Science.gov

Sample records for acid catalyzed hydrolysis

  1. Hydrolysis of cellulose catalyzed by novel acidic ionic liquids.

    PubMed

    Zhuo, Kelei; Du, Quanzhou; Bai, Guangyue; Wang, Congyue; Chen, Yujuan; Wang, Jianji

    2015-01-22

    The conversion of cellulosic biomass directly into valuable chemicals becomes a hot subject. Six novel acidic ionic liquids (ILs) based on 2-phenyl-2-imidazoline were synthesized and characterized by UV-VIS, TGA, and NMR. The novel acidic ionic liquids were investigated as catalysts for the hydrolysis of cellulose in 1-butyl-3-methylimidazolium chloride ([Bmim]Cl). The acidic ionic liquids with anions HSO4(-) and Cl(-) showed better catalytic performance for the hydrolysis of cellulose than those with H2PO4(-). The temperature and dosage of water affect significantly the yield of total reducing sugar (TRS). When the hydrolysis of cellulose was catalyzed by 1-propyl sulfonic acid-2-phenyl imidazoline hydrogensulfate (IL-1) and the dosage of water was 0.2g, the TRS yield was up to 85.1% within 60 min at 100°C. These new acidic ionic liquids catalysts are expected to have a wide application in the conversion of cellulose into valuable chemicals. PMID:25439867

  2. ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS. II. ACID AND GENERAL BASE CATALYZED HYDROLYSIS

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate acid and neutral hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition states of a ...

  3. Nitric acid catalyzed hydrolysis of SO3 in the formation of sulfuric acid: A theoretical study

    NASA Astrophysics Data System (ADS)

    Long, Bo; Chang, Chun-Ran; Long, Zheng-Wen; Wang, Yi-Bo; Tan, Xing-Feng; Zhang, Wei-Jun

    2013-08-01

    The gas-phase hydrolysis of SO3 in the presence of one water molecule, two water molecules, and nitric acid is investigated utilizing high level quantum chemical methods and transition state theory. The calculated results demonstrate that nitric acid exerts a strong catalytic role in the hydrolysis of SO3 because the activated barrier of hydrolysis of SO3 with the assistance of nitric acid is reduced to about 3.7 kcal/mol, which is about 20 kcal/mol lower than that of the SO3 reaction with water relative to the respective pre-reactive complex.

  4. Kinetics and mechanism of the acid-catalyzed hydrolysis of a hypermodified nucleoside wyosine and its 5'-monophosphate.

    PubMed Central

    Golankiewicz, B; Zielonacka-Lis, E; Folkman, W

    1985-01-01

    The rates of acid-catalyzed hydrolysis of a hypermodified nucleoside, wyosine and its 5'-monophosphate were determined at various pH, temperature and buffer concentrations. The results show that despite distinct differences in structure and the glycosyl bond stability, the hydrolysis of wyosine proceeds via cleavage of the C-N bond by A-1 mechanism, analogously to simple nucleosides. Unlike majority of other monophosphates studied so far, wyosine 5'-monophosphate is not more stable than respective nucleoside. PMID:4000960

  5. beta-Lactamase-catalyzed hydrolysis of acyclic depsipeptides and acyl transfer to specific amino acid acceptors.

    PubMed Central

    Pratt, R F; Govardhan, C P

    1984-01-01

    beta-Lactamases from all three classes, A, B, and C, catalyze the hydrolysis of specific acyclic depsipeptide (PhCH2CONHCR1R2CO2CHR3CO2H) analogs of acyl-D-alanyl-D-alanine peptides. The depsipeptides investigated, which are chemically as reactive toward nucleophiles as penicillins, are in general poor substrates, although differences between the classes of beta-lactamases have been observed: the order of effectiveness seems to be C greater than B greater than A. Certain class A and C beta-lactamases also catalyze phenylacetylglycyl transfer between phenylacetylglycyl depsipeptides and specific amino acid acceptors, a type of reaction hitherto identified more closely with D-alanyl-D-alanine transpeptidases than with beta-lactamases. Preliminary indications of an acyl-enzyme intermediate in these reactions have been obtained. These results support the suggestion [Tipper, D.J. and Strominger, J.L. (1965) Proc. Natl. Acad. Sci. USA 54, 1133-1141] that beta-lactamases are evolutionary descendants of bacterial cell wall D-alanyl-D-alanine transpeptidases. PMID:6424114

  6. Potential of phosphoric acid-catalyzed pretreatment and subsequent enzymatic hydrolysis for biosugar production from Gracilaria verrucosa.

    PubMed

    Kwon, Oh-Min; Kim, Sung-Koo; Jeong, Gwi-Taek

    2016-07-01

    This study combined phosphoric acid-catalyzed pretreatment and enzymatic hydrolysis to produce biosugars from Gracilaria verrucosa as a potential renewable resource for bioenergy applications. We optimized phosphoric acid-catalyzed pretreatment conditions to 1:10 solid-to-liquid ratio, 1.5 % phosphoric acid, 140 °C, and 60 min reaction time, producing a 32.52 ± 0.06 % total reducing sugar (TRS) yield. By subsequent enzymatic hydrolysis, a 68.61 ± 0.90 % TRS yield was achieved. These results demonstrate the potential of phosphoric acid to produce biosugars for biofuel and biochemical production applications. PMID:27003825

  7. The Acid Hydrolysis Mechanism of Acetals Catalyzed by a Supramolecular Assembly in Basic Solution

    SciTech Connect

    Pluth, Michael D.; Bergman, Robert G.; Raymond, Kenneth N.

    2008-09-24

    A self-assembled supramolecular host catalyzes the hydrolysis of acetals in basic aqueous solution. The mechanism of hydrolysis is consistent with the Michaelis-Menten kinetic model. Further investigation of the rate limiting step of the reaction revealed a negative entropy of activation ({Delta}S{double_dagger} = -9 cal mol{sup -1}K{sup -1}) and an inverse solvent isotope effect (k(H{sub 2}O)/k(D{sub 2}O) = 0.62). These data suggest that the mechanism of hydrolysis that takes place inside the assembly proceeds through an A-2 mechanism, in contrast to the A-1 mechanism operating in the uncatalyzed reaction. Comparison of the rates of acetal hydrolysis in the assembly with the rate of the reaction of unencapsulated substrates reveals rate accelerations of up to 980 over the background reaction for the substrate diethoxymethane.

  8. Investigation of the complex reaction coordinate of acid catalyzed amide hydrolysis from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Zahn, Dirk

    2004-05-01

    The rate-determining step of acid catalyzed peptide hydrolysis is the nucleophilic attack of a water molecule to the carbon atom of the amide group. Therein the addition of the hydroxyl group to the amide carbon atom involves the association of a water molecule transferring one of its protons to an adjacent water molecule. The protonation of the amide nitrogen atom follows as a separate reaction step. Since the nucleophilic attack involves the breaking and formation of several bonds, the underlying reaction coordinate is rather complex. We investigate this reaction step from path sampling Car-Parrinello molecular dynamics simulations. This approach does not require the predefinition of reaction coordinates and is thus particularly suited for investigating reaction mechanisms. From our simulations the most relevant components of the reaction coordinate are elaborated. Though the C⋯O distance of the oxygen atom of the water molecule performing the nucleophilic attack and the corresponding amide carbon atom is a descriptor of the reaction progress, a complete picture of the reaction coordinate must include all three molecules taking part in the reaction. Moreover, the proton transfer is found to depend on favorable solvent configurations. Thus, also the arrangement of non-reacting, i.e. solvent water molecules needs to be considered in the reaction coordinate.

  9. Activation Energies for an Enzyme-Catalyzed and Acid-Catalyzed Hydrolysis: An Introductory Interdisciplinary Experiment for Chemists and Biochemists.

    ERIC Educational Resources Information Center

    Adams, K. R.; Meyers, M. B.

    1985-01-01

    Background information, procedures used, and typical results obtained are provided for an experiment in which students determine and compare the Arrhenius activation energies (Ea) for the hydrolysis of salicin. This reaction is subject to catalysis both by acid and by the enzyme emulsin (beta-d-glucoside glycohydrolase). (JN)

  10. Acid-catalyzed hydrolysis of BMS-582664: degradation product identification and mechanism elucidation.

    PubMed

    Zhao, Fang; Derbin, George; Miller, Scott; Badawy, Sherif; Hussain, Munir

    2012-09-01

    BMS-582664 is an investigational drug intended for cancer treatment through oral administration. The preformulation studies revealed two unexpected degradation products under acidic conditions by reversed-phase high-performance liquid chromatography with ultraviolet detection. Additional liquid chromatography-mass spectrometry results suggested that these were cleavage (hydrolysis) products of a diaryl ether. To further understand the degradation mechanism, the reaction was carried out in (18) O-labeled water. The (18) O was found to be incorporated in only one of the two hydrolysis products. The results suggest that the corresponding α carbon in the heterocycle was unusually eletrophilic in acidic conditions probably because of the protonation of the neighboring nitrogen. This led to the selective attack by water and the consequent hydrolysis products. The study provides a new example of hydrolytic degradation of pharmaceutical compounds, and the reaction center is an aromatic heterocyclic carbon with an aryloxy substitution. PMID:22189636

  11. Determination of DNA adducts by combining acid-catalyzed hydrolysis and chromatographic analysis of the carcinogen-modified nucleobases.

    PubMed

    Leung, Elvis M K; Deng, Kailin; Wong, Tin-Yan; Chan, Wan

    2016-01-01

    The commonly used method of analyzing carcinogen-induced DNA adducts involves the hydrolysis of carcinogen-modified DNA samples by using a mixture of enzymes, followed by (32)P-postlabeling or liquid chromatography (LC)-based analyses of carcinogen-modified mononucleotides/nucleosides. In the present study, we report the development and application of a new approach to DNA adduct analysis by combining the H(+)/heat-catalyzed release of carcinogen-modified nucleobases and the use of LC-based methods to analyze DNA adducts. Results showed that heating the carcinogen-modified DNA samples at 70 °C for an extended period of 4 to 6 h in the presence of 0.05% HCl can efficiently induce DNA depurination, releasing the intact carcinogen-modified nucleobases for LC analyses. After optimizing the hydrolysis conditions, DNA samples with C8- and N (2) -modified 2'-deoxyguanosine, as well as N (6) -modified 2'-deoxyadenosine, were synthesized by reacting DNA with 1-nitropyrene, acetaldehyde, and aristolochic acids, respectively. These samples were then hydrolyzed, and the released nucleobase adducts were analyzed using LC-based analytical methods. Analysis results demonstrated a dose-dependent release of target DNA adducts from carcinogen-modified DNA samples, indicating that the developed H(+)/heat-catalyzed hydrolysis method was quantitative. Comparative studies with enzymatic digestion method on carcinogen-modified DNA samples revealed that the two hydrolysis methods did not yield systematically different results. PMID:26581621

  12. Hydrolysis of Selected Tropical Plant Wastes Catalyzed by a Magnetic Carbonaceous Acid with Microwave.

    PubMed

    Su, Tong-Chao; Fang, Zhen; Zhang, Fan; Luo, Jia; Li, Xing-Kang

    2015-01-01

    In this study, magnetic carbonaceous acids were synthesized by pyrolysis of the homogeneous mixtures of glucose and magnetic Fe3O4 nanoparticles, and subsequent sulfonation. The synthesis conditions were optimized to obtain a catalyst with both high acid density (0.75 mmol g(-1)) and strong magnetism [magnetic saturation, Ms = 19.5 Am(2) kg(-1)]. The screened catalyst (C-SO3H/Fe3O4) was used to hydrolyze ball-milled cellulose in a microwave reactor with total reducing sugar (TRS) yield of 25.3% under the best conditions at 190 °C for 3.5 h. It was cycled for at least seven times with high catalyst recovery rate (92.8%), acid density (0.63 mmol g(-1)) and magnetism (Ms = 12.9 Am(2) kg(-1)), as well as high TRS yield (20.1%) from the hydrolysis of ball-milled cellulose. The catalyst was further successfully tested for the hydrolysis of tropical biomass with high TRS and glucose yields of 79.8% and 58.3% for bagasse, 47.2% and 35.6% for Jatropha hulls, as well as 54.4% and 35.8% for Plukenetia hulls. PMID:26648414

  13. Hydrolysis of Selected Tropical Plant Wastes Catalyzed by a Magnetic Carbonaceous Acid with Microwave

    NASA Astrophysics Data System (ADS)

    Su, Tong-Chao; Fang, Zhen; Zhang, Fan; Luo, Jia; Li, Xing-Kang

    2015-12-01

    In this study, magnetic carbonaceous acids were synthesized by pyrolysis of the homogeneous mixtures of glucose and magnetic Fe3O4 nanoparticles, and subsequent sulfonation. The synthesis conditions were optimized to obtain a catalyst with both high acid density (0.75 mmol g-1) and strong magnetism [magnetic saturation, Ms = 19.5 Am2 kg-1]. The screened catalyst (C-SO3H/Fe3O4) was used to hydrolyze ball-milled cellulose in a microwave reactor with total reducing sugar (TRS) yield of 25.3% under the best conditions at 190 °C for 3.5 h. It was cycled for at least seven times with high catalyst recovery rate (92.8%), acid density (0.63 mmol g-1) and magnetism (Ms = 12.9 Am2 kg-1), as well as high TRS yield (20.1%) from the hydrolysis of ball-milled cellulose. The catalyst was further successfully tested for the hydrolysis of tropical biomass with high TRS and glucose yields of 79.8% and 58.3% for bagasse, 47.2% and 35.6% for Jatropha hulls, as well as 54.4% and 35.8% for Plukenetia hulls.

  14. Hydrolysis of Selected Tropical Plant Wastes Catalyzed by a Magnetic Carbonaceous Acid with Microwave

    PubMed Central

    Su, Tong-Chao; Fang, Zhen; Zhang, Fan; Luo, Jia; Li, Xing-Kang

    2015-01-01

    In this study, magnetic carbonaceous acids were synthesized by pyrolysis of the homogeneous mixtures of glucose and magnetic Fe3O4 nanoparticles, and subsequent sulfonation. The synthesis conditions were optimized to obtain a catalyst with both high acid density (0.75 mmol g−1) and strong magnetism [magnetic saturation, Ms = 19.5 Am2 kg−1]. The screened catalyst (C-SO3H/Fe3O4) was used to hydrolyze ball-milled cellulose in a microwave reactor with total reducing sugar (TRS) yield of 25.3% under the best conditions at 190 °C for 3.5 h. It was cycled for at least seven times with high catalyst recovery rate (92.8%), acid density (0.63 mmol g−1) and magnetism (Ms = 12.9 Am2 kg−1), as well as high TRS yield (20.1%) from the hydrolysis of ball-milled cellulose. The catalyst was further successfully tested for the hydrolysis of tropical biomass with high TRS and glucose yields of 79.8% and 58.3% for bagasse, 47.2% and 35.6% for Jatropha hulls, as well as 54.4% and 35.8% for Plukenetia hulls. PMID:26648414

  15. Inhibitory activity of thermal copolymers of amino acids for the metal-catalyzed hydrolysis of an RNA dinucleotide

    NASA Astrophysics Data System (ADS)

    Kawamura, Kunio; Nagahama, Minoru; Yao, Toshio

    2006-01-01

    It is well known that the hydrolysis of RNA is substantially catalyzed by several metal ions. Although this fact poses a problem for the RNA world hypothesis, there may have been unknown pathways for the protection of RNA molecules against the hydrolytic degradation under the primitive earth conditions. Thus, we have investigated whether or not thermal copolymers of amino acids (TCAA) inhibit the catalytic activity of metal ions for the RNA hydrolyses; TCAA is a suitable model material for prebiotic protein-like molecules since TCAA involving peptide bonding is readily prepared by heating amino acid mixtures under prebiotic conditions. The activities of metal ions that Fe(III) and Co(II) enhance somewhat the 3',5'-cytidylylguanosine (CpG) hydrolysis and Ce(III) and Eu(III) accelerate greatly the CpG hydrolysis were notably reduced by TCAA. This fact indicates that protein-like molecules would have played important roles for the accumulation of RNA under the primitive earth conditions.

  16. Pitfalls in protein quantitation using acid-catalyzed O18 labeling: hydrolysis-driven deamidation

    PubMed Central

    Wang, Shunhai; Bobst, Cedric E.; Kaltashov, Igor A.

    2011-01-01

    Proteolysis combined with O18 labeling emerged recently as a powerful tool for quantitation of proteins for which suitable internal standards cannot be produced using molecular biology methods. Several recent reports suggested that acid-catalyzed O18 labeling may be superior to the commonly accepted enzymatic protocol, as it may allow more significant spacing between the isotopic clusters of labeled and unlabeled peptides, thereby eliminating signal interference and enhancing the quality of quantitation. However, careful examination of this procedure reveals that the results of protein quantitation assisted by acid-catalyzed O18 labeling are highly peptide-dependent. The inconsistency was found to be caused by deamidation of Asn, Gln and carbamidomethylated Cys residues during prolonged exposure of the proteolytic fragments to the acidic environment of the labeling reaction, which translates into a loss in signal for theses peptides. Taking deamidation into account leads to a significant improvement in the consistency of quantitation across a range of different proteolytic fragments. PMID:21819098

  17. Hydrolysis of ketene catalyzed by formic acid: modification of reaction mechanism, energetics, and kinetics with organic acid catalysis.

    PubMed

    Louie, Matthew K; Francisco, Joseph S; Verdicchio, Marco; Klippenstein, Stephen J; Sinha, Amitabha

    2015-05-14

    The hydrolysis of ketene (H2C═C═O) to form acetic acid involving two water molecules and also separately in the presence of one to two water molecules and formic acid (FA) was investigated. Our results show that, while the currently accepted indirect mechanism, involving addition of water across the carbonyl C═O bond of ketene to form an ene-diol followed by tautomerization of the ene-diol to form acetic acid, is the preferred pathway when water alone is present, with formic acid as catalyst, addition of water across the ketene C═C double bond to directly produce acetic acid becomes the kinetically favored pathway for temperatures below 400 K. We find not only that the overall barrier for ketene hydrolysis involving one water molecule and formic acid (H2C2O + H2O + FA) is significantly lower than that involving two water molecules (H2C2O + 2H2O) but also that FA is able to reduce the barrier height for the direct path, involving addition of water across the C═C double bond, so that it is essentially identical with (6.4 kcal/mol) that for the indirect ene-diol formation path involving addition of water across the C═O bond. For the case of ketene hydrolysis involving two water molecules and formic acid (H2C2O + 2H2O + FA), the barrier for the direct addition of water across the C═C double bond is reduced even further and is 2.5 kcal/mol lower relative to the ene-diol path involving addition of water across the C═O bond. In fact, the hydrolysis barrier for the H2C2O + 2H2O + FA reaction through the direct path is sufficiently low (2.5 kcal/mol) for it to be an energetically accessible pathway for acetic acid formation under atmospheric conditions. Given the structural similarity between acetic and formic acid, our results also have potential implications for aqueous-phase chemistry. Thus, in an aqueous environment, even in the absence of formic acid, though the initial mechanism for ketene hydrolysis is expected to involve addition of water across the

  18. {beta}-Secondary and solvent deuterium kinetic isotope effects and the mechanisms of base- and acid-catalyzed hydrolysis of penicillanic acid

    SciTech Connect

    Deraniyagala, S.A.; Adediran, S.A.; Pratt, R.F.

    1995-03-24

    {beta}-Secondary and solvent deuterium kinetic isotope effects have been determined at 25 {degrees}C for the alkaline and acid-catalyzed hydrolysis of penicillanic acid. In order to determine the former isotope effect, [6,6-{sup 2}H{sub 2}]dideuteriopenicillanic acid has been synthesized. In alkaline solution, the former isotope effect was found to be 0.95 {plus_minus} 0.01. These values support the B{sub AC}2 mechanism of hydrolysis with rate-determining formation of the tetrahedral intermediate that has been proposed for other {beta}-lactams. The measured {beta}-secondary kinetic isotope for the acid-catalyzed reaction was 1.00 {plus_minus} 0.01. The data indicates that a likely pathway of acid-catalyzed hydrolysis would be that of an A{sub AC}1 mechanism with an intermediate acylium ion. If this were so, the calculated {beta}-secondary isotope effect per hydrogen coplanar with the breaking C-N bond and corrected for the inductive effect of deuterium would be 1.06 {plus_minus} 0.01. This suggests an early A{sub AC}1 transition state, which would be reasonable in this case because of destabilization of the N-protonated amide with respect to the acylium ion because of ring strain. The absence of specific participation by solvent in the transition state, as would be expected of an A{sub AC}1 but not an associative mechanism, is supported by the strongly inverse solvent deuterium kinetic isotope effect of 0.25 {plus_minus} 0.00 in 1 M HCl and 0.22 {plus_minus} 0.01 in 33.3 wt % H{sub 2}SO{sub 4}. 1 fig., 3 tabs.

  19. Acceleration of Acid-Catalyzed Hydrolysis in a Biphasic System by Sodium Tetracyanocyclopentadienides.

    PubMed

    Sakai, Takeo; Bito, Mariko; Itakura, Makoto; Sato, Honami; Mori, Yuji

    2016-01-01

    The hydrolysis of tert-butyldimethylsilyl L-menthyl ether (3) in a CH2Cl2-1 M HCl biphasic solvent system was accelerated by the addition of sodium tetracyanocyclopentadienides 1. Particularly, the reaction rate was enhanced using sodium salt 1a-c with a lipophilic substituent on the cyclopentadienide ring. From the results obtained by a triphasic experiment, hydrolysis proceeds via the formation of hydronium ion 2 in the aqueous phase by ion exchange, followed by the transfer of 2 to the CH2Cl2 phase. PMID:27373648

  20. Molecular mechanism of acid-catalyzed hydrolysis of peptide bonds using a model compound.

    PubMed

    Pan, Bin; Ricci, Margaret S; Trout, Bernhardt L

    2010-04-01

    The stability of peptide bonds is a critical aspect of biological chemistry and therapeutic protein applications. Recent studies found elevated nonenzymatic hydrolysis in the hinge region of antibody molecules, but no mechanism was identified. As a first step in providing a mechanistic interpretation, this computational study examines the rate-determining step of the hydrolytic reaction of a peptide bond under acidic pH by a path sampling technique using a model compound N-MAA. Most previous computational studies did not include explicit water molecules, whose effects are significant in solution chemistry, nor did they provide a dynamic picture for the reaction process in aqueous conditions. Because no single trajectory can be used to describe the reaction dynamics due to fluctuations at finite temperatures, a variant version of the transition path sampling technique, the aimless shooting algorithm, was used to sample dynamic trajectories and to generate an ensemble of transition trajectories according to their statistical weights in the trajectory space. Each trajectory was computed as the time evolution of the molecular system using the Car-Parrinello molecular dynamics technique. The likelihood maximization procedure and its modification were used in extracting dynamically relevant degrees of freedom in the system, and approximations of the reaction coordinate were compared. Its low log-likelihood score and poor p(B) histogram indicate that the C-O distance previously assumed as the reaction coordinate for the rate-determining step is inadequate in describing the dynamics of the reaction. More than one order parameter in a candidate set including millions of geometric quantities was required to produce a convergent reaction coordinate model; its involvement of many degrees of freedom suggests that this hydrolytic reaction step is very complex. In addition to affecting atoms directly involved in bond-making and -breaking processes, the water network also has

  1. Thioglycoside hydrolysis catalyzed by {beta}-glucosidase

    SciTech Connect

    Shen Hong; Byers, Larry D.

    2007-10-26

    Sweet almond {beta}-glucosidase (EC 3.2.1.21) has been shown to have significant thioglycohydrolase activity. While the K{sub m} values for the S- and O-glycosides are similar, the k{sub cat} values are about 1000-times lower for the S-glycosides. Remarkably, the pH-profile for k{sub cat}/K{sub m} for hydrolysis of p-nitrophenyl thioglucoside (pNPSG) shows the identical dependence on a deprotonated carboxylate (pK{sub a} 4.5) and a protonated group (pK{sub a} 6.7) as does the pH-profile for hydrolysis of the corresponding O-glycoside. Not surprisingly, in spite of the requirement for the presence of this protonated group in catalytically active {beta}-glucosidase, thioglucoside hydrolysis does not involve general acid catalysis. There is no solvent kinetic isotope effect on the enzyme-catalyzed hydrolysis of pNPSG.

  2. Correction: Acid-catalyzed carboxylic acid esterification and ester hydrolysis mechanism: acylium ion as a sharing active intermediate via a spontaneous trimolecular reaction based on density functional theory calculation and supported by electrospray ionization-mass spectrometry.

    PubMed

    Shi, Hongchang; Wang, Yilei; Hua, Ruimao

    2015-12-28

    Correction for 'Acid-catalyzed carboxylic acid esterification and ester hydrolysis mechanism: acylium ion as a sharing active intermediate via a spontaneous trimolecular reaction based on density functional theory calculation and supported by electrospray ionization-mass spectrometry' by Hongchang Shi et al., Phys. Chem. Chem. Phys., 2015, DOI: 10.1039/c5cp02914g. PMID:26583937

  3. Imidase catalyzing desymmetric imide hydrolysis forming optically active 3-substituted glutaric acid monoamides for the synthesis of gamma-aminobutyric acid (GABA) analogs.

    PubMed

    Nojiri, Masutoshi; Hibi, Makoto; Shizawa, Hiroaki; Horinouchi, Nobuyuki; Yasohara, Yoshihiko; Takahashi, Satomi; Ogawa, Jun

    2015-12-01

    The recent use of optically active 3-substituted gamma-aminobutyric acid (GABA) analogs in human therapeutics has identified a need for an efficient, stereoselective method of their synthesis. Here, bacterial strains were screened for enzymes capable of stereospecific hydrolysis of 3-substituted glutarimides to generate (R)-3-substituted glutaric acid monoamides. The bacteria Alcaligenes faecalis NBRC13111 and Burkholderia phytofirmans DSM17436 were discovered to hydrolyze 3-(4-chlorophenyl) glutarimide (CGI) to (R)-3-(4-chlorophenyl) glutaric acid monoamide (CGM) with 98.1% enantiomeric excess (e.e.) and 97.5% e.e., respectively. B. phytofirmans DSM17436 could also hydrolyze 3-isobutyl glutarimide (IBI) to produce (R)-3-isobutyl glutaric acid monoamide (IBM) with 94.9% e.e. BpIH, an imidase, was purified from B. phytofirmans DSM17436 and found to generate (R)-CGM from CGI with specific activity of 0.95 U/mg. The amino acid sequence of BpIH had a 75% sequence identity to that of allantoinase from A. faecalis NBRC13111 (AfIH). The purified recombinant BpIH and AfIH catalyzed (R)-selective hydrolysis of CGI and IBI. In addition, a preliminary investigation of the enzymatic properties of BpIH and AfIH revealed that both enzymes were stable in the range of pH 6-10, with an optimal pH of 9.0, stable at temperatures below 40 °C, and were not metalloproteins. These results indicate that the use of this class of hydrolase to generate optically active 3-substituted glutaric acid monoamide could simplify the production of specific chiral GABA analogs for drug therapeutics. PMID:26205522

  4. Difference analysis of the enzymatic hydrolysis performance of acid-catalyzed steam-exploded corn stover before and after washing with water.

    PubMed

    Zhu, Junjun; Shi, Linli; Zhang, Lingling; Xu, Yong; Yong, Qiang; Ouyang, Jia; Yu, Shiyuan

    2016-10-01

    The difference in the enzymatic hydrolysis yield of acid-catalyzed steam-exploded corn stover (ASC) before and after washing with water reached approximately 15 % under the same conditions. The reasons for the difference in the yield between ASC and washed ASC (wASC) were determined through the analysis of the composition of ASC prehydrolyzate and sugar concentration of enzymatic hydrolyzate. Salts produced by neutralization (CaSO4, Na2SO4, K2SO4, and (NH4)2SO4), sugars (polysaccharides, oligosaccharides, and monosaccharides), sugar-degradation products (weak acids and furans), and lignin-degradation products (ethyl acetate extracts and nine main lignin-degradation products) were back-added to wASC. Results showed that these products, except furans, exerted negative effect on enzymatic hydrolysis. According to the characteristics of acid-catalyzed steam explosion pretreatment, the five sugar-degradation products' mixture and salts [Na2SO4, (NH4)2SO4] showed minimal negative inhibition effect on enzymatic hydrolysis. By contrast, furans demonstrated a promotion effect. Moreover, soluble sugars, such as 13 g/L xylose (decreased by 6.38 %), 5 g/L cellobiose (5.36 %), 10 g/L glucose (3.67 %), as well as lignin-degradation products, and ethyl acetate extracts (4.87 %), exhibited evident inhibition effect on enzymatic hydrolysis. Therefore, removal of soluble sugars and lignin-degradation products could effectively promote the enzymatic hydrolysis performance. PMID:27277746

  5. Acid hydrolysis of cellulose

    SciTech Connect

    Salazar, H.

    1980-12-01

    One of the alternatives to increase world production of etha nol is by the hydrolysis of cellulose content of agricultural residues. Studies have been made on the types of hydrolysis: enzimatic and acid. Data obtained from the sulphuric acid hydrolysis of cellulose showed that this process proceed in two steps, with a yield of approximately 95% glucose. Because of increases in cost of alternatives resources, the high demand of the product and the more economic production of ethanol from cellulose materials, it is certain that this technology will be implemented in the future. At the same time further studies on the disposal and reuse of the by-products of this production must be undertaken.

  6. A study of the acid-catalyzed hydrolysis of cellulose dissolved in ionic liquids and the factors influencing the dehydration of glucose and the formation of humins.

    PubMed

    Dee, Sean J; Bell, Alexis T

    2011-08-22

    An investigation was carried out into the hydrolysis of cellulose dissolved in 1-ethyl-3-methylimidazolium chloride ([Emim][Cl]) and 1-butyl-3-methylimidazolium chloride ([Bmim][Cl]) catalyzed by mineral acids. Glucose, cellobiose, and 5-hydroxymethylfurfural (5-HMF) were observed as the primary reaction products. The initial rate of glucose formation was determined to be of first order in the concentrations of dissolved glucan and protons and of zero order in the concentration of water. The absence of a dependence on water concentration suggests that cleavage of the β-1,4-glycosidic linkages near chain ends is irreversible. The apparent activation energy for glucose formation is 96 kJ mol(-1). The absence of oligosaccharides longer than cellobiose suggests that cleavage of interior glycosidic bonds is reversible due to the slow diffusional separation of cleaved chains in the highly viscous glucan/ionic liquid solution. Progressive addition of water during the course of glucan hydrolysis inhibited the rate of glucose dehydration to 5-HMF and the formation of humins. The inhibition of glucose dehydration is attributed to stronger interaction of protons with water than the 2-OH atom of the pyranose ring of glucose, the critical step in the proposed mechanism for the formation of 5-HMF. The reduction in humin formation associated with water addition is ascribed to the lowered concentration of 5-HMF, since the formation of humins is suggested to proceed through the condensation polymerization of 5-HMF with glucose. PMID:21809450

  7. Acid-catalyzed carboxylic acid esterification and ester hydrolysis mechanism: acylium ion as a sharing active intermediate via a spontaneous trimolecular reaction based on density functional theory calculation and supported by electrospray ionization-mass spectrometry.

    PubMed

    Shi, Hongchang; Wang, Yilei; Hua, Ruimao

    2015-11-11

    By DFT calculation, we found that acid-catalyzed carboxylic acid esterification and ester hydrolysis are brief two-step reactions. First, the carboxylic acid hydroxyl-oxygen or ester alkyl-oxygen is protonated, which generates a highly active acylium ion. The protonation requires an activation energy (Ea) of 4-10 kcal mol(-1), and is the rate-controlling step of the esterification or hydrolysis. Sequentially, the acylium ion spontaneously reacts with two alcohol or two water molecules to form a neutral product molecule; this is a trimolecular reaction. The acylium ion is the highly active intermediate shared by esterification and hydrolysis. ESI-MS data for several typical carboxylic acids confirmed that their acylium ions are easily generated. For 2,4,6-trialkylbenzoic acid and its ester, the two unsubstituted carbons in the benzene ring are very easily protonated, and we have thus revealed the root of the success of Newman's method. Based on these results, the popular esterification and hydrolysis mechanism in organic chemistry textbooks is incorrect. PMID:26445892

  8. Phosphonate ester hydrolysis catalyzed by two lanthanum ions. Intramolecular nucleophilic attack of coordinated hydroxide and lewis acid activation

    SciTech Connect

    Tsubouchi, A.; Bruice, T.C.

    1995-07-19

    (8-Hydroxy-2-quinolyl)methyl (8-hydroxy-2-quinolyl)methyl phosphonate (I) has been synthesized as a model compound and investigated in terms of catalysis of hydrolysis by two metal ions in concert. Removal of one of two 8-hydroxyquinoline ligands of I to provide (8-hydroxy-2-quinolyl)methylmethylphosphonate (II) leads to the formation of the 1:1 complex (II)La, which is hydrolytically inert but subject to catalysis by free La{sup 3+}. From thermodynamic studies of metal ion complexation and comparison of the kinetics of hydrolysis of I and II in the presence of metal ions, we conclude the following. The phosphonate ester I forms a hydrolytically active 1:2 complex (I)La{sub 2} with La{sup 3+} but inert 1:1 complexes with Zn{sup 2+}, Ni{sup 2+}, Co{sup 2+}, Cu{sup 2+}, and Al{sup 3+}. The La{sup 3+} in the (I)La{sub 2} complex serve to (i) facilitate the formation of metal ligated hydroxide as an intramolecule nucleophile; (ii) stabilize the transition state of the hydrolysis by neutralization of the phosphonate negative charge; and (iii) interact with an incipient oxyanion of the leaving alcohol. The two La{sup 3+} functions operate in concert and provide nearly 10{sup 13} rate enhancement. Consequently the 1:2 complex (I)La{sub 2}(OH{sub 2}){sub n-1}(OH) may serve as a model for the 3`-5` exonuclease reaction of E. coli DNA polymerase I. 39 refs., 7 figs., 3 tabs.

  9. Amino acid side chain induced selectivity in the hydrolysis of peptides catalyzed by a Zr(IV)-substituted Wells-Dawson type polyoxometalate.

    PubMed

    Vanhaecht, Stef; Absillis, Gregory; Parac-Vogt, Tatjana N

    2013-11-21

    In this paper the reactivity of K15H[Zr(α2-P2W17O61)2]·25H2O (1), a Zr(IV)-substituted Wells-Dawson polyoxometalate, is examined towards a series of Gly-Aa, Aa-Gly or Aa-Ser dipeptides, in which the nature and the size of the Aa amino acid side chain were varied. The rate of peptide bond hydrolysis, determined by (1)H NMR experiments, in Gly-Aa dipeptides is strongly dependent on the molecular volume and the chemical structure of the Aa side chain. When the volume of the aliphatic side chain of the Aa residue in Gly-Aa increased, a clear decrease in the hydrolysis rate was observed. Replacing one α-H in the C-terminal Gly residue of Gly-Gly by a methyl group (Gly-Ala) resulted in a 6-fold reactivity decrease, pointing towards the importance of steric factors for efficient peptide bond hydrolysis. The rate constants for peptide bond hydrolysis in Gly-Aa dipeptides at pD 5.0 and 60 °C ranged from 208.0 ± 15.6 × 10(-6) min(-1) for Gly-Ser to 5.0 ± 1.0 × 10(-6) min(-1) for Gly-Glu, reflecting the influence of the different nature of the amino acid side chains on the hydrolysis rate. Faster hydrolysis was observed for peptides containing Ser and Thr since the hydroxyl group in their side chain is able to facilitate amide bond hydrolysis by promoting an N→O acyl rearrangement. Peptides containing positively charged side chains at pD 5.0 show enhanced hydrolysis rates as a result of the secondary electrostatic interactions with the negatively charged surface of the polyoxometalate, which stabilize the peptide-polyoxometalate complex. A slow hydrolysis rate was observed for Gly-Glu, because of the preferential coordination of the carboxylate group in the side chain of Glu to Zr(IV), which prevents coordination of the peptide carbonyl group and its activation towards hydrolysis. PMID:24018583

  10. Mechanisms of lactone hydrolysis in acidic conditions.

    PubMed

    Gómez-Bombarelli, Rafael; Calle, Emilio; Casado, Julio

    2013-07-19

    The acid-catalyzed hydrolysis of linear esters and lactones was studied using a hybrid supermolecule-polarizable continuum model (PCM) approach including up to six water molecules. The compounds studied included two linear esters, four β-lactones, two γ-lactones, and one δ-lactone: ethyl acetate, methyl formate, β-propiolactone, β-butyrolactone, β-isovalerolactone, diketene (4-methyleneoxetan-2-one), γ-butyrolactone, 2(5H)-furanone, and δ-valerolactone. The theoretical results are in good quantitative agreement with the experimental measurements reported in the literature and also in excellent qualitative agreement with long-held views regarding the nature of the hydrolysis mechanisms at molecular level. The present results help to understand the balance between the unimolecular (A(AC)1) and bimolecular (A(AC)2) reaction pathways. In contrast to the experimental setting, where one of the two branches is often occluded by the requirement of rather extreme experimental conditions, we have been able to estimate both contributions for all the compounds studied and found that a transition from A(AC)2 to A(AC)1 hydrolysis takes place as acidity increases. A parallel work addresses the neutral and base-catalyzed hydrolysis of lactones. PMID:23731203

  11. Camptothecin-catalyzed phospholipid hydrolysis in liposomes.

    PubMed

    Saetern, Ann Mari; Skar, Merete; Braaten, Asmund; Brandl, Martin

    2005-01-01

    Hydrolysis of phospholipid (PL) within camptothecin (CPT)-containing liposomes was studied systematically, after elevated lyso-phosphatidylcholine (LPC)-concentrations in pH 5, CPT-containing liposomes (22.1+/-0.9 mol%) relative to control-liposomes (7.3+/-0.5 mol%) occasionally had been observed after four months storage in fridge. Liposomes were prepared by dispersing freeze-dried PL/CPT mixtures in 25 mM phosphate buffered saline (PBS) of varying pH (5.0-7.8) and CPT concentrations (0, 3 and 6 mM). PL-hydrolysis was monitored by HPTLC, quantifying LPC. In an accelerated stability study (60 degrees C), a catalytic effect of CPT on PL-hydrolysis was observed after 40 h, but not up to 30 h of incubation. The pH profile of the hydrolysis indicated a stability optimum at pH 6.0 for the liposomes independent of CPT. The equilibrium point between the more active lactone- and the carboxylate-form of CPT was found to be pH 6.8. As a compromise, pH 6.0 was chosen, assuring >85% CPT to be present in the lactone form. At this pH, both control- and CPT-liposomes showed only minor hydrolysis after autoclaving (121 degrees C, 15 min). Storage at room temperature and in fridge (2 months), as well as accelerated ageing (70 degrees C, 25 h), gave a significant elevation of LPC content in CPT-liposomes relative to control-liposomes. This study demonstrates a catalytic effect of CPT on PL-hydrolysis, the onset of which seems to require a certain threshold level of hydrolytic degradation. PMID:15607259

  12. Porcine liver esterase-catalyzed enantioselective hydrolysis of a prochiral diester into its optically pure (S)-ester acid, a precursor to a growth hormone secretagogue.

    PubMed

    Chartrain, M; Maligres, P; Cohen, D; Upadhyay, V; Pecore, V; Askin, D; Greasham, R

    1999-01-01

    A limited screen of several commercially-available and internally-produced lipases and esterases identified porcine liver esterase as a suitable biocatalyst for the enantioselective hydrolysis of a diester into its (S)-ester acid with high optical purity (99%). This (S)-ester acid is a precursor to an experimental growth hormone secretagogue. After identifying xanthan gum as the best emulsifier and optimizing the reaction conditions, hydrolysis rates of 1 g/l.h and final (S)-ester acid (ee > 99%) titers of about 8.5 g/l were routinely achieved. This process supported the production of preparative amounts of optically pure (S)-ester (ee > 99%) with a high reaction yield of 82%. Upon purification, the (S)-ester was successfully used in the subsequent synthetic steps to yield the growth hormone secretagogue. PMID:16232487

  13. An integrated process for the production of platform chemicals and diesel miscible fuels by acid-catalyzed hydrolysis and downstream upgrading of the acid hydrolysis residues with thermal and catalytic pyrolysis.

    PubMed

    Girisuta, Buana; Kalogiannis, Konstantinos G; Dussan, Karla; Leahy, James J; Hayes, Michael H B; Stefanidis, Stylianos D; Michailof, Chrysa M; Lappas, Angelos A

    2012-12-01

    This study evaluates an integrated process for the production of platform chemicals and diesel miscible biofuels. An energy crop (Miscanthus) was treated hydrothermally to produce levulinic acid (LA). Temperatures ranging between 150 and 200 °C, sulfuric acid concentrations 1-5 wt.% and treatment times 1-12 h were applied to give different combined severity factors. Temperatures of 175 and 200 °C and acid concentration of 5 wt.% were found to be necessary to achieve good yield (17 wt.%) and selectivities of LA while treatment time did not have an effect. The acid hydrolysis residues were characterized for their elemental, cellulose, hemicellulose and lignin contents, and then tested in a small-scale pyrolyzer using silica sand and a commercial ZSM-5 catalyst. Milder pretreatment yielded more oil (43 wt.%) and oil O(2) (37%) while harsher pretreatment and catalysis led to more coke production (up to 58 wt.%), less oil (12 wt.%) and less oil O(2) (18 wt.%). PMID:23073094

  14. Reaction Dynamics of ATP Hydrolysis Catalyzed by P-Glycoprotein

    PubMed Central

    2015-01-01

    P-glycoprotein (P-gp) is a member of the ABC transporter family that confers drug resistance to many tumors by catalyzing their efflux, and it is a major component of drug–drug interactions. P-gp couples drug efflux with ATP hydrolysis by coordinating conformational changes in the drug binding sites with the hydrolysis of ATP and release of ADP. To understand the relative rates of the chemical step for hydrolysis and the conformational changes that follow it, we exploited isotope exchange methods to determine the extent to which the ATP hydrolysis step is reversible. With γ18O4-labeled ATP, no positional isotope exchange is detectable at the bridging β-phosphorus–O−γ-phosphorus bond. Furthermore, the phosphate derived from hydrolysis includes a constant ratio of three 18O/two 18O/one 18O that reflects the isotopic composition of the starting ATP in multiple experiments. Thus, H2O-exchange with HPO42– (Pi) was negligible, suggesting that a [P-gp·ADP·Pi] is not long-lived. This further demonstrates that the hydrolysis is essentially irreversible in the active site. These mechanistic details of ATP hydrolysis are consistent with a very fast conformational change immediately following, or concomitant with, hydrolysis of the γ-phosphate linkage that ensures a high commitment to catalysis in both drug-free and drug-bound states. PMID:24506763

  15. Acid-functionalized nanoparticles for biomass hydrolysis

    NASA Astrophysics Data System (ADS)

    Pena Duque, Leidy Eugenia

    Cellulosic ethanol is a renewable source of energy. Lignocellulosic biomass is a complex material composed mainly of cellulose, hemicellulose, and lignin. Biomass pretreatment is a required step to make sugar polymers liable to hydrolysis. Mineral acids are commonly used for biomass pretreatment. Using acid catalysts that can be recovered and reused could make the process economically more attractive. The overall goal of this dissertation is the development of a recyclable nanocatalyst for the hydrolysis of biomass sugars. Cobalt iron oxide nanoparticles (CoFe2O4) were synthesized to provide a magnetic core that could be separated from reaction using a magnetic field and modified to carry acid functional groups. X-ray diffraction (XRD) confirmed the crystal structure was that of cobalt spinel ferrite. CoFe2O4 were covered with silica which served as linker for the acid functions. Silica-coated nanoparticles were functionalized with three different acid functions: perfluoropropyl-sulfonic acid, carboxylic acid, and propyl-sulfonic acid. Transmission electron microscope (TEM) images were analyzed to obtain particle size distributions of the nanoparticles. Total carbon, nitrogen, and sulfur were quantified using an elemental analyzer. Fourier transform infra-red spectra confirmed the presence of sulfonic and carboxylic acid functions and ion-exchange titrations accounted for the total amount of catalytic acid sites per nanoparticle mass. These nanoparticles were evaluated for their performance to hydrolyze the beta-1,4 glycosidic bond of the cellobiose molecule. Propyl-sulfonic (PS) and perfluoropropyl-sulfonic (PFS) acid functionalized nanoparticles catalyzed the hydrolysis of cellobiose significantly better than the control. PS and PFS were also evaluated for their capacity to solubilize wheat straw hemicelluloses and performed better than the control. Although PFS nanoparticles were stronger acid catalysts, the acid functions leached out of the nanoparticle during

  16. Enantioselective hydrolysis of naproxen ethyl ester catalyzed by monoclonal antibodies.

    PubMed

    Shi, Zhen-Dan; Yang, Bing-Hui; Zhao, Jing-Jing; Wu, Yu-Lin; Ji, Yong-Yong; Yeh, Ming

    2002-07-01

    This report described that a hapten of racemic phosphonate 3 designed as the mimic of the transition state of hydrolysis of naproxen ethyl ester was successfully synthesized from easily available 2-acetyl-6-methoxy-naphthalene 5. Then BALB/C mice were immunized and one of the monoclonal catalytic antibodies, N116-27, which enantioselectively accelerated the hydrolysis of the R-(-)-naproxen ethyl ester was given. The Michaelis-Menton parameter for the catalyzed reaction was K(M)=6.67 mM and k(cat)/k(uncat)=5.8 x 10(4). This enantioselective result was explained by the fact that the R-isomer of rac-hapten was more immunogenic than the S-isomer. PMID:11983513

  17. Acid hydrolysis of cellulose to yield glucose

    DOEpatents

    Tsao, George T.; Ladisch, Michael R.; Bose, Arindam

    1979-01-01

    A process to yield glucose from cellulose through acid hydrolysis. Cellulose is recovered from cellulosic materials, preferably by pretreating the cellulosic materials by dissolving the cellulosic materials in Cadoxen or a chelating metal caustic swelling solvent and then precipitating the cellulose therefrom. Hydrolysis is accomplished using an acid, preferably dilute sulfuric acid, and the glucose is yielded substantially without side products. Lignin may be removed either before or after hydrolysis.

  18. Acid Hydrolysis of Trioxalatocobaltate (III) Ion

    ERIC Educational Resources Information Center

    Wiggans, P. W.

    1975-01-01

    Describes an investigation involving acid hydrolysis and using both volumetric and kinetic techniques. Presents examples of the determination of the rate constant and its variation with temperature. (GS)

  19. Weak-acid sites catalyze the hydrolysis of crystalline cellulose to glucose in water: importance of post-synthetic functionalization of the carbon surface.

    PubMed

    To, Anh The; Chung, Po-Wen; Katz, Alexander

    2015-09-14

    The direct hydrolysis of crystalline cellulose to glucose in water without prior pretreatment enables the transformation of biomass into fuels and chemicals. To understand which features of a solid catalyst are most important for this transformation, the nanoporous carbon material MSC-30 was post-synthetically functionalized by oxidation. The most active catalyst depolymerized crystalline cellulose without prior pretreatment in water, providing glucose in an unprecedented 70 % yield. In comparison, virtually no reaction was observed with MSC-30, even when the reaction was conducted in aqueous solution at pH 2. As no direct correlations between the activity of this solid-solid reaction and internal-site characteristics, such as the β-glu adsorption capacity and the rate of catalytic hydrolysis of adsorbed β-glu strands, were observed, contacts of the external surface with the cellulose crystal are thought to be key for the overall efficiency. PMID:26276901

  20. Novel dehydrogenase catalyzes oxidative hydrolysis of carbon-nitrogen double bonds for hydrazone degradation.

    PubMed

    Itoh, Hideomi; Suzuta, Tetsuya; Hoshino, Takayuki; Takaya, Naoki

    2008-02-29

    Hydrazines and their derivatives are versatile artificial and natural compounds that are metabolized by elusive biological systems. Here we identified microorganisms that assimilate hydrazones and isolated the yeast, Candida palmioleophila MK883. When cultured with adipic acid bis(ethylidene hydrazide) as the sole source of carbon, C. palmioleophila MK883 degraded hydrazones and accumulated adipic acid dihydrazide. Cytosolic NAD+- or NADP+-dependent hydrazone dehydrogenase (Hdh) activity was detectable under these conditions. The production of Hdh was inducible by adipic acid bis(ethylidene hydrazide) and the hydrazone, varelic acid ethylidene hydrazide, under the control of carbon catabolite repression. Purified Hdh oxidized and hydrated the C=N double bond of acetaldehyde hydrazones by reducing NAD+ or NADP+ to produce relevant hydrazides and acetate, the latter of which the yeast assimilated. The deduced amino acid sequence revealed that Hdh belongs to the aldehyde dehydrogenase (Aldh) superfamily. Kinetic and mutagenesis studies showed that Hdh formed a ternary complex with the substrates and that conserved Cys is essential for the activity. The mechanism of Hdh is similar to that of Aldh, except that it catalyzed oxidative hydrolysis of hydrazones that requires adding a water molecule to the reaction catalyzed by conventional Aldh. Surprisingly, both Hdh and Aldh from baker's yeast (Ald4p) catalyzed the Hdh reaction as well as aldehyde oxidation. Our findings are unique in that we discovered a biological mechanism for hydrazone utilization and a novel function of proteins in the Aldh family that act on C=N compounds. PMID:18096698

  1. A kinetic study of Trichoderma reesei Cel7B catalyzed cellulose hydrolysis.

    PubMed

    Song, Xiangfei; Zhang, Shujun; Wang, Yefei; Li, Jingwen; He, Chunyan; Yao, Lishan

    2016-06-01

    One prominent feature of Trichoderma reesei (Tr) endoglucanases catalyzed cellulose hydrolysis is that the reaction slows down quickly after it starts (within minutes). But the mechanism of the slowdown is not well understood. A structural model of Tr- Cel7B catalytic domain bound to cellulose was built computationally and the potentially important binding residues were identified and tested experimentally. The 13 tested mutants show different binding properties in the adsorption to phosphoric acid swollen cellulose and filter paper. Though the partitioning parameter to filter paper is about 10 times smaller than that to phosphoric acid swollen cellulose, a positive correlation is shown for two substrates. The kinetic studies show that the reactions slow down quickly for both substrates. This slowdown is not correlated to the binding constant but anticorrelated to the enzyme initial activity. The amount of reducing sugars released after 24h by Cel7B in phosphoric acid swollen cellulose, Avicel and filter paper cellulose hydrolysis is correlated with the enzyme activity against a soluble substrate p-nitrophenyl lactoside. Six of the 13 tested mutants, including N47A, N52D, S99A, N323D, S324A, and S346A, yield ∼15-35% more reducing sugars than the wild type (WT) Cel7B in phosphoric acid swollen cellulose and filter paper hydrolysis. This study reveals that the slowdown of the reaction is not due to the binding of the enzyme to cellulose. The activity of Tr- Cel7B against the insoluble substrate cellulose is determined by the enzyme's capability in hydrolyzing the soluble substrate. PMID:27178789

  2. Kinetics of Imidazole Catalyzed Ester Hydrolysis: Use of Buffer Dilutions to Determine Spontaneous Rate, Catalyzed Rate, and Reaction Order.

    ERIC Educational Resources Information Center

    Lombardo, Anthony

    1982-01-01

    Described is an advanced undergraduate kinetics experiment using buffer dilutions to determine spontaneous rate, catalyzed rate, and reaction order. The reaction utilized is hydrolysis of p-nitro-phenyl acetate in presence of imidazole, which has been shown to enhance rate of the reaction. (Author/JN)

  3. Optimization of dilute acid hydrolysis of Enteromorpha

    NASA Astrophysics Data System (ADS)

    Feng, Dawei; Liu, Haiyan; Li, Fuchao; Jiang, Peng; Qin, Song

    2011-11-01

    Acid hydrolysis is a simple and direct way to hydrolyze polysaccharides in biomass into fermentable sugars. To produce fermentable sugars effectively and economically for fuel ethanol, we have investigated the hydrolysis of Enteromorpha using acids that are typically used to hydrolyze biomass: H2SO4, HCl, H3PO4 and C4H4O4 (maleic acid). 5%(w/w) Enteromorpha biomass was treated for different times (30, 60, and 90 min) and with different acid concentrations (0.6, 1.0, 1.4, 1.8, and 2.2%, w/w) at 121°C. H2SO4 was the most effective acid in this experiment. We then analyzed the hydrolysis process in H2SO4 in detail using high performance liquid chromatography. At a sulfuric acid concentration of 1.8% and treatment time of 60 min, the yield of ethanol fermentable sugars (glucose and xylose) was high, (230.5 mg/g dry biomass, comprising 175.2 mg/g glucose and 55.3 mg/g xylose), with 48.6% of total reducing sugars being ethanol fermentable. Therefore, Enteromorpha could be a good candidate for production of fuel ethanol. In future work, the effects of temperature and biomass concentration on hydrolysis, and also the fermentation of the hydrolysates to ethanol fuel should be focused on.

  4. Heterogeneously catalyzed hydrolysis of chlorine nitrate: Fourier-transform ion cyclotron resonance investigations of stratospheric chemistry

    NASA Astrophysics Data System (ADS)

    Schindler, Thomas; Berg, Christian; Niedner-Schatteburg, Gereon; Bondybey, Vladimir E.

    1996-03-01

    High resolution Fourier-transform ion cyclotron resonance (FT-ICR) mass spectroscopy is used to investigate reactions of large ionic water clusters H+(H2O)n and X-(H2O)n (n=1-100, X=O or OH). Reactions of the clusters with chlorine nitrate, important ``reservoir compound'' involved in the stratospheric ozone chemistry, are investigated to evaluate the importance of heterogeneously catalyzed reactions for ozone depletion. It is found that reactions of both cationic and anionic clusters result in effective hydrolysis of chlorine nitrate and return of the more active hypochlorous acid, HOCl into the gas phase. The chemistry of clusters is discussed, and its validity and relevance as a model for ``real life'' processes in the so-called polar stratospheric clouds (PSC's) is assessed.

  5. Thermomyces lanuginosus lipase-catalyzed hydrolysis of the lipid cubic liquid crystalline nanoparticles.

    PubMed

    Barauskas, Justas; Anderberg, Hanna; Svendsen, Allan; Nylander, Tommy

    2016-01-01

    In this study well-ordered glycerol monooleate (GMO)-based cubic liquid crystalline nanoparticles (LCNPs) have been used as substrates for Thermomyces lanuginosus lipase in order to establish the relation between the catalytic activity, measured by pH-stat titration, and the change in morphology and nanostructure determined by cryogenic transmission electron microscopy and synchrotron small angle X-ray diffraction. The initial lipase catalyzed LCNP hydrolysis rate is approximately 25% higher for large 350nm nanoparticles compared to the small 190nm particles, which is attributed to the increased number of structural defects on the particle surface. At pH 8.0 and 8.4 bicontinuous Im3m cubic LCNPs transform into "sponge"-like assemblies and disordered multilamellar onion-like structures upon exposure to lipase. At pH 6.5 and 7.5 lipolysis induced phase transitions of the inner core of the particles, following the sequence Im3m cubic → reversed hexagonal → reversed micellar Fd3m cubic → reversed micelles. These transitions to the liquid crystalline phases with higher negative curvature of the lipid/water interface were found to trigger protonation of the oleic acid produced during lipase catalyzed reaction. The increase curvature of the reversed discrete micellar cubic phase was suggested to cause an increase in the oleic acid pKa to a larger value observed by pH-stat titration. PMID:26047576

  6. Kinetics and mechanism of the base-catalyzed rearrangement and hydrolysis of ezetimibe.

    PubMed

    Baťová, Jana; Imramovský, Aleš; HájÍček, Josef; Hejtmánková, Ludmila; Hanusek, Jiří

    2014-08-01

    The pH-rate profile of the pseudo-first-order rate constants for the rearrangement and hydrolysis of Ezetimibe giving (2R,3R,6S)-N,6-bis(4-fluorophenyl)-2-(4-hydroxyphenyl)-3,4,5,6-tetrahydro-2H-pyran-3-carboxamide (2) as the main product at pH of less than 12.5 and the mixture of 2 and 5-(4-fluorophenyl)-5-hydroxy-2-[(4-fluorophenylamino)-(4-hydroxyphenyl)methyl]-pentanoic acid (3) at pH of more than 12.5 in aqueous tertiary amine buffers and in sodium hydroxide solutions at ionic strength I = 0.1 mol L(-1) (KCl) and at 39 °C is reported. No buffer catalysis was observed and only specific base catalysis is involved. The pH-rate profile is more complex than the pH-rate profiles for the hydrolysis of simple β-lactams and it contains several breaks. Up to pH 9, the log k(obs) linearly increases with pH, but between pH 9 and 11 a distinct break downwards occurs and the values of log k(obs) slightly decrease with increasing pH of the medium. At pH of approximately 13, another break upwards occurs that corresponds to the formation of compound 3 that is slowly converted to (2R,3R,6S)-6-(4-fluorophenyl)-2-(4-hydroxyphenyl)-3,4,5,6-tetrahydro-2H-pyran-3-carboxylic acid (4). The kinetics of base-catalyzed hydrolysis of structurally similar azetidinone is also discussed. PMID:24985565

  7. Hydrolysis of polycarbonate catalyzed by ionic liquid [Bmim][Ac].

    PubMed

    Song, Xiuyan; Liu, Fusheng; Li, Lei; Yang, Xuequn; Yu, Shitao; Ge, Xiaoping

    2013-01-15

    Hydrolysis of polycarbonate (PC) was studied using ionic liquid 1-butyl-3-methylimidazolium acetate ([Bmim][Ac]) as a catalyst. The influences of temperature, time, water dosage and [Bmim][Ac] dosage on the hydrolysis reaction were examined. Under the conditions of temperature 140°C, reaction time 3.0 h, m([Bmim][Ac]):m(PC)=1.5:1 and m(H(2)O):m(PC)=0.35:1, the conversion of PC was nearly 100% and the yield of bisphenol A (BPA) was over 96%. The ionic liquid could be reused up to 6 times without apparent decrease in the conversion of PC and yield of BPA. The kinetics of the reaction was also investigated. The results showed that the hydrolysis of PC in [Bmim][Ac] was a first-order kinetic reaction with an activation energy of 228 kJ/mol. PMID:23246956

  8. Fatty acid hydrolysis of acyl marinobactin siderophores by Marinobacter acylases.

    PubMed

    Kem, Michelle P; Naka, Hiroaki; Iinishi, Akira; Haygood, Margo G; Butler, Alison

    2015-01-27

    The marine bacteria Marinobacter sp. DS40M6 and Marinobacter nanhaiticus D15-8W produce a suite of acyl peptidic marinobactin siderophores to acquire iron under iron-limiting conditions. During late-log phase growth, the marinobactins are hydrolyzed to form the marinobactin headgroup with release of the corresponding fatty acid tail. The bntA gene, a homologue of the Pseudomonas aeruginosa pyoverdine acylase gene, pvdQ, was identified from Marinobacter sp. DS40M6. A bntA knockout mutant of Marinobacter sp. DS40M6 produced the suite of acyl marinobactins A-E, without the usual formation of the marinobactin headgroup. Another marinobactin-producing species, M. nanhaiticus D15-8W, is predicted to have two pvdQ homologues, mhtA and mhtB. MhtA and MhtB have 67% identical amino acid sequences. MhtA catalyzes hydrolysis of the apo-marinobactin siderophores as well as the quorum sensing signaling molecule, dodecanoyl-homoserine lactone. In contrast to hydrolysis of the suite of apo-marinobactins by MhtA, hydrolysis of the iron(III)-bound marinobactins was not observed. PMID:25588131

  9. Hydrogen generation by means of catalyzed Mg-Al hydrolysis

    NASA Astrophysics Data System (ADS)

    Hoehne, K.; Jaeger, P.

    Based on considerations of reactivity, costs, and the volume of hydrogen which can be expected per mass fraction of metal, Al and Mg offer good possibilities in metal hydrolysis. Since these metals hardly react with water, however, a catalyst is used to accelerate the Mg-Al hydrolysis process. Experiments show that a mixture of Mg and Al reacts strongly with water in the presence of CO3O4, MoO3, and Cl-ions; with an optimum combination of all the participants in the reaction, the H2 yield can amount to 100%. Various methods are discussed for constructing a hydrogen generator using this new method of metal hydrolysis. A hydrogen generator plant is described, in which pressed powder pellets are used. An aluminum-magnesium-cobalt oxide powder mixture is introduced into the reactor in the form of cylindrical pellets, which are pulverized in the reactor chamber. The powder falls into the salt water in the reactor and is converted. The hydrogen produced has a purity potentially greater than 99.9%.

  10. Reaction pathways and free energy profiles for cholinesterase-catalyzed hydrolysis of 6-monoacetylmorphine.

    PubMed

    Qiao, Yan; Han, Keli; Zhan, Chang-Guo

    2014-04-14

    As the most active metabolite of heroin, 6-monoacetylmorphine (6-MAM) can penetrate into the brain for the rapid onset of heroin effects. The primary enzymes responsible for the metabolism of 6-MAM to the less potent morphine in humans are acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The detailed reaction pathways for AChE- and BChE-catalyzed hydrolysis of 6-MAM to morphine have been explored, for the first time, in the present study by performing first-principles quantum mechanical/molecular mechanical free energy calculations. It has been demonstrated that the two enzymatic reaction processes follow similar catalytic reaction mechanisms, and the whole catalytic reaction pathway for each enzyme consists of four reaction steps. According to the calculated results, the second reaction step associated with the transition state TS2(a)/TS2(b) should be rate-determining for the AChE/BChE-catalyzed hydrolysis, and the free energy barrier calculated for the AChE-catalyzed hydrolysis (18.3 kcal mol(-1)) is 2.5 kcal mol(-1) lower than that for the BChE-catalyzed hydrolysis (20.8 kcal mol(-1)). The free energy barriers calculated for the AChE- and BChE-catalyzed reactions are in good agreement with the experimentally derived activation free energies (17.5 and 20.7 kcal mol(-1) for the AChE- and BChE-catalyzed reactions, respectively). Further structural analysis reveals that the aromatic residues Phe295 and Phe297 in the acyl pocket of AChE (corresponding to Leu286 and Val288 in BChE) contribute to the lower energy of TS2(a) relative to TS2(b). The obtained structural and mechanistic insights could be valuable for use in future rational design of a novel therapeutic treatment of heroin abuse. PMID:24595354

  11. Purification and characterization of a novel lactonohydrolase, catalyzing the hydrolysis of aldonate lactones and aromatic lactones, from Fusarium oxysporum.

    PubMed

    Shimizu, S; Kataoka, M; Shimizu, K; Hirakata, M; Sakamoto, K; Yamada, H

    1992-10-01

    A novel lactonohydrolase, an enzyme that catalyzes the hydrolysis of aldonate lactones to the corresponding aldonic acids, was purified 10-fold to apparent homogeneity, with a 61% overall recovery, from Fusarium oxysporum AKU 3702, through a purification procedure comprising DEAE-Sephacel, octyl-Sepharose CL-4B and hydroxyapatite chromatographies and crystallization. The molecular mass of the native enzyme, as estimated by high-performance gel-permeation chromatography, is 125 kDa, and the subunit molecular mass is 60 kDa. The enzyme contains 15.4% (by mass) glucose equivalent of carbohydrate, and about 1 mol calcium/subunit. The enzyme hydrolyzes aldonate lactones, such as D-galactono-gamma-lactone and L-mannono-gamma-lactone, stereospecifically. Furthermore, it can catalyze the asymmetric hydrolysis of D-pantoyl lactone, which is a promising chiral building block for the chemical synthesis of D-pantothenate. These reactions are reversible, and the reaction equilibrium at pH 6.0 has a molar ratio of nearly 1:1 with D-pantoyl lactone and D-pantoic acid. The Km and Vmax for D-galactono-gamma-lactone are 3.6 mM and 1440 U/mg, respectively, and those for D-galactonate are 52.6 mM and 216 U/mg, respectively. The enzyme also irreversibly hydrolyzes several aromatic lactones, such as dihydrocoumarin and homogentisic-acid lactone. PMID:1396712

  12. Solvent effects in acid-catalyzed biomass conversion reactions.

    PubMed

    Mellmer, Max A; Sener, Canan; Gallo, Jean Marcel R; Luterbacher, Jeremy S; Alonso, David Martin; Dumesic, James A

    2014-10-27

    Reaction kinetics were studied to quantify the effects of polar aprotic organic solvents on the acid-catalyzed conversion of xylose into furfural. A solvent of particular importance is γ-valerolactone (GVL), which leads to significant increases in reaction rates compared to water in addition to increased product selectivity. GVL has similar effects on the kinetics for the dehydration of 1,2-propanediol to propanal and for the hydrolysis of cellobiose to glucose. Based on results obtained for homogeneous Brønsted acid catalysts that span a range of pKa values, we suggest that an aprotic organic solvent affects the reaction kinetics by changing the stabilization of the acidic proton relative to the protonated transition state. This same behavior is displayed by strong solid Brønsted acid catalysts, such as H-mordenite and H-beta. PMID:25214063

  13. Phospholipase-catalyzed hydrolysis in an artificial cell membrane in the presence of melittin.

    PubMed

    Lee, Jinyoung; Lee, Joo-Kyung; Busnaina, Ahmed; Park, BaeHo; Lee, HeaYeon

    2013-01-01

    Biomimicry involves the use of the structure and function of biological systems as models for the design and engineering of materials and machines. An artificial cell membrane was developed using biomembrane components, and the membrane, formed by a lipid bilayer, was analyzed using surface plasmon resonance (SPR) to monitor hydrolysis by phospholipase (PL). The simultaneous atomic force microscope (AFM) images show that PL catalyzed the nanometer-scale hydrolysis of the artificial lipid biomembranes through enzymatic hydrolysis. In addition, it was confirmed that the combination of PL and melittin allowed the control of enzyme hydrolysis for the degradation of the lipid bilayer. Regarding the expected activating effect of melittin on hydrolysis, no difference with respect to the non-treated lipid membrane was observed in the AFM images. It is assumed that the partitioning of melittin into the membrane might prevent the binding or hydrolysis of Phospholipase A2 (PLA2). This study provides basic knowledge on a new approach for patterning biomimicking lipid membranes on a nano-scale. PMID:23646709

  14. Kinetics of hydrolysis of PET powder in nitric acid by a modified shrinking-core model

    SciTech Connect

    Yoshioka, Toshiaki; Okayama, Nobuchika; Okuwaki, Akitsugu

    1998-02-01

    Poly(ethylene terephthalate) (PET) powder from waste bottles was degraded at atmospheric pressure in 7--13 M nitric acid at 70--100 C for 72 h, to clarify the mechanism of a feed stock recycling process. Terephthalic acid (TPA) and ethylene glycol (EG) were produced by the acid-catalyzed heterogeneous hydrolysis of PET in nitric acid, and the resulting EG was simultaneously oxidized to oxalic acid. The kinetics of the hydrolysis of PET in nitric acid could be explained by a modified shrinking core model of chemical reaction control, in which the effective surface area is proportional to the degree of unreacted PET, affected by the deposition of the product TPA. The apparent rate constant was inversely proportional to particle size and to the concentration of the nitric acid. The activation energy of the reaction was 101.3 kJ/mol.

  15. Microscopic analysis of ester hydrolysis reaction catalyzed by Candida rugosa lipase.

    PubMed

    Lee, Sumin; Hwang, Sangpill; Lee, Kangtaek; Ahn, Ik-Sung

    2006-01-15

    The relationship between the kinetics of the lipase-catalyzed oil hydrolysis and the surface area distribution of oil droplets was investigated using ethyl decanoate and gum Arabic (GA) as a model oil and an emulsifier, respectively. Along an ethyl decanoate concentration gradient between 2 and 8 mM, the initial hydrolysis rate increased at 0.25% (w/v) GA but did not change at 1.0% (w/v) GA. At 0.25% GA, the surface area of droplets was narrowly distributed regardless of the ethyl decanoate concentration. However, at 1.0% GA and with ethyl decanoate concentrations higher than 2 mM, the fraction of relatively large droplets with a surface area larger than approximately 200 microm2, suddenly increased. The microscopy of ethyl decanoate emulsion during the hydrolysis reaction indicates that the large oil droplets were not hydrolyzed. At 20 mM ethyl decanoate where the hydrolysis rate remained the same between 0.25% and 1.0% GA, the surface area of droplets was narrowly distributed at 0.25% and 1.0% GA. Therefore, the constant hydrolysis rate observed in the emulsion of ethyl decanoate between 2 and 8 mM containing GA at 1.0%, is believed to be caused by the relatively large oil droplets with the interface quality differing from that of the small oil droplets. PMID:16406517

  16. Fundamental Reaction Mechanism and Free Energy Profile for (−)-Cocaine Hydrolysis Catalyzed by Cocaine Esterase

    PubMed Central

    Liu, Junjun; Hamza, Adel; Zhan, Chang-Guo

    2009-01-01

    Fundamental reaction mechanism of cocaine esterase (CocE)-catalyzed hydrolysis of (−)-cocaine and the corresponding free energy profile have been studied by performing pseudobond first-principle quantum mechanical/molecular mechanical (QM/MM)-free energy (FE) calculations. Based on the QM/MM-FE results, the entire hydrolysis reaction consists of four reaction steps, including the nucleophilic attack on carbonyl carbon of (−)-cocaine benzoyl ester by hydroxyl group of Ser117, dissociation of (−)-cocaine benzoyl ester, nucleophilic attack on carbonyl carbon of (−)-cocaine benzoyl ester by water, and finally the dissociation between (−)-cocaine benzoyl group and Ser117 of CocE. The third reaction step involving the nucleophilic attack of a water molecule was found to be rate-determining, which is remarkably different from (−)-cocaine hydrolysis catalyzed by wild-type butyrylcholinesterase (where the formation of prereactive BChE-(−)-cocaine complex is rate-determining) or its mutants containing Tyr332Gly or Tyr332Gly mutation (where the first chemical reaction step is rate-determining). Besides, the role of Asp259 in the catalytic triad of CocE does not follow the general concept of the “charge-relay system” for all serine esterases. The free energy barrier calculated for the rate-determining step of CocE-catalyzed hydrolysis of (−)-cocaine is 17.9 kcal/mol, which is in good agreement with the experimentally derived activation free energy of 16.2 kcal/mol. In present study, where many sodium ions are present, the effects of counter ions are found to be significant in determining the free energy barrier. The finding of the significant effects of counter ions on the free energy barrier may also be valuable in guiding future mechanistic studies on other charged enzymes. PMID:19642701

  17. Enhanced functional properties of tannic acid after thermal hydrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal hydrolysis processing of fresh tannic acid was carried out in a closed reactor at four different temperatures (65, 100, 150 and 200°C). Pressures reached in the system were 1.3 and 4.8 MPa at 150 and 200°C, respectively. Hydrolysis products (gallic acid and pyrogallol) were separated and qua...

  18. Hydrolysis of Sulfur Dioxide in Small Clusters of Sulfuric Acid: Mechanistic and Kinetic Study.

    PubMed

    Liu, Jingjing; Fang, Sheng; Wang, Zhixiu; Yi, Wencai; Tao, Fu-Ming; Liu, Jing-Yao

    2015-11-17

    The deposition and hydrolysis reaction of SO2 + H2O in small clusters of sulfuric acid and water are studied by theoretical calculations of the molecular clusters SO2-(H2SO4)n-(H2O)m (m = 1,2; n = 1,2). Sulfuric acid exhibits a dramatic catalytic effect on the hydrolysis reaction of SO2 as it lowers the energy barrier by over 20 kcal/mol. The reaction with monohydrated sulfuric acid (SO2 + H2O + H2SO4 - H2O) has the lowest energy barrier of 3.83 kcal/mol, in which the cluster H2SO4-(H2O)2 forms initially at the entrance channel. The energy barriers for the three hydrolysis reactions are in the order SO2 + (H2SO4)-H2O > SO2 + (H2SO4)2-H2O > SO2 + H2SO4-H2O. Furthermore, sulfurous acid is more strongly bonded to the hydrated sulfuric acid (or dimer) clusters than the corresponding reactant (monohydrated SO2). Consequently, sulfuric acid promotes the hydrolysis of SO2 both kinetically and thermodynamically. Kinetics simulations have been performed to study the importance of these reactions in the reduction of atmospheric SO2. The results will give a new insight on how the pre-existing aerosols catalyze the hydrolysis of SO2, leading to the formation and growth of new particles. PMID:26450714

  19. The slowdown of the endoglucanase Trichoderma reesei Cel5A-catalyzed cellulose hydrolysis is related to its initial activity.

    PubMed

    Shu, Zhiyu; Wang, Yefei; An, Liaoyuan; Yao, Lishan

    2014-12-01

    One important feature of hydrolysis of cellulose by cellulases is that the reaction slows down quickly after it starts. In this work, we investigate the slowdown mechanism at the early stage of the reaction using endoglucanase Tr. Cel5A-catalyzed phosphate acid-swollen cellulose (PASC) hydrolysis as a model system. Specifically, we focus on the effect of enzyme adsorption on the reaction slowdown. Nineteen single mutations are introduced (with the assistance of molecular dynamics simulations) to perturb the enzyme PASC interaction, yielding the adsorption partitioning coefficient Kr that ranged from 0.12 to 0.39 L/g, compared to that of the wild type (0.26 L/g). Several residues, including T18, K26, Y26, H229, and T300, are demonstrated to be important for adsorption of the enzyme to PASC. The kinetic measurements show that the slowdown of the hydrolysis is not correlated with the adsorption quantified by the partitioning coefficient Kr but is anticorrelated with the initial activity. This result suggests that the mutants with higher activity are more prone to being trapped or deplete the most reactive substrate faster and the adsorption plays no apparent role in the reaction slowdown. The initial activity of Cel5A against PASC is correlated with the enzyme specific activity against a soluble substrate p-nitrophenyl cellobioside. PMID:25423499

  20. Fundamental Reaction Pathway and Free Energy Profile for Butyrylcholinesterase-Catalyzed Hydrolysis of Heroin

    PubMed Central

    Qiao, Yan; Han, Keli; Zhan, Chang-Guo

    2013-01-01

    The pharmacological function of heroin requires an activation process which transforms heroin into 6-monoacetylmorphine (6-MAM) which is the most active form. The primary enzyme responsible for this activation process in human plasma is butyrylcholinesterase (BChE). The detailed reaction pathway of the activation process via BChE-catalyzed hydrolysis has been explored computationally, for the first time, in the present study by performing molecular dynamics simulation and first-principles quantum mechanical/molecular mechanical free energy calculations. It has been demonstrated that the whole reaction process includes acylation and deacylation stages. The acylation consists of two reaction steps, i.e. the nucleophilic attack on the carbonyl carbon of 3-acetyl group of heroin by the hydroxyl oxygen of Ser198 side chain and the dissociation of 6-MAM. The deacylation also consists of two reaction steps, i.e. the nucleophilic attack on the carbonyl carbon of the acyl-enzyme intermediate by a water molecule and the dissociation of the acetic acid from Ser198. The calculated free energy profile reveals that the second transition state (TS2) should be rate-determining. The structural analysis reveals that the oxyanion hole of BChE plays an important role in the stabilization of the rate-determining transition state TS2. The free energy barrier (15.9±0.2 or 16.1±0.2 kcal/mol) calculated for the rate-determining step is in good agreement with the experimentally-derived activation free energy (~16.2 kcal/mol), suggesting that the mechanistic insights obtained from the present computational study are reliable. The obtained structural and mechanistic insights could be valuable for use in future rational design of a novel therapeutic treatment of heroin abuse. PMID:23992153

  1. Metal-Catalyzed Oxidation of Protein Methionine Residues in Human Parathyroid Hormone (1-34): Formation of Homocysteine and a Novel Methionine-Dependent Hydrolysis Reaction

    PubMed Central

    Mozziconacci, Olivier; Ji, Junyan A.; Wang, Y. John; Schöneich, Christian

    2013-01-01

    The oxidation of PTH(1-34) catalyzed by ferrous ethylenediaminetetraacetic acid (EDTA) is site-specific. The oxidation of PTH(1-34) is localized primarily to the residues Met[8] and His[9]. Beyond the transformation of Met[8] and His[9] into methionine sulfoxide and 2-oxo-histidine, respectively, we observed a hydrolytic cleavage between Met[8] and His[9]. This hydrolysis requires the presence of FeII and oxygen and can be prevented by diethylenetriaminepentaacetic acid (DTPA) and phosphate buffer. Conditions leading to this site-specific hydrolysis also promote the transformation of Met[8] into homocysteine, indicating that the hydrolysis and transformation of homocysteine may proceed through a common intermediate. PMID:23289936

  2. Acid hydrolysis of cellulose as the entry point into biorefinery schemes.

    PubMed

    Rinaldi, Roberto; Schüth, Ferdi

    2009-01-01

    Cellulose is a major source of glucose because it is readily available, renewable, and does not compete with the food supply. Hydrolysis of cellulose is experiencing a new research and development cycle in which this reaction is carried out over solid catalysts and coupled to other reactions for increased efficiency. Cellulose is typically not soluble in conventional solvents and very resistant to chemical and biological transformations. This Review focuses on aspects related to the hydrolysis of cellulose as this process is a significant entry point into the biorefinery scheme based on carbohydrates for the production of biofuels and biochemicals. Structural features of cellulose, conventional acid-catalyzed reactions, and the use of solid acid catalysts for hydrolysis are discussed. The longterm success of the biorefinery concept depends on the development of energetically efficient processes to convert cellulose directly or indirectly into biofuels and chemicals. PMID:19950346

  3. A preliminary study of the hydrolysis of hydroxamic acid complexants in the presence of oxidising metal ions

    NASA Astrophysics Data System (ADS)

    Andrieux, Fabrice P. L.; Boxall, Colin; May, Iain; Taylor, Robin J.

    2010-03-01

    Simple hydroxamic acids (XHAs) are salt free, organic compounds with affinities for cations such as Np4+, Pu4+ and Fe3+. As such they have been identified as suitable reagents for the separation of either Pu and/or Np from U in modified or single cycle Purex based solvent extraction processes designed to meet the emerging requirements of Advanced Fuel Cycles. Acid catalyzed hydrolysis of free XHAs is well known and may impact negatively on reprocessing applications. The hydrolysis of metal-bound XHAs within metal ion-XHA complexes is less understood. Using a model derived for the study of hydroxamic acid hydrolysis in the presence of non-oxidising metal ions (Np (IV) and Fe(III)), we review data pertaining to the hydrolysis of hydroxamic acids in the presence of the oxidising Pu4+ ion, under conditions where the influence of the redox processes may potentially be neglected.

  4. Ultrasound assisted enzyme catalyzed hydrolysis of waste cooking oil under solvent free condition.

    PubMed

    Waghmare, Govind V; Rathod, Virendra K

    2016-09-01

    The present work demonstrates the hydrolysis of waste cooking oil (WCO) under solvent free condition using commercial available immobilized lipase (Novozyme 435) under the influence of ultrasound irradiation. The process parameters were optimized using a sequence of experimental protocol to evaluate the effects of temperature, molar ratios of substrates, enzyme loading, duty cycle and ultrasound intensity. It has been observed that ultrasound-assisted lipase-catalyzed hydrolysis of WCO would be a promising alternative for conventional methods. A maximum conversion of 75.19% was obtained at mild operating parameters: molar ratio of oil to water (buffer pH 7) 3:1, catalyst loading of 1.25% (w/w), lower ultrasound power 100W (ultrasound intensity - 7356.68Wm(-2)), duty cycle 50% and temperature (50°C) in a relatively short reaction time (2h). The activation energy and thermodynamic study shows that the hydrolysis reaction is more feasible when ultrasound is combined with mechanical agitation as compared with the ultrasound alone and simple conventional stirring technique. Application of ultrasound considerably reduced the reaction time as compared to conventional reaction. The successive use of the catalyst for repetitive cycles under the optimum experimental conditions resulted in a loss of enzymatic activity and also minimized the product conversion. PMID:27150746

  5. Mechanistic studies of the base-catalyzed hydrolysis of pyridine nucleotides

    SciTech Connect

    Johnson, R.W.; Marschner, T.M.; Malver, O.; Sleath, P.R.; Oppenheimer, N.J.

    1986-05-01

    The pH dependence of base-catalyzed hydrolysis of ..beta..-NAD has been determined over the range from pH 8.5 to 13.5. Below pH 10.5 the reaction rate constant is linearly dependent on hydroxide concentration whereas above pH 12.5 the reaction becomes pH independent. A nonlinear least squares fit of the data yields a pK/sub a/ of 12.2, corresponding to the ionization of the 2'-OH of the nicotinamide ribose as determined by /sup 1/H and /sup 13/C NMR. Based on these data, as well as solvent isotope effects and data from previous investigators, the authors propose that ionization of the ribose diol stabilizes an oxonium ion intermediate, thus, facilitating S/sub N/1 hydrolysis of the nicotinamide-glycosyl bond with release of nicotinamide. Further evidence for this mechanism is provided by investigation of the 2',3'-O-isopropylidine nicotinamide riboside. This compound is found to be highly resistant to hydrolysis in base and product analysis by NMR reveals that only 2-hydroxy-3-pyridinecarboxaldehyde is released. The influence on the reaction rate and mechanism resulting from other modifications of the sugar moiety of nicotinamide nucleosides are discussed.

  6. ESTIMATION OF CARBOXYLIC ACID ESTER HYDROLYSIS RATE CONSTANTS

    EPA Science Inventory

    SPARC chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid esters from molecular structure. The energy differences between the initial state and the transition state for a molecule of interest are factored into internal and external...

  7. Furfural/ethanol coproduction from biomass feedstocks using acid hydrolysis

    SciTech Connect

    Barrier, J.W.; Bulls, M.M.; Broder, J.D.

    1996-12-31

    The Tennessee Valley Authority (TVA) has been involved in research and development to produce high-value chemicals from biomass for over 15 years. Use of biomass releases less carbon dioxide than use of fossil fuels, and thus represents a more environmentally friendly source of chemicals and fuels. Two biomass conversion processes have been developed as a result of TVA`s work--concentrated acid hydrolysis and dilute acid hydrolysis. Both processes use sulfuric acid as a catalyst. Early hydrolysis research focused on improving ethanol yields through hydrolysis and five-carbon sugar fermentation research. Both processes have been demonstrated at the pilot plant scale. Current work is focused on the development of integrated systems for producing ethanol and a variety of other chemicals and products from biomass. Production of furfural and ethanol from high hemicellulose feedstocks has been identified by TVA as an integrated system with technical and economic potential for commercial success. A system design has been developed to produce ethanol and furfural using dilute acid hydrolysis of sycamore. Furfural yields for the system are estimated at 180--240 pound/ton. Ethanol process yields are 25--38 gallon/ton. Capital and operating costs for a 4,500 ton/day facility are estimated to be $609 million and $183 million, respectively. The dilute acid hydrolysis process proposed by TVA will be described along with additional process economics and potential furfural markets.

  8. Carboxypeptidase displaying differential velocity in hydrolysis of methotrexate, 5-methyltetrahydrofolic acid, and leucovorin.

    PubMed Central

    Albrecht, A M; Boldizsar, E; Hutchison, D J

    1978-01-01

    An enzyme that catalyzes the hydrolysis of folic acid and the antifolate methotrexate nearly 20 times more rapidly than the hydrolysis of 5-methyltetrahydrofolate was extraced from a gram-negative bacterium tentatively identified as a Flavobacterium sp. The enzyme was purified 500-fold and found to have a molecular weight of about 53,000. Apparently a metallo-enzyme, it is inhibited by citrate and ethylenediaminetetraacetic acid (EDTA). Ca2+, Co2+, Mg2+, and Zn2+ reverse inhibition by EDTA, whereas Ca2+ and Zn2+ are weak activators in the absence of EDTA. The enzymatic reaction releases the carboxy-terminal glutamyl moiety of derivatives of pteroyl-mono-L-glutamic acid. Substituents on N5 of the pteridine ring decrease the velocity of hydrolysis. Some non-specificity for the terminal amino acid is expressed. The strikingly different rates of hydrolysis of methotrexate and 5-methyltetrahydrofolate have stimulated interest in this enzyme for its potential clinical value in improving the therapeutic index of methotrexate. PMID:26657

  9. Lipase-catalyzed fractionation of conjugated linoleic acid isomers.

    PubMed

    Haas, M J; Kramer, J K; McNeill, G; Scott, K; Foglia, T A; Sehat, N; Fritsche, J; Mossoba, M M; Yurawecz, M P

    1999-09-01

    The abilities of lipases produced by the fungus Geotrichum candidum to selectively fractionate mixtures of conjugated linoleic acid (CLA) isomers during esterification of mixed CLA free fatty acids and during hydrolysis of mixed CLA methyl esters were examined. The enzymes were highly selective for cis-9,trans-11-18:2. A commercial CLA methyl ester preparation, containing at least 12 species representing four positional CLA isomers, was incubated in aqueous solution with either a commercial G. candidum lipase preparation (Amano GC-4) or lipase produced from a cloned high-selectivity G. candidum lipase B gene. In both instances selective hydrolysis of the cis-9,trans-11-18:2 methyl ester occurred, with negligible hydrolysis of other CLA isomers. The content of cis-9, trans-11-18:2 in the resulting free fatty acid fraction was between 94 (lipase B reaction) and 77% (GC-4 reaction). The commercial CLA mixture contained only trace amounts of trans-9,cis-11-18:2, and there was no evidence that this isomer was hydrolyzed by the enzyme. Analogous results were obtained with these enzymes in the esterification in organic solvent of a commercial preparation of CLA free fatty acids containing at least 12 CLA isomers. In this case, G. candidum lipase B generated a methyl ester fraction that contained >98% cis-9,trans-11-18:2. Geotrichum candidum lipases B and GC-4 also demonstrated high selectivity in the esterification of CLA with ethanol, generating ethyl ester fractions containing 96 and 80%, respectively, of the cis-9,trans-11 isomer. In a second set of experiments, CLA synthesized from pure linoleic acid, composed essentially of two isomers, cis-9,trans-11 and trans-10,cis-12, was utilized. This was subjected to esterification with octanol in an aqueous reaction system using Amano GC-4 lipase as catalyst. The resulting ester fraction contained up to 97% of the cis-9,trans-11 isomer. After adjustment of the reaction conditions, a concentration of 85% trans-10,cis-12

  10. Deep eutectic solvents (DESs) are viable cosolvents for enzyme-catalyzed epoxide hydrolysis.

    PubMed

    Lindberg, Diana; de la Fuente Revenga, Mario; Widersten, Mikael

    2010-06-01

    A special group of ionic liquids, deep eutectic solvents (DESs) have been tested as cosolvents in enzyme-catalyzed hydrolysis of a chiral (1,2)-trans-2-methylstyrene oxide. The choline chloride:ethane diol (ET), choline chloride:glycerol (GLY) and choline:chloride:urea (REL) DESs were included in the reaction mixtures with epoxide and the potato epoxide hydrolase StEH1. The effect of the DESs on enzyme function was primarily elevations of K(M) (up to 20-fold) and with lesser effects on turnover numbers (twofold variation). The regioselectivity in hydrolysis of the (1R,2R)-2-trans-methylstyrene oxide was altered in the presence of GLY or ET to favor epoxide ring opening at the benzylic carbon (R=2.33), enhancing the regioselectivity observed in buffer-only systems (R=1.35). The DES solutions dissolved 1.5-fold higher epoxide concentrations as compared to phosphate buffer. The total conversion of high concentration (40 g/l) of (1S,2S)-MeSO was not negatively affected by addition of 40% GLY. PMID:20438773

  11. Acid-Catalyzed Isomerization of Carvone to Carvacrol

    ERIC Educational Resources Information Center

    Kjonaas, Richard A.; Mattingly, Shawn P.

    2005-01-01

    The acid-catalyzed isomerization of carvone to carvacrol, first reported by Ritter and Ginsburg, is especially well suited with a permanent-magnet FT instrument. The acid-catalyzed isomerization of carvone to carvacrol produced a 61% yield after a three hour reflux with 30% aqueous sulfuric acid.

  12. Effects of pressing lignocellulosic biomass on sugar yield in two-stage dilute-acid hydrolysis process.

    PubMed

    Kim, Kyoung Heon; Tucker, Melvin P; Nguyen, Quang A

    2002-01-01

    Dilute sulfuric acid catalyzed hydrolysis of biomass such as wood chips often involves pressing the wood particles in a dewatering step (e.g., after acid impregnation) or in compression screw feeders commonly used in continuous hydrolysis reactors. This study addresses the effects of pressing biomass feedstocks using a hydraulic press on soluble sugar yield obtained from two-stage dilute-acid hydrolysis of softwood. The pressed acid-impregnated feedstock gave significantly lower soluble sugar yields than the never-pressed (i.e., partially air-dried or filtered) feedstock. Pressing acid-impregnated feedstocks before pretreatment resulted in a soluble hemicellulosic sugar yield of 76.9% from first-stage hydrolysis and a soluble glucose yield of 33.7% from second-stage hydrolysis. The dilute-acid hydrolysis of partially air-dried feedstocks having total solids and acid concentrations similar to those of pressed feedstocks gave yields of 87.0% hemicellulosic sugar and 46.9% glucose in the first and second stages, respectively. Microscopic examination of wood structures showed that pressing acid-impregnated wood chips from 34 to 54% total solids (TS) did not cause the wood structure to collapse. However, pressing first-stage pretreated wood chips (i.e., feedstock for second-stage hydrolysis) from approximately 30 to 43% TS caused the porous wood matrix to almost completely collapse. It is hypothesized that pressing alters the wood structure and distribution of acid within the cell cavities, leading to uneven heat and mass transfer during pretreatment using direct steam injection. Consequently, lower hydrolysis yield of soluble sugars results. Dewatering of corn stover by pressing did not impact negatively on the sugar yield from single-stage dilute-acid pretreatment. PMID:12052064

  13. Characterization of acidic polysaccharides from the mollusks through acid hydrolysis.

    PubMed

    Cao, Jiuling; Wen, Chengrong; Lu, Jiaojiao; Teng, Nan; Song, Shuang; Zhu, Beiwei

    2015-10-01

    Uronic acid-containing polysaccharides (UACPs) including glycosaminoglycans (GAGs) exist widely in nature. Herein we propose an elegant methodology to identify UACPs by analyzing their disaccharides produced from the acid hydrolysis using HPLC-MS(n) upon 1-phenyl-3-methyl-5-pyrazolone (PMP) derivatization. Based on the optimization of experimental conditions by the single factor experiment and orthogonal test design, the combination of 1.3M TFA at 105°C for 3h is found to be the optimum. Subsequently, these conditions were applied to investigate the distribution of UACPs in 20 selected species of edible Bivalvia and Gastropoda. PMP-disaccharides derived from UACPs in mollusks were identified by comparing the retention time and mass spectra with those of the reference PMP-disaccharides from hyaluronic acid (HA), chondroitin sulfate (CS), heparin (HP), and AGSP with →4)-GlcA(1→2)-Man(1→ repeating units. The analysis reveals the prevalence of CS in the shellfishes as well as the HP, and existence of three non-GAG UACPs in 7 mollusks. PMID:26076626

  14. Kinetics of acid hydrolysis of hardwood in a continuous plug flow reactor

    SciTech Connect

    Kwarteng, I.K.

    1983-01-01

    This thesis was undertaken to investigate the kinetics of dilute acid catalyzed hydrolysis of hardwood in an isothermally operated continuous plug flow reactor at steady state. Sulphuric acid catalyst concentration ranged from 0.05 to 2.5 wt% and the reaction temperatures were between 160/sup 0/C and 265/sup 0/C. The residence time was limited to between 0.1 and 0.5 minutes while the wood slurry concentration varied from 5 wt% to 10 wt%. Kinetic models, as functions of the reaction conditions, were obtained for the hemicelluloses (xylan) to xylose, xylose to furfural, fufural decomposition, and cellulose (glucan) to glucose reactions. Numerical solutions (Runge-Kutta Methods) to a system of first order differential equations which provided a composite description of the kinetic model for furfural production from xylan were also presented. Furfural yields of up to 87% were verified. Xylose appearance from hardwood xylan could be modelled by a sequence of two irreversible consecutive first-order reactions. The proposed model, however, underestimated xylose yields at the conditions of quantitative yields (1 wt% 2 wt%, 0.25 minutes and 190/sup 0/C to 210/sup 0/C). For the cellulose to glucose reaction, a similar model with different parameters produced yields of up to 56% at 240/sup 0/C to 260/sup 0/C. Two approaches for the carbohydrate recovery and utilization in acid hydrolysis were proposed as follows. 1) Two-stage hydrolysis: in this mode, the first stage is at the conditions for maximum xylose recovery. This is then followed by a second-stage hydrolysis at higher temperatures for glucose recovery. 2) Single-stage hydrolysis: since the conditions for high furfural yields coincide with those for glucose, a single stage hydrolysis for their simultaneous recovery can also be achieved.

  15. Production of Chiral (R)-3-Hydroxyoctanoic Acid Monomers, Catalyzed by Pseudomonas fluorescens GK13 Poly(3-Hydroxyoctanoic Acid) Depolymerase▿

    PubMed Central

    Gangoiti, Joana; Santos, Marta; Llama, María J.; Serra, Juan L.

    2010-01-01

    The extracellular medium-chain-length polyhydroxyalkanoate (MCL-PHA) depolymerase of Pseudomonas fluorescens GK13 catalyzes the hydrolysis of poly(3-hydroxyoctanoic acid) [P(3HO)]. Based on the strong tendency of the enzyme to interact with hydrophobic materials, a low-cost method which allows the rapid and easy purification and immobilization of the enzyme has been developed. Thus, the extracellular P(3HO) depolymerase present in the culture broth of cells of P. fluorescens GK13 grown on mineral medium supplemented with P(3HO) as the sole carbon and energy source has been tightly adsorbed onto a commercially available polypropylene support (Accurel MP-1000) with high yield and specificity. The activity of the pure enzyme was enhanced by the presence of detergents and organic solvents, and it was retained after treatment with an SDS-denaturing cocktail under both reducing and nonreducing conditions. The time course of the P(3HO) hydrolysis catalyzed by the soluble and immobilized enzyme has been assessed, and the resulting products have been identified. After 24 h of hydrolysis, the dimeric ester of 3-HO [(R)-3-HO-HO] was obtained as the main product of the soluble enzyme. However, the immobilized enzyme catalyzes almost the complete hydrolysis of P(3HO) polymer to (R)-3-HO monomers under the same conditions. PMID:20400568

  16. Enhanced Cutinase-Catalyzed Hydrolysis of Polyethylene Terephthalate by Covalent Fusion to Hydrophobins

    PubMed Central

    Ribitsch, Doris; Herrero Acero, Enrique; Przylucka, Agnieszka; Zitzenbacher, Sabine; Marold, Annemarie; Gamerith, Caroline; Tscheließnig, Rupert; Jungbauer, Alois; Rennhofer, Harald; Lichtenegger, Helga; Amenitsch, Heinz; Bonazza, Klaus; Kubicek, Christian P.; Guebitz, Georg M.

    2015-01-01

    Cutinases have shown potential for hydrolysis of the recalcitrant synthetic polymer polyethylene terephthalate (PET). We have shown previously that the rate of this hydrolysis can be enhanced by the addition of hydrophobins, small fungal proteins that can alter the physicochemical properties of surfaces. Here we have investigated whether the PET-hydrolyzing activity of a bacterial cutinase from Thermobifida cellulosilytica (Thc_Cut1) would be further enhanced by fusion to one of three Trichoderma hydrophobins, i.e., the class II hydrophobins HFB4 and HFB7 and the pseudo-class I hydrophobin HFB9b. The fusion enzymes exhibited decreased kcat values on soluble substrates (p-nitrophenyl acetate and p-nitrophenyl butyrate) and strongly decreased the hydrophilicity of glass but caused only small changes in the hydrophobicity of PET. When the enzyme was fused to HFB4 or HFB7, the hydrolysis of PET was enhanced >16-fold over the level with the free enzyme, while a mixture of the enzyme and the hydrophobins led only to a 4-fold increase at most. Fusion with the non-class II hydrophobin HFB9b did not increase the rate of hydrolysis over that of the enzyme-hydrophobin mixture, but HFB9b performed best when PET was preincubated with the hydrophobins before enzyme treatment. The pattern of hydrolysis by the fusion enzymes differed from that of Thc_Cut1 as the concentration of the product mono(2-hydroxyethyl) terephthalate relative to that of the main product, terephthalic acid, increased. Small-angle X-ray scattering (SAXS) analysis revealed an increased scattering contrast of the fusion proteins over that of the free proteins, suggesting a change in conformation or enhanced protein aggregation. Our data show that the level of hydrolysis of PET by cutinase can be significantly increased by fusion to hydrophobins. The data further suggest that this likely involves binding of the hydrophobins to the cutinase and changes in the conformation of its active center. PMID:25795674

  17. Acid hydrolysis of Jerusalem artichoke for ethanol fermentation

    SciTech Connect

    Kim, K.; Hamdy, M.K.

    1986-01-01

    An excellent substrate for ethanol production is the Jerusalem artichoke (JA) tuber (Helianthus tuberosus). This crop contains a high level of inulin that can be hydrolyzed mainly to D-fructose and has several distinct advantages as an energy source compared to others. The potential ethanol yield of ca. 4678 L/ha on good agricultural land is equivalent to that obtained from sugar beets and twice that of corn. When JA is to be used for ethanol fermentation by conventional yeast, it is first converted to fermentable sugars by enzymes or acids although various strains of yeast were used for the direct fermentation of JA extracts. Fleming and GrootWassink compared various acids (hydrochloric, sulfuric, citric, and phosphoric) and strong cation exchange resin for their effectiveness on inulin hydrolysis and reported that no differences were noted among the acids or resin in their influence on inulin hydrolysis. Undesirable side reactions were noted during acid hydrolysis leading to the formation of HMF and 2-(2-hydroxy acetyl) furan. The HMF at a level of 0.1% is known to inhibit growth and ethanol fermentation by yeast. In this study the authors established optimal conditions for complete acid-hydrolysis of JA with minimum side reactions and maximum sugar-ethanol production. A material balance for the ethanol production was also determined.

  18. Acid hydrolysis of cellulose in zinc chloride solution

    SciTech Connect

    Cao, N.J.; Xu, Q.; Chen, L.F.

    1995-12-31

    The efficient conversion of cellulosic materials to ethanol has been hindered by the low yield of sugars, the high energy consumption in pretreatment processes, and the difficulty of recycling the pre-treatment agents. Zinc chloride may provide an alternative for pre-treating biomass prior to the hydrolysis of cellulose. The formation of a zinc-cellulose complex during the pretreatment of cellulose improves the yield of glucose in both the enzymatic and acid hydrolysis of cellulose. Low-temperature acid hydrolysis of cellulose in zinc chloride solution is carried out in two stages, a liquefaction stage and a saccharification stage. Because of the formation of zinc-cellulose complex in the first stage, the required amount of acid in the second stage has been decreased significantly. In 67% zinc chloride solution, a 99.5% yield of soluble sugars has been obtained at 70{degrees}C and 0.5M acid concentration. The ratio of zinc chloride to cellulose has been reduced from 4.5 to 1.5, and the yield of soluble sugars is kept above 80%. The rate of hydrolysis is affected by the ratio of zinc chloride to cellulose, acid concentration, and temperature.

  19. Mechanism of the myosin catalyzed hydrolysis of ATP as rationalized by molecular modeling

    PubMed Central

    Grigorenko, Bella L.; Rogov, Alexander V.; Topol, Igor A.; Burt, Stanley K.; Martinez, Hugo M.; Nemukhin, Alexander V.

    2007-01-01

    The intrinsic chemical reaction of adenosine triphosphate (ATP) hydrolysis catalyzed by myosin is modeled by using a combined quantum mechanics and molecular mechanics (QM/MM) methodology that achieves a near ab initio representation of the entire model. Starting with coordinates derived from the heavy atoms of the crystal structure (Protein Data Bank ID code 1VOM) in which myosin is bound to the ATP analog ADP·VO4−, a minimum-energy path is found for the transformation ATP + H2O → ADP + Pi that is characterized by two distinct events: (i) a low activation-energy cleavage of the PγOβγ bond and separation of the γ-phosphate from ADP and (ii) the formation of the inorganic phosphate as a consequence of proton transfers mediated by two water molecules and assisted by the Glu-459–Arg-238 salt bridge of the protein. The minimum-energy model of the enzyme–substrate complex features a stable hydrogen-bonding network in which the lytic water is positioned favorably for a nucleophilic attack of the ATP γ-phosphate and for the transfer of a proton to stably bound second water. In addition, the PγOβγ bond has become significantly longer than in the unbound state of the ATP and thus is predisposed to cleavage. The modeled transformation is viewed as the part of the overall hydrolysis reaction occurring in the closed enzyme pocket after ATP is bound tightly to myosin and before conformational changes preceding release of inorganic phosphate. PMID:17438284

  20. Role of bifidobacteria in the hydrolysis of chlorogenic acid

    PubMed Central

    Raimondi, Stefano; Anighoro, Andrew; Quartieri, Andrea; Amaretti, Alberto; Tomás-Barberán, Francisco A; Rastelli, Giulio; Rossi, Maddalena

    2015-01-01

    This study aimed to explore the capability of potentially probiotic bifidobacteria to hydrolyze chlorogenic acid into caffeic acid (CA), and to recognize the enzymes involved in this reaction. Bifidobacterium strains belonging to eight species occurring in the human gut were screened. The hydrolysis seemed peculiar of Bifidobacterium animalis, whereas the other species failed to release CA. Intracellular feruloyl esterase activity capable of hydrolyzing chlorogenic acid was detected only in B. animalis. In silico research among bifidobacteria esterases identified Balat_0669 as the cytosolic enzyme likely responsible of CA release in B. animalis. Comparative modeling of Balat_0669 and molecular docking studies support its role in chlorogenic acid hydrolysis. Expression, purification, and functional characterization of Balat_0669 in Escherichia coli were obtained as further validation. A possible role of B. animalis in the activation of hydroxycinnamic acids was demonstrated and new perspectives were opened in the development of new probiotics, specifically selected for the enhanced bioconversion of phytochemicals into bioactive compounds. PMID:25515139

  1. Role of bifidobacteria in the hydrolysis of chlorogenic acid.

    PubMed

    Raimondi, Stefano; Anighoro, Andrew; Quartieri, Andrea; Amaretti, Alberto; Tomás-Barberán, Francisco A; Rastelli, Giulio; Rossi, Maddalena

    2015-02-01

    This study aimed to explore the capability of potentially probiotic bifidobacteria to hydrolyze chlorogenic acid into caffeic acid (CA), and to recognize the enzymes involved in this reaction. Bifidobacterium strains belonging to eight species occurring in the human gut were screened. The hydrolysis seemed peculiar of Bifidobacterium animalis, whereas the other species failed to release CA. Intracellular feruloyl esterase activity capable of hydrolyzing chlorogenic acid was detected only in B. animalis. In silico research among bifidobacteria esterases identified Balat_0669 as the cytosolic enzyme likely responsible of CA release in B. animalis. Comparative modeling of Balat_0669 and molecular docking studies support its role in chlorogenic acid hydrolysis. Expression, purification, and functional characterization of Balat_0669 in Escherichia coli were obtained as further validation. A possible role of B. animalis in the activation of hydroxycinnamic acids was demonstrated and new perspectives were opened in the development of new probiotics, specifically selected for the enhanced bioconversion of phytochemicals into bioactive compounds. PMID:25515139

  2. Modeling Sucrose Hydrolysis in Dilute Sulfuric Acid Solutions at Pretreatment Conditions for Lignocellulosic Biomass

    SciTech Connect

    Bower, S.; Wickramasinghe, R.; Nagle, N. J.; Schell, D. J.

    2008-01-01

    Agricultural and herbaceous feedstocks may contain appreciable levels of sucrose. The goal of this study was to evaluate the survivability of sucrose and its hydrolysis products, fructose and glucose, during dilute sulfuric acid processing at conditions typically used to pretreat lignocellulose biomass. Solutions containing 25 g/l sucrose with 0.1-2.0% (w/w) sulfuric acid concentrations were treated at temperatures of 160-200 C for 3-12 min. Sucrose was observed to completely hydrolyze at all treatment conditions. However, appreciable concentrations of fructose and glucose were detected and glucose was found to be significantly more stable than fructose. Different mathematical approaches were used to fit the kinetic parameters for acid-catalyzed thermal degradation of these sugars. Since both sugars may survive dilute acid pretreatment, they could provide an additional carbon source for production of ethanol and other bio-based products.

  3. Ethanol production with dilute acid hydrolysis using partially dried lignocellulosics

    DOEpatents

    Nguyen, Quang A.; Keller, Fred A.; Tucker, Melvin P.

    2003-12-09

    A process of converting lignocellulosic biomass to ethanol, comprising hydrolyzing lignocellulosic materials by subjecting dried lignocellulosic material in a reactor to a catalyst comprised of a dilute solution of a strong acid and a metal salt to lower the activation energy (i.e., the temperature) of cellulose hydrolysis and ultimately obtain higher sugar yields.

  4. Acetic acid oxidation and hydrolysis in supercritical water

    SciTech Connect

    Meyer, J.C.; Marrone, P.A.; Tester, J.W.

    1995-09-01

    Acetic acid (CH{sub 3}COOH) hydrolysis and oxidation in supercritical water were examined from 425--600 C and 246 bar at reactor residence times of 4.4 to 9.8 s. Over the range of conditions studied, acetic acid oxidation was globally 0.72 {+-} 0.15 order in acetic acid and 0.27 {+-} 0.15 order in oxygen to a 95% confidence level, with an activation energy of 168 {+-} 21 kJ/mol, a preexponential factor of 10{sup 9.9{+-}1.7}, and an induction time of about 1.5 s at 525 C. Isothermal kinetic measurements at 550 C over the range 160 to 263 bar indicated that pressure or density did not affect the rate of acetic acid oxidation as much as was previously observed in the oxidation of hydrogen or carbon monoxide in supercritical water. Major products of acetic acid oxidation in supercritical water are carbon dioxide, carbon monoxide, methane, and hydrogen. Trace amounts of propenoic acid were occasionally detected. Hydrolysis or hydrothermolysis in the absence of oxygen resulted in approximately 35% conversion of acetic acid at 600 C, 246 bar, and 8-s reactor residence time. Regression of the limited hydrolysis runs assuming a reaction rate first-order in organic gave a global rate expression with a preexponential factor of 10{sup 4.4{+-}1.1} and an activation energy of 94 {+-} 17 kJ/mol.

  5. Stereoselectivity of the generation of 3-mercaptohexanal and 3-mercaptohexanol by lipase-catalyzed hydrolysis of 3-acetylthioesters.

    PubMed

    Wakabayashi, Hidehiko; Wakabayashi, Motoko; Eisenreich, Wolfgang; Engel, Karl-Heinz

    2003-07-16

    The enantioselectivity of the generation of 3-mercaptohexanal and 3-mercaptohexanol, two potent sulfur-containing aroma compounds, by lipase-catalyzed hydrolysis of the corresponding 3-acetylthioesters was investigated. The stereochemical course of the kinetic resolutions was followed by capillary gas chromatography using modified cyclodextrins as chiral stationary phases. The enzyme preparations tested varied significantly in terms of activity and enantioselectivity (E). The highest E value (E = 36) was observed for the hydrolysis of 3-acetylthiohexanal catalyzed by lipase B from Candida antarctica resulting in (S)-configured thiol products. Immobilization of the enzyme (E = 85) and the use of tert-butyl alcohol as cosolvent (E = 49) improved the enantioselectivity. Modification of the acyl moiety of the substrate (3-benzoylthiohexanal) had no significant impact. The sulfur-containing compounds investigated possess attractive odor properties, and only one of the enantiomers exhibits the pleasant citrus type note. PMID:12848509

  6. Enhancement of hydrolysis of Chlorella vulgaris by hydrochloric acid.

    PubMed

    Park, Charnho; Lee, Ja Hyun; Yang, Xiaoguang; Yoo, Hah Young; Lee, Ju Hun; Lee, Soo Kweon; Kim, Seung Wook

    2016-06-01

    Chlorella vulgaris is considered as one of the potential sources of biomass for bio-based products because it consists of large amounts of carbohydrates. In this study, hydrothermal acid hydrolysis with five different acids (hydrochloric acid, nitric acid, peracetic acid, phosphoric acid, and sulfuric acid) was carried out to produce fermentable sugars (glucose, galactose). The hydrothermal acid hydrolysis by hydrochloric acid showed the highest sugar production. C. vulgaris was hydrolyzed with various concentrations of hydrochloric acid [0.5-10 % (w/w)] and microalgal biomass [20-140 g/L (w/v)] at 121 °C for 20 min. Among the concentrations examined, 2 % hydrochloric acid with 100 g/L biomass yielded the highest conversion of carbohydrates (92.5 %) into reducing sugars. The hydrolysate thus produced from C. vulgaris was fermented using the yeast Brettanomyces custersii H1-603 and obtained bioethanol yield of 0.37 g/g of algal sugars. PMID:26899601

  7. Carbon-based strong solid acid for cornstarch hydrolysis

    SciTech Connect

    Nata, Iryanti Fatyasari; Irawan, Chairul; Mardina, Primata; Lee, Cheng-Kang

    2015-10-15

    Highly sulfonated carbonaceous spheres with diameter of 100–500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO{sub 3}H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO{sub 3}H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst. - Highlights: • Carbon solid acid was successfully prepared by one-step hydrothermal carbonization. • The acrylic acid as monomer was effectively reduce the diameter size of particle. • The solid acid catalyst show good catalytic performance of starch hydrolysis. • The solid acid catalyst is not significantly deteriorated after repeated use.

  8. On-line characterization using ultrasound of pectin hydrolysis catalyzed by the enzyme pectinmethylesterase

    NASA Astrophysics Data System (ADS)

    Aparicio, C.; Resa, P.; Sierra, C.; Elvira, L.

    2012-12-01

    The major problem in the fruit juice industry is associated with juice quality deterioration due to the cloud loss of juice concentrates by the enzymatic reaction of pectinmethylesterase enzyme (PME, EC 3.1.1.11). During pectin hydrolysis, pectin and water are transformed into polygalacturonic acid (pectate) and methanol by the action of PME. In this work, a low-intensity ultrasonic technique is used to monitor this enzymatic reaction, with PME both from orange peel and from Aspergillus niger. Changes in sound velocity during pectin hydrolysis (1% concentration of pectin, T = 30°C and pH = 4.5 and 7) with 0.25 ml of enzyme solution (PME) have been measured using a through-transmission technique. Sound velocity decreases as pectin is transformed into pectate and methanol and at the end of the process, the change in sound velocity reaches 0.3 m/s with PME from orange peel and 0.33 m/s with PME from Aspergillus niger.

  9. Acid hydrolysis of sweet potato for ethanol production

    SciTech Connect

    Kim, K.; Hamdy, M.K.

    1985-01-01

    Studies were conducted to establish optimal conditions for the acid hydrolysis of sweet potato for maximal ethanol yield. The starch contents of two sweet potato cultivars (Georgia Red and TG-4), based on fresh weight, were 21.1 +/- 0.6% and 27.5 +/- 1.6%, respectively. The results of acid hydrolysis experiments showed the following: (1) both hydrolysis rate and hydroxymethylfurfural (HMF) concentration were a function of HCL concentration, temperature, and time; (2) the reducing sugars were rapidly formed with elevated concentrations of HCl and temperature, but also destroyed quickly; and (3) HMF concentration increased significantly with the concentration of HCl, temperature, and hydrolysis time. Maximum reducing sugar value of 84.2 DE and 0.056% HMF (based on wet weight) was achieved after heating 8% SPS for 15 min in 1N HCl at 110/sup 0/C. Degraded 8% SPS (1N HCl, 97/sup 0/C for 20 min or 110/sup 0/C for 10 min) was utilized as substrate for ethanol fermentation and 3.8% ethanol (v/v) was produced from 1400 mL fermented wort. This is equal to 41.6 g ethanol (200 proof) from 400 g of fresh sweet potato tuber (Georgia Red) or an ethanol yield potential of 431 gal of 200-proof ethanol/acre (from 500 bushel tubers/acre).

  10. Mechanism of Orlistat Hydrolysis by the Thioesterase of Human Fatty Acid Synthase

    PubMed Central

    2015-01-01

    Fatty acid synthase (FASN), the sole protein capable of de novo synthesis of free fatty acids, is overexpressed in a wide variety of human cancers and is associated with poor prognosis and aggressiveness of these cancers. Orlistat, an FDA-approved drug for obesity treatment that inhibits pancreatic lipases in the GI tract, also inhibits the thioesterase (TE) of human FASN. The cocrystal structure of TE with orlistat shows a pseudo TE dimer containing two different forms of orlistat in the active site, an intermediate that is covalently bound to a serine residue (Ser2308) and a hydrolyzed and inactivated product. In this study, we attempted to understand the mechanism of TE-catalyzed orlistat hydrolysis by examining the role of the hexyl tail of the covalently bound orlistat in water activation for hydrolysis using molecular dynamics simulations. We found that the hexyl tail of the covalently bound orlistat undergoes a conformational transition, which is accompanied by destabilization of a hydrogen bond between a hydroxyl moiety of orlistat and the catalytic His2481 of TE that in turn leads to an increased hydrogen bonding between water molecules and His2481 and increased chance for water activation to hydrolyze the covalent bond between orlistat and Ser2308. Thus, the conformation of the hexyl tail of orlistat plays an important role in orlistat hydrolysis. Strategies that stabilize the hexyl tail may lead to the design of more potent irreversible inhibitors that target FASN and block TE activity with greater endurance. PMID:25309810

  11. A Solanum torvum GH3 β-glucosidase expressed in Pichia pastoris catalyzes the hydrolysis of furostanol glycoside.

    PubMed

    Suthangkornkul, Rungarun; Sriworanun, Pornpisut; Nakai, Hiroyuki; Okuyama, Masayuki; Svasti, Jisnuson; Kimura, Atsuo; Senapin, Saengchan; Arthan, Dumrongkiet

    2016-07-01

    Plant β-glucosidases are usually members of the glucosyl hydrolase 1 (GH1) or 3 (GH3) families. Previously, a β-glucosidase (torvosidase) was purified from Solanum torvum leaves that specifically catalyzed hydrolysis of two furostanol 26-O-β-glucosides, torvosides A and H. Furostanol glycoside 26-O-β-glucosides have been reported as natural substrates of some plant GH1 enzymes. However, torvosidase was classified as a GH3 β-glucosidase, but could not hydrolyze β-oligoglucosides, the natural substrates of GH3 enzymes. Here, the full-length cDNA encoding S. torvum β-glucosidase (SBgl3) was isolated by the rapid amplification of cDNA ends method. The 1887bp ORF encoded 629 amino acids and showed high homology to other plant GH3 β-glucosidases. Internal peptide sequences of purified native Sbgl3 determined by LC-MS/MS matched the deduced amino acid sequence of the Sbgl3 cDNA, suggesting that it encoded the natural enzyme. Recombinant SBgl3 with a polyhistidine tag (SBgl3His) was successfully expressed in Pichia pastoris. The purified SBgl3His showed the same substrate specificity as natural SBgl3, hydrolyzing torvoside A with much higher catalytic efficiency than other substrates. It also had similar biochemical properties and kinetic parameters to the natural enzyme, with slight differences, possibly attributable to post-translational glycosylation. Quantitative real-time PCR (qRT-PCR) showed that SBgl3 was highly expressed in leaves and germinated seeds, suggesting a role in leaf and seedling development. To our knowledge, a recombinant GH3 β-glucosidase that hydrolyzes furostanol 26-O-β-glucosides, has not been previously reported in contrast to substrates of GH1 enzymes. PMID:27055587

  12. Carbon-based strong solid acid for cornstarch hydrolysis

    NASA Astrophysics Data System (ADS)

    Nata, Iryanti Fatyasari; Irawan, Chairul; Mardina, Primata; Lee, Cheng-Kang

    2015-10-01

    Highly sulfonated carbonaceous spheres with diameter of 100-500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO3H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO3H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst.

  13. Pd-catalyzed arylation of chlorotrifluoroethylene using arylboronic acids.

    PubMed

    Yamamoto, Tetsuya; Yamakawa, Tetsu

    2012-07-01

    The palladium-catalyzed cross-coupling of chlorotrifluoroethylene and arylboronic acids proceeds in the presence of a base and H(2)O to provide α,β,β-trifluorostyrene derivatives in satisfactory yields. PMID:22691065

  14. The Iron-Catalyzed Oxidation of Hydrazine by Nitric Acid

    SciTech Connect

    Karraker, D.G.

    2001-07-17

    To assess the importance of iron to hydrazine stability, the study of hydrazine oxidation by nitric acid has been extended to investigate the iron-catalyzed oxidation. This report describes those results.

  15. Mechanical and microstructural properties of two-step acid-base catalyzed silica gels

    SciTech Connect

    Meyers, D.E.; Kirkbir, F.; Murata, H.; Chaudhuri, S.R.; Sarkar, A.

    1994-12-31

    The mechanical and microstructural properties of two-step acid-base catalyzed silica gels were examined as functions of aging time, catalyst concentration, and hydrolysis time. Cylindrical gels were prepared using Si(OC{sub 2}H{sub 5}){sub 4}, C{sub 2}H{sub 5}OH, and H{sub 2}O, with HCl followed by NH{sub 3} as catalysts. Mechanical properties were obtained from three-point bend tests, and the microstructures of dried gels were analyzed using nitrogen adsorption/desorption techniques. Gel strength initially increased with aging time at 70 C, then leveled off after about one week. When the sol was hydrolyzed for less than two hours, there were significant differences in the properties of gels catalyzed with relative molar amounts of 0.0001 and 0.0002 HCl. However, as the hydrolysis time was increased, the gels all had similar properties, independent of the amount of HCl. The amount of NH{sub 3} influenced gelation time and to a lesser extent, the strength, but had no observable effect on pore size. The two-step catalysis procedure produced gels with strength and pore size combinations intermediate to those of either single acid or base-catalyzed gels.

  16. Extraterrestrial material analysis: loss of amino acids during liquid-phase acid hydrolysis

    NASA Astrophysics Data System (ADS)

    Buch, Arnaud; Brault, Amaury; Szopa, Cyril; Freissinet, Caroline

    2015-04-01

    Searching for building blocks of life in extraterrestrial material is a way to learn more about how life could have appeared on Earth. With this aim, liquid-phase acid hydrolysis has been used, since at least 1970 , in order to extract amino acids and other organic molecules from extraterrestrial materials (e.g. meteorites, lunar fines) or Earth analogues (e.g. Atacama desert soil). This procedure involves drastic conditions such as heating samples in 6N HCl for 24 h, either under inert atmosphere/vacuum, or air. Analysis of the hydrolyzed part of the sample should give its total (free plus bound) amino acid content. The present work deals with the influence of the 6N HCl hydrolysis on amino acid degradation. Our experiments have been performed on a standard solution of 17 amino acids. After liquid-phase acid hydrolysis (6N HCl) under argon atmosphere (24 h at 100°C), the liquid phase was evaporated and the dry residue was derivatized with N-Methyl-N-(t-butyldimethylsilyl)trifluoroacetamide (MTBSTFA) and dimethylformamide (DMF), followed by gas chromatography-mass spectrometry analysis. After comparison with derivatized amino acids from the standard solution, a significant reduction of the chromatographic peak areas was observed for most of the amino acids after liquid-phase acid hydrolysis. Furthermore, the same loss pattern was observed when the amino acids were exposed to cold 6N HCl for a short amount of time. The least affected amino acid, i.e. glycine, was found to be 73,93% percent less abundant compared to the non-hydrolyzed standard, while the most affected, i.e. histidine, was not found in the chromatograms after hydrolysis. Our experiments thereby indicate that liquid-phase acid hydrolysis, even under inert atmosphere, leads to a partial or total loss of all of the 17 amino acids present in the standard solution, and that a quick cold contact with 6N HCl is sufficient to lead to a loss of amino acids. Therefore, in the literature, the reported increase

  17. Hydrolysis of aceto-hydroxamic acid under UREX+ conditions

    SciTech Connect

    Alyapyshev, M.; Paulenova, A.; Tkac, P.; Cleveland, M.A.; Bruso, J.E.

    2007-07-01

    Aceto-hydroxamic acid (AHA) is used as a stripping agent In the UREX process. While extraction yields of uranium remain high upon addition of AHA, hexavalent plutonium and neptunium are rapidly reduced to the pentavalent state while the tetravalent species and removed from the product stream. However, under acidic conditions, aceto-hydroxamic acid undergoes hydrolytic degradation. In this study, the kinetics of the hydrolysis of aceto-hydroxamic acid in nitric and perchloric acid media was investigated at several temperatures. The decrease of the concentration of AHA was determined via its ferric complex using UV-Vis spectroscopy. The data obtained were analyzed using the method of initial rates. The data follow the pseudo-first order reaction model. Gamma irradiation of AHA/HNO{sub 3} solutions with 33 kGy/s caused two-fold faster degradation of AHA. The rate equation and thermodynamic data will be presented for the hydrolysis reaction with respect to the concentrations of aceto-hydroxamic acid, nitrate and hydronium ions, and radiation dose. (authors)

  18. Lipase-catalyzed oligomerization and hydrolysis of alkyl lactates: direct evidence in the catalysis mechanism that enantioselection is governed by a deacylation step.

    PubMed

    Ohara, Hitomi; Onogi, Akihisa; Yamamoto, Masafumi; Kobayashi, Shiro

    2010-08-01

    Lipase-catalyzed oligomerization of alkyl d- and l-lactate monomers (RDLa and RLLa, respectively) was studied for the first time. It has been found that the oligomerization occurs enantioselectively only for d-lactates to give oligomers up to heptamers of lactic acid (LA) in good to high yields by using primary C1 to C8 alkyl groups and sec-butyl group for d-lactate monomers. No reaction happened for all l-lactates in similar conditions. Lipase-catalyzed hydrolysis of alkyl d- and l-lactates was also examined, revealing that the hydrolysis took place for both d- and l-lactates, although l-lactates proceeded a couple of times slower. The hydrolysis results clearly demonstrate that the lipase catalysis mechanism involves an acyl-enzyme intermediate (EM) formation via the acylation step from both d- and l-lactates as a rate-determining step, and the subsequent deacylation step, a nucleophilic attack of water to the EM, takes place to produce free LA. On the other hand, in the oligomerization of d-lactates, the deacylation step, in which a sec-alcohol group of the monomer or of the propagating chain-end attacks to the EM, is only allowed for the sec-d-alcohol group to give a one-LA-unit-elongated oligomer. l-Lactates form the EM; however, the subsequent deacylation reaction with both the sec-l- and sec-d-alcohol groups does not take place, failing in the oligomerization to occur. These results provide with the first direct evidence in the lipase catalysis that the enantioselection is governed by the deacylation step. In the co-oligomerization between l- and d-lactates, the l-isomer retarded the reaction rate of the d-isomer, which was found due to the function of the former as a competitive inhibitor in the acylation step toward the latter. PMID:20593895

  19. Hydrolysis kinetics of lead silicate glass in acid solution

    NASA Astrophysics Data System (ADS)

    Rahimi, Rafi Ali; Sadrnezhaad, Sayed Khatibuleslam; Raisali, Gholamreza; Hamidi, Amir

    2009-06-01

    Hydrolysis kinetics of the lead silicate glass (LSG) with 40 mol% PbO in 0.5 N HNO 3 aqueous acid solution was investigated. The surface morphology and the gel layer thickness were studied by scanning electron microscopy (SEM) micrographs. Energy dispersive X-ray spectroscopy (EDS) and inductively coupled plasma spectroscopy (ICP) were used to determine the composition of the gel layer and the aqueous solution, respectively. The silicon content of the dissolution products was determined by using weight-loss data and compositions of the gel layer and the solution. The kinetic parameters were determined using the shrinking-core-model (SCM) for rate controlling step. The activation energy obtained for hydrolysis reaction was Qche = 56.07 kJ/mole. The diffusion coefficient of the Pb ions from the gel layer was determined by using its concentration in solution and in LSG. The shrinkage of the sample and the gel layer thickness during dissolution process were determined.

  20. Silver-catalyzed protodecarboxylation of heteroaromatic carboxylic acids.

    PubMed

    Lu, Pengfei; Sanchez, Carolina; Cornella, Josep; Larrosa, Igor

    2009-12-17

    A simple and highly efficient protodecarboxylation procedure for a variety of heteroaromatic carboxylic acids catalyzed by Ag(2)CO(3) and AcOH in DMSO is described. This methodology can also perform the selective monoprotodecarboxylation of several aromatic dicarboxylic acids. PMID:19924891

  1. Lipase-catalyzed process in an anhydrous medium with enzyme reutilization to produce biodiesel with low acid value.

    PubMed

    Azócar, Laura; Ciudad, Gustavo; Heipieper, Hermann J; Muñoz, Robinson; Navia, Rodrigo

    2011-12-01

    One major problem in the lipase-catalyzed production of biodiesel or fatty acid methyl esters (FAME) is the high acidity of the product, mainly caused by water presence, which produces parallel hydrolysis and esterification reactions instead of transesterification to FAME. Therefore, the use of reaction medium in absence of water (anhydrous medium) was investigated in a lipase-catalyzed process to improve FAME yield and final product quality. FAME production catalyzed by Novozym 435 was carried out using waste frying oil (WFO) as raw material, methanol as acyl acceptor, and 3Å molecular sieves to extract the water. The anhydrous conditions allowed the esterification of free fatty acids (FFA) from feedstock at the initial reaction time. However, after the initial esterification process, water absence avoided the consecutives reactions of hydrolysis and esterification, producing FAME mainly by transesterification. Using this anhydrous medium, a decreasing in both the acid value and the diglycerides content in the product were observed, simultaneously improving FAME yield. Enzyme reuse in the anhydrous medium was also studied. The use of the moderate polar solvent tert-butanol as a co-solvent led to a stable catalysis using Novozym 435 even after 17 successive cycles of FAME production under anhydrous conditions. These results indicate that a lipase-catalyzed process in an anhydrous medium coupled with enzyme reuse would be suitable for biodiesel production, promoting the use of oils of different origin as raw materials. PMID:21889401

  2. Dehydration and oxidation of cellulose hydrolysis products in acidic solution

    SciTech Connect

    Garves, K.

    1981-01-01

    The dehydration of cotton cellulose in aqueous solutions in the presence of Ac/sub 2/O, AcOH, HCl, H/sub 2/SO/sub 4/ or HBr proceeded by hydrolysis to carbohydrates with acetate groups, followed by conversion to 5-(hydroxymethyl)furfural (I) and then, to levulinic acid (II) accompanied by humic acids. For the formation of I, HCl was a more efficient and selective catalyst than H/sub 2/SO/sub 4/, and the formation of II was promoted by high acid and H/sub 2/O concentrations in the medium. The addition of FeCl/sub 3/ to the dehydration mixture with HCl and continuous distillation led to the isolation of furfural.

  3. Amino Acid-β-Naphthylamide Hydrolysis by Pseudomonas aeruginosa Arylamidase

    PubMed Central

    Riley, P. S.; Behal, Francis J.

    1971-01-01

    The intracellular and constitutive arylamidase from Pseudomonas aeruginosa was purified 528-fold by salt fractionation, ion-exchange chromatography, gel filtration, and adsorption chromatography. This enzyme hydrolyzed basic and neutral N-terminal amino acid residues from amino-β-naphthylamides, dipeptide-β-naphthylamides, and a variety of polypeptides. Only those substrates having an l-amino acid with an unsubstituted α-amino group as the N-terminal residue were susceptible to enzymatic hydrolysis. The molecular weight was estimated to be 71,000 daltons. The lowest Km values were associated with substrates having neutral or basic amino acid residues with large side chains with no substitution or branching on the β carbon atom. Images PMID:5001871

  4. Chemical evolution. XXI - The amino acids released on hydrolysis of HCN oligomers

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Wos, J. D.; Nooner, D. W.; Oro, J.

    1974-01-01

    Major amino acids released by hydrolysis of acidic and basic HCN oligomers are identified by chromatography as Gly, Asp, and diaminosuccinic acid. Smaller amounts of Ala, Ile and alpha-aminoisobutyric acid are also detected. The amino acids released did not change appreciably when the hydrolysis medium was changed from neutral to acidic or basic. The presence of both meso and d, l-diaminosuccinic acids was established by paper chromatography and on an amino acid analyzer.

  5. Hydrolysis optimization and characterization study of preparing fatty acids from Jatropha curcas seed oil

    PubMed Central

    2011-01-01

    Background Fatty acids (FAs) are important as raw materials for the biotechnology industry. Existing methods of FAs production are based on chemical methods. In this study potassium hydroxide (KOH)-catalyzed reactions were utilized to hydrolysis Jatropha curcas seed oil. Results The parameters effect of ethanolic KOH concentration, reaction temperature, and reaction time to free fatty acid (FFA%) were investigated using D-Optimal Design. Characterization of the product has been studied using Fourier transforms infrared spectroscopy (FTIR), gas chromatography (GC) and high performance liquid chromatography (HPLC). The optimum conditions for maximum FFA% were achieved at 1.75M of ethanolic KOH concentration, 65°C of reaction temperature and 2.0 h of reaction time. Conclusions This study showed that ethanolic KOH concentration was significant variable for J. curcas seed oil hydrolysis. In a 18-point experimental design, FFA% of hydrolyzed J. curcas seed oil can be raised from 1.89% to 102.2%, which proved by FTIR and HPLC. PMID:22044685

  6. Invited review: Activation of G proteins by GTP and the mechanism of Gα-catalyzed GTP hydrolysis.

    PubMed

    Sprang, Stephen R

    2016-08-01

    This review addresses the regulatory consequences of the binding of GTP to the alpha subunits (Gα) of heterotrimeric G proteins, the reaction mechanism of GTP hydrolysis catalyzed by Gα and the means by which GTPase activating proteins (GAPs) stimulate the GTPase activity of Gα. The high energy of GTP binding is used to restrain and stabilize the conformation of the Gα switch segments, particularly switch II, to afford stable complementary to the surfaces of Gα effectors, while excluding interaction with Gβγ, the regulatory binding partner of GDP-bound Gα. Upon GTP hydrolysis, the energy of these conformational restraints is dissipated and the two switch segments, particularly switch II, become flexible and are able to adopt a conformation suitable for tight binding to Gβγ. Catalytic site pre-organization presents a significant activation energy barrier to Gα GTPase activity. The glutamine residue near the N-terminus of switch II (Glncat ) must adopt a conformation in which it orients and stabilizes the γ phosphate and the water nucleophile for an in-line attack. The transition state is probably loose with dissociative character; phosphoryl transfer may be concerted. The catalytic arginine in switch I (Argcat ), together with amide hydrogen bonds from the phosphate binding loop, stabilize charge at the β-γ bridge oxygen of the leaving group. GAPs that harbor "regulator of protein signaling" (RGS) domains, or structurally unrelated domains within G protein effectors that function as GAPs, accelerate catalysis by stabilizing the pre-transition state for Gα-catalyzed GTP hydrolysis, primarily by restraining Argcat and Glncat to their catalytic conformations. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 449-462, 2016. PMID:26996924

  7. Simulation of acid hydrolysis of lignocellulosic residues to fermentable sugars for bioethanol production

    NASA Astrophysics Data System (ADS)

    Sidiras, Dimitris

    2012-12-01

    The dilute acid hydrolysis of fir sawdust with sulfuric acid was undertaken in a batch reactor system (autoclave). The experimental data and reaction kinetic analysis indicate that this is a potential process for cellulose and hemicelluloses hydrolysis, due to a rapid hydrolysis reaction for acid concentration 0.045 N at 160-180°C. It was found that significant sugar degradation occurred at these conditions. The optimum conditions gave a yield of 38% total fermentable sugars. The kinetics of dilute acid hydrolysis of cellulose and hemicelluloses (polysaccharides) were simulated using four pseudo-kinetic models. The reaction rate constants were calculated in each case.

  8. Robustness of two-step acid hydrolysis procedure for composition analysis of poplar.

    PubMed

    Bhagia, Samarthya; Nunez, Angelica; Wyman, Charles E; Kumar, Rajeev

    2016-09-01

    The NREL standard procedure for lignocellulosic biomass composition has two steps: primary hydrolysis in 72% wt sulfuric acid at 30°C for 1h followed by secondary hydrolysis of the slurry in 4wt% acid at 121°C for 1h. Although pointed out in the NREL procedure, the impact of particle size on composition has never been shown. In addition, the effects of primary hydrolysis time and separation of solids prior to secondary hydrolysis on composition have never been shown. Using poplar, it was found that particle sizes less than 0.250mm significantly lowered the glucan content and increased the Klason lignin but did not affect xylan, acetate, or acid soluble lignin contents. Composition was unaffected for primary hydrolysis time between 30 and 90min. Moreover, separating solids prior to secondary hydrolysis had negligible effect on composition suggesting that lignin and polysaccharides are completely separated in the primary hydrolysis stage. PMID:27282557

  9. Acid Catalysis in Basic Solution: A Supramolecular Host PromotesOrthoformate Hydrolysis

    SciTech Connect

    Pluth, Michael D.; Bergman, Robert G.; Raymond, Kenneth N.

    2007-12-12

    Though many enzymes can promote chemical reactions by tuning substrate properties purely through the electrostatic environment of a docking cavity, this strategy has proven challenging to mimic in synthetic host-guest systems. Here we report a highly-charged, water soluble, metal-ligand assembly with a hydrophobic interior cavity that thermodynamically stabilizes protonated substrates and consequently catalyzes the normally acidic hydrolysis of orthoformates in basic solution, with rate accelerations of up to 890-fold. The catalysis reaction obeys Michaelis-Menten kinetics, exhibits competitive inhibition, and the substrate scope displays size selectivity consistent with the constrained binding environment of the molecular host. Synthetic chemists have long endeavored to design host molecules capable of selectively binding slow-reacting substrates and catalyzing their chemical reactions. While synthetic catalysts are often site-specific and require certain properties of the substrate to insure catalysis, enzymes are often able to modify basic properties of the bound substrate such as pK{sub a} in order to enhance reactivity. Two common motifs used by nature to activate otherwise unreactive compounds are the precise arrangement of hydrogen-bonding networks and electrostatic interactions between the substrate and adjacent residues of the protein. Precise arrangement of hydrogen bonding networks near the active sites of proteins can lead to well-tuned pK{sub a}-matching, and can result in pK{sub a} shifts of up to eight units, as shown in bacteriorhodopsin. Similarly, purely electrostatic interactions can greatly favor charged states and have been responsible for pK{sub a} shifts of up to five units for acetoacetate decarboxylase. Attempts have been made to isolate the contributions of electrostatic versus covalent interactions to such pK{sub a} shifts; however this remains a difficult challenge experimentally. This challenge emphasizes the importance of synthesizing

  10. Palladium(III)-catalyzed fluorination of arylboronic acid derivatives.

    PubMed

    Mazzotti, Anthony R; Campbell, Michael G; Tang, Pingping; Murphy, Jennifer M; Ritter, Tobias

    2013-09-25

    A practical, palladium-catalyzed synthesis of aryl fluorides from arylboronic acid derivatives is presented. The reaction is operationally simple and amenable to multigram-scale synthesis. Evaluation of the reaction mechanism suggests a single-electron-transfer pathway, involving a Pd(III) intermediate that has been isolated and characterized. PMID:24040932

  11. Acid-catalyzed dehydrogenation of amine-boranes

    DOEpatents

    Stephens, Frances Helen; Baker, Ralph Thomas

    2010-01-12

    A method of dehydrogenating an amine-borane using an acid-catalyzed reaction. The method generates hydrogen and produces a solid polymeric [R.sup.1R.sup.2B--NR.sup.3R.sup.4].sub.n product. The method of dehydrogenating amine-boranes may be used to generate H.sub.2 for portable power sources.

  12. Coal liquefaction by base-catalyzed hydrolysis with CO.sub.2 capture

    DOEpatents

    Xiao, Xin

    2014-03-18

    The one-step hydrolysis of diverse biomaterials including coal, cellulose materials such as lumber and forestry waste, non-food crop waste, lignin, vegetable oils, animal fats and other source materials used for biofuels under mild processing conditions which results in the formation of a liquid fuel product along with the recovery of a high purity CO.sub.2 product is provided.

  13. Effect of the Presence of Carbohydrates during Acid Hydrolysis upon the Subsequent Recovery Free Amino Acids

    PubMed Central

    Schulze, John; Presley, Jack

    2012-01-01

    Amino acid analysis is a classic biochemical technique which has been well characterized with pure protein samples. Much less is known about the effect of the presence other substances in hydrolyzed heterogeneous samples upon the final results. At the Molecular Structure Facility at UCDavis (MSF), we examined amino acid recovery following hydrolysis to determine if the presence of carbohydrates during hydrolysis influenced the recovery of the amino acids. The MSF works with a diverse sample set for different customers and have a keen interest if any of the many substances present in the sample can influence the final results. A typical sample is subjected to 6N HCl for 24hr at 110°C then brought back up in an acidic diluent to run on our dedicated Hitachi 8800 which utilizes ion-exchange chromatography with a post-column reaction with ninhydrin for quantification of each amino acid. We used this typical/routine hydrolysis in our experiments. One technique which is often employed to promote complete hydrolysis is to presoak the sample in dilute acid was also examined. Using various model proteins as well as varying percentages of carbohydrates we demonstrated that the presence of carbohydrates has little effect on the recovery of protein across a wide range of concentrations.

  14. Hydrolysis of N{sub 2}O{sub 5} on submicron sulfuric acid aerosols

    SciTech Connect

    Hallquist, M.; Stewart, D.J.; Baker, J.; Cox, R.A.

    2000-05-04

    The kinetics of reactive uptake of gaseous N{sub 2}O{sub 5} on submicron sulfuric acid aerosol particles has been investigated using a laminar flow reactor coupled with a differential mobility analyzer (DMA) to characterize the aerosol. The particles were generated by homogeneous nucleation of SO{sub 3}/H{sub 2}O mixtures. In the H{sub 2}SO{sub 4} concentration range 26.3--64.5 wt {degree} the uptake coefficient was {gamma} = 0.033 {+-} 0.004, independent of acid strength. For an acid strength of 45 wt % {gamma} was found to decrease with increasing temperature over the range 263--298 K. From this, temperature dependence values of {minus}115 {+-} 30 kJ/mol and {minus}25.5 {+-} 8.4 J/K mol were determined for the changes in enthalpy and entropy of the uptake process, respectively. The results are consistent with a previous model of N{sub 2}O{sub 5} hydrolysis involving both a direct and an acid catalyzed mechanism, with uptake under the experimental conditions limited by mass accommodation.

  15. Kinetic Study of Acid Hydrolysis of Rice Straw

    PubMed Central

    Sarkar, Nibedita; Aikat, Kaustav

    2013-01-01

    Rice straw is a renewable, cheap, and abundant waste in tropical countries. The pentose content of rice straw can be used as a substrate for many types of value-added products such as xylitol and biofuel. Dilute acid hydrolysis mainly releases pentose from rice straw. The objective of the study was to determine the effect of H2SO4 concentration and reaction time on the xylose production. The variation of the main product xylose with the reaction time was described by a kinetic model and kinetic parameters were calculated to describe the variation of the xylose production with time. The optimum yield (19.35 g/L) was obtained at 0.24 mol/L H2SO4 and 30 minutes. PMID:25969789

  16. Aerobic Copper-Catalyzed O-Methylation with Methylboronic Acid.

    PubMed

    Jacobson, Clare E; Martinez-Muñoz, Noelia; Gorin, David J

    2015-07-17

    The oxidative coupling of alkylboronic acids with oxygen nucleophiles offers a strategy for replacing toxic, electrophilic alkylating reagents. Although the Chan-Lam reaction has been widely applied in the arylation of heteroatom nucleophiles, O-alkylation with boronic acids is rare. We report a Cu-catalyzed nondecarboxylative methylation of carboxylic acids with methylboronic acid that proceeds in air with no additional oxidant. An isotope-labeling study supports an oxidative cross-coupling mechanism, in analogy to that proposed for Chan-Lam arylation. PMID:26111825

  17. Hydrolysis of organosolv wheat pulp in formic acid at high temperature for glucose production.

    PubMed

    Kupiainen, Laura; Ahola, Juha; Tanskanen, Juha

    2012-07-01

    Organosolv methods can be used to delignify lignocellulosic crop residues for pulp production or to pretreat them prior to enzymatic hydrolysis for bioethanol production. In this study, organic solvent was used as an acidic hydrolysis catalyst to produce glucose. Hydrolysis experiments were carried out in 5-20% formic acid at 180-220 °C. Wheat straw pulp delignified with a formicodeli™ method was used as a raw material. It was found that glucose yields from pulp are significantly higher than yields from microcrystalline cellulose, a model component for cellulose hydrolysis. The results indicate that cellulose hydrolysis of real fibers takes place more selectively to glucose than hydrolysis of microcrystalline cellulose particles does. The effect of the particle size on pulp hydrolysis was investigated, the crystallinity of hydrolyzed pulp was measured by XRD analysis, and the product distribution and its influence on the process was discussed. PMID:22609651

  18. Astaxanthin preparation by lipase-catalyzed hydrolysis of its esters from Haematococcus pluvialis algal extracts.

    PubMed

    Zhao, Yingying; Guan, Feifei; Wang, Guili; Miao, Lili; Ding, Jing; Guan, Guohua; Li, Ying; Hui, Bodi

    2011-05-01

    Five of 8 fungal lipases screened were found to effectively hydrolyze astaxanthin esters from Haematococcus pluvialis algal cell extracts. Among these, an alkaline lipase from Penicillium cyclopium, expressed in Pichia pastoris, had the highest enzymolysis efficiency. Tween80 was shown to be an effective emulsifier in this lipase hydrolysis system for the 1st time. A series of experiments were performed to find optimal conditions for hydrolysis (pH, temperature, reaction time, lipase dosage). In the optimal reaction system, Tween80 and H. pluvialis extracts (mass ratio 1:1) were emulsified and added to the above lipase at a dosage of 4.6 U/μg (relative to total carotenoids), in phosphate buffer (0.1 M, pH 7.0), and incubated at 28 °C for 7 h, with agitation at 180 rpm. The free astaxanthin recovery ratio under these conditions was 63.2%. PMID:22417348

  19. Peptide synthesis catalyzed by an antibody containing a binding site for variable amino acids.

    PubMed

    Hirschmann, R; Smith, A B; Taylor, C M; Benkovic, P A; Taylor, S D; Yager, K M; Sprengeler, P A; Benkovic, S J

    1994-07-01

    Monoclonal antibodies, induced with a phosphonate diester hapten, catalyzed the coupling of p-nitrophenyl esters of N-acetyl valine, leucine, and phenylalanine with tryptophan amide to form the corresponding dipeptides. All possible stereoisomeric combinations of the ester and amide substrates were coupled at comparable rates. The antibodies did not catalyze the hydrolysis of the dipeptide product nor hydrolysis or racemization of the activated esters. The yields of the dipeptides ranged from 44 to 94 percent. The antibodies were capable of multiple turnovers at rates that exceeded the rate of spontaneous ester hydrolysis. This achievement suggests routes toward creating a small number of antibody catalysts for polypeptide syntheses. PMID:8023141

  20. Hydrolysis of the RNA model substrate catalyzed by a binuclear Zr(IV)-substituted Keggin polyoxometalate.

    PubMed

    Luong, Thi Kim Nga; Absillis, Gregory; Shestakova, Pavletta; Parac-Vogt, Tatjana N

    2015-09-21

    The reactivity and solution behaviour of the binuclear Zr(IV)-substituted Keggin polyoxometalate (Et2NH2)8[{α-PW11O39Zr(μ-OH)(H2O)}2]·7H2O (ZrK 2 : 2) towards phosphoester bond hydrolysis of the RNA model substrate 2-hydroxypropyl-4-nitrophenyl phosphate (HPNP) was investigated at different reaction conditions (pD, temperature, concentration, and ionic strength). The hydrolysis of the phosphoester bond of HPNP, followed by means of (1)H NMR spectroscopy, proceeded with an observed rate constant, kobs = 11.5(±0.42) × 10(-5) s(-1) at pD 6.4 and 50 °C, representing a 530-fold rate enhancement in comparison with the spontaneous hydrolysis of HPNP. (1)H and (31)P NMR spectra indicate that at these reaction conditions the only products of hydrolysis are p-nitrophenol and the corresponding cyclic phosphate ester. The pD dependence of kobs exhibits a bell-shaped profile, with the fastest rate observed at pD 6.4. The formation constant (Kf = 455 M(-1)) and catalytic rate constant (kc = 42 × 10(-5) s(-1)) for the HPNP-ZrK 2 : 2 complex, activation energy (Ea) of 63.35 ± 1.82 kJ mol(-1), enthalpy of activation (ΔH(‡)) of 60.60 ± 2.09 kJ mol(-1), entropy of activation (ΔS(‡)) of -133.70 ± 6.13 J mol(-1) K(-1), and Gibbs activation energy (ΔG(‡)) of 102.05 ± 0.13 kJ mol(-1) at 37 °C were calculated from kinetic experiments. Binding between ZrK 2 : 2 and the P-O bond of HPNP was evidenced by the change in the (31)P chemical shift and signal line-broadening of the (31)P atom in HPNP upon addition of ZrK 2 : 2. Based on (31)P NMR experiments and isotope effect studies, a mechanism for HPNP hydrolysis in the presence of ZrK 2 : 2 was proposed. PMID:26256057

  1. Structure of Human Acid Sphingomyelinase Reveals the Role of the Saposin Domain in Activating Substrate Hydrolysis.

    PubMed

    Xiong, Zi-Jian; Huang, Jingjing; Poda, Gennady; Pomès, Régis; Privé, Gilbert G

    2016-07-31

    Acid sphingomyelinase (ASM) is a lysosomal phosphodiesterase that catalyzes the hydrolysis of sphingomyelin to produce ceramide and phosphocholine. While other lysosomal sphingolipid hydrolases require a saposin activator protein for full activity, the ASM polypeptide incorporates a built-in N-terminal saposin domain and does not require an external activator protein. Here, we report the crystal structure of human ASM and describe the organization of the three main regions of the enzyme: the N-terminal saposin domain, the proline-rich connector, and the catalytic domain. The saposin domain is tightly associated along an edge of the large, bowl-shaped catalytic domain and adopts an open form that exposes a hydrophobic concave surface approximately 30Å from the catalytic center. The calculated electrostatic potential of the enzyme is electropositive at the acidic pH of the lysosome, consistent with the strict requirement for the presence of acidic lipids in target membranes. Docking studies indicate that sphingomyelin binds with the ceramide-phosphate group positioned at the binuclear zinc center and molecular dynamic simulations indicate that the intrinsic flexibility of the saposin domain is important for monomer-dimer exchange and for membrane interactions. Overall, ASM uses a combination of electrostatic and hydrophobic interactions to cause local disruptions of target bilayers in order to bring the lipid headgroup to the catalytic center in a membrane-bound reaction. PMID:27349982

  2. Theoretical studies of fundamental pathways for alkaline hydrolysis of carboxylic acid esters in gas phase

    SciTech Connect

    Zhan, C.G.; Landry, D.W.; Ornstein, R.L.

    2000-02-23

    Fundamental reaction pathways for the alkaline hydrolysis of carboxylic acid esters, RCOOR{prime}, were examined through a series of first-principle calculations. The reactions of six representative esters with hydroxide ion were studied in the gas phase. A total of three competing reaction pathways were found and theoretically confirmed for each of the esters examined: bimolecular base-catalyzed acyl-oxygen cleavage (B{sub AC}2), bimolecular base-catalyzed alkyl-oxygen cleavage (B{sub AL}2), and carbonyl oxygen exchange with hydroxide. For the two-step B{sub AC}2 process, this is the first theoretical study to consider the individual sub-steps of the reaction process and to consider substituent effects. For the carbonyl oxygen exchange with hydroxide and for the one-step B{sub AL}2 process, the authors report here the first quantitative theoretical results for the reaction pathways and for the energy barriers. The energy barrier calculated for the second step of the B{sub AC}2 process, that is, the decomposition of the tetrahedral intermediate, is larger in the gas phase than that of the first step, that is, the formation of the tetrahedral intermediate, for all but one of the esters examined. The exception, CH{sub 3}COOC(CH{sub 3}){sub 3}, does not have an {alpha} hydrogen in the leaving group. The highest energy barrier calculated for the B{sub AC}2 process is always lower than the barriers for the oxygen exchange and for the B{sub AL}2 process. The difference between the barrier for the B{sub AL}2 process and the highest barrier for the B{sub AC}2 process is only {approximately}1--3 kcal/mol for the methyl esters, but becomes much larger for the others. Substitution of an {alpha} hydrogen in R{prime} with a methyl group considerably increases the energy barrier for the B{sub AL}2 process, and significantly decreases the energy barrier for the second step of the B{sub AC}2 process. The calculated substituent shifts of the energy barrier for the first step of the

  3. Value of furfural/ethanol coproduction from acid hydrolysis processes

    SciTech Connect

    Parker, S.; Calnon, M.; Feinberg, D.; Power, A.; Weiss, L.

    1983-08-01

    The benefits of two modifications in the acid hydrolysis of cellulosic feedstocks for the production of ethanol fuels were investigated: marketing of the by-product furfural and xylose fermentation. Preliminary analysis indicate that the furfural by-product furfural and xylose fermentation. Perliminary analyses indicate that the furfural by-product credit is more beneficial at a minimum net profit of $0.08/lb of furfural. For this credit to have a major impact on ethanol production costs, new markets for large quantities of furfural must be identified. Furfural can be an alternative feedstock for hydrocarbon-based commodity chemicals. The costs and profitabilities of producing five chemicals from furfurals as opposed to conventional hydrocarbon-based feedstocks were studied. The furfural processes for production of styrene and butadiene were found to be marginally competitive or not competitive. The furfural processes for adipic acid, maleic anhydride, and butanol could be competitive. Results of analysis by a computer model of the petrochemical industry indicate that with furfural markets additional to these three furfural processes, over 2.5 x 10/sup 9/ gal of ethanol could be marketed at about $1.00/gal. Converting the xylose stream to ethanol has about the same effect on the selling price of ethanol as the furfural credit. The greatest ethanol production will result from xylose fermentation, but the furfural credit offers large near-term profits and has a more diversified impact on reducing petroleum product demand. 6 figures, 17 tables.

  4. Hydrolysis of Letrozole catalyzed by macrocyclic Rhodium (I) Schiff-base complexes

    NASA Astrophysics Data System (ADS)

    Reddy, P. Muralidhar; Shanker, K.; Srinivas, V.; Krishna, E. Ravi; Rohini, R.; Srikanth, G.; Hu, Anren; Ravinder, V.

    2015-03-01

    Ten mononuclear Rhodium (I) complexes were synthesized by macrocyclic ligands having N4 and N2O2 donor sites. Square planar geometry is assigned based on the analytical and spectral properties for all complexes. Rh(I) complexes were investigated as catalysts in hydrolysis of Nitrile group containing pharmaceutical drug Letrozole. A comparative study showed that all the complexes are efficient in the catalysis. The percent yields of all the catalytic reaction products viz. drug impurities were determined by spectrophotometric procedures and characterized by spectral studies.

  5. Comparison of Enzymatic Hydrolysis and Acid Hydrolysis of Sterol Glycosides from Foods Rich in Δ(7)-Sterols.

    PubMed

    Münger, Linda H; Jutzi, Sabrina; Lampi, Anna-Maija; Nyström, Laura

    2015-08-01

    In this study, we present the difference in sterol composition of extracted steryl glycosides (SG) hydrolyzed by either enzymatic or acid hydrolysis. SG were analyzed from foods belonging to the plant families Cucurbitaceae (melon and pumpkin seeds) and Amaranthaceae (amaranth and beetroot), both of which are dominated by Δ(7)-sterols. Released sterols were quantified by gas chromatography with a flame ionization detector (GC-FID) and identified using gas chromatography/mass spectrometry (GC-MS). All Δ(7)-sterols identified (Δ(7)-stigmastenyl, spinasteryl, Δ(7)-campesteryl, Δ(7)-avenasteryl, poriferasta-7,25-dienyl and poriferasta-7,22,25-trienyl glucoside) underwent isomerization under acidic conditions and high temperature. Sterols with an ethylidene or methylidene side chain were found to form multiple artifacts. The artifact sterols coeluted with residues of incompletely isomerized Δ(7)-sterols, or Δ(5)-sterols if present, and could be identified as Δ(8(14))-sterols on the basis of relative retention time, and their MS spectra as trimethylsilyl (TMS) and acetate derivatives. For instance, SG from melon were composed of 66% Δ(7)-stigmastenol when enzymatic hydrolysis was performed, whereas with acid hydrolysis only 8% of Δ(7)-stigmastenol was determined. The artifact of Δ(7)-stigmastenol coeluted with residual non-isomerized spinasterol, demonstrating the high risk of misinterpretation of compositional data obtained after acid hydrolysis. Therefore, the accurate composition of SG from foods containing sterols with a double bond at C-7 can only be obtained by enzymatic hydrolysis or by direct analysis of the intact SG. PMID:25757602

  6. Decomposition of peracetic acid catalyzed by vanadium complexes

    SciTech Connect

    Makarov, A.P.; Gekhman, A.E.; Moiseev, I.I.; Polotryuk, O.Y.

    1986-02-01

    This paper studies the decomposition of peracetic acid (AcOOH) in acetic acid (AcOH) catalyzed by vanadium complexes. It is shown that peractic acid in acetic acid solutions of ammonium anadate decomposes with the predominant formation of 0/sub 2/ and small amounts of CO/sub 2/, the yield of which increases with increasing temperature and peracetic acid concentration. Both reactions proceed without the formation of free radicals in amounts detectable by ESR spectroscopy. The rate of oxygen release under conditions in which the formation of CO/sub 2/ is insignificant obeys a kinetic equation indicating the intermediate formation of a complex between V/sup 5 +/ ions and peracetic acid and the slow conversion of this complex into the observed products.

  7. A 24.7-kDa copper-containing oxidase, secreted by Thermobifida fusca, significantly increasing the xylanase/cellulase-catalyzed hydrolysis of sugarcane bagasse.

    PubMed

    Chen, Cheng-Yu; Hsieh, Zhi-Shen; Cheepudom, Jatuporn; Yang, Chao-Hsun; Meng, Menghsiao

    2013-10-01

    Thermobifida fusca is a moderately thermophilic soil bacterium belonging to Actinobacteria. It has been known for its capability to degrade plant cell wall polymers except lignin and pectin. To know whether it can produce enzymes to facilitate lignin degradation, the extracellular proteins bound to sugarcane bagasse were harvested and identified by liquid chromatography tandem mass spectrometry. Among the identified proteins, a putative copper-containing polyphenol oxidase of 241 amino acids, encoded by the locus Tfu_1114, was thought to presumably play a role in lignin degradation. This protein (Tfu1114) was thus expressed in E. coli and characterized. Similarly to common laccases, Tfu1114 is able to catalyze the oxidation reaction of phenolic and nonphenolic lignin related compounds such as 2,6-dimethoxyphenol and veratryl alcohol. More interestingly, it can significantly enhance the enzymatic hydrolysis of bagasse by xylanase and cellulase. Tfu1114 is stable against heat, with a half-life of 4.7 h at 90 °C, and organic solvents. It is sensitive to ethylenediaminetetraacetic acid and reducing agents but resistant to sodium azide, a potent inhibitor of laccases. Atomic absorption spectroscopy indicated that the ratio of copper to the protein monomer is 1, instead of 4, a feature of classical laccases. All these data suggest that Tfu1114 is a novel oxidase with laccase-like activity, potentially useful in biotechnology application. PMID:23377789

  8. /sup 18/O isotope effect in /sup 13/C nuclear magnetic resonance spectroscopy. Part 9. Hydrolysis of benzyl phosphate by phosphatase enzymes and in acidic aqueous solutions

    SciTech Connect

    Parente, J.E.; Risley, J.M.; Van Etten, R.L.

    1984-12-26

    The /sup 18/O isotope-induced shifts in /sup 13/C and /sup 31/P nuclear magnetic resonance (NMR) spectroscopy were used to establish the position of bond cleavage in the phosphatase-catalyzed and acid-catalyzed hydrolysis reactions of benzyl phosphate. The application of the /sup 18/O-isotope effect in NMR spectroscopy affords a continuous, nondestructive assay method for following the kinetics and position of bond cleavage in the hydrolytic process. The technique provides advantages over most discontinuous methods in which the reaction components must be isolated and converted to volatile derivatives prior to analysis. In the present study, (..cap alpha..-/sup 13/C,ester-/sup 18/O)benzyl phosphate and (ester-/sup 18/O)benzyl phosphate were synthesized for use in enzymatic and nonenzymatic studies. Hydrolysis reactions catalyzed by the alkaline phosphatase from E. coli and by the acid phosphatases isolated from human prostate and human liver were all accompanied by cleavage of the substrate phosphorus-oxygen bond consistent with previously postulated mechanisms involving covalent phosphoenzyme intermediates. An extensive study of the acid-catalyzed hydrolysis of benzyl phosphate at 75/sup 0/C revealed that the site of bond cleavage is dependent on pH. At pH less than or equal to 1.3, the hydrolysis proceeds with C-O bond cleavage; at 1.3 < pH < 2.0, there is a mixture of C-O and P-O bond scission, the latter progressively predominating as the pH is raised; at pH greater than or equal to 2.0, the hydrolysis proceeds with exclusive P-O bond scission. (S)-(+)-(..cap alpha..-/sup 2/H)Benzyl phosphate was also synthesized. Hydrolysis of this chiral benzyl derivative demonstrated that the acid-catalyzed C-O bond scission of benzyl phosphate proceeds by an A-1 (S/sub N/1) mechanism with 70% racemization and 30% inversion at carbon. 37 references, 4 figures, 2 tables.

  9. Proximal ADP-ribose Hydrolysis in Trypanosomatids is Catalyzed by a Macrodomain.

    PubMed

    Haikarainen, Teemu; Lehtiö, Lari

    2016-01-01

    ADP-ribosylation is a ubiquitous protein modification utilized by both prokaryotes and eukaryotes for several cellular functions, such as DNA repair, proliferation, and cell signaling. Higher eukaryotes, such as humans, utilize various enzymes to reverse the modification and to regulate ADP-ribose dependent signaling. In contrast, some lower eukaryotes, including trypanosomatids, lack many of these enzymes and therefore have a much more simplified ADP-ribose metabolism. Here we identified and characterized ADP-ribose hydrolases from Trypanosoma brucei and Trypanosoma cruzi, which are homologous to human O-acetyl-ADP-ribose deacetylases MacroD1 and MacroD2. The enzymes are capable for hydrolysis of protein linked ADP-ribose and a product of sirtuin-mediated lysine deacetylation, O-acetyl-ADP-ribose. Crystal structures of the trypanosomatid macrodomains revealed a conserved catalytic site with distinct differences to human MacroD1 and MacroD2. PMID:27064071

  10. Proximal ADP-ribose Hydrolysis in Trypanosomatids is Catalyzed by a Macrodomain

    PubMed Central

    Haikarainen, Teemu; Lehtiö, Lari

    2016-01-01

    ADP-ribosylation is a ubiquitous protein modification utilized by both prokaryotes and eukaryotes for several cellular functions, such as DNA repair, proliferation, and cell signaling. Higher eukaryotes, such as humans, utilize various enzymes to reverse the modification and to regulate ADP-ribose dependent signaling. In contrast, some lower eukaryotes, including trypanosomatids, lack many of these enzymes and therefore have a much more simplified ADP-ribose metabolism. Here we identified and characterized ADP-ribose hydrolases from Trypanosoma brucei and Trypanosoma cruzi, which are homologous to human O-acetyl-ADP-ribose deacetylases MacroD1 and MacroD2. The enzymes are capable for hydrolysis of protein linked ADP-ribose and a product of sirtuin-mediated lysine deacetylation, O-acetyl-ADP-ribose. Crystal structures of the trypanosomatid macrodomains revealed a conserved catalytic site with distinct differences to human MacroD1 and MacroD2. PMID:27064071

  11. Pyrolytic characteristics of biomass acid hydrolysis residue rich in lignin.

    PubMed

    Huang, Yanqin; Wei, Zhiguo; Yin, Xiuli; Wu, Chuangzhi

    2012-01-01

    Pyrolytic characteristics of acid hydrolysis residue (AHR) of corncob and pinewood (CAHR, WAHR) were investigated using a thermo-gravimetric analyzer (TGA) and a self-designed pyrolysis apparatus. Gasification reactivity of CAHR char was then examined using TGA and X-ray diffractometer. Result of TGA showed that thermal degradation curves of AHR descended smoothly along with temperature increasing from 150 °C to 850 °C, while a "sharp mass loss stage" for original biomass feedstock (OBF) was observed. Char yield from AHR (42.64-30.35 wt.%) was found to be much greater than that from OBF (26.4-19.15 wt.%). In addition, gasification reactivity of CAHR char was lower than that of corncob char, and there was big difference in micro-crystallite structure. It was also found that CAHR char reactivity decreased with pyrolysis temperature, but increased with pyrolysis heating rate and gasification temperature at 850-950 °C. Furthermore, CAHR char reactivity performed better under steam atmosphere than under CO2 atmosphere. PMID:22055106

  12. 4-Dimenthylaminopyridine or Acid-Catalyzed Synthesis of Esters: A Comparison

    ERIC Educational Resources Information Center

    van den Berg, Annemieke W. C.; Hanefeld, Ulf

    2006-01-01

    A set of highly atom-economic experiments was developed to highlight the differences between acid- and base-catalyzed ester syntheses and to introduce the principles of atom economy. The hydrochloric acid-catalyzed formation of an ester was compared with the 4-dimethylaminopyradine-catalyzed ester synthesis.

  13. MutL-catalyzed ATP hydrolysis is required at a post-UvrD loading step in methyl-directed mismatch repair.

    PubMed

    Robertson, Adam B; Pattishall, Steven R; Gibbons, Erin A; Matson, Steven W

    2006-07-21

    Methyl-directed mismatch repair is a coordinated process that ensures replication fidelity and genome integrity by resolving base pair mismatches and insertion/deletion loops. This post-replicative event involves the activities of several proteins, many of which appear to be regulated by MutL. MutL interacts with and modulates the activities of MutS, MutH, UvrD, and perhaps other proteins. The purified protein catalyzes a slow ATP hydrolysis reaction that is essential for its role in mismatch repair. However, the role of the ATP hydrolysis reaction is not understood. We have begun to address this issue using two point mutants: MutL-E29A, which binds nucleotide but does not catalyze ATP hydrolysis, and MutL-D58A, which does not bind nucleotide. As expected, both mutants failed to complement the loss of MutL in genetic assays. Purified MutL-E29A protein interacted with MutS and stimulated the MutH-catalyzed nicking reaction in a mismatch-dependent manner. Importantly, MutL-E29A stimulated the loading of UvrD on model substrates. In fact, stimulation of UvrD-catalyzed unwinding was more robust with MutL-E29A than the wild-type protein. MutL-D58A, on the other hand, did not interact with MutS, stimulate MutH-catalyzed nicking, or stimulate the loading of UvrD. We conclude that ATP-bound MutL is required for the incision steps associated with mismatch repair and that ATP hydrolysis by MutL is required for a step in the mismatch repair pathway subsequent to the loading of UvrD and may serve to regulate helicase loading. PMID:16690604

  14. Comparison of enzymatic and acid hydrolysis of bound flavor compounds in model system and grapes.

    PubMed

    Dziadas, Mariusz; Jeleń, Henryk H

    2016-01-01

    Four synthesized terpenyl-ß-D-glycopyranosides (geranyl, neryl, citronellyl, myrtenyl) were subjected to enzymatic (AR 2000, pH 5.5) and acid (citric buffer, pH 2.5) hydrolysis. Decrease of glycosides was measured by HPLC and the volatiles released--by comprehensive gas chromatography-mass spectrometry (GC × GC-ToF-MS). Enzymatic hydrolysis performed for 21 h yielded 100% degree of hydrolysis for all glycosides but citronellyl (97%). Degree of acid hydrolysis was highly dependent on type of aglycone and the conditions. The highest degree was achieved for geraniol, followed by citronellol and nerol. Myrtenylo-ß-D-glycopyranoside was the most resistant glycoside to hydrolysis. Acid hydrolysis degree was also related to temperature/time combination, the highest being for 100 °C and 2 h. In a result of enzymatic hydrolysis 85-91% of total peak areas was terpene aglycone, whereas for acid hydrolysis the area of released terpene aglycone did not exceed 1.3% of total peak area indicating almost complete decomposition/transformation of terpenyl aglycone. PMID:26212990

  15. Synthesis of Rosin Acid Starch Catalyzed by Lipase

    PubMed Central

    Lin, Rihui; Li, He; Long, Han; Su, Jiating; Huang, Wenqin

    2014-01-01

    Rosin, an abundant raw material from pine trees, was used as a starting material directly for the synthesis of rosin acid starch. The esterification reaction was catalyzed by lipase (Novozym 435) under mild conditions. Based on single factor experimentation, the optimal esterification conditions were obtained as follows: rosin acid/anhydrous glucose unit in the molar ratio 2 : 1, reaction time 4 h at 45°C, and 15% of lipase dosage. The degree of substitution (DS) reaches 0.098. Product from esterification of cassava starch with rosin acid was confirmed by FTIR spectroscopy and iodine coloration analysis. Scanning electron microscopy and X-ray diffraction analysis showed that the morphology and crystallinity of the cassava starch were largely destroyed. Thermogravimetric analysis indicated that thermal stability of rosin acid starch decreased compared with native starch. PMID:24977156

  16. Investigating Mass Transport Limitations on Xylan Hydrolysis During Dilute Acid Pretreatment of Poplar

    SciTech Connect

    Mittal, Ashutosh; Pilath, Heid M.; Parent, Yves; Chatterjee, Siddharth G.; Donohoe, Bryon S.; Yarbrough, John M.; Himmel, Michael E.; Nimlos, Mark R.; Johnson, David K.

    2014-04-28

    Mass transport limitations could be an impediment to achieving high sugar yields during biomass pretreatment and thus be a critical factor in the economics of biofuels production. The objective of this work was to study the mass transfer restrictions imposed by the structure of biomass on the hydrolysis of xylan during dilute acid pretreatment of biomass. Mass transfer effects were studied by pretreating poplar wood at particle sizes ranging from 10 micrometers to 10 mm. This work showed a significant reduction in the rate of xylan hydrolysis in poplar when compared to the intrinsic rate of hydrolysis for isolated xylan that is possible in the absence of mass transfer. In poplar samples we observed no significant difference in the rates of xylan hydrolysis over more than two orders of magnitude in particle size. It appears that no additional mass transport restrictions are introduced by increasing particle size from 10 micrometers to 10 mm. This work suggests that the rates of xylan hydrolysis in biomass particles are limited primarily by the diffusion of hydrolysis products out of plant cell walls. A mathematical description is presented to describe the kinetics of xylan hydrolysis that includes transport of the hydrolysis products through biomass into the bulk solution. The modeling results show that the effective diffusion coefficient of the hydrolysis products in the cell wall is several orders of magnitude smaller than typical values in other applications signifying the role of plant cell walls in offering resistance to diffusion of the hydrolysis products.

  17. Hydrolysis of some mRNA 5'-cap analogs catalyzed by the human Fhit protein--and lupin ApppA hydrolases.

    PubMed

    Bojarska, E; Kraciuk, R; Wierzchowski, J; Wieczorek, Z; Stepiński, J; Jankowska, M; Starzyńska, E; Guranowski, A; Darzynkiewicz, E

    1999-01-01

    Hydrolysis of the following four cap analogs: m7G(5')ppp(5')A, m7G(5')ppp(5')m6A, m7G(5')ppp(5')m2'OG and m7G(5')ppp(5')2'dG catalyzed by homogeneous human Fhit protein and yellow lupin Ap3A hydrolase has been investigated. The hydrolysis products were identified by HPLC analysis and the K(m) and Vmax values calculated based on the data obtained by the fluorimetric method. PMID:10432746

  18. Effect of an acid filler on hydrolysis and biodegradation of poly-lactic acid (PLA)

    NASA Astrophysics Data System (ADS)

    Iozzino, Valentina; Speranza, Vito; Pantani, Roberto

    2015-12-01

    The use of biodegradable polymers is certainly an excellent strategy to solve many of the problems related to the disposal of the traditional polymers, whose accumulation in the environment is harmful and damaging. In order to optimize the use of biodegradable polymers, it is very important to understand and control the transformation processes, the structures and the morphologies resulting from the process conditions used to produce the articles and, not least, the biodegradation. The latter is strictly dependent on the just mentioned variables. The poly-lactic acid, PLA, is a biodegradable polymer. Many studies have been carried out on the degradation process of this polymer. In the course of this work we performed degradation tests on the PLA, with a specific D-isomer content, having amorphous structure, and in particular of biodegradation and hydrolysis. An acid chemical, fumaric acid, was added to PLA with the objective of controlling the rate of hydrolysis and of biodegradation. The hydrolysis process was followed, as function of time, by means of different techniques: pH variation, variation of weight of samples and variation of crystallinity degree and glass transition temperature using DSC analysis. The samples were also analyzed in terms of biodegradability by means of a homemade respirometer apparatus, in controlled composting conditions.

  19. ATP hydrolysis catalyzed by human replication factor C requires participation of multiple subunits.

    PubMed

    Cai, J; Yao, N; Gibbs, E; Finkelstein, J; Phillips, B; O'Donnell, M; Hurwitz, J

    1998-09-29

    Human replication factor C (hRFC) is a five-subunit protein complex (p140, p40, p38, p37, and p36) that acts to catalytically load proliferating cell nuclear antigen onto DNA, where it recruits DNA polymerase delta or epsilon to the primer terminus at the expense of ATP, leading to processive DNA synthesis. We have previously shown that a subcomplex of hRFC consisting of three subunits (p40, p37, and p36) contained DNA-dependent ATPase activity. However, it is not clear which subunit(s) hydrolyzes ATP, as all five subunits include potential ATP binding sites. In this report, we introduced point mutations in the putative ATP-binding sequences of each hRFC subunit and examined the properties of the resulting mutant hRFC complex and the ATPase activity of the hRFC or the p40.p37.p36 complex. A mutation in any one of the ATP binding sites of the p36, p37, p40, or p140 subunits markedly reduced replication activity of the hRFC complex and the ATPase activity of the hRFC or the p40.p37.p36 complex. A mutation in the ATP binding site of the p38 subunit did not alter the replication activity of hRFC. These findings indicate that the replication activity of hRFC is dependent on efficient ATP hydrolysis contributed to by the action of four hRFC subunits. PMID:9751713

  20. Acid-catalyzed conversion of mono- and poly-sugars into platform chemicals: effects of molecular structure of sugar substrate.

    PubMed

    Hu, Xun; Wu, Liping; Wang, Yi; Song, Yao; Mourant, Daniel; Gunawan, Richard; Gholizadeh, Mortaza; Li, Chun-Zhu

    2013-04-01

    Hydrolysis/pyrolysis of lignocellulosic biomass always produces a mixture of sugars with distinct structures as intermediates or products. This study tried to elucidate the effects of molecular structure of sugars on their acid-catalyzed conversions in ethanol/water. Location of carbonyl group in sugars (fructose versus glucose) and steric configuration of hydroxyl groups (glucose versus galactose) significantly affected yields of levulinic acid/ester (fructose>glucose>galactose). The dehydration of fructose to 5-(hydroxymethyl)furfural produces much less soluble polymer than that from glucose and galactose, which results in high yields of levulinic acid/ester from fructose. Anhydrate sugar such as levoglucosan tends to undergo the undesirable decomposition to form less levulinic acid/ester. Catalytic behaviors of the poly-sugars (sucrose, maltose, raffinose, β-cyclodextrins) were determined much by their basic units. However, their big molecular sizes create the steric hindrance that significantly affects their followed conversion over solid acid catalyst. PMID:23454803

  1. Proton inventory of the water-catalyzed hydrolysis of 1-acetyl-1,2,4-triazole. Examination of ionic strength effects

    SciTech Connect

    Patterson, J.F.; Huskey, W.P.; Hogg, J.L.

    1980-11-07

    Proton inventories of the water-catalyzed hydrolysis of 1-acetyl-1,2-4-triazole have been completed under a variety of conditions. The solvent deuterium isotope effect, k/sub H/sub 2/O/k/sub D/sub 2/O/, determined at pH 4.7 or the equivalent point on the pD rate profile at 25/sup 0/C by using acetic acid-acetate buffers at 1 M ionic strength was 3.18. The solvent deuterium isotope effects determined at ionic strenghs of 1 and 0.5 M by using 10/sup -3/ M HCl (DCl) to control the pH(D) were 3.13 and 3.07, respectively. In all cases the proton inventories exhibit significant downward curvature and are, within experimental error, consistent with a cyclic transition state structure involving four water molecules. The equation k/sub n/ = k/sub 0/(1 - n + 0.75n) describes the proton inventories where the value of the isotope fractionation factor for the four in-flight protons is 0.75. These inventories are compared to an earlier study done with no ionic strength control, and several alternative transition states are considered in detail.

  2. Phospholipase A1-catalyzed hydrolysis of soy phosphatidylcholine to prepare l-α-glycerylphosphorylcholine in organic-aqueous media.

    PubMed

    Bang, Hyo-Jeong; Kim, In-Hwan; Kim, Byung Hee

    2016-01-01

    This study aimed to optimize the preparation of L-α-glycerylphosphorylcholine (l-α-GPC) via phospholipase A1 (Lecitase Ultra)-catalyzed hydrolysis of soy phosphatidylcholine (PC). The reaction was performed in n-hexane-water biphasic media in a stirred batch reactor, and modeling and optimization were conducted using response surface methodology. Optimal conditions to completely hydrolyze PC to L-α-GPC were: temperature, 50 °C; reaction time, 30 h; water content, 69 g/100 g of PC weight; and enzyme loading, 13 g/100 g of PC weight. The optimal n-hexane-to-water ratio in the medium was 5.8:1 (v/v), and 21.3g of PC was treated as the substrate in 100 mL of the medium. L-α-GPC with purity 99.3 g/100 g was obtained from the reaction products after diethyl ether extraction and silica column chromatography. These findings suggest that the use of n-hexane-water media increases the productivity of l-α-GPC compared to the aqueous media used in enzymatic reaction systems in other published studies. PMID:26212962

  3. Origin of Glycine from Acid Hydrolysis of the β-Lactam Antibiotic A16886B

    PubMed Central

    Brannon, D. R.; Mabe, J. A.; Ellis, R.; Whitney, J. G.; Nagarajan, R.

    1972-01-01

    Structural analysis of two new β-lactam antibiotics, A16884A and A16886B, indicated that they, like cephalosporin C, were composed of modified valine and cysteine residues, and α-aminoadipic acid. However, acid hydrolysis of A16886B and A16884A produced three times as much glycine as did hydrolysis of cephalosporin C under the same conditions. Samples of A16886B-14C-6 and A16886B-14C-8 were prepared by the addition of cysteine-14C-3 and cystine-14C-1 to fermentations of Streptomyces clavuligerus. The specific activity of glycine obtained from hydrolysis of A16886B-14C-6 was considerably higher than that from hydrolysis of A16886B-14C-8. An explanation for the difference in amounts of glycine obtained from hydrolysis of these antibiotics is discussed. PMID:5045470

  4. Acylsugar Acylhydrolases: Carboxylesterase-Catalyzed Hydrolysis of Acylsugars in Tomato Trichomes.

    PubMed

    Schilmiller, Anthony L; Gilgallon, Karin; Ghosh, Banibrata; Jones, A Daniel; Last, Robert L

    2016-03-01

    Glandular trichomes of cultivated tomato (Solanum lycopersicum) and many other species throughout the Solanaceae produce and secrete mixtures of sugar esters (acylsugars) on the plant aerial surfaces. In wild and cultivated tomato, these metabolites consist of a sugar backbone, typically glucose or sucrose, and two to five acyl chains esterified to various positions on the sugar core. The aliphatic acyl chains vary in length and branching and are transferred to the sugar by a series of reactions catalyzed by acylsugar acyltransferases. A phenotypic screen of a set of S. lycopersicum M82 × Solanum pennellii LA0716 introgression lines identified a dominant genetic locus on chromosome 5 from the wild relative that affected total acylsugar levels. Genetic mapping revealed that the reduction in acylsugar levels was consistent with the presence and increased expression of two S. pennellii genes (Sopen05g030120 and Sopen05g030130) encoding putative carboxylesterase enzymes of the α/β-hydrolase superfamily. These two enzymes, named ACYLSUGAR ACYLHYDROLASE1 (ASH1) and ASH2, were shown to remove acyl chains from specific positions of certain types of acylsugars in vitro. A survey of related genes in M82 and LA0716 identified another trichome-expressed ASH gene on chromosome 9 (M82, Solyc09g075710; LA0716, Sopen09g030520) encoding a protein with similar activity. Characterization of the in vitro activities of the SpASH enzymes showed reduced activities with acylsugars produced by LA0716, presumably contributing to the high-level production of acylsugars in the presence of highly expressed SpASH genes. PMID:26811191

  5. Acylsugar Acylhydrolases: Carboxylesterase-Catalyzed Hydrolysis of Acylsugars in Tomato Trichomes1[OPEN

    PubMed Central

    Gilgallon, Karin; Ghosh, Banibrata

    2016-01-01

    Glandular trichomes of cultivated tomato (Solanum lycopersicum) and many other species throughout the Solanaceae produce and secrete mixtures of sugar esters (acylsugars) on the plant aerial surfaces. In wild and cultivated tomato, these metabolites consist of a sugar backbone, typically glucose or sucrose, and two to five acyl chains esterified to various positions on the sugar core. The aliphatic acyl chains vary in length and branching and are transferred to the sugar by a series of reactions catalyzed by acylsugar acyltransferases. A phenotypic screen of a set of S. lycopersicum M82 × Solanum pennellii LA0716 introgression lines identified a dominant genetic locus on chromosome 5 from the wild relative that affected total acylsugar levels. Genetic mapping revealed that the reduction in acylsugar levels was consistent with the presence and increased expression of two S. pennellii genes (Sopen05g030120 and Sopen05g030130) encoding putative carboxylesterase enzymes of the α/β-hydrolase superfamily. These two enzymes, named ACYLSUGAR ACYLHYDROLASE1 (ASH1) and ASH2, were shown to remove acyl chains from specific positions of certain types of acylsugars in vitro. A survey of related genes in M82 and LA0716 identified another trichome-expressed ASH gene on chromosome 9 (M82, Solyc09g075710; LA0716, Sopen09g030520) encoding a protein with similar activity. Characterization of the in vitro activities of the SpASH enzymes showed reduced activities with acylsugars produced by LA0716, presumably contributing to the high-level production of acylsugars in the presence of highly expressed SpASH genes. PMID:26811191

  6. Optimization of dilute acid pretreatment of water hyacinth biomass for enzymatic hydrolysis and ethanol production

    PubMed Central

    Idrees, Muhammad; Adnan, Ahmad; Sheikh, Shahzad; Qureshic, Fahim Ashraf

    2013-01-01

    The present study was conducted for the optimization of pretreatment process that was used for enzymatic hydrolysis of lignocellulosic biomass (Water Hyacinth, WH), which is a renewable resource for the production of bioethanol with decentralized availability. Response surface methodology has been employed for the optimization of temperature (oC), time (hr) and different concentrations of maleic acid (MA), sulfuric acid (SA) and phosphoric acid (PA) that seemed to be significant variables with P < 0.05. High F and R2 values and low P-value for hydrolysis yield indicated the model predictability. The pretreated biomass producing 39.96 g/l, 39.86 g/l and 37.9 g/l of reducing sugars during enzymatic hydrolysis with yield 79.93, 78.71 and 75.9 % from PA, MA and SA treated respectively. The order of catalytic effectiveness for hydrolysis yield was found to be phosphoric acid > maleic acid > sulfuric acid. Mixture of sugars was obtained during dilute acid pretreatment with glucose being the most prominent sugar while pure glucose was obtained during enzymatic hydrolysis. The resulting sugars, obtained during enzymatic hydrolysis were finally fermented to ethanol, with yield 0.484 g/g of reducing sugars which is 95 % of theoretical yield (0.51 g/g glucose) by using commercial baker's yeast (Sacchromyces cerveasiae). PMID:26417215

  7. HIGH TEMPERATURE DILUTE ACID HYDROLYSIS OF WASTE CELLULOSE: BATCH AND CONTINUOUS PROCESSES

    EPA Science Inventory

    The 5-year investigation on the dilute acid hydrolysis of waste cellulose to glucose has emphasized the crucial step of continuously converting cellulose to glucose. Initial batch studies emphasized pretreatments to improve accessibility of the cellulose, and established suitable...

  8. Hydrolysis of tRNA(sup Phe) on Suspensions of Amino Acids

    NASA Technical Reports Server (NTRS)

    Gao, Kui; Orgel, Leslie E.

    2001-01-01

    RNA is adsorbed strongly on suspensions of many moderately soluble organic solids. In some cases, the hydrolysis of tRNA(sup Phe) is greatly accelerated by adsorption, and the major sites of hydrolysis are changed from those that are important in homogeneous solution. Here we show that the hydrolysis is greatly accelerated by suspensions of aspartic acid and beta-glutamic acid but not by suspensions of alpha-glutamic acid, asparagine, or glutamine. The non-enzymatic hydrolysis of RNA has been studied extensively, especially because of its relevance to the mechanisms of action of ribozymes and to biotechnology and therapy. Many ribonucleases, ribozymes, and non-biological catalysts function via acid-base catalysis of an intramolecular transesterification mechanism in which the 2'-OH group attacks the adjacent phosphate group. The pentacoordinated phosphorane intermediate may collapse back to starting material, or yield isomerized or cleaved products.

  9. Acid hydrolysis of cellulosic fibres: Comparison of bleached kraft pulp, dissolving pulps and cotton textile cellulose.

    PubMed

    Palme, Anna; Theliander, Hans; Brelid, Harald

    2016-01-20

    The behaviour of different cellulosic fibres during acid hydrolysis has been investigated and the levelling-off degree of polymerisation (LODP) has been determined. The study included a bleached kraft pulp (both never-dried and once-dried) and two dissolving pulps (once-dried). Additionally, cotton cellulose from new cotton sheets and sheets discarded after long-time use was studied. Experimental results from the investigation, together with results found in literature, imply that ultrastructural differences between different fibres affect their susceptibility towards acid hydrolysis. Drying of a bleached kraft pulp was found to enhance the rate of acid hydrolysis and also result in a decrease in LODP. This implies that the susceptibility of cellulosic fibres towards acid hydrolysis is affected by drying-induced stresses in the cellulose chains. In cotton cellulose, it was found that use and laundering gave a substantial loss in the degree of polymerisation (DP), but that the LODP was only marginally affected. PMID:26572472

  10. Cooperative Catalysis: Calcium and Camphorsulfonic Acid Catalyzed Cycloisomerization of Diynols.

    PubMed

    Rauser, Marian; Schroeder, Sebastian; Niggemann, Meike

    2015-11-01

    The first transition metal-free cycloisomerization of easily accessible diynols is presented as a novel approach to bicyclic 2H-pyrans. As a one-step protocol, the reaction proceeds in a single reaction cascade by intertwining mechanistic fragments borrowed from transition metal-catalyzed Claisen rearrangment of vinyl ethers with our own work on allenyl/propargyl cation rearrangements and a 6π-oxo-electrocylization. It is enabled by a new cooperative catalytic system that combines a simple Ca(2+) catalyst with camphorsulfonic acid. PMID:26403228

  11. The influence of solid/liquid separation techniques on the sugar yield in two-step dilute acid hydrolysis of softwood followed by enzymatic hydrolysis

    PubMed Central

    Monavari, Sanam; Galbe, Mats; Zacchi, Guido

    2009-01-01

    Background Two-step dilute acid hydrolysis of softwood, either as a stand-alone process or as pretreatment before enzymatic hydrolysis, is considered to result in higher sugar yields than one-step acid hydrolysis. However, this requires removal of the liquid between the two steps. In an industrial process, filtration and washing of the material between the two steps is difficult, as it should be performed at high pressure to reduce energy demand. Moreover, the application of pressure leads to more compact solids, which may affect subsequent processing steps. This study was carried out to investigate the influence of pressing the biomass, in combination with the effects of not washing the material, on the sugar yield obtained from two-step dilute acid hydrolysis, with and without subsequent enzymatic digestion of the solids. Results Washing the material between the two acid hydrolysis steps, followed by enzymatic digestion, resulted in recovery of 96% of the mannose and 81% of the glucose (% of the theoretical) in the liquid fraction, regardless of the choice of dewatering method (pressing or vacuum filtration). Not washing the solids between the two acid hydrolysis steps led to elevated acidity of the remaining solids during the second hydrolysis step, which resulted in lower yields of mannose, 85% and 74% of the theoretical, for the pressed and vacuum-filtered slurry, respectively, due to sugar degradation. However, this increase in acidity resulted in a higher glucose yield (94.2%) from pressed slurry than from filtered slurry (77.6%). Conclusion Pressing the washed material between the two acid hydrolysis steps had no significant negative effect on the sugar yields of the second acid hydrolysis step or on enzymatic hydrolysis. Not washing the material resulted in a harsher second acid hydrolysis step, which caused greater degradation of the sugars during subsequent acid hydrolysis of the solids, particularly in case of the vacuum-filtered solids. However

  12. Deoxycholic acid transformations catalyzed by selected filamentous fungi.

    PubMed

    Kollerov, V V; Lobastova, T G; Monti, D; Deshcherevskaya, N O; Ferrandi, E E; Fronza, G; Riva, S; Donova, M V

    2016-03-01

    More than 100 filamentous fungi strains, mostly ascomycetes and zygomycetes from different phyla, were screened for the ability to convert deoxycholic acid (DCA) to valuable bile acid derivatives. Along with 11 molds which fully degraded DCA, several strains were revealed capable of producing cholic acid, ursocholic acid, 12-keto-lithocholic acid (12-keto-LCA), 3-keto-DCA, 15β-hydroxy-DCA and 15β-hydroxy-12-oxo-LCA as major products from DCA. The last metabolite was found to be a new compound. The ability to catalyze the introduction of a hydroxyl group at the 7(α/β)-positions of the DCA molecule was shown for 32 strains with the highest 7β-hydroxylase activity level for Fusarium merismoides VKM F-2310. Curvularia lunata VKM F-644 exhibited 12α-hydroxysteroid dehydrogenase activity and formed 12-keto-LCA from DCA. Acremonium rutilum VKM F-2853 and Neurospora crassa VKM F-875 produced 15β-hydroxy-DCA and 15β-hydroxy-12-oxo-LCA, respectively, as major products from DCA, as confirmed by MS and NMR analyses. For most of the positive strains, the described DCA-transforming activity was unreported to date. The presented results expand the knowledge on bile acid metabolism by filamentous fungi, and might be suitable for preparative-scale exploitation aimed at the production of marketed bile acids. PMID:26718089

  13. Kinetic studies on the acid hydrolysis of the methyl ketoside of unsubstituted and O-acetylated N-acetylneuraminic acid

    PubMed Central

    Neuberger, A.; Ratcliffe, Wendy A.

    1973-01-01

    The hydrolysis of the model compound 2-O-methyl-4,7,8,9-tetra-O-acetyl-N-acetyl-α-d-neuraminic acid and neuraminidase (Vibrio cholerae) closely resembled that of the O-acetylated sialic acid residues of rabbit Tamm–Horsfall glycoprotein. This confirmed that O-acetylation was responsible for the unusually slow rate of acid hydrolysis of O-acetylated sialic acid residues observed in rabbit Tamm–Horsfall glycoprotein and their resistance to hydrolysis by neuraminidase. The first-order rate constant of hydrolysis of 2-methyl-N-acetyl-α-d-neuraminic acid by 0.05m-H2SO4 was 56-fold greater than that of 2-O-methyl-4,7,8,9-tetra-O-acetyl-N-acetyl -α-d-neuraminic acid. Kinetic studies have shown that in the pH range 1.00–3.30, the observed rate of hydrolysis of 2-methyl-N-acetyl-α-d-neuraminic acid can be attributed to acid-catalysed hydrolysis of the negatively charged CO2− form of the methyl ketoside. PMID:4748825

  14. Developmental Transition from Enzymatic to Acid Hydrolysis of Sucrose in Acid Limes (Citrus aurantifolia) 1

    PubMed Central

    Echeverria, Ed

    1990-01-01

    The sucrose breakdown mechanisms in juice sacs of acid lime (Citrus aurantifolia [Christm.] Swing.) were investigated throughout fruit development. All three enzymes of sucrose catabolism (sucrose synthase, acid, and alkaline invertase) are present during the initial stages. The activities of these enzymes declined rapidly and disappeared by stage 5 (80% development) but not before vacuolar pH had decreased to approximately 2.5. At this stage, sucrose breakdown occurs by acid hydrolysis. By attaining a vacuolar pH of 2.5 prior to enzyme disappearance, the cell maintains a continuous ability to break down sucrose throughout ontogeny. Thus, acid limes possess a unique and coordinated system for sucrose breakdown that involves both enzymatic and nonenzymatic pathways. PMID:16667241

  15. Enhanced xylose recovery from oil palm empty fruit bunch by efficient acid hydrolysis.

    PubMed

    Tan, Hooi Teng; Dykes, Gary A; Wu, Ta Yeong; Siow, Lee Fong

    2013-08-01

    Oil palm empty fruit bunch (EFB) is abundantly available in Malaysia and it is a potential source of xylose for the production of high-value added products. This study aimed to optimize the hydrolysis of EFB using dilute sulfuric acid (H2SO4) and phosphoric acid (H3PO4) via response surface methodology for maximum xylose recovery. Hydrolysis was carried out in an autoclave. An optimum xylose yield of 91.2 % was obtained at 116 °C using 2.0 % (v/v) H2SO4, a solid/liquid ratio of 1:5 and a hydrolysis time of 20 min. A lower optimum xylose yield of 24.0 % was observed for dilute H3PO4 hydrolysis at 116 °C using 2.4 % (v/v) H3PO4, a solid/liquid ratio of 1:5 and a hydrolysis time of 20 min. The optimized hydrolysis conditions suggested that EFB hydrolysis by H2SO4 resulted in a higher xylose yield at a lower acid concentration as compared to H3PO4. PMID:23709290

  16. Chemical structures of corn stover and its residue after dilute acid prehydrolysis and enzymatic hydrolysis: Insight into factors limiting enzymatic hydrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Advanced solid-state NMR techniques and wet chemical analyses were applied to investigate untreated corn stover (UCS) and its residues after dilute acid prehydrolysis (DAP) and enzymatic hydrolysis (RES) to provide evidence for the limitations to the effectiveness of enzyme hydrolysis. Advanced soli...

  17. Ultrasound-assisted dilute acid hydrolysis of tea processing waste for production of fermentable sugar.

    PubMed

    Germec, Mustafa; Tarhan, Kübra; Yatmaz, Ercan; Tetik, Nedim; Karhan, Mustafa; Demirci, Ali; Turhan, Irfan

    2016-03-01

    Lignocellulosic materials that are the most abundant plant biomass in the world have the potential to become sustainable sources of the produced value added products. Tea processing waste (TPW) is a good lignocellulosic source to produce the value added products from fermentable sugars (FSs). Therefore, the present study is undertaken to produce FSs by using ultrasound-assisted dilute acid (UADA) and dilute acid (DA) hydrolysis of TPW followed by enzymatic hydrolysis. UADA hydrolysis of TPW was optimized by response surface methodology (RSM) at maximum power (900 W) for 2 h. The optimum conditions were determined as 50°C, 1:6 (w/v) solid:liquid ratio, and 1% (w/v) DA concentration, which yielded 20.34 g/L FS concentration. Furthermore, its DA hydrolysis was also optimized by using RSM for comparison and the optimized conditions were found as 120°C, 1:8 solid:liquid ratio, and 1% acid concentration, which produced 25.3 g/L FS yield. Even though the produced sugars with UADA hydrolysis are slightly less, but it can provide significant cost saving due to the lower temperature requirement and less liquid consumption. Besides, enzymatic hydrolysis applied after pretreatments of TPW were very more economic than the conventional enzymatic hydrolysis in the literature due to shorter time requiring. In conclusion, ultrasound-assisted is a promising technology that can be successfully applied for hydrolysis of biomass and can be an alternative to the other hydrolysis procedures and also TPW can be considered as suitable carbon source for the production of value-added products like biofuels, organic acids, and polysaccharides. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:393-403, 2016. PMID:26749037

  18. Copper Catalyzed Sodium Tetraphenylborate, Triphenylborane, Diphenylborinic Acid and Phenylboronic Acid Decomposition Kinetic Studies in Aqueous Alkaline Solutions

    SciTech Connect

    Crawford, C.L.

    1999-03-15

    This work studied the kinetics of copper-catalyzed decomposition of tetraphenylborate, triphenylborane, diphenylborinic acid and phenylboronic acid (NaTPB, 3PB, 2PB and 1PB, respectively) in aqueous alkaline solution over the temperature range of 25 to 70 degrees C. The statistically designed test matrices added copper sulfate to maximum concentrations of 10 mg/L. The relative rates of decomposition increase in the order of NaTPB < 1PB {tilde} 3PB < 2PB. Dependence of decomposition on the amount of added copper increases in the order of 3PB {tilde} 2PB < 1PB {tilde} NaTPB. Activation energies ranged from 82 to 143 kJ/mole over the temperature range studied. Final decomposition products predominately involved benzene and phenol. All 3PB, 2PB and 1PB intermediate phenylborate species proved relatively stable (< 8 percent decomposition over {tilde} 500 h) towards thermal hydrolysis in 1.5 M NaOH when contained in carbon-steel vessels sealed under air at ambient temperature (23 - 25 degrees C) with no added copper. Measurable (> 10-7 Mh-1) thermal hydrolysis of the phenylborate species occurs at 55 to 70 degrees C in alkaline (0.6-2.3 M OH-, 2-4.7 M Na+) solution with no added copper. The experiments suggest an important role for oxygen in copper-catalyzed phenylborate decomposition. NaTPB decomposes promptly under anoxic conditions while 3PB, 2PB and 1PB decompose faster in aerobic solutions. Benzene and phenol form as the predominant end-products from alkaline copper catalysis in static systems sealed under air. Both 2PB and 1PB decompose with near equal rates and quantitatively produce phenol under flowing air-purge conditions at 25 to 60 degrees C. Mechanisms for copper-catalyzed phenylborate decomposition likely involve a redox process giving loss of a phenyl group from the phenylborate with reduction of cupric ion, or dephenylation by reduced cuprous ion involving a phenylated copper intermediate.

  19. Studying Cellulose Fiber Structure by SEM, XRD, NMR and Acid Hydrolysis

    SciTech Connect

    Zhao, Haibo; Kwak, Ja Hun; Zhang, Z. Conrad; Brown, Heather M.; Arey, Bruce W.; Holladay, John E.

    2007-03-21

    Cotton linters were partially hydrolyzed in dilute acid and the morphology of remaining macrofibrils studied with Scanning Electron Microscopy (SEM) under various magnifications. The crystal region (microfibril bundles) in the macrofibrils was not altered by hydrolysis, and only amorphous cellulose was hydrolyzed and leached out from the macrofibrils. The diameter of microfibril bundles was 20-30 nm after the amorphous cellulose was removed by hydrolysis. XRD experiments confirm the unaltered diameter of the microfibrils after hydrolysis. The strong stability of these microfibril bundles in hydrolysis limits both the total sugar monomer yield and the size of nano particles or rods produced in hydrolysis. The large surface potential on the remaining microfibril bundles drives the agglomeration of macrofibrils.

  20. A Simple and Efficient Synthesis of an Acid-labile Polyphosphoramidate by Organobase-catalyzed Ring-Opening Polymerization and Transformation to Polyphosphoester Ionomers by Acid Treatment

    PubMed Central

    Zhang, Shiyi; Wang, Hai; Shen, Yuefei; Zhang, Fuwu; Seetho, Kellie; Zou, Jiong; Taylor, John-Stephen A.; Dove, Andrew P.; Wooley, Karen L.

    2013-01-01

    The direct synthesis of an acid-labile polyphosphoramidate by organobase-catalyzed ring-opening polymerization and an overall two-step preparation of polyphosphodiester ionomers (PPEI) by acid-assisted cleavage of the phosphoramidate bonds along the backbone of the polyphosphoramidate were developed in this study. The ultrafast organobase-catalyzed ring-opening polymerization of a cyclic phospholane methoxyethyl amidate monomer initiated by benzyl alcohol allowed for the preparation of well-defined polyphosphoramidates (PPA) with predictable molecular weights, narrow molecular weight distributions (PDI<1.10), and well-defined chain ends. Cleavage of the acid-labile phosphoramidate bonds on the polyphosphoramidate repeat units was evaluated under acidic conditions over a pH range of 1–5, and the complete hydrolysis produced polyphosphodiesters. The thermal properties of the resulting polyphosphoester ionomer acid and polyphosphoester ionomer sodium salt exhibited significant thermal stability. The parent PPA and both forms of the PPEIs showed low cytotoxicities toward HeLa cells and RAW 264.7 mouse macrophage cells. The synthetic methodology developed here has enriched the family of water-soluble polymers prepared by rapid and convenient organobase-catalyzed ring-opening polymerizations and straightforward chemical medication reactions, which are designed to be hydrolytically degradable and have promise for numerous biomedical and other applications. PMID:23997276

  1. Acid-catalyzed Heterogeneous Reactions in SOA Formation

    NASA Astrophysics Data System (ADS)

    Ng, N.; Keywood, M.; Varutbangkul, V.; Gao, S.; Loewer, E.; Surratt, J.; Richard, F. C.; John, S. H.

    2003-12-01

    The importance of heterogeneous reactions in secondary organic aerosol (SOA) formation has recently excited a great deal of interest in the aerosol community. Jang and Kamens (2001) showed enhanced aerosol yield from aldehydes, which can be produced by atmospheric photochemical reactions, in the presence of acidic seed. They suggest that the carbonyl functional groups of the aldehydes further react in the aerosol phase via hydration, polymerization, and hemiacetal/acetal formation with alcohols at an accelerated rate in the presence of acid. Jang et al. (2003) demonstrated similar results using a flow reactor and Czoschke et al. (in press) qualitatively showed increased yields for isoprene and alpha-pinene ozonolysis in the presence of acidic seed. While these findings are intriguing and important, the conditions under which the experiments were carried out were atmospherically unrealistic. A series of SOA formation experiments have been carried out in the Caltech Indoor Chamber Facility, which is comprised of dual 28 m3 FEP Teflon chambers, with the flexibility to carry out both dark ozonolysis and photochemical OH oxidation reactions. Cycloheptene and alpha-pinene were oxidized in the presence of neutral seed under dry (<10% RH) and humid (50% RH) conditions and in the presence of acidic seed under humid (50% RH) conditions. The SOA yields for these experiments will be presented, and the extent of the influence of acid-catalyzed reactions on SOA yield will be discussed. Reference List 1. Cocker, D. R. III. and R. C. Flagan and J. H. Seinfeld, State-of-the-art chamber facility for studying atmospheric aerosol chemistry, Environmental Science and Technology, 35, 2594-2601, 2001. 2. Czoschke, N. M., M. Jang, and R. M. Kamens, Effect of acid seed on biogenic sceondary organic aerosol growth, Atmospheric Environment, In press. 3. Jang, M., S. Lee, and R. M. Kamens, Organic aerosol growth by acid-catalyzed heterogeneous reactions of octanal in a flow reactor

  2. Enzyme-catalyzed hydrolysis of dentin adhesives containing a new urethane-based trimethacrylate monomer

    PubMed Central

    Park, Jong-Gu; Ye, Qiang; Topp, Elizabeth M.; Spencer, Paulette

    2009-01-01

    A new trimethacrylate monomer with urethane-linked groups, 1,1,1-tri-[4-(methacryloxyethylamino-carbonyloxy)-phenyl]ethane (MPE), was synthesized, characterized, and used as a co-monomer in dentin adhesives. Dentin adhesives containing 2-hydroxyethyl methacrylate (HEMA, 45% w/w) and 2,2-bis[4(2-hydroxy-3-methacryloyloxy-propyloxy)-phenyl] propane (BisGMA, 30% w/w) in addition to MPE (25% w/w) were formulated with H2O at 0 (MPE0), 8 (MPE8) and 16 wt % water (MPE16) to simulate the wet demineralized dentin matrix and compared with controls [HEMA/BisGMA, 45/55 w/w, at 0 (C0), 8 (C8) and 16 wt% water (C16)]. The new adhesive showed a degree of double bond conversion and mechanical properties comparable with control, with good penetration into the dentin surface and a uniform adhesive/dentin interface. On exposure to porcine liver esterase, the net cumulative methacrylic acid (MAA) release from the new adhesives was dramatically (P < 0.05) decreased relative to the control, suggesting that the new monomer improves esterase resistance. PMID:19582843

  3. A novel nucleoside hydrolase from Lactobacillus buchneri LBK78 catalyzing hydrolysis of 2'-O-methylribonucleosides.

    PubMed

    Mitsukawa, Yuuki; Hibi, Makoto; Matsutani, Narihiro; Horinouchi, Nobuyuki; Takahashi, Satomi; Ogawa, Jun

    2016-08-01

    2'-O-Methylribonucleosides (2'-OMe-NRs) are promising raw materials for nucleic acid drugs because of their high thermal stability and nuclease tolerance. In the course of microbial screening for metabolic activity toward 2'-OMe-NRs, Lactobacillus buchneri LBK78 was found to decompose 2'-O-methyluridine (2'-OMe-UR). The enzyme responsible was partially purified from L. buchneri LBK78 cells by a four-step purification procedure, and identified as a novel nucleoside hydrolase. This enzyme, LbNH, belongs to the nucleoside hydrolase superfamily, and formed a homotetrameric structure composed of subunits with a molecular mass around 34 kDa. LbNH hydrolyzed 2'-OMe-UR to 2'-O-methylribose and uracil, and the kinetic constants were Km of 0.040 mM, kcat of 0.49 s(-1), and kcat/Km of 12 mM(-1) s(-1). In a substrate specificity analysis, LbNH preferred ribonucleosides and 2'-OMe-NRs as its hydrolytic substrates, but reacted weakly with 2'-deoxyribonucleosides. In a phylogenetic analysis, LbNH showed a close relationship with purine-specific nucleoside hydrolases from trypanosomes. PMID:27180876

  4. Optimization of acid hydrolysis from the hemicellulosic fraction of Eucalyptus grandis residue using response surface methodology.

    PubMed

    Canettieri, Eliana Vieira; de Moraes Rocha, George Jackson; de Carvalho, João Andrade; de Almeida e Silva, João Batista

    2007-01-01

    Biotechnological conversion of biomass into fuels and chemicals requires hydrolysis of the polysaccharide fraction into monomeric sugars. Hydrolysis can be performed enzymatically and with dilute or concentrate mineral acids. The present study used dilute sulfuric acid as a catalyst for hydrolysis of Eucalyptus grandis residue. The purpose of this paper was to optimize the hydrolysis process in a 1.4 l pilot-scale reactor and investigate the effects of the acid concentration, temperature and residue/acid solution ratio on the hemicellulose removal and consequently on the production of sugars (xylose, glucose and arabinose) as well as on the formation of by-products (furfural, 5-hydroxymethylfurfural and acetic acid). This study was based on a model composition corresponding to a 2(3) orthogonal factorial design and employed the response surface methodology (RSM) to optimize the hydrolysis conditions, aiming to attain maximum xylose extraction from hemicellulose of residue. The considered optimum conditions were: H(2)SO(4) concentration of 0.65%, temperature of 157 degrees C and residue/acid solution ratio of 1/8.6 with a reaction time of 20 min. Under these conditions, 79.6% of the total xylose was removed and the hydrolysate contained 1.65 g/l glucose, 13.65 g/l xylose, 1.55 g/l arabinose, 3.10 g/l acetic acid, 1.23 g/l furfural and 0.20 g/l 5-hydroxymethylfurfural. PMID:16473004

  5. Efficient hydrogen generation from sodium borohydride hydrolysis using silica sulfuric acid catalyst

    NASA Astrophysics Data System (ADS)

    Manna, Joydev; Roy, Binayak; Sharma, Pratibha

    2015-02-01

    A heterogeneous acid catalyst, silica sulfuric acid, was prepared from silica gel (SiO2) and sulfuric acid (H2SO4). Addition of SO3H functional group to SiO2 has been confirmed through various characterization techniques. The effect of this heterogeneous acid catalyst on hydrogen generation from sodium borohydride hydrolysis reaction was studied for different ratios of catalyst to NaBH4 and at different temperatures. The catalyst exhibited high catalytic activity towards sodium borohydride hydrolysis reaction. The activation energy of the NaBH4 hydrolysis reaction in the presence of silica sulfuric acid was calculated to be the lowest (17 kJ mol-1) among reported heterogeneous catalysts till date.

  6. Obtaining fermentable sugars by dilute acid hydrolysis of hemicellulose and fast pyrolysis of cellulose.

    PubMed

    Jiang, Liqun; Zheng, Anqing; Zhao, Zengli; He, Fang; Li, Haibin; Liu, Weiguo

    2015-04-01

    The objective of this study was to get fermentable sugars by dilute acid hydrolysis of hemicellulose and fast pyrolysis of cellulose from sugarcane bagasse. Hemicellulose could be easily hydrolyzed by dilute acid as sugars. The remained solid residue of acid hydrolysis was utilized to get levoglucosan by fast pyrolysis economically. Levoglucosan yield from crystalline cellulose could be as high as 61.47%. Dilute acid hydrolysis was also a promising pretreatment for levoglucosan production from lignocellulose. The dilute acid pretreated sugarcane bagasse resulted in higher levoglucosan yield (40.50%) in fast pyrolysis by micropyrolyzer, which was more effective than water washed (29.10%) and un-pretreated (12.84%). It was mainly ascribed to the effective removal of alkali and alkaline earth metals and the accumulation of crystalline cellulose. This strategy seems a promising route to achieve inexpensive fermentable sugars from lignocellulose for biorefinery. PMID:25690683

  7. Extraction of protein and amino acids from deoiled rice bran by subcritical water hydrolysis.

    PubMed

    Sereewatthanawut, Issara; Prapintip, Surawit; Watchiraruji, Katemanee; Goto, Motonobu; Sasaki, Mitsuru; Shotipruk, Artiwan

    2008-02-01

    This study investigated the production of value-added protein and amino acids from deoiled rice bran by hydrolysis in subcritical water (SW) in the temperature range between 100 and 220 degrees C for 0-30 min. The results suggested that SW could effectively be used to hydrolyze deoiled rice bran to produce useful protein and amino acids. The amount of protein and amino acids produced are higher than those obtained by conventional alkali hydrolysis. The yields generally increased with increased temperature and hydrolysis time. However, thermal degradation of the product was observed when hydrolysis was carried out at higher temperature for extended period of time. The highest yield of protein and amino acids were 219 +/- 26 and 8.0 +/- 1.6 mg/g of dry bran, and were obtained at 200 degrees C at hydrolysis time of 30 min. Moreover, the product obtained at 200 degrees C after 30 min of hydrolysis exhibited high antioxidant activity and was shown to be suitable for use as culture medium for yeast growth. PMID:17320384

  8. Hydrolysis of acid and alkali presoaked lignocellulosic biomass exposed to electron beam irradiation.

    PubMed

    Karthika, K; Arun, A B; Melo, J S; Mittal, K C; Kumar, Mukesh; Rekha, P D

    2013-02-01

    In this study, synergetic effect of mild acid and alkali with electron beam irradiation (EBI) on the enzymatic hydrolysis of a selected grass biomass was assessed. Biomass samples prepared by soaking with 1% H2SO4, or 1% NaOH, were exposed to 75 and 150 kGy of EBI. Water presoaked biomass was used as control. Hydrolysis of pretreated samples was carried out using cellulase (15 FPU/g biomass) for 120 h. Structural changes were studied by FTIR and XRD analyses. Reducing sugar and glucose yields from enzymatic hydrolysis were significantly higher in acid and alkali presoaked EBI exposed samples. Theoretical glucose yield showed 40% increase from control in alkali presoaked EBI exposed (150 kGy) samples. Removal of hemicellulose, decreased crystallinity and structural changes were major factors for the combined treatment effect favoring the hydrolysis. PMID:23298772

  9. Acid and enzymatic hydrolysis of pretreated cellulosic materials as an analytical tool

    SciTech Connect

    Ladisch, C.M.; Chiasson, C.M.; Tsao, G.T.

    1982-07-01

    A rapid and accurate procedure for the quantitative analysis of cellulose in textiles based on acid and enzymatic hydrolysis was investigated. Total hydrolysis was achieved by a two-step procedure: the cellulose in the sample was first dissolved in cadoxen and then reprecipitated. The material, thus pretreated, was then hydrolyzed with acid or enzyme catalytic agents. Hydrolysis products were detected and quantified by colorimetric, enzymic, and liquid chromatographic methods of analysis. Samples examined included cotton, rayon, Avicel, CF-11, and cotton/polyester blends. The specificity of the enzyme hydrolysis method allowed analysis of raw cotton without prior purification. Results of the analyses were compared to those obtained by existing methods of analysis.

  10. Specificity of hydrolysis of phytic acid by alkaline phytase from lily pollen.

    PubMed Central

    Barrientos, L; Scott, J J; Murthy, P P

    1994-01-01

    Phytases are the primary enzymes responsible for the hydrolysis of phytic acid, myo-inositol-1,2,3,4,5,6-hexakisphosphate (I-1,2,3,4,5,6-P6). A number of phytases with varying specificities, properties, and localizations hydrolyze phytic acid present in cells. The specificity of hydrolysis of phytic acid by alkaline phytase from lily (Lilium longiflorum L.) pollen is described. Structures of the intermediate inositol phosphates and the final product were established by a variety of nuclear magnetic resonance techniques (1H-, 31P-, and 31P-1H-detected multiple quantum coherence spectroscopy, and total correlation spectroscopy). On the basis of the structures identified we have proposed a scheme of hydrolysis of phytic acid. Initial hydrolysis of the phosphate ester occurs at the D-5 position of phytic acid to yield the symmetrical I-1,2,3,4,6-P5. The two subsequent dephosphorylations occur adjacent to the D-5 hydroxyl group to yield I-1,2,3-P3 as the final product. Alkaline phytase differs from other phytases in the specificity of hydrolysis of phosphate esters on the inositol ring, its high substrate specificity for phytic acid, and biochemical properties such as susceptibility to activation by calcium and inhibition by fluoride. The physiological significance of alkaline phytase and the biological role of I-1,2,3-P3 remain to be identified. PMID:7846160

  11. High-yield production of biosugars from Gracilaria verrucosa by acid and enzymatic hydrolysis processes.

    PubMed

    Kim, Se Won; Hong, Chae-Hwan; Jeon, Sung-Wan; Shin, Hyun-Jae

    2015-11-01

    Gracilaria verrucosa, the red alga, is a suitable feedstock for biosugar production. This study analyzes biosugar production by the hydrolysis of G. verrucosa conducted under various conditions (i.e., various acid concentrations, substrate concentrations, reaction times, and enzyme dosages). The acid hydrolysates of G. verrucosa yielded a total of 7.47g/L (37.4%) and 10.63g/L (21.26%) of reducing sugars under optimal small (30mL) and large laboratory-scale (1L) hydrolysis processes, respectively. Reducing sugar obtained from acid and enzymatic hydrolysates were 10% higher, with minimum by-products, than those reported in other studies. The mass balance for the small laboratory-scale process showed that the acid and enzymatic hydrolysates had a carbohydrate conversion of 57.2%. The mass balance approach to the entire hydrolysis process of red seaweed for biosugar production can be applied to other saccharification processes. PMID:26299978

  12. Acid-Catalyzed Preparation of Biodiesel from Waste Vegetable Oil: An Experiment for the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Bladt, Don; Murray, Steve; Gitch, Brittany; Trout, Haylee; Liberko, Charles

    2011-01-01

    This undergraduate organic laboratory exercise involves the sulfuric acid-catalyzed conversion of waste vegetable oil into biodiesel. The acid-catalyzed method, although inherently slower than the base-catalyzed methods, does not suffer from the loss of product or the creation of emulsion producing soap that plagues the base-catalyzed methods when…

  13. Preparation of κ-carra-oligosaccharides with microwave assisted acid hydrolysis method

    NASA Astrophysics Data System (ADS)

    Li, Guangsheng; Zhao, Xia; Lv, Youjing; Li, Miaomiao; Yu, Guangli

    2015-04-01

    A rapid method of microwave assisted acid hydrolysis was established to prepare κ-carra-oligosaccharides. The optimal hydrolysis condition was determined by an orthogonal test. The degree of polymerization (DP) of oligosaccharides was detected by high performance thin layer chromatography (HPTLC) and polyacrylamide gel electrophoresis (PAGE). Considering the results of HPTLC and PAGE, the optimum condition of microwave assisted acid hydrolysis was determined. The concentration of κ-carrageenan was 5 mg mL-1; the reaction solution was adjusted to pH 3 with diluted hydrochloric acid; the solution was hydrolyzed under microwave irradiation at 100 for 15 °C min. Oligosaccharides were separated by a Superdex 30 column (2.6 cm × 90 cm) using AKTA Purifier UPC100 and detected with an online refractive index detector. Each fraction was characterized by electrospray ionization mass spectrometry (ESI-MS). The data showed that odd-numbered κ-carra-oligosaccharides with DP ranging from 3 to 21 could be obtained with this method, and the structures of the oligosaccharides were consistent with those obtained by traditional mild acid hydrolysis. The new method was more convenient, efficient and environment-friendly than traditional mild acid hydrolysis. Our results provided a useful reference for the preparation of oligosaccharides from other polysaccharides.

  14. Competitive lipase-catalyzed ester hydrolysis and ammoniolysis in organic solvents; equilibrium model of a solid-liquid-vapor system.

    PubMed

    Litjens, M J; Sha, M; Straathof, A J; Jongejan, J A; Heijnen, J J

    1999-11-01

    Enzymatic ester hydrolysis and ammoniolysis were performed as competitive reactions in methyl isobutyl ketone without a separate aqueous phase. The reaction system contained solid ammonium bicarbonate, which dissolved as water, ammonia, and carbon dioxide. During the reaction an organic liquid phase, a vapor phase, and at least one solid phase are present. The overall equilibrium composition of this multiphase system is a complex function of the reaction equilibria and several phase equilibria. To gain a quantitative understanding of this system a mathematical model was developed and evaluated. The model is based on the mass balances for a closed batch system and straightforward relations for the reaction equilibria and the solubility equilibria of ammonium bicarbonate, the fatty acid ammonium salt, water, ammonia, and carbon dioxide. For butyl butyrate as a model ester and Candida antarctica lipase B as the biocatalyst this equilibrium model describes the experiments satisfactorily. The model predicts that high equilibrium yields of butyric acid can be achieved only in the absence of ammoniolysis or in the presence of a separate water phase. However, high yields of butyramide should be possible if the water concentration is fixed at a low level and a more suited source of ammonia is applied. PMID:10486134

  15. Analysis of Phosphorus in Soil Humic Acid Fractions by Enzymatic Hydrolysis and Ultraviolet Irradiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Humic acid is an important soil component which influences chemical, biological, and physical soil properties. In this study, we investigated lability of phosphorus (P) in the mobile humic acid (MHA) and calcium humate (CaHA) fractions of four soils by orthophosphate-releasing enzymatic hydrolysis a...

  16. Effect of Varying Acid Hydrolysis Condition in Gracilaria Sp. Fermentation Using Sasad

    NASA Astrophysics Data System (ADS)

    Mansuit, H.; Samsuri, M. D. C.; Sipaut, C. S.; Yee, C. F.; Yasir, S. M.; Mansa, R.

    2015-04-01

    Macroalgae or seaweed is being considered as promising feedstock for bioalcohol production due to high polysaccharides content. Polysaccharides can be converted into fermentable sugar through acid hydrolysis pre-treatment. In this study, the potential of using carbohydrate-rich macroalgae, Gracilaria sp. as feedstock for bioalcohol production via various acid hydrolysis conditions prior to the fermentation process was investigated and evaluated. The seaweed used in this research was from the red algae group, using species of Gracilaria sp. which was collected from Sg. Petani Kedah, Malaysia. Pre-treatment of substrate was done using H2SO4 and HCl with molarity ranging from 0.2M to 0.8M. The pretreatment time were varied in the range of 15 to 30 minutes. Fermentation was conducted using Sasad, a local Sabahan fermentation agent as a starter culture. Alcohol extraction was done using a distillation unit. Reducing sugar analysis was done by Benedict test method. Alcohol content analysis was done using specific gravity test. After hydrolysis, it was found out that acid hydrolysis at 0.2M H2SO4 and pre-treated for 20 minutes at 121°C has shown the highest reducing sugar content which has yield (10.06 mg/g) of reducing sugar. It was followed by other samples hydrolysis using 0.4M HCl with 30 minutes pre-treatment and 0.2M H2SO4, 15 minutes pre-treatment with yield of 8.06 mg/g and 5.75 mg/g reducing sugar content respectively. In conclusion, acid hydrolysis of Gracilaria sp. can produce higher reducing sugar yield and thus it can further enhance the bioalcohol production yield. Hence, acid hydrolysis of Gracilaria sp. should be studied more as it is an important step in the bioalcohol production and upscaling process.

  17. Combined heat treatment and acid hydrolysis of cassava grate waste (CGW) biomass for ethanol production

    SciTech Connect

    Agu, R.C.; Amadife, A.E.; Ude, C.M.; Onyia, A.; Ogu, E.O.; Okafor, M.; Ezejiofor, E.

    1997-12-31

    The effect of combined heat treatment and acid hydrolysis (various concentrations) on cassava grate waste (CGW) biomass for ethanol production was investigated. At high concentrations of H{sub 2}SO{sub 4} (1--5 M), hydrolysis of the CGW biomass was achieved but with excessive charring or dehydration reaction. At lower acid concentrations, hydrolysis of CGW biomass was also achieved with 0.3--0.5 M H{sub 2}SO{sub 4}, while partial hydrolysis was obtained below 0.3 M H{sub 2}SO{sub 4} (the lowest acid concentration that hydrolyzed CGW biomass) at 120 C and 1 atm pressure for 30 min. A 60% process efficiency was achieved with 0.3 M H{sub 2}SO{sub 4} in hydrolyzing the cellulose and lignin materials present in the CGW biomass. High acid concentration is therefore not required for CGW biomass hydrolysis. The low acid concentration required for CGW biomass hydrolysis, as well as the minimal cost required for detoxification of CGW biomass because of low hydrogen cyanide content of CGW biomass would seem to make this process very economical. From three liters of the CGW biomass hydrolysate obtained from hydrolysis with 0.3M H{sub 2}SO{sub 4}, ethanol yield was 3.5 (v/v%) after yeast fermentation. However, although the process resulted in gainful utilization of CGW biomass, additional costs would be required to effectively dispose new by-products generated from CGW biomass processing.

  18. Study of the kinetic parameters for synthesis and hydrolysis of pharmacologically active salicin isomer catalyzed by baker's yeast maltase

    NASA Astrophysics Data System (ADS)

    Veličković, D. V.; Dimitrijević, A. S.; Bihelović, F. J.; Jankov, R. M.; Milosavić, N.

    2011-12-01

    One of the key elements for understanding enzyme reactions is determination of its kinetic parameters. Since transglucosylation is kinetically controlled reaction, besides the reaction of synthesis, very important is the reaction of enzymatic hydrolysis of created product. Therefore, in this study, kinetic parameters for synthesis and secondary hydrolysis of pharmacologically active α isosalicin by baker's yeast maltase were calculated, and it was shown that specifity of maltase for hydrolysis is approximately 150 times higher then for synthesis.

  19. Computational Mechanistic Studies of Acid-Catalyzed Lignin Model Dimers for Lignin Depolymerization

    SciTech Connect

    Kim, S.; Sturgeon, M. R.; Chmely, S. C.; Paton, R. S.; Beckham, G. T.

    2013-01-01

    Lignin is a heterogeneous alkyl-aromatic polymer that constitutes up to 30% of plant cell walls, and is used for water transport, structure, and defense. The highly irregular and heterogeneous structure of lignin presents a major obstacle in the development of strategies for its deconstruction and upgrading. Here we present mechanistic studies of the acid-catalyzed cleavage of lignin aryl-ether linkages, combining both experimental studies and quantum chemical calculations. Quantum mechanical calculations provide a detailed interpretation of reaction mechanisms including possible intermediates and transition states. Solvent effects on the hydrolysis reactions were incorporated through the use of a conductor-like polarizable continuum model (CPCM) and with cluster models including explicit water molecules in the first solvation shell. Reaction pathways were computed for four lignin model dimers including 2-phenoxy-phenylethanol (PPE), 1-(para-hydroxyphenyl)-2-phenoxy-ethanol (HPPE), 2-phenoxy-phenyl-1,3-propanediol (PPPD), and 1-(para-hydroxyphenyl)-2-phenoxy-1,3-propanediol (HPPPD). Lignin model dimers with a para-hydroxyphenyl ether (HPPE and HPPPD) show substantial differences in reactivity relative to the phenyl ether compound (PPE and PPPD) which have been clarified theoretically and experimentally. The significance of these results for acid deconstruction of lignin in plant cell walls will be discussed.

  20. Towards the design of organocatalysts for nerve agents remediation: The case of the active hydrolysis of DCNP (a Tabun mimic) catalyzed by simple amine-containing derivatives.

    PubMed

    Barba-Bon, Andrea; Martínez-Máñez, Ramón; Sancenón, Félix; Costero, Ana M; Gil, Salvador; Pérez-Pla, Francisco; Llopis, Elisa

    2015-11-15

    We report herein a study of the hydrolysis of Tabun mimic DCNP in the presence of different amines, aminoalcohols and glycols as potential suitable organocatalysts for DCNP degradation. Experiments were performed in CD3CN in the presence of 5% D2O, which is a suitable solvent mixture to follow the DCNP hydrolysis. These studies allowed the definition of different DCNP depletion paths, resulting in the formation of diethylphosphoric acid, tetraethylpyrophosphate and phosphoramide species as final products. Without organocatalysts, DCNP hydrolysis occurred mainly via an autocatalysis path. Addition of tertiary amines in sub-stoichiometric amounts largely enhanced DCNP depletion whereas non-tertiary polyamines reacted even faster. Glycols induced very slight increment in the DCNP hydrolysis, whereas DCNP hydrolysis increased sharply in the presence of certain aminoalcohols especially, 2-(2-aminoethylamino)ethanol. For the latter compound, DCNP depletion occurred ca. 80-fold faster than in the absence of organocatalysts. The kinetic studies revealed that DCNP hydrolysis in the presence of 2-(2-aminoethylamino)ethanol occurred via a catalytic process, in which the aminoalcohol was involved. DCNP hydrolysis generally depended strongly on the structure of the amine, and it was found that the presence of the OHCH2CH2N moiety in the organocatalyst structure seems important to induce a fast degradation of DCNP. PMID:26005922

  1. Palladium-catalyzed synthesis of aromatic carboxylic acids with silacarboxylic acids.

    PubMed

    Friis, Stig D; Andersen, Thomas L; Skrydstrup, Troels

    2013-03-15

    Aryl iodides and bromides were easily converted to their corresponding aromatic carboxylic acids via a Pd-catalyzed carbonylation reaction using silacarboxylic acids as an in situ source of carbon monoxide. The reaction conditions were compatible with a wide range of functional groups, and with the aryl iodides, the carbonylation was complete within minutes. The method was adapted to the double and selective isotope labeling of tamibarotene. PMID:23441830

  2. Evaluation of hyper thermal acid hydrolysis of Kappaphycus alvarezii for enhanced bioethanol production.

    PubMed

    Ra, Chae Hun; Nguyen, Trung Hau; Jeong, Gwi-Taek; Kim, Sung-Koo

    2016-06-01

    Hyper thermal (HT) acid hydrolysis of Kappaphycus alvarezii, a red seaweed, was optimized to 12% (w/v) seaweed slurry content, 180mM H2SO4 at 140°C for 5min. The maximum monosaccharide concentration of 38.3g/L and 66.7% conversion from total fermentable monosaccharides of 57.6g/L with 120gdw/L K. alvarezii slurry were obtained from HT acid hydrolysis and enzymatic saccharification. HT acid hydrolysis at a severity factor of 0.78 efficiently converted the carbohydrates of seaweed to monosaccharides and produced a low concentration of inhibitory compounds. The levels of ethanol production by separate hydrolysis and fermentation with non-adapted and adapted Kluyveromyces marxianus to high concentration of galactose were 6.1g/L with ethanol yield (YEtOH) of 0.19 at 84h and 16.0g/L with YEtOH of 0.42 at 72h, respectively. Development of the HT acid hydrolysis process and adapted yeast could enhance the overall ethanol fermentation yields of K. alvarezii seaweed. PMID:26950757

  3. Factors affecting the rate of hydrolysis of phenylboronic acid in lab-scale precipitate reactor studies

    SciTech Connect

    Bannochie, C.J.; Marek, J.C.; Eibling, R.E.; Baich, M.A.

    1992-10-01

    Removing aromatic carbon from an aqueous slurry of cesium-137 and other alkali tetraphenylborates by acid hydrolysis will be an important step in preparing high-level radioactive waste for vitrification at the Savannah River Site`s Defense Waste Processing Facility (DWPF). Kinetic data obtained in bench-scale precipitate hydrolysis reactors suggest changes in operating parameters to improve product quality in the future plant-scale radioactive operation. The rate-determining step is the removal of the fourth phenyl group, i.e. hydrolysis of phenylboronic acid. Efforts to maximize this rate have established the importance of several factors in the system, including the ratio of copper(II) catalyst to formic acid, the presence of nitrite ion, reactions of diphenylmercury, and the purge gas employed in the system.

  4. Factors affecting the rate of hydrolysis of phenylboronic acid in lab-scale precipitate reactor studies

    SciTech Connect

    Bannochie, C.J.; Marek, J.C.; Eibling, R.E.; Baich, M.A.

    1992-01-01

    Removing aromatic carbon from an aqueous slurry of cesium-137 and other alkali tetraphenylborates by acid hydrolysis will be an important step in preparing high-level radioactive waste for vitrification at the Savannah River Site's Defense Waste Processing Facility (DWPF). Kinetic data obtained in bench-scale precipitate hydrolysis reactors suggest changes in operating parameters to improve product quality in the future plant-scale radioactive operation. The rate-determining step is the removal of the fourth phenyl group, i.e. hydrolysis of phenylboronic acid. Efforts to maximize this rate have established the importance of several factors in the system, including the ratio of copper(II) catalyst to formic acid, the presence of nitrite ion, reactions of diphenylmercury, and the purge gas employed in the system.

  5. Efficient production of glucose by microwave-assisted acid hydrolysis of cellulose hydrogel.

    PubMed

    Sun, Binzhe; Duan, Lian; Peng, Gege; Li, Xiaoxia; Xu, Aihua

    2015-09-01

    To improve the production of glucose from cellulose, a simple and effective route was developed. This process uses a combination of a step of cellulose dissolution in aqueous NaOH/urea solution and then regeneration with water, followed by an acid hydrolysis step under microwave irradiation. The method is effective to obtain glucose from α-cellulose, microcrystalline cellulose, filter paper, ramie fiber and absorbent cotton. Increased with the acid concentration the glucose yield from hydrogel hydrolysis increased from 0.42% to 44.6% at 160 °C for 10 min. Moreover, the ozone treatment of cellulose in NaOH/urea solution before regeneration significantly enhanced the hydrolysis efficiency with a glucose yield of 59.1%. It is believed that the chains in cellulose hydrogel are relatively free approached, making that the acids easily access the β-glycosidic bonds. PMID:26038330

  6. A Kinetic Study of DDGS Hemicellulose Acid Hydrolysis and NMR Characterization of DDGS Hydrolysate.

    PubMed

    Chen, Hanchi; Liu, Shijie

    2015-09-01

    Liquid hot water (LHW) extraction was used as a pretreatment method to separate the hemicellulose fraction from dried distiller's grain with solubles (DDGS) into liquid phase. Acid hydrolysis using 3.264 % w/w sulfuric acid at 130 °C was performed to convert polysaccharides in LHW extract to monosaccharides. The structure characterization of DDGS in anomeric carbon region based on proton NMR and heteronuclear single quantum coherence (HSQC) during acid hydrolysis was studied in this work. It reveals that the sugar units in DDGS hemicelluloses are constructed with (1-4)-β-D-xylopyranose and α-L-arabinofuranosyl residues. A kinetic model is included to explain the changing concentration of monomer, oligomer, and sugar units. The model was further tested based on the changing concentration of five carbon sugar units during hydrolysis. PMID:26198022

  7. Contribution of acetic acid to the hydrolysis of lignocellulosic biomass under abiotic conditions.

    PubMed

    Trzcinski, Antoine P; Stuckey, David C

    2015-06-01

    Acetic acid was used in abiotic experiments to adjust the solution pH and investigate its influence on the chemical hydrolysis of the Organic Fraction of Municipal Solid Waste (OFMSW). Soluble chemical oxygen demand (SCOD) was used to measure the hydrolysis under oxidative conditions (positive oxidation-reduction potential values), and pH 4 allowed for 20% (±2%) of the COD added to be solubilized, whereas only 12% (±1%) was solubilized at pH7. Under reducing conditions (negative oxidation-reduction potential values) and pH 4, 32.3% (±3%) of the OFMSW was solubilized which shows that acidogenesis at pH 4 during the anaerobic digestion of solid waste can result in chemical hydrolysis. In comparison, bacterial hydrolysis resulted in 54% (±6%) solubilization. PMID:25794810

  8. Fatty acid specificity of hormone-sensitive lipase. Implication in the selective hydrolysis of triacylglycerols.

    PubMed

    Raclot, T; Holm, C; Langin, D

    2001-12-01

    The selective mobilization of fatty acids from white fat cells depends on their molecular structure, in particular the degree of unsaturation. The present study was designed to examine if the release of fatty acids by hormone-sensitive lipase (HSL) in vitro i) is influenced by the amount of unsaturation, ii) depends on the temperature, and iii) could explain the selective pattern of fatty acid mobilization and notably the preferential mobilization of certain highly unsaturated fatty acids. Recombinant rat and human HSL were incubated with a lipid emulsion. The hydrolysis of 35 individual fatty acids, ranging in chain length from 12 to 24 carbon atoms and in unsaturation from 0 to 6 double bonds was measured. Fatty acid composition of in vitro released NEFA was compared with that of fat cell triacylglycerols (TAG), the ratio % NEFA/% TAG being defined as the relative hydrolysis. The relative hydrolysis of individual fatty acids differed widely, ranging from 0.44 (24:1n-9) to 1.49 (18:1n-7) with rat HSL, and from 0.38 (24:1n-9) to 1.67 (18:1n-7) with human HSL. No major difference was observed between rat and human HSL. The relative release was dependent on the number of double bonds according to chain length. The amount of fatty acid released by recombinant rat HSL was decreased but remained robust at 4 degrees C compared with 37 degrees C, and the relative hydrolysis of some individual fatty acids was affected. The relative hydrolysis of fatty acids moderately, weakly, and highly mobilized by adipose tissue in vivo was similar and close to unity in vitro. We conclude that i) the release of fatty acids by HSL is only slightly affected by their degree of unsaturation, ii) the ability of HSL to efficiently and selectively release fatty acids at low temperature could reflect a cold adaptability for poikilotherms or hibernators when endogenous lipids are needed, and iii) the selectivity of fatty acid hydrolysis by HSL does not fully account for the selective pattern of

  9. Site-Specific Hydrolysis Reaction C-Terminal of Methionine in Met-His during Metal-Catalyzed Oxidation of IgG-1.

    PubMed

    Mozziconacci, Olivier; Arora, Jayant; Toth, Ronald T; Joshi, Sangeeta B; Zhou, Shuxia; Volkin, David B; Schöneich, Christian

    2016-04-01

    The metal-catalyzed oxidation by [Fe(II)(EDTA)](2-)/H2O2 of IgG-1 leads to the site-specific hydrolysis of peptide bonds in the Fc region. The major hydrolytic cleavage occurs between Met428 and His429, consistent with a mechanism reported for the site-specific hydrolysis of parathyroid hormone (1-34) between Met8 and His9 (Mozziconacci, O.; et al. Mol. Pharmaceutics 2013, 10 (2), 739-755). In IgG-1, to a lesser extent, we also observe hydrolysis reactions between Met252 and Ile253. After 2 h of oxidation (at pH 5.8, 37 °C) approximately 5% of the protein is cleaved between Met428 and His429. For comparison, after 2 h of oxidation, the amount of tryptic peptides containing a Met sulfoxide residue represents less than 0.1% of the protein. The effect of this site-specific hydrolysis on the conformational stability and aggregation propensity of the antibody was also examined. No noticeable differences in structural integrity and conformational stability were observed between control and oxidized IgG-1 samples as measured by circular dichroism (CD), fluorescence spectroscopy, and static light scattering (SLS). Small amounts of soluble and insoluble aggregates (3-6%) were, however, observed in the oxidized samples by UV-visible absorbance spectroscopy and size exclusion chromatography (SEC). Over the course of metal-catalyzed oxidation, increasing amounts of fragments were also observed by SEC. An increase in the concentration of subvisible particles was detected by microflow imaging (MFI). PMID:26942274

  10. Influence of acid precursors on physicochemical properties of nanosized titania synthesized by thermal-hydrolysis method

    SciTech Connect

    Rajesh, B.; Sasirekha, N.R.; Chen, Y.-W.

    2008-03-04

    The influence of nature and concentration of acid species on surface morphology and physicochemical properties of titania particles synthesized by direct thermal hydrolysis of titanium tetrachloride was investigated. The acids used were hydrochloric acid, nitric acid, sulfuric acid, and perchloric acid with a concentration of 3 M. Thermal hydrolysis of titanium tetrachloride in hydrochloric acid and perchloric acid with molar ratios of [H{sup +}]/[Ti{sup 4+}] = 0.5, 1.0, 1.5, and 2.0, respectively, was used to study the effect of acid concentration. The synthesized materials were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, dynamic light scattering, and thermogravimetric analysis. Characterization of the samples by X-ray diffraction studies revealed the influence of acid species on the phase transformation of titania. Samples prepared by hydrochloric acid, nitric acid, and perchloric acid formed rutile phase with rhombus primary particles, while sulfuric acid resulted in anatase phase with flake-shaped primary particles. Transmission electron microscopy and dynamic light scattering results confirmed the nanosized titania particles and the agglomeration of primary particles to form secondary particles in spherical shape. The particle size of titania prepared using perchloric acid was smaller than those prepared with other acid sources. A direct correlation between [H{sup +}]/[Ti{sup 4+}] ratio and particle size of titania was observed.

  11. Gene cloning and molecular characterization of the Talaromyces thermophilus lipase catalyzed efficient hydrolysis and synthesis of esters.

    PubMed

    Romdhane, Ines Belhaj-Ben; Frikha, Fakher; Maalej-Achouri, Inès; Gargouri, Ali; Belghith, Hafedh

    2012-02-15

    A genomic bank from Talaromyces thermophilus fungus was constructed and screened using a previously isolated fragment lipase gene as probe. From several clones isolated, the nucleotide sequence of the lipase gene (TTL gene) was completed and sequenced. The TTL coding gene consists of an open reading frame (ORF) of 1083bp encoding a protein of 269 Aa with an estimated molecular mass of 30kDa. The TTL belongs to the same gene family as Thermomyces lanuginosus lipase (TLL, Lipolase®), a well known lipase with multiple applications. The promoter sequence of the TTL gene showed the conservation of known consensus sequences PacC, CreA, Hap2-3-4 and the existence of a particular sequence like the binding sites of Oleate Response Element (ORE) and Fatty acids Responsis Element (FARE) which are similar to that already found to be specific of lipolytic genes in Candida and Fusarium, respectively. Northern blot analysis showed that the TTL expression was much higher on wheat bran than on olive oil as sole carbon source. Compared to the Lipolase®, this enzyme was found to be more efficient for the hydrolysis and the synthesis of esters; and its synthetic efficiency even reached 91.6% from Waste Cooking Oil triglycerides. PMID:22178764

  12. Studies on the carbohydrate moiety of α1-acid glycoprotein (orosomucoid) by using alkaline hydrolysis and deamination by nitrous acid

    PubMed Central

    Isemura, M.; Schmid, K.

    1971-01-01

    Alkaline hydrolysis followed by deamination with nitrous acid was applied for the first time to a glycoprotein, human plasma α1-acid glycoprotein (orosomucoid). This procedure, which specifically cleaves the glycosaminidic bonds, yielded well-defined oligosaccharides. The trisaccharides, which were obtained from the native protein, consisted of a sialic acid derivative, galactose and 2,5-anhydromannose. The linkage between galactose and 2,5-anhydromannose is most probably a (1→4)-glycosidic bond. A hitherto unknown linkage between N-acetylneuraminic acid and galactose was also established, namely a (2→2)-linkage. The three linkages between sialic acid and galactose described in this paper appear to be about equally resistant to mild acid hydrolysis. The disaccharide that was derived from the desialized glycoprotein consisted of galactose and 2,5-anhydromannose. Evidence was obtained for the presence of a new terminal sialyl→N-acetylglucosamine disaccharide accounting for approximately 1mol/mol of protein. The presence of this disaccharide may explain the relatively severe requirements for the complete acid hydrolysis of the sialyl residues. The present study indicates that alkaline hydrolysis followed by nitrous acid deamination in conjunction with gas–liquid chromatography will afford relatively rapid determination of the partial structure of the complex carbohydrate moiety of glycoproteins. PMID:5135244

  13. Fatty acid stimulation of membrane phosphatidylinositol hydrolysis by brain phosphatidylinositol phosphodiesterase.

    PubMed Central

    Irvine, R F; Letcher, A J; Dawson, R M

    1979-01-01

    The hydrolysis of membrane-bound phosphatidylinositol in rat liver microsomal fraction by the soluble phosphatidylinositol phosphodiesterase from rat brain was markedly stimulated by oleic acid or arachidonic acid. The stimulation did not require added calcium, although it was abolished by EDTA. Lysophosphatidylcholine also totally suppressed the stimulation. A possible role for the fatty acid content of a membrane in controlling phosphatidylinositol turnover is suggested. PMID:220968

  14. Dilute acid/metal salt hydrolysis of lignocellulosics

    DOEpatents

    Nguyen, Quang A.; Tucker, Melvin P.

    2002-01-01

    A modified dilute acid method of hydrolyzing the cellulose and hemicellulose in lignocellulosic material under conditions to obtain higher overall fermentable sugar yields than is obtainable using dilute acid alone, comprising: impregnating a lignocellulosic feedstock with a mixture of an amount of aqueous solution of a dilute acid catalyst and a metal salt catalyst sufficient to provide higher overall fermentable sugar yields than is obtainable when hydrolyzing with dilute acid alone; loading the impregnated lignocellulosic feedstock into a reactor and heating for a sufficient period of time to hydrolyze substantially all of the hemicellulose and greater than 45% of the cellulose to water soluble sugars; and recovering the water soluble sugars.

  15. Selective hydrolysis of hemicellulose from wheat straw by a nanoscale solid acid catalyst.

    PubMed

    Zhong, Chao; Wang, Chunming; Huang, Fan; Wang, Fengxue; Jia, Honghua; Zhou, Hua; Wei, Ping

    2015-10-20

    A nanoscale catalyst, solid acid SO4(2-)/Fe2O3 with both Lewis and Brønsted acidity was found to effectively hydrolyze hemicellulose while keeping cellulose and lignin inactive, and selective hydrolysis of hemicellulose from wheat straw by this catalyst was also confirmed. The factors that significantly affected hydrolysis process were investigated with response surface methodology, and the optimum conditions for time, temperature, and ratio of wheat straw to catalyst (w/w) were calculated to be 4.10h, 141.97°C, and 1.95:1, respectively. A maximum hemicellulose hydrolysis yield of 63.5% from wheat straw could be obtained under these conditions. In addition, the catalyst could be recycled six times with high activity remaining. PMID:26256198

  16. Vacuolar Acid Hydrolysis as a Physiological Mechanism for Sucrose Breakdown 1

    PubMed Central

    Echeverria, Ed; Burns, Jacqueline K.

    1989-01-01

    Sucrose breakdown in mature acidic `Persian' limes (Citrus aurantifolia [Christm.] Swing.) occurred at a rate of 30.6 picomoles per milliliter per day during 9 weeks storage at 15°C. Neither enzyme of sucrose catabolism (sucrose synthase or acid/alkaline invertase) was present in extracts of mature storage tissue. The average vacuolar pH, estimated by direct measurement of sap from isolated vacuoles and by the methylamine method, was about 2.0 to 2.2. In vitro acid hydrolysis of sucrose at physiological concentrations in a buffered solution (pH 2.2) occurred at identical rates as in matured limes. The results indicate that sucrose breakdown in stored mature acidic limes occurs by acid hydrolysis. PMID:16666803

  17. Thermal synthesis and hydrolysis of polyglyceric acid. [in orgin of life studying

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    1989-01-01

    Polyglyceric acid was synthesized by thermal condensation of glyceric acid at 80 C in the presence and absence of two mole percent of sulfuric acid catalyst. The acid catalyst accelerated the polymerization over 100-fold and made possible the synthesis of insoluble polymers of both L- and DL-glyceric acid by heating for less than 1 day. Racemization of L-glyceric acid yielded less than 1 percent D-glyceric acid in condensations carried out at 80 C with catalyst for 1 day and without catalyst for 12 days. The condensation of L-glyceric acid yielded an insoluble polymer much more readily than condensation of DL-glyceric acid. Studies of the hydrolysis of poly-DL-glyceric acid revealed that it was considerably more stable under mild acidic conditions compared to neutral pH. The relationship of this study to the origin of life is discussed.

  18. Enhanced mannan-derived fermentable sugars of palm kernel cake by mannanase-catalyzed hydrolysis for production of biobutanol.

    PubMed

    Shukor, Hafiza; Abdeshahian, Peyman; Al-Shorgani, Najeeb Kaid Nasser; Hamid, Aidil Abdul; Rahman, Norliza A; Kalil, Mohd Sahaid

    2016-10-01

    Catalytic depolymerization of mannan composition of palm kernel cake (PKC) by mannanase was optimized to enhance the release of mannan-derived monomeric sugars for further application in acetone-butanol-ethanol (ABE) fermentation. Efficiency of enzymatic hydrolysis of PKC was studied by evaluating effects of PKC concentration, mannanase loading, hydrolysis pH value, reaction temperature and hydrolysis time on production of fermentable sugars using one-way analysis of variance (ANOVA). The ANOVA results revealed that all factors studied had highly significant effects on total sugar liberated (P<0.01). The optimum conditions for PKC hydrolysis were 20% (w/v) PKC concentration, 5% (w/w) mannanase loading, hydrolysis pH 4.5, 45°C temperature and 72h hydrolysis time. Enzymatic experiments in optimum conditions revealed total fermentable sugars of 71.54±2.54g/L were produced including 67.47±2.51g/L mannose and 2.94±0.03g/L glucose. ABE fermentation of sugar hydrolysate by Clostridium saccharoperbutylacetonicum N1-4 resulted in 3.27±1.003g/L biobutanol. PMID:27372004

  19. Acid-catalyzed reactions of hexanal on sulfuric acid particles: Identification of reaction products

    NASA Astrophysics Data System (ADS)

    Garland, Rebecca M.; Elrod, Matthew J.; Kincaid, Kristi; Beaver, Melinda R.; Jimenez, Jose L.; Tolbert, Margaret A.

    While it is well established that organics compose a large fraction of the atmospheric aerosol mass, the mechanisms through which organics are incorporated into atmospheric aerosols are not well understood. Acid-catalyzed reactions of compounds with carbonyl groups have recently been suggested as important pathways for transfer of volatile organics into acidic aerosols. In the present study, we use the aerodyne aerosol mass spectrometer (AMS) to probe the uptake of gas-phase hexanal into ammonium sulfate and sulfuric acid aerosols. While both deliquesced and dry non-acidic ammonium sulfate aerosols showed no organic uptake, the acidic aerosols took up substantial amounts of organic material when exposed to hexanal vapor. Further, we used 1H-NMR, Fourier transform infrared (FTIR) spectroscopy and GC-MS to identify the products of the acid-catalyzed reaction of hexanal in acidic aerosols. Both aldol condensation and hemiacetal products were identified, with the dominant reaction products dependent upon the initial acid concentration of the aerosol. The aldol condensation product was formed only at initial concentrations of 75-96 wt% sulfuric acid in water. The hemiacetal was produced at all sulfuric acid concentrations studied, 30-96 wt% sulfuric acid in water. Aerosols up to 88.4 wt% organic/11.1 wt% H 2SO 4/0.5 wt% water were produced via these two dimerization reaction pathways. The UV-VIS spectrum of the isolated aldol condensation product, 2-butyl 2-octenal, extends into the visible region, suggesting these reactions may impact aerosol optical properties as well as aerosol composition. In contrast to previous suggestions, no polymerization of hexanal or its products was observed at any sulfuric acid concentration studied, from 30 to 96 wt% in water.

  20. Integrated Production of Xylonic Acid and Bioethanol from Acid-Catalyzed Steam-Exploded Corn Stover.

    PubMed

    Zhu, Junjun; Rong, Yayun; Yang, Jinlong; Zhou, Xin; Xu, Yong; Zhang, Lingling; Chen, Jiahui; Yong, Qiang; Yu, Shiyuan

    2015-07-01

    High-efficiency xylose utilization is one of the restrictive factors of bioethanol industrialization. However, xylonic acid (XA) as a new bio-based platform chemical can be produced by oxidation of xylose with microbial. So, an applicable technology of XA bioconversion was integrated into the process of bioethanol production. After corn stover was pretreated with acid-catalyzed steam-explosion, solid and liquid fractions were obtained. The liquid fraction, also named as acid-catalyzed steam-exploded corn stover (ASC) prehydrolyzate (mainly containing xylose), was catalyzed with Gluconobacter oxydans NL71 to prepare XA. After 72 h of bioconversion of concentrated ASC prehydrolyzate (containing 55.0 g/L of xylose), the XA concentration reached a peak value of 54.97 g/L, the sugar utilization ratio and XA yield were 94.08 and 95.45 %, respectively. The solid fraction was hydrolyzed to produce glucose with cellulase and then fermented with Saccharomyces cerevisiae NL22 to produce ethanol. After 18 h of fermentation of concentrated enzymatic hydrolyzate (containing 86.22 g/L of glucose), the ethanol concentration reached its highest value of 41.48 g/L, the sugar utilization ratio and ethanol yield were 98.72 and 95.25 %, respectively. The mass balance showed that 1 t ethanol and 1.3 t XA were produced from 7.8 t oven dry corn stover. PMID:25947618

  1. Catalytic conversion of carbohydrates to 5-hydroxymethylfurfural from the waste liquid of acid hydrolysis NCC.

    PubMed

    Sun, Yonghui; Liu, Pengtao; Liu, Zhong

    2016-05-20

    The principal goal of this work was to reuse the carbohydrates and recycle sulfuric acid in the waste liquid of acid hydrolysis nanocrystalline cellulose (NCC). Therefore, in this work, the optimizations of further hydrolysis of waste liquid of acid hydrolysis NCC and catalytic conversion of L4 to 5-hydroxymethylfurfural (5-HMF) were studied. Sulfuric acid was separated by spiral wound diffusion dialysis (SWDD). The results revealed that cellulose can be hydrolyze to glucose absolutely under the condition of temperature 35 °C, 3 h, and sulfuric acid's concentration 62 wt%. And 78.3% sulfuric acid was recovered by SWDD. The yield of 5-HMF was highest in aqueous solution under the optimal condition was as follows, temperature 160 °C, 3 h, and sulfuric acid's concentration 12 wt%. Then the effect of biphasic solvent systems catalytic conversion and inorganic salt as additives were still examined. The results showed that both of them contributed to prepare 5-HMF. The yield and selectivity of 5-HMF was up to 21.0% and 31.4%, respectively. PMID:26917388

  2. Optimizing the Acid Catalyzed Synthesis of Hyperbranched Poly(Glycerol-diacids) Oligomers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oligomeric pre-polymers were synthesized by the acid-catalyzed condensation of glycerol with succinic acid, glutaric acid and azelaic acid in dimethylsulfoxide (DMSO) or dimethylformamide (DMF). The prepolymers were obtained, on average in 84% yield, and were characterized by proton NMR, MALDI-TOF ...

  3. The Lewis acid catalyzed synthesis of hyperbranched Oligo(glycerol-diacid)s in aprotic polar media

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Lewis-acid, titanium (IV) butoxide (15% (w/w; catalyst/reactants)), was used to catalyze the condensation of 0.05 mol glycerol with 0.10 mol of either succinic acid, glutaric acid, or azelaic acid to produce oligomers. The reactions were refluxed in dilute solutions of dimethylsulfoxide (DMSO) o...

  4. Preparative production of colominic acid oligomers via a facile microwave hydrolysis

    PubMed Central

    Patane, Jonathan; Trapani, Vincent; Villavert, Janice; McReynolds, Katherine Dawn

    2009-01-01

    The hydrolysis of colominic acid via microwave irradiation was studied for the production of short chain oligomers with a degree of polymerization (DP) of 1–6. This method was compared to the traditional acid hydrolytic method for the production of preparative quantities of short colominic acid oligomers. The oligomers were purified by size exclusion chromatography and characterized by 1H NMR. Optimal conditions for producing the dimer were found to be 12 minutes at 10% power in a 1000 Watt domestic microwave. This method is advantageous over the traditional technique in that the hydrolysis can be completed in just a few minutes, rather than hours, it is reproducible, and yields large quantities of the desirable short chain oligomers of colominic acid. PMID:19281967

  5. Oxidation and hydrolysis of lactic acid in near-critical water

    SciTech Connect

    Li, L.; Vallejo, D.; Gloyna, E.F.; Portela, J.R.

    1999-07-01

    Hydrothermal reactions (oxidation and hydrolysis) involving lactic acid (LA) were studied at temperatures ranging from 300 to 400 C and a nominal pressure of 27.6 MPa. Kinetic models were developed with respect to concentrations of LA and total organic carbon (TOC), respectively. On the basis of identified liquid and gaseous products, pathways for hydrothermal reactions involving lactic acid were proposed. Acetic acid and acetaldehyde were confirmed as the major liquid intermediates for oxidation and hydrolysis reactions, respectively. Carbon monoxide and methane were identified as the major gaseous byproducts from these reactions. These results demonstrate the potential of completely oxidizing, as well as converting, lactic acid into other organic products, in high-temperature water.

  6. The acid and enzymic hydrolysis of O-acetylated sialic acid residues from rabbit Tamm–Horsfall glycoprotein

    PubMed Central

    Neuberger, A.; Ratcliffe, Wendy A.

    1972-01-01

    Rabbit Tamm–Horsfall glycoprotein and bovine submaxillary glycoprotein were both found to contain sialic acid residues which are released at a slow rate by the standard conditions of acid hydrolysis. These residues are also resistant to neuraminidases from Vibrio cholerae and Clostridium perfringens. This behaviour was attributed to the presence of O-acetylated sialic acid, since the removal of O-acetyl groups by mild alkaline treatment normalized the subsequent release of sialic acid from rabbit Tamm–Horsfall glycoprotein by acid and by enzymic hydrolysis. Determination of the O-acetyl residues in rabbit Tamm–Horsfall glycoprotein indicated that on average two hydroxyl groups of sialic acid are O-acetylated, and these were located on the polyhydroxy side-chain of sialic acid or on C-4 and C-8. These findings confirm the assumption that certain O-acetylated forms of sialic acid are not substrates for bacterial neuraminidases. Several explanations have been suggested to explain the effect of O-acetylation of the side-chain on the rate of acidcatalysed hydrolysis of sialic acid residues. PMID:4349114

  7. Enzymatic hydrolysis and fermentation of dilute acid pretreated cornstalk to biohydrogen

    NASA Astrophysics Data System (ADS)

    Pan, C. M.; Fan, Y. T.; Hou, H. W.

    2010-03-01

    The coupling method of acid pretreatment and enzymatic hydrolysis of cornstalk for hydrogen production was investigated in this study. Experimental results showed that temperature, pH and enzyme loading all had an individual significant influence on soluble sugar yield and Ps. The optimum condition for soluble sugar was close to that for Ps. The maximum hydrogen yield from cornstalk by anaerobic mixed microflora was 209.8 ml/g-TVS on the optimum enzymatic hydrolysis condition which was 52 °C of temperature, pH4.8 and 9.4 IU/g of enzyme loading.

  8. Structure and hydrolysis of p-(2-oxo-1-pyrrolidinyl)- benzenesulfonic acid

    SciTech Connect

    Kukalenko, S.S.; Frolov, S.I.; Lim, I.K.; Putsykina, E.B.; Vasil'ev, A.F.

    1987-11-20

    With the aid of vibrational and PMR spectra of p-(2-oso-1-pyrrolidinyl)benzenesulfonic acid it was shown that in the solid state it exists as an O-protonated dipolar ion in which the protonated amide cation and sulfonate ion are intermolecularly linked by a very strong hydrogen bond. In concentrated hydrochloric acid the dipolar ion is an intermediate link in the chain of processes in the hydrolysis of the amide bond of the lactam ring.

  9. The Rates of Hydrolysis of Thymidyl-3', 5'-Thymidine-H-Phosphonate: The Possible Role of Nucleic Acids Linked by Diesters of Phosphorous Acid in the Origins of Life

    NASA Astrophysics Data System (ADS)

    Peyser, John R.; Ferris, James P.

    2001-08-01

    Thymidyl-3',5'-thymidine H-phosphonate undergoes acid, base, and water-catalyzed hydrolysis. The products were 3'-thymidine H-phosphonate, 5'-thymidine H-phosphonate, and thymidine in a ratio of 1:1:2. The rate constants are 1.8 × 10^-3 M^-1 sec^-1, 7.2 × 10^3 M^-1 sec^-1, and 1.5 × 10^-6 sec^-1 for acid, base and water catalysis, respectively. These values are comparable with previous reports for the rates of hydrolysis of simple dialkyl esters of phosphorous acids. The Arrhenius activation energy for the base-catalyzed reaction is 20 kcal/mol. and the enthalpy and entropy of activation are 19 kcal/mol and -14 eu., respectively. The Gibbs free energy of activation is 23 kcal/mol. The rate constants suggest that nucleic acids linked by diesters of phosphorous acid hydrolyze too rapidly in aqueous solution to have accumulated in useful amounts on the primitive Earth.

  10. Quantitation of Indoleacetic Acid Conjugates in Bean Seeds by Direct Tissue Hydrolysis 1

    PubMed Central

    Bialek, Krystyna; Cohen, Jerry D.

    1989-01-01

    Gas chromatography-selected ion monitoring-mass spectral analysis using [13C6]indole-3-acetic acid (IAA) as an internal standard provides an effective means for quantitation of IAA liberated during direct strong basic hydrolysis of bean (Phaseolus vulgaris L.) seed powder, provided that extra precautions are undertaken to exclude oxygen from the reaction vial. Direct seed powder hydrolysis revealed that the major portion of amide IAA conjugates in bean seeds are not extractable by aqueous acetone, the solvent used commonly for IAA conjugate extraction from seeds and other plant tissues. Strong basic hydrolysis of plant tissue can be used to provide new information on IAA content. Images Figure 1 PMID:16666783

  11. Theoretical study of neutral and of acid and base promoted hydrolysis of formamide

    SciTech Connect

    Krug, J.P.; Popelier, P.L.A.; Bader, R.F.W.

    1992-09-17

    This paper studies the reaction pathways for four hydrolyses of formamide. These pathways are the uncatalyzed reaction with a single water molecule, the acid catalyzed reaction with H{sub 3}O{sup +} for both oxygen and nitrogen protonation, and the reaction with the hydroxide ion.

  12. Powerful peracetic acid-ionic liquid pretreatment process for the efficient chemical hydrolysis of lignocellulosic biomass.

    PubMed

    Uju; Goto, Masahiro; Kamiya, Noriho

    2016-08-01

    The aim of this work was to design a new method for the efficient saccharification of lignocellulosic biomass (LB) using a combination of peracetic acid (PAA) pretreatment with ionic liquid (IL)-HCl hydrolysis. The pretreatment of LBs with PAA disrupted the lignin fractions, enhanced the dissolution of LB and led to a significant increase in the initial rate of the IL-HCl hydrolysis. The pretreatment of Bagasse with PAA prior to its 1-buthyl-3-methylimidazolium chloride ([Bmim][Cl])-HCl hydrolysis, led to an improvement in the cellulose conversion from 20% to 70% in 1.5h. Interestingly, the 1-buthyl-3-methylpyridium chloride ([Bmpy][Cl])-HCl hydrolysis of Bagasse gave a cellulose conversion greater than 80%, with or without the PAA pretreatment. For LB derived from seaweed waste, the cellulose conversion reached 98% in 1h. The strong hydrolysis power of [Bmpy][Cl] was attributed to its ability to transform cellulose I to II, and lowering the degree of polymerization of cellulose. PMID:27174616

  13. Fundamental study on kinetics and transport phenomena in low water dilute acid total hydrolysis of cellulosic biomass

    SciTech Connect

    Auburn University

    2004-04-07

    The overall objective of this research is to delineate the process of the dilute-acid hydrolysis of biomass and seek better understanding of the reactions involving dilute-acid treatment of lignocellulosic biomass. Specifically the scope of the work entails the following two primary technical elements: Verification of the heterogeneous nature of the reaction mechanism in dilute-acid hydrolysis of cellulosic component of the biomass. Experimental investigation to identify the overall reaction pattern and the kinetic constants associated with dilute-acid hydrolysis of the cellulosic component of the agricultural residues.

  14. Prediction of acid hydrolysis of lignocellulosic materials in batch and plug flow reactors.

    PubMed

    Jaramillo, Oscar Johnny; Gómez-García, Miguel Ángel; Fontalvo, Javier

    2013-08-01

    This study unifies contradictory conclusions reported in literature on acid hydrolysis of lignocellulosic materials, using batch and plug flow reactors, regarding the influence of the initial liquid ratio of acid aqueous solution to solid lignocellulosic material on sugar yield and concentration. The proposed model takes into account the volume change of the reaction media during the hydrolysis process. An error lower than 8% was found between predictions, using a single set of kinetic parameters for several liquid to solid ratios, and reported experimental data for batch and plug flow reactors. For low liquid-solid ratios, the poor wetting and the acid neutralization, due to the ash presented in the solid, will both reduce the sugar yield. Also, this study shows that both reactors are basically equivalent in terms of the influence of the liquid to solid ratio on xylose and glucose yield. PMID:23770535

  15. Monomeric carbohydrates production from olive tree pruning biomass: modeling of dilute acid hydrolysis.

    PubMed

    Puentes, Juan G; Mateo, Soledad; Fonseca, Bruno G; Roberto, Inês C; Sánchez, Sebastián; Moya, Alberto J

    2013-12-01

    Statistical modeling and optimization of dilute sulfuric acid hydrolysis of olive tree pruning biomass has been performed using response surface methodology. Central composite rotatable design was applied to assess the effect of acid concentration, reaction time and temperature on efficiency and selectivity of hemicellulosic monomeric carbohydrates to d-xylose. Second-order polynomial model was fitted to experimental data to find the optimum reaction conditions by multiple regression analysis. The monomeric d-xylose recovery 85% (as predicted by the model) was achieved under optimized hydrolysis conditions (1.27% acid concentration, 96.5°C and 138 min), confirming the high validity of the developed model. The content of d-glucose (8.3%) and monosaccharide degradation products (0.1% furfural and 0.04% 5-hydroxymethylfurfural) provided a high quality subtract, ready for subsequent biochemical conversion to value-added products. PMID:24096282

  16. The effect of acid hydrolysis pretreatment on crystallinity and solubility of kenaf cellulose membrane

    SciTech Connect

    Saidi, Anis Syuhada Mohd; Zakaria, Sarani; Chia, Chin Hua; Jaafar, Sharifah Nabihah Syed; Padzil, Farah Nadia Mohammad

    2015-09-25

    Cellulose was extracted from kenaf core pulp (KCP) by series of bleaching steps in the sequence (DEED) where D and E are referred as acid and alkali treatment. The bleached kenaf pulp (BKCP) is then pretreated with acid hydrolysis at room temperature for 1 and 3 h respectively. The pretreated cellulose is dissolved in lithium hydroxide/urea (LiOH/urea) and cellulose solution produced was immersed in distilled water bath. BKCP without treatment was also conducted for comparison purpose. The effects of acid hydrolysis pretreatment on solubility and crystallinity are investigated. Higher solubility of cellulose solution is achieved for treated samples. Cellulose II formation and crystallinity index of the cellulose membrane were determined by X-ray diffraction (XRD)

  17. Fast hemicellulose quantification via a simple one-step acid hydrolysis.

    PubMed

    Gao, Xiadi; Kumar, Rajeev; Wyman, Charles E

    2014-06-01

    As the second most common polysaccharides in nature, hemicellulose has received much attention in recent years for its importance in biomass conversion in terms of producing high yields of fermentable sugars and value-added products, as well as its role in reducing biomass recalcitrance. Therefore, a time and labor efficient method that specifically analyzes hemicellulose content would be valuable to facilitate the screening of biomass feedstocks. In this study, a one-step acid hydrolysis method was developed, which applied 4 wt% sulfuric acid at 121°C for 1 h to rapidly quantify XGM (xylan + galactan + mannan) contents in various types of lignocellulosic biomass and model hemicelluloses. This method gave statistically identical results in XGM contents compared to results from conventional two-step acid hydrolysis while significantly shortening analysis time. PMID:24343864

  18. Kinetics of acid hydrolysis and reactivity of some antibacterial hydrophilic iron(II) imino-complexes

    NASA Astrophysics Data System (ADS)

    Shaker, Ali Mohamed; Nassr, Lobna Abdel-Mohsen Ebaid; Adam, Mohamed Shaker Saied; Mohamed, Ibrahim Mohamed Abdelhalim

    2015-05-01

    Kinetic study of acid hydrolysis of some hydrophilic Fe(II) Schiff base amino acid complexes with antibacterial properties was performed using spectrophotometry. The Schiff base ligands were derived from sodium 2-hydroxybenzaldehyde-5-sulfonate and glycine, L-alanine, L-leucine, L-isoleucine, DL-methionine, DL-serine, or L-phenylalanine. The reaction was studied in aqueous media under conditions of pseudo-first order kinetics. Moreover, the acid hydrolysis was studied at different temperatures and the activation parameters were calculated. The general rate equation was suggested as follows: rate = k obs [Complex], where k obs = k 2 [H+]. The evaluated rate constants and activation parameters are consistent with the hydrophilicity of the investigated complexes.

  19. The effect of acid hydrolysis pretreatment on crystallinity and solubility of kenaf cellulose membrane

    NASA Astrophysics Data System (ADS)

    Saidi, Anis Syuhada Mohd; Zakaria, Sarani; Chia, Chin Hua; Jaafar, Sharifah Nabihah Syed; Padzil, Farah Nadia Mohammad

    2015-09-01

    Cellulose was extracted from kenaf core pulp (KCP) by series of bleaching steps in the sequence (DEED) where D and E are referred as acid and alkali treatment. The bleached kenaf pulp (BKCP) is then pretreated with acid hydrolysis at room temperature for 1 and 3 h respectively. The pretreated cellulose is dissolved in lithium hydroxide/urea (LiOH/urea) and cellulose solution produced was immersed in distilled water bath. BKCP without treatment was also conducted for comparison purpose. The effects of acid hydrolysis pretreatment on solubility and crystallinity are investigated. Higher solubility of cellulose solution is achieved for treated samples. Cellulose II formation and crystallinity index of the cellulose membrane were determined by X-ray diffraction (XRD).

  20. Optimization of wastewater microalgae saccharification using dilute acid hydrolysis for acetone, butanol, and ethanol fermentation

    SciTech Connect

    Castro, Yessica; Ellis, Joshua T.; Miller, Charles D.; Sims, Ronald C.

    2015-02-01

    Exploring and developing sustainable and efficient technologies for biofuel production are crucial for averting global consequences associated with fuel shortages and climate change. Optimization of sugar liberation from wastewater algae through acid hydrolysis was determined for subsequent fermentation to acetone, butanol, and ethanol (ABE) by Clostridium saccharoperbutylacetonicum N1-4. Acid concentration, retention time, and temperature were evaluated to determine optimal hydrolysis conditions by assessing the sugar and ABE yield as well as the associated costs. Sulfuric acid concentrations ranging from 0-1.5 M, retention times of 40-120 min, and temperatures from 23°C- 90°C were combined to form a full factorial experiment. Acid hydrolysis pretreatment of 10% dried wastewater microalgae using 1.0 M sulfuric acid for 120 min at 80-90°C was found to be the optimal parameters, with a sugar yield of 166.1 g for kg of dry algae, concentrations of 5.23 g/L of total ABE, and 3.74 g/L of butanol at a rate of USD $12.83 per kg of butanol.

  1. Acid hydrolysis of crude tannins from infructescence of Platycarya strobilacea Sieb. et Zucc to produce ellagic acid.

    PubMed

    Zhang, Liangliang; Wang, Yongmei; Xu, Man

    2014-01-01

    The infructescence of Platycarya strobilacea Sieb. et Zucc is a well-known traditional medicine in China, Japan and Korea. The infructescence of P. strobilacea Sieb. et Zucc is a rich source of ellagitannins that are composed of ellagic acid (EA) and gallic acid, linked to a sugar moiety. The aim of this study was to prepare EA by acid hydrolysis of crude tannins from the infructescence of P. strobilacea Sieb. et Zucc, and establish a new technological processing method for EA. The natural antioxidant EA was prepared by using the water extraction of infructescence of P. strobilacea Sieb. et Zucc, evaporation, condensation, acid hydrolysis and prepared by the process of crystallisation. The yield percentage of EA from crude EA was more than 20% and the purity of the product was more than 98%, as identified by using HPLC. The structure was identified on the basis of spectroscopic analysis and comparison with authentic compound. PMID:24911045

  2. Effects of acid-hydrolysis and hydroxypropylation on functional properties of sago starch.

    PubMed

    Fouladi, Elham; Mohammadi Nafchi, Abdorreza

    2014-07-01

    In this study, sago starch was hydrolyzed by 0.14M HCl for 6, 12, 18, and 24h, and then modified by propylene oxide at a concentration of 0-30% (v/w). The effects of hydrolysis and etherification on molecular weight distribution, physicochemical, rheological, and thermal properties of dually modified starch were estimated. Acid hydrolysis of starch decreased the molecular weight of starch especially amylopectin, but hydroxypropylation had no effect on the molecular weight distribution. The degree of Molar substitution (DS) of hydroxypropylated starch after acid hydrolysis ranged from 0.007 to 0.15. Dually modified starch with a DS higher than 0.1 was completely soluble in cold water at up to 25% concentration of the starch. This study shows that hydroxypropylation and hydrolysis have synergistic effects unlike individual modifications. Dually modified sago starch can be applied to dip-molding for food and pharmaceutical processing because of its high solubility and low tendency for retrogradation. PMID:24832983

  3. Surface Chemical Compositions and Dispersity of Starch Nanocrystals Formed by Sulfuric and Hydrochloric Acid Hydrolysis

    PubMed Central

    Wei, Benxi; Xu, Xueming; Jin, Zhengyu; Tian, Yaoqi

    2014-01-01

    Surface chemical compositions of starch nanocrystals (SNC) prepared using sulfuric acid (H2SO4) and hydrochloric acid (HCl) hydrolysis were analyzed by X-ray photoelectron spectroscopy (XPS) and FT-IR. The results showed that carboxyl groups and sulfate esters were presented in SNC after hydrolysis with H2SO4, while no sulfate esters were detected in SNC during HCl-hydrolysis. TEM results showed that, compared to H2SO4-hydrolyzed sample, a wider size distribution of SNC prepared by HCl-hydrolysis were observed. Zeta-potentials were −23.1 and −5.02 mV for H2SO4- and HCl-hydrolyzed SNC suspensions at pH 6.5, respectively. Nevertheless, the zeta-potential values decreased to −32.3 and −10.2 mV as the dispersion pH was adjusted to 10.6. After placed 48 h at pH 10.6, zeta-potential increased to −24.1 mV for H2SO4-hydrolyzed SNC, while no change was detected for HCl-hydrolyzed one. The higher zeta-potential and relative small particle distribution of SNC caused more stable suspensions compared to HCl-hydrolyzed sample. PMID:24586246

  4. Amide bond hydrolysis in peptides and cyclic peptides catalyzed by a dimeric Zr(IV)-substituted Keggin type polyoxometalate.

    PubMed

    Ly, Hong Giang T; Absillis, Gregory; Parac-Vogt, Tatjana N

    2013-08-14

    Detailed kinetic studies on the hydrolysis of glycylserine (Gly-Ser) and glycylglycine (Gly-Gly) in the presence of the dimeric zirconium(IV)-substituted Keggin type polyoxometalate (Et2NH2)8[{α-PW11O39Zr(μ-OH)(H2O)}2]·7H2O (1) were performed by a combination of (1)H, (13)C and (31)P NMR spectroscopy. The observed rate constants for the hydrolysis of Gly-Ser and Gly-Gly at pD 5.4 and 60 °C were 63.3 × 10(-7) s(-1) and 4.44 × 10(-7) s(-1) respectively, representing a significant acceleration as compared to the uncatalyzed reactions. The pD dependence of the rate constant for both reactions exhibited a bell-shaped profile with the fastest hydrolysis observed in the pD range of 5.5-6.0. Interaction of 1 with Gly-Ser and Gly-Gly via their amine nitrogen and amide oxygen was proven by (13)C NMR spectroscopy. The effective hydrolysis of Gly-Ser in the presence of 1 is most likely a combination of the polarization of the amide oxygen due to its binding to the Zr(IV) ion in 1 and the intramolecular attack of the Ser hydroxyl group on the amide carbonyl carbon. The effect of temperature, inhibitors, and ionic strength on the hydrolysis rate constant was also examined. The solution structure of 1 was investigated by means of (31)P NMR spectroscopy, revealing that its stability is highly dependent on pH, concentration and temperature. A 2.0 mM solution of 1 was found to be fully stable under hydrolytic conditions (pD 5.4 and 60 °C) both in the presence and in the absence of the dipeptides. PMID:23787813

  5. Direct ortho-arylation of ortho-substituted benzoic acids: overriding Pd-catalyzed protodecarboxylation.

    PubMed

    Arroniz, Carlos; Ironmonger, Alan; Rassias, Gerry; Larrosa, Igor

    2013-02-15

    ortho-Arylation of ortho-substituted benzoic acids is a challenging process due to the tendency of the reaction products toward Pd-catalyzed protodecarboxylation. A simple method for preventing decarboxylation in sterically hindered benzoic acids is reported. The method described represents a reliable and broadly applicable entry to 2-aryl-6-substituted benzoic acids. PMID:23373630

  6. Conformational Footprint in Hydrolysis-Induced Nanofibrillation and Crystallization of Poly(lactic acid).

    PubMed

    Xu, Huan; Yang, Xi; Xie, Lan; Hakkarainen, Minna

    2016-03-14

    The origin of hydrolysis-induced nanofibrillation and crystallization, at the molecular level, was revealed by mapping the conformational ordering during long-term hydrolytic degradation of initially amorphous poly(lactic acid) (PLA), a representative model for degradable aliphatic polyesters generally displaying strong interplay between crystallization and hydrolytic erosion. The conformational regularization of chain segments was essentially the main driving force for the morphological evolution of PLA during hydrolytic degradation. For hydrolysis at 37 °C, no significant structural variations were observed due to the immobilization of "frozen" PLA chains. In contrast, conformational ordering in PLA was immediately triggered during hydrolysis at 60 °C and was responsible for the transition from random coils to disordered trans and, further, to quasi-crystalline nanospheres. On the surfaces, the head-by-head absorption and joining of neighboring nanospheres led to nanofibrillar assemblies following a "gluttonous snake"-like manner. The length and density of nanofibers formed were in close relation to the hydrolytic evolution, both of which showed a direct rise in the initial 60 days and then a gradual decline. In the interior, presumably the high surface energy of the nanospheres allowed for the preferential anchoring and packing of conformationally ordered chains into lamellae. In accordance with the well-established hypothesis, the amorphous regions were attacked prior to the erosion of crystalline entities, causing a rapid increase of crystallinity during the initial 30 days, followed by a gradual fall until 90 days. In addition to adequate illustration of hydrolysis-induced variations of crystallinity, our proposed model elucidates the formation of spherulitic nuclei featuring an extremely wide distribution of diameters ranging from several nanometers to over 5 μm, as well as the inferior resistance to hydrolysis observed for the primary nuclei. Our work

  7. Facile, room-temperature pre-treatment of rice husks with tetrabutylphosphonium hydroxide: Enhanced enzymatic and acid hydrolysis yields.

    PubMed

    Lau, B B Y; Luis, E T; Hossain, M M; Hart, W E S; Cencia-Lay, B; Black, J J; To, T Q; Aldous, L

    2015-12-01

    Aqueous solutions of tetrabutylphosphonium hydroxide have been evaluated as pretreatment media for rice husks, prior to sulphuric acid hydrolysis or cellulase enzymatic hydrolysis. Varying the water:tetrabutylphosphonium hydroxide ratio varied the rate of delignification, as well as silica, lignin and cellulose solubility. Pre-treatment with 60wt% hydroxide dissolved the rice husk and the regenerated material was thus heavily disrupted. Sulphuric acid hydrolysis of 60wt%-treated samples yielded the highest amount of glucose per gram of rice husk. Solutions with good lignin and silica solubility but only moderate to negligible cellulose solubility (10-40wt% hydroxide) were equally effective as pre-treatment media for both acid and enzymatic hydrolysis. However, pre-treatment with 60wt% hydroxide solutions was incompatible with downstream enzymatic hydrolysis. This was due to significant incorporation of phosphonium species in the regenerated biomass, which significantly inhibited the activity of the cellulase enzymes. PMID:26342336

  8. Spore Cortex Hydrolysis Precedes Dipicolinic Acid Release during Clostridium difficile Spore Germination

    PubMed Central

    Francis, Michael B.; Allen, Charlotte A.

    2015-01-01

    ABSTRACT Bacterial spore germination is a process whereby a dormant spore returns to active, vegetative growth, and this process has largely been studied in the model organism Bacillus subtilis. In B. subtilis, the initiation of germinant receptor-mediated spore germination is divided into two genetically separable stages. Stage I is characterized by the release of dipicolinic acid (DPA) from the spore core. Stage II is characterized by cortex degradation, and stage II is activated by the DPA released during stage I. Thus, DPA release precedes cortex hydrolysis during B. subtilis spore germination. Here, we investigated the timing of DPA release and cortex hydrolysis during Clostridium difficile spore germination and found that cortex hydrolysis precedes DPA release. Inactivation of either the bile acid germinant receptor, cspC, or the cortex hydrolase, sleC, prevented both cortex hydrolysis and DPA release. Because both cortex hydrolysis and DPA release during C. difficile spore germination are dependent on the presence of the germinant receptor and the cortex hydrolase, the release of DPA from the core may rely on the osmotic swelling of the core upon cortex hydrolysis. These results have implications for the hypothesized glycine receptor and suggest that the initiation of germinant receptor-mediated C. difficile spore germination proceeds through a novel germination pathway. IMPORTANCE Clostridium difficile infects antibiotic-treated hosts and spreads between hosts as a dormant spore. In a host, spores germinate to the vegetative form that produces the toxins necessary for disease. C. difficile spore germination is stimulated by certain bile acids and glycine. We recently identified the bile acid germinant receptor as the germination-specific, protease-like CspC. CspC is likely cortex localized, where it can transmit the bile acid signal to the cortex hydrolase, SleC. Due to the differences in location of CspC compared to the Bacillus subtilis germinant

  9. Comparison of cell wall polysaccharide hydrolysis by a dilute acid/enzymatic saccharification process and rumen microorganisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evaluation of biomass crops for breeding or pricing purposes requires an assay that predicts performance of biomass in the bioenergy conversion process. Cell wall polysaccharide hydrolysis by dilute sulfuric acid pretreatment at 121 degrees C followed by cellulase hydrolysis for 72 h (CONV) and in v...

  10. Selective and recyclable depolymerization of cellulose to levulinic acid catalyzed by acidic ionic liquid.

    PubMed

    Ren, Huifang; Girisuta, Buana; Zhou, Yonggui; Liu, Li

    2015-03-01

    Cellulose depolymerization to levulinic acid (LA) was catalyzed by acidic ionic liquids (ILs) selectively and recyclably under hydrothermal conditions. The effects of reaction temperature, time, water amount and cellulose intake were investigated. Dilution effect becomes more pronounced at lower cellulose intake, dramatically improving the yield of LA to 86.1%. A kinetic model has been developed based on experimental data, whereby a good fit was obtained and kinetic parameters were derived. The relationships between IL structure, polymeric structure and depolymerization efficiency were established, shedding light on the in-depth catalytic mechanism of IL, inclusive of acidity and hydrogen bonding ability. The LA product can be readily separated through extraction by methyl isobutyl ketone (MIBK) and IL can be reused over five cycles without loss of activity. This environmentally friendly methodology can be applied to selective production of LA from versatile biomass feedstocks, including cellulose and derivatives, glucose, fructose and HMF. PMID:25498672

  11. Utilization of sugarcane bagasse for bioethanol production: sono-assisted acid hydrolysis approach.

    PubMed

    Velmurugan, Rajendran; Muthukumar, Karuppan

    2011-07-01

    In this study, the production of sugar monomers from sugarcane bagasse (SCB) by sono-assisted acid hydrolysis was performed. The SCB was subjected to sono-assisted alkaline pretreatment. The cellulose and hemicellulose recovery observed in the solid content was 99% and 78.95%, respectively and lignin removal observed during the pretreatment was about 75.44%. The solid content obtained was subjected to sono-assisted acid hydrolysis. Under optimized conditions, the maximum hexose and pentose yield observed was 69.06% and 81.35% of theoretical yield, respectively. The hydrolysate obtained was found to contain very less inhibitors, which improved the bioethanol production and the ethanol yield observed was 0.17 g/g of pretreated SCB. PMID:21570831

  12. Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse

    NASA Astrophysics Data System (ADS)

    Wulandari, W. T.; Rochliadi, A.; Arcana, I. M.

    2016-02-01

    Cellulose in nanometer range or called by nano-cellulose has attracted much attention from researchers because of its unique properties. Nanocellulose can be obtained by acid hydrolysis of cellulose. The cellulose used in this study was isolated from sugarcane bagasse, and then it was hydrolyzed by 50% sulfuric acid at 40 °C for 10 minutes. Nanocellulose has been characterized by Transmission Electron Microscope (TEM), Particle Size Analyzer (PSA), Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Diffraction (XRD). Analysis of FTIR showed that there were not a new bond which formed during the hydrolysis process. Based on the TEM analysis, nano-cellulose has a spherical morphology with an average diameter of 111 nm and a maximum distribution of 95.9 nm determined by PSA. The XRD analysis showed that the crystallinity degree of nano-cellulose was higher than cellulose in the amount of 76.01%.

  13. Effects of crystallinity on dilute acid hydrolysis of cellulose by cellulose ball-milling study

    SciTech Connect

    Zhao, Haibo; Kwak, Ja Hun; Wang, Yong; Franz, James A.; White, John M.; Holladay, Johnathan E.

    2005-12-23

    The dilute acid (0.05 M H2SO4) hydrolysis at 175°C of samples comprising varying fractions of crystalline (α-form) and amorphous cellulose was studied. The amorphous content, based on XRD and NMR, and then the product (glucose) yield, based on HPLC, increased by as much as a factor of three upon ball milling. These results are interpreted in terms of a model involving mechanical disruption of crystallinity by breaking hydrogen bonds in α-cellulose, opening up the structure and making more β-1,4 glycosidic bonds readily accessible to the dilute acid. In parallel with hydrolysis to form liquid phase products, there are reactions of amorphous cellulose that form solid degradation products.

  14. Kinetic and mass transfer parameters of maltotriose hydrolysis catalyzed by glucoamylase immobilized on macroporous silica and wrapped in pectin gel.

    PubMed

    Gonçalves, L R; Suzuki, G S; Giordano, R C; Giordano, R L

    2001-01-01

    Kinetic and mass transport parameters were estimated for maltotriose hydrolysis using glucoamylase immobilized on macroporous silica and wrapped in pectin gel at 30 degrees C. Free enzyme assays were used to obtain the intrinsic kinetic parameters of a Michaelis-Menten equation, with product inhibition by glucose. The uptake method, based on transient experimental data, was employed in the estimation of mass transfer parameters. Effective diffusivities of maltotriose in pectin gel were estimated by fitting a classical diffusion model to experimental data of maltotriose diffusion into particles of pectin gel in the absence of silica. The effective diffusivities of maltotriose in silica were obtained after fitting a bidisperse model to experimental data of maltotriose hydrolysis using glucoamylase immobilized in silica and wrapped in pectin gel. PMID:11963897

  15. Hydrolysis of oxaliplatin-evaluation of the acid dissociation constant for the oxalato monodentate complex.

    PubMed

    Jerremalm, Elin; Eksborg, Staffan; Ehrsson, Hans

    2003-02-01

    Alkaline hydrolysis of the platinum anticancer drug oxaliplatin gives the oxalato monodentate complex and the dihydrated oxaliplatin complex in two consecutive steps. The acid dissociation constant for the oxalato monodentate intermediate was determined by a kinetic approach. The pK(a) value was estimated as 7.23. The monodentate intermediate is assumed to rapidly react with endogenous compounds, resulting in a continuous conversion of oxaliplatin via the monodentate form. PMID:12532393

  16. Hydrolysis mechanisms for the organopalladium complex [Pd(CNN)P(OMe)3]BF4 in sulfuric acid.

    PubMed

    García, Begoña; Hoyuelos, Francisco J; Ibeas, Saturnino; Muñoz, María S; Peñacoba, Indalecio; Leal, José M

    2009-08-13

    The acid-catalyzed hydrolysis of the organopalladium complex [Pd(CNN)P(OMe)3]BF4 species was monitored spectrophotometrically at different sulfuric acid concentrations (3.9 and 11.0 M) in 10% v:v ethanol-water over the 25-45 degrees C temperature range and in 30% and 50% (v/v) ethanol-water at 25 degrees C. Two acidity regions (I and II) could be differentiated. In each of the two regions the kinetic data pairs yielded two different rate constants, k(1obs) and k(2obs), the former being faster. These constants were fitted by an Excess Acidity analysis to different hydrolyses mechanisms: A-1, A-2, and A-SE2. In region I ([H2SO4] < 7.0 M), the k(1obs) values remained constant k(1obs)(av) = 1.6 x 10(-3) s(-1) and the set of k(2obs) values nicely matched an A-SE2 mechanism, yielding a rate-determining constant k(0,ASE2) = 2.4 x 10(-7) M(-1) s(-1). In region II ([H2SO4] > 7.0 M), a switchover was observed from an A-1 mechanism (k(0,A1) = 1.3 x 10(-4) s(-1)) to an A-2 mechanism (k(0,A2) = 3.6 x 10(-3) M(-1) s(-1)). The temperature effect on the rate constants in 10% (v/v) ethanol-water yielded positive DeltaH and negative DeltaS values, except for the A-1 mechanism, where DeltaS adopted positive values throughout. The solvent permittivity effect, epsilonr, revealed that k(1obs)(av) and k(0,A2) dropped with a fall in epsilonr, whereas the k(0,ASE2) value remained unaffected. The set of results deduced is in line with the schemes put forward. PMID:19621916

  17. Neutral and acidic hydrolysis reactions of the third generation anticancer drug oxaliplatin.

    PubMed

    Lucas, Maria Fatima A; Pavelka, Mateij; Alberto, Marta E; Russo, Nino

    2009-01-22

    The hydrolysis of oxaliplatin, a third generation anticancer drug, is expected to play an important role in the activation of this compound before it reaches DNA. The first and second hydrolysis corresponding to the addition of the first water molecule concomitant with the ring-opening, followed by addition of a second water and loss of the monodentate oxalato ligand, respectively, were studied combining density functional theory (DFT) with the conductor-like dielectric continuum model (CPCM) approach. The reaction was studied in neutral and acidic conditions, and all stationary points have been identified. The computed potential energy surfaces show that, for the neutral hydrolysis, the ring-opening reaction is the rate-limiting process, with an activation barrier of about 28 kcal/mol. For the acid degradation in water, according to experimental data, the reaction is expected to proceed in a faster biphasic process, and the rate-limiting process is the ligand detachment that occurs with a barriers of about 22 kcal/mol. According to the calculated results, we expect that the reaction is favored in acidic conditions and that the monoaquated complex should be the species reacting with DNA. PMID:19143575

  18. Hydrolysis of Indole-3-Acetic Acid Esters Exposed to Mild Alkaline Conditions 1

    PubMed Central

    Baldi, Bruce G.; Maher, Barbara R.; Cohen, Jerry D.

    1989-01-01

    Ester conjugates of indole-3-acetic acid are hydrolyzed easily in basic solutions; however, quantitative data have not been available on the relationship between pH and rate of hydrolysis of the known ester conjugates. The use of basic conditions during extraction or purification of IAA by several laboratories suggested that a more systematic analysis of this process was needed. In this report we present data indicating: (a) that measurable hydrolysis of IAA-glucose (from standard solutions) and IAA-esters (from maize kernel extracts) occurs with only a few hours of treatment at pH 9 or above; (b) that the lability of some ester conjugates is even greater than that of IAA-glucose; and (c) that ester hydrolysis of standard compounds, IAA-glucose and IAA-p-nitrophenol, occurs in the `three phase extraction system' proposed by Liu and Tillberg ([1983] Physiol Plant 57: 441-447). These data indicate that the potential for problems with inadvertent hydrolysis of ester conjugates of IAA exists even at moderate pH values and in the multiphase system where exposure to basic conditions was thought to be limited. PMID:16667049

  19. Relationships Between Base-Catalyzed Hydrolysis Rates or Glutathione Reactivity for Acrylates and Methacrylates and Their NMR Spectra or Heat of Formation

    PubMed Central

    Fujisawa, Seiichiro; Kadoma, Yoshinori

    2012-01-01

    The NMR chemical shift, i.e., the π-electron density of the double bond, of acrylates and methacrylates is related to the reactivity of their monomers. We investigated quantitative structure-property relationships (QSPRs) between the base-catalyzed hydrolysis rate constants (k1) or the rate constant with glutathione (GSH) (log kGSH) for acrylates and methacrylates and the 13C NMR chemical shifts of their α,β-unsaturated carbonyl groups (δCα and δCβ) or heat of formation (Hf) calculated by the semi-empirical MO method. Reported data for the independent variables were employed. A significant linear relationship between k1 and δCβ, but not δCα, was obtained for methacrylates (r2 = 0.93), but not for acrylates. Also, a significant relationship between k1 and Hf was obtained for both acrylates and methacrylates (r2 = 0.89). By contrast, log kGSH for acrylates and methacrylates was linearly related to their δCβ (r2 = 0.99), but not to Hf. These findings indicate that the 13C NMR chemical shifts and calculated Hf values for acrylates and methacrylates could be valuable for estimating the hydrolysis rate constants and GSH reactivity of these compounds. Also, these data for monomers may be an important tool for examining mechanisms of reactivity. PMID:22754331

  20. Regulation of fatty acid sup 18 O exchange catalyzed by pancreatic carboxylester lipase. 1. Mechanism and kinetic properties

    SciTech Connect

    Muderhwa, J.M.; Schmid, P.C.; Brockman, H.L. )

    1992-01-14

    The exchange of {sup 18}O between H{sub 2}O and long-chain free fatty acids is catalyzed by pancreatic carboxylester lipase. For palmitic, oleic, and arachidonic acid in aqueous suspension and for 13,16-cis,cis-docosadienoic acid (DA) in monomolecular films, carboxyl oxygens were completely exchanged with water oxygens of the bulk aqueous phase. With enzyme at either substrate or catalytic concentrations in the argon-buffer interface, the exchange of DA oxygens obeyed a random sequential mechanism, i.e., {sup 18}O, {sup 18}O-DA {rightleftharpoons} {sup 18}O, {sup 16}O-DA {rightleftharpoons} {sup 16}O, {sup 16}O-DA. This indicates that the dissociation of the enzyme{center dot}DA complex is much faster than the rate-limiting step in the overall exchange reaction. Kinetic analysis of {sup 18}O exchange showed a first-order dependence on surface enzyme and DA concentrations, i.e., the reaction was limited by the acylation rate. The values of k{sub cat}/K{sub m}, 0.118 cm{sup 2} pmol{sup {minus}1} s{sup {minus}1}, for the exchange reaction was comparable to that for methyl oleate hydrolysis and 5-fold higher than that for cholesteryl oleate hydrolysis in monolayers. Thus, fatty acids are good substrates' for carboxylester lipase. With substrate levels of carboxylester lipase in the interfacial phase, the acylation rate constant k{sub cat}/K{sub m} was 200-fold lower than that obtained with catalytic levels of enzyme. This suggests a possible restriction of substrate diffusion in the protein-covered substrate monolayer.

  1. Rapid Online Non-Enzymatic Protein Digestion Combining Microwave Heating Acid Hydrolysis and Electrochemical Oxidation

    PubMed Central

    Basile, Franco; Hauser, Nicolas

    2010-01-01

    We report an online non-enzymatic method for site-specific digestion of proteins to yield peptides that are well suited for collision induced dissociation (CID) tandem mass spectrometry (MS/MS). The method combines online microwave heating acid hydrolysis at aspartic acid and online electrochemical oxidation at tryptophan and tyrosine. The combined microwave/electrochemical (microwave/echem) digestion is reproducible and produces peptides with an average sequence length of 10 amino acids. This peptide length is similar to the average peptide length of 9 amino acids obtained by digestion of proteins with the enzyme trypsin. As a result, the peptides produced by this novel non-enzymatic digestion method, when analyzed by ESI-MS, produce protonated molecules with mostly +1 and +2 charge states. The combination of these two non-enzymatic methods overcomes shortcomings with each individual method in that: i) peptides generated by the microwave-hydrolysis method have an average amino acid length of 16 amino acids, and ii) the inability of the electrochemical-cleavage method to reproducibly digest proteins with molecular masses above 4 kDa. Preliminary results are presented on the application and utility of this rapid online digestion (total of 6 min digestion time) on a series of standard peptides and proteins as well as an E. coli protein extract. PMID:21138252

  2. Benzoic acid 2-hydroxylase, a soluble oxygenase from tobacco, catalyzes salicylic acid biosynthesis

    SciTech Connect

    Leon, J.; Shulaev, V.; Yalpani, N.

    1995-10-24

    Benzoic acid 2-hydroxylase (BA2H) catalyzes the biosynthesis of salicylic acid from benzoic acid. The enzyme has been partially purified and characterized as a soluble protein of 160 kDa. High-efficiency in vivo labeling of salicyclic acid with {sup 18}O{sub 2} suggested that BA2H is an oxygenase that specifically hydroxylates the ortho position of benzoic acid. The enzyme was strongly induced by either tobacco mosaic virus inoculation of benzoic acid infiltration of tobacco leaves and it was inhibited by CO and other inhibitors of cytochrome P450 hydroxylases. The BA2H activity was immunodepleted by antibodies raised against SU2, a soluble cytochrome P450 from Streptomyces griseolus. The anti-SU2 antibodies immunoprecipitated a radiolabeled polypeptide of around 160 kDa from the soluble protein extracts of L-[{sup 35}S]-methionine-fed tobacco leaves. Purified BA2H showed CO-difference spectra with a maximum at 457 nm. These data suggest that BA2H belongs to a novel class of soluble, high molecular weight cytochrome P450 enzymes. 21 refs., 6 figs., 1 tab.

  3. Process for enzymatic hydrolysis of fatty acid triglycerides with oat caryopses

    SciTech Connect

    Hammond, E.G.; Lee, I.

    1992-02-18

    This patent describes the process for enzymatic hydrolysis of fatty acid triglycerides to obtain free fatty acids and glycerol. It comprises: increasing the water content of dehulled whole oat caryopses to a total water content of 17 to 44% the thus moistened caryopses having active oat lipase associated with the outer surfaces thereof; contacting the moistened whole caryopses with a liquid medium, continuing the contacting until at least 20% by volume of the triglyceride reactant has been hydrolyzed to free fatty acids and glycerol, most of the free fatty acids dissolving in the oil phase external to the caryopses and most of the glycerol being absorbed into the water within the caryopses; and separating the glycerol-containing caryopses from the fatty acid-containing oil phase.

  4. Morphological characteristics, oxidative stability and enzymic hydrolysis of amylose-fatty acid complexes.

    PubMed

    Marinopoulou, Anna; Papastergiadis, Efthimios; Raphaelides, Stylianos N; Kontominas, Michael G

    2016-05-01

    Complexes of amylose with fatty acids varying in carbon chain length and degree of unsaturation were prepared at 30, 50 or 70°C by dissolving amylose in 0.1N KOH and mixing with fatty acid potassium soap solution. The complexes were obtained in solid form as precipitates after neutralization. SEM microscopy revealed that the morphology of the complexes was that of ordered lamellae separated from amorphous regions whereas confocal laser scanning microscopy showed images of the topography of the guest molecules in the complex matrix. FTIR spectroscopy revealed that the absorption peak attributed to carbonyl group of free fatty acid was shifted when the fatty acid was in the form of amylose complex. Thermo-gravimetry showed that the unsaturated fatty acids were effectively protected from oxidation when they were complexed with amylose whereas enzymic hydrolysis experiments showed that the guest molecules were quantitatively released from the amylose complexes. PMID:26877002

  5. A combination of two lactic acid bacteria improves the hydrolysis of gliadin during wheat dough fermentation.

    PubMed

    Gerez, Carla Luciana; Dallagnol, Andrea; Rollán, Graciela; Font de Valdez, Graciela

    2012-12-01

    The evaluation of gliadin hydrolysis during dough fermentation by using two lactic acid bacteria, Lactobacillus plantarum CRL 775 and Pediococcus pentosaceus CRL 792, as pooled cell suspension (LAB) or cell free extract (CFE) was undertaken. The CFE pool produced a greater (121%) increase in amino acid concentration than the LAB pool (70-80%). These results were correlated with the decrease (76,100 and 64,300 ppm) in the gliadin concentration of doughs supplemented with CFE and LAB, respectively, compared to control doughs. The use of LAB peptidases seemed to be a viable technologic alternative to reduce the gliadin concentration in wheat dough without using living bacteria as starter. PMID:22986210

  6. KI-catalyzed α-acyloxylation of acetone with carboxylic acids.

    PubMed

    Wu, Ya-Dong; Huang, Bei; Zhang, Yue-Xin; Wang, Xiao-Xu; Dai, Jian-Jun; Xu, Jun; Xu, Hua-Jian

    2016-07-01

    The KI-catalyzed reaction of acetone with aromatic carboxylic acids is achieved, leading to α-acyloxycarbonyl compounds in good to excellent yields under mild reaction conditions. The present method exhibits good functional-group compatibility. Notably, this reaction system is even suitable for cinnamic acid, 3-phenylpropiolic acid and 4-phenylbutanoic acid. A kinetic isotope effect (KIE) study indicates that C-H cleavage of the acetone is the rate-limiting step in the catalytic cycle. PMID:27251323

  7. Formation of Linear Polyenes in Thermal Dehydration of Polyvinyl Alcohol, Catalyzed by Phosphotungstic Acid

    NASA Astrophysics Data System (ADS)

    Tretinnikov, O. N.; Sushko, N. I.

    2015-01-01

    In order to obtain linear polyenes in polyvinyl alcohol films via acid-catalyzed thermal dehydration of the polyvinyl alcohol, we used phosphotungstic acid as the catalyst: a safe and heat-stable solid chemical compound. We established that phosphotungstic acid, introduced as solid nanoparticles into polyvinyl alcohol films, is a more effective dehydration catalyst than hydrochloric acid, since in contrast to HCl it does not evaporate from the film during heat treatment.

  8. The Lewis-acid-catalyzed synthesis of hyperbranched poly(glycerol-diacid)s in toluene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The first examples of monomeric glycerol-derived hyperbranched polyesters produced in a non-polar solvent system are reported here. The polymers were made by the Lewis acid (dibutyltin(IV)oxide)-catalyzed polycondensation of glycerol with either succinic acid (n (aliphatic chain length)=2), glutari...

  9. Catalyzed ring-opening polymerization of epoxidized soybean oil by hydrated and anhydrous fluoroantimonic acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ring-opening polymerization of epoxidized soybean oil (ESO) catalyzed by the super acid, fluroantimonic acid hexahydrate (HSbF6-6H2O), and the anhydrous form (HSbF6) in ethyl acetate was conducted in an effort to develop useful biodegradable polymers. The resulting polymerized ESO (SA-RPESO and SAA-...

  10. Palladium(II)/Brønsted Acid-Catalyzed Enantioselective Oxidative Carbocyclization-Borylation of Enallenes.

    PubMed

    Jiang, Tuo; Bartholomeyzik, Teresa; Mazuela, Javier; Willersinn, Jochen; Bäckvall, Jan-E

    2015-05-11

    An enantioselective oxidative carbocyclization-borylation of enallenes that is catalyzed by palladium(II) and a Brønsted acid was developed. Biphenol-type chiral phosphoric acids were superior co-catalysts for inducing the enantioselective cyclization. A number of chiral borylated carbocycles were synthesized in high enantiomeric excess. PMID:25808996

  11. Palladium(II)/Brønsted Acid-Catalyzed Enantioselective Oxidative Carbocyclization–Borylation of Enallenes**

    PubMed Central

    Jiang, Tuo; Bartholomeyzik, Teresa; Mazuela, Javier; Willersinn, Jochen; Bäckvall, Jan-E

    2015-01-01

    An enantioselective oxidative carbocyclization–borylation of enallenes that is catalyzed by palladium(II) and a Brønsted acid was developed. Biphenol-type chiral phosphoric acids were superior co-catalysts for inducing the enantioselective cyclization. A number of chiral borylated carbocycles were synthesized in high enantiomeric excess. PMID:25808996

  12. Characterization of fatty amides produced by lipase-catalyzed amidation of multihydroxylated fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Novel multi-hydroxylated primary fatty amides produced by direct amidation of 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) and 7,10,12-trihydroxy-8(E)-octadecenoic acid (TOD) were characterized by GC-MS and NMR. The amidation reactions were catalyzed by immobilized Pseudozyma (Candida) antarctica li...

  13. Mechanism of Boron-Catalyzed N-Alkylation of Amines with Carboxylic Acids.

    PubMed

    Zhang, Qi; Fu, Ming-Chen; Yu, Hai-Zhu; Fu, Yao

    2016-08-01

    Mechanistic study has been carried out on the B(C6F5)3-catalyzed amine alkylation with carboxylic acid. The reaction includes acid-amine condensation and amide reduction steps. In condensation step, the catalyst-free mechanism is found to be more favorable than the B(C6F5)3-catalyzed mechanism, because the automatic formation of the stable B(C6F5)3-amine complex deactivates the catalyst in the latter case. Meanwhile, the catalyst-free condensation is constituted by nucleophilic attack and the indirect H2O-elimination (with acid acting as proton shuttle) steps. After that, the amide reduction undergoes a Lewis acid (B(C6F5)3)-catalyzed mechanism rather than a Brønsted acid (B(C6F5)3-coordinated HCOOH)-catalyzed one. The B(C6F5)3)-catalyzed reduction includes twice silyl-hydride transfer steps, while the first silyl transfer is the rate-determining step of the overall alkylation catalytic cycle. The above condensation-reduction mechanism is supported by control experiments (on both temperature and substrates). Meanwhile, the predicted chemoselectivity is consistent with the predominant formation of the alkylation product (over disilyl acetal product). PMID:27441997

  14. Impact of dual temperature profile in dilute acid hydrolysis of spruce for ethanol production

    PubMed Central

    2010-01-01

    Background The two-step dilute acid hydrolysis (DAH) of softwood is costly in energy demands and capital costs. However, it has the advantage that hydrolysis and subsequent removal of hemicellulose-derived sugars can be carried out under conditions of low severity, resulting in a reduction in the level of sugar degradation products during the more severe subsequent steps of cellulose hydrolysis. In this paper, we discuss a single-step DAH method that incorporates a temperature profile at two levels. This profile should simulate the two-step process while removing its major disadvantage, that is, the washing step between the runs, which leads to increased energy demand. Results The experiments were conducted in a reactor with a controlled temperature profile. The total dry matter content of the hydrolysate was up to 21.1% w/w, corresponding to a content of 15.5% w/w of water insoluble solids. The highest measured glucose yield, (18.3 g glucose per 100 g dry raw material), was obtained after DAH cycles of 3 min at 209°C and 6 min at 211°C with 1% H2SO4, which resulted in a total of 26.3 g solubilized C6 sugars per 100 g dry raw material. To estimate the remaining sugar potential, enzymatic hydrolysis (EH) of the solid fraction was also performed. EH of the solid residue increased the total level of solubilized C6 sugars to a maximum of 35.5 g per 100 g dry raw material when DAH was performed as described above (3 min at 210°C and 2 min at 211°C with 1% H2SO4). Conclusion The dual-temperature DAH method did not yield decisively better results than the single-temperature, one-step DAH. When we compared the results with those of earlier studies, the hydrolysis performance was better than with the one-step DAH but not as well as that of the two-step, single-temperature DAH. Additional enzymatic hydrolysis resulted in lower levels of solubilized sugars compared with other studies on one-step DAH and two-step DAH followed by enzymatic hydrolysis. A two-step steam

  15. Improved enzymatic hydrolysis of wheat straw by combined use of gamma ray and dilute acid for bioethanol production

    NASA Astrophysics Data System (ADS)

    Hyun Hong, Sung; Taek Lee, Jae; Lee, Sungbeom; Gon Wi, Seung; Ju Cho, Eun; Singh, Sudhir; Sik Lee, Seung; Yeoup Chung, Byung

    2014-01-01

    Pretreating wheat straw with a combination of dilute acid and gamma irradiation was performed in an attempt to enhance the enzymatic hydrolysis for bioethanol production. The glucose yield was significantly affected by combined pretreatment (3% sulfuric acid-gamma irradiation), compared with untreated wheat straw and individual pretreatment. The increasing enzymatic hydrolysis after combined pretreatment is resulting from decrease in crystallinity of cellulose, loss of hemicelluloses, and removal or modification of lignin. Therefore, combined pretreatment is one of the most effective methods for enhancing the enzymatic hydrolysis of wheat straw biomass.

  16. Hydrolysis of sorghum straw using phosphoric acid: evaluation of furfural production.

    PubMed

    Vázquez, Manuel; Oliva, Martha; Téllez-Luis, Simón J; Ramírez, José A

    2007-11-01

    Sorghum straw is a waste that has been studied scarcely. The main application is its use as raw material for xylose production. Xylose is a hemicellulosic sugar mainly used for its bioconversion toward xylitol. An alternative use could be its conversion toward furfural. The objective of this work was to study the furfural production by hydrolysis of sorghum straw with phosphoric acid at 134 degrees C. Several concentrations of H(3)PO(4) in the range 2-6% and reaction time (range 0-300 min) were evaluated. Kinetic parameters of mathematical models for predicting the concentration of xylose, glucose, arabinose, acetic acid and furfural in the hydrolysates were found. Optimal conditions for furfural production by acid hydrolysis were 6% H(3)PO(4) at 134 degrees C for 300 min, which yielded a solution with 13.7 g furfural/L, 4.0 g xylose/L, 2.9 g glucose/L, 1.1g arabinose/L and 1.2g acetic acid/L. The furfural yield of the process was 0.1336 g furfural/g initial dry matter was obtained. The results confirmed that sorghum straw can be used for furfural production when it is hydrolyzed using phosphoric acid. PMID:17145181

  17. Sulfuric Acid Pretreatment and Enzymatic Hydrolysis of Photoperiod Sensitvie Sorghum for Ethanol Production

    SciTech Connect

    F Xu; Y Shi; X Wu

    2011-12-31

    Photoperiod sensitive (PS) sorghum, with high soluble sugar content, high mass yield and high drought tolerance in dryland environments, has great potential for bioethanol production. The effect of diluted sulfuric acid pretreatment on enzymatic hydrolysis was investigated. Hydrolysis efficiency increased from 78.9 to 94.4% as the acid concentration increased from 0.5 to 1.5%. However, the highest total glucose yield (80.3%) occurred at the 1.0% acid condition because of the significant cellulose degradation at the 1.5% concentration. Synchrotron wide-angle X-ray diffraction was used to study changes of the degree of crystallinity. With comparison of cellulosic crystallinity and adjusted cellulosic crystallinity, the crystalline cellulose decreased after low acidic concentration (0.5%) applied, but did not change significantly, as the acid concentration increased. Scanning electron microscopy was also employed to understand how the morphological structure of PS sorghum changed after pretreatment. Under current processing conditions, the total ethanol yield is 74.5% (about 0.2 g ethanol from 1 g PS sorghum). A detail mass balance was also provided.

  18. Alcohol fermentation of sweet potato. 1. Acid hydrolysis and factors involved

    SciTech Connect

    Azhar, A.; Hamdy, M.K.

    1981-04-01

    Factors affecting acid hydrolysis of sweet potato powder (SPP) to fermentable sugars were examined. These include HCl concentration, temperature, time, and levels of SPP. Maximum reducing sugar, reported as dextrose equivalent (DE), was detected after 24 min hydrolysis (1% SPP) in 0.034N HCl heated at 154 degrees celcius. These samples also had 3.43% hydroxymethylfurfural (HMF) based on dry weight. A high level of HMF (9.2%) was detected in 1% SPP heated at 154 degrees C in 0.10N HCl for 18 min. The lowest concentration of HMF formed (1.8%), at maximal DE of 61%, was established in samples containing 5% SPP and heated at 154 degrees C in 0.034N HCl for 48 min. Aqueous extracts of uncured SPP, examined by HPLC, contained glucose, fructose and sucrose, butdegreaded SPP had only glucose and fructose. Products of degraded SPP, under appropriate conditions, could be used for alcohol fermentation. (Refs. 18).

  19. Characterisation of the products from pyrolysis of residues after acid hydrolysis of Miscanthus.

    PubMed

    Melligan, F; Dussan, K; Auccaise, R; Novotny, E H; Leahy, J J; Hayes, M H B; Kwapinski, W

    2012-03-01

    Platform chemicals such as furfural and hydroxymethylfurfural are major products formed during the acid hydrolysis of lignocellulosic biomass in second generation biorefining processes. Solid hydrolysis residues (HR) can amount to 50 wt.% of the starting biomass materials. Pyrolysis of the HRs gives rise to biochar, bio-liquids, and gases. Time and temperature were variables during the pyrolysis of HRs in a fixed bed tubular reactor, and both parameters have major influences on the amounts and properties of the products. Biochar, with potential for carbon sequestration and soil conditioning, composed about half of the HR pyrolysis product. The amounts (11-20 wt.%) and compositions (up to 77% of phenols in organic fraction) of the bio-liquids formed suggest that these have little value as fuels, but could be sources of phenols, and the gas can have application as a fuel. PMID:22281143

  20. Value of Coproduction of Ethanol and Furfural from Acid Hydrolysis Processes

    SciTech Connect

    Parker, S.; Calnon, M.; Feinberg, D.; Power, A.; Weiss, L.

    1984-05-01

    In the acid hydrolysis of a cellulosic feedstock (wood, wood wastes, or crop residues), up to 3.65 lb of furfural may be coproduced with each gallon of ethanol for only the cost of recovering and purifying it. Each plant producing 50 x 106 gal/yr of ethanol would produce an amount of by-product furfural equal to the total current domestic production. Thus, the need arises for investigation into potentially suitable processes for deriving profitable end products from furfural and thus expanding the market. The objectives of this study were to determine the economic potential of five selected, large volume derivatives of furfural that could displace hydrocarbon-based chemicals, and the consequent value of furfural as a by-product to the cellulose hydrolysis process of ethanol production.

  1. Phosphoric acid pretreatment of Achyranthes aspera and Sida acuta weed biomass to improve enzymatic hydrolysis.

    PubMed

    Siripong, Premjet; Duangporn, Premjet; Takata, Eri; Tsutsumi, Yuji

    2016-03-01

    Achyranthes aspera and Sida acuta, two types of weed biomass are abundant and waste in Thailand. We focus on them as novel feedstock for bio-ethanol production because they contain high-cellulose content (45.9% and 46.9%, respectively) and unutilized material. Phosphoric acid (70%, 75%, and 80%) was employed for the pretreatment to improve by enzymatic hydrolysis. The pretreatment process removed most of the xylan and a part of the lignin from the weeds, while most of the glucan remained. The cellulose conversion to glucose was greater for pretreated A. aspera (86.2 ± 0.3%) than that of the pretreated S. acuta (82.2 ± 1.1%). Thus, the removal of hemicellulose significantly affected the efficiency of the enzymatic hydrolysis. The scanning electron microscopy images showed the exposed fibrous cellulose on the cell wall surface, and this substantial change of the surface structure contributed to improving the enzyme accessibility. PMID:26744804

  2. Kinetic study of enzymatic hydrolysis of acid-pretreated coconut coir

    NASA Astrophysics Data System (ADS)

    Fatmawati, Akbarningrum; Agustriyanto, Rudy

    2015-12-01

    Biomass waste utilization for biofuel production such as bioethanol, has become more prominent currently. Coconut coir is one of lignocellulosic food wastes, which is abundant in Indonesia. Bioethanol production from such materials consists of more than one step. Pretreatment and enzymatic hydrolysis is crucial steps to produce sugar which can then be fermented into bioethanol. In this research, ground coconut coir was pretreated using dilute sulfuric acid at 121°C. This pretreatment had increased the cellulose content and decreased the lignin content of coconut coir. The pretreated coconut coir was hydrolyzed using a mix of two commercial cellulase enzymes at pH of 4.8 and temperature of 50°C. The enzymatic hydrolysis was conducted at several initial coconut coir slurry concentrations (0.1-2 g/100 mL) and reaction times (2-72 hours). The reducing sugar concentration profiles had been produced and can be used to obtain reaction rates. The highest reducing sugar concentration obtained was 1,152.567 mg/L, which was produced at initial slurry concentration of 2 g/100 mL and 72 hours reaction time. In this paper, the reducing sugar concentrations were empirically modeled as a function of reaction time using power equations. Michaelis-Menten kinetic model for enzymatic hydrolysis reaction is adopted. The kinetic parameters of that model for sulfuric acid-pretreated coconut coir enzymatic hydrolysis had been obtained which are Vm of 3.587×104 mg/L.h, and KM of 130.6 mg/L.

  3. A method for the determination of the hepatic enzyme activity catalyzing bile acid acyl glucuronide formation by high-performance liquid chromatography with pulsed amperometric detection.

    PubMed

    Ikegawa, S; Oohashi, J; Murao, N; Goto, J

    2000-05-01

    A method for the determination of the activity of hepatic glucuronyltransferase catalyzing formation of bile acid 24-glucuronides using high-performance liquid chromatography (HPLC) with pulsed amperometric detection (PAD) has been developed. Bile acid 24-glucuronides were simultaneously separated on a semimicrobore column, Capcell Pak C18UG120, using 20 mM ammonium phosphate (pH 6.0)-acetonitrile (27:10 and 16:10) as the mobile phase in the stepwise gradient elution mode. A 1 M potassium hydroxide solution for the hydrolysis of the 24-glucuronides, which liberates the corresponding bile acids and glucuronic acid, was mixed with the mobile phase in a post-column mode, and the resulting eluant was heated at 90 degrees C, the 24-glucuronides being monitored using a pulsed amperometric detector; the limit of detection was 10 ng. The proposed method was applied to the determination of the hepatic enzyme activity catalyzing bile acid 24-glucuronide formation and the result exhibited the efficient 24-glucuronide formation of the monohydroxylated bile acid, lithocholic acid. PMID:10850616

  4. The mechanism of hydrothermal hydrolysis for glycyrrhizic acid into glycyrrhetinic acid and glycyrrhetinic acid 3-O-mono-β-D-glucuronide in subcritical water.

    PubMed

    Fan, Rui; Li, Nan; Xu, Honggao; Xiang, Jun; Wang, Lei; Gao, Yanxiang

    2016-01-01

    To improve the bioactivity and sweetness properties of glycyrrhizic acid (GL), the hydrothermal hydrolysis of GL into glycyrrhetinic acid (GA) and glycyrrhetinic acid 3-O-mono-β-D-glucuronide (GAMG) in subcritical water was investigated. The effects of temperature, time and their interaction on the conversion ratios were analyzed and the reactions were elaborated with kinetics and thermodynamics. The results showed that GL hydrothermal hydrolysis was significantly (P < 0.05) affected by reaction time and temperature, as well as their interaction, and could be fitted into first-order kinetics. The thermodynamic analysis indicated that the hydrolysis of GL was endergonic and non-spontaneous. The hydrolytic pathways were composed of complex consecutive and parallel reactions. It was concluded that subcritical water may be a potential medium for producing GAMG and GA. PMID:26213056

  5. A novel diffusion-biphasic hydrolysis coupled kinetic model for dilute sulfuric acid pretreatment of corn stover.

    PubMed

    Chen, Longjian; Zhang, Haiyan; Li, Junbao; Lu, Minsheng; Guo, Xiaomiao; Han, Lujia

    2015-02-01

    Kinetic experiments on the dilute sulfuric acid pretreatment of corn stover were performed. A high xylan removal and a low inhibitor concentration were achieved by acid pretreatment. A novel diffusion-hydrolysis coupled kinetic model was proposed. The contribution to the xylose yield was analyzed by the kinetic model. Compared with the inhibitor furfural negatively affecting xylose yield, the fast and slow-hydrolyzing xylan significantly contributed to the xylose yield, however, their dominant roles were dependent on reaction temperature and time. The impact of particle size and acid concentration on the xylose yield were also investigated. The diffusion process may significantly influence the hydrolysis of large particles. Increasing the acid concentration from 0.15 M to 0.30 M significantly improved the xylose yield, whereas the extent of improvement decreased to near-quantitative when further increasing acid loading. These findings shed some light on the mechanism for dilute sulfuric acid hydrolysis of corn stover. PMID:25479388

  6. Phosphine and thiophene cyclopalladated complexes: hydrolysis reactions in strong acidic media.

    PubMed

    García, Begoña; Hoyuelos, Francisco J; Ibeas, Saturnino; Muñoz, María S; Navarro, Ana M; Peñacoba, Indalecio A; Leal, José M

    2010-12-01

    The mechanisms for the hydrolysis of organopalladium complexes [Pd(CNN)R]BF(4) (R=P(OPh)(3), PPh(3), and SC(4)H(8)) were investigated at 25 °C by using UV/Vis absorbance measurements in 10 % v/v ethanol/water mixtures containing different sulphuric acid concentrations in the 1.3-11.7 M range. In all cases, a biphasic behavior was observed with rate constants k(1obs), which corresponds to the initial step of the hydrolysis reaction, and k(2obs), where k(1obs)>k(2obs). The plots of k(1obs) and k(2obs) versus sulfuric acid concentration suggest a change in the reaction mechanism. The change with respect to the k(1obs) value corresponds to 35 %, 2 %, and 99 % of the protonated complexes for R=PPh(3), P(OPh)(3), and SC(4)H(8), respectively. Regarding k(2obs), the change occurred in all cases at about 6.5 M H(2)SO(4) and matched up with the results reported for the hydrolysis of the 2-acetylpyridinephenylhydrazone (CNN) ligand. By using the excess acidity method, the mechanisms were elucidated by carefully looking at the variation of k(i),(obs) (i=1,2) versus cH+. The rate-determining constants, k(0,A-1), k(0,A-2), and k(0,A-SE2) were evaluated in all cases. The R=P(OPh)(3) complex was most reactive due to its π-acid character, which favors the rupture of the trans nitrogen-palladium bond in the A-2 mechanism and also that of the pyridine nitrogen-palladium bond in the A-1 mechanism. The organometallic bond exerts no effect on the relative basicity of the complexes, which are strongly reliant on the substituent. PMID:21125574

  7. Oxygen isotope effects of enzyme-catalyzed organophosphorus hydrolysis reactions: implications for interpretation of dissolved PO4 δ18O values in natural waters

    NASA Astrophysics Data System (ADS)

    Liang, Y.; Blake, R. E.

    2002-12-01

    The geochemical cycling of P in Earth surface environments is controlled largely by biota. It has been recently demonstrated that intracellular cycling of P in microbial cultures and biological turnover of P in natural waters leads to temperature-dependent O isotope equilibrium between dissolved inorganic PO4 (Pi) and ambient water, and that the δ18O of Pi can be a useful tracer of biological reactions and P cycling in aquatic systems/sediments. Oxygen isotope exchange between Pi and water during biological turnover of P is catalyzed by enzymes at low-temperature. Phosphoenzymes play a crucial role in the intracellular functions of all living organisms and also have important extracellular functions in aquatic ecosystems such as regeneration of Pi from organophosphorus compounds (e.g., phosphoesters). Laboratory experiments indicate that extracellular enzyme reactions may result in incomplete Pi turnover and non-equilibrium Pi-water O isotope exchange. Determination of the O isotope effects of phosphoenzyme-catalyzed reactions is fundamental to the understanding of mechanisms of PO4-water O isotope exchange, pathways of biogeochemical P cycling, and interpretation of PO4 δ18O values from natural systems. Here we report on the O isotope fractionation between enzymatically-released Pi and water, in cell-free abiotic systems. Alkaline phosphatase (Apase) is a non-specific phosphohydrolase commonly found in fresh and marine coastal waters that catalyzes the hydrolysis of Pi from phosphomonoesters. We examined the O isotope effects of Apase derived from both microbial and eukaryotic sources and acting on different phosphomonoester substrates (e.g., α-D-Glucose 1-Phosphate, β-Glycerophosphate, AMP) in 18O-labeled waters. Oxygen isotope ratios of Pi released by Apase indicate that only 1 of the 4 O atoms in PO4 is incorporated from water with little or no apparent O isotopic fractionation at the site of incorporation. This observation is consistent with

  8. Heteropoly Acid/Nitrogen Functionalized Onion-like Carbon Hybrid Catalyst for Ester Hydrolysis Reactions.

    PubMed

    Liu, Wei; Qi, Wei; Guo, Xiaoling; Su, Dangsheng

    2016-02-18

    A novel heteropoly acid (HPA)/nitrogen functionalized onion-like carbon (NOLC) hybrid catalyst was synthesized through supramolecular (electrostatic and hydrogen bond) interactions between the two components. The chemical structure and acid strength of the HPA/NOLC hybrid have been fully characterized by thermogravimetric analysis, IR spectroscopy, X-ray photoelectron spectroscopy, NH3 temperature-programmed desorption and acid-base titration measurements. The proposed method for the fabrication of the HPA/NOLC hybrid catalyst is a universal strategy for different types of HPAs to meet various requirements of acidic or redox catalysis. The hydrophobic environment of NOLC effectively prevents the deactivation of HPA in an aqueous system, and the combination of uniformly dispersed HPA clusters and the synergistic effect between NOLC and HPA significantly promotes its activity in ester hydrolysis reactions, which is higher than that of bare PWA as homogeneous catalyst. The kinetics of the hydrolysis reactions indicate that the aggregation status of the catalyst particles has great influence on the apparent activity. PMID:26606266

  9. Identification of amino acid thiohydantoins directly by thin-layer chromatography and indirectly by gas-liquid chromatography after hydrolysis.

    PubMed Central

    Rangarajan, M; Darbre, A

    1975-01-01

    A method is described for the identification of amino acid thiohydantoins by two-dimensional t.l.c. An indirect method for the determination of amino acid thiohydantoins is described which, after hydrolysis, the corresponding amino acids are determined by g.l.c. PMID:1167153

  10. A Lewis Acid Catalyzed Annulation to 2,1-Benzisoxazoles

    PubMed Central

    2015-01-01

    We report here a new, atom economical annulation to 2,1-benzisoxazole scaffolds via the BF3·Et2O-catalyzed reaction of glyoxylate esters and nitrosoarenes. The developed method represents a convergent route to this compound class from previously unexplored inputs and provides a range of 2,1-benzisoxazoles in moderate to high yields under convenient conditions. Along with exploration of substrate scope, initial mechanistic investigation through 18O labeling and the synthesis of a reaction intermediate provides evidence for an unusual umpolung addition of glyoxylates to nitrosobenzenes with high O-selectivity, followed by a new type of Friedel–Crafts cyclization. PMID:25157596

  11. Effect of ultrasonic pre-treatment on low temperature acid hydrolysis of oil palm empty fruit bunch.

    PubMed

    Yunus, Robiah; Salleh, Shanti Faridah; Abdullah, Nurhafizah; Biak, Dyg Radiah Awg

    2010-12-01

    Various pre-treatment techniques change the physical and chemical structure of the lignocellulosic biomass and improve hydrolysis rates. The effect of ultrasonic pre-treatment on oil palm empty fruit bunch (OPEFB) fibre prior to acid hydrolysis has been evaluated. The main objective of this study was to determine if ultrasonic pre-treatment could function as a pre-treatment method for the acid hydrolysis of OPEFB fibre at a low temperature and pressure. Hydrolysis at a low temperature was studied using 2% sulphuric acid; 1:25 solid liquid ratio and 100 degrees C operating temperature. A maximum xylose yield of 58% was achieved when the OPEFB fibre was ultrasonicated at 90% amplitude for 45min. In the absence of ultrasonic pre-treatment only 22% of xylose was obtained. However, no substantial increase of xylose formation was observed for acid hydrolysis at higher temperatures of 120 and 140 degrees C on ultrasonicated OPEFB fibre. The samples were then analysed using a scanning electron microscope (SEM) to describe the morphological changes of the OPEFB fibre. The SEM observations show interesting morphological changes within the OPEFB fibre for different acid hydrolysis conditions. PMID:20719502

  12. Optimization of the Hydrolysis of Safflower Oil for the Production of Linoleic Acid, Used as Flavor Precursor

    PubMed Central

    Aziz, Marya; Husson, Florence; Kermasha, Selim

    2015-01-01

    Commercial lipases, from porcine pancreas (PPL), Candida rugosa (CRL), and Thermomyces lanuginosus (Lipozyme TL IM), were investigated in terms of their efficiency for the hydrolysis of safflower oil (SO) for the liberation of free linoleic acid (LA), used as a flavor precursor. Although PPL, under the optimized conditions, showed a high degree of hydrolysis (91.6%), its low tolerance towards higher substrate concentrations could limit its use for SO hydrolysis. In comparison to the other investigated lipases, Lipozyme TL IM required higher amount of enzyme and an additional 3 h of reaction time to achieve its maximum degree of SO hydrolysis (90.2%). On the basis of the experimental findings, CRL was selected as the most appropriate biocatalyst, with 84.1% degree of hydrolysis. The chromatographic analyses showed that the CRL-hydrolyzed SO is composed mainly of free LA. PMID:26904663

  13. Stimulation of phospholipid hydrolysis and arachidonic acid mobilization in human uterine decidua cells by phorbol ester.

    PubMed Central

    Schrey, M P; Read, A M; Steer, P J

    1987-01-01

    Vasopressin and oxytocin both stimulated inositol phosphate accumulation in isolated uterine decidua cells. Pretreatment of cells with the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) prevented this agonist-induced phosphoinositide hydrolysis. TPA (0.1 microM) alone had no effect on basal inositol phosphate accumulation, but stimulated phosphoinositide deacylation, as indicated by a 2-fold increase in lysophosphatidylinositol and glycerophosphoinositol. TPA also stimulated a dose-related release of arachidonic acid from decidua-cell phospholipid [phosphatidylcholine (PC) much greater than phosphatidylinositol (PI) greater than phosphatidylethanolamine]. The phorbol ester 4 beta-phorbol 12,13-diacetate (PDA) at 0.1 microM had no effect on arachidonic acid mobilization. The TPA-stimulated increase in arachidonic acid release was apparent by 2 1/2 min (116% of control), maximal after 20 min (283% of control), and remained around this value (306% of control) after 120 min incubation. TPA also stimulated significant increases in 1,2-diacylglycerol and monoacylglycerol production at 20 and 120 min. Although the temporal increases in arachidonic acid and monoacylglycerol accumulation in the presence of TPA continued up to 120 min, that of 1,2-diacylglycerol declined after 20 min. In decidua cells prelabelled with [3H]choline, TPA also stimulated a significant decrease in radiolabelled PC after 20 min, which was accompanied by an increased release of water-soluble metabolites into the medium. Most of the radioactivity in the extracellular pool was associated with choline, whereas the main cellular water-soluble metabolite was phosphorylcholine. TPA stimulated extracellular choline accumulation to 183% and 351% of basal release after 5 and 20 min respectively and cellular phosphorylcholine production to 136% of basal values after 20 min. These results are consistent with a model in which protein kinase C activation by TPA leads to arachidonic acid mobilization

  14. Effect of citric acid concentration and hydrolysis time on physicochemical properties of sweet potato starches.

    PubMed

    Surendra Babu, Ayenampudi; Parimalavalli, Ramanathan; Rudra, Shalini Gaur

    2015-09-01

    Physicochemical properties of citric acid treated sweet potato starches were investigated in the present study. Sweet potato starch was hydrolyzed using citric acid with different concentrations (1 and 5%) and time periods (1 and 11 h) at 45 °C and was denoted as citric acid treated starch (CTS1 to CTS4) based on their experimental conditions. The recovery yield of acid treated starches was above 85%. The CTS4 sample displayed the highest amylose (around 31%) and water holding capacity its melting temperature was 47.66 °C. The digestibility rate was slightly increased for 78.58% for the CTS3 and CTS4. The gel strength of acid modified starches ranged from 0.27 kg to 1.11 kg. RVA results of acid thinned starches confirmed a low viscosity profile. CTS3 starch illustrated lower enthalpy compared to all other modified starches. All starch samples exhibited a shear-thinning behavior. SEM analysis revealed that the extent of visible degradation was increased at higher hydrolysis time and acid concentration. The CTS3 satisfied the criteria required for starch to act as a fat mimetic. Overall results conveyed that the citric acid treatment of sweet potato starch with 5% acid concentration and 11h period was an ideal condition for the preparation of a fat replacer. PMID:26188303

  15. Unravelling the Ru-Catalyzed Hydrogenolysis of Biomass-Based Polyols under Neutral and Acidic Conditions.

    PubMed

    Hausoul, Peter J C; Negahdar, Leila; Schute, Kai; Palkovits, Regina

    2015-10-12

    The aqueous Ru/C-catalyzed hydrogenolysis of biomass-based polyols such as erythritol, xylitol, sorbitol, and cellobitol is studied under neutral and acidic conditions. For the first time, the complete product spectrum of C2 C6 polyols is identified and, based on a thorough analysis of the reaction mixtures, a comprehensive reaction mechanism is proposed, which consists of (de)hydrogenation, epimerization, decarbonylation, and deoxygenation reactions. The data reveal that the Ru-catalyzed deoxygenation reaction is highly selective for the cleavage of terminal hydroxyl groups. Changing from neutral to acidic conditions suppresses decarbonylation, consequently increasing the selectivity towards deoxygenation. PMID:26448526

  16. Pd(II)-Catalyzed Asymmetric Addition of Arylboronic Acids to Isatin-Derived Ketimines.

    PubMed

    He, Qun; Wu, Liang; Kou, Xuezhen; Butt, Nicholas; Yang, Guoqiang; Zhang, Wanbin

    2016-01-15

    A Pd(II)/Pyrox-catalyzed enantioselecitve addition of arylboronic acids to 3-ketimino oxindoles was developed, providing chiral 3-amino-2-oxindoles with a quaternary stereocenter in high yields and with good enantioselectivities. A variety of functionalized 3-ketimino oxindoles can be used, and the method tolerates some variation in arylboronic acid scope. This asymmetric arylation provides an alternative efficient catalytic method for the preparation of chiral 3-aryl-3-amino-2-oxindoles, which also represents the first example of a Pd(II)-catalyzed addition of arylborons to exocyclic ketimines. PMID:26720106

  17. A Convenient Palladium-Catalyzed Reductive Carbonylation of Aryl Iodides with Dual Role of Formic Acid.

    PubMed

    Qi, Xinxin; Li, Chong-Liang; Wu, Xiao-Feng

    2016-04-18

    Palladium-catalyzed reductive carbonylation of aryl halides represents a straightforward pathway for the synthesis of aromatic aldehydes. The known reductive carbonylation procedures either require CO gas or complexed compounds as CO sources. In this communication, we developed a palladium-catalyzed reductive carbonylation of aryl iodides with formic acid as the formyl source. As a convenient, practical, and environmental friendly methodology, no additional silane or H2 was required. A variety of aromatic aldehydes were isolated in moderate to excellent yields under mild reaction conditions. Notably, this is the first procedure on using formic acid as the formyl source. PMID:26934464

  18. Effect of acid hydrolysis on regenerated kenaf core membrane produced using aqueous alkaline-urea systems.

    PubMed

    Padzil, Farah Nadia Mohammad; Zakaria, Sarani; Chia, Chin Hua; Jaafar, Sharifah Nabihah Syed; Kaco, Hatika; Gan, Sinyee; Ng, Peivun

    2015-06-25

    Bleached kenaf core pulps (BKC) were hydrolyzed in H2SO4 (0.5M) at different time (0min to 90min) at room temperature. After the hydrolysis process, the viscosity average molecular weight (Mŋ) for BKC sample has reduced from 14.5×10(4) to 2.55×10(4). The hydrolyzed BKC was then dissolved in NaOH:urea:water and in LiOH:urea:water mixed solvent at the ratio of 7:12:81 and 4.6:15:80.4, respectively. The increased in hydrolysis time has decreased Mŋ of cellulose leading to easy dissolution process. Higher porosity and transparency with lower crystallinity index (CrI) of regenerated membrane produced can be achieved as the Mŋ reduced. The properties of membrane were observed through FESEM, UV-vis spectrophotometer and XRD. This study has proven that acid hydrolysis has reduced the Mŋ of cellulose, thus, enhanced the properties of regenerated membrane produced with assisted by alkaline/urea system. PMID:25839807

  19. Glycosyl conformational and inductive effects on the acid catalysed hydrolysis of purine nucleosides.

    PubMed Central

    Jordan, F; Niv, H

    1977-01-01

    The log kobs vs. pH profiles were determined in the intermediate acidity region for the glycosyl hydrolysis of guanosine and its 8-amino, 8-monomethylamino, 8-dimethylamino and 8-bromo derivatives. The decreased rate of the 8-amino and enhanced rate of the 8-bromo compound compared to guanosine support an A type mechanism: base protonation followed by glycosyl bond cleavage. All three 8-amino guanosines exhibited log kobs - pH profiles clearly showing that both mono and di-base protonated nucleosides undergo hydrolysis. The 700 fold rate acceleration of 8-N(CH3)-guanosine compared to 8-NHCH3-guanosine and the 110 fold rate acceleration of 8-N(CH3)2-adenosine compared to 8-NHCH3-adenosine could be unequivocally attributed to the fixed syn glycosyl conformation of both 8-dimethylamino compounds and relief of steric compression upon hydrolysis in these molecules. The lack of anomerization of all substrates during the course of the reaction supports an A rather than a Schiff-base mechanism. PMID:17100

  20. Kinetics of Ethyl Acetate Synthesis Catalyzed by Acidic Resins

    ERIC Educational Resources Information Center

    Antunes, Bruno M.; Cardoso, Simao P.; Silva, Carlos M.; Portugal, Ines

    2011-01-01

    A low-cost experiment to carry out the second-order reversible reaction of acetic acid esterification with ethanol to produce ethyl acetate is presented to illustrate concepts of kinetics and reactor modeling. The reaction is performed in a batch reactor, and the acetic acid concentration is measured by acid-base titration versus time. The…

  1. Novel Dextranase Catalyzing Cycloisomaltooligosaccharide Formation and Identification of Catalytic Amino Acids and Their Functions Using Chemical Rescue Approach*

    PubMed Central

    Kim, Young-Min; Kiso, Yoshiaki; Muraki, Tomoe; Kang, Min-Sun; Nakai, Hiroyuki; Saburi, Wataru; Lang, Weeranuch; Kang, Hee-Kwon; Okuyama, Masayuki; Mori, Haruhide; Suzuki, Ryuichiro; Funane, Kazumi; Suzuki, Nobuhiro; Momma, Mitsuru; Fujimoto, Zui; Oguma, Tetsuya; Kobayashi, Mikihiko; Kim, Doman; Kimura, Atsuo

    2012-01-01

    A novel endodextranase from Paenibacillus sp. (Paenibacillus sp. dextranase; PsDex) was found to mainly produce isomaltotetraose and small amounts of cycloisomaltooligosaccharides (CIs) with a degree of polymerization of 7–14 from dextran. The 1,696-amino acid sequence belonging to the glycosyl hydrolase family 66 (GH-66) has a long insertion (632 residues; Thr451–Val1082), a portion of which shares identity (35% at Ala39–Ser1304 of PsDex) with Pro32–Ala755 of CI glucanotransferase (CITase), a GH-66 enzyme that catalyzes the formation of CIs from dextran. This homologous sequence (Val837–Met932 for PsDex and Tyr404–Tyr492 for CITase), similar to carbohydrate-binding module 35, was not found in other endodextranases (Dexs) devoid of CITase activity. These results support the classification of GH-66 enzymes into three types: (i) Dex showing only dextranolytic activity, (ii) Dex catalyzing hydrolysis with low cyclization activity, and (iii) CITase showing CI-forming activity with low dextranolytic activity. The fact that a C-terminal truncated enzyme (having Ala39–Ser1304) has 50% wild-type PsDex activity indicates that the C-terminal 392 residues are not involved in hydrolysis. GH-66 enzymes possess four conserved acidic residues (Asp189, Asp340, Glu412, and Asp1254 of PsDex) of catalytic candidates. Their amide mutants decreased activity (11,500 to 140,000 times), and D1254N had 36% activity. A chemical rescue approach was applied to D189A, D340G, and E412Q using α-isomaltotetraosyl fluoride with NaN3. D340G or E412Q formed a β- or α-isomaltotetraosyl azide, respectively, strongly indicating Asp340 and Glu412 as a nucleophile and acid/base catalyst, respectively. Interestingly, D189A synthesized small sized dextran from α-isomaltotetraosyl fluoride in the presence of NaN3. PMID:22461618

  2. Housefly larvae hydrolysate: orthogonal optimization of hydrolysis, antioxidant activity, amino acid composition and functional properties

    PubMed Central

    2013-01-01

    Background Antioxidant, one of the most important food additives, is widely used in food industry. At present, antioxidant is mostly produced by chemical synthesis, which would accumulate to be pathogenic. Therefore, a great interest has been developed to identify and use natural antioxidants. It was showed that there are a lot of antioxidative peptides in protein hydrolysates, possessing strong capacity of inhibiting peroxidation of macro-biomolecular and scavenging free redicals in vivo. Enzymatic hydrolysis used for preparation of antioxidative peptides is a new hot-spot in the field of natural antioxidants. It reacts under mild conditions, with accurate site-specific degradation, good repeatability and few damages to biological activity of protein. Substrates for enzymatic hydrolysis are usually plants and aqua-animals. Insects are also gaining attention because of their rich protein and resource. Antioxidative peptides are potential to be exploited as new natural antioxidant and functional food. There is a huge potential market in medical and cosmetic field as well. Result Protein hydrolysate with antioxidant activity was prepared from housefly larvae, by a two-step hydrolysis. Through orthogonal optimization of the hydrolysis conditions, the degree of hydrolysis was determined to be approximately 60%. Fractionated hydrolysate at 25 mg/mL, 2.5 mg/mL and 1 mg/mL exhibited approximately 50%, 60% and 50% of scavenging capacity on superoxide radicals, 1, 1-Diphenyl-2-picrylhydrazyl radicals and hydroxyl radicals, respectively. Hydrolysate did not exhibit substantial ion chelation. Using a linoneic peroxidation system, the inhibition activity of hydrolysate at 20 mg/mL was close to that of 20 μg/mL tertiary butylhydroquinone, suggesting a potential application of hydrolysate in the oil industry as an efficient antioxidant. The lyophilized hydrolysate presented almost 100% solubility at pH 3-pH 9, and maintained nearly 100% activity at pH 5-pH 8 at 0

  3. Dietary phenolic acids and ascorbic acid: Influence on acid-catalyzed nitrosative chemistry in the presence and absence of lipids.

    PubMed

    Combet, Emilie; El Mesmari, Aziza; Preston, Tom; Crozier, Alan; McColl, Kenneth E L

    2010-03-15

    Acid-catalyzed nitrosation and production of potentially carcinogenic nitrosative species is focused at the gastroesophageal junction, where salivary nitrite, derived from dietary nitrate, encounters the gastric juice. Ascorbic acid provides protection by converting nitrosative species to nitric oxide (NO). However, NO may diffuse into adjacent lipid, where it reacts with O(2) to re-form nitrosative species and N-nitrosocompounds (NOC). In this way, ascorbic acid promotes acid nitrosation. Using a novel benchtop model representing the gastroesophageal junction, this study aimed to clarify the action of a range of water-soluble antioxidants on the nitrosative mechanisms in the presence or absence of lipids. Caffeic, ferulic, gallic, or chlorogenic and ascorbic acids were added individually to simulated gastric juice containing secondary amines, with or without lipid. NO and O(2) levels were monitored by electrochemical detection. NOC were measured in both aqueous and lipid phases by gas chromatography-tandem mass spectrometry. In the absence of lipids, all antioxidants tested inhibited nitrosation, ranging from 35.9 + or - 7.4% with gallic acid to 93 + or - 0.6% with ferulic acid. In the presence of lipids, the impact of each antioxidant on nitrosation was inversely correlated with the levels of NO they generated (R(2) = 0.95, p<0.01): gallic, chlorogenic, and ascorbic acid promoted nitrosation, whereas ferulic and caffeic acids markedly inhibited nitrosation. PMID:20026204

  4. Effect of acid concentration and pulp properties on hydrolysis reactions of mercerized sisal.

    PubMed

    Lacerda, Talita M; Zambon, Márcia D; Frollini, Elisabete

    2013-03-01

    The influence of sulfuric acid concentration (H2SO4 5-25%, 100°C), crystallinity and fibers size on the hydrolysis reaction of sisal pulps were investigated, with the goal of evaluating both the liquor composition, as an important step in the production of bioethanol, and the residual non-hydrolyzed pulp, to determine its potential application as materials. Aliquots were withdrawn from the reaction media, and the liquor composition was analyzed by HPLC. The residual non-hydrolyzed pulps were characterized by SEM, their average molar mass and crystallinity index, and their size distribution was determined using a fiber analyzer. Sulfuric acid 25% led to the highest glucose content (approximately 10gL(-1)), and this acid concentration was chosen to evaluate the influence of both the fiber size and crystallinity of the starting pulp on hydrolysis. The results showed that fibers with higher length and lower crystallinity favored glucose production in approximately 12%, with respect to the highly crystalline shorter fibers. PMID:23465940

  5. Nitrification of archaeal ammonia oxidizers in acid soils is supported by hydrolysis of urea

    PubMed Central

    Lu, Lu; Han, Wenyan; Zhang, Jinbo; Wu, Yucheng; Wang, Baozhan; Lin, Xiangui; Zhu, Jianguo; Cai, Zucong; Jia, Zhongjun

    2012-01-01

    The hydrolysis of urea as a source of ammonia has been proposed as a mechanism for the nitrification of ammonia-oxidizing bacteria (AOB) in acidic soil. The growth of Nitrososphaera viennensis on urea suggests that the ureolysis of ammonia-oxidizing archaea (AOA) might occur in natural environments. In this study, 15N isotope tracing indicates that ammonia oxidation occurred upon the addition of urea at a concentration similar to the in situ ammonium content of tea orchard soil (pH 3.75) and forest soil (pH 5.4) and was inhibited by acetylene. Nitrification activity was significantly stimulated by urea fertilization and coupled well with abundance changes in archaeal amoA genes in acidic soils. Pyrosequencing of 16S rRNA genes at whole microbial community level demonstrates the active growth of AOA in urea-amended soils. Molecular fingerprinting further shows that changes in denaturing gradient gel electrophoresis fingerprint patterns of archaeal amoA genes are paralleled by nitrification activity changes. However, bacterial amoA and 16S rRNA genes of AOB were not detected. The results strongly suggest that archaeal ammonia oxidation is supported by hydrolysis of urea and that AOA, from the marine Group 1.1a-associated lineage, dominate nitrification in two acidic soils tested. PMID:22592820

  6. Ferulic acid: a key component in grass lignocellulose recalcitrance to hydrolysis.

    PubMed

    de Oliveira, Dyoni Matias; Finger-Teixeira, Aline; Rodrigues Mota, Thatiane; Salvador, Victor Hugo; Moreira-Vilar, Flávia Carolina; Correa Molinari, Hugo Bruno; Craig Mitchell, Rowan Andrew; Marchiosi, Rogério; Ferrarese-Filho, Osvaldo; Dantas Dos Santos, Wanderley

    2015-12-01

    In the near future, grasses must provide most of the biomass for the production of renewable fuels. However, grass cell walls are characterized by a large quantity of hydroxycinnamic acids such as ferulic and p-coumaric acids, which are thought to reduce the biomass saccharification. Ferulic acid (FA) binds to lignin, polysaccharides and structural proteins of grass cell walls cross-linking these components. A controlled reduction of FA level or of FA cross-linkages in plants of industrial interest can improve the production of cellulosic ethanol. Here, we review the biosynthesis and roles of FA in cell wall architecture and in grass biomass recalcitrance to enzyme hydrolysis. PMID:25417596

  7. Preparation and evaluation of lignosulfonates as a dispersant for gypsum paste from acid hydrolysis lignin.

    PubMed

    Matsushita, Yasuyuki; Yasuda, Seiichi

    2005-03-01

    In order to effectively utilize a by-product of the acid saccharification process of woody materials, the chemical conversion of guaiacyl sulfuric acid lignin (SAL), one of the acid hydrolysis lignins, into water-soluble sulfonated products with high dispersibitity was investigated. At first, SAL was phenolated (P-SAL) to enhance the solubility and reactivity. Lignosulfonates were prepared from P-SAL by three methods of hydroxymethylation followed by neutral sulfonation (two-step method), sulfomethylation (one-step method) and arylsulfonation. Surprisingly, all prepared lignosulfonates possessed 30 to 70% higher dispersibility for gypsum paste than the commercial lignosulfonate. Evaluation of the preparations for gypsum paste suggested that the higher molecular weights and sulfur contents of the preparations increased their dispersibility. PMID:15491828

  8. Antioxidative Peptides Derived from Enzyme Hydrolysis of Bone Collagen after Microwave Assisted Acid Pre-Treatment and Nitrogen Protection

    PubMed Central

    Lin, Yun-Jian; Le, Guo-Wei; Wang, Jie-Yun; Li, Ya-Xin; Shi, Yong-Hui; Sun, Jin

    2010-01-01

    This study focused on the preparation method of antioxidant peptides by enzymatic hydrolysis of bone collagen after microwave assisted acid pre-treatment and nitrogen protection. Phosphoric acid showed the highest ability of hydrolysis among the four other acids tested (hydrochloric acid, sulfuric acid and/or citric acid). The highest degree of hydrolysis (DH) was 9.5% using 4 mol/L phosphoric acid with a ratio of 1:6 under a microwave intensity of 510 W for 240 s. Neutral proteinase gave higher DH among the four protease tested (Acid protease, neutral protease, Alcalase and papain), with an optimum condition of: (1) ratio of enzyme and substrate, 4760 U/g; (2) concentration of substrate, 4%; (3) reaction temperature, 55 °C and (4) pH 7.0. At 4 h, DH increased significantly (P < 0.01) under nitrogen protection compared with normal microwave assisted acid pre-treatment hydrolysis conditions. The antioxidant ability of the hydrolysate increased and reached its maximum value at 3 h; however DH decreased dramatically after 3 h. Microwave assisted acid pre-treatment and nitrogen protection could be a quick preparatory method for hydrolyzing bone collagen. PMID:21151439

  9. Peptide sequencing by using a combination of partial acid hydrolysis and fast-atom-bombardment mass spectrometry.

    PubMed Central

    De Angelis, F; Botta, M; Ceccarelli, S; Nicoletti, R

    1986-01-01

    To overcome the limit of the intensity of ions carrying sequence information in structural determinations of peptides by fast-atom-bombardment m.s., we have developed a method that consists in taking spectra of the peptide acid hydrolysates at different hydrolysis times. Peaks correspond to the oligomers arising from the peptide partial hydrolysis. The sequence can then be identified from the structurally overlapping fragments. PMID:2428356

  10. Iridium-catalyzed enantioselective hydrogenation of unsaturated heterocyclic acids.

    PubMed

    Song, Song; Zhu, Shou-Fei; Pu, Liu-Yang; Zhou, Qi-Lin

    2013-06-01

    Spiral binding: A highly enantioselective hydrogenation of unsaturated heterocyclic acids has been developed by using chiral iridium/spirophosphino oxazoline catalysts (see scheme; BArF(-) =tetrakis[3,5-bis(trifluoromethyl)phenyl]borate, Boc=tert-butoxycarbonyl). This reaction provided an efficient method for the preparation of optically active heterocyclic acids with excellent enantioselectivities. PMID:23610004

  11. Extraction of cellulose nano-crystals from old corrugated container fiber using phosphoric acid and enzymatic hydrolysis followed by sonication.

    PubMed

    Tang, Yanjun; Shen, Xiaochuang; Zhang, Junhua; Guo, Daliang; Kong, Fangong; Zhang, Nan

    2015-07-10

    Due to its amazing physicochemical properties and high environmental compatibility, cellulose nano-crystals (CNC) hold great promise for serving as a strategic platform for sustainable development. Now, there has been growing interest in the development of processes using waste or residual biomass as CNC source for addressing economic and environmental concerns. In the present work, a combined process involving phosphoric acid hydrolysis, enzymatic hydrolysis and sonication was proposed aiming to efficiently exact CNC from low-cost old corrugated container (OCC) pulp fiber. The effect of enzymatic hydrolysis on the yield and microstructure of resulting CNC was highlighted. Results showed that the enzymatic hydrolysis was effective in enhancing CNC yield after phosphoric acid hydrolysis. CNC was obtained with a yield of 23.98 wt% via the combined process with phosphoric acid concentration of 60 wt%, cellulase dosage of 2 mL (84 EGU) per 2g fiber and sonication intensity of 200 W. Moreover, the presence of enzymatic hydrolysis imparted the obtained CNC with improved dispersion, increased crystallinity and thermal stability. PMID:25857993

  12. Iron-Catalyzed Acylation of Polyfunctionalized Aryl- and Benzylzinc Halides with Acid Chlorides.

    PubMed

    Benischke, Andreas D; Leroux, Marcel; Knoll, Irina; Knochel, Paul

    2016-08-01

    FeCl2 (5 mol %) catalyzes a smooth and convenient acylation of functionalized arylzinc halides at 50 °C (2-4 h) and benzylic zinc chlorides at 25 °C (0.5-4 h) with a variety of acid chlorides leading to polyfunctionalized diaryl and aryl heteroaryl ketones. PMID:27457108

  13. Palladium-Catalyzed Construction of Amidines from Arylboronic Acids under Oxidative Conditions.

    PubMed

    Zhu, Fengxiang; Li, Yahui; Wang, Zechao; Orru, Romano V A; Maes, Bert U W; Wu, Xiao-Feng

    2016-06-01

    A valuable palladium-catalyzed three-component coupling reaction for the synthesis of amidines has been developed. Using arylboronic acids, isocyanides, and anilines as the reactants under oxidative conditions, various amidines were isolated in good yields with good functional group tolerances. PMID:27061735

  14. Chiral phosphoric acid catalyzed asymmetric addition of naphthols to para-quinone methides.

    PubMed

    Wong, Yuk Fai; Wang, Zhaobin; Sun, Jianwei

    2016-06-28

    An asymmetric addition of naphthols to in situ generated para-quinone methides catalyzed by a chiral phosphoric acid is described. A range of useful triarylmethanes can be generated from stable general para-hydroxybenzyl alcohols with good efficiency and enantioselectivity. PMID:26932597

  15. One-Pot Synthesis of Arylketones from Aromatic Acids via Palladium-Catalyzed Suzuki Coupling.

    PubMed

    Wu, Hongxiang; Xu, Baiping; Li, Yue; Hong, Fengying; Zhu, Dezhao; Jian, Junsheng; Pu, Xiaoer; Zeng, Zhuo

    2016-04-01

    A palladium-catalyzed one-pot procedure for the synthesis of aryl ketones has been developed. Triazine esters when coupled with aryl boronic acids provided aryl ketones in moderate to excellent yields (up to 95%) in the presence of 1 mol % Pd(PPh3)2Cl2 for 30 min. PMID:26949103

  16. Transformation of cellulose and its derived carbohydrates into formic and lactic acids catalyzed by vanadyl cations.

    PubMed

    Tang, Zhenchen; Deng, Weiping; Wang, Yanliang; Zhu, Enze; Wan, Xiaoyue; Zhang, Qinghong; Wang, Ye

    2014-06-01

    The transformation of cellulose or cellulose-derived carbohydrates into platform chemicals is the key to establish biomass-based sustainable chemical processes. The systems able to catalyze the conversion of cellulose into key chemicals in water without the consumption of hydrogen are limited. We report that simple vanadyl (VO(2+)) cations catalyze the conversions of cellulose and its monomer, glucose, into lactic acid and formic acid in water. We have discovered an interesting shift of the major product from formic acid to lactic acid on switching the reaction atmosphere from oxygen to nitrogen. Our studies suggest that VO(2+) catalyzes the isomerization of glucose to fructose, the retro-aldol fragmentation of fructose to two trioses, and the isomerization of trioses, which leads to the formation of lactic acid under anaerobic conditions. The oxidative cleavage of C-C bonds in the intermediates caused by the redox conversion of VO2(+)/VO(2+) under aerobic conditions results in formic acid and CO2. We demonstrate that the addition of an alcohol suppresses the formation of CO2 and enhances the formic acid yield significantly to 70-75 %. PMID:24798653

  17. Syntheses of hydroxamic acid-containing bicyclic β-lactams via palladium-catalyzed oxidative amidation of alkenes.

    PubMed

    Jobbins, Maria O; Miller, Marvin J

    2014-02-21

    Palladium-catalyzed oxidative amidation has been used to synthesize hydroxamic acid-containing bicyclic β-lactam cores. Oxidative cleavage of the pendant alkene provides access to the carboxylic acid in one step. PMID:24483144

  18. Ultrasonic enhance acid hydrolysis selectivity of cellulose with HCl-FeCl3 as catalyst.

    PubMed

    Li, Jinbao; Zhang, Xiangrong; Zhang, Meiyun; Xiu, Huijuan; He, Hang

    2015-03-01

    The effect of ultrasonic pretreatment coupled with HCl-FeCl3 catalyst was evaluated to hydrolyze cellulose amorphous regions. The ultrasonic pretreatment leads to cavitation that affects the morphology and microstructure of fibers, enhancing the accessibility of chemical reagent to the loosened amorphous regions of cellulose. In this work, Fourier transform infrared spectroscopy (FTIR) was used to identify characteristic absorption bands of the constituents and the crystallinity was evaluated by the X-ray diffraction (XRD) technique. The results indicated that appropriate ultrasonic pretreatment assisted with FeCl3 can enhance the acid hydrolysis of amorphous regions of cellulose, thus improving the crystallinity of the remaining hydrocellulose. It was observed that sonication samples that were pretreated for 300 W and 20 min followed by acid hydrolysis had maximum of 78.9% crystallinity. The crystallinity was 9.2% higher than samples that were not subjected to ultrasound. In addition, the average fines length decreased from 49 μm to 37 μm. PMID:25498717

  19. Ferrihydrite dissolution by pyridine-2,6-bis(monothiocarboxylic acid) and hydrolysis products

    NASA Astrophysics Data System (ADS)

    Dhungana, Suraj; Anthony, Charles R.; Hersman, Larry E.

    2007-12-01

    Pyridine-2,6-bis(monothiocarboxylate) (pdtc), a metabolic product of microorganisms, including Pseudomonas putida and Pseudomonas stutzeri was investigated for its ability of dissolve Fe(III)(hydr)oxides at pH 7.5. Concentration dependent dissolution of ferrihydrite under anaerobic environment showed saturation of the dissolution rate at the higher concentration of pdtc. The surface controlled ferrihydrite dissolution rate was determined to be 1.2 × 10 -6 mol m -2 h -1. Anaerobic dissolution of ferrihydrite by pyridine-2,6-dicarboxylic acid or dipicolinic acid (dpa), a hydrolysis product of pdtc, was investigated to study the mechanism(s) involved in the pdtc facilitated ferrihydrite dissolution. These studies suggest that pdtc dissolved ferrihydrite using a reduction step, where dpa chelates the Fe reduced by a second hydrolysis product, H 2S. Dpa facilitated dissolution of ferrihydrite showed very small increase in the Fe dissolution when the concentration of external reductant, ascorbate, was doubled, suggesting the surface dynamics being dominated by the interactions between dpa and ferrihydrite. Greater than stoichiometric amounts of Fe were mobilized during dpa dissolution of ferrihydrite assisted by ascorbate and cysteine. This is attributed to the catalytic dissolution of Fe(III)(hydr)oxides by the in situ generated Fe(II) in the presence of a complex former, dpa.

  20. Quantitative solid state NMR analysis of residues from acid hydrolysis of loblolly pine wood.

    PubMed

    Sievers, Carsten; Marzialetti, Teresita; Hoskins, Travis J C; Valenzuela Olarte, Mariefel B; Agrawal, Pradeep K; Jones, Christopher W

    2009-10-01

    The composition of solid residues from hydrolysis reactions of loblolly pine wood with dilute mineral acids is analyzed by (13)C Cross Polarization Magic Angle Spinning (CP MAS) NMR spectroscopy. Using this method, the carbohydrate and lignin fractions are quantified in less than 3h as compared to over a day using wet chemical methods. In addition to the quantitative information, (13)C CP MAS NMR spectroscopy provides information on the formation of additional extractives and pseudo lignin from the carbohydrates. Being a non-destructive technique, NMR spectroscopy provides unambiguous evidence of the presence of side reactions and products, which is a clear advantage over the wet chemical analytical methods. Quantitative results from NMR spectroscopy and proximate analysis are compared for the residues from hydrolysis of loblolly pine wood under 13 different conditions; samples were treated either at 150 degrees C or 200 degrees C in the presence of various acids (HCl, H(2)SO(4), H(3)PO(4), HNO(3) and TFA) or water. The lignin content determined by both methods differed on averaged by 2.9 wt% resulting in a standard deviation of 3.5 wt%. It is shown that solid degradation products are formed from saccharide precursors under harsh reaction conditions. These degradation reactions limit the total possible yield of monosaccharides from any subsequent reaction. PMID:19477123

  1. Reversible formation of intermediates during H/sub 3/O/sup +/-catalyzed hydrolysis of amides. Observation of substantial /sup 18/O exchange accompanying the hydrolysis of acetanilide and N-cyclohexylacetamide

    SciTech Connect

    Slebocka-Tilk, H.; Brown, R.S.; Olekszyk, J.

    1987-07-22

    Careful mass spectrometric analysis of the /sup 18/O content of approx. 50% enriched acetanilide (2) and N-cyclohexylacetamide (3) recovered from acidic media during the course of hydrolysis reveals that both species suffer /sup 18/O loss. The percent of /sup 18/O exchange per t/sub 1/2/ of hydrolysis increases as (H/sub 3/O/sup +/) decreases. For 2 at 72/sup 0/C the amount of exchange increases from 0.5 +/- 0.5% (per t/sub 1/2/) in 1 M HCl to 9.4 +/- 0.5% in glycine buffer, (H/sub 3/O/sup +/) = 0.003 M. For 3 at 100/sup 0/C the exchange is 1.05 +/- 0.3% (per t/sub 1/2/) at 1 M HCl and 9.0 +/- 0.4% in 0.01 M HCl. When these data are used to compute k/sub ex/ (the exchange rate constant), it shows a first-order dependence on (H/sub 3/O/sup +/) followed by a plateau at high (H/sub 3/O/sup +/) for both 2 and 3.

  2. Effect of acid hydrolysis and fungal biotreatment on agro-industrial wastes for obtainment of free sugars for bioethanol production

    PubMed Central

    El-Tayeb, T.S.; Abdelhafez, A.A.; Ali, S.H.; Ramadan, E.M.

    2012-01-01

    This study was designed to evaluate selected chemical and microbiological treatments for the conversion of certain local agro-industrial wastes (rice straw, corn stalks, sawdust, sugar beet waste and sugarcane bagasse) to ethanol. The chemical composition of these feedstocks was determined. Conversion of wastes to free sugars by acid hydrolysis varied from one treatment to another. In single-stage dilute acid hydrolysis, increasing acid concentration from 1 % (v/v) to 5 % (v/v) decreased the conversion percentage of almost all treated agro-industrial wastes. Lower conversion percentages for some treatments were obtained when increasing the residence time from 90 to 120 min. The two-stage dilute acid hydrolysis by phosphoric acid (1.0 % v/v) followed by sulphuric acid (1.0 % v/v) resulted in the highest conversion percentage (41.3 % w/w) on treated sugar beet waste. This treatment when neutralized, amended with some nutrients and inoculated with baker’s yeast, achieved the highest ethanol concentration (1.0 % v/v). Formation of furfural and hydroxymethylfurfural (HMF) were functions of type of acid hydrolysis, acid concentration, residence time and feedstock type. The highest bioconversion of 5 % wastes (37.8 % w/w) was recorded on sugar beet waste by Trichoderma viride EMCC 107. This treatment when followed by baker’s yeast fermentation, 0.41 % (v/v) ethanol and 8.2 % (v/w) conversion coefficient were obtained. PMID:24031984

  3. Effect of acid hydrolysis and fungal biotreatment on agro-industrial wastes for obtainment of free sugars for bioethanol production.

    PubMed

    El-Tayeb, T S; Abdelhafez, A A; Ali, S H; Ramadan, E M

    2012-10-01

    This study was designed to evaluate selected chemical and microbiological treatments for the conversion of certain local agro-industrial wastes (rice straw, corn stalks, sawdust, sugar beet waste and sugarcane bagasse) to ethanol. The chemical composition of these feedstocks was determined. Conversion of wastes to free sugars by acid hydrolysis varied from one treatment to another. In single-stage dilute acid hydrolysis, increasing acid concentration from 1 % (v/v) to 5 % (v/v) decreased the conversion percentage of almost all treated agro-industrial wastes. Lower conversion percentages for some treatments were obtained when increasing the residence time from 90 to 120 min. The two-stage dilute acid hydrolysis by phosphoric acid (1.0 % v/v) followed by sulphuric acid (1.0 % v/v) resulted in the highest conversion percentage (41.3 % w/w) on treated sugar beet waste. This treatment when neutralized, amended with some nutrients and inoculated with baker's yeast, achieved the highest ethanol concentration (1.0 % v/v). Formation of furfural and hydroxymethylfurfural (HMF) were functions of type of acid hydrolysis, acid concentration, residence time and feedstock type. The highest bioconversion of 5 % wastes (37.8 % w/w) was recorded on sugar beet waste by Trichoderma viride EMCC 107. This treatment when followed by baker's yeast fermentation, 0.41 % (v/v) ethanol and 8.2 % (v/w) conversion coefficient were obtained. PMID:24031984

  4. Telomerization of amino acids with butadiene, catalyzed by palladium complexes

    SciTech Connect

    Dzhemilev, U.M.; Fakhretdinov, R.N.; Telin, A.G.

    1987-01-10

    The telomerization of ..cap alpha..-, ..beta..-, ..gamma..-, and epsilon-amino acids having various structures with butadiene under the influence of the three-component palladium catalyst Pd(acac)/sub 2/-PPh/sub 3/-AlEt/sub 3/ was investigated in DMSO-toluene solution. The ..cap alpha..- and epsilon-aliphatic and also the ..cap alpha..-, ..beta..-, and ..gamma..-aromatic amino acids react with butadiene, giving the products from octadienylation at the amino group exclusively. Under the conditions of telomerization aliphatic ..beta..-amino acids are cleaved with the formation of unsaturated tertiary amines. In the case of aliphatic ..gamma..-amino acids it is possible to obtain telomers alkylated at the carbonyl group.

  5. Theoretical study of the alkaline hydrolysis of an aza-β-lactam derivative of clavulanic acid

    NASA Astrophysics Data System (ADS)

    Garcías, Rafael C.; Coll, Miguel; Donoso, Josefa; Muñoz, Francisco

    2003-04-01

    DFT calculations based on the hybrid functional B3LYP/6-31+G * were used to study the alkaline hydrolysis of an aza-clavulanic acid, which results from the substitution of the carbon atom at position 6 in clavulanic acid by a nitrogen atom. The presence of the nitrogen atom endows the compound with special properties; in fact, once formed, the tetrahedral intermediate can evolve with cleavage of the N 4-C 7 or N 6-C 7 bond, which obviously leads to different reaction products. These differential bond cleavages may play a central role in the inactivation of β-lactamases, so the compound may be a powerful inactivator of these enzymes.

  6. Hydrolysis reaction of 2,4-dichlorophenoxyacetic acid. A kinetic and computational study

    NASA Astrophysics Data System (ADS)

    Romero, Jorge Marcelo; Jorge, Nelly Lidia; Grand, André; Hernández-Laguna, Alfonso

    2015-10-01

    The degradation of the 2,4-dichlorophenoxyacetic acid in aqueous solution is an hydrolysis reaction. Two products are identified: 2,4-dichlorophenol and glycolic acid. Reaction is investigated as a function of pH and temperature, and it is first-order kinetics and pH-dependent. Reaction is modeled in gas phase, where a proton catalyses the reaction. Critical points of PES are calculated at B3LYP/6-311++G(3df,2p), and aug-cc-pvqz//6-311++G(3df,2p) levels plus ZPE at 6-311++G(3df,2p) level. The activation barrier is 21.2 kcal/mol. Theoretical results agree with the experimental results. A second mechanism related with a Cl2Phsbnd Osbnd CH2sbnd COOH⋯H2O complex is found, but with a rate limiting step of 38.4 kcal/mol.

  7. Copper-catalyzed intermolecular oxyamination of olefins using carboxylic acids and O-benzoylhydroxylamines

    PubMed Central

    Hemric, Brett N

    2016-01-01

    Summary This paper reports a novel approach for the direct and facile synthesis of 1,2-oxyamino moieties via an intermolecular copper-catalyzed oxyamination of olefins. This strategy utilizes O-benzoylhydroxylamines as an electrophilic amine source and carboxylic acids as a nucleophilic oxygen source to achieve a modular difunctionalization of olefins. The reaction proceeded in a regioselective manner with moderate to good yields, exhibiting a broad scope of carboxylic acid, amine, and olefin substrates. PMID:26877805

  8. Copper-assisted palladium(II)-catalyzed direct arylation of cyclic enaminones with arylboronic acids.

    PubMed

    Kim, Yong Wook; Niphakis, Micah J; Georg, Gunda I

    2012-11-01

    Described herein is a palladium(II)-catalyzed direct arylation of cyclic enaminones with arylboronic acids. The versatility of this method is that both electron-rich and electron-poor boronic acids can be coupled in high yields. A mixture of two Cu(II) additives was crucial for efficient cross-coupling. The role of each Cu(II) reagent appears to be distinct and complementary serving to assist catalyst reoxidation and transmetalation through a putative arylcopper intermediate. PMID:23088256

  9. Reversion and dehydration reactions of glucose during the dilute sulfuric acid hydrolysis of cellulose

    SciTech Connect

    Helm, R.F.

    1987-01-01

    The inaccessibility of all glycosidic bonds necessitates industrial conversion schemes which employ a dilute acid catalyst at high temperatures. Process conditions also promote further reactions of glucose via the reversion and dehydration pathways. Quantitative determination of the yields of the major reversion and dehydration products is important for understanding and predicting the amounts of these materials expected under envisioned industrial operating conditions. Microcrystalline cellulose (Avicel) was hydrolyzed with sulfuric acid (0.0-1.25 wt.%), at high temperatures (160-250/sup 0/C), and at a 3:1 liquid-to-solid ratio. The hydrolysis was monitored by evaluating the amount of cellulose remaining and the yields of glucose, solid humin, levulinic acid, formic acid, hydroxymethylfurfural (HMF), and reversion products as a function of the aforementioned reaction conditions. Analysis of the reversion products required the development of a technique for the quantitation of trace carbohydrates in complex mixtures and led to the development of a reduction/permethylation gas chromatographic procedure. Cellulose hydrolysis followed pseudo-homogeneous first-order kinetics. Glucose yield was adequately described as consecutive first-order reactions. Anhydrosugars formed via reversion followed equilibrium reaction kinetics whereas the disaccharides did not. Total reversion product yields approached 10% at 250/sup 0/C. Quantitative determination of the major dehydration products provided important information concerning the destruction of glucose. HMF was produced in up to 12% yields based on the theoretical amount of glucose available, and furfural was detected in up to 5% yields. A carbon mass balance based on the determined product yields revealed that approximately 90% of all carbon was accounted for at maximum glucose yields.

  10. Lewis Acid Catalyzed Selective Reactions of Donor-Acceptor Cyclopropanes with 2-Naphthols.

    PubMed

    Kaicharla, Trinadh; Roy, Tony; Thangaraj, Manikandan; Gonnade, Rajesh G; Biju, Akkattu T

    2016-08-16

    Lewis acid-catalyzed reactions of 2-substituted cyclopropane 1,1-dicarboxylates with 2-naphthols is reported. The reaction exhibits tunable selectivity depending on the nature of Lewis acid employed and proceed as a dearomatization/rearomatization sequence. With Bi(OTf)3 as the Lewis acid, a highly selective dehydrative [3+2] cyclopentannulation takes place leading to the formation of naphthalene-fused cyclopentanes. Interestingly, engaging Sc(OTf)3 as the Lewis acid, a Friedel-Crafts-type addition of 2-naphthols to cyclopropanes takes place, thus affording functionalized 2-naphthols. Both reactions furnished the target products in high regioselectivity and moderate to high yields. PMID:27391792

  11. Preparation of highly charged cellulose nanofibrils using high-pressure homogenization coupled with strong acid hydrolysis pretreatments.

    PubMed

    Tian, Cuihua; Yi, Jianan; Wu, Yiqiang; Wu, Qinglin; Qing, Yan; Wang, Lijun

    2016-01-20

    Cellulose nanofibrils (CNFs) are attracting much attention for the advantages of excellent mechanical strength, good optical transparency, and high surface area. An eco-friendly and energy-saving method was created in this work to produce highly negative charged CNFs using high-pressure mechanical defibrillation coupled with strong acid hydrolysis pretreatments. The morphological development, zeta potential, crystal structure, chemical composition and thermal degradation behavior of the resultant materials were evaluated by transmission electron microscopy (TEM), zeta potential analysis, X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), and thermogravimetric analysis (TGA). These CNFs were fully separated, surface-charged, and highly entangled. They showed a large fiber aspect ratio compared to traditional cellulose nanocrystrals that are produced by strong acid hydrolysis. Compared to hydrochloric acid hydrolysis, the CNFs produced by sulfuric acid pretreatments were completely defibrillated and presented stable suspensions (or gels) even at low fiber content. On the other hand, CNFs pretreated by hydrochloric acid hydrolysis trended to aggregate because of the absence of surface charge. The crystallinity index (CI) of CNFs decreased because of mechanical defibrillation, and then increased dramatically with increased sulfuric acid concentration and reaction time. FTIR analysis showed that the C-O-SO3 group was introduced on the surfaces of CNFs during sulfuric acid hydrolysis. These sulfate groups accelerated the thermal degradation of CNFs, which occurred at lower temperature than wood pulp, indicating that the thermal stability of sulfuric acid hydrolyzed CNFs was decreased. The temperature of the maximum decomposition rate (Tmax) and the maximum weight-loss rates (MWLRmax) were much lower than for wood pulp because of the retardant effect of sulfuric acid during the combustion of CNFs. By contrast, the CNFs treated with hydrochloric acid

  12. Accelerated hydrolysis method to estimate the amino acid content of wheat (Triticum durum Desf.) flour using microwave irradiation.

    PubMed

    Kabaha, Khaled; Taralp, Alpay; Cakmak, Ismail; Ozturk, Levent

    2011-04-13

    The technique of microwave-assisted acid hydrolysis was applied to wholegrain wheat (Triticum durum Desf. cv. Balcali 2000) flour in order to speed the preparation of samples for analysis. The resultant hydrolysates were chromatographed and quantified in an automated amino acid analyzer. The effect of different hydrolysis temperatures, times and sample weights was examined using flour dispersed in 6 N HCl. Within the range of values tested, the highest amino acid recoveries were generally obtained by setting the hydrolysis parameters to 150 °C, 3 h and 200 mg sample weight. These conditions struck an optimal balance between liberating amino acid residues from the wheat matrix and limiting their subsequent degradation or transformation. Compared to the traditional 24 h reflux method, the hydrolysates were prepared in dramatically less time, yet afforded comparable ninhydrin color yields. Under optimal hydrolysis conditions, the total amino acid recovery corresponded to at least 85.1% of the total protein content, indicating the efficient extraction of amino acids from the flour matrix. The findings suggest that this microwave-assisted method can be used to rapidly profile the amino acids of numerous wheat grain samples, and can be extended to the grain analysis of other cereal crops. PMID:21375298

  13. Effect of hydrolysis conditions on hydrous TiO2 polymorphs precipitated from a titanyl sulfate and sulfuric acid solution

    NASA Astrophysics Data System (ADS)

    Song, Hao; Liang, Bin; Lü, Li; Wu, Pan; Li, Chun

    2012-07-01

    The relationship between hydrolysis conditions and hydrous titania polymorphs obtained in a titanyl sulfate and sulfuric acid solution was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM). The results revealed that the feeding rate of the titanyl sulfate stock solution, the concentration of sulfuric acid, and the seed dosage of rutile crystal could significantly affect the hydrolysis rate, thus influencing the titania crystal phase. Hydrous TiO2 in the form of rutile, anatase, or the mixture of both could be obtained in solutions of low titanium concentrations and 2.5wt% to 15wt% sulfuric acid at 100°C. When the hydrolysis rate of titanium expressed by TiO2 was more than or equal to 0.04 g/(L·min), the hydrolysate was almost phase-pure anatase, while the main phase state was rutile when the hydrolysis rate was less than or equal to 0.01 g/(L·min). With the hydrolysis rate between 0.02 and 0.03 g/(L·min), the hydrolysate contained almost equal magnitude of rutile and anatase. It seems that although rutile phase is thermodynamically stable in very acidic solutions, anatase is a kinetically stable phase.

  14. Triflic Acid-Catalyzed Enynes Cyclization: A New Strategy beyond Electrophilic π-Activation.

    PubMed

    Yu, Zhunzhun; Liu, Lu; Zhang, Junliang

    2016-06-13

    The cyclization of enynes, catalyzed by a transition metal, represents a powerful tool to construct an array of cyclic compounds through electrophilic π-activation. In this paper, we disclose a new and efficient strategy for enynes cyclization catalyzed by triflic acid. The salient features of this transformation includes a broad substrate scope, metal free synthesis, open flask and mild conditions, good yields, ease of operation, low catalyst loading, and easy scale-up to gram scale. A preliminary mechanism study demonstrated that the activation model of the reaction was σ-activation, which is different from the transition-metal-catalyzed enynes cyclization. Our strategy affords a complementary method to the traditional strategies, which use transition-metal catalysts. PMID:27124814

  15. DFT STUDY OF THE HYDROLYSIS OF SOME S-TRIAZINES

    EPA Science Inventory

    The acid-catalyzed hydrolysis of atrazine and related 2-chloro-s-triazines to the corresponding 2-hydroxy-s-triazines was investigated using the B3LYP hybrid density functional theory method. Gas-phase calculations were performed at the B3LYP/6-311++G(d,p)//B3LYP/6-31G* level of ...

  16. Choline Chloride Catalyzed Amidation of Fatty Acid Ester to Monoethanolamide: A Green Approach.

    PubMed

    Patil, Pramod; Pratap, Amit

    2016-01-01

    Choline chloride catalyzed efficient method for amidation of fatty acid methyl ester to monoethanolamide respectively. This is a solvent free, ecofriendly, 100% chemo selective and economically viable path for alkanolamide synthesis. The Kinetics of amidation of methyl ester were studied and found to be first order with respect to the concentration of ethanolamine. The activation energy (Ea) for the amidation of lauric acid methyl ester catalyzed by choline chloride was found to be 50.20 KJ mol(-1). The 98% conversion of lauric acid monoethanolamide was obtained at 110°C in 1 h with 6% weight of catalyst and 1:1.5 molar ratio of methyl ester to ethanolamine under nitrogen atmosphere. PMID:26666271

  17. Effect of cellulose physical characteristics, especially the water sorption value, on the efficiency of its hydrolysis catalyzed by free or immobilized cellulase.

    PubMed

    Ogeda, Thais L; Silva, Igor B; Fidale, Ludmila C; El Seoud, Omar A; Petri, Denise F S

    2012-01-01

    Cellulase, an enzymatic complex that synergically promotes the degradation of cellulose to glucose and cellobiose, free or adsorbed onto Si/SiO(2) wafers at 60°C has been employed as catalyst in the hydrolysis of microcrystalline cellulose (Avicel), microcrystalline cellulose pre-treated with hot phosphoric acid (CP), cotton cellulose (CC) and eucalyptus cellulose (EC). The physical characteristics such as index of crystallinity (I(C)), degree of polymerization (DP) and water sorption values were determined for all samples. The largest conversion rates of cellulose into the above-mentioned products using free cellulase were observed for samples with the largest water sorption values; conversion rates showed no correlation with either I(C) or DP of the biopolymer. Cellulose with large water sorption value possesses large pore volumes, hence higher accessibility. The catalytic efficiency of immobilized cellulase could not be correlated with the physical characteristics of cellulose samples. The hydrolysis rates of the same cellulose samples with immobilized cellulase were lower than those by the free enzyme, due to the diffusion barrier (biopolymer chains approaching to the immobilized enzyme) and less effective contact between the enzyme active site and its substrate. Immobilized cellulase, unlike its free counterpart, can be recycled at least six times without loss of catalytic activity, leading to higher overall cellulose conversion. PMID:22146618

  18. Alcohol fermentation of sweet potato - 1. Acid hydrolysis and factors involved

    SciTech Connect

    Azhar, A.; Hamdy, M.K.

    1981-04-01

    Factors affecting acid hydrolysis of sweet potato powder (SPP) to fermentable sugars were examined. These include HCl concentration, temperature, time, and levels of SPP. Maximum reducing sugar, reported as dextrose equivalent (DE), was detected after 24 min hydrolysis (1% SPP) in 0.034N HCl heated at 154/degree/C. These samples also had 3.43% hydroxymethylfurfural (HMF) based on dry weight. A high level of HMF (9.2%) was detected in 1% SPP heated at 154/degree/C in 0.10N HCl for 18 min. The lowest concentration of HMF formed (1.8%), at maximal DE of 61%, was established in samples containing 5% SPP and heated at 154/degree/C in 0.034N HCl for 48 min. Aqueous extracts of uncured SPP, examined by High Performance Liquid Chromatography, contained glucose, fructose and sucrose, but degraded SPP had only glucose and fructose. Products of degraded SPP, Under appropriate conditions, could be used for alcohol fermentation. 18 refs.

  19. Strategies to achieve high-solids enzymatic hydrolysis of dilute-acid pretreated corn stover.

    PubMed

    Geng, Wenhui; Jin, Yongcan; Jameel, Hasan; Park, Sunkyu

    2015-01-01

    Three strategies were presented to achieve high solids loading while maximizing carbohydrate conversion, which are fed-batch, splitting/thickening, and clarifier processes. Enzymatic hydrolysis was performed at water insoluble solids (WIS) of 15% using washed dilute-acid pretreated corn stover. The carbohydrate concentration increased from 31.8 to 99.3g/L when the insoluble solids content increased from 5% to 15% WIS, while the final carbohydrate conversion was decreased from 78.4% to 73.2%. For the fed-batch process, a carbohydrate conversion efficiency of 76.8% was achieved when solid was split into 60:20:20 ratio, with all enzymes added first. For the splitting/thickening process, a carbohydrate conversion of 76.5% was realized when the filtrate was recycled to simulate a steady-state process. Lastly, the clarifier process was evaluated and the highest carbohydrate conversion of 81.4% was achieved. All of these results suggests the possibility of enzymatic hydrolysis at high solids to make the overall conversion cost-competitive. PMID:25836373

  20. Enantioselective Hydrolysis of Amino Acid Esters Promoted by Bis(β-cyclodextrin) Copper Complexes

    NASA Astrophysics Data System (ADS)

    Xue, Shan-Shan; Zhao, Meng; Ke, Zhuo-Feng; Cheng, Bei-Chen; Su, Hua; Cao, Qian; Cao, Zhen-Kun; Wang, Jun; Ji, Liang-Nian; Mao, Zong-Wan

    2016-02-01

    It is challenging to create artificial catalysts that approach enzymes with regard to catalytic efficiency and selectivity. The enantioselective catalysis ranks the privileged characteristic of enzymatic transformations. Here, we report two pyridine-linked bis(β-cyclodextrin) (bisCD) copper(II) complexes that enantioselectively hydrolyse chiral esters. Hydrolytic kinetic resolution of three pairs of amino acid ester enantiomers (S1-S3) at neutral pH indicated that the “back-to-back” bisCD complex CuL1 favoured higher catalytic efficiency and more pronounced enantioselectivity than the “face-to-face” complex CuL2. The best enantioselectivity was observed for N-Boc-phenylalanine 4-nitrophenyl ester (S2) enantiomers promoted by CuL1, which exhibited an enantiomer selectivity of 15.7. We observed preferential hydrolysis of L-S2 by CuL1, even in racemic S2, through chiral high-performance liquid chromatography (HPLC). We demonstrated that the enantioselective hydrolysis was related to the cooperative roles of the intramolecular flanking chiral CD cavities with the coordinated copper ion, according to the results of electrospray ionization mass spectrometry (ESI-MS), inhibition experiments, rotating-frame nuclear Overhauser effect spectroscopy (ROESY), and theoretical calculations. Although the catalytic parameters lag behind the level of enzymatic transformation, this study confirms the cooperative effect of the first and second coordination spheres of artificial catalysts in enantioselectivity and provides hints that may guide future explorations of enzyme mimics.

  1. The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose.

    PubMed

    Elazzouzi-Hafraoui, Samira; Nishiyama, Yoshiharu; Putaux, Jean-Luc; Heux, Laurent; Dubreuil, Frédéric; Rochas, Cyrille

    2008-01-01

    The shape and size distribution of crystalline nanoparticles resulting from the sulfuric acid hydrolysis of cellulose from cotton, Avicel, and tunicate were investigated using transmission electron microscopy (TEM) and atomic force microscopy (AFM) as well as small- and wide-angle X-ray scattering (SAXS and WAXS). Images of negatively stained and cryo-TEM specimens showed that the majority of cellulose particles were flat objects constituted by elementary crystallites whose lateral adhesion was resistant against hydrolysis and sonication treatments. Moreover, tunicin whiskers were described as twisted ribbons with an estimated pitch of 2.4-3.2 microm. Length and width distributions of all samples were generally well described by log-normal functions, with the exception of tunicin, which had less lateral aggregation. AFM observation confirmed that the thickness of the nanocrystals was almost constant for a given origin and corresponded to the crystallite size measured from peak broadening in WAXS spectra. Experimental SAXS profiles were numerically simulated, combining the dimensions and size distribution functions determined by the various techniques. PMID:18052127

  2. Enantioselective Hydrolysis of Amino Acid Esters Promoted by Bis(β-cyclodextrin) Copper Complexes.

    PubMed

    Xue, Shan-Shan; Zhao, Meng; Ke, Zhuo-Feng; Cheng, Bei-Chen; Su, Hua; Cao, Qian; Cao, Zhen-Kun; Wang, Jun; Ji, Liang-Nian; Mao, Zong-Wan

    2016-01-01

    It is challenging to create artificial catalysts that approach enzymes with regard to catalytic efficiency and selectivity. The enantioselective catalysis ranks the privileged characteristic of enzymatic transformations. Here, we report two pyridine-linked bis(β-cyclodextrin) (bisCD) copper(II) complexes that enantioselectively hydrolyse chiral esters. Hydrolytic kinetic resolution of three pairs of amino acid ester enantiomers (S1-S3) at neutral pH indicated that the "back-to-back" bisCD complex CuL(1) favoured higher catalytic efficiency and more pronounced enantioselectivity than the "face-to-face" complex CuL(2). The best enantioselectivity was observed for N-Boc-phenylalanine 4-nitrophenyl ester (S2) enantiomers promoted by CuL(1), which exhibited an enantiomer selectivity of 15.7. We observed preferential hydrolysis of L-S2 by CuL(1), even in racemic S2, through chiral high-performance liquid chromatography (HPLC). We demonstrated that the enantioselective hydrolysis was related to the cooperative roles of the intramolecular flanking chiral CD cavities with the coordinated copper ion, according to the results of electrospray ionization mass spectrometry (ESI-MS), inhibition experiments, rotating-frame nuclear Overhauser effect spectroscopy (ROESY), and theoretical calculations. Although the catalytic parameters lag behind the level of enzymatic transformation, this study confirms the cooperative effect of the first and second coordination spheres of artificial catalysts in enantioselectivity and provides hints that may guide future explorations of enzyme mimics. PMID:26916830

  3. Methane production from acid hydrolysates of Agave tequilana bagasse: evaluation of hydrolysis conditions and methane yield.

    PubMed

    Arreola-Vargas, Jorge; Ojeda-Castillo, Valeria; Snell-Castro, Raúl; Corona-González, Rosa Isela; Alatriste-Mondragón, Felipe; Méndez-Acosta, Hugo O

    2015-04-01

    Evaluation of diluted acid hydrolysis for sugar extraction from cooked and uncooked Agave tequilana bagasse and feasibility of using the hydrolysates as substrate for methane production, with and without nutrient addition, in anaerobic sequencing batch reactors (AnSBR) were studied. Results showed that the hydrolysis over the cooked bagasse was more effective for sugar extraction at the studied conditions. Total sugars concentration in the cooked and uncooked bagasse hydrolysates were 27.9 g/L and 18.7 g/L, respectively. However, 5-hydroxymethylfurfural was detected in the cooked bagasse hydrolysate, and therefore, the uncooked bagasse hydrolysate was selected as substrate for methane production. Interestingly, results showed that the AnSBR operated without nutrient addition obtained a constant methane production (0.26 L CH4/g COD), whereas the AnSBR operated with nutrient addition presented a gradual methane suppression. Molecular analyses suggested that methane suppression in the experiment with nutrient addition was due to a negative effect over the archaeal/bacterial ratio. PMID:25647030

  4. Dilute acid pretreatment and enzymatic hydrolysis of sorghum biomass for sugar recovery--a statistical approach.

    PubMed

    Akanksha, Karthik; Prasad, Arjun; Sukumaran, Rajeev K; Nampoothiri, Madhavan; Pandey, Ashok; Rao, S S; Parameswaran, Binod

    2014-11-01

    Sorghum is one of the commercially feasible lignocellulosic biomass and has a great potential of being sustainable feedstock for renewable energy. As with any lignocellulosic biomass, sorghum also requires pretreatment which increases its susceptibility to hydrolysis by enzymes for generating sugars which can be further fermented to alcohol. In the present study, sorghum biomass was evaluated for deriving maximum fermentable sugars by optimizing various pretreatment parameters using statistical optimization methods. Pretreatment studies were done with H2SO4, followed by enzymatic saccharification. The efficiency of the process was evaluated on the basis of production of the total reducing sugars released during the process. Compositional analysis was done for native as well as pretreated biomass and compared. The biomass pretreated with the optimized conditions could yield 0.408 g of reducing sugars /g of pretreated biomass upon enzymatic hydrolysis. The cellulose content in the solid portion obtained after pretreatment using optimised conditions was found to be increased by 43.37% with lesser production of inhibitors in acid pretreated liquor. PMID:25434103

  5. Inorganic acid-catalyzed tautomerization of vinyl alcohol to acetaldehyde

    NASA Astrophysics Data System (ADS)

    Karton, Amir

    2014-01-01

    The vinyl alcohol-acetaldehyde tautomerization reaction has recently received considerable attention as a potential route for the formation of organic acids in the troposphere (Andrews et al., 2012 [7]). We examine the catalytic effect of inorganic acids in the troposphere (e.g. HNO3, H2SO4 and HClO4) on the vinyl alcohol-acetaldehyde tautomerization reaction, by means high-level thermochemical procedures. We show that H2SO4 and HClO4 catalysts lead to near-zero reaction barrier heights for the vinyl alcohol → acetaldehyde reaction, and to low reaction barrier heights in the reverse direction (ΔH298‡=40.6 and 39.5 kJ mol, respectively).

  6. Low-molecular-weight solutes released during mild acid hydrolysis of the lipopolysaccharide of Pseudomonas aeruginosa. Identification of ethanolamine triphosphate

    PubMed Central

    Drewry, David T.; Gray, George W.; Wilkinson, Stephen G.

    1972-01-01

    A careful examination of the low-molecular-weight solutes released during mild acid hydrolysis of the lipopolysaccharide of Pseudomonas aeruginosa (N.C.T.C. 1999) revealed the presence of ethanolamine triphosphate. During storage, the compound decomposed to give ethanolamine pyrophosphate, identified in a previous study (Drewry et al., 1971); PPi may be a further decomposition product. Evidence for the attachment of ethanolamine triphosphate to a polysaccharide fraction was obtained, but the possibility that some was attached to the lipid A moiety was not excluded. Basic compounds released during the hydrolysis of lipopolysaccharide included amino acids, polyamines and oligopeptides. PMID:4632171

  7. EFFECT OF ANATOMICAL FRACTIONATION ON THE ENZYMATIC HYDROLYSIS OF ACID AND ALKALINE PRETREATED CORN STOVER

    SciTech Connect

    K. B. Duguid; M. D. Montross; C. W. Radtke; C. L. Crofcheck; L. M. Wendt; S. A. Shearer

    2009-11-01

    Due to concerns with biomass collection systems and soil sustainability there are opportunities to investigate the optimal plant fractions to collect for conversion. An ideal feedstock would require low severity pretreatment to release a maximum amount of sugar during enzymatic hydrolysis. Corn stover fractions were separated by hand and analyzed for glucan, xylan, acid soluble lignin, acid insoluble lignin, and ash composition. The stover fractions were also pretreated with either 0, 0.4, or 0.8% NaOH for 2 hours at room temperature, washed, autoclaved and saccharified. In addition, acid pretreated samples underwent simultaneous saccharification and fermentation (SSF) to ethanol. In general, the two pretreatments produced similar trends with cobs, husks, and leaves responding best to the pretreatments, the tops of stalks responding slightly less, and the bottom of the stalks responding the least. For example, corn husks pretreated with 0.8% NaOH released over 90% (standard error of 3.8%) of the available glucan, while only 45% (standard error of 1.1%) of the glucan was produced from identically treated stalk bottoms. Estimates of the theoretical ethanol yield using acid pretreatment followed by SSF were 65% (standard error of 15.9%) for husks and 29% (standard error of 1.8%) for stalk bottoms. This suggests that integration of biomass collection systems to remove sustainable feedstocks could be integrated with the processes within a biorefinery to minimize overall ethanol production costs.

  8. Determination of amino acids in two Polysiphonia species and study of enzymatic hydrolysis method

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Xin; Fan, Xiao; Wei, Yu-Xi

    2002-09-01

    The total content of the rich amino acids in two common red algae, Polysiphonia urceolata and Polysiphonia japonica growing in the Qingdao seashore were determined. The algae powder was hydrolyzed by 6 mol/L HCl at 110°C for 48 h and determined by amino acid analyzer. The content was 25.35% and 24.16%, respectively, much higher than that of some other species. In addition, a nutritive liquid with abundant amino acids was prepared (by the enzymatic hydrolysis method using Polysiphonia urceolata) as raw material for a kind of health beverage. The dried seaweed was decolored by 0.25% KMnO4 and 0.5% active carbon, then enzymalized. In the selection of enzymalizing condition, the orthogonal experimental design was used. Four factors including kinds of enzyme, quantity of enzyme, temperature and time were studied at 3 levels. According to the orthogonal design results, we can choose an optimal condition: hydrolyzing at 45°C by neutral proteinase (0.25%, w/w) for 2h, adjusting pH to 8.5, then adding trypsin (0.25%, w/w) and hydrolyzing for 2 h. Finally the above solution was alkalized by NaOH and neutralized by casein. After the hydrolyzed liquid was filtered and concentrated, suitable additives were added. The final products contain rich amino acids.

  9. Palladium-Catalyzed α-Arylation of Aryl Acetic Acid Derivatives via Dienolate Intermediates with Aryl Chlorides and Bromides

    PubMed Central

    2016-01-01

    To date, examples of α-arylation of carboxylic acids remain scarce. Using a deprotonative cross-coupling process (DCCP), a method for palladium-catalyzed γ-arylation of aryl acetic acids with aryl halides has been developed. This protocol is applicable to a wide range of aryl bromides and chlorides. A procedure for the palladium-catalyzed α-arylation of styryl acetic acids is also described. PMID:25582024

  10. Kinetics of acid-catalyzed aldol condensation reactions of aliphatic aldehydes

    NASA Astrophysics Data System (ADS)

    Casale, Mia T.; Richman, Aviva R.; Elrod, Matthew J.; Garland, Rebecca M.; Beaver, Melinda R.; Tolbert, Margaret A.

    Field observations of atmospheric aerosols have established that organic compounds compose a large fraction of the atmospheric aerosol mass. However, the physical/chemical pathway by which organic compounds are incorporated into atmospheric aerosols remains unclear. The potential role of acid-catalyzed reactions of organic compounds on acidic aerosols has been explored as a possible chemical pathway for the incorporation of organic material into aerosols. In the present study, ultraviolet-visible (UV-vis) spectroscopy was used to monitor the kinetics of formation of the products of the acid-catalyzed aldol condensation reaction of a range of aliphatic aldehydes (C 2-C 8). The experiments were carried out at various sulfuric acid concentrations and a range of temperatures in order to estimate the rate constants of such reactions on sulfuric acid aerosols under tropospheric conditions. The rate constants were generally found to decrease as the chain length of the aliphatic aldehyde increased (except for acetaldehyde, which had an unusually small rate constant), increase as a function of sulfuric acid concentration as predicted by excess acidity theory, and showed normal Arrhenius behavior as a function of temperature. While the kinetic data are generally consistent with previous laboratory reports of aldehyde reactivity in various sulfuric acid media, the aldol condensation reactions involving aliphatic aldehydes do not appear fast enough to be responsible for significant transfer of organic material into atmospheric aerosols.

  11. Acid-Catalyzed Reaction of Epoxides on Atmospheric Nanoparticles

    NASA Astrophysics Data System (ADS)

    Xu, W.; Gomez-Hernandez, M.; Lal, V.; Qiu, C.; Khalizov, A. F.; Wang, L.; Zhang, R.

    2013-12-01

    Aerosol plays an important role in affecting the earth climate and harming human health. Atmospheric aerosols can be formed from either primary emissions or gas-to-particle conversion process. Numerous studies, including both experimental and theoretical, have been carried out to elucidate the mechanism of gas-to-particle conversion process (a.k.a. nucleation) and the later growth stage of newly formed nanoparticles. However, a complete list of species involving in the nucleation and growth processes of nanoparticles is still poorly understood. The growth of newly formed sulfuric acid - water nanoparticles has been suggested to involve several potential organic vapors, such as amines, glyoxal, 2-4 hexadienal, and epoxides. In the present study, new formed sulfuric acid -water nanoparticles were size selected by a differential mobility analyzer and exposed to epoxide vapors. The size-change after exposure was detected using the second differential mobility analyzer. The size-enlarged particles were then collected by an electrostatic precipitator, thermal vaporized, and analyzed by an ion drift chemical ionization mass spectrometer. Our results show that the sizes of nanoparticles are increased considerably and the magnitude of the increment in size is size-dependent. Mass spectrometry analysis of the nanoparticles after exposure demonstrates that low volatile organosulfate and oligomers are formed in nanoparticles upon their exposure to epoxide vapors.

  12. Evolution of the phase content of zirconia powders prepared by sol-gel acid hydrolysis

    SciTech Connect

    Rivas, P.C.; Martinez, J.A.; Caracoche, M.C.; Rodriguez, A.M.; Lopez Garcia, A.R.; Pavlik, R.S. Jr.; Klein, L.C.

    1998-01-01

    The evolution of the phase content in zirconia powders that have been prepared by sol-gel acid hydrolysis has been investigated using the perturbed-angular-correlation (PAC) technique and X-ray diffractometry. As a consequence of performing annealing treatments at increasing temperatures between room temperature and 1,000 C, the amorphous starting material transforms to the tetragonal form and then to the monoclinic form. The metastable tetragonal phase exhibits two hyperfine components, one of which describes very defective zirconium surroundings. The evolution of PAC relative fractions is in agreement with the diffraction results. The durability of the samples in sodium hydroxide seems to increase as the relative amount of the most-defective zirconium surroundings of the tetragonal form increases.

  13. Cellulose nanocrystals prepared via formic acid hydrolysis followed by TEMPO-mediated oxidation.

    PubMed

    Li, Bin; Xu, Wenyang; Kronlund, Dennis; Määttänen, Anni; Liu, Jun; Smått, Jan-Henrik; Peltonen, Jouko; Willför, Stefan; Mu, Xindong; Xu, Chunlin

    2015-11-20

    Cellulose nanocrystals (CNCs) as a renewable and biodegradable nanomaterial have wide application value. In this work, CNCs were extracted from bleached chemical pulp using two stages of isolation (i.e. formic acid (FA) hydrolysis and 2,2,6,6-tetramethyl-piperidine-1-oxyl (TEMPO) mediated oxidation) under mild conditions. In the first stage, FA was used to remove hemicellulose, swell cellulose fibers, and release CNCs. The FA could be readily recovered and reused. In the second stage, the CNCs isolated by FA were further modified by TEMPO-mediated oxidation to increase the surface charge of CNCs. It was found that the modified CNCs with more ordered crystal structure and higher surface charge had better redispersibility and higher viscosity in aqueous phase. Therefore, the modified CNCs could be more effective when used as rheology modifier in the fields of water based coating, paint, food etc. PMID:26344319

  14. Steam gasification of acid-hydrolysis biomass CAHR for clean syngas production.

    PubMed

    Chen, Guanyi; Yao, Jingang; Yang, Huijun; Yan, Beibei; Chen, Hong

    2015-03-01

    Main characteristics of gaseous product from steam gasification of acid-hydrolysis biomass CAHR have been investigated experimentally. The comparison in terms of evolution of syngas flow rate, syngas quality and apparent thermal efficiency was made between steam gasification and pyrolysis in the lab-scale apparatus. The aim of this study was to determine the effects of temperature and steam to CAHR ratio on gas quality, syngas yield and energy conversion. The results showed that syngas and energy yield were better with gasification compared to pyrolysis under identical thermal conditions. Both high gasification temperature and introduction of proper steam led to higher gas quality, higher syngas yield and higher energy conversion efficiency. However, excessive steam reduced hydrogen yield and energy conversion efficiency. The optimal value of S/B was found to be 3.3. The maximum value of energy ratio was 0.855 at 800°C with the optimal S/B value. PMID:25553562

  15. Enantioselective Rh(I)-Catalyzed Addition of Arylboronic Acids to Cyclic Ketimines.

    PubMed

    Kong, Jongrock; McLaughlin, Mark; Belyk, Kevin; Mondschein, Ryan

    2015-11-20

    A method for the enantioselective synthesis of chiral α-tertiary amines via Rh-catalyzed 1,2-addition of arylboronic acids to cyclic ketimines is described. The products are efficiently accessed in good yields and excellent enantioselectivities using a commercially available chiral ligand. The reaction scope includes vinyl, aryl, and heteroarylboronic acids with yields ranging from 40% to 99% and enantiomeric excesses from 88% to 99%. Conversion of an addition product into an α,α-diaryl-substituted amino acid is also demonstrated. PMID:26542775

  16. Nickel-Catalyzed Cross-Coupling of Redox-Active Esters with Boronic Acids.

    PubMed

    Wang, Jie; Qin, Tian; Chen, Tie-Gen; Wimmer, Laurin; Edwards, Jacob T; Cornella, Josep; Vokits, Benjamin; Shaw, Scott A; Baran, Phil S

    2016-08-01

    A transformation analogous in simplicity and functional group tolerance to the venerable Suzuki cross-coupling between alkyl-carboxylic acids and boronic acids is described. This Ni-catalyzed reaction relies upon the activation of alkyl carboxylic acids as their redox-active ester derivatives, specifically N-hydroxy-tetrachlorophthalimide (TCNHPI), and proceeds in a practical and scalable fashion. The inexpensive nature of the reaction components (NiCl2 ⋅6 H2 O-$9.5 mol(-1) , Et3 N) coupled to the virtually unlimited commercial catalog of available starting materials bodes well for its rapid adoption. PMID:27380912

  17. Tunable and Diastereoselective Brønsted Acid Catalyzed Synthesis of β-Enaminones.

    PubMed

    Kang, Ye-Won; Cho, Yu Jin; Han, Seung Jin; Jang, Hye-Young

    2016-01-15

    The Brønsted acid catalyzed Meyer-Schuster reaction of hemiaminals was studied for the stereoselective synthesis of β-enaminones. Hemiaminals were formed from propargyl aldehydes (or the oxidation of propargyl alcohols) and amines in the presence of Brønsted acids. A critical step to control the stereochemistry of the products is the protonation of the corresponding allenol intermediate, which is dictated by the Brønsted acid used, the steric effect of the amine, and the electronic effect of the propargyl aldehyde. PMID:26741050

  18. Lipase-catalyzed acidolysis of menhaden oil with conjugated linoleic acid: effect of water content.

    PubMed

    Torres, Carlos F; Hill, Charles G

    2002-06-01

    The effect of the water content on the lipase-catalyzed (Candida rugosa) interesterification (acidolysis) of menhaden oil with conjugated linoleic acid was studied for amounts of added water ranging from 0-4% (w/w). The rate of the acidolysis reaction increased with increasing water content, but the corresponding percentage of n-3 fatty acids liberated also increased. The implications of water content for minimization of the release of n-3 fatty acid residues while maximizing incorporation of CLA are discussed. PMID:12115120

  19. Acidic 1,3-propanediaminetetraacetato lanthanides with luminescent and catalytic ester hydrolysis properties

    SciTech Connect

    Chen, Mao-Long; Shi, Yan-Ru; Yang, Yu-Chen; Zhou, Zhao-Hui

    2014-11-15

    In acidic solution, a serials of water-soluble coordination polymers (CPs) were isolated as zonal 1D-CPs 1,3-propanediaminetetraacetato lanthanides [Ln(1,3-H{sub 3}pdta)(H{sub 2}O){sub 5}]{sub n}·2Cl{sub n}·3nH{sub 2}O [Ln=La, 1; Ce, 2; Pr, 3; Nd, 4; Sm, 5] (1,3-H{sub 4}pdta=1,3-propanediaminetetraacetic acid, C{sub 11}H{sub 18}N{sub 2}O{sub 8}) in high yields. When 1 eq. mol potassium hydroxide was added to the solutions of 1D-CPs, respectively, two 1D-CPs [Ln(1,3-H{sub 2}pdta)(H{sub 2}O){sub 3}]{sub n}·Cl{sub n}·2nH{sub 2}O [Ln=Sm, 6; Gd, 7] were isolated at room temperature and seven 2D-CPs [Ln(1,3-H{sub 2}pdta)(H{sub 2}O){sub 2}]{sub n}·Cl{sub n}·2nH{sub 2}O [Ln=La, 8; Ce, 9; Pr, 10; Nd, 11; Sm, 12; Eu, 13; Gd, 14] were isolated at 70 °C. When the crystals of 1–4 were hydrothermally heated at 180 °C with 1–2 eq. mol potassium hydroxide, four 3D-CPs [Ln(1,3-Hpdta)]{sub n}·nH{sub 2}O [Ln=La, 15; Ce, 16; Pr, 17; Nd, 18] were obtained. The two 2D-CPs [Ln(1,3-Hpdta)(H{sub 2}O)]{sub n}·4nH{sub 2}O (Sm, 19; Eu, 20) were isolated in similar reaction conditions. With the increments of pH value in the solution and reaction temperature, the structure becomes more complicated. 1–5 are soluble in water and 1 was traced by solution {sup 13}C({sup 1}H) NMR technique, the water-soluble lanthanides 1 and 5 show catalytic activity to ester hydrolysis reaction respectively, which indicate their important roles in the hydrolytic reaction. The europium complexes 13 and 20 show visible fluorescence at an excitation of 394 nm. The structure diversity is mainly caused by the variation of coordinated ligand in different pH values and lanthanide contraction effect. Acidic conditions are favorable for the isolations of lanthanide complexes in different structures and this may helpful to separate different lanthanides. The thermal stability investigations reveal that acidic condition is favorable to obtain the oxides at a lower temperature. - Graphical abstract: A series

  20. RAPESEED PHOSPHATIDYLCHOLINE HYDROLYSIS TO PHOSPHATIDIC ACID USING PLANT EXTRACTS WITH PHOPSPHOLIPASE D.

    PubMed

    Pasker, Beata; Sosada, Marian; Fraś, Paweł; Boryczka, Monika; Górecki, Michał; Zych, Maria

    2015-01-01

    Phosphatidic acid (PA) has a crucial role in cell membrane structure and function. For that reason it has a possible application in the treatment of some health disorders in humans, can be used as a natural and non toxic emulsifier and the component of drug carriers in pharmaceuticals and cosmetics as well as a component for synthesis of some new phospholipids. PA is short-lived in the cell and is difficult to extract directly from the biological material. PA may be easily prepared by hydrolysis of phospholipids, especially phosphatidylcholine (PC), using cabbage phospholipase D (PLD). Hydrolytic activity of purified by us PLD extracts from cabbage towards rapeseed phosphatidylcholine (RPC) was investigated. Hydrolysis was carried out in the biphasic system (water/diethyl ether) at pH 6,5 and temp 30°C. Influence of enzymatic extracts from three cabbage varieties, reaction time, Ca2+ concentration and enzyme extracts/PC ratio, on activity towards RPC resulting in rapeseed phosphatidic acid (RPA) formation were examined. Our study shows that the PLD extracts from savoy cabbage (PLDsc), white cabbage (PLDwc) and brussels sprouts (PLDbs) used in experiments exhibit hydrolytic activity towards RPC resulting in rapeseed RPA with different yield. The highest activity towards RPC shows PLD extract from PLDsc with the RPC conversion degree to RPA (90%) was observed at 120 mM Ca2+ concentration, reaction time 60 min and ratio of PLD extract to RPC 6 : 1 (w/w). Our study shows that purified by us PLDsc extracts exhibit hydrolytic activity towards RPC giving new RPA with satisfying conversion degree for use in pharmacy, cosmetics and as a standard in analytical chemistry. PMID:26642684

  1. Preparation, analysis and antioxidant evaluation of the controlled product of polysaccharide from Mactra veneriformis by mild acid hydrolysis.

    PubMed

    Wang, Ling Chong; Wu, Hao; Ji, Jing; Xue, Feng; Liu, Rui

    2016-02-10

    The polysaccharides from Mactra veneriformis (MVPS) were degraded by controlled mild acid hydrolysis to produce active oligosaccharides. MVPS can easily be hydrolyzed by H2SO4 or HCl. The hydrolyzing process was investigated in acid addition and reaction time by evaluating the producing content of reducing sugar. Hydrolysis with 1M HCl to MVPS can generate a time-depended behavior that is mild and controllable. HPLC analysis monitored the change of oligosaccharides composition in hydrolyzing. Total nine oligosaccharides are recognizable in the HPLC profile, and their content showed a regular transformation in hydrolysis. Those nine ingredients were identified as glucooligosaccharides with DP from 1 to 7 by MS analysis. Antioxidant activities of the typical hydrolyzates as well as MVPs were further tested in assays of DPPH and hydroxyl radicals scavenging, and reducing power. It was found that HCl hydrolyzate exhibited stronger antioxidant effects than MVPS and H2SO4 hydrolyzate due to its higher content of oligosaccharides. PMID:26686183

  2. Organosolv liquefaction of sugarcane bagasse catalyzed by acidic ionic liquids.

    PubMed

    Chen, Zhengjian; Long, Jinxing

    2016-08-01

    An efficient and eco-friendly process is proposed for sugarcane bagasse liquefaction under mild condition using IL catalyst and environmental friendly solvent of ethanol/H2O. The relationship between IL acidic strength and its catalytic performance is investigated. The effects of reaction condition parameters such as catalyst dosage, temperature, time and solvent are also intensively studied. The results show that ethanol/H2O has a significant promotion effect on the simultaneous liquefaction of sugarcane bagasse carbohydrate and lignin. 97.5% of the bagasse can be liquefied with 66.46% of volatile product yield at 200°C for 30min. Furthermore, the IL catalyst shows good recyclability where no significant loss of the catalytic activity is exhibited even after five runs. PMID:27115746

  3. Acetyl xylan esterase of Aspergillus ficcum catalyzed the synthesis of peracetic acid from ethyl acetate and hydrogen peroxide.

    PubMed

    Park, Seung-Moon

    2011-11-01

    Recombinant acetyl xylan esterase (rAXE) of Aspergillus ficcum catalyzed the synthesis of peracetic acid (PAA) from ethyl acetate and hydrogen peroxide. Ten micrograms of rAXE catalyzed the synthesis of 1.34 mM of PAA, which can be used for the pretreatment of cellulosic biomass in situ. PMID:21824816

  4. Direct lactic acid fermentation of Jerusalem artichoke tuber extract using Lactobacillus paracasei without acidic or enzymatic inulin hydrolysis.

    PubMed

    Choi, Hwa-Young; Ryu, Hee-Kyoung; Park, Kyung-Min; Lee, Eun Gyo; Lee, Hongweon; Kim, Seon-Won; Choi, Eui-Sung

    2012-06-01

    Lactic acid fermentation of Jerusalem artichoke tuber was performed with strains of Lactobacillus paracasei without acidic or enzymatic inulin hydrolysis prior to fermentation. Some strains of L. paracasei, notably KCTC13090 and KCTC13169, could ferment hot-water extract of Jerusalem artichoke tuber more efficiently compared with other Lactobacillus spp. such as L. casei type strain KCTC3109. The L. paracasei strains could utilize almost completely the fructo-oligosaccharides present in Jerusalem artichoke. Inulin-fermenting L. paracasei strains produced c.a. six times more lactic acid compared with L. casei KCTC3109. Direct lactic fermentation of Jerusalem artichoke tuber extract at 111.6g/L of sugar content with a supplement of 5 g/L of yeast extract by L. paracasei KCTC13169 in a 5L jar fermentor produced 92.5 ce:hsp sp="0.25"/>g/L of lactic acid with 16.8 g/L fructose equivalent remained unutilized in 72 h. The conversion efficiency of inulin-type sugars to lactic acid was 98% of the theoretical yield. PMID:22516247

  5. Effect of gamma interferon on phospholipid hydrolysis and fatty acid incorporation in L929 cells infected with Rickettsia prowazekii.

    PubMed Central

    Winkler, H H; Day, L; Daugherty, R; Turco, J

    1993-01-01

    Treatment of Rickettsia prowazekii-infected L929 cells with gamma interferon (IFN-gamma) immediately after infection altered the lipid metabolism of the host cells as determined by measurement of phospholipid hydrolysis and oleic acid incorporation into phospholipids and neutral lipids. At 48 h postinfection, there was increased phospholipid hydrolysis in infected cultures relative to mock-infected cultures and a further increase in radiolabeled phospholipid hydrolysis in IFN-gamma-treated infected cultures. Oleic acid, the radiolabeled product of hydrolysis, was found in both the free fatty acid and neutral lipid fractions. None of the mock-infected cultures demonstrated increased hydrolysis of their radiolabeled phospholipids in response to treatment with IFN-gamma. Most of the radiolabeled oleic acid incorporated into cultures in the interval between 24 and 48 h after infection and IFN-gamma treatment was present in the phospholipid fraction. However, the neutral lipid fraction from the infected cultures that had been IFN-gamma treated was labeled to a greater extent than that from the untreated cultures. Thin-layer chromatographic analysis of the neutral lipid fractions from both the hydrolysis and incorporation experiments demonstrated that most of the radiolabel was in triglycerides. The infected cultures at 30 h were intact as assessed by the exclusion of trypan blue, but at 48 h postinfection in the IFN-gamma-treated infected cultures more than half of the cells were unable to exclude trypan blue. In no case did the mock-infected cells show substantial damage as a result of IFN-gamma treatment. PMID:8335370

  6. Effect of sulfuric and phosphoric acid pretreatments on enzymatic hydrolysis of corn stover.

    PubMed

    Um, Byung-Hwan; Karim, M; Henk, Linda

    2003-01-01

    The pretreatment of corn stover with H2SO4 and H3PO4 was investigated. Pretreatments were carried out from 30 to 120 min in a batch reactor at 121 degrees C, with acid concentrations ranging from 0 to 2% (w/v) at a solid concentration of 5% (w/v). Pretreated corn stover was washed with distilled water until the filtrate was adjusted to pH 7.0, followed by surfactant swelling of the cellulosic fraction in a 0-10% (w/v) solution of Tween-80 at room temperature for 12 h. The dilute acid treatment proved to be a very effective method in terms of hemicellulose recovery and cellulose digestibility. Hemicellulose recovery was 62-90%, and enzymatic digestibility of the cellulose that remained in the solid was >80% with 2% (w/v) acid. In all cases studied, the performance of H2SO4 pretreatment (hemicellulose recovery and cellulose digestibility) was significantly better than obtained with H3PO4. Enzymatic hydrolysis was more effective using surfactant than without it, producing 10-20% more sugar. Furthermore, digestibility was investigated as a function of hemicellulose removal. It was found that digestibility was more directly related to hemicellulose removal than to delignification. PMID:12721479

  7. Effect of degree of hydrolysis of whey protein on in vivo plasma amino acid appearance in humans.

    PubMed

    Farup, Jean; Rahbek, Stine Klejs; Storm, Adam C; Klitgaard, Søren; Jørgensen, Henry; Bibby, Bo M; Serena, Anja; Vissing, Kristian

    2016-01-01

    Whey protein is generally found to be faster digested and to promote faster and higher increases in plasma amino acid concentrations during the immediate ~60 min following protein ingestion compared to casein. The aim of the present study was to compare three different whey protein hydrolysates with varying degrees of hydrolysis (DH, % cleaved peptide bonds) to evaluate if the degree of whey protein hydrolysis influences the rate of amino acid plasma appearance in humans. A casein protein was included as reference. The three differentially hydrolysed whey proteins investigated were: High degree of hydrolysis (DH, DH = 48 %), Medium DH (DH = 27 %), and Low DH (DH = 23 %). The casein protein was intact. Additionally, since manufacturing of protein products may render some amino acids unavailable for utilisation in the body the digestibility and the biological value of all four protein fractions were evaluated in a rat study. A two-compartment model for the description of the postprandial plasma amino acid kinetics was applied to investigate the rate of postprandial total amino acid plasma appearance of the four protein products. The plasma amino acid appearance rates of the three whey protein hydrolysates (WPH) were all significantly higher than for the casein protein, however, the degree of hydrolysis of the WPH products did not influence plasma total amino acid appearance rate (estimates of DH and 95 % confidence intervals [CI] (mol L(-1) min(-1)): High DH 0.0585 [0.0454, 0.0754], Medium DH 0.0594 [0.0495, 0.0768], Low DH 0.0560 [0.0429, 0.0732], Casein 0.0194 [0.0129, 0.0291]). The four protein products were all highly digestible, while the biological value decreased with increasing degree of hydrolysis. In conclusion, the current study does not provide evidence that the degree of whey protein hydrolysis is a strong determinant for plasma amino acid appearance rate within the studied range of hydrolysis and protein dose. PMID:27065230

  8. Keto-Enol Tautomerizations Catalyzed by Water and Carboxylic Acids

    NASA Astrophysics Data System (ADS)

    da Silva, G.

    2009-12-01

    The ability of weakly-bound complexes to influence the kinetics of gas phase reactions, particularly in atmospheric chemistry, has long been speculated. This study uses quantum chemistry and statistical reaction rate theory to identify that bound water molecules can significantly reduce barriers to intramolecular hydrogen shift reactions, via a double-hydrogen-shift mechanism. The bound water molecule directly participates in the hydrogen shift reaction, exchanging a H atom with its counterpart. For the vinyl alcohol to acetaldehyde keto-enol tautomerization this mechanism cuts the reaction barrier approximately in half, reducing it by over 30 kcal mol-1. In contrast, while a non-participatory ‘bystander’ water molecule also reduces the hydrogen shift barrier, it is only by around 3 kcal/mol. When a carboxylic acid replaces water in the double-hydrogen-shift mechanism the barrier to keto-enol tautomerization is decimated, reduced to less than 6 kcal/mol (around 15 kcal/mol in the reverse direction). This results from reduced strain in the hydrogen shift transition state, and achieves enol lifetimes in the troposphere that become short on relevant timescales. Rapid enol to ketone isomerizations are currently required to explain the oxidation products of isoprene. The wider significance of rapid hydrogen shift reactions in atmospherically relevant molecules and radicals is also explored.

  9. Chiral phosphoric acid catalyzed enantioselective synthesis of β-amino-α,α-difluoro carbonyl compounds.

    PubMed

    Kashikura, Wataru; Mori, Keiji; Akiyama, Takahiko

    2011-04-01

    A biphenol-based chiral phosphoric acid bearing a 9-anthryl group at each of the 3,3'-positions catalyzed the asymmetric Mannich-type reaction of N-Boc imine with difluoroenol silyl ethers in the presence of MS3A in THF to afford β-amino-α,α-difluoroketones in good yields and with excellent enantioselectivities. Optically pure 3,3-difluoroazetidin-2-one was readily synthesized from the Mannich-adduct. PMID:21391557

  10. Boron-Catalyzed N-Alkylation of Amines using Carboxylic Acids.

    PubMed

    Fu, Ming-Chen; Shang, Rui; Cheng, Wan-Min; Fu, Yao

    2015-07-27

    A boron-based catalyst was found to catalyze the straightforward alkylation of amines with readily available carboxylic acids in the presence of silane as the reducing agent. Various types of primary and secondary amines can be smoothly alkylated with good selectivity and good functional-group compatibility. This metal-free amine alkylation was successfully applied to the synthesis of three commercial medicinal compounds, Butenafine, Cinacalcet. and Piribedil, in a one-pot manner without using any metal catalysts. PMID:26150397

  11. One site is enough: a theoretical investigation of iron-catalyzed dehydrogenation of formic Acid.

    PubMed

    Sánchez-de-Armas, Rocío; Xue, Liqin; Ahlquist, Mårten S G

    2013-09-01

    Dehydrogenation of HCO2H: The reaction mechanism for the dehydrogenation of formic acid catalyzed by a highly active and selective iron complex has been studied by DFT. The most favorable pathway shows the hydride in Fe-H complexes acting as a spectator ligand throughout the catalytic cycle. This result opens up the Fe complex for modification in order to achieve more efficient and selective catalysts. PMID:23907850

  12. Synthesis and Preliminary Biological Study of Bisindolylmethanes Accessed by an Acid-Catalyzed Hydroarylation of Vinylindoles

    PubMed Central

    Pathak, Tejas P.; Osiak, Jaroslaw G.; Vaden, Rachel M.; Welm, Bryan E.; Sigman, Matthew S.

    2012-01-01

    An acid-catalyzed hydroarylation reaction of vinyl indoles is reported, which tolerates a wide range of heterocycles as the exogenous nucleophile such as indoles, pyrroles, and indolizines. The method rapidly accesses the biologically relevant bisindolylmethane scaffold in good to excellent yields. Evaluation of the biological activity of several synthesized analogues reveals cytotoxic activity against and selectivity for the MCF-7 breast cancer cell line. PMID:22778488

  13. [Lipase-catalyzed production of biodiesel from high acid value waste oil with ultrasonic assistant].

    PubMed

    Wang, Jian-Xun; Huang, Qing-De; Huang, Feng-Hong; Wang, Jiang-Wei; Huang, Qin-Jie

    2007-11-01

    Biodiesel fuel produced with the enzyme-catalyzed esterification and transesterification of high acid value waste oil through ultrasonic assistant was explored. Propyl oleate, biodiesel, converted from high acid value waste oil and 1-proponal catalyzed with immobilized lipases from Candida antarctica and Aspergillus oryzae in conditions of ultrasonic assistant. Commercial immobilized lipase Novozym 435 from C. antarctica was used as biocatalyst catalyzing high acid value waste oil and 1-proponal esterification and transesterification to propyl oleate under the ultrasonic assistant conditions and different conditions such as lipases amounts, initiatory molar ratio of propanol to oil, frequency of ultrasonic and power of ultrasonic were investigated and optimized. It is revealed that the enzymatic activity of Novozym435 is enhanced and, in particular, enzyme-catalyzed transesterification activity is enhanced obviously under the ultrasonic assistant conditions. Low frequency and mild energy ultrasonic is a key factor for enhancing enzymatic activity, emulsifying oil-propanol system and accelerating the speed of produce diffusing in the system. Under the optimal ultrasonic assistant reaction conditions, such as Novozym435 amounts 8% by oil quantity, initiatory molar ratio of propanol to oil 3:1, frequency of ultrasonic 28 KHz, power of ultrasonic 100 W and temperature of water batch 40-45 degrees C, the conversion ratio to propyl oleate reached to 94.86% in 50 mins in comparison with the highest conversion ratio to propyl oleate 84.43% under the conventional mechanical agitation conditions. Furthermore, it is demonstrated that various short chain linear and branched alcohols (C1-C5) show high conversion ratio to fatty acid alkyl esters (biodiesel) under the optimal ultrasonic assistant reaction conditions. On the other hand, ultrasonic energy is propitious to reduce the adsorption of product propyl oleate, by-product glycerol and other emplastics in system on the

  14. Acetic Acid Can Catalyze Succinimide Formation from Aspartic Acid Residues by a Concerted Bond Reorganization Mechanism: A Computational Study

    PubMed Central

    Takahashi, Ohgi; Kirikoshi, Ryota; Manabe, Noriyoshi

    2015-01-01

    Succinimide formation from aspartic acid (Asp) residues is a concern in the formulation of protein drugs. Based on density functional theory calculations using Ace-Asp-Nme (Ace = acetyl, Nme = NHMe) as a model compound, we propose the possibility that acetic acid (AA), which is often used in protein drug formulation for mildly acidic buffer solutions, catalyzes the succinimide formation from Asp residues by acting as a proton-transfer mediator. The proposed mechanism comprises two steps: cyclization (intramolecular addition) to form a gem-diol tetrahedral intermediate and dehydration of the intermediate. Both steps are catalyzed by an AA molecule, and the first step was predicted to be rate-determining. The cyclization results from a bond formation between the amide nitrogen on the C-terminal side and the side-chain carboxyl carbon, which is part of an extensive bond reorganization (formation and breaking of single bonds and the interchange of single and double bonds) occurring concertedly in a cyclic structure formed by the amide NH bond, the AA molecule and the side-chain C=O group and involving a double proton transfer. The second step also involves an AA-mediated bond reorganization. Carboxylic acids other than AA are also expected to catalyze the succinimide formation by a similar mechanism. PMID:25588215

  15. Sulfuric, hydrochloric, and nitric acid-catalyzed triacetone triperoxide (TATP) reaction mixtures: an aging study.

    PubMed

    Fitzgerald, Mark; Bilusich, Daniel

    2011-09-01

    The organic peroxide explosive triacetone triperoxide (TATP) is regularly encountered by law enforcement agents in various stages of its production. This study utilizes solid-phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS) to examine sulfuric acid-, hydrochloric acid-, and nitric acid-catalyzed TATP syntheses during the initial 24 h of these reactions at low temperatures (5-9°C). Additionally, aging of the reaction mixtures was examined at both low and ambient temperatures (19-21°C) for a further 9 days. For each experiment, TATP could be readily identified in the headspace above the reaction mixture 1 h subsequent to the combination of reagents; at 24 h, TATP and diacetone diperoxide (DADP) were prominent. TATP degraded more rapidly than DADP. Additionally, chlorinated acetones chloroacetone and 1,1,-dichloroacetone were identified in the headspace above the hydrochloric acid-catalyzed TATP reaction mixture. These were not present when the catalyst was sulfuric acid or nitric acid. PMID:21595692

  16. Cholesterol efflux from THP-1 macrophages is impaired by the fatty acid component from lipoprotein hydrolysis by lipoprotein lipase

    SciTech Connect

    Yang, Yanbo; Thyagarajan, Narmadaa; Coady, Breanne M.; Brown, Robert J.

    2014-09-05

    Highlights: • Lipoprotein hydrolysis products were produced by lipoprotein lipase. • Hydrolysis products lowers expression of macrophage cholesterol transporters. • Hydrolysis products reduces expression of select nuclear receptors. • Fatty acid products lowers cholesterol transporters and select nuclear receptors. • Fatty acid products reduces cholesterol efflux from macrophages. - Abstract: Lipoprotein lipase (LPL) is an extracellular lipase that primarily hydrolyzes triglycerides within circulating lipoproteins. Macrophage LPL contributes to atherogenesis, but the mechanisms behind it are poorly understood. We hypothesized that the products of lipoprotein hydrolysis generated by LPL promote atherogenesis by inhibiting the cholesterol efflux ability by macrophages. To test this hypothesis, we treated human THP-1 macrophages with total lipoproteins that were hydrolyzed by LPL and we found significantly reduced transcript levels for the cholesterol transporters ATP binding cassette transporter A1 (ABCA1), ABCG1, and scavenger receptor BI. These decreases were likely due to significant reductions for the nuclear receptors liver-X-receptor-α, peroxisome proliferator activated receptor (PPAR)-α, and PPAR-γ. We prepared a mixture of free fatty acids (FFA) that represented the ratios of FFA species within lipoprotein hydrolysis products, and we found that the FFA mixture also significantly reduced cholesterol transporters and nuclear receptors. Finally, we tested the efflux of cholesterol from THP-1 macrophages to apolipoprotein A-I, and we found that the treatment of THP-1 macrophages with the FFA mixture significantly attenuated cholesterol efflux. Overall, these data show that the FFA component of lipoprotein hydrolysis products generated by LPL may promote atherogenesis by inhibiting cholesterol efflux, which partially explains the pro-atherogenic role of macrophage LPL.

  17. Investigating the Properties and Hydrolysis Ability of Poly-Lactic Acid/Chitosan Nanocomposites Using Polycaprolactone.

    PubMed

    Trang, Nguyen Thi Thu; Chinhl, Nguyen Thuy; Thanh, Dinh Thi Mai; Hang, To Thi Xuan; Giang, Nguyen Vu; Hoang, Thai; Quan, Pham Minh; Giang, Le Duc; Thai, Nguyen Viet; Lawrence, Geoffrey

    2015-12-01

    Poly-lactic acid (PLA) has been widely applied in the medical field (in biomedicines such as medical capsules, surgical sutures and suture wounds) owing to its high biodegradability, good biocompatibility and ability to be dissolved in common solvents. Chitosan (CS) is an abundant polysaccharide and a cationic polyelectrolyte present in nature. In this study, the combination of PLA and CS has been used to form PLA/CS nanocomposites having the advantages of both the original components. To enhance the dispersibility and compatibility between PLA and CS in the PLA/CS nanocomposites, polycaprolactone (PCL) is added as a compatibilizer. The Fourier Transform Infrared spectroscopies prove the existence of the interactions of PCL with PLA and CS. A more regular dispersion of CS of 200-400 nm particle size, is observed in the PLA matrix of the PLA/CS nanocomposites containing PCL, through the Field Emission Scanning Electron Microscopy images. The appearance of one glass transition temperature (T(g)) value of PLA/CS/PCL nanocomposites occuring between the T(g) values of PLA and CS in DSC diagrams confirms the improvement in the compatibility between PLA and CS, due to the presence of PCL. The TGA result shows that PCL plays an important role in enhancing the thermal stability of PLA/CS/PCL nanocomposites. The hydrolysis of PLA/CS/PCL nanocomposites in alkaline and phosphate buffer solutions was investigated. The obtained results show that the PLA/CS/PCL nanocomposites have slower hydrolysis ability than the PLA/CS composites. PMID:26682382

  18. Enantioselective Hydrolysis of Amino Acid Esters Promoted by Bis(β-cyclodextrin) Copper Complexes

    PubMed Central

    Xue, Shan-Shan; Zhao, Meng; Ke, Zhuo-Feng; Cheng, Bei-Chen; Su, Hua; Cao, Qian; Cao, Zhen-Kun; Wang, Jun; Ji, Liang-Nian; Mao, Zong-Wan

    2016-01-01

    It is challenging to create artificial catalysts that approach enzymes with regard to catalytic efficiency and selectivity. The enantioselective catalysis ranks the privileged characteristic of enzymatic transformations. Here, we report two pyridine-linked bis(β-cyclodextrin) (bisCD) copper(II) complexes that enantioselectively hydrolyse chiral esters. Hydrolytic kinetic resolution of three pairs of amino acid ester enantiomers (S1–S3) at neutral pH indicated that the “back-to-back” bisCD complex CuL1 favoured higher catalytic efficiency and more pronounced enantioselectivity than the “face-to-face” complex CuL2. The best enantioselectivity was observed for N-Boc-phenylalanine 4-nitrophenyl ester (S2) enantiomers promoted by CuL1, which exhibited an enantiomer selectivity of 15.7. We observed preferential hydrolysis of L-S2 by CuL1, even in racemic S2, through chiral high-performance liquid chromatography (HPLC). We demonstrated that the enantioselective hydrolysis was related to the cooperative roles of the intramolecular flanking chiral CD cavities with the coordinated copper ion, according to the results of electrospray ionization mass spectrometry (ESI-MS), inhibition experiments, rotating-frame nuclear Overhauser effect spectroscopy (ROESY), and theoretical calculations. Although the catalytic parameters lag behind the level of enzymatic transformation, this study confirms the cooperative effect of the first and second coordination spheres of artificial catalysts in enantioselectivity and provides hints that may guide future explorations of enzyme mimics. PMID:26916830

  19. MTBE Hydrolysis in Dilute Aqueous Solution Using Heterogeneous Strong Acid Catalysts

    NASA Astrophysics Data System (ADS)

    Rixey, W. G.

    2003-12-01

    The objective of this research has been the development of a potential in situ catalytic process for the hydrolysis of methyl tertiary butyl ether (MTBE) to tertiary butyl alcohol (TBA) and methanol in ground water. Bench-scale batch reactor studies were conducted over a temperature range of 23 deg C to 50 deg C with several heterogeneous strong acid catalysts to obtain rates of hydrolysis of MTBE to TBA and methanol at dilute concentrations in water. Continuous flow experiments were then conducted to obtain kinetic data over a temperature range of 15 deg C to 50 deg C for various flow rates for the most active catalysts. It was found that the batch and continuous flow experiments yielded similar intrinsic kinetic rate constants when sorption of MTBE to the catalyst was accounted for. Additional fixed-bed experiments were conducted with deionized water and 0.005 M CaCl2 feed solutions containing 100 mg/L MTBE, respectively, to assess the deactivation of the catalyst, and deactivation was found to be controlled by ion exchange of H+ in the catalyst with Ca+2 in the feed. Our results indicate that, for low to moderate groundwater velocities and cation concentrations at ambient temperatures, an in situ reactive barrier process using the most active catalysts studied in this research could be a viable process in terms of both suitable conversion of MTBE and catalyst life. Although application to in situ remediation is emphasized, the results of this research are also applicable to ex-situ groundwater treatment.

  20. Solid acid-catalyzed depolymerization of barley straw driven by ball milling.

    PubMed

    Schneider, Laura; Haverinen, Jasmiina; Jaakkola, Mari; Lassi, Ulla

    2016-04-01

    This study describes a time and energy saving, solvent-free procedure for the conversion of lignocellulosic barley straw into reducing sugars by mechanocatalytical pretreatment. The catalytic conversion efficiency of several solid acids was tested which revealed oxalic acid dihydrate as a potential catalyst with high conversion rate. Samples were mechanically treated by ball milling and subsequently hydrolyzed at different temperatures. The parameters of the mechanical treatment were optimized in order to obtain sufficient amount of total reducing sugar (TRS) which was determined following the DNS assay. Additionally, capillary electrophoresis (CE) and Fourier transform infrared spectrometry (FT-IR) were carried out. Under optimal conditions TRS 42% was released using oxalic acid dihydrate as a catalyst. This study revealed that the acid strength plays an important role in the depolymerization of barley straw and in addition, showed, that the oxalic acid-catalyzed reaction generates low level of the degradation product 5-hydroxymethylfurfural (HMF). PMID:26859328

  1. Copper-catalyzed intermolecular trifluoromethylarylation of alkenes: mutual activation of arylboronic acid and CF3+ reagent.

    PubMed

    Wang, Fei; Wang, Dinghai; Mu, Xin; Chen, Pinhong; Liu, Guosheng

    2014-07-23

    A novel copper-catalyzed intermolecular trifluoromethylarylation of alkenes is developed using less active ether-type Togni's reagent under mild reaction conditions. Various alkenes and diverse arylboronic acids are compatible with these conditions. Preliminary mechanistic studies reveal that a mutual activation process between arylboronic acid and CF3(+) reagent is essential. In addition, the reaction might involve a rate-determining transmetalation, and the final aryl C-C bond is derived from reductive elimination of the aryl(alkyl)Cu(III) intermediate. PMID:24983408

  2. Palladium-catalyzed cross-coupling reactions of aryl boronic acids with aryl halides in water.

    PubMed

    Wang, Shaoyan; Zhang, Zhiqiang; Hu, Zhizhi; Wang, Yue; Lei, Peng; Chi, Haijun

    2009-01-01

    An efficient Suzuki cross-coupling reaction using a variety of aryl halides in neat water was developed. The Pd-catalyzed reaction between aryl bromides or chlorides and phenyl boronic acids was compatible with various functional groups and affords biphenyls in good to excellent yields without requirement of organic cosolvents. The air stability and solubility in water of the palladium-phosphinous acid complexes were considered to facilitate operation of the coupling reaction and product isolation. The reaction conditions including Pd catalyst selection, temperature, base and catalyst recoverability were also investigated. PMID:25084408

  3. Asymmetric epoxidation of allylic alcohols catalyzed by vanadium-binaphthylbishydroxamic Acid complex.

    PubMed

    Noji, Masahiro; Kobayashi, Toshihiro; Uechi, Yuria; Kikuchi, Asami; Kondo, Hisako; Sugiyama, Shigeo; Ishii, Keitaro

    2015-03-20

    A vanadium-binaphthylbishydroxamic acid (BBHA) complex-catalyzed asymmetric epoxidation of allylic alcohols is described. The optically active binaphthyl-based ligands BBHA 2a and 2b were synthesized from (S)-1,1'-binaphthyl-2,2'-dicarboxylic acid and N-substituted-O-trimethylsilyl (TMS)-protected hydroxylamines via a one-pot, three-step procedure. The epoxidations of 2,3,3-trisubstituted allylic alcohols using the vanadium complex of 2a were easily performed in toluene with a TBHP water solution to afford (2R)-epoxy alcohols in good to excellent enantioselectivities. PMID:25714329

  4. Optimization studies on acid hydrolysis of oil palm empty fruit bunch fiber for production of xylose.

    PubMed

    Rahman, S H A; Choudhury, J P; Ahmad, A L; Kamaruddin, A H

    2007-02-01

    Oil palm empty fruit bunch fiber is a lignocellulosic waste from palm oil mills. It is a potential source of xylose which can be used as a raw material for production of xylitol, a high value product. The increasing interest on use of lignocellulosic waste for bioconversion to fuels and chemicals is justifiable as these materials are low cost, renewable and widespread sources of sugars. The objective of the present study was to determine the effect of H(2)SO(4) concentration, reaction temperature and reaction time for production of xylose. Batch reactions were carried out under various reaction temperature, reaction time and acid concentrations and Response Surface Methodology (RSM) was followed to optimize the hydrolysis process in order to obtain high xylose yield. The optimum reaction temperature, reaction time and acid concentration found were 119 degrees C, 60 min and 2%, respectively. Under these conditions xylose yield and selectivity were found to be 91.27% and 17.97 g/g, respectively. PMID:16647852

  5. A simple procedure for preparing chitin oligomers through acetone precipitation after hydrolysis in concentrated hydrochloric acid.

    PubMed

    Kazami, Nao; Sakaguchi, Masayoshi; Mizutani, Daisuke; Masuda, Tatsuhiko; Wakita, Satoshi; Oyama, Fumitaka; Kawakita, Masao; Sugahara, Yasusato

    2015-11-01

    Chitin oligomers are of interest because of their numerous biologically relevant properties. To prepare chitin oligomers containing 4-6 GlcNAc units [(GlcNAc)4-6], α- and β-chitin were hydrolyzed with concentrated hydrochloric acid at 40 °C. The reactant was mixed with acetone to recover the acetone-insoluble material, and (GlcNAc)4-6 was efficiently recovered after subsequent water extraction. Composition analysis using gel permeation chromatography and MALDI-TOF mass spectrometry indicated that (GlcNAc)4-6 could be isolated from the acetone-insoluble material with recoveries of approximately 17% and 21% from the starting α-chitin and β-chitin, respectively. The acetone precipitation method is highly useful for recovering chitin oligomers from the acid hydrolysate of chitin. The changes in the molecular size and higher-order structure of chitin during the course of hydrolysis were also analyzed, and a model that explains the process of oligomer accumulation is proposed. PMID:26256353

  6. A General Access to Propargylic Ethers through Brønsted Acid Catalyzed Alkynylation of Acetals and Ketals with Trifluoroborates .

    PubMed

    Baxter, Matthew; Bolshan, Yuri

    2015-09-21

    A general Brønsted acid catalyzed methodology for the alkynylation of acetals and ketals with alkynyltrifluoroborate salts has been developed. The reaction proceeds rapidly to afford valuable synthetic building block propargylic ethers in good to excellent yields. Unlike Lewis acid catalyzed transformations of trifluoroborates, this approach does not proceed via unstable organodifluoroborane intermediate. As a result, the developed methodology features excellent functional group tolerance and good atom economy. PMID:26248543

  7. Hydrolysis of Miscanthus for bioethanol production using dilute acid presoaking combined with wet explosion pre-treatment and enzymatic treatment.

    PubMed

    Sørensen, Annette; Teller, Philip J; Hilstrøm, Troels; Ahring, Birgitte K

    2008-09-01

    Miscanthus is a high yielding bioenergy crop. In this study we used acid presoaking, wet explosion, and enzymatic hydrolysis to evaluate the combination of the different pre-treatment methods for bioethanol production with Miscanthus. Acid presoaking is primarily carried out in order to remove xylose prior to wet explosion. The acid presoaking extracted 63.2% xylose and 5.2% glucose. Direct enzymatic hydrolysis of the presoaked biomass was found to give only low sugar yields of 24-26% glucose. Wet explosion is a pre-treatment method that combines wet-oxidation and steam explosion. The effect of wet explosion on non-presoaked and presoaked Miscanthus was investigated using both atmospheric air and hydrogen peroxide as the oxidizing agent. All wet explosion pre-treatments showed to have a disrupting effect on the lignocellulosic biomass, making the sugars accessible for enzymatic hydrolysis. The combination of presoaking, wet explosion, and enzymatic hydrolysis was found to give the highest sugar yields. The use of atmospheric air gave the highest xylose yield (94.9% xylose, 61.3% glucose), while hydrogen peroxide gave the highest glucose yield (82.4% xylose, 63.7% glucose). PMID:18164954

  8. Formation of linear polyenes in poly(vinyl alcohol) films catalyzed by phosphotungstic acid, aluminum chloride, and hydrochloric acid

    NASA Astrophysics Data System (ADS)

    Tretinnikov, O. N.; Sushko, N. I.; Malyi, A. B.

    2016-07-01

    Formation of linear polyenes-(CH=CH)n-via acid-catalyzed thermal dehydration of polyvinyl alcohol in 9- to 40-µm-thick films of this polymer containing hydrochloric acid, aluminum chloride, and phosphotungstic acid as dehydration catalysts was studied by electronic absorption spectroscopy. The concentration of long-chain ( n ≥ 8) polyenes in films containing phosphotungstic acid is found to monotonically increase with the duration of thermal treatment of films, although the kinetics of this process is independent of film thickness. In films containing hydrochloric acid and aluminum chloride, the formation rate of polyenes with n ≥ 8 rapidly drops as film thickness decreases and the annealing time increases. As a result, at a film thickness of less than 10-12 µm, long-chain polyenes are not formed at all in these films no matter how long thermal duration is. The reason for this behavior is that hydrochloric acid catalyzing polymer dehydration in these films evaporates from the films during thermal treatment, the evaporation rate inversely depending on film thickness.

  9. Direct Synthesis of 5-Aryl Barbituric Acids by Rhodium(II)-Catalyzed Reactions of Arenes with Diazo Compounds**

    PubMed Central

    Best, Daniel; Burns, David J; Lam, Hon Wai

    2015-01-01

    A commercially available rhodium(II) complex catalyzes the direct arylation of 5-diazobarbituric acids with arenes, allowing straightforward access to 5-aryl barbituric acids. Free N—H groups are tolerated on the barbituric acid, with no complications arising from N—H insertion processes. This method was applied to the concise synthesis of a potent matrix metalloproteinase (MMP) inhibitor. PMID:25959544

  10. Conversion of levulinic acid into γ-valerolactone using Fe3(CO)12: mimicking a biorefinery setting by exploiting crude liquors from biomass acid hydrolysis.

    PubMed

    Metzker, Gustavo; Burtoloso, Antonio C B

    2015-09-28

    The conversion of biomass-derived levulinic acid (LA) into gamma-valerolactone (GVL) using formic acid (FA) and Fe3(CO)12 as the catalyst precursor was achieved in 92% yield. To mimic a biorefinery setting, crude liquor (containing 20% LA) from the acid hydrolysis of sugarcane biomass in a pilot plant facility was directly converted into GVL in good yield (50%), without the need for isolating LA. PMID:26258183

  11. Regioselective Enzymatic β-Carboxylation of para-Hydroxy- styrene Derivatives Catalyzed by Phenolic Acid Decarboxylases

    PubMed Central

    Wuensch, Christiane; Pavkov-Keller, Tea; Steinkellner, Georg; Gross, Johannes; Fuchs, Michael; Hromic, Altijana; Lyskowski, Andrzej; Fauland, Kerstin; Gruber, Karl; Glueck, Silvia M; Faber, Kurt

    2015-01-01

    We report on a ‘green’ method for the utilization of carbon dioxide as C1 unit for the regioselective synthesis of (E)-cinnamic acids via regioselective enzymatic carboxylation of para-hydroxystyrenes. Phenolic acid decarboxylases from bacterial sources catalyzed the β-carboxylation of para-hydroxystyrene derivatives with excellent regio- and (E/Z)-stereoselectivity by exclusively acting at the β-carbon atom of the C=C side chain to furnish the corresponding (E)-cinnamic acid derivatives in up to 40% conversion at the expense of bicarbonate as carbon dioxide source. Studies on the substrate scope of this strategy are presented and a catalytic mechanism is proposed based on molecular modelling studies supported by mutagenesis of amino acid residues in the active site. PMID:26190963

  12. Cassava starch maltodextrinization/monomerization through thermopressurized aqueous phosphoric acid hydrolysis.

    PubMed

    Fontana, J D; Passos, M; Baron, M; Mendes, S V; Ramos, L P

    2001-01-01

    Kinetic conditions were established for the depolymerization of cassava starch for the production of maltodextrins and glucose syrups. Thin-layer chromatography and high-performance liquid chromatography analyses corroborated that the proper H3PO4 strength and thermopressurization range (e.g., 142-170 degrees C; 2.8-6.8 atm) can be successfully explored for such hydrolytic purposes of native starch granules. Because phosphoric acid can be advantageously maintained in the hydrolysate and generates, after controlled neutralization with ammonia, the strategic nutrient triplet for industrial fermentations (C, P, N), this pretreatment strategy can be easily recognized as a recommended technology for hydrolysis and upgrading of starch and other plant polysaccharides. Compared to the classic catalysts, the mandatory desalting step (chloride removal by expensive anion-exchange resin or sulfate precipitation as the calcium-insoluble salt) can be avoided. Furthermore, properly diluted phosphoric acid is well known as an allowable additive in several popular soft drinks such as colas since its acidic feeling in the mouth is compatible and synergistic with both natural and artificial sweeteners. Glycosyrups from phosphorolyzed cassava starch have also been upgraded to high-value single-cell protein such as the pigmented yeast biomass of Xanthophyllomyces dendrorhous (Phaffia rhodozyma), whose astaxanthin (diketo-dihydroxy-beta-carotene) content may reach 0.5-1.0 mg/g of dry yeast cell. This can be used as an ideal complement for animal feeding as well as a natural staining for both fish farming (meat) and poultry (eggs). PMID:11963875

  13. [Determination of docosahexaenoic acid in milk powder by gas chromatography using acid hydrolysis].

    PubMed

    Shao, Shiping; Xiang, Dapeng; Li, Shuang; Xi, Xinglin; Chen, Wenrui

    2015-11-01

    A method to determine docosahexenoic acid (DHA) in milk powder by gas chromatography was established. The milk powder samples were hydrolyzed with hydrochloric acid, extracted to get total fatty acids by Soxhlet extractor, then esterified with potassium hydroxide methanol solution to form methyl esters, and treated with sodium hydrogen sulfate. The optimal experiment conditions were obtained from orthogonal experiment L9(3(3)) which performed with three factors and three levels, and it requires the reaction performed with 1 mol/L potassium hydroxide solution at 25 degrees C for 5 min. The derivative treated with sodium hydrogen sulfate was separated on a column of SP-2560 (100 m x 0.25 mm x 0.20 μm), and determined in 55 min by temperature programming-gas chromatography. Good linearity was obtained in the range 5.0-300 mg/L with the correlation coefficient of 0.999 9. The relative standard deviations (RSDs) were 3.4%, 1.2% and 1.1% for the seven repeated experiments of 10, 50 and 100 mg/L of DHA, respectively. The limit of detection was 2 mg/kg, and the recoveries of DHA were in the range of 90.4%-93.5%. The results are satisfactory through the tests of practical samples. PMID:26939370

  14. Selection of suitable mineral acid and its concentration for biphasic dilute acid hydrolysis of the sodium dithionite delignified Prosopis juliflora to hydrolyze maximum holocellulose.

    PubMed

    Naseeruddin, Shaik; Desai, Suseelendra; Venkateswar Rao, L

    2016-02-01

    Two grams of delignified substrate at 10% (w/v) level was subjected to biphasic dilute acid hydrolysis using phosphoric acid, hydrochloric acid and sulfuric acid separately at 110 °C for 10 min in phase-I and 121 °C for 15 min in phase-II. Combinations of acid concentrations in two phases were varied for maximum holocellulose hydrolysis with release of fewer inhibitors, to select the suitable acid and its concentration. Among three acids, sulfuric acid in combination of 1 & 2% (v/v) hydrolyzed maximum holocellulose of 25.44±0.44% releasing 0.51±0.02 g/L of phenolics and 0.12±0.002 g/L of furans, respectively. Further, hydrolysis of delignified substrate using selected acid by varying reaction time and temperature hydrolyzed 55.58±1.78% of holocellulose releasing 2.11±0.07 g/L and 1.37±0.03 g/L of phenolics and furans, respectively at conditions of 110 °C for 45 min in phase-I & 121 °C for 60 min in phase-II. PMID:26716889

  15. Synthesis of 2-monoacylglycerols and structured triacylglycerols rich in polyunsaturated fatty acids by enzyme catalyzed reactions.

    PubMed

    Rodríguez, Alicia; Esteban, Luis; Martín, Lorena; Jiménez, María José; Hita, Estrella; Castillo, Beatriz; González, Pedro A; Robles, Alfonso

    2012-08-10

    This paper studies the synthesis of structured triacylglycerols (STAGs) by a four-step process: (i) obtaining 2-monoacylglycerols (2-MAGs) by alcoholysis of cod liver oil with several alcohols, catalyzed by lipases Novozym 435, from Candida antartica and DF, from Rhizopus oryzae, (ii) purification of 2-MAGs, (iii) formation of STAGs by esterification of 2-MAGs with caprylic acid catalyzed by lipase DF, from R. oryzae, and (iv) purification of these STAGs. For the alcoholysis of cod liver oil, absolute ethanol, ethanol 96% (v/v) and 1-butanol were compared; the conditions with ethanol 96% were then optimized and 2-MAG yields of around 54-57% were attained using Novozym 435. In these 2-MAGs, DHA accounted for 24-31% of total fatty acids. In the operational conditions this lipase maintained a stable level of activity over at least 11 uses. These results were compared with those obtained with lipase DF, which deactivated after only three uses. The alcoholysis of cod liver oil and ethanol 96% catalyzed by Novozym 435 was scaled up by multiplying the reactant amounts 100-fold and maintaining the intensity of treatment constant (IOT=3g lipase h/g oil). In these conditions, the 2-MAG yield attained was about 67%; these 2-MAGs contained 36.6% DHA. The synthesized 2-MAGs were separated and purified from the alcoholysis reaction products by solvent extraction using solvents of low toxicity (ethanol and hexane); 2-MAG recovery yield and purity of the target product were approximately 96.4% and 83.9%, respectively. These 2-MAGs were transformed to STAGs using the optimal conditions obtained in a previous work. After synthesis and purification, 93% pure STAGs were obtained, containing 38% DHA at sn-2 position and 60% caprylic acid (CA) at sn-1,3 positions (of total fatty acids at these positions), i.e. the major TAG is the STAG with the structure CA-DHA-CA. PMID:22759534

  16. A potentiometric study of the hydrolysis of ethylenediaminetetraacetic acid to 150{degrees}C

    SciTech Connect

    Palmer, D.A.; Nguyen-Trung, Chinh

    1995-02-01

    Ethylenediaminetetraacetate anions, EDTA{sup 4-}, were titrated in a hydrogen-electrode concentration cell with an acidic titrant from 0 to 150{degrees}C at 25{degrees}C intervals. These titrations were carried out in the presence of 0. 1, 0.2, and 1.0 mol{center_dot}kg{sup -1} with the supporting electrolytes, sodium chloride, NaCl, and 1.0 mol{center_dot}kg{sup -1} tetramethylammonium trifluoromethylsulfonate, (CH{sub 3}){sub 4}N(F{sub 3}CSO{sub 3}) {l_brace}TMATFMS{r_brace} in order to assess the effect of both cation complexation by EDTA{sup 4-} and anion activity coefficient variations. The resulting hydrolysis quotients are discussed with reference to applications in boiler and heat exchanger chemical cleaning, as well as chemical and nuclear waste containment. Some recent diverse uses of this emf technique that also pertain to these applications will be mentioned briefly, e.g., surface absorption - zero-point-of-charge - measurements to high temperatures and in situ pH measurements in solubility and kinetic experiments.

  17. Valorisation of food waste via fungal hydrolysis and lactic acid fermentation with Lactobacillus casei Shirota.

    PubMed

    Kwan, Tsz Him; Hu, Yunzi; Lin, Carol Sze Ki

    2016-10-01

    Food waste recycling via fungal hydrolysis and lactic acid (LA) fermentation has been investigated. Hydrolysates derived from mixed food waste and bakery waste were rich in glucose (80.0-100.2gL(-1)), fructose (7.6gL(-1)) and free amino nitrogen (947-1081mgL(-1)). In the fermentation with Lactobacillus casei Shirota, 94.0gL(-1) and 82.6gL(-1) of LA were produced with productivity of 2.61gL(-1)h(-1) and 2.50gL(-1)h(-1) for mixed food waste and bakery waste hydrolysate, respectively. The yield was 0.94gg(-1) for both hydrolysates. Similar results were obtained using food waste powder hydrolysate, in which 90.1gL(-1) of LA was produced with a yield and productivity of 0.92gg(-1) and 2.50gL(-1)h(-1). The results demonstrate the feasibility of an efficient bioconversion of food waste to LA and a decentralized approach of food waste recycling in urban area. PMID:26873283

  18. Solid acid catalysts pretreatment and enzymatic hydrolysis of macroalgae cellulosic residue for the production of bioethanol.

    PubMed

    Tan, Inn Shi; Lee, Keat Teong

    2015-06-25

    The aim of this study is to investigate the technical feasibility of converting macroalgae cellulosic residue (MCR) into bioethanol. An attempt was made to present a novel, environmental friendly and economical pretreatment process that enhances enzymatic conversion of MCR to sugars using Dowex (TM) Dr-G8 as catalyst. The optimum yield of glucose reached 99.8% under the optimal condition for solid acid pretreatment (10%, w/v biomass loading, 4%, w/v catalyst loading, 30min, 120°C) followed by enzymatic hydrolysis (45FPU/g of cellulase, 52CBU/g of β-glucosidase, 50°C, pH 4.8, 30h). The yield of sugar obtained was found more superior than conventional pretreatment process using H2SO4 and NaOH. Biomass loading for the subsequent simultaneous saccharification and fermentation (SSF) of the pretreated MCR was then optimized, giving an optimum bioethanol yield of 81.5%. The catalyst was separated and reused for six times, with only a slight drop in glucose yield. PMID:25839825

  19. Comparative theoretical studies of the phosphomonoester hydrolysis mechanism by purple acid phosphatases.

    PubMed

    Retegan, M; Milet, A; Jamet, H

    2010-07-01

    We present here the first ONIOM (our own n-layered integrated molecular orbital + molecular mechanics method) studies of a purple acid phosphatase enzyme. Our study focused on the structures of the red kidney bean PAP (kbPAP) complexed with phosphate and with phenyl phosphate and on the mechanism of the phenyl phosphate hydrolysis by the enzyme. Density functional theory (DFT) calculations were also performed using models of different sizes for comparison purpose. Results show that the inclusion of three histidine residues, His202, His295, and His296, with their protein surrounding, is crucial to properly describe the coordination of the substrates. They induce a conformation with the substrate closer to the nucleophilic mu-hydroxyde bridge. In the mechanistic study, a transition state is stabilized by a strong hydrogen bond between His202 and the leaving group of the substrate. Consequently, a smaller value for the activation energy barrier is obtained from DFT calculations including this histidine to the same calculations without this histidine. Using the ONIOM method, this activation energy barrier is even more reduced. So the mechanism, which considers the hydroxo group bridging the two metal ions as nucleophile, becomes really convincing, contrary to the results obtained with a small model at the DFT level. PMID:20550096

  20. Hydrolysis of phosphodiesters by diiron complexes: design of nonequivalent iron sites in purple acid phosphatase models.

    PubMed

    Verge, François; Lebrun, Colette; Fontecave, Marc; Ménage, Stéphane

    2003-01-27

    New mu-oxo-diferric complexes have been designed for hydrolysis of phosphodiesters. To mimic the diiron active site of purple acid phosphatase, a combinatorial method has been used to select complexes containing two distinct iron coordination spheres. The introduction of a bidentate ligand, a substituted phenanthroline (L) into complex 1, [Fe2O(bipy)4(OH2)2](NO3)4, generates in solution the complex [Fe2O(bipy)3(L)(OH2)2](NO3)4 as shown by ESI/MS and 1H NMR studies. The latter complex was found to be 20-fold more active than complex 1. On the basis of kinetic studies, we demonstrated that the complex [Fe2O(bipy)3(L)(OH)(OH2)](NO3)3 was the active species and the reaction proceeded through the formation of a ternary complex in which one iron binds a hydroxide and the second, the substrate. At nonsaturating concentrations of the substrate, the increased activity with increased methyl substituents in L was due to an increased affinity of the complex for the substrate. The activity of [Fe2O(bipy)3(33'44'Me2-Phen)(OH2)2](NO3)4 [33'44'Me2Phen = 3,3',4,4'-dimethyl-1,10-phenanthroline] was found to be comparable to that reported for Co(III) or Ce(IV) complexes. PMID:12693232

  1. Large scale purification of puerarin from Puerariae Lobatae Radix through resins adsorption and acid hydrolysis.

    PubMed

    Guo, Hai-Dong; Zhang, Qing-Feng; Chen, Ji-Guang; Shangguang, Xin-Cheng; Guo, Yu-Xian

    2015-02-01

    Puerarin is the major isoflavone of Puerariae Lobatae Radix. A method for large scale purification of puerarin was developed through resins adsorption and acid hydrolysis. The adsorption properties of six macroporous resins (D101, S-8, H103, X-5, HPD600, AB-8) were compared through the adsorption kinetics and equilibrium adsorption isotherms. Results showed that H103 resin had the best adsorption rate and capacity. The mass transfer zone motion model was further used for analyzing the fixed bed adsorption of H103 resin. Its length of mass transfer zone with 2mg/ml of puerarin in water and 10% ethanol at flow rate of 10ml/min were 41.6 and 47.5cm, while the equilibrium adsorption capacity was 165.03 and 102.88mg/g, respectively. By using 75% ethanol, puerarin could be well desorbed from the resin with recovery of 97.4%. Subsequently, H103 resin was successfully used for puerarin purification from Puerariae Lobatae Radix. The content of total isoflavones and puerarin in the resin adsorption product were 69.25% and 41.78%, respectively, which were about three times increased compared to the crude extract. Then, the product was hydrolyzed by 2.5M HCl at 90°C for 1h. Puerarin with purity of 90% and a byproduct daidzein with purity of 78% were obtained. PMID:25553536

  2. Lactic acid based PEU/HA and PEU/BCP composites: Dynamic mechanical characterization of hydrolysis.

    PubMed

    Rich, Jaana; Tuominen, Jukka; Kylmä, Janne; Seppälä, Jukka; Nazhat, Showan N; Tanner, K Elizabeth

    2002-01-01

    Lactic acid based poly(ester-urethane) (PEU-BDI) and its composites with 20 and 40 vol.% bioceramic filler were characterized prior to their use as biocompatible and bioabsorbable artificial bone materials. Morphological, dynamic mechanical properties, and degradation of these either hydroxyapatite or biphasic calcium phosphate containing composites were determined. Addition of particulate bioactive filler increased the composite stiffness and the glass transition temperature, indicating strong interactions between the filler and matrix. Materials were sterilized by gamma-irradiation, which reduced the average molecular weights by 30-40%. However, dynamic mechanical properties were not significantly affected by irradiation. Specimens were immersed in 0.85 w/v saline at 37 degrees C for 5 weeks, and changes in molecular weights, mass, water absorption, and dynamic mechanical properties were recorded. All the composite materials showed promising dynamic mechanical performance over the 5 weeks of hydrolysis. Average molecular weights of PEU-BDI and its composites did not change substantially during the test period. PEU-BDI retained its modulus values relatively well, and although the moduli of the composite materials were much higher, especially at high filler content, they exhibited faster loss of mechanical integrity. PMID:12115768

  3. Volatile organic acid adsorption and cation dissociation by porphyritic andesite for enhancing hydrolysis and acidogenesis of solid food wastes.

    PubMed

    Cheng, Fan; Li, Ming; Li, Dawei; Chen, Ling; Jiang, Weizhong; Kitamura, Yutaka; Li, Baoming

    2010-07-01

    Volatile organic acid adsorption, cation dissociation by porphyritic andesite, and their effects on the hydrolysis and acidogenesis of solid food wastes were evaluated through batch experiments. The acetic acid adsorption experiments show that pH was mainly regulated by H(+) adsorption. The mono-layer and multi-layer adsorption were found under the low (8.3-83.2 mmol/L) and high (133.22-532.89 mmol/L) initial acetic acid concentration, respectively. The dissociated cations concentration in acidic solution showed the predominance of Ca(2+). Porphyritic andesite addition elevated the pH levels and accelerated hydrolysis and acidogenesis in the batch fermentation experiment. Leachate of porphyritic andesite addition achieved the highest hydrolysis constant of 22.1 x 10(-3)kgm(-2)d(-1) and VS degradation rates of 3.9 g L(-1)d(-1). The highest activity of microorganisms represented by specific growth rate of ATP, 0.16d(-1), and specific consumption rate of Ca(2+), 0.18d(-1), was obtained by adding leachate of porphyritic andesite. PMID:20156676

  4. The Acid Catalyzed Nitration of Methanol: Formation of Methyl Nitrate via Aerosol Chemistry

    NASA Technical Reports Server (NTRS)

    Riffel, Brent G.; Michelsen, Rebecca R.; Iraci, Laura T.

    2004-01-01

    The liquid phase acid catalyzed reaction of methanol with nitric acid to yield methyl nitrate under atmospheric conditions has been investigated using gas phase infrared spectroscopy. This nitration reaction is expected to occur in acidic aerosol particles found in the upper troposphere/lower stratosphere as highly soluble methanol and nitric acid diffuse into these aerosols. Gaseous methyl nitrate is released upon formation, suggesting that some fraction of NO(x) may he liberated from nitric acid (methyl nitrate is later photolyzed to NO(x)) before it is removed from the atmosphere by wet deposition. Thus, this reaction may have important implications for the NO(x) budget. Reactions have been initiated in 45-62 wt% H2SO4 solutions at 10.0 C. Methyl nitrate production rates increased exponentially with acidity within the acidity regime studied. Preliminary calculations suggest that the nitronium ion (NO2(+) is the active nitrating agent under these conditions. The reaction order in methanol appears to depend on the water/methanol ratio and varies from first to zeroth order under conditions investigated. The nitration is first order in nitronium at all acidities investigated. A second order rate constant, kappa(sub 2), has been calculated to be 1 x 10(exp 8)/ M s when the reaction is first order in methanol. Calculations suggest the nitration is first order in methanol under tropospheric conditions. The infinitesimal percentage of nitric acid in the nitronium ion form in this acidity regime probably makes this reaction insignificant for the upper troposphere; however, this nitration may become significant in the mid stratosphere where colder temperatures increase nitric acid solubility and higher sulfuric acid content shifts nitric acid speciation toward the nitronium ion.

  5. Structural Basis for Nucleotide Hydrolysis by the Acid Sphingomyelinase-like Phosphodiesterase SMPDL3A.

    PubMed

    Gorelik, Alexei; Illes, Katalin; Superti-Furga, Giulio; Nagar, Bhushan

    2016-03-18

    Sphingomyelin phosphodiesterase, acid-like 3A (SMPDL3A) is a member of a small family of proteins founded by the well characterized lysosomal enzyme, acid sphingomyelinase (ASMase). ASMase converts sphingomyelin into the signaling lipid, ceramide. It was recently discovered that, in contrast to ASMase, SMPDL3A is inactive against sphingomyelin and, surprisingly, can instead hydrolyze nucleoside diphosphates and triphosphates, which may play a role in purinergic signaling. As none of the ASMase-like proteins has been structurally characterized to date, the molecular basis for their substrate preferences is unknown. Here we report crystal structures of murine SMPDL3A, which represent the first structures of an ASMase-like protein. The catalytic domain consists of a central mixed β-sandwich surrounded by α-helices. Additionally, SMPDL3A possesses a unique C-terminal domain formed from a cluster of four α-helices that appears to distinguish this protein family from other phosphoesterases. We show that SMDPL3A is a di-zinc-dependent enzyme with an active site configuration that suggests a mechanism of phosphodiester hydrolysis by a metal-activated water molecule and protonation of the leaving group by a histidine residue. Co-crystal structures of SMPDL3A with AMP and α,β-methylene ADP (AMPCP) reveal that the substrate binding site accommodates nucleotides by establishing interactions with their base, sugar, and phosphate moieties, with the latter the major contributor to binding affinity. Our study provides the structural basis for SMPDL3A substrate specificity and sheds new light on the function of ASMase-like proteins. PMID:26792860

  6. Zirconium(IV) tetramer/octamer hydrolysis equilibrium in aqueous hydrochloric acid solution

    SciTech Connect

    Singhal, A.; Toth, L.M.; Lin, J.S.; Affholter, K.

    1996-11-20

    Small-angle X-ray scattering measurements were performed on zirconium acidic aqueous solutions to investigate the structure and the size of polynuclear species larger than the previously identified tetrameric species. Solutions with [H{sup +}]{sub added} and [OH{sup -}]{sub added} ranging from 0.0 to 1.0 M and 0.0 to 0.02 M, respectively, were analyzed. This study demonstrates that an octameric species, Zr{sub 8}(OH){sub 20}(H{sub 2}O){sub 24}Cl{sub 12}, exists in equilibrium with the tetrameric species, Zr{sub 4}(OH){sub 8}(H{sub 2} O){sub 16}Cl{sub 6}{sup 2+}, such that, for 0.05 M Zr(IV) in highly acidic solutions ([H{sup +}]{sub added} = 0.6 M), the tetramer in the dominant species; and at conditions with [H{sup +}] added =0.05 M, the octameric species becomes predominant. The estimated value of the equilibrium quotient obtained for the tetramer/octamer equilibrium is 0.20 {+-} 0.05 M{sup 3}. The tetramer and octamer have radii of gyration of 3.8 and 5.1 {+-} 0.2 A and a hydrolysis ratio of 2.0 and 2.5, respectively. The octamer forms by stacking two tetramers on top of each other. At conditions where small amounts of NaOH are added, unidentified polymeric Zr(IV) species larger in size than the octameric species appear. 26 refs., 7 figs.

  7. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production.

    PubMed

    Michelucci, Alessandro; Cordes, Thekla; Ghelfi, Jenny; Pailot, Arnaud; Reiling, Norbert; Goldmann, Oliver; Binz, Tina; Wegner, André; Tallam, Aravind; Rausell, Antonio; Buttini, Manuel; Linster, Carole L; Medina, Eva; Balling, Rudi; Hiller, Karsten

    2013-05-01

    Immunoresponsive gene 1 (Irg1) is highly expressed in mammalian macrophages during inflammation, but its biological function has not yet been elucidated. Here, we identify Irg1 as the gene coding for an enzyme producing itaconic acid (also known as methylenesuccinic acid) through the decarboxylation of cis-aconitate, a tricarboxylic acid cycle intermediate. Using a gain-and-loss-of-function approach in both mouse and human immune cells, we found Irg1 expression levels correlating with the amounts of itaconic acid, a metabolite previously proposed to have an antimicrobial effect. We purified IRG1 protein and identified its cis-aconitate decarboxylating activity in an enzymatic assay. Itaconic acid is an organic compound that inhibits isocitrate lyase, the key enzyme of the glyoxylate shunt, a pathway essential for bacterial growth under specific conditions. Here we show that itaconic acid inhibits the growth of bacteria expressing isocitrate lyase, such as Salmonella enterica and Mycobacterium tuberculosis. Furthermore, Irg1 gene silencing in macrophages resulted in significantly decreased intracellular itaconic acid levels as well as significantly reduced antimicrobial activity during bacterial infections. Taken together, our results demonstrate that IRG1 links cellular metabolism with immune defense by catalyzing itaconic acid production. PMID:23610393

  8. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production

    PubMed Central

    Michelucci, Alessandro; Cordes, Thekla; Ghelfi, Jenny; Pailot, Arnaud; Reiling, Norbert; Goldmann, Oliver; Binz, Tina; Wegner, André; Tallam, Aravind; Rausell, Antonio; Buttini, Manuel; Linster, Carole L.; Medina, Eva; Balling, Rudi; Hiller, Karsten

    2013-01-01

    Immunoresponsive gene 1 (Irg1) is highly expressed in mammalian macrophages during inflammation, but its biological function has not yet been elucidated. Here, we identify Irg1 as the gene coding for an enzyme producing itaconic acid (also known as methylenesuccinic acid) through the decarboxylation of cis-aconitate, a tricarboxylic acid cycle intermediate. Using a gain-and-loss-of-function approach in both mouse and human immune cells, we found Irg1 expression levels correlating with the amounts of itaconic acid, a metabolite previously proposed to have an antimicrobial effect. We purified IRG1 protein and identified its cis-aconitate decarboxylating activity in an enzymatic assay. Itaconic acid is an organic compound that inhibits isocitrate lyase, the key enzyme of the glyoxylate shunt, a pathway essential for bacterial growth under specific conditions. Here we show that itaconic acid inhibits the growth of bacteria expressing isocitrate lyase, such as Salmonella enterica and Mycobacterium tuberculosis. Furthermore, Irg1 gene silencing in macrophages resulted in significantly decreased intracellular itaconic acid levels as well as significantly reduced antimicrobial activity during bacterial infections. Taken together, our results demonstrate that IRG1 links cellular metabolism with immune defense by catalyzing itaconic acid production. PMID:23610393

  9. Salicylic acid-induced superoxide generation catalyzed by plant peroxidase in hydrogen peroxide-independent manner

    PubMed Central

    Kimura, Makoto; Kawano, Tomonori

    2015-01-01

    It has been reported that salicylic acid (SA) induces both immediate spike and long lasting phases of oxidative burst represented by the generation of reactive oxygen species (ROS) such as superoxide anion radical (O2•−). In general, in the earlier phase of oxidative burst, apoplastic peroxidase are likely involved and in the late phase of the oxidative burst, NADPH oxidase is likely involved. Key signaling events connecting the 2 phases of oxidative burst are calcium channel activation and protein phosphorylation events. To date, the known earliest signaling event in response to exogenously added SA is the cell wall peroxidase-catalyzed generation of O2•− in a hydrogen peroxide (H2O2)-dependent manner. However, this model is incomplete since the source of the initially required H2O2 could not be explained. Based on the recently proposed role for H2O2-independent mechanism for ROS production catalyzed by plant peroxidases (Kimura et al., 2014, Frontiers in Plant Science), we hereby propose a novel model for plant peroxidase-catalyzed oxidative burst fueled by SA. PMID:26633563

  10. Acid-catalyzed Furfuryl Alcohol Polymerization: Characterizations of Molecular Structure and Thermodynamic Properties

    SciTech Connect

    Kim, Taejin; Assary, Rajeev A.; Marshall, Christopher L.; Gosztola, David J.; Curtiss, Larry A.; Stair, Peter C.

    2011-07-22

    The liquid-phase polymerization of furfuryl alcohol catalyzed by sulfuric acid catalysts and the identities of molecular intermediates were investigated by using Raman spectroscopy and density functional theory calculation. At room temperature, with an acid catalyst, a vigorous furfuryl alcohol polymerization reaction was observed, whereas even at a high water concentration, furfuryl alcohol was very stable in the absence of an acid catalyst. Theoretical studies were carried out to investigate the thermodynamics of protonation of furfuryl alcohol, initiation of polymerization, and formation of conjugated dienes and diketonic species by using the B3LYP level of theory. A strong aliphatic C=C band observed in the calculated and measured Raman spectra provided crucial evidence to understand the polymerization reaction mechanism. It is confirmed that the formation of a conjugated diene structure rather than a diketone structure is involved in the furfuryl alcohol polymerization reaction.

  11. Acid-catalyzed furfurly alcohol polymerization : characterizations of molecular structure and thermodynamic properties.

    SciTech Connect

    Kim, T.; Assary, R. S.; Marshall, C. L.; Gosztola, D. J.; Curtiss, L. A.; Stair, P. C.

    2011-01-01

    The liquid-phase polymerization of furfuryl alcohol catalyzed by sulfuric acid catalysts and the identities of molecular intermediates were investigated by using Raman spectroscopy and density functional theory calculation. At room temperature, with an acid catalyst, a vigorous furfuryl alcohol polymerization reaction was observed, whereas even at a high water concentration, furfuryl alcohol was very stable in the absence of an acid catalyst. Theoretical studies were carried out to investigate the thermodynamics of protonation of furfuryl alcohol, initiation of polymerization, and formation of conjugated dienes and diketonic species by using the B3LYP level of theory. A strong aliphatic C=C band observed in the calculated and measured Raman spectra provided crucial evidence to understand the polymerization reaction mechanism. It is confirmed that the formation of a conjugated diene structure rather than a diketone structure is involved in the furfuryl alcohol polymerization reaction.

  12. Lipase-catalyzed acidolysis of tripalmitin with capric acid in organic solvent medium: Analysis of the effect of experimental conditions through factorial design and analysis of multiple responses.

    PubMed

    Foresti, María Laura; Ferreira, María Luján

    2010-05-01

    The acidolysis of tripalmitin with capric acid catalyzed by an immobilized form of a 1,3-positionally selective lipase (Rhizomucor miehei) showed to be effective for the synthesis of structured lipids of the MLL and MLM type. The effects that reaction parameters such as substrate molar ratio (N), biocatalyst load (E), and reaction temperature (T) have on selected responses variables (i.e. total conversion of tripalmitin, selectivity and yield of the desired structured lipid, hydrolysis yield, and acyl migration importance), were evaluated by use of an experimental factorial design of three factors and three levels with two central points and with a confidence level of 95%. The range of each parameter was selected as follows: N=3-9, E=5-15wt%, T=50-70°C. The statistical analysis of results was addressed by use of both simple linear models and more complicated quadratic models using specific commercial software. The results obtained showed that a proper selection of reaction conditions is needed in order to maximize not only the yield of the desired structured lipid, but also to minimize the generation of hydrolysis and acyl migration by-products. PMID:25919616

  13. Acidic 1,3-propanediaminetetraacetato lanthanides with luminescent and catalytic ester hydrolysis properties

    NASA Astrophysics Data System (ADS)

    Chen, Mao-Long; Shi, Yan-Ru; Yang, Yu-Chen; Zhou, Zhao-Hui

    2014-11-01

    In acidic solution, a serials of water-soluble coordination polymers (CPs) were isolated as zonal 1D-CPs 1,3-propanediaminetetraacetato lanthanides [Ln(1,3-H3pdta)(H2O)5]n·2Cln·3nH2O [Ln=La, 1; Ce, 2; Pr, 3; Nd, 4; Sm, 5] (1,3-H4pdta=1,3-propanediaminetetraacetic acid, C11H18N2O8) in high yields. When 1 eq. mol potassium hydroxide was added to the solutions of 1D-CPs, respectively, two 1D-CPs [Ln(1,3-H2pdta)(H2O)3]n·Cln·2nH2O [Ln=Sm, 6; Gd, 7] were isolated at room temperature and seven 2D-CPs [Ln(1,3-H2pdta)(H2O)2]n·Cln·2nH2O [Ln=La, 8; Ce, 9; Pr, 10; Nd, 11; Sm, 12; Eu, 13; Gd, 14] were isolated at 70 °C. When the crystals of 1-4 were hydrothermally heated at 180 °C with 1-2 eq. mol potassium hydroxide, four 3D-CPs [Ln(1,3-Hpdta)]n·nH2O [Ln=La, 15; Ce, 16; Pr, 17; Nd, 18] were obtained. The two 2D-CPs [Ln(1,3-Hpdta)(H2O)]n·4nH2O (Sm, 19; Eu, 20) were isolated in similar reaction conditions. With the increments of pH value in the solution and reaction temperature, the structure becomes more complicated. 1-5 are soluble in water and 1 was traced by solution 13C{1H} NMR technique, the water-soluble lanthanides 1 and 5 show catalytic activity to ester hydrolysis reaction respectively, which indicate their important roles in the hydrolytic reaction. The europium complexes 13 and 20 show visible fluorescence at an excitation of 394 nm. The structure diversity is mainly caused by the variation of coordinated ligand in different pH values and lanthanide contraction effect. Acidic conditions are favorable for the isolations of lanthanide complexes in different structures and this may helpful to separate different lanthanides. The thermal stability investigations reveal that acidic condition is favorable to obtain the oxides at a lower temperature.

  14. Iron-Catalyzed Diastereoselective Synthesis of Unnatural Chiral Amino Acid Derivatives.

    PubMed

    Zhang, Hao; Li, Haifang; Yang, Haijun; Fu, Hua

    2016-07-15

    An iron-catalyzed diastereoselective synthesis of unnatural chiral (S)-α-amino acids with γ-quaternary carbon centers has been developed. The protocol uses inexpensive iron salt as the catalyst, readily available 2-phthaloyl acrylamide and alkenes as the starting materials, and phenylsilane as the reductant, and the reactions were performed well in mixed solvent of 1,2-dichloroethane and ethylene glycol at room temperature. The method shows some advantages including simple and wide substrates, mild conditions, high diastereoselectivity, and easy workup procedures. PMID:27367820

  15. Asymmetric Synthesis of Hydrocarbazoles Catalyzed by an Octahedral Chiral-at-Rhodium Lewis Acid.

    PubMed

    Huang, Yong; Song, Liangliang; Gong, Lei; Meggers, Eric

    2015-12-01

    A bis-cyclometalated chiral-at-metal rhodium complex catalyzes the Diels-Alder reaction between N-Boc-protected 3-vinylindoles (Boc = tert-butyloxycarbonyl) and β-carboxylic ester-substituted α,β-unsaturated 2-acyl imidazoles with good-to-excellent regioselectivity (up to 99:1) and excellent diastereoselectivity (>50:1 d.r.) as well as enantioselectivity (92-99% ee) under optimized conditions. The rhodium catalyst serves as a chiral Lewis acid to activate the 2-acyl imidazole dienophile by two-point binding and overrules the preferred regioselectivity of the uncatalyzed reaction. PMID:26344422

  16. Negative resists for electron-beam lithography utilizing acid-catalyzed intramolecular dehydration of phenylcarbinol

    NASA Astrophysics Data System (ADS)

    Migitaka, Sonoko; Uchino, Shou-ichi; Ueno, Takumi; Yamamoto, Jiro; Kojima, Kyoko; Hashimoto, Michiaki; Shiraishi, Hiroshi

    1996-06-01

    Acid-catalyzed intramolecular dehydration of phenylcarbinol is used to design highly sensitive negative resists for electron beam lithography. Of the phenylcarbinol resists evaluated in this study, the resist composed of 1,3-bis(alpha-hydroxyisopropyl)benzene (Diol-1), m/p-cresol novolak resin, and diphenyliodonium triflate (DIT) shows the best lithographic performance in terms of sensitivity and resolution. Fine 0.25-micrometer line-and-space patterns were formed by using the resist containing Diol-1 with a dose of 3.6 (mu) C/cm2 in conjunction with a 50 kV electron beam exposure system.

  17. Palladium(II)-Catalyzed Tandem Synthesis of Acenes Using Carboxylic Acids as Traceless Directing Groups.

    PubMed

    Kim, Kiho; Vasu, Dhananjayan; Im, Honggu; Hong, Sungwoo

    2016-07-18

    A straightforward synthetic strategy for generating useful anthracene derivatives was developed involving palladium(II)-catalyzed tandem transformation with carboxylic acids as traceless directing groups. Carboxyl-directed C-H alkenylation, carboxyl-directed secondary C-H activation and rollover, intramolecular C-C bond formation, and decarboxylative aromatization are proposed as the key steps in the tandem reaction pathway. This novel synthetic route utilizes a broad range of substrates and provides a convenient synthetic tool that allows access to acenes. PMID:27244536

  18. Synthesis of phytuberin. 4-endo-tet acid-catalyzed cyclization of alpha-hydroxy epoxides.

    PubMed

    Prangé, Thierry; Rodríguez, María S; Suárez, Ernesto

    2003-05-30

    The total synthesis of phytuberin, a phytoalexin of the Solanum genus, from (-)-alpha-santonin is reported. The key steps include (a) reductive cleavage of the C-O bond of the gamma-lactone with concomitant protection of the C1 double bond, (b) Sharpless stereocontrolled hydroxy-assisted epoxidation of allylic alcohol 6 and simultaneous deprotection of the C1 double bond, (c) a rare 4-endo-tet acid-catalyzed cyclization of an alpha-hydroxy epoxide, and (d) an unprecedented 4-exo selenocyclization of a homoallylic alcohol. PMID:12762747

  19. Competition between the hydrolysis and deamination of cytidine and its 5-substituted derivatives in aqueous acid.

    PubMed Central

    Lönnberg, H; Käppi, R

    1985-01-01

    The monocations of a few 5-substituted cytidines have been shown to undergo competitive deamination to the corresponding uridines and hydrolysis to 5-substituted cytosines and D-ribose. The first-order rate constants measured at different temperatures indicate that the proportion of the hydrolysis is considerably increased with the increasing temperature. Electron-withdrawal by a polar substituent at C5 appears to facilitate the hydrolysis to a larger extent that the deamination. The ionic strength has practically no influence on the rate of either reaction. PMID:4000961

  20. Effects of waste activated sludge and surfactant addition on primary sludge hydrolysis and short-chain fatty acids accumulation.

    PubMed

    Ji, Zhouying; Chen, Guanlan; Chen, Yinguang

    2010-05-01

    This paper focused on the effects of waste activated sludge (WAS) and surfactant sodium dodecylbenzene sulfonate (SDBS) addition on primary sludge (PS) hydrolysis and short-chain fatty acids (SCFA) accumulation in fermentation. The results showed that sludge hydrolysis, SCFA accumulation, NH(4)(+)-N and PO(4)(3-)-P release, and volatile suspended solids (VSS) reduction were increased by WAS addition to PS, which were further increased by the addition of SDBS to the mixture of PS and WAS. Acetic, propionic and valeric acids were the top three SCFA in all experiments. Also, the fermentation liquids of PS, PS+WAS, and PS+WAS+SDBS were added, respectively, to municipal wastewater to examine their effects on biological municipal wastewater treatment, and the enhancement of both wastewater nitrogen and phosphorus removals was observed compared with no fermentation liquid addition. PMID:20096564

  1. Preliminary results and economics of the New York University process: continuous acid hydrolysis of cellulose, producing glucose for fermentation

    SciTech Connect

    Rugg, B.; Armstrong, P.; Stanton, R.

    1981-01-01

    The title process for the continuous acid hydrolysis of cellulose to glucose was evaluated in both batch- and pilot plant-scales. The optimal temperature and reaction time for batch-scale dilute acid hydrolysis were 232 degrees and 10-20 s, respectively. Comparison of glucose yield from newspaper pulp (10% solids) with sawdust (95% solids) as feedstock indicated that 50-60% conversions of alpha-cellulose to glucose were possible on a pilot-plant scale. Acceptable recovery of glucose (greater than 90%) was best accomplished by centrifugation at glucose concentrations of less than 4% from a 30% solids cake. In general, favorable results with respect to sugar yield and energy consumption were obtained.

  2. Effects of ultrasonic treatment during acid hydrolysis on the yield, particle size and structure of cellulose nanocrystals.

    PubMed

    Guo, Juan; Guo, Xuxia; Wang, Siqun; Yin, Yafang

    2016-01-01

    Ultrasonic treatment is useful for the isolation of cellulose nanocrystals (CNCs). However, the effects of ultrasonic treatment on the structure and properties of CNCs have not been fully understood. We statistically analyzed the variations in yields and dimensions of CNCs prepared using acid hydrolysis, with or without ultrasonic treatment, and illustrated these variations by investigating the CNC structures. The results demonstrated that ultrasonic treatment promoted an increase in yields only for short hydrolysis times, while resulting in CNCs with shorter lengths and narrower dimension distributions. Furthermore, a prolonged acid attack under ultrasonic treatment caused a partial dissociation of cellulose hydrogen bond networks in the CNCs, ultimately resulting in the delamination and disorder of the cellulose crystalline structure, thus leading to a decrease in the width and thickness of the CNCs. This work provides more insights into the mechanisms of ultrasonic treatment on the structure and properties of CNCs. PMID:26453875

  3. Structural features of dilute acid, steam exploded, and alkali pretreated mustard stalk and their impact on enzymatic hydrolysis.

    PubMed

    Kapoor, Manali; Raj, Tirath; Vijayaraj, M; Chopra, Anju; Gupta, Ravi P; Tuli, Deepak K; Kumar, Ravindra

    2015-06-25

    To overcome the recalcitrant nature of biomass several pretreatment methodologies have been explored to make it amenable to enzymatic hydrolysis. These methodologies alter cell wall structure primarily by removing/altering hemicelluloses and lignin. In this work, alkali, dilute acid, steam explosion pretreatment are systematically studied for mustard stalk. To assess the structural variability after pretreatment, chemical analysis, surface area, crystallinity index, accessibility of cellulose, FT-IR and thermal analysis are conducted. Although the extent of enzymatic hydrolysis varies upon the methodologies used, nevertheless, cellulose conversion increases from <10% to 81% after pretreatment. Glucose yield at 2 and 72h are well correlated with surface area and maximum adsorption capacity. However, no such relationship is observed for xylose yield. Mass balance of the process is also studied. Dilute acid pretreatment is the best methodology in terms of maximum sugar yield at lower enzyme loading. PMID:25839820

  4. Antibody-Catalyzed Degradation of Cocaine

    NASA Astrophysics Data System (ADS)

    Landry, Donald W.; Zhao, Kang; Yang, Ginger X.-Q.; Glickman, Michael; Georgiadis, Taxiarchis M.

    1993-03-01

    Immunization with a phosphonate monoester transition-state analog of cocaine provided monoclonal antibodies capable of catalyzing the hydrolysis of the cocaine benzoyl ester group. An assay for the degradation of radiolabeled cocaine identified active enzymes. Benzoyl esterolysis yields ecgonine methyl ester and benzoic acid, fragments devoid of cocaine's stimulant activity. Passive immunization with such an artificial enzyme could provide a treatment for dependence by blunting reinforcement.

  5. Sulfuric acid hydrolysis and detoxification of red alga Pterocladiella capillacea for bioethanol fermentation with thermotolerant yeast Kluyveromyces marxianus.

    PubMed

    Wu, Chien-Hui; Chien, Wei-Chen; Chou, Han-Kai; Yang, Jungwoo; Lin, Hong-Ting Victor

    2014-09-01

    One-step sulfuric acid saccharification of the red alga Pterocladiella capillacea was optimized, and various detoxification methods (neutralization, overliming, and electrodialysis) of the acid hydrolysate were evaluated for fermentation with the thermotolerant yeast Kluyveromyces marxianus. A proximate composition analysis indicated that P. capillacea was rich in carbohydrates. A significant galactose recovery of 81.1 ± 5% was also achieved under the conditions of a 12% (w/v) biomass load, 5% (v/v) sulfuric acid, 121°C, and hydrolysis for 30 min. Among the various detoxification methods, electrodialysis was identified as the most suitable for fermentable sugar recovery and organic acid removal (100% reduction of formic and levulinic acids), even though it failed to reduce the amount of the inhibitor 5-HMF. As a result, K. marxianus fermentation with the electrodialyzed acid hydrolysate of P. capillacea resulted in the best ethanol levels and fermentation efficiency. PMID:24851812

  6. 7-deoxyloganetic acid synthase catalyzes a key 3 step oxidation to form 7-deoxyloganetic acid in Catharanthus roseus iridoid biosynthesis.

    PubMed

    Salim, Vonny; Wiens, Brent; Masada-Atsumi, Sayaka; Yu, Fang; De Luca, Vincenzo

    2014-05-01

    Iridoids are key intermediates required for the biosynthesis of monoterpenoid indole alkaloids (MIAs), as well as quinoline alkaloids. Although most iridoid biosynthetic genes have been identified, one remaining three step oxidation required to form the carboxyl group of 7-deoxyloganetic acid has yet to be characterized. Here, it is reported that virus-induced gene silencing of 7-deoxyloganetic acid synthase (7DLS, CYP76A26) in Catharanthus roseus greatly decreased levels of secologanin and the major MIAs, catharanthine and vindoline in silenced leaves. Functional expression of this gene in Saccharomyces cerevisiae confirmed its function as an authentic 7DLS that catalyzes the 3 step oxidation of iridodial-nepetalactol to form 7-deoxyloganetic acid. The identification of CYP76A26 removes a key bottleneck for expression of iridoid and related MIA pathways in various biological backgrounds. PMID:24594312

  7. Production of 2,3-butanediol from cellulose and Jatropha hulls after ionic liquid pretreatment and dilute-acid hydrolysis

    PubMed Central

    2013-01-01

    Abundant Jatropha waste is a promising renewable feedstock for the production of sugars and 2,3-butanediol fermentation. To obtain high yield of water-soluble products and high concentration of reducing-sugars, ionic liquid (IL) pretreatment and dilute acid hydrolysis at 150°C were combined in this work. The destruction of crystalline structure and increase surface area of biomasses after IL-pretreatment, made their hydrolysis more efficient. Compared with original cellulose, after IL-pretreatment, both the yield and concentration of reducing-sugars increased by 139%, and the water-soluble products yield increased by 128% after hydrolysis. Compared with water-washed Jatropha hulls, after IL-pretreatment, the yield and concentration of reducing-sugars increased by 80% and 76%, respectively, and the water-soluble products yield increased by 70% after hydrolysis. IL-pretreatment benefited the fermentation of Jatropha hull hydrolysate with 66.58% diol yield and its productivity increased from 0.35 to 0.40 g/(L · h). PMID:23958155

  8. Kinetics of Acid-Catalyzed Aldol Condensation Reactions of Aliphatic Aldehydes

    NASA Astrophysics Data System (ADS)

    Elrod, M. J.; Casale, M. T.; Richman, A. R.; Beaver, M. R.; Garland, R. M.; Tolbert, M. A.

    2006-12-01

    While it is well established that organic compounds compose a large fraction of the atmospheric aerosol mass, the mechanisms through which organics are incorporated into atmospheric aerosols are not well understood. Acid-catalyzed reactions of compounds with carbonyl groups have recently been suggested as important pathways for transfer of volatile organics into acidic aerosols. In the present study, ultraviolet-visible (UV-Vis) spectroscopy was used to monitor the kinetics of formation of the products of the aldol condensation reaction of a range of aliphatic aldehydes (C2-C8) The experiments were carried out at various sulfuric acid concentrations and a range of temperatures in order to estimate the rate constants of such reactions on sulfuric acid aerosols under tropospheric conditions. The rate constants were generally found to decrease as the chain length of the aliphatic aldehyde increased (except for acetaldehyde, which had an unusually small rate constant), increase as a function of sulfuric acid concentration as predicted by excess acidity theory, and showed normal Arrhenius behavior as a function of temperature.

  9. Evaluation of bicinchoninic acid as a ligand for copper(I)-catalyzed azide-alkyne bioconjugations.

    PubMed

    Christen, Erik H; Gübeli, Raphael J; Kaufmann, Beate; Merkel, Lars; Schoenmakers, Ronald; Budisa, Nediljko; Fussenegger, Martin; Weber, Wilfried; Wiltschi, Birgit

    2012-09-01

    The Cu(I)-catalyzed cycloaddition of terminal azides and alkynes (click chemistry) represents a highly specific reaction for the functionalization of biomolecules with chemical moieties such as dyes or polymer matrices. In this study we evaluate the use of bicinchoninic acid (BCA) as a ligand for Cu(I) under physiological reaction conditions. We demonstrate that the BCA-Cu(I)-complex represents an efficient catalyst for the conjugation of fluorophores or biotin to alkyne- or azide-functionalized proteins resulting in increased or at least equal reaction yields compared to commonly used catalysts like Cu(I) in complex with TBTA (tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine) or BPAA (bathophenanthroline disulfonic acid). The stabilization of Cu(I) with BCA represents a new strategy for achieving highly efficient bioconjugation reactions under physiological conditions in many application fields. PMID:22821135

  10. Mechanism of silver- and copper-catalyzed decarboxylation reactions of aryl carboxylic acids.

    PubMed

    Xue, Liqin; Su, Weiping; Lin, Zhenyang

    2011-11-28

    Silver- and copper-catalyzed decarboxylation reactions of aryl carboxylic acids were investigated with the aid of density functional theory calculations. The reaction mechanism starts with a carboxylate complex of silver or copper. Decarboxylation occurs via ejecting CO(2) from the carboxylate complex followed by protodemetallation with an aryl carboxylic acid molecule to regenerate the starting complex. Our results indicated that the primary factor to affect the overall reaction barriers is the ortho steric destabilization effect on the starting carboxylate complexes for most cases. Certain ortho substituents that are capable of coordinating with the catalyst metal center without causing significant ring strain stabilize the decarboxylation transition states and reduce the overall reaction barriers. However, the coordination effect is found to be the secondary factor when compared with the ortho effect. PMID:21979246

  11. ESTIMATION OF HYDROLYSIS RATE CONSTANTS OF CARBOXYLIC ACID ESTER AND PHOSPHATE ESTER COMPOUNDS IN AQUEOUS SYSTEMS FROM MOLECULAR STRUCTURE BY SPARC

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid ester and phosphate ester compounds in aqueous non- aqueous and systems strictly from molecular structure. The energy diffe...

  12. Polyphosphate Hydrolysis within Acidic Vacuoles in Response to Amine-Induced Alkaline Stress in the Halotolerant Alga Dunaliella salina

    PubMed Central

    Pick, Uri; Weiss, Meira

    1991-01-01

    The location and mobilization of polyphosphates in response to an amine-induced alkaline stress were studied in the halotolerant alga Dunaliella salina. The following observations suggest that polyphosphates accumulate in acidic vacuoles: (a) Accumulation of large amounts of polyphosphates is manifested as intravacuolar dense osmiophilic bodies in electron micrographs. (b) Uptake of amines into the vacuoles induces massive hydrolysis of polyphosphates, demonstrated by in vivo 31P-nuclear magnetic resonance, and by analysis of hydrolytic products on thin layer chromatograms. The analysis indicates that: (a) Polyphosphate hydrolysis is kinetically correlated with amine accumulation and with the recovery of cytoplasmic pH. (b) The major hydrolytic product is tripolyphosphate. (c) The peak position of the tripolyphosphate terminal phosphate in nuclear magnetic resonance spectra is progressively shifted as the cells recover, indicating that the pH inside the vacuoles increases while the pH in the cytoplasm decreases. (d) In lysed cell preparations, in which vacuoles become exposed to the external pH, mild alkalinization in the absence of amines induces polyphosphate hydrolysis to tripolyphosphates. It is suggested that amine accumulation within vacuoles activates a specific phosphatase, which hydrolyzes long-chain polyphosphates to tripolyphosphates. The hydrolysis increases the capacity of the vacuoles to sequester amines from the cytoplasm probably by releasing protons required to buffer the amine, and leads to recovery of cytoplasmic pH. Thus, polyphosphate hydrolysis provides a high-capacity buffering system that sustains amine compartmentation into vacuoles and protects cytoplasmic pH. ImagesFigure 1Figure 7 PMID:16668514

  13. Production of nanocrystalline cellulose from an empty fruit bunches using sulfuric acid hydrolysis: Effect of reaction time on the molecular characteristics

    NASA Astrophysics Data System (ADS)

    Al-Dulaimi, Ahmed A.; R, Rohaizu; D, Wanrosli W.

    2015-06-01

    Nanocrystalline cellulose (NCC) was isolated from OPEFB pulp via sulfuric acid hydrolysis. The influence of reaction time to the molecular weight and surface charge of the NCC was investigated. Characterization of the product was carried out using zeta potential measurement and gel permeation chromatography test. Zeta potential measurement showed that the surface negative charge significantly increases with increasing reaction time. Gel permeation chromatography test indicates that molecular weight of NCC change variably with increasing of hydrolysis time. (Keywords: Nanocrystalline cellulose; acid hydrolysis; sulfate content; molecular weight)

  14. Investigation of emulsified, acid and acid-alkali catalyzed mesoporous bioactive glass microspheres for bone regeneration and drug delivery.

    PubMed

    Miao, Guohou; Chen, Xiaofeng; Dong, Hua; Fang, Liming; Mao, Cong; Li, Yuli; Li, Zhengmao; Hu, Qing

    2013-10-01

    Acid-catalyzed mesoporous bioactive glass microspheres (MBGMs-A) and acid-alkali co-catalyzed mesoporous bioactive glass microspheres (MBGMs-B) were successfully synthesized via combination of sol-gel and water-in-oil (W/O) micro-emulsion methods. The structural, morphological and textural properties of mesoporous bioactive glass microspheres (MBGMs) were characterized by various techniques. Results show that both MBGMs-A and MBGMs-B exhibit regularly spherical shape but with different internal porous structures, i.e., a dense microstructure for MBGMs-A and internally porous structure for MBGMs-B. (29)Si NMR data reveal that MGBMs have low polymerization degree of silica network. The in vitro bioactivity tests indicate that the apatite formation rate of MBGMs-B was faster than that of MBGMs-A after soaking in simulated body fluid (SBF) solution. Furthermore, the two kinds of MBGMs have similar storage capacity of alendronate (AL), and the release behaviors of AL could be controlled due to their unique porous structure. In conclusion, the microspheres are shown to be promising candidates as bone-related drug carriers and filling materials of composite scaffold for bone repair. PMID:23910338

  15. Isolation of bacterial cellulose nanocrystalline from pineapple peel waste: Optimization of acid concentration in the hydrolysis method

    NASA Astrophysics Data System (ADS)

    Anwar, Budiman; Rosyid, Nurul Huda; Effendi, Devi Bentia; Nandiyanto, Asep Bayu Dani; Mudzakir, Ahmad; Hidayat, Topik

    2016-02-01

    Isolation of needle-shaped bacterial cellulose nanocrystalline with a diameter of 16-64 nm, a fiber length of 258-806 nm, and a degree of crystallinity of 64% from pineapple peel waste using an acid hydrolysis process was investigated. Experimental showed that selective concentration of acid played important roles in isolating the bacterial cellulose nanocrystalline from the cellulose source. To achieve the successful isolation of bacterial cellulose nanocrystalline, various acid concentrations were tested. To confirm the effect of acid concentration on the successful isolation process, the reaction conditions were fixed at a temperature of 50°C, a hydrolysis time of 30 minutes, and a bacterial cellulose-to-acid ratio of 1:50. Pineapple peel waste was used as a model for a cellulose source because to the best of our knowledge, there is no report on the use of this raw material for producing bacterial cellulose nanocrystalline. In fact, this material can be used as an alternative for ecofriendly and cost-free cellulose sources. Therefore, understanding in how to isolate bacterial cellulose nanocrystalline from pineapple peel waste has the potential for large-scale production of inexpensive cellulose nanocrystalline.

  16. Selective heterogeneous acid catalyzed esterification of N-terminal sulfyhdryl fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our interest in thiol fatty acids lies in their antioxidative, free radical scavenging, and metal ion scavenging capabilities as applied to cosmeceutical and skin care formulations. The retail market is filled with products containing the disulfide-containing free fatty acid, lipoic acid. These pr...

  17. Co-hydrolysis of hydrothermal and dilute acid pretreated populus slurries to support development of a high-throughput pretreatment system

    PubMed Central

    2011-01-01

    Background The BioEnergy Science Center (BESC) developed a high-throughput screening method to rapidly identify low-recalcitrance biomass variants. Because the customary separation and analysis of liquid and solids between pretreatment and enzymatic hydrolysis used in conventional analyses is slow, labor-intensive and very difficult to automate, a streamlined approach we term 'co-hydrolysis' was developed. In this method, the solids and liquid in the pretreated biomass slurry are not separated, but instead hydrolysis is performed by adding enzymes to the whole pretreated slurry. The effects of pretreatment method, severity and solids loading on co-hydrolysis performance were investigated. Results For hydrothermal pretreatment at solids concentrations of 0.5 to 2%, high enzyme protein loadings of about 100 mg/g of substrate (glucan plus xylan) in the original poplar wood achieved glucose and xylose yields for co-hydrolysis that were comparable with those for washed solids. In addition, although poplar wood sugar yields from co-hydrolysis at 2% solids concentrations fell short of those from hydrolysis of washed solids after dilute sulfuric acid pretreatment even at high enzyme loadings, pretreatment at 0.5% solids concentrations resulted in similar yields for all but the lowest enzyme loading. Conclusions Overall, the influence of severity on susceptibility of pretreated substrates to enzymatic hydrolysis was clearly discernable, showing co-hydrolysis to be a viable approach for identifying plant-pretreatment-enzyme combinations with substantial advantages for sugar production. PMID:21749707

  18. [The use of enzymatic hydrolysis for isolation of barbituric acid derivatives from blood (as exemplified by phenobarbital and barbamyl)].

    PubMed

    Chuvina, N A; Kolupaeva, A S; Strelova, O Iu; Zabolotskaia, I V; Gorbacheva, T V

    2010-01-01

    Modern isolation techniques by direct extraction with organic solvents or after protein precipitation by various sedimenting or salting-out agents are characterized by low efficiency and do not permit to liberate derivatives of barbituric acid from their complexes with blood proteins. The use of enzymatic hydrolysis makes it possible to break bonds between barbiturates and protein and thereby improve the efficiency of isolation. We performed enzymatic hydrolysis of the model phenobarbital-blood and barbamyl-blood complexes with the use of trypsin, pepsin, chymotrypsin, and papain. The degree of phenobarbital extraction with trypsin and barbamyl was estimated at 62.1 +/- 1.2% and 75.1 +/- 1.6% respectively; in other words, it was 32.7 +/- 1.0% and 51.1 +/- 1.0% higher than that achieved by traditional methods. Certain validation characteristics of the new method are presented. PMID:21265178

  19. Purification and characterization of cannabidiolic-acid synthase from Cannabis sativa L.. Biochemical analysis of a novel enzyme that catalyzes the oxidocyclization of cannabigerolic acid to cannabidiolic acid.

    PubMed

    Taura, F; Morimoto, S; Shoyama, Y

    1996-07-19

    We identified a unique enzyme that catalyzes the oxidocyclization of cannabigerolic acid to cannabidiolic acid (CBDA) in Cannabis sativa L. (CBDA strain). The enzyme, named CBDA synthase, was purified to apparent homogeneity by a four-step procedure: ammonium sulfate precipitation followed by chromatography on DEAE-cellulose, phenyl-Sepharose CL-4B, and hydroxylapatite. The active enzyme consists of a single polypeptide with a molecular mass of 74 kDa and a pI of 6.1. The NH2-terminal amino acid sequence of CBDA synthase is similar to that of Delta1-tetrahydrocannabinolic-acid synthase. CBDA synthase does not require coenzymes, molecular oxygen, hydrogen peroxide, and metal ion cofactors for the oxidocyclization reaction. These results indicate that CBDA synthase is neither an oxygenase nor a peroxidase and that the enzymatic cyclization does not proceed via oxygenated intermediates. CBDA synthase catalyzes the formation of CBDA from cannabinerolic acid as well as cannabigerolic acid, although the kcat for the former (0.03 s-1) is lower than that for the latter (0.19 s-1). Therefore, we conclude that CBDA is predominantly biosynthesized from cannabigerolic acid rather than cannabinerolic acid. PMID:8663284

  20. Assay of phenolic compounds from four species of ber (Ziziphus mauritiana L.) fruits: comparison of three base hydrolysis procedure for quantification of total phenolic acids.

    PubMed

    Memon, Ayaz Ali; Memon, Najma; Bhanger, Muhammad Iqbal; Luthria, Devanand L

    2013-08-15

    The present study was undertaken to investigate the flavonoid profile in four species of ber (Ziziphus mauritiana Lamk.) fruit. The 12 flavonoids identified were quercetin 3-O-robinobioside, quercetin 3-O-rutinoside, quercetin 3'-O-galactoside, quercetin 3'-O-glucoside, quercetin 3'-O-rhamnoside, quercetin 3'-O-pentosylhexoside, quercetin 3-O-6'malonylglucoside, quercetin 3'-O-malonylglucoside, luteolin 7-O-6'malonylglucoside, luteolin 7-O-malonylglucoside, myricetin 3-O-galactoside, and naringenin tri glycoside. This is the first report on extraction of nine additional flavonoids from the ber fruits. In addition, we also compared the impact of three different base hydrolysis techniques namely ultrasonic assisted base hydrolysis (UABH), microwave assisted base hydrolysis (MWABH), and pressurised liquid assisted base hydrolysis (PLABH) for the quantification of total phenolic acids. Nine phenolic acids, protocatechuic acid, p-hydroxybenzoic acid, ferulic acid, chlorogenic acid, vanillic acid, caffeic acid, vanillin, ortho- and para-coumaric acids, were identified and quantified. The three major phenolic acids identified in all four ber species were p-coumaric acid, vanillin and ferulic acids. Higher amounts (p<0.05) of total phenolic acids in all cultivars were obtained with the PLABH technique as compared to other two procedures (UABH and MWABH). PMID:23561136

  1. Hydrolysis of Cellulose by a Mesoporous Carbon-Fe₂(SO₄)₃/γ-Fe₂O₃ Nanoparticle-Based Solid Acid Catalyst.

    PubMed

    Yamaguchi, Daizo; Watanabe, Koki; Fukumi, Shinya

    2016-01-01

    Carbon-based solid acid catalysts have shown significant potential in a wide range of applications, and they have been successfully synthesized using simple processes. Magnetically separable mesoporous carbon composites also have enormous potential, especially in separation and adsorption technology. However, existing techniques have been unable to produce a magnetically separable mesoporous solid acid catalyst because no suitable precursors have been identified. Herein we describe a magnetically separable, mesoporous solid acid catalyst synthesized from a newly developed mesoporous carbon-γ-Fe2O3 nanoparticle composite. This material exhibits an equivalent acid density and catalytic activity in the hydrolysis of microcrystalline cellulose, to that of the cellulose-derived conventional catalyst. Since it is magnetically separable, this material can be readily recovered and reused, potentially reducing the environmental impact of industrial processes to which it is applied. PMID:26856604

  2. Complete amino acid analysis of peptides and proteins after hydrolysis by a mixture of Sepharose-bound peptidases

    PubMed Central

    Bennett, H. P. J.; Elliott, D. F.; Evans, B. E.; Lowry, P. J.; McMartin, C.

    1972-01-01

    Incubation with a mixture of Sepharose-bound peptidases was shown to result in the quantitative release of amino acids from certain peptides and S-aminoethylated proteins. Subtraction of the low background values of amino acids generated by the enzymes enables amino acid ratios of corticotrophin-(1–24)-tetracosapeptide to be determined with a standard deviation on repeat digestions of 3–5%. Good values were obtained for amino acids that are completely or partially destroyed on acid hydrolysis, i.e. tryptophan, tyrosine, serine, asparagine and glutamine. Experiments with peptides containing d-amino acids showed that the enzyme mixture is stereospecific and could therefore be used to detect the presence of d-residues in peptides. The enzyme mixture completely hydrolyses peptide fragments obtained after Edman degradation and should therefore be useful for determining sequences of peptides containing acid-labile amino acid residues. The activities of the bound enzymes were unaltered over a period of 7 months and they provide a simple, reproducible procedure for the quantitative determination of amino acids in peptides and proteins containing l-amino acids. PMID:4349115

  3. Structural studies on colanic acid, the common exopolysaccharide found in the Enterobacteriaceae, by partial acid hydrolysis. Oligosaccharides from colanic acid

    PubMed Central

    Sutherland, I. W.

    1969-01-01

    The exopolysaccharide slime colanic acid has been isolated from representative strains of Escherichia coli, Salmonella typhimurium and Aerobacter cloacae. Analysis showed that each polymer contained glucose, galactose, fucose and glucuronic acid, together with acetate and pyruvate. The molar proportions of these components were 1:1·8:1·9:1:1:1 approximately. On the basis of periodate oxidation of the natural and deacetylated polysaccharide, glucose is proposed as the site of the acetyl groups. The pyruvate is attached to galactose. Three neutral oligosaccharides and ten electrophoretically mobile oligosaccharides were isolated and partially characterized. Four of the fragments were esters of pyruvic acid. Most oligosaccharides were isolated from all three polysaccharide preparations. Three further oligosaccharides were isolated from carboxyl-reduced colanic acid and sodium borotritide was used to label the glucose derived from glucuronic acid in these fragments. One trisaccharide was obtained from periodate-oxidized polysaccharide. On the basis of these oligosaccharides a repeating hexasaccharide unit of the following structure is proposed: [Formula: see text] The significance of this structure in colanic acid biosynthesis is discussed. PMID:4311825

  4. Oxidation of benzene with hydrogen peroxide catalyzed with ferrocene in the presence of pyrazine carboxylic acid

    NASA Astrophysics Data System (ADS)

    Shul'pina, L. S.; Durova, E. L.; Kozlov, Yu. N.; Kudinov, A. R.; Strelkova, T. V.; Shul'pin, G. B.

    2013-12-01

    It is found that ferrocene in the presence of small amounts of pyrazine carboxylic acid (PCA) effectively catalyzes the oxidation of benzene to phenol with hydrogen peroxide. Two main differences upon the oxidation of two different substrates, i.e., cyclohexane and benzene, with the same H2O2-ferrocene-PCA catalytic system are revealed: the rates of benzene oxidation and hydrogen peroxide decomposition are several times lower than the rate of cyclohexane oxidation at close concentrations of both substrates, and the rate constant ratios for the reactions of oxidizing particles with benzene and acetonitrile are significantly lower than would be expected for reactions involving free hydroxyl radicals. The overall rate of hydrogen peroxide decomposition, including both the catalase and oxidase routes, is lower in the presence of benzene than in the presence of cyclohexane. It is suggested on the grounds of these data that a catalytically active particle different from the one generated in the absence of benzene is formed in the presence of benzene. This particle catalyzes hydrogen peroxide decomposition less efficiently than the initial complex and generates a dissimilar oxidizing particle that exhibits higher selectivity. It is shown that reactivity of the system at higher concentrations of benzene differs from that of an initial system not containing an aromatic component with the capability of π-coordination with metal ions.

  5. Electrochemical impedance spectroscopy sensor for ascorbic acid based on copper(I) catalyzed click chemistry.

    PubMed

    Qiu, Suyan; Gao, Sen; Liu, Qida; Lin, Zhenyu; Qiu, Bin; Chen, Guonan

    2011-07-15

    Copper(I) species can be acquired from the reduction of copper(II) by ascorbic acid (AA) in situ, and which in turn quantitative catalyze the azides and alkynes cycloaddition reaction. In this study, propargyl-functionalized ferrocene (propargyl-functionalized Fc) has been modified on the electrode through reacting with azide terminal modified Au electrode via copper(I) catalyzed azides and alkynes cycloaddition (CuAAC) reaction. The electrochemical impedance spectroscopy (EIS) measurement has been applied to test the electron transfer resistance of the Au electrode before and after click reaction. The changes of the fractional surface coverage (θ) with different AA concentrations are characterized. It is found that the θ value has a linear response to the logarithm of AA concentration in the range of 5.0 pmol/L to 1.0 nmol/L with the detection limits of 2.6 pmol/L. The sensor shows a good stability and selectivity. And it has been successfully applied to the AA detection in the real samples (urine) with satisfactory results. PMID:21596552

  6. Membrane protein complexes catalyze both 4- and 3-hydroxylation of cinnamic acid derivatives in monolignol biosynthesis.

    PubMed

    Chen, Hsi-Chuan; Li, Quanzi; Shuford, Christopher M; Liu, Jie; Muddiman, David C; Sederoff, Ronald R; Chiang, Vincent L

    2011-12-27

    The hydroxylation of 4- and 3-ring carbons of cinnamic acid derivatives during monolignol biosynthesis are key steps that determine the structure and properties of lignin. Individual enzymes have been thought to catalyze these reactions. In stem differentiating xylem (SDX) of Populus trichocarpa, two cinnamic acid 4-hydroxylases (PtrC4H1 and PtrC4H2) and a p-coumaroyl ester 3-hydroxylase (PtrC3H3) are the enzymes involved in these reactions. Here we present evidence that these hydroxylases interact, forming heterodimeric (PtrC4H1/C4H2, PtrC4H1/C3H3, and PtrC4H2/C3H3) and heterotrimeric (PtrC4H1/C4H2/C3H3) membrane protein complexes. Enzyme kinetics using yeast recombinant proteins demonstrated that the enzymatic efficiency (V(max)/k(m)) for any of the complexes is 70-6,500 times greater than that of the individual proteins. The highest increase in efficiency was found for the PtrC4H1/C4H2/C3H3-mediated p-coumaroyl ester 3-hydroxylation. Affinity purification-quantitative mass spectrometry, bimolecular fluorescence complementation, chemical cross-linking, and reciprocal coimmunoprecipitation provide further evidence for these multiprotein complexes. The activities of the recombinant and SDX plant proteins demonstrate two protein-complex-mediated 3-hydroxylation paths in monolignol biosynthesis in P. trichocarpa SDX; one converts p-coumaric acid to caffeic acid and the other converts p-coumaroyl shikimic acid to caffeoyl shikimic acid. Cinnamic acid 4-hydroxylation is also mediated by the same protein complexes. These results provide direct evidence for functional involvement of membrane protein complexes in monolignol biosynthesis. PMID:22160716

  7. Kinetic and Modeling Investigation to Provide Design Guidelines for the NREL Dilute-Acid Process Aimed at Total Hydrolysis/Fractionation of Lignocellulosic Biomass: July 1998

    SciTech Connect

    Lee, Y. Y.; Iyer, P.; Xiang, Q.; Hayes, J.

    2004-08-01

    Following up on previous work, subcontractor investigated three aspects of using NREL ''pretreatment'' technology for total hydrolysis (cellulose as well as hemicellulose) of biomass. Whereas historic hydrolysis of biomass used either dilute acid or concentrated acid technology for hydrolysis of both hemicellulose and cellulose, NREL has been pursuing very dilute acid hydrolysis of hemicellulose followed by enzymatic hydrolysis of cellulose. NREL's countercurrent shrinking-bed reactor design for hemicellulose hydrolysis (pretreatment) has, however, shown promise for total hydrolysis. For the first task, subcontractor developed a mathematical model of the countercurrent shrinking bed reactor operation and, using yellow poplar sawdust as a feedstock, analyzed the effect of: initial solid feeding rate, temperature, acid concentration, acid flow rate, Peclet number (a measure of backmixing in liquid flow), and bed shrinking. For the second task, subcontractor used laboratory trials, with yellow poplar sawdust and 0.07 wt% sulfuric acid at various temperatures, to verify the hydrolysis of cellulose to glucose (desired) and decomposition of glucose (undesired) and determine appropriate parameters for use in kinetic models. Unlike cellulose and hemicellulose, lignins, the third major component of biomass, are not carbohydrates that can be broken down into component sugars. They are, however, aromatic complex amorphous phenolic polymers that can likely be converted into low-molecular weight compounds suitable for production of fuels and chemicals. Oxidative degradation is one pathway for such conversion and hydrogen peroxide would be an attractive reagent for this, as it would leave no residuals. For the third task, subcontractor reacted lignin with hydrogen peroxide under various conditions and analyzed the resulting product mix.

  8. Lipase-catalyzed synthesis of fatty acid amide (erucamide) using fatty acid and urea.

    PubMed

    Awasthi, Neeraj Praphulla; Singh, R P

    2007-01-01

    Ammonolysis of fatty acids to the corresponding fatty acid amides is efficiently catalysed by Candida antartica lipase (Novozym 435). In the present paper lipase-catalysed synthesis of erucamide by ammonolysis of erucic acid and urea in organic solvent medium was studied and optimal conditions for fatty amides synthesis were established. In this process erucic acid gave 88.74 % pure erucamide after 48 hour and 250 rpm at 60 degrees C with 1:4 molar ratio of erucic acid and urea, the organic solvent media is 50 ml tert-butyl alcohol (2-methyl-2-propanol). This process for synthesis is economical as we used urea in place of ammonia or other amidation reactant at atmospheric pressure. The amount of catalyst used is 3 %. PMID:17898456

  9. Mechanisms and energetics for acid catalyzed β-D-glucose conversion to 5-hydroxymethylfurfurl.

    PubMed

    Qian, Xianghong

    2011-10-27

    Car-Parrinello based ab initio molecular dynamics (CPMD) coupled with metadynamics (MTD) simulations were carried out to investigate the mechanism and energetics for acid-catalyzed β-d-glucose conversion to 5-hydroxymethylfurfurl (HMF) in water. HMF is a critical intermediate for biomass conversion to biofuels. It was found that protonation of the C2-OH on glucose, the breakage of the C2-O2 bond, and the formation of the C2-O5 bond is the critical rate-limiting step for the direct glucose conversion to HMF without converting to fructose first, contrary to the wide-spread assumption in literature that fructose is the main intermediate for glucose conversion to HMF. The calculated reaction barrier of 30-35 kcal/mol appears to be solvent-induced and is in excellent agreement with experimental observations. PMID:21916465

  10. Efficient acid-catalyzed (18) F/(19) F fluoride exchange of BODIPY dyes.

    PubMed

    Keliher, Edmund J; Klubnick, Jenna A; Reiner, Thomas; Mazitschek, Ralph; Weissleder, Ralph

    2014-07-01

    Fluorine-containing fluorochromes are important validation agents for positron emission tomography imaging compounds, as they can be readily validated in cells by fluorescence imaging. In particular, the (18) F-labeled BODIPY-FL fluorophore has emerged as an important platform, but little is known about alternative (18) F-labeling strategies or labeling on red-shifted fluorophores. In this study we explore acid-catalyzed (18) F/(19) F exchange on a range of commercially available N-hydroxysuccinimidyl ester and maleimide BODIPY fluorophores. We show this method to be a simple and efficient (18) F-labeling strategy for a diverse span of fluorescent compounds, including a BODIPY-modified PARP-1 inhibitor, and amine- and thiol-reactive BODIPY fluorophores. PMID:24596307

  11. Cinchona Urea-Catalyzed Asymmetric Sulfa-Michael Reactions: The Brønsted Acid-Hydrogen Bonding Model.

    PubMed

    Grayson, Matthew N; Houk, K N

    2016-07-27

    The cinchona alkaloid-derived urea-catalyzed asymmetric conjugate addition of aromatic thiols to cycloalkenones was studied using density functional theory (DFT). Deprotonation of the thiol gives a protonated amine that activates the electrophile by Brønsted acid catalysis, while the urea group binds the nucleophilic thiolate by hydrogen bonding. These results demonstrate the generality of the Brønsted acid-hydrogen bonding transition state (TS) model for cinchona alkaloid catalysis that we recently showed to be favored over Wynberg's widely accepted ion pair-hydrogen bonding model and represent the first detailed mechanistic study of a cinchona urea-catalyzed reaction. The conformation of the catalyst methoxy group has a strong effect on the TS, an effect overlooked in previous mechanistic studies of reactions catalyzed by cinchona alkaloids. PMID:27396591

  12. Cholesterol efflux from THP-1 macrophages is impaired by the fatty acid component from lipoprotein hydrolysis by lipoprotein lipase.

    PubMed

    Yang, Yanbo; Thyagarajan, Narmadaa; Coady, Breanne M; Brown, Robert J

    2014-09-01

    Lipoprotein lipase (LPL) is an extracellular lipase that primarily hydrolyzes triglycerides within circulating lipoproteins. Macrophage LPL contributes to atherogenesis, but the mechanisms behind it are poorly understood. We hypothesized that the products of lipoprotein hydrolysis generated by LPL promote atherogenesis by inhibiting the cholesterol efflux ability by macrophages. To test this hypothesis, we treated human THP-1 macrophages with total lipoproteins that were hydrolyzed by LPL and we found significantly reduced transcript levels for the cholesterol transporters ATP binding cassette transporter A1 (ABCA1), ABCG1, and scavenger receptor BI. These decreases were likely due to significant reductions for the nuclear receptors liver-X-receptor-α, peroxisome proliferator activated receptor (PPAR)-α, and PPAR-γ. We prepared a mixture of free fatty acids (FFA) that represented the ratios of FFA species within lipoprotein hydrolysis products, and we found that the FFA mixture also significantly reduced cholesterol transporters and nuclear receptors. Finally, we tested the efflux of cholesterol from THP-1 macrophages to apolipoprotein A-I, and we found that the treatment of THP-1 macrophages with the FFA mixture significantly attenuated cholesterol efflux. Overall, these data show that the FFA component of lipoprotein hydrolysis products generated by LPL may promote atherogenesis by inhibiting cholesterol efflux, which partially explains the pro-atherogenic role of macrophage LPL. PMID:25130461

  13. Integration of mild acid hydrolysis in γ-valerolactone/water system for enhancement of enzymatic saccharification from cotton stalk.

    PubMed

    Wu, Miao; Yan, Zhong Ya; Zhang, Xue Ming; Xu, Feng; Sun, Run Cang

    2016-01-01

    In this study, mild acid hydrolysis using γ-valerolactone (GVL)/water system integrated with enzymatic hydrolysis was carried out for the enhancement of enzymatic saccharification efficiency. The quantitative analysis of soluble carbohydrates and structural characterizations of solid residues were conducted. Results showed that the soluble carbohydrates in the water-phase were mainly composed of monomers and oligomers from xylose and glucose, while the contents of which were depended on the ratio of GVL to water. Moreover, the inhibitors were hardly detected due to the moderate pretreatment severity. Compared with the untreated feedstock, the yields of enzymatic hydrolysis from pretreated samples increased by two-fold with the mixture of 80/20 GVL/H2O. Combined with the amount of glucose (14.6%) dissolved in the water-phase, over 92.6% of glucose in cotton stalk was released and recovered. Based on the comprehensive analysis, treatment with GVL/H2O system provided us a more effective approach for sugar production from biomass. PMID:26476160

  14. Mechanistic Investigation of Acid-Catalyzed Cleavage of Aryl-Ether Linkages: Implications for Lignin Depolymerization

    SciTech Connect

    Sturgeon, M. R.; Kim, S.; Chmely, S. C.; Foust, T. D.; Beckham, G. T.

    2013-01-01

    Carbon-oxygen bonds are the primary inter-monomer linkages lignin polymers in plant cell walls, and as such, catalyst development to cleave these linkages is of paramount importance to deconstruct biomass to its constituent monomers for the production of renewable fuels and chemicals. For many decades, acid catalysis has been used to depolymerize lignin. Lignin is a primary component of plant cell walls, which is connected primarily by aryl-ether linkages, and the mechanism of its deconstruction by acid is not well understood, likely due to its heterogeneous and complex nature compared to cellulose. For effective biomass conversion strategies, utilization of lignin is of significant relevance and as such understanding the mechanisms of catalytic lignin deconstruction to constituent monomers and oligomers is of keen interest. Here, we present a comprehensive experimental and theoretical study of the acid catalysis of a range of dimeric species exhibiting the b-O-4 linkage, the most common inter-monomer linkage in lignin. We demonstrate that the presence of a phenolic species dramatically increases the rate of cleavage in acid at 150 degrees C. Quantum mechanical calculations on dimers with the para-hydroxyl group demonstrate that this acid-catalyzed pathway differs from the nonphenolic dimmers. Importantly, this result implies that depolymerization of native lignin in the plant cell wall will proceed via an unzipping mechanism wherein b-O-4 linkages will be cleaved from the ends of the branched, polymer chains inwards toward the center of the polymer. To test this hypothesis further, we synthesized a homopolymer of b-O-4 with a phenolic hydroxyl group, and demonstrate that it is cleaved in acid from the end containing the phenolic hydroxyl group. This result suggests that genetic modifications to lignin biosynthesis pathways in plants that will enable lower severity processes to fractionate lignin for upgrading and for easier access to the carbohydrate fraction of

  15. A Practical Guide for Predicting the Stereochemistry of Bifunctional Phosphoric Acid Catalyzed Reactions of Imines.

    PubMed

    Reid, Jolene P; Simón, Luis; Goodman, Jonathan M

    2016-05-17

    Chiral phosphoric acids have become powerful catalysts for the stereocontrolled synthesis of a diverse array of organic compounds. Since the initial report, the development of phosphoric acids as catalysts has been rapid, demonstrating the tremendous generality of this catalyst system and advancing the use of phosphoric acids to catalyze a broad range of asymmetric transformations ranging from Mannich reactions to hydrogenations through complementary modes of activation. These powerful applications have been developed without a clear mechanistic understanding of the reasons for the high level of stereocontrol. This Account describes investigations into the mechanism of the phosphoric acid catalyzed addition of nucleophiles to imines, focusing on binaphthol-based systems. In many cases, the hydroxyl phosphoric acid can form a hydrogen bond to the imine while the P═O interacts with the nucleophile. The single catalyst, therefore, activates both the electrophile and the nucleophile, while holding both in the chiral pocket created by the binaphthol and constrained by substituents at the 3 and 3' positions. Detailed geometric and energetic information about the transition states can be gained from calculations using ONIOM methods that combine the advantages of DFT with some of the speed of force fields. These high-level calculations give a quantitative account of the selectivity in many cases, but require substantial computational resources. A simple qualitative model is a useful complement to this complex quantitative model. We summarize our calculations into a working model that can readily be sketched by hand and used to work out the likely sense of selectivity for each reaction. The steric demands of the different parts of the reactants determine how they fit into the chiral cavity and which of the competing pathways is favored. The preferred pathway can be found by considering the size of the substituents on the nitrogen and carbon atoms of the imine electrophile

  16. Lewis Acid Catalyzed Regiospecific Cross-Dehydrative Coupling Reaction of 2-Furylcarbinols with β-Keto Amides or 4-Hydroxycoumarins: A Route to Furyl Enols.

    PubMed

    Miao, Maozhong; Luo, Yi; Li, Hongli; Xu, Xin; Chen, Zhengkai; Xu, Jianfeng; Ren, Hongjun

    2016-06-17

    Lewis acid catalyzed directly dehydrative carbon-carbon bond formation reaction of 2-furylcarbinols with β-keto amides provides a straightforward method for regioselective synthesis of (Z)-furyl enols. Moreover, this Lewis acid catalyzed cross-coupling reaction can be extended to an interesting heterocyclic version featuring a functionalized 3-furyl-4-hydroxycoumarin synthesis. PMID:27224045

  17. Impact of hydrolysis conditions on the detection of mannuronic to guluronic acid ratio in alginate and its derivatives.

    PubMed

    Lu, Jiaojiao; Yang, Hai; Hao, Jie; Wu, Chengling; Liu, Li; Xu, Naiyu; Linhardt, Robert J; Zhang, Zhenqing

    2015-05-20

    Alginate is a linear and acidic polysaccharide, composed of (1 → 4) linked β-D-mannuronic acid (ManA) and α-L-guluronic acid (GulA). The ratio of ManA to GulA (M/G) is one of the most important factors for the application of alginate and its derivatives in various areas. In this work, a robust and accurate method was developed to analyze M/G using high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD). The impact of hydrolysis conditions on the release patterns of ManA and GulA from alginate and its derivatives was investigated. The release patterns of ManA and GulA need to be considered separately to obtain an accurate M/G. Several hydrolysis conditions were established that released ManA and GulA completely and maintained these saccharide residues intact. The proper M/G of alginates from different sources and its derivatives could then be calculated by integration of the corresponding ManA and GulA peaks. PMID:25817657

  18. Acid-catalyzed conversion of xylose, xylan and straw into furfural by microwave-assisted reaction.

    PubMed

    Yemiş, Oktay; Mazza, Giuseppe

    2011-08-01

    Furfural is a biomass derived-chemical that can be used to replace petrochemicals. In this study, the acid-catalyzed conversion of xylose and xylan to furfural by microwave-assisted reaction was investigated at selected ranges of temperature (140-190°C), time (1-30 min), substrate concentration (1:5-1:200 solid:liquid ratio), and pH (2-0.13). We found that a temperature of 180°C, a solid:liquid ratio of 1:200, a residence time of 20 min, and a pH of 1.12 gave the best furfural yields. The effect of different Brønsted acids on the conversion efficiency of xylose and xylan was also evaluated, with hydrochloric acid being found to be the most effective catalyst. The microwave-assisted process provides highly efficient conversion: furfural yields obtained from wheat straw, triticale straw, and flax shives were 48.4%, 45.7%, and 72.1%, respectively. PMID:21620690

  19. A preliminary investigation of acid-catalyzed polymerization reactions of shale oil distillates

    SciTech Connect

    Netzel, D.A.

    1991-04-01

    Sinor (1989) reported that a major specialty market may exist for shale oil as an asphalt blending material. Shale oil can be converted to an asphalt blending material by acid catalyzed condensation and polymerization reactions of the many molecular species comprising the composition of shale oil. To simplify the investigation, crude shale oil was separated by distillation into three distillates of different hydrocarbon and heteroaromatic compositions. These distillates were then treated with two different types of acids to determine the effect of acid type on the end products. Three western shale oil distillates, a naphtha, a middle distillate, and an atmospheric gas oil, were reacted with anhydrous AlCl{sub 3} and 85% H{sub 2}SO{sub 4} under low-severity conditions. At relatively low temperatures, little change in the hydrocarbon composition was noted for the AlCl{sub 3} reactions. AlCl{sub 3}{center dot} (a polymerized product and/or complex) was formed. However, it is assumed that the sludge was mainly the result of heteroaromatic-AlCl{sub 3} reactions.

  20. A preliminary investigation of acid-catalyzed polymerization reactions of shale oil distillates

    SciTech Connect

    Netzel, D.A.

    1991-04-01

    Sinor (1989) reported that a major specialty market may exist for shale oil as an asphalt blending material. Shale oil can be converted to an asphalt blending material by acid catalyzed condensation and polymerization reactions of the many molecular species comprising the composition of shale oil. To simplify the investigation, crude shale oil was separated by distillation into three distillates of different hydrocarbon and heteroaromatic compositions. These distillates were then treated with two different types of acids to determine the effect of acid type on the end products. Three western shale oil distillates, a naphtha, a middle distillate, and an atmospheric gas oil, were reacted with anhydrous AlCl{sub 3} and 85% H{sub 2}SO{sub 4} under low-severity conditions. At relatively low temperatures, little change in the hydrocarbon composition was noted for the AlCl{sub 3} reactions. AlCl{sub 3}{center_dot} (a polymerized product and/or complex) was formed. However, it is assumed that the sludge was mainly the result of heteroaromatic-AlCl{sub 3} reactions.

  1. Highly Amino Acid Selective Hydrolysis of Myoglobin at Aspartate Residues as Promoted by Zirconium(IV)-Substituted Polyoxometalates.

    PubMed

    Ly, Hong Giang T; Absillis, Gregory; Janssens, Rik; Proost, Paul; Parac-Vogt, Tatjana N

    2015-06-15

    SDS-PAGE/Edman degradation and HPLC MS/MS showed that zirconium(IV)-substituted Lindqvist-, Keggin-, and Wells-Dawson-type polyoxometalates (POMs) selectively hydrolyze the protein myoglobin at Asp-X peptide bonds under mildly acidic and neutral conditions. This transformation is the first example of highly sequence selective protein hydrolysis by POMs, a novel class of protein-hydrolyzing agents. The selectivity is directed by Asp residues located on the surface of the protein and is further assisted by electrostatic interactions between the negatively charged POMs and positively charged surface patches in the vicinity of the cleavage site. PMID:25950869

  2. Enhanced enzymatic hydrolysis of poplar bark by combined use of gamma ray and dilute acid for bioethanol production

    NASA Astrophysics Data System (ADS)

    Chung, Byung Yeoup; Lee, Jae Taek; Bai, Hyoung-Woo; Kim, Ung-Jin; Bae, Hyeun-Jong; Gon Wi, Seung; Cho, Jae-Young

    2012-08-01

    Pretreatment of poplar bark with a combination of sulfuric acid (3%, w/w, H2SO4) and gamma irradiation (0-1000 kGy) was performed in an attempt to enhance enzymatic hydrolysis for bioethanol production. The yields of reducing sugar were slightly increased with an increasing irradiation dose, ranging from 35.4% to 51.5%, with a 56.1% reducing sugar yield observed after dilute acid pretreatment. These results clearly showed that soluble sugars were released faster and to a greater extent in dilute acid-pretreated poplar bark than in gamma irradiation-pretreated bark. When combined pretreatment was carried out, a drastic increase in reducing sugar yield (83.1%) was found compared with individual pretreatment, indicating the possibility of increasing the convertibility of poplar bark following combined pretreatment. These findings are likely associated with cellulose crystallinity, lignin modification, and removal of hemicelluloses.

  3. Selective Nickel- and Manganese-Catalyzed Decarboxylative Cross Coupling of Some α,β-Unsaturated Carboxylic Acids with Cyclic Ethers

    PubMed Central

    Zhang, Jia-Xiang; Wang, Yan-Jing; Zhang, Wei; Wang, Nai-Xing; Bai, Cui-Bing; Xing, Ya-Lan; Li, Yi-He; Wen, Jia-Long

    2014-01-01

    A nickel- and manganese-catalyzed decarboxylative cross coupling of α, β-unsaturated carboxylic acids with cyclic ethers such as tetrahydrofuran and 1, 4-dioxane was developed. Oxyalkylation was achieved when nickel acetate was used as catalyst, while manganese acetate promoted the reaction of alkenylation. PMID:25502282

  4. Efficient Synthesis of 3,3'-Mixed Bisindoles via Lewis Acid Catalyzed Reaction of Spiro-epoxyoxindoles and Indoles.

    PubMed

    Hajra, Saumen; Maity, Subrata; Maity, Ramkrishna

    2015-07-17

    An efficient strategy for the synthesis of 3-(3-indolyl)-oxindole-3-methanol has been developed to achieve a Lewis acid catalyzed, highly regioselective ring opening of spiro-epoxyoxindoles with indoles. The method is used for the gram-scale formal total synthesis of (±)-gliocladin C. PMID:26158390

  5. Two-step one-pot synthesis of benzoannulated spiroacetals by Suzuki-Miyaura coupling/acid-catalyzed spiroacetalization.

    PubMed

    Butkevich, Alexey N; Corbu, Andrei; Meerpoel, Lieven; Stansfield, Ian; Angibaud, Patrick; Bonnet, Pascal; Cossy, Janine

    2012-10-01

    Substituted benzoannulated spiroacetals were prepared from (2-haloaryl)alkyl alcohols and dihydropyranyl or dihydrofuranyl pinacol boronates using a Suzuki-Miyaura coupling followed by an acid-catalyzed spirocyclization. Application of the reaction to a glycal boronate provides an approach to annulated spiroacetals in enantiopure form. PMID:22998767

  6. Magnesium ion catalyzed P-N bond hydrolysis in imidazolide-activated nucleotides - Relevance to template-directed synthesis of polynucleotides

    NASA Technical Reports Server (NTRS)

    Kanavarioti, Anastassia; Bernasconi, Claude F.; Doodokyan, Donald L.; Alberas, Diann J.

    1989-01-01

    Results are presented from a detailed study of the P-N bond hydrolysis in guanosine 5-prime-monophosphate 2-methylimidazolide (2-MeImpG) and in guanosine 5-prime-imidazolide (ImpG) in the presence of 0-0.50 M Mg(2+). Pseudo-first-order rate constants of these compounds were obtained as a function of Mg(2+) concentration, for pH values between 6 and 10 and 37 C. It was found that Mg(2+) catalysis was most effective at pH 10, where a 15-fold increase in hydrolysis was achieved in 0.02 M Mg; at 0.2 M, a 115-fold increase was observed. Implication of these results for the mechanism of template-directed oligomerization is discussed.

  7. Multinuclear diffusion NMR spectroscopy and DFT modeling: a powerful combination for unraveling the mechanism of phosphoester bond hydrolysis catalyzed by metal-substituted polyoxometalates.

    PubMed

    Luong, Thi Kim Nga; Shestakova, Pavletta; Mihaylov, Tzvetan T; Absillis, Gregory; Pierloot, Kristine; Parac-Vogt, Tatjana N

    2015-03-01

    A detailed reaction mechanism is proposed for the hydrolysis of the phosphoester bonds in the DNA model substrate bis(4-nitrophenyl) phosphate (BNPP) in the presence of the Zr(IV)-substituted Keggin type polyoxometalate (Et2NH2)8[{α-PW11O39Zr(μ-OH)(H2O)}2]⋅7 H2O (ZrK 2:2) at pD 6.4. Low-temperature (31)P DOSY spectra at pD 6.4 gave the first experimental evidence for the presence of ZrK 1:1 in fast equilibrium with ZrK 2:2 in purely aqueous solution. Moreover, theoretical calculations identified the ZrK 1:1 form as the potentially active species in solution. The reaction intermediates involved in the hydrolysis were identified by means of (1)H/(31)P NMR studies, including EXSY and DOSY NMR spectroscopy, which were supported by DFT calculations. This experimental/theoretical approach enabled the determination of the structures of four intermediate species in which the starting compound BNPP, nitrophenyl phosphate (NPP), or the end product phosphate (P) is coordinated to ZrK 1:1. In the proposed reaction mechanism, BNPP initially coordinates to ZrK 1:1 in a monodentate fashion, which results in hydrolysis of the first phosphoester bond in BNPP and formation of NPP. EXSY NMR studies showed that the bidentate complex between NPP and ZrK 1:1 is in equilibrium with monobound and free NPP. Subsequently, hydrolysis of NPP results in P, which is in equilibrium with its monobound form. PMID:25652658

  8. Substituent Effects on the Hydrolysis of p-Substituted Benzonitriles in Sulfuric Acid Solutions at (25.0± 0.1) °C

    NASA Astrophysics Data System (ADS)

    Abbas, Khamis A.

    2008-09-01

    The rate constants of the hydrolysis of p-substituted benzonitriles with sulfuric acid solutions (18.2 M to 10 M) have been determined spectrophotometrically at (25.1±0.1) °C. It was found that the catalytic activity of sulfuric acid was strongly inhibited by water. The logarithms of the observed rate constants were correlated with different substituent inductive (localized) and resonance (delocalized) constants. The results of the correlation studies indicated that the rate-determining step of the hydrolysis of benzonitriles in 18.2 M sulfuric acid was the addition of a nucleophile, and the hydrolysis was clearly enhanced by the electron-withdrawing inductive effect, while the rate-determining step of the hydrolysis of p-substituted benzonitriles in 10.0 M sulfuric acid was most probably the protonation of benzonitriles, and the rate constants increased by both electron-donating resonance and inductive effects. A mixture of the two mechanisms most probably occurred in 15.3 to 17.0 M sulfuric acid. HSO4 - rather thanwater most probably acted as nucleophile in the hydrolysis of benzonitriles especially at high concentrations of sulfuric acid solutions.

  9. The hydrolysis of polyimides

    NASA Technical Reports Server (NTRS)

    Hoagland, P. D.; Fox, S. W.

    1973-01-01

    Thermal polymerization of aspartic acid produces a polysuccinimide (I), a chain of aspartoyl residues. An investigation was made of the alkaline hydrolysis of the imide rings of (I) which converts the polyimide to a polypeptide. The alkaline hydrolysis of polyimides can be expected to be kinetically complex due to increasing negative charge generated by carboxylate groups. For this reason, a diimide, phthaloyl-DL-aspartoyl-beta-alanine (IIA) was synthesized for a progressive study of the hydrolysis of polyimides. In addition, this diimide (IIA) can be related to thalidomide and might be expected to exhibit similar reactivity during hydrolysis of the phthalimide ring.

  10. Acid-Labile Thermoresponsive Copolymers That Combine Fast pH-Triggered Hydrolysis and High Stability under Neutral Conditions.

    PubMed

    Zhang, Qilu; Hou, Zhanyao; Louage, Benoit; Zhou, Dingying; Vanparijs, Nane; De Geest, Bruno G; Hoogenboom, Richard

    2015-09-01

    Biodegradable polymeric materials are intensively used in biomedical applications. Of particular interest for drug-delivery applications are polymers that are stable at pH 7.4, that is, in the blood stream, but rapidly hydrolyze under acidic conditions, such as those encountered in the endo/lysosome or the tumor microenvironment. However, an increase in the acidic-degradation rate of acid-labile groups goes hand in hand with higher instability of the polymer at pH 7.4 or during storage, thus posing an intrinsic limitation on fast degradation under acidic conditions. Herein, we report that a combination of acid-labile dimethyldioxolane side chains and hydroxyethyl side chains leads to acid-degradable thermoresponsive polymers that are quickly hydrolyzed under slightly acidic conditions but stable at pH 7.4 or during storage. We ascribe these properties to high hydration of the hydroxy-containing collapsed polymer globules in conjunction with autocatalytic acceleration of the hydrolysis reactions by the hydroxy groups. PMID:26212481

  11. Palladium-catalyzed decarboxylative annulation of 2-arylbenzoic acids with [60]fullerene via C-H bond activation.

    PubMed

    Zhou, Dian-Bing; Wang, Guan-Wu

    2015-03-01

    A convenient and highly efficient palladium-catalyzed decarboxylative annulation of 2-arylbenzoic acids with [60]fullerene has been exploited to synthesize the novel and scarce [60]fullerene-fused dihydrophenanthrenes. The use of Lewis acid ZnCl2 is crucial for the success of the present formal [4 + 2] annulation reaction. Plausible reaction pathways leading to the observed products have been proposed, and the electrochemistry of the fullerene products has also been investigated. PMID:25700187

  12. Synthesis of imides via palladium-catalyzed decarboxylative amidation of α-oxocarboxylic acids with secondary amides.

    PubMed

    Xu, Ning; Liu, Jie; Li, Dengke; Wang, Lei

    2016-05-18

    An efficient synthesis of imides has been developed through a Pd-catalyzed decarboxylative amidation of α-oxocarboxylic acids with secondary amides. The reactions of N-substituted N-heteroarene-2-carboxamides with 2-oxo-2-arylacetic acids proceeded smoothly to generate the corresponding products in good yields in the presence of Pd(OAc)2 and K2S2O8. PMID:27143171

  13. Palladium-Catalyzed Room-Temperature Acylative Suzuki Coupling of High-Order Aryl Borons with Carboxylic Acids.

    PubMed

    Si, Shufen; Wang, Chen; Zhang, Nan; Zou, Gang

    2016-05-20

    This note describes a dimethyl dicarbonate-assisted, Pd(OAc)2/PPh3-catalyzed acylative Suzuki coupling of carboxylic acids with diarylborinic acids or tetraarylboronates for practical and efficient synthesis of sterically undemanding aryl ketones at room temperature. More than just cost-effective alternatives to aryl boronic acids, diarylborinic acids and tetraarylboronates displayed higher reactivity in the acylative Suzuki coupling. A variety of alkyl aryl ketones, including those bearing a hydroxy, bromo, or carbonyl group, could be readily obtained in modest to excellent yields. PMID:27100118

  14. Effect of acid hydrolysis combined with heat moisture treatment on structure and physicochemical properties of corn starch.

    PubMed

    Sun, Qingjie; Zhu, Xiaolei; Si, Fumei; Xiong, Liu

    2015-01-01

    Modification of starch led to new products with new desirable properties. Corn starch samples modified by acid hydrolysis combined with heat moisture treatment (AH-HMT) were made by changing pH, moisture content and treated temperature. After modification, swelling power at temperature higher than 75 °C of corn starches decreased while solubility of the starches increased. After AH-HMT, pasting temperature (PT) of all treated starch samples increased. But lower peak viscosity (PKV), trough viscosity (TV) and break down (BD) of most treated starch samples were observed. AH-HMT increased the gel hardness of all treated starches. And the biggest hardness of modified starch gel was 148.419 g, improving 93.471 g compared with native starch gel. The melting temperatures (To, Tp, Tc) of modified starch increased, but the melting range and △H decreased. The X-ray pattern remained practically unchanged with or without AH-HMT. Acid hydrolysis combined with heat moisture treatment (AH-HMT) improved the functional properties of corn starch. PMID:25593372

  15. Three-step biocatalytic reaction using whole cells for efficient production of tyramine from keratin acid hydrolysis wastewater.

    PubMed

    Zhang, Hongjuan; Wei, Yu; Lu, Yang; Wu, Siping; Liu, Qian; Liu, Junzhong; Jiao, Qingcai

    2016-02-01

    Tyramine has been paid more attention in recent years as a significant metabolite of tyrosine and catecholamine drug and an intermediate of medicinal material and some drugs. In this study, an effective, green, and three-step biocatalytic synthesis method for production of tyramine starting from serine in keratin acid hydrolysis wastewater was developed and investigated. Serine deaminase from Escherichia coli was first combined with tyrosine phenol-lyase from Citrobacter koseri, to convert L-serine to L-tyrosine. L-Tyrosine can then be decarboxylated to tyramine by tyrosinede carboxylase from Lactobacillus brevis. All these enzymes originated from recombinant whole cells. Serine deaminaseand tyrosine phenol-lyase could efficiently convert L-serine in wastewater to L-tyrosine at pH 8.0, 37 °C, and Triton X-100 of 0.04% when tyrosine phenol-lyase and its corresponding substrates were sequentially added. Tyrosine conversion rate reached 98 % by L-tyrosine decarboxylase. In scale-up study, the conversion yield of L-serine in wastewater to tyrosine was up to 89 %. L-Tyrosine was decarboxylated to tyramine with a high yield 94 %. Tyramine hydrochloride was obtained with a total yield 84 %. This study has provided an efficient way of recycling keratin acid hydrolysis wastewater to produce tyramine. PMID:26476652

  16. Immobilized phospholipase A1-catalyzed modification of phosphatidylcholine with n-3 polyunsaturated fatty acid.

    PubMed

    Zhao, TingTing; No, Da Som; Kim, Byung Hee; Garcia, Hugo S; Kim, Yangha; Kim, In-Hwan

    2014-08-15

    n-3 Polyunsaturated fatty acids (n-3 PUFA)-enriched phosphatidylcholine (PC) was successfully produced with fatty acid from fish oil and PC from soybean by immobilized phospholipase A1-catalyzed acidolysis. Detailed studies of immobilization were carried out, and Lewatit VP OC 1600 was selected as a carrier for preparation of immobilized phospholipase A1, which was used for modification of PC by acidolysis. For acidolysis of PC with n-3 PUFA, the effects of several parameters, namely, water content, temperature, and enzyme loading on the reaction time course were investigated to determine optimum conditions. The optimum water content, temperature, and enzyme loading were 1.0%, 55 °C, and 20%, respectively. The highest incorporation (57.4 mol%) of n-3 PUFA into PC was obtained at 24h and the yield of PC was 16.7 mol%. The yield of PC increased significantly by application of vacuum, even though a slight decrease of n-3 PUFA incorporation was observed. PMID:24679762

  17. Dual Lewis Acid/Lewis Base Catalyzed Acylcyanation of Aldehydes: A Mechanistic Study.

    PubMed

    Laurell Nash, Anna; Hertzberg, Robin; Wen, Ye-Qian; Dahlgren, Björn; Brinck, Tore; Moberg, Christina

    2016-03-01

    A mechanistic investigation, which included a Hammett correlation analysis, evaluation of the effect of variation of catalyst composition, and low-temperature NMR spectroscopy studies, of the Lewis acid-Lewis base catalyzed addition of acetyl cyanide to prochiral aldehydes provides support for a reaction route that involves Lewis base activation of the acyl cyanide with formation of a potent acylating agent and cyanide ion. The cyanide ion adds to the carbonyl group of the Lewis acid activated aldehyde. O-Acylation by the acylated Lewis base to form the final cyanohydrin ester occurs prior to decomplexation from titanium. For less reactive aldehydes, the addition of cyanide is the rate-determining step, whereas, for more reactive, electron-deficient aldehydes, cyanide addition is rapid and reversible and is followed by rate-limiting acylation. The resting state of the catalyst lies outside the catalytic cycle and is believed to be a monomeric titanium complex with two alcoholate ligands, which only slowly converts into the product. PMID:26592522

  18. Origins of stereoselectivities in chiral phosphoric acid catalyzed allylborations and propargylations of aldehydes.

    PubMed

    Wang, Hao; Jain, Pankaj; Antilla, Jon C; Houk, K N

    2013-02-01

    The chiral BINOL-phosphoric acid catalyzed allylboration and propargylation reactions are studied with density functional theory (B3LYP and B3LYP-D3). Two different models were recently proposed for these reactions by Goodman and our group, respectively. In Goodman's model for allylborations, the catalyst interacts with the boronate pseudoaxial oxygen. By contrast, our model for propargylations predicts that the catalyst interacts with the boronate pseudoequatorial oxygen. In both models, the phosphoric acid stabilizes the transition state by forming a strong hydrogen bond with the oxygen of the boronate and is oriented by a formyl hydrogen bond (Goodman model) and by other electrostatic attractions in our model. Both of these models have now been reinvestigated for both allylborations and propargylations. For the most effective catalyst for these reactions, the lowest energy transition state corresponds to Goodman's axial model, while the best transition state leading to the minor enantiomer involves the equatorial model. The high enantioselectivity observed with only the bulkiest catalyst arises from the steric interactions between the substrates and the bulky groups on the catalyst, and the resulting necessity for distortion of the catalyst in the disfavored transition state. PMID:23298338

  19. Hetropolyacid-Catalyzed Oxidation of Glycerol into Lactic Acid under Mild Base-Free Conditions.

    PubMed

    Tao, Meilin; Yi, Xiaohu; Delidovich, Irina; Palkovits, Regina; Shi, Junyou; Wang, Xiaohong

    2015-12-21

    Lactic acid (LA) is a versatile platform molecule owing to the opportunity to transform this compound into useful chemicals and materials. Therefore, efficient production of LA based on inexpensive renewable feedstocks is of utmost importance for insuring its market availability. Herein, we report the efficient conversion of glycerol into LA catalyzed by heteropolyacids (HPAs) under mild base-free conditions. The catalytic performance of molecular HPAs appears to correlate with their redox potential and Brønsted acidity. Namely, H3 PMo(12)O(40) (HPMo) exhibits the best selectivity towards LA (90 %) with 88 % conversion of glycerol. Loading of HPMo onto a carbon support (HPMo/C) further improves LA productivity resulting in 94 % selectivity at 98 % conversion under optimized reaction conditions. The reaction takes place through the formation of dihydroxyacetone/glyceraldehyde and pyruvaldehyde as intermediates. No leaching of HPMo was observed under the applied reaction conditions and HPMo/C could be recycled 5 times without significant loss of activity. PMID:26611678

  20. Origins of Stereoselectivities in Chiral Phosphoric Acid-Catalyzed Allylborations and Propargylations of Aldehydes

    PubMed Central

    Wang, Hao; Jain, Pankaj; Antilla, Jon C.; Houk, K. N.

    2013-01-01

    The chiral BINOL-phosphoric acid catalyzed allylboration and propargylation reactions are studied with density functional theory (B3LYP and B3LYP-D3). Two different models were recently proposed for these reactions by Goodman and our group, respectively. In Goodman's model for allylborations, the catalyst interacts with the boronate pseudo-axial oxygen. By contrast, our model for propargylations predicts that the catalyst interacts with the boronate pseudo-equatorial oxygen. In both models, the phosphoric acid stabilizes the transition state by forming a strong hydrogen bond with the oxygen of the boronate, and is oriented by a formyl hydrogen bond (Goodman model), and by other electrostatic attractions in our model. Both of these models have now been reinvestigated for both allylborations and propargylations. For the most effective catalyst for these reactions, the lowest energy transition state corresponds to Goodman's axial model, while the best transition state leading to minor enantiomer involves the equatorial model. The high enantioselectivity observed with only the bulkiest catalyst arises from the steric interactions between the substrates and the bulky groups on the catalyst, and the resulting necessity for distortion of the catalyst in the disfavored transition state. PMID:23298338

  1. Cooperative Effects Between Arginine and Glutamic Acid in the Amino Acid-Catalyzed Aldol Reaction.

    PubMed

    Valero, Guillem; Moyano, Albert

    2016-08-01

    Catalysis of the aldol reaction between cyclohexanone and 4-nitrobenzaldehyde by mixtures of L-Arg and of L-Glu in wet dimethyl sulfoxide (DMSO) takes place with higher enantioselectivity (up to a 7-fold enhancement in the anti-aldol for the 1:1 mixture) than that observed when either L-Glu or L-Arg alone are used as the catalysts. These results can be explained by the formation of a catalytically active hydrogen-bonded complex between both amino acids, and demonstrate the possibility of positive cooperative effects in catalysis by two different α-amino acids. Chirality 28:599-605, 2016. © 2016 Wiley Periodicals, Inc. PMID:27362554

  2. Kinetics of Acid-Catalyzed Dehydration of Cyclic Hemiacetals in Organic Aerosol Particles in Equilibrium with Nitric Acid Vapor.

    PubMed

    Ranney, April P; Ziemann, Paul J

    2016-04-28

    Previous studies have shown that 1,4-hydroxycarbonyls, which are often major products of the atmospheric oxidation of hydrocarbons, can undergo acid-catalyzed cyclization and dehydration in aerosol particles to form highly reactive unsaturated dihydrofurans. In this study the kinetics of dehydration of cyclic hemiacetals, the rate-limiting step in this process, was investigated in a series of environmental chamber experiments in which secondary organic aerosol (SOA) containing cyclic hemiacetals was formed from the reaction of n-pentadecane with OH radicals in dry air in the presence of HNO3. A particle beam mass spectrometer was used to monitor the formation and dehydration of cyclic hemiacetals in real time, and SOA and HNO3 were quantified in filter samples by gravimetric analysis and ion chromatography. Measured dehydration rate constants increased linearly with increasing concentration of HNO3 in the gas phase and in SOA, corresponding to catalytic rate constants of 0.27 h(-1) ppmv(-1) and 7.0 h(-1) M(-1), respectively. The measured Henry's law constant for partitioning of HNO3 into SOA was 3.7 × 10(4) M atm(-1), ∼25% of the value for dissolution into water, and the acid dissociation constant was estimated to be <8 × 10(-4), at least a factor of 10(4) less than that for HNO3 in water. The results indicate that HNO3 was only weakly dissociated in the SOA and that dehydration of cyclic hemiacetals was catalyzed by molecular HNO3 rather than by H(+). The Henry's law constant and kinetics relationships measured here can be used to improve mechanisms and models of SOA formation from the oxidation of hydrocarbons in dry air in the presence of NOx, which are conditions commonly used in laboratory studies. The fate of cyclic hemiacetals in the atmosphere, where the effects of higher relative humidity, organic/aqueous phase separation, and acid catalysis by molecular H2SO4 and/or H(+) are likely to be important, is discussed. PMID:27043733

  3. Forms of acid hydrolysis and gley formation and their role in the development of light-colored acid eluvial (Podzolic) horizons

    NASA Astrophysics Data System (ADS)

    Zaidel'Man, F. R.

    2010-04-01

    Nowadays, three processes, namely lessivage, acid hydrolysis, and gleying, are considered as responsible for the development of loamy and clayey podzolic soils. However, as was shown earlier, lessivage is not obligatory for their origin. In view of assessing the reasons for the formation of light-colored acid eluvial horizons, this article deals with the role of acid hydrolysis under aerobic conditions against the background of a percolative water regime and of two forms of gleying in the development of the horizons mentioned above. One form of gleying occurs under permanent anaerobic conditions against the background of a stagnant water regime; the other one is formed under pulsating anaerobic-aerobic conditions against the background of a stagnant-percolative water regime. As a result, three large genetically individual groups of soils are formed: nondifferentiated brown and gley, and differentiated podzolic soils on different parent rocks. The two latter forms of gleying are identical in their effects on the mineral substrates. They cause the iron removal from the soils. Among the three processes considered, the last one (gleying under a stagnant-percolative water regime) is the single reason for the leaching of most of the metals, the formation of light-colored acid eluvial horizons and their clay depletion, and for the differentiation of the soil profile.

  4. The Effect of Organic Solvents and Other Parameters on Trypsin-Catalyzed Hydrolysis of Na-Benzoyl-arginine-p-nitroanilide. A Project-Oriented Biochemical Experiment

    NASA Astrophysics Data System (ADS)

    Correia, L. C.; Bocewicz, A. C.; Esteves, S. A.; Pontes, M. G.; Versieux, L. M.; Teixeira, S. M. R.; Santoro, M. M.; Bemquerer, M. P.

    2001-11-01

    The study of enzymatic catalysis is a classical biochemistry experiment for undergraduate classes. We propose the utilization of the serine protease trypsin to discuss several parameters affecting enzyme catalysis. Hydrolysis of the chromogenic substrate Na -benzoyl-arginine-p-nitroanilide (BApNA) was followed by spectrophotometric monitoring. The optimal pH and temperature values were found to be 8.0 and 40 °C, respectively. Km and Vmax values were obtained by adjustment to Michaelis-Menten, Lineweaver-Burke, and Hanes equations. We then investigated the effect of organic solvents (a series of alcohols) on the hydrolysis of the chromogenic substrate. The reaction rate was reduced in the presence of methanol and further reduced by ethanol, 1-propanol, and 2-propanol, when compared to the data obtained with buffer. Finally the students were asked to measure the molar absorptivity of p-nitrophenol in the presence of the alcohols employed for the kinetic experiments. Thus they could learn that the value of this parameter varies with the solvent. These experiments were designed as a project-oriented approach to teach biochemistry methodologies and theoretical aspects of enzyme kinetics. They took about four months with four to six hours per week spent in the laboratory.

  5. Progressive deconstruction of Arundo donax Linn. to fermentable sugars by acid catalyzed ionic liquid pretreatment.

    PubMed

    You, Ting-Ting; Zhang, Li-Ming; Xu, Feng

    2016-01-01

    Acid enhanced ionic liquid (IL) 1-n-butyl-3-methylimidazolium chloride ([C4 mim]Cl) pretreatment has shown great potential for boosting the yield of sugars from biomass cost-effectively and environmental-friendly. Pretreatment with shorter processing time will promote the commercial viability. In this work, pretreatment of reduced Amberlyst catalysis time of 34 min was demonstrated to be the most effective among time-varying pretreatments, evidenced by partial removal of hemicellulose and cellulose crystal transformation of Arundo donax Linn. A higher fermentable sugar concentration of 10.42 g/L (2% substrate) was obtained after 72 h of saccharification than the others. Total processing time to reach 92% glucose yield was cut down to approximately 26 h. Progressive deconstruction of crop cell wall was occurred with increased catalysis time by gradual releasing of H3O(+) of Amberlyst. However, vast lignin re-deposited polymers on fibers could hinder further enzymatic hydrolysis. These discoveries provide new insights into a more economic pretreatment for bioethanol production. PMID:26363822

  6. A rapid hydrolysis method and DABS-Cl derivatization for complete amino acid analysis of octreotide acetate by reversed phase HPLC.

    PubMed

    Akhlaghi, Yousef; Ghaffari, Solmaz; Attar, Hossein; Alamir Hoor, Amir

    2015-11-01

    Octreotide as a synthetic cyclic octapeptide is a somatostatin analog with longer half-life and more selectivity for inhibition of the growth hormone. The acetate salt of octreotide is currently used for medical treatment of somatostatin-related disorders such as endocrine and carcinoid tumors, acromegaly, and gigantism. Octreotide contains both cysteine and tryptophan residues which make the hydrolysis part of its amino acid analysis procedure very challenging. The current paper introduces a fast and additive-free method which preserves tryptophan and cysteine residues during the hydrolysis. Using only 6 M HCl, this hydrolysis process is completed in 30 min at 150 °C. This fast hydrolysis method followed by pre-column derivatization of the released amino acids with 4-N,N-dimethylaminoazobenzene-4'-sulfonyl chloride (DABS-Cl) which takes only 20 min, makes it possible to do the complete amino acid analysis of an octreotide sample in a few hours. The highly stable-colored DABS-Cl derivatives can be detected in 436 nm in a reversed phase chromatographic system, which eliminates spectral interferences to a great extent. The amino acid analysis of octreotide acetate including hydrolysis, derivatization, and reversed phase HPLC determination was validated according to International Conference of Harmonization (ICH) guidelines. PMID:26002809

  7. Further studies on the glycerol teichoic acid of walls of Staphylococcus lactis I3. Location of the phosphodiester groups and their susceptibility to hydrolysis with alkali

    PubMed Central

    Archibald, A. R.; Baddiley, J.; Heckels, J. E.; Heptinstall, S.

    1971-01-01

    1. The teichoic acid from walls of Staphylococcus lactis I3 is readily degraded in dilute alkali. 2. Degradation proceeds by selective hydrolysis of that phosphodiester group attached to an alcoholic hydroxyl group of the N-acetylglucosamine and gives a repeating unit in high yield. 3. Further studies on a different repeating unit isolated by partial acid hydrolysis have shown that the glycerol diphosphate is attached to the 4-hydroxyl group of the N-acetylglucosamine and not to the 3-hydroxyl group as was proposed earlier. 4. The susceptibility towards hydrolysis by alkali of other structural types of teichoic acid has been examined and found to vary markedly according to their structure. PMID:5158917

  8. Integrated chemical and multi-scale structural analyses for the processes of acid pretreatment and enzymatic hydrolysis of corn stover.

    PubMed

    Chen, Longjian; Li, Junbao; Lu, Minsheng; Guo, Xiaomiao; Zhang, Haiyan; Han, Lujia

    2016-05-01

    Corn stover was pretreated with acid under moderate conditions (1.5%, w/w, 121°C, 60min), and kinetic enzymolysis experiments were performed on the pretreated substrate using a mixture of Celluclast 1.5L (20FPU/g dry substrate) and Novozyme 188 (40CBU/g dry substrate). Integrated chemical and multi-scale structural methods were then used to characterize both processes. Chemical analysis showed that acid pretreatment removed considerable hemicellulose (from 19.7% in native substrate to 9.28% in acid-pretreated substrate) and achieved a reasonably high conversion efficiency (58.63% of glucose yield) in the subsequent enzymatic hydrolysis. Multi-scale structural analysis indicated that acid pretreatment caused structural changes via cleaving acetyl linkages, solubilizing hemicellulose, relocating cell wall surfaces and enlarging substrate porosity (pore volume increased from 0.0067cm(3)/g in native substrate to 0.019cm(3)/g in acid-pretreated substrate), thereby improving the polysaccharide digestibility. PMID:26876990

  9. Effect of surfactant on hydrolysis products accumulation and short-chain fatty acids (SCFA) production during mesophilic and thermophilic fermentation of waste activated sludge: kinetic studies.

    PubMed

    Zhang, Peng; Chen, Yinguang; Zhou, Qi

    2010-09-01

    In the presence of surfactant sodium dodecylbenzene sulfonate (SDBS) the hydrolysis products accumulation and the short-chain fatty acids (SCFA) production during waste activated sludge fermentation under mesophilic and thermophilic conditions was compared with that at room temperature. In order to understand the mechanism of significant amounts of mesophilic and thermophilic hydrolysis products and SCFA observed in the presence of surfactant, the kinetic models at different SDBS dosages were developed. It was found that SDBS increased the mesophilic and thermophilic hydrolysis rate significantly, and the maximum specific utilization of hydrolysis products increased at low SDBS and decreased at high one. However, the observed maximum specific utilization of SCFA decreased seriously with SDBS increase. In the presence of SDBS the decay rate of acidogenic bacteria not only was lower than that in the absence of SDBS but decreased with the increase of SDBS under either mesophilic or thermophilic conditions. PMID:20409704

  10. Lewis acid promoted ruthenium(II)-catalyzed etherifications by selective hydrogenation of carboxylic acids/esters.

    PubMed

    Li, Yuehui; Topf, Christoph; Cui, Xinjiang; Junge, Kathrin; Beller, Matthias

    2015-04-20

    Ethers are of fundamental importance in organic chemistry and they are an integral part of valuable flavors, fragrances, and numerous bioactive compounds. In general, the reduction of esters constitutes the most straightforward preparation of ethers. Unfortunately, this transformation requires large amounts of metal hydrides. Presented herein is a bifunctional catalyst system, consisting of Ru/phosphine complex and aluminum triflate, which allows selective synthesis of ethers by hydrogenation of esters or carboxylic acids. Different lactones were reduced in good yields to the desired products. Even challenging aromatic and aliphatic esters were reduced to the desired products. Notably, the in situ formed catalyst can be reused several times without any significant loss of activity. PMID:25728921

  11. Mechanisms of lactone hydrolysis in neutral and alkaline conditions.

    PubMed

    Gómez-Bombarelli, Rafael; Calle, Emilio; Casado, Julio

    2013-07-19

    The neutral and base-catalyzed hydrolysis of nine carboxylic acid esters was studied using a hybrid supermolecule-PCM approach including six explicit water molecules. The molecules studied included two linear esters, four β-lactones, two γ-lactones, and one δ-lactone: ethyl acetate and methyl formate, β-propiolactone, β-butyrolactone, β-isovalerolactone, diketene (4-methyleneoxetan-2-one), γ-butyrolactone, 2(5H)-furanone, and δ-valerolactone. DFT and ab initio methods were used to analyze the features of the various possible hydrolysis mechanisms. For all compounds, reasonable to very good qualitative and quantitative agreement with experimental work was found, and evidence is provided to support long-standing hypotheses regarding the role of solvent molecule as a base catalyst. In addition, novel evidence is presented for the existence of an elimination-addition mechanism in the basic hydrolysis of diketene. A parallel work addresses the acid-catalyzed hydrolysis of lactones. PMID:23758295

  12. In situ pressurized biphase acid hydrolysis, a promising approach to produce bioactive diosgenin from the tubers of Dioscorea Zingiberensis

    PubMed Central

    Yang, Huan; Yin, Hua-wu; Wang, Xue-wei; Li, Zi-hao; Shen, Yu-ping; Jia, Xiao-bin

    2015-01-01

    Background: The tubers of Dioscorea zingiberensis, is the most favorable plant material for the production of diosgenin, an important bioactive steroidal sapogenin and requisite precursor of cortin, contraceptive and sex hormone, which is the only desired product after steroidal saponins from the tubers are hydrolyzed. Objective: A novel technology, in situ pressurized biphase acid hydrolysis was constructed for the first time to simplify extraction process, increase extraction yield and decrease the consumption of mineral acids. Materials and Methods: The method developed in this study has been optimized and verified through orthogonal design for experiments, in which the effect and their significance of four factors including molarity of acid, temperature, extraction duration and sample quantity have been investigated. Then, the comparison was conducted among the newly developed method and other reported methods. The diosgenin was also isolated by column chromatography, followed by mass spectrometry and nuclear magnetic resonance analysis for structural confirmation. Results: It was found that temperature is the factor of the most influence and the highest extraction yield at 2.21% has been achieved while the hydrolysis was performed at 140°C for 1.5 h in 0.20M H2SO4 solution with petroleum ether under an uncontrolled pressurized condition. And, compared to the others, the increment in the extraction yield of new method was 20.8 ~ 74.0%, and the consumption of H2SO4 was reduced by 17 times at most. Conclusion: This method is a much cleaner and more efficient approach for extraction of diosgenin from the tubers, and is promising to be applied in pharmaceutical industry. PMID:26246743

  13. AMP kinase activation with AICAR further increases fatty acid oxidation and blunts triacylglycerol hydrolysis in contracting rat soleus muscle

    PubMed Central

    Smith, Angela C; Bruce, Clinton R; Dyck, David J

    2005-01-01

    Muscle contraction increases glucose uptake and fatty acid (FA) metabolism in isolated rat skeletal muscle, due at least in part to an increase in AMP-activated kinase activity (AMPK). However, the extent to which AMPK plays a role in the regulation of substrate utilization during contraction is not fully understood. We examined the acute effects of 5-aminoimidazole-4-carboxamide riboside (AICAR; 2 mm), a pharmacological activator of AMPK, on FA metabolism and glucose oxidation during high intensity tetanic contraction in isolated rat soleus muscle strips. Muscle strips were exposed to two different FA concentrations (low fatty acid, LFA, 0.2 mm; high fatty acid, HFA, 1 mm) to examine the role that FA availability may play in both exogenous and endogenous FA metabolism with contraction and AICAR. Synergistic increases in AMPK α2 activity (+45%; P < 0.05) were observed after 30 min of contraction with AICAR, which further increased exogenous FA oxidation (LFA: +71%, P < 0.05; HFA: +46%, P < 0.05) regardless of FA availability. While there were no changes in triacylglycerol (TAG) esterification, AICAR did increase the ratio of FA partitioned to oxidation relative to TAG esterification (LFA: +65%, P < 0.05). AICAR significantly blunted endogenous TAG hydrolysis (LFA: −294%, P < 0.001; HFA: −117%, P < 0.05), but had no effect on endogenous oxidation rates, suggesting a better matching between TAG hydrolysis and subsequent oxidative needs of the muscle. There was no effect of AICAR on the already elevated rates of glucose oxidation during contraction. These results suggest that FA metabolism is very sensitive to AMPK α2 stimulation during contraction. PMID:15774529

  14. Enantioselective Synthesis of 1,2-Dihydronaphthalene-1-carbaldehydes by Addition of Boronates to Isochromene Acetals Catalyzed by Tartaric Acid

    PubMed Central

    Luan, Yi; Barbato, Keith S.; Moquist, Philip N.; Kodama, Tomohiro; Schaus, Scott E.

    2015-01-01

    Tartaric acid is an ideal asymmetric catalyst as it is abundant, cheap, and environmentally friendly. (+)-Tartaric acid was found to catalyze a novel enantioselective [4 + 2] cycloaddition of isochromene acetals and vinylboronates. A variety of substituted isochromene acetals were tolerated, furnishing the desired dihydronaphthalenes and dihydrobenzofluorene products in good yields. High enantiomeric ratios (up to 98.5:1.5) and excellent diastereoselectivities (all >99:1) were observed employing 10 mol % of (+)-tartaric acid as the catalyst, in combination with 5 mol % of Ho(OTf)3. PMID:25715172

  15. Cu-Catalyzed Consecutive Hydroxylation and Aerobic Oxidative Cycloetherification under Microwave Conditions: Entry to 2-Arylbenzofuran-3-carboxylic Acids.

    PubMed

    Xu, Tianlong; Zhang, Ensheng; Wang, Dejian; Wang, Yan; Zou, Yong

    2015-05-01

    A convenient one-pot synthesis of 2-arylbenzofuran-3-carboxylic acids from (E)-2-(2-bromophenyl)-3-phenylacrylic acids via Cu-catalyzed consecutive hydroxylation and aerobic oxidative cycloetherification under microwave conditions has been developed. This protocol employed the reagent combination of Cu(OAc)2, 1,10-phen, and KOH in DMSO/H2O (1:1), all of which are cost-effective, readily available, and easily removable from the reaction mixture. Utilizing this synthetic protocol, various 2-arylbenzofuran-3-carboxylic acids as well as the natural product moracin M have been synthesized in satisfactory yields under mild conditions. PMID:25836742

  16. Acid Hydrolysis and Molecular Density of Phytoglycogen and Liver Glycogen Helps Understand the Bonding in Glycogen α (Composite) Particles

    PubMed Central

    Powell, Prudence O.; Sullivan, Mitchell A.; Sheehy, Joshua J.; Schulz, Benjamin L.; Warren, Frederick J.; Gilbert, Robert G.

    2015-01-01

    Phytoglycogen (from certain mutant plants) and animal glycogen are highly branched glucose polymers with similarities in structural features and molecular size range. Both appear to form composite α particles from smaller β particles. The molecular size distribution of liver glycogen is bimodal, with distinct α and β components, while that of phytoglycogen is monomodal. This study aims to enhance our understanding of the nature of the link between liver-glycogen β particles resulting in the formation of large α particles. It examines the time evolution of the size distribution of these molecules during acid hydrolysis, and the size dependence of the molecular density of both glucans. The monomodal distribution of phytoglycogen decreases uniformly in time with hydrolysis, while with glycogen, the large particles degrade significantly more quickly. The size dependence of the molecular density shows qualitatively different shapes for these two types of molecules. The data, combined with a quantitative model for the evolution of the distribution during degradation, suggest that the bonding between β into α particles is different between phytoglycogen and liver glycogen, with the formation of a glycosidic linkage for phytoglycogen and a covalent or strong non-covalent linkage, most probably involving a protein, for glycogen as most likely. This finding is of importance for diabetes, where α-particle structure is impaired. PMID:25799321

  17. The photochemical production of organic nitrates from α-pinene and loss via acid-dependent particle phase hydrolysis

    NASA Astrophysics Data System (ADS)

    Rindelaub, Joel D.; McAvey, Kevin M.; Shepson, Paul B.

    2015-01-01

    The hydroxyl radical oxidation of α-pinene under high NOx conditions was studied in a photochemical reaction chamber to investigate organic nitrate (RONO2) production and fate between the gas and particle phases. We report an organic nitrate yield of 26 ± 7% from the oxidation of this monoterpene in the presence of nitric oxide (NO). However, the apparent organic nitrate yield was found to be highly dependent on both chamber relative humidity (RH) and seed aerosol acidity, likely as a result of particle phase hydrolysis. The particle phase loss of organic nitrates is believed to increase the gas to particle partitioning within the system, leading to decreased RONO2 yields in both the gas and particle phases at elevated RH and an apparent non-equilibrium partitioning mechanism. The hydrolysis of particle phase organic nitrates in this study, starting at low chamber relative humidity, implies that aerosol partitioning of organic nitrates may be an important sink for atmospheric NOx and may have a significant impact on regional air quality.

  18. NAD(+)-independent aldehyde oxidase catalyzes cofactor balanced 3-hydroxypropionic acid production in Klebsiella pneumoniae.

    PubMed

    Li, Ying; Liu, Luo; Tian, Pingfang

    2014-11-01

    The limiting step for biosynthesis of 3-hydroxypropionic acid (3-HP) in Klebsiella pneumoniae is the conversion of 3-hydroxypropionaldehyde (3-HPA) to 3-HP. This reaction is catalyzed by aldehyde dehydrogenase (ALDH) with NAD(+) as a cofactor. Although NAD(+)-dependent ALDH overexpression facilitates 3-HP biosynthesis, ALDH activity decreases and 3-HP stops accumulation when NAD(+) is exhausted. Here, we show that an NAD(+)-independent aldehyde oxidase (AOX) from Pseudomonas sp. AIU 362 holds promise for cofactor-balanced 3-HP production in K. pneumoniae. The AOX coding gene, alod, was heterologously expressed in E. coli and K. pneumoniae, and their respective crude cell extracts showed 38.1 U/mg and 16.6 U/mg activities toward propionaldehyde. The recombinant K. pneumoniae expressing alod showed 13.7 U/mg activity toward 3-HPA; K m and V max were 6.7 mM and 42 μM/min/mg, respectively. In shake-flask cultures, the recombinant K. pneumoniae strain produced 0.89 g 3-HP/l, twice that of the control. Moreover, it produced 3 g 3-HP/l during 24 h fed-batch cultivation in a 5 l bioreactor. The results indicate that AOX can efficiently convert 3-HPA into 3-HP. PMID:24980850

  19. PNPCB heterocycles via thermal and Lewis acid catalyzed trans-hydroborations.

    PubMed

    Fan, Louie; Stephan, Douglas W

    2016-05-31

    The compounds iPr2P(BH3)N3, tBu2PC[triple bond, length as m-dash]CR (R = Ph , tBu , Cy ) and Ph2PC[triple bond, length as m-dash]CR (R = Ph , tBu , Cy ) were reacted to give the products tBu2P(C[triple bond, length as m-dash]CR)NP(BH3)iPr2 (R = Ph , tBu , Cy ) and Ph2P(C[triple bond, length as m-dash]CR)NP(BH3)iPr2 (R = Ph , tBu , Cy ). Subsequent thermally induced or Lewis acid catalyzed intramolecular hydroboration of and afforded the PNPCB heterocyclic compounds Ph2P(C[double bond, length as m-dash]CHPh)NP(BH2)iPr2 and tBu2P(C[double bond, length as m-dash]CHPh)NP(BH2)iPr2, respectively. Compounds and were crystallographically characterized and the mechanisms and implications for the synthesis of inorganic heterocycles are considered. PMID:27177164

  20. Highly Sensitive Determination of Ethylenediaminetetraacetic Acid Using a Permanganate Chemiluminescence System Catalyzed by Gold Nanoparticles.

    PubMed

    Abolhasani, Jafar; Hassanzadeh, Javad; Ghorbani-Kalhor, Ebrahim

    2015-01-01

    A sensitive and selective chemiluminescence method was developed to determine ethylenediaminetetraacetic acid (EDTA) in water samples. It was observed that gold nanoparticles (AuNPs) catalyzed chemiluminescence (CL) reactions of permanganate-aldehydes which underwent an enhancement effect in the presence of iron(III) ions (Fe(3+)). This effect is more remarkable in the presence of EDTA, and a highly intensive CL emission is created in proportion to the EDTA concentration. These observations form the basis of the method for the high sensitive determination of EDTA in the 0.83 - 167 nmol L(-1) concentration range, with a detection limit of 0.25 nmol L(-1). The relative standard deviations for five repeated measurements of 5, 40 and 140 nmol L(-1) EDTA were 1.14, 2.48 and 0.65%, respectively. The method has good selectivity toward EDTA, and there are no interferences from other ions. The offered method has good precision, and was satisfactorily used for the sensitive determination of EDTA in water samples. PMID:26256596

  1. The cytosolic carboxypeptidases CCP2 and CCP3 catalyze posttranslational removal of acidic amino acids

    PubMed Central

    Tort, Olivia; Tanco, Sebastián; Rocha, Cecilia; Bièche, Ivan; Seixas, Cecilia; Bosc, Christophe; Andrieux, Annie; Moutin, Marie-Jo; Avilés, Francesc Xavier; Lorenzo, Julia; Janke, Carsten

    2014-01-01

    The posttranslational modification of carboxy-terminal tails of tubulin plays an important role in the regulation of the microtubule cytoskeleton. Enzymes responsible for deglutamylating tubulin have been discovered within a novel family of mammalian cytosolic carboxypeptidases. The discovery of these enzymes also revealed the existence of a range of other substrates that are enzymatically deglutamylated. Only four of six mammalian cytosolic carboxypeptidases had been enzymatically characterized. Here we complete the functional characterization of this protein family by demonstrating that CCP2 and CCP3 are deglutamylases, with CCP3 being able to hydrolyze aspartic acids with similar efficiency. Deaspartylation is a novel posttranslational modification that could, in conjunction with deglutamylation, broaden the range of potential substrates that undergo carboxy-terminal processing. In addition, we show that CCP2 and CCP3 are highly regulated proteins confined to ciliated tissues. The characterization of two novel enzymes for carboxy-terminal protein modification provides novel insights into the broadness of this barely studied process. PMID:25103237

  2. Laser-Based Measurement of Refractive Index Changes: Kinetics of 2,3-Epoxy-1-propanol Hydrolysis.

    ERIC Educational Resources Information Center

    Spencer, Bert; Zare, Richard N.

    1988-01-01

    Describes an experiment in which a simple laser-based apparatus is used for measuring the change in refractive index during the acid-catalyzed hydrolysis of glycidol into glycerine. Gives a schematic of the experimental setup and discusses the kinetic analysis. (MVL)

  3. A heteromeric membrane-bound prenyltransferase complex from hop catalyzes three sequential aromatic prenylations in the bitter acid pathway.

    PubMed

    Li, Haoxun; Ban, Zhaonan; Qin, Hao; Ma, Liya; King, Andrew J; Wang, Guodong

    2015-03-01

    Bitter acids (α and β types) account for more than 30% of the fresh weight of hop (Humulus lupulus) glandular trichomes and are well known for their contribution to the bitter taste of beer. These multiprenylated chemicals also show diverse biological activities, some of which have potential benefits to human health. The bitter acid biosynthetic pathway has been investigated extensively, and the genes for the early steps of bitter acid synthesis have been cloned and functionally characterized. However, little is known about the enzyme(s) that catalyze three sequential prenylation steps in the β-bitter acid pathway. Here, we employed a yeast (Saccharomyces cerevisiae) system for the functional identification of aromatic prenyltransferase (PT) genes. Two PT genes (HlPT1L and HlPT2) obtained from a hop trichome-specific complementary DNA library were functionally characterized using this yeast system. Coexpression of codon-optimized PT1L and PT2 in yeast, together with upstream genes, led to the production of bitter acids, but no bitter acids were detected when either of the PT genes was expressed by itself. Stepwise mutation of the aspartate-rich motifs in PT1L and PT2 further revealed the prenylation sequence of these two enzymes in β-bitter acid biosynthesis: PT1L catalyzed only the first prenylation step, and PT2 catalyzed the two subsequent prenylation steps. A metabolon formed through interactions between PT1L and PT2 was demonstrated using a yeast two-hybrid system, reciprocal coimmunoprecipitation, and in vitro biochemical assays. These results provide direct evidence of the involvement of a functional metabolon of membrane-bound prenyltransferases in bitter acid biosynthesis in hop. PMID:25564559

  4. Progressing batch hydrolysis process

    DOEpatents

    Wright, J.D.

    1985-01-10

    A progressive batch hydrolysis process is disclosed for producing sugar from a lignocellulosic feedstock. It comprises passing a stream of dilute acid serially through a plurality of percolation hydrolysis reactors charged with feed stock, at a flow rate, temperature and pressure sufficient to substantially convert all the cellulose component of the feed stock to glucose. The cooled dilute acid stream containing glucose, after exiting the last percolation hydrolysis reactor, serially fed through a plurality of pre-hydrolysis percolation reactors, charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the hemicellulose component of said feedstock to glucose. The dilute acid stream containing glucose is cooled after it exits the last prehydrolysis reactor.

  5. The fatty acid desaturase 2 (FADS2) gene product catalyzes Δ4 desaturation to yield n-3 docosahexaenoic acid and n-6 docosapentaenoic acid in human cells

    PubMed Central

    Park, Hui Gyu; Park, Woo Jung; Kothapalli, Kumar S. D.; Brenna, J. Thomas

    2015-01-01

    Docosahexaenoic acid (DHA) is a Δ4-desaturated C22 fatty acid and the limiting highly unsaturated fatty acid (HUFA) in neural tissue. The biosynthesis of Δ4-desaturated docosanoid fatty acids 22:6n-3 and 22:5n-6 are believed to proceed via a circuitous biochemical pathway requiring repeated use of a fatty acid desaturase 2 (FADS2) protein to perform Δ6 desaturation on C24 fatty acids in the endoplasmic reticulum followed by 1 round of β-oxidation in the peroxisomes. We demonstrate here that the FADS2 gene product can directly Δ4-desaturate 22:5n-3→22:6n-3 (DHA) and 22:4n-6→22:5n-6. Human MCF-7 cells lacking functional FADS2-mediated Δ6-desaturase were stably transformed with FADS2, FADS1, or empty vector. When incubated with 22:5n-3 or 22:4n-6, FADS2 stable cells produce 22:6n-3 or 22:5n-6, respectively. Similarly, FADS2 stable cells when incubated with d5-18:3n-3 show synthesis of d5-22:6n-3 with no labeling of 24:5n-3 or 24:6n-3 at 24 h. Further, both C24 fatty acids are shown to be products of the respective C22 fatty acids via elongation. Our results demonstrate that the FADS2 classical transcript mediates direct Δ4 desaturation to yield 22:6n-3 and 22:5n-6 in human cells, as has been widely shown previously for desaturation by fish and many other organisms.—Park, H. G., Park, W. J., Kothapalli, K. S. D., Brenna, J. T. The fatty acid desaturase 2 (FADS2) gene product catalyzes Δ4 desaturation to yield n-3 docosahexaenoic acid and n-6 docosapentaenoic acid in human cells. PMID:26065859

  6. Protease- and Acid-catalyzed Labeling Workflows Employing 18O-enriched Water

    PubMed Central

    Klingler, Diana; Hardt, Markus

    2013-01-01

    steps and reaction intermediates in complex proteolytic pathway reactions. Furthermore, the PALeO-reaction allows us to identify proteolytic enzymes such as the serine protease trypsin that is capable to rebind its cleavage products and catalyze the incorporation of a second 18O-atom. Such "double-labeling" enzymes can be used for postdigestion 18O-labeling, in which peptides are exclusively labeled by the carboxyl oxygen exchange reaction. Our third strategy extends labeling employing 18O-enriched water beyond enzymes and uses acidic pH conditions to introduce 18O-stable isotope signatures into peptides. PMID:23462971

  7. Response surface optimization of corn stover pretreatment using dilute phosphoric acid for enzymatic hydrolysis and ethanol production.

    PubMed

    Avci, Ayse; Saha, Badal C; Dien, Bruce S; Kennedy, Gregory J; Cotta, Michael A

    2013-02-01

    Dilute H(3)PO(4) (0.0-2.0%, v/v) was used to pretreat corn stover (10%, w/w) for conversion to ethanol. Pretreatment conditions were optimized for temperature, acid loading, and time using central composite design. Optimal pretreatment conditions were chosen to promote sugar yields following enzymatic digestion while minimizing formation of furans, which are potent inhibitors of fermentation. The maximum glucose yield (85%) was obtained after enzymatic hydrolysis of corn stover pretreated with 0.5% (v/v) acid at 180°C for 15min while highest yield for xylose (91.4%) was observed from corn stover pretreated with 1% (v/v) acid at 160°C for 10min. About 26.4±0.1g ethanol was produced per L by recombinant Escherichia coli strain FBR5 from 55.1±1.0g sugars generated from enzymatically hydrolyzed corn stover (10%, w/w) pretreated under a balanced optimized condition (161.81°C, 0.78% acid, 9.78min) where only 0.4±0.0g furfural and 0.1±0.0 hydroxylmethyl furfural were produced. PMID:23334017

  8. Dissociation and hydrolysis of ammonia-borane with solid acids and carbon dioxide: An efficient hydrogen generation system

    NASA Astrophysics Data System (ADS)

    Chandra, Manish; Xu, Qiang

    Pure hydrogen generation under mild conditions in a controllable way is important for portable devices. Recently, we have found that an aq. ammonia-borane (NH 3BH 3) solution is a potential hydrogen source with noble metal catalysts. For practical use, the development of a low-cost, efficient and safe system is desired. In this study, we found that solid acids such as cation exchange resins and zeolites, which are low-cost and safe, also exhibit high activities for the dissociation and hydrolysis of NH 3BH 3 to generate hydrogen with an H 2 to NH 3BH 3 ratio up to 3.0 at room temperature. The reaction rate depends on the type of solid acid. Especially, Dowex and Amberlyst, the two low-cost solid acids often used as catalysts in a variety of reactions, exhibit reaction kinetics higher than the noble metal catalysts. Carbon dioxide is also active as an acid for this reaction. The reaction products in solution have been identified by 11B NMR, and the evolved gases have been analyzed by mass spectrometry which indicates high purity hydrogen. This new system may have a high potential for application in fuel cells.

  9. N2O5 Hydrolysis on a Liquid Surface Coated by Long Chain Fatty Acid and Alcohol monolayers

    NASA Astrophysics Data System (ADS)

    Cosman, L. M.; Knopf, D. A.; Bertram, A. K.

    2006-12-01

    Heterogeneous reactions between aerosol particles and gas phase species play a crucial role in the atmosphere and can influence the composition of the atmosphere. Heterogeneous reactions of N2O5 with aqueous particles have a significant effect on the global NOx budget, which influences tropospheric concentrations of O3 and OH. The hydrolysis of N2O5 on sulfuric acid particles has been studied extensively and is found to be very efficient. However, surface active organic molecules are common constituents of aqueous atmospheric particles and their effect on heterogeneous reactions is still poorly understood. Previous studies have shown that organic coatings on atmospheric droplets can change the uptake of gaseous species substantially. It is important to know heterogeneous reaction rates for the hydrolysis of N2O5 on organic coated aqueous particles in order to accurately predict the oxidative capacity of the troposphere. Here we present the investigation of heterogeneous reactions of N2O5 on aqueous sulfuric acid coated by an organic monolayer. A new parallel plate flow reactor (PPFR) has been developed to allow heterogeneous reactions to be studied on a planar aqueous surface coated with an organic monolayer. In addition, a theoretical framework has been developed to derive heterogeneous kinetics taking into consideration the effects of diffusion. The PPFR coupled to a chemical ionization mass spectrometer was employed to measure reactive uptake coefficients for N2O5 on aqueous H2SO4 solutions coated with long chain fatty acids and alcohols. One key feature of this new technique is the ability to characterize the monolayer prior to kinetic measurements to determine the surface pressure and packing density of the organic molecules on the surface. Monolayers of octadecanol, hexadecanol, stearic acid, and phytanic acid were studied on 60 wt % H2SO4 solutions at 274 K. It was found that a monolayer of octadecanol reduced the uptake coefficient of N2O5 with H2SO4 by

  10. Enzymatic hydrolysis of cuttlefish (Sepia officinalis) and sardine (Sardina pilchardus) viscera using commercial proteases: effects on lipid distribution and amino acid composition.

    PubMed

    Kechaou, Emna Soufi; Dumay, Justine; Donnay-Moreno, Claire; Jaouen, Pascal; Gouygou, Jean-Paul; Bergé, Jean-Pascal; Amar, Raja Ben

    2009-02-01

    Total lipid and phospholipid recovery as well as amino acid quality and composition from cuttlefish (Sepia officinalis) and sardine (Sardina pilchardus) were compared. Enzymatic hydrolyses were performed using the three proteases Protamex, Alcalase, and Flavourzyme by the pH-stat method (24 h, pH 8, 50 degrees C). Three fractions were generated: an insoluble sludge, a soluble aqueous phase, and an oily phase. For each fraction, lipids, phospholipids, and proteins were quantified. Quantitative and qualitative analyses of the raw material and hydrolysates were performed. The degree of hydrolysis (DH) for cuttlefish viscera was 3.2% using Protamex, 6.8% using Flavourzyme, and 7% using Alcalase. DH for sardine viscera was 1.9% (using Flavourzyme), 3.1% (using Protamex) and 3.3% (using Alcalase). Dry matter yields of all hydrolysis reactions increased in the aqueous phases. Protein recovery following hydrolysis ranged from 57.2% to 64.3% for cuttlefish and 57.4% to 61.2% for sardine. Tissue disruption following protease treatment increased lipid extractability, leading to higher total lipid content after hydrolysis. At least 80% of the lipids quantified in the raw material were distributed in the liquid phases for both substrates. The hydrolysed lipids were richer in phospholipids than in the lipids extracted by classical chemical extraction, especially after Flavourzyme hydrolysis for cuttlefish and Alcalase hydrolysis for sardine. The total amino acid content differed according to the substrate and the enzyme used. However, regardless of the raw material or the protease used, hydrolysis increased the level of essential amino acids in the hydrolysates, thereby increasing their potential nutritional value for feed products. PMID:19217554

  11. Silylium ion-catalyzed challenging Diels-Alder reactions: the danger of hidden proton catalysis with strong Lewis acids.

    PubMed

    Schmidt, Ruth K; Müther, Kristine; Mück-Lichtenfeld, Christian; Grimme, Stefan; Oestreich, Martin

    2012-03-01

    The pronounced Lewis acidity of tricoordinate silicon cations brings about unusual reactivity in Lewis acid catalysis. The downside of catalysis with strong Lewis acids is, though, that these do have the potential to mediate the formation of protons by various mechanisms, and the thus released Brønsted acid might even outcompete the Lewis acid as the true catalyst. That is an often ignored point. One way of eliminating a hidden proton-catalyzed pathway is to add a proton scavenger. The low-temperature Diels-Alder reactions catalyzed by our ferrocene-stabilized silicon cation are such a case where the possibility of proton catalysis must be meticulously examined. Addition of the common hindered base 2,6-di-tert-butylpyridine resulted, however, in slow decomposition along with formation of the corresponding pyridinium ion. Quantitative deprotonation of the silicon cation was observed with more basic (Mes)(3)P to yield the phosphonium ion. A deuterium-labeling experiment verified that the proton is abstracted from the ferrocene backbone. A reasonable mechanism of the proton formation is proposed on the basis of quantum-chemical calculations. This is, admittedly, a particular case but suggests that the use of proton scavengers must be carefully scrutinized, as proton formation might be provoked rather than prevented. Proton-catalyzed Diels-Alder reactions are not well-documented in the literature, and a representative survey employing TfOH is included here. The outcome of these catalyses is compared with our silylium ion-catalyzed Diels-Alder reactions, thereby clearly corroborating that hidden Brønsted acid catalysis is not operating with our Lewis acid. Several simple-looking but challenging Diels-Alder reactions with exceptionally rare dienophile/enophile combinations are reported. Another indication is obtained from the chemoselectivity of the catalyses. The silylium ion-catalyzed Diels-Alder reaction is general with regard to the oxidation level of the

  12. Practical asymmetric synthesis of the herbicide (S)-indanofan via lipase-catalyzed kinetic resolution of a diol and stereoselective acid-catalyzed hydrolysis of a chiral epoxide.

    PubMed

    Tanaka, Ken; Yoshida, Kenji; Sasaki, Chiduko; Osano, Yasuko T

    2002-05-01

    Racemic indanofan [(+/-)-1] was efficiently converted to enantiopure (S)-indanofan [(S)-1] by a combination of enzymatic resolution and chemical inversion techniques. An additional important technique is the use of an o-xylene complex of a hemiketal (S)-3c as a precursor, which can be quantitatively converted to (S)-indanofan and easily purified by recrystallization from o-xylene. PMID:11975580

  13. Theoretical study of the hydrolysis of ethyl benzoate in acidic aqueous solution using the QM/MC/FEP method

    NASA Astrophysics Data System (ADS)

    Kaweetirawatt, Thanayuth; Kokita, Yohei; Iwai, Shiho; Sumimoto, Michinori; Hori, Kenji

    2012-09-01

    The hydrolysis of ethyl benzoate in acidic condition was theoretically studied for models with two (2W) or three water (3WA) molecules at the B3LYP/6-311++G(d,p) levels of theory. Activation free energy of solvation in aqueous solution (ΔG‡cal) was calculated using the QM/MC/FEP method. The value of the 2W model in aqueous solution was calculated to be smaller by more than 5.0 kcal mol-1 than the observed value (26.0 kcal mol-1 at 298 K). The position of the third water molecule in the 3WA model plays an essential role in producing the ΔG‡cal value (26.4 kcal mol-1) consistent with the experimental value.

  14. Probing the "additive effect" in the proline and proline hydroxamic acid catalyzed asymmetric addition of nitroalkanes to cyclic enones.

    PubMed

    Hanessian, Stephen; Govindan, Subramaniyan; Warrier, Jayakumar S

    2005-11-01

    The effect of chirality and steric bulk of 2,5-disubstituted piperazines as additives in the conjugate addition of 2-nitropropane to cyclohexenone, catalyzed by l-proline, was investigated. Neither chirality nor steric bulk affects the enantioselectivity of addition, which gives 86-93% ee in the presence of achiral and chiral nonracemic 2,5-disubstituted piperazines. Proline hydroxamic acid is shown for the first time to be an effective organocatalyst in the same Michael reaction. PMID:16189834

  15. Non-catalytic steam hydrolysis of fats

    SciTech Connect

    Deibert, M.C.

    1992-08-28

    Hydrolysis of fats and oils produces fatty acid and glycerol. The catalyzed, liquid phase Colgate-Emry process, state-of-the-art, produces impure products that require extensive energy investment for their purification to commercial grade. Non-catalytic steam hydrolysis may produce products more easily purified. A bench-scale hydrolyzer was designed and constructed to contact descending liquid fat or oil with rising superheated steam. Each of the five stages in the reactor was designed similar to a distillation column stage to promote intimate liquid-gas contact. Degree of hydrolysis achieved in continuous tests using tallow feed were 15% at 280C and 35% at 300C at a tallow-to-steam mass feed ratio of 4.2. At a feed ratio of 9.2, the degree of hydrolysis was 21% at 300C. Decomposition was strongly evident at 325C but not at lower temperatures. Soybean oil rapidly polymerized under reaction conditions. Batch tests at 320C produced degrees of hydrolyses of between 44% and 63% using tallow and palm oil feeds. Over 95% fatty acids were present in a clean, readily separated organic portion of the overhead product from most tests. The test reactor had serious hydraulic resistance to liquid down-flow which limited operation to very long liquid residence times. These times are in excess of those that tallow and palm oil are stable at the reaction temperature. Little glycerol and extensive light organics were produced indicating that unexplained competing reactions to hydrolysis occurred in the experimental system. Further tests using an improved reactor will be required.

  16. Effect of carboxylic acid adsorption on the hydrolysis and sintered properties of aluminum nitride powder

    SciTech Connect

    Egashira, Makoto; Shimizu, Yasuhiro; Takao, Yuji; Yamaguchi, Ryoji; Ishikawa, Yasuhiro . Dept. of Materials Science and Engineering)

    1994-07-01

    To suppress the reactivity of AlN powder with water, chemical surface modification with carboxylic acids has been investigated. It was found that the chemical stability of AlN powder increased as the number of carbon atoms in carboxylic acids used for the surface treatment increased. Among the carboxylic acids tested, stearic acid was the most promising from the viewpoint of the chemical stability of the treated powder and the thermal conductivity of the sintered ceramics prepared by cold isostatic pressing and pressureless sintering.

  17. Site- and species-specific hydrolysis rates of heroin.

    PubMed

    Szöcs, Levente; Orgován, Gábor; Tóth, Gergő; Kraszni, Márta; Gergó, Lajos; Hosztafi, Sándor; Noszál, Béla

    2016-06-30

    The hydroxide-catalyzed non-enzymatic, simultaneous and consecutive hydrolyses of diacetylmorphine (DAM, heroin) are quantified in terms of 10 site- and species-specific rate constants in connection with also 10 site- and species-specific acid-base equilibrium constants, comprising all the 12 coexisting species in solution. This characterization involves the major and minor decomposition pathways via 6-acetylmorphine and 3-acetylmorphine, respectively, and morphine, the final product. Hydrolysis has been found to be 18-120 times faster at site 3 than at site 6, depending on the status of the amino group and the rest of the molecule. Nitrogen protonation accelerates the hydrolysis 5-6 times at site 3 and slightly less at site 6. Hydrolysis rate constants are interpreted in terms of intramolecular inductive effects and the concomitant local electron densities. Hydrolysis fraction, a new physico-chemical parameter is introduced and determined to quantify the contribution of the individual microspecies to the overall hydrolysis. Hydrolysis fractions are depicted as a function of pH. PMID:27130543

  18. The effect of several organic acids on phytate phosphorus hydrolysis in broiler chicks.

    PubMed

    Liem, A; Pesti, G M; Edwards, H M

    2008-04-01

    Supplementation of some organic acids to a P-deficient diet has been shown to improve phytate P utilization. Two experiments were conducted from 0 to 16 d in battery brooders to determine the effect of various organic acids supplementation on phytate P utilization. In both experiments, birds were fed P-deficient corn and soybean meal-based diets. In experiment 1, citric acid, malic acid, fumaric acid, and EDTA were supplemented. Experiment 2 had a 2 x 2 factorial design with 2 sources of Met, 2-hydroxy-4-(methylthio) butanoic acid (HMB) and dl-Met, with or without 500 U/kg of phytase. In experiment 1, the addition of citric, malic, and fumaric acids increased percentage of bone ash, but only the effect of citric acid was significant. The addition of citric and malic acids also significantly increased the retention of P and phytate P (P<0.05). In experiment 2, the addition of phytase to the diet significantly increased 16-d BW gain, feed intake, percentage of bone ash, milligrams of bone ash, phytate P disappearance, and decreased the incidence of P-deficiency rickets. Methionine source did not affect 16-d BW gain, feed intake, feed efficiency, milligrams of bone ash, or P rickets incidence. However, the birds fed HMB had a higher percentage of bone ash and phytate P disappearance compared with the groups fed dl-Met only when phytase was added to the diets. The additions of citric acid and HMB improved phytate P utilization. However, the reason why some organic acids are effective whereas others are not is not apparent. PMID:18339989

  19. Stereochemical features of the hydrolysis of 9,10-epoxystearic acid catalysed by plant and mammalian epoxide hydrolases.

    PubMed Central

    Summerer, Stephan; Hanano, Abdulsamie; Utsumi, Shigeru; Arand, Michael; Schuber, Francis; Blée, Elizabeth

    2002-01-01

    cis-9,10-epoxystearic acid was used as a tool to probe the active sites of epoxide hydrolases (EHs) of mammalian and plant origin. We have compared the stereochemical features of the hydrolysis of this substrate catalysed by soluble and membrane-bound rat liver EHs, by soluble EH (purified to apparent homogeneity) obtained from maize seedlings or celeriac roots, and by recombinant soybean EH expressed in yeast. Plant EHs were found to differ in their enantioselectivity, i.e. their ability to discriminate between the two enantiomers of 9,10-epoxystearic acid. For example, while the maize enzyme hydrated both enantiomers at the same rate, the EH from soybean exhibited very high enantioselectivity in favour of 9R,10S-epoxystearic acid. This latter enzyme also exhibited a strict stereoselectivity, i.e. it hydrolysed the racemic substrate with a very high enantioconvergence, yielding a single chiral diol product, threo-9R,10R-dihydroxystearic acid. Soybean EH shared these distinctive stereochemical features with the membrane-bound rat liver EH. The stereochemical outcome of these enzymes probably results from a stereoselective attack by the nucleophilic residue on the oxirane ring carbon having the (S)-configuration, leading to the presumed (in plant EH) covalent acyl-enzyme intermediate. In sharp contrast, the reactions catalysed by cytosolic rat liver EH exhibited a complete absence of enantioselectivity and enantioconvergence; this latter effect might be ascribed to a regioselective formation of the acyl-enzyme intermediate involving C-10 of 9,10-epoxystearic acid, independent of its configuration. Thus, compared with soybean EH, the active site of rat liver soluble EH displays a very distinct means of anchoring the oxirane ring of the fatty acid epoxides, and therefore appears to be a poor model for mapping the catalytic domain of plant EHs. PMID:12020347

  20. Stereochemical features of the hydrolysis of 9,10-epoxystearic acid catalysed by plant and mammalian epoxide hydrolases.

    PubMed

    Summerer, Stephan; Hanano, Abdulsamie; Utsumi, Shigeru; Arand, Michael; Schuber, Francis; Blée, Elizabeth

    2002-09-01

    cis-9,10-epoxystearic acid was used as a tool to probe the active sites of epoxide hydrolases (EHs) of mammalian and plant origin. We have compared the stereochemical features of the hydrolysis of this substrate catalysed by soluble and membrane-bound rat liver EHs, by soluble EH (purified to apparent homogeneity) obtained from maize seedlings or celeriac roots, and by recombinant soybean EH expressed in yeast. Plant EHs were found to differ in their enantioselectivity, i.e. their ability to discriminate between the two enantiomers of 9,10-epoxystearic acid. For example, while the maize enzyme hydrated both enantiomers at the same rate, the EH from soybean exhibited very high enantioselectivity in favour of 9R,10S-epoxystearic acid. This latter enzyme also exhibited a strict stereoselectivity, i.e. it hydrolysed the racemic substrate with a very high enantioconvergence, yielding a single chiral diol product, threo-9R,10R-dihydroxystearic acid. Soybean EH shared these distinctive stereochemical features with the membrane-bound rat liver EH. The stereochemical outcome of these enzymes probably results from a stereoselective attack by the nucleophilic residue on the oxirane ring carbon having the (S)-configuration, leading to the presumed (in plant EH) covalent acyl-enzyme intermediate. In sharp contrast, the reactions catalysed by cytosolic rat liver EH exhibited a complete absence of enantioselectivity and enantioconvergence; this latter effect might be ascribed to a regioselective formation of the acyl-enzyme intermediate involving C-10 of 9,10-epoxystearic acid, independent of its configuration. Thus, compared with soybean EH, the active site of rat liver soluble EH displays a very distinct means of anchoring the oxirane ring of the fatty acid epoxides, and therefore appears to be a poor model for mapping the catalytic domain of plant EHs. PMID:12020347