Science.gov

Sample records for acid catalyzed esterification

  1. Kinetic study of free fatty acid esterification reaction catalyzed by recoverable and reusable hydrochloric acid.

    PubMed

    Su, Chia-Hung

    2013-02-01

    The catalytic performance and recoverability of several homogeneous acid catalysts (hydrochloric, sulfuric, and nitric acids) for the esterification of enzyme-hydrolyzed free fatty acid (FFA) and methanol were studied. Although all tested catalysts drove the reaction to a high yield, hydrochloric acid was the only catalyst that could be considerably recovered and reused. The kinetics of the esterification reaction catalyzed by hydrochloric acid was investigated under varying catalyst loading (0.1-1M), reaction temperature (303-343K), and methanol/FFA molar ratio (1:1-20:1). In addition, a pseudo-homogeneous kinetic model incorporating the above factors was developed. A good agreement (r(2)=0.98) between the experimental and calculated data was obtained, thus proving the reliability of the model. Furthermore, the reusability of hydrochloric acid in FFA esterification can be predicted by the developed model. The recoverable hydrochloric acid achieved high yields of FFA esterification within five times of reuse.

  2. Simple citric acid-catalyzed surface esterification of cellulose nanocrystals.

    PubMed

    Ávila Ramírez, Jhon Alejandro; Fortunati, Elena; Kenny, José María; Torre, Luigi; Foresti, María Laura

    2017-02-10

    A simple straightforward route for the surface esterification of cellulose nanocrystals (CNC) is herein proposed. CNC obtained from microcrystalline cellulose were acetylated using as catalyst citric acid, a α-hydroxy acid present in citrus fruits and industrially produced by certain molds in sucrose or glucose-containing medium. No additional solvent was added to the system; instead, the acylant (acetic anhydride) was used in sufficient excess to allow CNC dispersion and proper suspension agitation. By tuning the catalyst load, CNC with two different degree of substitution (i.e. DS=0.18 and 0.34) were obtained. Acetylated cellulose nanocrystals were characterized in terms of chemical structure, crystallinity, morphology, thermal decomposition and dispersion in a non-polar solvent. Results illustrated for the first time the suitability of the protocol proposed for the simple surface acetylation of cellulose nanocrystals.

  3. Iodine-Catalyzed Polysaccharide Esterification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A review is provided of the recent reports to use iodine-catalyzed esterification reaction to produce esters from polysaccharides. The process entails reaction of the polysaccharide with an acid anhydride in the presence of a catalytic level of iodine, and in the absence of additional solvents. T...

  4. Acid-catalyzed esterification of Zanthoxylum bungeanum seed oil with high free fatty acids for biodiesel production.

    PubMed

    Zhang, Junhua; Jiang, Lifeng

    2008-12-01

    A technique to produce biodiesel from crude Zanthoxylum bungeanum seed oil (ZSO) with high free fatty acids (FFA) was developed. The acid value of ZSO was reduced to 1.16mg KOH/g from 45.51mg KOH/g by only one-step acid-catalyzed esterification with methanol-to-oil molar ratio 24:1, H(2)SO(4) 2%, temperature 60 degrees C and reaction time 80min, which was selected as optimum for the acid-catalyzed esterification. During the acid-catalyzed esterification, FFA was converted into fatty acid methyl esters, which was confirmed by (1)H NMR spectrum. Compared with the other two-step pretreatment procedure, this one-step pretreatment can reduce the production cost of ZSO biodiesel. Alkaline-catalyzed transesterification converted the pretreated ZSO into ZSO biodiesel. The yield of ZSO biodiesel was above 98% determined by (1)H NMR spectrum. This study supports the use of crude ZSO as a viable and valuable raw feedstock for biodiesel production.

  5. Esterification of fatty acid catalyzed by hydrothermally stable propylsulfonic acid-functionalized mesoporous silica SBA-15.

    PubMed

    Mar, Win Win; Somsook, Ekasith

    2013-01-01

    Propylsulfonic acid-functionalized mesoporous silica SBA-15 has been synthesized via one-step strategy at 130°C based on the co-condensation of TEOS and MPTMS in the presence of Pluronic 123 polymer and H₂O₂ in HCl aqueous solution. The synthesized solid exhibited hydrothermal stability in boiling water without significant change in textural properties. The catalytic performance of the synthesized solid was studied in the esterification of oleic acid with methanol. The experimental results revealed that the large mesopore structures of SBA-15-PrSO₃H solid synthesized at 130°C could favor a facile access of oleic acid to the acid sites, making the comparable activity to that of phenyl ethyl sulfonic acid functionalized silica and higher than that of dry amberlyst-15.

  6. Synthesis of phosphatidylcholine with defined fatty acid in the sn-1 position by lipase-catalyzed esterification and transesterification reaction.

    PubMed

    Adlercreutz, Dietlind; Budde, Heike; Wehtje, Ernst

    2002-05-20

    The incorporation of caproic acid in the sn-1 position of phosphatidylcholine (PC) catalyzed by lipase from Rhizopus oryzae was investigated in a water activity-controlled organic medium. The reaction was carried out either as esterification or transesterification. A comparison between these two reaction modes was made with regard to product yield, product purity, reaction time, and byproduct formation as a consequence of acyl migration. The yield in the esterification and transesterification reaction was the same under identical conditions. The highest yield (78%) was obtained at a water activity (a(w)) of 0.11 and a caproic acid concentration of 0.8 M. The reaction time was shorter in the esterification reaction than in the transesterification reaction. The difference in reaction time was especially pronounced at low water activities and high fatty acid concentrations. The loss in yield due to acyl migration and consequent enzymatic side reactions was around 16% under a wide range of conditions. The incorporation of a fatty acid in the sn-1 position of PC proved to be thermodynamically much more favorable than the incorporation of a fatty acid in the sn-2 position.

  7. Advances in lipase-catalyzed esterification reactions.

    PubMed

    Stergiou, Panagiota-Yiolanda; Foukis, Athanasios; Filippou, Michalis; Koukouritaki, Maria; Parapouli, Maria; Theodorou, Leonidas G; Hatziloukas, Efstathios; Afendra, Amalia; Pandey, Ashok; Papamichael, Emmanuel M

    2013-12-01

    Lipase-catalyzed esterification reactions are among the most significant chemical and biochemical processes of industrial relevance. Lipases catalyze hydrolysis as well as esterification reactions. Enzyme-catalyzed esterification has acquired increasing attention in many applications, due to the significance of the derived products. More specifically, the lipase-catalyzed esterification reactions attracted research interest during the past decade, due to an increased use of organic esters in biotechnology and the chemical industry. Lipases, as hydrolyzing agents are active in environments, which contain a minimum of two distinct phases, where all reactants are partitioned between these phases, although their distribution is not fixed and changes as the reaction proceeds. The kinetics of the lipase-catalyzed reactions is governed by a number of factors. This article presents a thorough and descriptive evaluation of the applied trends and perspectives concerning the enzymatic esterification, mainly for biofuel production; an emphasis is given on essential factors, which affect the lipase-catalyzed esterification reaction. Moreover, the art of using bacterial and/or fungal strains for whole cell biocatalysis purposes, as well as carrying out catalysis by various forms of purified lipases from bacterial and fungal sources is also reviewed.

  8. Acetylation of bacterial cellulose catalyzed by citric acid: Use of reaction conditions for tailoring the esterification extent.

    PubMed

    Ávila Ramírez, Jhon Alejandro; Gómez Hoyos, Catalina; Arroyo, Silvana; Cerrutti, Patricia; Foresti, María Laura

    2016-11-20

    Bacterial cellulose (BC) nanoribbons were partially acetylated by a simple direct solvent-free route catalyzed by citric acid. The assay of reaction conditions within chosen intervals (i.e. esterification time (0.5-7h), catalyst content (0.08-1.01mmol/mmol AGU), and temperature (90-140°C)), illustrated the flexibility of the methodology proposed, with reaction variables which can be conveniently manipulated to acetylate BC to the required degree of substitution (DS) within the 0.20-0.73 interval. Within this DS interval, characterization results indicated a surface-only process in which acetylated bacterial cellulose with tunable DS, preserved fibrous structure and increased hydrophobicity could be easily obtained. The feasibility of reusing the catalyst/excess acylant in view of potential scale-up was also illustrated.

  9. Effect of polyvinylpyrrolidone on mesoporous silica morphology and esterification of lauric acid with 1-butanol catalyzed by immobilized enzyme

    SciTech Connect

    Zhang, Jinyu; Zhou, Guowei Jiang, Bin; Zhao, Minnan; Zhang, Yan

    2014-05-01

    Mesoporous silica materials with a range of morphology evolution, i.e., from curved rod-shaped mesoporous silica to straight rod-shaped mesoporous silica, were successfully prepared using polyvinylpyrrolidone (PVP) and triblock copolymer as dual template. The effects of PVP molecular weight and concentration on mesoporous silica structure parameters were studied. Results showed that surface area and pore volume continuously decreased with increased PVP molecular weight. Mesoporous silica prepared with PVP K30 also possessed larger pore diameter, interplanar spacing (d{sub 100}), and cell parameter (a{sub 0}) than that prepared with PVP K15 and PVP K90. In addition, with increased PVP concentration, d{sub 100} and a{sub 0} continuously decreased. The mechanism of morphology evolution caused by the change in PVP concentration was investigated. The conversion rate of lauric acid with 1-butanol catalyzed by immobilized Porcine pancreatic lipase (PPL) was also evaluated. Results showed that PPL immobilized on amino-functionalized straight rod-shaped mesoporous silica maintained 50% of its esterification conversion rate even after five cycles of use with a maximum conversion rate was about 90.15%. - Graphical abstract: Curved rod-shaped mesoporous silica can be obtained at low and the highest PVP concentration, while straight rod-shaped mesoporous silica can be obtained at higher PVP concentration. - Highlights: • Mesoporous silica with morphology evolution from CRMS to SRMS were prepared. • Effects of PVP molecular weight and concentration on silica morphology were studied. • A possible mechanism for the formation of morphology evolution SiO{sub 2} was proposed. • Esterification of lauric acid with 1-butanol catalyzed by immobilized PPL.

  10. Selective heterogeneous acid catalyzed esterification of N-terminal sulfyhdryl fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our interest in thiol fatty acids lies in their antioxidative, free radical scavenging, and metal ion scavenging capabilities as applied to cosmeceutical and skin care formulations. The retail market is filled with products containing the disulfide-containing free fatty acid, lipoic acid. These pr...

  11. Lewis acid-catalyzed in situ transesterification/esterification of microalgae in supercritical ethanol.

    PubMed

    Jin, Binbin; Duan, Peigao; Xu, Yuping; Wang, Bing; Wang, Feng; Zhang, Lei

    2014-06-01

    The activities of several Lewis acid catalysts such SnCl2, FeCl3, ZnCl2, AlCl3, and NbCl5 for the in situ transesterification/esterification of lipid contained within a microalga (Chlorella pyrenoidosa) in ethanol at 350°C were examined to identify the most suitable catalyst in term of crude biodiesel (CBD) yield. Of those catalysts tested, ZnCl2 showed the highest performance toward the CBD production. Using ZnCl2 as catalyst, effects of reaction temperature (200-370 °C), time (0-120 min), ethanol to microalga ratio (EtOH:MA) (5/5-40/5), catalyst loading (0-30 wt.%), and algae moisture (0-80 wt.%) on the yields of product fractions and the properties of CBD were studied. The presence of ZnCl2 not only promoted the production of CBD but also showed activities toward the deoxygenation and denitrogenation of CBD. The moisture content in the starting material is the most influential factor affecting the yield and properties of CBD.

  12. Effect of chain length of alcohol on the lipase-catalyzed esterification of propionic acid in supercritical carbon dioxide.

    PubMed

    Varma, Mahesh N; Madras, Giridhar

    2010-04-01

    The esterification of propionic acid was investigated using three different alcohols, namely, isopropyl alcohol, isobutyl alcohol, and isoamyl alcohol. The variation of conversion with time for the synthesis of isoamyl propionate was investigated in the presence of five enzymes. Novozym 435 showed the highest activity, and this was used as the enzyme for investigating the various parameters that influence the esterification reaction. The Ping-Pong Bi-Bi model with inhibition by both acid and alcohol was used to model the experimental data and determine the kinetics of the esterification reaction.

  13. Synthesis of Isocoumarins from Cyclic 2-Diazo-1,3-diketones and Benzoic Acids via Rh(III)-Catalyzed C-H Activation and Esterification.

    PubMed

    Yang, Cheng; He, Xinwei; Zhang, Lanlan; Han, Guang; Zuo, Youpeng; Shang, Yongjia

    2017-02-17

    A mild and efficient Rh(III)-catalyzed C-H activation/esterification reaction for the synthesis of isocoumarins has been developed. This procedure uses readily available benzoic acids and cyclic diazo-1,3-diketones as starting materials and involves domino intermolecular C-H activation in combination with intramolecular esterification to give the corresponding isocoumarins in moderate to excellent yields. This process provides a facile approach for the construction of isocoumarins containing various functional groups that does not require any additives.

  14. Effect of polyvinylpyrrolidone on mesoporous silica morphology and esterification of lauric acid with 1-butanol catalyzed by immobilized enzyme

    NASA Astrophysics Data System (ADS)

    Zhang, Jinyu; Zhou, Guowei; Jiang, Bin; Zhao, Minnan; Zhang, Yan

    2014-05-01

    Mesoporous silica materials with a range of morphology evolution, i.e., from curved rod-shaped mesoporous silica to straight rod-shaped mesoporous silica, were successfully prepared using polyvinylpyrrolidone (PVP) and triblock copolymer as dual template. The effects of PVP molecular weight and concentration on mesoporous silica structure parameters were studied. Results showed that surface area and pore volume continuously decreased with increased PVP molecular weight. Mesoporous silica prepared with PVP K30 also possessed larger pore diameter, interplanar spacing (d100), and cell parameter (a0) than that prepared with PVP K15 and PVP K90. In addition, with increased PVP concentration, d100 and a0 continuously decreased. The mechanism of morphology evolution caused by the change in PVP concentration was investigated. The conversion rate of lauric acid with 1-butanol catalyzed by immobilized Porcine pancreatic lipase (PPL) was also evaluated. Results showed that PPL immobilized on amino-functionalized straight rod-shaped mesoporous silica maintained 50% of its esterification conversion rate even after five cycles of use with a maximum conversion rate was about 90.15%.

  15. Temperature regulated Brønsted acidic ionic liquid-catalyze esterification of oleic acid for biodiesel application

    NASA Astrophysics Data System (ADS)

    Rafiee, Ezzat; Mirnezami, Fakhrosadat

    2017-02-01

    By combining phosphotungstic acid (PW) and SO3H- functioned zwitterion, heteropoly anion-based Brønsted acidic ionic liquids (HPA-ILs) were successfully obtained. Scanning electron microscopy and energy dispersive X-ray spectroscopy were provided the morphology and composition of the prepared material. Catalytic performance and reusability of the catalysts were evaluated through an esterification reaction between oleic acid and methanol for production of biodiesel. Relationship between catalytic activities and acidity of the catalysts have been discussed by potentiometric titration. The results showed that HPA-ILs had good activity and reusability. HPA-ILs dissolved in the reaction mixture during the reaction process and could be precipitated and separated from products at lower temperature.

  16. Continuous lipase-catalyzed esterification of soybean fatty acids under ultrasound irradiation.

    PubMed

    Trentin, Claudia M; Scherer, Robison P; Dalla Rosa, C; Treichel, H; Oliveira, D; Oliveira, J Vladimir

    2014-05-01

    This work investigates the continuous production of alkyl esters from soybean fatty acid (FA) charges using immobilized Novozym 435 as catalyst. The experiments were performed in a packed-bed bioreactor evaluating the effects of FA charge to alcohol (methanol and ethanol) molar ratio, from 1:1 to 1:6, substrate flow rate in the range of 0.5-2.5 mL/min and output irradiation power up to 154 W, at fixed temperature of 65 °C, on the reaction conversion. Results showed that almost complete conversions to fatty acids ethyl esters were achieved at mild ultrasonic power (61.6 W), FA to ethanol molar ratio of 1:6, operating temperature (65 °C) and remained nearly constant for long-term reactions without negligible enzyme activity losses.

  17. One-step production of biodiesel from rice bran oil catalyzed by chlorosulfonic acid modified zirconia via simultaneous esterification and transesterification.

    PubMed

    Zhang, Yue; Wong, Wing-Tak; Yung, Ka-Fu

    2013-11-01

    Due to the high content (25-50%) of free fatty acid (FFA), crude rice bran oil usually requires a two steps conversion or one step conversion with very harsh condition for simultaneous esterification and transesterification. In this study, chlorosulfonic acid modified zirconia (HClSO3-ZrO2) with strong acidity and durability is prepared and it shows excellent catalytic activity toward simultaneous esterification and transesterification. Under a relative low reaction temperature of 120 °C, HClSO3-ZrO2 catalyzes a complete conversion of simulated crude rice bran oil (refined oil with 40 wt% FFA) into biodiesel and the conversion yield keep at above 92% for at least three cycles. Further investigation on the tolerance towards FFA and water reveals that it maintains high activity even with the presence of 40 wt% FFA and 3 wt% water. It shows that HClSO3-ZrO2 is a robust and durable catalyst which shows high potential to be commercial catalyst for biodiesel production from low grade feedstock.

  18. 13C NMR quantification of mono and diacylglycerols obtained through the solvent-free lipase-catalyzed esterification of saturated fatty acids.

    PubMed

    Fernandes, Jane Luiza Nogueira; de Souza, Rodrigo Octavio Mendonça Alves; de Vasconcellos Azeredo, Rodrigo Bagueira

    2012-06-01

    In the present investigation, we studied the enzymatic synthesis of monoacylglycerols (MAG) and diacylglycerols (DAG) via the esterification of saturated fatty acids (stearic, palmitic and an industrial residue containing 87% palmitic acid) and glycerol in a solvent-free system. Three immobilized lipases (Lipozyme RM IM, Lipozyme TL IM and Novozym 435) and different reaction conditions were evaluated. Under the optimal reaction conditions, esterifications catalyzed by Lipozyme RM IM resulted in a mixture of MAG and DAG at high conversion rates for all of the substrates. In addition, except for the reaction of industrial residue at atmospheric pressure, all of these products met the World Health Organization and European Union directives for acylglycerol mixtures for use in food applications. The products were quantified by (13)C NMR, with the aid of an external reference signal which was generated from a sealed coaxial tube filled with acetonitrile-d3. After calibrating the area of this signal using the classical external reference method, the same coaxial tube was used repeatedly to quantify the reaction products.

  19. A kinetic study on the Novozyme 435-catalyzed esterification of free fatty acids with octanol to produce octyl esters.

    PubMed

    Chowdhury, Avisha; Mitra, Debarati

    2015-01-01

    Octyl esters can serve as an important class of biolubricant components replacing their mineral oil counterparts. The purpose of the current work was to investigate the enzymatic esterification reaction of free fatty acids (FFA, from waste cooking oil) with octanol in a solvent-free system using a commercial lipase Novozyme 435. It was found that the esterificaton reaction followed the Ping-pong bi-bi kinetics with no inhibition by substrates or products within the studied concentration range. The maximum reaction rate was estimated to be 0.041 mol L(-1) g(-1) h(-1) . Additionally, the stability of Novozyme 435 in the current reaction system was studied by determining its activity and final conversion of FFA to esters after 12 successive utilizations. Novozyme 435 exhibited almost 100% enzyme activity up to 7 cycles of reaction and gradually decreased (by 5%) thereafter. The kinetic parameters evaluated from the study shall assist in the design of reactors for large-scale production of octyl esters from a cheap biomass source. The enzyme reusability data can further facilitate mass production by curtailing the cost of expensive enzyme consumption.

  20. Lipase-catalyzed esterification of ferulic Acid with oleyl alcohol in ionic liquid/isooctane binary systems.

    PubMed

    Chen, Bilian; Liu, Huanzhen; Guo, Zheng; Huang, Jian; Wang, Minzi; Xu, Xuebing; Zheng, Lifei

    2011-02-23

    Lipase-catalyzed synthesis of ferulic acid oleyl alcohol ester in an ionic liquid (IL)/isooctane system was investigated. Considerable bioconversion and volumetric productivity were achieved in inexpensive 1-hexyl-3-methylimidazolium hexafluorophosphate ([Hmim][PF(6)]) and 1-methyl-3-octylimidazolium hexafluorophosphate ([Omim][PF(6)]) mediated systems, and thus, the two types of ILs were selected for further optimization of variables. The results showed that, before reaching a maximum, the increase of ferulic acid concentration, temperature, or enzyme dosage led to an increase in volumetric productivity. Variations of the ratios of IL/isooctane and concentrations of oleyl alcohol also profoundly affected the volumetric productivity. To a higher extent, [Hmim][PF(6)]/isooctane and [Omim][PF(6)]/isooctane show similar reaction behaviors. Under the optimized reaction conditions (60 °C, 150 mg of Novozym 435 and 100 mg of molecular sieves), up to 48.50 mg/mL productivity of oleyl feruleate could be achieved for the [Hmim][PF(6)]/isooctane (0.5 mL/1.5 mL) system with a substrate concentration of ferulic acid of 0.08 mmol/mL and oleyl alcohol of 0.32 mmol; while an optimum volumetric productivity of 26.92 mg/mL was obtained for the [Omim][PF(6)]/ isooctane (0.5 mL/1.5 mL) system under a similar reaction condition other than the substrate concentrations of ferulic acid at 0.05 mmol/mL and oleyl alcohol at 0.20 mmol.

  1. Lipase-catalyzed esterification of ferulic acid with lauryl alcohol in ionic liquids and antibacterial properties in vitro against three food-related bacteria.

    PubMed

    Shi, Yu-Gang; Wu, Yu; Lu, Xu-Yang; Ren, Yue-Ping; Wang, Qi; Zhu, Chen-Min; Yu, Di; Wang, He

    2017-04-01

    Lauryl ferulate (LF) was synthesized through lipase-catalyzed esterification of ferulic acid (FA) with lauryl alcohol in a novel ionic liquid ([(EO)-3C-im][NTf2]), and its antibacterial activities was evaluated in vitro against three food-related bacteria. [(EO)-3C-im][NTf2] was first synthesized through incorporating alkyl ether moiety into the double imidazolium ring. [(EO)-3C-im][NTf2] containing hexane was found to be the most suitable for this reaction. The effects of various parameters were studied, and the maximum yield of LF (90.1%) was obtained in the optimum reaction conditions, in [(EO)-3C-im][NTf2]/hexane (VILs:Vhexane=1:1) system, 0.08mmol/mL of FA concentration, 50mg/mL Novozym 435, 60°C. LF exhibited a stronger antibacterial activity against Gram-negative (25 mm) than Gram-positive (21.5-23.2 mm) bacteria. The lowest MIC value was seen for E. coli (1.25mM), followed by L. Monocytogenes (2.5mM) and S.aureus (5mM). The MBCs for L. Monocytogenes, S.aureus and E. coli were 10, 20 and 5mM.

  2. Esterification by the Plasma Acidic Water: Novel Application of Plasma Acid

    NASA Astrophysics Data System (ADS)

    Gu, Ling

    2014-03-01

    This work explores the possibility of plasma acid as acid catalyst in organic reactions. Plasma acidic water was prepared by dielectric barrier discharge and used to catalyze esterification of n-heptanioc acid with ethanol. It is found that the plasma acidic water has a stable and better performance than sulfuric acid, meaning that it is an excellent acid catalyst. The plasma acidic water would be a promising alternative for classic mineral acid as a more environment friendly acid.

  3. Directing-group-assisted copper-catalyzed oxidative esterification of phenols with aldehydes.

    PubMed

    Zheng, Yong; Song, Wei-Bin; Xuan, Li-Jiang

    2015-11-28

    A directing-group-assisted copper-catalyzed oxidative esterification of phenols with aldehydes using TBHP as an oxidant was described. This methodology which showed the advantages of base, ligand free, short routes and functional group tolerance could be used as an alternative protocol for the classical esterification reactions.

  4. Heterogeneous catalytic esterification of omega-sulfhydryl fatty acids: Avoidance of thioethers, thioesters, and disulfides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two mesoporous silicas functionalized with propylsulfonic (SBA-15-PSA) and arenesulfonic (SBA-15-ASA) acid groups, and a highly acidic, functionalized styrene divinylbenzene copolymer ion exchange resin (Amberlyst-15) were examined for their ability to catalyze the ethanolic esterification of the N-...

  5. Synthesis of benzyl cinnamate by enzymatic esterification of cinnamic acid.

    PubMed

    Wang, Yun; Zhang, Dong-Hao; Chen, Na; Zhi, Gao-Ying

    2015-12-01

    In this study, lipase catalysis was successfully applied in synthesis of benzyl cinnamate through esterification of cinnamic acid with benzyl alcohol. Lipozyme TLIM was found to be more efficient for catalyzing this reaction than Novozym 435. In order to increase the yield of benzyl cinnamate, several media, including acetone, trichloromethane, methylbenzene, and isooctane, were used in this reaction. The reaction showed a high yield using isooctane as medium. Furthermore, the effects of several parameters such as water activity, reaction temperature, etc, on this reaction were analyzed. It was pointed out that too much benzyl alcohol would inhibit lipase activity. Under the optimum conditions, lipase-catalyzed synthesis of benzyl cinnamate gave a maximum yield of 97.3%. Besides, reusable experiment of enzyme demonstrated that Lipozyme TLIM retained 63% of its initial activity after three cycles. These results were of general interest for developing industrial processes for the preparation of benzyl cinnamate.

  6. Triflate-catalyzed (trans)esterification of lipids within carbonized algal biomass.

    PubMed

    Levine, Robert B; Bollas, Alexandra A; Durham, Matthew D; Savage, Phillip E

    2012-05-01

    This study demonstrates the utility of rare-earth metal triflate catalysts (i.e., Sc(OTf)(3) and In(OTf)(3)) in the (trans)esterification of oleic acid as well as the lipids contained within carbonized algal biomass using ethanol in the presence of water. Both catalysts are highly active between 200 and 235°C with an ethanol:fatty acid (EtOH:FA) molar ratio of 10-20:1 and showed a high tolerance for moisture. Lipids within hydrochars produced by reacting Chlorella protothecoides paste (25% solids) in high temperature water (220-250°C) were successfully converted into fatty acid ethyl esters (FAEE). The highest FAEE yields (85-98%) were obtained when hydrochars were reacted for 60 min at 215°C with about 11-13 mol% Sc(OTf)(3), a 17-19:1 EtOH:FA molar ratio, and without water. FAEE yields remained as high as 93% in the presence of 9 wt.% water. Our preliminary results warrant further work to optimize triflate-catalyzed in situ (trans)esterification at low catalyst and ethanol loadings.

  7. Selective production of 1-monocaprin by porcine liver carboxylesterase-catalyzed esterification: Its enzyme kinetics and catalytic performance.

    PubMed

    Park, Kyung-Min; Lee, Jong-Hyuk; Hong, Sung-Chul; Kwon, Chang Woo; Jo, Minje; Choi, Seung Jun; Kim, Keesung; Chang, Pahn-Shick

    2016-01-01

    Porcine liver carboxylesterase (PLE) belongs to carboxylesterase family (EC 3.1.1.1) as a serine-type esterase. The PLE-catalyzed esterification of capric acid with glycerol in reverse micelles was investigated on the catalytic performance and enzyme kinetics. The most suitable structure of reverse micelles was comprised of isooctane (reaction medium) and bis(2-ethylhexyl) sodium sulfosuccinate (AOT, anionic surfactant) with 0.1 of R-value ([water]/[surfactant]) and 3.0 of G/F-value ([glycerol]/[fatty acid]) for the PLE-catalyzed esterification. In the aspect of regio-selectivity, the PLE mainly produced 1-monocaprin without any other products (di- and/or tricaprins of subsequent reactions). Furthermore, the degree of esterification at equilibrium state (after 4 h from the initiation) was 62.7% under the optimum conditions at pH 7.0 and 60 °C. Based on Hanes-Woolf plot, the apparent Km and Vmax values were calculated to be 16.44 mM and 38.91 μM/min/mg protein, respectively.

  8. A Mini-Review on Solid Acid Catalysts for Esterification Reactions

    NASA Astrophysics Data System (ADS)

    Sirsam, Rajkumar; Hansora, Dharmesh; Usmani, Ghayas A.

    2016-10-01

    This paper presents an overview of research pertaining to solid acid catalysts for esterification reactions. Prominence has been given to the literatures that have been appeared during the last two decades. A variety of reactions catalyzed by solid acid catalysts have been tabulated according to their broad classification; industrially important reactions have been outlined. Examples, where the use of various solid acid catalysts have led to an improvement in the selectivity of the desired products, have also been discussed. Various catalyzed esterification reactions using different approaches and previous kinetic studies have been reviewed. Types, preparation and synthesis of various solid acid catalysts have been reviewed and discussed. Suggestions have been summarized for their implementation in future work.

  9. Enzymatic esterification of tapioca maltodextrin fatty acid ester.

    PubMed

    Udomrati, Sunsanee; Gohtani, Shoichi

    2014-01-01

    In this work new types of hydrophobically modified maltodextrin were prepared by enzyme-catalyzed reaction of maltodextrin and three fatty acids: decanoic acid (C-10), lauric acid (C-12) and palmitic acid (C-16). Lipase obtained from Thermomyces lanuginosus was found to be a useful biocatalyst in the maltodextrin esterification. Esterified maltodextrin with a degree of substitution (DS) 0.015-0.084 was prepared at the optimum conditions of 60 °C for 4 h. The DS was found to be at its highest when maltodextrin and fatty acids were taken in the ratio 1:0.5. The functional properties of these esterified maltodextrin were investigated. All esterified maltodextrin did not completely dissolve in water. Esterified maltodextrin at a concentration of 25% (w/w) exhibited Newtonian flow behavior similar to that of native maltodextrin. Esterified maltodextrin had a higher viscosity compare to native maltodextrin. X-ray diffraction pattern of esterified maltodextrin indicated crystallization of the fatty acid side chains. The thermal stability of esterified maltodextrin was checked by differential scanning calorimetry (DSC). Esterified maltodextrin was then used as an emulsifier to make n-hexadecane O/W emulsions. The emulsions were characterized according to their oil droplet characteristics and emulsification index.

  10. Synthesis of monoacylglycerol containing pinolenic acid via stepwise esterification using a cold active lipase.

    PubMed

    Pyo, Young-Gil; Hong, Seung In; Kim, Yangha; Kim, Byung Hee; Kim, In-Hwan

    2012-01-01

    High purity monoacylglycerol (MAG) containing pinolenic acid was synthesized via stepwise esterification of glycerol and fatty acids from pine nut oil using a cold active lipase from Penicillium camembertii as a biocatalyst. Effects of temperature, molar ratio, water content, enzyme loading, and vacuum on the synthesis of MAG by lipase-catalyzed esterification of glycerol and fatty acid from pine nut oil were investigated. Diacylglycerol (DAG) as well as MAG increased significantly when temperature was increased from 20 to 40 °C. At a molar ratio of 1:1, MAG content decreased because of the significant increase in DAG content. Water has a profound influence on both MAG and DAG content through the entire course of reaction. The reaction rate increased significantly as enzyme loading increased up to 600 units. Vacuum was an effective method to reduce DAG content. The optimum temperature, molar ratio, water content, enzyme loading, vacuum, and reaction time were 20 °C, 1:5 (fatty acid to glycerol), 2%, 600 units, 5 torr, and 24 h, respectively. MAG content further increased via lipase-catalyzed second step esterification at subzero temperature. P. camembertii lipase exhibited esterification activity up to -30 °C.

  11. High-yield preparation of wax esters via lipase-catalyzed esterification using fatty acids and alcohols from crambe and camelina oils.

    PubMed

    Steinke, G; Weitkamp, P; Klein, E; Mukherjee, K D

    2001-02-01

    Fatty acids obtained from seed oils of crambe (Crambe abyssinica) and camelina (Camelina sativa) via alkaline saponification or steam splitting were esterified using lipases as biocatalysts with oleyl alcohol and the alcohols derived from crambe and camelina oils via hydrogenolysis of their methyl esters. Long-chain wax esters were thus obtained in high yields when Novozym 435 (immobilized lipase B from Candida antarctica) and papaya (Carica papaya) latex lipase were used as biocatalysts and vacuum was applied to remove the water formed. The highest conversions to wax esters were obtained with Novozym 435 (> or =95%) after 4-6 h of reaction, whereas with papaya latex lipase such a high degree of conversion was attained after 24 h. Products obtained from stoichiometric amounts of substrates were almost exclusively (>95%) composed of wax esters having compositions approaching that of jojoba (Simmondsia chinensis) oil, especially when crambe fatty acids in combination with camelina alcohols or camelina fatty acids in combination with crambe alcohols were used as substrates.

  12. Theoretical insights into the sites and mechanisms for base catalyzed esterification and aldol condensation reactions over Cu.

    PubMed

    Neurock, Matthew; Tao, Zhiyuan; Chemburkar, Ashwin; Hibbitts, David D; Iglesia, Enrique

    2017-03-23

    Condensation and esterification are important catalytic routes in the conversion of polyols and oxygenates derived from biomass to fuels and chemical intermediates. Previous experimental studies show that alkanal, alkanol and hydrogen mixtures equilibrate over Cu/SiO2 and form surface alkoxides and alkanals that subsequently promote condensation and esterification reactions. First-principle density functional theory (DFT) calculations were carried out herein to elucidate the elementary paths and the corresponding energetics for the interconversion of propanal + H2 to propanol and the subsequent C-C and C-O bond formation paths involved in aldol condensation and esterification of these mixtures over model Cu surfaces. Propanal and hydrogen readily equilibrate with propanol via C-H and O-H addition steps to form surface propoxide intermediates and equilibrated propanal/propanol mixtures. Surface propoxides readily form via low energy paths involving a hydrogen addition to the electrophilic carbon center of the carbonyl of propanal or via a proton transfer from an adsorbed propanol to a vicinal propanal. The resulting propoxide withdraws electron density from the surface and behaves as a base catalyzing the activation of propanal and subsequent esterification and condensation reactions. These basic propoxides can readily abstract the acidic Cα-H of propanal to produce the CH3CH((-))CH2O* enolate, thus initiating aldol condensation. The enolate can subsequently react with a second adsorbed propanal to form a C-C bond and a β-alkoxide alkanal intermediate. The β-alkoxide alkanal can subsequently undergo facile hydride transfer to form the 2-formyl-3-pentanone intermediate that decarbonylates to give the 3-pentanone product. Cu is unique in that it rapidly catalyzes the decarbonylation of the C2n intermediates to form C2n-1 3-pentanone as the major product with very small yields of C2n products. This is likely due to the absence of Brønsted acid sites, present on

  13. Catalytic actions of alkaline salts in reactions between 1,2,3,4-butanetetracarboxylic acid and cellulose: II. Esterification.

    PubMed

    Ji, Bolin; Tang, Peixin; Yan, Kelu; Sun, Gang

    2015-11-05

    1,2,3,4-Butanetetracarboxylic acid (BTCA) reacts with cellulose in two steps with catalysis of alkaline salts such as sodium hypophosphite: anhydride formation and esterification of anhydride with cellulose. The alkali metal ions were found effective in catalyzing formation of BTCA anhydride in a previous report. In this work, catalytic functions of the alkaline salts in the esterification reaction between BTCA anhydride and cellulose were investigated. Results revealed that acid anions play an important role in the esterification reaction by assisting removal of protons on intermediates and completion of the esterification between cellulose and BTCA. Besides, alkaline salts with lower pKa1 values of the corresponding acids are more effective ones for the reaction since addition of these salts could lead to lower pH values and higher acid anion concentrations in finishing baths. The mechanism explains the results of FTIR and wrinkle recovery angles of the fabrics cured under different temperatures and times.

  14. Efficient water removal in lipase-catalyzed esterifications using a low-boiling-point azeotrope.

    PubMed

    Yan, Youchun; Bornscheuer, Uwe T; Schmid, Rolf D

    2002-04-05

    High conversions in lipase-catalyzed syntheses of esters from free acyl donors and an alcohol requires efficient removal of water preferentially at temperatures compatible to enzyme activity. Using a lipase B from Candida antarctica (CAL-B)-mediated synthesis of sugar fatty-acid esters, we show that a mixture of ethyl methylketone (EMK) and hexane (best ratio: 4:1, vo/vo) allows efficient removal of water generated during esterification. Azeotropic distillation of the solvent mixture (composition: 26% EMK, 55% hexane, 19% water) takes place at 59 degrees C, which closely matches the optimum temperature reported for CAL-B. Water is then removed from the azeotrope by membrane vapor permeation. In case of glucose stearate, 93% yield was achieved after 48 h using an equimolar ratio of glucose and stearic acid. CAL-B could be reused for seven reaction cycles, with 86% residual activity after 14 d total reaction time at 59 degrees C. A decrease in fatty-acid chain length as well as increasing temperatures (75 degrees C) resulted in lower conversions. In addition, immobilization of CAL-B on a magnetic polypropylene carrier (EP 100) facilitated separation of the biocatalyst.

  15. Kinetic resolution of racemic 1-phenyl 1-propanol by lipase catalyzed enantioselective esterification reaction.

    PubMed

    Karadeniz, Fatma; Bayraktar, Emine; Mehmetoglu, Ulkü

    2010-10-01

    In this study, resolution of (R,S)-1-phenyl 1-propanol by lipase-catalyzed enantioselective esterification was achieved. To investigate the effect of lipase type on enantiomeric excess, three different lipases were used. Novozym 435 exhibited the highest enantioselectivity for resolution of (R,S)-1-phenyl 1-propanol. The effects of carbon length of fatty acids from C12 to C16, which were used as acyl donor, organic solvents with Log P values from 0.5 to 4.5, acyl donor/alcohol molar ratio (1:1, 3:2, 2:1, 3:1), amount of added molecular sieves (0-133.2 kg/m(3)), and temperature (10-60° C) on the enantioselectivity were investigated. The best reaction conditions were comprised of using toluene (Log P= 2.5) as solvent, lauric acid (12C) as acyl donor, 133.2 kg/m(3) molecular sieves at 50° C and acyl donor/alcohol molar ratio as 1:1. Under these conditions, the enantiomeric excess of S enantiomer ee (S) was obtained as 95% for a reaction time of 2.5 hours.

  16. Lipase-catalyzed (trans)esterification of 5-hydroxy- methylfurfural and separation from HMF esters using deep-eutectic solvents.

    PubMed

    Krystof, Monika; Pérez-Sánchez, María; Domínguez de María, Pablo

    2013-04-01

    5-Hydroxymethylfurfural (HMF) is a valuable biomass-derived building block. Among possible HMF valorization products, a broad range of HMF esters can be synthesized. These HMF esters have found some promising applications, such as monomers, fuels, additives, surfactants, and fungicides, and thus several catalytic approaches for HMF (trans)esterifications have been reported. The intrinsic reactivity of HMF is challenging, forcing the use of mild reaction conditions to avoid by-product formation. This paper explores the lipase-catalyzed (trans)esterification of HMF with different acyl donors (carboxylic acids and methyl- and ethyl esters) mostly in solvent-free conditions. The results demonstrate that lipases may be promising alternatives for the synthesis of HMF esters-with high productivities and reactions at high substrate loadings-provided that robust systems for lipase immobilization are applied to assure an adequate reusability of the enzymes. Once (trans)esterifications have been conducted, the separation of unreacted HMF and HMF esters is performed by using deep-eutectic solvents (DES) as separation agents. DES are able to dissolve hydrogen-bond donors (e.g., HMF), whereas non-hydrogen-bond donors (in this case HMF esters) form a second phase. By using this approach, high ester purities (>99 %) and efficiencies (up to >90 % HMF ester recovery) in separations were obtained by using choline chloride-based DES.

  17. Controlled methyl-esterification of pectin catalyzed by cation exchange resin.

    PubMed

    Peng, Xiaoxia; Yang, Guang; Fan, Xingchen; Bai, Yeming; Ren, Xiaomeng; Zhou, Yifa

    2016-02-10

    This study developed a new method to methyl-esterify pectin using a cation exchange resin. Homogalacturonan (HG)-type pectin (WGPA-3-HG) and rhamnogalacturonan (RG)-I-type pectin (AHP-RG) obtained from the roots of Panax ginseng and sunflower heads, respectively, were used as models. Compared to commonly used methyl-esterification methods that use either methyl iodide or acidified methanol, the developed method can methyl-esterify both HG- and RG-I-type pectins without degrading their structures via β-elimination or acid hydrolysis. In addition, by modifying reaction conditions, including the mass ratio of resin to pectin, reaction time, and temperature, the degree of esterification can be controlled. Moreover, the resin and methanol can be recycled to conserve resources, lower costs, and reduce environmental pollution. This new methodology will be highly useful for industrial esterification of pectin.

  18. Simultaneous hydrolysis-esterification of wet microalgal lipid using acid.

    PubMed

    Takisawa, Kenji; Kanemoto, Kazuyo; Kartikawati, Muliasari; Kitamura, Yutaka

    2013-12-01

    This research demonstrated hydrolysis of wet microalgal lipid and esterification of free fatty acid (FFA) using acid in one-step process. The investigation of simultaneous hydrolysis-esterification (SHE) of wet microalgal lipid was conducted by using L27 orthogonal design and the effects of water content, volume of sulphuric acid, volume of methanol, temperature and time on SHE were examined. As a result, water content was found to be the most effective factor. The effects of various parameters on fatty acid methyl ester (FAME) content and equilibrium relation between FAME and FFA were also examined under water content 80%. Equimolar amounts of sulphuric acid and hydrochloric acid showed similar results. This method has great potential in terms of biodiesel production from microalgae since no organic solvents are used.

  19. Study of reaction parameters and kinetics of esterification of lauric acid with butanol by immobilized Candida antarctica lipase.

    PubMed

    Shankar, Sini; Agarwal, Madhu; Chaurasia, S P

    2013-12-01

    Esterification of lauric acid with n-butanol, catalyzed by immobilized Candida antarctica lipase (CAL) in aqueous-organic biphasic solvent system was studied. Effects of various reaction parameters on esterification were investigated, such as type and amount of solvent, amount of buffer, pH, temperature, speed of agitation, amount of enzyme, butanol and lauric acid. The most suitable reaction conditions for esterification were observed at 50 degrees C and pH 7.0 using 5000 micromoles of lauric acid, 7000 pmoles of butanol, 0.25 ml phosphate buffer, 1 ml of isooctane as the solvent and 50 mg of immobilized enzyme in the reaction medium at agitation speed of 150 rpm. Maximum esterification of 96.36% was acheived in 600 min of reaction time at n-butanol to lauric acid molar ratio of 1: 0.7. Kinetic study for the esterification of lauric acid with n-butanol using immobilized CAL was carried out and the kinetic constants were estimated by using non-linear regression method. The estimated value of Michaelis kinetic constants for butanol (KmBt) and acid (KmAc) were 451.56 (M) and 4.7 x 10(-7)(M), respectively and the value of dissociation constant (KBt) of the butanol-lipase complex was 9.41 x 10(7)(M). The estimated constants agreed fairly well with literature data.

  20. Biodiesel from Citrullus colocynthis Oil: Sulfonic-Ionic Liquid-Catalyzed Esterification of a Two-Step Process

    PubMed Central

    Ali Elsheikh, Yasir; Hassan Akhtar, Faheem

    2014-01-01

    Biodiesel was prepared from Citrullus colocynthis oil (CCO) via a two-step process. The first esterification step was explored in two ionic liquids (ILs) with 1,3-disulfonic acid imidazolium hydrogen sulfate (DSIMHSO4) and 3-methyl-1-sulfonic acid imidazolium hydrogen sulfate (MSIMHSO4). Both ILs appeared to be good candidates to replace hazardous acidic catalyst due to their exceptional properties. However, the two sulfonic chains existing in DSIMHSO4 were found to increase the acidity to the IL than the single sulfonic chain in MSIMHSO4. Based on the results, 3.6 wt% of DSIMHSO4, methanol/CCO molar ratio of 12 : 1, and 150°C offered a final FFA conversion of 95.4% within 105 min. A 98.2% was produced via second KOH-catalyzed step in 1.0%, 6 : 1 molar ratio, 600 rpm, and 60°C for 50 min. This new two-step catalyzed process could solve the corrosion and environmental problems associated with the current acidic catalysts. PMID:24987736

  1. Lipase in biphasic alginate beads as a biocatalyst for esterification of butyric acid and butanol in aqueous media.

    PubMed

    Ng, Choong Hey; Yang, Kun-Lin

    2016-01-01

    Esterification of organic acids and alcohols in aqueous media is very inefficient due to thermodynamic constraints. However, fermentation processes used to produce organic acids and alcohols are often conducted in aqueous media. To produce esters in aqueous media, biphasic alginate beads with immobilized lipase are developed for in situ esterification of butanol and butyric acid. The biphasic beads contain a solid matrix of calcium alginate and hexadecane together with 5 mg/mL of lipase as the biocatalyst. Hexadecane in the biphasic beads serves as an organic phase to facilitate the esterification reaction. Under optimized conditions, the beads are able to catalyze the production of 0.16 mmol of butyl butyrate from 0.5 mmol of butyric acid and 1.5 mmol of butanol. In contrast, when monophasic beads (without hexadecane) are used, only trace amount of butyl butyrate is produced. One main application of biphasic beads is in simultaneous fermentation and esterification (SFE) because the organic phase inside the beads is very stable and does not leach out into the culture medium. SFE is successfully conducted with an esterification yield of 6.32% using biphasic beads containing iso-octane even though the solvent is proven toxic to the butanol-producing Clostridium spp.

  2. Reactive Distillation for Esterification of Bio-based Organic Acids

    SciTech Connect

    Fields, Nathan; Miller, Dennis J.; Asthana, Navinchandra S.; Kolah, Aspi K.; Vu, Dung; Lira, Carl T.

    2008-09-23

    The following is the final report of the three year research program to convert organic acids to their ethyl esters using reactive distillation. This report details the complete technical activities of research completed at Michigan State University for the period of October 1, 2003 to September 30, 2006, covering both reactive distillation research and development and the underlying thermodynamic and kinetic data required for successful and rigorous design of reactive distillation esterification processes. Specifically, this project has led to the development of economical, technically viable processes for ethyl lactate, triethyl citrate and diethyl succinate production, and on a larger scale has added to the overall body of knowledge on applying fermentation based organic acids as platform chemicals in the emerging biorefinery. Organic acid esters constitute an attractive class of biorenewable chemicals that are made from corn or other renewable biomass carbohydrate feedstocks and replace analogous petroleum-based compounds, thus lessening U.S. dependence on foreign petroleum and enhancing overall biorefinery viability through production of value-added chemicals in parallel with biofuels production. Further, many of these ester products are candidates for fuel (particularly biodiesel) components, and thus will serve dual roles as both industrial chemicals and fuel enhancers in the emerging bioeconomy. The technical report from MSU is organized around the ethyl esters of four important biorenewables-based acids: lactic acid, citric acid, succinic acid, and propionic acid. Literature background on esterification and reactive distillation has been provided in Section One. Work on lactic acid is covered in Sections Two through Five, citric acid esterification in Sections Six and Seven, succinic acid in Section Eight, and propionic acid in Section Nine. Section Ten covers modeling of ester and organic acid vapor pressure properties using the SPEAD (Step Potential

  3. Determination of free fatty acids and triglycerides by gas chromatography using selective esterification reactions.

    PubMed

    Kail, Brian W; Link, Dirk D; Morreale, Bryan D

    2012-01-01

    A method for selectively determining both free fatty acids (FFA) and triacylglycerides (TAGs) in biological oils was investigated and optimized using gas chromatography after esterification of the target species to their corresponding fatty acid methyl esters (FAMEs). The method used acid catalyzed esterification in methanolic solutions under conditions of varying severity to achieve complete conversion of more reactive FFAs while preserving the concentration of TAGs. Complete conversion of both free acids and glycerides to corresponding FAMEs was found to require more rigorous reaction conditions involving heating to 120°C for up to 2 h. Method validation was provided using gas chromatography-flame ionization detection, gas chromatography-mass spectrometry, and liquid chromatography-mass spectrometry. The method improves on existing methods because it allows the total esterified lipid to be broken down by FAMEs contributed by FFA compared to FAMEs from both FFA and TAGs. Single and mixed-component solutions of pure fatty acids and triglycerides, as well as a sesame oil sample to simulate a complex biological oil, were used to optimize the methodologies. Key parameters that were investigated included: HCl-to-oil ratio, temperature and reaction time. Pure free fatty acids were found to esterify under reasonably mild conditions (10 min at 50°C with a 2.1:1 HCl to fatty acid ratio) with 97.6 ± 2.3% recovery as FAMEs, while triglycerides were largely unaffected under these reaction conditions. The optimized protocol demonstrated that it is possible to use esterification reactions to selectively determine the free acid content, total lipid content, and hence, glyceride content in biological oils. This protocol also allows gas chromatography analysis of FAMEs as a more ideal analyte than glyceride species in their native state.

  4. Determination of Free Fatty Acids and Triglycerides by Gas Chromatography Using Selective Esterification Reactions

    SciTech Connect

    Kail, Brian W; Link, Dirk D; Morreale, Bryan D

    2012-11-01

    A method for selectively determining both free fatty acids (FFA) and triacylglycerides (TAGs) in biological oils was investigated and optimized using gas chromatography after esterification of the target species to their corresponding fatty acid methyl esters (FAMEs). The method used acid catalyzed esterification in methanolic solutions under conditions of varying severity to achieve complete conversion of more reactive FFAs while preserving the concentration of TAGs. Complete conversion of both free acids and glycerides to corresponding FAMEs was found to require more rigorous reaction conditions involving heating to 120°C for up to 2 h. Method validation was provided using gas chromatography–flame ionization detection, gas chromatography–mass spectrometry, and liquid chromatography–mass spectrometry. The method improves on existing methods because it allows the total esterified lipid to be broken down by FAMEs contributed by FFA compared to FAMEs from both FFA and TAGs. Single and mixed-component solutions of pure fatty acids and triglycerides, as well as a sesame oil sample to simulate a complex biological oil, were used to optimize the methodologies. Key parameters that were investigated included: HCl-to-oil ratio, temperature and reaction time. Pure free fatty acids were found to esterify under reasonably mild conditions (10 min at 50°C with a 2.1:1 HCl to fatty acid ratio) with 97.6 ± 2.3% recovery as FAMEs, while triglycerides were largely unaffected under these reaction conditions. The optimized protocol demonstrated that it is possible to use esterification reactions to selectively determine the free acid content, total lipid content, and hence, glyceride content in biological oils. This protocol also allows gas chromatography analysis of FAMEs as a more ideal analyte than glyceride species in their native state.

  5. Accelerated esterification of free fatty acid using pulsed microwaves.

    PubMed

    Kim, Daeho; Choi, Jinju; Kim, Geun-Ju; Seol, Seung Kwon; Jung, Sunshin

    2011-07-01

    It was demonstrated that pulsed microwave irradiation is a more effective method to accelerate the esterification of free fatty acid with a heterogeneous catalyst than continuous microwave irradiation. A square-pulsed microwave with a 400 Hz repetition rate and a 10-20% duty cycle with the same energy as the continuous microwave were used in this study. The pulsed microwaves improved the esterification conversion from 39.9% to 66.1% after 15 min in comparison with the continuous microwave under the same reaction conditions. These results indicated that pulsed microwaves with repetitive strong power could enhance the efficiency of biodiesel production relative to the use of continuous microwave with mild power.

  6. High-yield synthesis of bioactive ethyl cinnamate by enzymatic esterification of cinnamic acid.

    PubMed

    Wang, Yun; Zhang, Dong-Hao; Zhang, Jiang-Yan; Chen, Na; Zhi, Gao-Ying

    2016-01-01

    In this paper, Lipozyme TLIM-catalyzed synthesis of ethyl cinnamate through esterification of cinnamic acid with ethanol was studied. In order to increase the yield of ethyl cinnamate, several media, including acetone, isooctane, DMSO and solvent-free medium, were investigated in this reaction. The reaction showed a high yield by using isooctane as reaction medium, which was found to be much higher than the yields reported previously. Furthermore, several parameters such as shaking rate, water activity, reaction temperature, substrate molar ratio and enzyme loading had important influences on this reaction. For instance, when temperature increased from 10 to 50 °C, the initial reaction rate increased by 18 times and the yield of ethyl cinnamate increased by 6.2 times. Under the optimum conditions, lipase-catalyzed synthesis of ethyl cinnamate gave a maximum yield of 99%, which was of general interest for developing industrial processes for the preparation of ethyl cinnamate.

  7. Optimization of conjugated linoleic acid triglycerides via enzymatic esterification in no-solvent system

    NASA Astrophysics Data System (ADS)

    Yi, Dan; Sun, Xiuqin; Li, Guangyou; Liu, Fayi; Lin, Xuezheng; Shen, Jihong

    2009-09-01

    We compared four esterifiable enzymes. The lipase Novozym 435 possessed the highest activity for the conjugated linoleic acid esterification during the synthesis of triglycerides. The triglycerides were synthesized by esterification of glycerol and conjugated linoleic acid (CLA) in a no-solvent system using lipase catalysis. We investigated the effects of temperature, enzyme concentration, water content, and time on esterification. Enzyme and water concentrations of up to 1% of the total reaction volume and a system temperature of 60°C proved optimal for esterification. Similarly, when the esterification was carried out for 24 h, the reaction ratio improved to 94.11%. The esterification rate of the rotating screen basket remained high (87.28%) when the enzyme was re-used for the 5th time. We evaluated the substrate selectivity of lipase (NOVO 435) and determined that this lipase prefers the 10,12-octadacadienoic acid to the 9,11-octadecadienoic acid.

  8. [Chiral HPLC determination of conversion and enantiomeric excess of enzyme catalyzed stereoselective esterification of racemic ibuprofen].

    PubMed

    Xie, Y; Liu, H; Chen, J

    1998-01-01

    In the study of enzyme catalyzed kinetic resolution of racemates, it is imperative to assay how the optical yield varies with chemical conversion. In this paper, a method using one-time injection to determine enantiomeric excess and conversion of the stereoselective esterification of racemic ibuprofen with n-butanol catalyzed by lipase was developed with a commercially available HPLC CSP column Regis(S, S) Whelk-01. In the linear range of detector, all peak areas of products and substrates are proportional to their concentrations. Because the total mole concentration remains unchanged (equal to the initial value of ibuprofen) in the reaction process, the conversion could be calculated from the peak areas, provided the ratio of response factors was known. The calibration curves of two ibuprofen enantiomers with racemic ibuprofen as external standard were overlapped, indicating fiR = fiS. By investigating the variation of peak areas of products and substrates against conversion (determined by external standard), the ratio of peak area-concentration response factor of ibuprofen butyl ester to that of unreacted ibuprofen was determined to be 1 through linear regressions, from which the conversion could be directly determined by the self normalization of the peak areas. With a mobile phase of IPA/hexane/HAc/triethylamine (15/85/0.2/0.05, V/V, flow rate 0.4 mL/min), the resolution of ibuprofen enantiomers was sufficient for precise enantiomeric purity determination.

  9. Preparation of a novel carbon-based solid acid from cassava stillage residue and its use for the esterification of free fatty acids in waste cooking oil.

    PubMed

    Wang, Lingtao; Dong, Xiuqin; Jiang, Haoxi; Li, Guiming; Zhang, Minhua

    2014-04-01

    A novel carbon-based solid acid catalyst was prepared by the sulfonation of incompletely carbonized cassava stillage residue (CSR) with concentrated sulfuric acid, and employed to catalyze the esterification of methanol and free fatty acids (FFAs) in waste cooking oil (WCO). The effects of the carbonization and the sulfonation temperatures on the pore structure, acid density and catalytic activity of the CSR-derived catalysts were systematically investigated. Low temperature carbonization and high temperature sulfonation can cause the collapse of the carbon framework, while high temperature carbonization is not conducive to the attachment of SO3H groups on the surface. The catalyst showed high catalytic activity for esterification, and the acid value for WCO is reduced to below 2mg KOH/g after reaction. The activity of catalyst can be well maintained after five cycles. CSR can be considered a promising raw material for the production of a new eco-friendly solid acid catalyst.

  10. Immobilized MAS1 lipase showed high esterification activity in the production of triacylglycerols with n-3 polyunsaturated fatty acids.

    PubMed

    Wang, Xiumei; Li, Daoming; Qu, Man; Durrani, Rabia; Yang, Bo; Wang, Yonghua

    2017-02-01

    Immobilization of lipase MAS1 from marine Streptomyces sp. strain W007 and its application in catalyzing esterification of n-3 polyunsaturated fatty acids (PUFA) with glycerol were investigated. The resin XAD1180 was selected as a suitable support for the immobilization of lipase MAS1, and its absorption ability was 75mg/g (lipase/resin ratio) with initial buffer pH value of 8.0. The thermal stability of immobilized MAS1 was improved significantly compared with that of the free lipase. Immobilized MAS1 had no regiospecificity in the hydrolysis of triolein. The highest esterification degree (99.31%) and TAG content (92.26%) by immobilized MAS1-catalyzed esterification were achieved under the optimized conditions, which were significantly better than those (82.16% and 47.26%, respectively) by Novozym 435. More than 92% n-3 PUFA was incorporated into TAG that had similar fatty acids composition to the substrate (n-3 PUFA). The immobilized MAS1 exhibited 50% of its initial activity after being used for five cycles.

  11. Preparation and characterization Al3+-bentonite Turen Malang for esterification fatty acid (palmitic acid, oleic acid and linoleic acid)

    NASA Astrophysics Data System (ADS)

    Abdulloh, Abdulloh; Aminah, Nanik Siti; Triyono, Mudasir, Trisunaryanti, Wega

    2016-03-01

    Catalyst preparation and characterization of Al3+-bentonite for esterification of palmitic acid, oleic acid and linoleic acid has been done. Al3+-bentonite catalyst was prepared from natural bentonite of Turen Malang through cation exchange reaction using AlCl3 solution. The catalysts obtained were characterized by XRD, XRF, pyridine-FTIR and surface area analyser using the BET method. Catalyst activity test of Al3+-bentonite for esterification reaction was done at 65°C using molar ratio of metanol-fatty acid of 30:1 and 0.25 g of Al3+-bentonite catalyst for the period of ½, 1, 2, 3, 4 and 5 hours. Based on the characterization results, the Al3+-bentonite Turen Malang catalyst has a d-spacing of 15.63 Ǻ, acid sites of Brönsted and Lewis respectively of 230.79 µmol/g and 99.39 µmol/g, surface area of 507.3 m2/g and the average of radius pore of 20.09 Å. GC-MS analysis results of the oil phase after esterification reaction showed the formation of biodiesel (FAME: Fatty acid methyl ester), namely methyl palmitate, methyl oleate and methyl linoleate. The number of conversions resulted in esterification reaction using Al3+-bentonite Turen Malang catalyst was 74.61%, 37.75%, and 20, 93% for the esterification of palmitic acid, oleic acid and linoleic acid respectively.

  12. Butyric acid esterification kinetics over Amberlyst solid acid catalysts: the effect of alcohol carbon chain length.

    PubMed

    Pappu, Venkata K S; Kanyi, Victor; Santhanakrishnan, Arati; Lira, Carl T; Miller, Dennis J

    2013-02-01

    The liquid phase esterification of butyric acid with a series of linear and branched alcohols is examined. Four strong cation exchange resins, Amberlyst™ 15, Amberlyst™ 36, Amberlyst™ BD 20, and Amberlyst™ 70, were used along with para-toluenesulfonic acid as a homogeneous catalyst. The effect of increasing alcohol carbon chain length and branching on esterification rate at 60°C is presented. For all catalysts, the decrease in turnover frequency (TOF) with increasing carbon chain length of the alcohol is described in terms of steric hindrance, alcohol polarity, and hydroxyl group concentration. The kinetics of butyric acid esterification with 2-ethylhexanol using Amberlyst™ 70 catalyst is described with an activity-based, pseudo-homogeneous kinetic model that includes autocatalysis by butyric acid.

  13. Ultrasonic free fatty acids esterification in tobacco and canola oil.

    PubMed

    Boffito, D C; Galli, F; Pirola, C; Bianchi, C L; Patience, G S

    2014-11-01

    Ultrasound accelerates the free fatty acids esterification rate by reducing the mass transfer resistance between methanol in the liquid phase and absorbed organic species on Amberlyst®46 catalyst. The reaction rates of canola oil is three times greater than for tobacco seed oil but half the reaction rate of pure oleic acid as measured in a batch reactor. The beneficial effects of ultrasound vs. the conventional approach are more pronounced at lower temperatures (20°C and 40°C vs. 63°C): at 20°C, the free fatty acids conversion reaches 68% vs. 23% with conventional mechanical stirring. The increased conversion is attributed to acoustic cavitation that increases mass transfer in the vicinity of the active sites. The Eley-Rideal kinetic model in which the concentration of the reacting species is expressed taking into account the mass transfer between the phases is in excellent agreement with the experimental data. Ultrasound increases the mass transfer coefficient in the tobacco oil 6 and 4.1 fold at 20°C and 40°C, respectively.

  14. Enantioselective esterification of (R,S)-2-methylalkanoic acid with Carica papaya lipase in organic solvents.

    PubMed

    Chang, Chun-Sheng; Ho, Ssu-Ching

    2011-11-01

    Isooctane was the best reaction medium for the enantioselective esterification of (R,S)-2-methylalkanoic acid with n-butanol using Carica papaya lipase as catalyst. Increasing linear alkyl-chain length of racemic 2-methylalkanoic acids from ethyl to hexyl increased the enantioselectivity (E) from 2.1 to 98.2 for the esterification of racemic 2-methylalkanoic acids with n-butanol at 35°C. Decreasing reaction temperature from 40 to 20°C increased the enantioselectivity (E) from 14 to 33 for the esterification of racemic 2-methylhexanoic acids with n-butanol. We obtained a maximum enantioselectivity, of E = 24.3, for the enantioselective esterification of racemic 2-methylhexanoic acids with n-butanol in isooctane at water activity 0.33, and at 35°C.

  15. Organic acids tunably catalyze carbonic acid decomposition.

    PubMed

    Kumar, Manoj; Busch, Daryle H; Subramaniam, Bala; Thompson, Ward H

    2014-07-10

    Density functional theory calculations predict that the gas-phase decomposition of carbonic acid, a high-energy, 1,3-hydrogen atom transfer reaction, can be catalyzed by a monocarboxylic acid or a dicarboxylic acid, including carbonic acid itself. Carboxylic acids are found to be more effective catalysts than water. Among the carboxylic acids, the monocarboxylic acids outperform the dicarboxylic ones wherein the presence of an intramolecular hydrogen bond hampers the hydrogen transfer. Further, the calculations reveal a direct correlation between the catalytic activity of a monocarboxylic acid and its pKa, in contrast to prior assumptions about carboxylic-acid-catalyzed hydrogen-transfer reactions. The catalytic efficacy of a dicarboxylic acid, on the other hand, is significantly affected by the strength of an intramolecular hydrogen bond. Transition-state theory estimates indicate that effective rate constants for the acid-catalyzed decomposition are four orders-of-magnitude larger than those for the water-catalyzed reaction. These results offer new insights into the determinants of general acid catalysis with potentially broad implications.

  16. Kinetics of acid base catalyzed transesterification of Jatropha curcas oil.

    PubMed

    Jain, Siddharth; Sharma, M P

    2010-10-01

    Out of various non-edible oil resources, Jatropha curcas oil (JCO) is considered as future feedstock for biodiesel production in India. Limited work is reported on the kinetics of transesterification of high free fatty acids containing oil. The present study reports the results of kinetic study of two-step acid base catalyzed transesterification process carried out at an optimum temperature of 65 °C and 50 °C for esterification and transesterification respectively under the optimum methanol to oil ratio of 3:7 (v/v), catalyst concentration 1% (w/w) for H₂SO₄ and NaOH. The yield of methyl ester (ME) has been used to study the effect of different parameters. The results indicate that both esterification and transesterification reaction are of first order with reaction rate constant of 0.0031 min⁻¹ and 0.008 min⁻¹ respectively. The maximum yield of 21.2% of ME during esterification and 90.1% from transesterification of pretreated JCO has been obtained.

  17. Microwave-accelerated energy-efficient esterification of free fatty acid with a heterogeneous catalyst.

    PubMed

    Kim, Daeho; Choi, Jinju; Kim, Geun-Ju; Seol, Seung Kwon; Ha, Yun-Chul; Vijayan, M; Jung, Sunshin; Kim, Bo Hyun; Lee, Gun Dae; Park, Seong Soo

    2011-02-01

    This paper shows energy-efficiency of microwave-accelerated esterification of free fatty acid with a heterogeneous catalyst by net microwave power measurement. In the reaction condition of 5 wt% sulfated zirconia and 1:20 M ratio of oil to methanol at 60°C and atmospheric pressure, more than 90% conversion of the esterification was achieved in 20 min by microwave heating, while it took about 130 min by conventional heating. Electric energy consumption for the microwave heating in this accelerated esterification was only 67% of estimated minimum heat energy demand because of significantly reduced reaction time.

  18. Preparation and application of zirconium sulfate supported on SAPO-34 molecular sieve as solid acid catalyst for esterification

    SciTech Connect

    Xu, Dongyan Ma, Hong; Cheng, Fei

    2014-05-01

    Graphical abstract: - Highlights: • SAPO-34 supported zirconium sulfate solid acid catalyst was prepared. • Esterification of acetic acid with ethanol can be catalyzed by ZS/SAPO-34. • The hydration of ZS is vital to the acidic property and catalytic performance. • The ZS/SAPO-34 catalyst treated at 200 °C shows good reusability. - Abstract: Zirconium sulfate (ZS) was supported on SAPO-34 molecular sieve by using an incipient wetness impregnation method with zirconium sulfate as the precursor. The as-prepared catalysts were used as solid acid catalyst for esterification reaction of acetic acid with ethanol. The influence of calcination temperature on the acidic property, catalytic activity, and reusability of ZS/SAPO-34 catalysts were mainly investigated. FT-IR, SEM, EDS and TG analysis have been carried out to demonstrate the characteristics of ZS/SAPO-34 catalysts. It was found that the 30 wt%ZS/SAPO-34 catalysts display the property of superacid irrespective of calcination temperature. The ZS/SAPO-34 catalyst treated at 200 °C can enhance the interaction between the supported ZS and SAPO-34 and keep the catalyst remaining substantially active after several reaction cycles. However, further increasing calcination temperature will cause the transfer of ZS from hydrate to anhydrous phase, and thus the decrease of activity.

  19. Metaloxide--ZrO2 catalysts for the esterification and transesterification of free fatty acids and triglycerides to obtain bio-diesel

    DOEpatents

    Kim, Manhoe; Salley, Steven O.; Ng, K. Y. Simon

    2016-09-06

    Mixed metal oxide catalysts (ZnO, CeO, La2O3, NiO, Al203, SiO2, TiO2, Nd2O3, Yb2O3, or any combination of these) supported on zirconia (ZrO2) or hydrous zirconia are provided. These mixed metal oxide catalysts can be prepared via coprecipitation, impregnation, or sol-gel methods from metal salt precursors with/without a Zirconium salt precursor. Metal oxides/ZrO2 catalyzes both esterification and transesterification of oil containing free fatty acids in one batch or in single stage. In particular, these mixed metal oxides supported or added on zirconium oxide exhibit good activity and selectivity for esterification and transesterification. The low acid strength of this catalyst can avoid undesirable side reaction such as alcohol dehydration or cracking of fatty acids. Metal oxides/ZrO2 catalysts are not sensitive to any water generated from esterification. Thus, esterification does not require a water free condition or the presence of excess methanol to occur when using the mixed metal oxide catalyst. The FAME yield obtained with metal oxides/ZrO2 is higher than that obtained with homogeneous sulfuric acid catalyst. Metal oxides/ZrO2 catalasts can be prepared as strong pellets and in various shapes for use directly in a flow reactor. Furthermore, the pellet has a strong resistance toward dissolution to aqueous or oil phases.

  20. Acid activated montmorillonite as catalysts in methyl esterification reactions of lauric acid.

    PubMed

    Zatta, Leandro; Ramos, Luiz Pereira; Wypych, Fernando

    2012-01-01

    The catalytic activity of acid activated montmorillonite in the esterification of free fatty acids (FFA) is reported. Standard Montmorillonite (MMT) type STx-1 provided by the Clay Mineral Society repository was activated using phosphoric, nitric and sulphuric acids under different conditions and the resulting materials were characterized and evaluated as catalysts in the methyl esterification of lauric acid. Blank reactions carried out in the absence of any added catalyst presented conversions of 32.64, 69.79 and 79.23%, for alcohol:lauric acid molar ratios of 60:1, 12:1 and 6:1, respectively. In the presence of the untreated clay and using molar ratios of 12:1 and 6:1 with 12% of catalyst, conversions of 70.92 and 82.30% were obtained, respectively. For the acid activated clays, conversions up to 93.08% of lauric acid to methyl laurate were obtained, much higher than those observed for the thermal conversion or using untreated montmorillonite. Relative good correlations were observed between the catalytic activity and the development of acid sites and textural properties of the resulting materials. Therefore, a simple acid activation was able to improve the catalytic activity and produce clay catalysts that are environmental friendly, cost effective, noncorrosive and reusable.

  1. Characterization of the esterification reaction in high free fatty acid oils

    NASA Astrophysics Data System (ADS)

    Altic, Lucas Eli Porter

    Energy and vegetable oil prices have caused many biodiesel producers to turn to waste cooking oils as feedstocks. These oils contain high levels of free fatty acids (FFAs) which make them difficult or impossible to convert to biodiesel by conventional production methods. Esterification is required for ultra-high FFA feedstocks such as Brown Grease. In addition, ultrasonic irradiation has the potential to improve the kinetics of the esterification reaction. 2-level, multi-factor DOE experiments were conducted to characterize the esterification reaction in ultra-high FFA oils as well as determine whether ultrasonic irradiation gives any benefit besides energy input. The study determined that sulfuric acid content had the greatest effect followed by temperature and water content (inhibited reaction). Methanol content had no effect in the range studied. A small interaction term existed between sulfuric acid and temperature. The study also concluded that sonication did not give any additional benefit over energy input.

  2. Ferric sulphate catalysed esterification of free fatty acids in waste cooking oil.

    PubMed

    Gan, Suyin; Ng, Hoon Kiat; Ooi, Chun Weng; Motala, Nafisa Osman; Ismail, Mohd Anas Farhan

    2010-10-01

    In this work, the esterification of free fatty acids (FFA) in waste cooking oil catalysed by ferric sulphate was studied as a pre-treatment step for biodiesel production. The effects of reaction time, methanol to oil ratio, catalyst concentration and temperature on the conversion of FFA were investigated on a laboratory scale. The results showed that the conversion of FFA reached equilibrium after an hour, and was positively dependent on the methanol to oil molar ratio and temperature. An optimum catalyst concentration of 2 wt.% gave maximum FFA conversion of 59.2%. For catalyst loadings of 2 wt.% and below, this catalysed esterification was proposed to follow a pseudo-homogeneous pathway akin to mineral acid-catalysed esterification, driven by the H(+) ions produced through the hydrolysis of metal complex [Fe(H(2)O)(6)](3+) (aq).

  3. Esterification and Transesterification of greases to fatty acid methyl esters with highly active diphenylamine salts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diphenylamine sulfate (DPAS) and diphenylamine hydrochloride (DPACl) salts were found to be highly active catalysts for esterification and transesterification of inexpensive greases to fatty acid methyl esters (FAME). In the presence of catalytic amounts of DPAS or DPACl and excess methanol, the fr...

  4. Ultrasound-Assisted Enantioselective Esterification of Ibuprofen Catalyzed by a Flower-Like Nanobioreactor.

    PubMed

    An, Baiyi; Fan, Hailin; Wu, Zhuofu; Zheng, Lu; Wang, Lei; Wang, Zhi; Chen, Guang

    2016-04-28

    A flower-like nanobioreactor was prepared for resolution of ibuprofen in organic solvents. Ultrasound irradiation has been used to improve the enzyme performance of APE1547 (a thermophilic esterase from the archaeon Aeropyrum pernix K1) in the enantioselective esterification. Under optimum reaction conditions (ultrasound power, 225 W; temperature, 45 °C; water activity, 0.21), the immobilized APE1547 showed an excellent catalytic performance (enzyme activity, 13.26 μmol/h/mg; E value, 147.1). After ten repeated reaction batches, the nanobioreactor retained almost 100% of its initial enzyme activity and enantioselectivity. These results indicated that the combination of the immobilization method and ultrasound irradiation can enhance the enzyme performance dramatically.

  5. Acid esterification-alkaline transesterification process for methyl ester production from crude rubber seed oil.

    PubMed

    Thaiyasuit, Prachasanti; Pianthong, Kulachate; Worapun, Ittipon

    2012-01-01

    This study aims to examine methods and the most suitable conditions for producing methyl ester from crude rubber seed oil. An acid esterification-alkaline transesterification process is proposed. In the experiment, the 20% FFA of crude rubber seed oil could be reduced to 3% FFA by acid esterification. The product after esterified was then tranesterified by alkaline transesterification process. By this method, the maximum yield of methyl ester was 90% by mass. The overall consumption of methanol was 10.5:1 by molar ratio. The yielded methyl ester was tested for its fuel properties and met required standards. The major fatty acid methyl ester compositions were analyzed and constituted of methyl linoleate 41.57%, methyl oleate 24.87%, and methyl lonolenate 15.16%. Therefore, the cetane number of methyl ester could be estimated as 47.85, while the tested result of motor cetane number was 51.20.

  6. Effects of citric acid esterification on digestibility, structural and physicochemical properties of cassava starch.

    PubMed

    Mei, Ji-Qiang; Zhou, Da-Nian; Jin, Zheng-Yu; Xu, Xue-Ming; Chen, Han-Qing

    2015-11-15

    In this study, citric acid was used to react with cassava starch in order to compare the digestibility, structural and physicochemical properties of citrate starch samples. The results indicated that citric acid esterification treatment significantly increased the content of resistant starch (RS) in starch samples. The swelling power and solubility of citrate starch samples were lower than those of native starch. Compared with native starch, a new peak at 1724 cm(-1) was appeared in all citrate starch samples, and crystalline peaks of all starch citrates became much smaller or even disappeared. Differential scanning calorimetry results indicated that the endothermic peak of citrate starches gradually shrank or even disappeared. Moreover, the citrate starch gels exhibited better freeze-thaw stability. These results suggested that citric acid esterification induced structural changes in cassava starch significantly affected its digestibility and it could be a potential method for the preparation of RS with thermal stability.

  7. Microwave-assisted biodiesel production by esterification of palm fatty acid distillate.

    PubMed

    Lokman, Ibrahim M; Rashid, Umer; Zainal, Zulkarnain; Yunus, Robiah; Taufiq-Yap, Yun Hin

    2014-01-01

    In the current research work, effect of microwave irradiation energy on the esterification of palm fatty acid distillate (PFAD) to produce PFAD methyl ester / biodiesel was intensively appraised. The PFAD is a by-product from refinery of crude palm oil consisting >85% of free fatty acid (FFA). The esterification reaction process with acid catalyst is needed to convert the FFA into fatty acid methyl ester or known as biodiesel. In this work, fabricated microwave-pulse width modulation (MPWM) reactor with controlled temperature was designed to be capable to increase the PFAD biodiesel production rate. The classical optimization technique was used in order to study the relationship and the optimum condition of variables involved. Consequently, by using MPWM reactor, mixture of methanol-to-PFAD molar ratio of 9:1, 1 wt.% of sulfuric acid catalyst, at 55°C reaction temperature within 15 min reaction time gave 99.5% of FFA conversion. The quality assessment and properties of the product were analyzed according to the American Society for Testing and Materials (ASTM), European (EN) standard methods and all results were in agreement with the standard requirements. It revealed that the use of fabricated MPWM with controlled temperature was significantly affecting the rate of esterification reaction and also increased the production yield of PFAD methyl ester.

  8. Increased hepatic Fatty Acid uptake and esterification contribute to tetracycline-induced steatosis in mice.

    PubMed

    Choi, You-Jin; Lee, Chae-Hyeon; Lee, Kang-Yo; Jung, Seung-Hwan; Lee, Byung-Hoon

    2015-06-01

    Tetracycline induces microvesicular steatosis, which has a poor long-term prognosis and a higher risk of steatohepatitis development compared with macrovesicular steatosis. Recent gene expression studies indicated that tetracycline treatment affects the expression of many genes associated with fatty acid transport and esterification. In this study, we investigated the role of fatty acid transport and esterification in tetracycline-induced steatosis. Intracellular lipid accumulation and the protein expression of fatty acid translocase (FAT or CD36) and diacylglycerol acyltransferase (DGAT) 2 were increased in both mouse liver and HepG2 cells treated with tetracycline at 50 mg/kg (intraperitoneal injection, i.p.) and 100 μM, respectively. Tetracycline increased the cellular uptake of boron-dipyrromethene-labeled C16 fatty acid, which was abolished by CD36 RNA interference. Oleate-induced cellular lipid accumulation was further enhanced by co-incubation with tetracycline. Tetracycline downregulated extracellular signal-regulated kinase (ERK) phosphorylation, which negatively regulated DGAT2 expression. U0126, a specific ERK inhibitor, also increased DGAT2 expression and cellular lipid accumulation. DGAT1 and 2 knock-down with specific small interfering (si)-RNA completely abrogated the steatogenic effect of tetracycline in HepG2 cells. Taken together, our data showed that tetracycline induces lipid accumulation by facilitating fatty acid transport and triglyceride esterification by upregulating CD36 and DGAT2, respectively.

  9. Esterification Reaction of Glycerol and Palm Oil Oleic Acid Using Methyl Ester Sulfonate Acid Catalyst as Drilling Fluid Formulation

    NASA Astrophysics Data System (ADS)

    Sari, V. I.; Hambali, E.; Suryani, A.; Permadi, P.

    2017-02-01

    Esterification reaction between glycerol with palm oil oleic acid to produce glycerol ester and one of the utilization of glycerol esters is as ingredients of drilling fluids formula for oil drilling needs. The purpose of this research is to get the best conditions of the esterification process. The esterification reaction does with the reactants is glycerol with purity of 97.6%, palm oil oleic acid with the molar ratio is 1:1, Methyl Ester Sulfonate Acid (MESA) catalyst 0.5%, and stirring speed 400 rpm. The temperature range of 180°C to 240°C and the processing time between 120 to 180 minutes. The results showed that the best conditions of the esterification reaction at the temperature 240°C and time process are 180 minute. The increasing temperature resulted that the acid number decreases and causing the conversion increased. The maximum conversion is 99.24%, density 0.93 g/cm3, flash point 241°C, pour point -3°C, the boiling point of 244 °C, the acid value of 1.90 mg KOH/g sample, kinematic viscosity 31.51 cSt (40°C), surface tension 37.0526 dyne/cm and GCMS identification, glycerol ester at 22,256 retention time (minutes) and wide area 73.75 (%). From the research results obtained glycerol ester with characteristics suitable for drilling fluid formulations.

  10. Protic acid immobilized on solid support as an extremely efficient recyclable catalyst system for a direct and atom economical esterification of carboxylic acids with alcohols.

    PubMed

    Chakraborti, Asit K; Singh, Bavneet; Chankeshwara, Sunay V; Patel, Alpesh R

    2009-08-21

    A convenient and clean procedure of esterification is reported by direct condensation of equimolar amounts of carboxylic acids with alcohols catalyzed by an easy to prepare catalyst system of perchloric acid immobilized on silica gel (HClO(4)-SiO(2)). The direct condensation of aryl, heteroaryl, styryl, aryl alkyl, alkyl, cycloalkyl, and long-chain aliphatic carboxylic acids with primary/secondary alkyl/cycloalkyl, allyl, propargyl, and long-chain aliphatic alcohols has been achieved to afford the corresponding esters in excellent yields. Chiral alcohol and N-t-Boc protected chiral amino acid also resulted in ester formation with the representative carboxylic acid or alcohol without competitive N-t-Boc deprotection and detrimental effect on the optical purity of the product demonstrating the mildness and chemoselectivity of the procedure. The esters of long-chain (>C(10)) acids and alcohols are obtained in high yields. The catalyst is recovered and recycled without significant loss of activity. The industrial application of the esterification process is demonstrated by the synthesis of prodrugs of ibuprofen and a few commercial flavoring agents. Other protic acids such as H(2)SO(4), HBr, TfOH, HBF(4), and TFA that were adsorbed on silica gel were less effective compared to HClO(4)-SiO(2) following the order HClO(4)-SiO(2) > H(2)SO(4)-SiO(2) > HBr-SiO(2) > TfOH-SiO(2) > HBF(4)-SiO(2) approximately TFA-SiO(2). When HClO(4) was immobilized on other solid supports the catalytic efficiency followed the order HClO(4)-SiO(2) > HClO(4)-K10 > HClO(4)-Al(2)O(3) (neutral) > HClO(4)-Al(2)O(3) (acidic) > HClO(4)-Al(2)O(3) (basic).

  11. (Trans)esterification of mannose catalyzed by lipase B from Candida antarctica in an improved reaction medium using co-solvents and molecular sieve.

    PubMed

    Nott, Katherine; Brognaux, Alison; Richard, Gaëtan; Laurent, Pascal; Favrelle, Audrey; Jérôme, Christine; Blecker, Christophe; Wathelet, Jean-Paul; Paquot, Michel; Deleu, Magali

    2012-01-01

    Four co-solvents (dimethylformamide [DMF], formamide, dimethyl sulfoxide [DMSO], and pyridine) were tested with tert-butanol (tBut) to optimize the initial rate (v₀) and yield of mannosyl myristate synthesis by esterification catalyzed by immobilized lipase B from Candida antarctica. Ten percent by volume of DMSO resulted in the best improvement of v₀ and 48-hr yield (respectively 115% and 13% relative gain compared to pure tBut). Use of molecular sieve (5% w/v) enhances the 48-hr yield (55% in tBut/DMSO [9:1, v/v]). Transesterification in tBut/DMSO (9:1, v/v) with vinyl myristate leads to further improvement of v₀ and 48-hr yield: a relative gain of 85% and 65%, respectively, without sieve and 25% and 10%, respectively, with sieve, compared to esterification. No difference in v₀ and 48-hr yield is observed when transesterification is carried out with or without sieve.

  12. Esterification free fatty acid in palm fatty acid distillate using sulfonated rice husk ash catalyst

    NASA Astrophysics Data System (ADS)

    Hidayat, Arif; Sutrisno, Bachrun

    2017-01-01

    Indonesia, as one of the biggest palm oil producers and exporters in the world, is producing large amounts of low-grade oil such as Palm Fatty Acid Distillate (PFAD) from palm oil industries. The use of PFAD can reduce the cost of biodiesel production significantly, which makes PFAD a highly potential alternative feedstock for biodiesel production. In this paper, the esterification of free fatty acid (FFA) on PFAD was studied using rice husk ash (RHA) as heterogeneous catalyst. The rice husk ash catalyst was synthesized by sulfonation using concentrated sulfuric acid. The RHA catalyst were characterized by using different techniques, such as porosity analysis, Fourier transform infrared (FT-IR) spectroscopy, total number of acid sites and elemental analysis. The effects of the molar ratio of methanol to PFAD (1-10%), the molar ratio of methanol to PFAD (4:1-10:1), and the reaction temperature (40-60°C) were studied for the conversion of FFA to optimize the reaction conditions. The results showed that the optimal conditions were an methanol to PFAD molar ratio of 10:1, the catalyst amount of 10 wt% of PFAD, and reaction temperature of 60°C.

  13. Enhanced esterification of oleic acid and methanol by deep eutectic solvent assisted Amberlyst heterogeneous catalyst.

    PubMed

    Pan, Ying; Alam, Md Asraful; Wang, Zhongming; Wu, Jingcheng; Zhang, Yi; Yuan, Zhenhong

    2016-11-01

    In present study, esterification of oleic acid with methanol using deep eutectic solvent (DES) assisted Amberlyst heterogeneous catalyst was investigated to produce biodiesel. Results showed that esterification efficiency was enhanced by the DES. The combined effect of DES on Amberlyst BD20 (BD20) is better than Amberlyst 15 (A-15) due to different structure. The optimal reaction conditions were 12:1M ratio of methanol to oleic acid, 20%(wt/wt) catalyst (BD20-DES (2:8) and A-15-DES (8:2)) at 85°C for 100min with agitating at 200rpm. The mechanism involved in catalysis and their capacity to reuse were studied. We proposed, Choline chloride-glycerol (Chcl-gly) DES could enhance the Amberlyst function due to the hydrogen bond effect on both DES and water. BD20 has fewer pores than A-15, have desirable performance in decreasing the inhibition the water during esterification of high FFA content and provide better performance in reuse.

  14. Generation and esterification of electrophilic fatty acid nitroalkenes in triacylglycerides.

    PubMed

    Fazzari, Marco; Khoo, Nicholas; Woodcock, Steven R; Li, Lihua; Freeman, Bruce A; Schopfer, Francisco J

    2015-10-01

    Electrophilic fatty acid nitroalkenes (NO(2)-FA) are products of nitric oxide and nitrite-mediated unsaturated fatty acid nitration. These electrophilic products induce pleiotropic signaling actions that modulate metabolic and inflammatory responses in cell and animal models. The metabolism of NO(2)-FA includes reduction of the vinyl nitro moiety by prostaglandin reductase-1, mitochondrial β-oxidation, and Michael addition with low molecular weight nucleophilic amino acids. Complex lipid reactions of fatty acid nitroalkenes are not well defined. Herein we report the detection and characterization of NO(2)-FA-containing triacylglycerides (NO(2)-FA-TAG) via mass spectrometry-based methods. In this regard, unsaturated fatty acids of dietary triacylglycerides are targets for nitration reactions during gastric acidification, where NO(2)-FA-TAG can be detected in rat plasma after oral administration of nitro-oleic acid (NO(2)-OA). Furthermore, the characterization and profiling of these species, including the generation of beta oxidation and dehydrogenation products, could be detected in NO(2)-OA-supplemented adipocytes. These data revealed that NO(2)-FA-TAG, formed by either the direct nitration of esterified unsaturated fatty acids or the incorporation of nitrated free fatty acids into triacylglycerides, contribute to the systemic distribution of these reactive electrophilic mediators and may serve as a depot for subsequent mobilization by lipases to in turn impact adipocyte homeostasis and tissue signaling events.

  15. Generation and esterification of electrophilic fatty acid nitroalkenes in triacylglycerides

    PubMed Central

    Fazzari, Marco; Khoo, Nicholas; Woodcock, Steven R.; Li, Lihua; Freeman, Bruce A.; Schopfer, Francisco J.

    2015-01-01

    Electrophilic fatty acid nitroalkenes (NO2-FA) are products of nitric oxide and nitrite-mediated unsaturated fatty acid nitration. These electrophilic products induce pleiotropic signaling actions that modulate metabolic and inflammatory responses in cell and animal models. The metabolism of NO2-FA includes reduction of the vinyl nitro moiety by prostaglandin reductase-1, mitochondrial β–oxidation and Michael addition with low molecular weight nucleophilic amino acids. Complex lipid reactions of fatty acid nitroalkenes are not well defined. Herein we report the detection and characterization of NO2-FA-containing triacylglycerides (NO2-FA-TAG) via mass spectrometry-based methods. In this regard, unsaturated fatty acids of dietary triacylglycerides are targets for nitration reactions during gastric acidification, where NO2-FA-TAG can be detected in rat plasma after oral administration of nitro-oleic acid (NO2-OA). Furthermore, the characterization and profiling of these species, including the generation of beta oxidation and dehydrogenation products, could be detected in NO2-OA supplemented adipocytes. These data revealed that NO2-FA-TAG, formed by either the direct nitration of esterified unsaturated fatty acids or the incorporation of nitrated free fatty acids into triacylglycerides, contribute to the systemic distribution of these reactive electrophilic mediators and may serve as a depot for subsequent mobilization by lipases to in turn impact adipocyte homeostasis and tissue signaling events. PMID:26066303

  16. Direct esterification of ammonium salts of carboxylic acids

    DOEpatents

    Halpern, Yuval

    2003-06-24

    A non-catalytic process for producing esters, the process comprising reacting an ammonium salt of a carboxylic acid with an alcohol and removing ammonia from the reaction mixture. Selectivities for the desired ester product can exceed 95 percent.

  17. Production of biodiesel from vegetable oil and microalgae by fatty acid extraction and enzymatic esterification.

    PubMed

    Castillo López, Beatriz; Esteban Cerdán, Luis; Robles Medina, Alfonso; Navarro López, Elvira; Martín Valverde, Lorena; Hita Peña, Estrella; González Moreno, Pedro A; Molina Grima, Emilio

    2015-06-01

    The aim of this work was to obtain biodiesel (methyl esters) from the saponifiable lipids (SLs) fraction of the microalga Nannochloropsis gaditana, whose biomass dry weight contains 12.1 wt% of these lipids. SLs were extracted from the microalga as free fatty acids (FFAs) for subsequent transformation to methyl esters (biodiesel) by enzymatic esterification. Extraction as FFAs rather than as SLs allows them to be obtained with higher purity. Microalgal FFAs were obtained by direct saponification of lipids in the biomass and subsequent extraction-purification with hexane. Esterification of FFAs with methanol was catalysed by lipase Novozym 435 from Candida antarctica. Stability studies of this lipase in the operational conditions showed that the esterification degree (ED) attained with the same batch of lipase remained constant over six reaction cycles (36 h total reaction time). The optimal conditions attained for 4 g of FFAs were 25°C, 200 rpm, methanol/FFA molar ratio of 1.5:1, Novozym 435/FFA ratio of 0.025:1 w/w and 4 h reaction time. In these conditions the ED attained was 92.6%, producing a biodiesel with 83 wt% purity from microalgal FFAs. Several experimental scales were tested (from 4 to 40 g FFAs), and in all cases similar EDs were obtained.

  18. Silica-supported sulfonic acids as recyclable catalyst for esterification of levulinic acid with stoichiometric amounts of alcohols.

    PubMed

    Maggi, Raimondo; Shiju, N Raveendran; Santacroce, Veronica; Maestri, Giovanni; Bigi, Franca; Rothenberg, Gadi

    2016-01-01

    Converting biomass into value-added chemicals holds the key to sustainable long-term carbon resource management. In this context, levulinic acid, which is easily obtained from cellulose, is valuable since it can be transformed into a variety of industrially relevant fine chemicals. Here we present a simple protocol for the selective esterification of levulinic acid using solid acid catalysts. Silica supported sulfonic acid catalysts operate under mild conditions and give good conversion and selectivity with stoichiometric amounts of alcohols. The sulfonic acid groups are tethered to the support using organic tethers. These tethers may help in preventing the deactivation of the active sites in the presence of water.

  19. Silica-supported sulfonic acids as recyclable catalyst for esterification of levulinic acid with stoichiometric amounts of alcohols

    PubMed Central

    Santacroce, Veronica; Maestri, Giovanni; Bigi, Franca; Rothenberg, Gadi

    2016-01-01

    Summary Converting biomass into value-added chemicals holds the key to sustainable long-term carbon resource management. In this context, levulinic acid, which is easily obtained from cellulose, is valuable since it can be transformed into a variety of industrially relevant fine chemicals. Here we present a simple protocol for the selective esterification of levulinic acid using solid acid catalysts. Silica supported sulfonic acid catalysts operate under mild conditions and give good conversion and selectivity with stoichiometric amounts of alcohols. The sulfonic acid groups are tethered to the support using organic tethers. These tethers may help in preventing the deactivation of the active sites in the presence of water. PMID:27829924

  20. Esterification of fermentation-derived acids via pervaporation

    DOEpatents

    Datta, Rathin; Tsai, Shih-Perng

    1998-01-01

    A low temperature method for esterifying ammonium- and amine-containing salts is provided whereby the salt is reacted with an alcohol in the presence of heat and a catalyst and then subjected to a dehydration and deamination process using pervaporation. The invention also provides for a method for producing esters of fermentation derived, organic acid salt comprising first cleaving the salt into its cationic part and anionic part, mixing the anionic part with an alcohol to create a mixture; heating the mixture in the presence of a catalyst to create an ester; dehydrating the now heated mixture; and separating the ester from the now-dehydrated mixture.

  1. Esterification of fermentation-derived acids via pervaporation

    DOEpatents

    Datta, R.; Tsai, S.P.

    1998-03-03

    A low temperature method for esterifying ammonium- and amine-containing salts is provided whereby the salt is reacted with an alcohol in the presence of heat and a catalyst and then subjected to a dehydration and deamination process using pervaporation. The invention also provides for a method for producing esters of fermentation derived, organic acid salt comprising first cleaving the salt into its cationic part and anionic part, mixing the anionic part with an alcohol to create a mixture; heating the mixture in the presence of a catalyst to create an ester; dehydrating the now heated mixture; and separating the ester from the now-dehydrated mixture. 2 figs.

  2. Computational multiple steady states for enzymatic esterification of ethanol and oleic acid in an isothermal CSTR.

    PubMed

    Ho, Pang-Yen; Chuang, Guo-Syong; Chao, An-Chong; Li, Hsing-Ya

    2005-05-01

    The capacity of complex biochemical reaction networks (consisting of 11 coupled non-linear ordinary differential equations) to show multiple steady states, was investigated. The system involved esterification of ethanol and oleic acid by lipase in an isothermal continuous stirred tank reactor (CSTR). The Deficiency One Algorithm and the Subnetwork Analysis were applied to determine the steady state multiplicity. A set of rate constants and two corresponding steady states are computed. The phenomena of bistability, hysteresis and bifurcation are discussed. Moreover, the capacity of steady state multiplicity is extended to the family of the studied reaction networks.

  3. Kinetics of Ethyl Acetate Synthesis Catalyzed by Acidic Resins

    ERIC Educational Resources Information Center

    Antunes, Bruno M.; Cardoso, Simao P.; Silva, Carlos M.; Portugal, Ines

    2011-01-01

    A low-cost experiment to carry out the second-order reversible reaction of acetic acid esterification with ethanol to produce ethyl acetate is presented to illustrate concepts of kinetics and reactor modeling. The reaction is performed in a batch reactor, and the acetic acid concentration is measured by acid-base titration versus time. The…

  4. Biodiesel production by combined fatty acids separation and subsequently enzymatic esterification to improve the low temperature properties.

    PubMed

    Wang, Meng; Nie, Kaili; Cao, Hao; Deng, Li; Wang, Fang; Tan, Tianwei

    2014-12-01

    The poor low-temperature properties of biodiesel, which provokes easy crystallization at low temperature, can cause fuel line plugging and limits its blending amount with petro-diesel. This work aimed to study the production of biodiesel with a new process of improving the low temperature performance of biodiesel. Waste cooking oil was first hydrolyzed into fatty acids (FAs) by 60g immobilized lipase and 240g RO water in 15h. Then, urea complexation was used to divide the FAs into saturated and unsaturated components. The conditions for complexation were: FA-to-urea ratio 1:2 (w/w), methanol to FA ratio 5:1 (v/v), duration 2h. The saturated and unsaturated FAs were then converted to iso-propyl and methyl esters by lipase, respectively. Finally, the esters were mixed together. The CFPP of this mixture was decreased from 5°C to -3°C. Hydrolysis, urea complexation and enzymic catalyzed esterification processes are discussed in this paper.

  5. Pd/C-Catalyzed Carbonylative Esterification of Aryl Halides with Alcohols by Using Oxiranes as CO Sources.

    PubMed

    Min, Byul-Hana; Kim, Dong-Su; Park, Hyo-Soon; Jun, Chul-Ho

    2016-04-25

    A carbonylative esterification reaction between aryl bromides and alcohols, promoted by Pd/C and NaF in the presence of oxiranes, has been developed. In this process, oxiranes serve as sources of carbon monoxide by their conversion to aldehydes through a palladium-promoted Meinwald rearrangement pathway. Intramolecular versions of this process serve as methods for the synthesis of lactones and phthalimides.

  6. Kinetic study on microwave-assisted esterification of free fatty acids derived from Ceiba pentandra Seed Oil.

    PubMed

    Lieu, Thanh; Yusup, Suzana; Moniruzzaman, Muhammad

    2016-07-01

    Recently, a great attention has been paid to advanced microwave technology that can be used to markedly enhance the biodiesel production process. Ceiba pentandra Seed Oil containing high free fatty acids (FFA) was utilized as a non-edible feedstock for biodiesel production. Microwave-assisted esterification pretreatment was conducted to reduce the FFA content for promoting a high-quality product in the next step. At optimum condition, the conversion was achieved 94.43% using 2wt% of sulfuric acid as catalyst where as 20.83% conversion was attained without catalyst. The kinetics of this esterification reaction was also studied to determine the influence of factors on the rate of reaction and reaction mechanisms. The results indicated that microwave-assisted esterification was of endothermic second-order reaction with the activation energy of 53.717kJ/mol.

  7. Preparation and characterization of biomass carbon-based solid acid catalyst for the esterification of oleic acid with methanol.

    PubMed

    Liu, Tiantian; Li, Zhilong; Li, Wei; Shi, Congjiao; Wang, Yun

    2013-04-01

    A solid acid catalyst, prepared by sulfonating carbonized corn straw, was proved to be an efficient and environmental benign catalyst for the esterification of oleic acid and methanol. Various synthetic parameters, such as carbonization temperature and time were systematically examined. It was found that the catalyst exhibited the highest acid density of 2.64 mmol/g by NaOH titration. A quantitative yield (98%) of ester was achieved, using the most active sulfonated catalyst at 333 K with a 7 wt.% catalyst/oleic acid ratio for 4h, at a 7:1 M ratio of methanol/oleic acid, while the commercial available Amberlyst-15 only gave 85% yield under the same reaction condition.

  8. Mesoporous Silica-Supported Diarylammonium Catalysts for Esterification of Free Fatty Acids in Greases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel, typically fatty acid methyl esters (FAME), has received much attention because it is a renewable biofuel that contributes little to global warming compared to petroleum-based diesel fuel. The most common method used for biodiesel production is based on the alkali-catalyzed transesterific...

  9. Reaction kinetics of free fatty acids esterification in palm fatty acid distillate using coconut shell biochar sulfonated catalyst

    NASA Astrophysics Data System (ADS)

    Hidayat, Arif; Rochmadi, Wijaya, Karna; Budiman, Arief

    2015-12-01

    Recently, a new strategy of preparing novel carbon-based solid acids has been developed. In this research, the esterification reactions of Palm Fatty Acid Distillate (PFAD) with methanol, using coconut shell biochar sulfonated catalyst from biomass wastes as catalyst, were studied. In this study, the coconut shell biochar sulfonated catalysts were synthesized by sulfonating the coconut shell biochar using concentrated H2SO4. The kinetics of free fatty acid (FFA) esterification in PFAD using a coconut shell biochar sulfonated catalyst was also studied. The effects of the mass ratio of catalyst to oil (1-10%), the molar ratio of methanol to oil (6:1-12:1), and the reaction temperature (40-60°C) were studied for the conversion of PFAD to optimize the reaction conditions. The results showed that the optimal conditions were an methanol to PFAD molar ratio of 12:1, the amount of catalyst of 10%w, and reaction temperature of 60°C. The proposed kinetic model shows a reversible second order reaction and represents all the experimental data satisfactorily, providing deeper insight into the kinetics of the reaction.

  10. Preparation and Characterization of Sulfonic Acid Functionalized Silica and Its Application for the Esterification of Ethanol and Maleic Acid

    NASA Astrophysics Data System (ADS)

    Sirsam, Rajkumar; Usmani, Ghayas

    2016-04-01

    The surface of commercially available silica gel, 60-200 mesh size, was modified with sulfonic acid through surface activation, grafting of 3-Mercaptopropyltrimethoxysilane, oxidation and acidification of 3-Mercaptopropylsilica. Sulfonic Acid Functionalization of Silica (SAFS) was confirmed by Fourier Transform Infra-red (FTIR) spectroscopy and thermal gravimetric analysis. Acid-base titration was used to estimate the cation exchange capacity of the SAFS. Catalytic activity of SAFS was judged for the esterification of ethanol with maleic acid. An effect of different process parameters viz. molar ratio, catalyst loading, speed of agitation and temperature were studied and optimized by Box Behnken Design (BBD) of Response Surface Methodology (RSM). Quadratic model developed by BBD-RSM reasonably satisfied an experimental and predicted values with correlation coefficient value R2 = 0.9504.

  11. High enantioselective Novozym 435-catalyzed esterification of (R,S)-flurbiprofen monitored with a chiral stationary phase.

    PubMed

    Siódmiak, Tomasz; Mangelings, Debby; Vander Heyden, Yvan; Ziegler-Borowska, Marta; Marszałł, Michał Piotr

    2015-03-01

    Lipases form Candida rugosa and Candida antarctica were tested for their application in the enzymatic kinetic resolution of (R,S)-flurbiprofen by enantioselective esterification. Successful chromatographic separation with well-resolved peaks of (R)- and (S)-flurbiprofen and their esters was achieved in one run on chiral stationary phases by high-performance liquid chromatography (HPLC). In this study screening of enzymes was performed, and Novozym 435 was selected as an optimal catalyst for obtaining products with high enantiopurity. Additionally, the influence of organic solvents (dichloromethane, dichloroethane, dichloropropane, and methyl tert-butyl ether), primary alcohols (methanol, ethanol, n-propanol, and n-butanol), reaction time, and temperature on the enantiomeric ratio and conversion was tested. The high values of enantiomeric ratio (E in the range of 51.3-90.5) of the esterification of (R,S)-flurbiprofen were obtained for all tested alcohols using Novozym 435, which have a great significance in the field of biotechnological synthesis of drugs. The optimal temperature range for the performed reactions was from 37 to 45 °C. As a result of the optimization, (R)-flurbiprofen methyl ester was obtained with a high optical purity, eep = 96.3 %, after 96 h of incubation. The enantiomeric ratio of the reaction was E = 90.5 and conversion was C = 35.7 %.

  12. Kinetics of Non-Catalytic Esterification of Free Fatty Acids Present in Jatropha Oil.

    PubMed

    Prasanna Rani, Karna Narayana; Ramana Neeharika, Tulasi Sri Venkata; Kumar, Thella Prathap; Satyavathi, Bankupalli; Sailu, Chintha

    2016-05-01

    Non-catalytic esterfication of free fatty acids (FFA) present in vegetable oils is an alternative pretreatment process for the biodiesel production. Biodiesel, consists of long-chain fatty acid methyl esters (FAME) and is obtained from renewable sources such as vegetable oils or animal fat. This study presents kinetics of thermal esterification of free fatty acids present in jatropha oil with methanol. The effect of process parameters like reaction time (1-5 h), temperature (170-190°C) and oil to methanol ratio (1:3-1:5) at constant pressure was investigated. The optimal conditions were found to be oil to methanol ratio of 1:4, 190°C, at 27.1 bar and 5 h which gave a maximum conversion of 95.1%. A second order kinetic model for both forward and backward reactions was proposed to study the reaction system. A good agreement was observed between the experimental data and the model values. The activation energy for forward reaction and the heat of reaction were found to be 36.364 Kcal/mol and 1.74 Kcal/mol respectively.

  13. Optimization of esterification of oleic acid and trimethylolpropane (TMP) and pentaerythritol (PE)

    SciTech Connect

    Mahmud, Hamizah Ammarah; Salimon, Jumat

    2014-09-03

    Vegetable oil (VO) is the most potential alternative to replace mineral oil for lubricant due to better lubricating properties and great physicochemical properties. Chemical modification has to be done to overcome low temperature performance and low oxidation instability due to the presence of β-hydrogen atoms of glycerol molecule. The optimization of esterification of oleic acid and polyhydric alcohol with sulfuric acid catalyst was carried out to find the optimum conditions with the highest yield. Reeaction variables such as; molar ratio, temperature, duration and catalyst concentration. Two types of polyhydric alcohol have been used; TMP and PE. The optimum results showed oleic acid successfully converted 91.2% ester TMP and 92.7% ester PE at duration: 5 hours (Ester TMP), 6 hours (Ester PE); temperature: 150°C (ester TMP), 180°C (Ester PE); catalyst concentration: 1.5% (w/w); and mol ratio: 3.9:1 (ester TMP), 4.9:1 (ester PE). From the data obtained, mole ratio showed most influenced factors to the increasing yields of ester conversions.. The TMP/PE ester was confirmed using gas chromatography (GC-FID), Fourier Transform Infrared Spectroscopy (FTIR) and Nuclear Magnetic Resonance (NMR)

  14. Optimization of esterification of oleic acid and trimethylolpropane (TMP) and pentaerythritol (PE)

    NASA Astrophysics Data System (ADS)

    Mahmud, Hamizah Ammarah; Salimon, Jumat

    2014-09-01

    Vegetable oil (VO) is the most potential alternative to replace mineral oil for lubricant due to better lubricating properties and great physicochemical properties. Chemical modification has to be done to overcome low temperature performance and low oxidation instability due to the presence of β-hydrogen atoms of glycerol molecule. The optimization of esterification of oleic acid and polyhydric alcohol with sulfuric acid catalyst was carried out to find the optimum conditions with the highest yield. Reeaction variables such as; molar ratio, temperature, duration and catalyst concentration. Two types of polyhydric alcohol have been used; TMP and PE. The optimum results showed oleic acid successfully converted 91.2% ester TMP and 92.7% ester PE at duration: 5 hours (Ester TMP), 6 hours (Ester PE); temperature: 150°C (ester TMP), 180°C (Ester PE); catalyst concentration: 1.5% (w/w); and mol ratio: 3.9:1 (ester TMP), 4.9:1 (ester PE). From the data obtained, mole ratio showed most influenced factors to the increasing yields of ester conversions.. The TMP/PE ester was confirmed using gas chromatography (GC-FID), Fourier Transform Infrared Spectroscopy (FTIR) and Nuclear Magnetic Resonance (NMR).

  15. In-Water and Neat Batch and Continuous-Flow Direct Esterification and Transesterification by a Porous Polymeric Acid Catalyst

    PubMed Central

    Baek, Heeyoel; Minakawa, Maki; Yamada, Yoichi M. A.; Han, Jin Wook; Uozumi, Yasuhiro

    2016-01-01

    A porous phenolsulphonic acid—formaldehyde resin (PAFR) was developed. The heterogeneous catalyst PAFR was applied to the esterification of carboxylic acids and alcohols, affording the carboxylic acid esters in a yield of up to 95% where water was not removed from the reaction mixture. Surprisingly, the esterification in water as a solvent proceeded to afford the desired esters in high yield. PAFR provided the corresponding esters in higher yield than other homogeneous and heterogeneous catalysts. The transesterification of alcohols and esters was also investigated by using PAFR, giving the corresponding esters. PAFR was applied to the batch-wise and continuous-flow production of biodiesel fuel FAME. The PAFR-packed flow reactor that was developed for the synthesis of carboxylic acids and FAME worked for four days without loss of its catalytic activity. PMID:27189631

  16. In-Water and Neat Batch and Continuous-Flow Direct Esterification and Transesterification by a Porous Polymeric Acid Catalyst

    NASA Astrophysics Data System (ADS)

    Baek, Heeyoel; Minakawa, Maki; Yamada, Yoichi M. A.; Han, Jin Wook; Uozumi, Yasuhiro

    2016-05-01

    A porous phenolsulphonic acid—formaldehyde resin (PAFR) was developed. The heterogeneous catalyst PAFR was applied to the esterification of carboxylic acids and alcohols, affording the carboxylic acid esters in a yield of up to 95% where water was not removed from the reaction mixture. Surprisingly, the esterification in water as a solvent proceeded to afford the desired esters in high yield. PAFR provided the corresponding esters in higher yield than other homogeneous and heterogeneous catalysts. The transesterification of alcohols and esters was also investigated by using PAFR, giving the corresponding esters. PAFR was applied to the batch-wise and continuous-flow production of biodiesel fuel FAME. The PAFR-packed flow reactor that was developed for the synthesis of carboxylic acids and FAME worked for four days without loss of its catalytic activity.

  17. Acid-Catalyzed Isomerization of Carvone to Carvacrol

    ERIC Educational Resources Information Center

    Kjonaas, Richard A.; Mattingly, Shawn P.

    2005-01-01

    The acid-catalyzed isomerization of carvone to carvacrol, first reported by Ritter and Ginsburg, is especially well suited with a permanent-magnet FT instrument. The acid-catalyzed isomerization of carvone to carvacrol produced a 61% yield after a three hour reflux with 30% aqueous sulfuric acid.

  18. The effect of BAY o 2752 on bile acid absorption and cholesterol esterification

    SciTech Connect

    Harnett, K.M.

    1988-01-01

    BAY o 2752 (N,N-(1,11-undecandiyl)bis(2,3-dihydro-2-methyl-1H-indole-1-carboxamide)) has been demonstrated to inhibit intestinal cholesterol absorption in rats. Studies were carried out on male Wistar rats to determine if this drug alters intestinal bile acid absorption or cholesterol esterification by acyl CoA: cholesterol acyltransferase (ACAT) or cholesterol ester hydrolase (CEH). BAY o 2752 did not affect intestinal absorption of taurocholic acid (TC) from ileal segments perfused in vivo with a tragacanth suspension in phosphate buffer containing NaCl, TC, and 24-{sup 14}C-TC as determined by the excretory rate of radioactivity in bile. BAY o 2752 also did not affect the uptake of TC into ileal everted sacs incubated in stirred, gassed Krebs-Ringer bicarbonate buffer with 1 mM TC, 24-{sup 14}C-TC and {sup 3}H-inulin. BAY o 2752 also did not bind TC; TG, in a filtrate of the above solutions remained at 92-98% of control.

  19. Liquid phase esterification of acetic acid over WO3 promoted β-SiC in a solvent free system.

    PubMed

    Mishra, Gopa; Behera, Gobinda C; Singh, S K; Parida, K M

    2012-12-21

    A series of tungstate promoted β-SiC catalysts was synthesized by a wetness impregnation method. The as synthesized catalysts were unambiguously characterized by XRD, Raman, FTIR, XPS, UV-Vis DRS, TEM, BET surface areas and FE-SEM, and simultaneously the total amount of the acidity of the catalysts was estimated by NH(3)-TPD. The catalytic activities of the synthesized materials were tested in the liquid phase esterification of acetic acid with n-butanol in a solvent free medium. The reaction parameters were optimized to a temperature of 120 °C, molar ratio of butanol and acetic acid of 1:2 and a reaction time of 6 h after performing a number of experiments. Under the optimum conditions, the catalytic esterification revealed a significant effect of 88% conversion with 100% selectivity to butyl acetate in 20 wt% WO(3)/β-SiC. This is the first report on the effective utilization of β-SiC as a catalyst support for liquid phase esterification of acetic acid.

  20. Fuel selection in Wistar rats exposed to cold: shivering thermogenesis diverts fatty acids from re-esterification to oxidation.

    PubMed

    Vaillancourt, Eric; Haman, François; Weber, Jean-Michel

    2009-09-01

    This study characterizes the effects of shivering thermogenesis on metabolic fuel selection in Wistar rats. Because lipids account for most of the heat produced, we have investigated: (1) whether the rate of appearance of non-esterified fatty acids (R(a) NEFAs) is stimulated by shivering, (2) whether mono-unsaturated (oleate) and saturated fatty acids (palmitate) are affected similarly, and (3) whether the partitioning between fatty acid oxidation and re-esterification is altered by cold exposure. Fuel oxidation was measured by indirect calorimetry and fatty acid mobilization by continuous infusion of 9,10-[(3)H]oleate and 1-[(14)C]palmitate. During steady-state cold exposure, results show that total heat production is unequally shared by the oxidation of lipids (52% of metabolic rate), carbohydrates (35%) and proteins (13%), and that the same fuel selection pattern is observed at all shivering intensities. All previous research shows that mammals stimulate R(a) NEFA to support exercise or shivering. In contrast, results reveal that the R(a) NEFA of the rat remains constant during cold exposure (55 micromol kg(1) min(1)). No preferential use of mono-unsaturated over saturated fatty acids could be demonstrated. The rat decreases its rate of fatty acid re-esterification from 48.4 +/- 6.4 to 19.6 +/- 6.3 micromol kg(1) min(1) to provide energy to shivering muscles. This study is the first to show that mammals do not only increase fatty acid availability for oxidation by stimulating R(a) NEFA. Reallocation of fatty acids from re-esterification to oxidation is a novel, alternative strategy used by the rat to support shivering.

  1. Lipase-catalyzed regioselective preparation of fatty acid esters of hydrocortisone.

    PubMed

    Quintana, Paula G; Baldessari, Alicia

    2009-01-01

    A series of fatty acid derivatives of hydrocortisone has been prepared by an enzymatic methodology. Nine 21-monoacyl products and one 3,11,17-triacetyl derivative, nine of them novel compounds, were obtained in a highly regioselective way through lipase-catalyzed esterification, transesterification and alcoholysis reactions. The influence of various reaction parameters such as acylating agent: substrate ratio, enzyme: substrate ratio, solvent, temperature and nature of acylating agent and alcohol was evaluated. Among the tested lipases, Candida antarctica lipase appeared to be the most appropriate and showed a high efficient behavior especially in a one-pot transesterification. The advantages presented by this methodology, such as mild reaction conditions and low environmental impact, make the biocatalysis a convenient way to prepare acyl derivatives of hydrocortisone. These lipophilic compounds are potential products in the pharmaceutical industry.

  2. Concurrent esterification and N-acetylation of amino acids with orthoesters: A useful reaction with interesting mechanistic implications

    PubMed Central

    Gibson, Sarah; Romero, Dickie; Jacobs, Hollie K.; Gopalan, Aravamudan S.

    2010-01-01

    The concurrent esterification and N-acetylation of amino acids has been studied with triethyl orthoacetate (TEOA) and triethyl orthoformate (TEOF). In a surprising finding, only one equivalent of TEOA in refluxing toluene was necessary to convert L-proline and L-phenylalanine to the corresponding N-acetyl ethyl esters in good yield. The same transformation using TEOF was not effective. Stereochemical outcome and stoichiometric studies as well as structural variation of the amino acids in this reaction provided unexpected mechanistic insight. PMID:21286246

  3. Kinetics of the esterification of active pharmaceutical ingredients containing carboxylic acid functionality in polyethylene glycol: formulation implications.

    PubMed

    Schou-Pedersen, Anne Marie V; Hansen, Steen Honoré; Moesgaard, Birthe; Østergaard, Jesper

    2014-08-01

    Polyethylene glycols (PEGs) are attractive as excipients in the manufacture of drug products because they are water soluble and poorly immunogenic. They are used in various pharmaceutical preparations. However, because of their terminal hydroxyl groups, PEGs can participate in esterification reactions. In this study, kinetics of two active pharmaceutical ingredients, cetirizine and indomethacin possessing carboxylic acid functionality, has been studied in PEG 400 and PEG 1000 at 50 °C, 60 °C, 70 °C, and 80 °C. HPLC-UV was applied for the determination of concentrations in the kinetic studies, whereas HPLC-MS was used to identify reaction products. The esterification reactions were observed to be reversible. A second-order reversible kinetic model was applied and rate constants were determined. The rate constants demonstrated that cetirizine was esterified about 240 times faster than indomethacin at 80 °C. The shelf-life for cetirizine in a PEG 400 formulation at 25 °C expressed as t(95%) was predicted to be only 30 h. Further, rate constants for esterification of cetirizine in PEG 1000 in relation to PEG 400 decreased by a factor of 10, probably related to increased viscosity. However, it is important to be aware of this drug-excipient interaction, as it can reduce the shelf-life of a low-average molecular weight PEG formulation considerably.

  4. Influences of fatty acid moiety and esterification of polyglycerol fatty acid esters on the crystallization of palm mid fraction in oil-in-water emulsion.

    PubMed

    Sakamoto, Mitsuhiro; Ohba, Azusa; Kuriyama, Juhei; Maruo, Kouichi; Ueno, Satoru; Sato, Kiyotaka

    2004-08-15

    We examined the crystallization of palm mid fraction (PMF) in oil-in-water (O/W) emulsion, after adding polyglycerol fatty acid esters (PGFEs). We employed ultrasonic velocity measurements and DSC techniques, with special emphases on the influences of fatty acid moiety and esterification of PGFE. Twelve types of PGFEs were examined as additives. PGFEs have a large hydrophilic moiety composed of 10 glycerol molecules to which palmitic, stearic and behenic acids were esterified as the fatty acid moiety with different degrees of esterification. Crystallization temperature (T(c)) of PMF remarkably increased with increasing concentrations of the PGFEs as the chain length of the fatty acid moiety increased, and the PGFE became more hydrophobic in accordance with increasing degree of esterification. We observed that the heterogeneous nucleation of PMF in the O/W emulsion was activated at the oil-water interface, where the template effect of very hydrophobic long saturated fatty acid chains of the PGFE might play the main role of heterogeneous nucleation.

  5. Synthesis and evaluation of odour-active methionyl esters of fatty acids via esterification and transesterification of butter oil.

    PubMed

    Li, Cheng; Sun, Jingcan; Fu, Caili; Yu, Bin; Liu, Shao Quan; Li, Tianhu; Huang, Dejian

    2014-02-15

    Methionol-derived fatty acid esters were synthesised by both chemical and lipase catalysed esterification between fatty acids and methionol. Beneficial effects of both methods were compared qualitatively and quantitatively by GC-MS/GC-FID results. And the high acid and heat stability of our designed methionyl esters meet the requirement of the food industry. Most importantly, the sensory test showed that fatty acid carbon-chain length had an important effect on the flavour attributes of methionyl esters. Moreover, through Lipozyme TL IM-mediated transesterification, valuable methionol-derived esters were synthesised from the readily available natural material butter oil as the fatty acid source. The conversion of methionol and yield of each methionyl ester were also elucidated by GC-MS-FID.

  6. Preparation of highly purified pinolenic acid from pine nut oil using a combination of enzymatic esterification and urea complexation.

    PubMed

    No, Da Som; Zhao, Ting Ting; Kim, Yangha; Yoon, Mi-Ra; Lee, Jeom-Sig; Kim, In-Hwan

    2015-03-01

    Pinolenic acid (PLA) is a polyunsaturated fatty acid of plant origin. PLA has been successfully enriched according to a two-step process involving lipase-catalysed esterification and urea complexation. For the first step, the fatty acids present in pine nut oil were selectively esterified with lauryl alcohol using Candida rugosa lipase. Under the optimum conditions of 0.1% enzyme loading, 10% additional water, and 15 °C, PLA was enriched up to 43 mol% from an initial value of 13 mol% in the pine nut oil. For the second step, the PLA-enriched fraction from the first step was subjected to a urea complexation process. In this way, PLA enrichments with purities greater than 95 mol% were obtained at urea to fatty acid ratios greater than 3:1 (wt/wt), and 100% pure PLA was produced at a urea to fatty acid ratio of 5:1 with an 8.7 mol% yield.

  7. Synthesis of 2-monoacylglycerols and structured triacylglycerols rich in polyunsaturated fatty acids by enzyme catalyzed reactions.

    PubMed

    Rodríguez, Alicia; Esteban, Luis; Martín, Lorena; Jiménez, María José; Hita, Estrella; Castillo, Beatriz; González, Pedro A; Robles, Alfonso

    2012-08-10

    This paper studies the synthesis of structured triacylglycerols (STAGs) by a four-step process: (i) obtaining 2-monoacylglycerols (2-MAGs) by alcoholysis of cod liver oil with several alcohols, catalyzed by lipases Novozym 435, from Candida antartica and DF, from Rhizopus oryzae, (ii) purification of 2-MAGs, (iii) formation of STAGs by esterification of 2-MAGs with caprylic acid catalyzed by lipase DF, from R. oryzae, and (iv) purification of these STAGs. For the alcoholysis of cod liver oil, absolute ethanol, ethanol 96% (v/v) and 1-butanol were compared; the conditions with ethanol 96% were then optimized and 2-MAG yields of around 54-57% were attained using Novozym 435. In these 2-MAGs, DHA accounted for 24-31% of total fatty acids. In the operational conditions this lipase maintained a stable level of activity over at least 11 uses. These results were compared with those obtained with lipase DF, which deactivated after only three uses. The alcoholysis of cod liver oil and ethanol 96% catalyzed by Novozym 435 was scaled up by multiplying the reactant amounts 100-fold and maintaining the intensity of treatment constant (IOT=3g lipase h/g oil). In these conditions, the 2-MAG yield attained was about 67%; these 2-MAGs contained 36.6% DHA. The synthesized 2-MAGs were separated and purified from the alcoholysis reaction products by solvent extraction using solvents of low toxicity (ethanol and hexane); 2-MAG recovery yield and purity of the target product were approximately 96.4% and 83.9%, respectively. These 2-MAGs were transformed to STAGs using the optimal conditions obtained in a previous work. After synthesis and purification, 93% pure STAGs were obtained, containing 38% DHA at sn-2 position and 60% caprylic acid (CA) at sn-1,3 positions (of total fatty acids at these positions), i.e. the major TAG is the STAG with the structure CA-DHA-CA.

  8. The Iron-Catalyzed Oxidation of Hydrazine by Nitric Acid

    SciTech Connect

    Karraker, D.G.

    2001-07-17

    To assess the importance of iron to hydrazine stability, the study of hydrazine oxidation by nitric acid has been extended to investigate the iron-catalyzed oxidation. This report describes those results.

  9. Tailoring the Synergistic Bronsted-Lewis acidic effects in Heteropolyacid catalysts: Applied in Esterification and Transesterification Reactions

    NASA Astrophysics Data System (ADS)

    Tao, Meilin; Xue, Lifang; Sun, Zhong; Wang, Shengtian; Wang, Xiaohong; Shi, Junyou

    2015-09-01

    In order to investigate the influences of Lewis metals on acidic properties and catalytic activities, a series of Keggin heteropolyacid (HPA) catalysts, HnPW11MO39 (M = TiIV, CuII, AlIII, SnIV, FeIII, CrIII, ZrIV and ZnII; for Ti and Zr, the number of oxygen is 40), were prepared and applied in the esterification and transesterification reactions. Only those cations with moderate Lewis acidity had a higher impact. Ti Substituted HPA, H5PW11TiO40, posse lower acid content compared with TixH3-4xPW12O40 (Ti partial exchanged protons in saturated H3PW12O40), which demonstrated that the Lewis metal as an addenda atom (H5PW11TiO40) was less efficient than those as counter cations (TixH3-4xPW12O40). On the other hand, the highest conversion reached 92.2% in transesterification and 97.4% in esterification. Meanwhile, a good result was achieved by H5PW11TiO40 in which the total selectivity of DAG and TGA was 96.7%. In addition, calcination treatment to H5PW11TiO40 make it insoluble in water which resulted in a heterogeneous catalyst feasible for reuse.

  10. Tailoring the Synergistic Bronsted-Lewis acidic effects in Heteropolyacid catalysts: Applied in Esterification and Transesterification Reactions

    PubMed Central

    Tao, Meilin; Xue, Lifang; Sun, Zhong; Wang, Shengtian; Wang, Xiaohong; Shi, Junyou

    2015-01-01

    In order to investigate the influences of Lewis metals on acidic properties and catalytic activities, a series of Keggin heteropolyacid (HPA) catalysts, HnPW11MO39 (M = TiIV, CuII, AlIII, SnIV, FeIII, CrIII, ZrIV and ZnII; for Ti and Zr, the number of oxygen is 40), were prepared and applied in the esterification and transesterification reactions. Only those cations with moderate Lewis acidity had a higher impact. Ti Substituted HPA, H5PW11TiO40, posse lower acid content compared with TixH3−4xPW12O40 (Ti partial exchanged protons in saturated H3PW12O40), which demonstrated that the Lewis metal as an addenda atom (H5PW11TiO40) was less efficient than those as counter cations (TixH3−4xPW12O40). On the other hand, the highest conversion reached 92.2% in transesterification and 97.4% in esterification. Meanwhile, a good result was achieved by H5PW11TiO40 in which the total selectivity of DAG and TGA was 96.7%. In addition, calcination treatment to H5PW11TiO40 make it insoluble in water which resulted in a heterogeneous catalyst feasible for reuse. PMID:26374393

  11. Continuous esterification of free fatty acids in crude biodiesel by an integrated process of supercritical methanol and sodium methoxide catalyst.

    PubMed

    Zeng, Dan; Li, Ruosong; Feng, Mingjun; Fang, Tao

    2014-10-01

    An integrated process of supercritical methanol (SCM) and sodium methoxide catalyst was developed to produce fatty acid methyl esters (FAMEs) via continuous esterification from crude biodiesel. The crude biodiesel with high free fatty acid (FFA) content must be refined to reduce the acid value (AV) for meeting the quality standards. The process parameters were studied by Box-Behnken design (BBD) of response surface methodology (RSM). The experimental results revealed that the AV of crude biodiesel decreased from 18.66 to 0.55 mg KOH g(-1) at the reaction conditions of 350 °C, 0.5 % amount of sodium methoxide catalyst, and 10 MPa. Temperature shows the most significant effect on the esterification, followed by pressure and amount of sodium methoxide catalyst. This integrated process proved to be a potential route to refine the crude biodiesel because of its continuity, high efficiency, and less energy consumption with relatively moderate reaction conditions compared with conventional methods.

  12. Influence of two different alcohols in the esterification of fatty acids over layered zinc stearate/palmitate.

    PubMed

    de Paiva, Eduardo José Mendes; Corazza, Marcos Lúcio; Sierakowski, Maria Rita; Wärnå, Johan; Murzin, Dmitry Yu; Wypych, Fernando; Salmi, Tapio

    2015-10-01

    In this work, esterification of fatty acids (oleic, linoleic and stearic acid) with a commercial zinc carboxylate (a layered compound formed by simultaneous intercalation of stearate and palmitate anions) was performed. Kinetic modeling using a quasi-homogeneous approach successfully fitted experimental data at different molar ratio of fatty acids/alcohols (1-butanol and 1-hexanol) and temperature. An apparent first-order reaction related to all reactants was found and activation energy of 66 kJ/mol was reported. The catalyst showed to be unique, as it can be easily recovered like a heterogeneous catalysts behaving like ionic liquids. In addition, this catalyst demonstrated a peculiar behavior, because higher reactivity was observed with the increase in the alcohols chain length compared to the authors' previous work using ethanol.

  13. Continuous process of preparation of n-butyl(meth)acrylate by esterification of (meth)acrylic acid by butanol on thermostable sulfo-cation exchanger

    SciTech Connect

    Zheleznaya, L.L.; Karakhanov, R.A.; Lunin, A.F.; Magadov, R.S.; Meshcheryakov, S.V.; Mkrtychan, V.R.; Fomin, V.A.

    1987-11-10

    The authors propose an effective thermostable sulfo-cation exchanger based on polymers with a system of conjugated bonds, sulfopolyphenylene ketone (SPP) differing from the known cation exchangers by the high thermostability (up to 250/sup 0/C), and also having the effect of the stabilization of the double bond in unsaturated monomers. The combination of inhibiting and cation exchange properties makes it also possible to use these sulfo-cation exchangers in the processes of esterification of (meth)acrylic acids by alcohols without addition of special inhibitors. The SPP catalyst was tested in esterification processes of acrylic an methacrylic acid by butanol at a pilot plant.

  14. Esterification of essential and non-essential fatty acids into distinct lipid classes in ruminant and non-ruminant tissues.

    PubMed

    Caldari-Torres, Cristina; McGilliard, Michael L; Corl, Benjamin A

    2016-10-01

    Extensive microbial biohydrogenation of polyunsaturated fatty acids (PUFA) in the rumen reduces the essential fatty acids (EFA) available for absorption in ruminant animals, but there is no published documentation of ruminants developing EFA deficiency. In ruminants, most circulating PUFA are found in the phospholipid (PL) and cholesteryl ester lipid classes that have slow turn-over compared to other lipid classes. The objective of this experiment was to measure fatty acid esterification patterns of the non-EFA palmitic (16:0) and oleic acid (18:1), and the EFA linoleic (18:2) and linolenic acid (18:3) in small intestine, liver, and muscle tissue of cows and pigs to identify tissues participating in sequestration of these FA in less metabolically active lipid classes in ruminants. Bovine and porcine small intestine, liver, and muscle explants were prepared and incubated in media containing radiolabeled 16:0, 18:1, 18:2, or 18:3 to measure esterification of fatty acids into PL and TG. Neither bovine nor porcine small intestine explants preferentially incorporated non-EFA compared to EFA into PL vs TG. Bovine liver explants esterified a larger proportion of EFA than non-EFA into PL compared to TG, while incorporation was similar among the FA tested in porcine liver explants. Bovine muscle explants showed preferential incorporation of EFA into PL rather than TG. Results show that bovine and porcine liver and muscle esterify EFA and non-EFA differently and that the conservation of EFA in ruminants is a result of preferential incorporation of EFA into PL mediated by bovine liver and muscle, but not the small intestine.

  15. A comparative study of solid carbon acid catalysts for the esterification of free fatty acids for biodiesel production. Evidence for the leaching of colloidal carbon.

    PubMed

    Deshmane, Chinmay A; Wright, Marcus W; Lachgar, Abdessadek; Rohlfing, Matthew; Liu, Zhening; Le, James; Hanson, Brian E

    2013-11-01

    The preparation of a variety of sulfonated carbons and their use in the esterification of oleic acid is reported. All sulfonated materials show some loss in activity associated with the leaching of active sites. Exhaustive leaching shows that a finite amount of activity is lost from the carbons in the form of colloids. Fully leached catalysts show no loss in activity upon recycling. The best catalysts; 1, 3, and 6; show initial TOFs of 0.07 s(-1), 0.05 s(-1), and 0.14 s(-1), respectively. These compare favorably with literature values. Significantly, the leachate solutions obtained from catalysts 1, 3, and 6, also show excellent esterification activity. The results of TEM and catalyst poisoning experiments on the leachate solutions associate the catalytic activity of these solutions with carbon colloids. This mechanism for leaching active sites from sulfonated carbons is previously unrecognized.

  16. Pharmacokinetics and tissue distribution of docetaxel liposome mediated by a novel galactosylated cholesterol derivatives synthesized by lipase-catalyzed esterification in non-aqueous phase.

    PubMed

    Luo, Li-Hua; Zheng, Pin-Jing; Nie, Hua; Chen, Yu-Chao; Tong, Dan; Chen, Jin; Cheng, Yi

    2016-05-01

    The purpose of this study is to synthesize a novel galactosylated cholesterol derivative, cholesterol-diethenyl decanedioate-lactitol (CHS-DD-LA) through lipase-catalyzed esterification in non-aqueous and to evaluate the preparation, pharmacokinetics and biodistribution of docetaxel (DOC) liposomes modified with CHS-DD-LA (G-DOC-L), which may actively gather at the liver compared with the conventional DOC liposomes (DOC-L) and commercial dosage form of DOC injection (DOC-i). A rapid and simple liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay was developed for the determination of the DOC concentration in plasma and tissues with Taxol as the internal standard (IS). To measure the liver-targeting effect of the G-DOC-L, relative uptake rate (Re), peak concentration ratio (Ce), targeting efficiency (Te) and relative targeting efficiency (RTe) were reduced as the evaluation parameters. The results showed that the entrapment efficiency, particle size and Zeta potential of G-DOC-L was 76.8 ± 3.5%, 95.6 nm and 27.19 mV, respectively. After i.v. administration at the dose of 2.5 mg/kg in rats, a decrease in the AUC, MRT and an increase in CL (p < 0.05) were observed in the G-DOC-L group compared with DOC-L. All these results suggested that galactose-anchored liposomes could rapidly be removed from the circulation in vivo. The tissue distribution of G-DOC-L was widely different from that of DOC-L. The Re of G-DOC-L, DOC-L on liver was 4.011, 0.102; Ce was 3.391, 0.111; Te was 55.01, 3.08, respectively, demonstrating that G-DOC-L had an excellent effect on liver-targeting, which may help to improve the therapeutic effect of hepatic diseases.

  17. Silver-catalyzed protodecarboxylation of heteroaromatic carboxylic acids.

    PubMed

    Lu, Pengfei; Sanchez, Carolina; Cornella, Josep; Larrosa, Igor

    2009-12-17

    A simple and highly efficient protodecarboxylation procedure for a variety of heteroaromatic carboxylic acids catalyzed by Ag(2)CO(3) and AcOH in DMSO is described. This methodology can also perform the selective monoprotodecarboxylation of several aromatic dicarboxylic acids.

  18. Silver-Catalyzed Decarboxylative Bromination of Aliphatic Carboxylic Acids.

    PubMed

    Tan, Xinqiang; Song, Tao; Wang, Zhentao; Chen, He; Cui, Lei; Li, Chaozhong

    2017-03-13

    The silver-catalyzed Hunsdiecker bromination of aliphatic carboxylic acids is described. With Ag(Phen)2OTf as the catalyst and dibromoisocyanuric acid as the brominating agent, various aliphatic carboxylic acids underwent decarboxylative bromination to provide the corresponding alkyl bromides under mild conditions. This method not only is efficient and general but also enjoys wide functional group compatibility. An oxidative radical mechanism involving Ag(II) intermediates is proposed.

  19. Studies on performance evaluation of a green plasticizer made by enzymatic esterification of furfuryl alcohol and castor oil fatty acid.

    PubMed

    Mukherjee, Sohini; Ghosh, Mahua

    2017-02-10

    The esterification of furfuryl alcohol (FA) and castor oil fatty acid (COFA) at 3:1 molar ratio, by immobilized Candida antarctica Lipase B (NS 435 from Novozyme) in a solvent free system gave a maximum yield of 88.64% (%w/w) at 5h. Performance of the FA-COFA ester plasticized Ethyl Cellulose (EC) films were evaluated by surface morphologies, XRD analysis, mechanical properties,thermal properties, water vapor permeability and migration stability test. It was an effective plasticizer with better mechanical properties and thermal stability at the increasing concentration of FA-COFA ester (15-25%) containing EC film, than the traditional plasticizer, i.e; dibutyl phthalate (DBP) in producing good quality films. Chemical structure and the intermolecular interactions between FA-COFA ester and ethyl cellulose chains were the causative agents of these outstanding performances. Therefore, this FA-COFA ester, with significant plasticizing property, at a certain concentration, can be a substitute of DBP.

  20. Nonthermal effect of microwave irradiation in nonaqueous enzymatic esterification.

    PubMed

    Wan, Hui-da; Sun, Shi-yu; Hu, Xue-yi; Xia, Yong-mei

    2012-03-01

    Microwave has nonthermal effects on enzymatic reactions, mainly caused by the polarities of the solvents and substrates. In this experiment, a model reaction with caprylic acid and butanol that was catalyzed by lipase from Mucor miehei in alkanes or arenes was employed to investigate the nonthermal effect in nonaqueous enzymatic esterification. With the comparison of the esterification carried by conventional heating and consecutive microwave irradiation, the positive nonthermal effect on the initial reaction rates was found substrate concentration-dependent and could be vanished ostensibly when the substrate concentration was over 2.0 mol L(-1). The polar parameter log P well correlates the solvent polarity with the microwave effect, comparing to dielectric constant and assayed solvatochromic solvent polarity parameters. The log P rule presented in conventional heating-enzymatic esterification still fits in the microwaved enzymatic esterification. Alkanes or arenes with higher log P provided positive nonthermal effect in the range of 2 ≤ log P ≤ 4, but yielded a dramatic decrement after log P = 4. Isomers of same log P with higher dielectric constant received stronger positive nonthermal effect. With lower substrate concentration, the total log P of the reaction mixture has no obvious functional relation with the microwave effect.

  1. Palladium(III)-Catalyzed Fluorination of Arylboronic Acid Derivatives

    PubMed Central

    Tang, Pingping; Murphy, Jennifer M.; Ritter, Tobias

    2013-01-01

    A practical, palladium-catalyzed synthesis of aryl fluorides from arylboronic acid derivatives is presented. The reaction is operationally simple and amenable to multi-gram-scale synthesis. Evaluation of the reaction mechanism suggests a single-electron-transfer pathway, involving a Pd(III) intermediate that has been isolated and characterized. PMID:24040932

  2. Palladium(III)-catalyzed fluorination of arylboronic acid derivatives.

    PubMed

    Mazzotti, Anthony R; Campbell, Michael G; Tang, Pingping; Murphy, Jennifer M; Ritter, Tobias

    2013-09-25

    A practical, palladium-catalyzed synthesis of aryl fluorides from arylboronic acid derivatives is presented. The reaction is operationally simple and amenable to multigram-scale synthesis. Evaluation of the reaction mechanism suggests a single-electron-transfer pathway, involving a Pd(III) intermediate that has been isolated and characterized.

  3. Acid-catalyzed dehydrogenation of amine-boranes

    DOEpatents

    Stephens, Frances Helen; Baker, Ralph Thomas

    2010-01-12

    A method of dehydrogenating an amine-borane using an acid-catalyzed reaction. The method generates hydrogen and produces a solid polymeric [R.sup.1R.sup.2B--NR.sup.3R.sup.4].sub.n product. The method of dehydrogenating amine-boranes may be used to generate H.sub.2 for portable power sources.

  4. An acid-catalyzed macrolactonization protocol.

    PubMed

    Trost, Barry M; Chisholm, John D

    2002-10-17

    [reaction: see text] An efficient macrolactonization protocol devoid of any base was developed derived from the use of vinyl esters in transesterification. Subjecting a hydroxy acid and ethoxyacetylene to 2 mol % [RuCl(2)(p-cymene)](2) in toluene followed by addition of camphorsulfonic acid or inverse addition provided macrolactones in good yields.

  5. Esterification of oil adsorbed on palm decanter cake into methyl ester using sulfonated rice husk ash as heterogeneous acid catalyst

    NASA Astrophysics Data System (ADS)

    Hindryawati, Noor; Erwin, Maniam, Gaanty Pragas

    2017-02-01

    Palm Decanter cake (PDC) which is categorized as the waste from palm oil mill has been found to contain residual crude palm oil. The oil adsorbed on the PDC (PDC-oil) can be extracted and potentially used as feedstock for biodiesel production. Feedstock from waste like PDC-oil is burdened with high free fatty acids (FFAs) which make the feedstock difficult to be converted into biodiesel using basic catalyst. Therefore, in this study, a solid acid, RHA-SO3H catalyst was synthesized by sulfonating rice husk ash (RHA) with concentrated sulfuric acid. The RHA-SO3H prepared was characterized with TGA, FTIR, BET, XRD, FE-SEM, and Hammett indicators (methyl red, bromophenol blue, and crystal violet). PDC was found to have about 11.3 wt. % oil recovered after 1 hour extraction using ultrasound method. The presence of sulfonate group was observed in IR spectrum, and the surface area of RHA-SO3H was reduced to 37 m2.g-1 after impregnation of sulfonate group. The RHA-SO3H catalyst showed that it can work for both esterification of free fatty acid which is present in PDC-oil, and transesterification of triglycerides into methyl ester. The results showed highest methyl ester content of 70.2 wt.% at optimal conditions, which was 6 wt.% catalyst amount, methanol to oil molar ratio of 17:1 for 5 hours at 120 °C.

  6. Oil palm trunk and sugarcane bagasse derived solid acid catalysts for rapid esterification of fatty acids and moisture-assisted transesterification of oils under pseudo-infinite methanol.

    PubMed

    Ezebor, Francis; Khairuddean, Melati; Abdullah, Ahmad Zuhairi; Boey, Peng Lim

    2014-04-01

    The use of pseudo-infinite methanol in increasing the rate of esterification and transesterification reactions was studied using oil palm trunk (OPT) and sugarcane bagasse (SCB) derived solid acid catalysts. The catalysts were prepared by incomplete carbonisation at 400°C for 8h, followed by sulfonation at 150°C for 15h and characterised using TGA/DTA, XRD, FT-IR, SEM-EDS, EA and titrimetric determinations of acid sites. Under optimal reaction conditions, the process demonstrated rapid esterification of palmitic acid, with FAME yields of 93% and 94% in 45min for OPT and SCB catalysts, respectively. With the process, moisture levels up to 16.7% accelerated the conversion of low FFA oils by sulfonated carbon catalysts, through moisture-induced violent bumping. Moisture assisted transesterification of palm olein containing 1.78% FFA and 8.33% added water gave FAME yield of 90% in 10h, which was two folds over neat oil.

  7. Solvent-Free Production of Bioflavors by Enzymatic Esterification of Citronella (Cymbopogon winterianus) Essential Oil.

    PubMed

    Paroul, Natália; Grzegozeski, Luana Paula; Chiaradia, Viviane; Treichel, Helen; Cansian, Rogério L; Oliveira, J Vladimir; de Oliveira, Débora

    2012-01-01

    Enzymatic esterification of citronella essential oil towards the production of geranyl and citronellyl esters may present great scientific and technological interest due to the well-known drawbacks of the chemical-catalyzed route. In this context, this work reports the maximization of geranyl and citronellyl esters production by esterification of oleic and propionic acids in a solvent-free system using a commercial immobilized lipase as catalyst. Results of the reactions showed that the strategy adopted for the experimental design proved to be useful in evaluating the effects of the studied variables on the reaction conversion using Novozym 435 as catalyst. The operating conditions that maximized the production of each ester were determined, leading, in a general way, to conversions of about 90% for all systems. New experimental data on enzymatic esterification of crude citronella essential oil for geranyl and citronellyl esters production in solvent-free system are reported in this work.

  8. Esterification of oleic acid with methanol by immobilized lipase on wrinkled silica nanoparticles with highly ordered, radially oriented mesochannels.

    PubMed

    Pang, Jinli; Zhou, Guowei; Liu, Ruirui; Li, Tianduo

    2016-02-01

    Mesoporous silica nanoparticles with a wrinkled structure (wrinkled silica nanoparticles, WSNs) having highly ordered, radially oriented mesochannels were synthesized by a solvothermal method. The method used a mixture of cyclohexane, ethanol, and water as solvent, tetraethoxysilane (TEOS) as source of inorganic silica, ammonium hydroxide as hydrolysis additive, cetyltrimethylammonium bromide (CTAB) as surfactant, and polyvinylpyrrolidone (PVP) as stabilizing agent of particle growth. Particle size (240nm to 540nm), specific surface areas (490m(2)g(-1) to 634m(2)g(-1)), surface morphology (radial wrinkled structures), and pore structure (radially oriented mesochannels) of WSN samples were varied using different molar ratios of CTAB to PVP. Using synthesized WSN samples with radially oriented mesochannels as support, we prepared immobilized Candida rugosa lipase (CRL) as a new biocatalyst for biodiesel production through the esterification of oleic acid with methanol. These results suggest that WSNs with highly ordered, radially oriented mesochannels have promising applications in biocatalysis, with the highest oleic acid conversion rate of about 86.4% under the optimum conditions.

  9. Kinetics of acid-catalyzed cleavage of cumene hydroperoxide.

    PubMed

    Levin, M E; Gonzales, N O; Zimmerman, L W; Yang, J

    2006-03-17

    The cleavage of cumene hydroperoxide, in the presence of sulfuric acid, to form phenol and acetone has been examined by adiabatic calorimetry. As expected, acid can catalyze cumene hydroperoxide reaction at temperatures below that of thermally-induced decomposition. At elevated acid concentrations, reactivity is also observed at or below room temperature. The exhibited reactivity behavior is complex and is significantly affected by the presence of other species (including the products). Several reaction models have been explored to explain the behavior and these are discussed.

  10. Profiles of fatty acids and 7-O-acyl okadaic acid esters in bivalves: can bacteria be involved in acyl esterification of okadaic acid?

    PubMed

    Vale, Paulo

    2010-01-01

    The presence of 7-O-acyl okadaic acid (OA) esters was studied by LC-MS in the digestive glands of blue mussel (Mytilus galloprovincialis) and common cockle (Cerastoderma edule) from Albufeira lagoon, located 20km south of Lisbon. The profile of free and total fatty acids (FA) was analysed using a similar LC separation with a reversed phase C8 column and mass spectrometry detection. In mussel the free FA profile was reflected in the FA esterified to OA, being palmitic acid for instance the most abundant in both cases. In cockle, 7-O-acyl esters with palmitic acid were almost absent and esters with a C16:0 isomer were dominant, followed by esters with C15:1 and C15:0. The cockle free FA profile was similar to mussel, and in accordance with literature findings in bivalves. After hydrolysis, a major difference in the FA profile occurred in both species, presenting a high percentage of a C16:0 isomer. The isomer found in general lipids and bound to OA seemed to be related, presenting similar relative retention times (RRT) to C16:0, differing from expected RRT of monomethyl-branched isomers (iso- or anteiso-). A tentative identification was made with the multimethyl-branched isoprenoid, 4,8,12-trimethyltridecanoic acid (TMTD). TMTD is a product of phytol degradation. This was also suspected when the proportion of this compound in relation to palmitic acid was reduced in vivo in mussels fed a chlorophyll-free diet. Extensive esterification of OA by, among others, phytol-degrading bacteria is discussed as a plausible hypothesis in cockle, but not in mussel, due to the relatively high specific proportion of odd-numbered and branched FA.

  11. Cutinase promotes dry esterification of cotton cellulose.

    PubMed

    Xiaoman, Zhao; Teresa, Matama; Artur, Ribeiro; Carla, Silva; Jing, Wu; Jiajia, Fu; Artur, Cavaco-Paulo

    2016-01-01

    Cutinase from Thermobifida fusca was used to esterify the hydroxyl groups of cellulose with the fatty acids from triolein. Cutinase and triolein were pre-adsorbed on cotton and the reaction proceeded in a dry state during 48 h at 35°C. The cutinase-catalyzed esterification of the surface of cotton fabric resulted in the linkage of the oleate groups to the glycoside units of cotton cellulose. The superficial modification was confirmed by performing ATR-FTIR on treated cotton samples and by MALDI-TOF analysis of the liquors from the treatment of the esterified cotton with a crude cellulase mixture. Modified cotton fabric also showed a significant increase of hydrophobicity. This work proposes a novel bio-based approach to obtain hydrophobic cotton.

  12. Surface esterification of cellulose nanofibers by a simple organocatalytic methodology.

    PubMed

    Avila Ramírez, Jhon Alejandro; Suriano, Camila Juan; Cerrutti, Patricia; Foresti, María Laura

    2014-12-19

    Bacterial cellulose nanofibers were esterified with two short carboxylic acids by means of a simple and novel organic acid-catalyzed route. The methodology proposed relayed on the use of a non-toxic biobased α-hydroxycarboxylic acid as catalyst, and proceeded under moderate reaction conditions in solventless medium. By varying the esterification interval, acetylated and propionized bacterial cellulose nanofibers with degree of substitution (DS) in the 0.02-0.45 range could be obtained. Esterified bacterial cellulose samples were characterized by means of Solid-State CP/MAS (13)C Nuclear Magnetic Resonance spectroscopy (CP/MAS (13)C NMR), Fourier Transform Infrared spectroscopy (FTIR), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and chosen hydrophobicity test assays. TGA results showed that the esterified nanofibers had increased thermal stability, whereas XRD data evidenced that the organocatalytic esterification protocol did not alter their crystallinity. The analysis of the ensuing modified nanofibers by NMR, FTIR, XRD and TGA demonstrated that esterification occurred essentially at the surface of bacterial cellulose microfibrils, something highly desirable for changing their surface hydrophilicity while not affecting their ultrastructure.

  13. Decomposition of peracetic acid catalyzed by vanadium complexes

    SciTech Connect

    Makarov, A.P.; Gekhman, A.E.; Moiseev, I.I.; Polotryuk, O.Y.

    1986-02-01

    This paper studies the decomposition of peracetic acid (AcOOH) in acetic acid (AcOH) catalyzed by vanadium complexes. It is shown that peractic acid in acetic acid solutions of ammonium anadate decomposes with the predominant formation of 0/sub 2/ and small amounts of CO/sub 2/, the yield of which increases with increasing temperature and peracetic acid concentration. Both reactions proceed without the formation of free radicals in amounts detectable by ESR spectroscopy. The rate of oxygen release under conditions in which the formation of CO/sub 2/ is insignificant obeys a kinetic equation indicating the intermediate formation of a complex between V/sup 5 +/ ions and peracetic acid and the slow conversion of this complex into the observed products.

  14. Iridium-Catalyzed Asymmetric Hydrogenation of Unsaturated Carboxylic Acids.

    PubMed

    Zhu, Shou-Fei; Zhou, Qi-Lin

    2017-04-04

    Chiral carboxylic acid moieties are widely found in pharmaceuticals, agrochemicals, flavors, fragrances, and health supplements. Although they can be synthesized straightforwardly by transition-metal-catalyzed enantioselective hydrogenation of unsaturated carboxylic acids, because the existing chiral catalysts have various disadvantages, the development of new chiral catalysts with high activity and enantioselectivity is an important, long-standing challenge. Ruthenium complexes with chiral diphosphine ligands and rhodium complexes with chiral monodentate or bidentate phosphorus ligands have been the predominant catalysts for asymmetric hydrogenation of unsaturated acids. However, the efficiency of these catalysts is highly substrate-dependent, and most of the reported catalysts require a high loading, high hydrogen pressure, or long reaction time for satisfactory results. Our recent studies have revealed that chiral iridium complexes with chiral spiro-phosphine-oxazoline ligands and chiral spiro-phosphine-benzylamine ligands exhibit excellent activity and enantioselectivity in the hydrogenation of α,β-unsaturated carboxylic acids, including α,β-disubstituted acrylic acids, trisubstituted acrylic acids, α-substituted acrylic acids, and heterocyclic α,β-unsaturated acids. On the basis of an understanding of the role of the carboxy group in iridium-catalyzed asymmetric hydrogenation reactions, we developed a carboxy-group-directed strategy for asymmetric hydrogenation of olefins. Using this strategy, we hydrogenated several challenging olefin substrates, such as β,γ-unsaturated carboxylic acids, 1,1-diarylethenes, 1,1-dialkylethenes, and 1-alkyl styrenes in high yield and with excellent enantioselectivity. All these iridium-catalyzed asymmetric hydrogenation reactions feature high turnover numbers (up to 10000) and turnover frequencies (up to 6000 h(-1)), excellent enantioselectivities (greater than 95% ee with few exceptions), low hydrogen pressure (<12 atm

  15. 4-Dimenthylaminopyridine or Acid-Catalyzed Synthesis of Esters: A Comparison

    ERIC Educational Resources Information Center

    van den Berg, Annemieke W. C.; Hanefeld, Ulf

    2006-01-01

    A set of highly atom-economic experiments was developed to highlight the differences between acid- and base-catalyzed ester syntheses and to introduce the principles of atom economy. The hydrochloric acid-catalyzed formation of an ester was compared with the 4-dimethylaminopyradine-catalyzed ester synthesis.

  16. Preparation of a biocatalyst via physical adsorption of lipase from Thermomyces lanuginosus on hydrophobic support to catalyze biolubricant synthesis by esterification reaction in a solvent-free system.

    PubMed

    Lage, Flávia A P; Bassi, Jaquelinne J; Corradini, Maria C C; Todero, Larissa M; Luiz, Jaine H H; Mendes, Adriano A

    2016-03-01

    Lipase from Thermomyces lanuginosus (TLL) was immobilized on mesoporous hydrophobic poly-methacrylate (PMA) particles via physical adsorption (interfacial activation of the enzyme on the support). The influence of initial protein loading (5-200mg/g of support) on the catalytic properties of the biocatalysts was determined in the hydrolysis of olive oil emulsion and synthesis of isoamyl oleate (biolubricant) by esterification reaction. Maximum adsorbed protein loading and hydrolytic activity were respectively ≈100mg/g and ≈650 IU/g using protein loading of 150mg/g of support. The adsorption process followed the Langmuir isotherm model (R(2)=0.9743). Maximum ester conversion around 85% was reached after 30min of reaction under continuous agitation (200rpm) using 2500mM of each reactant in a solvent-free system, 45°C, 20%m/v of the biocatalyst prepared using 100mg of protein/g of support. Apparent thermodynamic parameters of the esterification reaction were also determined. Under optimal experimental conditions, reusability tests of the biocatalyst (TLL-PMA) after thirty successive cycles of reaction were performed. TLL-PMA fully retained its initial activity up to twenty two cycles of reaction, followed by a slight decrease around 8.6%. The nature of the product (isoamyl oleate) was confirmed by attenuated total reflection Fourier transform infrared (ATR-FTIR), proton ((1)H NMR) and carbon ((13)C NMR) nuclear magnetic resonance spectroscopy analyses.

  17. Characteristics of post-impregnated SBA-15 with 12- Tungstophosphoric acid and its correlation with catalytic activity in selective esterification of glycerol to monolaurate

    NASA Astrophysics Data System (ADS)

    Hoo, P. Y.; Abdullah, A. Z.

    2016-06-01

    Selective esterification of glycerol and lauric acid to monolaurin was conducted using 12-tungstophosphoric acid (HPW) incorporated SBA-15 as catalyst. They were synthesized with HPW loadings of 10-40 wt. % via post impregnation and characterized in terms of surficial and structural characteristic, acidity and morphology. Relatively high lauric acid conversion (up to 95%) and monolaurin yield (53%) were observed while the activity was successfully correlated to the material behaviours, i.e. highly acidic active acid sites within highly uniformed mesopores. The effects of different reaction parameters including reactant ratio (1:1-5:1), catalyst loading (1-5 wt. %) and length of fatty acid were also elucidated. Reduced fatty acid conversion was observed when longer fatty acids were used, thus further strengthen the idea of size selectivity effect provided by the synthesized catalysts.

  18. Novel surface-active oligofructose fatty acid mono-esters by enzymatic esterification.

    PubMed

    van Kempen, Silvia E H J; Boeriu, Carmen G; Schols, Henk A; de Waard, Pieter; van der Linden, Erik; Sagis, Leonard M C

    2013-06-01

    This article describes the synthesis of a series of oligofructose monoesters with fatty acids of different chain length (C8, C12, C16 and C18) to obtain food-grade surfactants with a range of amphiphilicity. Reactions were performed in a mixture of DMSO/Bu(t)OH (10/90 v/v) at 60°C and catalysed by immobilised Candida antarctica lipase B. MALDI-TOF-MS analysis showed that the crude reaction products were mixtures of unmodified oligofructose and mostly mono-esters. The conversion into mono-esters increased with the length of the fatty acid chain, reflecting the specificity of the lipase towards more lipophilic substrates. Reverse phase solid phase extraction was used to fractionate the products, which lead to sufficient purity (>93%) of the fatty acid esters for functionality testing. It was shown that derivatives of longer (C16 and C18) fatty acids were more efficient in lowering surface tension and gave a much higher dilatational modulus than derivatives of the shorter (C8 and C12) fatty acids.

  19. Synthesis of sulfated titania supported on mesoporous silica using direct impregnation and its application in esterification of acetic acid and n-butanol

    NASA Astrophysics Data System (ADS)

    Wang, Yuhong; Gan, Yunting; Whiting, Roger; Lu, Guanzhong

    2009-09-01

    A new method has been developed for the preparation of sulfated titania (S-TiO 2) supported on mesoporous silica. The use of direct exchange of metal containing precursors for the surfactants in the as-synthesized MCM-41 substrate produced a product with high sulfur content without serious blockage of the pore structure of MCM-41. The pore sizes and volumes of the resultant S-TiO 2/MCM-41 composites were found to vary markedly with the loading of TiO 2. The strong acidic character of the composites obtained was examined by using them as catalysts for the esterification of acetic acid and n-butanol.

  20. Esterification and transesterification of greases to fatty acid methyl esters with highly active diphanylammonium salts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have conducted an investigation designed to identify alternate catalysts for the production of fatty acid methyl esters (FAME) to be used as biodiesel. Diphenylammonium sulfate (DPAS) and diphenylammonium chloride (DPA-HCl) salts were found to be highly active homogeneous catalysts for the simu...

  1. Effects of dry method esterification of starch on the degradation characteristics of starch/polylactic acid composites.

    PubMed

    Zuo, Ying Feng; Gu, Jiyou; Qiao, Zhibang; Tan, Haiyan; Cao, Jun; Zhang, Yanhua

    2015-01-01

    Maleic anhydride esterified corn starch was prepared by dry method. Esterified starch/polylactic acid (PLA) biodegradable composite was produced via melt extrusion method with blending maleic anhydride esterified corn starch and PLA. The influence of the dry method esterification of starch on the degradation characteristics of starch/PLA composites was investigated by the natural aging degradation which was soil burial method. Test results of mass loss rate showed that the first 30 days of degradation was mainly starch degradation, and the degradation rate of esterified starch/PLA (ES/PLA) was slower than that of native starch/PLA (NS/PLA). Therefore, the damage degree of ES/PLA on the surface and inside was smaller than that of NS/PLA, and the infrared absorption peak intensities of C-O, C=O and C-H were stronger than that of NS/PLA. With the increasing time of soil burial degradation, the damage degree of NS/PLA and ES/PLA on the exterior and interior were gradually increased, whereas the infrared absorption peak intensities of C-O, C=O and C-H were gradually decreased. The XRD diffraction peak intensity of PLA in composites showed an increased trend at first which was then followed by a decreased one along with the increasing time of soil burial degradation, indicating that the degradation of amorphous regions of PLA was earlier than its crystalline regions. When the soil burial time was the same, the diffraction peak intensity of PLA in ES/PLA was stronger than that of NS/PLA. If the degradation time was the same, T0, Ti and residual rate of thermal decomposition of NS/PLA were larger than those of ES/PLA. The tensile strength and bending strength of composites were decreased gradually with soil burial time increasing. Both the tensile strength and bending strength of ES/PLA were stronger than those of NS/PLA.

  2. A Biodegradable Thermoset Polymer Made by Esterification of Citric Acid and Glycerol

    PubMed Central

    Halpern, Jeffrey M.; Urbanski, Richard; Weinstock, Allison K.; Iwig, David F.; Mathers, Robert T.; von Recum, Horst

    2014-01-01

    A new biomaterial, a degradable thermoset polymer, was made from simple, economical, biocompatable monomers without the need for a catalyst. Glycerol and citric acid, non-toxic and renewable reagents, were crosslinked by a melt polymerization reaction at temperatures from 90-150°C. Consistent with a condensation reaction, water was determined to be the primary byproduct. The amount of crosslinking was controlled by the reaction conditions, including temperature, reaction time, and ratio between glycerol and citric acid. Also, the amount of crosslinking was inversely proportional to the rate of degradation. As a proof-of-principle for drug delivery applications, gentamicin, an antibiotic, was incorporated into the polymer with preliminary evaluations of antimicrobial activity. The polymers incorporating gentamicin had significantly better bacteria clearing of Staphylococcus aureus compared to non-gentamicin gels for up to nine days. PMID:23737239

  3. Deoxycholic acid transformations catalyzed by selected filamentous fungi.

    PubMed

    Kollerov, V V; Lobastova, T G; Monti, D; Deshcherevskaya, N O; Ferrandi, E E; Fronza, G; Riva, S; Donova, M V

    2016-03-01

    More than 100 filamentous fungi strains, mostly ascomycetes and zygomycetes from different phyla, were screened for the ability to convert deoxycholic acid (DCA) to valuable bile acid derivatives. Along with 11 molds which fully degraded DCA, several strains were revealed capable of producing cholic acid, ursocholic acid, 12-keto-lithocholic acid (12-keto-LCA), 3-keto-DCA, 15β-hydroxy-DCA and 15β-hydroxy-12-oxo-LCA as major products from DCA. The last metabolite was found to be a new compound. The ability to catalyze the introduction of a hydroxyl group at the 7(α/β)-positions of the DCA molecule was shown for 32 strains with the highest 7β-hydroxylase activity level for Fusarium merismoides VKM F-2310. Curvularia lunata VKM F-644 exhibited 12α-hydroxysteroid dehydrogenase activity and formed 12-keto-LCA from DCA. Acremonium rutilum VKM F-2853 and Neurospora crassa VKM F-875 produced 15β-hydroxy-DCA and 15β-hydroxy-12-oxo-LCA, respectively, as major products from DCA, as confirmed by MS and NMR analyses. For most of the positive strains, the described DCA-transforming activity was unreported to date. The presented results expand the knowledge on bile acid metabolism by filamentous fungi, and might be suitable for preparative-scale exploitation aimed at the production of marketed bile acids.

  4. Methods and catalysts for making biodiesel from the transesterification and esterification of unrefined oils

    DOEpatents

    Yan, Shuli [Detroit, MI; Salley, Steven O [Grosse Pointe Park, MI; Ng, K Y. Simon [West Bloomfield, MI

    2012-04-24

    A method of forming a biodiesel product and a heterogeneous catalyst system used to form said product that has a high tolerance for the presence of water and free fatty acids (FFA) in the oil feedstock is disclosed. This catalyst system may simultaneously catalyze both the esterification of FAA and the transesterification of triglycerides present in the oil feedstock. The catalyst system according to one aspect of the present disclosure represents a class of zinc and lanthanum oxide heterogeneous catalysts that include different ratios of zinc oxide to lanthanum oxides (Zn:La ratio) ranging from about 10:0 to 0:10. The Zn:La ratio in the catalyst is believed to have an effect on the number and reactivity of Lewis acid and base sites, as well as the transesterification of glycerides, the esterification of fatty acids, and the hydrolysis of glycerides and biodiesel.

  5. Synthesis and characterization of sulfated TiO2 nanorods and ZrO2/TiO2 nanocomposites for the esterification of biobased organic acid.

    PubMed

    Li, Zhonglai; Wnetrzak, Renata; Kwapinski, Witold; Leahy, James J

    2012-09-26

    TiO(2) nanorods and ZrO(2)-modified TiO(2) nanocomposites have been prepared by hydrothermal synthesis and the deposition-precipitation method. Their sulfated products were tested as solid superacid catalysts for the esterification of levulinic acid which was used as a model bio-oil molecule. SEM and TEM characterization showed that TiO(2) nanorods with diameters ranging from 20 to 200 nm and with lengths of up to 5 μm were synthesized by a hydrothermal method at 180 °C. ZrO(2) nanoparticles with the diameters ranging from 10 to 20 nm were evenly deposited on TiO(2) nanorods. IR and XPS results suggested that sulfated ZrO(2)/TiO(2) nanocomposite has higher content of sulfate groups on the surface with a S/(Zr+Ti) ratio of 13.6% than sulfated TiO(2) nanorods with a S/Ti ratio of 4.9%. The HPLC results showed that sulfated ZrO(2)/TiO(2) nanocomposite have enhanced catalytic activity for esterification reaction between levulinic acid and ethanol compared to sulfated TiO(2) nanorods. The conversion of levulinic acid to ethyl levulinate can reach to 90.4% at the reaction temperature of 105 °C after 180 min.

  6. Acid-Catalyzed Preparation of Biodiesel from Waste Vegetable Oil: An Experiment for the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Bladt, Don; Murray, Steve; Gitch, Brittany; Trout, Haylee; Liberko, Charles

    2011-01-01

    This undergraduate organic laboratory exercise involves the sulfuric acid-catalyzed conversion of waste vegetable oil into biodiesel. The acid-catalyzed method, although inherently slower than the base-catalyzed methods, does not suffer from the loss of product or the creation of emulsion producing soap that plagues the base-catalyzed methods when…

  7. Production of dicarboxylic acids from novel unsaturated fatty acids by laccase-catalyzed oxidative cleavage.

    PubMed

    Takeuchi, Michiki; Kishino, Shigenobu; Park, Si-Bum; Kitamura, Nahoko; Watanabe, Hiroko; Saika, Azusa; Hibi, Makoto; Yokozeki, Kenzo; Ogawa, Jun

    2016-06-27

    The establishment of renewable biofuel and chemical production is desirable because of global warming and the exhaustion of petroleum reserves. Sebacic acid (decanedioic acid), the material of 6,10-nylon, is produced from ricinoleic acid, a carbon-neutral material, but the process is not eco-friendly because of its energy requirements. Laccase-catalyzing oxidative cleavage of fatty acid was applied to the production of dicarboxylic acids using hydroxy and oxo fatty acids involved in the saturation metabolism of unsaturated fatty acids in Lactobacillus plantarum as substrates. Hydroxy or oxo fatty acids with a functional group near the carbon-carbon double bond were cleaved at the carbon-carbon double bond, hydroxy group, or carbonyl group by laccase and transformed into dicarboxylic acids. After 8 h, 0.58 mM of sebacic acid was produced from 1.6 mM of 10-oxo-cis-12,cis-15-octadecadienoic acid (αKetoA) with a conversion rate of 35% (mol/mol). This laccase-catalyzed enzymatic process is a promising method to produce dicarboxylic acids from biomass-derived fatty acids.

  8. SulE, a sulfonylurea herbicide de-esterification esterase from Hansschlegelia zhihuaiae S113.

    PubMed

    Hang, Bao-Jian; Hong, Qing; Xie, Xiang-Ting; Huang, Xing; Wang, Cheng-Hong; He, Jian; Li, Shun-Peng

    2012-03-01

    De-esterification is an important degradation or detoxification mechanism of sulfonylurea herbicide in microbes and plants. However, the biochemical and molecular mechanisms of sulfonylurea herbicide de-esterification are still unknown. In this study, a novel esterase gene, sulE, responsible for sulfonylurea herbicide de-esterification, was cloned from Hansschlegelia zhihuaiae S113. The gene contained an open reading frame of 1,194 bp, and a putative signal peptide at the N terminal was identified with a predicted cleavage site between Ala37 and Glu38, resulting in a 361-residue mature protein. SulE minus the signal peptide was synthesized in Escherichia coli BL21 and purified to homogeneity. SulE catalyzed the de-esterification of a variety of sulfonylurea herbicides that gave rise to the corresponding herbicidally inactive parent acid and exhibited the highest catalytic efficiency toward thifensulfuron-methyl. SulE was a dimer without the requirement of a cofactor. The activity of the enzyme was completely inhibited by Ag(+), Cd(2+), Zn(2+), methamidophos, and sodium dodecyl sulfate. A sulE-disrupted mutant strain, ΔsulE, was constructed by insertion mutation. ΔsulE lost the de-esterification ability and was more sensitive to the herbicides than the wild type of strain S113, suggesting that sulE played a vital role in the sulfonylurea herbicide resistance of the strain. The transfer of sulE into Saccharomyces cerevisiae BY4741 conferred on it the ability to de-esterify sulfonylurea herbicides and increased its resistance to the herbicides. This study has provided an excellent candidate for the mechanistic study of sulfonylurea herbicide metabolism and detoxification through de-esterification, construction of sulfonylurea herbicide-resistant transgenic crops, and bioremediation of sulfonylurea herbicide-contaminated environments.

  9. Iron-catalyzed hydrogen production from formic acid.

    PubMed

    Boddien, Albert; Loges, Björn; Gärtner, Felix; Torborg, Christian; Fumino, Koichi; Junge, Henrik; Ludwig, Ralf; Beller, Matthias

    2010-07-07

    Hydrogen represents a clean energy source, which can be efficiently used in fuel cells generating electricity with water as the only byproduct. However, hydrogen generation from renewables under mild conditions and efficient hydrogen storage in a safe and reversible manner constitute important challenges. In this respect formic acid (HCO(2)H) represents a convenient hydrogen storage material, because it is one of the major products from biomass and can undergo selective decomposition to hydrogen and carbon dioxide in the presence of suitable catalysts. Here, the first light-driven iron-based catalytic system for hydrogen generation from formic acid is reported. By application of a catalyst formed in situ from inexpensive Fe(3)(CO)(12), 2,2':6'2''-terpyridine or 1,10-phenanthroline, and triphenylphosphine, hydrogen generation is possible under visible light irradiation and ambient temperature. Depending on the kind of N-ligands significant catalyst turnover numbers (>100) and turnover frequencies (up to 200 h(-1)) are observed, which are the highest known to date for nonprecious metal catalyzed hydrogen generation from formic acid. NMR, IR studies, and DFT calculations of iron complexes, which are formed under reaction conditions, confirm that PPh(3) plays an active role in the catalytic cycle and that N-ligands enhance the stability of the system. It is shown that the reaction mechanism includes iron hydride species which are generated exclusively under irradiation with visible light.

  10. Asymmetric synthesis of cyclopentanes bearing four contiguous stereocenters via an NHC-catalyzed Michael/Michael/esterification domino reaction† †Electronic supplementary information (ESI) available: Experimental procedures and characterization date (NMR, IR, MS, HPLC). CCDC 1437686. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5cc09581f Click here for additional data file. Click here for additional data file.

    PubMed Central

    Shu, Tao; Ni, Qijian; Song, Xiaoxiao; Zhao, Kun; Wu, Tianyu; Puttreddy, Rakesh; Rissanen, Kari

    2016-01-01

    An NHC-catalyzed Michael/Michael/esterification domino reaction via homoenolate/enolate intermediates for the asymmetric synthesis of tetrasubstituted cyclopentanes bearing four contiguous stereocenters is described. A variety of α,β-unsaturated aldehydes and 2-nitroallylic acetates react well with good domino yields and high stereoselectivities. PMID:26750327

  11. Catalysis by heteropoly compounds. XXII. Reactions of esters and esterification catalyzed by heteropolyacids in a homogeneous liquid phase - effects of the central atom of heteropolyanions having tungsten as the addenda atom

    SciTech Connect

    Hu, Changwen; Hashimoto, Masato; Okuhara, Toshio; Misono, Makoto )

    1993-10-01

    Decomposition of isobutyl propionate (IBP) (Reaction (1)), ester exchange of IBP with acetic acid (Reaction (2)), ester exchange of IBP with n-propyl alcohol (Reaction (3)), and esterification of propionic acid with isobutyl alcohol (Reaction (4)) have been studied in a homogeneous liquid phase using heteropolyacids H[sub m]XW[sub 12]O[sub 40] (X = P, Si, Ge, B, and Co) having the Keggin structure and H[sub 6]P[sub 2]W[sub 18]O[sub 62] having the Dawson structure. The results clearly indicated that the catalytic behavior of heteropolyacids remarkably depended on the kind of reaction system, namely, the basicity of reactants. For Reaction (1), the catalytic activities of the heteropolyacids were 60-100 times higher than those of H[sub 2]SO[sub 4] and p-toluenesulfonic acid. Among the heteropolyacids, the activity was in the order H[sub 3]PW[sub 12]O[sub 40] > H[sub 4]SiW[sub 12]O[sub 40] [approximately] H[sub 4]GeW[sub 12]O[sub 40] > H[sub 5]BW[sub 12]O[sub 40] > H[sub 6]CoW[sub 12]O[sub 40]. This order suggests that the activity follows the order of the acid strength of the solutions of heteropolyacids, which increases with the decrease in the negative charge of the polyanion. H[sub 6]P[sub 2]W[sub 18]O[sub 62] showed an activity between those of H[sub 5]BW[sub 12]O[sub 40] and H[sub 6]CoW[sub 12]O[sub 40]. Water molecules in the system retarded Reaction 1. For Reaction 2, the activity order was similar to that for Reaction 1 in the absence of water. However, contrary to Reaction 1, the addition of water greatly accelerated Reaction 2. It was presumed that, in the presence of water, Reaction 2 proceeds via the hydrolysis of IBP to propionic acid and isobutyl alcohol, followed by the esterification of isobutyl alcohol with acetic acid. 28 refs., 8 figs., 4 tabs.

  12. Extensive esterification of adrenal C19-delta 5-sex steroids to long-chain fatty acids in the ZR-75-1 human breast cancer cell line

    SciTech Connect

    Poulin, R.; Poirier, D.; Merand, Y.; Theriault, C.; Belanger, A.; Labrie, F.

    1989-06-05

    Estrogen-sensitive human breast cancer cells (ZR-75-1) were incubated with the 3H-labeled adrenal C19-delta 5-steroids dehydroepiandrosterone (DHEA) and its fully estrogenic derivative, androst-5-ene-3 beta,17 beta-diol (delta 5-diol) for various time intervals. When fractionated by solvent partition, Sephadex LH-20 column chromatography and silica gel TLC, the labeled cell components were largely present (40-75%) in three highly nonpolar, lipoidal fractions. Mild alkaline hydrolysis of these lipoidal derivatives yielded either free 3H-labeled DHEA or delta 5-diol. The three lipoidal fractions cochromatographed with the synthetic DHEA 3 beta-esters, delta 5-diol 3 beta (or 17 beta)-monoesters and delta 5-diol 3 beta,17 beta-diesters of long-chain fatty acids. DHEA and delta 5-diol were mainly esterified to saturated and mono-unsaturated fatty acids. For delta 5-diol, the preferred site of esterification of the fatty acids is the 3 beta-position while some esterification also takes place at the 17 beta-position. Time course studies show that ZR-75-1 cells accumulate delta 5-diol mostly (greater than 95%) as fatty acid mono- and diesters while DHEA is converted to delta 5-diol essentially as the esterified form. Furthermore, while free C19-delta 5-steroids rapidly diffuse out of the cells after removal of the precursor (3H)delta 5-diol, the fatty acid ester derivatives are progressively hydrolyzed, and DHEA and delta 5-diol thus formed are then sulfurylated prior to their release into the culture medium. The latter process however is rate-limited, since new steady-state levels of free steroids and fatty acid esters are rapidly reached and maintained for extended periods of time after removal of precursor, thus maintaining minimal concentrations of intracellular steroids.

  13. Use of a palladium(II)-catalyzed oxidative kinetic resolution in synthetic efforts toward bielschowskysin.

    PubMed

    Meyer, Michael E; Phillips, John H; Ferreira, Eric M; Stoltz, Brian M

    2013-09-09

    Progress toward the cyclobutane core of bielshowskysin is reported. The core was thought to arise from a cyclopropane intermediate via a furan-mediated cyclopropane fragmentation, followed by a 1,4-Michael addition. The synthesis of the cyclopropane intermediate utilizes a Suzuki coupling reaction, an esterification with 2-diazoacetoacetic acid, and a copper catalyzed cyclopropanation. An alcohol intermediate within the synthetic route was obtained in high enantiopurity via a highly selective palladium(II)-catalyzed oxidative kinetic resolution (OKR).

  14. Synthesis propanol by esterification and reduction reaction

    NASA Astrophysics Data System (ADS)

    Salmahaminati; Jumina

    2017-01-01

    Synthesis of propanol from propanoic acid had been done. Propanol was synthesized via two steps. They are; esterification of propanoic acid and methanol in the presence of the sulfuric acid catalyst with the mole ratio of 4:3 to produce methyl propanoate, and reduction of methyl propanoate with sodium using ethylene glycol as the solvent to yield propanol. Structural characterizations of methyl propanoate and propanol were done using IR, 1H-NMR, and GC spectrometers. The results show that esterification of propanoic acid with methanol produced methyl propanoate in 75% yield. Reduction of methyl propanoate using ethylene glycol as a solvent produced propanol in yield of 77%.

  15. Extra-hepatic metabolism of 7-ketocholesterol occurs by esterification to fatty acids via cPLA2α and SOAT1 followed by selective efflux to HDL.

    PubMed

    Lee, Jung Wha; Huang, Jiahn-Dar; Rodriguez, Ignacio R

    2015-05-01

    Accumulation of 7-ketocholesterol (7KCh) in tissues has been previously associated with various chronic aging diseases. Orally ingested 7KCh is readily metabolized by the liver and does not pose a toxicity threat. However, 7KCh formed in situ, usually associated with lipoprotein deposits, can adversely affect surrounding tissues by causing inflammation and cytotoxicity. In this study we have investigated various mechanisms for extra-hepatic metabolism of 7KCh (e.g. hydroxylation, sulfation) and found only esterification to fatty acids. The esterification of 7KCh to fatty acids involves the combined action of cytosolic phospholipase A2 alpha (cPLA2α) and sterol O-acyltransferase (SOAT1). Inhibition of either one of these enzymes ablates 7KCh-fatty acid ester (7KFAE) formation. The 7KFAEs are not toxic and do not induce inflammatory responses. However, they can be unstable and re-release 7KCh. The higher the degree of unsaturation, the more unstable the 7KFAE (e.g. 18:0>18:1>18:2>18:3≫20:4). Biochemical inhibition and siRNA knockdown of SOAT1 and cPLA2α ablated the 7KFAE synthesis in cultured ARPE19 cells, but had little effect on the 7KCh-induced inflammatory response. Overexpression of SOAT1 reduced the 7KCh-induced inflammatory response and provided some protection from cell death. This effect is likely due to the increased conversion of 7KCh to 7KFAEs, which reduced the intracellular 7KCh levels. Addition of HDL selectively increased the efflux of 7KFAEs and enhanced the effect of SOAT1 overexpression. Our data suggests an additional function for HDL in aiding extra-hepatic tissues to eliminate 7KCh by returning 7KFAEs to the liver for bile acid formation.

  16. An Evaluation of Formic Acid as an Electron Donor for Palladium (PD) Catalyzed Destruction of Nitroaromatic Compounds

    DTIC Science & Technology

    2006-05-31

    AN EVALUATION OF FORMIC ACID AS AN ELECTRON DONOR FOR PALLADIUM (PD) CATALYZED DESTRUCTION OF NITROAROMATIC COMPOUNDS Mark R. Stevens, Capt...AN EVALUATION OF FORMIC ACID AS AN ELECTRON DONOR FOR PALLADIUM (PD) CATALYZED DESTRUCTION OF NITROAROMATIC COMPOUNDS THESIS...UNLIMITED. AFIT/GEM/ENV/04M-19 AN EVALUATION OF FORMIC ACID AS AN ELECTRON DONOR FOR PALLADIUM (PD) CATALYZED DESTRUCTION OF

  17. Metabolic regulation of fatty acid esterification and effects of conjugated linoleic acid on glucose homeostasis in pig hepatocytes.

    PubMed

    Conde-Aguilera, J A; Lachica, M; Nieto, R; Fernández-Fígares, I

    2012-02-01

    Conjugated linoleic acids (CLAs) are geometric and positional isomers of linoleic acid (LA) that promote growth, alter glucose metabolism and decrease body fat in growing animals, although the mechanisms are poorly understood. A study was conducted to elucidate the effects of CLA on glucose metabolism, triglyceride (TG) synthesis and IGF-1 synthesis in primary culture of porcine hepatocytes. In addition, hormonal regulation of TG and IGF-1 synthesis was addressed. Hepatocytes were isolated from piglets (n = 5, 16.0 ± 1.98 kg average body weight) by collagenase perfusion and seeded into collagen-coated T-25 flasks. Hepatocytes were cultured in William's E containing dexamethasone (10-8 and 10-7 M), insulin (10 and 100 ng/ml), glucagon (0 and 100 ng/ml) and CLA (1 : 1 mixture of cis-9, trans-11 and trans-10, cis-12 CLA, 0.05 and 0.10 mM) or LA (0.05 and 0.10 mM). Addition of CLA decreased gluconeogenesis (P < 0.05), whereas glycogen synthesis and degradation, TG synthesis and IGF-1 synthesis were not affected compared with LA. Increased concentration of fatty acids in the media decreased IGF-1 production (P < 0.001) and glycogen synthesis (P < 0.01), and increased gluconeogenesis (P < 0.001) and TG synthesis (P < 0.001). IGF-1 synthesis increased (P < 0.001) and TG synthesis decreased (P < 0.001) as dexamethasone concentration in the media rose. High insulin/glucagon increased TG synthesis. These results indicate that TG synthesis in porcine hepatocytes is hormonally regulated so that dexamethasone decreases and insulin/glucagon increases it. In addition, CLA decreases hepatic glucose production through decreased gluconeogenesis.

  18. Integrated Production of Xylonic Acid and Bioethanol from Acid-Catalyzed Steam-Exploded Corn Stover.

    PubMed

    Zhu, Junjun; Rong, Yayun; Yang, Jinlong; Zhou, Xin; Xu, Yong; Zhang, Lingling; Chen, Jiahui; Yong, Qiang; Yu, Shiyuan

    2015-07-01

    High-efficiency xylose utilization is one of the restrictive factors of bioethanol industrialization. However, xylonic acid (XA) as a new bio-based platform chemical can be produced by oxidation of xylose with microbial. So, an applicable technology of XA bioconversion was integrated into the process of bioethanol production. After corn stover was pretreated with acid-catalyzed steam-explosion, solid and liquid fractions were obtained. The liquid fraction, also named as acid-catalyzed steam-exploded corn stover (ASC) prehydrolyzate (mainly containing xylose), was catalyzed with Gluconobacter oxydans NL71 to prepare XA. After 72 h of bioconversion of concentrated ASC prehydrolyzate (containing 55.0 g/L of xylose), the XA concentration reached a peak value of 54.97 g/L, the sugar utilization ratio and XA yield were 94.08 and 95.45 %, respectively. The solid fraction was hydrolyzed to produce glucose with cellulase and then fermented with Saccharomyces cerevisiae NL22 to produce ethanol. After 18 h of fermentation of concentrated enzymatic hydrolyzate (containing 86.22 g/L of glucose), the ethanol concentration reached its highest value of 41.48 g/L, the sugar utilization ratio and ethanol yield were 98.72 and 95.25 %, respectively. The mass balance showed that 1 t ethanol and 1.3 t XA were produced from 7.8 t oven dry corn stover.

  19. Optimizing the Acid Catalyzed Synthesis of Hyperbranched Poly(Glycerol-diacids) Oligomers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oligomeric pre-polymers were synthesized by the acid-catalyzed condensation of glycerol with succinic acid, glutaric acid and azelaic acid in dimethylsulfoxide (DMSO) or dimethylformamide (DMF). The prepolymers were obtained, on average in 84% yield, and were characterized by proton NMR, MALDI-TOF ...

  20. Iodide-catalyzed reductions: development of a synthesis of phenylacetic acids.

    PubMed

    Milne, Jacqueline E; Storz, Thomas; Colyer, John T; Thiel, Oliver R; Dilmeghani Seran, Mina; Larsen, Robert D; Murry, Jerry A

    2011-11-18

    A new convenient and scalable synthesis of phenylacetic acids has been developed via the iodide catalyzed reduction of mandelic acids. The procedure relies on in situ generation of hydroiodic acid from catalytic sodium iodide, employing phosphorus acid as the stoichiometric reductant.

  1. Template-free synthesis of a porous organic-inorganic hybrid tin(IV) phosphonate and its high catalytic activity for esterification of free fatty acids.

    PubMed

    Dutta, Arghya; Patra, Astam K; Uyama, Hiroshi; Bhaumik, Asim

    2013-10-23

    Here we have synthesized an organic-inorganic hybrid mesoporous tin phosphonate monolith (MLSnP-1) with crystalline pore walls by a template-free sol-gel route. N2 sorption analysis shows Brunauer-Emmett-Teller (BET) surface area of 347 m2 g(-1). Wide-angle powder X-ray diffraction (PXRD) pattern shows few broad diffraction peaks indicating crystalline pore wall of the material. High-resolution transmission electron microscopic (HR TEM) image further reveals the crystal fringes on the pore wall. Framework bonding and local environment around phosphorus and carbon were examined by Fourier transform infrared (FT IR) spectroscopy and solid-state MAS NMR spectroscopy. The material exhibits remarkable catalytic activity for esterification of long chain fatty acids under mild reaction conditions at room temperature.

  2. Efficient and simple approaches towards direct oxidative esterification of alcohols.

    PubMed

    Ray, Ritwika; Jana, Rahul Dev; Bhadra, Mayukh; Maiti, Debabrata; Lahiri, Goutam Kumar

    2014-11-17

    The present article describes novel oxidative protocols for direct esterification of alcohols. The protocols involve successful demonstrations of both "cross" and "self" esterification of a wide variety of alcohols. The cross-esterification proceeds under a simple transition-metal-free condition, containing catalytic amounts of TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy)/TBAB (tetra-n-butylammonium bromide) in combination with oxone (potassium peroxo monosulfate) as the oxidant, whereas the self-esterification is achieved through simple induction of Fe(OAc)2 /dipic (dipic=2,6-pyridinedicarboxylic acid) as the active catalyst under an identical oxidizing environment.

  3. Ammonia Catalyzed Formation of Sulfuric Acid in Troposphere: The Curious Case of A Base Promoting Acid Rain.

    PubMed

    Bandyopadhyay, Biman; Kumar, Pradeep; Biswas, Partha

    2017-04-03

    Electronic structure calculations have been performed to investigate the role of ammonia in catalyzing the formation of sulfuric acid through hydrolysis of SO3 in Earth's atmosphere. The uncatalyzed process involves a high activation barrier and, till date, is mainly known to occur in Earth's atmosphere only when catalyzed by water and acids. Here we show that hydrolysis of SO3 can be very efficiently catalyzed by ammonia, the most abundant basic component in Earth's atmosphere. It was found, based on magnitude of relative potential energies as well as rate coefficients, that ammonia is the best among all the catalysts studied until now (water and acids) and could be a considerable factor in formation of sulfuric acid in troposphere. The calculated rate coefficient (at 298 K) of ammonia catalyzed reaction has been found to be ~10^5 - 10^7 times greater than that for water catalyzed ones. It was found, based on relative rates of ammonia and water catalyzed processes that in troposphere ammonia, together with water, could be the key factor in determining the rate of formation of sulfuric acid. In fact ammonia could surpass water in catalyzing formation of sulfuric acid via hydrolysis of SO3 at various altitudes in troposphere depending upon their relative concentrations.

  4. DNA adducts formed from the probable proximate carcinogen, N-hydroxy-3,2' -dimethyl-4-aminobiphenyl, by acid catalysis or S-acetyl coenzyme A-dependent enzymatic esterification.

    PubMed

    Flammang, T J; Westra, J G; Kadlubar, F F; Beland, F A

    1985-02-01

    The arylamine carcinogen 3,2'-dimethyl-4-aminobiphenyl (DMABP) has been proposed to be metabolically activated to DNA-binding derivatives through the formation of an N-hydroxy intermediate. In this study, the subsequent activation of N-hydroxy-DMABP through acid catalysis or enzymatic esterification was examined. [Ring-3H]N-hydroxy-DMABP was reacted with calf thymus DNA at pH 4.6 for 15 min to yield 370 arylamine residues per 10(6) nucleotides, while at pH 7.4 the binding was only two residues per 10(6) nucleotides. The DNA modified under acidic conditions was enzymatically hydrolyzed and analyzed by h.p.l.c. which indicated the presence of three major adducts. The products were identified by spectral and chemical properties as N-(deoxyguanosin-8-yl)-DMABP (60-70%), 5-(deoxyguanosin-N2-yl)-DMABP (2-3%) and N-(deoxyadenosin-8-yl)-DMABP (1-3%). The same adducts have previously been detected in the liver and colon of rats administered DMABP or its hydroxamic acid. Incubation of rat hepatic or intestinal cytosol at pH 7.4 for 15 min with [ring-3H]N-hydroxy-DMABP in the presence of S-acetyl coenzyme A (AcCoA) and calf thymus DNA resulted in DNA binding at levels of 30-80 arylamine residues per 10(6) nucleotides. H.p.l.c. analysis of the DNA modified in the presence of AcCoA indicated the formation of the same adducts detected in the acid-catalyzed reactions. When arylhydroxamic acid N,O-acyltransferase assays were conducted with rat liver cytosol and N-acetyl-N-hydroxy-DMABP as the substrate, binding to nucleic acids was not observed. Similarly, 3'-phosphoadenosine-5'-phosphosulfate-dependent sulfotransferase-mediated DNA binding could not be demonstrated. These data indicate that in a suitable acidic environment, N-hydroxy-DMABP will react with DNA to yield the same adducts found in vivo. Under neutral conditions, however, N-hydroxy-DMABP appears to undergo AcCoA-dependent transacetylation to an electrophilic acetoxy ester which will spontaneously react with DNA.

  5. Cascade dearomatization of N-substituted tryptophols via Lewis acid-catalyzed Michael reactions.

    PubMed

    Liu, Chuan; Zhang, Wei; Dai, Li-Xin; You, Shu-Li

    2012-09-21

    Lewis acid-catalyzed cascade dearomatization of N-substituted tryptophols via Michael addition reaction was developed. The generality of the method has been demonstrated by the synthesis of versatile furoindoline derivatives with a quaternary carbon center in good yields.

  6. Brønsted acid-catalyzed Nazarov cyclization of pyrrole derivatives accelerated by microwave irradiation.

    PubMed

    Bachu, Prabhakar; Akiyama, Takahiko

    2009-07-15

    The Brønsted acid-catalyzed Nazarov cyclization of pyrrole derivatives was developed. Microwave irradiation accelerated the Nazarov cyclization significantly at 40 degrees C to give cyclopenta[b]pyrrole derivatives in excellent yields with high trans selectivity.

  7. Levulinic acid production by two-step acid-catalyzed treatment of Quercus mongolica using dilute sulfuric acid.

    PubMed

    Jeong, Hanseob; Jang, Soo-Kyeong; Hong, Chang-Young; Kim, Seon-Hong; Lee, Su-Yeon; Lee, Soo Min; Choi, Joon Weon; Choi, In-Gyu

    2017-02-01

    The objectives of this research were to produce a levulinic acid by two-step acid-catalyzed treatment of Quercus mongolica and to investigate the effect of treatment parameter (reaction temperature range: 100-230°C; sulfuric acid (SA) concentration range: 0-2%) on the levulinic acid yield. After 1(st) step acid-catalyzed treatment, most of the hemicellulosic C5 sugars (15.6gg/100gbiomass) were released into the liquid hydrolysate at the reaction temperature of 150°C in 1% SA; the solid fraction, which contained 53.5% of the C6 sugars, was resistant to further loss of C6 sugars. Subsequently, 2(nd) step acid-catalyzed treatment of the solid fractions was performed under more severe conditions. Finally, 16.5g/100g biomass of levulinic acid was produced at the reaction temperature of 200°C in 2% SA, corresponding to a higher conversion rate than during single-step treatment.

  8. The BioC O-Methyltransferase Catalyzes Methyl Esterification of Malonyl-Acyl Carrier Protein, an Essential Step in Biotin Synthesis*

    PubMed Central

    Lin, Steven; Cronan, John E.

    2012-01-01

    Recent work implicated the Escherichia coli BioC protein as the initiator of the synthetic pathway that forms the pimeloyl moiety of biotin (Lin, S., Hanson, R. E., and Cronan, J. E. (2010) Nat. Chem. Biol. 6, 682–688). BioC was believed to be an O-methyltransferase that methylated the free carboxyl of either malonyl-CoA or malonyl-acyl carrier protein based on the ability of O-methylated (but not unmethylated) precursors to bypass the BioC requirement for biotin synthesis both in vivo and in vitro. However, only indirect proof of the hypothesized enzymatic activity was obtained because the activities of the available BioC preparations were too low for direct enzymatic assay. Because E. coli BioC protein was extremely recalcitrant to purification in an active form, BioC homologues of other bacteria were tested. We report that the native form of Bacillus cereus ATCC10987 BioC functionally replaced E. coli BioC in vivo, and the protein could be expressed in soluble form and purified to homogeneity. In disagreement with prior scenarios that favored malonyl-CoA as the methyl acceptor, malonyl-acyl carrier protein was a far better acceptor of methyl groups from S-adenosyl-l-methionine than was malonyl-CoA. BioC was specific for the malonyl moiety and was inhibited by S-adenosyl-l-homocysteine and sinefungin. High level expression of B. cereus BioC in E. coli blocked cell growth and fatty acid synthesis. PMID:22965231

  9. Pentafluorobenzyl esterification of haloacetic acids in tap water for simple and sensitive analysis by gas chromatography/mass spectrometry with negative chemical ionization.

    PubMed

    Zhao, Can; Fujii, Yukiko; Yan, Junxia; Harada, Kouji H; Koizumi, Akio

    2015-01-01

    Chlorine is the most widely used disinfectant for control of waterborne diseases in drinking water treatment. It can react with natural organic matter in water and form haloacetic acids (HAAs). For analysis of HAA levels, derivatization with diazomethane is commonly recommended as the standard methodology in Japan. However, diazomethane is a carcinogenic alkylating agent. Therefore, in this study, a safe, simple, and sensitive quantification method was developed to monitor HAAs in drinking water. Pentafluorobenzyl esterification was used for pretreatment. The pentafluorobenzyl-ester derivative was detected by gas chromatography-negative ion chemical ionization-mass spectrometry analysis with very high sensitivity for HAAs analysis. The method has low detection limits (8-94 ng L(-1)) and good recovery rates (89-99%) for HAAs. The method was applied to 30 tap water samples from 15 cities in the Kansai region of Japan. The levels of HAAs detected were in the range 0.54-7.83 μg L(-1). Dichloroacetic acid, trichloroacetic acid, and bromochloroacetic acid were the major HAAs detected in most of the tap water, and accounted for 29%, 20% and 19% of the total HAAs, respectively. This method could be used for routine monitoring of HAAs in drinking water without exposure of workers to occupational hazards.

  10. The effects of sterol structure upon sterol esterification.

    PubMed

    Lin, Don S; Steiner, Robert D; Merkens, Louise S; Pappu, Anuradha S; Connor, William E

    2010-01-01

    Cholesterol is esterified in mammals by two enzymes: LCAT (lecithin cholesterol acyltransferase) in plasma and ACAT(1) and ACAT(2) (acyl-CoA cholesterol acyltransferases) in the tissues. We hypothesized that the sterol structure may have significant effects on the outcome of esterification by these enzymes. To test this hypothesis, we analyzed sterol esters in plasma and tissues in patients having non-cholesterol sterols (sitosterolemia and Smith-Lemli-Opitz syndrome). The esterification of a given sterol was defined as the sterol ester percentage of total sterols. The esterification of cholesterol in plasma by LCAT was 67% and in tissues by ACAT was 64%. Esterification of nine sterols (cholesterol, cholestanol, campesterol, stigmasterol, sitosterol, campestanol, sitostanol, 7-dehydrocholesterol and 8-dehydrocholesterol) was examined. The relative esterification (cholesterol being 1.0) of these sterols by the plasma LCAT was 1.00, 0.95, 0.89, 0.40, 0.85, 0.82 and 0.80, 0.69 and 0.82, respectively. The esterification by the tissue ACAT was 1.00, 1.29, 0.75, 0.49, 0.45, 1.21 and 0.74, respectively. The predominant fatty acid of the sterol esters was linoleic acid for LCAT and oleic acid for ACAT. We compared the esterification of two sterols differing by only one functional group (a chemical group attached to sterol nucleus) and were able to quantify the effects of individual functional groups on sterol esterification. The saturation of the A ring of cholesterol increased ester formation by ACAT by 29% and decreased the esterification by LCAT by 5.9%. Esterification by ACAT and LCAT was reduced, respectively, by 25 and 11% by the presence of an additional methyl group on the side chain of cholesterol at the C-24 position. This data supports our hypothesis that the structure of the sterol substrate has a significant effect on its esterification by ACAT or LCAT.

  11. Design of an effective bifunctional catalyst organotriphosphonic acid-functionalized ferric alginate (ATMP-FA) and optimization by Box-Behnken model for biodiesel esterification synthesis of oleic acid over ATMP-FA.

    PubMed

    Liu, Wei; Yin, Ping; Liu, Xiguang; Qu, Rongjun

    2014-12-01

    Biodiesel production has become an intense research area because of rapidly depleting energy reserves and increasing petroleum prices together with environmental concerns. This paper focused on the optimization of the catalytic performance in the esterification reaction of oleic acid for biodiesel production over the bifunctional catalyst organotriphosphonic acid-functionalized ferric alginate ATMP-FA. The reaction parameters including catalyst amount, ethanol to oleic acid molar ratio and reaction temperature have been optimized by response surface methodology (RSM) using the Box-Behnken model. It was found that the reaction temperature was the most significant factor, and the best conversion ratio of oleic acid could reach 93.17% under the reaction conditions with 9.53% of catalyst amount and 8.62:1 of ethanol to oleic acid molar ratio at 91.0 °C. The research results show that two catalytic species could work cooperatively to promote the esterification reaction, and the bifunctional ATMP-FA is a potential catalyst for biodiesel production.

  12. Direct ortho-arylation of ortho-substituted benzoic acids: overriding Pd-catalyzed protodecarboxylation.

    PubMed

    Arroniz, Carlos; Ironmonger, Alan; Rassias, Gerry; Larrosa, Igor

    2013-02-15

    ortho-Arylation of ortho-substituted benzoic acids is a challenging process due to the tendency of the reaction products toward Pd-catalyzed protodecarboxylation. A simple method for preventing decarboxylation in sterically hindered benzoic acids is reported. The method described represents a reliable and broadly applicable entry to 2-aryl-6-substituted benzoic acids.

  13. Spontaneous, Metal-Catalyzed, and Enzyme-Catalyzed Decarboxylation of Oxalosuccinic Acid.

    DTIC Science & Technology

    1980-01-01

    The Ohio State University, 1980 309 Pages Professor Daniel Leussing, Advisor Decarboxylation rates of oxalosuccinic acid , a tricarboxylic acid , thas...been studied in detail. It was shown that the keto forms of the acid spontaneously decarboxylate. The catalytic effect of three metals were examined. The...overall effectiveness of the metals were , This catalysis resulted from the formation of a 1:1 complex between the acid and the metal ions. The

  14. Lipase catalyzed synthesis of neutral glycerides rich in micronutrients from rice bran oil fatty acid distillate.

    PubMed

    Nandi, Sumit; Gangopadhyay, Sarbani; Ghosh, Santinath

    2008-01-01

    Neutral glycerides with micronutrients like sterols, tocopherols and squalene may be prepared from cheap raw material like rice bran oil fatty acid distillate (RBO FAD). RBO FAD is an important byproduct of vegetable oil refining industries in the physical refining process. Glycerides like triacylglycerols (TAG), diacylglycerols (DAG) and monoacylglycerols (MAG) containing significant amounts of unsaponifiable matter like sterols, tocopherols and hydrocarbons (mainly squalene) may certainly be considered as novel functional food ingredients. Fatty acids present in RBO FAD were esterified with glycerol of varying amount (1:0.33, 1:0.5, 1:1 and 1:1.5 of FAD : glycerol ratio) for 8 h using non-specific enzyme NS 40013 (Candida antartica). After esterification the product mixture containing mono, di- and triglycerides was purified by molecular distillation to remove excess free fatty acids and also other volatile undesirable components. The purified product containing sterols, tocopherols and squalene can be utilized in various food formulations.

  15. Benzoic acid 2-hydroxylase, a soluble oxygenase from tobacco, catalyzes salicylic acid biosynthesis

    SciTech Connect

    Leon, J.; Shulaev, V.; Yalpani, N.

    1995-10-24

    Benzoic acid 2-hydroxylase (BA2H) catalyzes the biosynthesis of salicylic acid from benzoic acid. The enzyme has been partially purified and characterized as a soluble protein of 160 kDa. High-efficiency in vivo labeling of salicyclic acid with {sup 18}O{sub 2} suggested that BA2H is an oxygenase that specifically hydroxylates the ortho position of benzoic acid. The enzyme was strongly induced by either tobacco mosaic virus inoculation of benzoic acid infiltration of tobacco leaves and it was inhibited by CO and other inhibitors of cytochrome P450 hydroxylases. The BA2H activity was immunodepleted by antibodies raised against SU2, a soluble cytochrome P450 from Streptomyces griseolus. The anti-SU2 antibodies immunoprecipitated a radiolabeled polypeptide of around 160 kDa from the soluble protein extracts of L-[{sup 35}S]-methionine-fed tobacco leaves. Purified BA2H showed CO-difference spectra with a maximum at 457 nm. These data suggest that BA2H belongs to a novel class of soluble, high molecular weight cytochrome P450 enzymes. 21 refs., 6 figs., 1 tab.

  16. Formation of Linear Polyenes in Thermal Dehydration of Polyvinyl Alcohol, Catalyzed by Phosphotungstic Acid

    NASA Astrophysics Data System (ADS)

    Tretinnikov, O. N.; Sushko, N. I.

    2015-01-01

    In order to obtain linear polyenes in polyvinyl alcohol films via acid-catalyzed thermal dehydration of the polyvinyl alcohol, we used phosphotungstic acid as the catalyst: a safe and heat-stable solid chemical compound. We established that phosphotungstic acid, introduced as solid nanoparticles into polyvinyl alcohol films, is a more effective dehydration catalyst than hydrochloric acid, since in contrast to HCl it does not evaporate from the film during heat treatment.

  17. The Lewis-acid-catalyzed synthesis of hyperbranched poly(glycerol-diacid)s in toluene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The first examples of monomeric glycerol-derived hyperbranched polyesters produced in a non-polar solvent system are reported here. The polymers were made by the Lewis acid (dibutyltin(IV)oxide)-catalyzed polycondensation of glycerol with either succinic acid (n (aliphatic chain length)=2), glutari...

  18. Catalyzed ring-opening polymerization of epoxidized soybean oil by hydrated and anhydrous fluoroantimonic acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ring-opening polymerization of epoxidized soybean oil (ESO) catalyzed by the super acid, fluroantimonic acid hexahydrate (HSbF6-6H2O), and the anhydrous form (HSbF6) in ethyl acetate was conducted in an effort to develop useful biodegradable polymers. The resulting polymerized ESO (SA-RPESO and SAA-...

  19. Lipase-catalyzed synthesis of monoacylglycerol in a homogeneous system.

    PubMed

    Monteiro, Julieta B; Nascimento, Maria G; Ninow, Jorge L

    2003-04-01

    The 1,3-regiospecifique lipase, Lipozyme IM, catalyzed the esterification of lauric acid and glycerol in a homogeneous system. To overcome the drawback of the insolubility of glycerol in hexane, which is extensively used in enzymatic synthesis, a mixture of n-hexane/tert-butanol (1:1, v/v) was used leading to a monophasic system. The conversion of lauric acid into monolaurin was 65% in 8 h, when a molar ratio of glycerol to fatty acid (5:1) was used with the fatty acid at 0.1 M, and the phenomenon of acyl migration was minimized.

  20. A convenient synthesis of anthranilic acids by Pd-catalyzed direct intermolecular ortho-C-H amidation of benzoic acids.

    PubMed

    Ng, Ka-Ho; Ng, Fo-Ning; Yu, Wing-Yiu

    2012-12-11

    An efficient method for synthesis of anthranilic acids by Pd-catalyzed ortho-C-H amidation of benzoic acids is disclosed. The amidation is proposed to proceed by carboxylate-assisted ortho-C-H palladation to form an arylpalladium(II) complex, followed by nitrene insertion to the Pd-C bond.

  1. Determination of fatty acid methyl esters derived from algae scenedesmus dimorphus biomass by gc-ms with one-step esterification of free fatty acids and transesterification of glycerolipids.

    PubMed

    Avula, Satya Girish Chandra; Belovich, Joanne; Xu, Yan

    2017-03-21

    Algae can synthesize, accumulate and store large amounts of lipids in its cells, which holds immense potential as a renewable source of biodiesel. In this work, we have developed and validated a GC-MS method for quantitation of fatty acids and glycerolipids in forms of fatty acid methyl esters derived from algae biomass. Algae Scenedesmus dimorphus dry mass was pulverized by mortar and pestle, then, extracted by the modified Folch method and fractionated into free fatty acids and glycerolipids on aminopropyl solid-phase extraction cartridges. Fatty acid methyl esters were produced by an optimized one-step esterification of fatty acids and transesterification of glycerolipids with boron trichloride/methanol. The matrix effect, recoveries and stability of fatty acids and glycerolipids in algal matrix were first evaluated by spiking stable isotopes of pentadecanoic-2,2-d2 acid and glyceryl tri(hexadecanoate-2,2-d2 ) as surrogate analytes and tridecanoic-2,2-d2 acid as internal standard into algal matrix prior to sample extraction. Later, the method was validated in terms of lower limits of quantitation, linear calibration ranges, intra- and inter-assay precision and accuracy using tridecanoic-2,2-d2 acid as internal standard. This method developed has been applied to the quantitation of fatty acid methyl esters from free fatty acid and glycerolipid fractions of algae Scenedesmus dimorphus. This article is protected by copyright. All rights reserved.

  2. Polyacrylic acid grafted kaolinite via a facile ‘grafting to’ approach based on heterogeneous esterification and its adsorption for Cu2+

    NASA Astrophysics Data System (ADS)

    Zhao, Ping; Zhou, Qi; Yan, Chunjie; Luo, Wenjun

    2017-03-01

    Kaolinite (KLN) was successfully decorated by polyacrylic acid (PAA) brushes via a facile ‘one-step’ manner in this study. This process was achieved by heterogeneous esterification between carboxyl on the PAA chains and hydroxyl on the KLN in the presence of Al3+ as catalyst. The prepared composite (denoted as PAA-g-KLN) was characterized by Fourier transform infrared spectroscopy (FTIR), x-ray diffraction pattern (XRD), Field emission scanning electron microscopy (FE-SEM) and thermogravimetry (TG) to confirm the successful grafting of PAA brushes on the surface of KLN. Subsequently, the PAA-g-KLN was used as adsorbent for the removal of Cu2+ from wastewater. Due to the introduction of abundant and highly accessible carboxyl groups on the surface of kaolinite, PAA-g-KLN exhibited an enhanced adsorption performance than raw kaolinite, which could be up to 32.45 mg·g‑1 at 45 °C with a fast adsorption kinetic. Theoretical models analysis revealed that Langmuir isotherm model and the pseudo second-order model were more suitable for well elucidation of the experimental data. In addition, the regeneration experiment showed that the PAA-g-KLN could still keep a satisfactory adsorption capacity (>65%) by being reused for 6 consecutive cycles. The study provides an easy and rapid method for surface polyelectrolyte modification on inorganic mineral as a promising adsorbent to remove Cu2+ from aqueous solution.

  3. Acid-catalyzed autohydrolysis of wheat straw to improve sugar recovery.

    PubMed

    Ertas, Murat; Han, Qiang; Jameel, Hasan

    2014-10-01

    A comparison study of autohydrolysis and acid-catalyzed autohydrolysis of wheat straw was performed to understand the impact of acid addition on overall sugar recovery. Autohydrolysis combined with refining is capable of achieving sugar recoveries in the mid 70s. If the addition of a small amount of acid is capable of increasing the sugar recovery even higher it may be economically attractive. Acetic, sulfuric, hydrochloric and sulfurous acids were selected for acid-catalyzed autohydrolysis pretreatments. Autohydrolysis with no acid at 190 °C showed the highest total sugar in the prehydrolyzate. Enzymatic hydrolysis was performed for all the post-treated solids with and without refining at enzyme loadings of 4 and 10 FPU/g for 96 h. Acid-catalyzed autohydrolysis at 190 °C with sulfurous acid showed the highest total sugar recovery of 81.2% at 4 FPU/g enzyme charge compared with 64.3% at 190 °C autohydrolysis without acid.

  4. Mechanism Studies of Ir-Catalyzed Asymmetric Hydrogenation of Unsaturated Carboxylic Acids.

    PubMed

    Li, Mao-Lin; Yang, Shuang; Su, Xun-Cheng; Wu, Hui-Ling; Yang, Liang-Liang; Zhu, Shou-Fei; Zhou, Qi-Lin

    2017-01-11

    The Ir-catalyzed asymmetric hydrogenation of olefins is widely used for production of value-added bulk and fine chemicals. The iridium catalysts with chiral spiro phosphine-oxazoline ligands developed in our group show high activity and high enantioselectivity in the hydrogenation of olefins bearing a coordinative carboxyl group, such as α,β-unsaturated carboxylic acids, β,γ-unsaturated carboxylic acids, and γ,δ-unsaturated carboxylic acids. Here we conducted detailed mechanistic studies on these Ir-catalyzed asymmetric hydrogenation reactions by using (E)-2-methyl-3-phenylacrylic acid as a model substrate. We isolated and characterized several key intermediates having Ir-H bonds under the real hydrogenation conditions. Particularly, an Ir(III) migratory insertion intermediate was first isolated in an asymmetric hydrogenation reaction promoted by chiral Ir catalysts. That this intermediate cannot undergo reductive elimination in the absence of hydrogen strongly supports the involvement of an Ir(III)/Ir(V) cycle in the hydrogenation. On the basis of the structure of the Ir(III) intermediate, variable-temperature NMR spectroscopy, and density functional theory calculations, we elucidated the mechanistic details of the Ir-catalyzed hydrogenation of unsaturated carboxylic acids and explained the enantioselectivity of the reactions. These findings experimentally and computationally elucidate the mechanism of Ir-catalyzed asymmetric hydrogenation of olefins with a strong coordinative carboxyl group and will likely inspire further catalyst design.

  5. Silver-catalyzed arylation of (hetero)arenes by oxidative decarboxylation of aromatic carboxylic acids.

    PubMed

    Kan, Jian; Huang, Shijun; Lin, Jin; Zhang, Min; Su, Weiping

    2015-02-09

    A long-standing challenge in Minisci reactions is achieving the arylation of heteroarenes by oxidative decarboxylation of aromatic carboxylic acids. To address this challenge, the silver-catalyzed intermolecular Minisci reaction of aromatic carboxylic acids was developed. With an inexpensive silver salt as a catalyst, this new reaction enables a variety of aromatic carboxylic acids to undergo decarboxylative coupling with electron-deficient arenes or heteroarenes regardless of the position of the substituents on the aromatic carboxylic acid, thus eliminating the need for ortho-substituted aromatic carboxylic acids, which were a limitation of previously reported methods.

  6. Ethyl Esterification for MALDI-MS Analysis of Protein Glycosylation.

    PubMed

    Reiding, Karli R; Lonardi, Emanuela; Hipgrave Ederveen, Agnes L; Wuhrer, Manfred

    2016-01-01

    Ethyl esterification is a technique for the chemical modification of sialylated glycans, leading to enhanced stability when performing matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry (MS), as well as allowing the efficient detection of both sialylated and non-sialylated glycans in positive ion mode. In addition, the method shows specific reaction products for α2,3- and α2,6-linked sialic acids, leading to an MS distinguishable mass difference. Here, we describe the ethyl esterification protocol for 96 glycan samples, including enzymatic N-glycan release, the aforementioned ethyl esterification, glycan enrichment, MALDI target preparation, and the MS(/MS) measurement.

  7. Chiral phosphoric acid-catalyzed asymmetric transfer hydrogenation of 3-trifluoromethylthioquinolines.

    PubMed

    Zhou, Ji; Zhang, Qian-Fan; Zhao, Wei-Hao; Jiang, Guo-Fang

    2016-08-07

    A chiral phosphoric acid-catalyzed asymmetric transfer hydrogenation of 3-trifluoromethylthioquinolines has been successfully developed, providing direct and facile access to chiral 2,3-disubstituted 1,2,3,4-tetrahydroquinoline derivatives containing a stereogenic trifluoromethylthio group with up to 99% enantioselectivity.

  8. Enantioselective synthesis of planar chiral ferrocenes via palladium-catalyzed direct coupling with arylboronic acids.

    PubMed

    Gao, De-Wei; Shi, Yan-Chao; Gu, Qing; Zhao, Zheng-Le; You, Shu-Li

    2013-01-09

    Enantioselective Pd(II)-catalyzed direct coupling of aminomethylferrocene derivatives with boronic acids was realized. With commercially available Boc-L-Val-OH as a ligand, planar-chiral ferrocenes could be synthesized in yields of 14-81% with up to 99% ee under mild conditions.

  9. Rh(III)-catalyzed synthesis of sultones through C-H activation directed by a sulfonic acid group.

    PubMed

    Qi, Zisong; Wang, Mei; Li, Xingwei

    2014-09-04

    A new rhodium-catalyzed synthesis of sultones via the oxidative coupling of sulfonic acids with internal alkynes is described. The reaction proceeds via aryl C-H activation assisted by a sulfonic acid group.

  10. Chiral phosphoric acid catalyzed enantioselective 1,3-dipolar cycloaddition reaction of azlactones.

    PubMed

    Zhang, Zhenhua; Sun, Wangsheng; Zhu, Gongming; Yang, Junxian; Zhang, Ming; Hong, Liang; Wang, Rui

    2016-01-25

    The first chiral phosphoric acid catalyzed highly diastereo- and enantioselective 1,3-dipolar cycloaddition reaction of azlactones and methyleneindolinones was disclosed. By using a BINOL-derived chiral phosphoric acid as the catalyst, azlactones were activated as chiral anti N-protonated 1,3-dipoles to react with methyleneindolinones to yield biologically important 3,3'-pyrrolidonyl spirooxindole scaffolds in high yields, with good-to-excellent diastereo- and enantioselectivity.

  11. Copper-catalyzed formic acid synthesis from CO2 with hydrosilanes and H2O.

    PubMed

    Motokura, Ken; Kashiwame, Daiki; Miyaji, Akimitsu; Baba, Toshihide

    2012-05-18

    A copper-catalyzed formic acid synthesis from CO2 with hydrosilanes has been accomplished. The Cu(OAc)2·H2O-1,2-bis(diphenylphosphino)benzene system is highly effective for the formic acid synthesis under 1 atm of CO2. The TON value approached 8100 in 6 h. The reaction pathway was revealed by in situ NMR analysis and isotopic experiments.

  12. Brønsted Acid Catalyzed Oxygenative Bimolecular Friedel-Crafts-type Coupling of Ynamides.

    PubMed

    Patil, Dilip V; Kim, Seung Woo; Nguyen, Quynh H; Kim, Hanbyul; Wang, Shan; Hoang, Tuan; Shin, Seunghoon

    2017-03-20

    A non-metal approach for accessing α-oxo carbene surrogates for a C-C bond-forming bimolecular coupling between ynamides and nucleophilic arenes was developed. This acid-catalyzed coupling features mild temperature, which is critical for the required temporal chemoselectivity among nucleophiles. The scope of nucleophiles includes indoles, pyrroles, anilines, phenols and silyl enolethers. Furthermore, a direct test of SN 2' mechanism has been provided by employing chiral N,N'-dioxides which also enlightens the nature of the intermediates in related metal-catalyzed processes.

  13. Ionic liquid supported acid/base-catalyzed production of biodiesel.

    PubMed

    Lapis, Alexandre A M; de Oliveira, Luciane F; Neto, Brenno A D; Dupont, Jairton

    2008-01-01

    The transesterification (alcoholysis) reaction was successfully applied to synthesize biodiesel from vegetable oils using imidazolium-based ionic liquids under multiphase acidic and basic conditions. Under basic conditions, the combination of the ionic liquid 1-n-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMINTf2), alcohols, and K2CO3 (40 mol %) results in the production of biodiesel from soybean oil in high yields (>98%) and purity. H2SO4 immobilized in BMINTf2 efficiently promotes the transesterification reaction of soybean oil and various primary and secondary alcohols. In this multiphase process the acid is almost completely retained in the ionic liquid phase, while the biodiesel forms a separate phase. The recovered ionic liquid containing the acid could be reused at least six times without any significant loss in the biodiesel yield or selectivity. In both catalytic processes (acid and base), the reactions proceed as typical multiphasic systems in which the formed biodiesel accumulates as the upper phase and the glycerol by-product is selectively captured by the alcohol-ionic liquid-acid/base phase. Classical ionic liquids such as 1-n-butyl-3-methylimidazolium tetrafluoroborate and hexafluorophosphate are not stable under these acidic or basic conditions and decompose.

  14. Detoxification of acidic catalyzed hydrolysate of Kappaphycus alvarezii (cottonii).

    PubMed

    Meinita, Maria Dyah Nur; Hong, Yong-Ki; Jeong, Gwi-Taek

    2012-01-01

    Red seaweed, Kappaphycus alvarezii, holds great promise for use in biofuel production due to its high carbohydrate content. In this study, we investigated the effect of fermentation inhibitors to the K. alvarezii hydrolysate on cell growth and ethanol fermentation. In addition, detoxification of fermentation inhibitors was performed to decrease the fermentation inhibitory effect. 5-Hydroxymethylfurfural and levulinic acid, which are liberated from acidic hydrolysis, was also observed in the hydrolysate of K. alvarezii. These compounds inhibited ethanol fermentation. In order to remove these inhibitors, activated charcoal and calcium hydroxide were introduced. The efficiency of activated charcoals was examined and over-liming was used to remove the inhibitors. Activated charcoal was found to be more effective than calcium hydroxide to remove the inhibitors. Detoxification by activated charcoal strongly improved the fermentability of dilute acid hydrolysate in the production of bioethanol from K. alvarezii with Saccharomyces cerevisiae. The optimal detoxifying conditions were found to be below an activated charcoal concentration of 5%.

  15. Choline Chloride Catalyzed Amidation of Fatty Acid Ester to Monoethanolamide: A Green Approach.

    PubMed

    Patil, Pramod; Pratap, Amit

    2016-01-01

    Choline chloride catalyzed efficient method for amidation of fatty acid methyl ester to monoethanolamide respectively. This is a solvent free, ecofriendly, 100% chemo selective and economically viable path for alkanolamide synthesis. The Kinetics of amidation of methyl ester were studied and found to be first order with respect to the concentration of ethanolamine. The activation energy (Ea) for the amidation of lauric acid methyl ester catalyzed by choline chloride was found to be 50.20 KJ mol(-1). The 98% conversion of lauric acid monoethanolamide was obtained at 110°C in 1 h with 6% weight of catalyst and 1:1.5 molar ratio of methyl ester to ethanolamine under nitrogen atmosphere.

  16. GSTP1-1 stereospecifically catalyzes glutathione conjugation of ethacrynic acid.

    PubMed

    van Iersel, M L; van Lipzig, M M; Rietjens, I M; Vervoort, J; van Bladeren, P J

    1998-12-11

    Using 1H NMR two diastereoisomers of the ethacrynic acid glutathione conjugate (EASG) as well as ethacrynic acid (EA) could be distinguished and quantified individually. Chemically prepared EASG consists of equal amounts of both diastereoisomers. GSTP1-1 stereospecifically catalyzes formation of one of the diastereoisomers (A). The GSTP1-1 mutant C47S and GSTA1-1 preferentially form the same diastereoisomer of EASG as GSTP1-1. Glutathione conjugation of EA by GSTA1-2 and GSTA2-2 is not stereoselective. When human melanoma cells, expressing GSTP1-1, were exposed to ethacrynic acid, diastereoisomer A was the principal conjugate formed, indicating that even at physiological pH the enzyme catalyzed reaction dominates over the chemical conjugation.

  17. Efficient production of free fatty acids from ionic liquid-based acid- or enzyme-catalyzed bamboo hydrolysate.

    PubMed

    Mi, Le; Qin, Dandan; Cheng, Jie; Wang, Dan; Li, Sha; Wei, Xuetuan

    2017-03-01

    Two engineered Escherichia coli strains, DQ101 (MG1655 fadD (-))/pDQTES and DQ101 (MG1655 fadD (-))/pDQTESZ were constructed to investigate the free fatty acid production using ionic liquid-based acid- or enzyme-catalyzed bamboo hydrolysate as carbon source in this study. The plasmid, pDQTES, carrying an acyl-ACP thioesterase 'TesA of E. coli in pTrc99A was constructed firstly, and then (3R)-hydroxyacyl-ACP dehydratase was ligated after the TesA to give the plasmid pDQTESZ. These two strains exhibited efficient fatty acid production when glucose was used as the sole carbon source, with a final concentration of 2.45 and 3.32 g/L, respectively. The free fatty acid production of the two strains on xylose is not as efficient as that on glucose, which was 2.32 and 2.96 g/L, respectively. For mixed sugars, DQ101 (MG1655 fadD (-))-based strains utilized glucose and pentose sequentially under the carbon catabolite repression (CCR) regulation. The highest total FFAs concentration from the mixed sugar culture reached 2.81 g/L by DQ101 (MG1655 fadD (-))/pDQTESZ. Furthermore, when ionic liquid-based enzyme-catalyzed bamboo hydrolysate was used as the carbon source, the strain DQ101 (MG1655 fadD (-))/pDQTESZ could produce 1.23 g/L FFAs with a yield of 0.13 g/g, and while it just produced 0.65 g/L free fatty acid with the ionic liquid-based acid-catalyzed bamboo hydrolysate as the feedstock. The results suggested that enzymatic catalyzed bamboo hydrolysate with ionic liquid pretreatment could serve as an efficient feedstock for free fatty acid production.

  18. Palladium-Catalyzed α-Arylation of Aryl Acetic Acid Derivatives via Dienolate Intermediates with Aryl Chlorides and Bromides

    PubMed Central

    2016-01-01

    To date, examples of α-arylation of carboxylic acids remain scarce. Using a deprotonative cross-coupling process (DCCP), a method for palladium-catalyzed γ-arylation of aryl acetic acids with aryl halides has been developed. This protocol is applicable to a wide range of aryl bromides and chlorides. A procedure for the palladium-catalyzed α-arylation of styryl acetic acids is also described. PMID:25582024

  19. Anti-melanogenic effects of resveratryl triglycolate, a novel hybrid compound derived by esterification of resveratrol with glycolic acid.

    PubMed

    Park, Soojin; Seok, Jin Kyung; Kwak, Jun Yup; Choi, Yun-Hyeok; Hong, Seong Su; Suh, Hwa-Jin; Park, Woncheol; Boo, Yong Chool

    2016-07-01

    Resveratrol is known to inhibit cellular melanin synthesis by multiple mechanisms. Glycolic acid (GA) is used in skin care products for its excellent skin penetration. The purpose of this study was to examine the anti-melanogenic effects of resveratryl triglycolate (RTG), a novel hybrid compound of resveratrol and GA, in comparison with resveratrol, GA, resveratryl triacetate (RTA) and arbutin. Resveratrol, RTG, and RTA inhibited the catalytic activity human tyrosinase (TYR) more potently than arbutin or GA did. Their cytotoxic and anti-melanogenic effects were examined using murine melanoma B16/F10 cells and human epidermal melanocytes (HEMs). The cytotoxicity of RTG was similar to that of resveratrol and RTA. RTG at 3-10 μM decreased melanin levels and cellular TYR activities in α-melanocyte-stimulating hormone-stimulated B16/F10 cells, and L-tyrosine-stimulated HEMs. RTG also suppressed mRNA and protein expression of TYR, tyrosinase-related protein 1, L-3,4-dihydroxyphenylalanine chrome tautomerase, and microphthalmia-associated transcription factor (MITF) in HEMs stimulated with L-tyrosine. This study suggests that, like resveratrol and RTA, RTG can attenuate cellular melanin synthesis effectively through the suppression of MITF-dependent expression of melanogenic enzymes and the inhibition of catalytic activity of TYR enzyme. RTG therefore has potential for use as a cosmeceutical ingredient for skin whitening.

  20. Grape skins (Vitis vinifera L.) catalyze the in vitro enzymatic hydroxylation of p-coumaric acid to caffeic acid.

    PubMed

    Arnous, Anis; Meyer, Anne S

    2009-12-01

    The ability of grape skins to catalyze in vitro conversion of p-coumaric acid to the more potent antioxidant caffeic acid was studied. Addition of different concentrations of p-coumaric to red grape skins (Cabernet Sauvignon) resulted in formation of caffeic acid. This caffeic acid formation (Y) correlated positively and linearly to p-coumaric acid consumption (X): Y = 0.5 X + 9.5; R (2) = 0.96, P < 0.0001. The kinetics of caffeic acid formation with time in response to initial p-coumaric acid levels and at different grape skin concentrations, indicated that the grape skins harboured an o-hydroxylation activity, proposedly a monophenol- or a flavonoid 3'-monooxygenase activity (EC 1.14.18.1 or EC 1.14.13.21). The K (m) of this crude o-hydroxylation activity in the red grape skin was 0.5 mM with p-coumaric acid.

  1. Homologation of α-aryl amino acids through quinone-catalyzed decarboxylation/Mukaiyama-Mannich addition.

    PubMed

    Haugeberg, Benjamin J; Phan, Johnny H; Liu, Xinyun; O'Connor, Thomas J; Clift, Michael D

    2017-03-09

    A new method for amino acid homologation by way of formal C-C bond functionalization is reported. This method utilizes a 2-step/1-pot protocol to convert α-amino acids to their corresponding N-protected β-amino esters through quinone-catalyzed oxidative decarboxylation/in situ Mukaiyama-Mannich addition. The scope and limitations of this chemistry are presented. This methodology provides an alternative to the classical Arndt-Eistert homologation for accessing β-amino acid derivatives. The resulting N-protected amine products can be easily deprotected to afford the corresponding free amines.

  2. Organosolv liquefaction of sugarcane bagasse catalyzed by acidic ionic liquids.

    PubMed

    Chen, Zhengjian; Long, Jinxing

    2016-08-01

    An efficient and eco-friendly process is proposed for sugarcane bagasse liquefaction under mild condition using IL catalyst and environmental friendly solvent of ethanol/H2O. The relationship between IL acidic strength and its catalytic performance is investigated. The effects of reaction condition parameters such as catalyst dosage, temperature, time and solvent are also intensively studied. The results show that ethanol/H2O has a significant promotion effect on the simultaneous liquefaction of sugarcane bagasse carbohydrate and lignin. 97.5% of the bagasse can be liquefied with 66.46% of volatile product yield at 200°C for 30min. Furthermore, the IL catalyst shows good recyclability where no significant loss of the catalytic activity is exhibited even after five runs.

  3. Lewis acid catalyzed cascade reaction to carbazoles and naphthalenes via dehydrative [3 + 3]-annulation.

    PubMed

    Wang, Shaoyin; Chai, Zhuo; Wei, Yun; Zhu, Xiancui; Zhou, Shuangliu; Wang, Shaowu

    2014-07-03

    A novel Lewis acid catalyzed dehydrative [3 + 3]-annulation of readily available benzylic alcohols and propargylic alcohols was developed to give polysubstituted carbazoles and naphthalenes in moderate to good yields with water as the only byproduct. The reaction was presumed to proceed via a cascade process involving Friedel-Crafts-type allenylation, 1,5-hydride shift, 6π-eletrocyclization, and Wagner-Meerwein rearrangement.

  4. Enantioselective aldol reaction between isatins and cyclohexanone catalyzed by amino acid sulphonamides.

    PubMed

    Wang, Jun; Liu, Qi; Hao, Qing; Sun, Yanhua; Luo, Yiming; Yang, Hua

    2015-04-01

    Sulphonamides derived from primary α-amino acid were successfully applied to catalyze the aldol reaction between isatin and cyclohexanone under neat conditions. More interestingly, molecular sieves, as privileged additives, were found to play a vital role in achieving high enantioselectivity. Consequently, high yields (up to 99%) along with good enantioselectivities (up to 92% ee) and diastereoselectivities (up to 95:5 dr) were obtained. In addition, this reaction was also conveniently scaled up, demonstrating the applicability of this protocol.

  5. Boron-Catalyzed N-Alkylation of Amines using Carboxylic Acids.

    PubMed

    Fu, Ming-Chen; Shang, Rui; Cheng, Wan-Min; Fu, Yao

    2015-07-27

    A boron-based catalyst was found to catalyze the straightforward alkylation of amines with readily available carboxylic acids in the presence of silane as the reducing agent. Various types of primary and secondary amines can be smoothly alkylated with good selectivity and good functional-group compatibility. This metal-free amine alkylation was successfully applied to the synthesis of three commercial medicinal compounds, Butenafine, Cinacalcet. and Piribedil, in a one-pot manner without using any metal catalysts.

  6. Acetic acid-catalyzed formation of N-phenylphthalimide from phthalanilic acid: a computational study of the mechanism.

    PubMed

    Takahashi, Ohgi; Kirikoshi, Ryota; Manabe, Noriyoshi

    2015-05-28

    In glacial acetic acid, phthalanilic acid and its monosubstituents are known to be converted to the corresponding phthalimides in relatively good yields. In this study, we computationally investigated the experimentally proposed two-step (addition-elimination or cyclization-dehydration) mechanism at the second-order Møller-Plesset perturbation (MP2) level of theory for the unsubstituted phthalanilic acid, with an explicit acetic acid molecule included in the calculations. In the first step, a gem-diol tetrahedral intermediate is formed by the nucleophilic attack of the amide nitrogen. The second step is dehydration of the intermediate to give N-phenylphthalimide. In agreement with experimental findings, the second step has been shown to be rate-determining. Most importantly, both of the steps are catalyzed by an acetic acid molecule, which acts both as proton donor and acceptor. The present findings, along with those from our previous studies, suggest that acetic acid and other carboxylic acids (in their undissociated forms) can catalyze intramolecular nucleophilic attacks by amide nitrogens and breakdown of the resulting tetrahedral intermediates, acting simultaneously as proton donor and acceptor. In other words, double proton transfers involving a carboxylic acid molecule can be part of an extensive bond reorganization process from cyclic hydrogen-bonded complexes.

  7. Acetic Acid Can Catalyze Succinimide Formation from Aspartic Acid Residues by a Concerted Bond Reorganization Mechanism: A Computational Study

    PubMed Central

    Takahashi, Ohgi; Kirikoshi, Ryota; Manabe, Noriyoshi

    2015-01-01

    Succinimide formation from aspartic acid (Asp) residues is a concern in the formulation of protein drugs. Based on density functional theory calculations using Ace-Asp-Nme (Ace = acetyl, Nme = NHMe) as a model compound, we propose the possibility that acetic acid (AA), which is often used in protein drug formulation for mildly acidic buffer solutions, catalyzes the succinimide formation from Asp residues by acting as a proton-transfer mediator. The proposed mechanism comprises two steps: cyclization (intramolecular addition) to form a gem-diol tetrahedral intermediate and dehydration of the intermediate. Both steps are catalyzed by an AA molecule, and the first step was predicted to be rate-determining. The cyclization results from a bond formation between the amide nitrogen on the C-terminal side and the side-chain carboxyl carbon, which is part of an extensive bond reorganization (formation and breaking of single bonds and the interchange of single and double bonds) occurring concertedly in a cyclic structure formed by the amide NH bond, the AA molecule and the side-chain C=O group and involving a double proton transfer. The second step also involves an AA-mediated bond reorganization. Carboxylic acids other than AA are also expected to catalyze the succinimide formation by a similar mechanism. PMID:25588215

  8. Solid acid-catalyzed depolymerization of barley straw driven by ball milling.

    PubMed

    Schneider, Laura; Haverinen, Jasmiina; Jaakkola, Mari; Lassi, Ulla

    2016-04-01

    This study describes a time and energy saving, solvent-free procedure for the conversion of lignocellulosic barley straw into reducing sugars by mechanocatalytical pretreatment. The catalytic conversion efficiency of several solid acids was tested which revealed oxalic acid dihydrate as a potential catalyst with high conversion rate. Samples were mechanically treated by ball milling and subsequently hydrolyzed at different temperatures. The parameters of the mechanical treatment were optimized in order to obtain sufficient amount of total reducing sugar (TRS) which was determined following the DNS assay. Additionally, capillary electrophoresis (CE) and Fourier transform infrared spectrometry (FT-IR) were carried out. Under optimal conditions TRS 42% was released using oxalic acid dihydrate as a catalyst. This study revealed that the acid strength plays an important role in the depolymerization of barley straw and in addition, showed, that the oxalic acid-catalyzed reaction generates low level of the degradation product 5-hydroxymethylfurfural (HMF).

  9. Microwave-assisted 18O-labeling of proteins catalyzed by formic acid.

    PubMed

    Liu, Ning; Wu, Hanzhi; Liu, Hongxia; Chen, Guonan; Cai, Zongwei

    2010-11-01

    Oxygen exchange may occur at carboxyl groups catalyzed by acid. The reaction, however, takes at least several days at room temperature. The long-time exchanging reaction often prevents its application from protein analysis. In this study, an (18)O-labeling method utilizing microwave-assisted acid hydrolysis was developed. After being dissolved in (16)O/(18)O (1:1) water containing 2.5% formic acid, protein samples were exposed to microwave irradiation. LC-MS/MS analysis of the resulted peptide mixtures indicated that oxygen in the carboxyl groups from glutamic acid, aspartic acid, and the C-terminal residues could be efficiently exchanged with (18)O within less than 15 min. The rate of back exchange was so slow that no detectable back exchange could be found during the HPLC run.

  10. Asymmetric epoxidation of allylic alcohols catalyzed by vanadium-binaphthylbishydroxamic Acid complex.

    PubMed

    Noji, Masahiro; Kobayashi, Toshihiro; Uechi, Yuria; Kikuchi, Asami; Kondo, Hisako; Sugiyama, Shigeo; Ishii, Keitaro

    2015-03-20

    A vanadium-binaphthylbishydroxamic acid (BBHA) complex-catalyzed asymmetric epoxidation of allylic alcohols is described. The optically active binaphthyl-based ligands BBHA 2a and 2b were synthesized from (S)-1,1'-binaphthyl-2,2'-dicarboxylic acid and N-substituted-O-trimethylsilyl (TMS)-protected hydroxylamines via a one-pot, three-step procedure. The epoxidations of 2,3,3-trisubstituted allylic alcohols using the vanadium complex of 2a were easily performed in toluene with a TBHP water solution to afford (2R)-epoxy alcohols in good to excellent enantioselectivities.

  11. Stability of prostacyclin analogues: an unusual lack of reactivity in acid-catalyzed alkene hydration.

    PubMed

    Magill, A; O'Yang, C; Powell, M F

    1988-04-01

    Prostacyclin analogue 5 undergoes specific acid-catalyzed hydration (kH+ = 1.9 x 10(-7)M-1 sec-1 at 25 degrees C) and a pH-independent oxidation reaction (k0 = 1.2 x 10(-10) sec-1 at 25 degrees C) above pH approximately 5. The hydration reaction for 5 is much slower than for other structurally similar exocyclic alkenes, even though the rate-determining step is proton transfer. This slowness of reaction and an analysis of the pH-rate profile show that 5 does not exhibit significant intramolecular general acid catalysis, as does prostacyclin.

  12. Iron-Catalyzed Decarboxylative Alkyl Etherification of Vinylarenes with Aliphatic Acids as the Alkyl Source.

    PubMed

    Jian, Wujun; Ge, Liang; Jiao, Yihang; Qian, Bo; Bao, Hongli

    2017-03-20

    Because of the lack of effective alkylating reagents, alkyl etherification of olefins with general alkyl groups has not been previously reported. In this work, a variety of alkyl diacyl peroxides and peresters generated from aliphatic acids have been found to enable the first iron-catalyzed alkyl etherification of olefins with general alkyl groups. Primary, secondary and tertiary aliphatic acids are suitable for this reaction, delivering products with yields up to 97 %. Primary and secondary alcohols react well, affording products in up to 91 % yield.

  13. Formation of linear polyenes in poly(vinyl alcohol) films catalyzed by phosphotungstic acid, aluminum chloride, and hydrochloric acid

    NASA Astrophysics Data System (ADS)

    Tretinnikov, O. N.; Sushko, N. I.; Malyi, A. B.

    2016-07-01

    Formation of linear polyenes-(CH=CH)n-via acid-catalyzed thermal dehydration of polyvinyl alcohol in 9- to 40-µm-thick films of this polymer containing hydrochloric acid, aluminum chloride, and phosphotungstic acid as dehydration catalysts was studied by electronic absorption spectroscopy. The concentration of long-chain ( n ≥ 8) polyenes in films containing phosphotungstic acid is found to monotonically increase with the duration of thermal treatment of films, although the kinetics of this process is independent of film thickness. In films containing hydrochloric acid and aluminum chloride, the formation rate of polyenes with n ≥ 8 rapidly drops as film thickness decreases and the annealing time increases. As a result, at a film thickness of less than 10-12 µm, long-chain polyenes are not formed at all in these films no matter how long thermal duration is. The reason for this behavior is that hydrochloric acid catalyzing polymer dehydration in these films evaporates from the films during thermal treatment, the evaporation rate inversely depending on film thickness.

  14. Water-catalyzed gas-phase reaction of formic acid with hydroxyl radical: A computational investigation

    NASA Astrophysics Data System (ADS)

    Luo, Yi; Maeda, Satoshi; Ohno, Koichi

    2009-02-01

    The reaction of formic acid with hydroxyl radical, which is considered to be relevant to atmospheric chemistry, has been extensively studied. A water-catalyzed process of this reaction is computationally studied here for the first time. The scaled hypersphere search method was used for global exploration of pre-reaction complexes. Calculations were performed at high level of theory, such as CCSD(T)/cc-pVTZ//B3LYP/6-311+G(2df, 2p) and CCSD(T)/cc-pVTZ//MP2/aug-cc-pVDZ. It is found that the water-catalyzed process of this reaction is more kinetically favorable than its non-catalytic process. Such catalytic process may also be of interest for atmospheric chemistry, like the non-catalytic one.

  15. Catalytic synthesis of biodiesel from high free fatty acid-containing feedstocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recyclable and reusable heterogeneous diarylammonium catalysts are highly effective in catalyzing the esterification of the free fatty acid (FFA) present in greases to methyl esters to reduce the FFA content from 12-40 wt% to 0.5 – 1 wt%. The resulting ester-glyceride mixture (pretreated grease) co...

  16. Mechanism of Brønsted acid-catalyzed glucose dehydration.

    PubMed

    Yang, Liu; Tsilomelekis, George; Caratzoulas, Stavros; Vlachos, Dionisios G

    2015-04-24

    We present the first DFT-based microkinetic model for the Brønsted acid-catalyzed conversion of glucose to 5-hydroxylmethylfurfural (HMF), levulinic acid (LA), and formic acid (FA) and perform kinetic and isotopic tracing NMR spectroscopy mainly at low conversions. We reveal that glucose dehydrates through a cyclic path. Our modeling results are in excellent agreement with kinetic data and indicate that the rate-limiting step is the first dehydration of protonated glucose and that the majority of glucose is consumed through the HMF intermediate. We introduce a combination of 1) automatic mechanism generation with isotopic tracing experiments and 2) elementary reaction flux analysis of important paths with NMR spectroscopy and kinetic experiments to assess mechanisms. We find that the excess formic acid, which appears at high temperatures and glucose conversions, originates from retro-aldol chemistry that involves the C6 carbon atom of glucose.

  17. Regioselective Enzymatic β-Carboxylation of para-Hydroxy- styrene Derivatives Catalyzed by Phenolic Acid Decarboxylases

    PubMed Central

    Wuensch, Christiane; Pavkov-Keller, Tea; Steinkellner, Georg; Gross, Johannes; Fuchs, Michael; Hromic, Altijana; Lyskowski, Andrzej; Fauland, Kerstin; Gruber, Karl; Glueck, Silvia M; Faber, Kurt

    2015-01-01

    We report on a ‘green’ method for the utilization of carbon dioxide as C1 unit for the regioselective synthesis of (E)-cinnamic acids via regioselective enzymatic carboxylation of para-hydroxystyrenes. Phenolic acid decarboxylases from bacterial sources catalyzed the β-carboxylation of para-hydroxystyrene derivatives with excellent regio- and (E/Z)-stereoselectivity by exclusively acting at the β-carbon atom of the C=C side chain to furnish the corresponding (E)-cinnamic acid derivatives in up to 40% conversion at the expense of bicarbonate as carbon dioxide source. Studies on the substrate scope of this strategy are presented and a catalytic mechanism is proposed based on molecular modelling studies supported by mutagenesis of amino acid residues in the active site. PMID:26190963

  18. Study of Soybean Oil Hydrolysis Catalyzed by Thermomyces lanuginosus Lipase and Its Application to Biodiesel Production via Hydroesterification

    PubMed Central

    Cavalcanti-Oliveira, Elisa d'Avila; da Silva, Priscila Rufino; Ramos, Alessandra Peçanha; Aranda, Donato Alexandre Gomes; Freire, Denise Maria Guimarães

    2011-01-01

    The process of biodiesel production by the hydroesterification route that is proposed here involves a first step consisting of triacylglyceride hydrolysis catalyzed by lipase from Thermomyces lanuginosus (TL 100L) to generate free fatty acids (FFAs). This step is followed by esterification of the FFAs with alcohol, catalyzed by niobic acid in pellets or without a catalyst. The best result for the enzyme-catalyzed hydrolysis was obtained under reaction conditions of 50% (v/v) soybean oil and 2.3% (v/v) lipase (25 U/mL of reaction medium) in distilled water and at 60°C; an 89% conversion rate to FFAs was obtained after 48 hours of reaction. For the esterification reaction, the best result was with an FFA/methanol molar ratio of 1:3, niobic acid catalyst at a concentration of 20% (w/w FFA), and 200°C, which yielded 92% conversion of FFAs to soy methyl esters after 1 hour of reaction. This study is exceptional because both the hydrolysis and the esterification use a simple reaction medium with high substrate concentrations. PMID:21052517

  19. Rhodium-catalyzed asymmetric addition of arylboronic acids to cyclic N-sulfonyl ketimines towards the synthesis of α,α-diaryl-α-amino acid derivatives.

    PubMed

    Takechi, Ryosuke; Nishimura, Takahiro

    2015-05-07

    Rhodium/chiral diene complex-catalyzed asymmetric addition of arylboronic acids to cyclic ketimines having an ester group proceeded to give the corresponding α-amino acid derivatives in high yields with high enantioselectivity. The cyclic amino acid derivative was transformed into a linear α,α-diaryl-substituted α-N-methylamino acid ester.

  20. Role of Lewis acid additives in a palladium catalyzed directed C-H functionalization reaction of benzohydroxamic acid to isoxazolone.

    PubMed

    Athira, C; Sunoj, Raghavan B

    2016-12-20

    Metallic salts as well as protic additives are widely employed in transition metal catalyzed C-H bond functionalization reactions to improve the efficiency of catalytic protocols. In one such example, ZnCl2 and pivalic acid are used as additives in a palladium catalyzed synthesis of isoxazolone from a readily available benzohydroxamic acid under one pot conditions. In this article, we present some important mechanistic insights into the role of ZnCl2 and pivalic acid, gained by using density functional theory (M06) computations. Two interesting modes of action of ZnCl2 are identified in various catalytic steps involved in the formation of isoxazolone. The conventional Lewis acid coordination wherein zinc chloride (ZnCl2·(DMA)) binds to the carbonyl group is found to be more favored in the C-H activation step. However, the participation of a hetero-bimetallic Pd-Zn species is preferred in reductive elimination leading to Caryl-N bond formation. Pivalic acid helps in relay proton transfer in C-H bond activation through a cyclometallation deprotonation (CMD) process. The explicit inclusion of ZnCl2 and solvent N,N-dimethyl acetamide (DMA) stabilizes the transition state and also helps reduce the activation barrier for the C-H bond activation step. The electronic communication between the two metal species is playing a crucial role in stabilizing the Caryl-N bond formation transition state through a Pd-Zn hetero-bimetallic interaction.

  1. Lipid extraction and esterification for microalgae-based biodiesel production using pyrite (FeS2).

    PubMed

    Seo, Yeong Hwan; Sung, Mina; Oh, You-Kwan; Han, Jong-In

    2015-09-01

    In this study, pyrite (FeS2) was used for lipid extraction as well as esterification processes for microalgae-based biodiesel production. An iron-mediated oxidation reaction, Fenton-like reaction, produced an expected degree of lipid extraction, but pyrite was less effective than FeCl3 commercial powder. That low efficiency was improved by using oxidized pyrite, which showed an equivalent lipid extraction efficiency to FeCl3, about 90%, when 20 mM of catalyst was used. Oxidized pyrite was also employed in the esterification step, and converted free fatty acids to fatty acid methyl esters under acidic conditions; thus, the fatal problem of saponification during esterification with alkaline catalysts was avoided, and esterification efficiency over 90% was obtained. This study clearly showed that pyrite could be utilized as a cheap catalyst in the lipid extraction and esterification steps for microalgae-based biodiesel production.

  2. Noble metal catalyzed hydrogen generation from formic acid in nitrite-containing simulated nuclear waste media

    SciTech Connect

    King, R.B.; Bhattacharyya, N.K.; Wiemers, K.D.

    1994-08-01

    Simulants for the Hanford Waste Vitrification Plant (HWVP) feed containing the major non-radioactive components Al, Cd, Fe, Mn, Nd, Ni, Si, Zr, Na, CO{sub 3}{sup 2{minus}}, NO{sub 3}-, and NO{sub 2}- were used as media to evaluate the stability of formic acid towards hydrogen evolution by the reaction HCO{sub 2}H {yields} H{sub 2} + CO{sub 2} catalyzed by the noble metals Ru, Rh, and/or Pd found in significant quantities in uranium fission products. Small scale experiments using 40-50 mL of feed simulant in closed glass reactors (250-550 mL total volume) at 80-100{degree}C were used to study the effect of nitrite and nitrate ion on the catalytic activities of the noble metals for formic acid decomposition. Reactions were monitored using gas chromatography to analyze the CO{sub 2}, H{sub 2}, NO, and N{sub 2}O in the gas phase as a function of time. Rhodium, which was introduced as soluble RhCl{sub 3}{center_dot}3H{sub 2}O, was found to be the most active catalyst for hydrogen generation from formic acid above {approx}80{degree}C in the presence of nitrite ion in accord with earlier observations. The inherent homogeneous nature of the nitrite-promoted Rh-catalyzed formic acid decomposition is suggested by the approximate pseudo first-order dependence of the hydrogen production rate on Rh concentration. Titration of the typical feed simulants containing carbonate and nitrite with formic acid in the presence of rhodium at the reaction temperature ({approx}90{degree}C) indicates that the nitrite-promoted Rh-catalyzed decomposition of formic acid occurs only after formic acid has reacted with all of the carbonate and nitrite present to form CO{sub 2} and NO/N{sub 2}O, respectively. The catalytic activities of Ru and Pd towards hydrogen generation from formic acid are quite different than those of Rh in that they are inhibited rather than promoted by the presence of nitrite ion.

  3. Transformation of triclosan by laccase catalyzed oxidation: The influence of humic acid-metal binding process.

    PubMed

    Lu, Junhe; Shi, Yuanyuan; Ji, Yuefei; Kong, Deyang; Huang, Qingguo

    2017-01-01

    Laccase is a widely present extracellular phenoloxidase excreted by fungi, bacteria, and high plants. It is able to catalyze one-electron oxidation of phenolic compounds into radical intermediates that can subsequently couple to each other via covalent bonds. These reactions are believed to play an important role in humification process and the transformation of contaminants containing phenolic functionalities in the environment. In this study, we investigated the kinetics of triclosan transformation catalyzed by laccase. It was found that the rate of triclosan oxidation was first order to the concentrations of both substrate and enzyme. Humic acid (HA) could inhibit the reaction by quenching the radical intermediate of triclosan generated by laccase oxidation. Such inhibition was more significant in the presence of divalent metal cations. This is because that binding to metal ions neutralized the negative charge of HA molecules, thus making them more accessible to laccase molecule that is also negatively charged. Therefore, it has greater chance to quench the radical intermediate that is very unstable and can only diffuse a limited distance after being released from the enzyme catalytic center. Based on these understandings, a reaction model was developed by integration of metal-HA binding equilibriums and kinetic equations. This model precisely predicted the transformation rate of triclosan in the presence of HA and divalent metal ions including Ca(2+), Mg(2+), Cd(2+), Co(2+), Mn(2+), Ba(2+), and Zn(2+). Overall, this work reveals important insights into laccase catalyzed oxidative coupling process.

  4. Salicylic acid-induced superoxide generation catalyzed by plant peroxidase in hydrogen peroxide-independent manner

    PubMed Central

    Kimura, Makoto; Kawano, Tomonori

    2015-01-01

    It has been reported that salicylic acid (SA) induces both immediate spike and long lasting phases of oxidative burst represented by the generation of reactive oxygen species (ROS) such as superoxide anion radical (O2•−). In general, in the earlier phase of oxidative burst, apoplastic peroxidase are likely involved and in the late phase of the oxidative burst, NADPH oxidase is likely involved. Key signaling events connecting the 2 phases of oxidative burst are calcium channel activation and protein phosphorylation events. To date, the known earliest signaling event in response to exogenously added SA is the cell wall peroxidase-catalyzed generation of O2•− in a hydrogen peroxide (H2O2)-dependent manner. However, this model is incomplete since the source of the initially required H2O2 could not be explained. Based on the recently proposed role for H2O2-independent mechanism for ROS production catalyzed by plant peroxidases (Kimura et al., 2014, Frontiers in Plant Science), we hereby propose a novel model for plant peroxidase-catalyzed oxidative burst fueled by SA. PMID:26633563

  5. The Acid Catalyzed Nitration of Methanol: Formation of Methyl Nitrate via Aerosol Chemistry

    NASA Technical Reports Server (NTRS)

    Riffel, Brent G.; Michelsen, Rebecca R.; Iraci, Laura T.

    2004-01-01

    The liquid phase acid catalyzed reaction of methanol with nitric acid to yield methyl nitrate under atmospheric conditions has been investigated using gas phase infrared spectroscopy. This nitration reaction is expected to occur in acidic aerosol particles found in the upper troposphere/lower stratosphere as highly soluble methanol and nitric acid diffuse into these aerosols. Gaseous methyl nitrate is released upon formation, suggesting that some fraction of NO(x) may he liberated from nitric acid (methyl nitrate is later photolyzed to NO(x)) before it is removed from the atmosphere by wet deposition. Thus, this reaction may have important implications for the NO(x) budget. Reactions have been initiated in 45-62 wt% H2SO4 solutions at 10.0 C. Methyl nitrate production rates increased exponentially with acidity within the acidity regime studied. Preliminary calculations suggest that the nitronium ion (NO2(+) is the active nitrating agent under these conditions. The reaction order in methanol appears to depend on the water/methanol ratio and varies from first to zeroth order under conditions investigated. The nitration is first order in nitronium at all acidities investigated. A second order rate constant, kappa(sub 2), has been calculated to be 1 x 10(exp 8)/ M s when the reaction is first order in methanol. Calculations suggest the nitration is first order in methanol under tropospheric conditions. The infinitesimal percentage of nitric acid in the nitronium ion form in this acidity regime probably makes this reaction insignificant for the upper troposphere; however, this nitration may become significant in the mid stratosphere where colder temperatures increase nitric acid solubility and higher sulfuric acid content shifts nitric acid speciation toward the nitronium ion.

  6. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production.

    PubMed

    Michelucci, Alessandro; Cordes, Thekla; Ghelfi, Jenny; Pailot, Arnaud; Reiling, Norbert; Goldmann, Oliver; Binz, Tina; Wegner, André; Tallam, Aravind; Rausell, Antonio; Buttini, Manuel; Linster, Carole L; Medina, Eva; Balling, Rudi; Hiller, Karsten

    2013-05-07

    Immunoresponsive gene 1 (Irg1) is highly expressed in mammalian macrophages during inflammation, but its biological function has not yet been elucidated. Here, we identify Irg1 as the gene coding for an enzyme producing itaconic acid (also known as methylenesuccinic acid) through the decarboxylation of cis-aconitate, a tricarboxylic acid cycle intermediate. Using a gain-and-loss-of-function approach in both mouse and human immune cells, we found Irg1 expression levels correlating with the amounts of itaconic acid, a metabolite previously proposed to have an antimicrobial effect. We purified IRG1 protein and identified its cis-aconitate decarboxylating activity in an enzymatic assay. Itaconic acid is an organic compound that inhibits isocitrate lyase, the key enzyme of the glyoxylate shunt, a pathway essential for bacterial growth under specific conditions. Here we show that itaconic acid inhibits the growth of bacteria expressing isocitrate lyase, such as Salmonella enterica and Mycobacterium tuberculosis. Furthermore, Irg1 gene silencing in macrophages resulted in significantly decreased intracellular itaconic acid levels as well as significantly reduced antimicrobial activity during bacterial infections. Taken together, our results demonstrate that IRG1 links cellular metabolism with immune defense by catalyzing itaconic acid production.

  7. Acid-catalyzed furfurly alcohol polymerization : characterizations of molecular structure and thermodynamic properties.

    SciTech Connect

    Kim, T.; Assary, R. S.; Marshall, C. L.; Gosztola, D. J.; Curtiss, L. A.; Stair, P. C.

    2011-01-01

    The liquid-phase polymerization of furfuryl alcohol catalyzed by sulfuric acid catalysts and the identities of molecular intermediates were investigated by using Raman spectroscopy and density functional theory calculation. At room temperature, with an acid catalyst, a vigorous furfuryl alcohol polymerization reaction was observed, whereas even at a high water concentration, furfuryl alcohol was very stable in the absence of an acid catalyst. Theoretical studies were carried out to investigate the thermodynamics of protonation of furfuryl alcohol, initiation of polymerization, and formation of conjugated dienes and diketonic species by using the B3LYP level of theory. A strong aliphatic C=C band observed in the calculated and measured Raman spectra provided crucial evidence to understand the polymerization reaction mechanism. It is confirmed that the formation of a conjugated diene structure rather than a diketone structure is involved in the furfuryl alcohol polymerization reaction.

  8. Acid-catalyzed Furfuryl Alcohol Polymerization: Characterizations of Molecular Structure and Thermodynamic Properties

    SciTech Connect

    Kim, Taejin; Assary, Rajeev A.; Marshall, Christopher L.; Gosztola, David J.; Curtiss, Larry A.; Stair, Peter C.

    2011-07-22

    The liquid-phase polymerization of furfuryl alcohol catalyzed by sulfuric acid catalysts and the identities of molecular intermediates were investigated by using Raman spectroscopy and density functional theory calculation. At room temperature, with an acid catalyst, a vigorous furfuryl alcohol polymerization reaction was observed, whereas even at a high water concentration, furfuryl alcohol was very stable in the absence of an acid catalyst. Theoretical studies were carried out to investigate the thermodynamics of protonation of furfuryl alcohol, initiation of polymerization, and formation of conjugated dienes and diketonic species by using the B3LYP level of theory. A strong aliphatic C=C band observed in the calculated and measured Raman spectra provided crucial evidence to understand the polymerization reaction mechanism. It is confirmed that the formation of a conjugated diene structure rather than a diketone structure is involved in the furfuryl alcohol polymerization reaction.

  9. Theoretical insights into heme-catalyzed oxidation of cyclohexane to adipic acid.

    PubMed

    Noack, Holger; Georgiev, Valentin; Blomberg, Margareta R A; Siegbahn, Per E M; Johansson, Adam Johannes

    2011-02-21

    Adipic acid is a key compound in the chemical industry, where it is mainly used in the production of polymers. The conventional process of its generation requires vast amounts of energy and, moreover, produces environmentally deleterious substances. Thus, there is interest in alternative ways to gain adequate amounts of adipic acid. Experimental reports on a one-pot iron-catalyzed conversion of cyclohexane to adipic acid motivated a theoretical investigation based on density functional theory calculations. The process investigated is interesting because it requires less energy than contemporary methods and does not produce environmentally harmful side products. The aim of the present contribution is to gain insight into the mechanism of the iron-catalyzed cyclohexane conversion to provide a basis for the further development of this process. The rate-limiting step of the process is discussed, but considering the accuracy of the calculations, it is difficult to ensure whether the rate-limiting step is in the substrate oxidation or in the generation of the catalytically active species. It is shown that the slowest step in the substrate oxidation is the conversion of cyclohexanol to cyclohexane-1,2-diol. Hydrogen-atom transfer from one of the OH groups of cyclohexane-1,2-diol makes the intradiol cleavage occur spontaneously.

  10. Isotope Effects and Mechanism of the Asymmetric BOROX Brønsted Acid Catalyzed Aziridination Reaction

    PubMed Central

    Vetticatt, Mathew J.; Desai, Aman A.; Wulff, William D.

    2013-01-01

    The mechanism of the chiral VANOL-BOROX Brønsted acid catalyzed aziridination reaction of imines and ethyldiazoacetate has been studied using a combination of experimental kinetic isotope effects and theoretical calculations. A stepwise mechanism where reversible formation of a diazonium ion intermediate precedes rate-limiting ring-closure to form the cis-aziridine is implicated. A revised model for the origin of enantio- and diastereoselectivity is proposed based on relative energies of the ring closing transition structures. PMID:23687986

  11. Asymmetric Synthesis of Hydrocarbazoles Catalyzed by an Octahedral Chiral-at-Rhodium Lewis Acid.

    PubMed

    Huang, Yong; Song, Liangliang; Gong, Lei; Meggers, Eric

    2015-12-01

    A bis-cyclometalated chiral-at-metal rhodium complex catalyzes the Diels-Alder reaction between N-Boc-protected 3-vinylindoles (Boc = tert-butyloxycarbonyl) and β-carboxylic ester-substituted α,β-unsaturated 2-acyl imidazoles with good-to-excellent regioselectivity (up to 99:1) and excellent diastereoselectivity (>50:1 d.r.) as well as enantioselectivity (92-99% ee) under optimized conditions. The rhodium catalyst serves as a chiral Lewis acid to activate the 2-acyl imidazole dienophile by two-point binding and overrules the preferred regioselectivity of the uncatalyzed reaction.

  12. Enantioselective Synthesis of β-Arylamines via Chiral Phosphoric Acid-Catalyzed Asymmetric Reductive Amination.

    PubMed

    Kim, Kyung-Hee; Lee, Chun-Young; Cheon, Cheol-Hong

    2015-06-19

    A new method for the synthesis of chiral β-aryl amines via chiral phosphoric acid-catalyzed enantioselective reductive amination of benzyl methyl ketone derivatives with Hantzsch ester was developed. Various chiral β-aryl amines were obtained in high yields and with good to high enantioselectivities. This transformation is applicable to gram-scale reactions, and the catalyst loading can be reduced to 1 mol % without sacrificing any catalytic efficacy. Furthermore, the resulting β-aryl amine was successfully converted into a tetrahydroisoquinoline compound without any loss of enantioselectivity.

  13. Copper(II)-catalyzed hydroxylation of aryl halides using glycolic acid as a ligand.

    PubMed

    Xiao, Yan; Xu, Yongnan; Cheon, Hwan-Sung; Chae, Junghyun

    2013-06-07

    Copper(II)-catalyzed hydroxylation of aryl halides has been developed to afford functionalized phenols. The protocol utilizes the reagent combination of Cu(OH)2, glycolic acid, and NaOH in aqueous DMSO, all of which are cheap, readily available, and easily removable after the reaction. A broad range of aryl iodides and activated aryl bromides were transformed into the corresponding phenols in excellent yields. Moreover, it has been shown that C-O(alkyl)-coupled product, instead of phenol, can be predominantly formed under similar reaction conditions.

  14. Catalyzed asymmetric aryl transfer reactions to aldehydes with boronic acids as aryl source.

    PubMed

    Bolm, Carsten; Rudolph, Jens

    2002-12-18

    Chiral diaryl methanols are important intermediates for the synthesis of biologically active compounds. Here, we describe a flexible method for their catalyzed asymmetric synthesis from readily available starting materials. Noteworthy is the fact that with a single catalyst both enantiomers of the product are accessible simply by choosing the appropriate combination of aryl boronic acid or aldehyde as aryl donor and acceptor, respectively. The catalysis with a planar-chiral ferrocene is easy to perform and yields a broad range of products with excellent enantioselectivities (up to 98% ee).

  15. Hydrodeoxygenation of fatty acid esters catalyzed by Ni on nano-sized MFI type zeolites

    SciTech Connect

    Schreiber, Moritz W.; Rodriguez-Niño, Daniella; Gutiérrez, Oliver Y.; Lercher, Johannes A.

    2016-01-01

    The impact of support morphology and composition on the intrinsic activity of Ni supported on MFI-type zeolite was explored in the hydrodeoxygenation of methyl stearate, tristearate, and algae oil (mixture of triglycerides). The nano-sized structure of the support (self-pillared nanosheets) is beneficial for the activity of the catalysts. Higher Ni dispersion and concomitant higher reaction rates were obtained on nano-structured supports than on zeolite with conventional morphology. Rates normalized to accessible Ni atoms (TOF), however, varied little with support morphology. Acidity of the support increases the rate of Ni-catalyzed C-O hydrogenolysis per surface metal site.

  16. Optimization and kinetic modeling of esterification of the oil obtained from waste plum stones as a pretreatment step in biodiesel production.

    PubMed

    Kostić, Milan D; Veličković, Ana V; Joković, Nataša M; Stamenković, Olivera S; Veljković, Vlada B

    2016-02-01

    This study reports on the use of oil obtained from waste plum stones as a low-cost feedstock for biodiesel production. Because of high free fatty acid (FFA) level (15.8%), the oil was processed through the two-step process including esterification of FFA and methanolysis of the esterified oil catalyzed by H2SO4 and CaO, respectively. Esterification was optimized by response surface methodology combined with a central composite design. The second-order polynomial equation predicted the lowest acid value of 0.53mgKOH/g under the following optimal reaction conditions: the methanol:oil molar ratio of 8.5:1, the catalyst amount of 2% and the reaction temperature of 45°C. The predicted acid value agreed with the experimental acid value (0.47mgKOH/g). The kinetics of FFA esterification was described by the irreversible pseudo first-order reaction rate law. The apparent kinetic constant was correlated with the initial methanol and catalyst concentrations and reaction temperature. The activation energy of the esterification reaction slightly decreased from 13.23 to 11.55kJ/mol with increasing the catalyst concentration from 0.049 to 0.172mol/dm(3). In the second step, the esterified oil reacted with methanol (methanol:oil molar ratio of 9:1) in the presence of CaO (5% to the oil mass) at 60°C. The properties of the obtained biodiesel were within the EN 14214 standard limits. Hence, waste plum stones might be valuable raw material for obtaining fatty oil for the use as alternative feedstock in biodiesel production.

  17. Synthesis of structured lipid enriched with omega fatty acids and sn-2 palmitic acid by enzymatic esterification and its incorporation in powdered infant formula.

    PubMed

    Nagachinta, Supakana; Akoh, Casimir C

    2013-05-08

    Structured lipid (SL) enriched with arachidonic (ARA) and docosahexaenoic (DHA) acids was produced from tripalmitin using Lipozyme TL IM. The effects of acyl donors, that is, free fatty acids vs fatty acid ethyl esters, on the reactions were compared. The highest total incorporation of ARA and DHA was obtained when the reaction continued for 24 h, at a substrate mole ratio of 9, using free fatty acids as acyl donors (acidolysis). The SL prepared by a large-scale acidolysis reaction contained 17.69 ± 0.09% total ARA, 10.75 ± 0.15% total DHA, and 48.53 ± 1.40% sn-2 palmitic acid. SL thermograms exhibited multiple peaks indicating complexity of the triacylglycerol (TAG) distribution. RP-HPLC analysis of SL revealed nine of 26 TAG molecular species that were similar to those of human milk fat. Powdered infant formulas containing the SL were prepared by wet-mixing/spray-drying and dry-blending methods. Formula prepared with microencapsulated SL and the dry-blending method had better oxidative stability and color quality.

  18. Environmentally friendly efficient one-pot esterification of cyclohexane with CuO-promoted sulfated zirconia.

    PubMed

    Wang, Jingjing; Ma, Hongzhu; Wang, Bo

    2008-09-15

    The production of dibutyl phthalate directly from oxidation and esterification of cyclohexane, catalyzed by CuO-modified sulfated zirconia (SZCu) by one-pot under mild condition, was studied. The esterification reaction process was monitored by UV-vis spectra and the distribution of the products was analyzed by gas chromatograph-mass spectrometry (GC-MS). The result revealed that the SZCu catalyst was efficient in the direct oxidation and esterification of cyclohexane to ester. The selectivity for ester (dibutyl phthalate) can reach up to 72.2 wt.%, and the yield of ester was 29.5 wt.%. The esterification reaction, that offers several advantages such as usage of environmental friendly oxidant, simple work-up procedure, no-solvent conditions, short reaction times, easy recovery and reusability of the catalyst, is necessary for chemosynthesis industry from the environment standpoint. The regeneration property of SZCu was also tested in this work.

  19. Cobalt(II)-catalyzed 1,4-addition of organoboronic acids to activated alkenes: an application to highly cis-stereoselective synthesis of aminoindane carboxylic acid derivatives.

    PubMed

    Chen, Min-Hsien; Mannathan, Subramaniyan; Lin, Pao-Shun; Cheng, Chien-Hong

    2012-11-19

    It all adds up: The 1,4-addition of organoboronic acids to activated alkenes catalyzed by [Co(dppe)Cl(2)] is described. A [3+2]-annulation reaction of ortho-iminoarylboronic acids with acrylates to give various aminoindane carboxylic acid derivatives with cis-stereoselectivity is also demonstrated (see scheme; dppe = 1,2-bis(diphenylphosphino)ethane).

  20. Asymmetric synthesis of allylic sulfonic acids: enantio- and regioselective iridium-catalyzed allylations of Na2SO3.

    PubMed

    Liu, Wei; Zhao, Xiao-ming; Zhang, Hong-bo; Zhang, Liang; Zhao, Ming-zhu

    2014-12-15

    An enantioselective allylation reaction of allylic carbonates with sodium sulfite (Na2 SO3 ) catalyzed by Ir complex was accomplished, providing allylic sulfonic acids in good to excellent yields with a high level of enantio- and regioselectivities. (R)-2-Phenyl-2-sulfoacetic acid, a key intermediate for the synthesis of Cefsulodin and Sulbenicillin, was synthesized as well.

  1. Solid acid-catalyzed cellulose hydrolysis monitored by in situ ATR-IR spectroscopy.

    PubMed

    Zakzeski, Joseph; Grisel, Ruud J H; Smit, Arjan T; Weckhuysen, Bert M

    2012-02-13

    The solid acid-catalyzed hydrolysis of cellulose was studied under elevated temperatures and autogenous pressures using in situ ATR-IR spectroscopy. Standards of cellulose and pure reaction products, which include glucose, fructose, hydroxymethylfurfural (HMF), levulinic acid (LA), formic acid, and other compounds, were measured in water under ambient and elevated temperatures. A combination of spectroscopic and HPLC analysis revealed that the cellulose hydrolysis proceeds first through the disruption of the glycosidic linkages of cellulose to form smaller cellulose molecules, which are readily observed by their distinctive C-O vibrational stretches. The continued disruption of the linkages in these oligomers eventually results in the formation and accumulation of monomeric glucose. The solid-acid catalyst accelerated the isomerization of glucose to fructose, which then rapidly reacted under hydrothermal conditions to form degradation products, which included HMF, LA, formic acid, and acetic acid. The formation of these species could be suppressed by decreasing the residence time of glucose in the reactor, reaction temperature, and contact with the metal reactor. The hydrolysis of regenerated cellulose proceeded faster and under milder conditions than microcrystalline cellulose, which resulted in increased glucose yield and selectivity.

  2. Bioengineering of bacterial polymer inclusions catalyzing the synthesis of N-acetylneuraminic acid.

    PubMed

    Hooks, David O; Blatchford, Paul A; Rehm, Bernd H A

    2013-05-01

    N-Acetylneuraminic acid is produced by alkaline epimerization of N-acetylglucosamine to N-acetylmannosamine and then subsequent condensation with pyruvate catalyzed by free N-acetylneuraminic acid aldolase. The high-alkaline conditions of this process result in the degradation of reactants and products, while the purification of free enzymes to be used for the synthesis reaction is a costly process. The use of N-acetylglucosamine 2-epimerase has been seen as an alternative to the alkaline epimerization process. In this study, these two enzymes involved in N-acetylneuraminic acid production were immobilized to biopolyester beads in vivo in a one-step, cost-efficient process of production and isolation. Beads with epimerase-only, aldolase-only, and combined epimerase/aldolase activity were recombinantly produced in Escherichia coli. The enzymatic activities were 32 U, 590 U, and 2.2 U/420 U per gram dry bead weight, respectively. Individual beads could convert 18% and 77% of initial GlcNAc and ManNAc, respectively, at high substrate concentrations and near-neutral pH, demonstrating the application of this biobead technology to fine-chemical synthesis. Beads establishing the entire N-acetylneuraminic acid synthesis pathway were able to convert up to 22% of the initial N-acetylglucosamine after a 50-h reaction time into N-acetylneuraminic acid.

  3. Novel Enzyme Family Found in Filamentous Fungi Catalyzing trans-4-Hydroxylation of l-Pipecolic Acid

    PubMed Central

    Hibi, Makoto; Mori, Ryosuke; Miyake, Ryoma; Kawabata, Hiroshi; Kozono, Shoko; Takahashi, Satomi

    2016-01-01

    Hydroxypipecolic acids are bioactive compounds widely distributed in nature and are valuable building blocks for the organic synthesis of pharmaceuticals. We have found a novel hydroxylating enzyme with activity toward l-pipecolic acid (l-Pip) in a filamentous fungus, Fusarium oxysporum c8D. The enzyme l-Pip trans-4-hydroxylase (Pip4H) of F. oxysporum (FoPip4H) belongs to the Fe(II)/α-ketoglutarate-dependent dioxygenase superfamily, catalyzes the regio- and stereoselective hydroxylation of l-Pip, and produces optically pure trans-4-hydroxy-l-pipecolic acid (trans-4-l-HyPip). Amino acid sequence analysis revealed several fungal enzymes homologous with FoPip4H, and five of these also had l-Pip trans-4-hydroxylation activity. In particular, the homologous Pip4H enzyme derived from Aspergillus nidulans FGSC A4 (AnPip4H) had a broader substrate specificity spectrum than other homologues and reacted with the l and d forms of various cyclic and aliphatic amino acids. Using FoPip4H as a biocatalyst, a system for the preparative-scale production of chiral trans-4-l-HyPip was successfully developed. Thus, we report a fungal family of l-Pip hydroxylases and the enzymatic preparation of trans-4-l-HyPip, a bioactive compound and a constituent of secondary metabolites with useful physiological activities. PMID:26801577

  4. Investigation of emulsified, acid and acid-alkali catalyzed mesoporous bioactive glass microspheres for bone regeneration and drug delivery.

    PubMed

    Miao, Guohou; Chen, Xiaofeng; Dong, Hua; Fang, Liming; Mao, Cong; Li, Yuli; Li, Zhengmao; Hu, Qing

    2013-10-01

    Acid-catalyzed mesoporous bioactive glass microspheres (MBGMs-A) and acid-alkali co-catalyzed mesoporous bioactive glass microspheres (MBGMs-B) were successfully synthesized via combination of sol-gel and water-in-oil (W/O) micro-emulsion methods. The structural, morphological and textural properties of mesoporous bioactive glass microspheres (MBGMs) were characterized by various techniques. Results show that both MBGMs-A and MBGMs-B exhibit regularly spherical shape but with different internal porous structures, i.e., a dense microstructure for MBGMs-A and internally porous structure for MBGMs-B. (29)Si NMR data reveal that MGBMs have low polymerization degree of silica network. The in vitro bioactivity tests indicate that the apatite formation rate of MBGMs-B was faster than that of MBGMs-A after soaking in simulated body fluid (SBF) solution. Furthermore, the two kinds of MBGMs have similar storage capacity of alendronate (AL), and the release behaviors of AL could be controlled due to their unique porous structure. In conclusion, the microspheres are shown to be promising candidates as bone-related drug carriers and filling materials of composite scaffold for bone repair.

  5. Green synthesis of β-sitostanol esters catalyzed by the versatile lipase/sterol esterase from Ophiostoma piceae.

    PubMed

    Molina-Gutiérrez, María; Hakalin, Neumara L S; Rodríguez-Sanchez, Leonor; Prieto, Alicia; Martínez, María Jesús

    2017-04-15

    β-sitostanol esters, used as dietary complement for decreasing cholesterol absorption, have been synthesized at 28°C via direct esterification or transesterification catalyzed by the versatile lipase/sterol esterase from the ascomycete fungus O. piceae. Direct esterification was conducted in biphasic isooctane: water systems containing 10mM β-sitostanol and lauric or oleic acid as acyl donors, reaching 90% esterification in 3h with the recombinant enzyme. The use of molar excesses of the free fatty acids did not improve direct esterification rate, and the enzyme did not convert one of the two fatty acids preferentially when both were simultaneously available. On the other hand, solvent-free transesterification was an extremely efficient mechanism to synthesize β-sitostanyl oleate, yielding virtually full conversion of up to 80mM β-sitostanol in 2h. This process may represent a promising green alternative to the current chemical synthesis of these esters of unquestionable nutraceutical value.

  6. Two step esterification-transesterification process of wet greasy sewage sludge for biodiesel production.

    PubMed

    Urrutia, C; Sangaletti-Gerhard, N; Cea, M; Suazo, A; Aliberti, A; Navia, R

    2016-01-01

    Sewage sludge generated in municipal wastewater treatment plants was used as a feedstock for biodiesel production via esterification/transesterification in a two-step process. In the first esterification step, greasy and secondary sludge were tested using acid and enzymatic catalysts. The results indicate that both catalysts performed the esterification of free fatty acids (FFA) simultaneously with the transesterification of triacylglycerols (TAG). Acid catalyst demonstrated better performance in FFA esterification compared to TAG transesterification, while enzymatic catalyst showed the ability to first hydrolyze TAG in FFA, which were esterified to methyl esters. In addition, FAME concentration using greasy sludge were higher (63.9% and 58.7%), compared with those of secondary sludge (11% and 16%), using acid and enzymatic catalysts, respectively. Therefore, only greasy sludge was used in the second step of alkaline transesterification. The alkaline transesterification of the previously esterified greasy sludge reached a maximum FAME concentration of 65.4% when using acid catalyst.

  7. Mechanism of arylboronic acid-catalyzed amidation reaction between carboxylic acids and amines.

    PubMed

    Wang, Chen; Yu, Hai-Zhu; Fu, Yao; Guo, Qing-Xiang

    2013-04-07

    Arylboronic acids were found to be efficient catalysts for the amidation reactions between carboxylic acids and amines. Theoretical calculations have been carried out to investigate the mechanism of this catalytic process. It is found that the formation of the acyloxyboronic acid intermediates from the carboxylic acid and the arylboronic acid is kinetically facile but thermodynamically unfavorable. Removal of water (as experimentally accomplished by using molecular sieves) is therefore essential for overall transformation. Subsequently C-N bond formation between the acyloxyboronic acid intermediates and the amine occurs readily to generate the desired amide product. The cleavage of the C-O bond of the tetracoordinate acyl boronate intermediates is the rate-determining step in this process. Our analysis indicates that the mono(acyloxy)boronic acid is the key intermediate. The high catalytic activity of ortho-iodophenylboronic acid is attributed to the steric effect as well as the orbital interaction between the iodine atom and the boron atom.

  8. Purification and characterization of cannabidiolic-acid synthase from Cannabis sativa L.. Biochemical analysis of a novel enzyme that catalyzes the oxidocyclization of cannabigerolic acid to cannabidiolic acid.

    PubMed

    Taura, F; Morimoto, S; Shoyama, Y

    1996-07-19

    We identified a unique enzyme that catalyzes the oxidocyclization of cannabigerolic acid to cannabidiolic acid (CBDA) in Cannabis sativa L. (CBDA strain). The enzyme, named CBDA synthase, was purified to apparent homogeneity by a four-step procedure: ammonium sulfate precipitation followed by chromatography on DEAE-cellulose, phenyl-Sepharose CL-4B, and hydroxylapatite. The active enzyme consists of a single polypeptide with a molecular mass of 74 kDa and a pI of 6.1. The NH2-terminal amino acid sequence of CBDA synthase is similar to that of Delta1-tetrahydrocannabinolic-acid synthase. CBDA synthase does not require coenzymes, molecular oxygen, hydrogen peroxide, and metal ion cofactors for the oxidocyclization reaction. These results indicate that CBDA synthase is neither an oxygenase nor a peroxidase and that the enzymatic cyclization does not proceed via oxygenated intermediates. CBDA synthase catalyzes the formation of CBDA from cannabinerolic acid as well as cannabigerolic acid, although the kcat for the former (0.03 s-1) is lower than that for the latter (0.19 s-1). Therefore, we conclude that CBDA is predominantly biosynthesized from cannabigerolic acid rather than cannabinerolic acid.

  9. Laccase-catalyzed bisphenol A oxidation in the presence of 10-propyl sulfonic acid phenoxazine.

    PubMed

    Ivanec-Goranina, Rūta; Kulys, Juozas; Bachmatova, Irina; Marcinkevičienė, Liucija; Meškys, Rolandas

    2015-04-01

    The kinetics of the Coriolopsis byrsina laccase-catalyzed bisphenol A (BisA) oxidation was investigated in the absence and presence of electron-transfer mediator 3-phenoxazin-10-yl-propane-1-sulfonic acid (PPSA) at pH5.5 and 25°C. It was shown that oxidation rate of the hardly degrading compound BisA increased in the presence of the highly reactive substrate PPSA. The increase of reaction rate depends on PPSA and BisA concentrations as well on their ratio, e.g., at 0.2 mmol/L of BisA and 2 μmol/L of PPSA the rate increased 2 times. The kinetic data were analyzed using a scheme of synergistic laccase-catalyzed BisA oxidation. The calculated constant, characterizing reactivity of PPSA with laccase, is almost 1000 times higher than the constant, characterizing reactivity of BisA with laccase. This means that mediator-assisted BisA oxidation rate can be 1000 times higher in comparison to non-mediator reaction if compounds concentration is equal but very low.

  10. Oxidation of benzene with hydrogen peroxide catalyzed with ferrocene in the presence of pyrazine carboxylic acid

    NASA Astrophysics Data System (ADS)

    Shul'pina, L. S.; Durova, E. L.; Kozlov, Yu. N.; Kudinov, A. R.; Strelkova, T. V.; Shul'pin, G. B.

    2013-12-01

    It is found that ferrocene in the presence of small amounts of pyrazine carboxylic acid (PCA) effectively catalyzes the oxidation of benzene to phenol with hydrogen peroxide. Two main differences upon the oxidation of two different substrates, i.e., cyclohexane and benzene, with the same H2O2-ferrocene-PCA catalytic system are revealed: the rates of benzene oxidation and hydrogen peroxide decomposition are several times lower than the rate of cyclohexane oxidation at close concentrations of both substrates, and the rate constant ratios for the reactions of oxidizing particles with benzene and acetonitrile are significantly lower than would be expected for reactions involving free hydroxyl radicals. The overall rate of hydrogen peroxide decomposition, including both the catalase and oxidase routes, is lower in the presence of benzene than in the presence of cyclohexane. It is suggested on the grounds of these data that a catalytically active particle different from the one generated in the absence of benzene is formed in the presence of benzene. This particle catalyzes hydrogen peroxide decomposition less efficiently than the initial complex and generates a dissimilar oxidizing particle that exhibits higher selectivity. It is shown that reactivity of the system at higher concentrations of benzene differs from that of an initial system not containing an aromatic component with the capability of π-coordination with metal ions.

  11. Palladium-atom catalyzed formic acid decomposition and the switch of reaction mechanism with temperature.

    PubMed

    He, Nan; Li, Zhen Hua

    2016-04-21

    Formic acid decomposition (FAD) reaction has been an innovative way for hydrogen energy. Noble metal catalysts, especially palladium-containing nanoparticles, supported or unsupported, perform well in this reaction. Herein, we considered the simplest model, wherein one Pd atom is used as the FAD catalyst. With high-level theoretical calculations of CCSD(T)/CBS quality, we investigated all possible FAD pathways. The results show that FAD catalyzed by one Pd atom follows a different mechanism compared with that catalyzed by surfaces or larger clusters. At the initial stage of the reaction, FAD follows a dehydration route and is quickly poisoned by CO due to the formation of very stable PdCO. PdCO then becomes the actual catalyst for FAD at temperatures approximately below 1050 K. Beyond 1050 K, there is a switch of catalyst from PdCO to Pd atom. The results also show that dehydration is always favoured over dehydrogenation on either the Pd-atom or PdCO catalyst. On the Pd-atom catalyst, neither dehydrogenation nor dehydration follows the formate mechanism. In contrast, on the PdCO catalyst, dehydrogenation follows the formate mechanism, whereas dehydration does not. We also systematically investigated the performance of 24 density functional theory methods. We found that the performance of the double hybrid mPW2PLYP functional is the best, followed by the B3LYP, B3PW91, N12SX, M11, and B2PLYP functionals.

  12. Esters of pyromellitic acid. Part I. Esters of achiral alcohols: regioselective synthesis of partial and mixed pyromellitate esters, mechanism of transesterification in the quantitative esterification of the pyromellitate system using orthoformate esters, and a facile synthesis of the ortho pyromellitate diester substitution pattern.

    PubMed

    Paine, John B

    2008-07-04

    Mild conditions and reversible anhydride formation allow a relative differentiation to be made of the four equivalent carbonyl groups of pyromellitic dianhydride (PMDA, benzene-1,2,4,5-tetracarboxylic dianhydride) in esterification, leading to regioselective methods to generate a wide range of partially or totally esterified products or products bearing differing esterifying groups at the different positions. Pyromellitate monoester anhydrides form efficiently in dichloromethane/triethylamine from 1 equiv of the alcohol. Under the same conditions, two different alcohols can be made to react sequentially. With 2 equiv of an alcohol, the usual mixture of meta and para diesters is obtained, separated by crystallization from HOAc. Meta and para dibenzyl pyromellitates served as regiospecific sources of other diesters, by further esterification followed by hydrogenolysis. Refluxing orthoformate triesters were found to effect quantitative esterification of the pyromellitate system under autocatalytic conditions; minor ester exchange with pre-existing esters (0-5% of total product) was ascribed to reversible anhydride formation. For general esterification with alcohols, partial ester acid chlorides were obtained using oxalyl chloride. Pyromellitate triesters afforded the ortho diester anhydrides upon distillation, thereby providing facile entry into the mostly novel ortho substitution pattern in this system. The requisite triesters were prepared by selective saponification or by the prior incorporation of one benzyl ester substituent, which could be removed by catalytic hydrogenolysis. The various benzyl esters of pyromellitates hydrogenolyzed smoothly to release the carboxylic acid groups without disturbance of pyromellitate aromaticity.

  13. Highly efficient chemical process to convert mucic acid into adipic acid and DFT studies of the mechanism of the rhenium-catalyzed deoxydehydration.

    PubMed

    Li, Xiukai; Wu, Di; Lu, Ting; Yi, Guangshun; Su, Haibin; Zhang, Yugen

    2014-04-14

    The production of bulk chemicals and fuels from renewable bio-based feedstocks is of significant importance for the sustainability of human society. Adipic acid, as one of the most-demanded drop-in chemicals from a bioresource, is used primarily for the large-volume production of nylon-6,6 polyamide. It is highly desirable to develop sustainable and environmentally friendly processes for the production of adipic acid from renewable feedstocks. However, currently there is no suitable bio-adipic acid synthesis process. Demonstrated herein is the highly efficient synthetic protocol for the conversion of mucic acid into adipic acid through the oxorhenium-complex-catalyzed deoxydehydration (DODH) reaction and subsequent Pt/C-catalyzed transfer hydrogenation. Quantitative yields (99 %) were achieved for the conversion of mucic acid into muconic acid and adipic acid either in separate sequences or in a one-step process.

  14. Production of alkyl esters from macaw palm oil by a sequential hydrolysis/esterification process using heterogeneous biocatalysts: optimization by response surface methodology.

    PubMed

    Bressani, Ana Paula P; Garcia, Karen C A; Hirata, Daniela B; Mendes, Adriano A

    2015-02-01

    The present study deals with the enzymatic synthesis of alkyl esters with emollient properties by a sequential hydrolysis/esterification process (hydroesterification) using unrefined macaw palm oil from pulp seeds (MPPO) as feedstock. Crude enzymatic extract from dormant castor bean seeds was used as biocatalyst in the production of free fatty acids (FFA) by hydrolysis of MPPO. Esterification of purified FFA with several alcohols in heptane medium was catalyzed by immobilized Thermomyces lanuginosus lipase (TLL) on poly-hydroxybutyrate (PHB) particles. Under optimal experimental conditions (mass ratio oil:buffer of 35% m/m, reaction temperature of 35 °C, biocatalyst concentration of 6% m/m, and stirring speed of 1,000 rpm), complete hydrolysis of MPPO was reached after 110 min of reaction. Maximum ester conversion percentage of 92.4 ± 0.4% was reached using hexanol as acyl acceptor at 750 mM of each reactant after 15 min of reaction. The biocatalyst retained full activity after eight successive cycles of esterification reaction. These results show that the proposed process is a promising strategy for the synthesis of alkyl esters of industrial interest from macaw palm oil, an attractive option for the Brazilian oleochemical industry.

  15. Acid-catalyzed hydrothermal severity on the fractionation of agricultural residues for xylose-rich hydrolyzates.

    PubMed

    Lee, Ji Ye; Ryu, Hyun Jin; Oh, Kyeong Keun

    2013-03-01

    The objective of this work was to investigate the feasibility of acid-catalyzed hydrothermal fractionation for maximum solubilization of the hemicellulosic portion of three agricultural residues. The fractionation conditions converted into combined severity factor (CS) in the range of 1.2-2.9. The highest hemicellulose yield of 87.88% was achieved when barley straw was fractionated at a CS of 2.19. However, the maximum glucose release of 15.29% was achieved for the case of rice straw. The maximum productions of various by-products were observed with the fractionation of rape straw: 0.88 g/L of 5-hydroxymethylfurfural (5-HMF), 2.16 g/L of furfural, 0.44 g/L of levulinic acid, 1.59 g/L of formic acid, and 3.06 g/L of acetic acid. The highest selectivities, a criterion for evaluating the fractionation of 21.55 for fractionated solid and 7.48 for liquid hydrolyzate were obtained from barley straw.

  16. REACTION MECHANISMS OF 15-HYDROPEROXYEICOSATETRAENOIC ACID CATALYZED BY HUMAN PROSTACYCLIN AND THROMBOXANE SYNTHASES

    PubMed Central

    Yeh, Hui-Chun; Tsai, Ah-Lim; Wang, Lee-Ho

    2007-01-01

    Prostacyclin synthase (PGIS) and thromboxane synthase (TXAS) are atypical cytochrome P450s. They do not require NADPH or dioxygen for isomerization of prostaglandin H2 (PGH2) to produce prostacyclin (PGI2) and thromboxane A2 (TXA2). PGI2 and TXA2 have opposing actions on platelet aggregation and blood vessel tone. In this report, we use a lipid hydroperoxide, 15-hydroperoxyeicosatetraenoic acid (15-HPETE), to explore the active site characteristics of PGIS and TXAS. The two enzymes transformed 15-HPETE not only into 13-hydroxy-14,15-epoxy-5,8,11-eicosatrienoic acid (13-OH-14,15-EET), like many microsomal P450s, but also to 15-ketoeicosatetraenoic acid (15-KETE) and 15-hydroxyeicosatetraenoic acid (15-HETE). 13-OH-14,15-EET and 15-KETE result from homolytic cleavage of the O–O bond, whereas 15-HETE results from heterolytic cleavage, a common peroxidase pathway. About 80% of 15-HPETE was homolytically cleaved by PGIS and 60% was homolytically cleaved by TXAS. The Vmax of homolytic cleavage is 3.5-fold faster than heterolytic cleavage for PGIS-catalyzed reactions (1100 min−1 vs. 320 min−1) and 1.4-fold faster for TXAS (170 min−1 vs. 120 min−1). Similar KM values for homolytic and heterolytic cleavages were found for PGIS (∼60 μM 15-HPETE) and TXAS (∼80 μM 15-HPETE), making PGIS a more efficient catalyst for the 15-HPETE reaction. PMID:17459323

  17. Membrane protein complexes catalyze both 4- and 3-hydroxylation of cinnamic acid derivatives in monolignol biosynthesis

    PubMed Central

    Chen, Hsi-Chuan; Li, Quanzi; Shuford, Christopher M.; Liu, Jie; Muddiman, David C.; Sederoff, Ronald R.; Chiang, Vincent L.

    2011-01-01

    The hydroxylation of 4- and 3-ring carbons of cinnamic acid derivatives during monolignol biosynthesis are key steps that determine the structure and properties of lignin. Individual enzymes have been thought to catalyze these reactions. In stem differentiating xylem (SDX) of Populus trichocarpa, two cinnamic acid 4-hydroxylases (PtrC4H1 and PtrC4H2) and a p-coumaroyl ester 3-hydroxylase (PtrC3H3) are the enzymes involved in these reactions. Here we present evidence that these hydroxylases interact, forming heterodimeric (PtrC4H1/C4H2, PtrC4H1/C3H3, and PtrC4H2/C3H3) and heterotrimeric (PtrC4H1/C4H2/C3H3) membrane protein complexes. Enzyme kinetics using yeast recombinant proteins demonstrated that the enzymatic efficiency (Vmax/km) for any of the complexes is 70–6,500 times greater than that of the individual proteins. The highest increase in efficiency was found for the PtrC4H1/C4H2/C3H3-mediated p-coumaroyl ester 3-hydroxylation. Affinity purification-quantitative mass spectrometry, bimolecular fluorescence complementation, chemical cross-linking, and reciprocal coimmunoprecipitation provide further evidence for these multiprotein complexes. The activities of the recombinant and SDX plant proteins demonstrate two protein-complex–mediated 3-hydroxylation paths in monolignol biosynthesis in P. trichocarpa SDX; one converts p-coumaric acid to caffeic acid and the other converts p-coumaroyl shikimic acid to caffeoyl shikimic acid. Cinnamic acid 4-hydroxylation is also mediated by the same protein complexes. These results provide direct evidence for functional involvement of membrane protein complexes in monolignol biosynthesis. PMID:22160716

  18. Acid-, base-, and lewis-acid-catalyzed heterolysis of methoxide from an alpha-hydroxy-beta-methoxy radical: models for reactions catalyzed by coenzyme B12-dependent diol dehydratase.

    PubMed

    Xu, Libin; Newcomb, Martin

    2005-11-11

    [Reaction: see text].A model for glycol radicals was employed in laser flash photolysis kinetic studies of catalysis of the fragmentation of a methoxy group adjacent to an alpha-hydroxy radical center. Photolysis of a phenylselenylmethylcyclopropane precursor gave a cyclopropylcarbinyl radical that rapidly ring opened to the target alpha-hydroxy-beta-methoxy radical (3). Heterolysis of the methoxy group in 3 gave an enolyl radical (4a) or an enol ether radical cation (4b), depending upon pH. Radicals 4 contain a 2,2-diphenylcyclopropane reporter group, and they rapidly opened to give UV-observable diphenylalkyl radicals as the final products. No heterolysis was observed for radical 3 under neutral conditions. In basic aqueous acetonitrile solutions, specific base catalysis of the heterolysis was observed; the pK(a) of radical 3 was determined to be 12.5 from kinetic titration plots, and the ketyl radical formed by deprotonation of 3 eliminated methoxide with a rate constant of 5 x 10(7) s(-1). In the presence of carboxylic acids in acetonitrile solutions, radical 3 eliminated methanol in a general acid-catalyzed reaction, and rate constants for protonation of the methoxy group in 3 by several acids were measured. Radical 3 also reacted by fragmentation of methoxide in Lewis-acid-catalyzed heterolysis reactions; ZnBr2, Sc(OTf)3, and BF3 were found to be efficient catalysts. Catalytic rate constants for the heterolysis reactions were in the range of 3 x 10(4) to 2 x 10(6) s(-1). The Lewis-acid-catalyzed heterolysis reactions are fast enough for kinetic competence in coenzyme B12 dependent enzyme-catalyzed reactions of glycols, and Lewis-acid-catalyzed cleavages of beta-ethers in radicals might be applied in synthetic reactions.

  19. An atom-economic approach to carboxylic acids via Pd-catalyzed direct addition of formic acid to olefins with acetic anhydride as a co-catalyst.

    PubMed

    Wang, Yang; Ren, Wenlong; Shi, Yian

    2015-08-21

    An effective Pd-catalyzed hydrocarboxylation of olefins using formic acid with acetic anhydride as a co-catalyst is described. A variety of carboxylic acids are obtained in good yields with high regioselectivities under mild reaction conditions without the use of toxic CO gas.

  20. Regioselective, borinic acid-catalyzed monoacylation, sulfonylation and alkylation of diols and carbohydrates: expansion of substrate scope and mechanistic studies.

    PubMed

    Lee, Doris; Williamson, Caitlin L; Chan, Lina; Taylor, Mark S

    2012-05-16

    Synthetic and mechanistic aspects of the diarylborinic acid-catalyzed regioselective monofunctionalization of 1,2- and 1,3-diols are presented. Diarylborinic acid catalysis is shown to be an efficient and general method for monotosylation of pyranoside derivatives bearing three secondary hydroxyl groups (7 examples, 88% average yield). In addition, the scope of the selective acylation, sulfonylation, and alkylation is extended to 1,2- and 1,3-diols not derived from carbohydrates (28 examples); the efficiency, generality, and operational simplicity of this method are competitive with those of state-of-the-art protocols including the broadly applied organotin-catalyzed or -mediated reactions. Mechanistic details of the organoboron-catalyzed processes are explored using competition experiments, kinetics, and catalyst structure-activity relationships. These experiments are consistent with a mechanism in which a tetracoordinate borinate complex reacts with the electrophilic species in the turnover-limiting step of the catalytic cycle.

  1. Mechanistic Investigation of Acid-Catalyzed Cleavage of Aryl-Ether Linkages: Implications for Lignin Depolymerization

    SciTech Connect

    Sturgeon, M. R.; Kim, S.; Chmely, S. C.; Foust, T. D.; Beckham, G. T.

    2013-01-01

    Carbon-oxygen bonds are the primary inter-monomer linkages lignin polymers in plant cell walls, and as such, catalyst development to cleave these linkages is of paramount importance to deconstruct biomass to its constituent monomers for the production of renewable fuels and chemicals. For many decades, acid catalysis has been used to depolymerize lignin. Lignin is a primary component of plant cell walls, which is connected primarily by aryl-ether linkages, and the mechanism of its deconstruction by acid is not well understood, likely due to its heterogeneous and complex nature compared to cellulose. For effective biomass conversion strategies, utilization of lignin is of significant relevance and as such understanding the mechanisms of catalytic lignin deconstruction to constituent monomers and oligomers is of keen interest. Here, we present a comprehensive experimental and theoretical study of the acid catalysis of a range of dimeric species exhibiting the b-O-4 linkage, the most common inter-monomer linkage in lignin. We demonstrate that the presence of a phenolic species dramatically increases the rate of cleavage in acid at 150 degrees C. Quantum mechanical calculations on dimers with the para-hydroxyl group demonstrate that this acid-catalyzed pathway differs from the nonphenolic dimmers. Importantly, this result implies that depolymerization of native lignin in the plant cell wall will proceed via an unzipping mechanism wherein b-O-4 linkages will be cleaved from the ends of the branched, polymer chains inwards toward the center of the polymer. To test this hypothesis further, we synthesized a homopolymer of b-O-4 with a phenolic hydroxyl group, and demonstrate that it is cleaved in acid from the end containing the phenolic hydroxyl group. This result suggests that genetic modifications to lignin biosynthesis pathways in plants that will enable lower severity processes to fractionate lignin for upgrading and for easier access to the carbohydrate fraction of

  2. Lipase-catalyzed synthesis of fatty acid amide (erucamide) using fatty acid and urea.

    PubMed

    Awasthi, Neeraj Praphulla; Singh, R P

    2007-01-01

    Ammonolysis of fatty acids to the corresponding fatty acid amides is efficiently catalysed by Candida antartica lipase (Novozym 435). In the present paper lipase-catalysed synthesis of erucamide by ammonolysis of erucic acid and urea in organic solvent medium was studied and optimal conditions for fatty amides synthesis were established. In this process erucic acid gave 88.74 % pure erucamide after 48 hour and 250 rpm at 60 degrees C with 1:4 molar ratio of erucic acid and urea, the organic solvent media is 50 ml tert-butyl alcohol (2-methyl-2-propanol). This process for synthesis is economical as we used urea in place of ammonia or other amidation reactant at atmospheric pressure. The amount of catalyst used is 3 %.

  3. A preliminary investigation of acid-catalyzed polymerization reactions of shale oil distillates

    SciTech Connect

    Netzel, D.A.

    1991-04-01

    Sinor (1989) reported that a major specialty market may exist for shale oil as an asphalt blending material. Shale oil can be converted to an asphalt blending material by acid catalyzed condensation and polymerization reactions of the many molecular species comprising the composition of shale oil. To simplify the investigation, crude shale oil was separated by distillation into three distillates of different hydrocarbon and heteroaromatic compositions. These distillates were then treated with two different types of acids to determine the effect of acid type on the end products. Three western shale oil distillates, a naphtha, a middle distillate, and an atmospheric gas oil, were reacted with anhydrous AlCl{sub 3} and 85% H{sub 2}SO{sub 4} under low-severity conditions. At relatively low temperatures, little change in the hydrocarbon composition was noted for the AlCl{sub 3} reactions. AlCl{sub 3}{center_dot} (a polymerized product and/or complex) was formed. However, it is assumed that the sludge was mainly the result of heteroaromatic-AlCl{sub 3} reactions.

  4. A preliminary investigation of acid-catalyzed polymerization reactions of shale oil distillates

    SciTech Connect

    Netzel, D.A.

    1991-04-01

    Sinor (1989) reported that a major specialty market may exist for shale oil as an asphalt blending material. Shale oil can be converted to an asphalt blending material by acid catalyzed condensation and polymerization reactions of the many molecular species comprising the composition of shale oil. To simplify the investigation, crude shale oil was separated by distillation into three distillates of different hydrocarbon and heteroaromatic compositions. These distillates were then treated with two different types of acids to determine the effect of acid type on the end products. Three western shale oil distillates, a naphtha, a middle distillate, and an atmospheric gas oil, were reacted with anhydrous AlCl{sub 3} and 85% H{sub 2}SO{sub 4} under low-severity conditions. At relatively low temperatures, little change in the hydrocarbon composition was noted for the AlCl{sub 3} reactions. AlCl{sub 3}{center dot} (a polymerized product and/or complex) was formed. However, it is assumed that the sludge was mainly the result of heteroaromatic-AlCl{sub 3} reactions.

  5. Two-step one-pot synthesis of benzoannulated spiroacetals by Suzuki-Miyaura coupling/acid-catalyzed spiroacetalization.

    PubMed

    Butkevich, Alexey N; Corbu, Andrei; Meerpoel, Lieven; Stansfield, Ian; Angibaud, Patrick; Bonnet, Pascal; Cossy, Janine

    2012-10-05

    Substituted benzoannulated spiroacetals were prepared from (2-haloaryl)alkyl alcohols and dihydropyranyl or dihydrofuranyl pinacol boronates using a Suzuki-Miyaura coupling followed by an acid-catalyzed spirocyclization. Application of the reaction to a glycal boronate provides an approach to annulated spiroacetals in enantiopure form.

  6. Palladium-Catalyzed Enantioselective C-H Activation of Aliphatic Amines Using Chiral Anionic BINOL-Phosphoric Acid Ligands.

    PubMed

    Smalley, Adam P; Cuthbertson, James D; Gaunt, Matthew J

    2017-02-01

    The design of an enantioselective Pd(II)-catalyzed C-H amination reaction is described. The use of a chiral BINOL phosphoric acid ligand enables the conversion of readily available amines into synthetically valuable aziridines in high enantiomeric ratios. The aziridines can be derivatized to afford a range of chiral amine building blocks incorporating motifs readily encountered in pharmaceutically relevant molecules.

  7. Pilot-scale study on the acid-catalyzed steam explosion of rice straw using a continuous pretreatment system.

    PubMed

    Chen, Wen-Hua; Tsai, Chia-Chin; Lin, Chih-Feng; Tsai, Pei-Yuan; Hwang, Wen-Song

    2013-01-01

    A continuous acid-catalyzed steam explosion pretreatment process and system to produce cellulosic ethanol was developed at the pilot-scale. The effects of the following parameters on the pretreatment efficiency of rice straw feedstocks were investigated: the acid concentration, the reaction temperature, the residence time, the feedstock size, the explosion pressure and the screw speed. The optimal presteaming horizontal reactor conditions for the pretreatment process are as follows: 1.7 rpm and 100-110 °C with an acid concentration of 1.3% (w/w). An acid-catalyzed steam explosion is then performed in the vertical reactor at 185 °C for 2 min. Approximately 73% of the total saccharification yield was obtained after the rice straw was pretreated under optimal conditions and subsequent enzymatic hydrolysis at a combined severity factor of 0.4-0.7. Moreover, good long-term stability and durability of the pretreatment system under continuous operation was observed.

  8. Potential of phosphoric acid-catalyzed pretreatment and subsequent enzymatic hydrolysis for biosugar production from Gracilaria verrucosa.

    PubMed

    Kwon, Oh-Min; Kim, Sung-Koo; Jeong, Gwi-Taek

    2016-07-01

    This study combined phosphoric acid-catalyzed pretreatment and enzymatic hydrolysis to produce biosugars from Gracilaria verrucosa as a potential renewable resource for bioenergy applications. We optimized phosphoric acid-catalyzed pretreatment conditions to 1:10 solid-to-liquid ratio, 1.5 % phosphoric acid, 140 °C, and 60 min reaction time, producing a 32.52 ± 0.06 % total reducing sugar (TRS) yield. By subsequent enzymatic hydrolysis, a 68.61 ± 0.90 % TRS yield was achieved. These results demonstrate the potential of phosphoric acid to produce biosugars for biofuel and biochemical production applications.

  9. Palladium-catalyzed fluorocarbonylation using N-formylsaccharin as CO source: general access to carboxylic acid derivatives.

    PubMed

    Ueda, Tsuyoshi; Konishi, Hideyuki; Manabe, Kei

    2013-10-18

    N-formylsaccharin, an easily accessible crystalline compound, has been employed as an efficient CO source in Pd-catalyzed fluorocarbonylation of aryl halides to afford the corresponding acyl fluorides in high yields. The reactions use a near-stoichiometric amount of the CO source (1.2 equiv) and tolerate diverse functional groups. The acyl fluorides obtained could be readily transformed into various carboxylic acid derivatives such as carboxylic acid, esters, thioesters, and amides in a one-pot procedure.

  10. Microwave-accelerated Pd-catalyzed desulfitative direct C2-arylation of free (NH)-indoles with arylsulfinic acids.

    PubMed

    Miao, Tao; Li, Pinhua; Wang, Guan-Wu; Wang, Lei

    2013-12-01

    The rapid and efficient direct C2-arylation of free (NH)-indoles with arylsulfinic acids proceeded through a microwave-accelerated palladium-catalyzed desulfitation reaction. By using PdCl2 as a catalyst, silver acetate as an oxidant, and H2SO4 as an additive, arylsulfinic acids with both electron-donating and electron-withdrawing groups underwent desulfitative coupling with an array of free (NH)-indoles, thereby selectively providing C2-arylindoles in good yields.

  11. Rh(III)-catalyzed decarboxylative ortho-heteroarylation of aromatic carboxylic acids by using the carboxylic acid as a traceless directing group.

    PubMed

    Qin, Xurong; Sun, Denan; You, Qiulin; Cheng, Yangyang; Lan, Jingbo; You, Jingsong

    2015-04-03

    Highly selective decarboxylative ortho-heteroarylation of aromatic carboxylic acids with various heteroarenes has been developed through Rh(III)-catalyzed two-fold C-H activation, which exhibits a wide substrate scope of both aromatic carboxylic acids and heteroarenes. The use of naturally occurring carboxylic acid as the directing group avoids troublesome extra steps for installation and removal of an external directing group.

  12. Application of palladium-catalyzed carboxyl anhydride-boronic acid cross coupling in the synthesis of novel bile acids analogs with modified side chains.

    PubMed

    Mayorquín-Torres, Martha C; Flores-Álamo, Marcos; Iglesias-Arteaga, Martin A

    2015-09-01

    Palladium-catalyzed cross coupling of 4-methoxycarbonyl phenyboronic acid with acetylated bile acids in which the carboxyl functions was activated by formation of a mixed anhydride with pivalic anhydride afforded the cross coupled compounds, which were converted in novel side chain modified bile acids by one pot carbonyl reduction/removal of the protecting acetyl groups by Wolff-Kishner reduction. Unambiguous assignments of the NMR signals and crystal characterization of the heretofore unknown compounds are provided.

  13. Dual Lewis Acid/Lewis Base Catalyzed Acylcyanation of Aldehydes: A Mechanistic Study.

    PubMed

    Laurell Nash, Anna; Hertzberg, Robin; Wen, Ye-Qian; Dahlgren, Björn; Brinck, Tore; Moberg, Christina

    2016-03-07

    A mechanistic investigation, which included a Hammett correlation analysis, evaluation of the effect of variation of catalyst composition, and low-temperature NMR spectroscopy studies, of the Lewis acid-Lewis base catalyzed addition of acetyl cyanide to prochiral aldehydes provides support for a reaction route that involves Lewis base activation of the acyl cyanide with formation of a potent acylating agent and cyanide ion. The cyanide ion adds to the carbonyl group of the Lewis acid activated aldehyde. O-Acylation by the acylated Lewis base to form the final cyanohydrin ester occurs prior to decomplexation from titanium. For less reactive aldehydes, the addition of cyanide is the rate-determining step, whereas, for more reactive, electron-deficient aldehydes, cyanide addition is rapid and reversible and is followed by rate-limiting acylation. The resting state of the catalyst lies outside the catalytic cycle and is believed to be a monomeric titanium complex with two alcoholate ligands, which only slowly converts into the product.

  14. Glycolic acid-catalyzed deamidation of asparagine residues in degrading PLGA matrices: a computational study.

    PubMed

    Manabe, Noriyoshi; Kirikoshi, Ryota; Takahashi, Ohgi

    2015-03-31

    Poly(lactic-co-glycolic acid) (PLGA) is a strong candidate for being a drug carrier in drug delivery systems because of its biocompatibility and biodegradability. However, in degrading PLGA matrices, the encapsulated peptide and protein drugs can undergo various degradation reactions, including deamidation at asparagine (Asn) residues to give a succinimide species, which may affect their potency and/or safety. Here, we show computationally that glycolic acid (GA) in its undissociated form, which can exist in high concentration in degrading PLGA matrices, can catalyze the succinimide formation from Asn residues by acting as a proton-transfer mediator. A two-step mechanism was studied by quantum-chemical calculations using Ace-Asn-Nme (Ace = acetyl, Nme = NHCH3) as a model compound. The first step is cyclization (intramolecular addition) to form a tetrahedral intermediate, and the second step is elimination of ammonia from the intermediate. Both steps involve an extensive bond reorganization mediated by a GA molecule, and the first step was predicted to be rate-determining. The present findings are expected to be useful in the design of more effective and safe PLGA devices.

  15. Computational Mechanistic Studies of Acid-Catalyzed Lignin Model Dimers for Lignin Depolymerization

    SciTech Connect

    Kim, S.; Sturgeon, M. R.; Chmely, S. C.; Paton, R. S.; Beckham, G. T.

    2013-01-01

    Lignin is a heterogeneous alkyl-aromatic polymer that constitutes up to 30% of plant cell walls, and is used for water transport, structure, and defense. The highly irregular and heterogeneous structure of lignin presents a major obstacle in the development of strategies for its deconstruction and upgrading. Here we present mechanistic studies of the acid-catalyzed cleavage of lignin aryl-ether linkages, combining both experimental studies and quantum chemical calculations. Quantum mechanical calculations provide a detailed interpretation of reaction mechanisms including possible intermediates and transition states. Solvent effects on the hydrolysis reactions were incorporated through the use of a conductor-like polarizable continuum model (CPCM) and with cluster models including explicit water molecules in the first solvation shell. Reaction pathways were computed for four lignin model dimers including 2-phenoxy-phenylethanol (PPE), 1-(para-hydroxyphenyl)-2-phenoxy-ethanol (HPPE), 2-phenoxy-phenyl-1,3-propanediol (PPPD), and 1-(para-hydroxyphenyl)-2-phenoxy-1,3-propanediol (HPPPD). Lignin model dimers with a para-hydroxyphenyl ether (HPPE and HPPPD) show substantial differences in reactivity relative to the phenyl ether compound (PPE and PPPD) which have been clarified theoretically and experimentally. The significance of these results for acid deconstruction of lignin in plant cell walls will be discussed.

  16. Esterification of 24S-OHC induces formation of atypical lipid droplet-like structures, leading to neuronal cell death.

    PubMed

    Takabe, Wakako; Urano, Yasuomi; Vo, Diep-Khanh Ho; Shibuya, Kimiyuki; Tanno, Masaki; Kitagishi, Hiroaki; Fujimoto, Toyoshi; Noguchi, Noriko

    2016-11-01

    The 24(S)-hydroxycholesterol (24S-OHC), which plays an important role in maintaining brain cholesterol homeostasis, has been shown to possess neurotoxicity. We have previously reported that 24S-OHC esterification by ACAT1 and the resulting lipid droplet (LD) formation are responsible for 24S-OHC-induced cell death. In the present study, we investigate the functional roles of 24S-OHC esters and LD formation in 24S-OHC-induced cell death, and we identify four long-chain unsaturated fatty acids (oleic acid, linoleic acid, arachidonic acid, and DHA) with which 24S-OHC is esterified in human neuroblastoma SH-SY5Y cells treated with 24S-OHC. Here, we find that cotreatment of cells with 24S-OHC and each of these four unsaturated fatty acids increases prevalence of the corresponding 24S-OHC ester and exacerbates induction of cell death as compared with cell death induced by treatment with 24S-OHC alone. Using electron microscopy, we find in the present study that 24S-OHC induces formation of LD-like structures coupled with enlarged endoplasmic reticulum (ER) lumina, and that these effects are suppressed by treatment with ACAT inhibitor. Collectively, these results illustrate that ACAT1-catalyzed esterification of 24S-OHC with long-chain unsaturated fatty acid followed by formation of atypical LD-like structures at the ER membrane is a critical requirement for 24S-OHC-induced cell death.

  17. Activation Energies for an Enzyme-Catalyzed and Acid-Catalyzed Hydrolysis: An Introductory Interdisciplinary Experiment for Chemists and Biochemists.

    ERIC Educational Resources Information Center

    Adams, K. R.; Meyers, M. B.

    1985-01-01

    Background information, procedures used, and typical results obtained are provided for an experiment in which students determine and compare the Arrhenius activation energies (Ea) for the hydrolysis of salicin. This reaction is subject to catalysis both by acid and by the enzyme emulsin (beta-d-glucoside glycohydrolase). (JN)

  18. Disproportionation Kinetics of Hypoiodous Acid As Catalyzed and Suppressed by Acetic Acid-Acetate Buffer.

    PubMed

    Urbansky, Edward T.; Cooper, Brian T.; Margerum, Dale W.

    1997-03-26

    The kinetics of the disproportionation of hypoiodous acid to give iodine and iodate ion (5HOI right harpoon over left harpoon 2I(2) + IO(3)(-) + H(+) + 2H(2)O) are investigated in aqueous acetic acid-sodium acetate buffer. The rate of iodine formation is followed photometrically at -log [H(+)] = 3.50, 4.00, 4.50, and 5.00, &mgr; = 0.50 M (NaClO(4)), and 25.0 degrees C. Both catalytic and inhibitory buffer effects are observed. The first process is proposed to be a disproportionation of iodine(I) to give HOIO and I(-); the iodide then reacts with HOI to give I(2). The reactive species (acetato-O)iodine(I), CH(3)CO(2)I, is postulated to increase the rate by assisting in the formation of I(2)O, a steady-state species that hydrolyzes to give HOIO and I(2). Inhibition is postulated to result from the formation of the stable ion bis(acetato-O)iodate(I), (CH(3)CO(2))(2)I(-), as buffer concentration is increased. This species is observed spectrophotometrically with a UV absorption shoulder (lambda = 266 nm; epsilon = 530 M(-)(1) cm(-)(1)). The second process is proposed to be a disproportionation of HOIO to give IO(3)(-) and I(2). Above 1 M total buffer, the reaction becomes reversible with less than 90% I(2) formation. Rate and equilibrium constants are resolved and reported for the proposed mechanism.

  19. Oxygenase-Catalyzed Desymmetrization of N,N-Dialkyl-piperidine-4-carboxylic Acids**

    PubMed Central

    Rydzik, Anna M; Leung, Ivanhoe K H; Kochan, Grazyna T; McDonough, Michael A; Claridge, Timothy D W; Schofield, Christopher J

    2014-01-01

    γ-Butyrobetaine hydroxylase (BBOX) is a 2-oxoglutarate dependent oxygenase that catalyzes the final hydroxylation step in the biosynthesis of carnitine. BBOX was shown to catalyze the oxidative desymmetrization of achiral N,N-dialkyl piperidine-4-carboxylates to give products with two or three stereogenic centers. PMID:25164544

  20. Lewis acid promoted ruthenium(II)-catalyzed etherifications by selective hydrogenation of carboxylic acids/esters.

    PubMed

    Li, Yuehui; Topf, Christoph; Cui, Xinjiang; Junge, Kathrin; Beller, Matthias

    2015-04-20

    Ethers are of fundamental importance in organic chemistry and they are an integral part of valuable flavors, fragrances, and numerous bioactive compounds. In general, the reduction of esters constitutes the most straightforward preparation of ethers. Unfortunately, this transformation requires large amounts of metal hydrides. Presented herein is a bifunctional catalyst system, consisting of Ru/phosphine complex and aluminum triflate, which allows selective synthesis of ethers by hydrogenation of esters or carboxylic acids. Different lactones were reduced in good yields to the desired products. Even challenging aromatic and aliphatic esters were reduced to the desired products. Notably, the in situ formed catalyst can be reused several times without any significant loss of activity.

  1. Synthesis of 24-phenyl-24-oxo steroids derived from bile acids by palladium-catalyzed cross coupling with phenylboronic acid. NMR characterization and X-ray structures.

    PubMed

    Mayorquín-Torres, Martha C; Romero-Ávila, Margarita; Flores-Álamo, Marcos; Iglesias-Arteaga, Martin A

    2013-11-01

    Palladium-catalyzed cross coupling of phenyboronic acid with acetylated bile acids in which the carboxyl functions have been activated by formation of a mixed anhydride with pivalic anhydride afforded moderate to good yield of 24-phenyl-24-oxo-steroids. Unambiguous assignments of the NMR signals were made with the aid of combined 1D and 2D NMR techniques. X-ray diffraction studies confirmed the obtained structures.

  2. Brønsted acid catalyzed phosphoramidic acid additions to alkenes: diastereo- and enantioselective halogenative cyclizations for the synthesis of C- and P-chiral phosphoramidates.

    PubMed

    Toda, Yasunori; Pink, Maren; Johnston, Jeffrey N

    2014-10-22

    The first highly diastereo- and enantioselective additions of a halogen and phosphoramidic acid to unactivated alkenes have been developed, catalyzed by a chiral Brønsted acid. A unique feature of these additions is the opportunity for stereocontrol at two noncontiguous chiral centers, carbon and phosphorus, leading to cyclic P-chiral phosphoramidates. In addition to their inherent value, the phosphoramidates are precursors to enantioenriched epoxy allylamines.

  3. The cytosolic carboxypeptidases CCP2 and CCP3 catalyze posttranslational removal of acidic amino acids

    PubMed Central

    Tort, Olivia; Tanco, Sebastián; Rocha, Cecilia; Bièche, Ivan; Seixas, Cecilia; Bosc, Christophe; Andrieux, Annie; Moutin, Marie-Jo; Avilés, Francesc Xavier; Lorenzo, Julia; Janke, Carsten

    2014-01-01

    The posttranslational modification of carboxy-terminal tails of tubulin plays an important role in the regulation of the microtubule cytoskeleton. Enzymes responsible for deglutamylating tubulin have been discovered within a novel family of mammalian cytosolic carboxypeptidases. The discovery of these enzymes also revealed the existence of a range of other substrates that are enzymatically deglutamylated. Only four of six mammalian cytosolic carboxypeptidases had been enzymatically characterized. Here we complete the functional characterization of this protein family by demonstrating that CCP2 and CCP3 are deglutamylases, with CCP3 being able to hydrolyze aspartic acids with similar efficiency. Deaspartylation is a novel posttranslational modification that could, in conjunction with deglutamylation, broaden the range of potential substrates that undergo carboxy-terminal processing. In addition, we show that CCP2 and CCP3 are highly regulated proteins confined to ciliated tissues. The characterization of two novel enzymes for carboxy-terminal protein modification provides novel insights into the broadness of this barely studied process. PMID:25103237

  4. Stereoselective Alkane Oxidation with meta-Chloroperoxybenzoic Acid (MCPBA) Catalyzed by Organometallic Cobalt Complexes.

    PubMed

    Shul'pin, Georgiy B; Loginov, Dmitriy A; Shul'pina, Lidia S; Ikonnikov, Nikolay S; Idrisov, Vladislav O; Vinogradov, Mikhail M; Osipov, Sergey N; Nelyubina, Yulia V; Tyubaeva, Polina M

    2016-11-22

    Cobalt pi-complexes, previously described in the literature and specially synthesized and characterized in this work, were used as catalysts in homogeneous oxidation of organic compounds with peroxides. These complexes contain pi-butadienyl and pi-cyclopentadienyl ligands: [(tetramethylcyclobutadiene)(benzene)cobalt] hexafluorophosphate, [(C₄Me₄)Co(C₆H₆)]PF₆ (1); diiodo(carbonyl)(pentamethylcyclopentadienyl)cobalt, Cp*Co(CO)I₂ (2); diiodo(carbonyl)(cyclopentadienyl)cobalt, CpCo(CO)I₂ (3); (tetramethylcyclobutadiene)(dicarbonyl)(iodo)cobalt, (C₄Me₄)Co(CO)₂I (4); [(tetramethylcyclobutadiene)(acetonitrile)(2,2'-bipyridyl)cobalt] hexafluorophosphate, [(C₄Me₄)Co(bipy)(MeCN)]PF₆ (5); bis[dicarbonyl(B-cyclohexylborole)]cobalt, [(C₄H₄BCy)Co(CO)₂]₂ (6); [(pentamethylcyclopentadienyl)(iodo)(1,10-phenanthroline)cobalt] hexafluorophosphate, [Cp*Co(phen)I]PF₆ (7); diiodo(cyclopentadienyl)cobalt, [CpCoI₂]₂ (8); [(cyclopentadienyl)(iodo)(2,2'-bipyridyl)cobalt] hexafluorophosphate, [CpCo(bipy)I]PF₆ (9); and [(pentamethylcyclopentadienyl)(iodo)(2,2'-bipyridyl)cobalt] hexafluorophosphate, [Cp*Co(bipy)I]PF₆ (10). Complexes 1 and 2 catalyze very efficient and stereoselective oxygenation of tertiary C-H bonds in isomeric dimethylcyclohexanes with MCBA: cyclohexanols are produced in 39 and 53% yields and with the trans/cis ratio (of isomers with mutual trans- or cis-configuration of two methyl groups) 0.05 and 0.06, respectively. Addition of nitric acid as co-catalyst dramatically enhances both the yield of oxygenates and stereoselectivity parameter. In contrast to compounds 1 and 2, complexes 9 and 10 turned out to be very poor catalysts (the yields of oxygenates in the reaction with cis-1,2-dimethylcyclohexane were only 5%-7% and trans/cis ratio 0.8 indicated that the oxidation is not stereoselective). The chromatograms of the reaction mixture obtained before and after reduction with PPh₃ are very similar, which testifies that alkyl

  5. Unmasking the Action of Phosphinous Acid Ligands in Nitrile Hydration Reactions Catalyzed by Arene-Ruthenium(II) Complexes.

    PubMed

    Tomás-Mendivil, Eder; Cadierno, Victorio; Menéndez, María I; López, Ramón

    2015-11-16

    The catalytic hydration of benzonitrile and acetonitrile has been studied by employing different arene-ruthenium(II) complexes with phosphinous (PR2OH) and phosphorous acid (P(OR)2OH) ligands as catalysts. Marked differences in activity were found, depending on the nature of both the P-donor and η(6)-coordinated arene ligand. Faster transformations were always observed with the phosphinous acids. DFT computations unveiled the intriguing mechanism of acetonitrile hydration catalyzed by these arene-ruthenium(II) complexes. The process starts with attack on the nitrile carbon atom of the hydroxyl group of the P-donor ligand instead of on a solvent water molecule, as previously suggested. The experimental results presented herein for acetonitrile and benzonitrile hydration catalyzed by different arene-ruthenium(II) complexes could be rationalized in terms of such a mechanism.

  6. Silylium ion-catalyzed challenging Diels-Alder reactions: the danger of hidden proton catalysis with strong Lewis acids.

    PubMed

    Schmidt, Ruth K; Müther, Kristine; Mück-Lichtenfeld, Christian; Grimme, Stefan; Oestreich, Martin

    2012-03-07

    The pronounced Lewis acidity of tricoordinate silicon cations brings about unusual reactivity in Lewis acid catalysis. The downside of catalysis with strong Lewis acids is, though, that these do have the potential to mediate the formation of protons by various mechanisms, and the thus released Brønsted acid might even outcompete the Lewis acid as the true catalyst. That is an often ignored point. One way of eliminating a hidden proton-catalyzed pathway is to add a proton scavenger. The low-temperature Diels-Alder reactions catalyzed by our ferrocene-stabilized silicon cation are such a case where the possibility of proton catalysis must be meticulously examined. Addition of the common hindered base 2,6-di-tert-butylpyridine resulted, however, in slow decomposition along with formation of the corresponding pyridinium ion. Quantitative deprotonation of the silicon cation was observed with more basic (Mes)(3)P to yield the phosphonium ion. A deuterium-labeling experiment verified that the proton is abstracted from the ferrocene backbone. A reasonable mechanism of the proton formation is proposed on the basis of quantum-chemical calculations. This is, admittedly, a particular case but suggests that the use of proton scavengers must be carefully scrutinized, as proton formation might be provoked rather than prevented. Proton-catalyzed Diels-Alder reactions are not well-documented in the literature, and a representative survey employing TfOH is included here. The outcome of these catalyses is compared with our silylium ion-catalyzed Diels-Alder reactions, thereby clearly corroborating that hidden Brønsted acid catalysis is not operating with our Lewis acid. Several simple-looking but challenging Diels-Alder reactions with exceptionally rare dienophile/enophile combinations are reported. Another indication is obtained from the chemoselectivity of the catalyses. The silylium ion-catalyzed Diels-Alder reaction is general with regard to the oxidation level of the

  7. Selective Formation of Secondary Amides via the Copper-Catalyzed Cross-Coupling of Alkylboronic Acids with Primary Amides

    PubMed Central

    Rossi, Steven A.; Shimkin, Kirk W.; Xu, Qun; Mori-Quiroz, Luis M.; Watson, Donald A.

    2014-01-01

    For the first time, a general catalytic procedure for the cross coupling of primary amides and alkylboronic acids is demonstrated. The key to the success of this reaction was the identification of a mild base (NaOSiMe3) and oxidant (di-tert-butyl peroxide) to promote the copper-catalyzed reaction in high yield. This transformation provides a facile, high-yielding method for the mono-alkylation of amides. PMID:23611591

  8. Probing the "additive effect" in the proline and proline hydroxamic acid catalyzed asymmetric addition of nitroalkanes to cyclic enones.

    PubMed

    Hanessian, Stephen; Govindan, Subramaniyan; Warrier, Jayakumar S

    2005-11-01

    The effect of chirality and steric bulk of 2,5-disubstituted piperazines as additives in the conjugate addition of 2-nitropropane to cyclohexenone, catalyzed by l-proline, was investigated. Neither chirality nor steric bulk affects the enantioselectivity of addition, which gives 86-93% ee in the presence of achiral and chiral nonracemic 2,5-disubstituted piperazines. Proline hydroxamic acid is shown for the first time to be an effective organocatalyst in the same Michael reaction.

  9. Stereocontrol in proline-catalyzed asymmetric amination: a comparative assessment of the role of enamine carboxylic acid and enamine carboxylate.

    PubMed

    Sharma, Akhilesh K; Sunoj, Raghavan B

    2011-05-28

    The transition state models in two mechanistically distinct pathways, involving (i) an enamine carboxylic acid (path-A, 4) and (ii) an enamine carboxylate (path-B, 8), in the proline-catalyzed asymmetric α-amination have been examined using DFT methods. The path-A predicts the correct product stereochemistry under base-free conditions while path-B accounts for reversal of configuration in the presence of a base.

  10. Lewis acid catalyzed cascade reaction of 3-(2-benzenesulfonamide)propargylic alcohols to spiro[indene-benzosultam]s.

    PubMed

    Sun, Lang; Zhu, Yuanxun; Wang, Jing; Lu, Ping; Wang, Yanguang

    2015-01-16

    A highly efficient and convenient construction of the spiro[indene-benzosultam] skeleton from propargylic alcohols has been developed. The reaction proceeded in a Lewis acid catalyzed cascade process, including the trapping of allene carbocation with sulfonamide, electrophilic cyclization, and intramolecular Friedel-Crafts alkylation. In the presence of NIS or NBS, iodo/bromo-substituted spiro[indene-benzosultam]s could be prepared in excellent yields.

  11. Chiral Phosphoric Acid-Catalyzed Enantioselective Reductive Amination of 2-Pyridyl Ketones: Construction of Structurally Chiral Pyridine-Based Ligands.

    PubMed

    Abudu Rexit, Abulikemu; Luo, Shiwei; Mailikezati, Maihemuti

    2016-11-18

    A chiral phosphoric acid-catalyzed one-pot enantioselective reductive amination of 2-pyridyl ketones was realized to provide chiral pyridine-based ligands in excellent yields with high enantioselectivities (up to 98% yield, 94% ee). Computational studies on the key intermediate imine and transition state of the hydride transfer process revealed that the nitrogen atom of the pyridyl ring might be an important factor to significantly promote both the reaction activity and enantioselectivity.

  12. Pyrrole-2-Carboxylic Acid as a Ligand for the Cu-Catalyzed Reactions of Primary Anilines with Aryl Halides

    PubMed Central

    Altman, Ryan A.; Anderson, Kevin W.; Buchwald, Stephen L.

    2008-01-01

    Pyrrole 2-carboxylic acid (L5) was found to be an effective ligand for the Cu-catalyzed mono-arylation of anilines with aryl iodides and bromides. Under the reported conditions (10% CuI/20% L5/DMSO/K3PO4/80–100 °C/20–24 h), a variety of useful functional groups were tolerated, and moderate to good yields of the diaryl amine products were obtained. PMID:18543973

  13. Kinetics and mechanism of the acid-catalyzed hydrolysis of a hypermodified nucleoside wyosine and its 5'-monophosphate.

    PubMed Central

    Golankiewicz, B; Zielonacka-Lis, E; Folkman, W

    1985-01-01

    The rates of acid-catalyzed hydrolysis of a hypermodified nucleoside, wyosine and its 5'-monophosphate were determined at various pH, temperature and buffer concentrations. The results show that despite distinct differences in structure and the glycosyl bond stability, the hydrolysis of wyosine proceeds via cleavage of the C-N bond by A-1 mechanism, analogously to simple nucleosides. Unlike majority of other monophosphates studied so far, wyosine 5'-monophosphate is not more stable than respective nucleoside. PMID:4000960

  14. Reactivity of Cations and Zwitterions Formed in Photochemical and Acid-Catalyzed Reactions from m-Hydroxycycloalkyl-Substituted Phenol Derivatives.

    PubMed

    Cindro, Nikola; Antol, Ivana; Mlinarić-Majerski, Kata; Halasz, Ivan; Wan, Peter; Basarić, Nikola

    2015-12-18

    Three m-substituted phenol derivatives, each with a labile benzylic alcohol group and bearing either protoadamantyl 4, homoadamantyl 5, or a cyclohexyl group 6, were synthesized and their thermal acid-catalyzed and photochemical solvolytic reactivity studied, using preparative irradiations, fluorescence measurements, nanosecond laser flash photolysis, and quantum chemical calculations. The choice of m-hydroxy-substitution was driven by the potential for these phenolic systems to generate m-quinone methides on photolysis, which could ultimately drive the excited-state pathway, as opposed to forming simple benzylic carbocations in the corresponding thermal route. Indeed, thermal acid-catalyzed reactions gave the corresponding cations, which undergo rearrangement and elimination from 4, only elimination from 5, and substitution and elimination from 6. On the other hand, upon photoexcitation of 4-6 to S1 in a polar protic solvent, proton dissociation from the phenol, coupled with elimination of the benzylic OH (as hydroxide ion) gave zwitterions (formal m-quinone methides). The zwitterions exhibit reactivity different from the corresponding cations due to a difference in charge distribution, as shown by DFT calculations. Thus, protoadamantyl zwitterion has a less nonclassical character than the corresponding cation, so it does not undergo 1,2-shift of the carbon atom, as observed in the acid-catalyzed reaction.

  15. Tandem Suzuki-Miyaura coupling/acid-catalyzed cyclization between vinyl ether boronates and vinyl halides: a concise approach to polysubstituted furans.

    PubMed

    Butkevich, Alexey N; Meerpoel, Lieven; Stansfield, Ian; Angibaud, Patrick; Corbu, Andrei; Cossy, Janine

    2013-08-02

    Polysubstituted 2-(ω-hydroxyalkyl)furans were prepared by tandem Suzuki-Miyaura coupling/acid-catalyzed cyclization starting from appropriately substituted 3-haloallylic alcohols and dihydrofuran-, dihydropyran- or glycal-derived pinacol boronates.

  16. Acid-catalyzed conversion of mono- and poly-sugars into platform chemicals: effects of molecular structure of sugar substrate.

    PubMed

    Hu, Xun; Wu, Liping; Wang, Yi; Song, Yao; Mourant, Daniel; Gunawan, Richard; Gholizadeh, Mortaza; Li, Chun-Zhu

    2013-04-01

    Hydrolysis/pyrolysis of lignocellulosic biomass always produces a mixture of sugars with distinct structures as intermediates or products. This study tried to elucidate the effects of molecular structure of sugars on their acid-catalyzed conversions in ethanol/water. Location of carbonyl group in sugars (fructose versus glucose) and steric configuration of hydroxyl groups (glucose versus galactose) significantly affected yields of levulinic acid/ester (fructose>glucose>galactose). The dehydration of fructose to 5-(hydroxymethyl)furfural produces much less soluble polymer than that from glucose and galactose, which results in high yields of levulinic acid/ester from fructose. Anhydrate sugar such as levoglucosan tends to undergo the undesirable decomposition to form less levulinic acid/ester. Catalytic behaviors of the poly-sugars (sucrose, maltose, raffinose, β-cyclodextrins) were determined much by their basic units. However, their big molecular sizes create the steric hindrance that significantly affects their followed conversion over solid acid catalyst.

  17. Mechanism of an Organoboron-Catalyzed Domino Reaction: Kinetic and Computational Studies of Borinic Acid-Catalyzed Regioselective Chloroacylation of 2,3-Epoxy Alcohols.

    PubMed

    Garrett, Graham E; Tanveer, Kashif; Taylor, Mark S

    2017-01-20

    A mechanistic study of the borinic acid-catalyzed chloroacylation of 2,3-epoxy alcohols is presented. In this unusual mode of catalysis, the borinic acid activates the substrate toward sequential reactions with a nucleophile (epoxide ring-opening by chloride) and an electrophile (O-acylation of the resulting alkoxide). Reaction progress kinetic analysis of data obtained through in situ FTIR spectroscopy is consistent with a mechanism involving turnover-limiting acylation of a chlorohydrin-derived borinic ester. This proposal is further supported by investigations of the effects of aroyl chloride substitution on reaction rate. The kinetics experiments also shed light on the effects of chloride concentration on reaction rate and indicate that the catalyst is subject to inhibition by the product of the chloroacylation reaction. Computational modeling is employed to gain insight into the effects of the organoboron catalyst on the regioselectivities of the epoxide ring-opening and acylation steps. The density functional theory calculations provide a plausible pathway for selective chlorinolysis at C-3 and benzoylation at O-1, as is observed experimentally.

  18. Acid-Catalyzed Conversion of Furfuryl Alcohol to Ethyl Levulinate in Liquid Ethanol.

    PubMed

    González Maldonado, Gretchen M; Assary, Rajeev S; Dumesic, James; Curtiss, Larry A

    2012-09-20

    Reaction pathways for the acid-catalyzed conversion of furfuryl alcohol (FAL) to ethyl levulinate (EL) in ethanol were investigated using liquid chromatography-mass spectrometry (LC-MS), 1D and 2D nuclear magnetic resonance (NMR) spectroscopy, and ab initio high-level quantum chemical (G4MP2) calculations. Our combined studies show that the production of EL at high yields from FAL is not accompanied by stoichiometric production of diethyl either (DEE), indicating that ethoxymethyl furan (EMF) is not an intermediate in the major reaction pathway. Several intermediates were observed using an LC-MS system, and three of these intermediates were isolated and subjected to reaction conditions. The structures of two intermediates were elucidated using 1D and 2D NMR techniques. One of these intermediates is EMF, which forms EL and DEE in a secondary reaction pathway. The second intermediate identified is 4,5,5-triethoxypentan-2-one, which is analogous to one of the intermediates observed in the conversion of FAL to LA in water (i.e. 4,5,5-trihydroxypentan-2-one). Furthermore, conversion of this intermediate to EL again involves the formation of DEE, indicating that it is also part of a secondary pathway. The primary pathway for production of EL involves solvent-assisted transfer of a water molecule from the partially detached protonated hydroxyl group of FAL to a ring carbon, followed by intra-molecular hydrogen shift, where the apparent reaction barrier for the hydrogen shift is relatively smaller in ethanol (21.1 kcal/mol) than that in water (26.6 kcal/mol).

  19. Palladium(II)-catalyzed enantioselective C(sp³)-H activation using a chiral hydroxamic acid ligand.

    PubMed

    Xiao, Kai-Jiong; Lin, David W; Miura, Motofumi; Zhu, Ru-Yi; Gong, Wei; Wasa, Masayuki; Yu, Jin-Quan

    2014-06-04

    An enantioselective method for Pd(II)-catalyzed cross-coupling of methylene β-C(sp(3))-H bonds in cyclobutanecarboxylic acid derivatives with arylboron reagents is described. High yields and enantioselectivities were achieved through the development of chiral mono-N-protected α-amino-O-methylhydroxamic acid (MPAHA) ligands, which form a chiral complex with the Pd(II) center. This reaction provides an alternative approach to the enantioselective synthesis of cyclobutanecarboxylates containing α-chiral quaternary stereocenters. This new class of chiral catalysts also show promises for enantioselective β-C(sp(3))-H activation of acyclic amides.

  20. Synthesis of anthranilic acid derivatives through iron-catalyzed ortho amination of aromatic carboxamides with N-chloroamines.

    PubMed

    Matsubara, Tatsuaki; Asako, Sobi; Ilies, Laurean; Nakamura, Eiichi

    2014-01-15

    Arenes possessing an 8-quinolinylamide group as a directing group are ortho aminated with N-chloroamines and N-benzoyloxyamines in the presence of an iron/diphosphine catalyst and an organometallic base to produce anthranilic acid derivatives in high yield. The reaction proceeds via iron-catalyzed C-H activation, followed by the reaction of the resulting iron intermediate with N-chloroamine. The choice of the directing group and diphosphine ligand is crucial for obtaining the anthranilic acid derivative with high yield and product selectivity.

  1. Production of high-oleic acid tallow fractions using lipase-catalyzed directed interesterification, using both batch and continuous processing.

    PubMed

    MacKenzie; Stevenson

    2000-08-01

    Immobilized lipases were used to catalyze batch-directed interesterification of tallow, resulting in oleins containing significantly higher levels of unsaturated fatty acids than obtained by fractionation without lipase. After 14 days, a reaction catalyzed by 2% Novozym 435 yielded 57% olein unsaturation, compared with 45% in a no-enzyme control. Free fatty acid levels increased to 2-3% during reactions. Incubation of the enzyme in multiple batches of melted fat caused a gradual loss of interesterification activity, apparently due to progressive dehydration. The activity could be restored by addition of water to the reaction medium. Immobilized lipase was also used to catalyze directed interesterification in a continuous flow reactor. Melted tallow was circulated through a packed bed enzyme reactor and a separate crystallization vessel. The temperatures of the two parts of the apparatus were controlled separately to allow crystallization to occur separately from interesterification. Operation of the reactor with conventionally dry, prefractionated tallow allowed the formation of an olein consisting of up to 60% unsaturated fatty acids. The greatest changes in olein fatty acid composition were achieved when the fractionation temperature was kept constant at a value that promoted selective crystallization of trisaturated triglycerides that were continuously produced by enzymic interesterification. The enzyme could be reused without apparent loss of activity, and its activity was apparently enhanced by preincubation in melted tallow for up to several days. Control of both the water activity of the enzyme and tallow feedstock and of the absorption of atmospheric water vapor were required to maintain enzyme activity, during multiple reuse and minimize free fatty acid formation. This method may form the basis for a process to produce highly mono-unsaturated tallow fractions for use in food applications (e.g. frying) where a "healthy" low saturated fat product is required.

  2. Oxidation of tolualdehydes to toluic acids catalyzed by cytochrome P450-dependent aldehyde oxygenase in the mouse liver.

    PubMed

    Watanabe, K; Matsunaga, T; Yamamoto, I; Yashimura, H

    1995-02-01

    Mouse hepatic microsomal enzymes catalyzed the oxidation of o-, m-, and p-tolualdehydes, intermediate metabolites of xylene, to the corresponding toluic acids. Cofactor requirement for the catalytic activity indicates that the microsomes contain NAD- and NADPH-dependent enzymes for this reaction. GC/MS analyses of the carboxylic acids formed by incubation under oxygen-18 gas indicate that the mechanism for this oxidation is an oxygenation and a dehydrogenation for the NADPH- and NAD-dependent reaction. Vmax/Km (nmol/min/mg protein) ratios indicate that the NADPH-dependent activity is more pronounced than the NAD-dependent activity. These results suggest that the NADPH-dependent reaction is mainly responsible for the microsomal oxidation of tolualdehydes. The NADPH-dependent activity was significantly inhibited by SKF 525-A, disulfiram and menadione, inhibitors of cytochrome P450 (P450), suggesting the involvement of P450 in the reaction. In a reconstituted system, P450 MUT-2 (CYP2C29) purified from mouse hepatic microsomes catalyzed the oxidation of o-, m-, and p-tolualdehydes to the carboxylic acids, and the specific activities (nmol/min/nmol P450) were 1.44, 2.81, and 2.32, respectively. Rabbit antibody raised against P450 MUT-2 significantly inhibited the NADPH-dependent oxidation of tolualdehydes to toluic acids by 88% (o-), 63% (m-), and 62% (p-) using mouse hepatic microsomes. The present study demonstrated that a mouse hepatic microsomal aldehyde oxygenase, P450 MUT-2, catalyzed the most of oxidative activity of tolualdehydes to toluic acids in the microsomes.

  3. Abrogating cholesterol esterification suppresses growth and metastasis of pancreatic cancer

    PubMed Central

    Li, J; Gu, D; Lee, S S-Y; Song, B; Bandyopadhyay, S; Chen, S; Konieczny, S F; Ratliff, T L; Liu, X; Xie, J; Cheng, J-X

    2016-01-01

    Cancer cells are known to execute reprogramed metabolism of glucose, amino acids and lipids. Here, we report a significant role of cholesterol metabolism in cancer metastasis. By using label-free Raman spectromicroscopy, we found an aberrant accumulation of cholesteryl ester in human pancreatic cancer specimens and cell lines, mediated by acyl-CoA cholesterol acyltransferase-1 (ACAT-1) enzyme. Expression of ACAT-1 showed a correlation with poor patient survival. Abrogation of cholesterol esterification, either by an ACAT-1 inhibitor or by shRNA knockdown, significantly suppressed tumor growth and metastasis in an orthotopic mouse model of pancreatic cancer. Mechanically, ACAT-1 inhibition increased intracellular free cholesterol level, which was associated with elevated endoplasmic reticulum stress and caused apoptosis. Collectively, our results demonstrate a new strategy for treating metastatic pancreatic cancer by inhibiting cholesterol esterification. PMID:27132508

  4. Automation of High-Throughput Mass Spectrometry-Based Plasma N-Glycome Analysis with Linkage-Specific Sialic Acid Esterification.

    PubMed

    Bladergroen, Marco R; Reiding, Karli R; Hipgrave Ederveen, Agnes L; Vreeker, Gerda C M; Clerc, Florent; Holst, Stephanie; Bondt, Albert; Wuhrer, Manfred; van der Burgt, Yuri E M

    2015-09-04

    Glycosylation is a post-translational modification of key importance with heterogeneous structural characteristics. Previously, we have developed a robust, high-throughput MALDI-TOF-MS method for the comprehensive profiling of human plasma N-glycans. In this approach, sialic acid residues are derivatized with linkage-specificity, namely the ethylation of α2,6-linked sialic acid residues with parallel lactone formation of α2,3-linked sialic acids. In the current study, this procedure was used as a starting point for the automation of all steps on a liquid-handling robot system. This resulted in a time-efficient and fully standardized procedure with throughput times of 2.5 h for a first set of 96 samples and approximately 1 h extra for each additional sample plate. The mass analysis of the thus-obtained glycans was highly reproducible in terms of relative quantification, with improved interday repeatability as compared to that of manual processing.

  5. N-Heterocyclic carbene-mediated oxidative esterification of aldehydes: ester formation and mechanistic studies.

    PubMed

    Maji, Biswajit; Vedachalan, Seenuvasan; Ge, Xin; Cai, Shuting; Liu, Xue-Wei

    2011-05-06

    An unexpected N-heterocyclic carbene-catalyzed esterification of α,β-unsaturated aldehydes including aromatic aldehydes with reactive cinnamyl bromides in the presence of air oxygen or MnO(2) as an oxidant is described. In the presence of oxygen, halogenated and electron-deficient aldehydes react smoothly to furnish esters in good yields. Great efforts have been made on mechanistic studies to deduce a plausible mechanism, based on the experimental results and isotopic labeling experiment.

  6. Ring-opening polymerization of ε-caprolactone catalyzed by sulfonic acids: computational evidence for bifunctional activation.

    PubMed

    Susperregui, Nicolas; Delcroix, Damien; Martin-Vaca, Blanca; Bourissou, Didier; Maron, Laurent

    2010-10-01

    The mechanism of ring-opening of ε-caprolactone by methanol catalyzed by trifluoromethane and methane sulfonic acids has been studied computationally at the DFT level of theory. For both elementary steps, the sulfonic acid was predicted to behave as a bifunctional catalyst. The nucleophilic addition proceeds via activation of both the monomer and the alcohol. The ring-opening involves the cleavage of the endo C-O bond of the tetrahedral intermediate with concomitant proton transfer. In both cases, the sulfonic acid acts as a proton shuttle via its acidic hydrogen atom and basic oxygen atoms. The computed activation barriers are consistent with the relatively fast polymerizations observed experimentally at room temperature with both catalysts.

  7. Acid-catalyzed Reactions in Model Secondary Organic Aerosol (SOA): Insights using Desorption-electrospray Ionization (DESI) Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Fiddler, M. N.; Cooks, R. G.; Shepson, P.

    2008-12-01

    Atmospheric aerosols are presently little understood in terms of their sources, formation, and effect on climate forcing, despite their significant impacts on climate change and respiratory health. Secondary organic aerosols (SOA), which were thought to arise entirely from simple gas-particle partitioning, have recently been found to contain oligomeric species which result from the condensed-phase reactions of volatile organic compounds (VOCs). The non-methane VOC with the greatest emission flux, isoprene, is known to produce aerosols through chemistry involving its oxidation products. We selected one of its major oxidation product, methacrolein, to assess its role in oligomeric SOA formation in response to the acidic conditions found in cloud water. Since it has been found that acidified aerosol produces oligomeric species with greater molecular weight and yield, acid-catalyzed oligomerization is likely a significant process in the formation of SOA. Aqueous solutions of methacrolein were acidified with sulfuric acid, and studied using linear ion trap mass spectrometry (LIT-MS) with a home-built desorption-electrospray ionization (DESI) source. An extremely heterogeneous mixture of products was produced in this system, resulting from hydrolysis, acid- catalyzed oxidation, reduction, and organosulfate formation. Evidence for disproportionation and heterocycle formation are proposed as reaction mechanisms hitherto unrecognized in the production of SOA. The proposed structure and formation mechanism for several species, based upon their MS/MS spectra, will also be presented.

  8. Sulfonic acid resin-catalyzed addition of phenols, carboxylic acids, and water to olefins: Model reactions for catalytic upgrading of bio-oil.

    PubMed

    Zhang, Zhi-Jun; Wang, Qing-Wen; Yang, Xu-Lai; Chatterjee, Sabornie; Pittman, Charles U

    2010-05-01

    Acid-catalyzed 1-octene reactions with phenol and mixtures of phenol with water, acetic acid and 1-butanol were studied as partial bio-oil upgrading models. Bio-oil from fast biomass pyrolysis has poor fuel properties due to the presence of substantial amounts of water, carboxylic acid, phenolic derivatives and other hydroxyl-containing compounds. Additions across olefins offer a route to simultaneously lower water content and acidity while increasing hydrophobicity, stability and heating value. Amberlyst15, Dowex50WX2 and Dowex50WX4 effectively catalyzed phenol O- and C-alkylation from 65 to 120 degrees C, giving high O-alkylation selectivities in the presence of water, acetic acid and 1-butanol. Octanols and dioctyl ethers were formed from water and octyl acetates and phenol acetates from acetic acid. Phenol alkylation slowed in the presence of water. Dowex50WX2 and Dowex50WX4 were more stable in the presence of water than Amberlyst15 and were successfully recycled. Adding 1-butanol to phenol/water/1-octene, gave emulsion-like mixtures which improved phenol conversion and olefin hydration.

  9. Application of chiral mixed phosphorus/sulfur ligands to enantioselective rhodium-catalyzed dehydroamino acid hydrogenation and ketone hydrosilylation processes.

    PubMed

    Evans, David A; Michael, Forrest E; Tedrow, Jason S; Campos, Kevin R

    2003-03-26

    Chiral mixed phosphorus/sulfur ligands 1-3 have been shown to be effective in enantioselective Rh-catalyzed dehydroamino acid hydrogenation and ketone hydrosilylation reactions (eqs 1, 2). After assaying the influence of the substituents at sulfur, the substituents on the ligand backbone, the relative stereochemistry within the ligand backbone, and the substituents at phosphorus, ligands 2c (R = 3,5-dimethylphenyl) and 3 were found to be optimal in the Rh-catalyzed hydrogenation of a variety of alpha-acylaminoacrylates in high enantioselectivity (89-97% ee). A similar optimization of the catalyst for the Rh-catalyzed hydrosilylation of ketones showed that ligand 3 afforded the highest enantioselectivities for a wide variety of aryl alkyl and dialkyl ketones (up to 99% ee). A model for asymmetric induction in the hydrogenation reaction is discussed in the context of existing models, based on the absolute stereochemistry of the products and the X-ray crystal structures of catalyst precursors and intermediates.

  10. Esterification of bio-oil from mallee (Eucalyptus loxophleba ssp. gratiae) leaves with a solid acid catalyst: Conversion of the cyclic ether and terpenoids into hydrocarbons.

    PubMed

    Hu, Xun; Gunawan, Richard; Mourant, Daniel; Wang, Yi; Lievens, Caroline; Chaiwat, Weerawut; Wu, Liping; Li, Chun-Zhu

    2012-11-01

    Bio-oil from pyrolysis of mallee (Eucalyptus loxophleba ssp. gratiae) leaves differs from that obtained with wood by its content of cyclic ethers, terpenoids and N-containing organic compounds. Upgrading of the leaf bio-oil in methanol with a solid acid catalyst was investigated and it was found that the N-containing organics in the bio-oil lead to deactivation of the catalyst in the initial stage of exposure and have to be removed via employing high catalyst loading to allow the occurrence of other acid-catalysed reactions. Eucalyptol, the main cyclic ether in the bio-oil, could be converted into the aromatic hydrocarbon, p-cymene, through a series of intermediates including α-terpineol, terpinolene, and α-terpinene. Various steps such as ring-opening, dehydration, isomerisation, and aromatization were involved in the conversion of eucalyptol. The terpenoids in bio-oil could also be converted into aromatic hydrocarbons that can serve as starting materials for the synthesis of fine chemicals, via the similar processes.

  11. Lewis Acid Catalyzed Ring-opening Polymerization of Epoxidized Soybean Oil in Liquid Carbon Dioxide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ring-opening polymerization of epoxidized soybean oil (ESO) catalyzed by boron trifluoride diethyl etherate (BF3•OEt2), in liquid carbon dioxide, was conducted in an effort to develop useful biobased biodegradable polymers. The resulting polymers (RPESO) were characterized by FTIR spectroscopy, diff...

  12. Regioselective Copper-Catalyzed Amination of Chlorobenzoic Acids: Synthesis and Solid-State Structures of N-Aryl Anthranilic Acid Derivatives

    PubMed Central

    Mei, Xuefeng; August, Adam T.; Wolf, Christian

    2008-01-01

    A chemo- and regioselective copper-catalyzed cross-coupling reaction for effective amination of 2-chlorobenzoic acids with aniline derivatives has been developed. The method eliminates the need for acid protection and produces a wide range of N-aryl anthranilic acid derivatives in up to 99%. The amination was found to proceed with both electron-rich and electron-deficient aryl chlorides and anilines and also utilizes sterically hindered anilines such as 2,6-dimethylaniline and 2-tert-butylaniline. The conformational isomerism of appropriately substituted N-aryl anthranilic acids has been investigated in the solid state. Crystallographic analysis of seven anthranilic acid derivatives showed formation of two distinct supramolecular architectures exhibiting trans-anti- and unprecedented trans-syn-dimeric structures. PMID:16388629

  13. Carboxylic acids as traceless directing groups for the rhodium(III)-catalyzed decarboxylative C-H arylation of thiophenes.

    PubMed

    Zhang, Yuanfei; Zhao, Huaiqing; Zhang, Min; Su, Weiping

    2015-03-16

    A rhodium(III)-catalyzed carboxylic acid directed decarboxylative C-H/C-H cross-coupling of carboxylic acids with thiophenes has been developed. With a slight adjustment of the reaction conditions based on the nature of the substrates, aryl carboxylic acids with a variety of substituents could serve as suitable coupling partners, and a broad variety of functional groups were tolerated. This method provides straightforward access to biaryl scaffolds with diverse substitution patterns, many of which have conventionally been synthesized through lengthy synthetic sequences. An illustrative example is the one-step gram-scale synthesis of a biologically active 3,5-substituted 2-arylthiophene by way of the current method.

  14. Acid catalyzed alcoholysis of sulfinamides: unusual stereochemistry, kinetics and a question of mechanism involving sulfurane intermediates and their pseudorotation.

    PubMed

    Bujnicki, Bogdan; Drabowicz, Józef; Mikołajczyk, Marian

    2015-02-11

    The synthesis of optically active sulfinic acid esters has been accomplished by the acid catalyzed alcoholysis of optically active sulfinamides. Sulfinates are formed in this reaction with a full or predominant inversion of configuration at chiral sulfur or with predominant retention of configuration. The steric course of the reaction depends mainly on the size of the dialkylamido group in the sulfinamides and of the alcohols used as nucleophilic reagents. It has been found that bulky reaction components preferentially form sulfinates with retention of configuration. It has been demonstrated that the stereochemical outcome of the reaction can be changed from inversion to retention and vice versa by adding inorganic salts to the acidic reaction medium. The unusual stereochemistry of this typical bimolecular nucleophilic substitution reaction, as confirmed by kinetic measurements, has been rationalized in terms of the addition-elimination mechanism, A-E, involving sulfuranes as intermediates which undergo pseudorotations.

  15. Brönsted Acid-Catalyzed One-Pot Synthesis of Indoles from o-Aminobenzyl Alcohols and Furans

    PubMed Central

    Kuznetsov, Alexey; Makarov, Anton; Rubtsov, Alexandr E.; Butin, Alexander V.; Gevorgyan, Vladimir

    2013-01-01

    Brönsted acid-catalyzed one-pot synthesis of indoles from o-aminobenzyl alcohols and furans has been developed. This method operates via the in situ formation of aminobenzylfuran, followed by its recyclization into the indole core. The method proved to be efficient for substrates possessing different functional groups, including -OMe, -CO2Cy, and -Br. The resulting indoles can easily be transformed into diverse scaffolds, including 2,3- and 1,2-fused indoles, and indole possessing an α,β-unsaturated ketone moiety at the C-2 position. PMID:24255969

  16. Influence of organic acids on oscillations and waves in the ferroin-catalyzed Belousov-Zhabotinsky reaction

    NASA Astrophysics Data System (ADS)

    Krüger, Frank; Nagy-Ungvárai, Zsuzsanna; Müller, Stefan C.

    Experiments of the influence of mesoxalic and tartronic acid on the oscillatory behavior and on the spiral tip motion in a ferroin-catalyzed Belousov-Zhabotinsky (BZ) solution are reported. The oscillations were observed in batch and CSTR systems, and for the investigations of the spiral tip motion an open gel reactor was used. A characteristic shoulder in the oscillations is associated with an additional Br - production phase. The chemical parameters for a transition from a hypocycloidal to a circular tip trajectory are found. The findings are compared with the temporal and spatial dynamic behavior, occurring during the ageing process of the solution.

  17. Rhodium-catalyzed asymmetric addition of arylboronic acids to β-nitroolefins: formal synthesis of (S)-SKF 38393.

    PubMed

    Huang, Kung-Chih; Gopula, Balraj; Kuo, Ting-Shen; Chiang, Chien-Wei; Wu, Ping-Yu; Henschke, Julian P; Wu, Hsyueh-Liang

    2013-11-15

    An efficient enantioselective addition of an array of arylboronic acids to various β-nitrostyrenes catalyzed by a novel and reactive rhodium-diene catalyst (S/C up to 1000) was developed, providing β,β-diarylnitroethanes in good to high yields (62-99%) with excellent enantioselectivities (85-97% ee). The method was extended to 2-heteroarylnitroolefins and 2-alkylnitroolefins similarly providing the desired products with high enantioselectivities and yields. The usefulness of this method was demonstrated in the formal synthesis of the enantiomer of the dopamine receptor agonist and antagonist, SKF 38393.

  18. Bidentate Lewis Acid Catalyzed Domino Diels-Alder Reaction of Phthalazine for the Synthesis of Bridged Oligocyclic Tetrahydronaphthalenes.

    PubMed

    Schweighauser, Luca; Bodoky, Ina; Kessler, Simon N; Häussinger, Daniel; Donsbach, Carsten; Wegner, Hermann A

    2016-03-18

    A domino process consisting of an inverse and a normal electron-demand Diels-Alder reaction is presented for the formation of bridged tri- and tetracyclic 1,2,3,4-tetrahydronaphthalenes catalyzed by a bidentate Lewis acid. The products were synthesized in a one-pot reaction from commercially available starting materials and contain up to six stereogenic centers. The tetrahydronaphthalenes were isolated as single diastereomers and are derivatives of phenylethylamine, which is well-known as a scaffold of amphetamine or dopamine.

  19. Synthesis and anti-inflammatory evaluation of N-sulfonyl anthranilic acids via Ir(III)-catalyzed C-H amidation of benzoic acids.

    PubMed

    Han, Sang Hoon; Suh, Hyo Sun; Jo, Hyeim; Oh, Yongguk; Mishra, Neeraj Kumar; Han, Sangil; Kim, Hyung Sik; Jung, Young Hoon; Lee, Byung Mu; Kim, In Su

    2017-03-29

    The iridium(III)-catalyzed ortho-C-H amidation of benzoic acids with sulfonyl azides is described. These transformations allow the facile generation of N-sulfonyl anthranilic acids, which are known as crucial scaffolds found in biologically active molecules. In addition, all synthetic products were evaluated for in vitro anti-inflammatory activity against interleukin-1β (IL-1β) and cyclooxygenase-2 (COX-2) with lipopolysaccharide (LPS)-induced RAW264.7 cells. Notably, compounds 4c and 4d, generated from p-OMe- and p-Br-sulfonyl azides, were found to display potent anti-inflammatory property stronger than that of well-known NSAIDs ibuprofen.

  20. Origin of asymmetric induction in bicyclic guanidine-catalyzed thio-Michael reaction: a bifunctional mode of Lewis acid-Brønsted acid activation.

    PubMed

    Cho, Bokun; Tan, Choon-Hong; Wong, Ming Wah

    2012-08-03

    In addition to a bifunctional Brønsted acid activation mode, an unconventional bifunctional mode of Lewis and Brønsted acid activations was revealed in a DFT study of bicyclic guanidine-catalyzed thio-Michael reaction. This activation mode provides an alternate reaction pathway for the C-S bond forming step and influences the final stereochemical outcome. The calculated turnover frequencies of the R- and S-products, based on the energetic span model, are in good accord with the observed high stereoselectivity toward the S-product.

  1. β-Amino acid catalyzed asymmetric Michael additions: design of organocatalysts with catalytic acid/base dyad inspired by serine proteases.

    PubMed

    Yang, Hui; Wong, Ming Wah

    2011-09-16

    A new type of chiral β-amino acid catalyst has been computationally designed, mimicking the enzyme catalysis of serine proteases. Our catalyst approach is based on the bioinspired catalytic acid/base dyad, namely, a carboxyl and imidazole pair. DFT calculations predict that this designed organocatalyst catalyzes Michael additions of aldehydes to nitroalkenes with excellent enantioselectivities and remarkably high anti diastereoselectivities. The unusual stacked geometry of the enamine intermediate, hydrogen bonding network, and the adoption of an exo transition state are the keys to understand the stereoselectivity.

  2. Esterification Reaction Utilizing Sense of Smell and Eyesight for Conversion and Catalyst Recovery Monitoring

    ERIC Educational Resources Information Center

    Janssens, Nikki; Wee, Lik H.; Martens, Johan A.

    2014-01-01

    The esterification reaction of salicylic acid with ethanol is performed in presence of dissolved 12-tungstophosphoric Brønsted-Lowry acid catalyst, a Keggin-type polyoxometalate (POM). The monitoring of the reaction with smell and the recovery of the catalyst with sight is presented. Formation of the sweet-scented ester is apparent from the smell.…

  3. Applications of FT-IR spectroscopy to the studies of esterification and crosslinking of cellulose by polycarboxylic acids: Part II. The performance of the crosslinked cotton fabrics

    NASA Astrophysics Data System (ADS)

    Wei, Weishu; Yang, Charles Q.

    1998-06-01

    Durable press finishing processes are commonly used in the textile industry to produce wrinkle-free cotton fabrics and garments. A durable press finishing agent forms covalent bands with cellulosic hydroxyl groups, thus crosslinking the cellulose molecules. The crosslinking of cellulose increases wrinkle resistance of the treated cotton fabric and reduces fabric mechanical strength. Wrinkle recovery angle (WRA) and tensile strength are the two most important parameters used to evaluate the performance of the crosslinked cotton fabrics and garments. In this study, we investigated the correlation between WRA and tensile strength on one hand, and the amount of crosslinkages formed by the crosslinking agents including dimethyloldihydroxylethyleneurea (DMDHEU) and 1,2,3,4-butanetetracarboxylic acid (BTCA) determined by FT-IR spectroscopy on the other hand. Linear regression curves between the carbonyl band absorbance, and WRA and tensile strength of the treated cotton fabric were developed. The data indicated that FT-IR spectroscopy is a reliable technique for predicting the performance of durable press finished cotton fabrics, therefore can be used as a convenient instrumental method for quality control in the textile and garment industry.

  4. Efficient Lewis acid ionic liquid-catalyzed synthesis of the key intermediate of coenzyme Q10 under microwave irradiation.

    PubMed

    Chen, Yue; Zu, Yuangang; Fu, Yujie; Zhang, Xuan; Yu, Ping; Sun, Guoyong; Efferth, Thomas

    2010-12-22

    An efficient synthesis of a valuable intermediate of coenzyme Q(10) by microwave-assisted Lewis acidic ionic liquid (IL)-catalyzed Friedel-Crafts alkylation is reported. The acidity of six [Etpy]BF(4)-based ionic liquids was characterized by means of the FT-IR technique using acetonitrile as a molecular probe. The catalytic activities of these ionic liquids were correlated with their Lewis acidity. With increasing Lewis acid strength of the ionic liquids, their catalytic activity in the Friedel-Crafts reaction increased, except for [Etpy]BF(4)-AlCl(3). The effects of the reaction system, the molar fraction of Lewis acid in the Lewis acid ILs and heating techniques were also investigated. Among the six Lewis acid ionic liquids tested [Etpy]BF(4)-ZnCl(2) showed the best catalytic activity, with a yield of 89% after a very short reaction time (150 seconds). This procedure has the advantages of higher efficiency, better reusability of ILs, energy conservation and eco-friendliness. The method has practical value for preparation of CoQ(10) on an industrial scale.

  5. [Analysis of fatty acids in Gmnocypris przewalskii oil by gas chromatography/mass spectrometry with base-catalyzed transesterification].

    PubMed

    Bo, Haibo; Wang, Xia; Zhai, Zongde; Li, Yongmin; Chen, Liren

    2006-03-01

    The composition of fatty acids (FA) in Gymnocypris przewalskii oil was identified and quantified by gas chromatography (GC)/electron impact (EI) mass spectrometry (MS). A base-catalyzed transesterification method was used to convert fatty acids to methyl esters. The lipids were extracted using petroleum ether and the total lipids in dried meat and skin of Gymnocypris przewalskii were about 25%. Forty-seven fatty acids were identified in the current study. Main types of fatty acids found in the oils were normal saturated, mono-branched, multi-branched, cyclopropane, furanoid, normal monounsaturated and polyunsaturated fatty acids. Saturated fatty acids were approximately 25. 7% of the total, and the main components were C(14:0) (3.4%), C(16:0) (19.4%) and C(18:0) (1.1%). Unsaturated fatty acids were totally 73.6%, and the major components of monounsaturated fatty acids were C(16:1 (9)) (19.8%), C(18:1) (9)) (18. 6%) and C(18:1 (11)) (7.3%); polyunsaturated fatty acids were mainly composed of C(18:2 (9,12)) (4.8%), C(18:3 (9, 12, 15)) (3.1%), C(20:4 (5, 8, 1, 14)) (1.2%), C(20:5 (5, 8, 11, 14, 17)) (EPA, 9.4%) and C(22:6 (4, 7, 10, 13, 16, 19)) (DHA, 6.7%). Especially, furyl-, cyclopropane- and several odd and branched chain fatty acids were found in Gymnocypris przewalskii oil. It is thus an important dietary resource of functional fatty acids.

  6. Characterization of a Cross-Linked Protein-Nucleic Acid Substrate Radical in the Reaction Catalyzed by RlmN

    SciTech Connect

    Silakov, Alexey; Grove, Tyler L.; Radle, Matthew I.; Bauerle, Matthew R.; Green, Michael T.; Rosenzweig, Amy C.; Boal, Amie K.; Booker, Squire J.

    2014-08-14

    RlmN and Cfr are methyltransferases/methylsynthases that belong to the radical S-adenosylmethionine superfamily of enzymes. RlmN catalyzes C2 methylation of adenosine 2503 (A2503) of 23S rRNA, while Cfr catalyzes C8 methylation of the exact same nucleotide, and will subsequently catalyze C2 methylation if the site is unmethylated. A key feature of the unusual mechanisms of catalysis proposed for these enzymes is the attack of a methylene radical, derived from a methylcysteine residue, onto the carbon center undergoing methylation to generate a paramagnetic protein–nucleic acid cross-linked species. This species has been thoroughly characterized during Cfr-dependent C8 methylation, but does not accumulate to detectible levels in RlmN-dependent C2 methylation. Herein, we show that inactive C118S/A variants of RlmN accumulate a substrate-derived paramagnetic species. Characterization of this species by electron paramagnetic resonance spectroscopy in concert with strategic isotopic labeling shows that the radical is delocalized throughout the adenine ring of A2503, although predominant spin density is on N1 and N3. Moreover, 13C hyperfine interactions between the radical and the methylene carbon of the formerly [methyl-13C]Cys355 residue show that the radical species exists in a covalent cross-link between the protein and the nucleic acid substrate. X-ray structures of RlmN C118A show that, in the presence of SAM, the substitution does not alter the active site structure compared to that of the wild-type enzyme. Together, these findings have new mechanistic implications for the role(s) of C118 and its counterpart in Cfr (C105) in catalysis, and suggest involvement of the residue in resolution of the cross-linked species via a radical mediated process

  7. Characterization of a Cross-Linked Protein–Nucleic Acid Substrate Radical in the Reaction Catalyzed by RlmN

    PubMed Central

    2015-01-01

    RlmN and Cfr are methyltransferases/methylsynthases that belong to the radical S-adenosylmethionine superfamily of enzymes. RlmN catalyzes C2 methylation of adenosine 2503 (A2503) of 23S rRNA, while Cfr catalyzes C8 methylation of the exact same nucleotide, and will subsequently catalyze C2 methylation if the site is unmethylated. A key feature of the unusual mechanisms of catalysis proposed for these enzymes is the attack of a methylene radical, derived from a methylcysteine residue, onto the carbon center undergoing methylation to generate a paramagnetic protein–nucleic acid cross-linked species. This species has been thoroughly characterized during Cfr-dependent C8 methylation, but does not accumulate to detectible levels in RlmN-dependent C2 methylation. Herein, we show that inactive C118S/A variants of RlmN accumulate a substrate-derived paramagnetic species. Characterization of this species by electron paramagnetic resonance spectroscopy in concert with strategic isotopic labeling shows that the radical is delocalized throughout the adenine ring of A2503, although predominant spin density is on N1 and N3. Moreover, 13C hyperfine interactions between the radical and the methylene carbon of the formerly [methyl-13C]Cys355 residue show that the radical species exists in a covalent cross-link between the protein and the nucleic acid substrate. X-ray structures of RlmN C118A show that, in the presence of SAM, the substitution does not alter the active site structure compared to that of the wild-type enzyme. Together, these findings have new mechanistic implications for the role(s) of C118 and its counterpart in Cfr (C105) in catalysis, and suggest involvement of the residue in resolution of the cross-linked species via a radical mediated process. PMID:24806349

  8. Lewis Acid Catalyzed Friedel-Crafts Alkylation of Alkenes with Trifluoropyruvates.

    PubMed

    Xiang, Bin; Xu, Teng-Fei; Wu, Liang; Liu, Ren-Rong; Gao, Jian-Rong; Jia, Yi-Xia

    2016-05-06

    A Friedel-Crafts alkylation reaction of styrenes with trifluoropyruvates has been developed, which delivered allylic alcohols in excellent yields (up to 98%) using the Ni(ClO4)2·6H2O/bipyridine complex as a catalyst. The asymmetric reaction was catalyzed by the chiral Cu(OTf)2/bisoxazoline complex to afford the corresponding chiral allylic alcohols bearing trifluoromethylated quaternary stereogenic centers in moderate enantioselectivities (up to 75% ee).

  9. Improved Synthesis of 5-Substituted 1H-Tetrazoles via the [3+2] Cycloaddition of Nitriles and Sodium Azide Catalyzed by Silica Sulfuric Acid

    PubMed Central

    Du, Zhenting; Si, Changmei; Li, Youqiang; Wang, Yin; Lu, Jing

    2012-01-01

    A silica supported sulfuric acid catalyzed [3+2] cycloaddition of nitriles and sodium azide to form 5-substituted 1H-tetrazoles is described. The protocol can provide a series of 5-substituted 1H-tetrazoles using silica sulfuric acid from nitriles and sodium azide in DMF in 72%–95% yield. PMID:22606004

  10. Improved synthesis of 5-substituted 1H-tetrazoles via the [3+2] cycloaddition of nitriles and sodium azide catalyzed by silica sulfuric acid.

    PubMed

    Du, Zhenting; Si, Changmei; Li, Youqiang; Wang, Yin; Lu, Jing

    2012-01-01

    A silica supported sulfuric acid catalyzed [3+2] cycloaddition of nitriles and sodium azide to form 5-substituted 1H-tetrazoles is described. The protocol can provide a series of 5-substituted 1H-tetrazoles using silica sulfuric acid from nitriles and sodium azide in DMF in 72%-95% yield.

  11. N-Substituted Imines by the Copper-Catalyzed N-Imination of Boronic Acids and Organostannanes with O-Acyl Ketoximes

    PubMed Central

    Liu, Songbai; Yu, Ying; Liebeskind, Lanny S.

    2009-01-01

    Catalytic quantities of copper (I) or copper (II) sources catalyze the N-imination of boronic acids and organostannanes through reaction with oxime O-carboxylates under non-basic conditions. This method tolerates various functional groups and takes place efficiently using aryl, heteroaryl, and alkenyl boronic acids and stannanes. PMID:17444649

  12. Ring-opening polymerization of epoxidized soybean oil catalyzed by the superacid, Fluroantimonic acid hexahydrate (HSbF6-6H2O)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ring-opening polymerization of epoxidized soybean oil (ESO) catalyzed by the super acid, fluroantimonic acid hexahydrate (HSbF6-6H2O), in ethyl acetate was conducted. The resulting polymers, SA-RPESO, were characterized using infrared spectroscopy, differential scanning calorimetry, thermogravimetri...

  13. Asymmetric PTC C-alkylation catalyzed by chiral derivatives of tartaric acid and aminophenols. Synthesis Of (R)- and (S)-alpha-methyl amino acids

    PubMed

    Belokon; Kochetkov; Churkina; Ikonnikov; Chesnokov; Larionov; Singh; Parmar; Vyskocil; Kagan

    2000-10-20

    A new type of efficient chiral catalyst has been elaborated for asymmetric C-alkylation of CH acids under PTC conditions. Sodium alkoxides formed from chiral derivatives of tartaric acid and aminophenols (TADDOL's 2a-e and NOBIN's 3a-h) can be used as chiral catalysts in the enantioselective alkylation, as exemplified by the reaction of Schiff's bases 1a-e derived from alanine esters and benzaldehydes with active alkyl halides. Acid-catalyzed hydrolysis of the products formed in the reaction afforded (R)-alpha-methylphenylalanine, (R)-alpha-naphthylmethylalanine, and (R)-alpha-allylalanine in 61-93% yields and with ee 69-93%. The procedure could be successfully scaled up to 6 g of substrate 1b. When (S,S)-TADDOL or (R)-NOBIN are used, the (S)-amino acids are formed. A mechanism rationalizing the observed features of the reaction has been suggested.

  14. Studies of the Mechanism and Origins of Enantioselectivity for the Chiral Phosphoric Acid-Catalyzed Stereoselective Spiroketalization Reactions.

    PubMed

    Khomutnyk, Yaroslav Ya; Argüelles, Alonso J; Winschel, Grace A; Sun, Zhankui; Zimmerman, Paul M; Nagorny, Pavel

    2016-01-13

    Mechanistic and computational studies were conducted to elucidate the mechanism and the origins of enantiocontrol for asymmetric chiral phosphoric acid-catalyzed spiroketalization reactions. These studies were designed to differentiate between the S(N)1-like, S(N)2-like, and covalent phosphate intermediate-based mechanisms. The chiral phosphoric acid-catalyzed spiroketalization of deuterium-labeled cyclic enol ethers revealed a highly diastereoselective syn-selective protonation/nucleophile addition, thus ruling out long-lived oxocarbenium intermediates. Hammett analysis of the reaction kinetics revealed positive charge accumulation in the transition state (ρ = -2.9). A new computational reaction exploration method along with dynamics simulations supported an asynchronous concerted mechanism with a relatively short-lived polar transition state (average lifetime = 519 ± 240 fs), which is consistent with the observed inverse secondary kinetic isotope effect of 0.85. On the basis of these studies, a transition state model explaining the observed stereochemical outcome has been proposed. This model predicts the enantioselective formation of the observed enantiomer of the product with 92% ee, which matches the experimentally observed value.

  15. Convenient and Simple Esterification in Continuous-Flow Systems using g-DMAP.

    PubMed

    Okuno, Yoshinori; Isomura, Shigeki; Sugamata, Anna; Tamahori, Kaoru; Fukuhara, Ami; Kashiwagi, Miyu; Kitagawa, Yuuichi; Kasai, Emiri; Takeda, Kazuyoshi

    2015-11-01

    The utility and applicability of polyethylene-g-polyacrylic acid-immobilized dimethylaminopyridine (g-DMAP) as a catalyst in a continuous-flow system were investigated for decarboxylative esterification. High catalytic activity toward acylation was provided by g-DMAP containing a flexible grafted-polymer structure. During decarboxylation, carboxylic acids and alcohols were converted cleanly using di-tert-butyl dicarbonate (Boc2O) as a coupling reagent, which reduced by-products. In addition, the use of Boc2O resulted in the formation of tert-butyl esters. These esterifications dramatically reduced the reaction time under continuous-flow conditions, with a residence time of approximately 2 min. This highly efficient esterification procedure will provide more practical industrial applications.

  16. Enantiodivergent Atroposelective Synthesis of Chiral Biaryls by Asymmetric Transfer Hydrogenation: Chiral Phosphoric Acid Catalyzed Dynamic Kinetic Resolution.

    PubMed

    Mori, Keiji; Itakura, Tsubasa; Akiyama, Takahiko

    2016-09-12

    Reported herein is an enantiodivergent synthesis of chiral biaryls by a chiral phosphoric acid catalyzed asymmetric transfer hydrogenation reaction. Upon treatment of biaryl lactols with aromatic amines and a Hantzsch ester in the presence of chiral phosphoric acid, dynamic kinetic resolution (DKR) involving a reductive amination reaction proceeded smoothly to furnish both R and S isomers of chiral biaryls with excellent enantioselectivities by proper choice of hydroxyaniline derivative. This trend was observed in wide variety of substrates, and various chiral biphenyl and phenyl naphthyl adducts were synthesized with satisfactory enantioselectivities in enantiodivergent fashion. The enantiodivergent synthesis of synthetically challenging, chiral o-tetrasubstituted biaryls were also accomplished, and suggests high synthetic potential of the present method.

  17. Ternary copper complexes and manganese (III) tetrakis(4-benzoic acid) porphyrin catalyze peroxynitrite-dependent nitration of aromatics.

    PubMed

    Ferrer-Sueta, G; Ruiz-Ramírez, L; Radi, R

    1997-12-01

    Peroxynitrite is a powerful oxidant formed in biological systems from the reaction of nitrogen monoxide and superoxide and is capable of nitrating phenols at neutral pH and ambient temperature. This peroxynitrite-mediated nitration is catalyzed by a number of Lewis acids, including CO2 and transition-metal ion complexes. Here we studied the effect of ternary copper-(II) complexes constituted by a 1,10-phenanthroline and an amino acid as ligands. All the complexes studied accelerate both the decomposition of peroxynitrite and its nitration of 4-hydroxyphenylacetic acid at pH > 7. The rate of these reactions depends on the copper complex concentration in a hyperbolic plus linear manner. The yield of nitrated products increases up to 2.6-fold with respect to proton-catalyzed nitration and has a dependency on the concentration of copper complexes which follows the same function as observed for the rate constants. The manganese porphyrin complex, Mn(III)tetrakis(4-benzoic acid)porphyrin [Mn(tbap)], also promoted peroxynitrite-mediated nitration with an even higher yield (4-fold increase) than the ternary copper complexes. At pH = 7.5 +/- 0.2 the catalytic behavior of the copper complexes can be linearly correlated with the pKa of the phenanthroline present as a ligand, implying that a peroxynitrite anion is coordinated to the copper ion prior to the nitration reaction. These observations may prove valuable to understand the biological effects of these transition-metal complexes (i.e., copper and manganese) that can mimic superoxide dismutase activity and, in the case of the ternary copper complexes, show antineoplastic activity.

  18. Towards determination of the distribution of methyl esterification in pectin

    SciTech Connect

    Maness, N.O.; Mort, A.J. )

    1990-05-01

    A procedure for determining the distribution of methyl esterification in pectin will be described. The first step is quantitative and selective reduction of methyl esterified galacturonic acid to galactose. Treatment of the reduced pectin with anhydrous liquid HF at {minus}10C results in cleavage of the galactosyl linkages without cleaving the galacturonosyl linkages. From the resultant oligosaccharides the distribution of contiguous non-esterified galacturonic acid residues in the polymer can be determined. If the reduced pectin is instead treated with lithium in ethylenediamine, galacturonic acid residues are destroyed and oligomers containing contiguous galactose residues (methyl esterified galacturonic acid in the parent polymer) are obtained. The distribution of contiguously esterified and non-esterified galacturonic acid segments in the original polymer is determined by separation and quantitation of these oligomers by HPLC. Application to commercially available pectins and to pectins from cotton suspension culture cells walls will be presented.

  19. Vascular peroxidase 1 catalyzes the formation of hypohalous acids: characterization of its substrate specificity and enzymatic properties.

    PubMed

    Li, Hong; Cao, Zehong; Zhang, Guogang; Thannickal, Victor J; Cheng, Guangjie

    2012-11-15

    The heme-containing peroxidase family comprises eight members in humans. The physiological and pathophysiological roles of heme-containing peroxidases are not well understood. Phagocyte-derived myeloperoxidase (MPO) utilizes chloride and bromide, in the presence of hydrogen peroxide (H(2)O(2)), to generate hypochlorous acid and hypobromous acid, potent oxidizing species that are known to kill invading pathogens. Vascular peroxidase 1 (VPO1) is a new member of the heme-containing peroxidase family; VPO1 is highly expressed in the cardiovascular system, lung, liver, pancreas, and spleen. However, functional roles of VPO1 have not been defined. In this report, we demonstrate the capacity for VPO1 to catalyze the formation of hypohalous acids, and characterize its enzymatic properties. VPO1, like MPO but unlike lactoperoxidase, is able to generate hypochlorous acid, hypobromous acid, and hypothiocyanous acid in the presence of H(2)O(2). Under physiological pH and concentrations of halides (100μM KBr, 100μM KSCN, and 100mM NaCl), VPO1 utilizes approximately 45% of H(2)O(2) for the generation of hypobromous acid, 35% for hypothiocyanous acid, and 18% for hypochlorous acid. The specific activity of VPO1 is ∼10- to 70-fold lower than that of MPO, depending on the specific substrate. These studies demonstrate that the enzymatic properties and substrate specificity of VPO1 are similar to MPO; however, significantly lower catalytic rate constants of VPO1 relative to MPO suggest the possibility of other physiologic roles for this novel heme-containing peroxidase.

  20. Palladium-catalyzed difluoroalkylation of aryl boronic acids: a new method for the synthesis of aryldifluoromethylated phosphonates and carboxylic acid derivatives.

    PubMed

    Feng, Zhang; Min, Qiao-Qiao; Xiao, Yu-Lan; Zhang, Bo; Zhang, Xingang

    2014-02-03

    The palladium-catalyzed difluoroalkylation of aryl boronic acids with bromodifluoromethylphosphonate, bromodifluoroacetate, and further derivatives has been developed. This method provides a facile and useful access to a series of functionalized difluoromethylated arenes (ArCF2 PO(OEt)2 , ArCF2 CO2 Et, and ArCF2 CONR(1) R(2) ) that have important applications in drug discovery and development. Preliminary mechanistic studies reveal that a single electron transfer (SET) pathway may be involved in the catalytic cycle.

  1. Lipase-catalyzed synthesis of azido-functionalized aliphatic polyesters towards acid-degradable amphiphilic graft copolymers.

    PubMed

    Wu, Wan-Xia; Wang, Na; Liu, Bei-Yu; Deng, Qing-Feng; Yu, Xiao-Qi

    2014-02-28

    A series of novel aliphatic polyesters with azido functional groups were synthesized via the direct lipase-catalyzed polycondensation of dialkyl diester, diol and 2-azido-1,3-propanediol (azido glycerol) using immobilized lipase B from Candida antarctica (CALB). The effects of polymerization conditions including reaction time, temperature, enzyme amount, substrates and monomer feed ratio on the molecular weights of the products were studied. The polyesters with pendant azido groups were characterized by (1)H NMR, (13)C NMR, 2D NMR, FTIR, GPC and DSC. Alkyne end-functionalized poly(ethylene glycol) containing a cleavable acetal group was then grafted onto the polyester backbone by copper-catalyzed azide-alkyne cycloaddition (CuAAC, click chemistry). Using fluorescence spectroscopy, dynamic light scattering (DLS) and transmission electron microscopy (TEM), these amphiphilic graft copolymers were found to readily self-assemble into nanosized micelles in aqueous solution with critical micelle concentrations between 0.70 and 1.97 mg L(-1), and micelle sizes from 20-70 nm. The degradation of these polymers under acidic conditions was investigated by GPC and (1)H NMR spectroscopy. Cell cytotoxicity tests indicated that the micelles had no apparent cytotoxicity to Bel-7402 cells, suggesting their potential as carriers for controlled drug delivery.

  2. Determination of DNA adducts by combining acid-catalyzed hydrolysis and chromatographic analysis of the carcinogen-modified nucleobases.

    PubMed

    Leung, Elvis M K; Deng, Kailin; Wong, Tin-Yan; Chan, Wan

    2016-01-01

    The commonly used method of analyzing carcinogen-induced DNA adducts involves the hydrolysis of carcinogen-modified DNA samples by using a mixture of enzymes, followed by (32)P-postlabeling or liquid chromatography (LC)-based analyses of carcinogen-modified mononucleotides/nucleosides. In the present study, we report the development and application of a new approach to DNA adduct analysis by combining the H(+)/heat-catalyzed release of carcinogen-modified nucleobases and the use of LC-based methods to analyze DNA adducts. Results showed that heating the carcinogen-modified DNA samples at 70 °C for an extended period of 4 to 6 h in the presence of 0.05% HCl can efficiently induce DNA depurination, releasing the intact carcinogen-modified nucleobases for LC analyses. After optimizing the hydrolysis conditions, DNA samples with C8- and N (2) -modified 2'-deoxyguanosine, as well as N (6) -modified 2'-deoxyadenosine, were synthesized by reacting DNA with 1-nitropyrene, acetaldehyde, and aristolochic acids, respectively. These samples were then hydrolyzed, and the released nucleobase adducts were analyzed using LC-based analytical methods. Analysis results demonstrated a dose-dependent release of target DNA adducts from carcinogen-modified DNA samples, indicating that the developed H(+)/heat-catalyzed hydrolysis method was quantitative. Comparative studies with enzymatic digestion method on carcinogen-modified DNA samples revealed that the two hydrolysis methods did not yield systematically different results.

  3. UGT74D1 Catalyzes the Glucosylation of 2-Oxindole-3-Acetic Acid in the Auxin Metabolic Pathway in Arabidopsis

    PubMed Central

    Tanaka, Keita; Hayashi, Ken-ichiro; Natsume, Masahiro; Kamiya, Yuji; Sakakibara, Hitoshi; Kawaide, Hiroshi; Kasahara, Hiroyuki

    2014-01-01

    IAA is a naturally occurring auxin that plays a crucial role in the regulation of plant growth and development. The endogenous concentration of IAA is spatiotemporally regulated by biosynthesis, transport and its inactivation in plants. Previous studies have shown that the metabolism of IAA to 2-oxindole-3-acetic acid (OxIAA) and OxIAA-glucoside (OxIAA-Glc) may play an important role in IAA homeostasis, but the genes involved in this metabolic pathway are still unknown. In this study, we show that UGT74D1 catalyzes the glucosylation of OxIAA in Arabidopsis. By screening yeasts transformed with Arabidopsis UDP-glycosyltransferase (UGT) genes, we found that OxIAA-Glc accumulates in the culture media of yeasts expressing UGT74D1 in the presence of OxIAA. Further, we showed that UGT74D1 expressed in Escherichia coli converts OxIAA to OxIAA-Glc. The endogenous concentration of OxIAA-Glc decreased by 85% while that of OxIAA increased 2.5-fold in ugt74d1-deficient mutants, indicating the major role of UGT74D1 in OxIAA metabolism. Moreover, the induction of UGT74D1 markedly increased the level of OxIAA-Glc and loss of root gravitropism. These results indicate that UGT74D1 catalyzes a committed step in the OxIAA-dependent IAA metabolic pathway in Arabidopsis. PMID:24285754

  4. Semicontinuous measurements of organic carbon and acidity during the Pittsburgh air quality study: implications for acid-catalyzed organic aerosol formation

    SciTech Connect

    S. Takahama; C.I. Davidson; S.N. Pandis

    2006-04-01

    Laboratory evidence suggests that inorganic acid seed particles may increase secondary organic aerosol yields secondary organic aerosol (SOA) through heterogeneous chemistry. Additional laboratory studies, however, report that organic acidity generated in the same photochemical process by which SOA is formed may be sufficient to catalyze these heterogeneous reactions. Understanding the interaction between inorganic acidity and SOA mass is important when evaluating emission controls to meet PM2.5 regulations. Semicontinuous measurements of organic carbon (OC), elemental carbon (EC), and inorganic species from the Pittsburgh Air Quality Study were examined to determine if coupling in the variations of inorganic acidity and OC could be detected. Significant enhancements of SOA production could not be detected due to inorganic acidity in Western Pennsylvania most of the time, but its signal might have been lost in the noise. If a causal relationship between inorganic acidity and OC is assumed, reductions in OC for Western Pennsylvania that might result from drastic reductions in inorganic acidity were estimated to be 2 {+-} 4% by a regression technique, and an upper bound for this geographic area was estimated to be 5 {+-} 8% based on calculations from laboratory measurements. 48 refs., 7 figs., 3 tabs.

  5. Influence of fatty acid on lipase-catalyzed synthesis of ascorbyl esters and their free radical scavenging capacity.

    PubMed

    Stojanović, Marija; Carević, Milica; Mihailović, Mladen; Veličković, Dušan; Dimitrijević, Aleksandra; Milosavić, Nenad; Bezbradica, Dejan

    2015-01-01

    Fatty acid (FA) ascorbyl esters are recently emerging food, cosmetic, and pharmaceutical additives, which can be prepared in an eco-friendly way by using lipases as catalysts. Because they are amphiphilic molecules, which possess high free radical scavenging capacity, they can be applied as liposoluble antioxidants as well as emulsifiers and biosurfactants. In this study, the influence of a wide range of acyl donors on ester yield in lipase-catalyzed synthesis and ester antioxidant activity was examined. Among saturated acyl donors, higher yields and antioxidant activities of esters were achieved when short-chain FAs were used. Oleic acid gave the highest yield overall and its ester exhibited a high antioxidant activity. Optimization of experimental factors showed that the highest conversion (60.5%) in acetone was achieved with 5 g L(-1) of lipase, 50 mM of vitamin C, 10-fold molar excess of oleic acid, and 0.7 mL L(-1) of initial water. Obtained results showed that even short- and medium-chain ascorbyl esters could be synthesized with high yields and retained (or even exceeded) free radical scavenging capacity of l-ascorbic acid, indicating prospects of broadening their application in emulsions and liposomes.

  6. Oxidative esterification via photocatalytic C-H activation

    EPA Science Inventory

    Direct oxidative esterification of alcohol via photocatalytic C-H activation has been developed using VO@g-C3N4 catalyst; an expeditious esterification of alcohols occurs under neutral conditions using visible light as the source of energy.

  7. Production of higher quality bio-oils by in-line esterification of pyrolysis vapor

    SciTech Connect

    Hilten, Roger Norris; Das, Keshav; Kastner, James R; Bibens, Brian P

    2014-12-02

    The disclosure encompasses in-line reactive condensation processes via vapor phase esterification of bio-oil to decease reactive species concentration and water content in the oily phase of a two-phase oil, thereby increasing storage stability and heating value. Esterification of the bio-oil vapor occurs via the vapor phase contact and subsequent reaction of organic acids with ethanol during condensation results in the production of water and esters. The pyrolysis oil product can have an increased ester content and an increased stability when compared to a condensed pyrolysis oil product not treated with an atomized alcohol.

  8. Cloning and characterization of a new laccase from Bacillus licheniformis catalyzing dimerization of phenolic acids.

    PubMed

    Koschorreck, Katja; Richter, Sven M; Ene, Augusta B; Roduner, Emil; Schmid, Rolf D; Urlacher, Vlada B

    2008-05-01

    A new laccase gene (cotA) was cloned from Bacillus licheniformis and expressed in Escherichia coli. The recombinant protein CotA was purified and showed spectroscopic properties, typical for blue multi-copper oxidases. The enzyme has a molecular weight of approximately 65 kDa and demonstrates activity towards canonical laccase substrates 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), syringaldazine (SGZ) and 2,6-dimethoxyphenol (2,6-DMP). Kinetic constants KM and kcat for ABTS were of 6.5+/-0.2 microM and 83 s(-1), for SGZ of 4.3+/-0.2 microM and 100 s(-1), and for 2,6-DMP of 56.7+/-1.0 microM and 28 s(-1). Highest oxidizing activity towards ABTS was obtained at 85 degrees C. However, after 1 h incubation of CotA at 70 degrees C and 80 degrees C, a residual activity of 43% and 8%, respectively, was measured. Furthermore, oxidation of several phenolic acids and one non-phenolic acid by CotA was investigated. CotA failed to oxidize coumaric acid, cinnamic acid, and vanillic acid, while syringic acid was oxidized to 2,6-dimethoxy-1,4-benzoquinone. Additionally, dimerization of sinapic acid, caffeic acid, and ferulic acid by CotA was observed, and highest activity of CotA was found towards sinapic acid.

  9. The Acid Hydrolysis Mechanism of Acetals Catalyzed by a Supramolecular Assembly in Basic Solution

    SciTech Connect

    Pluth, Michael D.; Bergman, Robert G.; Raymond, Kenneth N.

    2008-09-24

    A self-assembled supramolecular host catalyzes the hydrolysis of acetals in basic aqueous solution. The mechanism of hydrolysis is consistent with the Michaelis-Menten kinetic model. Further investigation of the rate limiting step of the reaction revealed a negative entropy of activation ({Delta}S{double_dagger} = -9 cal mol{sup -1}K{sup -1}) and an inverse solvent isotope effect (k(H{sub 2}O)/k(D{sub 2}O) = 0.62). These data suggest that the mechanism of hydrolysis that takes place inside the assembly proceeds through an A-2 mechanism, in contrast to the A-1 mechanism operating in the uncatalyzed reaction. Comparison of the rates of acetal hydrolysis in the assembly with the rate of the reaction of unencapsulated substrates reveals rate accelerations of up to 980 over the background reaction for the substrate diethoxymethane.

  10. Free energy surface for Brønsted acid-catalyzed glucose ring-opening in aqueous solution.

    PubMed

    Qian, Xianghong

    2013-10-03

    Car-Parrinello-based molecular dynamics coupled with metadynamics simulations were used to determine the mechanism and associated free energy surface for opening the ring structure of cyclic glucopyranose in acidic aqueous solutions. The ring-opening process is initiated by the protonation of the ring oxygen atom and the breakage of the C1-O5 bond. The barrier for this process is about 25 kcal/mol, in good agreement with experimental measurements. Moreover, the glucose cyclic conformation is found to be more stable than the open chain form. The barrier for proton-catalyzed ring-opening in aqueous solution appears to be largely solvent induced due to the high affinity of water molecules for protons.

  11. Chiral Brønsted Acid-Catalyzed Enantioselective α-Amidoalkylation Reactions: A Joint Experimental and Predictive Study.

    PubMed

    Aranzamendi, Eider; Arrasate, Sonia; Sotomayor, Nuria; González-Díaz, Humberto; Lete, Esther

    2016-12-01

    Enamides with a free NH group have been evaluated as nucleophiles in chiral Brønsted acid-catalyzed enantioselective α-amidoalkylation reactions of bicyclic hydroxylactams for the generation of quaternary stereocenters. A quantitative structure-reactivity relationship (QSRR) method has been developed to find a useful tool to rationalize the enantioselectivity in this and related processes and to orient the catalyst choice. This correlative perturbation theory (PT)-QSRR approach has been used to predict the effect of the structure of the substrate, nucleophile, and catalyst, as well as the experimental conditions, on the enantioselectivity. In this way, trends to improve the experimental results could be found without engaging in a long-term empirical investigation.

  12. An Esterification Kinetics Experiment that Relies on the Sense of Smell

    ERIC Educational Resources Information Center

    Bromfield-Lee, Deborah C.; Oliver-Hoyo, Maria T.

    2009-01-01

    This experiment involves an esterification synthesis to study reaction kinetics where students explore these topics utilizing the sense of smell rather than the traditional approach of using spectroscopic methods. Students study the effects of various factors including the concentration of the carboxylic acid and the amounts of the catalyst or…

  13. Comprehensive near infrared study of Jatropha oil esterification with ethanol for biodiesel production

    NASA Astrophysics Data System (ADS)

    Oliveira, Alianda Dantas de; Sá, Ananda Franco de; Pimentel, Maria Fernanda; Pacheco, José Geraldo A.; Pereira, Claudete Fernandes; Larrechi, Maria Soledad

    2017-01-01

    This work presents a comprehensive near infrared study for in-line monitoring of the esterification reaction of high acid oils, such as Jatropha curcas oil, using ethanol. Parallel reactions involved in the process were carried out to select a spectral region that characterizes the evolution of the esterification reaction. Using absorbance intensities at 5176 cm- 1, the conversion and kinetic behaviors of the esterification reaction were estimated. This method was applied to evaluate the influence of temperature and catalyst concentration on the estimates of initial reaction rate and ester conversion as responses to a 22 factorial experimental design. Employment of an alcohol/oil ratio of 16:1, catalyst concentration of 1.5% w/w, and temperatures at 65 °C or 75 °C, made it possible to reduce the initial acidity from 18% to 1.3% w/w, which is suitable for transesterification of high free fatty acid oils for biodiesel production. Using the proposed analytical method in the esterification reaction of raw materials with high free fatty acid content for biodiesel makes the monitoring process inexpensive, fast, simple, and practical.

  14. Comprehensive near infrared study of Jatropha oil esterification with ethanol for biodiesel production.

    PubMed

    Oliveira, Alianda Dantas de; Sá, Ananda Franco de; Pimentel, Maria Fernanda; Pacheco, José Geraldo A; Pereira, Claudete Fernandes; Larrechi, Maria Soledad

    2017-01-05

    This work presents a comprehensive near infrared study for in-line monitoring of the esterification reaction of high acid oils, such as Jatropha curcas oil, using ethanol. Parallel reactions involved in the process were carried out to select a spectral region that characterizes the evolution of the esterification reaction. Using absorbance intensities at 5176cm(-1), the conversion and kinetic behaviors of the esterification reaction were estimated. This method was applied to evaluate the influence of temperature and catalyst concentration on the estimates of initial reaction rate and ester conversion as responses to a 2(2) factorial experimental design. Employment of an alcohol/oil ratio of 16:1, catalyst concentration of 1.5% w/w, and temperatures at 65°C or 75°C, made it possible to reduce the initial acidity from 18% to 1.3% w/w, which is suitable for transesterification of high free fatty acid oils for biodiesel production. Using the proposed analytical method in the esterification reaction of raw materials with high free fatty acid content for biodiesel makes the monitoring process inexpensive, fast, simple, and practical.

  15. Microwave-Assisted Esterification: A Discovery-Based Microscale Laboratory Experiment

    ERIC Educational Resources Information Center

    Reilly, Maureen K.; King, Ryan P.; Wagner, Alexander J.; King, Susan M.

    2014-01-01

    An undergraduate organic chemistry laboratory experiment has been developed that features a discovery-based microscale Fischer esterification utilizing a microwave reactor. Students individually synthesize a unique ester from known sets of alcohols and carboxylic acids. Each student identifies the best reaction conditions given their particular…

  16. Brønsted-acid-catalyzed asymmetric multicomponent reactions for the facile synthesis of highly enantioenriched structurally diverse nitrogenous heterocycles.

    PubMed

    Yu, Jie; Shi, Feng; Gong, Liu-Zhu

    2011-11-15

    Optically pure nitrogenous compounds, and especially nitrogen-containing heterocycles, have drawn intense research attention because of their frequent isolation as natural products. These compounds have wide-ranging biological and pharmaceutical activities, offering potential as new drug candidates. Among the various synthetic approaches to nitrogenous heterocycles, the use of asymmetric multicomponent reactions (MCRs) catalyzed by chiral phosphoric acids has recently emerged as a particularly robust tool. This method combines the prominent merits of MCRs with organocatalysis, thus affording enantio-enriched nitrogenous heterocyclic compounds with excellent enantioselectivity, atom economy, bond-forming efficiency, structural diversity, and complexity. In this Account, we discuss a variety of asymmetric MCRs catalyzed by chiral phosphoric acids that lead to the production of structurally diverse nitrogenous heterocycles. In MCRs, three or more reagents are combined simultaneously to produce a single product containing structural contributions from all the components. These one-pot processes are especially useful in the construction of heterocyclic cores: they can provide a high degree of both complexity and diversity for a targeted set of scaffolds while minimizing the number of synthetic operations. Unfortunately, enantioselective MCRs have thus far been relatively underdeveloped. Particularly lacking are reactions that proceed through imine intermediates, which are formed from the condensation of carbonyls and amines. The concomitant generation of water in the condensation reaction can deactivate some Lewis acid catalysts, resulting in premature termination of the reaction. Thus, chiral catalysts typically must be compatible with water for MCRs to generate nitrogenous compounds. Recently, organocatalytic MCRs have proven valuable in this respect. Brønsted acids, an important class of organocatalysts, are highly compatible with water and thereby offer great

  17. Noble metal-catalyzed homogeneous and heterogeneous processes in treating simulated nuclear waste media with formic acid

    SciTech Connect

    King, R.B.; Bhattacharyya, N.K.; Smith, H.D.

    1995-09-01

    Simulants for the Hanford Waste Vitrification Plant feed containing the major non-radioactive components Al, Cd, Fe, Mn, Nd, Ni, Si, Zr, Na, CO{sub 3}{sup 2}-, NO{sub 3}-, and NO{sub 2}- were used to study reactions of formic acid at 90{degrees}C catalyzed by the noble metals Ru, Rh, and/or Pd found in significant quantities in uranium fission products. Such reactions were monitored using gas chromatography to analyze the CO{sub 2}, H{sub 2}, NO, and N{sub 2}O in the gas phase and a microammonia electrode to analyze the NH{sub 4}+/NH{sub 3} in the liquid phase as a function of time. The following reactions have been studied in these systems since they are undesirable side reactions in nuclear waste processing: (1) Decomposition of formic acid to CO{sub 2} + H{sub 2} is undesirable because of the potential fire and explosion hazard of H{sub 2}. Rhodium, which was introduced as soluble RhCl{sub 3}-3H{sub 2}O, was found to be the most active catalyst for H{sub 2} generation from formic acid above {approximately} 80{degrees}C in the presence of nitrite ion. The H{sub 2} production rate has an approximate pseudo first-order dependence on the Rh concentration, (2) Generation of NH{sub 3} from the formic acid reduction of nitrate and/or nitrite is undesirable because of a possible explosion hazard from NH{sub 4}NO{sub 3} accumulation in a waste processing plant off-gas system. The Rh-catalyzed reduction of nitrogen-oxygen compounds to ammonia by formic acid was found to exhibit the following features: (a) Nitrate rather than nitrite is the principal source of NH{sub 3}. (b) Ammonia production occurs at the expense of hydrogen production. (c) Supported rhodium metal catalysts are more active than rhodium in any other form, suggesting that ammonia production involves heterogeneous rather than homogeneous catalysis.

  18. Biocatalytic methanolysis activities of cross-linked protein-coated microcrystalline lipase toward esterification/transesterification of relevant palm products.

    PubMed

    Raita, Marisa; Laosiripojana, Navadol; Champreda, Verawat

    2015-03-01

    Biocatalysis by immobilized lipase is an efficient alternative process for conversion of crude vegetable oil with high free fatty acid content to biodiesel, which is the limit of the conventional alkaline-catalyzed reaction. In this study, influences of solid-state organic and inorganic buffer core matrices with different pKa on catalytic performance of cross-linked protein coated microcrystalline biocatalysts prepared from Thermomyces lanuginosus lipase (CL-PCMC-LIP) toward esterification of palmitic acid (PA), transesterification of refined palm oil (RPO), and co-ester/transesterification of crude palm oil (CPO) to fatty acid methyl ester (FAME) was studied. Glycine, CAPSO (3-(cyclohexylamino)-2-hydroxy-1-propanesulfonic acid), and TAPS ([(2-hydroxy-1,1-bis(hydroxymethyl)ethyl)amino]-1-propanesulfonic acid) were shown to be potent core matrices for these reactions. The optimal reaction contained 4:1 [methanol]/[fatty acid] molar equivalence ratio with 20% (w/w) CL-PCMC-LIP on glycine in the presence of tert-butanol as a co-solvent. Deactivation effect of glycerol on the biocatalyst reactive surface was shown by FTIR, which could be alleviated by increasing co-solvent content. The maximal FAME yields from PA, RPO, and CPO reached 97.6, 94.9, and 95.5%, respectively on a molar basis under the optimum conditions after incubation at 50°C for 6h. The biocatalyst retained >80% activity after recycling in five consecutive batches. The work demonstrates the potential of CL-PCMC-LIP on one-step conversion of inexpensive crude fatty acid-rich feedstock to biodiesel.

  19. Ruthenium-catalyzed oxidation of alkenes, alkynes, and alcohols to organic acids with aqueous hydrogen peroxide.

    PubMed

    Che, Chi-Ming; Yip, Wing-Ping; Yu, Wing-Yiu

    2006-09-18

    A protocol that adopts aqueous hydrogen peroxide as a terminal oxidant and [(Me3tacn)(CF3CO2)2Ru(III)(OH2)]CF3CO2 (1; Me3tacn = 1,4,7-trimethyl-1,4,7-triazacyclononane) as a catalyst for oxidation of alkenes, alkynes, and alcohols to organic acids in over 80% yield is presented. For the oxidation of cyclohexene to adipic acid, the loading of 1 can be lowered to 0.1 mol %. On the one-mole scale, the oxidation of cyclohexene, cyclooctene, and 1-octanol with 1 mol % of 1 produced adipic acid (124 g, 85% yield), suberic acid (158 g, 91% yield), and 1-octanoic acid (129 g, 90% yield), respectively. The oxidative C=C bond-cleavage reaction proceeded through the formation of cis- and trans-diol intermediates, which were further oxidized to carboxylic acids via C-C bond cleavage.

  20. Efficient ytterbium triflate catalyzed microwave-assisted synthesis of 3-acylacrylic acid building blocks.

    PubMed

    Tolstoluzhsky, Nikita V; Gorobets, Nikolay Yu; Kolos, Nadezhda N; Desenko, Sergey M

    2008-01-01

    The derivatives of 4-(hetero)aryl-4-oxobut-2-enoic acid are useful as building blocks in the synthesis of biologically active compounds. An efficient general protocol for the synthesis of these building blocks was developed. This method combines microwave assistance and ytterbium triflate catalyst and allows the fast preparation of the target acids starting from different (hetero)aromatic ketones and glyoxylic acid monohydrate giving pure products in 52-75% isolated yields.

  1. Lewis acid-catalyzed Friedel-Crafts alkylations of 3-hydroxy-2-oxindole: an efficient approach to the core structure of azonazine.

    PubMed

    Ghosh, Santanu; Kinthada, Lakshmana K; Bhunia, Subhajit; Bisai, Alakesh

    2012-10-18

    A Lewis acid catalyzed Friedel-Crafts reaction of electron rich aromatics with 3-alkyl-3-hydroxy-2-oxindole (5) has been developed. The methodology provides a straightforward access to the core of azonazine (2) sharing an all-carbon quaternary stereocenter at the tetracyclic ring junction.

  2. Direct, efficient, and inexpensive formation of alpha-hydroxyketones from olefins by hydrogen peroxide oxidation catalyzed by the 12-tungstophosphoric acid/cetylpyridinium chloride system.

    PubMed

    Zhang, Yanfei; Shen, Zongxuan; Tang, Jingting; Zhang, Yan; Kong, Lichun; Zhang, Yawen

    2006-04-21

    The direct ketohydroxylation of a variety of 1-aryl-1-alkenes with H2O2, catalyzed by the inexpensive 12-tungstophosphoric acid/cetylpyridinium chloride system under very mild conditions, was achieved. Various acyloins were obtained in good yields and high regioselectivies.

  3. N-Heterocyclic Carbene-Catalyzed [4 + 2] Cyclization of Saturated Carboxylic Acid with o-Quinone Methides through in Situ Activation: Enantioselective Synthesis of Dihydrocoumarins.

    PubMed

    Wang, Yuanfeng; Pan, Jian; Dong, Jingjiao; Yu, Chenxia; Li, Tuanjie; Wang, Xiang-Shan; Shen, Shide; Yao, Changsheng

    2017-02-03

    An N-heterocyclic carbene (NHC)-catalyzed formal [4 + 2] synthesis of dihydrocoumarins was realized from saturated carboxylic acids and o-quinone methides via an in situ activation strategy. This protocol results in excellent diastereoselectivity and enantioselectivity and good yields and uses readily available and inexpensive starting materials.

  4. Brønsted acid catalyzed asymmetric aldol reaction: a complementary approach to enamine catalysis.

    PubMed

    Pousse, Guillaume; Le Cavelier, Fabien; Humphreys, Luke; Rouden, Jacques; Blanchet, Jérôme

    2010-08-20

    A syn-enantioselective aldol reaction has been developed using Brønsted acid catalysis based on H(8)-BINOL-derived phosphoric acids. This method affords an efficient synthesis of various beta-hydroxy ketones, some of which could not be synthesized using enamine organocatalysis.

  5. Acceleration of Enantioselective Cycloadditions Catalyzed by Second-Generation Chiral Oxazaborolidinium Triflimidates by Biscoordinating Lewis Acids.

    PubMed

    Thirupathi, Barla; Breitler, Simon; Mahender Reddy, Karla; Corey, E J

    2016-08-31

    The activation of second-generation fluorinated oxazaborolidines by the strong acid triflimide (Tf2NH) in CH2Cl2 solution leads to highly active chiral Lewis acids that are very effective catalysts for (4 + 2) cycloaddition. We report herein that this catalytic activity can be further enhanced by the use of Tf2NH in combination with the biscoordinating Lewis acid TiCl4 or SnCl4 as a coactivator. The effective increase in acidity of an exceedingly strong protic acid is greater for biscoordinating TiCl4 and SnCl4 than for monocoordinating salts, even the strong Lewis acids AlBr3 and BBr3 in CH2Cl2 or CH2Cl2/toluene. The increase in the effective acidity of Tf2NH can be understood in terms of a stabilized cyclic anionic complex of Tf2N(-) and TiCl4, which implies a broader utility than that described here. The utility of Tf2NH-TiCl4 activation of fluorinated oxazaborolidines is documented by examples including the first enantioselective (4 + 2) cycloaddition to α,β-unsaturated acid chlorides.

  6. Bifunctional acid base catalyzed reactions in zeolites from the HSAB viewpoint

    NASA Astrophysics Data System (ADS)

    Hemelsoet, K.; Lesthaeghe, D.; Speybroeck, V. Van; Waroquier, M.

    2006-02-01

    The applicability of the hard and soft acids and bases principle is investigated for the interaction of 5T zeolite clusters with probe molecules such as chloromethane, methanol and olefins. The reactions are intermediately hard-hard and, therefore, mainly charge-controlled. This is confirmed by the success of the atomic charges and the electrostatic interaction energy at the acid site as correct descriptors of regio-selectivity and reactivity sequences. Both acid and basic reactive sites can be clearly indicated using frontier orbitals. Moreover, an excellent correlation is found between the activation hardnesses and the energy barriers at the absolute zero.

  7. A family of diiron monooxygenases catalyzing amino acid beta-hydroxylation in antibiotic biosynthesis.

    PubMed

    Makris, Thomas M; Chakrabarti, Mrinmoy; Münck, Eckard; Lipscomb, John D

    2010-08-31

    The biosynthesis of chloramphenicol requires a beta-hydroxylation tailoring reaction of the precursor L-p-aminophenylalanine (L-PAPA). Here, it is shown that this reaction is catalyzed by the enzyme CmlA from an operon containing the genes for biosynthesis of L-PAPA and the nonribosomal peptide synthetase CmlP. EPR, Mössbauer, and optical spectroscopies reveal that CmlA contains an oxo-bridged dinuclear iron cluster, a metal center not previously associated with nonribosomal peptide synthetase chemistry. Single-turnover kinetic studies indicate that CmlA is functional in the diferrous state and that its substrate is L-PAPA covalently bound to CmlP. Analytical studies show that the product is hydroxylated L-PAPA and that O(2) is the oxygen source, demonstrating a monooxygenase reaction. The gene sequence of CmlA shows that it utilizes a lactamase fold, suggesting that the diiron cluster is in a protein environment not previously known to effect monooxygenase reactions. Notably, CmlA homologs are widely distributed in natural product biosynthetic pathways, including a variety of pharmaceutically important beta-hydroxylated antibiotics and cytostatics.

  8. Acid-catalyzed steam pretreatment of lodgepole pine and subsequent enzymatic hydrolysis and fermentation to ethanol.

    PubMed

    Ewanick, Shannon M; Bura, Renata; Saddler, John N

    2007-11-01

    Utilization of ethanol produced from biomass has the potential to offset the use of gasoline and reduce CO(2) emissions. This could reduce the effects of global warming, one of which is the current outbreak of epidemic proportions of the mountain pine beetle (MPB) in British Columbia (BC), Canada. The result of this is increasing volumes of dead lodgepole pine with increasingly limited commercial uses. Bioconversion of lodgepole pine to ethanol using SO(2)-catalyzed steam explosion was investigated. The optimum pretreatment condition for this feedstock was determined to be 200 degrees C, 5 min, and 4% SO(2) (w/w). Simultaneous saccharification and fermentation (SSF) of this material provided an overall ethanol yield of 77% of the theoretical yield from raw material based on starting glucan, mannan, and galactan, which corresponds to 244 g ethanol/kg raw material within 30 h. Three conditions representing low (L), medium (M), and high (H) severity were also applied to healthy lodgepole pine. Although the M severity conditions of 200 degrees C, 5 min, and 4% SO(2) were sufficiently robust to pretreat healthy wood, the substrate produced from beetle-killed (BK) wood provided consistently higher ethanol yields after SSF than the other substrates tested. BK lodgepole pine appears to be an excellent candidate for efficient and productive bioconversion to ethanol.

  9. Preparation of biodiesel from rice bran fatty acids catalyzed by heterogeneous cesium-exchanged 12-tungstophosphoric acids.

    PubMed

    Srilatha, K; Sree, Rekha; Prabhavathi Devi, B L A; Sai Prasad, P S; Prasad, R B N; Lingaiah, N

    2012-07-01

    Biodiesel synthesis from rice bran fatty acids (RBFA) was carried out using cesium exchanged 12-tungstophosphoric acid (TPA) catalysts. The physico-chemical properties of the catalysts were derived from X-ray diffraction (XRD), Fourier transform infrared (FTIR), temperature programmed desorption (TPD) of NH(3) and scanning electron microscopy (SEM). The characterization techniques revealed that the Keggin structure of TPA remained intact as Cs replaced protons. The partial exchange of Cs for protons resulted in an increase in acidity and the catalysts with one Cs(+) (Cs(1)H(2)PW(12)O(40)) showed highest acidity. Under optimized conditions about 92% conversion of RBFA was obtained. The catalyst was reused for five times and retained of its original activity. Pseudo-first order model was applied to correlate the experimental kinetic data. Modified tungstophosphoric acids are efficient solid acid catalysts for the synthesis of biodiesel from the oils containing high FFA.

  10. Preparation of a sulfonated carbonaceous material from lignosulfonate and its usefulness as an esterification catalyst.

    PubMed

    Lee, Duckhee

    2013-07-10

    Sulfonated carbonaceous material useful as a solid acid catalyst was prepared from lignosulfonate, a waste of the paper-making industry sulfite pulping process, and characterized by 13C-NMR, FT-IR, TGA, SEM and elemental analysis, etc. The sulfonic acid group density and total density of all acid groups in the sulfonated carbonaceous material was determined by titration to be 1.24 mmol/g and 5.90 mmol/g, respectively. Its catalytic activity in the esterification of cyclohexanecarboxylic acid with anhydrous ethanol was shown to be comparable to that of the ionic exchange resin Amberlyst-15, when they were used in the same amount. In the meantime, the sulfonic acid group was found to be leached out by 26%-29% after it was exposed to hot water (95 °C) for 5 h. The catalytic usefulness of the prepared carbonaceous material was investigated by performing esterifications.

  11. An NHC-catalyzed in situ activation strategy to β-functionalize saturated carboxylic acid: an enantioselective formal [3+2] annulation for spirocyclic oxindolo-γ-butyrolactones.

    PubMed

    Xie, Yuanwei; Yu, Chenxia; Li, Tuanjie; Tu, Shujiang; Yao, Changsheng

    2015-03-27

    An in situ NHC-catalyzed activation strategy to β-functionalize saturated carboxylic acid was developed. This asymmetric formal [3+2] annulation could deliver spirocyclic oxindolo-γ-butyrolactones from saturated carboxylic acid and isatin in good yields with high to excellent enantioselectivities. The easy availability of the starting materials, direct installation of functional units at unreactive carbon atom and the convergent assembly make this protocol attractive in the field of organic synthesis.

  12. Role of keto-enol tautomerization in a chiral phosphoric acid catalyzed asymmetric thiocarboxylysis of meso-epoxide: a DFT study.

    PubMed

    Ajitha, Manjaly J; Huang, Kuo-Wei

    2015-12-07

    The mechanism of a chiral phosphoric acid catalyzed thiocarboxylysis of meso-epoxide was investigated by density functional theory (DFT) calculations (M06-2X). The nucleophilic ring opening of epoxide by thiobenzoic acid was found to proceed via a concerted termolecular transition state with a simultaneous dual proton transfer to yield the β-hydroxy thioester product. Electrostatic interactions together with the steric environment inside the chiral catalyst play an important role in determining the enantioselectivity of the reaction.

  13. Pd(0)-Catalyzed PMHS reductions of aromatic acid chlorides to aldehydes.

    PubMed

    Lee, Kyoungsoo; Maleczka, Robert E

    2006-04-27

    [reaction: see text] Contrary to previous reports, polymethylhydrosiloxane (PMHS) under Pd(0) catalysis can efficiently reduce aryl acid chlorides to their corresponding aldehydes without requiring an additional reductant, provided the reactions are run in the presence of fluoride.

  14. Envisioning an enzymatic Diels-Alder reaction by in situ acid-base catalyzed diene generation.

    PubMed

    Linder, Mats; Johansson, Adam Johannes; Manta, Bianca; Olsson, Philip; Brinck, Tore

    2012-06-07

    We present and evaluate a new and potentially efficient route for enzyme-mediated Diels-Alder reactions, utilizing general acid-base catalysis. The viability of employing the active site of ketosteroid isomerase is demonstrated.

  15. Facile ring-opening of oxiranes by H(2)O(2) catalyzed by phosphomolybdic acid.

    PubMed

    Li, Yun; Hao, Hong-Dong; Wu, Yikang

    2009-06-18

    At ambient temperature, in the presence of catalytic amounts of phosphomolybdic acid (PMA), ethereal hydrogen peroxide reacted readily with a range of epoxides, giving corresponding beta-hydroxyhydroperoxides in high yields.

  16. Lewis base activation of Lewis acids: development of a Lewis base catalyzed selenolactonization.

    PubMed

    Denmark, Scott E; Collins, William R

    2007-09-13

    The concept of Lewis base activation of Lewis acids has been applied to the selenolactonization reaction. Through the use of substoichiometric amounts of Lewis bases with "soft" donor atoms (S, Se, P) significant rate enhancements over the background reaction are seen. Preliminary mechanistic investigations have revealed the resting state of the catalyst as well as the significance of a weak Brønsted acid promoter.

  17. Chiral-at-Metal Rh(III) Complex-Catalyzed Decarboxylative Michael Addition of β-Keto Acids with α,β-Unsaturated 2-Acyl Imidazoles or Pyridine.

    PubMed

    Li, Shi-Wu; Gong, Jun; Kang, Qiang

    2017-03-17

    A newly prepared chiral-at-metal Rh(III) complex-catalyzed, highly efficient enantioselective decarboxylative Michael addition of β-keto acids with α,β-unsaturated 2-acyl imidazoles or pyridine has been developed, affording the corresponding adducts in 94-98% yield with up to 96% enantioselectivity. This protocol exhibits remarkable reactivity, as the complex with a Rh(III) loading as low as 0.05 mol % can catalyze the decarboxylative Michael addition on a gram scale without loss of enantioselectivity.

  18. Isolation of cellulose from rice straw and its conversion into cellulose acetate catalyzed by phosphotungstic acid.

    PubMed

    Fan, Guozhi; Wang, Min; Liao, Chongjing; Fang, Tao; Li, Jianfen; Zhou, Ronghui

    2013-04-15

    Cellulose was isolated from rice straw by pretreatment with dilute alkaline and acid solutions successively, and it was further transferred into cellulose acetate in the presence of acetic anhydride and phosphotungstic acid (H3PW12O40·6H2O). The removal of hemicellulose and lignin was affected by the concentration of KOH and the immersion time in acetic acid solution, and 83wt.% content of cellulose in the treated rice straw was obtained after pretreatment with 4% KOH and immersion in acetic acid for 5h. Phosphotungstic acid was found to be an effective catalyst for the acetylation of the cellulose derived from rice straw. The degree of substitution (DS) values revealed a significant effect for the solubility of cellulose acetate, and the acetone-soluble cellulose acetate with DS values around 2.2 can be obtained by changing the amount of phosphotungstic acid and the time of acetylation. Both the structure of cellulose separated from rice straw and cellulose acetate were confirmed by FTIR and XRD.

  19. Novel Dextranase Catalyzing Cycloisomaltooligosaccharide Formation and Identification of Catalytic Amino Acids and Their Functions Using Chemical Rescue Approach*

    PubMed Central

    Kim, Young-Min; Kiso, Yoshiaki; Muraki, Tomoe; Kang, Min-Sun; Nakai, Hiroyuki; Saburi, Wataru; Lang, Weeranuch; Kang, Hee-Kwon; Okuyama, Masayuki; Mori, Haruhide; Suzuki, Ryuichiro; Funane, Kazumi; Suzuki, Nobuhiro; Momma, Mitsuru; Fujimoto, Zui; Oguma, Tetsuya; Kobayashi, Mikihiko; Kim, Doman; Kimura, Atsuo

    2012-01-01

    A novel endodextranase from Paenibacillus sp. (Paenibacillus sp. dextranase; PsDex) was found to mainly produce isomaltotetraose and small amounts of cycloisomaltooligosaccharides (CIs) with a degree of polymerization of 7–14 from dextran. The 1,696-amino acid sequence belonging to the glycosyl hydrolase family 66 (GH-66) has a long insertion (632 residues; Thr451–Val1082), a portion of which shares identity (35% at Ala39–Ser1304 of PsDex) with Pro32–Ala755 of CI glucanotransferase (CITase), a GH-66 enzyme that catalyzes the formation of CIs from dextran. This homologous sequence (Val837–Met932 for PsDex and Tyr404–Tyr492 for CITase), similar to carbohydrate-binding module 35, was not found in other endodextranases (Dexs) devoid of CITase activity. These results support the classification of GH-66 enzymes into three types: (i) Dex showing only dextranolytic activity, (ii) Dex catalyzing hydrolysis with low cyclization activity, and (iii) CITase showing CI-forming activity with low dextranolytic activity. The fact that a C-terminal truncated enzyme (having Ala39–Ser1304) has 50% wild-type PsDex activity indicates that the C-terminal 392 residues are not involved in hydrolysis. GH-66 enzymes possess four conserved acidic residues (Asp189, Asp340, Glu412, and Asp1254 of PsDex) of catalytic candidates. Their amide mutants decreased activity (11,500 to 140,000 times), and D1254N had 36% activity. A chemical rescue approach was applied to D189A, D340G, and E412Q using α-isomaltotetraosyl fluoride with NaN3. D340G or E412Q formed a β- or α-isomaltotetraosyl azide, respectively, strongly indicating Asp340 and Glu412 as a nucleophile and acid/base catalyst, respectively. Interestingly, D189A synthesized small sized dextran from α-isomaltotetraosyl fluoride in the presence of NaN3. PMID:22461618

  20. ATP-binding cassette transporters and sterol O-acyltransferases interact at membrane microdomains to modulate sterol uptake and esterification.

    PubMed

    Gulati, Sonia; Balderes, Dina; Kim, Christine; Guo, Zhongmin A; Wilcox, Lisa; Area-Gomez, Estela; Snider, Jamie; Wolinski, Heimo; Stagljar, Igor; Granato, Juliana T; Ruggles, Kelly V; DeGiorgis, Joseph A; Kohlwein, Sepp D; Schon, Eric A; Sturley, Stephen L

    2015-11-01

    A key component of eukaryotic lipid homeostasis is the esterification of sterols with fatty acids by sterol O-acyltransferases (SOATs). The esterification reactions are allosterically activated by their sterol substrates, the majority of which accumulate at the plasma membrane. We demonstrate that in yeast, sterol transport from the plasma membrane to the site of esterification is associated with the physical interaction of the major SOAT, acyl-coenzyme A:cholesterol acyltransferase (ACAT)-related enzyme (Are)2p, with 2 plasma membrane ATP-binding cassette (ABC) transporters: Aus1p and Pdr11p. Are2p, Aus1p, and Pdr11p, unlike the minor acyltransferase, Are1p, colocalize to sterol and sphingolipid-enriched, detergent-resistant microdomains (DRMs). Deletion of either ABC transporter results in Are2p relocalization to detergent-soluble membrane domains and a significant decrease (53-36%) in esterification of exogenous sterol. Similarly, in murine tissues, the SOAT1/Acat1 enzyme and activity localize to DRMs. This subcellular localization is diminished upon deletion of murine ABC transporters, such as Abcg1, which itself is DRM associated. We propose that the close proximity of sterol esterification and transport proteins to each other combined with their residence in lipid-enriched membrane microdomains facilitates rapid, high-capacity sterol transport and esterification, obviating any requirement for soluble intermediary proteins.

  1. The Aerobic Oxidation of Bromide to Dibromine Catalyzed by Homogeneous Oxidation Catalysts and Initiated by Nitrate in Acetic Acid

    SciTech Connect

    Partenheimer, Walt; Fulton, John L.; Sorensen, Christina M.; Pham, Van Thai; Chen, Yongsheng

    2014-06-01

    A small amount of nitrate, ~0.002 molal, initiates the Co/Mn catalyzed aerobic oxidation of bromide compounds (HBr,NaBr,LiBr) to dibromine in acetic acid at room temperature. At temperatures 40oC or less , the reaction is autocatalytic. Co(II) and Mn(II) themselves and mixed with ionic bromide are known homogeneous oxidation catalysts. The reaction was discovered serendipitously when a Co/Br and Co/Mn/Br catalyst solution was prepared for the aerobic oxidation of methyaromatic compounds and the Co acetate contained a small amount of impurity i.e. nitrate. The reaction was characterized by IR, UV-VIS, MALDI and EXAFS spectroscopies and the coordination chemistry is described. The reaction is inhibited by water and its rate changed by pH. The change in these variables, as well as others, are identical to those observed during homogeneous, aerobic oxidation of akylaromatics. A mechanism is proposed. Accidental addition of a small amount of nitrate compound into a Co/Mn/Br/acetic acid mixture in a large, commercial feedtank is potentially dangerous.

  2. Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part I. Acid catalyzed hydrolysis.

    PubMed

    Adel, Abeer M; Abd El-Wahab, Zeinab H; Ibrahim, Atef A; Al-Shemy, Mona T

    2010-06-01

    Rice hulls (RH) and bean hulls (BH) were subjected to prehydrolysis treatments, to define the optimum conditions for producing a high percentage of hydrolyzed hemicellulose with a small or moderate degradation of the cellulosic portion. The hydrolysis experiments were performed using hydrochloric and sulfuric acids in concentrations ranging from (0.5 to 5)% (w/w) at 120 degrees C for 90 min and 10% consistency. The effects of different temperatures (80 to 120 degrees C) and time (30 to 120 min) on acid hydrolysis of lignocellulosic materials were recorded. It was found that, the optimum condition to hydrolyze the lignocellulosic materials (RH) and (BH) are 2% (w/w) of mineral acid at 120 degrees C for 90 min and 10% consistency. The cellulose crystallinity index in the different types of lignocellulosic materials with and without acid treatment, were increased from 0.32 to 0.46 in case of RH and from 0.43 to 0.61 in case of BH. Due to the lignin depolymerization during the pretreatment process, the relative absorbency of the methoxyl group and the aromatic rings bands were lowered for the pretreated than the untreated lignocellulosic materials. Also, the band at 1730 cm(-1) which is attributed to carbonyl groups of uronic acids was lowered due the hemicellulose hydrolysis.

  3. Acid-catalyzed liquefaction of bagasse in the presence of polyhydric alcohol.

    PubMed

    Zhang, Hairong; Luo, Jun; Li, Yingying; Guo, Haijun; Xiong, Lian; Chen, Xinde

    2013-08-01

    Bagasse was subjected to a liquefaction process with polyethylene glycol/glycerol using sulfuric acid as catalyst. The effects of various liquefaction conditions, such as reaction time, liquefaction temperature, catalyst content, and liquid ratio (liquefaction solvents/bagasse), on the liquefied residue (LR) content and hydroxyl and acid numbers of liquefied products were investigated. The preferred liquefaction condition of bagasse was determined through orthogonal experiments. The results showed that the catalyst content and reaction time have a greater influence than liquid ratio and liquefaction temperature on the percentage of LR. The hydroxyl and acid numbers of the liquefied products were influenced by many factors, including liquefaction temperature, reaction time, acid content, and liquid ratio. The hydroxyl number of liquefied products decreased as the liquefaction reaction progressed, but the acid number of liquefied products increased. Based on the obtained data, the kinetics for liquefaction was modeled using the first-order reaction rate law and the apparent activation energy for the liquefaction of bagasse was estimated to be 38.30 kJ mol(-1).

  4. Graphene oxide for acid catalyzed-reactions: Effect of drying process

    NASA Astrophysics Data System (ADS)

    Gong, H. P.; Hua, W. M.; Yue, Y. H.; Gao, Z.

    2017-03-01

    Graphene oxides (GOs) were prepared by Hummers method through various drying processes, and characterized by XRD, SEM, FTIR, XPS and N2 adsorption. Their acidities were measured using potentiometric titration and acid-base titration. The catalytic properties were investigated in the alkylation of anisole with benzyl alcohol and transesterification of triacetin with methanol. GOs are active catalysts for both reaction, whose activity is greatly affected by their drying processes. Vacuum drying GO exhibits the best performance in transesterification while freezing drying GO is most active for alkylation. The excellent catalytic behavior comes from abundant surface acid sites as well as proper surface functional groups, which can be obtained by selecting appropriate drying process.

  5. Phenylalanine ammonia lyase catalyzed synthesis of amino acids by an MIO-cofactor independent pathway.

    PubMed

    Lovelock, Sarah L; Lloyd, Richard C; Turner, Nicholas J

    2014-04-25

    Phenylalanine ammonia lyases (PALs) belong to a family of 4-methylideneimidazole-5-one (MIO) cofactor dependent enzymes which are responsible for the conversion of L-phenylalanine into trans-cinnamic acid in eukaryotic and prokaryotic organisms. Under conditions of high ammonia concentration, this deamination reaction is reversible and hence there is considerable interest in the development of PALs as biocatalysts for the enantioselective synthesis of non-natural amino acids. Herein the discovery of a previously unobserved competing MIO-independent reaction pathway, which proceeds in a non-stereoselective manner and results in the generation of both L- and D-phenylalanine derivatives, is described. The mechanism of the MIO-independent pathway is explored through isotopic-labeling studies and mutagenesis of key active-site residues. The results obtained are consistent with amino acid deamination occurring by a stepwise E1 cB elimination mechanism.

  6. Cu-Catalyzed Cyanation of Arylboronic Acids with Acetonitrile: A Dual Role of TEMPO.

    PubMed

    Zhu, Yamin; Li, Linyi; Shen, Zengming

    2015-09-14

    The cyanation of arylboronic acids by using acetonitrile as the "CN" source has been achieved under a Cu(cat.)/TEMPO system (TEMPO=2,2,6,6-tetramethylpiperidine N-oxide). The broad substrate scope includes a variety of electron-rich and electron-poor arylboronic acids, which react well to give the cyanated products in high to excellent yields. Mechanistic studies reveal that TEMPO-CH2 CN, generated in situ, is an active cyanating reagent, and shows high reactivity for the formation of the CN(-) moiety. Moreover, TEMPO acts as a cheap oxidant to enable the reaction to be catalytic in copper.

  7. Production and Characterization of Ethyl Ester from Crude Jatropha curcas Oil having High Free Fatty Acid Content

    NASA Astrophysics Data System (ADS)

    Kumar, Rajneesh; Dixit, Anoop; Singh, Shashi Kumar; Singh, Gursahib; Sachdeva, Monica

    2015-09-01

    The two step process was carried out to produce biodiesel from crude Jatropha curcas oil. The pretreatment process was carried out to reduce the free fatty acid content by (≤2 %) acid catalyzed esterification. The optimum reaction conditions for esterification were reported to be 5 % H2SO4, 20 % ethanol and 1 h reaction time at temperature of 65 °C. The pretreatment process reduced the free fatty acid of oil from 7 to 1.85 %. In second process, alkali catalysed transesterification of pretreated oil was carried and the effects of the varying concentrations of KOH and ethanol: oil ratios on percent ester recovery were investigated. The optimum reaction conditions for transesterification were reported to be 3 % KOH (w/v of oil) and 30 % (v/v) ethanol: oil ratio and reaction time 2 h at 65 °C. The maximum percent recovery of ethyl ester was reported to be 60.33 %.

  8. Characteristics of esterified rice bran oil converted by enzymatic esterification.

    PubMed

    Choi, Jae-Suk; Roh, Myong-Kyun; Kim, Tae-Uk; Cheon, Eun Jin; Moon, Woi-Sook; Kim, Mi-Ryung

    2015-11-01

    In the present study, esterified rice bran oil (ERBO) was characterized using enzymatic esterification to improve stability, prevent acidification, enhance health-promoting biological activity and generate ω-3 PUFA-rich rice bran oil (RBO). Esterification reactions using RBO and ethanol were performed at 50°C under 200 bar with 3% lipozyme TL-IM (Thermomuces lanuginosa immobilized on silica gel) or RM-IM (Rhizomucor miehei immobilized on ion exchange resin) for 3 hr under supercritical CO2. The molar ratios of ethanol to RBO were 3, 6, 9 and 12, respectively. Total lipid contents and acid values decreased (maximum 83.75%),but γ-oryzanol content increased (maximum 41.33%) in esterified RBO (ERBO) prepared using TL-IM or RM-IM. In addition, DPPH radical scavenging activity of ERBO prepared by RM-IM atan ethanol to RBO molar ratio of 3 was 0.02 µg µl(-1), which was 63-fold higher than that of α-tocopherol (IC50 =1.25 µg µl(-1)). The anti-inflammatory effect of RM-IM 1:3 hydrolysate of RBO was verified showing its suppressive effect towards iNOS and Cox-2mRNA expression in a dose-dependent manner. Therefore, ERBO is a promising source of functional food, cosmetics and pharmaceuticals.

  9. Acid-Functionalized Mesoporous Carbon: An Efficient Support for Ruthenium-Catalyzed γ-Valerolactone Production

    SciTech Connect

    Villa, Alberto; Schiavoni, Marco; Chan-Thaw, Carine E.; Fulvio, Pasquale F.; Mayes, Richard T.; Dai, Sheng; More, Karren L.; Veith, Gabriel M.; Prati, Laura

    2015-06-18

    The hydrogenation of levulinic acid has been studied using Ru supported on ordered mesoporous carbons (OMCs) prepared by soft-templating. P- and S-containing acid groups were introduced by postsynthetic functionalization before the addition of 1% Ru by incipient wetness impregnation. These functionalities and the reaction conditions mediate the activity and selectivity of the levulinic acid hydrogenation. The presence of Scontaining groups (Ru/OMC-S and Ru/OMC-P/S) deactivates the Ru catalysts strongly, whereas the presence of P-containing groups (Ru/OMC-P) enhances the activity compared to that of pristine Ru/OMC. Under mild conditions (70 8C and 7 bar H2) the catalyst shows high selectivity to g-valerolactone (GVL; >95%) and high stability on recycling. However, under more severe conditions (200 8C and pH2=40 bar) Ru/OMC-P is particularly able to promote GVL ring-opening and the consecutive hydrogenation to pentanoic acid.

  10. Enantioselective Aza Michael-Type Addition to Alkenyl Benzimidazoles Catalyzed by a Chiral Phosphoric Acid.

    PubMed

    Wang, Ya-Yi; Kanomata, Kyohei; Korenaga, Toshinobu; Terada, Masahiro

    2016-01-18

    Highly enantioselective Michael-type addition (MTA) reactions between N-protected alkenyl benzimidazoles and either pyrazoles or indazoles as nitrogen nucleophiles are accomplished for the first time using chiral phosphoric acid catalyst. Theoretical studies elucidated the reaction pathway and the origin of the stereochemical outcomes, where the catalyst substituent and the N-protecting group of benzimidazole contributed to the resulting high enantioselectivity.

  11. POLYSTYRENE SULFONIC ACID CATALYZED GREENER SYNTHESIS OF HYDRAZONES IN AQUEOUS MEDIUM USING MICROWAVES

    EPA Science Inventory

    An environmentally benign aqueous protocol for the synthesis of cyclic, bi-cyclic, and heterocyclic hydrazones using polystyrene sulfonic acid (PSSA) as a catalyst has been developed; the simple reaction proceeds efficiently in water in the absence of any organic solvent under mi...

  12. Rhodium‐Catalyzed Decarbonylative Borylation of Aromatic Thioesters for Facile Diversification of Aromatic Carboxylic Acids

    PubMed Central

    Ochiai, Hidenori; Uetake, Yuta

    2017-01-01

    Abstract Transformation of aromatic thioesters into arylboronic esters was achieved efficiently using a rhodium catalyst. The broad functional‐group tolerance and mild conditions of the method have allowed for the two‐step decarboxylative borylation of a wide range of aromatic carboxylic acids, including commercially available drugs. PMID:28124826

  13. Acid-Functionalized Mesoporous Carbon: An Efficient Support for Ruthenium-Catalyzed γ-Valerolactone Production

    DOE PAGES

    Villa, Alberto; Schiavoni, Marco; Chan-Thaw, Carine E.; ...

    2015-06-18

    The hydrogenation of levulinic acid has been studied using Ru supported on ordered mesoporous carbons (OMCs) prepared by soft-templating. P- and S-containing acid groups were introduced by postsynthetic functionalization before the addition of 1% Ru by incipient wetness impregnation. These functionalities and the reaction conditions mediate the activity and selectivity of the levulinic acid hydrogenation. The presence of Scontaining groups (Ru/OMC-S and Ru/OMC-P/S) deactivates the Ru catalysts strongly, whereas the presence of P-containing groups (Ru/OMC-P) enhances the activity compared to that of pristine Ru/OMC. Under mild conditions (70 8C and 7 bar H2) the catalyst shows high selectivity to g-valerolactonemore » (GVL; >95%) and high stability on recycling. However, under more severe conditions (200 8C and pH2=40 bar) Ru/OMC-P is particularly able to promote GVL ring-opening and the consecutive hydrogenation to pentanoic acid.« less

  14. Palladium-catalyzed allylation of acidic and less nucleophilic anilines using allylic alcohols directly.

    PubMed

    Hsu, Yi-Chun; Gan, Kim-Hong; Yang, Shyh-Chyun

    2005-10-01

    The direct activation of C-O bonds in allylic alcohols by palladium complexes has been accelerated by carrying out the reactions in the presence of titanium(IV) isoproxide and 4 A molecular sieves. The acidic and less nucleophilic anilines such as diphenylamine, phenothiazine, 4-cyanoaniline, and nitroanilines are efficiently allylated under palladium catalysis using allylic alcohols as allylating reagents.

  15. Lewis base additives improve the zeolite ferrierite-catalyzed synthesis of isostearic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Isostearic acid (IA) is of interest for industrial purposes especially in the area of biolubricants, such as cosmetics and slip additives for polyolefin and related copolymer films. This study was designed to develop a zeolitic catalysis process for IA production through isomerization of fatty aci...

  16. ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS. II. ACID AND GENERAL BASE CATALYZED HYDROLYSIS

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate acid and neutral hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition states of a ...

  17. Lipase-catalysed ester synthesis in solvent-free oil system: is it esterification or transesterification?

    PubMed

    Sun, Jingcan; Yu, Bin; Curran, Philip; Liu, Shao-Quan

    2013-12-01

    Ester synthesis was carried out in a solvent-free system of lipase, coconut oil and ethanol or fusel alcohols to ascertain the reaction mechanism. During ester formation, octanoic and decanoic acids increased initially and then decreased gradually, indicating that ester production was a two-step reaction consisting of hydrolysis and esterification, rather than alcoholysis. With ethanol as the alcohol substrate, added butyric acid inhibited ester synthesis. However, when fusel alcohols were used as the alcohol substrate, no significant inhibitory effect by butyric acid was observed. Added octanoic acid did not show any adverse effect on the synthesis of corresponding esters. The results suggest that polarity of the reactants determines lipase activity. This study provides the first evidence on the mechanism of immobilised lipase-catalysed ester synthesis in a solvent-free system involving both hydrolysis and esterification.

  18. Dehydrogenation of Formic Acid Catalyzed by a Ruthenium Complex with an N,N'-Diimine Ligand.

    PubMed

    Guan, Chao; Zhang, Dan-Dan; Pan, Yupeng; Iguchi, Masayuki; Ajitha, Manjaly J; Hu, Jinsong; Li, Huaifeng; Yao, Changguang; Huang, Mei-Hui; Min, Shixiong; Zheng, Junrong; Himeda, Yuichiro; Kawanami, Hajime; Huang, Kuo-Wei

    2017-01-03

    We report a ruthenium complex containing an N,N'-diimine ligand for the selective decomposition of formic acid to H2 and CO2 in water in the absence of any organic additives. A turnover frequency of 12 000 h(-1) and a turnover number of 350 000 at 90 °C were achieved in the HCOOH/HCOONa aqueous solution. Efficient production of high-pressure H2 and CO2 (24.0 MPa (3480 psi)) was achieved through the decomposition of formic acid with no formation of CO. Mechanistic studies by NMR and DFT calculations indicate that there may be two competitive pathways for the key hydride transfer rate-determining step in the catalytic process.

  19. Chemoselective Boron-Catalyzed Nucleophilic Activation of Carboxylic Acids for Mannich-Type Reactions.

    PubMed

    Morita, Yuya; Yamamoto, Tomohiro; Nagai, Hideoki; Shimizu, Yohei; Kanai, Motomu

    2015-06-10

    The carboxyl group (COOH) is an omnipresent functional group in organic molecules, and its direct catalytic activation represents an attractive synthetic method. Herein, we describe the first example of a direct catalytic nucleophilic activation of carboxylic acids with BH3·SMe2, after which the acids are able to act as carbon nucleophiles, i.e. enolates, in Mannich-type reactions. This reaction proceeds with a mild organic base (DBU) and exhibits high levels of functional group tolerance. The boron catalyst is highly chemoselective toward the COOH group, even in the presence of other carbonyl moieties, such as amides, esters, or ketones. Furthermore, this catalytic method can be extended to highly enantioselective Mannich-type reactions by using a (R)-3,3'-I2-BINOL-substituted boron catalyst.

  20. Gold(i)-catalyzed addition of carboxylic acids to internal alkynes in aqueous medium.

    PubMed

    González-Liste, Pedro J; García-Garrido, Sergio E; Cadierno, Victorio

    2017-02-21

    We report herein the efficient hydro-oxycarbonylation of symmetrical and unsymmetrical internal alkynes with carboxylic acids in water at 60 °C, employing the catalytic system [AuCl(PPh3)]/AgOAc (5 mol%). This simple and eco-friendly protocol allows for the synthesis of a wide variety of trisubstituted enol esters (37 examples) in high yields and with complete Z-stereoselectivity. The use of microwave irradiation as an alternative energy source has also been evaluated.

  1. Palladium-catalyzed decarboxylative coupling of isatoic anhydrides with arylboronic acids.

    PubMed

    Lu, Wei; Chen, Jiuxi; Liu, Miaochang; Ding, Jinchang; Gao, Wenxia; Wu, Huayue

    2011-11-18

    The decarboxylative coupling of isatoic anhydrides with arylboronic acids was realized for the first time in the presence of Pd(2)(dba)(3) and DPEphos, achieving aryl o-aminobenzoates with yields ranging from moderate to good. The efficiency of this procedure was demonstrated by good compatibility with fluoro, chloro, bromo, nitro, cyano, trifluoromethyl, formacyl, acetyl, thienyl, and naphthyl groups. Preliminary mechanistic experiments using deuterium labeling showed that the oxygen atom was derived from dioxygen.

  2. Hydrolysis of Selected Tropical Plant Wastes Catalyzed by a Magnetic Carbonaceous Acid with Microwave

    PubMed Central

    Su, Tong-Chao; Fang, Zhen; Zhang, Fan; Luo, Jia; Li, Xing-Kang

    2015-01-01

    In this study, magnetic carbonaceous acids were synthesized by pyrolysis of the homogeneous mixtures of glucose and magnetic Fe3O4 nanoparticles, and subsequent sulfonation. The synthesis conditions were optimized to obtain a catalyst with both high acid density (0.75 mmol g−1) and strong magnetism [magnetic saturation, Ms = 19.5 Am2 kg−1]. The screened catalyst (C-SO3H/Fe3O4) was used to hydrolyze ball-milled cellulose in a microwave reactor with total reducing sugar (TRS) yield of 25.3% under the best conditions at 190 °C for 3.5 h. It was cycled for at least seven times with high catalyst recovery rate (92.8%), acid density (0.63 mmol g−1) and magnetism (Ms = 12.9 Am2 kg−1), as well as high TRS yield (20.1%) from the hydrolysis of ball-milled cellulose. The catalyst was further successfully tested for the hydrolysis of tropical biomass with high TRS and glucose yields of 79.8% and 58.3% for bagasse, 47.2% and 35.6% for Jatropha hulls, as well as 54.4% and 35.8% for Plukenetia hulls. PMID:26648414

  3. Hydrolysis of Selected Tropical Plant Wastes Catalyzed by a Magnetic Carbonaceous Acid with Microwave

    NASA Astrophysics Data System (ADS)

    Su, Tong-Chao; Fang, Zhen; Zhang, Fan; Luo, Jia; Li, Xing-Kang

    2015-12-01

    In this study, magnetic carbonaceous acids were synthesized by pyrolysis of the homogeneous mixtures of glucose and magnetic Fe3O4 nanoparticles, and subsequent sulfonation. The synthesis conditions were optimized to obtain a catalyst with both high acid density (0.75 mmol g-1) and strong magnetism [magnetic saturation, Ms = 19.5 Am2 kg-1]. The screened catalyst (C-SO3H/Fe3O4) was used to hydrolyze ball-milled cellulose in a microwave reactor with total reducing sugar (TRS) yield of 25.3% under the best conditions at 190 °C for 3.5 h. It was cycled for at least seven times with high catalyst recovery rate (92.8%), acid density (0.63 mmol g-1) and magnetism (Ms = 12.9 Am2 kg-1), as well as high TRS yield (20.1%) from the hydrolysis of ball-milled cellulose. The catalyst was further successfully tested for the hydrolysis of tropical biomass with high TRS and glucose yields of 79.8% and 58.3% for bagasse, 47.2% and 35.6% for Jatropha hulls, as well as 54.4% and 35.8% for Plukenetia hulls.

  4. Hydrolysis of tannic acid catalyzed by immobilized-stabilized derivatives of Tannase from Lactobacillus plantarum.

    PubMed

    Curiel, Jose Antonio; Betancor, Lorena; de las Rivas, Blanca; Muñoz, Rosario; Guisan, Jose M; Fernández-Lorente, Gloria

    2010-05-26

    A recombinant tannase from Lactobacillus plantarum , overexpressed in Escherichia coli , was purified in a single step by metal chelate affinity chromatography on poorly activated nickel supports. It was possible to obtain 0.9 g of a pure enzyme by using only 20 mL of chromatographic support. The pure enzyme was immobilized and stabilized by multipoint covalent immobilization on highly activated glyoxyl agarose. Derivatives obtained by multipoint and multisubunit immobilization were 500- and 1000-fold more stable than both the soluble enzyme and the one-point-immobilized enzyme in experiments of thermal and cosolvent inactivation, respectively. In addition, up to 70 mg of pure enzyme was immobilized on 1 g of wet support. The hydrolysis of tannic acid was optimized by using the new immobilized tannase derivative. The optimal reaction conditions were 30% diglyme at pH 5.0 and 4 degrees C. Under these conditions, it was possible to obtain 47.5 mM gallic acid from 5 mM tannic acid as substrate. The product was pure as proved by HPLC. On the other hand, the immobilized biocatalyst preserved >95% of its initial activity after 1 month of incubation under the optimal reaction conditions.

  5. Topological analysis of the electronic charge density in the ethene protonation reaction catalyzed by acidic zeolite.

    PubMed

    Zalazar, M Fernanda; Peruchena, Nélida M

    2007-08-16

    In the present work, the distribution of the electronic charge density in the ethene protonation reaction by a zeolite acid site is studied within the framework of the density functional theory and the atoms in molecules (AIM) theory. The key electronic effects such as topological distribution of the charge density involved in the reaction are presented and discussed. The results are obtained at B3LYP/6-31G(**) level theory. Attention is focused on topological parameters such as electron density, its Laplacian, kinetic energy density, potential energy density, and electronic energy density at the bond critical points (BCP) in all bonds involved in the interaction zone, in the reactants, pi-complex, transition state, and alkoxy product. In addition, the topological atomic properties are determined on the selected atoms in the course of the reaction (average electron population, N(Omega), atomic net charge, q(Omega), atomic energy, E(Omega), atomic volume, v(Omega), and first moment of the atomic charge distribution, M(Omega)) and their changes are analyzed exhaustively. The topological study clearly shows that the ethene interaction with the acid site of the zeolite cluster, T5-OH, in the ethene adsorbed, is dominated by a strong O-H...pi interaction with some degree of covalence. AIM analysis based on DFT calculation for the transition state (TS) shows that the hydrogen atom from the acid site in the zeolitic fragment is connected to the carbon atom by a covalent bond with some contribution of electrostatic interaction and to the oxygen atom by closed shell interaction with some contribution of covalent character. The C-O bond formed in the alkoxy product can be defined as a weaker shared interaction. Our results show that in the transition state, the dominant interactions are partially electrostatic and partially covalent in nature, in which the covalent contribution increases as the concentration and accumulation of the charge density along the bond path between

  6. Hierarchical porous photoanode based on acid boric catalyzed sol for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Maleki, Khatereh; Abdizadeh, Hossein; Golobostanfard, Mohammad Reza; Adelfar, Razieh

    2017-02-01

    The hierarchical porous photoanode of the dye sensitized solar cell (DSSC) is synthesized through non-aqueous sol-gel method based on H3BO3 as an acid catalyst and the efficiencies of the fabricated DSSC based on these photoanodes are compared. The sol parameters of 0.17 M, water mole ratio of 4.5, acid mole ratio of 0.45, and solvent type of ethanol are introduced as optimum parameters for photoanode formation without any detectable cracks. The optimized hierarchical photoanode mainly contains anatase phase with slight shift toward higher angles, confirming the doping of boron into titania structure. Moreover, the porous structure involves two ranges of average pore sizes of 20 and 635 nm. The diffuse reflectance spectroscopy (DRS) shows the proper scattering and blueshift in band gap. The paste parameters of solid:liquid, TiO2:ethyl cellulose, and terpineol:ethanol equal to 11:89, 3.5:7.5, and 25:64, respectively, are assigned as optimized parameters for this novel paste. The photovoltaic properties of short circuit current density, open circuit voltage, fill factor, and efficiency of 5.89 mA/cm2, 703 mV, 0.7, and 2.91% are obtained for the optimized sample, respectively. The relatively higher short circuit current of the main sample compared to other samples is mainly due to higher dye adsorption in this sample corresponding to its higher surface area and presumably higher charge transfer confirmed by low RS and Rct in electrochemical impedance spectroscopy data. Boric acid as a catalyst in titania sol not only forms hierarchical porous structure, but also dopes the titania lattice, which results in appreciated performance in this device.

  7. Copper-catalyzed asymmetric conjugate reduction as a route to novel β-azaheterocyclic acid derivatives

    PubMed Central

    Rainka, Matthew P.; Aye, Yimon; Buchwald, Stephen L.

    2004-01-01

    A chiral copper-hydride catalyst for the asymmetric conjugate reduction of α,β-unsaturated carbonyl compounds has been used for the reduction of substrates containing β-nitrogen substituents. A new set of reaction conditions has allowed for a variety of β-azaheterocyclic acid derivatives to be synthesized in excellent yields and with high degrees of enantioselectivity. In addition, the effect that the nature of the nitrogen substituent has on the rate of the conjugate reduction reaction has been explored. PMID:15067136

  8. Iridium-Catalyzed ortho-Arylation of Benzoic Acids with Arenediazonium Salts.

    PubMed

    Huang, Liangbin; Hackenberger, Dagmar; Gooßen, Lukas J

    2015-10-19

    In the presence of catalytic [{IrCp*Cl2 }2 ] and Ag2 CO3 , Li2 CO3 as the base, and acetone as the solvent, benzoic acids react with arenediazonium salts to give the corresponding diaryl-2-carboxylates under mild conditions. This C-H arylation process is generally applicable to diversely substituted substrates, ranging from extremely electron-rich to electron-poor derivatives. The carboxylate directing group is widely available and can be removed tracelessly or employed for further derivatization. Orthogonality to halide-based cross-couplings is achieved by the use of diazonium salts, which can be coupled even in the presence of iodo substituents.

  9. Ruthenium(II)-catalyzed oxidative C-H alkenylations of sulfonic acids, sulfonyl chlorides and sulfonamides.

    PubMed

    Ma, Wenbo; Mei, Ruhuai; Tenti, Giammarco; Ackermann, Lutz

    2014-11-10

    Twofold C-H functionalization of aromatic sulfonic acids was achieved with an in situ generated ruthenium(II) catalyst. The optimized cross-dehydrogenative alkenylation protocol proved applicable to differently substituted arenes and a variety of alkenes, including vinyl arenes, sulfones, nitriles and ketones. The robustness of the ruthenium(II) catalyst was demonstrated by the chemoselective oxidative olefination of sulfonamides as well as sulfonyl chlorides. Mechanistic studies provided support for a reversible, acetate-assisted C-H ruthenation, along with a subsequent olefin insertion.

  10. The acid-catalyzed hydrolysis of an α-pinene-derived organic nitrate: kinetics, products, reaction mechanisms, and atmospheric impact

    NASA Astrophysics Data System (ADS)

    Rindelaub, Joel D.; Borca, Carlos H.; Hostetler, Matthew A.; Slade, Jonathan H.; Lipton, Mark A.; Slipchenko, Lyudmila V.; Shepson, Paul B.

    2016-12-01

    data, product identification confirms that a unimolecular specific acid-catalyzed mechanism is responsible for organic nitrate hydrolysis under acidic conditions. The free energies and enthalpies of the isobutyl nitrate hydrolysis intermediates and products were calculated using a hybrid density functional (ωB97X-V) to support the proposed mechanisms. These findings provide valuable information regarding the organic nitrate hydrolysis mechanism and its contribution to the fate of atmospheric NOx, aerosol phase processing, and BSOA composition.

  11. Self-catalyzed syntheses, structural characterization, DPPH radical scavenging-, cytotoxicity-, and DFT studies of phenoxyaliphatic acids of 1,8-dioxo-octahydroxanthene derivatives

    NASA Astrophysics Data System (ADS)

    Suresh Kumar, G. S.; Antony Muthu Prabhu, A.; Seethalashmi, P. G.; Bhuvanesh, N.; Kumaresan, S.

    2014-02-01

    One-pot, in-water syntheses of phenoxyaliphatic acids of 1,8-dioxo-octahydroxanthene derived from dimedone and formylphenoxyaliphatic acids are reported. Geometries of compounds 2b, 2c, and 5a have been examined crystallographically. The synthesized compounds showed better DPPH radical scavenging activity and cytotoxicity against A431 cancer cell line. The molecular properties of all synthesized xanthenes have been investigated using single crystal XRD and DFT method. Self-catalyzed Bronsted-Lowry acid catalytic behavior was also investigated by both experimental and theoretical methods.

  12. N-heterocyclic carbene-assisted, bis(phosphine)nickel-catalyzed cross-couplings of diarylborinic acids with aryl chlorides, tosylates, and sulfamates.

    PubMed

    Ke, Haihua; Chen, Xiaofeng; Zou, Gang

    2014-08-01

    Efficient bis(phosphine)nickel-catalyzed cross-couplings of diarylborinic acids with aryl chlorides, tosylates, and sulfamates have been effected with an assistance of N-heterocyclic carbene (NHC) generated in situ from N,N'-dialkylimidazoliums, e.g., N-butyl-N'-methylimidazolium bromide ([Bmim]Br), in toluene using K3PO4·3H2O as base. In contrast to bis(NHC)nickel-catalyzed conventional Suzuki coupling of arylboronic acids, mono(NHC)bis(phosphine)nickel species generated in situ from Ni(PPh3)2Cl2/[Bmim]Br displayed high catalytic activities in the cross-couplings of diarylborinic acids. The structural influences from diarylborinic acids were found to be rather small, while electronic factors from aryl chlorides, tosylates, and sulfamates affected the couplings remarkably. The couplings of electronically activated aryl chlorides, tosylates, and sulfamates could be efficiently effected with 1.5 mol % NiCl2(PPh3)2/[Bmim]Br as catalyst precursor to give the biaryl products in excellent yields, while 3-5 mol % loadings had to be used for the couplings of non- and deactivated ones. A small ortho-substitutent on the aromatic ring of aryl chlorides, tosylates, and sulfamates was tolerable. Applicability of the nickel-catalyzed cross-couplings in practical synthesis of fine chemicals has been demonstrated in process development for a third-generation topical retinoid, Adapalene.

  13. Acid-catalyzed oxidative addition of a C-H bond to a square planar d⁸ iridium complex.

    PubMed

    Hackenberg, Jason D; Kundu, Sabuj; Emge, Thomas J; Krogh-Jespersen, Karsten; Goldman, Alan S

    2014-06-25

    While the addition of C-H bonds to three-coordinate Ir(I) fragments is a central theme in the field of C-H bond activation, addition to square planar four-coordinate complexes is far less precedented. The dearth of such reactions may be attributed, at least in part, to kinetic factors elucidated in seminal work by Hoffmann. C-H additions to square planar carbonyl complexes in particular are unprecedented, in contrast to the extensive chemistry of oxidative addition of other substrates (e.g., H2, HX) to Vaska's Complex and related species. We report that Bronsted acids will catalyze the addition of the alkynyl C-H bond of phenylacetylene to the pincer complex (PCP)Ir(CO). The reaction occurs to give exclusively the trans-C-H addition product. Our proposed mechanism, based on kinetics and DFT calculations, involves initial protonation of (PCP)Ir(CO) to generate a highly active five-coordinate cationic intermediate, which forms a phenylacetylene adduct that is then deprotonated to give product.

  14. Synthesis of antiviral tetrahydrocarbazole derivatives by photochemical and acid-catalyzed C-H functionalization via intermediate peroxides (CHIPS).

    PubMed

    Gulzar, Naeem; Klussmann, Martin

    2014-06-20

    The direct functionalization of C-H bonds is an important and long standing goal in organic chemistry. Such transformations can be very powerful in order to streamline synthesis by saving steps, time and material compared to conventional methods that require the introduction and removal of activating or directing groups. Therefore, the functionalization of C-H bonds is also attractive for green chemistry. Under oxidative conditions, two C-H bonds or one C-H and one heteroatom-H bond can be transformed to C-C and C-heteroatom bonds, respectively. Often these oxidative coupling reactions require synthetic oxidants, expensive catalysts or high temperatures. Here, we describe a two-step procedure to functionalize indole derivatives, more specifically tetrahydrocarbazoles, by C-H amination using only elemental oxygen as oxidant. The reaction uses the principle of C-H functionalization via Intermediate PeroxideS (CHIPS). In the first step, a hydroperoxide is generated oxidatively using visible light, a photosensitizer and elemental oxygen. In the second step, the N-nucleophile, an aniline, is introduced by Brønsted-acid catalyzed activation of the hydroperoxide leaving group. The products of the first and second step often precipitate and can be conveniently filtered off. The synthesis of a biologically active compound is shown.

  15. Effects of cytoplasm and reactant polarities on acid-catalyzed lipid transesterification in wet microalgal cells subjected to microwave irradiation.

    PubMed

    Huang, Rui; Cheng, Jun; Qiu, Yi; Li, Tao; Zhou, Junhu; Cen, Kefa

    2016-01-01

    The polarities of the cytoplasm and reactants were measured through dielectric spectroscopy, contact angle test, NMR, and FTIR to investigate the mechanisms underlying acid-catalyzed lipid transesterification in wet microalgal cells subjected to microwave irradiation. Organics with apolar functional groups in the cytoplasm decreased the contact angle of methanol against triglyceride by 13.92°, which subsequently increased transesterification efficiency by 2.4 times. The microalgal biomass, given its higher hydrophilicity index of 1.96 than lipids, was more accessible to hydrophilic alcohols, which subsequently promoted transesterification. Water in the cytoplasm promoted the dielectric constant of methanol and increased the contact angle of methanol against triglyceride by 20.51°, which subsequently decreased transesterification efficiency by 72.6%. The inhibitory effect of water on transesterification weakened with the prolonged carbon lengths of the alcohols because of decreased polarity. Microwave decreased the electric constants of alcohols and reduced the polarity difference between alcohols and lipids, thereby improving transesterification efficiency.

  16. Enantioselective acylation of β-phenylalanine acid and its derivatives catalyzed by penicillin G acylase from Alcaligenes faecalis.

    PubMed

    Li, Dengchao; Ji, Lilian; Wang, Xinfeng; Wei, Dongzhi

    2013-01-01

    This study developed a simple, efficient method for producing racemic β-phenylalanine acid (BPA) and its derivatives via the enantioselective acylation catalyzed by the penicillin G acylase from Alcaligenes faecalis (Af-PGA). When the reaction was run at 25°C and pH 10 in an aqueous medium containing phenylacetamide and BPA in a molar ratio of 2:1, 8 U/mL enzyme and 0.1 M BPA, the maximum BPA conversion efficiency at 40 min only reached 36.1%, which, however, increased to 42.9% as the pH value and the molar ratio of phenylacetamide to BPA were elevated to 11 and 3:1, respectively. Under the relatively optimum reaction conditions, the maximum conversion efficiencies of BPA derivatives all reached about 50% in a relatively short reaction time (45-90 min). The enantiomeric excess value of product (ee(p)) and enantiomeric excess value of substrate (ee(s)) were all above 98% and 95%, respectively. These results suggest that the method established in this study is practical, effective, and environmentally benign and may be applied to industrial production of enantiomerically pure BPA and its derivatives.

  17. Recent Developments in the Chiral Brønsted Acid-catalyzed Allylboration Reaction with Polyfunctionalized Substrates.

    PubMed

    Barrio, Pablo; Rodríguez, Elsa; Fustero, Santos

    2016-08-01

    Asymmetric allylboration has played a central role in organic synthesis ever since the pioneering work by Hoffman and Brown, having found applications in the total synthesis of many natural products. A new dawn for this 40 year-old reaction occurred with the beginning of the new century when the first catalytic asymmetric methods came into play. In less than one decade, several methodologies, able to achieve the desired homoallylic alcohols with ee ranges in the high 90s, were developed. Among them, in the present account, we will disclose our contribution to the development of the chiral binolphosphoric-derived Brønsted acid-catalyzed allylboration of aldehydes originally reported by Antilla in 2010. Our contribution to this field lies in its application to polyfunctionalized systems, both on the aldehyde and the allylboronate in question, which enables the rapid construction of molecular diversity and complexity. Parts of the work described herein have been carried out in collaboration with the groups of Profs. Akiyama and Houk.

  18. Optimization and kinetic analysis on the sulfuric acid - Catalyzed depolymerization of wheat straw.

    PubMed

    Wu, Qian-Qian; Ma, Yu-Long; Chang, Xuan; Sun, Yong-Gang

    2015-09-20

    The objectives of this work were to optimize the experimental condition and to study the kinetic behavior of wheat straw depolymerization with sulfuric acid (2 wt%, 3 wt%, and 4 wt%) at different temperatures (120°C, 130°C, and 140°C). The two-fraction kinetic model was obtained for the prediction of the generations of product and by-product during depolymerization. The kinetic parameters of the two-fraction model were analyzed using an Arrhenius-type equation. Applying the kinetic two-fraction model, the optimum condition for wheat straw depolymerization was 3 wt% H2SO4 at 130°C for 75 min, which yielded a high concentration of fermentable sugars (xylose 8.934 g/L, glucose 1.363 g/L, and arabinose 1.203 g/L) and low concentrations of microbial inhibitors (furfural 0.526 g/L and acetic acid 1.192 g/L). These results suggest that the model obtained in this study can satisfactorily describe the formation of degradation products and the depolymerization mechanism of wheat straw.

  19. A Heteromeric Membrane-Bound Prenyltransferase Complex from Hop Catalyzes Three Sequential Aromatic Prenylations in the Bitter Acid Pathway1[OPEN

    PubMed Central

    Li, Haoxun; Ban, Zhaonan; Qin, Hao; Ma, Liya; King, Andrew J.

    2015-01-01

    Bitter acids (α and β types) account for more than 30% of the fresh weight of hop (Humulus lupulus) glandular trichomes and are well known for their contribution to the bitter taste of beer. These multiprenylated chemicals also show diverse biological activities, some of which have potential benefits to human health. The bitter acid biosynthetic pathway has been investigated extensively, and the genes for the early steps of bitter acid synthesis have been cloned and functionally characterized. However, little is known about the enzyme(s) that catalyze three sequential prenylation steps in the β-bitter acid pathway. Here, we employed a yeast (Saccharomyces cerevisiae) system for the functional identification of aromatic prenyltransferase (PT) genes. Two PT genes (HlPT1L and HlPT2) obtained from a hop trichome-specific complementary DNA library were functionally characterized using this yeast system. Coexpression of codon-optimized PT1L and PT2 in yeast, together with upstream genes, led to the production of bitter acids, but no bitter acids were detected when either of the PT genes was expressed by itself. Stepwise mutation of the aspartate-rich motifs in PT1L and PT2 further revealed the prenylation sequence of these two enzymes in β-bitter acid biosynthesis: PT1L catalyzed only the first prenylation step, and PT2 catalyzed the two subsequent prenylation steps. A metabolon formed through interactions between PT1L and PT2 was demonstrated using a yeast two-hybrid system, reciprocal coimmunoprecipitation, and in vitro biochemical assays. These results provide direct evidence of the involvement of a functional metabolon of membrane-bound prenyltransferases in bitter acid biosynthesis in hop. PMID:25564559

  20. Single-stage separation and esterification of cation salt carboxylates using electrodeionization

    DOEpatents

    Lin, YuPo J.; Henry, Michael; Hestekin, Jamie; Snyder, Seth W.; St. Martin, Edward J.

    2006-11-28

    A method of and apparatus for continuously making an organic ester from a lower alcohol and an organic acid is disclosed. An organic acid or salt is introduced or produced in an electrode ionization (EDI) stack with a plurality of reaction chambers each formed from a porous solid ion exchange resin wafer interleaved between anion exchange membranes or an anion exchange membrane and a cation exchange membrane or an anion exchange membrane and a bipolar exchange membranes. At least some reaction chambers are esterification chambers and/or bioreactor chambers and/or chambers containing an organic acid or salt. A lower alcohol in the esterification chamber reacts with an anion to form an organic ester and water with at least some of the water splitting with the ions leaving the chamber to drive the reaction.

  1. Participation of the photosensitizer alpha-terthienyl in the peroxidase-catalyzed oxidation of indole-3-acetic acid.

    PubMed

    Brennan, T M; Lee, E; Battaglia, P R

    2000-04-01

    The plant photosensitizer alpha-terthienyl (alpha T) is toxic toward a variety of organisms, and normally requires exposure to ultraviolet-A radiation for activation and singlet molecular oxygen formation. However, some toxicity has also been reported to occur in the dark. One hypothesis that has been proposed to account for this light-independent toxicity is that the sensitizer becomes activated by energy transfer from the excited-state products of enzymatic reactions. We have investigated this hypothesis using the horseradish peroxidase (HRP)-catalyzed oxidation of indole-3-acetic acid (IAA), which generates indole-3-aldehyde in an excited triplet state. Light is emitted during the IAA/HRP reaction at acidic pH, is increased by inclusion of alpha T and is not observed with heat-denatured HRP. The rates of both the oxidation of IAA and the subsidence of light emission are more rapid in the IAA/alpha T/HRP system than with IAA and HRP alone, indicating that the presence of alpha T accelerates the reaction. Bleaching occurs at the wavelength of maximal alpha T absorbance and is promoted by the inclusion of IAA. Readdition of both IAA and alpha T to a spent reaction mixture is required to restore light emission after it has subsided, further suggesting that both are consumed in the reaction. We were unable to detect measurable quantities of singlet molecular oxygen formation in this system. These results do not support the energy transfer hypothesis, but instead are more compatible with a model proposed by Krylov and Chebotareva [Krylov, S. N. and A. B. Chebotareva (1993) FEBS Lett. 324, 6-8] for the co-oxidation of IAA and xanthene dyes.

  2. Monomers of cutin biopolymer: sorption and esterification on montmorillonite surfaces

    NASA Astrophysics Data System (ADS)

    Olshansky, Yaniv; Polubesova, Tamara; Chefetz, Benny

    2013-04-01

    One of the important precursors for soil organic matter is plant cuticle, a thin layer of predominantly lipids that cover all primary aerial surfaces of vascular plants. In most plant species cutin biopolymer is the major component of the cuticle (30-85% weight). Therefore cutin is the third most abundant plant biopolymer (after lignin and cellulose). Cutin is an insoluble, high molecular weight bio-polyester, which is constructed of inter-esterified cross linked hydroxy-fatty acids and hydroxyepoxy-fatty acids. The most common building blocks of the cutin are derivatives of palmitic acid, among them 9(10),16 dihydroxy palmitic acid (diHPA) is the main component. These fatty acids and their esters are commonly found in major organo-mineral soil fraction-humin. Hence, the complexes of cutin monomers with minerals may serve as model of humin. Both cutin and humin act as adsorption efficient domains for organic contaminants. However, only scarce information is available about the interactions of cutin with soil mineral surfaces, in particular with common soil mineral montmorillonite. The main hypothesize of the study is that adsorbed cutin monomers will be reconstituted on montmorillonite surface due to esterification and oligomerization, and that interactions of cutin monomers with montmorillonite will be affected by the type of exchangeable cation. Cutin monomers were obtained from the fruits of tomato (Lycopersicon esculentum). Adsorption of monomers was measured for crude Wyoming montmorillonites and montmorillonites saturated with Fe3+ and Ca2+. To understand the mechanism of monomer-clay interactions and to evaluate esterification on the clay surface, XRD and FTIR analyses of the montmorillonite-monomers complexes were performed. Our results demonstrated that the interactions of cutin monomers with montmorillonite are affected by the type of exchangeable cation. Isotherms of adsorption of cutin monomers on montmorillonites were fitted by a dual mode model of

  3. Ascorbic acid and 4-hexylresorcinol effects on pear PPO and PPO catalyzed browning reaction.

    PubMed

    Arias, E; González, J; Oria, R; Lopez-Buesa, P

    2007-10-01

    The effects of ascorbic acid (AA) and 4-hexylresorcinol (4-HR) on pear polyphenoloxidase (PPO) activity and stability have been investigated in vitro. AA does not interact directly with PPO but prevents browning by reducing oxidized substrates. The 4-HR exerts a dual role on PPO. If no substrates are present, it interacts preferably with the deoxy form of PPO inactivating it. If substrates and 4-HR are both present they compete for the catalytic site. The 4-HR behaves then as a canonical enzyme inhibitor, binding to the met form of PPO. Simultaneous addition of 4-HR and AA has synergistic inhibition or inactivatory effects depending on the presence or the absence of PPO substrates.

  4. Lewis Acidity of Bis(perfluorocatecholato)silane: Aldehyde Hydrosilylation Catalyzed by a Neutral Silicon Compound

    SciTech Connect

    Liberman-Martin, Allegra L.; Bergman, Robert G.; Tilley, T. Don

    2015-04-16

    Bis(perfluorocatecholato)silane Si(cat(F)2 was prepared, and stoichiometric binding to Lewis bases was demonstrated with fluoride, triethylphosphine oxide, and N,N'-diisopropylbenzamide. The potent Lewis acidity of Si(cat(F)2 was suggested from catalytic hydrosilylation and silylcyanation reactions with aldehydes. Mechanistic studies of hydrosilylation using an optically active silane substrate, R-(+)-methyl-(1-naphthyl)phenylsilane, proceeded with predominant stereochemical retention at silicon, consistent with a carbonyl activation pathway. The enantiospecificity was dependent on solvent and salt effects, with increasing solvent polarity or addition of NBu4BAr(F)4 leading to a diminished enantiomeric ratio. The medium effects are consistent with an ionic mechanism, wherein hydride transfer occurs prior to silicon-oxygen bond formation.

  5. Lewis Acidity of Bis(perfluorocatecholato)silane: Aldehyde Hydrosilylation Catalyzed by a Neutral Silicon Compound

    DOE PAGES

    Liberman-Martin, Allegra L.; Bergman, Robert G.; Tilley, T. Don

    2015-04-16

    Bis(perfluorocatecholato)silane Si(cat(F)2 was prepared, and stoichiometric binding to Lewis bases was demonstrated with fluoride, triethylphosphine oxide, and N,N'-diisopropylbenzamide. The potent Lewis acidity of Si(cat(F)2 was suggested from catalytic hydrosilylation and silylcyanation reactions with aldehydes. Mechanistic studies of hydrosilylation using an optically active silane substrate, R-(+)-methyl-(1-naphthyl)phenylsilane, proceeded with predominant stereochemical retention at silicon, consistent with a carbonyl activation pathway. The enantiospecificity was dependent on solvent and salt effects, with increasing solvent polarity or addition of NBu4BAr(F)4 leading to a diminished enantiomeric ratio. The medium effects are consistent with an ionic mechanism, wherein hydride transfer occurs prior to silicon-oxygen bond formation.

  6. Unique Reactivity Patterns Catalyzed by Internal Lewis Acid Assisted Hydrogen Bond Donors

    NASA Astrophysics Data System (ADS)

    Auvil, Tyler Jay

    The advancement of hydrogen bond donor (HBD) organocatalysis has been inhibited by a number of challenges. Conventional HBDs suffer from high catalyst loadings and operate in only limited types of reactions, typically the activation of 1,2- and 1,4-acceptors for nucleophilic attack. One strategy to address the shortcomings of HBD catalysis is to design innovative catalysts with improved reactivity. To this end, boronate ureas have been developed as a new family of enhanced HBD catalysts that enable useful new reactivity patterns. Boronate ureas are easily-accessible, small organic molecules that benefit from improved catalytic abilities plausibly due to internal coordination of the urea carbonyl to a strategically placed Lewis acid. Optimization of the boronate urea scaffold has revealed their enhanced catalytic activity, enabling new directions in HBD catalysis. The discovery of boronate ureas has allowed for the unveiling of new HBD activation modes, providing unique reactivity patterns that are inaccessible with conventional HBD catalysts. Among these reactivity patterns is the activation of strained nitrocyclopropane carboxylates for nucleophilic ring-opening reactions, which affords a swift route to access gamma-amino-alpha-nitroester building blocks. The ring-opening method was highlighted by its utilization in the total synthesis of a CB-1 receptor inverse agonist, which was recently patented by Eli Lilly. Additionally, boronate ureas can elicit carbene-like reactivity from alpha-diazocarbonyl compounds, allowing for organocatalytic heteroatom-hydrogen insertions reactions, the first of their kind. The boronate urea activation of alpha-nitrodiazoesters has permitted the development of an unsymmetric double alpha-arylation process, affording a synthetically challenging motif in a single flask. The alpha-arylation reaction proceeds through a conceptually novel organocatalytic transient N--H insertion process, employing anilines as carbene activators. The use

  7. Palladium-Catalyzed Synthesis of (Hetero)Aryl Alkyl Sulfones from (Hetero)Aryl Boronic Acids, Unactivated Alkyl Halides, and Potassium Metabisulfite.

    PubMed

    Shavnya, Andre; Hesp, Kevin D; Mascitti, Vincent; Smith, Aaron C

    2015-11-09

    A palladium-catalyzed one-step synthesis of (hetero)aryl alkyl sulfones from (hetero)arylboronic acids, potassium metabisulfite, and unactivated or activated alkylhalides is described. This transformation is of broad scope, occurs under mild conditions, and employs readily available reactants. A stoichiometric experiment has led to the isolation of a catalytically active dimeric palladium sulfinate complex, which was characterized by X-ray diffraction analysis.

  8. Brønsted Acid Catalyzed Addition of Enamides to ortho-Quinone Methide Imines-An Efficient and Highly Enantioselective Synthesis of Chiral Tetrahydroacridines.

    PubMed

    Kretzschmar, Martin; Hodík, Tomáš; Schneider, Christoph

    2016-08-08

    The direct and highly enantioselective synthesis of tetrahydroacridines was achieved through the phosphoric acid catalyzed addition of enamides to in situ generated ortho-quinone methide imines and subsequent elimination. This novel one-step process constitutes a very efficient, elegant, and selective synthetic approach to valuable N-heterocycles with a 1,4-dihydroquinoline motif. By subsequent highly diastereoselective hydrogenation and N-deprotection the reaction products were easily converted into free hexahydroacridines with a total of three new stereogenic centers.

  9. Scope and limitations of aliphatic Friedel-Crafts alkylations. Lewis acid catalyzed addition reactions of alkyl chlorides to carbon-carbon double bonds

    SciTech Connect

    Mayr, H.; Striepe, W.

    1983-04-22

    Lewis acid catalyzed addition reactions of alkyl halides with unsaturated hydrocarbons have been studied. 1:1 addition products are formed if the addends dissociate faster than the corresponding products; otherwise, polymerization takes place. For reaction conditions under which these compounds exist mainly undissociated, solvolysis constants of model compounds can be used to predict the outcome of any such addition reactions if systems with considerable steric hindrance are excluded.

  10. Chiral phosphoric acid catalyzed highly enantioselective Friedel-Crafts alkylation reaction of C3-substituted indoles to β,γ-unsaturated α-ketimino esters.

    PubMed

    Bi, Bo; Lou, Qin-Xin; Ding, Yu-Yang; Chen, Sheng-Wei; Zhang, Sha-Sha; Hu, Wen-Hui; Zhao, Jun-Ling

    2015-02-06

    A highly enantioselective C2 Friedel-Crafts alkylation reaction of 3-substituted indoles to β,γ-unsaturated α-ketimino esters has been developed. This reaction was efficiently catalyzed by a chiral phosphoric acid catalyst. The corresponding C2-substituted indole derivatives, bearing an α-ketimino ester motif, were obtained in moderate to high yields (up to 93%) and with high enantioselectivities (up to >99% ee).

  11. Regio-, Diastereo-, and Enantioselective Nitroso-Diels-Alder Reaction of 1,3-Diene-1-carbamates Catalyzed by Chiral Phosphoric Acids.

    PubMed

    Pous, Jonathan; Courant, Thibaut; Bernadat, Guillaume; Iorga, Bogdan I; Blanchard, Florent; Masson, Géraldine

    2015-09-23

    Chiral phosphoric acid-catalyzed asymmetric nitroso-Diels-Alder reaction of nitrosoarenes with carbamate-dienes afforded cis-3,6-disubstituted dihydro-1,2-oxazines in high yields with excellent regio-, diastereo-, and enantioselectivities. Interestingly, we observed that the catalyst is able not only to control the enantioselectivity but also to reverse the regioselectivity of the noncatalyzed nitroso-Diels-Alder reaction. The regiochemistry reversal and asynchronous concerted mechanism were confirmed by DFT calculations.

  12. Lipase-catalyzed enantioselective synthesis of (R,R)-lactide from alkyl lactate to produce PDLA (poly D-lactic acid) and stereocomplex PLA (poly lactic acid).

    PubMed

    Jeon, Byoung Wook; Lee, Jumin; Kim, Hyun Sook; Cho, Dae Haeng; Lee, Hyuk; Chang, Rakwoo; Kim, Yong Hwan

    2013-10-20

    R-lactide, a pivotal monomer for the production of poly (D-lactic acid) (PDLA) or stereocomplex poly (lactic acid) (PLA) was synthesized from alkyl (R)-lactate through a lipase-catalyzed reaction without racemization. From among several types of lipase, only lipase B from Candida antarctica (Novozym 435; CAL-B) was effective in the reaction that synthesized (R,R)-lactide. Enantiopure (R,R)-lactide, which consisted of over 99% enantiomeric excess, was synthesized from methyl (R)-lactate through CAL-B catalysis. Removal of the methanol by-product was critical to obtain a high level of lactide conversion. The (R,R)-lactide yield was 56% in a reaction containing 100 mg of Novozym 435, 10 mM methyl (R)-lactate and 1500 mg of molecular sieve 5A in methyl tert-butyl ether (MTBE). The important monomer (R,R)-lactide that is required for the production of the widely recognized bio-plastic PDLA and the PLA stereocomplex can be obtained using this novel synthetic method.

  13. Progressive deconstruction of Arundo donax Linn. to fermentable sugars by acid catalyzed ionic liquid pretreatment.

    PubMed

    You, Ting-Ting; Zhang, Li-Ming; Xu, Feng

    2016-01-01

    Acid enhanced ionic liquid (IL) 1-n-butyl-3-methylimidazolium chloride ([C4 mim]Cl) pretreatment has shown great potential for boosting the yield of sugars from biomass cost-effectively and environmental-friendly. Pretreatment with shorter processing time will promote the commercial viability. In this work, pretreatment of reduced Amberlyst catalysis time of 34 min was demonstrated to be the most effective among time-varying pretreatments, evidenced by partial removal of hemicellulose and cellulose crystal transformation of Arundo donax Linn. A higher fermentable sugar concentration of 10.42 g/L (2% substrate) was obtained after 72 h of saccharification than the others. Total processing time to reach 92% glucose yield was cut down to approximately 26 h. Progressive deconstruction of crop cell wall was occurred with increased catalysis time by gradual releasing of H3O(+) of Amberlyst. However, vast lignin re-deposited polymers on fibers could hinder further enzymatic hydrolysis. These discoveries provide new insights into a more economic pretreatment for bioethanol production.

  14. Preparation and structural characterization of poly-mannose synthesized by phosphoric acid catalyzation under microwave irradiation.

    PubMed

    Wang, Haisong; Cheng, Xiangrong; Shi, Yonghui; Le, Guowei

    2015-05-05

    Poly-mannose with molecular weight of 2.457 kDa was synthesized using d-mannose as substrate and phosphoric acid as catalyst under the condition of microwave irradiation for the first time. The optimum reaction conditions were microwave output power of 900 W, temperature 115°C, proton concentration 2.5 mol/L, and microwave irradiation time 5 min. The actual maximum yield was 91.46%. After purified by Sepherdex G-25 column chromatography, the structural features of poly-mannose were investigated by high-performance anion-exchange chromatography (HPAEC), high-performance gel-permeation chromatography (HPGPC), infrared (IR) spectroscopy, methylation analysis and NMR spectroscopy analysis ((1)H, (13)C, COSY, TOCSY, HMQC, and HMBC). HPAEC analysis showed that the composition of synthetic polysaccharides was d-mannose, its purity was demonstrated by HPGPC as a single symmetrical sharp peak, and additionally IR spectra demonstrated the polymerization of d-mannose. Methylation analysis and NMR spectroscopy revealed that the backbone of poly-mannose consisting of (1→3)-linked β-d-Manp, (1→3)-linked α-d-Manp, and (1→6)-linked α-d-Manp residues, and the main chain were branched at the O-2, O-3, O-4, O-6 position.

  15. Acid-Catalyzed Algal Biomass Pretreatment for Integrated Lipid and Carbohydrate-Based Biofuels Production

    SciTech Connect

    Laurens, L. M. L.; Nagle, N.; Davis, R.; Sweeney, N.; Van Wychen, S.; Lowell, A.; Pienkos, P. T.

    2014-11-12

    One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We demonstrate the effectiveness of a novel, integrated technology based on moderate temperatures and low pH to convert the carbohydrates in wet algal biomass to soluble sugars for fermentation, while making lipids more accessible for downstream extraction and leaving a protein-enriched fraction behind. We studied the effect of harvest timing on the conversion yields, using two algal strains; Chlorella and Scenedesmus, generating biomass with distinctive compositional ratios of protein, carbohydrate, and lipids. We found that the late harvest Scenedesmus biomass had the maximum theoretical biofuel potential at 143 gasoline gallon equivalent (GGE) combined fuel yield per dry ton biomass, followed by late harvest Chlorella at 128 GGE per ton. Our experimental data show a clear difference between the two strains, as Scenedesmus was more successfully converted in this process with a demonstrated 97 GGE per ton. Our measurements indicated a release of >90% of the available glucose in the hydrolysate liquors and an extraction and recovery of up to 97% of the fatty acids from wet biomass. Techno-economic analysis for the combined product yields indicates that this process exhibits the potential to improve per-gallon fuel costs by up to 33% compared to a lipids-only process for one strain, Scenedesmus, grown to the mid-point harvest condition.

  16. Activated carbon catalyzed persulfate oxidation of Azo dye acid orange 7 at ambient temperature.

    PubMed

    Yang, Shiying; Yang, Xin; Shao, Xueting; Niu, Rui; Wang, Leilei

    2011-02-15

    Persulfate (PS) oxidative degradation of azo dye acid orange 7 (AO7) in an aqueous solution was studied in the presence of suspended granular activated carbon (GAC) at ambient temperature (e.g., 25°C). It was observed that there existed a remarkable synergistic effect in the GAC/PS combined system. Higher PS concentration and GAC dosage resulted in higher AO7 degrading rates. Near-neutral was the optimal initial pH. Adsorption had an adverse effect on AO7 degradation. AO7 had not only a good decolorization, but a good mineralization. The decomposition of PS followed a first-order kinetics behavior both in the presence and in the absence of AO7. Radical mechanism was studied and three radical scavengers (methanol (MA), tert-butanol (TBA), phenol) were used to determine the kind of major active species taking part in the degradation of AO7 and the location of degradation reaction. It was assumed that the degradation of AO7 did not occur in the liquid phase, but in the porous bulk and boundary layer on the external surface of GAC. SO(4)(-•) or HO•, generated on or near the surface of GAC, played a major role in the AO7 degradation. Finally, the recovery performance of GAC was studied through the GAC reuse experiments.

  17. Acid-Catalyzed Algal Biomass Pretreatment for Integrated Lipid and Carbohydrate-Based Biofuels Production

    DOE PAGES

    Laurens, L. M. L.; Nagle, N.; Davis, R.; ...

    2014-11-12

    One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We demonstrate the effectiveness of a novel, integrated technology based on moderate temperatures and low pH to convert the carbohydrates in wet algal biomass to soluble sugars for fermentation, while making lipids more accessible for downstream extraction and leaving a protein-enriched fraction behind. We studied the effect of harvest timing on the conversion yields, using two algal strains; Chlorella and Scenedesmus, generating biomass with distinctive compositionalmore » ratios of protein, carbohydrate, and lipids. We found that the late harvest Scenedesmus biomass had the maximum theoretical biofuel potential at 143 gasoline gallon equivalent (GGE) combined fuel yield per dry ton biomass, followed by late harvest Chlorella at 128 GGE per ton. Our experimental data show a clear difference between the two strains, as Scenedesmus was more successfully converted in this process with a demonstrated 97 GGE per ton. Our measurements indicated a release of >90% of the available glucose in the hydrolysate liquors and an extraction and recovery of up to 97% of the fatty acids from wet biomass. Techno-economic analysis for the combined product yields indicates that this process exhibits the potential to improve per-gallon fuel costs by up to 33% compared to a lipids-only process for one strain, Scenedesmus, grown to the mid-point harvest condition.« less

  18. ATP-binding cassette transporters and sterol O-acyltransferases interact at membrane microdomains to modulate sterol uptake and esterification

    PubMed Central

    Gulati, Sonia; Balderes, Dina; Kim, Christine; Guo, Zhongmin A.; Wilcox, Lisa; Area-Gomez, Estela; Snider, Jamie; Wolinski, Heimo; Stagljar, Igor; Granato, Juliana T.; Ruggles, Kelly V.; DeGiorgis, Joseph A.; Kohlwein, Sepp D.; Schon, Eric A.; Sturley, Stephen L.

    2015-01-01

    A key component of eukaryotic lipid homeostasis is the esterification of sterols with fatty acids by sterol O-acyltransferases (SOATs). The esterification reactions are allosterically activated by their sterol substrates, the majority of which accumulate at the plasma membrane. We demonstrate that in yeast, sterol transport from the plasma membrane to the site of esterification is associated with the physical interaction of the major SOAT, acyl-coenzyme A:cholesterol acyltransferase (ACAT)-related enzyme (Are)2p, with 2 plasma membrane ATP-binding cassette (ABC) transporters: Aus1p and Pdr11p. Are2p, Aus1p, and Pdr11p, unlike the minor acyltransferase, Are1p, colocalize to sterol and sphingolipid-enriched, detergent-resistant microdomains (DRMs). Deletion of either ABC transporter results in Are2p relocalization to detergent-soluble membrane domains and a significant decrease (53–36%) in esterification of exogenous sterol. Similarly, in murine tissues, the SOAT1/Acat1 enzyme and activity localize to DRMs. This subcellular localization is diminished upon deletion of murine ABC transporters, such as Abcg1, which itself is DRM associated. We propose that the close proximity of sterol esterification and transport proteins to each other combined with their residence in lipid-enriched membrane microdomains facilitates rapid, high-capacity sterol transport and esterification, obviating any requirement for soluble intermediary proteins.—Gulati, S., Balderes, D., Kim, C., Guo, Z. A., Wilcox, L., Area-Gomez, E., Snider, J., Wolinski, H., Stagljar, I., Granato, J. T., Ruggles, K. V., DeGiorgis, J. A., Kohlwein, S. D., Schon, E. A., Sturley, S. L. ATP-binding cassette transporters and sterol O-acyltransferases interact at membrane microdomains to modulate sterol uptake and esterification. PMID:26220175

  19. Escherichia coli unsaturated fatty acid synthesis: complex transcription of the fabA gene and in vivo identification of the essential reaction catalyzed by FabB.

    PubMed

    Feng, Youjun; Cronan, John E

    2009-10-23

    Although the unsaturated fatty acid (UFA) synthetic pathway of Escherichia coli is the prototype of such pathways, several unresolved issues have accumulated over the years. The key players are the fabA and fabB genes. Earlier studies of fabA transcription showed that the gene was transcribed from two promoters, with one being positively regulated by the FadR protein. The other weaker promoter (which could not be mapped with the technology then available) was considered constitutive because its function was independent of FadR. However, the FabR negative regulator was recently shown to represses fabA transcription. We report that the weak promoter overlaps the FadR-dependent promoter and is regulated by FabR. This promoter is strictly conserved in all E. coli and Salmonella enterica genomes sequenced to date and is thought to provide insurance against inappropriate regulation of fabA transcription by exogenous saturated fatty acids. Also, the fabAup promoter, a mutant promoter previously isolated by selection for increased FabA activity, was shown to be a promoter created de novo by a four-base deletion within the gene located immediately upstream of fabA. Demonstration of the key UFA synthetic reaction catalyzed by FabB has been elusive, although it was known to catalyze an elongation reaction. Strains lacking FabB are UFA auxotrophs indicating that the enzyme catalyzes an essential step in UFA synthesis. Using thioesterases specific for hydrolysis of short chain acyl-ACPs, the intermediates of the UFA synthetic pathway have been followed in vivo for the first time. These experiments showed that a fabB mutant strain accumulated less cis-5-dodecenoic acid than the parental wild-type strain. These data indicate that the key reaction in UFA synthesis catalyzed by FabB is elongation of the cis-3-decenoyl-ACP produced by FabA.

  20. Amino acid catalyzed bulk-phase gelation of organoalkoxysilanes via a transient co-operative self-assembly.

    PubMed

    Shen, Shukun; Hu, Daodao; Sun, Peipei; Zhang, Xiaoru; Parikh, Atul N

    2009-10-15

    We report acceleration in the rate of bulk phase gelation of an organoalkoxysilane, 3-methacryloxypropyltrimethoxysilane (MAPTMS), in the presence of an amphiphilic additive, N-phenyl glycine (NPG). The MAPTMS gelation occurs within 30 min in the presence of 0.5 wt % NPG, which took several months in the absence of NPG. Using a combination of ATR-FT IR, (29)Si NMR, (1)H NMR, viscosity analysis, SEM, UV-vis, and pi-A isotherm measurements, we elucidate the molecular-level details of the structural changes during NPG-catalyzed MPTMS gelation rate. On the basis of these results, we propose a gelation mechanism in which a transient cooperative self-assembly process fosters hydrolysis and retards early condensation thereby promoting the formation of extended three-dimensionally cross-linked gels. Specifically, the amphiphilic character of the hydrolysis product of MAPTMS, consisting of a hydrophobic tail R = -CH(2)CH(2)CH(2)O(CO)C(CH(3)) horizontal lineCH(2) and a hydrophilic Si-OH headgroup, promotes micelle formation at high MAPTMS/water ratio. NPG readily inserts within these micelles thus retarding the topotactic condensation of silanols at the micellar surface. This in turn allows for a more complete hydrolysis of Si-OCH(3) groups prior to condensation in MAPTMS. With increased silanol concentration at the micellar periphery, a delayed condensation phase initiates. This formation of a covalently bonded Si-O-Si framework (and possibly also the formation of the methanol byproduct) likely destabilizes the micellar motif thus promoting its transformation into condensed mesophases (e.g., lamellar microstructure) upon gelation. Because of the generality of this transient and co-operative organic-inorganic self-assembly between hydrolyzed amphiphilic organoalkoxysilanes and surfactant-like amino acid additives, we envisage applications in controlling bulk phase gelation of many chain-substituted organoalkoxysilanes.

  1. How Do Perfluorinated Alkanoic Acids Elicit Cytochrome P450 to Catalyze Methane Hydroxylation? An MD and QM/MM Study.

    PubMed

    Li, Chunsen; Shaik, Sason

    2013-03-07

    Recent experimental studies show that usage of perfluoro decanoic acid (PFDA), as a dummy substrate, can elicit P450BM3 to perform hydroxylation of small alkanes, such as methane (ref. 17) and propane (ref. 17 and ref. 18). To comprehend the mechanism whereby PFDA operates to potentiate P450BM3 to catalyze the hydroxylation of small alkanes, we used molecular dynamics (MD) and hybrid quantum mechanical / molecular mechanical (QM/MM) calculations. The MD results show that without the PFDA, methane escapes the active site, while the presence of PFDA can potentially induce a productive Cpd I-Methane juxtaposition for rapid oxidation. Nevertheless, when only a single methane molecule is present near the PFDA, it still escapes the pocket within less than a nanosecond. However, when three methane molecules are present in the pocket, they alternate quasi-periodically such that at all times (within 10 ns), a molecule of methane is always present in the proximity of Cpd I in a reactive conformation. Our results further demonstrate that the PFDA does not exert any electrostatic catalysis, whether the PFDA is in the protonated or deprotonated forms. Taken together, we conclude that methane hydroxylation requires, in addition to PFDA, a high partial pressure of methane that will cause a high methane concentration in the active site. Further study of ethane and propane hydroxylations demonstrates that higher alkane concentration is helpful for all the three small alkanes. Thus for the smallest alkane, methane, at least three molecules are necessary whereas for the larger ethane, two molecules are needed to force one ethane to be closer to Cpd I. Finally, for propane a second molecule is helpful but not absolutely necessary; for this molecule the PFDA may well be sufficient to keep propane close to Cpd I for efficient oxidation. We therefore propose that high alkane pressure should assist small alkane hydroxylation by P450 in a manner inversely proportional to the size of the

  2. Amino acid-catalyzed seed regrowth synthesis of photostable high fluorescent silica nanoparticles with tunable sizes for intracellular studies

    NASA Astrophysics Data System (ADS)

    Shahabi, Shakiba; Treccani, Laura; Rezwan, Kurosch

    2015-06-01

    Size-controlled fluorescence silica nanoparticles (NPs) are widely used for nanotoxicological studies, and diagnostic and targeted therapies. Such particles can be easily visualized and localized within cell environments and their interactions with cellular components can be monitored. We developed an amino acid-catalyzed seed regrowth technique (ACSRT) to synthesize spherical rhodamine-doped silica NPs with tunable sizes, low polydispersity index as well as high labeling efficiency and enhanced fluorescence photostability. Via ACSRT, fluorescent silica NPs can be obtained by introducing the fluorophore in seed formation step, while a precise control over particle size can be achieved by simply adjusting the concentration of reactants in the regrowth step. Unlike the conventional methods, the proposed ACSRT permits the synthesis of fluorescent silica NPs in a water-based system, without the use of any surfactants and co-surfactants. By this approach, additional linkers for covalent coupling of the fluorophore to silica matrix can be omitted, while a remarkable doping efficiency is achieved. The suitability of these particles for biomedical application is demonstrated by in vitro tests with normal and malignant bone cells. We show that the particles can be easily and unambiguously visualized by a conventional fluorescence microscope, localized, and distinguished within intracellular components. In addition, it is presented that the cellular uptake and cytotoxic profile of silica NPs are strongly correlated to the particle size, concentration, and cell line. The results of in vitro experiments demonstrate that tunable fluorescent silica NPs synthesized with ACSRT can be potentially used for toxicological assessments and nanomedical studies.

  3. How Do Perfluorinated Alkanoic Acids Elicit Cytochrome P450 to Catalyze Methane Hydroxylation? An MD and QM/MM Study

    PubMed Central

    Li, Chunsen; Shaik, Sason

    2013-01-01

    Recent experimental studies show that usage of perfluoro decanoic acid (PFDA), as a dummy substrate, can elicit P450BM3 to perform hydroxylation of small alkanes, such as methane (ref. 17) and propane (ref. 17 and ref. 18). To comprehend the mechanism whereby PFDA operates to potentiate P450BM3 to catalyze the hydroxylation of small alkanes, we used molecular dynamics (MD) and hybrid quantum mechanical / molecular mechanical (QM/MM) calculations. The MD results show that without the PFDA, methane escapes the active site, while the presence of PFDA can potentially induce a productive Cpd I-Methane juxtaposition for rapid oxidation. Nevertheless, when only a single methane molecule is present near the PFDA, it still escapes the pocket within less than a nanosecond. However, when three methane molecules are present in the pocket, they alternate quasi-periodically such that at all times (within 10 ns), a molecule of methane is always present in the proximity of Cpd I in a reactive conformation. Our results further demonstrate that the PFDA does not exert any electrostatic catalysis, whether the PFDA is in the protonated or deprotonated forms. Taken together, we conclude that methane hydroxylation requires, in addition to PFDA, a high partial pressure of methane that will cause a high methane concentration in the active site. Further study of ethane and propane hydroxylations demonstrates that higher alkane concentration is helpful for all the three small alkanes. Thus for the smallest alkane, methane, at least three molecules are necessary whereas for the larger ethane, two molecules are needed to force one ethane to be closer to Cpd I. Finally, for propane a second molecule is helpful but not absolutely necessary; for this molecule the PFDA may well be sufficient to keep propane close to Cpd I for efficient oxidation. We therefore propose that high alkane pressure should assist small alkane hydroxylation by P450 in a manner inversely proportional to the size of the

  4. On the Mechanism of Pd(0)-Catalyzed, Cu(I) Carboxylate-Mediated Thioorganic-Boronic Acid Desulfitative Coupling. A Non-innocent Role for Carboxylate Ligand

    PubMed Central

    Musaev, Djamaladdin G.; Liebeskind, Lanny S.

    2009-01-01

    Computational studies of the mechanism of the Pd-catalyzed, Cu(I)-carboxylate-mediated desulfitative coupling of thioorganics with boronic acids have determined that the requisite Cu(I)-carboxylate plays multiple important roles. The Cu(I)-carboxylate enhances both the transmetalation and the C-C reductive elimination steps: it acts as a reactive transmetalation center and it provides a vital carboxylate ligand. The carboxylate ligand functions not only as an activator for the boronic acid, but it also displaces a phosphine ligand at the palladium center generating a catalytically competent mono-phosphine-palladium intermediate. PMID:20161122

  5. Palladium(II)‐Catalyzed Synthesis of Sulfinates from Boronic Acids and DABSO: A Redox‐Neutral, Phosphine‐Free Transformation

    PubMed Central

    Deeming, Alex S.; Russell, Claire J.

    2015-01-01

    Abstract A redox‐neutral palladium(II)‐catalyzed conversion of aryl, heteroaryl, and alkenyl boronic acids into sulfinate intermediates, and onwards to sulfones and sulfonamides, has been realized. A simple Pd(OAc)2 catalyst, in combination with the sulfur dioxide surrogate 1,4‐diazabicyclo[2.2.2]octane bis(sulfur dioxide) (DABSO), is sufficient to achieve rapid and high‐yielding conversion of the boronic acids into the corresponding sulfinates. Addition of C‐ or N‐based electrophiles then allows conversion into sulfones and sulfonamides, respectively, in a one‐pot, two‐step process. PMID:26596861

  6. Experimental and Theoretical Studies of the Acid-Catalyzed Conversion of Furfuryl Alcohol to Levulinic Acid in Aqueous Solution

    SciTech Connect

    Gonzalez Maldonado, Gretchen M.; Assary, Rajeev S.; Dumesic, James A.; Curtiss, Larry A.

    2012-02-14

    The conversion of furfuryl alcohol (FAL) to levulinic acid over Amberlyst TM 15 in aqueous media was investigated using a combination of liquid chromatography-mass spectrometry (LC-MS) measurements, isotopic labeling studies, nuclear magnetic resonance (NMR) spectroscopy, and ab initio quantum chemical calculations using the G4MP2 method. The results of these combined studies showed that one of the major reaction pathways takes place via a geminal diol species (4,5,5- trihydroxypentan-2-one, denoted as intermediate A), formed by the addition of two water molecules to FAL, where two of the oxygen atoms from FAL are retained. This geminal diol species can also be produced from another intermediate found to be a dimer-like species, denoted as intermediate B. This dimer-like species is formed at the early stages of reaction, and it can also be converted to intermediate A, indicating that intermediate B is the product of the reaction of FAL with another early intermediate. Quantum chemical calculations suggested this to be a protonated acyclic species. Reaction of this early intermediate with water produces intermediate A, while reaction with FAL produces intermediate B.

  7. Experimental and Theoretical Studies of the Acid-Catalyzed Conversion of Furfuryl Alcohol to Levulinic Acid in Aqueous Solution

    SciTech Connect

    González Maldonado, Gretchen M.; Assary, Rajeev S.; Dumesic, James; Curtiss, Larry A.

    2012-01-01

    The conversion of furfuryl alcohol (FAL) to levulinic acid over AmberlystTM 15 in aqueous media was investigated using a combination of liquid chromatography-mass spectrometry (LC-MS) measurements, isotopic labeling studies, nuclear magnetic resonance (NMR) spectroscopy, and ab initio quantum chemical calculations using the G4MP2 method. The results of these combined studies showed that one of the major reaction pathways takes place via a geminal diol species (4,5,5-trihydroxypentan-2-one, denoted as intermediate A), formed by the addition of two water molecules to FAL, where two of the oxygen atoms from FAL are retained. This geminal diol species can also be produced from another intermediate found to be a dimer-like species, denoted as intermediate B. This dimer-like species is formed at the early stages of reaction, and it can also be converted to intermediate A, indicating that intermediate B is the product of the reaction of FAL with another early intermediate. Quantum chemical calculations suggested this to be a protonated acyclic species. Reaction of this early intermediate with water produces intermediate A, while reaction with FAL produces intermediate B.

  8. A new method for measuring degree of methyl esterification in pectin

    SciTech Connect

    Maness, N.O.; Ryan, J.D.; Mort, A.J. )

    1989-04-01

    A simple method to measure the degree of methyl esterification in small samples of pectins or isolated cell walls will be described. The method involves selective reduction of methyl esterified galacturonic acid to galactose with sodium borohydride or sodium borodeuteride in the presence of strong buffer at 4 C. Quantitative reduction of samples can be accomplished in 1 h using 20 mg borohydride per mg sample. The degree of pectin methyl esterification can then be determined by measuring an increase of galactose using gas chromatography (borohydride reduced samples) or gas chromatography/mass spectroscopy (borodeuteride reduced samples), or by measuring the decrease in galacturonic acid using conventional colorimetric methods. Pectin samples as small as 50 {mu}g have been analyzed using the reduction method with good results.

  9. Target-catalyzed autonomous assembly of dendrimer-like DNA nanostructures for enzyme-free and signal amplified colorimetric nucleic acids detection.

    PubMed

    He, Hongfei; Dai, Jianyuan; Duan, Zhijuan; Meng, Yan; Zhou, Cuisong; Long, Yuyin; Zheng, Baozhan; Du, Juan; Guo, Yong; Xiao, Dan

    2016-12-15

    Self-assembly of DNA nanostructures is of great importance in nanomedicine, nanotechnology and biosensing. Herein, a novel target-catalyzed autonomous assembly pathway for the formation of dendrimer-like DNA nanostructures that only employing target DNA and three hairpin DNA probes was proposed. We use the sticky-ended Y shape DNA (Y-DNA) as the assembly monomer and it was synthesized by the catalyzed hairpin assembly (CHA) instead of the DNA strand annealing method. The formed Y-DNA was equipped with three ssDNA sticky ends and two of them were predesigned to be complementary to the third one, then the dendrimer-like DNA nanostructures can be obtained via an autonomous assembly among these sticky-ended Y-DNAs. The resulting nanostructure has been successfully applied to develop an enzyme-free and signal amplified gold nanoparticle (AuNP)-based colorimetric nucleic acids assay.

  10. Kinetic modeling of esterification reaction of surfactin-C₁₅ in methanol solution.

    PubMed

    Zhao, Yue; Yang, Shi-Zhong; Mu, Bo-Zhong

    2013-01-01

    Surfactin in methanol solution with acid would be spontaneously esterified into the mono- or dimethyl ester surfactin even at a temperature as low as 4 °C because there were two free carboxyl groups in the peptide loop of surfactin. Using trifluoroacetic acid as the catalyst, the esterification and the contents change in surfactin-C(15), mono- and dimethyl ester surfactin-C(15) with time were investigated at 4, 25, and 45 °C, respectively. The kinetic model was established for prediction of the esterification degree under experimental conditions. At 4, 25, and 45 °C, more than 10 % of the surfactin-C(15) in methanol solution in the presence of 0.05 % trifluoroacetic acid was changed into the esterified surfactin-C(15) after 37.6, 14.1, and 7.4 h, respectively. The maximum of intermediate of the mono-methyl ester surfactin-C(15) was observed at 4, 25, and 45 °C after 25, 10, and 5 days, respectively. Our results indicated that the time for preparation should be strictly controlled to avoid an unexpected esterification of surfactin during its storage and experimental treatment, and the kinetic results could be adopted as the reference condition for preparation of monomethyl ester surfactin-C(15).

  11. Impact of pectin esterification on the antimicrobial activity of nisin-loaded pectin particles.

    PubMed

    Krivorotova, Tatjana; Staneviciene, Ramune; Luksa, Juliana; Serviene, Elena; Sereikaite, Jolanta

    2017-01-01

    The relationship between pectin structure and the antimicrobial activity of nisin-loaded pectin particles was examined. The antimicrobial activity of five different nisin-loaded pectin particles, i.e., nisin-loaded high methoxyl pectin, low methoxyl pectin, pectic acid, dodecyl pectin with 5.4 and 25% degree of substitution were tested in the pH range of 4.0-7.0 by agar-diffusion assay and agar plate count methods. It was found that the degree of esterification of carboxyl group of galacturonic acid in pectin molecule is important for the antimicrobial activity of nisin-loaded pectin particles. Nisin-loaded particles prepared using pectic acid or the pectin with low degree of esterification exhibit higher antimicrobial activity than nisin-loaded high methoxyl pectin particles. Pectins with free carboxyl groups or of low degree of esterification are the most suitable for particles preparation. Moreover, nisin-loaded pectin particles were active at close to neutral or neutral pH values. Therefore, they could be effectively applied for food preservation. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:245-251, 2017.

  12. Microwave assisted esterification of acidified oil from waste cooking oil by CERP/PES catalytic membrane for biodiesel production.

    PubMed

    Zhang, Honglei; Ding, Jincheng; Zhao, Zengdian

    2012-11-01

    The traditional heating and microwave assisted method for biodiesel production using cation ion-exchange resin particles (CERP)/PES catalytic membrane were comparatively studied to achieve economic and effective method for utilization of free fatty acids (FFAs) from waste cooking oil (WCO). The optimal esterification conditions of the two methods were investigated and the experimental results showed that microwave irradiation exhibited a remarkable enhanced effect for esterification compared with that of traditional heating method. The FFAs conversion of microwave assisted esterification reached 97.4% under the optimal conditions of reaction temperature 60°C, methanol/acidified oil mass ratio 2.0:1, catalytic membrane (annealed at 120°C) loading 3g, microwave power 360W and reaction time 90min. The study results showed that it is a fast, easy and green way to produce biodiesel applying microwave irradiation.

  13. Synthesis of bio-based methacrylic acid by decarboxylation of itaconic acid and citric acid catalyzed by solid transition-metal catalysts.

    PubMed

    Le Nôtre, Jérôme; Witte-van Dijk, Susan C M; van Haveren, Jacco; Scott, Elinor L; Sanders, Johan P M

    2014-09-01

    Methacrylic acid, an important monomer for the plastics industry, was obtained in high selectivity (up to 84%) by the decarboxylation of itaconic acid using heterogeneous catalysts based on Pd, Pt and Ru. The reaction takes place in water at 200-250 °C without any external added pressure, conditions significantly milder than those described previously for the same conversion with better yield and selectivity. A comprehensive study of the reaction parameters has been performed, and the isolation of methacrylic acid was achieved in 50% yield. The decarboxylation procedure is also applicable to citric acid, a more widely available bio-based feedstock, and leads to the production of methacrylic acid in one pot in 41% selectivity. Aconitic acid, the intermediate compound in the pathway from citric acid to itaconic acid was also used successfully as a substrate.

  14. Additional Nucleophile-Free FeCl3-Catalyzed Green Deprotection of 2,4-Dimethoxyphenylmethyl-Protected Alcohols and Carboxylic Acids.

    PubMed

    Sawama, Yoshinari; Masuda, Masahiro; Honda, Akie; Yokoyama, Hiroki; Park, Kwihwan; Yasukawa, Naoki; Monguchi, Yasunari; Sajiki, Hironao

    2016-01-01

    The deprotection of the methoxyphenylmethyl (MPM) ether and ester derivatives can be generally achieved by the combinatorial use of a catalytic Lewis acid and stoichiometric nucleophile. The deprotections of 2,4-dimethoxyphenylmethyl (DMPM)-protected alcohols and carboxylic acids were found to be effectively catalyzed by iron(III) chloride without any additional nucleophile to form the deprotected mother alcohols and carboxylic acids in excellent yields. Since the present deprotection proceeds via the self-assembling mechanism of the 2,4-DMPM protective group itself to give the hardly-soluble resorcinarene derivative as a precipitate, the rigorous purification process by silica-gel column chromatography was unnecessary and the sufficiently-pure alcohols and carboxylic acids were easily obtained in satisfactory yields after simple filtration.

  15. Evaluation of hydrolysis-esterification biodiesel production from wet microalgae.

    PubMed

    Song, Chunfeng; Liu, Qingling; Ji, Na; Deng, Shuai; Zhao, Jun; Li, Shuhong; Kitamura, Yutaka

    2016-08-01

    Wet microalgae hydrolysis-esterification route has the advantage to avoid the energy-intensive units (e.g. drying and lipid extraction) in the biodiesel production process. In this study, techno-economic evaluation of hydrolysis-esterification biodiesel production process was carried out and compared with conventional (usually including drying, lipid extraction, esterification and transesterification) biodiesel production process. Energy and material balance of the conventional and hydrolysis-esterification processes was evaluated by Aspen Plus. The simulation results indicated that drying (2.36MJ/L biodiesel) and triolein transesterification (1.89MJ/L biodiesel) are the dominant energy-intensive stages in the conventional route (5.42MJ/L biodiesel). By contrast, the total energy consumption of hydrolysis-esterification route can be reduced to 1.81MJ/L biodiesel, and approximately 3.61MJ can be saved to produce per liter biodiesel.

  16. Efficient production of fermentable sugars from oil palm empty fruit bunch by combined use of acid and whole cell culture-catalyzed hydrolyses.

    PubMed

    Li, Qingxin; Ng, Wei Ting; Puah, Sze Min; Bhaskar, Ravindran Vijay; Soh, Loon Siong; MacBeath, Calum; Parakattil, Pius; Green, Phil; Wu, Jin Chuan

    2014-01-01

    Empty fruit bunch (EFB) of oil palm trees was converted to fermentable sugars by the combined use of dilute acids and whole fungal cell culture-catalyzed hydrolyses. EFB (5%, w/v) was hydrolyzed in the presence of 0.5% H2 SO4 and 0.2% H3 PO4 at 160 °C for 10 Min. The solid fraction was separated from the acid hydrolysate by filtration and subjected to enzymatic hydrolysis at 50 °C using the whole cell culture of Trichoderma reesei RUT-C30 (2%, w/v), which was prepared by cultivation at 30 °C for 7 days to reach its maximal cellulase activity. The combined hydrolyses of EFB gave a total sugar yield of 82.0%. When used as carbon sources for cultivating Escherichia coli in M9 medium at 37 °C, the combined EFB hydrolysates were shown to be more favorable or at least as good as pure glucose for cell growth in terms of the higher (1.1 times) optical density of E. coli cells. The by-products generated during the acid-catalyzed hydrolysis did not seem to obviously affect cell growth. The combined use of acid and whole cell culture hydrolyses might be a commercially promising method for pretreatment of lignocellulose to get fermentable sugars.

  17. Esterification of sludge palm oil as a pretreatment step for biodiesel production.

    PubMed

    Škrbić, Biljana; Predojević, Zlatica; Đurišić-Mladenović, Nataša

    2015-08-01

    Acid esterification of sludge palm oil, having 50 mas.% free fatty acids, i.e., 50 g of dominant free fatty acid per 100 g of oil, was investigated with the objective of determining conditions for the efficient reduction of free fatty acids. The influences of sulphuric acid dosage and molar ratio of methanol to oil were studied, with the final intention to obtain feedstock with a free fatty acids content acceptable for biodiesel production by alkali-transesterification. Esterification was performed using different molar ratios of methanol to oil (3:1, 6:1 and 9:1) and varying the amount of H2SO4 catalyst (0.92 mas.%, 1.84 mas.% and 4.60 mas.%). Under the applied conditions, the sulphuric acid dosage of 4.60 mas.% resulted in the satisfactory decrease of the feedstock's free fatty acids for 6:1 and 9:1 molar ratios of methanol to oil. Thus, taking into account the economic reasoning, it can be concluded that approximately 5 mas.% of H2SO4 with 6:1 molar ratio of methanol to oily feedstock, might be regarded as the dosage necessary for satisfactory pretreatment of the feedstock to be further subjected to the alkaline transesterification. Finally, the effort to consolidate the information on acid esterification available in literature was made, contributing to knowledge on sustainable biodiesel production using the low-grade and low-cost sources.

  18. Rh-catalyzed enantioselective conjugate addition of arylboronic acids with a dynamic library of chiral tropos phosphorus ligands.

    PubMed

    Monti, Chiara; Gennari, Cesare; Piarulli, Umberto

    2007-01-01

    A library of 19 chiral tropos phosphorus ligands, based on a free-to-rotate (tropos) biphenol unit and a chiral P-bonded alcohol (11 phosphites, 1-P(O)(2)O to 11-P(O)(2)O) or secondary amine (8 phosphoramidites, 12-P(O)(2)N to 19-P(O)(2)N), were screened, individually and in combinations of two, in the rhodium-catalyzed asymmetric conjugate addition of arylboronic acids to enones and enoates. High enantioselectivities (up to 99 % ee) and excellent yields were obtained in the addition to either cyclic or acyclic substrates. The flexible biphenolic P ligands outperformed the analogous rigid binaphtholic P ligands. Variable-temperature (31)P NMR studies revealed that the biphenolic ligands are tropos even at low temperature. Only below 190 K was a coalescence observed; upon further cooling, two atropisomers were detected. The Rh homocomplexes ([Rh(L(a))(2)](+)) were also studied: in general, a single doublet (P-Rh coupling) was observed in the case of the biphenolic phosphite ligands, over the temperature range 380-230 K, demonstrating their tropos nature in the rhodium complexes even at low temperatures. On the other hand, the phosphoramidites showed different behaviors depending on the structure of the ligand and on the nature of the rhodium source. The spectrum at 230 K of the mixture of [Rh(acac)(eth)(2)] (eth=C(2)H(4)) with phosphite 6-P(O)(2)O and phosphoramidite 19-P(O)(2)N (the most enantioselective ligand combination in the conjugate addition reaction) revealed the presence of four homocomplexes (total approximately 40 %: [Rh{6-P(O)(2)O}(2)], [Rh{(aR)-19-P(O)(2)N}(2)], [Rh{(aS)-19-P(O)(2)N}(2)], [Rh{(aR)-19-P(O)(2)N}{(aS)-19-P(O)(2)N}]) and one heterocomplex, [Rh{6-P(O)(2)O}{(aR)-19-P(O)(2)N}] (approximately 60 %) In the heterocomplex, the biphenol-derived phosphite is free to rotate (tropos) while the biphenol-derived phosphoramidite shows a temperature-dependent tropos/atropos behavior (coalescence temperature=310 K).

  19. Peroxide decoloration of CI Acid Orange 7 catalyzed by manganese chlorophyll derivatives at the surfaces of micelles and lipid bilayers.

    PubMed

    Ishigure, Shuichi; Mitsui, Tatsuro; Ito, Shingo; Kondo, Yuji; Kawabe, Shigeki; Kondo, Masaharu; Dewa, Takehisa; Mino, Hiroyuki; Itoh, Shigeru; Nango, Mamoru

    2010-06-01

    Manganese-substituted chlorophyll a derivatives (MnChls) were synthesized. We first report peroxidative oxidation of an azo dye, CI Acid Orange 7, catalyzed by MnChls at the surfaces of micelles and lipid bilayers with hydrogen peroxide (H(2)O(2)) under mild conditions (pH 8.0, 25 degrees C). Peroxide decoloration depended upon the structures of MnChls, surfactants, lipids, and the presence of imidazole. Surprisingly, a largest decoloration rate was observed for MnChls dimer, MnPChlide a-K(MnPChlide a)-His 5 in cetyltrimethylammonium bromide (CTAB) micellar solution, especially when imidazole was present: this observation is analogous to the decoloration using horseradish peroxidase (HRP). Interestingly, the dimer complexes showed enhanced decoloration in comparison to the corresponding MnChls monomer in the micellar solution. In contrast, the MnChls monomer showed enhanced decoloration in comparison with the MnChls dimer in liposomal suspensions. Further, the imidazole residue covalently linked to the MnChls plays an important role in increasing the decoloration in both micellar and liposomal suspensions as well as in addition of imidazole into the solutions. It is interesting that the electron paramagnetic resonance (EPR) spectra of MnPChlide a ME 2, MnPChlide a-His 3, and MnMPMME-His 7 have 16 peaks around g = 2 in Egg PC or DMPC liposomal suspension with H(2)O(2), which is typical of a mixed-valence Mn(III)-Mn(IV) complex with coupling between two ions. The higher decoloration performance obtained by the monomer porphyrin compounds at the surface of the lipid bilayers appears to be related to the stability of this mixed-valence Mn(III)-Mn(IV) species formed in the lipid bilayers. This finding should provide useful information to note that MnChls, which are easily found in a number of biological systems, are involved in functions such as hydrogen peroxide decomposition in bacteria and the oxidation of water during photosynthesis as well as the peroxidases

  20. Facile synthesis of highly efficient and recyclable magnetic solid acid from biomass waste

    PubMed Central

    Liu, Wu-Jun; Tian, Ke; Jiang, Hong; Yu, Han-Qing

    2013-01-01

    In this work, sawdust, a biomass waste, is converted into a magnetic porous carbonaceous (MPC) solid acid catalyst by an integrated fast pyrolysis–sulfonation process. The resultant magnetic solid acid has a porous structure with high surface area of 296.4 m2 g−1, which can be attributed to the catalytic effect of Fe. The catalytic activity and recyclability of the solid acid catalyst are evaluated during three typical acid-catalyzed reactions: esterification, dehydration, and hydrolysis. The favorable catalytic performance in all three reactions is attributed to the acid's high strength with 2.57 mmol g−1 of total acid sites. Moreover, the solid acid can be reused five times without a noticeable decrease in catalytic activity, indicating the stability of the porous carbon (PC)–sulfonic acid group structure. The findings in the present work offer effective alternatives for environmentally friendly utilization of abundant biomass waste. PMID:23939253

  1. [Gas chromatographic analysis of methyl methacrylate and methanol in its esterification mixture].

    PubMed

    Wu, C; Zeng, C

    1997-09-01

    A fast, simple and accurate gas chromatographic method is established for determining the content of methyl methacrylate (MMA) and methanol in the esterification mixture of methacrylic acid with methanol in the presence of sulfuric acid. In the measurement, polyethylene glycol-20M/sodium hydroxide was adopted as liquid phase, coated on the acid-washed 201 pink support. n-Heptane was used as the internal standard and the correction factors of MMA and methanol obtained were 1.65 and 4.10, respectively. It is significant for this method to be used to control MMA production by acetone cyanohydrin method and to improve the production technology.

  2. Synthesis of pyromellitic acid esters

    NASA Technical Reports Server (NTRS)

    Fedorova, V. A.; Donchak, V. A.; Martynyuk-Lototskaya, A. N.

    1985-01-01

    The ester acids necessary for studyng the thermochemical properties of pyromellitic acid (PMK)-based peroxides were investigated. Obtaining a tetramethyl ester of a PMK was described. The mechanism of an esterification reaction is discussed, as is the complete esterification of PMK with primary alcohol.

  3. Esterification of acidified oil with methanol by SPES/PES catalytic membrane.

    PubMed

    Shi, Wenying; He, Benqiao; Li, Jianxin

    2011-05-01

    A sulfonated polyethersulfone (SPES)/polyethersulfone (PES) blend catalytic membrane was prepared and used as a heterogeneous catalyst in the esterification of the acidified oil (acid value 153 mg KOH/g) with methanol for producing biodiesel. The results showed that the free fatty acids conversion reached 97.6% using SPES/PES catalytic membrane under the optimal esterification conditions. Meanwhile, the SPES/PES membrane with 20.3% degree of sulfonation showed a good catalytic stability. A pseudo-homogeneous kinetic model was established. The results indicated that the reaction rate constant increased with increasing methanol/acidified oil molar ratio, the loading of catalytic membrane and reaction temperature. The reaction order was 2 and the activation energy decreased from 74.65 to 21.07 kJ/mol with increasing catalytic membrane loading from 0 to 0.135 meq/g(oil). It implies that the esterification is not diffusively controlled but kinetically controlled. The predicted results were in good agreement with the experimental data.

  4. Expanding the scope of Lewis acid catalysis in water: remarkable ligand acceleration of aqueous ytterbium triflate catalyzed Michael addition reactions.

    PubMed

    Ding, Rui; Katebzadeh, Kambiz; Roman, Lisa; Bergquist, Karl-Erik; Lindström, Ulf M

    2006-01-06

    [reaction: see text] Significant rate acceleration of metal-catalyzed Michael addition reactions in water was observed upon addition of small, dibasic ligands. Ytterbium triflate and TMEDA was the most effective combination leading to a nearly 20-fold faster reaction than in the absence of ligand.

  5. Enantioselective palladium-catalyzed arylation of N-tosylarylimines with arylboronic acids using a chiral 2,2'-bipyridine ligand.

    PubMed

    Gao, Xiang; Wu, Bo; Yan, Zhong; Zhou, Yong-Gui

    2016-01-07

    With the aid of an axially chiral 2,2'-bipyridine ligand, we have successfully developed a palladium-catalyzed method for the enantioselective arylation of N-tosylarylimines, furnishing the chiral diarylmethamines with high yields and enantioselectivities under very mild conditions. An exogenous base was avoided and imine hydrolysis was inhibited in this transformation.

  6. Asymmetric reduction of α-amino ketones with a KBH4 solution catalyzed by chiral Lewis acids.

    PubMed

    He, Peng; Zheng, Haifeng; Liu, Xiaohua; Lian, Xiangjin; Lin, Lili; Feng, Xiaoming

    2014-10-13

    An efficient enantioselective reduction of α-amino ketones with potassium borohydride solution catalyzed by chiral N,N'-dioxide-metal complex catalysts was accomplished under mild reaction conditions for the first time. It provided a simple, convenient, and practical approaches for obtaining synthetically important chiral β-amino alcohols in good to excellent yields (up to 98%) and enantioselectivities (up to 97% ee).

  7. Lewis acid-catalyzed cyclization of enaminones with propargylic alcohols: regioselective synthesis of multisubstituted 1,2-dihydropyridines.

    PubMed

    Shao, Yushang; Zhu, Kai; Qin, Zhengchen; Li, Ende; Li, Yanzhong

    2013-06-07

    A highly efficient BF3·Et2O-catalyzed cascade reaction of enaminones with propargylic alcohols under mild reaction conditions has been developed. This methodology offers regioselective access to multisubstituted 1,2-dihydropyridines in good to excellent yields.

  8. N-Acyl Amino Acid Ligands for Ruthenium(II)-Catalyzed meta-C-H tert-Alkylation with Removable Auxiliaries.

    PubMed

    Li, Jie; Warratz, Svenja; Zell, Daniel; De Sarkar, Suman; Ishikawa, Eloisa Eriko; Ackermann, Lutz

    2015-11-04

    Acylated amino acid ligands enabled ruthenium(II)-catalyzed C-H functionalizations with excellent levels of meta-selectivity. The outstanding catalytic activity of the ruthenium(II) complexes derived from monoprotected amino acids (MPAA) set the stage for the first ruthenium-catalyzed meta-functionalizations with removable directing groups. Thereby, meta-alkylated anilines could be accessed, which are difficult to prepare by other means of direct aniline functionalizations. The robust nature of the versatile ruthenium(II)-MPAA was reflected by challenging remote C-H transformations with tertiary alkyl halides on aniline derivatives as well as on pyridyl-, pyrimidyl-, and pyrazolyl-substituted arenes. Detailed mechanistic studies provided strong support for an initial reversible C-H ruthenation, followed by a SET-type C-Hal activation through homolytic bond cleavage. Kinetic analyses confirmed this hypothesis through an unusual second-order dependence of the reaction rate on the ruthenium catalyst concentration. Overall, this report highlights the exceptional catalytic activity of ruthenium complexes derived from acylated amino acids, which should prove instrumental for C-H activation chemistry beyond remote functionalization.

  9. Gold-Catalyzed Highly Regioselective Oxidation of C-C Triple Bonds Without Acid Additives: Propargyl Moieties as Masked α,β-Unsaturated Carbonyls

    PubMed Central

    Lu, Biao; Li, Chaoqun; Zhang, Liming

    2010-01-01

    Gold-catalyzed intermolecular oxidations of internal alkynes have been achieved with high regioselectivities using 8-alkylqinoline N-oxides as oxidants and in the absence of acid additives. Synthetically versatile α,β-unsaturated carbonyls are obtained in good to excellent yields and with excellent E-selectivities. A range of functional groups such as THP, MOMO, N3, OTBS, and N-Boc are tolerated. This reaction allows to mask α,β-unsaturated carbonyls as propargyl moieties, thus offering a practical solution to issues of functional group compatibility with α,β-unsaturated carbonyls, likely encountered in syntheses of complex structures. PMID:20853846

  10. Copper catalyzed oxidation of ascorbate (vitamin C). Inhibitory effect of catalase, superoxide dismutase, serum proteins (ceruloplasmin, albumin, apotransferrin) and amino acids.

    PubMed

    Løvstad, R A

    1987-01-01

    The inhibitory effect of catalase and superoxide dismutase on copper catalyzed oxidation of ascorbate is probably due to a binding of copper ions. Scavengers of hydroxyl ions and singlet oxygen had no effect on the ascorbate oxidation rate. Copper binding serum proteins reduced the oxidation rate; the order of effectiveness being: Ceruloplasmin greater than human albumin = bovine albumin greater than apotransferrin. The excellent protection obtained with catalase and ceruloplasmin is possibly due to a strong affinity for cuprous ions generated during the reaction. Cupric ion binding amino acids (His, Thr, Glu, Gln, Tyr) had considerably weaker protective effect than the proteins studied. Apparently they do not compete favorably with ascorbate for cupric ions.

  11. Efficient synthesis of 2,3-disubstituted-2,3-dihydroquinazolin-4(1H)-ones catalyzed by dodecylbenzenesulfonic acid in aqueous media under ultrasound irradiation.

    PubMed

    Chen, Bao-Hua; Li, Ji-Tai; Chen, Guo-Feng

    2015-03-01

    Synthesis of 2,3-disubstituted-2,3-dihydroquinazolin-4(1H)-one derivatives catalyzed by dodecylbenzenesulfonic acid was carried out in 80-92% yields at 40-42 °C within 1-2 h in aqueous media via one-pot three-component condensation of isatoic anhydride, aromatic aldehyde and amine under ultrasound irradiation. Convenient work-up procedures, mild reaction conditions, avoiding the use of organic solvents, and friendly to environment are the salient features of this protocol.

  12. Hydrogen-Bond Directed Regioselective Pd-Catalyzed Asymmetric Allylic Alkylation: The Construction of Chiral α-Amino Acids with Vicinal Tertiary and Quaternary Stereocenters.

    PubMed

    Wei, Xuan; Liu, Delong; An, Qianjin; Zhang, Wanbin

    2015-12-04

    A Pd-catalyzed asymmetric allylic alkylation of azlactones with 4-arylvinyl-1,3-dioxolan-2-ones was developed, providing "branched" chiral α-amino acids with vicinal tertiary and quaternary stereocenters, in high yields and with excellent selectivities. Mechanistic studies revealed that the formation of a hydrogen bond between the Pd-allylic complex and azlactone isomer is responsible for the excellent regioselectivities. This asymmetric alkylation can be carried out on a gram scale without a loss of catalytic efficiency, and the resulting product can be further transformed to a chiral azetidine in two simple steps.

  13. Oxidative esterification via photocatalytic C-H activation

    EPA Pesticide Factsheets

    Direct oxidative esterification of alcohol via photocatalytic C??H activation has been developed using VO@g-C3N4 catalyst; an expeditious esterification of alcohols occurs under neutral conditions using visible light as the source of energy.This dataset is associated with the following publication:Varma , R., S. Verma, R.B.N. Baig, C. Han, and M. Nadagouda. Oxidative esterification via photocatalytic C-H activation. GREEN CHEMISTRY. Royal Society of Chemistry, Cambridge, UK, 18: 251-254, (2015).

  14. Acid-catalyzed condensed-phase reactions of limonene and terpineol and their impacts on gas-to-particle partitioning in the formation of organic aerosols.

    PubMed

    Li, Yong Jie; Cheong, Gema Y L; Lau, Arthur P S; Chan, Chak K

    2010-07-15

    We investigated the condensed-phase reactions of biogenic VOCs with C double bond C bonds (limonene, C(10)H(16), and terpineol, C(10)H(18)O) catalyzed by sulfuric acid by both bulk solution (BS) experiments and gas-particle (GP) experiments using a flow cell reactor. Product analysis by gas chromatography-mass spectrometry (GC-MS) showed that cationic polymerization led to dimeric and trimeric product formation under conditions of relative humidity (RH) <20% (in the GP experiments) and a sulfuric acid concentration of 57.8 wt % (in the BS experiments), while hydration occurred under conditions of RH > 20% (in the GP experiments) and sulfuric acid concentrations of 46.3 wt % or lower (in the BS experiments). Apparent partitioning coefficients (K(p,rxn)) were estimated from the GP experiments by including the reaction products. Only under extremely low RH conditions (RH < 5%) did the values of K(p,rxn) ( approximately 5 x 10(-6) m(3)/microg for limonene and approximately 2 x 10(-5) m(3)/microg for terpineol) substantially exceed the physical partitioning coefficients (K(p) = 6.5 x 10(-8) m(3)/microg for limonene and =2.3 x 10(-6) m(3)/microg for terpineol) derived from the absorptive partitioning theory. At RH higher than 5%, the apparent partitioning coefficients (K(p,rxn)) of both limonene and terpineol were in the same order of magnitude as the K(p) values derived from the absorptive partitioning theory. Compared with other conditions including VOC concentration and degree of neutralization (by ammonium) of acidic particles, RH is a critical parameter that influences both the reaction mechanisms and the uptake ability (K(p,rxn) values) of these processes. The finding suggests that RH needs to be considered when taking the effects of acid-catalyzed reactions into account in estimating organic aerosol formation from C double bond C containing VOCs.

  15. Enantioselective Lewis acid-catalyzed Mukaiyama-Michael reactions of acyclic enones. Catalysis by allo-threonine-derived oxazaborolidinones.

    PubMed

    Wang, Xiaowei; Adachi, Shinya; Iwai, Hiroyoshi; Takatsuki, Hiroshi; Fujita, Katsuhiro; Kubo, Mikako; Oku, Akira; Harada, Toshiro

    2003-12-26

    allo-Threonine-derived O-aroyl-B-phenyl-N-tosyl-1,3,2-oxazaborolidin-5-ones 1g,n catalyze the asymmetric Mukaiyama-Michael reaction of acyclic enones with a trimethylsilyl ketene S,O-acetal in high enantioselectivity. A range of alkenyl methyl ketones is successfully employed as Michael acceptors affording ee values of 85-90% by using 10 mol % of the catalyst. The use of 2,6-diisopropylphenol and tert-butyl methyl ether as additives is found to be essential to achieve high enantioselectivity in these reactions. The effects of the additives are discussed in terms of the retardation of an Si(+)-catalyzed racemic pathway, which seriously deteriorates the enantioselectivity of asymmetric Mukaiyama-Michael reactions. A working model for asymmetric induction is proposed based on correlation between catalyst structures and enantioselectivities.

  16. Acid-catalyzed ortho-alkylation of anilines with styrenes: an improved route to chiral anilines with bulky substituents.

    PubMed

    Cherian, Anna E; Domski, Gregory J; Rose, Jeffrey M; Lobkovsky, Emil B; Coates, Geoffrey W

    2005-11-10

    [reaction: see text] Reaction of para-substituted anilines with styrene derivatives at elevated temperatures, when catalyzed by CF3SO3H, results in highly chemoselective ortho-alkylation of the aniline. When R = H, dialkylation can be achieved by varying the ratio of styrene to aniline. Several different substituted anilines and styrenes were examined, and good yields (42-87%) were obtained, except in the case where electron-withdrawing substituents are present on the styrene.

  17. Frontispiece: asymmetric reduction of α-amino ketones with a KBH4 solution catalyzed by Chiral Lewis acids.

    PubMed

    He, Peng; Zheng, Haifeng; Liu, Xiaohua; Lian, Xiangjin; Lin, Lili; Feng, Xiaoming

    2014-10-13

    Asymmetric Alkali Metal Borohydride Reduction Alkali metal borohydrides are mild, inexpensive, highly selective, and environmentally friendly reducing agents in organic chemistry. In their Communication on page 13482 ff., X. Feng et al. demonstrate an efficient enantioselective reduction of both secondary and primary α-amino ketones with potassium borohydride solution catalyzed by chiral N,N'-dioxide-metal complex catalysts. The catalytic system features a convenient operation and tolerance to water, without the need for basic additives.

  18. Torrefaction reduction of coke formation on catalysts used in esterification and cracking of biofuels from pyrolysed lignocellulosic feedstocks

    DOEpatents

    Kastner, James R; Mani, Sudhagar; Hilten, Roger; Das, Keshav C

    2015-11-04

    A bio-oil production process involving torrefaction pretreatment, catalytic esterification, pyrolysis, and secondary catalytic processing significantly reduces yields of reactor char, catalyst coke, and catalyst tar relative to the best-case conditions using non-torrefied feedstock. The reduction in coke as a result of torrefaction was 28.5% relative to the respective control for slow pyrolysis bio-oil upgrading. In fast pyrolysis bio-oil processing, the greatest reduction in coke was 34.9%. Torrefaction at 275.degree. C. reduced levels of acid products including acetic acid and formic acid in the bio-oil, which reduced catalyst coking and increased catalyst effectiveness and aromatic hydrocarbon yields in the upgraded oils. The process of bio-oil generation further comprises a catalytic esterification of acids and aldehydes to generate such as ethyl levulinate from lignified biomass feedstock.

  19. Continuous esterification to produce biodiesel by SPES/PES/NWF composite catalytic membrane in flow-through membrane reactor: experimental and kinetic studies.

    PubMed

    Shi, Wenying; He, Benqiao; Cao, Yuping; Li, Jianxin; Yan, Feng; Cui, Zhenyu; Zou, Zhiqun; Guo, Shiwei; Qian, Xiaomin

    2013-02-01

    A novel composite catalytic membrane (CCM) was prepared from sulfonated polyethersulfone (SPES) and polyethersulfone (PES) blend supported by non-woven fabrics, as a heterogeneous catalyst to produce biodiesel from continuous esterification of oleic acid with methanol in a flow-through mode. A kinetic model of esterification was established based on a plug-flow assumption. The effects of the CCM structure (thickness, area, porosity, etc.), reaction temperature and the external and internal mass transfer resistances on esterification were investigated. The results showed that the CCM structure had a significant effect on the acid conversion. The external mass transfer resistance could be neglected when the flow rate was over 1.2 ml min(-1). The internal mass transfer resistance impacted on the conversion when membrane thickness was over 1.779 mm. An oleic acid conversion kept over 98.0% for 500 h of continuous running. The conversions obtained from the model are in good agreement with the experimental data.

  20. Transesterification catalyzed by polystyrene-supported chymotrypsin in toluene: the effect of neutralization of basic or acidic groups attaching to polystyrene resins.

    PubMed

    Ohtani, N; Inoue, Y; Kobayashi, A; Sugawara, T

    1995-10-05

    Crosslinked polystyrene resins containing a low level of either basic or acidic groups were used for supports of alpha-chymotrypsin (CT), which catalyzed the transesterification of N-acetyl-L-phenylalanine ethyl ester (AcPheOEt) with propanol in toluene. With a minimal amount of water, CT was sorbed to the resins, basic or acidic groups of which were partly or fully neutralized by several soluble acids or bases. With an increasing degree of neutralization of basic resins by free acids, the rate of disappearance of AcPheOEt was decreased, whereas the by-product formation of AcPheOH, due to hydrolysis, was considerably suppressed, compared with the ester-exchange product, AcPheOPr. The pK(a) value of the neutralizing acid was also important for both CT activity and reaction selectivity. AcPheOPr was selectively produced at a certain range of pK(a) values. On the other hand, the neutralization of acidic resins with free amines enhanced the CT activity but a strong base promoted the formation of hydrolysis product.

  1. CYP94A1, a plant cytochrome P450-catalyzing fatty acid omega-hydroxylase, is selectively induced by chemical stress in Vicia sativa seedlings.

    PubMed

    Benveniste, Irène; Bronner, Roberte; Wang, Yong; Compagnon, Vincent; Michler, Pierre; Schreiber, Lukas; Salaün, Jean-Pierre; Durst, Francis; Pinot, Franck

    2005-08-01

    CYP94A1 is a cytochrome P450 (P450) catalyzing fatty acid (FA) omega-hydroxylation in Vicia sativa seedlings. To study the physiological role of this FA monooxygenase, we report here on its regulation at the transcriptional level (Northern blot). Transcripts of CYP94A1, as those of two other P450-dependent FA hydroxylases (CYP94A2 and CYP94A3) from V. sativa, are barely detectable during the early development of the seedlings. CYP94A1 transcripts, in contrast to those of the two other isoforms, are rapidly (less than 20 min) and strongly (more than 100 times) enhanced after treatment by clofibrate, an hypolipidemic drug in animals and an antiauxin (p-chlorophenoxyisobutyric acid) in plants, by auxins (2,4-dichlorophenoxyacetic acid and indole-3-acetic acid), by an inactive auxin analog (2,3-dichlorophenoxyacetic acid), and also by salicylic acid. All these compounds activate CYP94A1 transcription only at high concentrations (50-500 microM range). In parallel, these high levels of clofibrate and auxins modify seedling growth and development. Therefore, the expression of CYP94A1 under these conditions and the concomitant morphological and cytological modifications would suggest the implication of this P450 in a process of plant defense against chemical injury.

  2. Enantioselective synthesis of beta-aryl-gamma-amino acid derivatives via Cu-catalyzed asymmetric 1,4-reductions of gamma-phthalimido-substituted alpha,beta-unsaturated carboxylic acid esters.

    PubMed

    Deng, Jun; Hu, Xiang-Ping; Huang, Jia-Di; Yu, Sai-Bo; Wang, Dao-Yong; Duan, Zheng-Chao; Zheng, Zhuo

    2008-08-01

    A series of chiral beta-aryl-substituted gamma-amino butyric acid derivatives were synthesized in good enantioselectivities via the Cu-catalyzed asymmetric conjugate reduction of gamma-phthalimido-alpha,beta-unsaturated carboxylic acid esters using Cu(OAc)2 x H2O as a catalyst precursor, (S)-BINAP as a ligand, PMHS as a hydride source, and t-BuOH as an additive. The methodology has been applied successfully to the enantioselective synthesis of a chiral pharmaceutical, (R)-baclofen.

  3. Molecular mechanisms of the coordination between astaxanthin and fatty acid biosynthesis in Haematococcus pluvialis (Chlorophyceae).

    PubMed

    Chen, Guanqun; Wang, Baobei; Han, Danxiang; Sommerfeld, Milton; Lu, Yinghua; Chen, Feng; Hu, Qiang

    2015-01-01

    Astaxanthin, a red ketocarotenoid with strong antioxidant activity and high commercial value, possesses important physiological functions in astaxanthin-producing microalgae. The green microalga Haematococcus pluvialis accumulates up to 4% fatty acid-esterified astaxanthin (by dry weight), and is used as a model species for exploring astaxanthin biosynthesis in unicellular photosynthetic organisms. Although coordination of astaxanthin and fatty acid biosynthesis in a stoichiometric fashion was observed in H. pluvialis, the interaction mechanism is unclear. Here we dissected the molecular mechanism underlying coordination between the two pathways in H. pluvialis. Our results eliminated possible coordination of this inter-dependence at the transcriptional level, and showed that this interaction was feedback-coordinated at the metabolite level. In vivo and in vitro experiments indicated that astaxanthin esterification drove the formation and accumulation of astaxanthin. We further showed that both free astaxanthin biosynthesis and esterification occurred in the endoplasmic reticulum, and that certain diacylglycerol acyltransferases may be the candidate enzymes catalyzing astaxanthin esterification. A model of astaxanthin biosynthesis in H. pluvialis was subsequently proposed. These findings provide further insights into astaxanthin biosynthesis in H. pluvialis.

  4. Mechanism of cooperative catalysis in a Lewis acid promoted nickel-catalyzed dual C-H activation reaction.

    PubMed

    Anand, Megha; Sunoj, Raghavan B

    2012-09-07

    The mechanism of cooperativity offered by AlMe(3) in a Ni-catalyzed dehydrogenative cycloaddition between substituted formamides and an alkyne is investigated by using DFT(SMD(toluene)/M06/6-31G**) methods. The preferred pathway is identified to involve dual C-H activation, with first a higher barrier formyl C(sp(2))-H oxidative insertion followed by benzylic methyl C(sp(3))-H activation. The cooperativity is traced to be of kinetic origin as evidenced by stabilized transition states when AlMe(3) is bound to the formyl group, particularly in the oxidative insertion step.

  5. Difference analysis of the enzymatic hydrolysis performance of acid-catalyzed steam-exploded corn stover before and after washing with water.

    PubMed

    Zhu, Junjun; Shi, Linli; Zhang, Lingling; Xu, Yong; Yong, Qiang; Ouyang, Jia; Yu, Shiyuan

    2016-10-01

    The difference in the enzymatic hydrolysis yield of acid-catalyzed steam-exploded corn stover (ASC) before and after washing with water reached approximately 15 % under the same conditions. The reasons for the difference in the yield between ASC and washed ASC (wASC) were determined through the analysis of the composition of ASC prehydrolyzate and sugar concentration of enzymatic hydrolyzate. Salts produced by neutralization (CaSO4, Na2SO4, K2SO4, and (NH4)2SO4), sugars (polysaccharides, oligosaccharides, and monosaccharides), sugar-degradation products (weak acids and furans), and lignin-degradation products (ethyl acetate extracts and nine main lignin-degradation products) were back-added to wASC. Results showed that these products, except furans, exerted negative effect on enzymatic hydrolysis. According to the characteristics of acid-catalyzed steam explosion pretreatment, the five sugar-degradation products' mixture and salts [Na2SO4, (NH4)2SO4] showed minimal negative inhibition effect on enzymatic hydrolysis. By contrast, furans demonstrated a promotion effect. Moreover, soluble sugars, such as 13 g/L xylose (decreased by 6.38 %), 5 g/L cellobiose (5.36 %), 10 g/L glucose (3.67 %), as well as lignin-degradation products, and ethyl acetate extracts (4.87 %), exhibited evident inhibition effect on enzymatic hydrolysis. Therefore, removal of soluble sugars and lignin-degradation products could effectively promote the enzymatic hydrolysis performance.

  6. The ATP-binding cassette transporter-2 (ABCA2) regulates esterification of plasma membrane cholesterol by modulation of sphingolipid metabolism.

    PubMed

    Davis, Warren

    2014-01-01

    The ATP-binding cassette transporters are a large family (~48 genes divided into seven families A-G) of proteins that utilize the energy of ATP-hydrolysis to pump substrates across lipid bilayers against a concentration gradient. The ABC "A" subfamily is comprised of 13 members and transport sterols, phospholipids and bile acids. ABCA2 is the most abundant ABC transporter in human and rodent brain with highest expression in oligodendrocytes, although it is also expressed in neurons. Several groups have studied a possible connection between ABCA2 and Alzheimer's disease as well as early atherosclerosis. ABCA2 expression levels have been associated with changes in cholesterol and sphingolipid metabolism. In this paper, we hypothesized that ABCA2 expression level may regulate esterification of plasma membrane-derived cholesterol by modulation of sphingolipid metabolism. ABCA2 overexpression in N2a neuroblastoma cells was associated with an altered bilayer distribution of the sphingolipid ceramide that inhibited acylCoA:cholesterol acyltransferase (ACAT) activity and cholesterol esterification. In contrast, depletion of endogenous ABCA2 in the rat schwannoma cell line D6P2T increased esterification of plasma membrane cholesterol following treatment with exogenous bacterial sphingomyelinase. These findings suggest that control of ABCA2 expression level may be a key locus of regulation for esterification of plasma membrane-derived cholesterol through modulation of sphingolipid metabolism.

  7. Insight into the mechanism of hydrogenation of amino acids to amino alcohols catalyzed by a heterogeneous MoO(x) -modified Rh catalyst.

    PubMed

    Tamura, Masazumi; Tamura, Riku; Takeda, Yasuyuki; Nakagawa, Yoshinao; Tomishige, Keiichi

    2015-02-09

    Hydrogenation of amino acids to amino alcohols is a promising utilization of natural amino acids. We found that MoOx -modified Rh/SiO2 (Rh-MoOx /SiO2 ) is an efficient heterogeneous catalyst for the reaction at low temperature (323 K) and the addition of a small amount of MoOx drastically increases the activity and selectivity. Here, we report the catalytic potential of Rh-MoOx /SiO2 and the results of kinetic and spectroscopic studies to elucidate the reaction mechanism of Rh-MoOx /SiO2 catalyzed hydrogenation of amino acids to amino alcohols. Rh-MoOx /SiO2 is superior to previously reported catalysts in terms of activity and substrate scope. This reaction proceeds by direct formation of an aldehyde intermediate from the carboxylic acid moiety, which is different from the reported reaction mechanism. This mechanism can be attributed to the reactive hydride species and substrate adsorption caused by MoOx modification of Rh metal, which results in high activity, selectivity, and enantioselectivity.

  8. Lipase-catalyzed hydrolysis of TG containing acetylenic FA.

    PubMed

    Jie, Marcel S F Lie Ken; Fua, Xun; Lau, Maureen M L; Chye, M L

    2002-10-01

    Hydrolysis of symmetrical acetylenic TG of type AAA [viz., glycerol tri-(4-decynoate), glycerol tri-(6-octadecynoate), glycerol tri-(9-octadecynoate), glycerol tri-(10-undecynoate), and glycerol tri-(13-docosynoate)] in the presence of eight microbial lipases was studied. Novozyme 435 (Candida antarctica), an efficient enzyme for esterification, showed a significant resistance in the hydrolysis of glycerol tri-(9-octadecynoate) and glycerol tri-(13-docosynoate). Hydrolysis of acetylenic TG with Lipolase 100T (Humicola lanuginosa) was rapidly accomplished. Lipase PS-D (Pseudomonas cepacia) showed a fair resistance toward the hydrolysis of glycerol tri-(6-octadecynoate) only, which reflected its ability to recognize the delta6 positional isomer of 18:1. Lipase CCL (Candida cylindracea, syn. C. rugosa) and AY-30 (C. rugosa) were able to catalyze the release of 10-undecynoic acid and 9-octadecynoic acid from the corresponding TG, but less readily the 13-docosynoic acid in the case of glycerol tri-(13-docosynoate). The two lipases CCL and AY-30 were able to distinguish the small difference in structure of fatty acyl moieties in the TG substrate. To confirm this trend, three regioisomers of mixed acetylenic TG of type ABC (containing one each of delta6, delta9, and delta13 acetylenic FA in various positions) were prepared and hydrolyzed with CCL and AY-40. The results reconfirmed the observation that AY-30 and CCL were able to distinguish the slight differences in the molecular structure (position of the acetylenic bond and chain length) of the acyl groups in the TG during the hydrolysis of such TG substrates.

  9. Unsymmetrical Diarylmethanes by Ferroceniumboronic Acid Catalyzed Direct Friedel-Crafts Reactions with Deactivated Benzylic Alcohols: Enhanced Reactivity due to Ion-Pairing Effects.

    PubMed

    Mo, Xiaobin; Yakiwchuk, Joshua; Dansereau, Julien; McCubbin, J Adam; Hall, Dennis G

    2015-08-05

    The development of general and more atom-economical catalytic processes for Friedel-Crafts alkylations of unactivated arenes is an important objective of interest for the production of pharmaceuticals and commodity chemicals. Ferroceniumboronic acid hexafluoroantimonate salt (1) was identified as a superior air- and moisture-tolerant catalyst for direct Friedel-Crafts alkylations of a variety of slightly activated and neutral arenes with stable and readily available primary and secondary benzylic alcohols. Compared to the use of classical metal-catalyzed alkylations with toxic benzylic halides, this methodology employs exceptionally mild conditions to provide a wide variety of unsymmetrical diarylmethanes and other 1,1-diarylalkane products in high yield with good to high regioselectivity. The optimal method, using the bench-stable ferroceniumboronic acid salt 1 in hexafluoroisopropanol as cosolvent, displays a broader scope compared to previously reported catalysts for similar Friedel-Crafts reactions of benzylic alcohols, including other boronic acids such as 2,3,4,5-tetrafluorophenylboronic acid. The efficacy of the new boronic acid catalyst was confirmed by its ability to activate primary benzylic alcohols functionalized with destabilizing electron-withdrawing groups like halides, carboxyesters, and nitro substituents. Arene benzylation was demonstrated on a gram scale at up to 1 M concentration with catalyst recovery. Mechanistic studies point toward the importance of the ionic nature of the catalyst and suggest that factors other than the Lewis acidity (pKa) of the boronic acid are at play. A SN1 mechanism is proposed where ion exchange within the initial boronate anion affords a more reactive carbocation paired with the non-nucleophilic hexafluoroantimonate counteranion.

  10. Nitrilase-catalyzed production of pyrazinoic acid, an antimycobacterial agent, from cyanopyrazine by resting cells of Rhodococcus rhodochrous J1.

    PubMed

    Kobayashi, M; Yanaka, N; Nagasawa, T; Yamada, H

    1990-10-01

    Using resting cells of Rhodococcus rhodochrous J1, in which a large amount of nitrilase is induced, a simple and efficient bioconversion process for the production of pyrazinoic acid, an antimycobacterial agent, through catalysis by a nitrilase was developed. The reaction conditions for production of pyrazinoic acid were optimized. Under optimum conditions, 3.5 M cyanopyrazine was converted to pyrazinoic acid, with a molar conversion yield of 100%. The highest yield achieved corresponded to 434 g of pyrazinoic acid per liter of reaction mixture. The synthesized pyrazinoic acid was isolated and identified physico-chemically.

  11. Low-quality vegetable oils as feedstock for biodiesel production using K-pumice as solid catalyst. Tolerance of water and free fatty acids contents.

    PubMed

    Díaz, L; Borges, M E

    2012-08-15

    Waste oils are a promising alternative feedstock for biodiesel production due to the decrease of the industrial production costs. However, feedstock with high free fatty acids (FFA) content presents several drawbacks when alkaline-catalyzed transesterification reaction is employed in biodiesel production process. Nowadays, to develop suitable processes capable of treating oils with high free fatty acids content, a two-step process for biodiesel production is being investigated. The major problem that it presents is that two catalysts are needed to carry out the whole process: an acidic catalyst for free fatty acids esterification (first step) and a basic catalyst for pretreated product transesterification (second step). The use of a bifunctional catalyst, which allows both reactions to take place simultaneously, could minimize the production costs and time. In the present study, the behavior of pumice, a natural volcanic material used as a heterogeneous catalyst, was tested using oils with several FFA and water contents as feedstock in the transesterification reaction to produce biodiesel. Pumice as a bifunctional solid catalyst, which can catalyze simultaneously the esterification of FFA and the transesterification of fatty acid glycerides into biodiesel, was shown to be an efficient catalyst for the conversion of low-grade, nonedible oil feedstock into biodiesel product. Using this solid catalyst for the transesterification reaction, high FAME yields were achieved when feedstock oils presented a FFA content until approximately 2% wt/wt and a water content until 2% wt/wt.

  12. Rhodium(III)-Catalyzed ortho C-H Heteroarylation of (Hetero)aromatic Carboxylic Acids: A Rapid and Concise Access to π-Conjugated Poly-heterocycles.

    PubMed

    Qin, Xurong; Li, Xiaoyu; Huang, Quan; Liu, Hu; Wu, Di; Guo, Qiang; Lan, Jingbo; Wang, Ruilin; You, Jingsong

    2015-06-08

    Rh(III)-catalyzed oxidative C-H/C-H cross-coupling between (hetero)aromatic carboxylic acids and various heteroarenes has been accomplished to construct highly functionalized ortho-carboxy-substituted bi(hetero)aryls. The use of a carboxy group as the directing group obviates tedious steps for installation and removal of extra directing groups, and enables a facile one-step synthesis of ortho-carboxy bi(hetero)aryls. The method provides opportunities for rapid assembly of a library of important fluorene and coumarin-type poly-heterocycles through intramolecular electrophilic substitution or oxidative lactonization. As illustrative examples, the strategy developed herein greatly streamlines accesses to a variety of appealing polyheterocycles such as DTPO (5H-dithieno[3,2-b:2',3'-d]pyran-5-one), CPDTO (cyclopentadithiophen-4-one), and indenothiophenes.

  13. Cause analysis of the effects of acid-catalyzed steam-exploded corn stover prehydrolyzate on ethanol fermentation by Pichia stipitis CBS 5776.

    PubMed

    Zhu, Junjun; Yang, Jinlong; Zhu, Yuanyuan; Zhang, Lingling; Yong, Qiang; Xu, Yong; Li, Xin; Yu, Shiyuan

    2014-11-01

    The prehydrolyzate obtained from acid-catalyzed steam-exploded corn stover (ASC) mainly contains xylose and a number of inhibitory compounds that inhibit ethanol fermentation by Pichia stipitis. In this study, the effects of the ASC prehydrolyzate, specifically those of the carbohydrate-degradation products, lignin-degradation products (which were extracted from ASC prehydrolyzate using ethyl acetate), and six major phenolic compounds (added to pure-sugar media individually or in combination), on ethanol fermentation were investigated. Results indicate that the effects of the carbohydrate-degradation products were negligible (10 h delayed) compared with those of pure-sugar fermentation, whereas the effects of the lignin-degradation products were significant (52 h delayed). Meanwhile, the inhibitory effects of the major phenolic compounds were not caused by certain types of inhibitors, but were due to the synergistic effects of various inhibitors.

  14. Remarkable Differences in Reactivity between Benzothiazoline and Hantzsch Ester as a Hydrogen Donor in Chiral Phosphoric Acid Catalyzed Asymmetric Reductive Amination of Ketones.

    PubMed

    Kim, Kyung-Hee; Akiyama, Takahiko; Cheon, Cheol-Hong

    2016-01-01

    Described herein are differences in behavior between a Hantzsch ester and a benzothiazoline as hydrogen donors in the chiral phosphoric acid catalyzed asymmetric reductive amination of ketones with p-anisidine. The asymmetric reductive amination of ketones with a Hantzsch ester as a hydrogen donor provided the corresponding chiral amines exclusively, regardless of the structures of the ketones, whereas a similar transformation with a benzothiazoline provided chiral amines and p-methoxyphenyl-protected primary amines in variable yields, depending on the structures of both the ketones and benzothiazolines. Because a benzothiazoline has an N,S-acetal moiety that is vulnerable to p-anisidine, the primary amine can be formed through transimination of the benzothiazoline with p-anisidine followed by reduction of the resulting aldimine with remaining benzothiazoline.

  15. Hybrid Quantum Mechanics/Molecular Mechanics-Based Molecular Dynamics Simulation of Acid-Catalyzed Dehydration of Polyols in Liquid Water

    SciTech Connect

    Caratzoulas, Stavros; Courtney, Timothy; Vlachos, Dionisios G.

    2011-01-01

    We use the conversion of protonated glycerol to acrolein for a case study of the mechanism of acid-catalyzed dehydration of polyols in aqueous environments. We employ hybrid Quamtum Mechanics/Molecular Mechanics Molecular Dynamics (QM/MM MD) simulations with biased sampling and perform free energy calculations for the elementary steps of the reaction. We investigate the effects of solvent dynamics and in particular the role of quantum mechanical water in the dehydration mechanism. We present results supporting a mechanism that proceeds via water-mediated proton transfers and thus through an enol intermediate. We find that the first dehydration may take place by two, low-energy pathways requiring, respectively, 20.9 and 18.8 kcal/mol of activation free energy. The second dehydration requires 19.9 kcal/mol of activation free energy while for the overall reaction we compute a free energy change of -8 kcal/mol.

  16. Preliminary in vitro evaluation of genistein chemopreventive capacity as a result of esterification and cyclodextrin encapsulation.

    PubMed

    Danciu, Corina; Soica, Codruta; Dehelean, Cristina; Zupko, Istvan; Csanyi, Erzsebet; Pinzaru, Iulia

    2015-01-01

    The present study focuses on the synthesis and analysis of a genistein ester derivative with myristic acid followed by beta cyclodextrin encapsulation; physicochemical analysis using consecrated techniques such as FTIR, MS, DSC, and SEM revealed both a successful esterification and inclusion inside the cyclodextrin cavity. Cytotoxic effects were measured in vitro on three human cell lines: HeLa (cervix adenocarcinoma), A2780 (ovary carcinoma), and A431 (skin epidermoid carcinoma). The in vitro biological analysis exhibited rather poor antiproliferative results on all three tested cancer cell lines, behavior that may be due to the high stability of the complex within the in vitro environment.

  17. Synthesis and characterization of Sn/zeolite and catalytic activity test in the esterification reaction of sludge oil

    NASA Astrophysics Data System (ADS)

    Alimuddin, Andi Hairil; Usman, Thamrin; Wahyuni, Nelly; Rudiyansyah, Prawatya, Yopa Eka; Astar, Ismail; Yustira, Yudi

    2017-03-01

    Synthesis of Sn-Zeolite has been made to use for esterification reaction of free fatty acids in sludge oil. Catalyst characterization was accomplished using X-Ray Diffraction (XRD), X-Ray Flourecence (XRF), and Fourier Transform Infra Red (FTIR). Catalyst Sn/zeolite was synthesized by impregnated Sn of SnCl2 into the zeolite. The amount of Sn impregnated base on the value of cation exchange capacity (CEC) of zeolites. Esterification reaction of fatty acids from sludge oil using Sn/Zeolite catalyst was did by variated the reaction time. XRD analysis results showed that the catalyst Sn/zeolite was dominated by modernit and quartz. XRF analysis results was increasing amount of Sn metal and the Si/Al ratio on Sn/zeolite catalyst along with addition of Sn metal. FTIR analysis results showed that the catalyst synthesized had Bronsted acid side (the spectrum 1639.4; 1656.7; 1654.8 cm-1) and the Lewis acid (spectrum 1400.2 and 1402.2 cm-1). The results showed that the optimum conditions of esterification reaction in 4 hours reaction time, 5% concentration of the catalyst, and molar ratio was about 1:10 with a conversion percentage of products reached 96.00%, which can be achieved with a ratio was about 4:1 between Sn and zeolite on Sn/zeolite catalyst.

  18. Conversion of nicotinic acid to trigonelline is catalyzed by N-methyltransferase belonged to motif B′ methyltransferase family in Coffea arabica

    SciTech Connect

    Mizuno, Kouichi; Matsuzaki, Masahiro; Kanazawa, Shiho; Tokiwano, Tetsuo; Yoshizawa, Yuko; Kato, Misako

    2014-10-03

    Graphical abstract: Trigonelline synthase catalyzes the conversion of nicotinic acid to trigonelline. We isolated and characterized trigonelline synthase gene(s) from Coffea arabica. - Highlights: • Trigonelline is a major compound in coffee been same as caffeine is. • We isolated and characterized trigonelline synthase gene. • Coffee trigonelline synthases are highly homologous with coffee caffeine synthases. • This study contributes the fully understanding of pyridine alkaloid metabolism. - Abstract: Trigonelline (N-methylnicotinate), a member of the pyridine alkaloids, accumulates in coffee beans along with caffeine. The biosynthetic pathway of trigonelline is not fully elucidated. While it is quite likely that the production of trigonelline from nicotinate is catalyzed by N-methyltransferase, as is caffeine synthase (CS), the enzyme(s) and gene(s) involved in N-methylation have not yet been characterized. It should be noted that, similar to caffeine, trigonelline accumulation is initiated during the development of coffee fruits. Interestingly, the expression profiles for two genes homologous to caffeine synthases were similar to the accumulation profile of trigonelline. We presumed that these two CS-homologous genes encoded trigonelline synthases. These genes were then expressed in Escherichiacoli, and the resulting recombinant enzymes that were obtained were characterized. Consequently, using the N-methyltransferase assay with S-adenosyl[methyl-{sup 14}C]methionine, it was confirmed that these recombinant enzymes catalyzed the conversion of nicotinate to trigonelline, coffee trigonelline synthases (termed CTgS1 and CTgS2) were highly identical (over 95% identity) to each other. The sequence homology between the CTgSs and coffee CCS1 was 82%. The pH-dependent activity curve of CTgS1 and CTgS2 revealed optimum activity at pH 7.5. Nicotinate was the specific methyl acceptor for CTgSs, and no activity was detected with any other nicotinate derivatives, or

  19. Ruthenium-catalyzed alkylation of indoles with tertiary amines by oxidation of a sp3 C-H bond and Lewis acid catalysis.

    PubMed

    Wang, Ming-Zhong; Zhou, Cong-Ying; Wong, Man-Kin; Che, Chi-Ming

    2010-05-17

    Ruthenium porphyrins (particularly [Ru(2,6-Cl(2)tpp)CO]; tpp=tetraphenylporphinato) and RuCl(3) can act as oxidation and/or Lewis acid catalysts for direct C-3 alkylation of indoles, giving the desired products in high yields (up to 82% based on 60-95% substrate conversions). These ruthenium compounds catalyze oxidative coupling reactions of a wide variety of anilines and indoles bearing electron-withdrawing or electron-donating substituents with high regioselectivity when using tBuOOH as an oxidant, resulting in the alkylation of N-arylindoles to 3-{[(N-aryl-N-alkyl)amino]methyl}indoles (yield: up to 82%, conversion: up to 95%) and the alkylation of N-alkyl or N-H indoles to 3-[p-(dialkylamino)benzyl]indoles (yield: up to 73%, conversion: up to 92%). A tentative reaction mechanism involving two pathways is proposed: an iminium ion intermediate may be generated by oxidation of an sp(3) C-H bond of the alkylated aniline by an oxoruthenium species; this iminium ion could then either be trapped by an N-arylindole (pathway A) or converted to formaldehyde, allowing a subsequent three-component coupling reaction of the in situ generated formaldehyde with an N-alkylindole and an aniline in the presence of a Lewis acid catalyst (pathway B). The results of deuterium-labeling experiments are consistent with the alkylation of N-alkylindoles via pathway B. The relative reaction rates of [Ru(2,6-Cl(2)tpp)CO]-catalyzed oxidative coupling reactions of 4-X-substituted N,N-dimethylanilines with N-phenylindole (using tBuOOH as oxidant), determined through competition experiments, correlate linearly with the substituent constants sigma (R(2)=0.989), giving a rho value of -1.09. This rho value and the magnitudes of the intra- and intermolecular deuterium isotope effects (k(H)/k(D)) suggest that electron transfer most likely occurs during the initial stage of the oxidation of 4-X-substituted N,N-dimethylanilines. Ruthenium-catalyzed three-component reaction of N-alkyl/N-H indoles

  20. Membrane-bound sugar alcohol dehydrogenase in acetic acid bacteria catalyzes L-ribulose formation and NAD-dependent ribitol dehydrogenase is independent of the oxidative fermentation.

    PubMed

    Adachi, O; Fujii, Y; Ano, Y; Moonmangmee, D; Toyama, H; Shinagawa, E; Theeragool, G; Lotong, N; Matsushita, K

    2001-01-01

    To identify the enzyme responsible for pentitol oxidation by acetic acid bacteria, two different ribitol oxidizing enzymes, one in the cytosolic fraction of NAD(P)-dependent and the other in the membrane fraction of NAD(P)-independent enzymes, were examined with respect to oxidative fermentation. The cytoplasmic NAD-dependent ribitol dehydrogenase (EC 1.1.1.56) was crystallized from Gluconobacter suboxydans IFO 12528 and found to be an enzyme having 100 kDa of molecular mass and 5 s as the sedimentation constant, composed of four identical subunits of 25 kDa. The enzyme catalyzed a shuttle reversible oxidoreduction between ribitol and D-ribulose in the presence of NAD and NADH, respectively. Xylitol and L-arabitol were well oxidized by the enzyme with reaction rates comparable to ribitol oxidation. D-Ribulose, L-ribulose, and L-xylulose were well reduced by the enzyme in the presence of NADH as cosubstrates. The optimum pH of pentitol oxidation was found at alkaline pH such as 9.5-10.5 and ketopentose reduction was found at pH 6.0. NAD-Dependent ribitol dehydrogenase seemed to be specific to oxidoreduction between pentitols and ketopentoses and D-sorbitol and D-mannitol were not oxidized by this enzyme. However, no D-ribulose accumulation was observed outside the cells during the growth of the organism on ribitol. L-Ribulose was accumulated in the culture medium instead, as the direct oxidation product catalyzed by a membrane-bound NAD(P)-independent ribitol dehydrogenase. Thus, the physiological role of NAD-dependent ribitol dehydrogenase was accounted to catalyze ribitol oxidation to D-ribulose in cytoplasm, taking D-ribulose to the pentose phosphate pathway after being phosphorylated. L-Ribulose outside the cells would be incorporated into the cytoplasm in several ways when need for carbon and energy sources made it necessary to use L-ribulose for their survival. From a series of simple experiments, membrane-bound sugar alcohol dehydrogenase was concluded to be