We have used a recombinant human histone H1 (H1.1) in which the N- and C-terminal domains (NTD/CTD) have been swapped and we have reconstituted it on to a 208-bp nucleosome. We have shown that the swapped version of the protein is still able to bind to nucleosomes through its structurally folded wing helix domain (WHD); however, analytical ultracentrifuge analysis demonstrates its ability to properly fold the chromatin fibre is impaired. Furthermore, FRAP analysis shows that the highly dynamic binding association of histone H1 with the chromatin fibre is altered, with a severely decreased half time of residence. All of this suggests that proper binding of histone H1 to chromatin is determined by the simultaneous and synergistic binding of its WHD–CTD to the nucleosome. PMID:26182371

  20. A unique C-terminal domain allows retention of matrix metalloproteinase-27 in the endoplasmic reticulum.

    PubMed

    Cominelli, Antoine; Halbout, Mathias; N'Kuli, Francisca; Lemoine, Pascale; Courtoy, Pierre J; Marbaix, Etienne; Tyteca, Donatienne; Henriet, Patrick

    2014-04-01

    Matrix metalloproteinase-27 (MMP-27) is poorly characterized. Sequence comparison suggests that a C-terminal extension (CTE) includes a potential transmembrane domain as in some membrane-type (MT)-MMPs. Having noticed that MMP-27 was barely secreted, we investigated its subcellular localization and addressed CTE contribution for MMP-27 retention. Intracellular MMP-27 was sensitive to endoglycosidase H. Subcellular fractionation and confocal microscopy evidenced retention of endogenous MMP-27 or recombinant rMMP-27 in the endoplasmic reticulum (ER) with locked exit across the intermediate compartment (ERGIC). Conversely, truncated rMMP-27 without CTE accessed downstream secretory compartments (ERGIC and Golgi) and was constitutively secreted. CTE addition to rMMP-10 (a secreted MMP) caused ER retention and blocked secretion. Addition of a PKA target sequence to the cytosolic C-terminus of transmembrane MT1-MMP/MMP-14 led to effective phosphorylation upon forskolin stimulation, but not for MMP-27, excluding transmembrane anchorage. Moreover, MMP-27 was protected from digestion by proteinase K. Finally, MT1-MMP/MMP-14 but neither endogenous nor recombinant MMP-27 partitioned in the detergent phase after Triton X-114 extraction, indicating that MMP-27 is not an integral membrane protein. In conclusion, MMP-27 is efficiently retained within the ER due to its unique CTE, which does not lead to stable membrane insertion. This could represent a novel ER retention system.

  1. Plasma membrane CFTR regulates RANTES expression via its C-terminal PDZ-interacting motif.

    PubMed

    Estell, Kim; Braunstein, Gavin; Tucker, Torry; Varga, Karoly; Collawn, James F; Schwiebert, Lisa M

    2003-01-01

    Despite the identification of 1,000 mutations in the cystic fibrosis gene product CFTR, there remains discordance between CFTR genotype and lung disease phenotype. The study of CFTR, therefore, has expanded beyond its chloride channel activity into other possible functions, such as its role as a regulator of gene expression. Findings indicate that CFTR plays a role in the expression of RANTES in airway epithelia. RANTES is a chemokine that has been implicated in the regulation of mucosal immunity and the pathogenesis of airway inflammatory diseases. Results demonstrate that CFTR triggers RANTES expression via a mechanism that is independent of CFTR's chloride channel activity. Neither pharmacological inhibition of CFTR nor activation of alternative chloride channels, including hClC-2, modulated RANTES expression. Through the use of CFTR disease-associated and truncation mutants, experiments suggest that CFTR-mediated transcription factor activation and RANTES expression require (i) insertion of CFTR into the plasma membrane and (ii) an intact CFTR C-terminal PDZ-interacting domain. Expression of constructs encoding wild-type or dominant-negative forms of the PDZ-binding protein EBP50 suggests that EBP50 may be involved in CFTR-dependent RANTES expression. Together, these data suggest that CFTR modulates gene expression in airway epithelial cells while located in a macromolecular signaling complex at the plasma membrane. PMID:12509457

  2. The C-terminal amyloidogenic peptide contributes to self-assembly of Avibirnavirus viral protease

    PubMed Central

    Zheng, Xiaojuan; Jia, Lu; Hu, Boli; Sun, Yanting; Zhang, Yina; Gao, Xiangxiang; Deng, Tingjuan; Bao, Shengjun; Xu, Li; Zhou, Jiyong

    2015-01-01

    Unlike other viral protease, Avibirnavirus infectious bursal disease virus (IBDV)-encoded viral protease VP4 forms unusual intracellular tubule-like structures during viral infection. However, the formation mechanism and potential biological functions of intracellular VP4 tubules remain largely elusive. Here, we show that VP4 can assemble into tubules in diverse IBDV-infected cells. Dynamic analysis show that VP4 initiates the assembly at early stage of IBDV infection, and gradually assembles into larger size of fibrils within the cytoplasm and nucleus. Intracellular assembly of VP4 doesn’t involve the host cytoskeleton, other IBDV-encoded viral proteins or vital subcellular organelles. Interestingly, the last C-terminal hydrophobic and amyloidogenic stretch 238YHLAMA243 with two “aggregation-prone” alanine residues was found to be essential for its intracellular self-assembly. The assembled VP4 fibrils show significantly low solubility, subsequently, the deposition of highly assembled VP4 structures ultimately deformed the host cytoskeleton and nucleus, which was potentially associated with IBDV lytic infection. Importantly, the assembly of VP4 significantly reduced the cytotoxicity of protease activity in host cells which potentially prevent the premature cell death and facilitate viral replication. This study provides novel insights into the formation mechanism and biological functions of the Avibirnavirus protease-related fibrils. PMID:26440769

  3. Effect of C-Terminal S-Palmitoylation on D2 Dopamine Receptor Trafficking and Stability.

    PubMed

    Ebersole, Brittany; Petko, Jessica; Woll, Matthew; Murakami, Shoko; Sokolina, Kate; Wong, Victoria; Stagljar, Igor; Lüscher, Bernhard; Levenson, Robert

    2015-01-01

    We have used bioorthogonal click chemistry (BCC), a sensitive non-isotopic labeling method, to analyze the palmitoylation status of the D2 dopamine receptor (D2R), a G protein-coupled receptor (GPCR) crucial for regulation of processes such as mood, reward, and motor control. By analyzing a series of D2R constructs containing mutations in cysteine residues, we found that palmitoylation of the D2R most likely occurs on the C-terminal cysteine residue (C443) of the polypeptide. D2Rs in which C443 was deleted showed significantly reduced palmitoylation levels, plasma membrane expression, and protein stability compared to wild-type D2Rs. Rather, the C443 deletion mutant appeared to accumulate in the Golgi, indicating that palmitoylation of the D2R is important for cell surface expression of the receptor. Using the full-length D2R as bait in a membrane yeast two-hybrid (MYTH) screen, we identified the palmitoyl acyltransferase (PAT) zDHHC4 as a D2R interacting protein. Co-immunoprecipitation analysis revealed that several other PATs, including zDHHC3 and zDHHC8, also interacted with the D2R and that each of the three PATs was capable of affecting the palmitoylation status of the D2R. Finally, biochemical analyses using D2R mutants and the palmitoylation blocker, 2-bromopalmitate indicate that palmitoylation of the receptor plays a role in stability of the D2R. PMID:26535572

  4. The C-terminal region of Trypanosoma cruzi MASPs is antigenic and secreted via exovesicles

    PubMed Central

    De Pablos, Luis Miguel; Díaz Lozano, Isabel María; Jercic, Maria Isabel; Quinzada, Markela; Giménez, Maria José; Calabuig, Eva; Espino, Ana Margarita; Schijman, Alejandro Gabriel; Zulantay, Inés; Apt, Werner; Osuna, Antonio

    2016-01-01

    Trypanosoma cruzi is the etiological agent of Chagas disease, a neglected and emerging tropical disease, endemic to South America and present in non-endemic regions due to human migration. The MASP multigene family is specific to T. cruzi, accounting for 6% of the parasite’s genome and plays a key role in immune evasion. A common feature of MASPs is the presence of two conserved regions: an N-terminal region codifying for signal peptide and a C-terminal (C-term) region, which potentially acts as GPI-addition signal peptide. Our aim was the analysis of the presence of an immune response against the MASP C-term region. We found that this region is highly conserved, released via exovesicles (EVs) and has an associated immune response as revealed by epitope affinity mapping, IFA and inhibition of the complement lysis assays. We also demonstrate the presence of a fast IgM response in Balb/c mice infected with T. cruzi. Our results reveal the presence of non-canonical secreted peptides in EVs, which can subsequently be exposed to the immune system with a potential role in evading immune system targets in the parasite. PMID:27270330

  5. The E. coli thioredoxin folding mechanism: the key role of the C-terminal helix.

    PubMed

    Vazquez, Diego S; Sánchez, Ignacio E; Garrote, Ana; Sica, Mauricio P; Santos, Javier

    2015-02-01

    In this work, the unfolding mechanism of oxidized Escherichia coli thioredoxin (EcTRX) was investigated experimentally and computationally. We characterized seven point mutants distributed along the C-terminal α-helix (CTH) and the preceding loop. The mutations destabilized the protein against global unfolding while leaving the native structure unchanged. Global analysis of the unfolding kinetics of all variants revealed a linear unfolding route with a high-energy on-pathway intermediate state flanked by two transition state ensembles TSE1 and TSE2. The experiments show that CTH is mainly unfolded in TSE1 and the intermediate and becomes structured in TSE2. Structure-based molecular dynamics are in agreement with these experiments and provide protein-wide structural information on transient states. In our model, EcTRX folding starts with structure formation in the β-sheet, while the protein helices coalesce later. As a whole, our results indicate that the CTH is a critical module in the folding process, restraining a heterogeneous intermediate ensemble into a biologically active native state and providing the native protein with thermodynamic and kinetic stability.

  6. Role of the teneurins, teneurin C-terminal associated peptides (TCAP) in reproduction: clinical perspectives.

    PubMed

    Lovejoy, David A; Pavlović, Téa

    2015-11-01

    In humans, the teneurin gene family consists of four highly conserved paralogous genes that are the result of early vertebrate gene duplications arising from a gene introduced into multicellular organisms from a bacterial ancestor. In vertebrates and humans, the teneurins have become integrated into a number of critical physiological systems including several aspects of reproductive physiology. Structurally complex, these genes possess a sequence in their terminal exon that encodes for a bioactive peptide sequence termed the 'teneurin C-terminal associated peptide' (TCAP). The teneurin/TCAP protein forms an intercellular adhesive unit with its receptor, latrophilin, an Adhesion family G-protein coupled receptor. It is present in numerous cell types and has been implicated in gamete migration and gonadal morphology. Moreover, TCAP is highly effective at reducing the corticotropin-releasing factor (CRF) stress response. As a result, TCAP may also play a role in regulating the stress-associated inhibition of reproduction. In addition, the teneurins and TCAP have been implicated in tumorigenesis associated with reproductive tissues. Therefore, the teneurin/TCAP system may offer clinicians a novel biomarker system upon which to diagnose some reproductive pathologies.

  7. Polycomb group targeting through different binding partners of RING1B C-terminal domain.

    PubMed

    Wang, Renjing; Taylor, Alexander B; Leal, Belinda Z; Chadwell, Linda V; Ilangovan, Udayar; Robinson, Angela K; Schirf, Virgil; Hart, P John; Lafer, Eileen M; Demeler, Borries; Hinck, Andrew P; McEwen, Donald G; Kim, Chongwoo A

    2010-08-11

    RING1B, a Polycomb Group (PcG) protein, binds methylated chromatin through its association with another PcG protein called Polycomb (Pc). However, RING1B can associate with nonmethylated chromatin suggesting an alternate mechanism for RING1B interaction with chromatin. Here, we demonstrate that two proteins with little sequence identity between them, the Pc cbox domain and RYBP, bind the same surface on the C-terminal domain of RING1B (C-RING1B). Pc cbox and RYBP each fold into a nearly identical, intermolecular beta sheet with C-RING1B and a loop structure which are completely different in the two proteins. Both the beta sheet and loop are required for stable binding and transcription repression. Further, a mutation engineered to disrupt binding on the Drosophila dRING1 protein prevents chromatin association and PcG function in vivo. These results suggest that PcG targeting to different chromatin locations relies, in part, on binding partners of C-RING1B that are diverse in sequence and structure.

  8. Human Frataxin Folds Via an Intermediate State. Role of the C-Terminal Region

    NASA Astrophysics Data System (ADS)

    Faraj, Santiago E.; González-Lebrero, Rodolfo M.; Roman, Ernesto A.; Santos, Javier

    2016-02-01

    The aim of this study is to investigate the folding reaction of human frataxin, whose deficiency causes the neurodegenerative disease Friedreich’s Ataxia (FRDA). The characterization of different conformational states would provide knowledge about how frataxin can be stabilized without altering its functionality. Wild-type human frataxin and a set of mutants, including two highly destabilized FRDA-associated variants were studied by urea-induced folding/unfolding in a rapid mixing device and followed by circular dichroism. The analysis clearly indicates the existence of an intermediate state (I) in the folding route with significant secondary structure content but relatively low compactness, compared with the native ensemble. However, at high NaCl concentrations I-state gains substantial compaction, and the unfolding barrier is strongly affected, revealing the importance of electrostatics in the folding mechanism. The role of the C-terminal region (CTR), the key determinant of frataxin stability, was also studied. Simulations consistently with experiments revealed that this stretch is essentially unstructured, in the most compact transition state ensemble (TSE2). The complete truncation of the CTR drastically destabilizes the native state without altering TSE2. Results presented here shed light on the folding mechanism of frataxin, opening the possibility of mutating it to generate hyperstable variants without altering their folding kinetics.

  9. Role of ubiquitin C-terminal hydrolase-L1 in antipolyspermy defense of mammalian oocytes.

    PubMed

    Susor, Andrej; Liskova, Lucie; Toralova, Tereza; Pavlok, Antonin; Pivonkova, Katerina; Karabinova, Pavla; Lopatarova, Miloslava; Sutovsky, Peter; Kubelka, Michal

    2010-06-01

    The ubiquitin-proteasome system regulates many cellular processes through rapid proteasomal degradation of ubiquitin-tagged proteins. Ubiquitin C-terminal hydrolase-L1 (UCHL1) is one of the most abundant proteins in mammalian oocytes. It has weak hydrolytic activity as a monomer and acts as a ubiquitin ligase in its dimeric or oligomeric form. Recently published data show that insufficiency in UCHL1 activity coincides with polyspermic fertilization; however, the mechanism by which UCHL1 contributes to this process remains unclear. Using UCHL1-specific inhibitors, we induced a high rate of polyspermy in bovine zygotes after in vitro fertilization. We also detected decreased levels in the monomeric ubiquitin and polyubiquitin pool. The presence of UCHL1 inhibitors in maturation medium enhanced formation of presumptive UCHL1 oligomers and subsequently increased abundance of K63-linked polyubiquitin chains in oocytes. We analyzed the dynamics of cortical granules (CGs) in UCHL1-inhibited oocytes; both migration of CGs toward the cortex during oocyte maturation and fertilization-induced extrusion of CGs were impaired. These alterations in CG dynamics coincided with high polyspermy incidence in in vitro-produced UCHL1-inhibited zygotes. These data indicate that antipolyspermy defense in bovine oocytes may rely on UCHL1-controlled functioning of CGs.

  10. Physical association of GPR54 C-terminal with protein phosphatase 2A

    SciTech Connect

    Evans, Barry J.; Wang Zixuan; Mobley, La'Tonya; Khosravi, Davood; Fujii, Nobutaka; Navenot, Jean-Marc; Peiper, Stephen C.

    2008-12-26

    KiSS1 was discovered as a metastasis suppressor gene and subsequently found to encode kisspeptins (KP), ligands for a G protein coupled receptor (GPCR), GPR54. This ligand-receptor pair was later shown to play a critical role in the neuro-endocrine regulation of puberty. The C-terminal cytoplasmic (C-ter) domain of GPR54 contains a segment rich in proline and arginine residues that corresponds to the primary structure of four overlapping SH3 binding motifs. Yeast two hybrid experiments identified the catalytic subunit of protein phosphatase 2A (PP2A-C) as an interacting protein. Pull-down experiments with GST fusion proteins containing the GPR54 C-ter confirmed binding to PP2A-C in cell lysates and these complexes contained phosphatase activity. The proline arginine rich segment is necessary for these interactions. The GPR54 C-ter bound directly to purified recombinant PP2A-C, indicating the GPR54 C-ter may form complexes involving the catalytic subunit of PP2A that regulate phosphorylation of critical signaling intermediates.

  11. Export of autotransported proteins proceeds through an oligomeric ring shaped by C-terminal domains.

    PubMed

    Veiga, Esteban; Sugawara, Etsuko; Nikaido, Hiroshi; de Lorenzo, Víctor; Fernández, Luis Angel

    2002-05-01

    An investigation was made into the oligomerization, the ability to form pores and the secretion-related properties of the 45 kDa C-terminal domain of the IgA protease (C-IgAP) from Neisseria gonorrhoeae. This protease is the best studied example of the autotransporters (ATs), a large family of exoproteins from Gram-negative bacteria that includes numerous virulence factors from human pathogens. These proteins contain an N-terminal passenger domain that em bodies the secreted polypeptide, while the C-domain inserts into the outer membrane (OM) and trans locates the linked N-module into the extracellular medium. Here we report that purified C-IgAP forms an oligomeric complex of approximately 500 kDa with a ring-like structure containing a central cavity of approximately 2 nm diameter that is the conduit for the export of the N-domains. These data overcome the previous model for ATs, which postulated the passage of the N-module through the hydrophilic channel of the beta-barrel of each monomeric C-domain. Our results advocate a secretion mechanism not unlike other bacterial export systems, such as the secretins or fimbrial ushers, which rely on multimeric complexes assembled in the OM. PMID:11980709

  12. Identification and characterization of the role of c-terminal Src kinase in dengue virus replication.

    PubMed

    Kumar, Rinki; Agrawal, Tanvi; Khan, Naseem Ahmed; Nakayama, Yuji; Medigeshi, Guruprasad R

    2016-01-01

    We screened a siRNA library targeting human tyrosine kinases in Huh-7 cells and identified c-terminal Src kinase (Csk) as one of the kinases involved in dengue virus replication. Knock-down of Csk expression by siRNAs or inhibition of Csk by an inhibitor reduced dengue virus RNA levels but did not affect viral entry. Csk partially colocalized with viral replication compartments. Dengue infection was drastically reduced in cells lacking the three ubiquitous src family kinases, Src, Fyn and Yes. Csk knock-down in these cells failed to block dengue virus replication suggesting that the effect of Csk is via regulation of Src family kinases. Csk was found to be hyper-phosphorylated during dengue infection and inhibition of protein kinase A led to a block in Csk phosphorylation and dengue virus replication. Overexpression studies suggest an important role for the kinase and SH3 domains in this process. Our results identified a novel role for Csk as a host tyrosine kinase involved in dengue virus replication and provide further insights into the role of host factors in dengue replication. PMID:27457684

  13. PrP106-126 peptide disrupts lipid membranes: Influence of C-terminal amidation

    SciTech Connect

    Zheng Wenfu; Wang Lijun; Hong Yuankai; Sha Yinlin

    2009-02-06

    PrP106-126 is located within the important domain concerning membrane related conformational conversion of human Prion protein (from cellular isoform PrP{sup C} to scrapie isoform PrP{sup Sc}). Recent advances reveal that the pathological and physicochemical properties of PrP106-126 peptide are very sensitive to its N-terminal amidation, however, the detailed mechanism remains unclear. In this work, we studied the interactions of the PrP106-126 isoforms (PrP106-126{sub CONH2} and PrP106-126{sub COOH}) with the neutral lipid bilayers by atomic force microscopy, surface plasmon resonance and fluorescence spectroscopy. The membrane structures were disturbed by the two isoforms in a similarly stepwise process. The distinct morphological changes of the membrane were characterized by formation of semi-penetrated defects and sigmoidal growth of flat high-rise domains on the supported lipid bilayers. However, PrP106-126{sub COOH} displayed a higher peptide-lipid binding affinity than PrP106-126{sub CONH2} ({approx}2.9 times) and facilitated the peptide-lipid interactions by shortening the lag time. These results indicate that the C-terminal amidation may influence the pathological actions of PrP106-126 by lowering the interaction potentials with lipid membranes.

  14. Identification and characterization of the role of c-terminal Src kinase in dengue virus replication

    PubMed Central

    Kumar, Rinki; Agrawal, Tanvi; Khan, Naseem Ahmed; Nakayama, Yuji; Medigeshi, Guruprasad R.

    2016-01-01

    We screened a siRNA library targeting human tyrosine kinases in Huh-7 cells and identified c-terminal Src kinase (Csk) as one of the kinases involved in dengue virus replication. Knock-down of Csk expression by siRNAs or inhibition of Csk by an inhibitor reduced dengue virus RNA levels but did not affect viral entry. Csk partially colocalized with viral replication compartments. Dengue infection was drastically reduced in cells lacking the three ubiquitous src family kinases, Src, Fyn and Yes. Csk knock-down in these cells failed to block dengue virus replication suggesting that the effect of Csk is via regulation of Src family kinases. Csk was found to be hyper-phosphorylated during dengue infection and inhibition of protein kinase A led to a block in Csk phosphorylation and dengue virus replication. Overexpression studies suggest an important role for the kinase and SH3 domains in this process. Our results identified a novel role for Csk as a host tyrosine kinase involved in dengue virus replication and provide further insights into the role of host factors in dengue replication. PMID:27457684

  15. Dynein's C-terminal Domain Plays a Novel Role in Regulating Force Generation

    NASA Astrophysics Data System (ADS)

    Gennerich, Arne; Nicholas, Matthew; Brenner, Sibylle; Lazar, Caitlin; Weil, Sarah; Vallee, Richard; Hook, Peter; Gennerich Lab Collaboration; Vallee Lab Collaboration

    2014-03-01

    Cytoplasmic dynein is a microtubule motor involved in a wide range of low and high force requiring functions in metazoans. In contrast, yeast dynein is involved in a single, nonessential function, nuclear positioning. Interestingly, the single-molecule function of yeast dynein is also unique: whereas mammalian dyneins generate forces of 1-2 pN, S. cerevisiae dynein stalls at 5-7 pN. The basis for this functional difference is unknown. However, the major structural difference between mammalian and yeast dyneins is a ~30 kDa C-terminal extension (CT) present in higher eukaryotic dyneins, but missing in yeast. To test whether the CT accounts for the differences in function, we produced recombinant rat dynein motor domains (MD) with (WT-MD) and without (ΔCT-MD) the CT, using baculovirus expression. To define motor function, we performed single-molecule optical trapping studies. Dimerized WT-MD stalls at ~1 pN and detaches from microtubules after brief stalls, in agreement with previous studies on native mammalian dynein. In sharp contrast, but similar to yeast dynein, ΔCT-MD stalls at ~6 pN, with stall durations up to minutes. These results identify the CT as a new regulatory element for controlling dynein force generation. Supported by NIH GM094415 (A.G.) and GM102347 (R.B.V.)

  16. Human Frataxin Folds Via an Intermediate State. Role of the C-Terminal Region

    PubMed Central

    Faraj, Santiago E.; González-Lebrero, Rodolfo M.; Roman, Ernesto A.; Santos, Javier

    2016-01-01

    The aim of this study is to investigate the folding reaction of human frataxin, whose deficiency causes the neurodegenerative disease Friedreich’s Ataxia (FRDA). The characterization of different conformational states would provide knowledge about how frataxin can be stabilized without altering its functionality. Wild-type human frataxin and a set of mutants, including two highly destabilized FRDA-associated variants were studied by urea-induced folding/unfolding in a rapid mixing device and followed by circular dichroism. The analysis clearly indicates the existence of an intermediate state (I) in the folding route with significant secondary structure content but relatively low compactness, compared with the native ensemble. However, at high NaCl concentrations I-state gains substantial compaction, and the unfolding barrier is strongly affected, revealing the importance of electrostatics in the folding mechanism. The role of the C-terminal region (CTR), the key determinant of frataxin stability, was also studied. Simulations consistently with experiments revealed that this stretch is essentially unstructured, in the most compact transition state ensemble (TSE2). The complete truncation of the CTR drastically destabilizes the native state without altering TSE2. Results presented here shed light on the folding mechanism of frataxin, opening the possibility of mutating it to generate hyperstable variants without altering their folding kinetics. PMID:26856628

  17. Impedance Analysis of Ovarian Cancer Cells upon Challenge with C-terminal Clostridium Perfringens Enterotoxin

    NASA Astrophysics Data System (ADS)

    Gordon, Geoffrey; Lo, Chun-Min

    2007-03-01

    Both in vitro and animal studies in breast, prostate, and ovarian cancers have shown that clostridium perfringens enterotoxin (CPE), which binds to CLDN4, may have an important therapeutic benefit, as it is rapidly cytotoxic in tissues overexpressing CLDN4. This study sought to evaluate the ability of C-terminal clostridium perfringens enterotoxin (C-CPE), a CLDN4-targetting molecule, to disrupt tight junction barrier function. Electric cell-substrate impedance sensing (ECIS) was used to measure both junctional resistance and average cell-substrate separation of ovarian cancer cell lines after exposure to C-CPE. A total of 14 ovarian cancer cell lines were used, and included cell lines derived from serous, mucinous, and clear cells. Our results showed that junctional resistance increases as CLDN4 expression increases. In addition, C-CPE is non-cytotoxic in ovarian cancer cells expressing CLDN4. However, exposure to C-CPE results in a significant (p<0.05) dose- and CLDN4-dependent decrease in junctional resistance and an increase in cell-substrate separation. Treatment of ovarian cancer cell lines with C-CPE disrupts tight junction barrier function.

  18. β-Catenin C-terminal signals suppress p53 and are essential for artery formation

    PubMed Central

    Riascos-Bernal, Dario F.; Chinnasamy, Prameladevi; Cao, Longyue (Lily); Dunaway, Charlene M.; Valenta, Tomas; Basler, Konrad; Sibinga, Nicholas E. S.

    2016-01-01

    Increased activity of the tumour suppressor p53 is incompatible with embryogenesis, but how p53 is controlled is not fully understood. Differential requirements for p53 inhibitors Mdm2 and Mdm4 during development suggest that these control mechanisms are context-dependent. Artery formation requires investment of nascent endothelial tubes by smooth muscle cells (SMCs). Here, we find that embryos lacking SMC β-catenin suffer impaired arterial maturation and die by E12.5, with increased vascular wall p53 activity. β-Catenin-deficient SMCs show no change in p53 levels, but greater p53 acetylation and activity, plus impaired growth and survival. In vivo, SMC p53 inactivation suppresses phenotypes caused by loss of β-catenin. Mechanistically, β-catenin C-terminal interactions inhibit Creb-binding protein-dependent p53 acetylation and p53 transcriptional activity, and are required for artery formation. Thus in SMCs, the β-catenin C-terminus indirectly represses p53, and this function is essential for embryogenesis. These findings have implications for angiogenesis, tissue engineering and vascular disease. PMID:27499244

  19. Structural and functional roles of the N- and C-terminal extended modules in channelrhodopsin-1.

    PubMed

    Doi, Satoko; Mori, Arisa; Tsukamoto, Takashi; Reissig, Louisa; Ihara, Kunio; Sudo, Yuki

    2015-09-26

    Channelrhodopsins have become a focus of interest because of their ability to control neural activity by light, used in a technology called optogenetics. The channelrhodopsin in the eukaryote Chlamydomonas reinhardtii (CrChR-1) is a light-gated cation channel responsible for motility changes upon photo-illumination and a member of the membrane-embedded retinal protein family. Recent crystal structure analysis revealed that CrChR-1 has unique extended modules both at its N- and C-termini compared to other microbial retinal proteins. This study reports the first successful expression of a ChR-1 variant in Escherichia coli as a holoprotein: the ChR-1 variant lacking both the N- and C-termini (CrChR-1_82-308). However, compared to ChR-1 having the extended modules (CrChR-1_1-357), truncation of the termini greatly altered the absorption maximum and photochemical properties, including the pKa values of its charged residues around the chromophore, the reaction rates in the photocycle and the photo-induced ion channeling activity. The results of some experiments regarding ion transport activity suggest that CrChR-1_82-308 has a proton channeling activity even in the dark. On the basis of these results, we discuss the structural and functional roles of the N- and C-terminal extended modules in CrChR-1. PMID:26098533

  20. Collision-induced dissociation of fatty acid [M - 2H + Na]- ions: charge-directed fragmentation and assignment of double bond position.

    PubMed

    Thomas, Michael C; Altvater, Jens; Gallagher, Thomas J; Nette, Geoffrey W

    2014-11-01

    The collision-induced dissociation (CID) of cationic fatty acid-metal ion complexes has been extensively studied and, in general, provides rich structural information. In particular, charge-remote fragmentation processes are commonly observed allowing the assignment of double bond position. In a previous manuscript, we presented two methods to doubly deprotonate polyunsaturated fatty acids to form anionic fatty acid-sodium ion complexes, referred to as [M - 2H + Na] (-) ions. In the current manuscript, the CID behavior of these [M - 2H + Na] (-) ions is investigated for the first time. Significantly, we also present a deuterium-labeling experiment, which excludes the possibility that deprotonation occurs predominately at the α-carbon in the formation of fatty acid [M - H + NaF](-) ions. This supports our original proposal where deprotonation occurs at the bis-allylic positions of polyunsaturated fatty acids. CID spectra of polyunsaturated fatty acid [M - 2H + Na](-) ions display abundant product ions arising from acyl chain cleavages. Through the examination of fatty acid isomers, it is demonstrated that double bond position may be unequivocally determined for methylene-interrupted polyunsaturated fatty acids with three or more carbon-carbon double bonds. In addition, CID of [M - 2H + Na](-) ions was applied to 18:3 isomers of Nannochloropsis oculata and three isomers were tentatively identified: ∆(9,12,15)18:3, ∆(6,9,12)18:3, and ∆(5,8,11)18:3. We propose that structurally-informative product ions are formed via charge-driven fragmentation processes at the site of the resonance-stabilized carbanion as opposed to charge-remote fragmentation processes, which could be inferred if deprotonation occurred predominately at the α-carbon.

  1. Collision-Induced Dissociation of Fatty Acid [M - 2H + Na]- Ions: Charge-Directed Fragmentation and Assignment of Double Bond Position

    NASA Astrophysics Data System (ADS)

    Thomas, Michael C.; Altvater, Jens; Gallagher, Thomas J.; Nette, Geoffrey W.

    2014-08-01

    The collision-induced dissociation (CID) of cationic fatty acid-metal ion complexes has been extensively studied and, in general, provides rich structural information. In particular, charge-remote fragmentation processes are commonly observed allowing the assignment of double bond position. In a previous manuscript, we presented two methods to doubly deprotonate polyunsaturated fatty acids to form anionic fatty acid-sodium ion complexes, referred to as [M - 2H + Na] - ions. In the current manuscript, the CID behavior of these [M - 2H + Na] - ions is investigated for the first time. Significantly, we also present a deuterium-labeling experiment, which excludes the possibility that deprotonation occurs predominately at the α-carbon in the formation of fatty acid [M - H + NaF]- ions. This supports our original proposal where deprotonation occurs at the bis-allylic positions of polyunsaturated fatty acids. CID spectra of polyunsaturated fatty acid [M - 2H + Na]- ions display abundant product ions arising from acyl chain cleavages. Through the examination of fatty acid isomers, it is demonstrated that double bond position may be unequivocally determined for methylene-interrupted polyunsaturated fatty acids with three or more carbon-carbon double bonds. In addition, CID of [M - 2H + Na]- ions was applied to 18:3 isomers of Nannochloropsis oculata and three isomers were tentatively identified: ∆9,12,1518:3, ∆6,9,1218:3, and ∆5,8,1118:3. We propose that structurally-informative product ions are formed via charge-driven fragmentation processes at the site of the resonance-stabilized carbanion as opposed to charge-remote fragmentation processes, which could be inferred if deprotonation occurred predominately at the α-carbon.

  2. The effect of CtBP1 binding on the structure of the C-terminal region of adenovirus 12 early region 1A

    SciTech Connect

    Molloy, David P.; Barral, Paola M.; Gallimore, Phillip H.; Grand, Roger J.A. . E-mail: R.J.A.Grand@bham.ac.uk

    2007-07-05

    Adenovirus early region 1A (AdE1A) binds to the C-terminal binding protein 1 (CtBP1) primarily through a highly conserved PXDLS motif located close to its C-terminus. Purified synthetic peptides equivalent to this region of AdE1A have been shown to form a series of {beta}-turns. In this present study the effect of CtBP1 binding on the conformation of C-terminal region of Ad12E1A has been investigated. Using one- and two-dimensional {sup 1}H NMR spectroscopy, the conformation of 20-residue peptides equivalent to amino acids I{sup 241}-V{sup 260} and E{sup 247}-N{sup 266} of Ad12E1A were examined in the absence of CtBP1. Whilst the latter peptide forms a series of {beta}-turns in its C-terminal half as reported previously, the former peptide is {alpha}-helical over the region D{sup 243}-Q{sup 253}. Upon interaction with CtBP1 the conformation of the backbone in the region {sup 255}PVDLCVK{sup 261} of the Ad12E1A E{sup 247}-N{sup 266} peptide reorganises from a predominately {beta}-turn to an {alpha}-helical conformation. This structural isomerisation is characterised by a shift upfield of 0.318 ppm for the {delta}-CH{sub 3} proton resonance of V{sup 256}. 2-D NOESY experiments showed new signals in the amide-{alpha} region which correlate to transferred NOEs from the protein to the peptide residues E{sup 251}, V{sup 256} and K{sup 261}. In further analyses the contribution of individual amino acids within the sequence {sup 254}VPVDLS{sup 259} was assessed for their importance in determining structure and consequently affinity of the peptide for CtBP. It has been concluded that Ad12E1A residues {sup 255}P-V{sup 260} serve initially as a recognition site for CtBP and then as an anchor through a {beta}-turns {sup {yields}} {alpha}-helix conformational rearrangement. In addition it has been predicted that regions N-terminal to the PXDLS motif in AdE1As from different virus serotypes and from mammalian proteins form {alpha}-helices.

  3. Light at the End of the Protein: Crystal Structure of a C-Terminal Light-Sensing Domain.

    PubMed

    Janovjak, Harald

    2016-02-01

    Aureochromes are blue light sensors that act as transcription factors in algae and have been repurposed for the optogenetic control of signaling in mammalian cells. In a recent issue of Structure, Banerjee et al. (2016) shine light on the structure and function of the C-terminal light-sensing domain of Phaeodactylum tricornutum aureochrome1.

  4. C-Terminal Protein Characterization by Mass Spectrometry using Combined Micro Scale Liquid and Solid-Phase Derivatization

    PubMed Central

    Nika, Heinz; Nieves, Edward; Hawke, David H.; Angeletti, Ruth Hogue

    2013-01-01

    A sample preparation method for protein C-terminal peptide isolation has been developed. In this strategy, protein carboxylate glycinamidation was preceded by carboxyamidomethylation and optional α- and ϵ-amine acetylation in a one-pot reaction, followed by tryptic digestion of the modified protein. The digest was adsorbed on ZipTipC18 pipette tips for sequential peptide α- and ϵ-amine acetylation and 1-ethyl-(3-dimethylaminopropyl) carbodiimide-mediated carboxylate condensation with ethylenediamine. Amino group-functionalized peptides were scavenged on N-hydroxysuccinimide-activated agarose, leaving the C-terminal peptide in the flow-through fraction. The use of reversed-phase supports as a venue for peptide derivatization enabled facile optimization of the individual reaction steps for throughput and completeness of reaction. Reagents were exchanged directly on the support, eliminating sample transfer between the reaction steps. By this sequence of solid-phase reactions, the C-terminal peptide could be uniquely recognized in mass spectra of unfractionated digests of moderate complexity. The use of the sample preparation method was demonstrated with low-level amounts of a model protein. The C-terminal peptides were selectively retrieved from the affinity support and proved highly suitable for structural characterization by collisionally induced dissociation. The sample preparation method provides for robustness and simplicity of operation using standard equipment readily available in most biological laboratories and is expected to be readily expanded to gel-separated proteins. PMID:23543807

  5. Elucidating the effects of arginine and lysine on a monoclonal antibody C-terminal lysine variation in CHO cell cultures.

    PubMed

    Zhang, Xintao; Tang, Hongping; Sun, Ya-Ting; Liu, Xuping; Tan, Wen-Song; Fan, Li

    2015-08-01

    C-terminal lysine variants are commonly observed in monoclonal antibodies (mAbs) and found sensitive to process conditions, especially specific components in culture medium. The potential roles of media arginine (Arg) and lysine (Lys) in mAb heavy chain C-terminal lysine processing were investigated by monitoring the lysine variant levels under various Arg and Lys concentrations. Both Arg and Lys were found to significantly affect lysine variant level. Specifically, lysine variant level increased from 18.7 to 31.8 % when Arg and Lys concentrations were increased from 2 to 10 mM. Since heterogeneity of C-terminal lysine residues is due to the varying degree of proteolysis by basic carboxypeptidases (Cps), enzyme (basic Cps) level, pH conditions, and product (Arg and Lys) inhibition, which potentially affect the enzymatic reaction, were investigated under various Arg and Lys conditions. Enzyme level and pH conditions were found not to account for the different lysine variant levels, which was evident from the minimal variation in transcription level and intracellular pH. On the other hand, product inhibition effect of Arg and Lys on basic Cps was evident from the notable intracellular and extracellular Arg and Lys concentrations comparable with Ki values (inhibition constant) of basic Cps and further confirmed by cell-free assays. Additionally, a kinetic study of lysine variant level during the cell culture process enabled further characterization of the C-terminal lysine processing.

  6. A C-terminally truncated mouse Best3 splice variant targets and alters the ion balance in lysosome-endosome hybrids and the endoplasmic reticulum

    PubMed Central

    Wu, Lichang; Sun, Yu; Ma, Liqiao; Zhu, Jun; Zhang, Baoxia; Pan, Qingjie; Li, Yuyin; Liu, Huanqi; Diao, Aipo; Li, Yinchuan

    2016-01-01

    The Bestrophin family has been characterized as Cl− channels in mammals and Na+ channels in bacteria, but their exact physiological roles remian unknown. In this study, a natural C-terminally truncated variant of mouse Bestrophin 3 (Best3V2) expression in myoblasts and muscles is demonstrated. Unlike full-length Best3, Best3V2 targets the two important intracellular Ca stores: the lysosome and the ER. Heterologous overexpression leads to lysosome swelling and renders it less acidic. Best3V2 overexpression also results in compromised Ca2+ release from the ER. Knocking down endogenous Best3 expression in myoblasts makes these cells more excitable in response to Ca2+ mobilizing reagents, such as caffeine. We propose that Best3V2 in myoblasts may work as a tuner to control Ca2+ release from intracellular Ca2+ stores. PMID:27265833

  7. The helicase-binding domain of Escherichia coli DnaG primase interacts with the highly conserved C-terminal region of single-stranded DNA-binding protein.

    PubMed

    Naue, Natalie; Beerbaum, Monika; Bogutzki, Andrea; Schmieder, Peter; Curth, Ute

    2013-04-01

    During bacterial DNA replication, DnaG primase and the χ subunit of DNA polymerase III compete for binding to single-stranded DNA-binding protein (SSB), thus facilitating the switch between priming and elongation. SSB proteins play an essential role in DNA metabolism by protecting single-stranded DNA and by mediating several important protein-protein interactions. Although an interaction of SSB with primase has been previously reported, it was unclear which domains of the two proteins are involved. This study identifies the C-terminal helicase-binding domain of DnaG primase (DnaG-C) and the highly conserved C-terminal region of SSB as interaction sites. By ConSurf analysis, it can be shown that an array of conserved amino acids on DnaG-C forms a hydrophobic pocket surrounded by basic residues, reminiscent of known SSB-binding sites on other proteins. Using protein-protein cross-linking, site-directed mutagenesis, analytical ultracentrifugation and nuclear magnetic resonance spectroscopy, we demonstrate that these conserved amino acid residues are involved in the interaction with SSB. Even though the C-terminal domain of DnaG primase also participates in the interaction with DnaB helicase, the respective binding sites on the surface of DnaG-C do not overlap, as SSB binds to the N-terminal subdomain, whereas DnaB interacts with the ultimate C-terminus.

  8. The catalytic subunit of shiga-like toxin 1 interacts with ribosomal stalk proteins and is inhibited by their conserved C-terminal domain.

    PubMed

    McCluskey, Andrew J; Poon, Gregory M K; Bolewska-Pedyczak, Eleonora; Srikumar, Tharan; Jeram, Stanley M; Raught, Brian; Gariépy, Jean

    2008-04-25

    Shiga-like toxin 1 (SLT-1) is a type II ribosome-inactivating protein; its A(1) domain blocks protein synthesis in eukaryotic cells by catalyzing the depurination of a single adenine base in 28 S rRNA. The molecular mechanism leading to this site-specific depurination event is thought to involve interactions with eukaryotic ribosomal proteins. Here, we present evidence that the A(1) chain of SLT-1 binds to the ribosomal proteins P0, P1, and P2. These proteins were identified from a HeLa cell lysate by tandem mass spectrometry, and subsequently confirmed to bind to SLT-1 A(1) chain by yeast-two-hybrid and pull-down experiments using candidate full-length proteins. Moreover, the removal of the last 17 amino acids of either protein P1 or P2 abolishes the interaction with the A(1) chain, whereas P0, lacking this common C terminus, still binds to the A(1) domain. In vitro pull-down experiments using fusion protein-tagged C-terminal peptides corresponding to the common 7, 11, and 17 terminal residues of P1 and P2 confirmed that the A(1) chain of SLT-1 as well as the A chain of ricin bind to this shared C-terminal peptide motif. More importantly, a synthetic peptide corresponding to the 17 amino acid C terminus of P1 and P2 was shown to inhibit the ribosome-inactivating function of the A(1) chain of SLT-1 in an in vitro transcription and translation-coupled assay. These results suggest a role for the ribosomal stalk in aiding the A(1) chain of SLT-1 and other type II ribosome-inactivating proteins in localizing its catalytic domain near the site of depurination in the 28 S rRNA. PMID:18358491

  9. The N-Terminal Region of an Entomopoxvirus Fusolin Is Essential for the Enhancement of Peroral Infection, whereas the C-Terminal Region Is Eliminated in Digestive Juice▿

    PubMed Central

    Takemoto, Yutaka; Mitsuhashi, Wataru; Murakami, Ritsuko; Konishi, Hirosato; Miyamoto, Kazuhisa

    2008-01-01

    The spindles of Anomala cuprea entomopoxvirus (AncuEPV), which are composed of glycoprotein fusolin, are known to enhance the peroral infectivity of AncuEPV itself and of nucleopolyhedroviruses. This has been demonstrated to involve the disruption of intestinal peritrophic membrane (PM), composed of chitin matrix, glycosaminoglycans, and proteins. To identify essential and nonessential regions for this enhancement activity, AncuEPV fusolin and its deletion mutants were expressed in Sf21 cells using a baculovirus system, and their enhancement abilities were analyzed. The recombinant fusolin enhanced the peroral infectivity of Bombyx mori nucleopolyhedrovirus up to 320-fold and facilitated the infection of host insect with AncuEPV. Deletion mutagenesis revealed that the N-terminal region (amino acids 1 to 253), a possible chitin-binding domain, is essential for the enhancement of infection, whereas the C-terminal region is entirely dispensable. The glycosylation-defective mutants N191Q, whose Asn191 is replaced with Gln, and ΔSIG, whose signal peptide is deleted, showed considerably reduced and abolished enhancing activities, respectively, indicating that the carbohydrate chain is important in the enhancing activity. Interestingly, the C-terminal dispensable region was digested by a serine protease(s) in insect digestive juice. Moreover, both the N-terminal conserved region and the carbohydrate chain were necessary not only for chitin binding but also for stability in digestive juice. A triple amino acid replacement mutant, IHE (Ile-His-Glu161 to Ala-Ala-Ala), was stable in digestive juice and had chitin-binding ability but did not retain its enhancing activity. These results suggest that the enhancement of infectivity involves more than the tolerance to digestive juice and chitin-binding ability. PMID:18829750

  10. Ezrin self-association involves binding of an N-terminal domain to a normally masked C-terminal domain that includes the F-actin binding site.

    PubMed Central

    Gary, R; Bretscher, A

    1995-01-01

    Ezrin is a membrane-cytoskeletal linking protein that is concentrated in actin-rich surface structures. It is closely related to the microvillar proteins radixin and moesin and to the tumor suppressor merlin/schwannomin. Cell extracts contain ezrin dimers and ezrin-moesin heterodimers in addition to monomers. Truncated ezrin fusion proteins were assayed by blot overlay to determine which regions mediate self-association. Here we report that ezrin self-association occurs by head-to-tail joining of distinct N-terminal and C-terminal domains. It is likely that these domains, termed N- and C-ERMADs (ezrin-radixin-moesin association domain), are responsible for homotypic and heterotypic associations among ERM family members. The N-ERMAD of ezrin resided within amino acids 1-296; deletion of 10 additional residues resulted in loss of activity. The C-ERMAD was mapped to the last 107 amino acids of ezrin, residues 479-585. The two residues at the C-terminus were required for activity, and the region from 530-585 was insufficient. The C-ERMAD was masked in the native monomer. Exposure of this domain required unfolding ezrin with sodium dodecyl sulfate or expressing the domain as part of a truncated protein. Intermolecular association could not occur unless the C-ERMAD had been made accessible to its N-terminal partner. It can be inferred that dimerization in vivo requires an activation step that exposes this masked domain. The conformationally inaccessible C-terminal region included the F-actin binding site, suggesting that this activity is likewise regulated by masking. Images PMID:7579708

  11. Interaction of CheY with the C-terminal peptide of CheZ

    SciTech Connect

    Guhaniyogi,J.; Wu, T.; Patel, S.; Stock, A.

    2008-01-01

    Chemotaxis, a means for motile bacteria to sense the environment and achieve directed swimming, is controlled by flagellar rotation. The primary output of the chemotaxis machinery is the phosphorylated form of the response regulator CheY (P{approx}CheY). The steady-state level of P{approx}CheY dictates the direction of rotation of the flagellar motor. The chemotaxis signal in the form of P{approx}CheY is terminated by the phosphatase CheZ. Efficient dephosphorylation of CheY by CheZ requires two distinct protein-protein interfaces: one involving the strongly conserved C-terminal helix of CheZ (CheZC) tethering the two proteins together and the other constituting an active site for catalytic dephosphorylation. In a previous work, we presented high-resolution crystal structures of CheY in complex with the CheZC peptide that revealed alternate binding modes subject to the conformational state of CheY. In this study, we report biochemical and structural data that support the alternate-binding-mode hypothesis and identify key recognition elements in the CheY-CheZC interaction. In addition, we present kinetic studies of the CheZC-associated effect on CheY phosphorylation with its physiologically relevant phosphodonor, the histidine kinase CheA. Our results indicate mechanistic differences in phosphotransfer from the kinase CheA versus that from small-molecule phosphodonors, explaining a modest twofold increase of CheY phosphorylation with the former, observed in this study, relative to a 10-fold increase previously documented with the latter.

  12. Evolutionary Origins of C-Terminal (GPP)n 3-Hydroxyproline Formation in Vertebrate Tendon Collagen

    PubMed Central

    Hudson, David M.; Werther, Rachel; Weis, MaryAnn; Wu, Jiann-Jiu; Eyre, David R.

    2014-01-01

    Approximately half the proline residues in fibrillar collagen are hydroxylated. The predominant form is 4-hydroxyproline, which helps fold and stabilize the triple helix. A minor form, 3-hydroxyproline, still has no clear function. Using peptide mass spectrometry, we recently revealed several previously unknown molecular sites of 3-hydroxyproline in fibrillar collagen chains. In fibril-forming A-clade collagen chains, four new partially occupied 3-hydroxyproline sites were found (A2, A3, A4 and (GPP)n) in addition to the fully occupied A1 site at Pro986. The C-terminal (GPP)n motif has five consecutive GPP triplets in α1(I), four in α2(I) and three in α1(II), all subject to 3-hydroxylation. The evolutionary origins of this substrate sequence were investigated by surveying the pattern of its 3-hydroxyproline occupancy from early chordates through amphibians, birds and mammals. Different tissue sources of type I collagen (tendon, bone and skin) and type II collagen (cartilage and notochord) were examined by mass spectrometry. The (GPP)n domain was found to be a major substrate for 3-hydroxylation only in vertebrate fibrillar collagens. In higher vertebrates (mouse, bovine and human), up to five 3-hydroxyproline residues per (GPP)n motif were found in α1(I) and four in α2(I), with an average of two residues per chain. In vertebrate type I collagen the modification exhibited clear tissue specificity, with 3-hydroxyproline prominent only in tendon. The occupancy also showed developmental changes in Achilles tendon, with increasing 3-hydroxyproline levels with age. The biological significance is unclear but the level of 3-hydroxylation at the (GPP)n site appears to have increased as tendons evolved and shows both tendon type and developmental variations within a species. PMID:24695516

  13. MAS C-Terminal Tail Interacting Proteins Identified by Mass Spectrometry- Based Proteomic Approach

    PubMed Central

    Tirupula, Kalyan C.; Zhang, Dongmei; Osbourne, Appledene; Chatterjee, Arunachal; Desnoyer, Russ; Willard, Belinda; Karnik, Sadashiva S.

    2015-01-01

    Propagation of signals from G protein-coupled receptors (GPCRs) in cells is primarily mediated by protein-protein interactions. MAS is a GPCR that was initially discovered as an oncogene and is now known to play an important role in cardiovascular physiology. Current literature suggests that MAS interacts with common heterotrimeric G-proteins, but MAS interaction with proteins which might mediate G protein-independent or atypical signaling is unknown. In this study we hypothesized that MAS C-terminal tail (Ct) is a major determinant of receptor-scaffold protein interactions mediating MAS signaling. Mass-spectrometry based proteomic analysis was used to comprehensively identify the proteins that interact with MAS Ct comprising the PDZ-binding motif (PDZ-BM). We identified both PDZ and non-PDZ proteins from human embryonic kidney cell line, mouse atrial cardiomyocyte cell line and human heart tissue to interact specifically with MAS Ct. For the first time our study provides a panel of PDZ and other proteins that potentially interact with MAS with high significance. A ‘cardiac-specific finger print’ of MAS interacting PDZ proteins was identified which includes DLG1, MAGI1 and SNTA. Cell based experiments with wild-type and mutant MAS lacking the PDZ-BM validated MAS interaction with PDZ proteins DLG1 and TJP2. Bioinformatics analysis suggested well-known multi-protein scaffold complexes involved in nitric oxide signaling (NOS), cell-cell signaling of neuromuscular junctions, synapses and epithelial cells. Majority of these protein hits were predicted to be part of disease categories comprising cancers and malignant tumors. We propose a ‘MAS-signalosome’ model to stimulate further research in understanding the molecular mechanism of MAS function. Identifying hierarchy of interactions of ‘signalosome’ components with MAS will be a necessary step in future to fully understand the physiological and pathological functions of this enigmatic receptor. PMID

  14. The C-terminal binding protein (CTBP-1) regulates dorsal SMD axonal morphology in Caenorhabditis elegans.

    PubMed

    Reid, A; Sherry, T J; Yücel, D; Llamosas, E; Nicholas, H R

    2015-12-17

    C-terminal binding proteins (CtBPs) are transcriptional co-repressors which cooperate with a variety of transcription factors to repress gene expression. Caenorhabditis elegans CTBP-1 expression has been observed in the nervous system and hypodermis. In C. elegans, CTBP-1 regulates several processes including Acute Functional Tolerance to ethanol and functions in the nervous system to modulate both lifespan and expression of a lipase gene called lips-7. Incorrect structure and/or function of the nervous system can lead to behavioral changes. Here, we demonstrate reduced exploration behavior in ctbp-1 mutants. Our examination of a subset of neurons involved in regulating locomotion revealed that the axonal morphology of dorsal SMD (SMDD) neurons is altered in ctbp-1 mutants at the fourth larval (L4) stage. Expressing CTBP-1 under the control of the endogenous ctbp-1 promoter rescued both the exploration behavior phenotype and defective SMDD axon structure in ctbp-1 mutants at the L4 stage. Interestingly, the pre-synaptic marker RAB-3 was found to localize to the mispositioned portion of SMDD axons in a ctbp-1 mutant. Further analysis of SMDD axonal morphology at days 1, 3 and 5 of adulthood revealed that the number of ctbp-1 mutants showing an SMDD axonal morphology defect increases in early adulthood and the observed defect appears to be qualitatively more severe. CTBP-1 is prominently expressed in the nervous system with weak expression detected in the hypodermis. Surprisingly, solely expressing CTBP-1a in the nervous system or hypodermis did not restore correct SMDD axonal structure in a ctbp-1 mutant. Our results demonstrate a role for CTBP-1 in exploration behavior and the regulation of SMDD axonal morphology in C. elegans.

  15. Protein C-Terminal Labeling and Biotinylation Using Synthetic Peptide and Split-Intein

    PubMed Central

    Volkmann, Gerrit; Liu, Xiang-Qin

    2009-01-01

    Background Site-specific protein labeling or modification can facilitate the characterization of proteins with respect to their structure, folding, and interaction with other proteins. However, current methods of site-specific protein labeling are few and with limitations, therefore new methods are needed to satisfy the increasing need and sophistications of protein labeling. Methodology A method of protein C-terminal labeling was developed using a non-canonical split-intein, through an intein-catalyzed trans-splicing reaction between a protein and a small synthetic peptide carrying the desired labeling groups. As demonstrations of this method, three different proteins were efficiently labeled at their C-termini with two different labels (fluorescein and biotin) either in solution or on a solid surface, and a transferrin receptor protein was labeled on the membrane surface of live mammalian cells. Protein biotinylation and immobilization on a streptavidin-coated surface were also achieved in a cell lysate without prior purification of the target protein. Conclusions We have produced a method of site-specific labeling or modification at the C-termini of recombinant proteins. This method compares favorably with previous protein labeling methods and has several unique advantages. It is expected to have many potential applications in protein engineering and research, which include fluorescent labeling for monitoring protein folding, location, and trafficking in cells, and biotinylation for protein immobilization on streptavidin-coated surfaces including protein microchips. The types of chemical labeling may be limited only by the ability of chemical synthesis to produce the small C-intein peptide containing the desired chemical groups. PMID:20027230

  16. A helix-turn motif in the C-terminal domain of histone H1.

    PubMed Central

    Vila, R.; Ponte, I.; Jiménez, M. A.; Rico, M.; Suau, P.

    2000-01-01

    The structural study of peptides belonging to the terminal domains of histone H1 can be considered as a step toward the understanding of the function of H1 in chromatin. The conformational properties of the peptide Ac-EPKRSVAFKKTKKEVKKVATPKK (CH-1), which belongs to the C-terminal domain of histone H1(o) (residues 99-121) and is adjacent to the central globular domain of the protein, were examined by means of 1H-NMR and circular dichroism. In aqueous solution, CH-1 behaved as a mainly unstructured peptide, although turn-like conformations in rapid equilibrium with the unfolded state could be present. Addition of trifluoroethanol resulted in a substantial increase of the helical content. The helical limits, as indicated by (i,i + 3) nuclear Overhauser effect (NOE) cross correlations and significant up-field conformational shifts of the C(alpha) protons, span from Pro100 to Val116, with Glu99 and Ala117 as N- and C-caps. A structure calculation performed on the basis of distance constraints derived from NOE cross peaks in 90% trifluoroethanol confirmed the helical structure of this region. The helical region has a marked amphipathic character, due to the location of all positively charged residues on one face of the helix and all the hydrophobic residues on the opposite face. The peptide has a TPKK motif at the C-terminus, following the alpha-helical region. The observed NOE connectivities suggest that the TPKK sequence adopts a type (I) beta-turn conformation, a sigma-turn conformation or a combination of both, in fast equilibrium with unfolded states. Sequences of the kind (S/T)P(K/R)(K/R) have been proposed as DNA binding motifs. The CH-1 peptide, thus, combines a positively charged amphipathic helix and a turn as potential DNA-binding motifs. PMID:10794405

  17. The C-terminal repeating units of CsgB direct bacterial functional amyloid nucleation.

    PubMed

    Hammer, Neal D; McGuffie, Bryan A; Zhou, Yizhou; Badtke, Matthew P; Reinke, Ashley A; Brännström, Kristoffer; Gestwicki, Jason E; Olofsson, Anders; Almqvist, Fredrik; Chapman, Matthew R

    2012-09-21

    Curli are functional amyloids produced by enteric bacteria. The major curli fiber subunit, CsgA, self-assembles into an amyloid fiber in vitro. The minor curli subunit protein, CsgB, is required for CsgA polymerization on the cell surface. Both CsgA and CsgB are composed of five predicted β-strand-loop-β-strand-loop repeating units that feature conserved glutamine and asparagine residues. Because of this structural homology, we proposed that CsgB might form an amyloid template that initiates CsgA polymerization on the cell surface. To test this model, we purified wild-type CsgB and found that it self-assembled into amyloid fibers in vitro. Preformed CsgB fibers seeded CsgA polymerization as did soluble CsgB added to the surface of cells secreting soluble CsgA. To define the molecular basis of CsgB nucleation, we generated a series of mutants that removed each of the five repeating units. Each of these CsgB deletion mutants was capable of self-assembly in vitro. In vivo, membrane-localized mutants lacking the first, second, or third repeating units were able to convert CsgA into fibers. However, mutants missing either the fourth or fifth repeating units were unable to complement a csgB mutant. These mutant proteins were not localized to the outer membrane but were instead secreted into the extracellular milieu. Synthetic CsgB peptides corresponding to repeating units 1, 2, and 4 self-assembled into ordered amyloid polymers, while peptides corresponding to repeating units 3 and 5 did not, suggesting that there are redundant amyloidogenic domains in CsgB. Our results suggest a model where the rapid conversion of CsgB from unstructured protein to a β-sheet-rich amyloid template anchored to the cell surface is mediated by the C-terminal repeating units.

  18. Reduced ubiquitin C-terminal hydrolase-1 expression levels in dementia with Lewy bodies.

    PubMed

    Barrachina, Marta; Castaño, Esther; Dalfó, Esther; Maes, Tamara; Buesa, Carlos; Ferrer, Isidro

    2006-05-01

    Parkinson disease (PD) and dementia with Lewy bodies (DLB) are characterized by the accumulation of abnormal alpha-synuclein and ubiquitin in protein aggregates conforming Lewy bodies and Lewy neurites. Ubiquitin C-terminal hydrolase-1 (UCHL-1) disassembles polyubiquitin chains to increase the availability of free monomeric ubiquitin to the ubiquitin proteasome system (UPS) thus favoring protein degradation. Since mutations in the UCHL-1 gene, reducing UPS activity by 50%, have been reported in autosomal dominant PD, and UCHL-1 inhibition results in the formation of alpha-synuclein aggregates in mesencephalic cultured neurons, the present study was initiated to test UCHL-1 mRNA and protein levels in post-mortem frontal cortex (area 8) of PD and DLB cases, compared with age-matched controls. TaqMan PCR assays, and Western blots demonstrated down-regulation of UCHL-1 mRNA and UCHL-1 protein in the cerebral cortex in DLB (either in pure forms, not associated with Alzheimer disease: AD, and in common forms, with accompanying AD changes), but not in PD, when compared with age-matched controls. Interestingly, UCHL-1 mRNA and protein expressions were reduced in the medulla oblongata in the same PD cases. Moreover, UCHL-1 protein was decreased in the substantia nigra in cases with Lewy body pathology. UCHL-1 down-regulation was not associated with reduced protein levels of several proteasomal subunits, including 20SX, 20SY, 19S and 11Salpha. Yet UCHL-3 expression was reduced in the cerebral cortex of PD and DLB patients. Together, these observations show reduced UCHL-1 expression as a contributory factor in the abnormal protein aggregation in DLB, and points UCHL-1 as a putative therapeutic target in the treatment of DLB.

  19. Deducing the functional characteristics of the human selenoprotein SELK from the structural properties of its intrinsically disordered C-terminal domain.

    PubMed

    Polo, Andrea; Colonna, Giovanni; Guariniello, Stefano; Ciliberto, Gennaro; Costantini, Susan

    2016-03-01

    The intrinsically disordered proteins (IDPs) cannot be described by a single structural representation but, due to their high structural fluctuation, through conformational ensembles. Certainly, molecular dynamics (MD) simulations represent a useful tool to study their different conformations capturing the conformational distribution. Our group is focusing on the structural characterization of proteins belonging to the seleno-proteome due to their involvement in cancer. They present disordered domains central for their biological function, and, in particular, SELK is a single-pass transmembrane protein that resides in the endoplasmic reticulum membrane (ER) with a C-terminal domain exposed to the cytoplasm that is known to interact with different components of the endoplasmic reticulum associated to the protein degradation (ERAD) pathway. This protein is found to be up-expressed in hepatocellular carcinoma and in other cancers. In this work we performed a detailed analysis of the C-terminal domain sequence of SELK and discovered that it is characterized by many prolines, and four negatively and eleven positively charged residues, which are crucial for its biological activity. This region can be considered as a weak polyelectrolyte and, specifically, a polycation, with high disordered propensity and different phosphorylation sites dislocated along the sequence. Then, we modeled its three-dimensional structure by performing MD simulations in water at neutral pH to analyze the structural stability as well as to identify the presence of HUB residues that play a key structural role as evidenced by the residue-residue interaction network analysis. Through this approach, we demonstrate that the C-terminal domain of SELK (i) presents a poor content of regular secondary structure elements, (ii) is dynamically stabilized by a network of intra-molecular H-bonds and H-bonds with water molecules, (iii) is highly fluctuating and, therefore, can be described only through a

  20. C-Terminal DxD-Containing Sequences within Paramyxovirus Nucleocapsid Proteins Determine Matrix Protein Compatibility and Can Direct Foreign Proteins into Budding Particles

    PubMed Central

    Ray, Greeshma; Schmitt, Phuong Tieu

    2016-01-01

    ABSTRACT Paramyxovirus particles are formed by a budding process coordinated by viral matrix (M) proteins. M proteins coalesce at sites underlying infected cell membranes and induce other viral components, including viral glycoproteins and viral ribonucleoprotein complexes (vRNPs), to assemble at these locations from which particles bud. M proteins interact with the nucleocapsid (NP or N) components of vRNPs, and these interactions enable production of infectious, genome-containing virions. For the paramyxoviruses parainfluenza virus 5 (PIV5) and mumps virus, M-NP interaction also contributes to efficient production of virus-like particles (VLPs) in transfected cells. A DLD sequence near the C-terminal end of PIV5 NP protein was previously found to be necessary for M-NP interaction and efficient VLP production. Here, we demonstrate that 15-residue-long, DLD-containing sequences derived from either the PIV5 or Nipah virus nucleocapsid protein C-terminal ends are sufficient to direct packaging of a foreign protein, Renilla luciferase, into budding VLPs. Mumps virus NP protein harbors DWD in place of the DLD sequence found in PIV5 NP protein, and consequently, PIV5 NP protein is incompatible with mumps virus M protein. A single amino acid change converting DLD to DWD within PIV5 NP protein induced compatibility between these proteins and allowed efficient production of mumps VLPs. Our data suggest a model in which paramyxoviruses share an overall common strategy for directing M-NP interactions but with important variations contained within DLD-like sequences that play key roles in defining M/NP protein compatibilities. IMPORTANCE Paramyxoviruses are responsible for a wide range of diseases that affect both humans and animals. Paramyxovirus pathogens include measles virus, mumps virus, human respiratory syncytial virus, and the zoonotic paramyxoviruses Nipah virus and Hendra virus. Infectivity of paramyxovirus particles depends on matrix-nucleocapsid protein

  1. Structure of the N-terminal fragment of Escherichia coli Lon protease

    SciTech Connect

    Li, Mi; Gustchina, Alla; Rasulova, Fatima S.; Melnikov, Edward E.; Maurizi, Michael R.; Rotanova, Tatyana V.; Dauter, Zbigniew; Wlodawer, Alexander

    2010-10-22

    The structure of a recombinant construct consisting of residues 1-245 of Escherichia coli Lon protease, the prototypical member of the A-type Lon family, is reported. This construct encompasses all or most of the N-terminal domain of the enzyme. The structure was solved by SeMet SAD to 2.6 {angstrom} resolution utilizing trigonal crystals that contained one molecule in the asymmetric unit. The molecule consists of two compact subdomains and a very long C-terminal {alpha}-helix. The structure of the first subdomain (residues 1-117), which consists mostly of {beta}-strands, is similar to that of the shorter fragment previously expressed and crystallized, whereas the second subdomain is almost entirely helical. The fold and spatial relationship of the two subdomains, with the exception of the C-terminal helix, closely resemble the structure of BPP1347, a 203-amino-acid protein of unknown function from Bordetella parapertussis, and more distantly several other proteins. It was not possible to refine the structure to satisfactory convergence; however, since almost all of the Se atoms could be located on the basis of their anomalous scattering the correctness of the overall structure is not in question. The structure reported here was also compared with the structures of the putative substrate-binding domains of several proteins, showing topological similarities that should help in defining the binding sites used by Lon substrates.

  2. Conformation-specific spectroscopy of peptide fragment ions in a low-temperature ion trap.

    PubMed

    Wassermann, Tobias N; Boyarkin, Oleg V; Paizs, Béla; Rizzo, Thomas R

    2012-06-01

    We have applied conformer-selective infrared-ultraviolet (IR-UV) double-resonance photofragment spectroscopy at low temperatures in an ion trap mass spectrometer for the spectroscopic characterization of peptide fragment ions. We investigate b- and a-type ions formed by collision-induced dissociation from protonated leucine-enkephalin. The vibrational analysis and assignment are supported by nitrogen-15 isotopic substitution of individual amino acid residues and assisted by density functional theory calculations. Under such conditions, b-type ions of different size are found to appear exclusively as linear oxazolone structures with protonation on the N-terminus, while a rearrangement reaction is confirmed for the a (4) ion in which the side chain of the C-terminal phenylalanine residue is transferred to the N-terminal side of the molecule. The vibrational spectra that we present here provide a particularly stringent test for theoretical approaches.

  3. Conformation-Specific Spectroscopy of Peptide Fragment Ions in a Low-Temperature Ion Trap

    NASA Astrophysics Data System (ADS)

    Wassermann, Tobias N.; Boyarkin, Oleg V.; Paizs, Béla; Rizzo, Thomas R.

    2012-06-01

    We have applied conformer-selective infrared-ultraviolet (IR-UV) double-resonance photofragment spectroscopy at low temperatures in an ion trap mass spectrometer for the spectroscopic characterization of peptide fragment ions. We investigate b- and a-type ions formed by collision-induced dissociation from protonated leucine-enkephalin. The vibrational analysis and assignment are supported by nitrogen-15 isotopic substitution of individual amino acid residues and assisted by density functional theory calculations. Under such conditions, b-type ions of different size are found to appear exclusively as linear oxazolone structures with protonation on the N-terminus, while a rearrangement reaction is confirmed for the a 4 ion in which the side chain of the C-terminal phenylalanine residue is transferred to the N-terminal side of the molecule. The vibrational spectra that we present here provide a particularly stringent test for theoretical approaches.

  4. Experimental and theoretical proton affinities of methionine, methionine sulfoxide and their N- and C-terminal derivatives

    NASA Astrophysics Data System (ADS)

    Lioe, Hadi; O'Hair, Richard A. J.; Gronert, Scott; Austin, Allen; Reid, Gavin E.

    2007-11-01

    The proton affinities of methionine, methionine sulfoxide and their derivatives (methionine methyl ester, methionine sulfoxide methyl ester, methionine methyl amide, methionine sulfoxide methyl amide, N-acetyl methionine, N-acetyl methionine sulfoxide, N-acetyl methionine methyl ester, N-acetyl methionine sulfoxide methyl ester, N-acetyl methionine methyl amide and N-acetyl methionine sulfoxide methyl amide) were experimentally determined using the kinetic method, in which proton bound dimers formed via electrospray ionization (ESI) were subjected to collision induced dissociation (CID) in a triple quadrupole mass spectrometer. In addition, theoretical calculations carried out at the MP2/6-311 + G(2d,p)//B3LYP/6-31 + G(d,p) level of theory to determine the global minima of the neutral and protonated species of all derivatives studied, were used to predict theoretical proton affinities. The density function theory calculations not only support the experimental proton affinities, but also provide structural insights into the types of hydrogen bonding that stabilize the neutral and protonated methionine or methionine sulfoxide derivatives. Comparison of the proton affinities of the various methionine and methionine sulfoxide derivatives reveals that: (i) oxidation of methionine derivatives to methionine sulfoxide derivatives results in an increase in proton affinity due to higher intrinsic proton affinity and an increase in the ring size formed through charge complexation of the sulfoxide group, which allows more efficient hydrogen bonding compared to the sulfide group; (ii) C-terminal modification by methyl esterification or methyl amidation increases the proton affinity in the order of methyl amide > methyl ester > carboxylic acid due to improved charge stabilization; (iii) N-terminal modification by N-acetylation decreases proton affinity of the derivatives due to lower intrinsic proton affinity of the N-acetyl group as well as due to stabilization of the attached

  5. N- and C-terminal structure-activity study of angiotensin II on the angiotensin AT2 receptor.

    PubMed

    Bouley, R; Pérodin, J; Plante, H; Rihakova, L; Bernier, S G; Maletínská, L; Guillemette, G; Escher, E

    1998-02-19

    ]angiotensin II. Aliphatic residues, especially those of reduced size, caused a significant decrease in affinity especially [Sarcosine1, Gly8]angiotensin II who showed a 30-fold decrease. Introduction of a positive charge (Lys) at position 8 reduced the affinity even further. Stereoisomers in position 8 (L-->D configuration) also induced lower affinities. The angiotensin AT2 receptor display a structure-activity relationship similar to that observed on the AT1 receptor for the C-terminal position of the peptide hormone. Position 1 structure-activity relationships are however fundamentally different between the angiotensin AT1 and AT2 receptor. PMID:9570482

  6. Typical ultraviolet spectra in combination with diagnostic mass fragmentation analysis for the rapid and comprehensive profiling of chlorogenic acids in the buds of Lonicera macranthoides.

    PubMed

    Zhang, Shui-Han; Hu, Xin; Shi, Shu-Yun; Huang, Lu-Qi; Chen, Wei; Chen, Lin; Cai, Ping

    2016-05-01

    A major challenge of profiling chlorogenic acids (CGA) in natural products is to effectively detect unknown or minor isomeric compounds. Here, we developed an effective strategy, typical ultraviolet (UV) spectra in combination with diagnostic mass fragmentation analysis based on HPLC-DAD-QTOF-MS/MS, to comprehensively profile CGA in the buds of Lonicera macranthoides. First, three CGA UV patterns were obtained by UV spectra screening. Second, 13 types of CGA classified by molecular weights were found by thorough analysis of CGA peaks using high-resolution MS. Third, selected ion monitoring (SIM) was carried out for each type of CGA to avoid overlooking of minor ones. Fourth, MS/MS spectra of each CGA were investigated. Then 70 CGA were identified by matching their UV spectra, accurate mass signals and fragmentation patterns with standards or previously reported compounds, including six caffeoylquinic acids (CQA), six diCQA, one triCQA, three caffeoylshikimic acids (CSA), six diCSA, one triCSA, three p-coumaroylquinic acids (pCoQA), four p-coumaroylcaffeoylquinic acids (pCoCQA), four feruloylquinic acids (FQA), five methyl caffeoylquinates (MCQ), three ethyl caffeoylquinates (ECQ), three dimethoxycinnamoylquinic acids (DQA), six caffeoylferuloylquinic acids (CFQA), six methyl dicaffeoylquinates (MdiCQ), four FQA glycosides (FQAG), six MCQ glycosides (MCQG), and three ethyl dicaffeoylquinates (EdiCQ). Forty-five of them were discovered from Lonicera species for the first time, and it is noted that CGA profiles were investigated for the first time in L. macranthoides. Results indicated that the developed method was a useful approach to explore unknown and minor isomeric compounds from complex natural products. PMID:26970751

  7. Inter-molecular coiled-coil formation in human apolipoprotein E C-terminal domain.

    PubMed

    Choy, Nicole; Raussens, Vincent; Narayanaswami, Vasanthy

    2003-11-28

    Human apolipoprotein E (apoE) is composed of an N-terminal (NT) domain (residues 1-191) that bears low-density lipoprotein receptor-binding sites, and a C-terminal (CT) domain (residues 210-299), which houses lipoprotein binding and apoE self-association sites. The NT domain is comprised of a four-helix bundle, while the structural organization of the CT domain is not known. Secondary structural algorithms predict that the apoE CT domain adopts an amphipathic alpha-helical conformation. On the basis of further sequence predictions, we identified a segment (residues 218-266) in the apoE CT domain that bears a high propensity to form a coiled-coil helix, which coincides with the putative lipoprotein-binding surface. An apoE construct bearing residues 201-299 that encompasses the entire CT domain was designed, expressed in Escherichia coli and purified by affinity chromatography. Circular dichroism (CD) spectroscopy of the apoE CT domain reveals spectra characteristic of coiled-coil helices, with the ratio of molar ellipticities at 222 nm and 208 nm ([theta](222)/[theta](208)) of 1.03. Trifluoroethanol (TFE) stabilized the secondary structure of the apoE CT domain and disrupted coiled-coil helix formation as determined by CD and tryptophan fluorescence analysis. Analytical ultracentrifugation and lysine-specific cross-linking analysis of the apoE CT domain revealed predominant formation of dimeric and tetrameric species in aqueous buffers, and monomeric forms in 50% TFE. Guanidine hydrochloride-induced denaturation studies reveal that, at low concentrations of denaturant, the apoE CT domain maintains the [theta](222)/[theta](208) ratio at approximately 1.0 and elicits an altered tertiary environment with a shift in oligomeric state towards a dimer, indicative of the role of coiled-coil helix formation in inter molecular interactions. Further, coiled-coil formation is disrupted by protonation below pH 6.0, with a corresponding decrease in Trp fluorescence emission

  8. The autocrine motility factor (AMF) and AMF-receptor combination needs sugar chain recognition ability and interaction using the C-terminal region of AMF.

    PubMed

    Haga, Arayo; Tanaka, Nobutada; Funasaka, Tatsuyoshi; Hashimoto, Kazunori; Nakamura, Kazuo T; Watanabe, Hideomi; Raz, Avraham; Nagase, Hisamitsu

    2006-05-01

    The autocrine motility factor (AMF) promotes cellular locomotion or invasion, and regulates tumor angiogenesis or ascites accumulation. These signals are triggered by binding between AMF and its receptor (AMFR), a glycoprotein on the cell surface. AMF has been identified as phosphohexose isomerase (PHI). Previous reports have suggested that the substrate-recognition of exo-PHI is significant for receptor binding. Crystallographic studies have shown that AMF consists of three domains, and that the substrate or inhibitor of PHI is stored between the large and small domains, corresponding to approximately residues 117-288. Here, site-directed mutagenesis was used to investigate 18 recombinant human AMF point mutants involving critical amino acid residues for substrate or enzyme inhibitor recognition or binding. Mutation of residues that interact with the phosphate group of the PHI substrate significantly reduced the cell motility-stimulating activity. Their binding capacities for AMFR were also lower than wild-type human AMF. Mutants that retained the enzymic activity showed the motility-stimulating effect and receptor binding and had sensitivity to a PHI inhibitor. Mutant AMFR lacking the N-sugar chain was expressed on the cell membrane but did not respond to AMF-stimulation, and N-glycosidase-treated AMFR did not compete with receptor binding of AMF. Furthermore, the AMF domains that contain the substrate storage domain and C-terminal region stimulate cell locomotion. These results suggest that the N-glyco side-chain of AMFR is a trigger and that interaction between the 117-C-terminal part of AMF and the extracellular core protein of AMFR is needed during AMF-AMFR interactions.

  9. Kinetic interconversion of rat and bovine homologs of the alpha subunit of an amiloride-sensitive Na+ channel by C-terminal truncation of the bovine subunit.

    PubMed

    Fuller, C M; Ismailov, I I; Berdiev, B K; Shlyonsky, V G; Benos, D J

    1996-10-25

    We have recently cloned the alpha subunit of a bovine amiloride-sensitive Na+ channel (alphabENaC). This subunit shares extensive homology with both rat and human alphaENaC subunits but shows marked divergence at the C terminus beginning at amino acid 584 of the 697-residue sequence. When incorporated into planar lipid bilayers, alphabENaC almost exclusively exhibits a main transition to 39 picosiemens (pS) with very rare 13 pS step transitions to one of two subconductance states (26 and 13 pS). In contrast, the alpha subunit of the rat renal homolog of ENaC (alpharENaC) has a main transition step to 13 pS that is almost constituitively open, with a second stepwise transition of 26 to 39 pS. A deletion mutant of alphabENaC, encompassing the entire C-terminal region (R567X), converts the kinetic behavior of alphabENaC to that of alpharENaC, i. e. a transition to 13 pS followed by a second 26 pS transition to 39 pS. Chemical cross-linking of R567X restores the wild-type alphabENaC gating pattern, whereas treatment with the reducing agent dithiothreitol produced only 13 pS transitions. In contrast, an equivalent C-terminal truncation of alpharENaC (R613X) had no effect on the gating pattern of alpharENaC. These results are consistent with the hypothesis that interactions between the C termini of alphabENaC account for the different kinetic behavior of this member of the ENaC family of Na+ channels. PMID:8900133

  10. The C-terminal tail of tetraspanin proteins regulates their intracellular distribution in the parasite Trichomonas vaginalis.

    PubMed

    Coceres, V M; Alonso, A M; Nievas, Y R; Midlej, V; Frontera, L; Benchimol, M; Johnson, P J; de Miguel, N

    2015-08-01

    The parasite Trichomonas vaginalis is the causative agent of trichomoniasis, a prevalent sexually transmitted infection. Here, we report the cellular analysis of T.vaginalis tetraspanin family (TvTSPs). This family of membrane proteins has been implicated in cell adhesion, migration and proliferation in vertebrates. We found that the expression of several members of the family is up-regulated upon contact with vaginal ectocervical cells. We demonstrate that most TvTSPs are localized on the surface and intracellular vesicles and that the C-terminal intracellular tails of surface TvTSPs are necessary for proper localization. Analyses of full-length TvTSP8 and a mutant that lacks the C-terminal tail indicates that surface-localized TvTSP8 is involved in parasite aggregation, suggesting a role for this protein in parasite : parasite interaction.

  11. The C-terminal tail of tetraspanin proteins regulates their intracellular distribution in the parasite Trichomonas vaginalis.

    PubMed

    Coceres, V M; Alonso, A M; Nievas, Y R; Midlej, V; Frontera, L; Benchimol, M; Johnson, P J; de Miguel, N

    2015-08-01

    The parasite Trichomonas vaginalis is the causative agent of trichomoniasis, a prevalent sexually transmitted infection. Here, we report the cellular analysis of T.vaginalis tetraspanin family (TvTSPs). This family of membrane proteins has been implicated in cell adhesion, migration and proliferation in vertebrates. We found that the expression of several members of the family is up-regulated upon contact with vaginal ectocervical cells. We demonstrate that most TvTSPs are localized on the surface and intracellular vesicles and that the C-terminal intracellular tails of surface TvTSPs are necessary for proper localization. Analyses of full-length TvTSP8 and a mutant that lacks the C-terminal tail indicates that surface-localized TvTSP8 is involved in parasite aggregation, suggesting a role for this protein in parasite : parasite interaction. PMID:25703821

  12. Crystallization and preliminary X-ray analysis of the C-terminal RNase III domain of human Dicer

    SciTech Connect

    Takeshita, Daijiro; Zenno, Shuhei; Lee, Woo Cheol; Nagata, Koji; Saigo, Kaoru; Tanokura, Masaru

    2006-04-01

    The C-terminal RNase III domain (RNase IIIb) of human Dicer has been expressed, purified and crystallized by the sitting-drop vapour-diffusion method. Human Dicer protein contains two RNase III domains (RNase IIIa and RNase IIIb) which are involved in the production of short interfering RNAs (siRNAs). The C-terminal RNase III domain (RNase IIIb) of human Dicer was expressed, purified and crystallized by the sitting-drop vapour-diffusion method. The crystals belonged to space group C222{sub 1}, with unit-cell parameters a = 88.6, b = 199.7, c = 119.6 Å, and diffracted X-rays to 2.0 Å resolution. The asymmetric unit contained three molecules of the RNase IIIb and the solvent content was 67%.

  13. Autoproteolysis and intramolecular dissociation of Yersinia YscU precedes secretion of its C-terminal polypeptide YscU(CC).

    PubMed

    Frost, Stefan; Ho, Oanh; Login, Frédéric H; Weise, Christoph F; Wolf-Watz, Hans; Wolf-Watz, Magnus

    2012-01-01

    Type III secretion system mediated secretion and translocation of Yop-effector proteins across the eukaryotic target cell membrane by pathogenic Yersinia is highly organized and is dependent on a switching event from secretion of early structural substrates to late effector substrates (Yops). Substrate switching can be mimicked in vitro by modulating the calcium levels in the growth medium. YscU that is essential for regulation of this switch undergoes autoproteolysis at a conserved N↑PTH motif, resulting in a 10 kDa C-terminal polypeptide fragment denoted YscU(CC). Here we show that depletion of calcium induces intramolecular dissociation of YscU(CC) from YscU followed by secretion of the YscU(CC) polypeptide. Thus, YscU(CC) behaved in vivo as a Yop protein with respect to secretion properties. Further, destabilized yscU mutants displayed increased rates of dissociation of YscU(CC)in vitro resulting in enhanced Yop secretion in vivo at 30°C relative to the wild-type strain.These findings provide strong support to the relevance of YscU(CC) dissociation for Yop secretion. We propose that YscU(CC) orchestrates a block in the secretion channel that is eliminated by calcium depletion. Further, the striking homology between different members of the YscU/FlhB family suggests that this protein family possess regulatory functions also in other bacteria using comparable mechanisms.

  14. A Conserved C-Terminal Domain of the Aspergillus fumigatus Developmental Regulator MedA Is Required for Nuclear Localization, Adhesion and Virulence

    PubMed Central

    Al Abdallah, Qusai; Choe, Se-In; Campoli, Paolo; Baptista, Stefanie; Gravelat, Fabrice N.; Lee, Mark J.; Sheppard, Donald C.

    2012-01-01

    MedA is a developmental regulator that is conserved in the genome of most filamentous fungi. In the pathogenic fungus Aspergillus fumigatus MedA regulates conidiogenesis, adherence to host cells, and pathogenicity. The mechanism by which MedA governs these phenotypes remains unknown. Although the nuclear import of MedA orthologues has been reported in other fungi, no nuclear localization signal, DNA-binding domain or other conserved motifs have been identified within MedA. In this work, we performed a deletion analysis of MedA and identified a novel domain within the C-terminal region of the protein, designated MedA346–557, that is necessary and sufficient for nuclear localization of MedA. We further demonstrate that MedA nuclear localization is required for the function of MedA. Surprisingly, expression of the minimal nuclear localization fragment MedA346–557 alone was sufficient to restore conidogenesis, biofilm formation and virulence to the medA mutant strain. Collectively these results suggest that MedA functions in the regulation of transcription, and that the MedA346–557 domain is both necessary and sufficient to mediate MedA function. PMID:23185496

  15. A Chlamydia-Specific C-Terminal Region of the Stress Response Regulator HrcA Modulates Its Repressor Activity▿

    PubMed Central

    Chen, Allan L.; Wilson, Adam C.; Tan, Ming

    2011-01-01

    Chlamydial heat shock proteins have important roles in Chlamydia infection and immunopathogenesis. Transcription of chlamydial heat shock genes is controlled by the stress response regulator HrcA, which binds to its cognate operator CIRCE, causing repression by steric hindrance of RNA polymerase. All Chlamydia spp. encode an HrcA protein that is larger than other bacterial orthologs because of an additional, well-conserved C-terminal region. We found that this unique C-terminal tail decreased HrcA binding to CIRCE in vitro as well as HrcA-mediated transcriptional repression in vitro and in vivo. When we isolated HrcA from chlamydiae, we only detected the full-length protein, but we found that endogenous HrcA had a higher binding affinity for CIRCE than recombinant HrcA. To examine this difference further, we tested the effect of the heat shock protein GroEL on the function of HrcA since endogenous chlamydial HrcA has been previously shown to associate with GroEL as a complex. GroEL enhanced the ability of HrcA to bind CIRCE and to repress transcription in vitro, but this stimulatory effect was greater on full-length HrcA than HrcA lacking the C-terminal tail. These findings demonstrate that the novel C-terminal tail of chlamydial HrcA is an inhibitory region and provide evidence that its negative effect on repressor function can be counteracted by GroEL. These results support a model in which GroEL functions as a corepressor that interacts with HrcA to regulate chlamydial heat shock genes. PMID:21965565

  16. Transcription initiation complexes and upstream activation with RNA polymerase II lacking the C-terminal domain of the largest subunit.

    PubMed Central

    Buratowski, S; Sharp, P A

    1990-01-01

    RNA polymerase II assembles with other factors on the adenovirus type 2 major late promoter to generate pairs of transcription initiation complexes resolvable by nondenaturing gel electrophoresis. The pairing of the complexes is caused by the presence or absence of the C-terminal domain of the largest subunit. This domain is not required for transcription stimulation by the major late transcription factor in vitro. Images PMID:2398901

  17. Dual N- and C-terminal processing of citrus chlorophyllase precursor within the plastid membranes leads to the mature enzyme.

    PubMed

    Azoulay-Shemer, Tamar; Harpaz-Saad, Smadar; Cohen-Peer, Reut; Mett, Anahit; Spicer, Victor; Lovat, Nicole; Krokhin, Oleg; Brand, Arnon; Gidoni, David; Standing, Kenneth G; Goldschmidt, Eliezer E; Eyal, Yoram

    2011-01-01

    Chl, the central player in harvesting light energy for photosynthesis, is enzymatically degraded during natural turnover, leaf senescence, fruit ripening or following biotic/abiotic stress induction. The photodynamic properties of Chl and its metabolites call for tight regulation of the catabolic pathway enzymes to avoid accumulation of intermediate breakdown products. Chlorophyllase, the Chl dephytilation enzyme, was previously demonstrated to be an initiator of Chl breakdown when transcriptionally induced to be expressed during ethylene-induced citrus fruit color break or when heterologously expressed in different plant systems. Citrus chlorophyllase was previously shown to be translated as a precursor protein, which is subsequently post-translationally processed to a mature form. We demonstrate that maturation of citrus chlorophyllase involves dual N- and C-terminal processing which appear to be rate-limiting post-translational events when chlorophyllase expression levels are high. The chlorophyllase precursor and intermediate forms were shown to be of transient nature, while the mature form accumulates over time, suggesting that processing may be involved in post-translational regulation of enzyme in vivo function. This notion is further supported by the finding that neither N- nor C-terminal processed domains are essential for chloroplast targeting of the enzyme, and that both processing events occur within the chloroplast membranes. Studies on the processing of chlorophyllase versions truncated at the N- or C-termini or mutated to abolish C-terminal processing suggest that each of the processing events is independent. Dual N- and C-terminal processing, not involving an organellar targeting signal, has rarely been documented in plants and is unique for a plastid protein.

  18. The role of C-terminal amidation in the membrane interactions of the anionic antimicrobial peptide, maximin H5.

    PubMed

    Dennison, Sarah R; Mura, Manuela; Harris, Frederick; Morton, Leslie H G; Zvelindovsky, Andrei; Phoenix, David A

    2015-05-01

    Maximin H5 is an anionic antimicrobial peptide from amphibians, which carries a C-terminal amide moiety, and was found to be moderately haemolytic (20%). The α-helicity of the peptide was 42% in the presence of lipid mimics of erythrocyte membranes and was found able to penetrate (10.8 mN m(-1)) and lyse these model membranes (64 %). In contrast, the deaminated peptide exhibited lower levels of haemolysis (12%) and α-helicity (16%) along with a reduced ability to penetrate (7.8 m Nm(-1)) and lyse (55%) lipid mimics of erythrocyte membranes. Taken with molecular dynamic simulations and theoretical analysis, these data suggest that native maximin H5 primarily exerts its haemolytic action via the formation of an oblique orientated α-helical structure and tilted membrane insertion. However, the C-terminal deamination of maximin H5 induces a loss of tilted α-helical structure, which abolishes the ability of the peptide's N-terminal and C-terminal regions to H-bond and leads to a loss in haemolytic ability. Taken in combination, these observations strongly suggest that the C-terminal amide moiety carried by maximin H5 is required to stabilise the adoption of membrane interactive tilted structure by the peptide. Consistent with previous reports, these data show that the efficacy of interaction and specificity of maximin H5 for membranes can be attenuated by sequence modification and may assist in the development of variants of the peptide with the potential to serve as anti-infectives.

  19. XRCC1 interaction with the REV1 C-terminal domain suggests a role in post replication repair.

    PubMed

    Gabel, Scott A; DeRose, Eugene F; London, Robert E

    2013-12-01

    The function of X-ray cross complementing group 1 protein (XRCC1), a scaffold that binds to DNA repair enzymes involved in single-strand break and base excision repair, requires that it be recruited to sites of damaged DNA. However, structural insights into this recruitment are currently limited. Sequence analysis of the first unstructured linker domain of XRCC1 identifies a segment consistent with a possible REV1 interacting region (X1RIR) motif. The X1RIR motif is present in translesion polymerases that can be recruited to the pol /REV1 DNA repair complex via a specific interaction with the REV1 C-terminal domain. NMR and fluorescence titration studies were performed on XRCC1-derived peptides containing this putative RIR motif in order to evaluate the binding affinity for the REV1 C-terminal domain. These studies demonstrate an interaction of the XRCC1-derived peptide with the human REV1 C-terminal domain characterized by dissociation constants in the low micromolar range. Ligand competition studies comparing the XRCC1 RIR peptide with previously studied RIR peptides were found to be inconsistent with the NMR based Kd values. These discrepancies were resolved using a fluorescence assay for which the RIR–REV1 system is particularly well suited. The structure of a REV1-XRCC1 peptide complex was determined by using NOE restraints to dock the unlabeled XRCC1 peptide with a labeled REV1 C-terminal domain. The structure is generally homologous with previously determined complexes with the pol κ and pol η RIR peptides, although the helical segment in XRCC1 is shorter than was observed in these cases. These studies suggest the possible involvement of XRCC1 and its associated repair factors in post replication repair.

  20. C-Terminal WxL Domain Mediates Cell Wall Binding in Enterococcus faecalis and Other Gram-Positive Bacteria▿

    PubMed Central

    Brinster, Sophie; Furlan, Sylviane; Serror, Pascale

    2007-01-01

    Analysis of the genome sequence of Enterococcus faecalis clinical isolate V583 revealed novel genes encoding surface proteins. Twenty-seven of these proteins, annotated as having unknown functions, possess a putative N-terminal signal peptide and a conserved C-terminal region characterized by a novel conserved domain designated WxL. Proteins having similar characteristics were also detected in other low-G+C-content gram-positive bacteria. We hypothesized that the WxL region might be a determinant of bacterial cell location. This hypothesis was tested by generating protein fusions between the C-terminal regions of two WxL proteins in E. faecalis and a nuclease reporter protein. We demonstrated that the C-terminal regions of both proteins conferred a cell surface localization to the reporter fusions in E. faecalis. This localization was eliminated by introducing specific deletions into the domains. Interestingly, exogenously added protein fusions displayed binding to whole cells of various gram-positive bacteria. We also showed that the peptidoglycan was a binding ligand for WxL domain attachment to the cell surface and that neither proteins nor carbohydrates were necessary for binding. Based on our findings, we propose that the WxL region is a novel cell wall binding domain in E. faecalis and other gram-positive bacteria. PMID:16963569

  1. Influence of C-terminal tail deletion on structure and stability of hyperthermophile Sulfolobus tokodaii RNase HI.

    PubMed

    Chen, Lin; Zhang, Ji-Long; Zheng, Qing-Chuan; Chu, Wen-Ting; Xue, Qiao; Zhang, Hong-Xing; Sun, Chia-Chung

    2013-06-01

    The C-terminus tail (G144-T149) of the hyperthermophile Sulfolobus tokodaii (Sto-RNase HI) plays an important role in this protein's hyperstabilization and may therefore be a good protein stability tag. Detailed understanding of the structural and dynamic effects of C-terminus tail deletion is required for gaining insights into the thermal stability mechanism of Sto-RNase HI. Focused on Sulfolobus tokodaii RNase HI (Sto-RNase HI) and its derivative lacking the C-terminal tail (ΔC6 Sto-RNase HI) (PDB codes: 2EHG and 3ALY), we applied molecular dynamics (MD) simulations at four different temperatures (300, 375, 475, and 500 K) to examine the effect of the C-terminal tail on the hyperstabilization of Sto-RNase HI and to investigate the unfolding process of Sto-RNase HI and ΔC6 Sto-RNase HI. The simulations suggest that the C-terminal tail has significant impact in hyperstabilization of Sto-RNase HI and the unfolding of these two proteins evolves along dissimilar pathways. Essential dynamics analysis indicates that the essential subspaces of the two proteins at different temperatures are non-overlapping within the trajectories and they exhibit different directions of motion. Our work can give important information to understand the three-state folding mechanism of Sto-RNase HI and to offer alternative strategies to improve the protein stability.

  2. The Contribution of the C-Terminal Tails of Microtubules in Altering the Force Production Specifications of Multiple Kinesin-1.

    PubMed

    Feizabadi, Mitra Shojania

    2016-09-01

    The extent to which beta tubulin isotypes contribute to the function of microtubules and the microtubule-driven transport of molecular motors is poorly understood. The major differences in these isotypes are associated with the structure of their C-terminal tails. Recent studies have revealed a few aspects of the C-terminal tails' regulatory role on the activities of some of the motor proteins on a single-molecule level. However, little attention is given to the degree to which the function of a team of motor proteins can be altered by the microtubule's tail. In a set of parallel experiments, we investigated this open question by studying the force production of several kinesin-1 (kinesin) molecular motors along two groups of microtubules: regular ones and those microtubules whose C-terminals are cleaved by subtilisin digestion. The results indicate that the difference between the average of the force production of motors along two types of microtubules is statistically significant. The underlying mechanism of such production is substantially different as well. As compared to untreated microtubules, the magnitude of the binding time of several kinesin-1 is almost three times greater along subtilisin-treated microtubules. Also, the velocity of the group of kinesin molecules shows a higher sensitivity to external loads and reduces significantly under higher loads along subtilisin-treated microtubules. Together, this work shows the capacity of the tails in fine-tuning the force production characteristics of several kinesin molecules.

  3. The Contribution of the C-Terminal Tails of Microtubules in Altering the Force Production Specifications of Multiple Kinesin-1.

    PubMed

    Feizabadi, Mitra Shojania

    2016-09-01

    The extent to which beta tubulin isotypes contribute to the function of microtubules and the microtubule-driven transport of molecular motors is poorly understood. The major differences in these isotypes are associated with the structure of their C-terminal tails. Recent studies have revealed a few aspects of the C-terminal tails' regulatory role on the activities of some of the motor proteins on a single-molecule level. However, little attention is given to the degree to which the function of a team of motor proteins can be altered by the microtubule's tail. In a set of parallel experiments, we investigated this open question by studying the force production of several kinesin-1 (kinesin) molecular motors along two groups of microtubules: regular ones and those microtubules whose C-terminals are cleaved by subtilisin digestion. The results indicate that the difference between the average of the force production of motors along two types of microtubules is statistically significant. The underlying mechanism of such production is substantially different as well. As compared to untreated microtubules, the magnitude of the binding time of several kinesin-1 is almost three times greater along subtilisin-treated microtubules. Also, the velocity of the group of kinesin molecules shows a higher sensitivity to external loads and reduces significantly under higher loads along subtilisin-treated microtubules. Together, this work shows the capacity of the tails in fine-tuning the force production characteristics of several kinesin molecules. PMID:27503105

  4. Synthesis of histone proteins by CPE ligation using a recombinant peptide as the C-terminal building block.

    PubMed

    Kawakami, Toru; Yoshikawa, Ryo; Fujiyoshi, Yuki; Mishima, Yuichi; Hojo, Hironobu; Tajima, Shoji; Suetake, Isao

    2015-11-01

    The post-translational modification of histones plays an important role in gene expression. We report herein on a method for synthesizing such modified histones by ligating chemically prepared N-terminal peptides and C-terminal recombinant peptide building blocks. Based on their chemical synthesis, core histones can be categorized as two types; histones H2A, H2B and H4 which contain no Cys residues, and histone H3 which contains a Cys residue(s) in the C-terminal region. A combination of native chemical ligation and desulphurization can be simply used to prepare histones without Cys residues. For the synthesis of histone H3, the endogenous Cys residue(s) must be selectively protected, while keeping the N-terminal Cys residue of the C-terminal building block that is introduced for purposes of chemical ligation unprotected. To this end, a phenacyl group was successfully utilized to protect endogenous Cys residue(s), and the recombinant peptide was ligated with a peptide containing a Cys-Pro ester (CPE) sequence as a thioester precursor. Using this approach it was possible to prepare all of the core histones H2A, H2B, H3 and H4 with any modifications. The resulting proteins could then be used to prepare a core histone library of proteins that have been post-translationally modified.

  5. Synthesis, antimicrobial activity, and membrane permeabilizing properties of C-terminally modified nisin conjugates accessed by CuAAC.

    PubMed

    Slootweg, Jack C; van der Wal, Steffen; Quarles van Ufford, H C; Breukink, Eefjan; Liskamp, Rob M J; Rijkers, Dirk T S

    2013-12-18

    Functionalization of the lantibiotic nisin with fluorescent reporter molecules is highly important for the understanding of its mode of action as a potent antimicrobial peptide. In addition to this, multimerization of nisin to obtain multivalent peptide constructs and conjugation of nisin to bioactive molecules or grafting it on surfaces can be attractive methods for interference with bacterial growth. Here, we report a convenient method for the synthesis of such nisin conjugates and show that these nisin derivatives retain both their antimicrobial activity and their membrane permeabilizing properties. The synthesis is based on the Cu(I)-catalyzed alkyne-azide cycloaddition reaction (CuAAC) as a bioorthogonal ligation method for large and unprotected peptides in which nisin was C-terminally modified with propargylamine and subsequently efficiently conjugated to a series of functionalized azides. Two fluorescently labeled nisin conjugates together with a dimeric nisin construct were prepared while membrane insertion as well as antimicrobial activity were unaffected by these modifications. This study shows that C-terminal modification of nisin does not deteriorate biological activity in sharp contrast to N-terminal modification and therefore C-terminally modified nisin analogues are valuable tools to study the antibacterial mode of action of nisin. Furthermore, the ability to use stoichiometric amounts of the azide containing molecule opens up possibilities for surface tethering and more complex multivalent structures.

  6. Role of His16 in the structural flexibility of the C-terminal region of human endothelin-1

    NASA Astrophysics Data System (ADS)

    Hiramatsu, Hirotsugu; Aduma, Hiroki; Tanaka, Yuriko; Miura, Takashi; Takeuchi, Hideo

    2010-07-01

    The biological activity of endothelin-1 (ET-1), a 21-residue vasoconstrictive peptide hormone, has been reported to largely increase upon substitution of Ala for His16. We have investigated possible differences in structural properties between wild type ET-1 and its H16A mutant by using circular dichroism, ultraviolet resonance Raman, visible Raman, and infrared absorption spectroscopy. The C-terminal region of ET-1 spanning from His16 to Trp21 is found to be sensitive to the environment and folds into an α-helical structure under hydrophobic conditions. The environmental sensitivity is elevated in the H16A mutant. A pH decrease from 7.0 to 5.5 does not affect the secondary structure of WT ET-1 but induces an α-helical structure in the H16A mutant. These observations indicate that the mutation of His16 to Ala significantly increases the flexibility of the C-terminal region. The increased flexibility of the H16A mutant may be advantageous for efficient but not for specific binding to receptors. His16 may play an important role in maintaining the structural flexibility of the C-terminal region at an appropriate level and keeping a high specificity to the endothelin receptors.

  7. Synthesis of histone proteins by CPE ligation using a recombinant peptide as the C-terminal building block.

    PubMed

    Kawakami, Toru; Yoshikawa, Ryo; Fujiyoshi, Yuki; Mishima, Yuichi; Hojo, Hironobu; Tajima, Shoji; Suetake, Isao

    2015-11-01

    The post-translational modification of histones plays an important role in gene expression. We report herein on a method for synthesizing such modified histones by ligating chemically prepared N-terminal peptides and C-terminal recombinant peptide building blocks. Based on their chemical synthesis, core histones can be categorized as two types; histones H2A, H2B and H4 which contain no Cys residues, and histone H3 which contains a Cys residue(s) in the C-terminal region. A combination of native chemical ligation and desulphurization can be simply used to prepare histones without Cys residues. For the synthesis of histone H3, the endogenous Cys residue(s) must be selectively protected, while keeping the N-terminal Cys residue of the C-terminal building block that is introduced for purposes of chemical ligation unprotected. To this end, a phenacyl group was successfully utilized to protect endogenous Cys residue(s), and the recombinant peptide was ligated with a peptide containing a Cys-Pro ester (CPE) sequence as a thioester precursor. Using this approach it was possible to prepare all of the core histones H2A, H2B, H3 and H4 with any modifications. The resulting proteins could then be used to prepare a core histone library of proteins that have been post-translationally modified. PMID:26002961

  8. Synthesis, antimicrobial activity, and membrane permeabilizing properties of C-terminally modified nisin conjugates accessed by CuAAC.

    PubMed

    Slootweg, Jack C; van der Wal, Steffen; Quarles van Ufford, H C; Breukink, Eefjan; Liskamp, Rob M J; Rijkers, Dirk T S

    2013-12-18

    Functionalization of the lantibiotic nisin with fluorescent reporter molecules is highly important for the understanding of its mode of action as a potent antimicrobial peptide. In addition to this, multimerization of nisin to obtain multivalent peptide constructs and conjugation of nisin to bioactive molecules or grafting it on surfaces can be attractive methods for interference with bacterial growth. Here, we report a convenient method for the synthesis of such nisin conjugates and show that these nisin derivatives retain both their antimicrobial activity and their membrane permeabilizing properties. The synthesis is based on the Cu(I)-catalyzed alkyne-azide cycloaddition reaction (CuAAC) as a bioorthogonal ligation method for large and unprotected peptides in which nisin was C-terminally modified with propargylamine and subsequently efficiently conjugated to a series of functionalized azides. Two fluorescently labeled nisin conjugates together with a dimeric nisin construct were prepared while membrane insertion as well as antimicrobial activity were unaffected by these modifications. This study shows that C-terminal modification of nisin does not deteriorate biological activity in sharp contrast to N-terminal modification and therefore C-terminally modified nisin analogues are valuable tools to study the antibacterial mode of action of nisin. Furthermore, the ability to use stoichiometric amounts of the azide containing molecule opens up possibilities for surface tethering and more complex multivalent structures. PMID:24266643

  9. Affinity labeling of lysine-149 in the anion-binding exosite of human. alpha. -thrombin with an N sup. alpha. -(dinitrofluorobenzyl)hirudin C-terminal peptide

    SciTech Connect

    Bourdon, P.; Maraganore, J.M. ); Fenton, J.W. II )

    1990-07-10

    In order to define structural regions in thrombin that interact with hirudin, the N{sup {alpha}}-dinitrofluorobenzyl analogue of an undecapeptide was synthesized corresponding to residues 54-64 of hirudin (GDFEEIPEEY(O{sup 35}SO{sub 3})L (DNFB-({sup 35}S)Hir{sub 54-64})). DNFB-({sup 35}S)Hir{sub 54-64} was reacted at a 10-fold molar excess with human {alpha}-thrombin in phosphate-buffered saline at pH 7.4 and 23{degree}C for 18 h. Autoradiographs of the product in reducing SDS-polyacrylamide gels revealed a single {sup 35}S-labeled band of M{sub r} {approximately}32,500. The labeled product was coincident with a band on Coomassie Blue stained gels migrating slightly above an unlabeled thrombin band at M{sub r} {approximately}31,000. Incorporation of the {sup 35}S affinity reagent peptide was found markedly reduced when reaction with thrombin was performed in the presence of 5- and 20-fold molar excesses of unlabeled hirudin peptide, showing that a specific site was involved in complex formation. The human {alpha}-thrombin-DNFB-Hir{sub 54-64} complex was reduced, S-carboxymethylated, and treated with pepsin. Peptic fragments were separated by reverse-phase HPLC revealing two major peaks containing absorbance at 310 nm. Automated Edman degradation of the peptide fragments allowed identification of Lys-149 of human thrombin as the major site of DNFB-Hir{sub 54-64} derivatization. These data suggest that the anionic C-terminal tail of hirudin interacts with an anion-binding exosite in human thrombin removed 18-20 {angstrom} from the catalytic apparatus.

  10. Activity of the HMGB1-Derived Immunostimulatory Peptide Hp91 Resides in the Helical C-terminal Portion and is Enhanced by Dimerization

    PubMed Central

    Saenz, R.; Messmer, B.; Futalan, D.; Tor, Y.; Larsson, M.; Daniels, G.; Esener, S.; Messmer, D.

    2013-01-01

    We have previously shown that an 18 amino acid long peptide, named Hp91, whose sequence corresponds to a region within the endogenous protein HMGB1, activates dendritic cells (DCs) and acts as adjuvant in vivo by potentiating Th1-type antigen-specific immune responses. We analyzed the structure-function relationship of the Hp91 peptide to investigate the amino acids and structure responsible for immune responses. We found that the cysteine at position 16 of Hp91 enabled formation of reversible peptide dimmers, monomer and dimmer were compared for DC binding and activation. Stable monomers and dimers were generated using a maleimide conjugation reaction. The dimer showed enhanced ability to bind to and activate DCs. Furthermore, the C-terminal 9 amino acids of Hp91, named UC1018 were sufficient for DC binding and Circular dichroism showed that UC1018 assumes an alpha-helical structure. The ninemer peptide UC1018 induced more potent antigen-specific CTL responses in vivo as compared to Hp91 and it protected mice from tumor development when used in a prophylactic vaccine setting. We have identified a short alpha helical peptide that acts as potent adjuvant inducing protective immune responses in vivo. PMID:24172222

  11. Interaction between the tRNA-binding and C-terminal domains of Yeast Gcn2 regulates kinase activity in vivo.

    PubMed

    Lageix, Sebastien; Zhang, Jinwei; Rothenburg, Stefan; Hinnebusch, Alan G

    2015-02-01

    The stress-activated protein kinase Gcn2 regulates protein synthesis by phosphorylation of translation initiation factor eIF2α. Gcn2 is activated in amino acid-deprived cells by binding of uncharged tRNA to the regulatory domain related to histidyl-tRNA synthetase, but the molecular mechanism of activation is unclear. We used a genetic approach to identify a key regulatory surface in Gcn2 that is proximal to the predicted active site of the HisRS domain and likely remodeled by tRNA binding. Mutations leading to amino acid substitutions on this surface were identified that activate Gcn2 at low levels of tRNA binding (Gcd- phenotype), while other substitutions block kinase activation (Gcn- phenotype), in some cases without altering tRNA binding by Gcn2 in vitro. Remarkably, the Gcn- substitutions increase affinity of the HisRS domain for the C-terminal domain (CTD), previously implicated as a kinase autoinhibitory segment, in a manner dampened by HisRS domain Gcd- substitutions and by amino acid starvation in vivo. Moreover, tRNA specifically antagonizes HisRS/CTD association in vitro. These findings support a model wherein HisRS-CTD interaction facilitates the autoinhibitory function of the CTD in nonstarvation conditions, with tRNA binding eliciting kinase activation by weakening HisRS-CTD association with attendant disruption of the autoinhibitory KD-CTD interaction.

  12. The C-terminal domain revealed in the structure of RNA polymerase II.

    PubMed

    Meredith, G D; Chang, W H; Li, Y; Bushnell, D A; Darst, S A; Kornberg, R D

    1996-05-10

    The location of the CTD in the structure of RNA polymerase II has been determined by electron crystallography at 16 A resolution. Difference maps between wild-type enzyme and that lacking the CTD, or with an antibody fragment bound in place of the CTD, disclose the site of attachment of the CTD to the polymerase. Appropriate display of the polymerase structure reveals the CTD as an element projecting from this site of attachment into solution. A low relative density and large volume of this element identify the CTD as a conformationally mobile region.

  13. Spatial structure of heptapeptide Glu-Ile-Leu-Asn-His-Met-Lys, a fragment of the HIV enhancer prostatic acid phosphatase, in aqueous and SDS micelle solutions

    NASA Astrophysics Data System (ADS)

    Bloсhin, Dmitri S.; Aganova, Oksana V.; Yulmetov, Aidar R.; Filippov, Andrei V.; Gizatullin, Bulat I.; Afonin, Sergii; Antzutkin, Oleg N.; Klochkov, Vladimir V.

    2013-02-01

    Prostatic acid phosphatase (PAP) is a protein abundantly present in human seminal fluid. PAP plays important role in fertilization. Its 39-amino-acid fragment, PAP(248-286), is effective in enhancing infectivity of HIV virus. In this work, we determined the spatial structure in aqueous solution of a heptapeptide within the PAP fragment, containing amino acid residues 266-272 (Glu-Ile-Leu-Asn-His-Met-Lys). We also report the structure of the complex formed by this heptapeptide with sodium dodecyl sulfate micelles, a model of a biological membrane, as determined by 1H NMR spectroscopy and 2D NMR (TOCSY, HSQC-HECADE, NOESY) spectroscopy. Complex formation was confirmed by chemical shift alterations in the 1H NMR spectra of the heptapeptide, as well as by the signs and values of NOE effects. We also present a comparison of the spatial structure of Glu-Ile-Leu-Asn-His-Met-Lys in water and in complex with sodium dodecyl sulfate.

  14. Synergy between the N-terminal and C-terminal domains of Mycobacterium tuberculosis HupB is essential for high-affinity binding, DNA supercoiling and inhibition of RecA-promoted strand exchange.

    PubMed

    Sharadamma, N; Khan, Krishnendu; Kumar, Sandeep; Patil, K Neelakanteshwar; Hasnain, Seyed E; Muniyappa, K

    2011-09-01

    The occurrence of DNA architectural proteins containing two functional domains derived from two different architectural proteins is an interesting emerging research theme in the field of nucleoid structure and function. Mycobacterium tuberculosis HupB, unlike Escherichia coli HU, is a two-domain protein that, in the N-terminal region, shows broad sequence homology with bacterial HU. The long C-terminal extension, on the other hand, contains seven PAKK/KAAK motifs, which are characteristic of the histone H1/H5 family of proteins. In this article, we describe several aspects of HupB function, in comparison with its truncated derivatives lacking either the C-terminus or N-terminus. We found that HupB binds a variety of DNA repair and replication intermediates with K(d) values in the nanomolar range. By contrast, the N-terminal fragment of M. tuberculosis HupB (HupB(MtbN)) showed diminished DNA-binding activity, with K(d) values in the micromolar range, and the C-terminal domain was completely devoid of DNA-binding activity. Unlike HupB(MtbN) , HupB was able to constrain DNA in negative supercoils and introduce negative superhelical turns into relaxed DNA. Similarly, HupB exerted a robust inhibitory effect on DNA strand exchange promoted by cognate and noncognate RecA proteins, whereas HupB(MtbN), even at a 50-fold molar excess, had no inhibitory effect. Considered together, these results suggest that synergy between the N-terminal and C-terminal domains of HupB is essential for its DNA-binding ability, and to modulate the topological features of DNA, which has implications for processes such as DNA compaction, gene regulation, homologous recombination, and DNA repair.

  15. Influences of Proline and Cysteine Residues on Fragment Yield in Matrix-Assisted Laser Desorption/Ionization In-Source Decay Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Asakawa, Daiki; Smargiasso, Nicolas; Quinton, Loïc; De Pauw, Edwin

    2014-06-01

    Matrix-assisted laser desorption/ionization in-source decay produces highly informative fragments for the sequencing of peptides/proteins. Among amino acids, cysteine and proline residues were found to specifically influence the fragment yield. As they are both frequently found in small peptide structures for which de novo sequencing is mandatory, the understanding of their specific behaviors would allow useful fragmentation rules to be established. In the case of cysteine, a c•/ w fragment pair originating from Xxx-Cys is formed by side-chain loss from the cysteine residue. The presence of a proline residue contributes to an increased yield of ISD fragments originating from N-Cα bond cleavage at Xxx1-Xxx2Pro, which is attributable to the cyclic structure of the proline residue. Our results suggest that the aminoketyl radical formed by MALDI-ISD generally induces the homolytic N-Cα bond cleavage located on the C-terminal side of the radical site. In contrast, N-Cα bond cleavage at Xxx-Pro produces no fragments and the N-Cα bond at the Xxx1-Xxx2Pro bond is alternatively cleaved via a heterolytic cleavage pathway.

  16. Chaotic flow and fragmentation paths in acidic conduits from the Paraná-Etendeka Magmatic Province (PEMP)

    NASA Astrophysics Data System (ADS)

    Guimarães, L. F.; De Campos, C. P.; Lima, E. F. D.; Janasi, V. A.; Giordano, D.

    2015-12-01

    This work focuses on recently recognized feeders/conduits of acidid volcanic products in the large igneous province of Paraná-Etendeka, in Brazil (Lima et al. 2012; Waichel et al., 2012). In the region of São Marcos, in RGS, conduits are exposed along a 0.5 up to 1 km wide of fracture/fissure sytem. The combination of detailed field work and determination of fractal dimension from outcrops, suggest at least five main features: a) flow structures with the development of shearzones evolving into funnel-like structures of aphiric/vitrophiric ballooning of melt accumulation, b) filaments of partially devitrified material (melt) in chaotic flow patterns and c) regular regions with the predominance of bubble-rich aphiric /vitrophiric material, which is mostly deformed and fragmented along the flow; d) breccia-like regions with angular and rounded fragmented blocks of partially bubble-rich magma and; e) huge bubbles (> 40 cm!), which complexly refold previous flow lines. Observed patterns suggest two different fragmentation episodes preceding or coeval with melt extrusion: 1) a high temperature event (above glass-transition) and, 2) a lower temperature event (below glass-transition). Additionally, different intrusive moments may be recognized through deformational signs such as: pseudotachylitic veins, progressive development of a strong stretching foliation and stair-stepping-like objects along the flow. Successive melting and remelting products from different effusive and/or fragmentation moments point towards different episodes of crossing glass transition back and forward. Frozen chaotic structures in the exposed conduits depict ancient melt paths.

  17. Electrospray ionization tandem mass spectrometric study on the effect of N-terminal beta- and gamma-carbo amino acids on fragmentation of GABA-hybrid peptides.

    PubMed

    Ramesh, V; Ramesh, M; Srinivas, R; Sharma, G V M; Jayaprakash, P

    2008-11-01

    The fragmentations of protonated and deprotonated ions of a new class of N-blocked hybrid Boc-carbopeptides containing repeats of gamma-Caa/gammaAbu- and beta-Caa/gammaAbu- (Caa==C-linked carbo gamma(4)-/beta(3)- amino acids derived from D-xylose, gammaAbu = gamma-aminobutyric acid) have been studied using electrospray ionization (ESI) ion-trap tandem mass spectrometry (MS/MS). MS/MS of a pair of these protonated diastereomers produces distinct fragmentation of the Boc group. The formation of [M + H-56](+) corresponding to loss of isobutylene is more pronounced for Boc-NH-(R)-gamma-Caa-gammaAbu-OH (2) whereas it is of low abundance for Boc-NH-(S)-gamma-Caa-gammaAbu--OH (1). Similarly, MS(2) of [M--H](-) of 2 produces an abundant [M--H--C(CH(3))(3)OH--CO(2)](-) ion, which is absent for its diastereomeric isomer 1. From this, it can be suggested that MS/MS of N-blocked Boc-protected carbopeptides may be helpful in distinguishing the stereochemistry of the N-terminus Caa. MS(3) of [M + H-Boc + H](+) ions of peptides with a gamma-amino acid (gamma-Caa/gammaAbu) at the N-terminus produces only abundant y(n) (+) ions. On the other hand, characteristic fragmentations involving the peptide backbone (b(n) (+) and y(n) (+)) and the side chain are seen when beta-Caa is at the N-terminus of the peptides. MS(3) of the [M--H--C(CH(3))(3)OH](-) ion of peptides containing gamma-Caa/gammaAbu at the N-terminus gave y(n) (-) and [M--H--C(CH(3))(3)OH--CO(2)](-) ions, whereas the presence of beta-Caa at the N-terminus yielded predominantly [M--H--C(CH(3))(3)OH--HNCO](-). Thus, on the basis of our previous study and that presented here we propose that the fragmentation of these hybrid carbopeptides is highly influenced by the type of carbo amino acid present at the N-terminus. PMID:18837002

  18. Polysialic acid enters the cell nucleus attached to a fragment of the neural cell adhesion molecule NCAM to regulate the circadian rhythm in mouse brain.

    PubMed

    Westphal, Nina; Kleene, Ralf; Lutz, David; Theis, Thomas; Schachner, Melitta

    2016-07-01

    In the mammalian nervous system, the neural cell adhesion molecule NCAM is the major carrier of the glycan polymer polysialic acid (PSA) which confers important functions to NCAM's protein backbone. PSA attached to NCAM contributes not only to cell migration, neuritogenesis, synaptic plasticity, and behavior, but also to regulation of the circadian rhythm by yet unknown molecular mechanisms. Here, we show that a PSA-carrying transmembrane NCAM fragment enters the nucleus after stimulation of cultured neurons with surrogate NCAM ligands, a phenomenon that depends on the circadian rhythm. Enhanced nuclear import of the PSA-carrying NCAM fragment is associated with altered expression of clock-related genes, as shown by analysis of cultured neuronal cells deprived of PSA by specific enzymatic removal. In vivo, levels of nuclear PSA in different mouse brain regions depend on the circadian rhythm and clock-related gene expression in suprachiasmatic nucleus and cerebellum is affected by the presence of PSA-carrying NCAM in the cell nucleus. Our conceptually novel observations reveal that PSA attached to a transmembrane proteolytic NCAM fragment containing part of the extracellular domain enters the cell nucleus, where PSA-carrying NCAM contributes to the regulation of clock-related gene expression and of the circadian rhythm.

  19. Grain setting defect1 (GSD1) function in rice depends on S-acylation and interacts with actin 1 (OsACT1) at its C-terminal

    PubMed Central

    Gui, Jinshan; Zheng, Shuai; Shen, Junhui; Li, Laigeng

    2015-01-01

    Grain setting defect1 (GSD1), a plant-specific remorin protein specifically localized at the plasma membrane (PM) and plasmodesmata of phloem companion cells, affects grain setting in rice through regulating the transport of photoassimilates. Here, we show new evidence demonstrating that GSD1 is localized at the cytoplasmic face of the PM and a stretch of 45 amino acid residues at its C-terminal is required for its localization. Association with the PM is mediated by S-acylation of cysteine residues Cys-524 and Cys-527, in a sequence of 45 amino acid residues essential for GSD1 function in rice. Furthermore, the coiled-coil domain in GSD1 is necessary for sufficient interaction with OsACT1. Together, these results reveal that GSD1 attaches to the PM through S-acylation and interacts with OsACT1 through its coiled-coil domain structure to regulate plasmodesmata conductance for photoassimilate transport in rice. PMID:26483819

  20. C terminal retroviral-type zinc finger domain from the HIV-1 nucleocapsid protein is structurally similar to the N-terminal zinc finger domain

    SciTech Connect

    South, T.L.; Blake, P.R. ); Hare, D.R.; Summers, M.F. )

    1991-06-25

    Two-dimensional NMR spectroscopic and computational methods were employed for the structure determination of an 18-residue peptide with the amino acid sequence of the C-terminal retriviral-type (r.t.) zinc finger domain from the nucleocapsid protein (NCP) of HIV-1 (Zn(HIV1-F2)). Unlike results obtained for the first retroviral-type zinc finger peptide, Zn (HIV1-F1) broad signals indicative of confomational lability were observed in the {sup 1}H NMR spectrum of An(HIV1-F2) at 25 C. The NMR signals narrowed upon cooling to {minus}2 C, enabling complete {sup 1}H NMR signal assignment via standard two-dimensional (2D) NMR methods. Distance restraints obtained from qualitative analysis of 2D nuclear Overhauser effect (NOESY) data were sued to generate 30 distance geometry (DG) structures with penalties in the range 0.02-0.03 {angstrom}{sup 2}. All structures were qualitatively consistent with the experimental NOESY spectrum based on comparisons with 2D NOESY back-calculated spectra. These results indicate that the r.t. zinc finger sequences observed in retroviral NCPs, simple plant virus coat proteins, and in a human single-stranded nucleic acid binding protein share a common structural motif.

  1. A C-terminal class I PDZ binding motif of EspI/NleA modulates the virulence of attaching and effacing Escherichia coli and Citrobacter rodentium.

    PubMed

    Lee, Sau Fung; Kelly, Michelle; McAlister, Adrian; Luck, Shelley N; Garcia, Erin L; Hall, Randy A; Robins-Browne, Roy M; Frankel, Gad; Hartland, Elizabeth L

    2008-02-01

    Enteropathogenic Escherichia coli induces characteristic attaching-effacing (A/E) lesions on the intestinal mucosa during infection. The locus of enterocyte effacement is essential for A/E lesion formation and encodes a type III secretion system that translocates multiple effector proteins into the host cell. Following translocation, EspI/NleA localizes to the Golgi. Using the yeast two-hybrid system (Y2HS) and PSD-95/Disk-large/ZO-1 (PDZ)-domain protein array overlays, we identified 15 putative host-interacting partners of EspI. All but two of the target proteins contained PDZ domains. Examination of the EspI amino acid sequence revealed a C-terminal consensus class I PDZ binding motif. Deletion of the last 7 amino acids of EspI to generate EspI(DeltaC7) abrogated the Y2HS interaction between EspI and 5 of the 6 putative host cell target proteins tested. Deletion of the EspI PDZ binding motif also resulted in delayed trafficking of EspI to the Golgi. Using a mouse model of infection, we showed that Citrobacter rodentium expressing truncated EspI(DeltaC7) was attenuated when in competition with C. rodentium expressing full-length EspI. Overall, these results suggested that EspI may modulate the virulence of A/E pathogens by binding host PDZ-domain proteins.

  2. P