Science.gov

Sample records for acid catalyzed reaction

  1. Solvent effects in acid-catalyzed biomass conversion reactions.

    PubMed

    Mellmer, Max A; Sener, Canan; Gallo, Jean Marcel R; Luterbacher, Jeremy S; Alonso, David Martin; Dumesic, James A

    2014-10-27

    Reaction kinetics were studied to quantify the effects of polar aprotic organic solvents on the acid-catalyzed conversion of xylose into furfural. A solvent of particular importance is γ-valerolactone (GVL), which leads to significant increases in reaction rates compared to water in addition to increased product selectivity. GVL has similar effects on the kinetics for the dehydration of 1,2-propanediol to propanal and for the hydrolysis of cellobiose to glucose. Based on results obtained for homogeneous Brønsted acid catalysts that span a range of pKa values, we suggest that an aprotic organic solvent affects the reaction kinetics by changing the stabilization of the acidic proton relative to the protonated transition state. This same behavior is displayed by strong solid Brønsted acid catalysts, such as H-mordenite and H-beta. PMID:25214063

  2. Acid-catalyzed reactions of hexanal on sulfuric acid particles: Identification of reaction products

    NASA Astrophysics Data System (ADS)

    Garland, Rebecca M.; Elrod, Matthew J.; Kincaid, Kristi; Beaver, Melinda R.; Jimenez, Jose L.; Tolbert, Margaret A.

    While it is well established that organics compose a large fraction of the atmospheric aerosol mass, the mechanisms through which organics are incorporated into atmospheric aerosols are not well understood. Acid-catalyzed reactions of compounds with carbonyl groups have recently been suggested as important pathways for transfer of volatile organics into acidic aerosols. In the present study, we use the aerodyne aerosol mass spectrometer (AMS) to probe the uptake of gas-phase hexanal into ammonium sulfate and sulfuric acid aerosols. While both deliquesced and dry non-acidic ammonium sulfate aerosols showed no organic uptake, the acidic aerosols took up substantial amounts of organic material when exposed to hexanal vapor. Further, we used 1H-NMR, Fourier transform infrared (FTIR) spectroscopy and GC-MS to identify the products of the acid-catalyzed reaction of hexanal in acidic aerosols. Both aldol condensation and hemiacetal products were identified, with the dominant reaction products dependent upon the initial acid concentration of the aerosol. The aldol condensation product was formed only at initial concentrations of 75-96 wt% sulfuric acid in water. The hemiacetal was produced at all sulfuric acid concentrations studied, 30-96 wt% sulfuric acid in water. Aerosols up to 88.4 wt% organic/11.1 wt% H 2SO 4/0.5 wt% water were produced via these two dimerization reaction pathways. The UV-VIS spectrum of the isolated aldol condensation product, 2-butyl 2-octenal, extends into the visible region, suggesting these reactions may impact aerosol optical properties as well as aerosol composition. In contrast to previous suggestions, no polymerization of hexanal or its products was observed at any sulfuric acid concentration studied, from 30 to 96 wt% in water.

  3. Acid-catalyzed Heterogeneous Reactions in SOA Formation

    NASA Astrophysics Data System (ADS)

    Ng, N.; Keywood, M.; Varutbangkul, V.; Gao, S.; Loewer, E.; Surratt, J.; Richard, F. C.; John, S. H.

    2003-12-01

    The importance of heterogeneous reactions in secondary organic aerosol (SOA) formation has recently excited a great deal of interest in the aerosol community. Jang and Kamens (2001) showed enhanced aerosol yield from aldehydes, which can be produced by atmospheric photochemical reactions, in the presence of acidic seed. They suggest that the carbonyl functional groups of the aldehydes further react in the aerosol phase via hydration, polymerization, and hemiacetal/acetal formation with alcohols at an accelerated rate in the presence of acid. Jang et al. (2003) demonstrated similar results using a flow reactor and Czoschke et al. (in press) qualitatively showed increased yields for isoprene and alpha-pinene ozonolysis in the presence of acidic seed. While these findings are intriguing and important, the conditions under which the experiments were carried out were atmospherically unrealistic. A series of SOA formation experiments have been carried out in the Caltech Indoor Chamber Facility, which is comprised of dual 28 m3 FEP Teflon chambers, with the flexibility to carry out both dark ozonolysis and photochemical OH oxidation reactions. Cycloheptene and alpha-pinene were oxidized in the presence of neutral seed under dry (<10% RH) and humid (50% RH) conditions and in the presence of acidic seed under humid (50% RH) conditions. The SOA yields for these experiments will be presented, and the extent of the influence of acid-catalyzed reactions on SOA yield will be discussed. Reference List 1. Cocker, D. R. III. and R. C. Flagan and J. H. Seinfeld, State-of-the-art chamber facility for studying atmospheric aerosol chemistry, Environmental Science and Technology, 35, 2594-2601, 2001. 2. Czoschke, N. M., M. Jang, and R. M. Kamens, Effect of acid seed on biogenic sceondary organic aerosol growth, Atmospheric Environment, In press. 3. Jang, M., S. Lee, and R. M. Kamens, Organic aerosol growth by acid-catalyzed heterogeneous reactions of octanal in a flow reactor

  4. Lewis Acid Catalyzed Selective Reactions of Donor-Acceptor Cyclopropanes with 2-Naphthols.

    PubMed

    Kaicharla, Trinadh; Roy, Tony; Thangaraj, Manikandan; Gonnade, Rajesh G; Biju, Akkattu T

    2016-08-16

    Lewis acid-catalyzed reactions of 2-substituted cyclopropane 1,1-dicarboxylates with 2-naphthols is reported. The reaction exhibits tunable selectivity depending on the nature of Lewis acid employed and proceed as a dearomatization/rearomatization sequence. With Bi(OTf)3 as the Lewis acid, a highly selective dehydrative [3+2] cyclopentannulation takes place leading to the formation of naphthalene-fused cyclopentanes. Interestingly, engaging Sc(OTf)3 as the Lewis acid, a Friedel-Crafts-type addition of 2-naphthols to cyclopropanes takes place, thus affording functionalized 2-naphthols. Both reactions furnished the target products in high regioselectivity and moderate to high yields. PMID:27391792

  5. Palladium-catalyzed cross-coupling reactions of aryl boronic acids with aryl halides in water.

    PubMed

    Wang, Shaoyan; Zhang, Zhiqiang; Hu, Zhizhi; Wang, Yue; Lei, Peng; Chi, Haijun

    2009-01-01

    An efficient Suzuki cross-coupling reaction using a variety of aryl halides in neat water was developed. The Pd-catalyzed reaction between aryl bromides or chlorides and phenyl boronic acids was compatible with various functional groups and affords biphenyls in good to excellent yields without requirement of organic cosolvents. The air stability and solubility in water of the palladium-phosphinous acid complexes were considered to facilitate operation of the coupling reaction and product isolation. The reaction conditions including Pd catalyst selection, temperature, base and catalyst recoverability were also investigated. PMID:25084408

  6. Kinetics of acid-catalyzed aldol condensation reactions of aliphatic aldehydes

    NASA Astrophysics Data System (ADS)

    Casale, Mia T.; Richman, Aviva R.; Elrod, Matthew J.; Garland, Rebecca M.; Beaver, Melinda R.; Tolbert, Margaret A.

    Field observations of atmospheric aerosols have established that organic compounds compose a large fraction of the atmospheric aerosol mass. However, the physical/chemical pathway by which organic compounds are incorporated into atmospheric aerosols remains unclear. The potential role of acid-catalyzed reactions of organic compounds on acidic aerosols has been explored as a possible chemical pathway for the incorporation of organic material into aerosols. In the present study, ultraviolet-visible (UV-vis) spectroscopy was used to monitor the kinetics of formation of the products of the acid-catalyzed aldol condensation reaction of a range of aliphatic aldehydes (C 2-C 8). The experiments were carried out at various sulfuric acid concentrations and a range of temperatures in order to estimate the rate constants of such reactions on sulfuric acid aerosols under tropospheric conditions. The rate constants were generally found to decrease as the chain length of the aliphatic aldehyde increased (except for acetaldehyde, which had an unusually small rate constant), increase as a function of sulfuric acid concentration as predicted by excess acidity theory, and showed normal Arrhenius behavior as a function of temperature. While the kinetic data are generally consistent with previous laboratory reports of aldehyde reactivity in various sulfuric acid media, the aldol condensation reactions involving aliphatic aldehydes do not appear fast enough to be responsible for significant transfer of organic material into atmospheric aerosols.

  7. Acid-Catalyzed Reaction of Epoxides on Atmospheric Nanoparticles

    NASA Astrophysics Data System (ADS)

    Xu, W.; Gomez-Hernandez, M.; Lal, V.; Qiu, C.; Khalizov, A. F.; Wang, L.; Zhang, R.

    2013-12-01

    Aerosol plays an important role in affecting the earth climate and harming human health. Atmospheric aerosols can be formed from either primary emissions or gas-to-particle conversion process. Numerous studies, including both experimental and theoretical, have been carried out to elucidate the mechanism of gas-to-particle conversion process (a.k.a. nucleation) and the later growth stage of newly formed nanoparticles. However, a complete list of species involving in the nucleation and growth processes of nanoparticles is still poorly understood. The growth of newly formed sulfuric acid - water nanoparticles has been suggested to involve several potential organic vapors, such as amines, glyoxal, 2-4 hexadienal, and epoxides. In the present study, new formed sulfuric acid -water nanoparticles were size selected by a differential mobility analyzer and exposed to epoxide vapors. The size-change after exposure was detected using the second differential mobility analyzer. The size-enlarged particles were then collected by an electrostatic precipitator, thermal vaporized, and analyzed by an ion drift chemical ionization mass spectrometer. Our results show that the sizes of nanoparticles are increased considerably and the magnitude of the increment in size is size-dependent. Mass spectrometry analysis of the nanoparticles after exposure demonstrates that low volatile organosulfate and oligomers are formed in nanoparticles upon their exposure to epoxide vapors.

  8. Sulfuric, hydrochloric, and nitric acid-catalyzed triacetone triperoxide (TATP) reaction mixtures: an aging study.

    PubMed

    Fitzgerald, Mark; Bilusich, Daniel

    2011-09-01

    The organic peroxide explosive triacetone triperoxide (TATP) is regularly encountered by law enforcement agents in various stages of its production. This study utilizes solid-phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS) to examine sulfuric acid-, hydrochloric acid-, and nitric acid-catalyzed TATP syntheses during the initial 24 h of these reactions at low temperatures (5-9°C). Additionally, aging of the reaction mixtures was examined at both low and ambient temperatures (19-21°C) for a further 9 days. For each experiment, TATP could be readily identified in the headspace above the reaction mixture 1 h subsequent to the combination of reagents; at 24 h, TATP and diacetone diperoxide (DADP) were prominent. TATP degraded more rapidly than DADP. Additionally, chlorinated acetones chloroacetone and 1,1,-dichloroacetone were identified in the headspace above the hydrochloric acid-catalyzed TATP reaction mixture. These were not present when the catalyst was sulfuric acid or nitric acid. PMID:21595692

  9. Mechanism of silver- and copper-catalyzed decarboxylation reactions of aryl carboxylic acids.

    PubMed

    Xue, Liqin; Su, Weiping; Lin, Zhenyang

    2011-11-28

    Silver- and copper-catalyzed decarboxylation reactions of aryl carboxylic acids were investigated with the aid of density functional theory calculations. The reaction mechanism starts with a carboxylate complex of silver or copper. Decarboxylation occurs via ejecting CO(2) from the carboxylate complex followed by protodemetallation with an aryl carboxylic acid molecule to regenerate the starting complex. Our results indicated that the primary factor to affect the overall reaction barriers is the ortho steric destabilization effect on the starting carboxylate complexes for most cases. Certain ortho substituents that are capable of coordinating with the catalyst metal center without causing significant ring strain stabilize the decarboxylation transition states and reduce the overall reaction barriers. However, the coordination effect is found to be the secondary factor when compared with the ortho effect. PMID:21979246

  10. Investigation of the complex reaction coordinate of acid catalyzed amide hydrolysis from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Zahn, Dirk

    2004-05-01

    The rate-determining step of acid catalyzed peptide hydrolysis is the nucleophilic attack of a water molecule to the carbon atom of the amide group. Therein the addition of the hydroxyl group to the amide carbon atom involves the association of a water molecule transferring one of its protons to an adjacent water molecule. The protonation of the amide nitrogen atom follows as a separate reaction step. Since the nucleophilic attack involves the breaking and formation of several bonds, the underlying reaction coordinate is rather complex. We investigate this reaction step from path sampling Car-Parrinello molecular dynamics simulations. This approach does not require the predefinition of reaction coordinates and is thus particularly suited for investigating reaction mechanisms. From our simulations the most relevant components of the reaction coordinate are elaborated. Though the C⋯O distance of the oxygen atom of the water molecule performing the nucleophilic attack and the corresponding amide carbon atom is a descriptor of the reaction progress, a complete picture of the reaction coordinate must include all three molecules taking part in the reaction. Moreover, the proton transfer is found to depend on favorable solvent configurations. Thus, also the arrangement of non-reacting, i.e. solvent water molecules needs to be considered in the reaction coordinate.

  11. Kinetics of Acid-Catalyzed Aldol Condensation Reactions of Aliphatic Aldehydes

    NASA Astrophysics Data System (ADS)

    Elrod, M. J.; Casale, M. T.; Richman, A. R.; Beaver, M. R.; Garland, R. M.; Tolbert, M. A.

    2006-12-01

    While it is well established that organic compounds compose a large fraction of the atmospheric aerosol mass, the mechanisms through which organics are incorporated into atmospheric aerosols are not well understood. Acid-catalyzed reactions of compounds with carbonyl groups have recently been suggested as important pathways for transfer of volatile organics into acidic aerosols. In the present study, ultraviolet-visible (UV-Vis) spectroscopy was used to monitor the kinetics of formation of the products of the aldol condensation reaction of a range of aliphatic aldehydes (C2-C8) The experiments were carried out at various sulfuric acid concentrations and a range of temperatures in order to estimate the rate constants of such reactions on sulfuric acid aerosols under tropospheric conditions. The rate constants were generally found to decrease as the chain length of the aliphatic aldehyde increased (except for acetaldehyde, which had an unusually small rate constant), increase as a function of sulfuric acid concentration as predicted by excess acidity theory, and showed normal Arrhenius behavior as a function of temperature.

  12. Synthesis of 2-monoacylglycerols and structured triacylglycerols rich in polyunsaturated fatty acids by enzyme catalyzed reactions.

    PubMed

    Rodríguez, Alicia; Esteban, Luis; Martín, Lorena; Jiménez, María José; Hita, Estrella; Castillo, Beatriz; González, Pedro A; Robles, Alfonso

    2012-08-10

    This paper studies the synthesis of structured triacylglycerols (STAGs) by a four-step process: (i) obtaining 2-monoacylglycerols (2-MAGs) by alcoholysis of cod liver oil with several alcohols, catalyzed by lipases Novozym 435, from Candida antartica and DF, from Rhizopus oryzae, (ii) purification of 2-MAGs, (iii) formation of STAGs by esterification of 2-MAGs with caprylic acid catalyzed by lipase DF, from R. oryzae, and (iv) purification of these STAGs. For the alcoholysis of cod liver oil, absolute ethanol, ethanol 96% (v/v) and 1-butanol were compared; the conditions with ethanol 96% were then optimized and 2-MAG yields of around 54-57% were attained using Novozym 435. In these 2-MAGs, DHA accounted for 24-31% of total fatty acids. In the operational conditions this lipase maintained a stable level of activity over at least 11 uses. These results were compared with those obtained with lipase DF, which deactivated after only three uses. The alcoholysis of cod liver oil and ethanol 96% catalyzed by Novozym 435 was scaled up by multiplying the reactant amounts 100-fold and maintaining the intensity of treatment constant (IOT=3g lipase h/g oil). In these conditions, the 2-MAG yield attained was about 67%; these 2-MAGs contained 36.6% DHA. The synthesized 2-MAGs were separated and purified from the alcoholysis reaction products by solvent extraction using solvents of low toxicity (ethanol and hexane); 2-MAG recovery yield and purity of the target product were approximately 96.4% and 83.9%, respectively. These 2-MAGs were transformed to STAGs using the optimal conditions obtained in a previous work. After synthesis and purification, 93% pure STAGs were obtained, containing 38% DHA at sn-2 position and 60% caprylic acid (CA) at sn-1,3 positions (of total fatty acids at these positions), i.e. the major TAG is the STAG with the structure CA-DHA-CA. PMID:22759534

  13. A preliminary investigation of acid-catalyzed polymerization reactions of shale oil distillates

    SciTech Connect

    Netzel, D.A.

    1991-04-01

    Sinor (1989) reported that a major specialty market may exist for shale oil as an asphalt blending material. Shale oil can be converted to an asphalt blending material by acid catalyzed condensation and polymerization reactions of the many molecular species comprising the composition of shale oil. To simplify the investigation, crude shale oil was separated by distillation into three distillates of different hydrocarbon and heteroaromatic compositions. These distillates were then treated with two different types of acids to determine the effect of acid type on the end products. Three western shale oil distillates, a naphtha, a middle distillate, and an atmospheric gas oil, were reacted with anhydrous AlCl{sub 3} and 85% H{sub 2}SO{sub 4} under low-severity conditions. At relatively low temperatures, little change in the hydrocarbon composition was noted for the AlCl{sub 3} reactions. AlCl{sub 3}{center dot} (a polymerized product and/or complex) was formed. However, it is assumed that the sludge was mainly the result of heteroaromatic-AlCl{sub 3} reactions.

  14. A preliminary investigation of acid-catalyzed polymerization reactions of shale oil distillates

    SciTech Connect

    Netzel, D.A.

    1991-04-01

    Sinor (1989) reported that a major specialty market may exist for shale oil as an asphalt blending material. Shale oil can be converted to an asphalt blending material by acid catalyzed condensation and polymerization reactions of the many molecular species comprising the composition of shale oil. To simplify the investigation, crude shale oil was separated by distillation into three distillates of different hydrocarbon and heteroaromatic compositions. These distillates were then treated with two different types of acids to determine the effect of acid type on the end products. Three western shale oil distillates, a naphtha, a middle distillate, and an atmospheric gas oil, were reacted with anhydrous AlCl{sub 3} and 85% H{sub 2}SO{sub 4} under low-severity conditions. At relatively low temperatures, little change in the hydrocarbon composition was noted for the AlCl{sub 3} reactions. AlCl{sub 3}{center_dot} (a polymerized product and/or complex) was formed. However, it is assumed that the sludge was mainly the result of heteroaromatic-AlCl{sub 3} reactions.

  15. A Practical Guide for Predicting the Stereochemistry of Bifunctional Phosphoric Acid Catalyzed Reactions of Imines.

    PubMed

    Reid, Jolene P; Simón, Luis; Goodman, Jonathan M

    2016-05-17

    Chiral phosphoric acids have become powerful catalysts for the stereocontrolled synthesis of a diverse array of organic compounds. Since the initial report, the development of phosphoric acids as catalysts has been rapid, demonstrating the tremendous generality of this catalyst system and advancing the use of phosphoric acids to catalyze a broad range of asymmetric transformations ranging from Mannich reactions to hydrogenations through complementary modes of activation. These powerful applications have been developed without a clear mechanistic understanding of the reasons for the high level of stereocontrol. This Account describes investigations into the mechanism of the phosphoric acid catalyzed addition of nucleophiles to imines, focusing on binaphthol-based systems. In many cases, the hydroxyl phosphoric acid can form a hydrogen bond to the imine while the P═O interacts with the nucleophile. The single catalyst, therefore, activates both the electrophile and the nucleophile, while holding both in the chiral pocket created by the binaphthol and constrained by substituents at the 3 and 3' positions. Detailed geometric and energetic information about the transition states can be gained from calculations using ONIOM methods that combine the advantages of DFT with some of the speed of force fields. These high-level calculations give a quantitative account of the selectivity in many cases, but require substantial computational resources. A simple qualitative model is a useful complement to this complex quantitative model. We summarize our calculations into a working model that can readily be sketched by hand and used to work out the likely sense of selectivity for each reaction. The steric demands of the different parts of the reactants determine how they fit into the chiral cavity and which of the competing pathways is favored. The preferred pathway can be found by considering the size of the substituents on the nitrogen and carbon atoms of the imine electrophile

  16. Acid-catalyzed conversion of xylose, xylan and straw into furfural by microwave-assisted reaction.

    PubMed

    Yemiş, Oktay; Mazza, Giuseppe

    2011-08-01

    Furfural is a biomass derived-chemical that can be used to replace petrochemicals. In this study, the acid-catalyzed conversion of xylose and xylan to furfural by microwave-assisted reaction was investigated at selected ranges of temperature (140-190°C), time (1-30 min), substrate concentration (1:5-1:200 solid:liquid ratio), and pH (2-0.13). We found that a temperature of 180°C, a solid:liquid ratio of 1:200, a residence time of 20 min, and a pH of 1.12 gave the best furfural yields. The effect of different Brønsted acids on the conversion efficiency of xylose and xylan was also evaluated, with hydrochloric acid being found to be the most effective catalyst. The microwave-assisted process provides highly efficient conversion: furfural yields obtained from wheat straw, triticale straw, and flax shives were 48.4%, 45.7%, and 72.1%, respectively. PMID:21620690

  17. Cinchona Urea-Catalyzed Asymmetric Sulfa-Michael Reactions: The Brønsted Acid-Hydrogen Bonding Model.

    PubMed

    Grayson, Matthew N; Houk, K N

    2016-07-27

    The cinchona alkaloid-derived urea-catalyzed asymmetric conjugate addition of aromatic thiols to cycloalkenones was studied using density functional theory (DFT). Deprotonation of the thiol gives a protonated amine that activates the electrophile by Brønsted acid catalysis, while the urea group binds the nucleophilic thiolate by hydrogen bonding. These results demonstrate the generality of the Brønsted acid-hydrogen bonding transition state (TS) model for cinchona alkaloid catalysis that we recently showed to be favored over Wynberg's widely accepted ion pair-hydrogen bonding model and represent the first detailed mechanistic study of a cinchona urea-catalyzed reaction. The conformation of the catalyst methoxy group has a strong effect on the TS, an effect overlooked in previous mechanistic studies of reactions catalyzed by cinchona alkaloids. PMID:27396591

  18. Lewis Acid Catalyzed Regiospecific Cross-Dehydrative Coupling Reaction of 2-Furylcarbinols with β-Keto Amides or 4-Hydroxycoumarins: A Route to Furyl Enols.

    PubMed

    Miao, Maozhong; Luo, Yi; Li, Hongli; Xu, Xin; Chen, Zhengkai; Xu, Jianfeng; Ren, Hongjun

    2016-06-17

    Lewis acid catalyzed directly dehydrative carbon-carbon bond formation reaction of 2-furylcarbinols with β-keto amides provides a straightforward method for regioselective synthesis of (Z)-furyl enols. Moreover, this Lewis acid catalyzed cross-coupling reaction can be extended to an interesting heterocyclic version featuring a functionalized 3-furyl-4-hydroxycoumarin synthesis. PMID:27224045

  19. Cooperative Effects Between Arginine and Glutamic Acid in the Amino Acid-Catalyzed Aldol Reaction.

    PubMed

    Valero, Guillem; Moyano, Albert

    2016-08-01

    Catalysis of the aldol reaction between cyclohexanone and 4-nitrobenzaldehyde by mixtures of L-Arg and of L-Glu in wet dimethyl sulfoxide (DMSO) takes place with higher enantioselectivity (up to a 7-fold enhancement in the anti-aldol for the 1:1 mixture) than that observed when either L-Glu or L-Arg alone are used as the catalysts. These results can be explained by the formation of a catalytically active hydrogen-bonded complex between both amino acids, and demonstrate the possibility of positive cooperative effects in catalysis by two different α-amino acids. Chirality 28:599-605, 2016. © 2016 Wiley Periodicals, Inc. PMID:27362554

  20. Silylium ion-catalyzed challenging Diels-Alder reactions: the danger of hidden proton catalysis with strong Lewis acids.

    PubMed

    Schmidt, Ruth K; Müther, Kristine; Mück-Lichtenfeld, Christian; Grimme, Stefan; Oestreich, Martin

    2012-03-01

    The pronounced Lewis acidity of tricoordinate silicon cations brings about unusual reactivity in Lewis acid catalysis. The downside of catalysis with strong Lewis acids is, though, that these do have the potential to mediate the formation of protons by various mechanisms, and the thus released Brønsted acid might even outcompete the Lewis acid as the true catalyst. That is an often ignored point. One way of eliminating a hidden proton-catalyzed pathway is to add a proton scavenger. The low-temperature Diels-Alder reactions catalyzed by our ferrocene-stabilized silicon cation are such a case where the possibility of proton catalysis must be meticulously examined. Addition of the common hindered base 2,6-di-tert-butylpyridine resulted, however, in slow decomposition along with formation of the corresponding pyridinium ion. Quantitative deprotonation of the silicon cation was observed with more basic (Mes)(3)P to yield the phosphonium ion. A deuterium-labeling experiment verified that the proton is abstracted from the ferrocene backbone. A reasonable mechanism of the proton formation is proposed on the basis of quantum-chemical calculations. This is, admittedly, a particular case but suggests that the use of proton scavengers must be carefully scrutinized, as proton formation might be provoked rather than prevented. Proton-catalyzed Diels-Alder reactions are not well-documented in the literature, and a representative survey employing TfOH is included here. The outcome of these catalyses is compared with our silylium ion-catalyzed Diels-Alder reactions, thereby clearly corroborating that hidden Brønsted acid catalysis is not operating with our Lewis acid. Several simple-looking but challenging Diels-Alder reactions with exceptionally rare dienophile/enophile combinations are reported. Another indication is obtained from the chemoselectivity of the catalyses. The silylium ion-catalyzed Diels-Alder reaction is general with regard to the oxidation level of the

  1. Modeling suberization with peroxidase-catalyzed polymerization of hydroxycinnamic acids: cross-coupling and dimerization reactions.

    PubMed

    Arrieta-Baez, Daniel; Stark, Ruth E

    2006-04-01

    An anionic potato peroxidase (EC 1.11.1.7, APP) thought to be involved in suberization after wounding was isolated from slices of Solanum tuberosum in order to elucidate the first steps of dehydrogenative polymerization between pairs of different hydroxycinnamic acids (FA, CafA, CA and SA) present in wound-healing plant tissues. Use of a commercial horseradish peroxidase (HRP)-H2O2 catalytic system gave the identical major products in these coupling reactions, providing sufficient quantities for purification and structural elucidation. Using an equimolar mixture of pairs of hydroxycinnamic acid suberin precursors, only caffeic acid is coupled to ferulic acid and sinapic acid in separate cross-coupling reactions. For the other systems, HRP and APP reacted as follows: (1) preferentially with ferulic acid in a reaction mixture that contained p-coumaric and ferulic acids; (2) with sinapic acid in a mixture of p-coumaric and sinapic acids; (3) with sinapic acid in a mixture of ferulic and sinapic acids; (4) with caffeic acid in a reaction mixture of p-coumaric and caffeic acids. The resulting products, isolated and identified by NMR and MS analysis, had predominantly beta-beta-gamma-lactone and beta-5 benzofuran molecular frameworks. Five cross-coupling products are described for the first time, whereas the beta-O-4 dehydrodimers identified from the caffeic acid and sinapic acid cross-coupling reaction are known materials that are highly abundant in plants. These reactivity trends lead to testable hypotheses regarding the molecular architecture of intractable suberin protective plant materials, complementing prior analysis of monomeric constituents by GC-MS and polymer functional group identification from solid-state NMR, respectively. PMID:16524605

  2. Stereospecificity of reactions catalyzed by bacterial D-amino acid transaminase.

    PubMed

    Martínez del Pozo, A; Merola, M; Ueno, H; Manning, J M; Tanizawa, K; Nishimura, K; Soda, K; Ringe, D

    1989-10-25

    The spectral shift from 420 to 338 nm when pure bacterial D-amino acid transaminase binds D-amino acid substrates is also exhibited in part by high concentrations of L-amino acids (L-alanine and L-glutamate) but not by simple dicarboxylic acids or monoamines. Slow processing of L-alanine to D-alanine was observed both by coupled enzymatic assays using D-amino acid oxidase and by high pressure liquid chromatography analysis employing an optically active chromophore (Marfey's reagent). When the acceptor for L-alanine was alpha-ketoglutarate, D-glutamate was also formed. This minor activity of the transaminase involved both homologous (L-alanine and D-alanine) and heterologous (L-alanine and D-glutamate) substrate pairs and was a function of the nature of the keto acid acceptor. In the presence of alpha-ketoisovalerate, DL-alanine was almost completely processed to D-valine; within the limits of the assay no L-valine was detected. With alpha-ketoisocaproate, 90% of the DL-alanine was converted to D-leucine. In the mechanism of this transaminase reaction, there may be more stereoselective constraints for the protonation of the quinonoid intermediate during the second half-reaction of the transamination reaction, i.e. the donation of the amino group from the pyridoxamine 5'-phosphate coenzyme to a second keto acid acceptor, than during removal of the alpha proton in the initial steps of the reaction pathway. Thus, with this D-amino acid transaminase, the discrete steps of transamination ensure fidelity of the stereospecificity of reaction pathway. PMID:2808352

  3. Chiral Phosphoric Acid Catalyzed Asymmetric Ugi Reaction by Dynamic Kinetic Resolution of the Primary Multicomponent Adduct.

    PubMed

    Zhang, Yun; Ao, Yu-Fei; Huang, Zhi-Tang; Wang, De-Xian; Wang, Mei-Xiang; Zhu, Jieping

    2016-04-18

    Reaction of isonitriles with 3-(arylamino)isobenzofuran-1(3H)-ones in the presence of a catalytic amount of an octahydro (R)-binol-derived chiral phosphoric acid afforded 3-oxo-2-arylisoindoline-1-carboxamides in high yields with good to high enantioselectivities. An enantioselective Ugi four-center three-component reaction of 2-formylbenzoic acids, anilines, and isonitriles was subsequently developed for the synthesis of the same heterocycle. Mechanistic studies indicate that the enantioselectivity results from the dynamic kinetic resolution of the primary Ugi adduct, rather than from the C-C bond-forming process. The resulting heterocycle products are of significant medicinal importance. PMID:26997306

  4. Chemoselective Boron-Catalyzed Nucleophilic Activation of Carboxylic Acids for Mannich-Type Reactions.

    PubMed

    Morita, Yuya; Yamamoto, Tomohiro; Nagai, Hideoki; Shimizu, Yohei; Kanai, Motomu

    2015-06-10

    The carboxyl group (COOH) is an omnipresent functional group in organic molecules, and its direct catalytic activation represents an attractive synthetic method. Herein, we describe the first example of a direct catalytic nucleophilic activation of carboxylic acids with BH3·SMe2, after which the acids are able to act as carbon nucleophiles, i.e. enolates, in Mannich-type reactions. This reaction proceeds with a mild organic base (DBU) and exhibits high levels of functional group tolerance. The boron catalyst is highly chemoselective toward the COOH group, even in the presence of other carbonyl moieties, such as amides, esters, or ketones. Furthermore, this catalytic method can be extended to highly enantioselective Mannich-type reactions by using a (R)-3,3'-I2-BINOL-substituted boron catalyst. PMID:26011419

  5. Acetylation of bacterial cellulose catalyzed by citric acid: Use of reaction conditions for tailoring the esterification extent.

    PubMed

    Ávila Ramírez, Jhon Alejandro; Gómez Hoyos, Catalina; Arroyo, Silvana; Cerrutti, Patricia; Foresti, María Laura

    2016-11-20

    Bacterial cellulose (BC) nanoribbons were partially acetylated by a simple direct solvent-free route catalyzed by citric acid. The assay of reaction conditions within chosen intervals (i.e. esterification time (0.5-7h), catalyst content (0.08-1.01mmol/mmol AGU), and temperature (90-140°C)), illustrated the flexibility of the methodology proposed, with reaction variables which can be conveniently manipulated to acetylate BC to the required degree of substitution (DS) within the 0.20-0.73 interval. Within this DS interval, characterization results indicated a surface-only process in which acetylated bacterial cellulose with tunable DS, preserved fibrous structure and increased hydrophobicity could be easily obtained. The feasibility of reusing the catalyst/excess acylant in view of potential scale-up was also illustrated. PMID:27561540

  6. Homogeneous Catalyzed Reactions of Levulinic Acid: To γ-Valerolactone and Beyond.

    PubMed

    Omoruyi, Uwaila; Page, Samuel; Hallett, Jason; Miller, Philip W

    2016-08-23

    Platform chemicals derived from lignocellulosic plant biomass are viewed as a sustainable replacement for crude oil-based feedstocks. Levulinic acid (LA) is one such biomass-derived chemical that has been widely studied for further catalytic transformation to γ-valerolactone (GVL), an important 'green' fuel additive, solvent, and fine chemical intermediate. Although the transformation of LA to GVL can be achieved using heterogeneous catalysis, homogeneous catalytic systems that operate under milder reactions, give higher selectivities and can be recycled continuously are attracting considerable attention. A range of new homogeneous catalysts have now been demonstrated to efficiently convert LA to GVL and to transform LA directly to other value-added chemicals such as 1,4-pentanediol (1,4-PDO) and 2-methyltetrahydrofuran (2-MTHF). This Minireview covers recent advances in the area of homogeneous catalysis for the conversion of levulinic acid and levulinic ester derivatives to GVL and chemicals beyond GVL. PMID:27464831

  7. Enantioconvergent Nucleophilic Substitution Reaction of Racemic Alkyne-Dicobalt Complex (Nicholas Reaction) Catalyzed by Chiral Brønsted Acid.

    PubMed

    Terada, Masahiro; Ota, Yusuke; Li, Feng; Toda, Yasunori; Kondoh, Azusa

    2016-08-31

    Catalytic enantioselective syntheses enable a practical approach to enantioenriched molecules. While most of these syntheses have been accomplished by reaction at the prochiral sp(2)-hybridized carbon atom, little attention has been paid to enantioselective nucleophilic substitution at the sp(3)-hybridized carbon atom. In particular, substitution at the chiral sp(3)-hybridized carbon atom of racemic electrophiles has been rarely exploited. To establish an unprecedented enantioselective substitution reaction of racemic electrophiles, enantioconvergent Nicholas reaction of an alkyne-dicobalt complex derived from racemic propargylic alcohol was developed using a chiral phosphoric acid catalyst. In the present enantioconvergent process, both enantiomers of the racemic alcohol were transformed efficiently to a variety of thioethers with high enantioselectivity. The key to achieving success is dynamic kinetic asymmetric transformation (DYKAT) of enantiomeric cationic intermediates generated via dehydroxylation of the starting racemic alcohol under the influence of the chiral phosphoric acid catalyst. The present fascinating DYKAT involves the efficient racemization of these enantiomeric intermediates and effective resolution of these enantiomers through utilization of the chiral conjugate base of the phosphoric acid. PMID:27490239

  8. Acid-catalyzed reactions of a disecondary aromatic diol with alkanols

    SciTech Connect

    Zaitsev, B.A.; Dantsig, L.L.

    1986-07-10

    On heating a disecondary aromatic diol with an alkanol in an aromatic solvent in the presence of an acid catalyst, condensation telomerization takes place with the formation of oligomeric ethers, alcoholysis of which and condensation of hydroxylated intermediate products gives dialkyl ethers of the diol, followed by cleavage of these ethers to give vinyl- and divinylaromatic compounds, and cationic polyaddition of these monomers to give straight-chain unsaturated oligomers, giving mixtures of vinylaromatic compounds and unsaturated straight-chain oligomers. The rate of cleavage of dialkoxy-derivatives of the aromatic diol decreases as the reaction progresses as a result of the increasing concentration of the liberated alkanol, which modifies the activity of the catalyst.

  9. Direct Synthesis of 5-Aryl Barbituric Acids by Rhodium(II)-Catalyzed Reactions of Arenes with Diazo Compounds**

    PubMed Central

    Best, Daniel; Burns, David J; Lam, Hon Wai

    2015-01-01

    A commercially available rhodium(II) complex catalyzes the direct arylation of 5-diazobarbituric acids with arenes, allowing straightforward access to 5-aryl barbituric acids. Free N—H groups are tolerated on the barbituric acid, with no complications arising from N—H insertion processes. This method was applied to the concise synthesis of a potent matrix metalloproteinase (MMP) inhibitor. PMID:25959544

  10. Expedient synthesis of tetrahydroquinoline-3-spirohydantoin derivatives via the Lewis acid-catalyzed tert-amino effect reaction.

    PubMed

    Briones, John F; Basarab, Gregory S

    2016-06-30

    Magnesium triflate was found to effectively catalyze the tert-amino effect reaction (T-reaction) involving ethyl 3-(2-(dialkylamino)-phenyl)-2-nitroacrylates leading to tetrahydroquinoline nitroester derivatives. These compounds can be readily transformed to the corresponding valuable spirohydantoin derivatives. PMID:27314439

  11. Synthesis of esters by immobilized-lipase-catalyzed condensation reaction of sugars and fatty acids in water-miscible organic solvent.

    PubMed

    Adachi, Shuji; Kobayashi, Takashi

    2005-02-01

    A lipase-catalyzed condensation reaction in an organic solvent is a promising means of synthesizing esters. Reaction equilibrium constant, which is usually defined on the basis of reactant concentration, is an important parameter for estimating equilibrium yield. It is shown that the constant is markedly, affected by some factors, such as the hydration of a sugar substrate and the interaction of a reactant with a solvent. To reasonably design the reaction system or determine the reaction conditions, attention should be paid to these factors. From the viewpoint of kinetics, substrate selectivity for carboxylic acids also numerically correlates to the electrical and steric properties of these acids. Reactor systems for continuously producing esters through an immobilized-lipase-catalyzed condensation reaction are developed. PMID:16233762

  12. Hydrolysis of ketene catalyzed by formic acid: modification of reaction mechanism, energetics, and kinetics with organic acid catalysis.

    PubMed

    Louie, Matthew K; Francisco, Joseph S; Verdicchio, Marco; Klippenstein, Stephen J; Sinha, Amitabha

    2015-05-14

    The hydrolysis of ketene (H2C═C═O) to form acetic acid involving two water molecules and also separately in the presence of one to two water molecules and formic acid (FA) was investigated. Our results show that, while the currently accepted indirect mechanism, involving addition of water across the carbonyl C═O bond of ketene to form an ene-diol followed by tautomerization of the ene-diol to form acetic acid, is the preferred pathway when water alone is present, with formic acid as catalyst, addition of water across the ketene C═C double bond to directly produce acetic acid becomes the kinetically favored pathway for temperatures below 400 K. We find not only that the overall barrier for ketene hydrolysis involving one water molecule and formic acid (H2C2O + H2O + FA) is significantly lower than that involving two water molecules (H2C2O + 2H2O) but also that FA is able to reduce the barrier height for the direct path, involving addition of water across the C═C double bond, so that it is essentially identical with (6.4 kcal/mol) that for the indirect ene-diol formation path involving addition of water across the C═O bond. For the case of ketene hydrolysis involving two water molecules and formic acid (H2C2O + 2H2O + FA), the barrier for the direct addition of water across the C═C double bond is reduced even further and is 2.5 kcal/mol lower relative to the ene-diol path involving addition of water across the C═O bond. In fact, the hydrolysis barrier for the H2C2O + 2H2O + FA reaction through the direct path is sufficiently low (2.5 kcal/mol) for it to be an energetically accessible pathway for acetic acid formation under atmospheric conditions. Given the structural similarity between acetic and formic acid, our results also have potential implications for aqueous-phase chemistry. Thus, in an aqueous environment, even in the absence of formic acid, though the initial mechanism for ketene hydrolysis is expected to involve addition of water across the

  13. A Computational Study of Acid Catalyzed Aerosol Reactions of Atmospherically Relevant Epoxides

    EPA Science Inventory

    Epoxides are important intermediates of atmospheric isoprene oxidation. Their subsequent reactions in the particle phase lead to the production of organic compounds detected in ambient aerosols. We apply density functional theory to determine the important kinetic factors that ...

  14. Thermodynamics of Enzyme-Catalyzed Reactions Database

    National Institute of Standards and Technology Data Gateway

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  15. Efficient Synthesis of 3,3'-Mixed Bisindoles via Lewis Acid Catalyzed Reaction of Spiro-epoxyoxindoles and Indoles.

    PubMed

    Hajra, Saumen; Maity, Subrata; Maity, Ramkrishna

    2015-07-17

    An efficient strategy for the synthesis of 3-(3-indolyl)-oxindole-3-methanol has been developed to achieve a Lewis acid catalyzed, highly regioselective ring opening of spiro-epoxyoxindoles with indoles. The method is used for the gram-scale formal total synthesis of (±)-gliocladin C. PMID:26158390

  16. Hyaluronic Acid Hydrogels Formed in Situ by Transglutaminase-Catalyzed Reaction.

    PubMed

    Ranga, Adrian; Lutolf, Matthias P; Hilborn, Jöns; Ossipov, Dmitri A

    2016-05-01

    Enzymatically cross-linked hydrogels can be formed in situ and permit highly versatile and selective tethering of bioactive molecules, thereby allowing for a wealth of applications in cell biology and tissue engineering. While a number of studies have reported the bioconjugation of extracellular matrix (ECM) proteins and peptides into such matrices, the site-specific incorporation of biologically highly relevant polysaccharides such as hyaluronic acid (HA) has thus far not been reported, limiting our ability to reconstruct this key feature of the in vivo ECM. Here we demonstrate a novel strategy for transglutaminase-mediated covalent linking of HA moieties to a synthetic poly(ethylene glycol) (PEG) macromer resulting in the formation of hybrid HA-PEG hydrogels. We characterize the ensuing matrix properties and demonstrate how these cytocompatible gels can serve to modulate the cellular phenotype of human mammary cancer epithelial cells as well as mouse myoblasts. The use of HA as a novel building block in the increasingly varied library of synthetic PEG-based artificial ECMs should have applications as a structural as well as a signaling component and offers significant potential as an injectable matrix for regenerative medicine. PMID:27014785

  17. Correction: Acid-catalyzed carboxylic acid esterification and ester hydrolysis mechanism: acylium ion as a sharing active intermediate via a spontaneous trimolecular reaction based on density functional theory calculation and supported by electrospray ionization-mass spectrometry.

    PubMed

    Shi, Hongchang; Wang, Yilei; Hua, Ruimao

    2015-12-28

    Correction for 'Acid-catalyzed carboxylic acid esterification and ester hydrolysis mechanism: acylium ion as a sharing active intermediate via a spontaneous trimolecular reaction based on density functional theory calculation and supported by electrospray ionization-mass spectrometry' by Hongchang Shi et al., Phys. Chem. Chem. Phys., 2015, DOI: 10.1039/c5cp02914g. PMID:26583937

  18. Triflic Acid-Catalyzed Cycloisomerization Reactions of Donor-Acceptor Cyclopropanes: Access to Alkyl 5-Arylfuran-2-carboxylates.

    PubMed

    Zhu, Yuequan; Xu, Panpan; Gong, Yuefa

    2016-06-01

    A direct synthetic strategy starting from alkyl 1-alkoxy-2-aroylcyclopropanecarboxylates was developed for the construction of alkyl 5-arylfuran-2-carboxylates. These donor-acceptor cyclopropanes smoothly undergo a simple ring-opening reaction or/and cycloisomerization reaction in the presence of acid at room temperature, which greatly depends on the properties of the acid used in the experiment. Alkyl 5-arylfuran-2-carboxylates were afforded in high yields in triflic acid, whereas alkyl 2,5-dioxo-5-phenylpentanoate became the major product in other protic acids and Lewis acids. PMID:27156857

  19. Influence of organic acids on oscillations and waves in the ferroin-catalyzed Belousov-Zhabotinsky reaction

    NASA Astrophysics Data System (ADS)

    Krüger, Frank; Nagy-Ungvárai, Zsuzsanna; Müller, Stefan C.

    Experiments of the influence of mesoxalic and tartronic acid on the oscillatory behavior and on the spiral tip motion in a ferroin-catalyzed Belousov-Zhabotinsky (BZ) solution are reported. The oscillations were observed in batch and CSTR systems, and for the investigations of the spiral tip motion an open gel reactor was used. A characteristic shoulder in the oscillations is associated with an additional Br - production phase. The chemical parameters for a transition from a hypocycloidal to a circular tip trajectory are found. The findings are compared with the temporal and spatial dynamic behavior, occurring during the ageing process of the solution.

  20. Characterization of a Cross-Linked Protein-Nucleic Acid Substrate Radical in the Reaction Catalyzed by RlmN

    SciTech Connect

    Silakov, Alexey; Grove, Tyler L.; Radle, Matthew I.; Bauerle, Matthew R.; Green, Michael T.; Rosenzweig, Amy C.; Boal, Amie K.; Booker, Squire J.

    2014-08-14

    RlmN and Cfr are methyltransferases/methylsynthases that belong to the radical S-adenosylmethionine superfamily of enzymes. RlmN catalyzes C2 methylation of adenosine 2503 (A2503) of 23S rRNA, while Cfr catalyzes C8 methylation of the exact same nucleotide, and will subsequently catalyze C2 methylation if the site is unmethylated. A key feature of the unusual mechanisms of catalysis proposed for these enzymes is the attack of a methylene radical, derived from a methylcysteine residue, onto the carbon center undergoing methylation to generate a paramagnetic protein–nucleic acid cross-linked species. This species has been thoroughly characterized during Cfr-dependent C8 methylation, but does not accumulate to detectible levels in RlmN-dependent C2 methylation. Herein, we show that inactive C118S/A variants of RlmN accumulate a substrate-derived paramagnetic species. Characterization of this species by electron paramagnetic resonance spectroscopy in concert with strategic isotopic labeling shows that the radical is delocalized throughout the adenine ring of A2503, although predominant spin density is on N1 and N3. Moreover, 13C hyperfine interactions between the radical and the methylene carbon of the formerly [methyl-13C]Cys355 residue show that the radical species exists in a covalent cross-link between the protein and the nucleic acid substrate. X-ray structures of RlmN C118A show that, in the presence of SAM, the substitution does not alter the active site structure compared to that of the wild-type enzyme. Together, these findings have new mechanistic implications for the role(s) of C118 and its counterpart in Cfr (C105) in catalysis, and suggest involvement of the residue in resolution of the cross-linked species via a radical mediated process

  1. Characterization of a Cross-Linked Protein–Nucleic Acid Substrate Radical in the Reaction Catalyzed by RlmN

    PubMed Central

    2015-01-01

    RlmN and Cfr are methyltransferases/methylsynthases that belong to the radical S-adenosylmethionine superfamily of enzymes. RlmN catalyzes C2 methylation of adenosine 2503 (A2503) of 23S rRNA, while Cfr catalyzes C8 methylation of the exact same nucleotide, and will subsequently catalyze C2 methylation if the site is unmethylated. A key feature of the unusual mechanisms of catalysis proposed for these enzymes is the attack of a methylene radical, derived from a methylcysteine residue, onto the carbon center undergoing methylation to generate a paramagnetic protein–nucleic acid cross-linked species. This species has been thoroughly characterized during Cfr-dependent C8 methylation, but does not accumulate to detectible levels in RlmN-dependent C2 methylation. Herein, we show that inactive C118S/A variants of RlmN accumulate a substrate-derived paramagnetic species. Characterization of this species by electron paramagnetic resonance spectroscopy in concert with strategic isotopic labeling shows that the radical is delocalized throughout the adenine ring of A2503, although predominant spin density is on N1 and N3. Moreover, 13C hyperfine interactions between the radical and the methylene carbon of the formerly [methyl-13C]Cys355 residue show that the radical species exists in a covalent cross-link between the protein and the nucleic acid substrate. X-ray structures of RlmN C118A show that, in the presence of SAM, the substitution does not alter the active site structure compared to that of the wild-type enzyme. Together, these findings have new mechanistic implications for the role(s) of C118 and its counterpart in Cfr (C105) in catalysis, and suggest involvement of the residue in resolution of the cross-linked species via a radical mediated process. PMID:24806349

  2. Iodide effects in transition metal catalyzed reactions.

    PubMed

    Maitlis, Peter M; Haynes, Anthony; James, Brian R; Catellani, Marta; Chiusoli, Gian Paolo

    2004-11-01

    The unique properties of I(-) allow it to be involved in several different ways in reactions catalyzed by the late transition metals: in the oxidative addition, the migration, and the coupling/reductive elimination steps, as well as in substrate activation. Most steps are accelerated by I(-)(for example through an increased nucleophilicity of the metal center), but some are retarded, because a coordination site is blocked. The "soft" iodide ligand binds more strongly to soft metals (low oxidation state, electron rich, and polarizable) such as the later and heavier transition metals, than do the other halides, or N- and O-centered ligands. Hence in a catalytic cycle that includes the metal in a formally low oxidation state there will be less tendency for the metal to precipitate (and be removed from the cycle) in the presence of I(-) than most other ligands. Iodide is a good nucleophile and is also easily and reversibly oxidized to I(2). In addition, I(-) can play key roles in purely organic reactions that occur as part of a catalytic cycle. Thus to understand the function of iodide requires careful analysis, since two or sometimes more effects occur in different steps of one single cycle. Each of these topics is illustrated with examples of the influence of iodide from homogeneous catalytic reactions in the literature: methanol carbonylation to acetic acid and related reactions; CO hydrogenation; imine hydrogenation; and C-C and C-N coupling reactions. General features are summarised in the Conclusions. PMID:15510253

  3. Iridium-Catalyzed Hydrogen Transfer Reactions

    NASA Astrophysics Data System (ADS)

    Saidi, Ourida; Williams, Jonathan M. J.

    This chapter describes the application of iridium complexes to catalytic hydrogen transfer reactions. Transfer hydrogenation reactions provide an alternative to direct hydrogenation for the reduction of a range of substrates. A hydrogen donor, typically an alcohol or formic acid, can be used as the source of hydrogen for the reduction of carbonyl compounds, imines, and alkenes. Heteroaromatic compounds and even carbon dioxide have also been reduced by transfer hydrogenation reactions. In the reverse process, the oxidation of alcohols to carbonyl compounds can be achieved by iridium-catalyzed hydrogen transfer reactions, where a ketone or alkene is used as a suitable hydrogen acceptor. The reversible nature of many hydrogen transfer processes has been exploited for the racemization of alcohols, where temporary removal of hydrogen generates an achiral ketone intermediate. In addition, there is a growing body of work where temporary removal of hydrogen provides an opportunity for using alcohols as alkylating agents. In this chemistry, an iridium catalyst "borrows" hydrogen from an alcohol to give an aldehyde or ketone intermediate, which can be transformed into either an imine or alkene under the reaction conditions. Return of the hydrogen from the catalyst provides methodology for the formation of amines or C-C bonds where the only by-product is typically water.

  4. Development of a Lewis Base Catalyzed Selenocyclization Reaction

    ERIC Educational Resources Information Center

    Collins, William

    2009-01-01

    The concept of Lewis base activation of selenium Lewis acids has been effectively reduced to practice in the Lewis base catalyzed selenofunctionalization of unactivated olefins. In this reaction, the weakly acidic species, "N"-phenylselenyl succinimide, is cooperatively activated by the addition of a "soft" Lewis base donor (phosphine sulfides,…

  5. Following solid-acid-catalyzed reactions by MAS NMR spectroscopy in liquid phase--zeolite-catalyzed conversion of cyclohexanol in water.

    PubMed

    Vjunov, Aleksei; Hu, Mary Y; Feng, Ju; Camaioni, Donald M; Mei, Donghai; Hu, Jian Z; Zhao, Chen; Lercher, Johannes A

    2014-01-01

    A microautoclave magic angle spinning NMR rotor is developed enabling in situ monitoring of solid-liquid-gas reactions at high temperatures and pressures. It is used in a kinetic and mechanistic study of the reactions of cyclohexanol on zeolite HBEA in 130 °C water. The (13) C spectra show that dehydration of 1-(13) C-cyclohexanol occurs with significant migration of the hydroxy group in cyclohexanol and the double bond in cyclohexene with respect to the (13) C label. A simplified kinetic model shows the E1-type elimination fully accounts for the initial rates of 1-(13) C-cyclohexanol disappearance and the appearance of the differently labeled products, thus suggesting that the cyclohexyl cation undergoes a 1,2-hydride shift competitive with rehydration and deprotonation. Concurrent with the dehydration, trace amounts of dicyclohexyl ether are observed, and in approaching equilibrium, a secondary product, cyclohexyl-1-cyclohexene is formed. Compared to phosphoric acid, HBEA is shown to be a more active catalyst exhibiting a dehydration rate that is 100-fold faster per proton. PMID:24282024

  6. The development of copper-catalyzed aerobic oxidative coupling of H-tetrazoles with boronic acids and an insight into the reaction mechanism.

    PubMed

    Liu, Chao-You; Li, Yu; Ding, Jin-Ying; Dong, De-Wen; Han, Fu-She

    2014-02-17

    The development of a highly efficient and practical protocol for the direct C-N coupling of H-tetrazole and boronic acid was presented. A careful and patient optimization of a variety of reaction parameters revealed that this conventionally challenge reaction could indeed proceed efficiently in a very simple system, that is, just by stirring the tetrazoles and boronic acids under oxygen in the presence of different Cu(I) or Cu(II) salts with only 5 mol % loading in DMSO at 100 °C. Most significantly, the reaction could proceed very smoothly in a regiospecific manner to afford the 2,5-disubstituted tetrazoles in high to excellent yields. A mechanistic study revealed that both tetrazole and DMSO are crucial for the generation of catalytically active copper species in the reaction process in addition to their role as reactant and solvent, respectively. It is demonstrated that in the reaction cycle, the Cu(I) catalyst could be oxidized to Cu(II) by oxygen to form a [CuT2D] complex (T = tetrazole anion; D = DMSO) through an oxidative copper amination reaction. The Cu(II) complex thus formed was confirmed to be the real catalytically active copper species. Namely, the Cu(II) complex disproportionates to aryl Cu(III) and Cu(I) in the presence of boronic acid. Facile elimination of the Cu(III) species delivers the C-N-coupled product. The results presented herein not only provide a reliable and efficient protocol for the synthesis of 2,5-disubstituted tetrazoles, but most importantly, the mechanistic results would have broad implications for the de novo design and development of new methods for Cu-catalyzed coupling reactions. PMID:24449340

  7. Evidence for a transient peroxynitro acid in the reaction catalyzed by nitronate monooxygenase with propionate 3-nitronate.

    PubMed

    Smitherman, Crystal; Gadda, Giovanni

    2013-04-16

    Nitronate monooxygenase is a flavin-dependent enzyme that catalyzes the denitrification of propionate 3-nitronate (P3N) and other alkyl nitronates. The enzyme was previously known as 2-nitropropane dioxygenase, until its reclassification in 2010 by the IUBMB. Physiologically, the monooxygenase from fungi protects the organism from the environmental occurrence of P3N, which shuts down the Krebs cycle by inactivating succinate dehydrogenase and fumarase. The inhibition of these enzymes yields severe neurological disorders or death. Here, we have used for the first time steady-state and rapid kinetics, viscosity and pH effects, and time-resolved absorbance spectroscopy of the enzyme in turnover with P3N and the substrate analogue ethyl nitronate (EN) to elucidate the mechanism of the reaction. A transient increase in absorbance at ∼300 nm, never reported before, was seen during steady-state turnover of the enzyme with P3N and oxygen, with no concomitant changes between 400 and 600 nm. The transient species was not detected when oxygen was absent. Anaerobic reduction of the enzyme with P3N yielded anionic flavosemiquinone and was fast (e.g., ≥1900 s(-1)). Steady-state kinetics demonstrated that oxygen reacts before the release of the product of P3N oxidation from the enzyme. No pH effects were seen with P3N on kcat/Km, kcat/Koxygen, and kcat; in contrast, with EN, the kcat/Km and kcat decreased with increasing pH defining two plateaus and a pKa ∼ 8.0. Solvent viscosity at the pH optima suggested product release as being partially controlling the overall rate of turnover with the physiological substrate and its analogue. A mechanism that satisfies the kinetic results is proposed. PMID:23530838

  8. Palladium-catalyzed oxidative carbonylation reactions.

    PubMed

    Wu, Xiao-Feng; Neumann, Helfried; Beller, Matthias

    2013-02-01

    Palladium-catalyzed coupling reactions have become a powerful tool for advanced organic synthesis. This type of reaction is of significant value for the preparation of pharmaceuticals, agrochemicals, as well as advanced materials. Both, academic as well as industrial laboratories continuously investigate new applications of the different methodologies. Clearly, this area constitutes one of the major topics in homogeneous catalysis and organic synthesis. Among the different palladium-catalyzed coupling reactions, several carbonylations have been developed and widely used in organic syntheses and are even applied in the pharmaceutical industry on ton-scale. Furthermore, methodologies such as the carbonylative Suzuki and Sonogashira reactions allow for the preparation of interesting building blocks, which can be easily refined further on. Although carbonylative coupling reactions of aryl halides have been well established, palladium-catalyzed oxidative carbonylation reactions are also interesting. Compared with the reactions of aryl halides, oxidative carbonylation reactions offer an interesting pathway. The oxidative addition step could be potentially avoided in oxidative reactions, but only few reviews exist in this area. In this Minireview, we summarize the recent development in the oxidative carbonylation reactions. PMID:23307763

  9. An alternative reaction for heme degradation catalyzed by the Escherichia coli O157:H7 ChuS protein: Release of hematinic acid, tripyrrole and Fe(III).

    PubMed

    Ouellet, Yannick H; Ndiaye, Cheikh Tidiane; Gagné, Stéphane M; Sebilo, Anne; Suits, Michael D L; Jubinville, Éric; Jia, Zongchao; Ivancich, Anabella; Couture, Manon

    2016-01-01

    As part of the machinery to acquire, internalize and utilize heme as a source of iron from the host, some bacteria possess a canonical heme oxygenase, where heme plays the dual role of substrate and cofactor, the later catalyzing the cleavage of the heme moiety using O2 and electrons, and resulting in biliverdin, carbon monoxide and ferrous non-heme iron. We have previously reported that the Escherichia coli O157:H7 ChuS protein, which is not homologous to heme oxygenases, can bind and degrade heme in a reaction that releases carbon monoxide. Here, we have pursued a detailed characterization of such heme degradation reaction using stopped-flow UV-visible absorption spectrometry, the characterization of the intermediate species formed in such reaction by EPR spectroscopy and the identification of reaction products by NMR spectroscopy and Mass spectrometry. We show that hydrogen peroxide (in molar equivalent) is the key player in the degradation reaction, at variance to canonical heme oxygenases. While the initial intermediates of the reaction of ChuS with hydrogen peroxide (a ferrous keto π neutral radical and ferric verdoheme, both identified by EPR spectroscopy) are in common with heme oxygenases, a further and unprecedented reaction step, involving the cleavage of the porphyrin ring at adjacent meso-carbons, results in the release of hematinic acid (a monopyrrole moiety identified by NMR spectroscopy), a tripyrrole product (identified by Mass spectrometry) and non-heme iron in the ferric oxidation state (identified by EPR spectroscopy). Overall, the unprecedented reaction of E. coli O157:H7 ChuS provides evidence for a novel heme degradation activity in a Gram-negative bacterium. PMID:26598215

  10. Transition-Metal-Catalyzed Bioorthogonal Cycloaddition Reactions.

    PubMed

    Yang, Maiyun; Yang, Yi; Chen, Peng R

    2016-02-01

    In recent years, bioorthogonal reactions have emerged as a powerful toolbox for specific labeling and visualization of biomolecules, even within the highly complex and fragile living systems. Among them, copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction is one of the most widely studied and used biocompatible reactions. The cytotoxicity of Cu(I) ions has been greatly reduced due to the use of Cu(I) ligands, which enabled the CuAAC reaction to proceed on the cell surface, as well as within an intracellular environment. Meanwhile, other transition metals such as ruthenium, rhodium and silver are now under development as alternative sources for catalyzing bioorthogonal cycloadditions. In this review, we summarize the development of CuAAC reaction as a prominent bioorthogonal reaction, discuss various ligands used in reducing Cu(I) toxicity while promoting the reaction rate, and illustrate some of its important biological applications. The development of additional transition metals in catalyzing cycloaddition reactions will also be briefly introduced. PMID:27572985

  11. Visual detection of trace copper ions based on copper-catalyzed reaction of ascorbic acid with oxygen

    NASA Astrophysics Data System (ADS)

    Hou, Xin Yan; Chen, Shu; Shun, Lian Ju; Zhao, Yi Ni; Zhang, Zhi Wu; Long, Yun Fei; Zhu, Li

    2015-10-01

    A visual detection method for trace Cu2+ in aqueous solutions using triangular silver nanoplates (abbreviated as TAgNPs) as the probe was developed. The method is based on that TAgNPs could be corroded in sodium thiosulfate (Na2S2O3) solutions. The absorption spectrum of TAgNPs solution changed when it is corroded by Na2S2O3. The reaction of oxygen with ascorbic acid (Vc) in the presence of a low concentration of Cu2+ generates hydrogen peroxide that reacts with Na2S2O3, which leads the concentration of Na2S2O3 in the solution to be decreased. Therefore, the reaction between TAgNPs and the reacted mixture of Na2S2O3/Vc/Cu2+ was prevented efficiently. When the Na2S2O3 concentration and reaction time are constant, the decrease in the concentration of Na2S2O3 is directly proportional to the Cu2+ concentration. Thus, morphology, color, and maximum absorption wavelength of TAgNPs changed with the change of Cu2+ concentration. The changed maximum absorption wavelength of TAgNPs (Δλ) is proportional to Cu2+ concentration in the range from 7.5 × 10-9 to 5.0 × 10-7 M with a correlation coefficient of r = 0.9956. Moreover, color change of TAgNP solution was observed clearly over a Cu2+ concentration range from 7.5 × 10-8 to 5.0 × 10-7 M. This method has been used to detect the Cu2+ content of a human hair sample, and the result is in agreement with that obtained by the atomic absorption spectroscopy (AAS) method.

  12. Following Solid-Acid-Catalyzed Reactions by MAS NMR Spectroscopy in Liquid Phase -Zeolite-Catalyzed Conversion of Cyclohexanol in Water

    SciTech Connect

    Vjunov, Aleksei; Hu, Mary Y.; Feng, Ju; Camaioni, Donald M.; Mei, Donghai; Hu, Jian Z.; Zhao, Chen; Lercher, Johannes A.

    2014-01-07

    The catalytic conversion of cyclohexanol on zeolite HBEA in hot liquid water leads to dehydration as well as alkylation products. A novel micro autoclave suitable for application in MAS NMR at high temperatures and pressures is developed and successfully applied to obtain new insight into the mechanistic pathway leading to an understanding of the reactions under selected experimental conditions.

  13. Studies of reaction variables for lipase-catalyzed production of alpha-linolenic acid enriched structured lipid and oxidative stability with antioxidants.

    PubMed

    Mitra, Kanika; Shin, Jung-Ah; Lee, Jeung-Hee; Kim, Seong-Ai; Hong, Soon-Taek; Sung, Chang-Keun; Xue, Cheng Lian; Lee, Ki-Teak

    2012-01-01

    Alpha-linolenic acid (ALA) enriched structured lipid (SL) was produced by lipase-catalyzed interesterification from perilla oil (PO) and corn oil (CO). The effects of different reaction conditions (substrate molar ratio [PO/CO 1:1 to 1:3], reaction time [0 to 24 h], and reaction temperature [55 to 65 °C]) were studied. Lipozyme RM IM from Rhizomucor miehei was used as biocatalyst. We obtained 32.39% of ALA in SL obtained under the optimized conditions (molar ratio-1:1 [PO:CO], temperature-60 °C, reaction time-15 h). In SL, the major triacylglycerol (TAG) species (linolenoyl-linolenoyl-linolenoyl glycerol [LnLnLn], linolenoyl-linolenoyl-linoleoyl glycerol [LnLnL]) mainly from PO and linoleoyl-linoleoyl-oleoyl glycerol (LLO), linoleoyl-oleoyl-oleoyl glycerol (LOO), palmitoyl-linoleoyl-oleoyl glycerol (PLO) from CO decreased while linolenoyl-linolenoyl-oleoyl glycerol (LnLnO) (18.41%), trilinolein (LLL) (9.06%), LLO (16.66%), palmitoyl-linoleoyl-linoleoyl glycerol (PLL) (9.69%) were increased compared to that of physical blend. Total tocopherol content (28.01 mg/100 g), saponification value (SV) (192.2), and iodine value (IV) (161.9) were obtained. Furthermore, oxidative stability of the SL was also investigated by addition of 3 different antioxidants (each 200 ppm of rosemary extract [SL-ROS], BHT [SL-BHT], catechin [SL-CAT]) was added into SL and stored in 60 °C oven for 30 d. 2-Thiobabituric acid-reactive substances (TBARS) value was 0.16 mg/kg in SL-CAT and 0.18 mg/kg in SL-ROS as compared with 0.22 mg/kg in control (SL) after oxidation. The lowest peroxide value (POV, 200.9 meq/kg) and longest induction time (29.88 h) was also observed in SL-CAT. PMID:22122200

  14. Imino-Oxy Acetic Acid Dealkylation as Evidence for an Inner-Sphere Alcohol Intermediate in the Reaction Catalyzed by Peptidylglycine α-Hydroxylating Monooxygenase (PHM)

    PubMed Central

    McIntyre, Neil R.; Lowe, Edward W.; Merkler, David J.

    2009-01-01

    Peptidylglycine α-hydroxylating monooxygenase (PHM, EC 1.14.17.3) catalyzes the stereospecific hydroxylation of a glycyl α-carbon in a reaction that requires O2 and ascorbate. Subsequent dealkylation of the α-hydroxyglycine by another enzyme, peptidylamidoglycolate lyase (PAL. EC 4.3.2.5), yields a bioactive amide and glyoxylate. PHM is a non-coupled, type II dicopper monooxygenase which activates O2 at only a single copper atom, CuM. In this study, the PHM mechanism was probed using a non-natural substrate, benzaldehyde imino-oxy acetic acid (BIAA). PHM catalyzes the O-oxidative dealkylation of BIAA to benzaldoxime and glyoxylate with no involvement of PAL. The minimal kinetic mechanism for BIAA was shown to be steady-state ordered using primary deuterium kinetic isotope effects. The D(V/K)APPARENT, BIAA decreased from 14.7 ± 1.0 as [O2] → 0 to 1.0 ± 0.2 as [O2] → ∞ suggesting the dissociation rate constant from the PHM·BIAA complex decreases as [O2] increases; thereby, reducing the steady-state concentration of [PHM]free. BIAA was further used to differentiate between potential oxidative Cu/O species using a QM/MM reaction coordinate simulation to determine which species could yield product O-dealkylation that matched our experimental data. The results of this study provided compelling evidence for the presence of a covalently linked CuII-alkoxide intermediate with a quartet spin state responsible BIAA oxidation. PMID:19569683

  15. Ni-Catalyzed Amination Reactions: An Overview.

    PubMed

    Marín, Mario; Rama, Raquel J; Nicasio, M Carmen

    2016-08-01

    Nitrogen-containing organic compounds are valuable in many fields of science and industry. The most reliable method for the construction of C(sp(2) )-N bonds is undoubtedly palladium-catalyzed amination. In spite of the great achievements made in this area, the use of expensive Pd-based catalysts constitutes an important limitation for large-scale applications. Since nickel is the least expensive and most abundant among the group 10 metals, the interest in Ni-based catalysts for processes typically catalyzed by palladium has grown considerably over the last few years. Herein, we revise the development of Ni-catalyzed amination reactions, emphasizing the most relevant and recent advances in the field. PMID:27265724

  16. Palladium(III)-catalyzed fluorination of arylboronic acid derivatives.

    PubMed

    Mazzotti, Anthony R; Campbell, Michael G; Tang, Pingping; Murphy, Jennifer M; Ritter, Tobias

    2013-09-25

    A practical, palladium-catalyzed synthesis of aryl fluorides from arylboronic acid derivatives is presented. The reaction is operationally simple and amenable to multigram-scale synthesis. Evaluation of the reaction mechanism suggests a single-electron-transfer pathway, involving a Pd(III) intermediate that has been isolated and characterized. PMID:24040932

  17. Stereoselectivity in (Acyloxy)borane-Catalyzed Mukaiyama Aldol Reactions.

    PubMed

    Lee, Joshua M; Zhang, Xin; Norrby, Per-Ola; Helquist, Paul; Wiest, Olaf

    2016-07-01

    The origin of diastereo- and enantioselectivity in a Lewis acid-catalyzed Mukaiyama aldol reaction is investigated using a combination of dispersion corrected DFT calculations and transition state force fields (TSFF) developed using the quantum guided molecular mechanics (Q2MM) method. The reaction proceeds via a closed transition structure involving a nontraditional hydrogen bond that is 3.3 kJ/mol lower in energy than the corresponding open transition structure. The correct prediction of the diastereoselectivity of a Mukaiyama aldol reaction catalyzed by the conformationally flexible Yamamoto chiral (acyloxy) borane (CAB) requires extensive conformational sampling at the transition structure, which is achieved using a Q2MM-derived TSFF, followed by DFT calculations of the low energy conformational clusters. Finally, a conceptual model for the rationalization of the observed diastereo- and enantioselectivity of the reaction using a closed transition state model is proposed. PMID:27247023

  18. Copper-catalyzed aerobic oxidation of hydroxamic acids leads to a mild and versatile acylnitroso ene reaction.

    PubMed

    Frazier, Charles P; Engelking, Jarred R; Read de Alaniz, Javier

    2011-07-13

    A mild formation of transient acylnitroso intermediates using a copper chloride catalyst and 1 atm of air as the terminal oxidant is described. The mild reaction conditions enable the inter- and intramolecular acylnitroso ene reaction with a wide range of functionalized alkene partners, as well as the first asymmetric variant. Notably, this transformation provides a practical and operationally simple method for effecting allylic amidation using an environmentally benign oxidant and a readily abundant transition metal. PMID:21678942

  19. Thermally Induced And Base Catalyzed Reactions Of Naphthoquinone Diazides

    NASA Astrophysics Data System (ADS)

    Koshiba, Mitsunobu; Murata, Makoto; Matsui, Mariko; Harita, Yoshiyuki

    1988-01-01

    Thermally induced and base catalyzed reactions of a phenol ester of 1,2-naphthoquinone-diazide-5-sulfonic acid (DAM) with p-cresol were investigated. In total seven reaction products were obtained for the thermally induced reaction. The three major products, TR--F4, TR-F6 and TR-F7, were isolated and their structures were determined by means of several advanced spectroscopic techniques like Fourier transform nuclear magnetic resonance (FTNMR) and field desorption mass spectroscopy (FD-MS). Besides a cresol ester of indenecarboxylic acid (TR-F6) and an azo compound which contains two DAM originated moieties and cresol (TR-F7), the formation of a novel compound was found; a phenol ester of 2-cresyl-l-naphthol-5-sulfonic acid. On the other hand, four reaction products were found in the base (a 2.38wt% tetramethylammonium hydroxide aq. solution) catalyzed reaction products of DAM with p-cresol, and two major products, BC-Fl and BC-F3, which appeared at the initial stage of the reaction were isolated. The structure determination of the two major products was carried out in the same manner as described above. It was discovered that BC-Fl was a cresol ester of 1-naphthol while BC-F3 was an azoxy compound. Brief discussions will be made on those reactions of naphthoquinone diazides with a matrix novolak resin with reference to the results obtained by the present study.

  20. Asymmetric petasis reactions catalyzed by chiral biphenols.

    PubMed

    Lou, Sha; Schaus, Scott E

    2008-06-01

    Chiral biphenols catalyze the enantioselective Petasis reaction of alkenyl boronates, secondary amines, and ethyl glyoxylate. The reaction requires the use of 15 mol % of (S)-VAPOL as the catalyst, alkenyl boronates as nucleophiles, ethyl glyoxylate as the aldehyde component, and 3 A molecular sieves as an additive. The chiral alpha-amino ester products are obtained in good yields (71-92%) and high enantiomeric ratios (89:11-98:2). Mechanistic investigations indicate single ligand exchange of acyclic boronate with VAPOL and tetracoordinate boronate intermediates. PMID:18459782

  1. Studies of manufacturing controlled-release graphene acid and catalyzing synthesis of chalcone with Claisen-Schmidt condensation reaction

    NASA Astrophysics Data System (ADS)

    Li, Jihui; Feng, Jia; Li, Mei; Wang, Qiaolian; Su, Yumin; Jia, Zhixin

    2013-07-01

    In the paper, graphene acid (GA) was manufactured, using flake graphite as raw material, and the acidity and the structure of GA were characterized as well as. Then, chalcone was synthesized in the presence of GA, using acetophenone and benzaldehyde as the reactant. The results showed that the acidity of GA was for pH = 1.12 in aqueous solution, and it was structured by the graphene sheets with the spaces between the graphene sheet and the graphene sheet and sulfuric acid (H2SO4) and acetic acid (CH3CO2H) inside the spaces. At the same time, the results also exhibited that the chalcone yield was able to reach 60.36% when GA dosage was 5 g, and the chalcone yields could attain apart 60.36, 52.05 and 31.16% when 5 g of GA was used thrice. This shows that GA is not only a high-performance catalyst, but also a controlled-release catalyst.

  2. Identification of a potential general acid/base in the reversible phosphoryl transfer reactions catalyzed by tyrosine recombinases: Flp H305

    PubMed Central

    Whiteson, Katrine L.; Chen, Yu; Chopra, Neeraj; Raymond, Amy C.; Rice, Phoebe A.

    2007-01-01

    Summary Flp provides a unique opportunity to apply the tools of chemical biology to phosphoryl transfer reactions. Flp and other tyrosine recombinases catalyze site-specific DNA rearrangements via a phosphotyrosine intermediate, similar to the mechanism of type Ib topoisomerases [1]. Unlike most related enzymes, Flp’s nucleophilic tyrosine derives from a different protomer than the remainder of its active site [2, 3]. Because the tyrosine can be supplied exogenously, non-natural synthetic analogs can be used. Here we examine the catalytic role of Flp’s conserved H305. DNA cleavage was studied using a peptide containing either tyrosine (pKa≅10), or 3-fluoro-tyrosine (pKa≅8.4). Religation was studied using DNA substrates with 3’-phospho-cresol (pKa≅10) or 3’-para-nitro-phenol (pKa≅7.1) mimicking the covalent protein-DNA intermediate. In both cases, the tyrosine analog with the lower pKa specifically restored the activity of an H305 mutant. These results provide the first experimental evidence that this conserved histidine functions as a general acid/base catalyst in tyrosine recombinases. PMID:17317566

  3. Acid-catalyzed dehydrogenation of amine-boranes

    DOEpatents

    Stephens, Frances Helen; Baker, Ralph Thomas

    2010-01-12

    A method of dehydrogenating an amine-borane using an acid-catalyzed reaction. The method generates hydrogen and produces a solid polymeric [R.sup.1R.sup.2B--NR.sup.3R.sup.4].sub.n product. The method of dehydrogenating amine-boranes may be used to generate H.sub.2 for portable power sources.

  4. Acid-catalyzed carboxylic acid esterification and ester hydrolysis mechanism: acylium ion as a sharing active intermediate via a spontaneous trimolecular reaction based on density functional theory calculation and supported by electrospray ionization-mass spectrometry.

    PubMed

    Shi, Hongchang; Wang, Yilei; Hua, Ruimao

    2015-11-11

    By DFT calculation, we found that acid-catalyzed carboxylic acid esterification and ester hydrolysis are brief two-step reactions. First, the carboxylic acid hydroxyl-oxygen or ester alkyl-oxygen is protonated, which generates a highly active acylium ion. The protonation requires an activation energy (Ea) of 4-10 kcal mol(-1), and is the rate-controlling step of the esterification or hydrolysis. Sequentially, the acylium ion spontaneously reacts with two alcohol or two water molecules to form a neutral product molecule; this is a trimolecular reaction. The acylium ion is the highly active intermediate shared by esterification and hydrolysis. ESI-MS data for several typical carboxylic acids confirmed that their acylium ions are easily generated. For 2,4,6-trialkylbenzoic acid and its ester, the two unsubstituted carbons in the benzene ring are very easily protonated, and we have thus revealed the root of the success of Newman's method. Based on these results, the popular esterification and hydrolysis mechanism in organic chemistry textbooks is incorrect. PMID:26445892

  5. Thermodynamic limitations on microbially catalyzed reaction rates

    NASA Astrophysics Data System (ADS)

    LaRowe, Douglas E.; Dale, Andrew W.; Amend, Jan P.; Van Cappellen, Philippe

    2012-08-01

    Quantification of global biogeochemical cycles requires knowledge of the rates at which microorganisms catalyze chemical reactions. In order for models that describe these processes to capture global patterns of change, the underlying formulations in them must account for biogeochemical transformations over seasonal and millennial time scales in environments characterized by different energy levels. Building on existing models, a new thermodynamic limiting function is introduced. With only one adjustable parameter, this function that can be used to model microbial metabolism throughout the range of conditions in which organisms are known to be active. The formulation is based on a comparison of the amount of energy available from any redox reaction to the energy required to maintain a membrane potential, a proxy for the minimum amount of energy required by an active microorganism. This function does not require species- or metabolism-specific parameters, and can be used to model metabolisms that capture any amount of energy. The utility of this new thermodynamic rate limiting term is illustrated by applying it to three low-energy processes: fermentation, methanogenesis and sulfate reduction. The model predicts that the rate of fermentation will be reduced by half once the Gibbs energy of the catalyzed reaction reaches -12 kJ (mol e-)-1, and then slowing exponentially until the energy yield approaches zero. Similarly, the new model predicts that the low energy yield of methanogenesis, -4 to -0.5 kJ (mol e-)-1, for a partial pressure of H2 between 11 and 0.6 Pa decreases the reaction rate by 95-99%. Finally, the new function's utility is illustrated through its ability to accurately model sulfate concentration data in an anoxic marine sediment.

  6. Representing Rate Equations for Enzyme-Catalyzed Reactions

    ERIC Educational Resources Information Center

    Ault, Addison

    2011-01-01

    Rate equations for enzyme-catalyzed reactions are derived and presented in a way that makes it easier for the nonspecialist to see how the rate of an enzyme-catalyzed reaction depends upon kinetic constants and concentrations. This is done with distribution equations that show how the rate of the reaction depends upon the relative quantities of…

  7. Production of L-malic acid with fixation of HCO3(-) by malic enzyme-catalyzed reaction based on regeneration of coenzyme on electrode modified by layer-by-layer self-assembly method.

    PubMed

    Zheng, Haitao; Ohno, Yoko; Nakamori, Toshihiko; Suye, Shin-Ichiro

    2009-01-01

    Malic enzyme prepared and purified from Brevundimonas diminuta IFO13182 catalyzed the decarboxylation reaction of malate to pyruvate and CO2 using NAD+ as the coenzyme, and the reverse reaction was used in the present study for L-malic acid production with fixation of HCO3(-) as a model compound for carbon source. The L-malic acid production was based on electrochemical regeneration of NADH on a carbon plate electrode modified by layer-by-layer adsorption of polymer-bound mediator (Alginic acid bound viologen derivative, Alg-V), polymer-bound coenzyme (Alginic acid bound NAD+, Alg-NAD+), and lipoamide dehydrogenase (LipDH). Electrochemical reduction of immobilized NAD+ catalyzed by LipDH in a multilayer film was achieved, and the L-malic acid production with HCO3(-) fixation system with layer-by-layer immobilization of Alg-V/LipDH/Alg-NAD+/malic enzyme multilayer film on the electrode gave an L-malic acid production of nearly 11.9 mmol and an HCO3(-) fixation rate of nearly 47.4% in a buffer containing only KHCO3 and pyruvic acid potassium salt, using a cation exchange membrane. The total turnover number of NADH within 48 h was about 19,000, which suggests that efficient NADH regeneration and fast electron transfer were achieved within the multilayer film, and that the modified electrode is a potential method for the fixation of HCO3(-) without addition of free coenzyme. PMID:19147103

  8. O2 and H2O2 transformation steps for the oxygen reduction reaction catalyzed by graphitic nitrogen-doped carbon nanotubes in acidic electrolyte from first principles calculations.

    PubMed

    Li, Yuhang; Zhong, Guoyu; Yu, Hao; Wang, Hongjuan; Peng, Feng

    2015-09-14

    It is highly challenging but extremely desirable to develop carbon catalysts with high oxygen reduction reaction (ORR) activity and stability in acidic medium for commercial application. In this paper, based on density functional theory (DFT) calculations with long range interaction correction and solvation effects, the elementary transformations of all the probable intermediates in the ORR and the hydrogen peroxide reduction reaction (HPRR) over graphitic nitrogen-doped carbon nanotubes (NCNTs) in acidic medium were evaluated, and it was found that all the rate determining steps are related to the bonding hydroxyl group because of the strong interaction between the hydroxyl group and carbon. Thus, it is hard for the direct four-electron ORR and the two-electron HPRR to proceed. Together with hydrogen peroxide disproportionation (HPD), a mixed mechanism for the ORR in acidic electrolyte was proposed, where the two-electron and three-electron ORRs and HPD dominate the electrode reaction. The experimental result for the ORR catalyzed by NCNTs in acidic electrolyte also well illustrated the rationality of the theoretical calculations. This study not only gives new insights into the effect of graphitic nitrogen doping on the ORR catalyzed by carbon, but also provides a guide to design carbon catalysts with high ORR activity in acidic electrolyte. PMID:26234475

  9. Aerobic Copper-Catalyzed O-Methylation with Methylboronic Acid.

    PubMed

    Jacobson, Clare E; Martinez-Muñoz, Noelia; Gorin, David J

    2015-07-17

    The oxidative coupling of alkylboronic acids with oxygen nucleophiles offers a strategy for replacing toxic, electrophilic alkylating reagents. Although the Chan-Lam reaction has been widely applied in the arylation of heteroatom nucleophiles, O-alkylation with boronic acids is rare. We report a Cu-catalyzed nondecarboxylative methylation of carboxylic acids with methylboronic acid that proceeds in air with no additional oxidant. An isotope-labeling study supports an oxidative cross-coupling mechanism, in analogy to that proposed for Chan-Lam arylation. PMID:26111825

  10. Organometallic Enantiomeric Scaffolding: General Access to 2-Substituted Oxa- and Azabicyclo[3.2.1]octenes via a Brønsted Acid-catalyzed [5+2] Cycloaddition Reaction

    PubMed Central

    Garnier, Ethel C.; Liebeskind, Lanny S.

    2009-01-01

    6-Substituted TpMo(CO)2(η-2,3,4-pyranyl)- and TpMo(CO)2(η-2,3,4-pyridinyl) scaffolds (Tp = hydridotrispyrazolylborato) function as reaction partners in an efficient regio- and stereocontrolled synthesis of functionalized oxa- and azabicyclo[3.2.1]octenes through a novel Brønsted acid-catalyzed [5+2] cycloaddition reaction. Excellent exo-selectivities are obtained and the reaction gives products with complete retention of enantiomeric purity when carried out with chiral, non-racemic scaffolds. The substituent at C-6 of the η3-coordinated heterocyclic scaffold not only influences [5+2] reactivity but also plays a critical role in the demetalation step directing the reaction to only one of two possible products. PMID:18479131

  11. Silver and gold-catalyzed multicomponent reactions

    PubMed Central

    Abbiati, Giorgio

    2014-01-01

    Summary Silver and gold salts and complexes mainly act as soft and carbophilic Lewis acids even if their use as σ-activators has been rarely reported. Recently, transformations involving Au(I)/Au(III)-redox catalytic systems have been reported in the literature. In this review we highlight all these aspects of silver and gold-mediated processes and their application in multicomponent reactions. PMID:24605168

  12. Microwave-Assisted Condensation Reactions of Acetophenone Derivatives and Activated Methylene Compounds with Aldehydes Catalyzed by Boric Acid under Solvent-Free Conditions.

    PubMed

    Brun, Elodie; Safer, Abdelmounaim; Carreaux, François; Bourahla, Khadidja; L'helgoua'ch, Jean-Martial; Bazureau, Jean-Pierre; Villalgordo, Jose Manuel

    2015-01-01

    We here disclosed a new protocol for the condensation of acetophenone derivatives and active methylene compounds with aldehydes in the presence of boric acid under microwave conditions. Implementation of the reaction is simple, healthy and environmentally friendly owing to the use of a non-toxic catalyst coupled to a solvent-free procedure. A large variety of known or novel compounds have thus been prepared, including with substrates bearing acid or base-sensitive functional groups. PMID:26111185

  13. Palladium-catalyzed synthesis of aromatic carboxylic acids with silacarboxylic acids.

    PubMed

    Friis, Stig D; Andersen, Thomas L; Skrydstrup, Troels

    2013-03-15

    Aryl iodides and bromides were easily converted to their corresponding aromatic carboxylic acids via a Pd-catalyzed carbonylation reaction using silacarboxylic acids as an in situ source of carbon monoxide. The reaction conditions were compatible with a wide range of functional groups, and with the aryl iodides, the carbonylation was complete within minutes. The method was adapted to the double and selective isotope labeling of tamibarotene. PMID:23441830

  14. Mechanism of the Enantioselective Intramolecular [2 + 2] Photocycloaddition Reaction of Coumarin Catalyzed by a Chiral Lewis Acid: Comparison with Enone Substrates.

    PubMed

    Wang, Hongjuan; Fang, Wei-Hai; Chen, Xuebo

    2016-08-19

    The asymmetric catalysis of the intramolecular enone [2 + 2] photocycloaddition reaction relies on a complicated regulation mechanism to control its reactivity and selectivity as well as quantum yield. The multiconfiguration perturbation theory associated with energy-consistent relativistic pseudopotentials offers a mechanistic comparison between representative coumarin and enone substrates. A pair of bright ππ* states govern the unselective background reaction of the free coumarin through the direct cycloaddition in the singlet hypersurface and the elimination of the reaction channel in the triplet manifold due to the existence of anti El Sayed type singlet-triplet crossing. The opening of a reaction channel in the triplet state is repeatedly verified to depend on the presence of relativistic effects, i.e., spin-orbit coupling due to heavy atoms in the chiral Lewis acid catalyst. PMID:27322795

  15. Cooperative Catalysis: Calcium and Camphorsulfonic Acid Catalyzed Cycloisomerization of Diynols.

    PubMed

    Rauser, Marian; Schroeder, Sebastian; Niggemann, Meike

    2015-11-01

    The first transition metal-free cycloisomerization of easily accessible diynols is presented as a novel approach to bicyclic 2H-pyrans. As a one-step protocol, the reaction proceeds in a single reaction cascade by intertwining mechanistic fragments borrowed from transition metal-catalyzed Claisen rearrangment of vinyl ethers with our own work on allenyl/propargyl cation rearrangements and a 6π-oxo-electrocylization. It is enabled by a new cooperative catalytic system that combines a simple Ca(2+) catalyst with camphorsulfonic acid. PMID:26403228

  16. Synthesis of Rosin Acid Starch Catalyzed by Lipase

    PubMed Central

    Lin, Rihui; Li, He; Long, Han; Su, Jiating; Huang, Wenqin

    2014-01-01

    Rosin, an abundant raw material from pine trees, was used as a starting material directly for the synthesis of rosin acid starch. The esterification reaction was catalyzed by lipase (Novozym 435) under mild conditions. Based on single factor experimentation, the optimal esterification conditions were obtained as follows: rosin acid/anhydrous glucose unit in the molar ratio 2 : 1, reaction time 4 h at 45°C, and 15% of lipase dosage. The degree of substitution (DS) reaches 0.098. Product from esterification of cassava starch with rosin acid was confirmed by FTIR spectroscopy and iodine coloration analysis. Scanning electron microscopy and X-ray diffraction analysis showed that the morphology and crystallinity of the cassava starch were largely destroyed. Thermogravimetric analysis indicated that thermal stability of rosin acid starch decreased compared with native starch. PMID:24977156

  17. Decomposition of peracetic acid catalyzed by vanadium complexes

    SciTech Connect

    Makarov, A.P.; Gekhman, A.E.; Moiseev, I.I.; Polotryuk, O.Y.

    1986-02-01

    This paper studies the decomposition of peracetic acid (AcOOH) in acetic acid (AcOH) catalyzed by vanadium complexes. It is shown that peractic acid in acetic acid solutions of ammonium anadate decomposes with the predominant formation of 0/sub 2/ and small amounts of CO/sub 2/, the yield of which increases with increasing temperature and peracetic acid concentration. Both reactions proceed without the formation of free radicals in amounts detectable by ESR spectroscopy. The rate of oxygen release under conditions in which the formation of CO/sub 2/ is insignificant obeys a kinetic equation indicating the intermediate formation of a complex between V/sup 5 +/ ions and peracetic acid and the slow conversion of this complex into the observed products.

  18. KI-catalyzed α-acyloxylation of acetone with carboxylic acids.

    PubMed

    Wu, Ya-Dong; Huang, Bei; Zhang, Yue-Xin; Wang, Xiao-Xu; Dai, Jian-Jun; Xu, Jun; Xu, Hua-Jian

    2016-07-01

    The KI-catalyzed reaction of acetone with aromatic carboxylic acids is achieved, leading to α-acyloxycarbonyl compounds in good to excellent yields under mild reaction conditions. The present method exhibits good functional-group compatibility. Notably, this reaction system is even suitable for cinnamic acid, 3-phenylpropiolic acid and 4-phenylbutanoic acid. A kinetic isotope effect (KIE) study indicates that C-H cleavage of the acetone is the rate-limiting step in the catalytic cycle. PMID:27251323

  19. The Lewis acid catalyzed synthesis of hyperbranched Oligo(glycerol-diacid)s in aprotic polar media

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Lewis-acid, titanium (IV) butoxide (15% (w/w; catalyst/reactants)), was used to catalyze the condensation of 0.05 mol glycerol with 0.10 mol of either succinic acid, glutaric acid, or azelaic acid to produce oligomers. The reactions were refluxed in dilute solutions of dimethylsulfoxide (DMSO) o...

  20. Microorganisms detected by enzyme-catalyzed reaction

    NASA Technical Reports Server (NTRS)

    Vango, S. P.; Weetall, H. H.; Weliky, N.

    1966-01-01

    Enzymes detect the presence of microorganisms in soils. The enzyme lysozymi is used to release the enzyme catalase from the microorganisms in a soil sample. The catalase catalyzes the decomposition of added hydrogen peroxide to produce oxygen which is detected manometrically. The partial pressure of the oxygen serves as an index of the samples bacteria content.

  1. Gold-catalyzed tandem reactions of methylenecyclopropanes and vinylidenecyclopropanes.

    PubMed

    Zhang, Di-Han; Tang, Xiang-Ying; Shi, Min

    2014-03-18

    Gold catalysis is often the key step in the synthesis of natural products, and is a powerful tool for tandem or domino reaction processes. Both gold salts and complexes are among the most powerful soft Lewis acids for electrophilic activation of carbon-carbon multiple bonds toward a variety of nucleophiles. The core of these reactions relies on the interaction between gold catalysts and π-bonds of alkenes, alkynes, and allenes. Activation of functional groups by gold complexes provides a useful and important method for facilitating many different organic transformations with high atom efficiency. Although they are highly strained, methylenecyclopropanes (MCPs) and vinylidenecyclopropanes (VDCPs) are readily accessible molecules that have served as useful building blocks in organic synthesis. Because of their unique structural and electronic properties, significant developments have been made in the presence of transition metal catalysts such as nickel, rhodium, palladium, and ruthenium during the past decades. However, less attention has been paid to the gold-catalyzed chemistry of MCPs and VDCPs. In this Account, we describe gold-catalyzed chemical transformations of MCPs and VDCPs developed both in our laboratory and by other researchers. Chemists have demonstrated that MCPs and VDCPs have amphiphilic properties. When MCPs or VDCPs are activated by a gold catalyst, subsequent nucleophilic attack by other reagents or ring-opening (ring-expansion) of the cyclopropane moiety will occur. However, the C-C double bonds of MCPs and VDCPs can also serve as nucleophilic reagents while more electrophilic reagents are present and activated by gold catalyst, and then further cascade reactions take place as triggered by the release of ring strain of cyclopropane. Based on this strategy, both our group and others have found some interesting gold-catalyzed transformations in recent years. These transformations of MCPs and VDCPs can produce a variety of polycyclic and

  2. Iron-catalyzed asymmetric haloamination reactions.

    PubMed

    Cai, Yunfei; Liu, Xiaohua; Zhou, Pengfei; Kuang, Yulong; Lin, Lili; Feng, Xiaoming

    2013-09-21

    The first iron(III)/N,N'-dioxide-catalyzed asymmetric haloamination of 3-alkylidene- and 3-arylidene-indolin-2-ones was developed, affording the corresponding chiral oxindole derivatives bearing vicinal haloamine substituents with excellent results (up to 99% yield, 99% ee, >19 : 1 dr). This iron catalyst also exhibits perfect enantioselectivity for chalcone derivatives. The cooperative activation of the substrate and the reagent in concert guarantees the high stereoselectivity. PMID:23903004

  3. Copper-Catalyzed Oxidative Heck Reactions between Alkyltrifluoroborates and Vinylarenes

    PubMed Central

    Liwosz, Timothy W.; Chemler, Sherry R.

    2013-01-01

    We report herein that potassium alkyltrifluoroborates can be utilized in oxidative Heck-type reactions with vinyl arenes. The reaction is catalyzed by a Cu(OTf)2/1,10-phenanthroline with MnO2 as the stoichiometric oxidant. In addition to the alkyl Heck, amination, esterification and dimerization reactions of alkyltrifluoroborates are demonstrated under analogous reaction conditions. Evidence for an alkyl radical intermediate is presented. PMID:23734764

  4. Acid-Catalyzed Isomerization of Carvone to Carvacrol

    ERIC Educational Resources Information Center

    Kjonaas, Richard A.; Mattingly, Shawn P.

    2005-01-01

    The acid-catalyzed isomerization of carvone to carvacrol, first reported by Ritter and Ginsburg, is especially well suited with a permanent-magnet FT instrument. The acid-catalyzed isomerization of carvone to carvacrol produced a 61% yield after a three hour reflux with 30% aqueous sulfuric acid.

  5. Recent advances in copper-catalyzed asymmetric coupling reactions.

    PubMed

    Zhou, Fengtao; Cai, Qian

    2015-01-01

    Copper-catalyzed (or -mediated) asymmetric coupling reactions have received significant attention over the past few years. Especially the coupling reactions of aryl or alkyl halides with nucleophiles became a very powerful tool for the formation of C-C, C-N, C-O and other carbon-heteroatom bonds as well as for the construction of heteroatom-containing ring systems. This review summarizes the recent progress in copper-catalyzed asymmetric coupling reactions for the formation of C-C and carbon-heteroatom bonds. PMID:26734106

  6. Recent advances in copper-catalyzed asymmetric coupling reactions

    PubMed Central

    2015-01-01

    Summary Copper-catalyzed (or -mediated) asymmetric coupling reactions have received significant attention over the past few years. Especially the coupling reactions of aryl or alkyl halides with nucleophiles became a very powerful tool for the formation of C–C, C–N, C–O and other carbon–heteroatom bonds as well as for the construction of heteroatom-containing ring systems. This review summarizes the recent progress in copper-catalyzed asymmetric coupling reactions for the formation of C–C and carbon–heteroatom bonds. PMID:26734106

  7. Exploiting the reversibility of natural product glycosyltransferase-catalyzed reactions.

    PubMed

    Zhang, Changsheng; Griffith, Byron R; Fu, Qiang; Albermann, Christoph; Fu, Xun; Lee, In-Kyoung; Li, Lingjun; Thorson, Jon S

    2006-09-01

    Glycosyltransferases (GTs), an essential class of ubiquitous enzymes, are generally perceived as unidirectional catalysts. In contrast, we report that four glycosyltransferases from two distinct natural product biosynthetic pathways-calicheamicin and vancomycin-readily catalyze reversible reactions, allowing sugars and aglycons to be exchanged with ease. As proof of the broader applicability of these new reactions, more than 70 differentially glycosylated calicheamicin and vancomycin variants are reported. This study suggests the reversibility of GT-catalyzed reactions may be general and useful for generating exotic nucleotide sugars, establishing in vitro GT activity in complex systems, and enhancing natural product diversity. PMID:16946071

  8. Unravelling the Ru-Catalyzed Hydrogenolysis of Biomass-Based Polyols under Neutral and Acidic Conditions.

    PubMed

    Hausoul, Peter J C; Negahdar, Leila; Schute, Kai; Palkovits, Regina

    2015-10-12

    The aqueous Ru/C-catalyzed hydrogenolysis of biomass-based polyols such as erythritol, xylitol, sorbitol, and cellobitol is studied under neutral and acidic conditions. For the first time, the complete product spectrum of C2 C6 polyols is identified and, based on a thorough analysis of the reaction mixtures, a comprehensive reaction mechanism is proposed, which consists of (de)hydrogenation, epimerization, decarbonylation, and deoxygenation reactions. The data reveal that the Ru-catalyzed deoxygenation reaction is highly selective for the cleavage of terminal hydroxyl groups. Changing from neutral to acidic conditions suppresses decarbonylation, consequently increasing the selectivity towards deoxygenation. PMID:26448526

  9. Direct ortho-arylation of ortho-substituted benzoic acids: overriding Pd-catalyzed protodecarboxylation.

    PubMed

    Arroniz, Carlos; Ironmonger, Alan; Rassias, Gerry; Larrosa, Igor

    2013-02-15

    ortho-Arylation of ortho-substituted benzoic acids is a challenging process due to the tendency of the reaction products toward Pd-catalyzed protodecarboxylation. A simple method for preventing decarboxylation in sterically hindered benzoic acids is reported. The method described represents a reliable and broadly applicable entry to 2-aryl-6-substituted benzoic acids. PMID:23373630

  10. Cysteine Oxidation Reactions Catalyzed by a Mononuclear Non-heme Iron Enzyme (OvoA) in Ovothiol Biosynthesis

    PubMed Central

    2015-01-01

    OvoA in ovothiol biosynthesis is a mononuclear non-heme iron enzyme catalyzing the oxidative coupling between histidine and cysteine. It can also catalyze the oxidative coupling between hercynine and cysteine, yet with a different regio-selectivity. Due to the potential application of this reaction for industrial ergothioneine production, in this study, we systematically characterized OvoA by a combination of three different assays. Our studies revealed that OvoA can also catalyze the oxidation of cysteine to either cysteine sulfinic acid or cystine. Remarkably, these OvoA-catalyzed reactions can be systematically modulated by a slight modification of one of its substrates, histidine. PMID:24684381

  11. Rearrangement Reactions Catalyzed by Cytochrome P450s

    PubMed Central

    Ortiz de Montellano, Paul R.; Nelson, Sidney D.

    2010-01-01

    Cytochrome P450s promote a variety of rearrangement reactions both as a consequence of the nature of the radical and other intermediates generated during catalysis, and of the neighboring structures in the substrate that can interact either with the initial radical intermediates or with further downstream products of the reactions. This article will review several kinds of previously published cytochrome P450-catalyzed rearrangement reactions, including changes in stereochemistry, radical clock reactions, allylic rearrangements, “NIH” and related shifts, ring contractions and expansions, and cyclizations that result from neighboring group interactions. Although most of these reactions can be carried out by many members of the cytochrome P450 superfamily, some have only been observed with select P450s, including some reactions that are catalyzed by specific endoperoxidases and cytochrome P450s found in plants. PMID:20971058

  12. Diamine Ligands in Copper-Catalyzed Reactions

    PubMed Central

    Surry, David S.

    2012-01-01

    The utility of copper-mediated cross-coupling reactions has been significantly increased by the development of mild reaction conditions and the ability to employ catalytic amounts of copper. The use of diamine-based ligands has been important in these advances and in this review we discuss these systems, including the choice of reaction conditions and applications in the synthesis of pharmaceuticals, natural products and designed materials. PMID:22384310

  13. Temperature dependence of turnover in a Sc(OTf)3-catalyzed intramolecular Schmidt reaction

    PubMed Central

    Fehl, Charlie; Hirt, Erin E.; Li, Sze-Wan; Aubé, Jeffrey

    2015-01-01

    The intramolecular Schmidt reaction of ketones and tethered azides is an efficient method for the generation of amides and lactams. This reaction is catalyzed by Lewis acids, which tightly bind the strongly basic amide product and result in product inhibition. We report herein conditions to achieve a catalytic Schmidt reaction using substoichiometric amounts of the heat-stable Lewis acid Sc(OTf)3. This species was shown to effectively release products of the Schmidt reaction in a temperature-dependent fashion. Thus, heat was able to promote catalyst turnover. A brief substrate scope was conducted using these conditions. PMID:26085693

  14. Molecular Mechanism by which One Enzyme Catalyzes Two Reactions

    NASA Astrophysics Data System (ADS)

    Nishimasu, Hiroshi; Fushinobu, Shinya; Wakagi, Takayoshi

    Unlike ordinary enzymes, fructose-1,6-bisphosphate (FBP) aldolase/phosphatase (FBPA/P) catalyzes two distinct reactions : (1) the aldol condensation of dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate to FBP, and (2) the dephosphorylation of FBP to fructose-6-phosphate. We solved the crystal structures of FBPA/P in complex with DHAP (its aldolase form) and FBP (its phosphatase form). The crystal structures revealed that FBPA/P exhibits the dual activities through a dramatic conformational change in the active-site architecture. Our findings expand the conventional concept that one enzyme catalyzes one reaction.

  15. Palladium (II/IV) catalyzed cyclopropanation reactions: scope and mechanism

    PubMed Central

    Lyons, Thomas W.

    2009-01-01

    This report describes detailed studies of the scope and mechanism of a new Pd-catalyzed oxidation reaction for the stereospecific conversion of enynes into cyclopropyl ketones. Unlike related PdII/0, Au, and Pt-catalyzed cyclopropane-forming reactions, these transformations proceed with net inversion of geometry with respect to the starting alkene. This result, along with other mechanistic data, is consistent with a PdII/IV mechanism in which the key cyclopropane-forming step involves nucleophilic attack of a tethered olefin onto the PdIV–C bond. PMID:20161134

  16. Method for predicting enzyme-catalyzed reactions

    DOEpatents

    Hlavacek, William S.; Unkefer, Clifford J.; Mu, Fangping; Unkefer, Pat J.

    2013-03-19

    The reactivity of given metabolites is assessed using selected empirical atomic properties in the potential reaction center. Metabolic reactions are represented as biotransformation rules. These rules are generalized from the patterns in reactions. These patterns are not unique to reactants but are widely distributed among metabolites. Using a metabolite database, potential substructures are identified in the metabolites for a given biotransformation. These substructures are divided into reactants or non-reactants, depending on whether they participate in the biotransformation or not. Each potential substructure is then modeled using descriptors of the topological and electronic properties of atoms in the potential reaction center; molecular properties can also be used. A Support Vector Machine (SVM) or classifier is trained to classify a potential reactant as a true or false reactant using these properties.

  17. Nickel-Catalyzed Coupling Reactions of Alkenes

    PubMed Central

    Ng, Sze-Sze; Ho, Chun-Yu; Schleicher, Kristin D.; Jamison, Timothy F.

    2011-01-01

    Several reactions of simple, unactivated alkenes with electrophiles under nickel(0) catalysis are discussed. The coupling of olefins with aldehydes and silyl triflates provides allylic or homoallylic alcohol derivatives, depending on the supporting ligands and, to a lesser extent, the substrates employed. Reaction of alkenes with isocyanates yields N-alkyl acrylamides. In these methods, alkenes act as the functional equivalents of alkenyl- and allylmetal reagents. PMID:21814295

  18. Palladium-Catalyzed, Enantioselective Heine Reaction

    PubMed Central

    2016-01-01

    Aziridines are important synthetic intermediates for the generation of nitrogen-containing molecules. N-Acylaziridines undergo rearrangement by ring expansion to produce oxazolines, a process known as the Heine reaction. The first catalytic, enantioselective Heine reaction is reported for meso-N-acylaziridines where a palladium(II)–diphosphine complex is employed. The highly enantioenriched oxazoline products are valuable organic synthons and potential ligands for transition-metal catalysis. PMID:27398262

  19. Model studies on the first enzyme-catalyzed Ugi reaction.

    PubMed

    Kłossowski, Szymon; Wiraszka, Barbara; Berłożecki, Stanisław; Ostaszewski, Ryszard

    2013-02-01

    Multicomponent reactions are powerful tools for organic chemistry, and among them, the Ugi reaction provides remarkable improvement in many fields of organic chemistry such us combinatorial chemistry, medicinal chemistry, and peptide chemistry. A new, enzyme-catalyzed example of the Ugi three-component reaction is presented. The studies include the selection of an enzyme as well as determination of the scope and limitations of the newly described reaction. The presented method combines the enzyme promiscuity and multicomponent reaction advantages in the first one-pot formation of dipeptide 1. PMID:23343100

  20. Computational Studies on Cinchona Alkaloid-Catalyzed Asymmetric Organic Reactions.

    PubMed

    Tanriver, Gamze; Dedeoglu, Burcu; Catak, Saron; Aviyente, Viktorya

    2016-06-21

    Remarkable progress in the area of asymmetric organocatalysis has been achieved in the last decades. Cinchona alkaloids and their derivatives have emerged as powerful organocatalysts owing to their reactivities leading to high enantioselectivities. The widespread usage of cinchona alkaloids has been attributed to their nontoxicity, ease of use, stability, cost effectiveness, recyclability, and practical utilization in industry. The presence of tunable functional groups enables cinchona alkaloids to catalyze a broad range of reactions. Excellent experimental studies have extensively contributed to this field, and highly selective reactions were catalyzed by cinchona alkaloids and their derivatives. Computational modeling has helped elucidate the mechanistic aspects of cinchona alkaloid catalyzed reactions as well as the origins of the selectivity they induce. These studies have complemented experimental work for the design of more efficient catalysts. This Account presents recent computational studies on cinchona alkaloid catalyzed organic reactions and the theoretical rationalizations behind their effectiveness and ability to induce selectivity. Valuable efforts to investigate the mechanisms of reactions catalyzed by cinchona alkaloids and the key aspects of the catalytic activity of cinchona alkaloids in reactions ranging from pharmaceutical to industrial applications are summarized. Quantum mechanics, particularly density functional theory (DFT), and molecular mechanics, including ONIOM, were used to rationalize experimental findings by providing mechanistic insights into reaction mechanisms. B3LYP with modest basis sets has been used in most of the studies; nonetheless, the energetics have been corrected with higher basis sets as well as functionals parametrized to include dispersion M05-2X, M06-2X, and M06-L and functionals with dispersion corrections. Since cinchona alkaloids catalyze reactions by forming complexes with substrates via hydrogen bonds and long

  1. Cross-ligation and exchange reactions catalyzed by hairpin ribozymes.

    PubMed Central

    Komatsu, Y; Koizumi, M; Sekiguchi, A; Ohtsuka, E

    1993-01-01

    The negative strand of the satellite RNA of tobacco ringspot virus (sTobRV(-)) contains a hairpin catalytic domain that shows self-cleavage and self-ligation activities in the presence of magnesium ions. We describe here that the minimal catalytic domain can catalyze a cross-ligation reaction between two kinds of substrates in trans. The cross-ligated product increased when the reaction temperature was decreased during the reaction from 37 degrees C to 4 degrees C. A two-stranded hairpin ribozyme, divided into two fragments between G45 and U46 in a hairpin loop, showed higher ligation activity than the nondivided ribozyme. The two stranded ribozyme also catalyzed an exchange reaction of the 3'-portion of the cleavage site. Images PMID:8441626

  2. Gold-catalyzed homogeneous oxidative cross-coupling reactions.

    PubMed

    Zhang, Guozhu; Peng, Yu; Cui, Li; Zhang, Liming

    2009-01-01

    Oxidizing gold? A gold(I)/gold(III) catalytic cycle is essential for the first oxidative cross-coupling reaction in gold catalysis. By using Selectfluor for gold(I) oxidation, this chemistry reveals the synthetic potential of incorporating gold(I)/gold(III) catalytic cycles into contemporary gold chemistry and promises a new area of gold research by merging powerful gold catalysis and oxidative metal-catalyzed cross-coupling reactions. PMID:19322869

  3. Copper-Catalyzed Divergent Addition Reactions of Enoldiazoacetamides with Nitrones.

    PubMed

    Cheng, Qing-Qing; Yedoyan, Julietta; Arman, Hadi; Doyle, Michael P

    2016-01-13

    Catalyst-controlled divergent addition reactions of enoldiazoacetamides with nitrones have been developed. By using copper(I) tetrafluoroborate/bisoxazoline complex as the catalyst, a [3+3]-cycloaddition reaction was achieved with excellent yield and enantioselectivity under exceptionally mild conditions, which represents the first highly enantioselective base-metal-catalyzed vinylcarbene transformation. When the catalyst was changed to copper(I) triflate, Mannich addition products were formed in high yields with near exclusivity under otherwise identical conditions. PMID:26699516

  4. Can Chlorine Anion Catalyze the Reaction fo HOCl with HCl?

    NASA Technical Reports Server (NTRS)

    Richardson, S. L.; Francisco, J. S.; Mebel, A. M.; Morokuma, K.

    1997-01-01

    The reaction of HOCl + HCl -> Cl2 + H20 in the presence of Cl has been studied using ab initio methods. This reaction has been shown to have a high activation barrier of 46.5 kcal/mol. The chlorine anion, Cl- is found to catalyze the reaction, viz. two mechanisms. The first involves Cl- interacting through the concerted four-center transition state of the neutral reaction. The other mechanism involves the formation of a HCl-HOCl-Cl- intermediate which dissociates into Cl2 + Cl- + H20. The steps are found to have no barriers. The overall exothermicity is 15.5 kcal/mol.

  5. Synthesis of Cyclic Peptidomimetics via a Pd-Catalyzed Macroamination Reaction.

    PubMed

    Hopkins, Brett A; Smith, Graham F; Sciammetta, Nunzio

    2016-08-19

    A new method to access cyclic peptidomimetics via a Pd-catalyzed macroamination reaction is presented. Natural amino acid amines are revealed as proficient coupling partners in these transformations. With a commercially available CPhos G3 catalyst system and substrates bearing diverse amino acid and aryl halide backbones, the unique head to side-chain (or side-chain mimic) macrocycles are afforded with ring sizes from 11 to 23 members in yields up to 84%. PMID:27508926

  6. Characterization of fatty amides produced by lipase-catalyzed amidation of multihydroxylated fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Novel multi-hydroxylated primary fatty amides produced by direct amidation of 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) and 7,10,12-trihydroxy-8(E)-octadecenoic acid (TOD) were characterized by GC-MS and NMR. The amidation reactions were catalyzed by immobilized Pseudozyma (Candida) antarctica li...

  7. (Ligand intermediates in metal-catalyzed reactions)

    SciTech Connect

    Not Available

    1992-01-01

    This report consists of sections on sigma bond complexes of alkenes, a new carbon-hydrogen bond activation reaction of alkene complexes, carbon-hydrogen bond migrations in alkylidene complexes, carbon- hydrogen bond migrations in alkyne complexes, synthesis, structure and reactivity of C{sub x} complexes, synthesis and reactivity of alcohol and ether complexes, new catalysts for the epimerization of secondary alcohols; carbon-hydrogen bond activation in alkoxide complexes, pi/sigma equilibria in metal/O=CXX' complexes, and other hydrocarbon ligands; miscellaneous.(WET)

  8. Stau-catalyzed big-bang nucleosynthesis reactions

    SciTech Connect

    Kamimura, Masayasu; Kino, Yasushi; Hiyama, Emiko

    2010-06-01

    We study the new type of big-bang nucleosynthesis (BBN) reactions that are catalyzed by a hypothetical long-lived negatively charged, massive leptonic particle (called X{sup -}) such as the supersymmetric (SUSY) particle stau, the scalar partner of the tau lepton. It is known that if the X{sup -} particle has a lifetime of tau{sub X} > or approx. 10{sup 3} s, it can capture a light element previously synthesized in standard BBN and form a Coulombic bound state and induces various types of reactions in which X{sup -} acts as a catalyst. Some of these X{sup -} catalyzed reactions have significantly large cross sections so that the inclusion of the reactions into the BBN network calculation can markedly change the abundances of some elements. We use a high-accuracy three-body calculation method developed by the authors and provide precise cross sections and rates of these catalyzed BBN reactions for use in the BBN network calculation.

  9. Iodine(III)-Catalyzed Cascade Reactions Enabling a Direct Access to β-Lactams and α-Hydroxy-β-amino Acids.

    PubMed

    Patzelt, Christoph; Pöthig, Alexander; Gulder, Tanja

    2016-07-15

    In the presented method, a one-pot metal-free access to β-lactams is provided. The developed strategy employs a hypervalent iodine(III)-triggered bromination/rearrangement/cyclization cascade reaction that allows the straightforward synthesis of a broad range of structurally different lactams from cheap and easily available imides. This triple cascade reaction is furthermore extendable by an in situ ring-opening reaction, giving direct access to isoserine derivatives from simple imines in a four-step, one-pot reaction. PMID:27380445

  10. Pd-catalyzed arylation of chlorotrifluoroethylene using arylboronic acids.

    PubMed

    Yamamoto, Tetsuya; Yamakawa, Tetsu

    2012-07-01

    The palladium-catalyzed cross-coupling of chlorotrifluoroethylene and arylboronic acids proceeds in the presence of a base and H(2)O to provide α,β,β-trifluorostyrene derivatives in satisfactory yields. PMID:22691065

  11. The Iron-Catalyzed Oxidation of Hydrazine by Nitric Acid

    SciTech Connect

    Karraker, D.G.

    2001-07-17

    To assess the importance of iron to hydrazine stability, the study of hydrazine oxidation by nitric acid has been extended to investigate the iron-catalyzed oxidation. This report describes those results.

  12. Lipase-catalyzed fractionation of conjugated linoleic acid isomers.

    PubMed

    Haas, M J; Kramer, J K; McNeill, G; Scott, K; Foglia, T A; Sehat, N; Fritsche, J; Mossoba, M M; Yurawecz, M P

    1999-09-01

    -18:2 could be obtained in the unreacted free fatty acid fraction. These lipase-catalyzed reactions provide a means for the preparative-scale production of high-purity cis-9,trans-11-18:2, and a corresponding CLA fraction depleted of this isomer. PMID:10574663

  13. Brønsted acid-catalyzed regioselective reactions of 2-indolylmethanols with cyclic enaminone and anhydride leading to C3-functionalized indole derivatives.

    PubMed

    Li, Can; Zhang, Hong-Hao; Fan, Tao; Shen, Yang; Wu, Qiong; Shi, Feng

    2016-08-01

    An abnormal regioselective substitution of 2-indolylmethanols with nucleophiles such as cyclic enaminone and cyclic anhydride has been established in the presence of Brønsted acid, which efficiently afforded C3-functionalized indole derivatives with structural diversity in high yield and regiospecificity (40 examples, up to 99% yield). Using this approach, the reactivity of the C3-position of the indole was switched from nucleophilic to electrophilic, which could serve as an "umpolung" strategy in organic synthesis. PMID:27341692

  14. Biorefining: heterogeneously catalyzed reactions of carbohydrates for the production of furfural and hydroxymethylfurfural.

    PubMed

    Karinen, Reetta; Vilonen, Kati; Niemelä, Marita

    2011-08-22

    Furfurals are important intermediates in the chemical industry. They are typically produced by homogeneous catalysis in aqueous solutions. However, heterogeneously catalyzed processes would be beneficial in view of the principles of green chemistry: the elimination of homogeneous mineral acids makes the reaction mixtures less corrosive, produces less waste, and facilitates easy separation and recovery of the catalyst. Finding an active and stable water-tolerant solid acid catalyst still poses a challenge for the production of furfural (furan-2-carbaldehyde) and 5-(hydroxymethyl)-2-furaldehyde (HMF). Furfural is produced in the dehydration of xylose, and HMF is formed from glucose and fructose in the presence of an acidic catalyst. Bases are not active in dehydration reaction but do catalyze the isomerization of monosaccharides, which is favorable when using glucose as a raw material. In addition to the desired dehydration of monosaccharides, many undesired side reactions take place, reducing the selectivity and deactivating the catalyst. In addition, the catalyst properties play an important role in the selectivity. In this Review, catalytic conversion approaches are summarized, focusing on the heterogeneously catalyzed formation of furfural. The attractiveness of catalytic concepts is evaluated, keeping in mind productivity, sustainability, and environmental footprint. PMID:21728248

  15. Palladium-Catalyzed Construction of Amidines from Arylboronic Acids under Oxidative Conditions.

    PubMed

    Zhu, Fengxiang; Li, Yahui; Wang, Zechao; Orru, Romano V A; Maes, Bert U W; Wu, Xiao-Feng

    2016-06-01

    A valuable palladium-catalyzed three-component coupling reaction for the synthesis of amidines has been developed. Using arylboronic acids, isocyanides, and anilines as the reactants under oxidative conditions, various amidines were isolated in good yields with good functional group tolerances. PMID:27061735

  16. Substrate-Assisted Catalysis in the Reaction Catalyzed by Salicylic Acid Binding Protein 2 (SABP2), a Potential Mechanism of Substrate Discrimination for Some Promiscuous Enzymes.

    PubMed

    Yao, Jianzhuang; Guo, Haobo; Chaiprasongsuk, Minta; Zhao, Nan; Chen, Feng; Yang, Xiaohan; Guo, Hong

    2015-09-01

    Although one of an enzyme's hallmarks is the high specificity for their natural substrates, substrate promiscuity has been reported more frequently. It is known that promiscuous enzymes generally show different catalytic efficiencies to different substrates, but our understanding of the origin of such differences is still lacking. Here we report the results of quantum mechanical/molecular mechanical simulations and an experimental study of salicylic acid binding protein 2 (SABP2). SABP2 has promiscuous esterase activity toward a series of substrates but shows a high activity toward its natural substrate, methyl salicylate (MeSA). Our results demonstrate that this enzyme may use substrate-assisted catalysis involving the hydroxyl group from MeSA to enhance the activity and achieve substrate discrimination. PMID:26244568

  17. Substrate-Assisted Catalysis in the Reaction Catalyzed by Salicylic Acid Binding Protein 2 (SABP2), a Potential Mechanism of Substrate Discrimination for Some Promiscuous Enzymes

    DOE PAGESBeta

    Yao, Jianzhuang; Guo, Haobo; Chaiprasongsuk, Minta; Zhao, Nan; Chen, Feng; Yang, Xiaohan; Guo, Hong

    2015-08-05

    Although one of an enzyme’s hallmarks is the high specificity for their natural substrates, substrate promiscuity has been reported more frequently. We know that promiscuous enzymes generally show different catalytic efficiencies to different substrates, but our understanding of the origin of such differences is still lacking. We report the results of quantum mechanical/molecular mechanical simulations and an experimental study of salicylic acid binding protein 2 (SABP2). SABP2 has promiscuous esterase activity toward a series of substrates but shows a high activity toward its natural substrate, methyl salicylate (MeSA). Finally, our results demonstrate that this enzyme may use substrate-assisted catalysis involvingmore » the hydroxyl group from MeSA to enhance the activity and achieve substrate discrimination.« less

  18. Substrate-Assisted Catalysis in the Reaction Catalyzed by Salicylic Acid Binding Protein 2 (SABP2), a Potential Mechanism of Substrate Discrimination for Some Promiscuous Enzymes

    SciTech Connect

    Yao, Jianzhuang; Guo, Haobo; Chaiprasongsuk, Minta; Zhao, Nan; Chen, Feng; Yang, Xiaohan; Guo, Hong

    2015-08-05

    Although one of an enzyme’s hallmarks is the high specificity for their natural substrates, substrate promiscuity has been reported more frequently. We know that promiscuous enzymes generally show different catalytic efficiencies to different substrates, but our understanding of the origin of such differences is still lacking. We report the results of quantum mechanical/molecular mechanical simulations and an experimental study of salicylic acid binding protein 2 (SABP2). SABP2 has promiscuous esterase activity toward a series of substrates but shows a high activity toward its natural substrate, methyl salicylate (MeSA). Finally, our results demonstrate that this enzyme may use substrate-assisted catalysis involving the hydroxyl group from MeSA to enhance the activity and achieve substrate discrimination.

  19. A Convenient Palladium-Catalyzed Reductive Carbonylation of Aryl Iodides with Dual Role of Formic Acid.

    PubMed

    Qi, Xinxin; Li, Chong-Liang; Wu, Xiao-Feng

    2016-04-18

    Palladium-catalyzed reductive carbonylation of aryl halides represents a straightforward pathway for the synthesis of aromatic aldehydes. The known reductive carbonylation procedures either require CO gas or complexed compounds as CO sources. In this communication, we developed a palladium-catalyzed reductive carbonylation of aryl iodides with formic acid as the formyl source. As a convenient, practical, and environmental friendly methodology, no additional silane or H2 was required. A variety of aromatic aldehydes were isolated in moderate to excellent yields under mild reaction conditions. Notably, this is the first procedure on using formic acid as the formyl source. PMID:26934464

  20. Silver-catalyzed protodecarboxylation of heteroaromatic carboxylic acids.

    PubMed

    Lu, Pengfei; Sanchez, Carolina; Cornella, Josep; Larrosa, Igor

    2009-12-17

    A simple and highly efficient protodecarboxylation procedure for a variety of heteroaromatic carboxylic acids catalyzed by Ag(2)CO(3) and AcOH in DMSO is described. This methodology can also perform the selective monoprotodecarboxylation of several aromatic dicarboxylic acids. PMID:19924891

  1. Palladium-catalyzed coupling reactions of tetrafluoroethylene with arylzinc compounds.

    PubMed

    Ohashi, Masato; Kambara, Tadashi; Hatanaka, Tsubasa; Saijo, Hiroki; Doi, Ryohei; Ogoshi, Sensuke

    2011-03-16

    Organofluorine compounds are widely used in all aspects of the chemical industry. Although tetrafluoroethylene (TFE) is an example of an economical bulk organofluorine feedstock, the use of TFE is mostly limited to the production of poly(tetrafluoroethylene) and copolymers with other alkenes. Furthermore, no catalytic transformation of TFE that involves carbon-fluorine bond activation has been reported to date. We herein report the first example of a palladium-catalyzed coupling reaction of TFE with arylzinc reagents in the presence of lithium iodide, giving α,β,β-trifluorostyrene derivatives in excellent yields. PMID:21322557

  2. Mechanism of Boron-Catalyzed N-Alkylation of Amines with Carboxylic Acids.

    PubMed

    Zhang, Qi; Fu, Ming-Chen; Yu, Hai-Zhu; Fu, Yao

    2016-08-01

    Mechanistic study has been carried out on the B(C6F5)3-catalyzed amine alkylation with carboxylic acid. The reaction includes acid-amine condensation and amide reduction steps. In condensation step, the catalyst-free mechanism is found to be more favorable than the B(C6F5)3-catalyzed mechanism, because the automatic formation of the stable B(C6F5)3-amine complex deactivates the catalyst in the latter case. Meanwhile, the catalyst-free condensation is constituted by nucleophilic attack and the indirect H2O-elimination (with acid acting as proton shuttle) steps. After that, the amide reduction undergoes a Lewis acid (B(C6F5)3)-catalyzed mechanism rather than a Brønsted acid (B(C6F5)3-coordinated HCOOH)-catalyzed one. The B(C6F5)3)-catalyzed reduction includes twice silyl-hydride transfer steps, while the first silyl transfer is the rate-determining step of the overall alkylation catalytic cycle. The above condensation-reduction mechanism is supported by control experiments (on both temperature and substrates). Meanwhile, the predicted chemoselectivity is consistent with the predominant formation of the alkylation product (over disilyl acetal product). PMID:27441997

  3. Kinetics of Imidazole Catalyzed Ester Hydrolysis: Use of Buffer Dilutions to Determine Spontaneous Rate, Catalyzed Rate, and Reaction Order.

    ERIC Educational Resources Information Center

    Lombardo, Anthony

    1982-01-01

    Described is an advanced undergraduate kinetics experiment using buffer dilutions to determine spontaneous rate, catalyzed rate, and reaction order. The reaction utilized is hydrolysis of p-nitro-phenyl acetate in presence of imidazole, which has been shown to enhance rate of the reaction. (Author/JN)

  4. Copper-catalyzed intermolecular oxyamination of olefins using carboxylic acids and O-benzoylhydroxylamines

    PubMed Central

    Hemric, Brett N

    2016-01-01

    Summary This paper reports a novel approach for the direct and facile synthesis of 1,2-oxyamino moieties via an intermolecular copper-catalyzed oxyamination of olefins. This strategy utilizes O-benzoylhydroxylamines as an electrophilic amine source and carboxylic acids as a nucleophilic oxygen source to achieve a modular difunctionalization of olefins. The reaction proceeded in a regioselective manner with moderate to good yields, exhibiting a broad scope of carboxylic acid, amine, and olefin substrates. PMID:26877805

  5. Physio-pathological roles of transglutaminase-catalyzed reactions

    PubMed Central

    Ricotta, Mariangela; Iannuzzi, Maura; Vivo, Giulia De; Gentile, Vittorio

    2010-01-01

    Transglutaminases (TGs) are a large family of related and ubiquitous enzymes that catalyze post-translational modifications of proteins. The main activity of these enzymes is the cross-linking of a glutaminyl residue of a protein/peptide substrate to a lysyl residue of a protein/peptide co-substrate. In addition to lysyl residues, other second nucleophilic co-substrates may include monoamines or polyamines (to form mono- or bi-substituted /crosslinked adducts) or -OH groups (to form ester linkages). In the absence of co-substrates, the nucleophile may be water, resulting in the net deamidation of the glutaminyl residue. The TG enzymes are also capable of catalyzing other reactions important for cell viability. The distribution and the physiological roles of TG enzymes have been widely studied in numerous cell types and tissues and their roles in several diseases have begun to be identified. “Tissue” TG (TG2), a member of the TG family of enzymes, has definitely been shown to be involved in the molecular mechanisms responsible for a very widespread human pathology: i.e. celiac disease (CD). TG activity has also been hypothesized to be directly involved in the pathogenetic mechanisms responsible for several other human diseases, including neurodegenerative diseases, which are often associated with CD. Neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, supranuclear palsy, Huntington’s disease and other recently identified polyglutamine diseases, are characterized, in part, by aberrant cerebral TG activity and by increased cross-linked proteins in affected brains. In this review, we discuss the physio-pathological role of TG-catalyzed reactions, with particular interest in the molecular mechanisms that could involve these enzymes in the physio-pathological processes responsible for human neurodegenerative diseases. PMID:21541002

  6. Investigations into Transition Metal Catalyzed Arene Trifluoromethylation Reactions

    PubMed Central

    Ye, Yingda; Sanford, Melanie S.

    2015-01-01

    Trifluoromethyl-substituted arenes and heteroarenes are widely prevalent in pharmaceuticals and agrochemicals. As a result, the development of practical methods for the formation of aryl–CF3 bonds has become an active field of research. Over the past five years, transition metal catalyzed cross-coupling between aryl–X (X = halide, organometallic, or H) and various “CF3” reagents has emerged as a particularly exciting approach for generating aryl–CF3 bonds. Despite many recent advances in this area, current methods generally suffer from limitations such as poor generality, harsh reaction conditions, the requirement for stoichiometric quantities of metals, and/or the use of costly CF3 sources. This Account describes our recent efforts to address some of these challenges by: (1) developing aryl trifluoromethylation reactions involving high oxidation state Pd intermediates, (2) exploiting AgCF3 for C–H trifluoromethylation, and (3) achieving Cu-catalyzed trifluoromethylation with photogenerated CF3•. PMID:25838638

  7. A General Access to Propargylic Ethers through Brønsted Acid Catalyzed Alkynylation of Acetals and Ketals with Trifluoroborates .

    PubMed

    Baxter, Matthew; Bolshan, Yuri

    2015-09-21

    A general Brønsted acid catalyzed methodology for the alkynylation of acetals and ketals with alkynyltrifluoroborate salts has been developed. The reaction proceeds rapidly to afford valuable synthetic building block propargylic ethers in good to excellent yields. Unlike Lewis acid catalyzed transformations of trifluoroborates, this approach does not proceed via unstable organodifluoroborane intermediate. As a result, the developed methodology features excellent functional group tolerance and good atom economy. PMID:26248543

  8. CuBr catalyzed C-N cross coupling reaction of purines and diaryliodonium salts to 9-arylpurines.

    PubMed

    Niu, Hong-Ying; Xia, Chao; Qu, Gui-Rong; Zhang, Qian; Jiang, Yi; Mao, Run-Ze; Li, De-Yang; Guo, Hai-Ming

    2011-07-21

    CuBr was found to be an efficient catalyst for the C-N cross coupling reaction of purine and diaryliodonium salts. 9-Arylpurines were synthesized in excellent yields with short reaction times (2.5 h). The method represents an alternative to the synthesis of 9-arylpurines via Cu(II) catalyzed C-N coupling reaction with arylboronic acids as arylating agents. PMID:21660365

  9. Nickel-Catalyzed Cross-Coupling of Redox-Active Esters with Boronic Acids.

    PubMed

    Wang, Jie; Qin, Tian; Chen, Tie-Gen; Wimmer, Laurin; Edwards, Jacob T; Cornella, Josep; Vokits, Benjamin; Shaw, Scott A; Baran, Phil S

    2016-08-01

    A transformation analogous in simplicity and functional group tolerance to the venerable Suzuki cross-coupling between alkyl-carboxylic acids and boronic acids is described. This Ni-catalyzed reaction relies upon the activation of alkyl carboxylic acids as their redox-active ester derivatives, specifically N-hydroxy-tetrachlorophthalimide (TCNHPI), and proceeds in a practical and scalable fashion. The inexpensive nature of the reaction components (NiCl2 ⋅6 H2 O-$9.5 mol(-1) , Et3 N) coupled to the virtually unlimited commercial catalog of available starting materials bodes well for its rapid adoption. PMID:27380912

  10. Selective and recyclable depolymerization of cellulose to levulinic acid catalyzed by acidic ionic liquid.

    PubMed

    Ren, Huifang; Girisuta, Buana; Zhou, Yonggui; Liu, Li

    2015-03-01

    Cellulose depolymerization to levulinic acid (LA) was catalyzed by acidic ionic liquids (ILs) selectively and recyclably under hydrothermal conditions. The effects of reaction temperature, time, water amount and cellulose intake were investigated. Dilution effect becomes more pronounced at lower cellulose intake, dramatically improving the yield of LA to 86.1%. A kinetic model has been developed based on experimental data, whereby a good fit was obtained and kinetic parameters were derived. The relationships between IL structure, polymeric structure and depolymerization efficiency were established, shedding light on the in-depth catalytic mechanism of IL, inclusive of acidity and hydrogen bonding ability. The LA product can be readily separated through extraction by methyl isobutyl ketone (MIBK) and IL can be reused over five cycles without loss of activity. This environmentally friendly methodology can be applied to selective production of LA from versatile biomass feedstocks, including cellulose and derivatives, glucose, fructose and HMF. PMID:25498672

  11. Clay-catalyzed reactions of coagulant polymers during water chlorination

    USGS Publications Warehouse

    Lee, J.-F.; Liao, P.-M.; Lee, C.-K.; Chao, H.-P.; Peng, C.-L.; Chiou, C.T.

    2004-01-01

    The influence of suspended clay/solid particles on organic-coagulant reactions during water chlorination was investigated by analyses of total product formation potential (TPFP) and disinfection by-product (DBP) distribution as a function of exchanged clay cation, coagulant organic polymer, and reaction time. Montmorillonite clays appeared to act as a catalytic center where the reaction between adsorbed polymer and disinfectant (chlorine) was mediated closely by the exchanged clay cation. The transition-metal cations in clays catalyzed more effectively than other cations the reactions between a coagulant polymer and chlorine, forming a large number of volatile DBPs. The relative catalytic effects of clays/solids followed the order Ti-Mont > Fe-Mont > Cu-Mont > Mn-Mont > Ca-Mont > Na-Mont > quartz > talc. The effects of coagulant polymers on TPFP follow the order nonionic polymer > anionic polymer > cationic polymer. The catalytic role of the clay cation was further confirmed by the observed inhibition in DBP formation when strong chelating agents (o-phenanthroline and ethylenediamine) were added to the clay suspension. Moreover, in the presence of clays, total DBPs increased appreciably when either the reaction time or the amount of the added clay or coagulant polymer increased. For volatile DBPs, the formation of halogenated methanes was usually time-dependent, with chloroform and dichloromethane showing the greatest dependence. ?? 2003 Elsevier Inc. All rights reserved.

  12. Ab initio study of ice catalyzation of HOCl + HCl reaction

    SciTech Connect

    Zhou, Y.F.; Liu, C.B.

    2000-06-15

    The observations by Farman et al. revealed remarkable depletions in the total atmospheric ozone content in Antarctica. The observed total ozone decreased smoothing during the spring season from about 1975. Satellite observations have proved Antarctic ozone depletions over a very extended region, in general agreement with the local ground-based data of Farman et al. It was suggested that heterogeneous reactions occurring on particles in polar stratospheric clouds (PSCs) play a central role in the depletion of stratospheric ozone. Experiments proved that the reaction of HOCl + HCl was very slow in the gas phase, but on ice surface it was rapid. In this work the ice catalysis of HOCl + HCl reaction was investigated by using ab initio molecular orbital theory. The authors applied the Hartree-Fock self-consistent field and the second-order Moeller-Plesset perturbation theory with the basis sets of 6-31G* to the model system. The complexes and transition state were obtained along the reaction with and without the presence of ice surface. By comparing the results, a possible catalyzation mechanism of ice on the reaction is proposed.

  13. Stereochemistry and mechanism of a new single-turnover, half-transamination reaction catalyzed by the tryptophan synthase alpha 2 beta 2 complex

    SciTech Connect

    Miles, E.W.

    1987-01-27

    Tryptophan synthase is a versatile enzyme that catalyzes a wide variety of pyridoxal phosphate dependent reactions that are also catalyzed in model systems. These include beta-replacement, beta-elimination, racemization, and transamination reactions. We now show that the apo-alpha 2 beta 2 complex of tryptophan synthase will bind two unnatural substrates, pyridoxamine phosphate and indole-3-pyruvic acid, and will convert them by a single-turnover, half-transamination reaction to pyridoxal phosphate and L-tryptophan, the natural coenzyme and a natural product, respectively. This enzyme-catalyzed reaction is more rapid and more stereospecific than an analogous model reaction. The pro-S 4'-methylene proton of pyridoxamine phosphate is removed during the reaction, and the product is primarily L-tryptophan. We conclude that pyridoxal phosphate enzymes may be able to catalyze some unnatural reactions involving bound reactants and bound coenzyme since the coenzyme itself has the intrinsic ability to promote a variety of reactions.

  14. Recent advances in osmium-catalyzed hydrogenation and dehydrogenation reactions.

    PubMed

    Chelucci, Giorgio; Baldino, Salvatore; Baratta, Walter

    2015-02-17

    CONSPECTUS: A current issue in metal-catalyzed reactions is the search for highly efficient transition-metal complexes affording high productivity and selectivity in a variety of processes. Moreover, there is also a great interest in multitasking catalysts that are able to efficiently promote different organic transformations by careful switching of the reaction parameters, such as temperature, solvent, and cocatalyst. In this context, osmium complexes have shown the ability to catalyze efficiently different types of reactions involving hydrogen, proving at the same time high thermal stability and simple synthesis. In the catalytic reduction of C═X (X = O, N) bonds by both hydrogenation (HY) and transfer hydrogenation (TH) reactions, the most interest has been focused on homogeneous systems based on rhodium, iridium, and in particular ruthenium catalysts, which have proved to catalyze chemo- and stereoselective hydrogenations with remarkable efficiency. By contrast, osmium catalysts have received much less attention because they are considered less active on account of their slower ligand exchange kinetics. Thus, this area remained almost neglected until recent studies refuted these prejudices. The aim of this Account is to highlight the impressive developments achieved over the past few years by our and other groups on the design of new classes of osmium complexes and their applications in homogeneous catalytic reactions involving the hydrogenation of carbon-oxygen and carbon-nitrogen bonds by both HY and TH reactions as well as in alcohol deydrogenation (DHY) reactions. The work described in this Account demonstrates that osmium complexes are emerging as powerful catalysts for asymmetric and non-asymmetric syntheses, showing a remarkably high catalytic activity in HY and TH reactions of ketones, aldehydes, imines, and esters as well in DHY reactions of alcohols. Thus, for instance, the introduction of ligands with an NH function, possibly in combination with a

  15. Effectiveness of immobilized lipase Thermomyces lanuginosa in catalyzing interesterification of palm olein in batch reaction.

    PubMed

    Saw, Mei Huey; Siew, Wai Lin

    2014-01-01

    Lipase Thermomyces lanuginosa has shown potential in modifying oils and fats through interesterification. Analyzing the physicochemical properties of the modified oils is important to determine the effectiveness of lipase in catalyzing interesterification. In this study, the effectiveness of the immobilized lipase (Lipozyme(®) TL IM) in catalyzing interesterification of palm olein in pilot-scale batch reactor was determined. The evaluation was done by analyzing the changes of triacylglycerol (TAGs) composition, sn-2 position fatty acids composition and the physical properties of the palm olein after the interesterifications. The pilot-scale batch reaction was conducted for 8 hours with 5 %w/w enzyme dosage based on the results of TAGs composition of the laboratory-scale interesterified products. The pilot-scale results showed that Lipozyme(®) TL IM act as an effective enzyme in converting TAGs, in which 4.5% of trisaturated TAGs (PPP and PPS) were produced in the batch reaction. The formation of these new TAGs had also altered the thermal and physical properties of the palm olein. These interesterified products showed a broad peak and shoulder at high temperature, ranging from 10°C to 40°C, indicating the formation of some new TAGs with high melting points. However, the enzyme did not perform perfectly as a 1,3-specific enzyme in the reaction as a significant reduction of oleic acid and an increment of palmitic acid at the sn-2 position was observed. PMID:24492381

  16. Proline catalyzed α-aminoxylation reaction in the synthesis of biologically active compounds.

    PubMed

    Kumar, Pradeep; Dwivedi, Namrata

    2013-02-19

    The search for new and efficient ways to synthesize optically pure compounds is an active area of research in organic synthesis. Asymmetric catalysis provides a practical, cost-effective, and efficient method to create a variety of complex natural products containing multiple stereocenters. In recent years, chemists have become more interested in using small organic molecules to catalyze organic reactions. As a result, organocatalysis has emerged both as a promising strategy and as an alternative to catalysis with expensive proteins or toxic metals. One of the most successful and widely studied secondary amine-based organocatalysts is proline. This small molecule can catalyze numerous reactions such as the aldol, Mannich, Michael addition, Robinson annulation, Diels-Alder, α-functionalization, α-amination, and α-aminoxylation reactions. Catalytic and enantioselective α-oxygenation of carbonyl compounds is an important reaction to access a variety of useful building blocks for bioactive molecules. Proline catalyzed α-aminoxylation using nitrosobenzene as oxygen source, followed by in situ reduction, gives enantiomerically pure 1,2-diol. This molecule can then undergo a variety of organic reactions. In addition, proline organocatalysis provides access to an assortment of biologically active natural products including mevinoline (a cholesterol lowering drug), tetrahydrolipstatin (an antiobesity drug), R(+)-α-lipoic acid, and bovidic acid. In this Account, we present an iterative organocatalytic approach to synthesize both syn- and anti-1,3-polyols, both enantio- and stereoselectively. This method is primarily based on proline-catalyzed sequential α-aminoxylation and Horner-Wadsworth-Emmons (HWE) olefination of aldehyde to give a γ-hydroxy ester. In addition, we briefly illustrate the broad application of our recently developed strategy for 1,3-polyols, which serve as valuable, enantiopure building blocks for polyketides and other structurally diverse and

  17. Copper-catalyzed intermolecular trifluoromethylarylation of alkenes: mutual activation of arylboronic acid and CF3+ reagent.

    PubMed

    Wang, Fei; Wang, Dinghai; Mu, Xin; Chen, Pinhong; Liu, Guosheng

    2014-07-23

    A novel copper-catalyzed intermolecular trifluoromethylarylation of alkenes is developed using less active ether-type Togni's reagent under mild reaction conditions. Various alkenes and diverse arylboronic acids are compatible with these conditions. Preliminary mechanistic studies reveal that a mutual activation process between arylboronic acid and CF3(+) reagent is essential. In addition, the reaction might involve a rate-determining transmetalation, and the final aryl C-C bond is derived from reductive elimination of the aryl(alkyl)Cu(III) intermediate. PMID:24983408

  18. Mechanism of maltal hydration catalyzed by. beta. -amylase: Role of protein structure in controlling the steric outcome of reactions catalyzed by a glycosylase

    SciTech Connect

    Kitahata, Sumio ); Chiba, S. ); Brewer, C.F.; Hehre, E.J. )

    1991-07-09

    Crystalline (monomeric) soybean and (tetrameric) sweet potato {beta}-amylase were shown to catalyze the cis hydration of maltal ({alpha}-D-glucopyranosyl-2-deoxy-D-arabino-hex-1-enitol) to form {beta}-2-deoxymaltose. As reported earlier with the sweet potato enzyme, maltal hydration in D{sub 2}O by soybean {beta}-amylase was found to exhibit an unusually large solvent deuterium kinetic isotope effect (V{sub H}/V{sub D}=6.5), a reaction rate linearly dependent on the mole fraction of deuterium, and 2-deoxy-(2(a)-{sup 2}H)maltose as product. These results indicate (for each {beta}-amylase) that protonation is the rate-limiting step in a reaction involving a nearly symmetric one-proton transition state and that maltal is specifically protonated from above the double bond. That maltal undergoes cis hydration provides evidence in support of a general-acid-catalyzed, carbonium ion mediated reaction. Of fundamental significance is that {beta}-amylase protonates maltal from a direction opposite that assumed for protonating strach, yet creates products of the same anomeric configuration from both. Such stereochemical dichotomy argues for the overriding role of protein structures is dictating the steric outcome of reactions catalyzed by a glycosylase, by limiting the approach and orientation of water or other acceptors to the reaction center.

  19. Kinetics of Ethyl Acetate Synthesis Catalyzed by Acidic Resins

    ERIC Educational Resources Information Center

    Antunes, Bruno M.; Cardoso, Simao P.; Silva, Carlos M.; Portugal, Ines

    2011-01-01

    A low-cost experiment to carry out the second-order reversible reaction of acetic acid esterification with ethanol to produce ethyl acetate is presented to illustrate concepts of kinetics and reactor modeling. The reaction is performed in a batch reactor, and the acetic acid concentration is measured by acid-base titration versus time. The…

  20. Diversity synthesis using the complimentary reactivity of rhodium(II)- and palladium(II)-catalyzed reactions.

    PubMed

    Ni, Aiwu; France, Jessica E; Davies, Huw M L

    2006-07-21

    Rhodium(II)-catalyzed reactions of aryldiazoacetates can be conducted in the presence of iodide, triflate, organoboron, and organostannane functionality, resulting in the formation of a variety of cyclopropanes or C-H insertion products with high stereoselectivity. The combination of the rhodium(II)-catalyzed reaction with a subsequent palladium(II)-catalyzed Suzuki coupling offers a novel strategy for diversity synthesis. PMID:16839138

  1. Transformation of cellulose and its derived carbohydrates into formic and lactic acids catalyzed by vanadyl cations.

    PubMed

    Tang, Zhenchen; Deng, Weiping; Wang, Yanliang; Zhu, Enze; Wan, Xiaoyue; Zhang, Qinghong; Wang, Ye

    2014-06-01

    The transformation of cellulose or cellulose-derived carbohydrates into platform chemicals is the key to establish biomass-based sustainable chemical processes. The systems able to catalyze the conversion of cellulose into key chemicals in water without the consumption of hydrogen are limited. We report that simple vanadyl (VO(2+)) cations catalyze the conversions of cellulose and its monomer, glucose, into lactic acid and formic acid in water. We have discovered an interesting shift of the major product from formic acid to lactic acid on switching the reaction atmosphere from oxygen to nitrogen. Our studies suggest that VO(2+) catalyzes the isomerization of glucose to fructose, the retro-aldol fragmentation of fructose to two trioses, and the isomerization of trioses, which leads to the formation of lactic acid under anaerobic conditions. The oxidative cleavage of C-C bonds in the intermediates caused by the redox conversion of VO2(+)/VO(2+) under aerobic conditions results in formic acid and CO2. We demonstrate that the addition of an alcohol suppresses the formation of CO2 and enhances the formic acid yield significantly to 70-75 %. PMID:24798653

  2. Pd/C catalyzed Suzuki-Miyaura cross coupling reaction: Is it heterogeneous or homogeneous?

    NASA Astrophysics Data System (ADS)

    Hoang, Tony Phuc

    The Suzuki-Miyaura cross-coupling reaction is a popular industrial method of creating covalent bonds between two carbons. This reaction can be catalyzed by a myriad of palladium catalyst including heterogeneous and homogeneous. The objective of this research is to study whether the Suzuki cross coupling reaction catalyzed by solid supported palladium catalysts is truly heterogeneous in nature (i.e. does the reaction occurs on the surface of the catalyst or does palladium leach from the solid support and catalyze the reaction in a homogenous manner).

  3. Chiral phosphoric acid catalyzed enantioselective synthesis of β-amino-α,α-difluoro carbonyl compounds.

    PubMed

    Kashikura, Wataru; Mori, Keiji; Akiyama, Takahiko

    2011-04-01

    A biphenol-based chiral phosphoric acid bearing a 9-anthryl group at each of the 3,3'-positions catalyzed the asymmetric Mannich-type reaction of N-Boc imine with difluoroenol silyl ethers in the presence of MS3A in THF to afford β-amino-α,α-difluoroketones in good yields and with excellent enantioselectivities. Optically pure 3,3-difluoroazetidin-2-one was readily synthesized from the Mannich-adduct. PMID:21391557

  4. One site is enough: a theoretical investigation of iron-catalyzed dehydrogenation of formic Acid.

    PubMed

    Sánchez-de-Armas, Rocío; Xue, Liqin; Ahlquist, Mårten S G

    2013-09-01

    Dehydrogenation of HCO2H: The reaction mechanism for the dehydrogenation of formic acid catalyzed by a highly active and selective iron complex has been studied by DFT. The most favorable pathway shows the hydride in Fe-H complexes acting as a spectator ligand throughout the catalytic cycle. This result opens up the Fe complex for modification in order to achieve more efficient and selective catalysts. PMID:23907850

  5. Synthesis and Preliminary Biological Study of Bisindolylmethanes Accessed by an Acid-Catalyzed Hydroarylation of Vinylindoles

    PubMed Central

    Pathak, Tejas P.; Osiak, Jaroslaw G.; Vaden, Rachel M.; Welm, Bryan E.; Sigman, Matthew S.

    2012-01-01

    An acid-catalyzed hydroarylation reaction of vinyl indoles is reported, which tolerates a wide range of heterocycles as the exogenous nucleophile such as indoles, pyrroles, and indolizines. The method rapidly accesses the biologically relevant bisindolylmethane scaffold in good to excellent yields. Evaluation of the biological activity of several synthesized analogues reveals cytotoxic activity against and selectivity for the MCF-7 breast cancer cell line. PMID:22778488

  6. Triflic Acid-Catalyzed Enynes Cyclization: A New Strategy beyond Electrophilic π-Activation.

    PubMed

    Yu, Zhunzhun; Liu, Lu; Zhang, Junliang

    2016-06-13

    The cyclization of enynes, catalyzed by a transition metal, represents a powerful tool to construct an array of cyclic compounds through electrophilic π-activation. In this paper, we disclose a new and efficient strategy for enynes cyclization catalyzed by triflic acid. The salient features of this transformation includes a broad substrate scope, metal free synthesis, open flask and mild conditions, good yields, ease of operation, low catalyst loading, and easy scale-up to gram scale. A preliminary mechanism study demonstrated that the activation model of the reaction was σ-activation, which is different from the transition-metal-catalyzed enynes cyclization. Our strategy affords a complementary method to the traditional strategies, which use transition-metal catalysts. PMID:27124814

  7. Enantioselective Rh(I)-Catalyzed Addition of Arylboronic Acids to Cyclic Ketimines.

    PubMed

    Kong, Jongrock; McLaughlin, Mark; Belyk, Kevin; Mondschein, Ryan

    2015-11-20

    A method for the enantioselective synthesis of chiral α-tertiary amines via Rh-catalyzed 1,2-addition of arylboronic acids to cyclic ketimines is described. The products are efficiently accessed in good yields and excellent enantioselectivities using a commercially available chiral ligand. The reaction scope includes vinyl, aryl, and heteroarylboronic acids with yields ranging from 40% to 99% and enantiomeric excesses from 88% to 99%. Conversion of an addition product into an α,α-diaryl-substituted amino acid is also demonstrated. PMID:26542775

  8. Tunable and Diastereoselective Brønsted Acid Catalyzed Synthesis of β-Enaminones.

    PubMed

    Kang, Ye-Won; Cho, Yu Jin; Han, Seung Jin; Jang, Hye-Young

    2016-01-15

    The Brønsted acid catalyzed Meyer-Schuster reaction of hemiaminals was studied for the stereoselective synthesis of β-enaminones. Hemiaminals were formed from propargyl aldehydes (or the oxidation of propargyl alcohols) and amines in the presence of Brønsted acids. A critical step to control the stereochemistry of the products is the protonation of the corresponding allenol intermediate, which is dictated by the Brønsted acid used, the steric effect of the amine, and the electronic effect of the propargyl aldehyde. PMID:26741050

  9. Lipase-catalyzed acidolysis of menhaden oil with conjugated linoleic acid: effect of water content.

    PubMed

    Torres, Carlos F; Hill, Charles G

    2002-06-01

    The effect of the water content on the lipase-catalyzed (Candida rugosa) interesterification (acidolysis) of menhaden oil with conjugated linoleic acid was studied for amounts of added water ranging from 0-4% (w/w). The rate of the acidolysis reaction increased with increasing water content, but the corresponding percentage of n-3 fatty acids liberated also increased. The implications of water content for minimization of the release of n-3 fatty acid residues while maximizing incorporation of CLA are discussed. PMID:12115120

  10. The Acid Catalyzed Nitration of Methanol: Formation of Methyl Nitrate via Aerosol Chemistry

    NASA Technical Reports Server (NTRS)

    Riffel, Brent G.; Michelsen, Rebecca R.; Iraci, Laura T.

    2004-01-01

    The liquid phase acid catalyzed reaction of methanol with nitric acid to yield methyl nitrate under atmospheric conditions has been investigated using gas phase infrared spectroscopy. This nitration reaction is expected to occur in acidic aerosol particles found in the upper troposphere/lower stratosphere as highly soluble methanol and nitric acid diffuse into these aerosols. Gaseous methyl nitrate is released upon formation, suggesting that some fraction of NO(x) may he liberated from nitric acid (methyl nitrate is later photolyzed to NO(x)) before it is removed from the atmosphere by wet deposition. Thus, this reaction may have important implications for the NO(x) budget. Reactions have been initiated in 45-62 wt% H2SO4 solutions at 10.0 C. Methyl nitrate production rates increased exponentially with acidity within the acidity regime studied. Preliminary calculations suggest that the nitronium ion (NO2(+) is the active nitrating agent under these conditions. The reaction order in methanol appears to depend on the water/methanol ratio and varies from first to zeroth order under conditions investigated. The nitration is first order in nitronium at all acidities investigated. A second order rate constant, kappa(sub 2), has been calculated to be 1 x 10(exp 8)/ M s when the reaction is first order in methanol. Calculations suggest the nitration is first order in methanol under tropospheric conditions. The infinitesimal percentage of nitric acid in the nitronium ion form in this acidity regime probably makes this reaction insignificant for the upper troposphere; however, this nitration may become significant in the mid stratosphere where colder temperatures increase nitric acid solubility and higher sulfuric acid content shifts nitric acid speciation toward the nitronium ion.

  11. A Lewis Acid Catalyzed Annulation to 2,1-Benzisoxazoles

    PubMed Central

    2015-01-01

    We report here a new, atom economical annulation to 2,1-benzisoxazole scaffolds via the BF3·Et2O-catalyzed reaction of glyoxylate esters and nitrosoarenes. The developed method represents a convergent route to this compound class from previously unexplored inputs and provides a range of 2,1-benzisoxazoles in moderate to high yields under convenient conditions. Along with exploration of substrate scope, initial mechanistic investigation through 18O labeling and the synthesis of a reaction intermediate provides evidence for an unusual umpolung addition of glyoxylates to nitrosobenzenes with high O-selectivity, followed by a new type of Friedel–Crafts cyclization. PMID:25157596

  12. Palladium-catalyzed decarboxylative annulation of 2-arylbenzoic acids with [60]fullerene via C-H bond activation.

    PubMed

    Zhou, Dian-Bing; Wang, Guan-Wu

    2015-03-01

    A convenient and highly efficient palladium-catalyzed decarboxylative annulation of 2-arylbenzoic acids with [60]fullerene has been exploited to synthesize the novel and scarce [60]fullerene-fused dihydrophenanthrenes. The use of Lewis acid ZnCl2 is crucial for the success of the present formal [4 + 2] annulation reaction. Plausible reaction pathways leading to the observed products have been proposed, and the electrochemistry of the fullerene products has also been investigated. PMID:25700187

  13. Acid-catalyzed Furfuryl Alcohol Polymerization: Characterizations of Molecular Structure and Thermodynamic Properties

    SciTech Connect

    Kim, Taejin; Assary, Rajeev A.; Marshall, Christopher L.; Gosztola, David J.; Curtiss, Larry A.; Stair, Peter C.

    2011-07-22

    The liquid-phase polymerization of furfuryl alcohol catalyzed by sulfuric acid catalysts and the identities of molecular intermediates were investigated by using Raman spectroscopy and density functional theory calculation. At room temperature, with an acid catalyst, a vigorous furfuryl alcohol polymerization reaction was observed, whereas even at a high water concentration, furfuryl alcohol was very stable in the absence of an acid catalyst. Theoretical studies were carried out to investigate the thermodynamics of protonation of furfuryl alcohol, initiation of polymerization, and formation of conjugated dienes and diketonic species by using the B3LYP level of theory. A strong aliphatic C=C band observed in the calculated and measured Raman spectra provided crucial evidence to understand the polymerization reaction mechanism. It is confirmed that the formation of a conjugated diene structure rather than a diketone structure is involved in the furfuryl alcohol polymerization reaction.

  14. Acid-catalyzed furfurly alcohol polymerization : characterizations of molecular structure and thermodynamic properties.

    SciTech Connect

    Kim, T.; Assary, R. S.; Marshall, C. L.; Gosztola, D. J.; Curtiss, L. A.; Stair, P. C.

    2011-01-01

    The liquid-phase polymerization of furfuryl alcohol catalyzed by sulfuric acid catalysts and the identities of molecular intermediates were investigated by using Raman spectroscopy and density functional theory calculation. At room temperature, with an acid catalyst, a vigorous furfuryl alcohol polymerization reaction was observed, whereas even at a high water concentration, furfuryl alcohol was very stable in the absence of an acid catalyst. Theoretical studies were carried out to investigate the thermodynamics of protonation of furfuryl alcohol, initiation of polymerization, and formation of conjugated dienes and diketonic species by using the B3LYP level of theory. A strong aliphatic C=C band observed in the calculated and measured Raman spectra provided crucial evidence to understand the polymerization reaction mechanism. It is confirmed that the formation of a conjugated diene structure rather than a diketone structure is involved in the furfuryl alcohol polymerization reaction.

  15. 4-Dimenthylaminopyridine or Acid-Catalyzed Synthesis of Esters: A Comparison

    ERIC Educational Resources Information Center

    van den Berg, Annemieke W. C.; Hanefeld, Ulf

    2006-01-01

    A set of highly atom-economic experiments was developed to highlight the differences between acid- and base-catalyzed ester syntheses and to introduce the principles of atom economy. The hydrochloric acid-catalyzed formation of an ester was compared with the 4-dimethylaminopyradine-catalyzed ester synthesis.

  16. Evaluation of bicinchoninic acid as a ligand for copper(I)-catalyzed azide-alkyne bioconjugations.

    PubMed

    Christen, Erik H; Gübeli, Raphael J; Kaufmann, Beate; Merkel, Lars; Schoenmakers, Ronald; Budisa, Nediljko; Fussenegger, Martin; Weber, Wilfried; Wiltschi, Birgit

    2012-09-01

    The Cu(I)-catalyzed cycloaddition of terminal azides and alkynes (click chemistry) represents a highly specific reaction for the functionalization of biomolecules with chemical moieties such as dyes or polymer matrices. In this study we evaluate the use of bicinchoninic acid (BCA) as a ligand for Cu(I) under physiological reaction conditions. We demonstrate that the BCA-Cu(I)-complex represents an efficient catalyst for the conjugation of fluorophores or biotin to alkyne- or azide-functionalized proteins resulting in increased or at least equal reaction yields compared to commonly used catalysts like Cu(I) in complex with TBTA (tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine) or BPAA (bathophenanthroline disulfonic acid). The stabilization of Cu(I) with BCA represents a new strategy for achieving highly efficient bioconjugation reactions under physiological conditions in many application fields. PMID:22821135

  17. Formation of C(sp(3))-C(sp(3)) Bonds by Palladium Catalyzed Cross-Coupling of α-Diazoketones and Allylboronic Acids.

    PubMed

    Belhomme, Marie-Charlotte; Wang, Dong; Szabó, Kálmán J

    2016-05-20

    Palladium catalyzed cross-coupling of allylboronic acids with α-diazoketones was studied. The reaction selectively affords the linear allylic product. The reaction proceeds with formation of a new C(sp(3))-C(sp(3)) bond. The reaction was performed without an external oxidant, likely without the Pd-catalyst undergoing redox reactions. PMID:27166509

  18. Cinchona Alkaloid Catalyzed Sulfa-Michael Addition Reactions Leading to Enantiopure β-Functionalized Cysteines.

    PubMed

    Breman, Arjen C; Telderman, Suze E M; van Santen, Roy P M; Scott, Jamie I; van Maarseveen, Jan H; Ingemann, Steen; Hiemstra, Henk

    2015-11-01

    Sulfa-Michael additions to α,β-unsaturated N-acylated oxazolidin-2-ones and related α,β-unsaturated α-amino acid derivatives have been enantioselectively catalyzed by Cinchona alkaloids functionalized with a hydrogen bond donating group at the C6' position. The series of Cinchona alkaloids includes known C6' (thio)urea and sulfonamide derivatives and several novel species with a benzimidazole, squaramide or a benzamide group at the C6' position. The sulfonamides were especially suited as bifunctional organocatalysts as they gave the products in very good diastereoselectivity and high enantioselectivity. In particular, the C6' sulfonamides catalyzed the reaction with the α,β-unsaturated α-amino acid derivatives to afford the products in a diastereomeric ratio as good as 93:7, with the major isomer being formed in an ee of up to 99%. The products of the organocatalytic sulfa-Michael addition to α,β-unsaturated α-amino acid derivatives were subsequently converted in high yields to enantiopure β-functionalized cysteines suitable for native chemical ligation. PMID:26451627

  19. Asymmetric Synthesis of Hydrocarbazoles Catalyzed by an Octahedral Chiral-at-Rhodium Lewis Acid.

    PubMed

    Huang, Yong; Song, Liangliang; Gong, Lei; Meggers, Eric

    2015-12-01

    A bis-cyclometalated chiral-at-metal rhodium complex catalyzes the Diels-Alder reaction between N-Boc-protected 3-vinylindoles (Boc = tert-butyloxycarbonyl) and β-carboxylic ester-substituted α,β-unsaturated 2-acyl imidazoles with good-to-excellent regioselectivity (up to 99:1) and excellent diastereoselectivity (>50:1 d.r.) as well as enantioselectivity (92-99% ee) under optimized conditions. The rhodium catalyst serves as a chiral Lewis acid to activate the 2-acyl imidazole dienophile by two-point binding and overrules the preferred regioselectivity of the uncatalyzed reaction. PMID:26344422

  20. Imparting Catalyst-Control upon Classical Palladium-Catalyzed Alkenyl C–H Bond Functionalization Reactions

    PubMed Central

    Sigman, Matthew S.; Werner, Erik W.

    2011-01-01

    Conspectus The functional group transformations carried out by the palladium-catalyzed Wacker and Heck reactions are radically different, but they are both alkenyl C-H bond functionalization reactions that have found extensive use in organic synthesis. The synthetic community depends heavily on these important reactions, but selectivity issues arising from control by the substrate, rather than control by the catalyst, have prevented the realization of their full potential. Because of important similarities in the respective selectivity-determining nucleopalladation and β-hydride elimination steps of these processes, we posit that the mechanistic insight garnered through the development of one of these catalytic reactions may be applied to the other. In this Account, we detail our efforts to develop catalyst-controlled variants of both the Wacker oxidation and the Heck reaction to address synthetic limitations and provide mechanistic insight into the underlying organometallic processes of these reactions. In contrast to previous reports, we discovered that electrophilic palladium catalysts with non-coordinating counterions allowed for the use of a Lewis basic ligand to efficiently promote TBHP-mediated Wacker oxidation reactions of styrenes. This discovery led to the mechanistically guided development of a Wacker reaction catalyzed by a palladium complex with a bidentate ligand. This ligation may prohibit coordination of allylic heteroatoms, thereby allowing for the application of the Wacker oxidation to substrates that were poorly behaved under classical conditions. Likewise, we unexpectedly discovered that electrophilic Pd-σ-alkyl intermediates are capable of distinguishing between electronically inequivalent C–H bonds during β-hydride elimination. As a result, we have developed E-styrenyl selective oxidative Heck reactions of previously unsuccessful electronically non-biased alkene substrates using arylboronic acid derivatives. The mechanistic insight gained

  1. [Lipase-catalyzed production of biodiesel from high acid value waste oil with ultrasonic assistant].

    PubMed

    Wang, Jian-Xun; Huang, Qing-De; Huang, Feng-Hong; Wang, Jiang-Wei; Huang, Qin-Jie

    2007-11-01

    Biodiesel fuel produced with the enzyme-catalyzed esterification and transesterification of high acid value waste oil through ultrasonic assistant was explored. Propyl oleate, biodiesel, converted from high acid value waste oil and 1-proponal catalyzed with immobilized lipases from Candida antarctica and Aspergillus oryzae in conditions of ultrasonic assistant. Commercial immobilized lipase Novozym 435 from C. antarctica was used as biocatalyst catalyzing high acid value waste oil and 1-proponal esterification and transesterification to propyl oleate under the ultrasonic assistant conditions and different conditions such as lipases amounts, initiatory molar ratio of propanol to oil, frequency of ultrasonic and power of ultrasonic were investigated and optimized. It is revealed that the enzymatic activity of Novozym435 is enhanced and, in particular, enzyme-catalyzed transesterification activity is enhanced obviously under the ultrasonic assistant conditions. Low frequency and mild energy ultrasonic is a key factor for enhancing enzymatic activity, emulsifying oil-propanol system and accelerating the speed of produce diffusing in the system. Under the optimal ultrasonic assistant reaction conditions, such as Novozym435 amounts 8% by oil quantity, initiatory molar ratio of propanol to oil 3:1, frequency of ultrasonic 28 KHz, power of ultrasonic 100 W and temperature of water batch 40-45 degrees C, the conversion ratio to propyl oleate reached to 94.86% in 50 mins in comparison with the highest conversion ratio to propyl oleate 84.43% under the conventional mechanical agitation conditions. Furthermore, it is demonstrated that various short chain linear and branched alcohols (C1-C5) show high conversion ratio to fatty acid alkyl esters (biodiesel) under the optimal ultrasonic assistant reaction conditions. On the other hand, ultrasonic energy is propitious to reduce the adsorption of product propyl oleate, by-product glycerol and other emplastics in system on the

  2. Formation of C(sp(3) )-C(sp(3) ) Bonds through Nickel-Catalyzed Decarboxylative Olefin Hydroalkylation Reactions.

    PubMed

    Lu, Xi; Xiao, Bin; Liu, Lei; Fu, Yao

    2016-08-01

    Olefins and carboxylic acids are among the most important feedstock compounds. They are commonly found in natural products and drug molecules. We report a new reaction of nickel-catalyzed decarboxylative olefin hydroalkylation, which provides a novel practical strategy for the construction of C(sp(3) )-C(sp(3) ) bonds. This reaction can tolerate a variety of synthetically relevant functional groups and shows good chemo- and regioselectivity. It enables cross-coupling of complex organic molecules containing olefin groups and carboxylic acid groups in a convergent fashion. PMID:27245257

  3. The enzymatic reaction catalyzed by lactate dehydrogenase exhibits one dominant reaction path

    NASA Astrophysics Data System (ADS)

    Masterson, Jean E.; Schwartz, Steven D.

    2014-10-01

    Enzymes are the most efficient chemical catalysts known, but the exact nature of chemical barrier crossing in enzymes is not fully understood. Application of transition state theory to enzymatic reactions indicates that the rates of all possible reaction paths, weighted by their relative probabilities, must be considered in order to achieve an accurate calculation of the overall rate. Previous studies in our group have shown a single mechanism for enzymatic barrier passage in human heart lactate dehydrogenase (LDH). To ensure that this result was not due to our methodology insufficiently sampling reactive phase space, we implement high-perturbation transition path sampling in both microcanonical and canonical regimes for the reaction catalyzed by human heart LDH. We find that, although multiple, distinct paths through reactive phase space are possible for this enzymatic reaction, one specific reaction path is dominant. Since the frequency of these paths in a canonical ensemble is inversely proportional to the free energy barriers separating them from other regions of phase space, we conclude that the rarer reaction paths are likely to have a negligible contribution. Furthermore, the non-dominate reaction paths correspond to altered reactive conformations and only occur after multiple steps of high perturbation, suggesting that these paths may be the result of non-biologically significant changes to the structure of the enzymatic active site.

  4. Selective Nickel- and Manganese-Catalyzed Decarboxylative Cross Coupling of Some α,β-Unsaturated Carboxylic Acids with Cyclic Ethers

    PubMed Central

    Zhang, Jia-Xiang; Wang, Yan-Jing; Zhang, Wei; Wang, Nai-Xing; Bai, Cui-Bing; Xing, Ya-Lan; Li, Yi-He; Wen, Jia-Long

    2014-01-01

    A nickel- and manganese-catalyzed decarboxylative cross coupling of α, β-unsaturated carboxylic acids with cyclic ethers such as tetrahydrofuran and 1, 4-dioxane was developed. Oxyalkylation was achieved when nickel acetate was used as catalyst, while manganese acetate promoted the reaction of alkenylation. PMID:25502282

  5. Two-step one-pot synthesis of benzoannulated spiroacetals by Suzuki-Miyaura coupling/acid-catalyzed spiroacetalization.

    PubMed

    Butkevich, Alexey N; Corbu, Andrei; Meerpoel, Lieven; Stansfield, Ian; Angibaud, Patrick; Bonnet, Pascal; Cossy, Janine

    2012-10-01

    Substituted benzoannulated spiroacetals were prepared from (2-haloaryl)alkyl alcohols and dihydropyranyl or dihydrofuranyl pinacol boronates using a Suzuki-Miyaura coupling followed by an acid-catalyzed spirocyclization. Application of the reaction to a glycal boronate provides an approach to annulated spiroacetals in enantiopure form. PMID:22998767

  6. Lipase-catalyzed process in an anhydrous medium with enzyme reutilization to produce biodiesel with low acid value.

    PubMed

    Azócar, Laura; Ciudad, Gustavo; Heipieper, Hermann J; Muñoz, Robinson; Navia, Rodrigo

    2011-12-01

    One major problem in the lipase-catalyzed production of biodiesel or fatty acid methyl esters (FAME) is the high acidity of the product, mainly caused by water presence, which produces parallel hydrolysis and esterification reactions instead of transesterification to FAME. Therefore, the use of reaction medium in absence of water (anhydrous medium) was investigated in a lipase-catalyzed process to improve FAME yield and final product quality. FAME production catalyzed by Novozym 435 was carried out using waste frying oil (WFO) as raw material, methanol as acyl acceptor, and 3Å molecular sieves to extract the water. The anhydrous conditions allowed the esterification of free fatty acids (FFA) from feedstock at the initial reaction time. However, after the initial esterification process, water absence avoided the consecutives reactions of hydrolysis and esterification, producing FAME mainly by transesterification. Using this anhydrous medium, a decreasing in both the acid value and the diglycerides content in the product were observed, simultaneously improving FAME yield. Enzyme reuse in the anhydrous medium was also studied. The use of the moderate polar solvent tert-butanol as a co-solvent led to a stable catalysis using Novozym 435 even after 17 successive cycles of FAME production under anhydrous conditions. These results indicate that a lipase-catalyzed process in an anhydrous medium coupled with enzyme reuse would be suitable for biodiesel production, promoting the use of oils of different origin as raw materials. PMID:21889401

  7. Solid acid-catalyzed depolymerization of barley straw driven by ball milling.

    PubMed

    Schneider, Laura; Haverinen, Jasmiina; Jaakkola, Mari; Lassi, Ulla

    2016-04-01

    This study describes a time and energy saving, solvent-free procedure for the conversion of lignocellulosic barley straw into reducing sugars by mechanocatalytical pretreatment. The catalytic conversion efficiency of several solid acids was tested which revealed oxalic acid dihydrate as a potential catalyst with high conversion rate. Samples were mechanically treated by ball milling and subsequently hydrolyzed at different temperatures. The parameters of the mechanical treatment were optimized in order to obtain sufficient amount of total reducing sugar (TRS) which was determined following the DNS assay. Additionally, capillary electrophoresis (CE) and Fourier transform infrared spectrometry (FT-IR) were carried out. Under optimal conditions TRS 42% was released using oxalic acid dihydrate as a catalyst. This study revealed that the acid strength plays an important role in the depolymerization of barley straw and in addition, showed, that the oxalic acid-catalyzed reaction generates low level of the degradation product 5-hydroxymethylfurfural (HMF). PMID:26859328

  8. PALLADIUM-CATALYZED OXIDATION OF STYRENE AND ALKENES IN PRESENCE OF IONIC LIQUIDS (WACKER REACTION)

    EPA Science Inventory

    The use of ionic liquids in various synthetic transformations is gaining significance due to the enhanced reaction rates, potential for recycling and compatibility with various organic compounds and organometallic catalysts. Palladium-catalyzed oxidation of styrene and other alk...

  9. Coupling Reaction of Enol Derivatives with Silyl Ketene Acetals Catalyzed by Gallium Trihalides.

    PubMed

    Nishimoto, Yoshihiro; Kita, Yuji; Ueda, Hiroki; Imaoka, Hiroto; Chiba, Kouji; Yasuda, Makoto; Baba, Akio

    2016-08-01

    A cross-coupling reaction between enol derivatives and silyl ketene acetals catalyzed by GaBr3 took place to give the corresponding α-alkenyl esters. GaBr3 showed the most effective catalytic ability, whereas other metal salts such as BF3 ⋅OEt2 , AlCl3 , PdCl2 , and lanthanide triflates were not effective. Various types of enol ethers and vinyl carboxylates as enol derivatives are amenable to this coupling. The scope of the reaction with silyl ketene acetals was also broad. We successfully observed an alkylgallium intermediate by using NMR spectroscopy, suggesting a mechanism involving anti-carbogallation among GaBr3 , an enol derivative, and a silyl ketene acetal, followed by syn-β-alkoxy elimination from the alkylgallium. Based on kinetic studies, the turnover-limiting step of the reaction using a vinyl ether and a vinyl carboxylate involved syn-β-alkoxy elimination and anti-carbogallation, respectively. Therefore, the leaving group had a significant effect on the progress of the reaction. Theoretical calculations analysis suggest that the moderate Lewis acidity of gallium would contribute to a flexible conformational change of the alkylgallium intermediate and to the cleavage of the carbon-oxygen bond in the β-alkoxy elimination process, which is the turnover-limiting step in the reaction between a vinyl ether and a silyl ketene acetal. PMID:27400389

  10. Deoxycholic acid transformations catalyzed by selected filamentous fungi.

    PubMed

    Kollerov, V V; Lobastova, T G; Monti, D; Deshcherevskaya, N O; Ferrandi, E E; Fronza, G; Riva, S; Donova, M V

    2016-03-01

    More than 100 filamentous fungi strains, mostly ascomycetes and zygomycetes from different phyla, were screened for the ability to convert deoxycholic acid (DCA) to valuable bile acid derivatives. Along with 11 molds which fully degraded DCA, several strains were revealed capable of producing cholic acid, ursocholic acid, 12-keto-lithocholic acid (12-keto-LCA), 3-keto-DCA, 15β-hydroxy-DCA and 15β-hydroxy-12-oxo-LCA as major products from DCA. The last metabolite was found to be a new compound. The ability to catalyze the introduction of a hydroxyl group at the 7(α/β)-positions of the DCA molecule was shown for 32 strains with the highest 7β-hydroxylase activity level for Fusarium merismoides VKM F-2310. Curvularia lunata VKM F-644 exhibited 12α-hydroxysteroid dehydrogenase activity and formed 12-keto-LCA from DCA. Acremonium rutilum VKM F-2853 and Neurospora crassa VKM F-875 produced 15β-hydroxy-DCA and 15β-hydroxy-12-oxo-LCA, respectively, as major products from DCA, as confirmed by MS and NMR analyses. For most of the positive strains, the described DCA-transforming activity was unreported to date. The presented results expand the knowledge on bile acid metabolism by filamentous fungi, and might be suitable for preparative-scale exploitation aimed at the production of marketed bile acids. PMID:26718089

  11. Investigating the mechanism of the selective hydrogenation reaction of cinnamaldehyde catalyzed by Ptn clusters.

    PubMed

    Li, Laicai; Wang, Wei; Wang, Xiaolan; Zhang, Lin

    2016-08-01

    Cinnamaldehyde (CAL) belongs to the group of aromatic α,β-unsaturated aldehydes; the selective hydrogenation of CAL plays an important role in the fine chemical and pharmaceutical industries. Using Ptn clusters as catalytic models, we studied the selective hydrogenation reaction mechanism for CAL catalyzed by Ptn (n = 6, 10, 14, 18) clusters by means of B3LYP in density functional theory at the 6-31+ G(d) level (the LanL2DZ extra basis set was used for the Pt atom). The rationality of the transition state was proved by vibration frequency analysis and intrinsic reaction coordinate computation. Moreover, atoms in molecules theory and nature bond orbital theory were applied to discuss the interaction among orbitals and the bonding characteristics. The results indicate that three kinds of products, namely 3-phenylpropyl aldehyde, 3-phenyl allyl alcohol and cinnamyl alcohol, are produced in the selective hydrogenation reaction catalyzed by Ptn clusters; each pathway possesses two reaction channels. Ptn clusters are more likely to catalyze the activation and hydrogenation of the C = O bond in CAL molecules, eventually producing cinnamic alcohol, which proves that Ptn clusters have a strong reaction selectivity to catalyze CAL. The reaction selectivity of the catalyzer cluster is closely related to the size of the Ptn cluster, with Pt14 clusters having the greatest reaction selectivity. Graphical Abstract The reaction mechanism for the selective hydrogenation reaction ofcinnamaldehyde catalyzed by Ptn clusters was studied by densityfunctional theory. The reactionselectivity of cluster catalyzer was concluded to be closely related to the size of Ptn clusters, with Pt14 clusters having the greatest reaction selectivity. PMID:27444877

  12. Acid-Base Pairs in Lewis Acidic Zeolites Promote Direct Aldol Reactions by Soft Enolization.

    PubMed

    Lewis, Jennifer D; Van de Vyver, Stijn; Román-Leshkov, Yuriy

    2015-08-17

    Hf-, Sn-, and Zr-Beta zeolites catalyze the cross-aldol condensation of aromatic aldehydes with acetone under mild reaction conditions with near quantitative yields. NMR studies with isotopically labeled molecules confirm that acid-base pairs in the Si-O-M framework ensemble promote soft enolization through α-proton abstraction. The Lewis acidic zeolites maintain activity in the presence of water and, unlike traditional base catalysts, in acidic solutions. PMID:26138135

  13. Silver(I)-catalyzed novel cascade cyclization reactions: incorporation of allenes into the isochromenes.

    PubMed

    Patil, Nitin T; Pahadi, Nirmal K; Yamamoto, Yoshinori

    2005-11-25

    [reaction: see text] The silver(I)-catalyzed reaction of alkynones with alcohols represents a general tool for the synthesis of 1-allenyl isochromenes. The reaction most probably proceeds via the formation of benzopyrylium cation, which subsequently undergoes nucleophilic attack of an alcohol to give the annulation products. PMID:16292845

  14. Iridium-catalyzed enantioselective hydrogenation of unsaturated heterocyclic acids.

    PubMed

    Song, Song; Zhu, Shou-Fei; Pu, Liu-Yang; Zhou, Qi-Lin

    2013-06-01

    Spiral binding: A highly enantioselective hydrogenation of unsaturated heterocyclic acids has been developed by using chiral iridium/spirophosphino oxazoline catalysts (see scheme; BArF(-) =tetrakis[3,5-bis(trifluoromethyl)phenyl]borate, Boc=tert-butoxycarbonyl). This reaction provided an efficient method for the preparation of optically active heterocyclic acids with excellent enantioselectivities. PMID:23610004

  15. Unusual Peroxide-Dependent, Heme-Transforming Reaction Catalyzed by HemQ.

    PubMed

    Celis, Arianna I; Streit, Bennett R; Moraski, Garrett C; Kant, Ravi; Lash, Timothy D; Lukat-Rodgers, Gudrun S; Rodgers, Kenton R; DuBois, Jennifer L

    2015-07-01

    A recently proposed pathway for heme b biosynthesis, common to diverse bacteria, has the conversion of two of the four propionates on coproheme III to vinyl groups as its final step. This reaction is catalyzed in a cofactor-independent, H2O2-dependent manner by the enzyme HemQ. Using the HemQ from Staphylococcus aureus (SaHemQ), the initial decarboxylation step was observed to rapidly and obligately yield the three-propionate harderoheme isomer III as the intermediate, while the slower second decarboxylation appeared to control the overall rate. Both synthetic harderoheme isomers III and IV reacted when bound to HemQ, the former more slowly than the latter. While H2O2 is the assumed biological oxidant, either H2O2 or peracetic acid yielded the same intermediates and products, though amounts significantly greater than the expected 2 equiv were required in both cases and peracetic acid reacted faster. The ability of peracetic acid to substitute for H2O2 suggests that, despite the lack of catalytic residues conventionally present in heme peroxidase active sites, reaction pathways involving high-valent iron intermediates cannot be ruled out. PMID:26083961

  16. Heterometallic Metal-Organic Frameworks That Catalyze Two Different Reactions Sequentially.

    PubMed

    Saha, Debraj; Hazra, Dipak K; Maity, Tanmoy; Koner, Subratanath

    2016-06-20

    A series of copper- and alkaline-earth-metal-based multidimensional metal-organic frameworks, {[CuMg(pdc)2(H2O)4]·2H2O}n (1), [CuCa(pdc)2]n (2), [CuSr(pdc)2(H2O)3]n (3), and {[CuBa(pdc)2(H2O)5]·H2O}n (4), where H2Pdc = pyridine-2,5-dicarboxylic acid, were hydrothermally synthesized and characterized. Two different metals act as the active center to catalyze two kinds of reactions, viz., olefin to its epoxide followed by epoxide ring opening to afford the corresponding vicinal diol in a sequential manner. PMID:27232433

  17. Inorganic acid-catalyzed tautomerization of vinyl alcohol to acetaldehyde

    NASA Astrophysics Data System (ADS)

    Karton, Amir

    2014-01-01

    The vinyl alcohol-acetaldehyde tautomerization reaction has recently received considerable attention as a potential route for the formation of organic acids in the troposphere (Andrews et al., 2012 [7]). We examine the catalytic effect of inorganic acids in the troposphere (e.g. HNO3, H2SO4 and HClO4) on the vinyl alcohol-acetaldehyde tautomerization reaction, by means high-level thermochemical procedures. We show that H2SO4 and HClO4 catalysts lead to near-zero reaction barrier heights for the vinyl alcohol → acetaldehyde reaction, and to low reaction barrier heights in the reverse direction (ΔH298‡=40.6 and 39.5 kJ mol, respectively).

  18. Synthesis of Cyclooctatetraenes through a Palladium-Catalyzed Cascade Reaction.

    PubMed

    Blouin, Sarah; Gandon, Vincent; Blond, Gaëlle; Suffert, Jean

    2016-06-13

    Reported is a cascade reaction leading to fully substituted cyclooctatetraenes. This unexpected transformation likely proceeds through a unique 8π electrocyclization reaction of a ene triyne. DFT computations provide the mechanistic basis of this surprizing reaction. PMID:27135905

  19. Lanthanum(III)-Catalyzed Three-Component Reaction of Coumarin-3-carboxylates for the Synthesis of Indolylmalonamides and Analysis of Their Photophysical Properties.

    PubMed

    Jennings, Julia J; Bhatt, Chinmay P; Franz, Annaliese K

    2016-08-01

    New methodology has been developed for the Lewis acid catalyzed synthesis of malonamides. First, the scandium(III)-catalyzed addition of diverse nucleophiles (e.g., indoles, N,N-dimethyl-m-anisidine, 2-ethylpyrrole, and 2-methylallylsilane) to coumarin-3-carboxylates has been developed to afford chromanone-3-carboxylates in high yields as a single diastereomer. Upon investigating a subsequent lanthanum(III)-catalyzed amidation reaction, a new multicomponent reaction was designed by bringing together coumarin-3-carboxylates with indoles and amines to afford indolylmalonamides, which were identified to exhibit fluorescent properties. The photophysical properties for selected compounds have been analyzed, including quantum yield, molar absorptivity, and Stokes shift. Synthetic studies of several reaction byproducts involved in the network of reaction equilibria for the three-component reaction provide mechanistic insight for the development of this methodology. PMID:27304909

  20. Optimization of the enzyme-catalyzed synthesis of amino acid-based surfactants from palm oil fractions.

    PubMed

    Soo, Ee Lin; Salleh, Abu Bakar; Basri, Mahiran; Zaliha Raja Abdul Rahman, Raja Noor; Kamaruddin, Kamarulzaman

    2003-01-01

    The feasibility of using palm oil fractions as cheap and abundant sources of raw material for the synthesis of amino acid surfactants was investigated. Of a number of enzymes screened, the best results were obtained with the immobilized enzyme, Lipozyme. The effects of temperature, solvent, incubation period, fatty substrate/amino acid molar ratio, enzyme amount, and water removal on the reactions were analyzed and compared to those on reactions with free fatty acids and pure triglycerides as fatty substrates. All reactions were most efficient when carried out at high temperatures (70-80 degrees C) in hexane as a solvent. However, while reactions with free fatty acids proceeded better when a slight excess of the free fatty acids over the amino acids was used, reactions with triglycerides and palm oil fractions were best performed at equimolar ratios. Also, the addition of molecular sieves slightly enhanced reactions with free fatty acids but adversely affected reactions with triglycerides and palm oil fractions. Although reactions with palm oil fractions took longer (6 d) to reach equilibrium compared to reactions with free fatty acids (4 d) and pure triglycerides (4 d), better yields were obtained. Such lipase-catalyzed transacylation of palm oil fractions with amino acids is potentially useful in the production of mixed medium- to long-chain surfactants for specific applications. PMID:16233420

  1. Hydrolysis of cellulose catalyzed by novel acidic ionic liquids.

    PubMed

    Zhuo, Kelei; Du, Quanzhou; Bai, Guangyue; Wang, Congyue; Chen, Yujuan; Wang, Jianji

    2015-01-22

    The conversion of cellulosic biomass directly into valuable chemicals becomes a hot subject. Six novel acidic ionic liquids (ILs) based on 2-phenyl-2-imidazoline were synthesized and characterized by UV-VIS, TGA, and NMR. The novel acidic ionic liquids were investigated as catalysts for the hydrolysis of cellulose in 1-butyl-3-methylimidazolium chloride ([Bmim]Cl). The acidic ionic liquids with anions HSO4(-) and Cl(-) showed better catalytic performance for the hydrolysis of cellulose than those with H2PO4(-). The temperature and dosage of water affect significantly the yield of total reducing sugar (TRS). When the hydrolysis of cellulose was catalyzed by 1-propyl sulfonic acid-2-phenyl imidazoline hydrogensulfate (IL-1) and the dosage of water was 0.2g, the TRS yield was up to 85.1% within 60 min at 100°C. These new acidic ionic liquids catalysts are expected to have a wide application in the conversion of cellulose into valuable chemicals. PMID:25439867

  2. Bronsted-Evans-Polany relationships for C-C bond forming and C-C bond breaking reactions in thiamine-catalyzed decarboxylation of 2-keto acids using density functional theory.

    SciTech Connect

    Assary, R. S.; Broadbelt, L. J.; Curtiss, L. A.

    2012-01-01

    The concept of generalized enzyme reactions suggests that a wide variety of substrates can undergo enzymatic transformations, including those whose biotransformation has not yet been realized. The use of quantum chemistry to evaluate kinetic feasibility is an attractive approach to identify enzymes for the proposed transformation. However, the sheer number of novel transformations that can be generated makes this impractical as a screening approach. Therefore, it is essential to develop structure/activity relationships based on quantities that are more efficient to calculate. In this work, we propose a structure/activity relationship based on the free energy of binding or reaction of non-native substrates to evaluate the catalysis relative to that of native substrates. While Broensted-Evans-Polanyi (BEP) relationships such as that proposed here have found broad application in heterogeneous catalysis, their extension to enzymatic catalysis is limited. We report here on density functional theory (DFT) studies for C-C bond formation and C-C bond cleavage associated with the decarboxylation of six 2-keto acids by a thiamine-containing enzyme (EC 1.2.7.1) and demonstrate a linear relationship between the free energy of reaction and the activation barrier. We then applied this relationship to predict the activation barriers of 17 chemically similar novel reactions. These calculations reveal that there is a clear correlation between the free energy of formation of the transition state and the free energy of the reaction, suggesting that this method can be further extended to predict the kinetics of novel reactions through our computational framework for discovery of novel biochemical transformations.

  3. Brønsted-Evans-Polanyi relationships for C–C bond forming and C–C bond breaking reactions in thiamine-catalyzed decarboxylation of 2-keto acids using density functional theory

    SciTech Connect

    Assary, Rajeev Surendran; Broadbelt, Linda J.; Curtiss, Larry A.

    2011-04-27

    The concept of generalized enzyme reactions suggests that a wide variety of substrates can undergo enzymatic transformations, including those whose biotransformation has not yet been realized. The use of quantum chemistry to evaluate kinetic feasibility is an attractive approach to identify enzymes for the proposed transformation. However, the sheer number of novel transformations that can be generated makes this impractical as a screening approach. Therefore, it is essential to develop structure/activity relationships based on quantities that are more efficient to calculate. In this work, we propose a structure/activity relationship based on the free energy of binding or reaction of non-native substrates to evaluate the catalysis relative to that of native substrates. While Brønsted-Evans-Polanyi (BEP) relationships such as that proposed here have found broad application in heterogeneous catalysis, their extension to enzymatic catalysis is limited. We report here on density functional theory (DFT) studies for C–C bond formation and C–C bond cleavage associated with the decarboxylation of six 2-keto acids by a thiamine-containing enzyme (EC 1.2.7.1) and demonstrate a linear relationship between the free energy of reaction and the activation barrier. We then applied this relationship to predict the activation barriers of 17 chemically similar novel reactions. These calculations reveal that there is a clear correlation between the free energy of formation of the transition state and the free energy of the reaction, suggesting that this method can be further extended to predict the kinetics of novel reactions through our computational framework for discovery of novel biochemical transformations.

  4. Iron-Catalyzed Diastereoselective Synthesis of Unnatural Chiral Amino Acid Derivatives.

    PubMed

    Zhang, Hao; Li, Haifang; Yang, Haijun; Fu, Hua

    2016-07-15

    An iron-catalyzed diastereoselective synthesis of unnatural chiral (S)-α-amino acids with γ-quaternary carbon centers has been developed. The protocol uses inexpensive iron salt as the catalyst, readily available 2-phthaloyl acrylamide and alkenes as the starting materials, and phenylsilane as the reductant, and the reactions were performed well in mixed solvent of 1,2-dichloroethane and ethylene glycol at room temperature. The method shows some advantages including simple and wide substrates, mild conditions, high diastereoselectivity, and easy workup procedures. PMID:27367820

  5. Palladium(II)-Catalyzed Tandem Synthesis of Acenes Using Carboxylic Acids as Traceless Directing Groups.

    PubMed

    Kim, Kiho; Vasu, Dhananjayan; Im, Honggu; Hong, Sungwoo

    2016-07-18

    A straightforward synthetic strategy for generating useful anthracene derivatives was developed involving palladium(II)-catalyzed tandem transformation with carboxylic acids as traceless directing groups. Carboxyl-directed C-H alkenylation, carboxyl-directed secondary C-H activation and rollover, intramolecular C-C bond formation, and decarboxylative aromatization are proposed as the key steps in the tandem reaction pathway. This novel synthetic route utilizes a broad range of substrates and provides a convenient synthetic tool that allows access to acenes. PMID:27244536

  6. Synthesis of imides via palladium-catalyzed decarboxylative amidation of α-oxocarboxylic acids with secondary amides.

    PubMed

    Xu, Ning; Liu, Jie; Li, Dengke; Wang, Lei

    2016-05-18

    An efficient synthesis of imides has been developed through a Pd-catalyzed decarboxylative amidation of α-oxocarboxylic acids with secondary amides. The reactions of N-substituted N-heteroarene-2-carboxamides with 2-oxo-2-arylacetic acids proceeded smoothly to generate the corresponding products in good yields in the presence of Pd(OAc)2 and K2S2O8. PMID:27143171

  7. Haloperoxidase reactions catalyzed by lignin peroxidase, an extracellular enzyme from the basidiomycete Phanerochaete chrysosporium

    SciTech Connect

    Renganathan, V.; Miki, K.; Gold, M.H.

    1987-08-11

    Lignin peroxidase (ligninase, LiP) an H/sub 2/O/sub 2/-dependent lignin-degrading heme enzyme from the basidiomycetous fungus Phanerochaete chrysosporium, catalyzes the oxidation of a variety of lignin model compounds. In this paper the authors examine the haloperoxidase reactions of LiP. In the presence of H/sub 2/O/sub 2/, homogeneous LiP oxidized bromide and iodide but not chloride. Halide oxidation was measured by the halogenation of monochlorodimedone (MCD) and a variety of other aromatic compounds. Bromination of MCD produced monochloromonobromodimedone. The pH optimum for the bromination of MCD was 3.5. Both chloride and fluoride inhibited the bromination reaction. LiP binds halides to produce characteristic optical difference spectra. From these spectra apparent dissociation constants for fluoride and chloride were determined to be 0.3 and 20 mM, respectively. Incubation of LiP with bromide and H/sub 2/O/sub 2/ in the absence of organic substrate led to the bleaching of the heme as measured by a decrease in Soret maximum. LiP brominated a variety of aromatic substrates including 3,4-dimethoxybenzyl alcohol (veratryl alcohol) to produce 6-bromoveratryl alcohol (VII). LiP hydrobrominated cinnamic acid (IV) to produce 2-bromo-3-hydroxy-3-phenylpropionic acid (XII). In an analogous reaction LiP hydrobrominated 1-(4-ethoxy-3-methoxyphenyl)propene (II) to produce 2-bromo-1-(4-ethoxy-3-methoxyphenyl)-1-hydroxypropane (XIII). Finally, with 3,4-dimethoxycinnamic acid as the substrate, three bromination products were identified: trans-2-bromo-1-(3,4-dimethoxyphenyl)ethylene (IX), 2,2-dibromo-1-(3,4-dimethoxyphenyl)-1-hydroxyethane (X), and 2-bromo-3-(3,4-dimethoxyphenyl)-3-hydroxypropionic acid (XI).

  8. Iodine-Catalyzed Decarboxylative Amidation of β,γ-Unsaturated Carboxylic Acids with Chloramine Salts Leading to Allylic Amides.

    PubMed

    Kiyokawa, Kensuke; Kojima, Takumi; Hishikawa, Yusuke; Minakata, Satoshi

    2015-10-26

    The iodine-catalyzed decarboxylative amidation of β,γ-unsaturated carboxylic acids with chloramine salts is described. This method enables the regioselective synthesis of allylic amides from various types of β,γ-unsaturated carboxylic acids containing substituents at the α- and β-positions. In the reaction, N-iodo-N-chloroamides, generated by the reaction of a chloramine salt with I2 , function as a key active species. The reaction provides an attractive alternative to existing methods for the synthesis of useful secondary allylic amine derivatives. PMID:26493878

  9. A general Suzuki cross-coupling reaction of heteroaromatics catalyzed by nanopalladium on amino-functionalized siliceous mesocellular foam.

    PubMed

    Bratt, Emma; Verho, Oscar; Johansson, Magnus J; Bäckvall, Jan-Erling

    2014-05-01

    Suzuki-Miyaura cross-coupling reactions of heteroaromatics catalyzed by palladium supported in the cavities of amino-functionalized siliceous mesocellular foam are presented. The nanopalladium catalyst effectively couples not only heteroaryl halides with boronic acids but also heteroaryl halides with boronate esters, potassium trifluoroborates, MIDA boronates, and triolborates, producing a wide range of heterobiaryls in good to excellent yields. Furthermore, the heterogeneous palladium nanocatalyst can easily be removed from the reaction mixture by filtration and recycled several times with minimal loss in activity. This catalyst provides an alternative, environmentally friendly, low-leaching process for the preparation of heterobiaryls. PMID:24673451

  10. Tandem reactions initiated by copper-catalyzed cross-coupling: a new strategy towards heterocycle synthesis.

    PubMed

    Liu, Yunyun; Wan, Jie-Ping

    2011-10-21

    Copper-catalyzed cross-coupling reactions which lead to the formation of C-N, C-O, C-S and C-C bonds have been recognized as one of the most useful strategies in synthetic organic chemistry. During past decades, important breakthroughs in the study of Cu-catalyzed coupling processes demonstrated that Cu-catalyzed reactions are broadly applicable to a variety of research fields related to organic synthesis. Representatively, employing these coupling transformations as key steps, a large number of tandem reactions have been developed for the construction of various heterocyclic compounds. These tactics share the advantages of high atom economics of tandem reactions as well as the broad tolerance of Cu-catalyst systems. Therefore, Cu-catalyzed C-X (X = N, O, S, C) coupling transformation-initiated tandem reactions were quickly recognized as a strategy with great potential for synthesizing heterocyclic compounds and gained worldwide attention. In this review, recent research progress in heterocycle syntheses using tandem reactions initiated by copper-catalyzed coupling transformations, including C-N, C-O, C-S as well as C-C coupling processes are summarized. PMID:21879127

  11. Iodine-catalyzed synthesis of dibenzo[b,h][1,6]naphthyridine-11-carboxamides via a domino reaction involving double elimination of hydrogen bromide.

    PubMed

    Feng, Bin-Bin; Lu, Lian; Li, Chao; Wang, Xiang-Shan

    2016-02-24

    An iodine-catalyzed reaction of 2-aminobenzamides and mucobromic acid was described and utilized to synthesize a variety of 6-oxo-5,6-dihydrodibenzo[b,h][1,6]naphthyridine-11-carboxamide derivatives in refluxing THF. As the two bromine atoms in mucobromic acid were found missing in the dibenzonaphthyridine products, a domino-type reaction mechanism involving a double elimination of hydrogen bromide was proposed. PMID:26859743

  12. Synthesis of pyridazinones through the copper(I)-catalyzed multicomponent reaction of aldehydes, hydrazines, and alkynylesters.

    PubMed

    Mantovani, Anderson C; Goulart, Tales A C; Back, Davi F; Zeni, Gilson

    2014-09-22

    The copper-catalyzed multicomponent cyclization reaction, which combined aldehydes, hydrazines, and alkynylesters, was applied in the synthesis of pyridazinones. The reaction was regioselective and gave only six-membered pyridazinones in the complete absence of five-membered pyrazoles or a regioisomeric mixture. During this investigation, the use of 2-halobenzaldehyde as the starting material, under identical reaction conditions, gave 6-(2-ethoxyphenyl)pyridazinones after sequential Michael addition/1,2-addition/Ullmann cross-coupling reactions. PMID:25124722

  13. Bulk Gold-Catalyzed Reactions of Isocyanides, Amines, and Amine N-Oxides

    SciTech Connect

    Klobukowski, Erik; Angelici, Robert; Woo, Keith L.

    2012-01-26

    Bulk gold powder (5–50 μm particles) catalyzes the reactions of isocyanides with amines and amine N-oxides to produce ureas. The reaction of n-butyl isocyanide (nBu–N≡C) with di-n-propylamine and N-methylmorpholine N-oxide in acetonitrile, which was studied in the greatest detail, produced 3-butyl-1,1-dipropylurea (O═C(NHnBu)(NnPr2)) in 99% yield at 60 °C within 2 h. Sterically and electronically different isocyanides, amines, and amine N-oxides react successfully under these conditions. Detailed studies support a two-step mechanism that involves a gold-catalyzed reaction of adsorbed isocyanide with the amine N-oxide to form an isocyanate (RN═C═O), which rapidly reacts with the amine to give the urea product. These investigations show that bulk gold, despite its reputation for poor catalytic activity, is capable of catalyzing these reactions.

  14. Unexpected Reaction Pathway for butyrylcholinesterase-catalyzed inactivation of “hunger hormone” ghrelin

    PubMed Central

    Yao, Jianzhuang; Yuan, Yaxia; Zheng, Fang; Zhan, Chang-Guo

    2016-01-01

    Extensive computational modeling and simulations have been carried out, in the present study, to uncover the fundamental reaction pathway for butyrylcholinesterase (BChE)-catalyzed hydrolysis of ghrelin, demonstrating that the acylation process of BChE-catalyzed hydrolysis of ghrelin follows an unprecedented single-step reaction pathway and the single-step acylation process is rate-determining. The free energy barrier (18.8 kcal/mol) calculated for the rate-determining step is reasonably close to the experimentally-derived free energy barrier (~19.4 kcal/mol), suggesting that the obtained mechanistic insights are reasonable. The single-step reaction pathway for the acylation is remarkably different from the well-known two-step acylation reaction pathway for numerous ester hydrolysis reactions catalyzed by a serine esterase. This is the first time demonstrating that a single-step reaction pathway is possible for an ester hydrolysis reaction catalyzed by a serine esterase and, therefore, one no longer can simply assume that the acylation process must follow the well-known two-step reaction pathway. PMID:26922910

  15. Palladium(0)-Catalyzed Intermolecular Allylic Dearomatization of Indoles by a Formal [4+2] Cycloaddition Reaction.

    PubMed

    Gao, Run-Duo; Xu, Qing-Long; Zhang, Bo; Gu, Yiting; Dai, Li-Xin; You, Shu-Li

    2016-08-01

    Bridged indoline derivatives were synthesized by an intermolecular Pd-catalyzed allylic dearomatization reaction of substituted indoles. The reaction between indoles and allyl carbonates bearing a nucleophilic alcohol side-chain proceeds in a cascade fashion, providing bridged indolines in excellent enantioselectivity. PMID:27321285

  16. [Selective N-heterylazimine inhibition of reactions catalyzed by rat liver glutathione transferase].

    PubMed

    Stulovskiĭ, A V; Voznyĭ, I V; Rozengart, E V; Suvorov, A A; Khovanskikh, A E

    1992-01-01

    Three reactions (nucleophile substitution, thiolysis and N-deoxygenation) catalyzed by rat liver glutathione transferase have been studied using several N-heterylazimine inhibitors. The inhibitors are sharply different in their effectiveness in the transferase reactions. Their efficiency depends on their structure. The mechanism which underlies the found regularities is suggested. PMID:1413125

  17. Synthesis of Cyclic Guanidines via Silver-Catalyzed Intramolecular Alkene Hydroamination Reactions of N-Allylguanidines.

    PubMed

    Garlets, Zachary J; Silvi, Mattia; Wolfe, John P

    2016-05-20

    The silver-catalyzed hydroamination of tosyl-protected N-allylguanidines is described. These reactions provide substituted cyclic guanidines in high yields. The reactions are amenable to the construction of quaternary stereocenters as well as both monocyclic and bicyclic guanidine products. PMID:27181609

  18. Highly enantioselective Henry reactions of aromatic aldehydes catalyzed by an amino alcohol-copper(II) complex.

    PubMed

    Qin, Dan-Dan; Lai, Wen-Han; Hu, Di; Chen, Zheng; Wu, An-An; Ruan, Yuan-Ping; Zhou, Zhao-Hui; Chen, Hong-Bin

    2012-08-20

    Amino alcohol-Cu(II) catalyst: Highly enantioselective Henry reactions between aromatic aldehydes and nitromethane have been developed. The reactions were catalyzed by an easily available and operationally simple amino alcohol-copper(II) catalyst. In total, 38 substrates were tested and the R-configured products were obtained in good yields with excellent enantioselectivities. PMID:22791567

  19. Copper-catalyzed arylation of biguanide derivatives via C-N cross-coupling reactions.

    PubMed

    Zhang, Chen; Huang, Bo; Bao, Ai-Qing; Li, Xiao; Guo, Shunna; Zhang, Jin-Quan; Xu, Jun-Zhi; Zhang, Rihao; Cui, Dong-Mei

    2015-12-21

    An efficient copper-catalyzed cross-coupling reaction of biguanide hydrochloride derivatives with both aryl iodides and bromides under mild conditions has been developed. The reaction occurred in good yields and tolerated aryl halides containing functionalities such as nitriles, sulfonamides, ethers, and halogens. Alkyl and cyclic substituted biguanidines were also well tolerated. PMID:26444146

  20. Enzyme-Catalyzed Henry Reaction in Choline Chloride-Based Deep Eutectic Solvents.

    PubMed

    Tian, Xuemei; Zhang, Suoqin; Zheng, Liangyu

    2016-01-01

    The enzyme-catalyzed Henry reaction was realized using deep eutectic solvents (DESs) as a reaction medium. The lipase from Aspergillus niger (lipase AS) showed excellent catalytic activity toward the substrates aromatic aldehydes and nitromethane in choline chloride:glycerol at a molar ratio of 1:2. Addition of 30 vol% water to DES further improved the lipase activity and inhibited DES-catalyzed transformation. A final yield of 92.2% for the lipase AS-catalyzed Henry reaction was achieved under optimized reaction conditions in only 4 h. In addition, the lipase AS activity was improved by approximately 3-fold in a DES-water mixture compared with that in pure water, which produced a final yield of only 33.4%. Structural studies with fluorescence spectroscopy showed that the established strong hydrogen bonds between DES and water may be the main driving force that affects the spatial conformation of the enzyme, leading to a change in lipase activity. The methodology was also extended to the aza-Henry reaction, which easily occurred in contrast to that in pure water. The enantioselectivity of both Henry and aza-Henry reactions was not found. However, the results are still remarkable, as we report the first use of DES as a reaction medium in a lipase-catalyzed Henry reaction. PMID:26437947

  1. Acid-Catalyzed Preparation of Biodiesel from Waste Vegetable Oil: An Experiment for the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Bladt, Don; Murray, Steve; Gitch, Brittany; Trout, Haylee; Liberko, Charles

    2011-01-01

    This undergraduate organic laboratory exercise involves the sulfuric acid-catalyzed conversion of waste vegetable oil into biodiesel. The acid-catalyzed method, although inherently slower than the base-catalyzed methods, does not suffer from the loss of product or the creation of emulsion producing soap that plagues the base-catalyzed methods when…

  2. Reaction pathways and free energy profiles for cholinesterase-catalyzed hydrolysis of 6-monoacetylmorphine.

    PubMed

    Qiao, Yan; Han, Keli; Zhan, Chang-Guo

    2014-04-14

    As the most active metabolite of heroin, 6-monoacetylmorphine (6-MAM) can penetrate into the brain for the rapid onset of heroin effects. The primary enzymes responsible for the metabolism of 6-MAM to the less potent morphine in humans are acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The detailed reaction pathways for AChE- and BChE-catalyzed hydrolysis of 6-MAM to morphine have been explored, for the first time, in the present study by performing first-principles quantum mechanical/molecular mechanical free energy calculations. It has been demonstrated that the two enzymatic reaction processes follow similar catalytic reaction mechanisms, and the whole catalytic reaction pathway for each enzyme consists of four reaction steps. According to the calculated results, the second reaction step associated with the transition state TS2(a)/TS2(b) should be rate-determining for the AChE/BChE-catalyzed hydrolysis, and the free energy barrier calculated for the AChE-catalyzed hydrolysis (18.3 kcal mol(-1)) is 2.5 kcal mol(-1) lower than that for the BChE-catalyzed hydrolysis (20.8 kcal mol(-1)). The free energy barriers calculated for the AChE- and BChE-catalyzed reactions are in good agreement with the experimentally derived activation free energies (17.5 and 20.7 kcal mol(-1) for the AChE- and BChE-catalyzed reactions, respectively). Further structural analysis reveals that the aromatic residues Phe295 and Phe297 in the acyl pocket of AChE (corresponding to Leu286 and Val288 in BChE) contribute to the lower energy of TS2(a) relative to TS2(b). The obtained structural and mechanistic insights could be valuable for use in future rational design of a novel therapeutic treatment of heroin abuse. PMID:24595354

  3. Advances in nickel-catalyzed cycloaddition reactions to construct carbocycles and heterocycles.

    PubMed

    Thakur, Ashish; Louie, Janis

    2015-08-18

    Transition-metal catalysis has revolutionized the field of organic synthesis by facilitating the construction of complex organic molecules in a highly efficient manner. Although these catalysts are typically based on precious metals, researchers have made great strides in discovering new base metal catalysts over the past decade. This Account describes our efforts in this area and details the development of versatile Ni complexes that catalyze a variety of cycloaddition reactions to afford interesting carbocycles and heterocycles. First, we describe our early work in investigating the efficacy of N-heterocyclic carbene (NHC) ligands in Ni-catalyzed cycloaddition reactions with carbon dioxide and isocyanate. The use of sterically hindered, electron donating NHC ligands in these reactions significantly improved the substrate scope as well as reaction conditions in the syntheses of a variety of pyrones and pyridones. The high reactivity and versatility of these unique Ni(NHC) catalytic systems allowed us to develop unprecedented Ni-catalyzed cycloadditions that were unexplored due to the inefficacy of early Ni catalysts to promote hetero-oxidative coupling steps. We describe the development and mechanistic analysis of Ni/NHC catalysts that couple diynes and nitriles to form pyridines. Kinetic studies and stoichiometric reactions confirmed a hetero-oxidative coupling pathway associated with this Ni-catalyzed cycloaddition. We then describe a series of new substrates for Ni-catalyzed cycloaddition reactions such as vinylcyclopropanes, aldehydes, ketones, tropones, 3-azetidinones, and 3-oxetanones. In reactions with vinycyclopropanes and tropones, DFT calculations reveal noteworthy mechanistic steps such as a C-C σ-bond activation and an 8π-insertion of vinylcyclopropane and tropone, respectively. Similarly, the cycloaddition of 3-azetidinones and 3-oxetanones also requires Ni-catalyzed C-C σ-bond activation to form N- and O-containing heterocycles. PMID:26200651

  4. Transition-metal-catalyzed carbonylation reactions of olefins and alkynes: a personal account.

    PubMed

    Wu, Xiao-Feng; Fang, Xianjie; Wu, Lipeng; Jackstell, Ralf; Neumann, Helfried; Beller, Matthias

    2014-04-15

    Carbon monoxide was discovered and identified in the 18th century. Since the first applications in industry 80 years ago, academic and industrial laboratories have broadly explored CO's use in chemical reactions. Today organic chemists routinely employ CO in organic chemistry to synthesize all kinds of carbonyl compounds. Despite all these achievements and a century of carbonylation catalysis, many important research questions and challenges remain. Notably, apart from academic developments, industry applies carbonylation reactions with CO on bulk scale. In fact, today the largest applications of homogeneous catalysis (regarding scale) are carbonylation reactions, especially hydroformylations. In addition, the vast majority of acetic acid is produced via carbonylation of methanol (Monsanto or Cativa process). The carbonylation of olefins/alkynes with nucleophiles, such as alcohols and amines, represent another important type of such reactions. In this Account, we discuss our work on various carbonylations of unsaturated compounds and related reactions. Rhodium-catalyzed isomerization and hydroformylation reactions of internal olefins provide straightforward access to higher value aldehydes. Catalytic hydroaminomethylations offer an ideal way to synthesize substituted amines and even heterocycles directly. More recently, our group has also developed so-called alternative metal catalysts based on iridium, ruthenium, and iron. What about the future of carbonylation reactions? CO is already one of the most versatile C1 building blocks for organic synthesis and is widely used in industry. However, because of CO's high toxicity and gaseous nature, organic chemists are often reluctant to apply carbonylations more frequently. In addition, new regulations have recently made the transportation of carbon monoxide more difficult. Hence, researchers will need to develop and more frequently use practical and benign CO-generating reagents. Apart from formates, alcohols, and metal

  5. Surface functionalization of dinuclear clathrochelates via Pd-catalyzed cross-coupling reactions: facile synthesis of polypyridyl metalloligands.

    PubMed

    Marmier, Mathieu; Cecot, Giacomo; Curchod, Basile F E; Pattison, Philip; Solari, Euro; Scopelliti, Rosario; Severin, Kay

    2016-05-28

    Dinuclear clathrochelate complexes are easily accessible by reaction of zinc(ii) triflate or cobalt(ii) nitrate with arylboronic acids and phenoldioximes. The utilization of brominated arylboronic acids and/or brominated phenoldioximes allows preparing clathrochelates with two, three, five or seven bromine atoms on the outside. These clathrochelates can undergo Pd-catalyzed cross-coupling reactions with 3- and 4-pyridylboronic acid to give new metalloligands featuring up to seven pyridyl groups. The pyridyl-capped clathrochelates display characteristics which make them interesting building blocks for structural supramolecular chemistry: they are rigid, large (up to 2.7 nm), luminescent (for M = Zn), and anionic. The pentatopic pyridyl ligands display an unusual trigonal bipyramidal geometry. PMID:27109258

  6. Continuous In Vitro Evolution of a Ribozyme that Catalyzes Three Successive Nucleotidyl Addition Reactions

    NASA Technical Reports Server (NTRS)

    McGinness, Kathleen E.; Wright, Martin C.; Joyce, Gerald F.

    2002-01-01

    Variants of the class I ligase ribozyme, which catalyzes joining of the 3' end of a template bound oligonucleotide to its own 5' end, have been made to evolve in a continuous manner by a simple serial transfer procedure that can be carried out indefinitely. This process was expanded to allow the evolution of ribozymes that catalyze three successive nucleotidyl addition reactions, two template-directed mononucleotide additions followed by RNA ligation. During the development of this behavior, a population of ribozymes was maintained against an overall dilution of more than 10(exp 406). The resulting ribozymes were capable of catalyzing the three-step reaction pathway, with nucleotide addition occurring in either a 5' yieldig 3' or a 3' yielding 5' direction. This purely chemical system provides a functional model of a multi-step reaction pathway that is undergoing Darwinian evolution.

  7. Electrochemical impedance spectroscopy sensor for ascorbic acid based on copper(I) catalyzed click chemistry.

    PubMed

    Qiu, Suyan; Gao, Sen; Liu, Qida; Lin, Zhenyu; Qiu, Bin; Chen, Guonan

    2011-07-15

    Copper(I) species can be acquired from the reduction of copper(II) by ascorbic acid (AA) in situ, and which in turn quantitative catalyze the azides and alkynes cycloaddition reaction. In this study, propargyl-functionalized ferrocene (propargyl-functionalized Fc) has been modified on the electrode through reacting with azide terminal modified Au electrode via copper(I) catalyzed azides and alkynes cycloaddition (CuAAC) reaction. The electrochemical impedance spectroscopy (EIS) measurement has been applied to test the electron transfer resistance of the Au electrode before and after click reaction. The changes of the fractional surface coverage (θ) with different AA concentrations are characterized. It is found that the θ value has a linear response to the logarithm of AA concentration in the range of 5.0 pmol/L to 1.0 nmol/L with the detection limits of 2.6 pmol/L. The sensor shows a good stability and selectivity. And it has been successfully applied to the AA detection in the real samples (urine) with satisfactory results. PMID:21596552

  8. Potential of phosphoric acid-catalyzed pretreatment and subsequent enzymatic hydrolysis for biosugar production from Gracilaria verrucosa.

    PubMed

    Kwon, Oh-Min; Kim, Sung-Koo; Jeong, Gwi-Taek

    2016-07-01

    This study combined phosphoric acid-catalyzed pretreatment and enzymatic hydrolysis to produce biosugars from Gracilaria verrucosa as a potential renewable resource for bioenergy applications. We optimized phosphoric acid-catalyzed pretreatment conditions to 1:10 solid-to-liquid ratio, 1.5 % phosphoric acid, 140 °C, and 60 min reaction time, producing a 32.52 ± 0.06 % total reducing sugar (TRS) yield. By subsequent enzymatic hydrolysis, a 68.61 ± 0.90 % TRS yield was achieved. These results demonstrate the potential of phosphoric acid to produce biosugars for biofuel and biochemical production applications. PMID:27003825

  9. Metal ion-catalyzed cycloaddition vs hydride transfer reactions of NADH analogues with p-benzoquinones.

    PubMed

    Fukuzumi, S; Fujii, Y; Suenobu, T

    2001-10-24

    1-Benzyl-4-tert-butyl-1,4-dihydronicotinamide (t-BuBNAH) reacts efficiently with p-benzoquinone (Q) to yield a [2+3] cycloadduct (1) in the presence of Sc(OTf)(3) (OTf = OSO(2)CF(3)) in deaerated acetonitrile (MeCN) at room temperature, while no reaction occurs in the absence of Sc(3+). The crystal structure of 1 has been determined by the X-ray crystal analysis. When t-BuBNAH is replaced by 1-benzyl-1,4-dihydronicotinamide (BNAH), the Sc(3+)-catalyzed cycloaddition reaction of BNAH with Q also occurs to yield the [2+3] cycloadduct. Sc(3+) forms 1:4 complexes with t-BuBNAH and BNAH in MeCN, whereas there is no interaction between Sc(3+) and Q. The observed second-order rate constant (k(obs)) shows a first-order dependence on [Sc(3+)] at low concentrations and a second-order dependence at higher concentrations. The first-order and the second-order dependence of the rate constant (k(et)) on [Sc(3+)] was also observed for the Sc(3+)-promoted electron transfer from CoTPP (TPP = tetraphenylporphyrin dianion) to Q. Such dependence of k(et) on [Sc(3+)] is ascribed to formation of 1:1 and 1:2 complexes between Q(*)(-) and Sc(3+) at the low and high concentrations of Sc(3+), respectively, which results in acceleration of the rate of electron transfer. The formation constants for the 1:2 complex (K(2)) between the radical anions of a series of p-benzoquinone derivatives (X-Q(*)(-)) and Sc(3+) are determined from the dependence of k(et) on [Sc(3+)]. The K(2) values agree well with those determined from the dependence of k(obs) on [Sc(3+)] for the Sc(3+)-catalyzed addition reaction of t-BuBNAH and BNAH with X-Q. Such an agreement together with the absence of the deuterium kinetic isotope effects indicates that the addition proceeds via the Sc(3+)-promoted electron transfer from t-BuBNAH and BNAH to Q. When Sc(OTf)(3) is replaced by weaker Lewis acids such as Lu(OTf)(3), Y(OTf)(3), and Mg(ClO(4))(2), the hydride transfer reaction from BNAH to Q also occurs besides the

  10. Total Synthesis of cis-Clavicipitic Acid from Asparagine via Ir-Catalyzed C-H bond Activation as a Key Step.

    PubMed

    Tahara, Yu-ki; Ito, Mamoru; Kanyiva, Kyalo Stephen; Shibata, Takanori

    2015-08-01

    4-Substituted tryptophan derivatives and the total synthesis of cis-clavicipitic acid were achieved in reactions in which Ir-catalyzed C-H bond activation was a key step. The starting material for these reactions is asparagine, which is a cheap natural amino acid. The reductive amination step from the 4-substituted tryptophan derivative gave cis-clavicipitic acid with perfect diastereoselectivity. PMID:26178075

  11. Pitfalls in protein quantitation using acid-catalyzed O18 labeling: hydrolysis-driven deamidation

    PubMed Central

    Wang, Shunhai; Bobst, Cedric E.; Kaltashov, Igor A.

    2011-01-01

    Proteolysis combined with O18 labeling emerged recently as a powerful tool for quantitation of proteins for which suitable internal standards cannot be produced using molecular biology methods. Several recent reports suggested that acid-catalyzed O18 labeling may be superior to the commonly accepted enzymatic protocol, as it may allow more significant spacing between the isotopic clusters of labeled and unlabeled peptides, thereby eliminating signal interference and enhancing the quality of quantitation. However, careful examination of this procedure reveals that the results of protein quantitation assisted by acid-catalyzed O18 labeling are highly peptide-dependent. The inconsistency was found to be caused by deamidation of Asn, Gln and carbamidomethylated Cys residues during prolonged exposure of the proteolytic fragments to the acidic environment of the labeling reaction, which translates into a loss in signal for theses peptides. Taking deamidation into account leads to a significant improvement in the consistency of quantitation across a range of different proteolytic fragments. PMID:21819098

  12. Structural characterization of tartrate dehydrogenase: a versatile enzyme catalyzing multiple reactions

    PubMed Central

    Malik, Radhika; Viola, Ronald E.

    2010-01-01

    The first structure of an NAD-dependent tartrate dehydrogenase (TDH) has been solved to 2 Å resolution by single anomalous diffraction (SAD) phasing as a complex with the intermediate analog oxalate, Mg2+ and NADH. This TDH structure from Pseudomonas putida has a similar overall fold and domain organization to other structurally characterized members of the hydroxy-acid dehydrogenase family. How­ever, there are considerable differences between TDH and these functionally related enzymes in the regions connecting the core secondary structure and in the relative positioning of important loops and helices. The active site in these complexes is highly ordered, allowing the identification of the substrate-binding and cofactor-binding groups and the ligands to the metal ions. Residues from the adjacent subunit are involved in both the substrate and divalent metal ion binding sites, establishing a dimer as the functional unit and providing structural support for an alternating-site reaction mechanism. The divalent metal ion plays a prominent role in substrate binding and orientation, together with several active-site arginines. Functional groups from both subunits form the cofactor-binding site and the ammonium ion aids in the orientation of the nicotinamide ring of the cofactor. A lysyl amino group (Lys192) is the base responsible for the water-mediated proton abstraction from the C2 hydroxyl group of the substrate that begins the catalytic reaction, followed by hydride transfer to NAD. A tyrosyl hydroxyl group (Tyr141) functions as a general acid to protonate the enolate inter­mediate. Each substrate undergoes the initial hydride transfer, but differences in substrate orientation are proposed to account for the different reactions catalyzed by TDH. PMID:20516620

  13. Structural characterization of tartrate dehydrogenase: a versatile enzyme catalyzing multiple reactions

    SciTech Connect

    Malik, Radhika; Viola, Ronald E.

    2010-10-28

    The first structure of an NAD-dependent tartrate dehydrogenase (TDH) has been solved to 2 {angstrom} resolution by single anomalous diffraction (SAD) phasing as a complex with the intermediate analog oxalate, Mg{sup 2+} and NADH. This TDH structure from Pseudomonas putida has a similar overall fold and domain organization to other structurally characterized members of the hydroxy-acid dehydrogenase family. However, there are considerable differences between TDH and these functionally related enzymes in the regions connecting the core secondary structure and in the relative positioning of important loops and helices. The active site in these complexes is highly ordered, allowing the identification of the substrate-binding and cofactor-binding groups and the ligands to the metal ions. Residues from the adjacent subunit are involved in both the substrate and divalent metal ion binding sites, establishing a dimer as the functional unit and providing structural support for an alternating-site reaction mechanism. The divalent metal ion plays a prominent role in substrate binding and orientation, together with several active-site arginines. Functional groups from both subunits form the cofactor-binding site and the ammonium ion aids in the orientation of the nicotinamide ring of the cofactor. A lysyl amino group (Lys192) is the base responsible for the water-mediated proton abstraction from the C2 hydroxyl group of the substrate that begins the catalytic reaction, followed by hydride transfer to NAD. A tyrosyl hydroxyl group (Tyr141) functions as a general acid to protonate the enolate intermediate. Each substrate undergoes the initial hydride transfer, but differences in substrate orientation are proposed to account for the different reactions catalyzed by TDH.

  14. C8-Selective Acylation of Quinoline N-Oxides with α-Oxocarboxylic Acids via Palladium-Catalyzed Regioselective C-H Bond Activation.

    PubMed

    Chen, Xiaopei; Cui, Xiuling; Wu, Yangjie

    2016-08-01

    A facile and efficient protocol for palladium-catalyzed C8-selective acylation of quinoline N-oxides with α-oxocarboxylic acids has been developed. In this approach, N-oxide was utilized as a stepping stone for the remote C-H functionalization. The reactions proceeded efficiently under mild reaction conditions with excellent regioselectivity and broad functional group tolerance. PMID:27441527

  15. Purification and characterization of cannabidiolic-acid synthase from Cannabis sativa L.. Biochemical analysis of a novel enzyme that catalyzes the oxidocyclization of cannabigerolic acid to cannabidiolic acid.

    PubMed

    Taura, F; Morimoto, S; Shoyama, Y

    1996-07-19

    We identified a unique enzyme that catalyzes the oxidocyclization of cannabigerolic acid to cannabidiolic acid (CBDA) in Cannabis sativa L. (CBDA strain). The enzyme, named CBDA synthase, was purified to apparent homogeneity by a four-step procedure: ammonium sulfate precipitation followed by chromatography on DEAE-cellulose, phenyl-Sepharose CL-4B, and hydroxylapatite. The active enzyme consists of a single polypeptide with a molecular mass of 74 kDa and a pI of 6.1. The NH2-terminal amino acid sequence of CBDA synthase is similar to that of Delta1-tetrahydrocannabinolic-acid synthase. CBDA synthase does not require coenzymes, molecular oxygen, hydrogen peroxide, and metal ion cofactors for the oxidocyclization reaction. These results indicate that CBDA synthase is neither an oxygenase nor a peroxidase and that the enzymatic cyclization does not proceed via oxygenated intermediates. CBDA synthase catalyzes the formation of CBDA from cannabinerolic acid as well as cannabigerolic acid, although the kcat for the former (0.03 s-1) is lower than that for the latter (0.19 s-1). Therefore, we conclude that CBDA is predominantly biosynthesized from cannabigerolic acid rather than cannabinerolic acid. PMID:8663284

  16. An Iodine-Catalyzed Hofmann-Löffler Reaction.

    PubMed

    Martínez, Claudio; Muñiz, Kilian

    2015-07-01

    Iodine reagents have been identified as economically and ecologically benign alternatives to transition metals, although their application as molecular catalysts in challenging C-H oxidation reactions has remained elusive. An attractive iodine oxidation catalysis is now shown to promote the convenient conversion of carbon-hydrogen bonds into carbon-nitrogen bonds with unprecedented complete selectivity. The reaction proceeds by two interlocked catalytic cycles comprising a radical chain reaction, which is initiated by visible light as energy source. This unorthodox synthetic strategy for the direct oxidative amination of alkyl groups has no biosynthetic precedence and provides an efficient and straightforward access to a general class of saturated nitrogenated heterocycles. PMID:26016458

  17. Synthesis of Programmable Reaction-Diffusion Fronts Using DNA Catalyzers

    NASA Astrophysics Data System (ADS)

    Zadorin, Anton S.; Rondelez, Yannick; Galas, Jean-Christophe; Estevez-Torres, André

    2015-02-01

    We introduce a DNA-based reaction-diffusion (RD) system in which reaction and diffusion terms can be precisely and independently controlled. The effective diffusion coefficient of an individual reaction component, as we demonstrate on a traveling wave, can be reduced up to 2.7-fold using a self-assembled hydrodynamic drag. The intrinsic programmability of this RD system allows us to engineer, for the first time, orthogonal autocatalysts that counterpropagate with minimal interaction. Our results are in excellent quantitative agreement with predictions of the Fisher-Kolmogorov-Petrovskii-Piscunov model. These advances open the way for the rational engineering of pattern formation in pure chemical RD systems.

  18. Thermodynamics of Enzyme-Catalyzed Reactions: Part 7-2007 Update

    NASA Astrophysics Data System (ADS)

    Goldberg, Robert N.; Tewari, Yadu B.; Bhat, Talapady N.

    2007-12-01

    This review serves to update previously published evaluations of equilibrium constants and enthalpy changes for enzyme-catalyzed reactions. For each reaction, the following information is given: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the conditions of measurement [temperature, pH, ionic strength, and the buffer(s) and cofactor(s) used], the data and their evaluation, and, sometimes, commentary on the data and on any corrections which have been applied to the data or any calculations for which the data have been used. The review contains data from 119 references which have been examined and evaluated. Chemical Abstract Service registry numbers are given for the substances involved in these various reactions. There is also a cross reference between the substances and the Enzyme Commission numbers of the enzymes used to catalyze the reactions in which the substances participate.

  19. Fundamental Reaction Pathway and Free Energy Profile for Butyrylcholinesterase-Catalyzed Hydrolysis of Heroin

    PubMed Central

    Qiao, Yan; Han, Keli; Zhan, Chang-Guo

    2013-01-01

    The pharmacological function of heroin requires an activation process which transforms heroin into 6-monoacetylmorphine (6-MAM) which is the most active form. The primary enzyme responsible for this activation process in human plasma is butyrylcholinesterase (BChE). The detailed reaction pathway of the activation process via BChE-catalyzed hydrolysis has been explored computationally, for the first time, in the present study by performing molecular dynamics simulation and first-principles quantum mechanical/molecular mechanical free energy calculations. It has been demonstrated that the whole reaction process includes acylation and deacylation stages. The acylation consists of two reaction steps, i.e. the nucleophilic attack on the carbonyl carbon of 3-acetyl group of heroin by the hydroxyl oxygen of Ser198 side chain and the dissociation of 6-MAM. The deacylation also consists of two reaction steps, i.e. the nucleophilic attack on the carbonyl carbon of the acyl-enzyme intermediate by a water molecule and the dissociation of the acetic acid from Ser198. The calculated free energy profile reveals that the second transition state (TS2) should be rate-determining. The structural analysis reveals that the oxyanion hole of BChE plays an important role in the stabilization of the rate-determining transition state TS2. The free energy barrier (15.9±0.2 or 16.1±0.2 kcal/mol) calculated for the rate-determining step is in good agreement with the experimentally-derived activation free energy (~16.2 kcal/mol), suggesting that the mechanistic insights obtained from the present computational study are reliable. The obtained structural and mechanistic insights could be valuable for use in future rational design of a novel therapeutic treatment of heroin abuse. PMID:23992153

  20. Dienamine-Catalyzed Nitrone Formation via Redox Reaction.

    PubMed

    Fraboni, Americo J; Brenner-Moyer, Stacey E

    2016-05-01

    The first catalytic method to directly introduce nitrone functionality onto aldehyde substrates is described. This reaction proceeds by an unprecedented organocatalytic redox mechanism in which an enal is oxidized to the γ-nitrone via dienamine catalysis, thereby reducing an equivalent of nitrosobenzene. This reaction is a unique example of divergent reactivity of an enal, which represents a novel strategy for rapidly accessing small libraries of N,O-heterocycles. Alternatively, divergent reactivity can be suppressed simply by changing solvents. PMID:27070296

  1. Synthesis of polycyclic indole skeletons by a gold(I)-catalyzed cascade reaction.

    PubMed

    Wang, Tao; Shi, Shuai; Pflästerer, Daniel; Rettenmeier, Eva; Rudolph, Matthias; Rominger, Frank; Hashmi, A Stephen K

    2014-01-01

    The conversion of simple, easily available urea-substituted 3-phenylpropargyl alcohols catalyzed by a simple IPr-gold(I) catalyst in a gold(I)-catalyzed cascade reaction composing of a gold-catalyzed nucleophilic addition and a subsequent gold-catalyzed substitution reaction delivers 1H-imidazo[1,5-a]indol-3(2H)-ones. Other gold(I) catalysts or silver catalysts gave lower yields and often gave other side products. Gold(III) and copper(II) catalysts decomposed the starting material. Twelve examples, including donor and acceptor substituents on the distal nitrogen of the urea substructure, are provided. An X-ray crystal structure analysis confirmed the structural assignment. The mechanistic investigation including isolation and further conversion of intermediates and reactions with enantiopure starting materials indicated that after the nucleophilic-addition step, the substrate undergoes an S(N)1-type benzylic substitution reaction at the indolyl alcohol intermediate or an intramolecular hydroamination reaction of the 2-vinylindole intermediate. PMID:24375591

  2. Keto-Enol Tautomerizations Catalyzed by Water and Carboxylic Acids

    NASA Astrophysics Data System (ADS)

    da Silva, G.

    2009-12-01

    The ability of weakly-bound complexes to influence the kinetics of gas phase reactions, particularly in atmospheric chemistry, has long been speculated. This study uses quantum chemistry and statistical reaction rate theory to identify that bound water molecules can significantly reduce barriers to intramolecular hydrogen shift reactions, via a double-hydrogen-shift mechanism. The bound water molecule directly participates in the hydrogen shift reaction, exchanging a H atom with its counterpart. For the vinyl alcohol to acetaldehyde keto-enol tautomerization this mechanism cuts the reaction barrier approximately in half, reducing it by over 30 kcal mol-1. In contrast, while a non-participatory ‘bystander’ water molecule also reduces the hydrogen shift barrier, it is only by around 3 kcal/mol. When a carboxylic acid replaces water in the double-hydrogen-shift mechanism the barrier to keto-enol tautomerization is decimated, reduced to less than 6 kcal/mol (around 15 kcal/mol in the reverse direction). This results from reduced strain in the hydrogen shift transition state, and achieves enol lifetimes in the troposphere that become short on relevant timescales. Rapid enol to ketone isomerizations are currently required to explain the oxidation products of isoprene. The wider significance of rapid hydrogen shift reactions in atmospherically relevant molecules and radicals is also explored.

  3. Iron- and indium-catalyzed reactions toward nitrogen- and oxygen-containing saturated heterocycles.

    PubMed

    Cornil, Johan; Gonnard, Laurine; Bensoussan, Charlélie; Serra-Muns, Anna; Gnamm, Christian; Commandeur, Claude; Commandeur, Malgorzata; Reymond, Sébastien; Guérinot, Amandine; Cossy, Janine

    2015-03-17

    A myriad of natural and/or biologically active products include nitrogen- and oxygen-containing saturated heterocycles, which are thus considered as attractive scaffolds in the drug discovery process. As a consequence, a wide range of reactions has been developed for the construction of these frameworks, much effort being specially devoted to the formation of substituted tetrahydropyrans and piperidines. Among the existing methods to form these heterocycles, the metal-catalyzed heterocyclization of amino- or hydroxy-allylic alcohol derivatives has emerged as a powerful and stereoselective strategy that is particularly interesting in terms of both atom-economy and ecocompatibility. For a long time, palladium catalysts have widely dominated this area either in Tsuji-Trost reactions [Pd(0)] or in an electrophilic activation process [Pd(II)]. More recently, gold-catalyzed formation of saturated N- and O-heterocycles has received growing attention because it generally exhibits high efficiency and diastereoselectivity. Despite their demonstrated utility, Pd- and Au-complexes suffer from high costs, toxicity, and limited natural abundance, which can be barriers to their widespread use in industrial processes. Thus, the replacement of precious metals with less expensive and more environmentally benign catalysts has become a challenging issue for organic chemists. In 2010, our group took advantage of the ability of the low-toxicity and inexpensive FeCl3 in activating allylic or benzylic alcohols to develop iron-catalyzed N- and O-heterocylizations. We first focused on N-heterocycles, and a variety of 2,6-disubstituted piperidines as well as pyrrolidines were synthesized in a highly diastereoselective fashion in favor of the cis-compounds. The reaction was further extended to the construction of substituted tetrahydropyrans. Besides triggering the formation of heterocycles, the iron salts were shown to induce a thermodynamic epimerization, which is the key to reach the high

  4. Reaction progress kinetic analysis of a copper-catalyzed aerobic oxidative coupling reaction with N-phenyl tetrahydroisoquinoline.

    PubMed

    Scott, Martin; Sud, Abhishek; Boess, Esther; Klussmann, Martin

    2014-12-19

    The results from a kinetic investigation of a Cu-catalyzed oxidative coupling reaction between N-phenyl tetrahydroisoquinoline and a silyl enol ether using elemental oxygen as oxidant are presented. By using reaction progress kinetic analysis as an evaluation method for the obtained data, we discovered information regarding the reaction order of the substrates and catalysts. Based on this information and some additional experiments, a refined model for the initial oxidative activation of the amine substrate and the activation of the nucleophile by the catalyst was developed. The mechanistic information also helped to understand why silyl nucleophiles have previously failed in a related Cu-catalyzed reaction using tert-butyl hydroperoxide as oxidant and how to overcome this limitation. PMID:25203932

  5. Reaction Dynamics of ATP Hydrolysis Catalyzed by P-Glycoprotein

    PubMed Central

    2015-01-01

    P-glycoprotein (P-gp) is a member of the ABC transporter family that confers drug resistance to many tumors by catalyzing their efflux, and it is a major component of drug–drug interactions. P-gp couples drug efflux with ATP hydrolysis by coordinating conformational changes in the drug binding sites with the hydrolysis of ATP and release of ADP. To understand the relative rates of the chemical step for hydrolysis and the conformational changes that follow it, we exploited isotope exchange methods to determine the extent to which the ATP hydrolysis step is reversible. With γ18O4-labeled ATP, no positional isotope exchange is detectable at the bridging β-phosphorus–O−γ-phosphorus bond. Furthermore, the phosphate derived from hydrolysis includes a constant ratio of three 18O/two 18O/one 18O that reflects the isotopic composition of the starting ATP in multiple experiments. Thus, H2O-exchange with HPO42– (Pi) was negligible, suggesting that a [P-gp·ADP·Pi] is not long-lived. This further demonstrates that the hydrolysis is essentially irreversible in the active site. These mechanistic details of ATP hydrolysis are consistent with a very fast conformational change immediately following, or concomitant with, hydrolysis of the γ-phosphate linkage that ensures a high commitment to catalysis in both drug-free and drug-bound states. PMID:24506763

  6. Probing the "additive effect" in the proline and proline hydroxamic acid catalyzed asymmetric addition of nitroalkanes to cyclic enones.

    PubMed

    Hanessian, Stephen; Govindan, Subramaniyan; Warrier, Jayakumar S

    2005-11-01

    The effect of chirality and steric bulk of 2,5-disubstituted piperazines as additives in the conjugate addition of 2-nitropropane to cyclohexenone, catalyzed by l-proline, was investigated. Neither chirality nor steric bulk affects the enantioselectivity of addition, which gives 86-93% ee in the presence of achiral and chiral nonracemic 2,5-disubstituted piperazines. Proline hydroxamic acid is shown for the first time to be an effective organocatalyst in the same Michael reaction. PMID:16189834

  7. Graphene cover-promoted metal-catalyzed reactions

    PubMed Central

    Yao, Yunxi; Fu, Qiang; Zhang, Y. Y.; Weng, Xuefei; Li, Huan; Chen, Mingshu; Jin, Li; Dong, Aiyi; Mu, Rentao; Jiang, Peng; Liu, Li; Bluhm, Hendrik; Liu, Zhi; Zhang, S. B.; Bao, Xinhe

    2014-01-01

    Graphitic overlayers on metals have commonly been considered as inhibitors for surface reactions due to their chemical inertness and physical blockage of surface active sites. In this work, however, we find that surface reactions, for instance, CO adsorption/desorption and CO oxidation, can take place on Pt(111) surface covered by monolayer graphene sheets. Surface science measurements combined with density functional calculations show that the graphene overlayer weakens the strong interaction between CO and Pt and, consequently, facilitates the CO oxidation with lower apparent activation energy. These results suggest that interfaces between graphitic overlayers and metal surfaces act as 2D confined nanoreactors, in which catalytic reactions are promoted. The finding contrasts with the conventional knowledge that graphitic carbon poisons a catalyst surface but opens up an avenue to enhance catalytic performance through coating of metal catalysts with controlled graphitic covers. PMID:25404332

  8. Graphene cover-promoted metal-catalyzed reactions.

    PubMed

    Yao, Yunxi; Fu, Qiang; Zhang, Y Y; Weng, Xuefei; Li, Huan; Chen, Mingshu; Jin, Li; Dong, Aiyi; Mu, Rentao; Jiang, Peng; Liu, Li; Bluhm, Hendrik; Liu, Zhi; Zhang, S B; Bao, Xinhe

    2014-12-01

    Graphitic overlayers on metals have commonly been considered as inhibitors for surface reactions due to their chemical inertness and physical blockage of surface active sites. In this work, however, we find that surface reactions, for instance, CO adsorption/desorption and CO oxidation, can take place on Pt(111) surface covered by monolayer graphene sheets. Surface science measurements combined with density functional calculations show that the graphene overlayer weakens the strong interaction between CO and Pt and, consequently, facilitates the CO oxidation with lower apparent activation energy. These results suggest that interfaces between graphitic overlayers and metal surfaces act as 2D confined nanoreactors, in which catalytic reactions are promoted. The finding contrasts with the conventional knowledge that graphitic carbon poisons a catalyst surface but opens up an avenue to enhance catalytic performance through coating of metal catalysts with controlled graphitic covers. PMID:25404332

  9. Mechanistic study of copper-catalyzed aerobic oxidative coupling of arylboronic esters and methanol: insights into an organometallic oxidase reaction.

    PubMed

    King, Amanda E; Brunold, Thomas C; Stahl, Shannon S

    2009-04-15

    Copper-catalyzed aerobic oxidative coupling of arylboronic acid derivatives and heteroatom nucleophiles is a highly useful method for the formation of aryl-heteroatom bonds. Mechanistic studies reveal that this reaction proceeds via an "oxidase"-style mechanism. Kinetic and spectroscopic studies establish that transmetalation of the aryl group from boron to Cu(II) is the turnover-limiting step and reoxidation of the reduced catalyst by O(2) is rapid. Further mechanistic analysis implicates the involvement of an aryl-copper(III) intermediate that undergoes facile C-O bond formation. PMID:19309072

  10. Eutectic salt catalyzed environmentally benign and highly efficient Biginelli reaction.

    PubMed

    Azizi, Najmadin; Dezfuli, Sahar; Hahsemi, Mohmmad Mahmoodi

    2012-01-01

    A simple deep eutectic solvent based on tin (II) chloride was used as a dual catalyst and environmentally benign reaction medium for an efficient synthesis of 3,4-dihydropyrimidin-2(1H)-one derivatives, from aromatic and aliphatic aldehydes, 1,3-dicarbonyl compounds, and urea in good-to-excellent yields and short reaction time. This simple ammonium deep eutectic solvent, easily synthesized from choline chloride and tin chloride, is relatively inexpensive and recyclable, making it applicable for industrial applications. PMID:22649326

  11. Eutectic Salt Catalyzed Environmentally Benign and Highly Efficient Biginelli Reaction

    PubMed Central

    Azizi, Najmadin; Dezfuli, Sahar; Hahsemi, Mohmmad Mahmoodi

    2012-01-01

    A simple deep eutectic solvent based on tin (II) chloride was used as a dual catalyst and environmentally benign reaction medium for an efficient synthesis of 3,4-dihydropyrimidin-2(1H)-one derivatives, from aromatic and aliphatic aldehydes, 1,3-dicarbonyl compounds, and urea in good-to-excellent yields and short reaction time. This simple ammonium deep eutectic solvent, easily synthesized from choline chloride and tin chloride, is relatively inexpensive and recyclable, making it applicable for industrial applications. PMID:22649326

  12. Cu-Catalyzed Consecutive Hydroxylation and Aerobic Oxidative Cycloetherification under Microwave Conditions: Entry to 2-Arylbenzofuran-3-carboxylic Acids.

    PubMed

    Xu, Tianlong; Zhang, Ensheng; Wang, Dejian; Wang, Yan; Zou, Yong

    2015-05-01

    A convenient one-pot synthesis of 2-arylbenzofuran-3-carboxylic acids from (E)-2-(2-bromophenyl)-3-phenylacrylic acids via Cu-catalyzed consecutive hydroxylation and aerobic oxidative cycloetherification under microwave conditions has been developed. This protocol employed the reagent combination of Cu(OAc)2, 1,10-phen, and KOH in DMSO/H2O (1:1), all of which are cost-effective, readily available, and easily removable from the reaction mixture. Utilizing this synthetic protocol, various 2-arylbenzofuran-3-carboxylic acids as well as the natural product moracin M have been synthesized in satisfactory yields under mild conditions. PMID:25836742

  13. Oxidation of benzene with hydrogen peroxide catalyzed with ferrocene in the presence of pyrazine carboxylic acid

    NASA Astrophysics Data System (ADS)

    Shul'pina, L. S.; Durova, E. L.; Kozlov, Yu. N.; Kudinov, A. R.; Strelkova, T. V.; Shul'pin, G. B.

    2013-12-01

    It is found that ferrocene in the presence of small amounts of pyrazine carboxylic acid (PCA) effectively catalyzes the oxidation of benzene to phenol with hydrogen peroxide. Two main differences upon the oxidation of two different substrates, i.e., cyclohexane and benzene, with the same H2O2-ferrocene-PCA catalytic system are revealed: the rates of benzene oxidation and hydrogen peroxide decomposition are several times lower than the rate of cyclohexane oxidation at close concentrations of both substrates, and the rate constant ratios for the reactions of oxidizing particles with benzene and acetonitrile are significantly lower than would be expected for reactions involving free hydroxyl radicals. The overall rate of hydrogen peroxide decomposition, including both the catalase and oxidase routes, is lower in the presence of benzene than in the presence of cyclohexane. It is suggested on the grounds of these data that a catalytically active particle different from the one generated in the absence of benzene is formed in the presence of benzene. This particle catalyzes hydrogen peroxide decomposition less efficiently than the initial complex and generates a dissimilar oxidizing particle that exhibits higher selectivity. It is shown that reactivity of the system at higher concentrations of benzene differs from that of an initial system not containing an aromatic component with the capability of π-coordination with metal ions.

  14. beta-Lactamase-catalyzed hydrolysis of acyclic depsipeptides and acyl transfer to specific amino acid acceptors.

    PubMed Central

    Pratt, R F; Govardhan, C P

    1984-01-01

    beta-Lactamases from all three classes, A, B, and C, catalyze the hydrolysis of specific acyclic depsipeptide (PhCH2CONHCR1R2CO2CHR3CO2H) analogs of acyl-D-alanyl-D-alanine peptides. The depsipeptides investigated, which are chemically as reactive toward nucleophiles as penicillins, are in general poor substrates, although differences between the classes of beta-lactamases have been observed: the order of effectiveness seems to be C greater than B greater than A. Certain class A and C beta-lactamases also catalyze phenylacetylglycyl transfer between phenylacetylglycyl depsipeptides and specific amino acid acceptors, a type of reaction hitherto identified more closely with D-alanyl-D-alanine transpeptidases than with beta-lactamases. Preliminary indications of an acyl-enzyme intermediate in these reactions have been obtained. These results support the suggestion [Tipper, D.J. and Strominger, J.L. (1965) Proc. Natl. Acad. Sci. USA 54, 1133-1141] that beta-lactamases are evolutionary descendants of bacterial cell wall D-alanyl-D-alanine transpeptidases. PMID:6424114

  15. Energy Diagrams for Enzyme-Catalyzed Reactions: Concepts and Misconcepts

    ERIC Educational Resources Information Center

    Aledo, J. Carlos; Lobo, Carolina; del Valle, Alicia Esteban

    2003-01-01

    Despite the utility that energy diagrams have as a teaching and learning tool, a survey of their use, in seven popular Biochemistry textbooks, reveals that there is certain confusion around this topic. In our opinion, this confusion arises from the reluctance of authors to consider and indicate the conditions under which the reaction being…

  16. An Investigation of Model Catalyzed Hydrocarbon Formation Reactions

    SciTech Connect

    Tysoe, W. T.

    2001-05-02

    Work was focused on two areas aimed at understanding the chemistry of realistic catalytic systems: (1) The synthesis and characterization of model supported olefin metathesis catalysts. (2) Understanding the role of the carbonaceous layer present on Pd(111) single crystal model catalysts during reaction.

  17. Copper(II)-catalyzed reactions of activated aromatics.

    PubMed

    Puzari, A; Baruah, J B

    2000-04-21

    The catalytic reaction of cis-bisglycinato copper(II) monohydrate in the presence of hydrogen peroxide leads to hydroxylation of phenol to give catechol and hydroquinone (1:1.2 ratio) in good yield. 2,6-Dimethylphenol can be hydroxylated by hydrogen peroxide and a catalytic amount of cis-bisglycinato copper(II) monohydrate to give an aggregate of 1,4-dihydroxy-2,6-dimethylbenzene and 2,6-dimethylphenol. A similar reaction of o-cresol gives 2,5-dihydroxytoluene. The reactivity of cis-bisglycinato copper(II) monohydrate in hydrogen peroxide with o-cresol is 4.5 times faster than that of a similar reaction by trans-bisglycinato copper(II) monohydrate. A catalytic reaction of cis-bisglycinato copper(II) monohydrate with aniline in aqueous hydrogen peroxide gives polyanilines in the form of pernigraniline with different amounts of Cu(OH)2 attached to them. The two major components of polyanilines obtained have Mn values of 1040 and 1500, respectively. Resistance of films of these polyanilines increases with temperatures from 40 degrees C to a maximum value at 103 degrees C and then decreases in the region of 103-150 degrees C, showing the property of a thermolectric switch. The aggregate prepared from hydroxylation of 2,6-dimethylphenol shows a similar property in the region of 30-180 degrees C. PMID:10789445

  18. Influence of an internal trifluoromethyl group on the rhodium(II)-catalyzed reactions of vinyldiazocarbonyl compounds.

    PubMed

    Nikolaev, Valerij A; Supurgibekov, Murat B; Davies, Huw M L; Sieler, Joachim; Zakharova, Valerija M

    2013-05-01

    Incorporation of a trifluoromethyl group into the structure of 4-(alkoxycarbonyl)vinyldiazocarbonyl compounds greatly decreases the tendency of the carbenoid intermediates formed during Rh(II)-catalyzed reactions to undergo intermolecular processes. Instead, they are prone to experience intramolecular [1,5]- and [1,3]-electrocyclizations to produce reactive cyclopropenes and furans, and these are capable of further transformations. PMID:23614681

  19. Syntheses of quinazolinones from 2-iodobenzamides and enaminones via copper-catalyzed domino reactions.

    PubMed

    Songsichan, Teerawat; Promsuk, Jaturong; Rukachaisirikul, Vatcharin; Kaeobamrung, Juthanat

    2014-07-14

    N-Substituted 2-iodobenzamides and enaminones undergo cascade transformations to achieve quinazolinones via a copper-catalyzed Ullmann-type coupling, a Michael addition and a retro-Mannich reaction. A unique stereochemical feature of this domino process was that Z-enaminones reacted without external ligands, whereas E-enaminones required the assistance of ligands. PMID:24860848

  20. Nickel-catalyzed [3+1+1] cycloaddition reactions of alkenyl Fischer carbene complexes with methylenecyclopropanes.

    PubMed

    Kamikawa, Ken; Shimizu, Yasunori; Takemoto, Shin; Matsuzaka, Hiroyuki

    2006-08-31

    Methylenecyclopentanones were synthesized by the nickel-catalyzed [3+1+1] cycloaddition reactions of alkenyl Fischer carbene complexes with methylenecyclopropanes. The methylenecyclopropane was transformed into the C(2)-symmetric bis-cyclopentapyridazine derivative by reacting with p-toluenesulfonyl hydrazine. PMID:16928061

  1. Mechanistic studies of an unprecedented enzyme-catalyzed 1,2-phosphono migration reaction

    PubMed Central

    Chang, Wei-chen; Dey, Mishtu; Liu, Pinghua; Mansoorabadi, Steven O.; Moon, Sung-Ju; Zhao, Zongbao K.; Drennan, Catherine L.; Liu, Hung-wen

    2013-01-01

    (S)-2-Hydroxypropylphosphonate ((S)-2-HPP) epoxidase (HppE) is a mononuclear non-heme iron-dependent enzyme1,2,3 responsible for the last step in the biosynthesis of the clinically useful antibiotic fosfomycin4. Enzymes of this class typically catalyze oxygenation reactions that proceed via the formation of substrate radical intermediates. In contrast, HppE catalyzes an unusual dehydrogenation reaction while converting the secondary alcohol of (S)-2-HPP to the epoxide ring of fosfomycin1,5. HppE is shown here to also catalyze a biologically unprecedented 1,2-phosphono migration with the alternative substrate (R)-1-HPP. This transformation likely involves an intermediary carbocation based on observations with additional substrate analogues, such as (1R)-1-hydroxy-2-aminopropylphosphonate, and model reactions for both radical- and carbocation-mediated migration. The ability of HppE to catalyze distinct reactions depending on the regio- and stereochemical properties of the substrate is given a structural basis using X-ray crystallography. These results provide compelling evidence for the formation of a substrate-derived cation intermediate in the catalytic cycle of a mononuclear non-heme iron-dependent enzyme. The underlying chemistry of this unusual phosphono migration may represent a new paradigm for the in vivo construction of phosphonate-containing natural products that can be exploited for the preparation of novel phosphonate derivatives. PMID:23552950

  2. From vinyl pyranoses to carbasugars by an iron-catalyzed reaction complementary to classical Ferrier carbocyclization.

    PubMed

    Mac, Dinh Hung; Samineni, Ramesh; Petrignet, Julien; Srihari, Pabbaraja; Chandrasekhar, Srivari; Yadav, Jhillu Singh; Grée, René

    2009-08-21

    Starting from vinyl pyranoses an iron-catalyzed tandem isomerization-intramolecular aldolization reaction was developed to prepare cyclohexenone derivatives bearing substituents on the double bond, and it has been applied in a short synthesis of 4-epi-gabosines A and B, from d-glucose. PMID:19641820

  3. C3 functionalization of indolizines via In(iii)-catalyzed three-component reaction.

    PubMed

    Jung, Youngeun; Kim, Ikyon

    2015-12-01

    Post-functionalization at the C3 position of indolizines via In(iii)-catalyzed three-component coupling reaction with amines and aldehydes allowed rapid access to a new class of indolizines with diverse functional groups at the C3 position in good to excellent yields. PMID:26380932

  4. Enantioselective total synthesis of (+)-asteriscanolide via Rh(I)-catalyzed [(5+2)+1] reaction.

    PubMed

    Liang, Yong; Jiang, Xing; Yu, Zhi-Xiang

    2011-06-21

    The total synthesis of (+)-asteriscanolide starting from two commercially available materials has been accomplished in 19 steps with a 3.8% overall yield. The key reaction is a chiral ene-vinylcyclopropane substrate induced Rh(I)-catalyzed [(5+2)+1] cycloaddition that efficiently constructs the [6.3.0] carbocyclic core with complete asymmetric induction. PMID:21509378

  5. Iron-Catalyzed Stereoselective Cross-Coupling Reactions of Stereodefined Enol Carbamates with Grignard Reagents.

    PubMed

    Rivera, Ana Cristina Parra; Still, Raymond; Frantz, Doug E

    2016-06-01

    A practical and highly stereoselective iron-catalyzed cross-coupling reaction of stereodefined enol carbamates and Grignard reagents to yield tri- and tetrasubstituted acrylates is reported. A facile method for the stereoselective generation of these enol carbamates has also been developed. PMID:27088754

  6. Chiral holmium complex-catalyzed Diels-Alder reaction of silyloxyvinylindoles: stereoselective synthesis of hydrocarbazoles.

    PubMed

    Harada, Shinji; Morikawa, Takahiro; Nishida, Atsushi

    2013-10-18

    The catalytic and asymmetric cycloaddition between 3-[1-(silyloxy)vinyl]indoles and electron-deficient olefins gave substituted hydrocarbazoles in up to 99% yield and 94% ee. This reaction was catalyzed by a novel chiral holmium(III) complex. Alkylation of the cycloadduct gave a tricyclic compound with four continuous chiral centers, one of which was a quaternary carbon. PMID:24079531

  7. The effect of Mg/2+/ and Ca/2+/ on urea-catalyzed phosphorylation reactions

    NASA Technical Reports Server (NTRS)

    Handschuk, G. J.; Lohrmann, R.; Orgel, L. E.

    1973-01-01

    The effect of Mg(2+) and Ca(2+) on phosphorylation reactions catalyzed by urea is investigated, showing that Mg(2+) improves markedly the yield of products containing pyrophosphate bonds. Yields of up to 25% of uridine diphosphate can be obtained with struvite at temperatures as low as 65 C.

  8. Textured catalysts, methods of making textured catalysts, and methods of catalyzing reactions conducted in hydrothermal conditions

    DOEpatents

    Werpy, Todd [West Richland, WA; Wang, Yong [Richland, WA

    2003-12-30

    A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

  9. Integrated Production of Xylonic Acid and Bioethanol from Acid-Catalyzed Steam-Exploded Corn Stover.

    PubMed

    Zhu, Junjun; Rong, Yayun; Yang, Jinlong; Zhou, Xin; Xu, Yong; Zhang, Lingling; Chen, Jiahui; Yong, Qiang; Yu, Shiyuan

    2015-07-01

    High-efficiency xylose utilization is one of the restrictive factors of bioethanol industrialization. However, xylonic acid (XA) as a new bio-based platform chemical can be produced by oxidation of xylose with microbial. So, an applicable technology of XA bioconversion was integrated into the process of bioethanol production. After corn stover was pretreated with acid-catalyzed steam-explosion, solid and liquid fractions were obtained. The liquid fraction, also named as acid-catalyzed steam-exploded corn stover (ASC) prehydrolyzate (mainly containing xylose), was catalyzed with Gluconobacter oxydans NL71 to prepare XA. After 72 h of bioconversion of concentrated ASC prehydrolyzate (containing 55.0 g/L of xylose), the XA concentration reached a peak value of 54.97 g/L, the sugar utilization ratio and XA yield were 94.08 and 95.45 %, respectively. The solid fraction was hydrolyzed to produce glucose with cellulase and then fermented with Saccharomyces cerevisiae NL22 to produce ethanol. After 18 h of fermentation of concentrated enzymatic hydrolyzate (containing 86.22 g/L of glucose), the ethanol concentration reached its highest value of 41.48 g/L, the sugar utilization ratio and ethanol yield were 98.72 and 95.25 %, respectively. The mass balance showed that 1 t ethanol and 1.3 t XA were produced from 7.8 t oven dry corn stover. PMID:25947618

  10. Optimizing the Acid Catalyzed Synthesis of Hyperbranched Poly(Glycerol-diacids) Oligomers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oligomeric pre-polymers were synthesized by the acid-catalyzed condensation of glycerol with succinic acid, glutaric acid and azelaic acid in dimethylsulfoxide (DMSO) or dimethylformamide (DMF). The prepolymers were obtained, on average in 84% yield, and were characterized by proton NMR, MALDI-TOF ...

  11. Advances in metal-catalyzed cross-coupling reactions of halogenated quinazolinones and their quinazoline derivatives.

    PubMed

    Mphahlele, Malose Jack; Maluleka, Marole Maria

    2014-01-01

    Halogenated quinazolinones and quinazolines are versatile synthetic intermediates for the metal-catalyzed carbon-carbon bond formation reactions such as the Kumada, Stille, Negishi, Sonogashira, Suzuki-Miyaura and Heck cross-coupling reactions or carbon-heteroatom bond formation via the Buchwald-Hartwig cross-coupling to yield novel polysubstituted derivatives. This review presents an overview of the application of these methods on halogenated quinazolin-4-ones and their quinazolines to generate novel polysubstituted derivatives. PMID:25356566

  12. Gold-catalyzed Hosomi-Sakurai type reaction for the total synthesis of herboxidiene.

    PubMed

    Thirupathi, Barla; Mohapatra, Debendra K

    2016-07-14

    Total synthesis of herboxidiene/GEX1A/TAN-1609 has been accomplished in the 22 longest linear sequences starting from 2-butyne-1,4-diol following our recently developed gold-catalyzed Hosomi-Sakurai type of reaction on lactols with allyltrimethyl silane and Stille cross coupling to assemble the advanced fragment. The synthesis of the C10-C19 fragment was accomplished by means of Sharpless epoxidation and asymmetric alkylation reactions starting from (R)-methyl lactate. PMID:27193332

  13. Ruthenium Catalyzed Intramolecular C-S Coupling Reactions: Synthetic Scope and Mechanistic Insight.

    PubMed

    Sharma, Shivani; Pathare, Ramdas S; Maurya, Antim K; Gopal, Kandasamy; Roy, Tapta Kanchan; Sawant, Devesh M; Pardasani, Ram T

    2016-02-01

    A ruthenium catalyzed intramolecular C-S coupling reaction of N-arylthioureas for the synthesis of 2-aminobenzothiazoles has been developed. Kinetic, isotope labeling, and computational studies reveal the involvement of an electrophilic ruthenation pathway instead of a direct C-H activation. Stereoelectronic effect of meta-substituents on the N-arylthiourea dictates the final regioselective outcome of the reaction. PMID:26761401

  14. Enantioselective TADMAP-Catalyzed Carboxyl Migration Reactions for the Synthesis of Stereogenic Quaternary Carbon

    PubMed Central

    Shaw, Scott A.; Aleman, Pedro; Christy, Justin; Kampf, Jeff W.; Va, Porino

    2008-01-01

    The chiral, nucleophilic catalyst TADMAP (1) has been prepared from 3-lithio-4-dimethylamino-pyridine (5) and triphenylacetaldehyde (3), followed by acylation and resolution. TADMAP catalyzes the carboxyl migration of oxazolyl, furanyl, and benzofuranyl enol carbonates with good to excellent levels of enantioselection. The oxazole reactions are especially efficient, and are used to prepare chiral lactams (23) and lactones (30) containing a quaternary asymmetric carbon. TADMAP-catalyzed carboxyl migrations in the indole series are relatively slow and proceed with inconsistent enantioselectivity. Modeling studies (B3LYP/6-31G*) have been used in qualitative correlations of catalyst conformation, reactivity, and enantioselectivity. PMID:16417383

  15. Module degradation catalyzed by metal-encapsulation reactions

    NASA Technical Reports Server (NTRS)

    Gallagher, B. D.

    1983-01-01

    Four major properties are considered to be relevant in determining service life of a photovoltaic module: (1) Mechanical: creep resistance, modulus, tensile strength; (2) Optical: integrated transmission at 0.4 to 1.1 m wavelength; (3) Chemical: inertness with respect to metals and other components, retention of stabilizers, etc. and (4) Electrical; maintaining effective isolation of conductive components. These properties were measured after exposing polymer specimens to three types of accelerated stress: thermal, ultraviolet radiation and metal catalysts. These conditions give rise to a large number of complex interrelated free-radical reactions that result in the deterioration of polymeric materials.

  16. Enhanced Diffusion of Enzymes that Catalyze Exothermic Reactions

    NASA Astrophysics Data System (ADS)

    Golestanian, Ramin

    2015-09-01

    Enzymes have been recently found to exhibit enhanced diffusion due to their catalytic activities. A recent experiment [C. Riedel et al., Nature (London) 517, 227 (2015)] has found evidence that suggests this phenomenon might be controlled by the degree of exothermicity of the catalytic reaction involved. Four mechanisms that can lead to this effect, namely, self-thermophoresis, boost in kinetic energy, stochastic swimming, and collective heating are critically discussed, and it is shown that only the last two can be strong enough to account for the observations. The resulting quantitative description is used to examine the biological significance of the effect.

  17. Mutagenicity screening of reaction products from the enzyme-catalyzed oxidation of phenolic pollutants

    SciTech Connect

    Massey, I.J.; Aitken, M.D.; Ball, L.M.; Heck, P.E. . Dept. of Environmental Sciences and Engineering)

    1994-11-01

    Phenol-oxidizing enzymes such as peroxidases, laccases, and mushroom polyphenol oxidase are capable of catalyzing the oxidation of a wide range of phenolic pollutants. Although the use of these enzymes in waste-treatment applications has been proposed by a number of investigators, little information exists on the toxicological characteristics of the oxidation products. The enzymes chloroperoxidase, horseradish peroxidase, lignin peroxidase, and mushroom polyphenol oxidase were used in this study to catalyze the oxidation of phenol, several mono-substituted phenols, and pentachlorophenol. Seventeen reaction mixtures representing selected combinations of enzyme and parent phenol were subjected to mutagenicity screening using the Ames Salmonella typhimurium plate incorporation assay; five selected mixtures were also incubated with the S9 microsomal preparation to detect the possible presence of promutagens. The majority of reaction mixtures tested were not directly mutagenic, and none of those tested with S9 gave a positive response. Such lack of mutagenicity of enzymatic oxidation products provides encouragement for establishing the feasibility of enzyme-catalyzed oxidation as a waste-treatment process. The only positive responses were obtained with reaction products from the lignin peroxidase-catalyzed oxidation of 2-nitrophenol and 4-nitrophenol. Clear positive responses were observed when strain TA100 was incubated with 2-nitrophenol reaction-product mixtures, and when strain TA98 was incubated with the 4-nitrophenol reaction mixture. Additionally, 2,4-dinitrophenol was identified as a reaction product from 4-nitrophenol, and preliminary evidence indicates that both 2,4- and 2,6-dinitrophenol are produced from the oxidation of 2-nitrophenol. Possible mechanism by which these nitration reactions occur are discussed.

  18. Protease- and Acid-catalyzed Labeling Workflows Employing 18O-enriched Water

    PubMed Central

    Klingler, Diana; Hardt, Markus

    2013-01-01

    steps and reaction intermediates in complex proteolytic pathway reactions. Furthermore, the PALeO-reaction allows us to identify proteolytic enzymes such as the serine protease trypsin that is capable to rebind its cleavage products and catalyze the incorporation of a second 18O-atom. Such "double-labeling" enzymes can be used for postdigestion 18O-labeling, in which peptides are exclusively labeled by the carboxyl oxygen exchange reaction. Our third strategy extends labeling employing 18O-enriched water beyond enzymes and uses acidic pH conditions to introduce 18O-stable isotope signatures into peptides. PMID:23462971

  19. Membrane protein complexes catalyze both 4- and 3-hydroxylation of cinnamic acid derivatives in monolignol biosynthesis.

    PubMed

    Chen, Hsi-Chuan; Li, Quanzi; Shuford, Christopher M; Liu, Jie; Muddiman, David C; Sederoff, Ronald R; Chiang, Vincent L

    2011-12-27

    The hydroxylation of 4- and 3-ring carbons of cinnamic acid derivatives during monolignol biosynthesis are key steps that determine the structure and properties of lignin. Individual enzymes have been thought to catalyze these reactions. In stem differentiating xylem (SDX) of Populus trichocarpa, two cinnamic acid 4-hydroxylases (PtrC4H1 and PtrC4H2) and a p-coumaroyl ester 3-hydroxylase (PtrC3H3) are the enzymes involved in these reactions. Here we present evidence that these hydroxylases interact, forming heterodimeric (PtrC4H1/C4H2, PtrC4H1/C3H3, and PtrC4H2/C3H3) and heterotrimeric (PtrC4H1/C4H2/C3H3) membrane protein complexes. Enzyme kinetics using yeast recombinant proteins demonstrated that the enzymatic efficiency (V(max)/k(m)) for any of the complexes is 70-6,500 times greater than that of the individual proteins. The highest increase in efficiency was found for the PtrC4H1/C4H2/C3H3-mediated p-coumaroyl ester 3-hydroxylation. Affinity purification-quantitative mass spectrometry, bimolecular fluorescence complementation, chemical cross-linking, and reciprocal coimmunoprecipitation provide further evidence for these multiprotein complexes. The activities of the recombinant and SDX plant proteins demonstrate two protein-complex-mediated 3-hydroxylation paths in monolignol biosynthesis in P. trichocarpa SDX; one converts p-coumaric acid to caffeic acid and the other converts p-coumaroyl shikimic acid to caffeoyl shikimic acid. Cinnamic acid 4-hydroxylation is also mediated by the same protein complexes. These results provide direct evidence for functional involvement of membrane protein complexes in monolignol biosynthesis. PMID:22160716

  20. Origins of stereoselectivities in chiral phosphoric acid catalyzed allylborations and propargylations of aldehydes.

    PubMed

    Wang, Hao; Jain, Pankaj; Antilla, Jon C; Houk, K N

    2013-02-01

    The chiral BINOL-phosphoric acid catalyzed allylboration and propargylation reactions are studied with density functional theory (B3LYP and B3LYP-D3). Two different models were recently proposed for these reactions by Goodman and our group, respectively. In Goodman's model for allylborations, the catalyst interacts with the boronate pseudoaxial oxygen. By contrast, our model for propargylations predicts that the catalyst interacts with the boronate pseudoequatorial oxygen. In both models, the phosphoric acid stabilizes the transition state by forming a strong hydrogen bond with the oxygen of the boronate and is oriented by a formyl hydrogen bond (Goodman model) and by other electrostatic attractions in our model. Both of these models have now been reinvestigated for both allylborations and propargylations. For the most effective catalyst for these reactions, the lowest energy transition state corresponds to Goodman's axial model, while the best transition state leading to the minor enantiomer involves the equatorial model. The high enantioselectivity observed with only the bulkiest catalyst arises from the steric interactions between the substrates and the bulky groups on the catalyst, and the resulting necessity for distortion of the catalyst in the disfavored transition state. PMID:23298338

  1. Hetropolyacid-Catalyzed Oxidation of Glycerol into Lactic Acid under Mild Base-Free Conditions.

    PubMed

    Tao, Meilin; Yi, Xiaohu; Delidovich, Irina; Palkovits, Regina; Shi, Junyou; Wang, Xiaohong

    2015-12-21

    Lactic acid (LA) is a versatile platform molecule owing to the opportunity to transform this compound into useful chemicals and materials. Therefore, efficient production of LA based on inexpensive renewable feedstocks is of utmost importance for insuring its market availability. Herein, we report the efficient conversion of glycerol into LA catalyzed by heteropolyacids (HPAs) under mild base-free conditions. The catalytic performance of molecular HPAs appears to correlate with their redox potential and Brønsted acidity. Namely, H3 PMo(12)O(40) (HPMo) exhibits the best selectivity towards LA (90 %) with 88 % conversion of glycerol. Loading of HPMo onto a carbon support (HPMo/C) further improves LA productivity resulting in 94 % selectivity at 98 % conversion under optimized reaction conditions. The reaction takes place through the formation of dihydroxyacetone/glyceraldehyde and pyruvaldehyde as intermediates. No leaching of HPMo was observed under the applied reaction conditions and HPMo/C could be recycled 5 times without significant loss of activity. PMID:26611678

  2. Origins of Stereoselectivities in Chiral Phosphoric Acid-Catalyzed Allylborations and Propargylations of Aldehydes

    PubMed Central

    Wang, Hao; Jain, Pankaj; Antilla, Jon C.; Houk, K. N.

    2013-01-01

    The chiral BINOL-phosphoric acid catalyzed allylboration and propargylation reactions are studied with density functional theory (B3LYP and B3LYP-D3). Two different models were recently proposed for these reactions by Goodman and our group, respectively. In Goodman's model for allylborations, the catalyst interacts with the boronate pseudo-axial oxygen. By contrast, our model for propargylations predicts that the catalyst interacts with the boronate pseudo-equatorial oxygen. In both models, the phosphoric acid stabilizes the transition state by forming a strong hydrogen bond with the oxygen of the boronate, and is oriented by a formyl hydrogen bond (Goodman model), and by other electrostatic attractions in our model. Both of these models have now been reinvestigated for both allylborations and propargylations. For the most effective catalyst for these reactions, the lowest energy transition state corresponds to Goodman's axial model, while the best transition state leading to minor enantiomer involves the equatorial model. The high enantioselectivity observed with only the bulkiest catalyst arises from the steric interactions between the substrates and the bulky groups on the catalyst, and the resulting necessity for distortion of the catalyst in the disfavored transition state. PMID:23298338

  3. Computational Mechanistic Studies of Acid-Catalyzed Lignin Model Dimers for Lignin Depolymerization

    SciTech Connect

    Kim, S.; Sturgeon, M. R.; Chmely, S. C.; Paton, R. S.; Beckham, G. T.

    2013-01-01

    Lignin is a heterogeneous alkyl-aromatic polymer that constitutes up to 30% of plant cell walls, and is used for water transport, structure, and defense. The highly irregular and heterogeneous structure of lignin presents a major obstacle in the development of strategies for its deconstruction and upgrading. Here we present mechanistic studies of the acid-catalyzed cleavage of lignin aryl-ether linkages, combining both experimental studies and quantum chemical calculations. Quantum mechanical calculations provide a detailed interpretation of reaction mechanisms including possible intermediates and transition states. Solvent effects on the hydrolysis reactions were incorporated through the use of a conductor-like polarizable continuum model (CPCM) and with cluster models including explicit water molecules in the first solvation shell. Reaction pathways were computed for four lignin model dimers including 2-phenoxy-phenylethanol (PPE), 1-(para-hydroxyphenyl)-2-phenoxy-ethanol (HPPE), 2-phenoxy-phenyl-1,3-propanediol (PPPD), and 1-(para-hydroxyphenyl)-2-phenoxy-1,3-propanediol (HPPPD). Lignin model dimers with a para-hydroxyphenyl ether (HPPE and HPPPD) show substantial differences in reactivity relative to the phenyl ether compound (PPE and PPPD) which have been clarified theoretically and experimentally. The significance of these results for acid deconstruction of lignin in plant cell walls will be discussed.

  4. Molecular Epoxidation Reactions Catalyzed by Rhenium, Molybdenum, and Iron Complexes.

    PubMed

    Kück, Jens W; Reich, Robert M; Kühn, Fritz E

    2016-02-01

    Epoxidations are of high relevance in many organic syntheses, both in industry and academia. In this personal account, the development of rhenium, molybdenum, and iron complexes in molecular epoxidation catalysis is presented. Methyltrioxorhenium (MTO) is the benchmark catalyst for these reactions, with a thoroughly investigated mechanism and reactivity profile. More recently, highly active molecular molybdenum and iron catalysts have emerged, challenging the extraordinary role of MTO in epoxidation catalysis with high turnover frequencies (TOFs). This development is highlighted in its use of cheaper, more readily available metals, and the challenges of using base metals in catalysis are discussed. These results show the promise that relatively cheap and abundant metals, such as molybdenum and iron, hold for the future of epoxidation catalysis. PMID:26776087

  5. Copper-catalyzed selective hydroamination reactions of alkynes

    PubMed Central

    Shi, Shi-Liang; Buchwald, Stephen L.

    2014-01-01

    The development of selective reactions that utilize easily available and abundant precursors for the efficient synthesis of amines is a longstanding goal of chemical research. Despite the centrality of amines in a number of important research areas, including medicinal chemistry, total synthesis and materials science, a general, selective, and step-efficient synthesis of amines is still needed. In this work we describe a set of mild catalytic conditions utilizing a single copper-based catalyst that enables the direct preparation of three distinct and important amine classes (enamines, α-chiral branched alkylamines, and linear alkylamines) from readily available alkyne starting materials with high levels of chemo-, regio-, and stereoselectivity. This methodology was applied to the asymmetric synthesis of rivastigmine and the formal synthesis of several other pharmaceutical agents, including duloxetine, atomoxetine, fluoxetine, and tolterodine. PMID:25515888

  6. Development of Safe and Scalable Continuous-Flow Methods for Palladium-Catalyzed Aerobic Oxidation Reactions.

    PubMed

    Ye, Xuan; Johnson, Martin D; Diao, Tianning; Yates, Matthew H; Stahl, Shannon S

    2010-01-01

    The synthetic scope and utility of Pd-catalyzed aerobic oxidation reactions has advanced significantly over the past decade, and these reactions have potential to address important green-chemistry challenges in the pharmaceutical industry. This potential has been unrealized, however, because safety concerns and process constraints hinder large-scale applications of this chemistry. These limitations are addressed by the development of a continuous-flow tube reactor, which has been demonstrated on several scales in the aerobic oxidation of alcohols. Use of a dilute oxygen gas source (8% O(2) in N(2)) ensures that the oxygen/organic mixture never enters the explosive regime, and efficient gas-liquid mixing in the reactor minimizes decomposition of the homogeneous catalyst into inactive Pd metal. These results provide the basis for large-scale implementation of palladium-catalyzed (and other) aerobic oxidation reactions for pharmaceutical synthesis. PMID:20694169

  7. Increase of Oleic Acid Content in Phosphatidylcholine through Lipase-catalyzed Interesterification: Optimization by Response Surface Methodology.

    PubMed

    Yang, Guolong; Yang, Lihui

    2015-01-01

    In order to obtain phosphatidylcholine (PC) with higher amount of oleic acid, the interesterification between soybean PC and Camellia oleifera oil (COO) rich in oleic acid catalyzed by lipase was studied in hexane. For this aim three commercially available immobilized lipases (Novozym 435, Lipozyme TLIM and Lipozyme RMIM) were assayed and Novozym 435 was finally selected for further optimization. The effects of the factors, such as PC concentration, substrate ratio, water amount, lipase dosage and temperature, on the oleic acid content in PC and PC recovery during the interesterification were investigated. The conditions of the interesterification were optimized using response surface methodology. The optimum conditions were as follows: lipase dosage 13 % (based on the mass of PC and COO), reaction temperature 55°C, water amount 5% (based on the mass of PC), reaction time 8 h, PC concentration 0.3g/mL (PC/hexane), PC-to-COO ratio 1:3 (acyl groups in PC/acyl groups in COO, mol/mol). Under these conditions, oleic acid content and PC recovery were 40.8 ± 0.5% and 69.0 ± 2.8%, respectively. Analysis of variance (ANOVA) showed that the regression models were adequate for predicting the interesterifiction. The orders of reaction variables affecting on oleic acid content and PC recovery were water amount > reaction time > lipase dosage > reaction temperature, and water amount > reaction temperature > lipase dosage > reaction time, respectively. PMID:25891113

  8. Steroid hydroxylations: A paradigm for cytochrome P450 catalyzed mammalian monooxygenation reactions

    SciTech Connect

    Estabrook, Ronald W. . E-mail: Ronald.estabrook@utsouthwestern.edu

    2005-12-09

    The present article reviews the history of research on the hydroxylation of steroid hormones as catalyzed by enzymes present in mammalian tissues. The report describes how studies of steroid hormone synthesis have played a central role in the discovery of the monooxygenase functions of the cytochrome P450s. Studies of steroid hydroxylation reactions can be credited with showing that: (a) the adrenal mitochondrial enzyme catalyzing the 11{beta}-hydroxylation of deoxycorticosterone was the first mammalian enzyme shown by O{sup 18} studies to be an oxygenase; (b) the adrenal microsomal enzyme catalyzing the 21-hydroxylation of steroids was the first mammalian enzyme to show experimentally the proposed 1:1:1 stoichiometry (substrate:oxygen:reduced pyridine nucleotide) of a monooxygenase reaction; (c) application of the photochemical action spectrum technique for reversal of carbon monoxide inhibition of the 21-hydroxylation of 17{alpha}-OH progesterone was the first demonstration that cytochrome P450 was an oxygenase; (d) spectrophotometric studies of the binding of 17{alpha}-OH progesterone to bovine adrenal microsomal P450 revealed the first step in the cyclic reaction scheme of P450, as it catalyzes the 'activation' of oxygen in a monooxygenase reaction; (e) purified adrenodoxin was shown to function as an electron transport component of the adrenal mitochondrial monooxygenase system required for the activity of the 11{beta}-hydroxylase reaction. Adrenodoxin was the first iron-sulfur protein isolated and purified from mammalian tissues and the first soluble protein identified as a reductase of a P450; (f) fractionation of adrenal mitochondrial P450 and incubation with adrenodoxin and a cytosolic (flavoprotein) fraction were the first demonstration of the reconstitution of a mammalian P450 monooxygenase reaction.

  9. Mechanisms and energetics for acid catalyzed β-D-glucose conversion to 5-hydroxymethylfurfurl.

    PubMed

    Qian, Xianghong

    2011-10-27

    Car-Parrinello based ab initio molecular dynamics (CPMD) coupled with metadynamics (MTD) simulations were carried out to investigate the mechanism and energetics for acid-catalyzed β-d-glucose conversion to 5-hydroxymethylfurfurl (HMF) in water. HMF is a critical intermediate for biomass conversion to biofuels. It was found that protonation of the C2-OH on glucose, the breakage of the C2-O2 bond, and the formation of the C2-O5 bond is the critical rate-limiting step for the direct glucose conversion to HMF without converting to fructose first, contrary to the wide-spread assumption in literature that fructose is the main intermediate for glucose conversion to HMF. The calculated reaction barrier of 30-35 kcal/mol appears to be solvent-induced and is in excellent agreement with experimental observations. PMID:21916465

  10. Rhodium catalyzed chelation-assisted C-H bond functionalization reactions

    PubMed Central

    Colby, Denise A.; Tsai, Andy S.; Bergman, Robert G.; Ellman, Jonathan A.

    2011-01-01

    Conspectus Over the last several decades, researchers have achieved remarkable progress in the field of organometallic chemistry. The development of metal-catalyzed cross-coupling reactions represents a paradigm shift in chemical synthesis, and today synthetic chemists can readily access carbon-carbon and carbon-heteroatom bonds from a vast array of starting compounds. Although we cannot understate the importance of these methods, the required pre-functionalization to carry out these reactions adds cost and reduces the availability of the starting reagents. The use of C-H bond activation in lieu of pre-functionalization has presented a tantalizing alternative to classical cross-coupling reactions. Researchers have met the challenges of selectivity and reactivity associated with the development of C-H bond functionalization reactions with an explosion of creative advances in substrate and catalyst design. Literature reports on selectivity based on steric effects, acidity, and electronic and directing group effects are now numerous. Our group has developed an array of C-H bond functionalization reactions that take advantage of a chelating directing group, and this Account surveys our progress in this area. The use of chelation control in C-H bond functionalization offers several advantages with respect to substrate scope and application to total synthesis. The predictability and decreased dependence on the inherent stereoelectronics of the substrate generally result in selective and high yielding transformations with broad applicability. The nature of the chelating moiety can be chosen to serve as a functional handle in subsequent elaborations. Our work began with the use of Rh(I) catalysts in intramolecular aromatic C-H annulations, which we further developed to include enantioselective transformations. The application of this chemistry to the simple olefinic C-H bonds found in α,β-unsaturated imines allowed access to highly substituted olefins, pyridines, and

  11. Hydroconversion reactions catalyzed by highly stable pillared clays

    SciTech Connect

    Gomez, S.A.; Mosqueira, L.; Espinosa, J.; Fuentes, G.A.

    1993-12-31

    Al-pillared clays (Al-PILC) and Al-X-PILC (X = Ga, Ni), structurally stable at high temperature - in the case of Ga above 800{degrees}C-have been synthesized by controlling intercalation steps and stabilization procedures. New bidimensional materials with an interlaminar distance about 10-12{angstrom} and with different chemical reactivities in the pillars have thus been produced. The analytical techniques employed to characterize the materials and the processes involved during stabilization include N{sub 2} adsorption, AA, XRD, NH{sub 3}-TPD, TGA-DTA, HR- and MAS-NMR (Al, Si, and Ga) and in-situ IR and DRIFTS. Chemical characterization using high pressure reactions with probe molecules such as diphenylmethane and tert-butylbenzene shows selectivity patterns than can be clearly associated with the microstructure of the PILC used, as well as an effect due to the composition of the pillars. Similar studies with zeolites give patterns that differ from those of PILC, probably because of the change in dimensionality of the internal structure. Poisoning studies with metal porphyrins prove that PLIC have improved resistance compared to standard catalysts. Hydrotreatment of Maya crude results a significant reduction in total sulfur under conditions suitable for commercial operation.

  12. Study of the mechanism of muon-catalyzed t + t fusion reaction

    SciTech Connect

    Bogdanova, L. N.; Demin, D. L.; Filchenkov, V. V.

    2015-01-15

    The mechanism for the muon catalyzed fusion reaction t + t → {sup 4}He + 2n + 11.33 MeV is investigated. The model of the cascade reaction with {sup 5}He as an intermediate state is considered, both the ground and the first exited states being taken into account. The neutron energy spectrum measured in the recent experiment is compared with the Monte-Carlo-simulated one. Varying reaction parameters, we obtain optimum values for the relative weights of the {sup 5}He ground and excited states and for the excitation energy and width of the excited state.

  13. ENZO: A Web Tool for Derivation and Evaluation of Kinetic Models of Enzyme Catalyzed Reactions

    PubMed Central

    Bevc, Staš; Konc, Janez; Stojan, Jure; Hodošček, Milan; Penca, Matej; Praprotnik, Matej; Janežič, Dušanka

    2011-01-01

    We describe a web tool ENZO (Enzyme Kinetics), a graphical interface for building kinetic models of enzyme catalyzed reactions. ENZO automatically generates the corresponding differential equations from a stipulated enzyme reaction scheme. These differential equations are processed by a numerical solver and a regression algorithm which fits the coefficients of differential equations to experimentally observed time course curves. ENZO allows rapid evaluation of rival reaction schemes and can be used for routine tests in enzyme kinetics. It is freely available as a web tool, at http://enzo.cmm.ki.si. PMID:21818304

  14. Enantioselective Multicomponent Condensation Reactions of Phenols, Aldehydes, and Boronates Catalyzed by Chiral Biphenols.

    PubMed

    Barbato, Keith S; Luan, Yi; Ramella, Daniele; Panek, James S; Schaus, Scott E

    2015-12-01

    Chiral diols and biphenols catalyze the multicomponent condensation reaction of phenols, aldehydes, and alkenyl or aryl boronates. The condensation products are formed in good yields and enantioselectivities. The reaction proceeds via an initial Friedel-Crafts alkylation of the aldehyde and phenol to yield an ortho-quinone methide that undergoes an enantioselective boronate addition. A cyclization pathway was discovered while exploring the scope of the reaction that provides access to chiral 2,4-diaryl chroman products, the core of which is a structural motif found in natural products. PMID:26576776

  15. Enantioselective Synthesis of Spirocyclohexadienones by NHC-Catalyzed Formal [3+3] Annulation Reaction of Enals.

    PubMed

    Yetra, Santhivardhana Reddy; Mondal, Santigopal; Mukherjee, Subrata; Gonnade, Rajesh G; Biju, Akkattu T

    2016-01-01

    The enantioselective synthesis of pyrazolone-fused spirocyclohexadienones was demonstrated by the reaction of α,β-unsaturated aldehydes with α-arylidene pyrazolinones under oxidative N-heterocyclic carbene (NHC)catalysis. This atom-economic and formal [3+3] annulation reaction proceeds through a vinylogous Michael addition/spiroannulation/dehydrogenation cascade to afford spirocyclic compounds with an all-carbon quaternary stereocenter in moderate to good yields and excellent ee values. Key to the success of the reaction is the cooperative NHC-catalyzed generation of chiral α,β-unsaturated acyl azoliums from enals, and base-mediated tandem generation of dienolate/enolate intermediates from pyrazolinones. PMID:26487242

  16. Cp*Rh(iii)-catalyzed electrophilic amination of arylboronic acids with azo compounds for synthesis of arylhydrazides.

    PubMed

    Lau, Yan-Fung; Chan, Chun-Ming; Zhou, Zhongyuan; Yu, Wing-Yiu

    2016-07-12

    A [Cp*Rh(iii)]-catalyzed electrophilic amination of arylboronic acids with diethyl azodicarboxylate (DEAD) was developed, and arylhydrazides were produced in excellent yields and selectivity. The analogous amination with the arylazocarboxylates afforded the corresponding N,N-diarylhydrazides. The electrophilic amination of arylboronic acids with azocarboxylates proceeds readily under mild conditions with excellent functional group tolerance. Up to 99% yields were obtained. Preliminary mechanistic studies revealed that prior formation of an arylrhodium(iii) intermediate for the azo coupling reaction can be ruled out. PMID:27339710

  17. Laccase-catalyzed removal of the antimicrobials chlorophene and dichlorophen from water: Reaction kinetics, pathway and toxicity evaluation.

    PubMed

    Shi, Huanhuan; Peng, Jianbiao; Li, Jianhua; Mao, Liang; Wang, Zunyao; Gao, Shixiang

    2016-11-01

    As active agents in cleaning and disinfecting products, antimicrobials have been widely spread in the environment and have drawn extensive attention as potential threats to the ecological system and human health. In this study, the laccase-catalyzed removal of two emerging antimicrobials, chlorophene (CP) and dichlorophen (DCP), was investigated under simulated environmental conditions. Intrinsic reaction kinetics showed that the removal of CP and DCP followed second-order reaction kinetics, first-order with respect to both the enzyme and the substrate concentration. It was also found that fulvic acid could suppress the transformation of CP and DCP by reversing the oxidation reactions through its action as a scavenger of the free radical intermediates produced from reactions between laccase and the substrates. Several reaction products were identified by a quadrupole time-of-flight mass spectrometer, and detailed reaction pathways were proposed. For both CP and DCP, direct polymerization was the principal pathway, and the coupling patterns were further corroborated based on molecular modeling. The nucleophilic substitution of chlorine by the hydroxyl group was observed, and further oxidation products capable of coupling with each other were also found. Additionally, toxicity evaluation tests using Scenedesmus obliquus confirmed that the toxicity of CP and DCP was effectively eliminated during the reaction processes. PMID:27262275

  18. Existence of efficient divalent metal ion-catalyzed and inefficient divalent metal ion-independent channels in reactions catalyzed by a hammerhead ribozyme

    PubMed Central

    Zhou, Jing-Min; Zhou, De-Min; Takagi, Yasuomi; Kasai, Yasuhiro; Inoue, Atsushi; Baba, Tadashi; Taira, Kazunari

    2002-01-01

    The hammerhead ribozyme is generally accepted as a well characterized metalloenzyme. However, the precise nature of the interactions of the RNA with metal ions remains to be fully defined. Examination of metal ion-catalyzed hammerhead reactions at limited concentrations of metal ions is useful for evaluation of the role of metal ions, as demonstrated in this study. At concentrations of Mn2+ ions from 0.3 to 3 mM, addition of the ribozyme to the reaction mixture under single-turnover conditions enhances the reaction with the product reaching a fixed maximum level. Further addition of the ribozyme inhibits the reaction, demonstrating that a certain number of divalent metal ions is required for proper folding and also for catalysis. At extremely high concentrations, monovalent ions, such as Na+ ions, can also serve as cofactors in hammerhead ribozyme-catalyzed reactions. However, the catalytic efficiency of monovalent ions is extremely low and, thus, high concentrations are required. Furthermore, addition of monovalent ions to divalent metal ion-catalyzed hammerhead reactions inhibits the divalent metal ion-catalyzed reactions, suggesting that the more desirable divalent metal ion–ribozyme complexes are converted to less desirable monovalent metal ion–ribozyme complexes via removal of divalent metal ions, which serve as a structural support in the ribozyme complex. Even though two channels appear to exist, namely an efficient divalent metal ion-catalyzed channel and an inefficient monovalent metal ion-catalyzed channel, it is clear that, under physiological conditions, hammerhead ribozymes are metalloenzymes that act via the significantly more efficient divalent metal ion-dependent channel. Moreover, the observed kinetic data are consistent with Lilley’s and DeRose’s two-phase folding model that was based on ground state structure analyses. PMID:12034824

  19. Folylpolyglutamate synthetase: direct evidence for an acyl phosphate intermediate in the enzyme-catalyzed reaction

    SciTech Connect

    Banerjee, R.; McGuire, J.J.; Shane, B.; Coward, J.K.

    1986-05-01

    The nature of the intermediate in the reaction catalyzed by folylpoly-..gamma..-glutamate synthetase (FPGS) has been investigated. Incubation of ..cap alpha..,..gamma..-(/sup 18/O)methotrexate with ATP, glutamate, and FPGS resulted in the formation of (/sup 18/O)phosphate, thus providing strong evidence for the formation of a ..gamma..-glutamyl phosphate during catalysis. The inorganic phosphate formed in the enzyme-catalyzed reaction was separated from other products and substrates by chromatography on DEAE-cellulose, then converted to the trimethyl ester, and analyzed by mass spectroscopy. Stoichiometric formation of (/sup 18/O)phosphate was observed in the case of the E. coli enzyme, isolated from a transformant containing the cloned FPGS-dihydrofolate synthetase (folC) gene. In addition, /sup 31/P-NMR analysis of the phosphate isolated from the reaction using E. coli FPGS showed the expected /sup 18/O-isotopic perturbations due to both singly bonded and doubly bonded P-/sup 18/O species. Similar experiments were carried out with FPGS isolated from hog liver. In this case, the small amounts of pure enzyme available precluded use of the NMR technique. However, mass spectral analysis of the derivatized phosphate product revealed the presence of (/sup 18/O)-trimethyl phosphate, thus indicating that the reaction catalyzed by the mammalian enzyme also proceeds via an acyl phosphate intermediate.

  20. Cationic Pd(II)-catalyzed C–H activation/cross-coupling reactions at room temperature: synthetic and mechanistic studies

    PubMed Central

    Nishikata, Takashi; Abela, Alexander R; Huang, Shenlin

    2016-01-01

    Summary Cationic palladium(II) complexes have been found to be highly reactive towards aromatic C–H activation of arylureas at room temperature. A commercially available catalyst [Pd(MeCN)4](BF4)2 or a nitrile-free cationic palladium(II) complex generated in situ from the reaction of Pd(OAc)2 and HBF4, effectively catalyzes C–H activation/cross-coupling reactions between aryl iodides, arylboronic acids and acrylates under milder conditions than those previously reported. The nature of the directing group was found to be critical for achieving room temperature conditions, with the urea moiety the most effective in promoting facile coupling reactions at an ortho C–H position. This methodology has been utilized in a streamlined and efficient synthesis of boscalid, an agent produced on the kiloton scale annually and used to control a range of plant pathogens in broadacre and horticultural crops. Mechanistic investigations led to a proposed catalytic cycle involving three steps: (1) C–H activation to generate a cationic palladacycle; (2) reaction of the cationic palladacycle with an aryl iodide, arylboronic acid or acrylate, and (3) regeneration of the active cationic palladium catalyst. The reaction between a cationic palladium(II) complex and arylurea allowed the formation and isolation of the corresponding palladacycle intermediate, characterized by X-ray analysis. Roles of various additives in the stepwise process have also been studied. PMID:27340491

  1. Reactions catalyzed by purified L-glutamine: keto-scyllo-inositol aminotransferase, an enzyme required for biosynthesis of aminocyclitol antibiotics.

    PubMed Central

    Lucher, L A; Chen, Y M; Walker, J B

    1989-01-01

    Dialyzed extracts of the gentamicin producer Micromonospora purpurea catalyze reactions which represent transaminations proposed for 2-deoxystreptamine biosynthesis. To determine whether these transaminations were catalyzed by a single aminotransferase or by multiple enzymes, we purified and characterized an L-glutamine:keto-scyllo-inositol aminotransferase from M. purpurea. This enzyme was purified 130- to 150-fold from late-log-phase mycelia of both wild-type M. purpurea and a 2-deoxystreptamine-less idiotroph. The cofactor pyridoxal phosphate was found to be tightly bound to the enzyme, and spectral analysis demonstrated its participation in the transamination reactions of this enzyme. The major physiological amino donor for the enzyme appears to be L-glutamine; the keto acid product derived from glutamine was characterized as 2-ketoglutaramate, indicating that the alpha amino group of glutamine participates in the transamination. We found that crude extracts contained omega-amidase activity, which may render transaminations with glutamine irreversible in vivo. The substrate specificity of the aminotransferase was shown to be restricted to deoxycyclitols, monoaminocyclitols, and diaminocyclitols, glutamine, and 2-ketoglutaramate, which contrasts with the broader substrate specificity of mammalian glutamine aminotransferase. The appearance of the enzyme in late-log phase, coupled with its narrow substrate specificity, indicates that it participates predominantly in 2-deoxystreptamine biosynthesis rather than in general metabolism. The enzyme catalyzes reactions which represent both transamination steps of 2-deoxystreptamine biosynthesis. Although copurification of two aminotransferases cannot be ruled out, our data are consistent with the participation of a single aminotransferase in the formation of both amino groups of 2-deoxystreptamine during biosynthesis by M. purpurea. We propose that this aminotransferase participates in a key initial step in the

  2. Degradation of trichloroethene by siderite-catalyzed hydrogen peroxide and persulfate: Investigation of reaction mechanisms and degradation products

    PubMed Central

    Yan, Ni; Liu, Fei; Xue, Qiang; Brusseau, Mark L.; Liu, Yali; Wang, Junjie

    2015-01-01

    A binary catalytic system, siderite-catalyzed hydrogen peroxide (H2O2) coupled with persulfate (S2O82−), was investigated for the remediation of trichloroethene (TCE) contamination. Batch experiments were conducted to investigate reaction mechanisms, oxidant decomposition rates, and degradation products. By using high performance liquid chromatography (HPLC) coupled with electron paramagnetic resonance (EPR), we identified four radicals (hydroxyl (HO·), sulfate (SO4−·), hydroperoxyl (HO2·), and superoxide (O2−·)) in the siderite-catalyzed H2O2-S2O82− system. In the absence of S2O82− (i.e., siderite-catalyzed H2O2), a majority of H2O2 was decomposed in the first hour of the experiment, resulting in the waste of HO·. The addition of S2O82− moderated the H2O2 decomposition rate, producing a more sustainable release of hydroxyl radicals that improved the treatment efficiency. Furthermore, the heat released by H2O2 decomposition accelerated the activation of S2O82−, and the resultant SO4−· was the primary oxidative agent during the first two hours of the reaction. Dichloroacetic acid was firstly detected by ion chromatography (IC). The results of this study indicate a new insight to the reaction mechanism for the catalytic binary H2O2-S2O82− oxidant system, and the delineation of radicals and the discovery of the chlorinated byproduct provide useful information for efficient treatment of chlorinated-solvent contamination in groundwater. PMID:26236152

  3. Production of high-oleic acid tallow fractions using lipase-catalyzed directed interesterification, using both batch and continuous processing.

    PubMed

    MacKenzie; Stevenson

    2000-08-01

    Immobilized lipases were used to catalyze batch-directed interesterification of tallow, resulting in oleins containing significantly higher levels of unsaturated fatty acids than obtained by fractionation without lipase. After 14 days, a reaction catalyzed by 2% Novozym 435 yielded 57% olein unsaturation, compared with 45% in a no-enzyme control. Free fatty acid levels increased to 2-3% during reactions. Incubation of the enzyme in multiple batches of melted fat caused a gradual loss of interesterification activity, apparently due to progressive dehydration. The activity could be restored by addition of water to the reaction medium. Immobilized lipase was also used to catalyze directed interesterification in a continuous flow reactor. Melted tallow was circulated through a packed bed enzyme reactor and a separate crystallization vessel. The temperatures of the two parts of the apparatus were controlled separately to allow crystallization to occur separately from interesterification. Operation of the reactor with conventionally dry, prefractionated tallow allowed the formation of an olein consisting of up to 60% unsaturated fatty acids. The greatest changes in olein fatty acid composition were achieved when the fractionation temperature was kept constant at a value that promoted selective crystallization of trisaturated triglycerides that were continuously produced by enzymic interesterification. The enzyme could be reused without apparent loss of activity, and its activity was apparently enhanced by preincubation in melted tallow for up to several days. Control of both the water activity of the enzyme and tallow feedstock and of the absorption of atmospheric water vapor were required to maintain enzyme activity, during multiple reuse and minimize free fatty acid formation. This method may form the basis for a process to produce highly mono-unsaturated tallow fractions for use in food applications (e.g. frying) where a "healthy" low saturated fat product is required

  4. Organosolv liquefaction of sugarcane bagasse catalyzed by acidic ionic liquids.

    PubMed

    Chen, Zhengjian; Long, Jinxing

    2016-08-01

    An efficient and eco-friendly process is proposed for sugarcane bagasse liquefaction under mild condition using IL catalyst and environmental friendly solvent of ethanol/H2O. The relationship between IL acidic strength and its catalytic performance is investigated. The effects of reaction condition parameters such as catalyst dosage, temperature, time and solvent are also intensively studied. The results show that ethanol/H2O has a significant promotion effect on the simultaneous liquefaction of sugarcane bagasse carbohydrate and lignin. 97.5% of the bagasse can be liquefied with 66.46% of volatile product yield at 200°C for 30min. Furthermore, the IL catalyst shows good recyclability where no significant loss of the catalytic activity is exhibited even after five runs. PMID:27115746

  5. Graphene-Catalyzed Direct Friedel-Crafts Alkylation Reactions: Mechanism, Selectivity, and Synthetic Utility.

    PubMed

    Hu, Feng; Patel, Mehulkumar; Luo, Feixiang; Flach, Carol; Mendelsohn, Richard; Garfunkel, Eric; He, Huixin; Szostak, Michal

    2015-11-18

    Transition-metal-catalyzed alkylation reactions of arenes have become a central transformation in organic synthesis. Herein, we report the first general strategy for alkylation of arenes with styrenes and alcohols catalyzed by carbon-based materials, exploiting the unique property of graphenes to produce valuable diarylalkane products in high yields and excellent regioselectivity. The protocol is characterized by a wide substrate scope and excellent functional group tolerance. Notably, this process constitutes the first general application of graphenes to promote direct C-C bond formation utilizing polar functional groups anchored on the GO surface, thus opening the door for an array of functional group alkylations using benign and readily available graphene materials. Mechanistic studies suggest that the reaction proceeds via a tandem catalysis mechanism in which both of the coupling partners are activated by interaction with the GO surface. PMID:26496423

  6. A General Palladium-Catalyzed Hiyama Cross-Coupling Reaction of Aryl and Heteroaryl Chlorides.

    PubMed

    Yuen, On Ying; So, Chau Ming; Man, Ho Wing; Kwong, Fuk Yee

    2016-05-01

    A general palladium-catalyzed Hiyama cross-coupling reaction of aryl and heteroaryl chlorides with aryl and heteroaryl trialkoxysilanes by a Pd(OAc)2 /L2 catalytic system is presented. A newly developed water addition protocol can dramatically improve the product yields. The conjugation of the Pd/L2 system and the water addition protocol can efficiently catalyze a broad range of electron-rich, -neutral, -deficient, and sterically hindered aryl chlorides and heteroaryl chlorides with excellent yields within three hours and the catalyst loading can be down to 0.05 mol % Pd for the first time. Hiyama coupling of heteroaryl chlorides with heteroaryl silanes is also reported for the first time. The reaction can be easily scaled up 200 times (100 mmol) without any degasification and purification of reactants; this facilitates the practical application in routine synthesis. PMID:26998586

  7. A Mini-Review on Solid Acid Catalysts for Esterification Reactions

    NASA Astrophysics Data System (ADS)

    Sirsam, Rajkumar; Hansora, Dharmesh; Usmani, Ghayas A.

    2016-04-01

    This paper presents an overview of research pertaining to solid acid catalysts for esterification reactions. Prominence has been given to the literatures that have been appeared during the last two decades. A variety of reactions catalyzed by solid acid catalysts have been tabulated according to their broad classification; industrially important reactions have been outlined. Examples, where the use of various solid acid catalysts have led to an improvement in the selectivity of the desired products, have also been discussed. Various catalyzed esterification reactions using different approaches and previous kinetic studies have been reviewed. Types, preparation and synthesis of various solid acid catalysts have been reviewed and discussed. Suggestions have been summarized for their implementation in future work.

  8. Rh(I) -Catalyzed Cyclizative Addition Reaction of 1,6-Enyne and Sulfonyl Chloride by Carbophilic Activation.

    PubMed

    Dang, Mengyao; Hou, Longlei; Tong, Xiaofeng

    2016-06-01

    The π-acid-catalyzed cyclizations of 1,n-enynes by carbophilic activation have been extensively studied and appear as highly attractive processes, yet the cases within a catalytic cycle based on redox principle are rare. Herein, we report the cyclizative addition reactions of 1,6-enynes and sulfonyl chlorides by using a [Rh(cod)Cl/dppf] (dppf=1,1'-bis(diphenylphosphino)ferrocene) catalyst system. The process features the involvement of oxidative addition of sulfonyl chloride to Rh(I) catalyst, which generates [(dppf)(RSO2 )RhCl2 ] as a π-acid species to trigger cyclizative addition in a 6-endo-dig manner by carbophilic activation. Moreover, the catalytic protocol is also applicable to 1,6-diene analogues. PMID:27016845

  9. Metal-Catalyzed β-Functionalization of Michael Acceptors through Reductive Radical Addition Reactions.

    PubMed

    Streuff, Jan; Gansäuer, Andreas

    2015-11-23

    Transition-metal-catalyzed radical reactions are becoming increasingly important in modern organic chemistry. They offer fascinating and unconventional ways for connecting molecular fragments that are often complementary to traditional methods. In particular, reductive radical additions to α,β-unsaturated compounds have recently gained substantial attention as a result of their broad applicability in organic synthesis. This Minireview critically discusses the recent landmark achievements in this field in context with earlier reports that laid the foundation for today's developments. PMID:26471460

  10. A Simple and Efficient Synthesis of an Acid-labile Polyphosphoramidate by Organobase-catalyzed Ring-Opening Polymerization and Transformation to Polyphosphoester Ionomers by Acid Treatment

    PubMed Central

    Zhang, Shiyi; Wang, Hai; Shen, Yuefei; Zhang, Fuwu; Seetho, Kellie; Zou, Jiong; Taylor, John-Stephen A.; Dove, Andrew P.; Wooley, Karen L.

    2013-01-01

    The direct synthesis of an acid-labile polyphosphoramidate by organobase-catalyzed ring-opening polymerization and an overall two-step preparation of polyphosphodiester ionomers (PPEI) by acid-assisted cleavage of the phosphoramidate bonds along the backbone of the polyphosphoramidate were developed in this study. The ultrafast organobase-catalyzed ring-opening polymerization of a cyclic phospholane methoxyethyl amidate monomer initiated by benzyl alcohol allowed for the preparation of well-defined polyphosphoramidates (PPA) with predictable molecular weights, narrow molecular weight distributions (PDI<1.10), and well-defined chain ends. Cleavage of the acid-labile phosphoramidate bonds on the polyphosphoramidate repeat units was evaluated under acidic conditions over a pH range of 1–5, and the complete hydrolysis produced polyphosphodiesters. The thermal properties of the resulting polyphosphoester ionomer acid and polyphosphoester ionomer sodium salt exhibited significant thermal stability. The parent PPA and both forms of the PPEIs showed low cytotoxicities toward HeLa cells and RAW 264.7 mouse macrophage cells. The synthetic methodology developed here has enriched the family of water-soluble polymers prepared by rapid and convenient organobase-catalyzed ring-opening polymerizations and straightforward chemical medication reactions, which are designed to be hydrolytically degradable and have promise for numerous biomedical and other applications. PMID:23997276

  11. Triosephosphate isomerase: energetics of the reaction catalyzed by the yeast enzyme expressed in Escherichia coli

    SciTech Connect

    Nickbarg, E.B.; Knowles, J.R.

    1988-08-09

    Triosephosphate isomerase from bakers' yeast, expressed in Escherichia coli strain DF502(p12), has been purified to homogeneity. The kinetics of the reaction in each direction have been determined at pH 7.5 and 30 degrees C. Deuterium substitution at the C-2 position of substrate (R)-glyceraldehyde phosphate and at the 1-pro-R position of substrate dihydroxyacetone phosphate results in kinetic isotope effects on kcat of 1.6 and 3.4, respectively. The extent of transfer of tritium from (1(R)-TH)dihydroxyacetone phosphate to product (R)-glyceraldehyde phosphate during the catalyzed reaction is only 3% after 66% conversion to product, indicating that the enzymic base that mediates proton transfer is in rapid exchange with solvent protons. When the isomerase-catalyzed reaction is run in tritiated water in each direction, radioactivity is incorporated both into the remaining substrate and into the product. In the exchange-conversion experiment with dihydroxyacetone phosphate as substrate, the specific radioactivity of remaining dihydroxyacetone phosphate rises as a function of the extent of reaction with a slope of about 0.3, while the specific radioactivity of the products is 54% that of the solvent. In the reverse direction with (R)-glyceraldehyde phosphate as substrate, the specific radioactivity of the product formed is only 11% that of the solvent, while the radioactivity incorporated into the remaining substrate (R)-glyceraldehyde phosphate also rises as a function of the extent of reaction with a slope of 0.3. These results have been analyzed according to the protocol described earlier to yield the free energy profile of the reaction catalyzed by the yeast isomerase.

  12. Transition-Metal-Catalyzed Laboratory-Scale Carbon–Carbon Bond-Forming Reactions of Ethylene

    PubMed Central

    Saini, Vaneet; Stokes, Benjamin J.; Sigman, Matthew S.

    2014-01-01

    Ethylene, the simplest alkene, is the most abundantly synthesized organic molecule by volume. It is readily incorporated into transitionmetal–catalyzed carbon-carbon bond-forming reactions through migratory insertions into alkylmetal intermediates. Because of its D2h symmetry, only one insertion outcome is possible. This limits byproduct formation and greatly simplifies analysis. As described within this Minireview, many carbon–carbon bond-forming reactions incorporate a molecule (or more) of ethylene at ambient pressure and temperature. In many cases, a useful substituted alkene is incorporated into the product. PMID:24105881

  13. Rhodium-catalyzed C-C coupling reactions via double C-H activation.

    PubMed

    Li, Shuai-Shuai; Qin, Liu; Dong, Lin

    2016-05-18

    Various rhodium-catalyzed double C-H activations are reviewed. These powerful strategies have been developed to construct C-C bonds, which might be widely embedded in complex aza-fused heterocycles, polycyclic skeletons and heterocyclic scaffolds. In particular, rhodium(iii) catalysis shows good selectivity and reactivity to functionalize the C-H bond, generating reactive organometallic intermediates in most of the coupling reactions. Generally, intermolecular, intramolecular and multi-component coupling reactions via double C-H activations with or without heteroatom-assisted chelation are discussed in this review. PMID:27099126

  14. Stereoselective Synthesis of Saturated Heterocycles via Pd-Catalyzed Alkene Carboetherification and Carboamination Reactions

    PubMed Central

    Wolfe, John P.

    2009-01-01

    The development of Pd-catalyzed carboetherification and carboamination reactions between aryl/alkenyl halides and alkenes bearing pendant heteroatoms is described. These transformations effect the stereoselective construction of useful heterocycles such as tetrahydrofurans, pyrrolidines, imidazolidin-2-ones, isoxazolidines, and piperazines. The scope, limitations, and applications of these reactions are presented, and current stereochemical models are described. The mechanism of product formation, which involves an unusual intramolecular syn-insertion of an alkene into a Pd-Heteroatom bond is also discussed in detail. PMID:19183704

  15. Synthesis of C-15 Vindoline Analogues by Palladium-Catalyzed Cross-Coupling Reactions

    PubMed Central

    Johnson, Peter D.; Sohn, Jeong-Hun

    2008-01-01

    Described are general protocols for the rapid construction of various C-15-substituted analogs of vindoline using palladium-catalyzed cross-coupling reactions. The required bromo- and iodovindolines were prepared in high yield by the reaction of vindoline with N-bromosuccinimide or N-iodosuccinimide, respectively. The study not only led to the synthesis a number of structurally novel vindoline analogues but also opens the door to new strategies for the synthesis of vinblastine, vincristine, and related anticancer agents. Also described is the conversion of ent-tabersonine to ent-vindoline. PMID:16995709

  16. Copper-Catalyzed Reaction of Trifluoromethylketones with Aldehydes via a Copper Difluoroenolate.

    PubMed

    Doi, Ryohei; Ohashi, Masato; Ogoshi, Sensuke

    2016-01-01

    A copper-catalyzed reaction of easily accessible α,α,α-trifluoromethylketones with various aldehydes affords difluoro-methylene compounds in the presence of diboron and NaOtBu. The key process of the reaction is the formation of a copper difluoroenolate by 1,2-addition of a borylcopper intermediate to α,α,α-trifluoromethylketones and subsequent β-fluoride elimination. Mechanistic studies including the isolation and characterization of a possible anionic copper alkoxide intermediate are also described. PMID:26514445

  17. Asymmetric Palladium-Catalyzed Alkene Carboamination Reactions for the Synthesis of Cyclic Sulfamides.

    PubMed

    Garlets, Zachary J; Parenti, Kaia R; Wolfe, John P

    2016-04-18

    The synthesis of cyclic sulfamides by enantioselective Pd-catalyzed alkene carboamination reactions between N-allylsulfamides and aryl or alkenyl bromides is described. High levels of asymmetric induction (up to 95:5 e.r.) are achieved using a catalyst composed of [Pd2 (dba)3 ] and (S)-Siphos-PE. Deuterium-labelling studies indicate the reactions proceed through syn-aminopalladation of the alkene and suggest that the control of syn- versus anti-aminopalladation pathways is important for asymmetric induction. PMID:26968748

  18. Assembly of 3-Sulfenylbenzofurans and 3-Sulfenylindoles by Palladium-Catalyzed Cascade Annulation/Arylthiolation Reaction.

    PubMed

    Li, Jianxiao; Li, Chunsheng; Yang, Shaorong; An, Yanni; Wu, Wanqing; Jiang, Huanfeng

    2016-04-01

    A novel and efficient palladium-catalyzed cascade annulation/arylthiolation reaction has been developed to afford functionalized 3-sulfenylbenzofuran and 3-sulfenylindole derivatives in moderate to good yields from readily available 2-alkynylphenols and 2-alkynylamines in ionic liquids. This protocol provides a valuable synthetic tool for the assembly of a wide range of 3-sulfenylbenzofuran and 3-sulfenylindole derivatives with high atom- and step-economy and exceptional functional group tolerance. Moreover, the employment of ionic liquids under mild reaction conditions makes this transformation green and practical. Furthermore, this approach enriched current C-S bond formation chemistry, making a valuable and practical method in synthetic and medicinal chemistry. PMID:26980622

  19. Source of the oxygen atom in the product of cytochrome P-450-catalyzed N-demethylation reactions.

    PubMed

    Kedderis, G L; Dwyer, L A; Rickert, D E; Hollenberg, P F

    1983-05-01

    The source of the oxygen atom in the product of the cytochrome P-450-catalyzed N-demethylation of N-methylcarbazole was determined by mass spectral analysis of the carbinolamine precursor of formaldehyde formed during incubation in oxygen 18-enriched medium. Initial experiments demonstrated that N-(hydroxymethyl)carbazole, the carbinolamine product of the metabolism of N-methylcarbazole, did not exchange oxygen with solvent water. When N-methylcarbazole was incubated in oxygen 18-enriched medium with purified cytochrome P-450 in the presence of either purified NADPH-cytochrome P-450 reductase and NADPH, cumene hydroperoxide, t-butyl hydroperoxide, or peracetic acid, there was no incorporation of oxygen 18 from the medium into N-(hydroxymethyl)carbazole. These results clearly demonstrate that the oxygen atom inserted into N-methylcarbazole by cytochrome P-450 to yield N-(hydroxymethyl)carbazole does not come from the medium and show that the N-demethylation reactions catalyzed by cytochrome P-450 proceed in a manner similar to hydroxylation reactions, with the oxygen atom in the product being derived from the oxidant. PMID:6408392

  20. Benzoic acid 2-hydroxylase, a soluble oxygenase from tobacco, catalyzes salicylic acid biosynthesis

    SciTech Connect

    Leon, J.; Shulaev, V.; Yalpani, N.

    1995-10-24

    Benzoic acid 2-hydroxylase (BA2H) catalyzes the biosynthesis of salicylic acid from benzoic acid. The enzyme has been partially purified and characterized as a soluble protein of 160 kDa. High-efficiency in vivo labeling of salicyclic acid with {sup 18}O{sub 2} suggested that BA2H is an oxygenase that specifically hydroxylates the ortho position of benzoic acid. The enzyme was strongly induced by either tobacco mosaic virus inoculation of benzoic acid infiltration of tobacco leaves and it was inhibited by CO and other inhibitors of cytochrome P450 hydroxylases. The BA2H activity was immunodepleted by antibodies raised against SU2, a soluble cytochrome P450 from Streptomyces griseolus. The anti-SU2 antibodies immunoprecipitated a radiolabeled polypeptide of around 160 kDa from the soluble protein extracts of L-[{sup 35}S]-methionine-fed tobacco leaves. Purified BA2H showed CO-difference spectra with a maximum at 457 nm. These data suggest that BA2H belongs to a novel class of soluble, high molecular weight cytochrome P450 enzymes. 21 refs., 6 figs., 1 tab.

  1. Kinetic characterization of the first step of the ribozyme-catalyzed trans excision-splicing reaction.

    PubMed

    Dotson, P Patrick; Sinha, Joy; Testa, Stephen M

    2008-06-01

    Group I introns catalyze the self-splicing reaction, and their derived ribozymes are frequently used as model systems for the study of RNA folding and catalysis, as well as for the development of non-native catalytic reactions. Utilizing a group I intron-derived ribozyme from Pneumocystis carinii, we previously reported a non-native reaction termed trans excision-splicing (TES). In this reaction, an internal segment of RNA is excised from an RNA substrate, resulting in the covalent reattachment of the flanking regions. TES proceeds through two consecutive phosphotransesterification reactions, which are similar to the reaction steps of self-splicing. One key difference is that TES utilizes the 3'-terminal guanosine of the ribozyme as the first-step nucleophile, whereas self-splicing utilizes an exogenous guanosine. To further aid in our understanding of ribozyme reactions, a kinetic framework for the first reaction step (substrate cleavage) was established. The results demonstrate that the substrate binds to the ribozyme at a rate expected for simple helix formation. In addition, the rate constant for the first step of the TES reaction is more than one order of magnitude lower than the analogous step in self-splicing. Results also suggest that a conformational change, likely similar to that in self-splicing, exists between the two reaction steps of TES. Finally, multiple turnover is curtailed because dissociation of the cleavage product is slower than the rate of chemistry. PMID:18479464

  2. Formation of Linear Polyenes in Thermal Dehydration of Polyvinyl Alcohol, Catalyzed by Phosphotungstic Acid

    NASA Astrophysics Data System (ADS)

    Tretinnikov, O. N.; Sushko, N. I.

    2015-01-01

    In order to obtain linear polyenes in polyvinyl alcohol films via acid-catalyzed thermal dehydration of the polyvinyl alcohol, we used phosphotungstic acid as the catalyst: a safe and heat-stable solid chemical compound. We established that phosphotungstic acid, introduced as solid nanoparticles into polyvinyl alcohol films, is a more effective dehydration catalyst than hydrochloric acid, since in contrast to HCl it does not evaporate from the film during heat treatment.

  3. Fundamental Reaction Mechanism and Free Energy Profile for (−)-Cocaine Hydrolysis Catalyzed by Cocaine Esterase

    PubMed Central

    Liu, Junjun; Hamza, Adel; Zhan, Chang-Guo

    2009-01-01

    Fundamental reaction mechanism of cocaine esterase (CocE)-catalyzed hydrolysis of (−)-cocaine and the corresponding free energy profile have been studied by performing pseudobond first-principle quantum mechanical/molecular mechanical (QM/MM)-free energy (FE) calculations. Based on the QM/MM-FE results, the entire hydrolysis reaction consists of four reaction steps, including the nucleophilic attack on carbonyl carbon of (−)-cocaine benzoyl ester by hydroxyl group of Ser117, dissociation of (−)-cocaine benzoyl ester, nucleophilic attack on carbonyl carbon of (−)-cocaine benzoyl ester by water, and finally the dissociation between (−)-cocaine benzoyl group and Ser117 of CocE. The third reaction step involving the nucleophilic attack of a water molecule was found to be rate-determining, which is remarkably different from (−)-cocaine hydrolysis catalyzed by wild-type butyrylcholinesterase (where the formation of prereactive BChE-(−)-cocaine complex is rate-determining) or its mutants containing Tyr332Gly or Tyr332Gly mutation (where the first chemical reaction step is rate-determining). Besides, the role of Asp259 in the catalytic triad of CocE does not follow the general concept of the “charge-relay system” for all serine esterases. The free energy barrier calculated for the rate-determining step of CocE-catalyzed hydrolysis of (−)-cocaine is 17.9 kcal/mol, which is in good agreement with the experimentally derived activation free energy of 16.2 kcal/mol. In present study, where many sodium ions are present, the effects of counter ions are found to be significant in determining the free energy barrier. The finding of the significant effects of counter ions on the free energy barrier may also be valuable in guiding future mechanistic studies on other charged enzymes. PMID:19642701

  4. The Lewis-acid-catalyzed synthesis of hyperbranched poly(glycerol-diacid)s in toluene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The first examples of monomeric glycerol-derived hyperbranched polyesters produced in a non-polar solvent system are reported here. The polymers were made by the Lewis acid (dibutyltin(IV)oxide)-catalyzed polycondensation of glycerol with either succinic acid (n (aliphatic chain length)=2), glutari...

  5. Catalyzed ring-opening polymerization of epoxidized soybean oil by hydrated and anhydrous fluoroantimonic acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ring-opening polymerization of epoxidized soybean oil (ESO) catalyzed by the super acid, fluroantimonic acid hexahydrate (HSbF6-6H2O), and the anhydrous form (HSbF6) in ethyl acetate was conducted in an effort to develop useful biodegradable polymers. The resulting polymerized ESO (SA-RPESO and SAA-...

  6. Palladium(II)/Brønsted Acid-Catalyzed Enantioselective Oxidative Carbocyclization-Borylation of Enallenes.

    PubMed

    Jiang, Tuo; Bartholomeyzik, Teresa; Mazuela, Javier; Willersinn, Jochen; Bäckvall, Jan-E

    2015-05-11

    An enantioselective oxidative carbocyclization-borylation of enallenes that is catalyzed by palladium(II) and a Brønsted acid was developed. Biphenol-type chiral phosphoric acids were superior co-catalysts for inducing the enantioselective cyclization. A number of chiral borylated carbocycles were synthesized in high enantiomeric excess. PMID:25808996

  7. Palladium(II)/Brønsted Acid-Catalyzed Enantioselective Oxidative Carbocyclization–Borylation of Enallenes**

    PubMed Central

    Jiang, Tuo; Bartholomeyzik, Teresa; Mazuela, Javier; Willersinn, Jochen; Bäckvall, Jan-E

    2015-01-01

    An enantioselective oxidative carbocyclization–borylation of enallenes that is catalyzed by palladium(II) and a Brønsted acid was developed. Biphenol-type chiral phosphoric acids were superior co-catalysts for inducing the enantioselective cyclization. A number of chiral borylated carbocycles were synthesized in high enantiomeric excess. PMID:25808996

  8. Acid-Catalyzed Conversion of Furfuryl Alcohol to Ethyl Levulinate in Liquid Ethanol

    PubMed Central

    González Maldonado, Gretchen M.; Assary, Rajeev S.; Dumesic, James; Curtiss, Larry A.

    2014-01-01

    Reaction pathways for the acid-catalyzed conversion of furfuryl alcohol (FAL) to ethyl levulinate (EL) in ethanol were investigated using liquid chromatography-mass spectrometry (LC-MS), 1D and 2D nuclear magnetic resonance (NMR) spectroscopy, and ab initio high-level quantum chemical (G4MP2) calculations. Our combined studies show that the production of EL at high yields from FAL is not accompanied by stoichiometric production of diethyl either (DEE), indicating that ethoxymethyl furan (EMF) is not an intermediate in the major reaction pathway. Several intermediates were observed using an LC-MS system, and three of these intermediates were isolated and subjected to reaction conditions. The structures of two intermediates were elucidated using 1D and 2D NMR techniques. One of these intermediates is EMF, which forms EL and DEE in a secondary reaction pathway. The second intermediate identified is 4,5,5-triethoxypentan-2-one, which is analogous to one of the intermediates observed in the conversion of FAL to LA in water (i.e. 4,5,5-trihydroxypentan-2-one). Furthermore, conversion of this intermediate to EL again involves the formation of DEE, indicating that it is also part of a secondary pathway. The primary pathway for production of EL involves solvent-assisted transfer of a water molecule from the partially detached protonated hydroxyl group of FAL to a ring carbon, followed by intra-molecular hydrogen shift, where the apparent reaction barrier for the hydrogen shift is relatively smaller in ethanol (21.1 kcal/mol) than that in water (26.6 kcal/mol). PMID:25035710

  9. Manganese(II) catalyzes the bicarbonate-dependent oxidation of amino acids by hydrogen peroxide and the amino acid-facilitated dismutation of hydrogen peroxide.

    PubMed

    Berlett, B S; Chock, P B; Yim, M B; Stadtman, E R

    1990-01-01

    In bicarbonate/CO2 buffer, Mn(II) and Fe(II) catalyze the oxidation of amino acids by H2O2 and the dismutation of H2O2. As the Mn(II)/Fe(II) ratio is increased, the yield of carbonyl compounds per mole of leucine oxidized is essentially constant, but the ratio of alpha-ketoisocaproate to isovaleraldehyde formed increases, and the fraction of H2O2 converted to O2 increases. In the absence of Fe(II), the rate of Mn(II)-catalyzed leucine oxidation is directly proportional to the H2O2, Mn(II), and amino acid concentrations and is proportional to the square of the HCO3- concentration. The rate of Mn(II)-catalyzed O2 production in the presence of 50 mM alanine or leucine is about 4-fold the rate observed in the absence of amino acids and accounts for about half of the H2O2 consumed; the other half of the H2O2 is consumed in the oxidation of the amino acids. In contrast, O2 production is increased nearly 18-fold by the presence of alpha-methylalanine and accounts for about 90% of the H2O2 consumed. The data are consistent with the view that H2O2 decomposition is an inner sphere (cage-like) process catalyzed by a Mn coordination complex of the composition Mn(II), amino acid, (HCO3-)2. Oxidation of the amino acid in this complex most likely proceeds by a free radical mechanism involving hydrogen abstraction from the alpha-carbon as a critical step. The results demonstrate that at physiological concentrations of HCO3- and CO2, Mn(II) is able to facilitate Fenton-type reactions. PMID:2296594

  10. Keratin Protein-Catalyzed Nitroaldol (Henry) Reaction and Comparison with Other Biopolymers.

    PubMed

    Häring, Marleen; Pettignano, Asja; Quignard, Françoise; Tanchoux, Nathalie; Díaz Díaz, David

    2016-01-01

    Here we describe a preliminary investigation on the ability of natural keratin to catalyze the nitroaldol (Henry) reaction between aldehydes and nitroalkanes. Both aromatic and heteroaromatic aldehydes bearing strong or moderate electron-withdrawing groups were converted into the corresponding β-nitroalcohol products in both DMSO and in water in the presence of tetrabutylammonium bromide (TBAB) as a phase transfer catalyst. Negligible background reactions (i.e., negative control experiment in the absence of keratin protein) were observed in these solvent systems. Aromatic aldehydes bearing electron-donating groups and aliphatic aldehydes showed poor or no conversion, respectively. In general, the reactions in water/TBAB required twice the amount of time than in DMSO to achieve similar conversions. Moreover, comparison of the kinetics of the keratin-mediated nitroaldol (Henry) reaction with other biopolymers revealed slower rates for the former and the possibility of fine-tuning the kinetics by appropriate selection of the biopolymer and solvent. PMID:27571051

  11. Elucidation of Mechanisms and Selectivities of Metal-Catalyzed Reactions using Quantum Chemical Methodology.

    PubMed

    Santoro, Stefano; Kalek, Marcin; Huang, Genping; Himo, Fahmi

    2016-05-17

    Quantum chemical techniques today are indispensable for the detailed mechanistic understanding of catalytic reactions. The development of modern density functional theory approaches combined with the enormous growth in computer power have made it possible to treat quite large systems at a reasonable level of accuracy. Accordingly, quantum chemistry has been applied extensively to a wide variety of catalytic systems. A huge number of problems have been solved successfully, and vast amounts of chemical insights have been gained. In this Account, we summarize some of our recent work in this field. A number of examples concerned with transition metal-catalyzed reactions are selected, with emphasis on reactions with various kinds of selectivities. The discussed cases are (1) copper-catalyzed C-H bond amidation of indoles, (2) iridium-catalyzed C(sp(3))-H borylation of chlorosilanes, (3) vanadium-catalyzed Meyer-Schuster rearrangement and its combination with aldol- and Mannich-type additions, (4) palladium-catalyzed propargylic substitution with phosphorus nucleophiles, (5) rhodium-catalyzed 1:2 coupling of aldehydes and allenes, and finally (6) copper-catalyzed coupling of nitrones and alkynes to produce β-lactams (Kinugasa reaction). First, the methodology adopted in these studies is presented briefly. The electronic structure method in the great majority of these kinds of mechanistic investigations has for the last two decades been based on density functional theory. In the cases discussed here, mainly the B3LYP functional has been employed in conjunction with Grimme's empirical dispersion correction, which has been shown to improve the calculated energies significantly. The effect of the surrounding solvent is described by implicit solvation techniques, and the thermochemical corrections are included using the rigid-rotor harmonic oscillator approximation. The reviewed examples are chosen to illustrate the usefulness and versatility of the adopted methodology in

  12. Helical-Peptide-Catalyzed Enantioselective Michael Addition Reactions and Their Mechanistic Insights.

    PubMed

    Ueda, Atsushi; Umeno, Tomohiro; Doi, Mitsunobu; Akagawa, Kengo; Kudo, Kazuaki; Tanaka, Masakazu

    2016-08-01

    Helical peptide foldamer catalyzed Michael addition reactions of nitroalkane or dialkyl malonate to α,β-unsaturated ketones are reported along with the mechanistic considerations of the enantio-induction. A wide variety of α,β-unsaturated ketones, including β-aryl, β-alkyl enones, and cyclic enones, were found to be catalyzed by the helical peptide to give Michael adducts with high enantioselectivities (up to 99%). On the basis of X-ray crystallographic analysis and depsipeptide study, the amide protons, N(2)-H and N(3)-H, at the N terminus in the α-helical peptide catalyst were crucial for activating Michael donors, while the N-terminal primary amine activated Michael acceptors through the formation of iminium ion intermediates. PMID:27384597

  13. Rhodium(I)-catalyzed regiospecific dimerization of aromatic acids: two direct C-H bond activations in water.

    PubMed

    Gong, Hang; Zeng, Huiying; Zhou, Feng; Li, Chao-Jun

    2015-05-01

    2,2'-Diaryl acids are key building blocks for some of the most important and high-performance polymers such as polyesters and polyamides (imides), as well as structural motifs of MOFs (metal-organic frameworks) and biological compounds. In this study, a direct, regiospecific and practical dimerization of simple aromatic acids to generate 2,2'-diaryl acids has been discovered, which proceeds through two rhodium-catalyzed C-H activations in water. This reaction can be easily scaled up to gram level by using only 0.4-0.6 mol % of the rhodium catalyst. As a proof-of-concept, the natural product ellagic acid was synthesized in two steps by this method. PMID:25765625

  14. Intra- and Intermolecular Nickel-Catalyzed Reductive Cross-Electrophile Coupling Reactions of Benzylic Esters with Aryl Halides.

    PubMed

    Konev, Mikhail O; Hanna, Luke E; Jarvo, Elizabeth R

    2016-06-01

    Nickel-catalyzed cross-electrophile coupling reactions of benzylic esters and aryl halides have been developed. Both inter- and intramolecular variants proceed under mild reaction conditions. A range of heterocycles and functional groups are tolerated under the reaction conditions. Additionally, the first example of a stereospecific cross-electrophile coupling of a secondary benzylic ester is described. PMID:27099968

  15. Asymmetric 1,3-Dipolar Cycloaddition Reactions Catalyzed by Heterocycle-Based Metal Complexes

    NASA Astrophysics Data System (ADS)

    Suga, Hiroyuki

    Highly enantioselective 1,3-dipolar cycloaddition reactions of several 1,3-dipoles, such as nitrones, nitrile oxides, nitrile imines, diazoalkanes, azomethine imines and carbonyl ylides, catalyzed by heterocyclic supramolecular type of metal complexes consisting of chiral heterocyclic compounds and metal salts were described in terms of their ability of asymmetric induction and enantioface differentiation. The scope and limitations of each cycloaddition reactions were also briefly described. Of the chiral hererocycle-based ligands, chiral bisoxazoline, 2,6-bis(oxazolinyl)pyridine, and related oxazoline ligands are shown to be quite effective in obtaining high levels of asymmtric induction. The combination of the bisoxazoline ligand derived from (1S,2R)-cis-1-amino-2-indanol and metal salts was especially efficient for asymmetric cycloaddition reactions of a number of 1,3-dipoles, such as nitrones, nitrile oxide, nitrile imines, diazoacetates and azomethine imines. The metals utilized for the heterocycle-based complexes show a crucial role for degree of asymmetric induction depending upon the 1,3-dipole used. High levels of enantioselectivity were achieved in 1,3-dipolar cycloaddition reactions of unstable carbonyl ylides with benzyloxyacetaldehyde derivatives, α-keto esters, 3-(2-alkenoyl)-2-oxazolidinones, and even vinyl ethers, which were catalyzed by Pybox-lanthanoid metal complexes.

  16. Nickel-Catalyzed Cross Couplings of Benzylic Ammonium Salts and Boronic Acids: Stereospecific Formation of Diarylethanes via C–N Bond Activation

    PubMed Central

    Maity, Prantik; Shacklady-McAtee, Danielle M.; Yap, Glenn P. A.; Sirianni, Eric R.; Watson, Mary P.

    2014-01-01

    We have developed a nickel-catalyzed cross coupling of benzylic ammonium triflates with aryl boronic acids to afford diarylmethanes and diarylethanes. This reaction proceeds under mild reaction conditions and with exceptional functional group tolerance. Further, it transforms branched benzylic ammonium salts to diarylethanes with excellent chirality transfer, offering a new strategy for the synthesis of highly enantioenriched diarylethanes from readily available chiral benzylic amines. PMID:23268734

  17. Bulk gold catalyzed oxidation reactions of amines and isocyanides and iron porphyrin catalyzed N-H and O-H bond insertion/cyclization reactions of diamines and aminoalcohols

    SciTech Connect

    Klobukowski, Erik

    2011-01-01

    conditions, it was found that the oxidative dehydrogenation of dibenzylamine to Nbenzylidenebenzylamine, with N-methylmorpholine N-oxide (NMMO), was nearly quantitative (96%) within 24 h. However, the reaction with oxygen was much slower, with only a 52% yield of imine product over the same time period. Moreover, the rate of reaction was found to be influenced by the nature of the amine N-oxide. For example, the use of the weakly basic pyridine N-oxide (PyNO) led to an imine yield of only 6% after 24 h. A comparison of amine N-oxide and O2 was also examined in the oxidation of PhCH{sub 2}OH to PhCHO catalyzed by bulk gold. In this reaction, a 52% yield of the aldehyde was achieved when NMMO was used, while only a 7% product yield was afforded when O{sub 2} was the oxidant after 48 h. The bulk gold-catalyzed oxidative dehydrogenation of cyclic amines generates amidines, which upon treatment with Aerosil and water were found to undergo hydrolysis to produce lactams. Moreover, 5-, 6-, and 7-membered lactams could be prepared through a one-pot reaction of cyclic amines by treatment with oxygen, water, bulk gold, and Aerosil. This method is much more atom economical than industrial processes, does not require corrosive acids, and does not generate undesired byproducts. Additionally, the gold and Aerosil catalysts can be readily separated from the reaction mixture. The second project involved studying iron(III) tetraphenylporphyrin chloride, Fe(TPP)Cl, as a homogeneous catalyst for the generation of carbenes from diazo reagents and their reaction with heteroatom compounds. Fe(TPP)Cl, efficiently catalyzed the insertion of carbenes derived from methyl 2-phenyldiazoacetates into O-H bonds of aliphatic and aromatic alcohols. Fe(TPP)Cl was also found to be an effective catalyst for tandem N-H and O-H insertion/cyclization reactions when 1,2-diamines and 1,2-alcoholamines were treated with diazo reagents. This approach provides a one-pot process for synthesizing piperazinones and

  18. Lipase-catalyzed ethanolysis of milk fat with a focus on short-chain fatty acid selectivity.

    PubMed

    Lubary, Marta; ter Horst, Joop H; Hofland, Gerard W; Jansens, Peter J

    2009-01-14

    Mixtures of fatty acid ethyl esters were produced by lipase-catalyzed ethanolysis of milk fat triglycerides. Three commercial immobilized lipases (Lipozyme TL, Lipozyme RM, and Novozym 435) were tested in different reaction conditions with the aim of maximizing the conversion of the short-chain fatty acid fraction of milk fat to flavor ethyl esters. The influence of the reactants molar ratio was investigated, as well as three different reaction media, that is, hexane, CO(2)-expanded liquid (GXL), and the solvent-free mixture. Novozym 435 showed the highest activity in all conditions. This lipase also exhibited selectivity for short-chain fatty acids, which, at short reaction times, resulted in a product mixture richer in short-chain fatty acids than the original milk fat. The highest selectivities were obtained in hexane and in CO(2)-expanded liquid fat, at low ethanol to fat ratios. Using dense CO(2) as the reaction cosolvent is attractive because it results in the largest short-chain fatty acid enrichment in the product mixture, while leaving no residues in the product. PMID:19072544

  19. Theoretical study of the reaction mechanism of phenolic acid decarboxylase.

    PubMed

    Sheng, Xiang; Lind, Maria E S; Himo, Fahmi

    2015-12-01

    The cofactor-free phenolic acid decarboxylases (PADs) catalyze the non-oxidative decarboxylation of phenolic acids to their corresponding p-vinyl derivatives. Phenolic acids are toxic to some organisms, and a number of them have evolved the ability to transform these compounds, including PAD-catalyzed reactions. Since the vinyl derivative products can be used as polymer precursors and are also of interest in the food-processing industry, PADs might have potential applications as biocatalysts. We have investigated the detailed reaction mechanism of PAD from Bacillus subtilis using quantum chemical methodology. A number of different mechanistic scenarios have been considered and evaluated on the basis of their energy profiles. The calculations support a mechanism in which a quinone methide intermediate is formed by protonation of the substrate double bond, followed by C-C bond cleavage. A different substrate orientation in the active site is suggested compared to the literature proposal. This suggestion is analogous to other enzymes with p-hydroxylated aromatic compounds as substrates, such as hydroxycinnamoyl-CoA hydratase-lyase and vanillyl alcohol oxidase. Furthermore, on the basis of the calculations, a different active site residue compared to previous proposals is suggested to act as the general acid in the reaction. The mechanism put forward here is consistent with the available mutagenesis experiments and the calculated energy barrier is in agreement with measured rate constants. The detailed mechanistic understanding developed here might be extended to other members of the family of PAD-type enzymes. It could also be useful to rationalize the recently developed alternative promiscuous reactivities of these enzymes. PMID:26408050

  20. Regioselective Copper-Catalyzed Amination of Chlorobenzoic Acids: Synthesis and Solid-State Structures of N-Aryl Anthranilic Acid Derivatives

    PubMed Central

    Mei, Xuefeng; August, Adam T.; Wolf, Christian

    2008-01-01

    A chemo- and regioselective copper-catalyzed cross-coupling reaction for effective amination of 2-chlorobenzoic acids with aniline derivatives has been developed. The method eliminates the need for acid protection and produces a wide range of N-aryl anthranilic acid derivatives in up to 99%. The amination was found to proceed with both electron-rich and electron-deficient aryl chlorides and anilines and also utilizes sterically hindered anilines such as 2,6-dimethylaniline and 2-tert-butylaniline. The conformational isomerism of appropriately substituted N-aryl anthranilic acids has been investigated in the solid state. Crystallographic analysis of seven anthranilic acid derivatives showed formation of two distinct supramolecular architectures exhibiting trans-anti- and unprecedented trans-syn-dimeric structures. PMID:16388629

  1. Vapor-phase esterification of acetic acid with ethanol catalyzed by a macroporous sulfonated styrene-divinylbenzene (20%) resin

    SciTech Connect

    Gimenez, J.; Costa, J.; Cervera, S.

    1987-02-01

    The kinetics of the vapor-phase (85-120/sup 0/C) esterification of acetic acid with ethyl alcohol, at atmospheric pressure, catalyzed by a macroporous sulfonated styrene-divinylbenzene (DVB;20%) resin, has been studied. A simple first-order model (r = kp/sub 1/) fits experimental kinetic data properly for a constant reactants ratio. Discussion by means of L-H-H-W models shows that the rate-controlling step is the surface reaction with a single-site mechanism. The apparent activation energy is 4000 cal/mol.

  2. Immobilized phospholipase A1-catalyzed modification of phosphatidylcholine with n-3 polyunsaturated fatty acid.

    PubMed

    Zhao, TingTing; No, Da Som; Kim, Byung Hee; Garcia, Hugo S; Kim, Yangha; Kim, In-Hwan

    2014-08-15

    n-3 Polyunsaturated fatty acids (n-3 PUFA)-enriched phosphatidylcholine (PC) was successfully produced with fatty acid from fish oil and PC from soybean by immobilized phospholipase A1-catalyzed acidolysis. Detailed studies of immobilization were carried out, and Lewatit VP OC 1600 was selected as a carrier for preparation of immobilized phospholipase A1, which was used for modification of PC by acidolysis. For acidolysis of PC with n-3 PUFA, the effects of several parameters, namely, water content, temperature, and enzyme loading on the reaction time course were investigated to determine optimum conditions. The optimum water content, temperature, and enzyme loading were 1.0%, 55 °C, and 20%, respectively. The highest incorporation (57.4 mol%) of n-3 PUFA into PC was obtained at 24h and the yield of PC was 16.7 mol%. The yield of PC increased significantly by application of vacuum, even though a slight decrease of n-3 PUFA incorporation was observed. PMID:24679762

  3. Dual Lewis Acid/Lewis Base Catalyzed Acylcyanation of Aldehydes: A Mechanistic Study.

    PubMed

    Laurell Nash, Anna; Hertzberg, Robin; Wen, Ye-Qian; Dahlgren, Björn; Brinck, Tore; Moberg, Christina

    2016-03-01

    A mechanistic investigation, which included a Hammett correlation analysis, evaluation of the effect of variation of catalyst composition, and low-temperature NMR spectroscopy studies, of the Lewis acid-Lewis base catalyzed addition of acetyl cyanide to prochiral aldehydes provides support for a reaction route that involves Lewis base activation of the acyl cyanide with formation of a potent acylating agent and cyanide ion. The cyanide ion adds to the carbonyl group of the Lewis acid activated aldehyde. O-Acylation by the acylated Lewis base to form the final cyanohydrin ester occurs prior to decomplexation from titanium. For less reactive aldehydes, the addition of cyanide is the rate-determining step, whereas, for more reactive, electron-deficient aldehydes, cyanide addition is rapid and reversible and is followed by rate-limiting acylation. The resting state of the catalyst lies outside the catalytic cycle and is believed to be a monomeric titanium complex with two alcoholate ligands, which only slowly converts into the product. PMID:26592522

  4. An Upstream By-product from Ester Activation via NHC-Catalysis Catalyzes Downstream Sulfonyl Migration Reaction.

    PubMed

    Han, Runfeng; He, Liwenze; Liu, Lin; Xie, Xingang; She, Xuegong

    2016-01-01

    A sequential reaction combining N-heterocyclic carbene (NHC) and N-hydroxyphthalimide (NHPI) catalysis allowed for the upstream by-product NHPI, which was generated in the NHC-catalyzed cycloaddition reaction, to act as the catalyst for a downstream nitrogen-to-carbon sulfonyl migration reaction. Enantiomeric excess of the major product in the cycloaddition reaction remained intact in the follow-up sulfonyl migration reaction. PMID:26522328

  5. Metal-Catalyzed Cyclization Reactions of 2,3,4-Trien-1-ols: A Joint Experimental-Computational Study.

    PubMed

    Alcaide, Benito; Almendros, Pedro; Cembellín, Sara; Fernández, Israel; Martínez Del Campo, Teresa

    2016-08-01

    Controlled preparation of tri- and tetrasubstituted furans, as well as carbazoles has been achieved through chemo- and regioselective metal-catalyzed cyclization reactions of cumulenic alcohols. The gold- and palladium-catalyzed cycloisomerization reactions of cumulenols, including indole-tethered 2,3,4-trien-1-ols, to trisubstituted furans was effective, due to a 5-endo-dig oxycyclization by attack of the hydroxy group onto the central cumulene double bond. In contrast, palladium-catalyzed heterocyclization/coupling reactions with 3-bromoprop-1-enes furnished tetrasubstituted furans. Also studied was the palladium-catalyzed cyclization/coupling sequence involving protected indole-tethered 2,3,4-trien-1-ols and 3-bromoprop-1-enes that exclusively generated trisubstituted carbazole derivatives. These results could be explained through a selective 6-endo-dig cumulenic hydroarylation, followed by aromatization. DFT calculations were carried out to understand this difference in reactivity. PMID:27383332

  6. Divergent reactivity in palladium-catalyzed annulation with diarylamines and α,β-unsaturated acids: direct access to substituted 2-quinolinones and indoles.

    PubMed

    Kancherla, Rajesh; Naveen, Togati; Maiti, Debabrata

    2015-06-01

    A palladium-catalyzed CH activation strategy has been successfully employed for exclusive synthesis of a variety of 3-substituted indoles. A [3+3] annulation for synthesizing substituted 2-quinolinones was recently developed by reaction of α,β-unsaturated carboxylic acids with diarylamines under acidic conditions. In the present work, an analogous [3+2] annulation is achieved from the same set of starting materials under basic conditions to generate 1,3-disubstituted indoles exclusively. Mechanistic studies revealed an ortho-palladation-π-coordination-β-migratory insertion-β-hydride elimination reaction sequence to be operative under the reaction conditions. PMID:25941155

  7. Enantiodivergent Atroposelective Synthesis of Chiral Biaryls by Asymmetric Transfer Hydrogenation: Chiral Phosphoric Acid Catalyzed Dynamic Kinetic Resolution.

    PubMed

    Mori, Keiji; Itakura, Tsubasa; Akiyama, Takahiko

    2016-09-12

    Reported herein is an enantiodivergent synthesis of chiral biaryls by a chiral phosphoric acid catalyzed asymmetric transfer hydrogenation reaction. Upon treatment of biaryl lactols with aromatic amines and a Hantzsch ester in the presence of chiral phosphoric acid, dynamic kinetic resolution (DKR) involving a reductive amination reaction proceeded smoothly to furnish both R and S isomers of chiral biaryls with excellent enantioselectivities by proper choice of hydroxyaniline derivative. This trend was observed in wide variety of substrates, and various chiral biphenyl and phenyl naphthyl adducts were synthesized with satisfactory enantioselectivities in enantiodivergent fashion. The enantiodivergent synthesis of synthetically challenging, chiral o-tetrasubstituted biaryls were also accomplished, and suggests high synthetic potential of the present method. PMID:27491630

  8. Synthesis of diverse β-quaternary ketones via palladium-catalyzed asymmetric conjugate addition of arylboronic acids to cyclic enones

    PubMed Central

    Holder, Jeffrey C.; Goodman, Emmett D.; Kikushima, Kotaro; Gatti, Michele; Marziale, Alexander N.; Stoltz, Brian M.

    2014-01-01

    The development and optimization of a palladium-catalyzed asymmetric conjugate addition of arylboronic acids to cyclic enone conjugate acceptors is described. These reactions employ air-stable and readily-available reagents in an operationally simple and robust transformation that yields β-quaternary ketones in high yields and enantioselectivities. Notably, the reaction itself is highly tolerant of atmospheric oxygen and moisture and therefore does not require the use of dry or deoxygenated solvents, specially purified reagents, or an inert atmosphere. The ring size and β-substituent of the enone are highly variable, and a wide variety of β-quaternary ketones can be synthesized. More recently, the use of NH4PF6 has further expanded the substrate scope to include heteroatom-containing arylboronic acids and β-acyl enone substrates. PMID:26461082

  9. Pd(II)-Catalyzed Asymmetric Addition of Arylboronic Acids to Isatin-Derived Ketimines.

    PubMed

    He, Qun; Wu, Liang; Kou, Xuezhen; Butt, Nicholas; Yang, Guoqiang; Zhang, Wanbin

    2016-01-15

    A Pd(II)/Pyrox-catalyzed enantioselecitve addition of arylboronic acids to 3-ketimino oxindoles was developed, providing chiral 3-amino-2-oxindoles with a quaternary stereocenter in high yields and with good enantioselectivities. A variety of functionalized 3-ketimino oxindoles can be used, and the method tolerates some variation in arylboronic acid scope. This asymmetric arylation provides an alternative efficient catalytic method for the preparation of chiral 3-aryl-3-amino-2-oxindoles, which also represents the first example of a Pd(II)-catalyzed addition of arylborons to exocyclic ketimines. PMID:26720106

  10. Selective Heterogeneous C-H Activation/Halogenation Reactions Catalyzed by Pd@MOF Nanocomposites.

    PubMed

    Pascanu, Vlad; Carson, Fabian; Solano, Marta Vico; Su, Jie; Zou, Xiaodong; Johansson, Magnus J; Martín-Matute, Belén

    2016-03-01

    A directed heterogeneous C-H activation/halogenation reaction catalyzed by readily synthesized Pd@MOF nanocatalysts was developed. The heterogeneous Pd catalysts used were a novel and environmentally benign Fe-based metal-organic framework (MOF) (Pd@MIL-88B-NH2 (Fe)) and the previously developed Pd@MIL-101-NH2 (Cr). Very high conversions and selectivities were achieved under very mild reaction conditions and in short reaction times. A wide variety of directing groups, halogen sources, and substitution patterns were well tolerated, and valuable polyhalogenated compounds were synthesized in a controlled manner. The synthesis of the Pd-functionalized Fe-based MOF and the recyclability of the two catalysts are also presented. PMID:26481867

  11. Peroxygenase-Catalyzed Oxyfunctionalization Reactions Promoted by the Complete Oxidation of Methanol.

    PubMed

    Ni, Yan; Fernández-Fueyo, Elena; Gomez Baraibar, Alvaro; Ullrich, René; Hofrichter, Martin; Yanase, Hideshi; Alcalde, Miguel; van Berkel, Willem J H; Hollmann, Frank

    2016-01-11

    Peroxygenases catalyze a broad range of (stereo)selective oxyfunctionalization reactions. However, to access their full catalytic potential, peroxygenases need a balanced provision of hydrogen peroxide to achieve high catalytic activity while minimizing oxidative inactivation. Herein, we report an enzymatic cascade process that employs methanol as a sacrificial electron donor for the reductive activation of molecular oxygen. Full oxidation of methanol is achieved, generating three equivalents of hydrogen peroxide that can be used completely for the stereoselective hydroxylation of ethylbenzene as a model reaction. Overall we propose and demonstrate an atom-efficient and easily applicable alternative to established hydrogen peroxide generation methods, which enables the efficient use of peroxygenases for oxyfunctionalization reactions. PMID:26607550

  12. SOIL REACTION AND ACIDIC DEPOSITION

    EPA Science Inventory

    This chapter discusses the major chemical processes by which acidic deposition interacts with soils. he focus is on forest soils, as the effects of acidic deposition on soils used for production of food and fiber are generally small compared to effects of agricultural practices s...

  13. Low-temperature superacid catalysis: Reactions of n - butane and propane catalyzed by iron- and manganese-promoted sulfated zirconia

    SciTech Connect

    Tsz-Keung, Cheung; d`Itri, J.L.; Lange, F.C.; Gates, B.C.

    1995-12-31

    The primary goal of this project is to evaluate the potential value of solid superacid catalysts of the sulfated zirconia type for light hydrocarbon conversion. The key experiments catalytic testing of the performance of such catalysts in a flow reactor fed with streams containing, for example, n-butane or propane. Fe- and Mn-promoted sulfated zirconia was used to catalyze the conversion of n-butane at atmospheric pressure, 225-450{degrees}C, and n-butane partial pressures in the range of 0.0025-0.01 atm. At temperatures <225{degrees}C, these reactions were accompanied by cracking; at temperatures >350{degrees}C, cracking and isomerization occurred. Catalyst deactivation, resulting at least in part from coke formation, was rapid. The primary cracking products were methane, ethane, ethylene, and propylene. The observation of these products along with an ethane/ethylene molar ratio of nearly 1 at 450{degrees}C is consistent with cracking occurring, at least in part, by the Haag-Dessau mechanism, whereby the strongly acidic catalyst protonates n-butane to give carbonium ions. The rate of methane formation from n-butane cracking catalyzed by Fe- and Mn-promoted sulfated zirconia at 450{degrees}C was about 3 x 10{sup -8} mol/(g of catalyst {center_dot}s). The observation of butanes, pentanes, and methane as products is consistent with Olah superacid chemistry, whereby propane is first protonated by a very strong acid to form a carbonium ion. The carbonium ion then decomposes into methane and an ethyl cation which undergoes oligocondensation reactions with propane to form higher molecular weight alkanes. The results are consistent with the identification of iron- and manganese-promoted sulfated zirconia as a superacid.

  14. In situ Regeneration of NADH via Lipoamide Dehydrogenase-catalyzed Electron Transfer Reaction Evidenced by Spectroelectrochemistry

    SciTech Connect

    Tam, Tsz Kin; Chen, Baowei; Lei, Chenghong; Liu, Jun

    2012-08-01

    NAD/NADH is a coenzyme found in all living cells, carrying electrons from one reaction to another. We report on characterizations of in situ regeneration of NADH via lipoamide dehydrogenase (LD)-catalyzed electron transfer reaction to regenerate NADH using UV-vis spectroelectrochemistry. The Michaelis-Menten constant (Km) and maximum velocity (Vmax) of NADH regeneration were measured as 0.80 {+-} 0.15 mM and 1.91 {+-} 0.09 {micro}M s-1 in a 1-mm thin-layer spectroelectrochemical cell using gold gauze as the working electrode at the applied potential -0.75 V (vs. Ag/AgCl). The electrocatalytic reduction of the NAD system was further coupled with the enzymatic conversion of pyruvate to lactate by lactate dehydrogenase to examine the coenzymatic activity of the regenerated NADH. Although the reproducible electrocatalytic reduction of NAD into NADH is known to be difficult compared to the electrocatalytic oxidation of NADH, our spectroelectrochemical results indicate that the in situ regeneration of NADH via LD-catalyzed electron transfer reaction is fast and sustainable and can be potentially applied to many NAD/NADH-dependent enzyme systems.

  15. High performance catalyzed-reaction layer for medium temperature operating solid oxide fuel cells

    SciTech Connect

    Watanabe, M.; Uchida, H.; Shibata, M.; Mochizuki, N.; Amikura, K. . Lab. of Electrochemical Energy Conversion)

    1994-02-01

    New concepts for a high performance catalyzed-reaction layer for medium temperature operating solid oxide fuel cells were proposed. Mixed conducting oxide particles, samaria-doped ceria (SDC), were employed as the anode material utilizing highly dispersed noble metal catalysts on their surface. As the cathode material, Sr-doped LaMnO[sub 3] (LSM) particles catalyzed with microcrystalline Pt were employed. Performances of the anode or cathode were examined in the cell using yttria-stabilized zirconia electrolyte at a series of operating temperatures. It was found that the anodic polarization resistance and its activation energy were greatly decreased by loading only a small amount of the catalysts (such as Ru, Rh, and Pt) onto the SDC particles. The polarization loss at the anode showed a minimum value by using the SDC particles with a mean diameter of 1.5 to 2.0 [mu]m. A large depolarizing effect was also observed with a Pt-catalyzed LSM cathode, especially at high current densities.

  16. New Mechanistic Insights on the Selectivity of Transition-Metal-Catalyzed Organic Reactions: The Role of Computational Chemistry.

    PubMed

    Zhang, Xinhao; Chung, Lung Wa; Wu, Yun-Dong

    2016-06-21

    With new advances in theoretical methods and increased computational power, applications of computational chemistry are becoming practical and routine in many fields of chemistry. In organic chemistry, computational chemistry plays an indispensable role in elucidating reaction mechanisms and the origins of various selectivities, such as chemo-, regio-, and stereoselectivities. Consequently, mechanistic understanding improves synthesis and assists in the rational design of new catalysts. In this Account, we present some of our recent works to illustrate how computational chemistry provides new mechanistic insights for improvement of the selectivities of several organic reactions. These examples include not only explanations for the existing experimental observations, but also predictions which were subsequently verified experimentally. This Account consists of three sections discuss three different kinds of selectivities. The first section discusses the regio- and stereoselectivities of hydrosilylations of alkynes, mainly catalyzed by [Cp*Ru(MeCN)3](+) or [CpRu(MeCN)3](+). Calculations suggest a new mechanism that involves a key ruthenacyclopropene intermediate. This mechanism not only explains the unusual Markovnikov regio-selectivity and anti-addition stereoselectivity observed by Trost and co-workers, but also motivated further experimental investigations. New intriguing experimental observations and further theoretical studies led to an extension of the reaction mechanism. The second section includes three cases of meta-selective C-H activation of aryl compounds. In the case of Cu-catalyzed selective meta-C-H activation of aniline, a new mechanism that involves a Cu(III)-Ar-mediated Heck-like transition state, in which the Ar group acts as an electrophile, was proposed. This mechanism predicted a higher reactivity for more electron-deficient Ar groups, which was supported by experiments. For two template-mediated, meta-selective C-H bond activations catalyzed by

  17. Dietary phenolic acids and ascorbic acid: Influence on acid-catalyzed nitrosative chemistry in the presence and absence of lipids.

    PubMed

    Combet, Emilie; El Mesmari, Aziza; Preston, Tom; Crozier, Alan; McColl, Kenneth E L

    2010-03-15

    Acid-catalyzed nitrosation and production of potentially carcinogenic nitrosative species is focused at the gastroesophageal junction, where salivary nitrite, derived from dietary nitrate, encounters the gastric juice. Ascorbic acid provides protection by converting nitrosative species to nitric oxide (NO). However, NO may diffuse into adjacent lipid, where it reacts with O(2) to re-form nitrosative species and N-nitrosocompounds (NOC). In this way, ascorbic acid promotes acid nitrosation. Using a novel benchtop model representing the gastroesophageal junction, this study aimed to clarify the action of a range of water-soluble antioxidants on the nitrosative mechanisms in the presence or absence of lipids. Caffeic, ferulic, gallic, or chlorogenic and ascorbic acids were added individually to simulated gastric juice containing secondary amines, with or without lipid. NO and O(2) levels were monitored by electrochemical detection. NOC were measured in both aqueous and lipid phases by gas chromatography-tandem mass spectrometry. In the absence of lipids, all antioxidants tested inhibited nitrosation, ranging from 35.9 + or - 7.4% with gallic acid to 93 + or - 0.6% with ferulic acid. In the presence of lipids, the impact of each antioxidant on nitrosation was inversely correlated with the levels of NO they generated (R(2) = 0.95, p<0.01): gallic, chlorogenic, and ascorbic acid promoted nitrosation, whereas ferulic and caffeic acids markedly inhibited nitrosation. PMID:20026204

  18. Solid nanoparticles that catalyze biofuel upgrade reactions at the water/oil interface.

    PubMed

    Crossley, Steven; Faria, Jimmy; Shen, Min; Resasco, Daniel E

    2010-01-01

    A recoverable catalyst that simultaneously stabilizes emulsions would be highly advantageous in streamlining processes such as biomass refining, in which the immiscibility and thermal instability of crude products greatly complicates purification procedures. Here, we report a family of solid catalysts that can stabilize water-oil emulsions and catalyze reactions at the liquid/liquid interface. By depositing palladium onto carbon nanotube-inorganic oxide hybrid nanoparticles, we demonstrate biphasic hydrodeoxygenation and condensation catalysis in three substrate classes of interest in biomass refining. Microscopic characterization of the emulsions supports localization of the hybrid particles at the interface. PMID:20044571

  19. Total Synthesis of (-)-Lepadiformine A Utilizing Hg(OTf)2-Catalyzed Cycloisomerization Reaction.

    PubMed

    Nishikawa, Keisuke; Kikuchi, Seiho; Ezaki, Shinnosuke; Koyama, Tomoyuki; Nokubo, Haruka; Kodama, Takeshi; Tachi, Yoshimitsu; Morimoto, Yoshiki

    2015-12-01

    A cytotoxic marine alkaloid (-)-lepadiformine A (1) possesses a unique structure characterized by the trans-1-azadecalin AB ring system fused with the AC spiro-cyclic ring. In this research, we found that a cycloisomerization reaction from amino ynone 2 to a 1-azaspiro[4.5]decane skeleton 3, corresponding to the AC ring system of 1, is promoted by Hg(OTf)(2). Thus, we have accomplished the efficient total synthesis of (-)-lepadiformine A in 28% overall yield by featuring the novel Hg(OTf)(2)-catalyzed cycloisomerization. PMID:26584002

  20. Palladium-Catalyzed Negishi Cross-Coupling Reaction of Aryl Halides with (Difluoromethyl)zinc Reagent.

    PubMed

    Aikawa, Kohsuke; Serizawa, Hiroki; Ishii, Koki; Mikami, Koichi

    2016-08-01

    The palladium-catalyzed Negishi cross-coupling reaction of aryl iodides and bromides with (difluoromethyl)zinc reagent bearing a diamine such as TMEDA is achieved to provide the difluoromethylated aromatic compounds in good to excellent yields. The advantages of (difluoromethyl)zinc reagent are that (1) the derivatives, which possess different stability and reactivity, can be readily prepared via ligand screening and (2) transmetalation of a difluoromethyl group from the zinc reagent to palladium catalyst efficiently proceeds without an activator. PMID:27442347

  1. CuI/Oxalic Diamide Catalyzed Coupling Reaction of (Hetero)Aryl Chlorides and Amines.

    PubMed

    Zhou, Wei; Fan, Mengyang; Yin, Junli; Jiang, Yongwen; Ma, Dawei

    2015-09-23

    A class of oxalic diamides are found to be effective ligands for promoting CuI-catalyzed aryl amination with less reactive (hetero)aryl chlorides. The reaction proceeds at 120 °C with K3PO4 as the base in DMSO to afford a wide range of (hetero)aryl amines in good to excellent yields. The bis(N-aryl) substituted oxalamides are superior ligands to N-aryl-N'-alkyl substituted or bis(N-alkyl) substituted oxalamides. Both the electronic nature and the steric property of the aromatic rings in ligands are important for their efficiency. PMID:26352639

  2. Convergent Synthesis of 2-Aryl-Substituted Quinolines by Gold-Catalyzed Cascade Reaction.

    PubMed

    Ueda, Hirofumi; Yamaguchi, Minami; Tokuyama, Hidetoshi

    2016-01-01

    Gold-catalyzed auto-tandem catalysis has been developed for synthesizing 2-aryl-substituted quinolines. The reaction of an aniline bearing an acetal moiety with an aryl alkyne proceeded via formal [4+2]-cycloaddition, which involved the addition of gold acetylide to an oxonium ion to give amino alkyne intermediate and sequential 6-endo-dig cyclization of amino alkyne intermediate by attacking of nitrogen to alkyne moiety activated by gold catalyst. The cationic gold catalyst promoted two different processes by enhancing the nucleophilicity and electrophilicity of alkyne. This convergent synthetic methodology enabled the synthesis of a variety of 2-aryl-substituted quinolines. PMID:27373638

  3. From formamide to purine: a self-catalyzed reaction pathway provides a feasible mechanism for the entire process.

    PubMed

    Wang, Jing; Gu, Jiande; Nguyen, Minh Tho; Springsteen, Greg; Leszczynski, Jerzy

    2013-08-15

    A formamide self-catalyzed mechanistic pathway that transforms formamide to purine through a five-membered ring intermediate has been explored by density functional theory calculations. The highlight of the mechanistic route detailed here is that the proposed pathway represents the simplest and lowest energy reaction pathway. All necessary reactants, including catalysts, are generated from a single initial compound, formamide. The most catalytically effective form of formamide is found to be the imidic acid isomer. The catalytic effect of formamide has been found to be much more significant than that of water. The self-catalytic mechanism revealed here provides a pathway with the lowest energy barriers among all reaction routes previously published. Several important reaction steps are involved in this mechanistic route: formylation-dehydration, Leuckart reduction, five- and six-member ring-closing, and deamination. Overall, a five-membered ring-closing is the rate-determining step in the present catalytic route, which is consistent with our previous mechanistic investigations. The activation energy of this rate-controlling step (ca. 27 kcal/mol) is significantly lower than the rate-determining step (ca. 34 kcal/mol) in the pathway from 4-aminoimidazole-5-carboxamidine described by Schleyer's group (Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 17272-17277) and in the pyrimidine pathway (ca. 44 kcal/mol) reported by Sponer et al. (J. Phys. Chem. A 2012, 116, 720-726). The self-catalyzed mechanistic pathway reported herein is less energetically demanding than previously proposed routes. PMID:23902343

  4. Nitric acid catalyzed hydrolysis of SO3 in the formation of sulfuric acid: A theoretical study

    NASA Astrophysics Data System (ADS)

    Long, Bo; Chang, Chun-Ran; Long, Zheng-Wen; Wang, Yi-Bo; Tan, Xing-Feng; Zhang, Wei-Jun

    2013-08-01

    The gas-phase hydrolysis of SO3 in the presence of one water molecule, two water molecules, and nitric acid is investigated utilizing high level quantum chemical methods and transition state theory. The calculated results demonstrate that nitric acid exerts a strong catalytic role in the hydrolysis of SO3 because the activated barrier of hydrolysis of SO3 with the assistance of nitric acid is reduced to about 3.7 kcal/mol, which is about 20 kcal/mol lower than that of the SO3 reaction with water relative to the respective pre-reactive complex.

  5. Pd-catalyzed divergent trifluoroethylation and arylation of arylboronic acids by aryl(2,2,2-trifluoroethyl)iodonium triflates.

    PubMed

    Yang, Jing; Han, Qiu-Yan; Zhao, Cheng-Long; Dong, Tao; Hou, Zhi-Yuan; Qin, Hua-Li; Zhang, Cheng-Pan

    2016-08-10

    Highly electrophilic aryl(2,2,2-trifluoroethyl)iodonium triflates have been used for the first time as trifluoroethyl and aryl transfer reagents in Pd-catalyzed functionalization of arylboronic acids. Electron-rich arylboronic acids reacted with aryl(2,2,2-trifluoroethyl)iodonium triflates (2a-b) in CH3CN in the presence of Pd2(dba)3 and K3PO4 at room temperature to provide trifluoroethyl arenes in up to 82% yield, while the reactions of both electron-rich and -poor arylboronic acids with 2a-b in DMF in the presence of Pd[P(t-Bu)3]2 and Cs2CO3 at 40 °C afforded arylation products in up to 99% yield. This tunable protocol allows access to trifluoroethyl arenes or biaryls in good to excellent yields under mild conditions and without the addition of extra ligands. PMID:27384263

  6. Lewis Acid Catalyzed Friedel-Crafts Alkylation of Alkenes with Trifluoropyruvates.

    PubMed

    Xiang, Bin; Xu, Teng-Fei; Wu, Liang; Liu, Ren-Rong; Gao, Jian-Rong; Jia, Yi-Xia

    2016-05-01

    A Friedel-Crafts alkylation reaction of styrenes with trifluoropyruvates has been developed, which delivered allylic alcohols in excellent yields (up to 98%) using the Ni(ClO4)2·6H2O/bipyridine complex as a catalyst. The asymmetric reaction was catalyzed by the chiral Cu(OTf)2/bisoxazoline complex to afford the corresponding chiral allylic alcohols bearing trifluoromethylated quaternary stereogenic centers in moderate enantioselectivities (up to 75% ee). PMID:27028539

  7. Do stable nitroxide radicals catalyze or inhibit the degradation of hyaluronic acid?

    PubMed

    Lurie, Ziva; Offer, Tal; Russo, Angelo; Samuni, Amram; Nitzan, Dorrit

    2003-07-15

    Reactive oxygen-derived species and particularly OH radicals can degrade hyaluronic acid (HA), resulting in a loss of viscosity and a subsequent decrease in its effectiveness as a joint-lubricating agent. The production of OH in the vicinity of HA can be catalyzed by bound redox-active metals, which participate in the Haber-Weiss reaction. Damage to HA can also occur as a result of hypochlorite formed by myeloperoxidase (MPO). The protective reagents commonly used to inhibit oxidative stress-induced degradation of HA include antioxidative enzymes, such as SOD and catalase, chelators that coordinate metal ions rendering them redox-inactive, and scavengers of radicals, such as OH, as well as nonradical reactive species. In recent years, stable cyclic nitroxides have also been widely used as effective antioxidants. In many cases, nitroxide antioxidants operate catalytically and mediate their protective effect through an exchange between their oxidized and reduced forms. It was anticipated, therefore, that nitroxides would protect HA from oxidative degradation as well. On the other hand, nitroxides serve as catalysts in many oxidation reactions of alcohols, sugars and polysaccharides, including hyalouronan. Such opposite effects of nitroxides on oxidative degradation are particularly intriguing and the aim of the present study was to examine their effect on HA when subjected to diverse forms of oxidative stress. The results indicate that nitroxides protect HA from OH radicals generated enzymatically or radiolytically. The protective effect is attributable neither to the scavenging of OH nor to the oxidation of reduced metal, but to the reaction of nitroxides with secondary carbohydrate radicals-most likely peroxyl radicals. PMID:12853073

  8. Metal-Catalyzed Chemical Reaction of Single Molecules Directly Probed by Vibrational Spectroscopy.

    PubMed

    Choi, Han-Kyu; Park, Won-Hwa; Park, Chan-Gyu; Shin, Hyun-Hang; Lee, Kang Sup; Kim, Zee Hwan

    2016-04-01

    The study of heterogeneous catalytic reactions remains a major challenge because it involves a complex network of reaction steps with various intermediates. If the vibrational spectra of individual molecules could be monitored in real time, one could characterize the structures of the intermediates and the time scales of reaction steps without ensemble averaging. Surface-enhanced Raman scattering (SERS) spectroscopy does provide vibrational spectra with single-molecule sensitivity, but typical single-molecule SERS signals exhibit spatial heterogeneities and temporal fluctuations, making them difficult to be used in single-molecule kinetics studies. Here we show that SERS can monitor the single-molecule catalytic reactions in real time. The surface-immobilized reactants placed at the junctions of well-defined nanoparticle-thin film structures produce time-resolved SERS spectra with discrete, step-transitions of photoproducts. We interpret that such SERS-steps correspond to the reaction events of individual molecules occurring at the SERS hotspot. The analyses of the yield, dynamics, and the magnitude of such SERS steps, along with the associated spectral characteristics, fully support our claim. In addition, a model that is based on plasmonic field enhancement and surface photochemistry reproduces the key features of experimental observation. Overall, the result demonstrates that it is possible, under well-controlled conditions, to differentiate the chemical and physical processes contributing to the single-molecule SERS signals, and thus shows the use of single-molecule SERS as a tool for studying the metal-catalyzed organic reactions. PMID:26964567

  9. Cure reaction of epoxy resins catalyzed by graphite-based nanofiller

    NASA Astrophysics Data System (ADS)

    Corcione, C. Esposito; Acocella, Maria Rosaria; Giuri, Antonella; Maffezzoli, Alfonso; Guerra, Gaetano

    2015-12-01

    A significant effort was directed to the synthesis of graphene stacks/epoxy nanocomposites and to the analysis of the effect of a graphene precursor on cure reaction of a model epoxy matrix. A comparative thermal analysis of epoxy resins filled with an exfoliated graphite oxide eGO were conducted. The main aim was to understand the molecular origin of the influence of eGO on the Tg of epoxy resins. The higher Tg values previously observed for low curing temperatures, for epoxy resins with graphite-based nanofillers, were easily rationalized by a catalytic activity of graphitic layers on the reaction between the epoxy and amine groups of the resin, which leads to higher crosslinking density in milder conditions. A kinetic analysis of the cure mechanism of the epoxy resin associated to the catalytical activity of the graphite based filler was performed by isothermal DSC measurements. The DSC results showed that the addition of graphite based filler greatly increased the enthalpy of epoxy reaction and the reaction rate, confirming the presence of a catalytic activity of graphitic layers on the crosslinking reaction between the epoxy resin components (epoxide oligomer and di-amine). A kinetic modelling analysis, arising from an auto-catalyzed reaction mechanism, was finally applied to isothermal DSC data, in order to predict the cure mechanism of the epoxy resin in presence of the graphite based nanofiller.

  10. Cobalt catalyzed peroxymonosulfate oxidation of tetrabromobisphenol A: Kinetics, reaction pathways, and formation of brominated by-products.

    PubMed

    Ji, Yuefei; Kong, Deyang; Lu, Junhe; Jin, Hao; Kang, Fuxing; Yin, Xiaoming; Zhou, Quansuo

    2016-08-01

    Degradation of tetrabromobisphenol A (TBBPA), a flame retardant widely spread in the environment, in Co(II) catalyzed peroxymonosulfate (PMS) oxidation process was systematically explored. The second-order-rate constant for reaction of sulfate radical (SO4(-)) with TBBPA was determined to be 5.27×10(10)M(-1)s(-1). Apparently, degradation of TBBPA showed first-order kinetics to the concentrations of both Co(II) and PMS. The presence of humic acid (HA) and bicarbonate inhibited TBBPA degradation, most likely due to their competition for SO4(-). Degradation of TBBPA was initiated by an electron abstraction from one of the phenolic rings. Detailed transformation pathways were proposed, including β-scission of isopropyl bridge, phenolic ring oxidation, debromination and coupling reactions. Further oxidative degradation of intermediates in Co(II)/PMS process yielded brominated disinfection by-products (Br-DBPs) such as bromoform and brominated acetic acids. Evolution profile of Br-DBPs showed an initially increasing and then decreasing pattern with maximum concentrations occurring around 6-10h. The presence of HA enhanced the formation of Br-DBPs significantly. These findings reveal potentially important, but previously unrecognized, formation of Br-DBPs during sulfate radical-based oxidation of bromide-containing organic compounds that may pose toxicological risks to human health. PMID:27107323

  11. Iron-Catalyzed Acylation of Polyfunctionalized Aryl- and Benzylzinc Halides with Acid Chlorides.

    PubMed

    Benischke, Andreas D; Leroux, Marcel; Knoll, Irina; Knochel, Paul

    2016-08-01

    FeCl2 (5 mol %) catalyzes a smooth and convenient acylation of functionalized arylzinc halides at 50 °C (2-4 h) and benzylic zinc chlorides at 25 °C (0.5-4 h) with a variety of acid chlorides leading to polyfunctionalized diaryl and aryl heteroaryl ketones. PMID:27457108

  12. Chiral phosphoric acid catalyzed asymmetric addition of naphthols to para-quinone methides.

    PubMed

    Wong, Yuk Fai; Wang, Zhaobin; Sun, Jianwei

    2016-06-28

    An asymmetric addition of naphthols to in situ generated para-quinone methides catalyzed by a chiral phosphoric acid is described. A range of useful triarylmethanes can be generated from stable general para-hydroxybenzyl alcohols with good efficiency and enantioselectivity. PMID:26932597

  13. One-Pot Synthesis of Arylketones from Aromatic Acids via Palladium-Catalyzed Suzuki Coupling.

    PubMed

    Wu, Hongxiang; Xu, Baiping; Li, Yue; Hong, Fengying; Zhu, Dezhao; Jian, Junsheng; Pu, Xiaoer; Zeng, Zhuo

    2016-04-01

    A palladium-catalyzed one-pot procedure for the synthesis of aryl ketones has been developed. Triazine esters when coupled with aryl boronic acids provided aryl ketones in moderate to excellent yields (up to 95%) in the presence of 1 mol % Pd(PPh3)2Cl2 for 30 min. PMID:26949103

  14. Non-Precious Metals Catalyze Formal [4 + 2] Cycloaddition Reactions of 1,2-Diazines and Siloxyalkynes under Ambient Conditions

    PubMed Central

    2015-01-01

    Copper(I) and nickel(0) complexes catalyze the formal [4 + 2] cycloaddition reactions of 1,2-diazines and siloxyalkynes, a reaction hitherto best catalyzed by silver salts. These catalysts based on earth abundant metals are not only competent, but the copper catalyst, in particular, promotes cycloadditions of pyrido[2,3-d]pyridazine and pyrido[3,4-d]pyridazine, enabling a new synthesis of quinoline and isoquinoline derivatives, as well as the formal [2 + 2] cycloaddition reaction of cyclohexenone with a siloxyalkyne. PMID:24911346

  15. Gold-Catalyzed Reactions via Cyclopropyl Gold Carbene-like Intermediates

    PubMed Central

    2015-01-01

    Cycloisomerizations of 1,n-enynes catalyzed by gold(I) proceed via electrophilic species with a highly distorted cyclopropyl gold(I) carbene-like structure, which can react with different nucleophiles to form a wide variety of products by attack at the cyclopropane or the carbene carbons. Particularly important are reactions in which the gold(I) carbene reacts with alkenes to form cyclopropanes either intra- or intermolecularly. In the absence of nucleophiles, 1,n-enynes lead to a variety of cycloisomerized products including those resulting from skeletal rearrangements. Reactions proceeding through cyclopropyl gold(I) carbene-like intermediates are ideally suited for the bioinspired synthesis of terpenoid natural products by the selective activation of the alkyne in highly functionalized enynes or polyenynes. PMID:26061916

  16. Alkali-Stabilized Pt-OHx Species Catalyze Low-Temperature Water-Gas Shift Reactions

    SciTech Connect

    Zhai, Y.; Pierre, D; Si, R; Deng, W; Ferrin, P; Nilekar, A; Peng, G; Herron, J; Bell, D; et. al.

    2010-01-01

    We report that alkali ions (sodium or potassium) added in small amounts activate platinum adsorbed on alumina or silica for the low-temperature water-gas shift (WGS) reaction (H{sub 2}O + CO {yields} H{sub 2} + CO{sub 2}) used for producing H{sub 2}. The alkali ion-associated surface OH groups are activated by CO at low temperatures ({approx}100 C) in the presence of atomically dispersed platinum. Both experimental evidence and density functional theory calculations suggest that a partially oxidized Pt-alkali-O{sub x}(OH){sub y} species is the active site for the low-temperature Pt-catalyzed WGS reaction. These findings are useful for the design of highly active and stable WGS catalysts that contain only trace amounts of a precious metal without the need for a reducible oxide support such as ceria.

  17. Potential Energy Surfaces for Reaction Catalyzed by Metalloenzymes from Quantum Chemical Computations

    NASA Astrophysics Data System (ADS)

    Leopoldini, Monica; Marino, Tiziana; Russo, Nino; Toscano, Marirosa

    For several decades quantum mechanical (QM) computational methods have been developed and refined so that it was possible to extend their applicability field enormously. Today, they are used generally to supplement experimental techniques because the theory also affords deeper understanding of molecular processes that cannot be obtained from experiments alone. Due to their favorable scaling when compared to the ab initiomethods, density functional theory (DFT) approach allows the treatment of very large systems such as the biomolecules. Thus, now it is possible, for instance, to study the difficult and critical reactions catalyzed by enzymes in biological systems. Here, a brief account of the studies performed on different metalloenzymes is given, focusing on methods and models used to describe their reaction mechanisms.

  18. Surface-catalyzed air oxidation reactions of hydrazines: Tubular reactor studies

    NASA Technical Reports Server (NTRS)

    Kilduff, Jan E.; Davis, Dennis D.; Koontz, Steven L.

    1988-01-01

    The surface-catalyzed air oxidation reactions of hydrazine, monomethylhydrazine, unsymmetrical dimethylhydrazine, symmetrical dimethylhydrazine, trimethylhydrazine and tetramethylhydrazine were investigated in a metal-powder packed turbular flow reactor at 55 plus or minus 3 C. Hydrazine was completely reacted on all surfaces studied. The major products of monomethylhydrazine (MMH) oxidation were methanol, methane and methyldiazene. The di-, tri- and tetra-methyl hydrazines were essentially unreactive under these conditions. The relative catalytic reactivities toward MMH are: Fe greater than Al2O3 greater than Ti greater than Zn greater than 316 SS greater than Cr greater than Ni greater than Al greater than 304L SS. A kinetic scheme and mechanism involving adsorption, oxidative dehydrogenation and reductive elimination reactions on a metal oxide surface are proposed.

  19. Nickel-Catalyzed Allylic Alkylation with Diarylmethane Pronucleophiles: Reaction Development and Mechanistic Insights.

    PubMed

    Sha, Sheng-Chun; Jiang, Hui; Mao, Jianyou; Bellomo, Ana; Jeong, Soo A; Walsh, Patrick J

    2016-01-18

    Palladium-catalyzed allylic substitution reactions are among the most efficient methods to construct C-C bonds between sp(3)-hybridized carbon atoms. In contrast, much less work has been done with nickel catalysts, perhaps because of the different mechanisms of the allylic substitution reactions. Palladium catalysts generally undergo substitution by a "soft"-nucleophile pathway, wherein the nucleophile attacks the allyl group externally. Nickel catalysts are usually paired with "hard" nucleophiles, which attack the metal before C-C bond formation. Introduced herein is a rare nickel-based catalyst which promotes substitution with diarylmethane pronucleophiles by the soft-nucleophile pathway. Preliminary studies on the asymmetric allylic alkylation are promising. PMID:26756444

  20. Syntheses of hydroxamic acid-containing bicyclic β-lactams via palladium-catalyzed oxidative amidation of alkenes.

    PubMed

    Jobbins, Maria O; Miller, Marvin J

    2014-02-21

    Palladium-catalyzed oxidative amidation has been used to synthesize hydroxamic acid-containing bicyclic β-lactam cores. Oxidative cleavage of the pendant alkene provides access to the carboxylic acid in one step. PMID:24483144

  1. Kinetics of Acid-Catalyzed Dehydration of Cyclic Hemiacetals in Organic Aerosol Particles in Equilibrium with Nitric Acid Vapor.

    PubMed

    Ranney, April P; Ziemann, Paul J

    2016-04-28

    Previous studies have shown that 1,4-hydroxycarbonyls, which are often major products of the atmospheric oxidation of hydrocarbons, can undergo acid-catalyzed cyclization and dehydration in aerosol particles to form highly reactive unsaturated dihydrofurans. In this study the kinetics of dehydration of cyclic hemiacetals, the rate-limiting step in this process, was investigated in a series of environmental chamber experiments in which secondary organic aerosol (SOA) containing cyclic hemiacetals was formed from the reaction of n-pentadecane with OH radicals in dry air in the presence of HNO3. A particle beam mass spectrometer was used to monitor the formation and dehydration of cyclic hemiacetals in real time, and SOA and HNO3 were quantified in filter samples by gravimetric analysis and ion chromatography. Measured dehydration rate constants increased linearly with increasing concentration of HNO3 in the gas phase and in SOA, corresponding to catalytic rate constants of 0.27 h(-1) ppmv(-1) and 7.0 h(-1) M(-1), respectively. The measured Henry's law constant for partitioning of HNO3 into SOA was 3.7 × 10(4) M atm(-1), ∼25% of the value for dissolution into water, and the acid dissociation constant was estimated to be <8 × 10(-4), at least a factor of 10(4) less than that for HNO3 in water. The results indicate that HNO3 was only weakly dissociated in the SOA and that dehydration of cyclic hemiacetals was catalyzed by molecular HNO3 rather than by H(+). The Henry's law constant and kinetics relationships measured here can be used to improve mechanisms and models of SOA formation from the oxidation of hydrocarbons in dry air in the presence of NOx, which are conditions commonly used in laboratory studies. The fate of cyclic hemiacetals in the atmosphere, where the effects of higher relative humidity, organic/aqueous phase separation, and acid catalysis by molecular H2SO4 and/or H(+) are likely to be important, is discussed. PMID:27043733

  2. Activation Energies for an Enzyme-Catalyzed and Acid-Catalyzed Hydrolysis: An Introductory Interdisciplinary Experiment for Chemists and Biochemists.

    ERIC Educational Resources Information Center

    Adams, K. R.; Meyers, M. B.

    1985-01-01

    Background information, procedures used, and typical results obtained are provided for an experiment in which students determine and compare the Arrhenius activation energies (Ea) for the hydrolysis of salicin. This reaction is subject to catalysis both by acid and by the enzyme emulsin (beta-d-glucoside glycohydrolase). (JN)

  3. An efficient copper-catalyzed cross-coupling reaction of alkyl-triflates with alkyl-Grignard reagents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A highly efficient method for the formation of C-C covalent bonds by cross-coupling reaction between alkyl-triflates and alkyl-Grignard reagents catalyzed by copper catalyst, Li2CuCl4, is described. The reaction works with most primary triflates in diethyl ether at low temperature within 0.5-3 h an...

  4. Influence of Ionic Liquids on an Iron(III) Catalyzed Three-Component Coupling/Hydroarylation/Dehydrogenation Tandem Reaction.

    PubMed

    Muntzeck, Maren; Wilhelm, René

    2016-01-01

    A three-component oxidative dehydrogenation tandem reaction via the coupling and hydroarylation of benzaldehyde, aniline and phenylacetylene to a quinoline derivate was catalyzed by an iron-containing ionic liquid. The reaction was air mediated and could be performed under neat conditions. The iron(III) of the ionic liquid was the oxidizing species. PMID:27258264

  5. Influence of Ionic Liquids on an Iron(III) Catalyzed Three-Component Coupling/Hydroarylation/Dehydrogenation Tandem Reaction

    PubMed Central

    Muntzeck, Maren; Wilhelm, René

    2016-01-01

    A three-component oxidative dehydrogenation tandem reaction via the coupling and hydroarylation of benzaldehyde, aniline and phenylacetylene to a quinoline derivate was catalyzed by an iron-containing ionic liquid. The reaction was air mediated and could be performed under neat conditions. The iron(III) of the ionic liquid was the oxidizing species. PMID:27258264

  6. Ternary copper complexes and manganese (III) tetrakis(4-benzoic acid) porphyrin catalyze peroxynitrite-dependent nitration of aromatics.

    PubMed

    Ferrer-Sueta, G; Ruiz-Ramírez, L; Radi, R

    1997-12-01

    Peroxynitrite is a powerful oxidant formed in biological systems from the reaction of nitrogen monoxide and superoxide and is capable of nitrating phenols at neutral pH and ambient temperature. This peroxynitrite-mediated nitration is catalyzed by a number of Lewis acids, including CO2 and transition-metal ion complexes. Here we studied the effect of ternary copper-(II) complexes constituted by a 1,10-phenanthroline and an amino acid as ligands. All the complexes studied accelerate both the decomposition of peroxynitrite and its nitration of 4-hydroxyphenylacetic acid at pH > 7. The rate of these reactions depends on the copper complex concentration in a hyperbolic plus linear manner. The yield of nitrated products increases up to 2.6-fold with respect to proton-catalyzed nitration and has a dependency on the concentration of copper complexes which follows the same function as observed for the rate constants. The manganese porphyrin complex, Mn(III)tetrakis(4-benzoic acid)porphyrin [Mn(tbap)], also promoted peroxynitrite-mediated nitration with an even higher yield (4-fold increase) than the ternary copper complexes. At pH = 7.5 +/- 0.2 the catalytic behavior of the copper complexes can be linearly correlated with the pKa of the phenanthroline present as a ligand, implying that a peroxynitrite anion is coordinated to the copper ion prior to the nitration reaction. These observations may prove valuable to understand the biological effects of these transition-metal complexes (i.e., copper and manganese) that can mimic superoxide dismutase activity and, in the case of the ternary copper complexes, show antineoplastic activity. PMID:9437523

  7. NAD(+)-independent aldehyde oxidase catalyzes cofactor balanced 3-hydroxypropionic acid production in Klebsiella pneumoniae.

    PubMed

    Li, Ying; Liu, Luo; Tian, Pingfang

    2014-11-01

    The limiting step for biosynthesis of 3-hydroxypropionic acid (3-HP) in Klebsiella pneumoniae is the conversion of 3-hydroxypropionaldehyde (3-HPA) to 3-HP. This reaction is catalyzed by aldehyde dehydrogenase (ALDH) with NAD(+) as a cofactor. Although NAD(+)-dependent ALDH overexpression facilitates 3-HP biosynthesis, ALDH activity decreases and 3-HP stops accumulation when NAD(+) is exhausted. Here, we show that an NAD(+)-independent aldehyde oxidase (AOX) from Pseudomonas sp. AIU 362 holds promise for cofactor-balanced 3-HP production in K. pneumoniae. The AOX coding gene, alod, was heterologously expressed in E. coli and K. pneumoniae, and their respective crude cell extracts showed 38.1 U/mg and 16.6 U/mg activities toward propionaldehyde. The recombinant K. pneumoniae expressing alod showed 13.7 U/mg activity toward 3-HPA; K m and V max were 6.7 mM and 42 μM/min/mg, respectively. In shake-flask cultures, the recombinant K. pneumoniae strain produced 0.89 g 3-HP/l, twice that of the control. Moreover, it produced 3 g 3-HP/l during 24 h fed-batch cultivation in a 5 l bioreactor. The results indicate that AOX can efficiently convert 3-HPA into 3-HP. PMID:24980850

  8. Highly Sensitive Determination of Ethylenediaminetetraacetic Acid Using a Permanganate Chemiluminescence System Catalyzed by Gold Nanoparticles.

    PubMed

    Abolhasani, Jafar; Hassanzadeh, Javad; Ghorbani-Kalhor, Ebrahim

    2015-01-01

    A sensitive and selective chemiluminescence method was developed to determine ethylenediaminetetraacetic acid (EDTA) in water samples. It was observed that gold nanoparticles (AuNPs) catalyzed chemiluminescence (CL) reactions of permanganate-aldehydes which underwent an enhancement effect in the presence of iron(III) ions (Fe(3+)). This effect is more remarkable in the presence of EDTA, and a highly intensive CL emission is created in proportion to the EDTA concentration. These observations form the basis of the method for the high sensitive determination of EDTA in the 0.83 - 167 nmol L(-1) concentration range, with a detection limit of 0.25 nmol L(-1). The relative standard deviations for five repeated measurements of 5, 40 and 140 nmol L(-1) EDTA were 1.14, 2.48 and 0.65%, respectively. The method has good selectivity toward EDTA, and there are no interferences from other ions. The offered method has good precision, and was satisfactorily used for the sensitive determination of EDTA in water samples. PMID:26256596

  9. Telomerization of amino acids with butadiene, catalyzed by palladium complexes

    SciTech Connect

    Dzhemilev, U.M.; Fakhretdinov, R.N.; Telin, A.G.

    1987-01-10

    The telomerization of ..cap alpha..-, ..beta..-, ..gamma..-, and epsilon-amino acids having various structures with butadiene under the influence of the three-component palladium catalyst Pd(acac)/sub 2/-PPh/sub 3/-AlEt/sub 3/ was investigated in DMSO-toluene solution. The ..cap alpha..- and epsilon-aliphatic and also the ..cap alpha..-, ..beta..-, and ..gamma..-aromatic amino acids react with butadiene, giving the products from octadienylation at the amino group exclusively. Under the conditions of telomerization aliphatic ..beta..-amino acids are cleaved with the formation of unsaturated tertiary amines. In the case of aliphatic ..gamma..-amino acids it is possible to obtain telomers alkylated at the carbonyl group.

  10. Differential Quantum Tunneling Contributions in Nitroalkane Oxidase Catalyzed and the Uncatalyzed Proton Transfer Reaction

    SciTech Connect

    Major , D.; Heroux , A; Orville , A; Valley , M; Fitzpatrick , P; Gao , J

    2009-01-01

    The proton transfer reaction between the substrate nitroethane and Asp-402 catalyzed by nitroalkane oxidase and the uncatalyzed process in water have been investigated using a path-integral free-energy perturbation method. Although the dominating effect in rate acceleration by the enzyme is the lowering of the quasiclassical free energy barrier, nuclear quantum effects also contribute to catalysis in nitroalkane oxidase. In particular, the overall nuclear quantum effects have greater contributions to lowering the classical barrier in the enzyme, and there is a larger difference in quantum effects between proton and deuteron transfer for the enzymatic reaction than that in water. Both experiment and computation show that primary KIEs are enhanced in the enzyme, and the computed Swain-Schaad exponent for the enzymatic reaction is exacerbated relative to that in the absence of the enzyme. In addition, the computed tunneling transmission coefficient is approximately three times greater for the enzyme reaction than the uncatalyzed reaction, and the origin of the difference may be attributed to a narrowing effect in the effective potentials for tunneling in the enzyme than that in aqueous solution.

  11. Differential quantum tunneling contributions in nitroalkane oxidase catalyzed and the uncatalyzed proton transfer reaction.

    PubMed

    Major, Dan T; Heroux, Annie; Orville, Allen M; Valley, Michael P; Fitzpatrick, Paul F; Gao, Jiali

    2009-12-01

    The proton transfer reaction between the substrate nitroethane and Asp-402 catalyzed by nitroalkane oxidase and the uncatalyzed process in water have been investigated using a path-integral free-energy perturbation method. Although the dominating effect in rate acceleration by the enzyme is the lowering of the quasiclassical free energy barrier, nuclear quantum effects also contribute to catalysis in nitroalkane oxidase. In particular, the overall nuclear quantum effects have greater contributions to lowering the classical barrier in the enzyme, and there is a larger difference in quantum effects between proton and deuteron transfer for the enzymatic reaction than that in water. Both experiment and computation show that primary KIEs are enhanced in the enzyme, and the computed Swain-Schaad exponent for the enzymatic reaction is exacerbated relative to that in the absence of the enzyme. In addition, the computed tunneling transmission coefficient is approximately three times greater for the enzyme reaction than the uncatalyzed reaction, and the origin of the difference may be attributed to a narrowing effect in the effective potentials for tunneling in the enzyme than that in aqueous solution. PMID:19926855

  12. Copper-assisted palladium(II)-catalyzed direct arylation of cyclic enaminones with arylboronic acids.

    PubMed

    Kim, Yong Wook; Niphakis, Micah J; Georg, Gunda I

    2012-11-01

    Described herein is a palladium(II)-catalyzed direct arylation of cyclic enaminones with arylboronic acids. The versatility of this method is that both electron-rich and electron-poor boronic acids can be coupled in high yields. A mixture of two Cu(II) additives was crucial for efficient cross-coupling. The role of each Cu(II) reagent appears to be distinct and complementary serving to assist catalyst reoxidation and transmetalation through a putative arylcopper intermediate. PMID:23088256

  13. Development of new palladium(0)-catalyzed reactions based on novel oxidative addition mode.

    PubMed

    Tsukamoto, Hirokazu

    2008-09-01

    We have developed palladium(0)/monophosphine-catalyzed trans-selective arylative, alkenylative, alkylative, and alkynylative cyclization reactions of alkyne-aldehydes and -ketones with organoboron reagents. These reactions afford six-membered allylic alcohols with endo tri- or tetra-substituted olefin groups and/or five-membered counterparts with exo olefin groups. The ratios of these products are dramatically affected by alkyne substituents as well as the phosphine ligand. The remarkable trans selectivity of the process results from the novel reaction mechanism involving 'anti-Wacker'-type oxidative addition. Although the cyclization reactions are influenced by the length of the tether between the alkyne and carbonyl group, they can be applied to a multi-component synthesis of biologically important indenes bearing three substituent groups at 1, 2, 3-positions from available o-ethynylbenzaldehyde derivatives. A two-component coupling reaction in methanol provides 1H-indenols, while a three-component reaction involving secondary aliphatic amines as the third component in DMF affords 1H-indenamines. This method allows combinatorial preparation of unsymmetrically substituted 1H-indenes that cannot be prepared via previous synthetic routes. The same catalytic system can also transform allene-carbonyl compounds into 3-cyclohexenols and -cyclopentenols with alkyl, aryl, alkenyl, alkynyl, and boryl groups at C-3. Microwave irradiation efficiently increases not only the reaction rate but also the product yield by suppressing formation of hydroarylation byproducts. Cyclization of optically active 1,3-disubstituted allene-aldehyde reveals that the reaction proceeds through not carbopalladation but 'anti-Wacker'-type oxidative addition. PMID:18758139

  14. Reactions of aqueous glucose solution over solid-acid Y-zeolite catalyst at 110-160 C

    SciTech Connect

    Lourvanij, K.; Rorrer, G.L. )

    1993-01-01

    Reactions of glucose with solid-acid Y-zeolite catalyst were studied to see if this heterogeneous system could produce oxygenated hydrocarbons by shape-selective, acid-catalyzed processes at fairly low temperatures. Experimentally, aqueous solutions of glucose (12 wt %) were reacted with HY-zeolite powder in a well-mixed batch reactor at temperatures ranging from 110 to 160 C and catalyst concentrations ranging from 2 to 20 g/150 ml. Unreacted glucose and oxygenated hydrocarbon products were measured by HPLC as a function of reaction time (0-24 h) and process conditions. Glucose conversions of 100% were obtained at 160 C after an 8-h reaction time. The apparent activation energy based on glucose conversion was 23.25 [plus minus] 0.40 kcal/mol. Several acid-catalyzed reactions were identified, including isomerization of glucose to fructose, partial dehydration of glucose to 5-(hydroxymethyl)furfural (HMF), rehydration and cleavage of HMF to formic acid and 4-oxo-pentanoic acid, and carbonization . Polymers of HMF and seven minor additional products in the lower molecular weight organic acids/aldehydes/ketones elution range were also isolated by HPLC. High yields of organic acids relative to HMF and lowered selectivity of HMF in the bulk phase relative to the homogeneous acid-catalyzed reaction suggests the possibility of molecular sieving reactions within the Y-zeolite in addition to reactions on the outer surface of the Y-zeolite particle.

  15. Conversion of waste cellulose to ethanol. Phase 2: Reaction kinetics with phosphoric acid

    NASA Astrophysics Data System (ADS)

    Moeller, M. B.; Isbell, R. E.

    1982-05-01

    Waste cellulosic material can be hydrolyzed in dilute acid solution to produce fermentable sugars which can then be converted into ethanol. A laboratory investigation was made of the feasibility of using phosphoric acid as the hydrolysis catalyst. The hydrolysis reaction with phosphoric acid solutions was compared with the reaction employing the more conventional dilute sulfuric acid catalyst. The purpose of this research was to examine the hydrolysis step in a proposed process for the conversion of cellulose (from wood, newspapers, municipal solid waste, or other sources) into ethanol - by which a potentially valuable co-product, DICAL (dicalcium phosphate), might be made and sold with or without the lignin content as a fertilizer. The pertinent reaction kinetics for the acid catalyzed production of glucose from cellulose consists of consecutive, pseudo-first order reactions.

  16. Direct Diazo-Transfer Reaction on β-lactam: Synthesis and Preliminary Biological Activities of 6-Triazolylpenicillanic Acids

    PubMed Central

    Chen, Po C.; Emrich, Rebekah E.; Patel, Pratiq A.

    2009-01-01

    In this study we report the first example of a direct diazo-transfer reaction on readily available 6-aminopenicillanates to give 6-azidopenicillanates in high yield. Subsequent Cu(I)-catalyzed Huisgen cycloaddition between these 6-azidopenicillanates and assorted terminal alkynes facilely furnished 6-triazolylpenicillanic acids was. Preliminary biological screening indicates that these triazolylpenicillanic acids possess low to moderate antibacterial activities. PMID:17855098

  17. {beta}-Secondary and solvent deuterium kinetic isotope effects and the mechanisms of base- and acid-catalyzed hydrolysis of penicillanic acid

    SciTech Connect

    Deraniyagala, S.A.; Adediran, S.A.; Pratt, R.F.

    1995-03-24

    {beta}-Secondary and solvent deuterium kinetic isotope effects have been determined at 25 {degrees}C for the alkaline and acid-catalyzed hydrolysis of penicillanic acid. In order to determine the former isotope effect, [6,6-{sup 2}H{sub 2}]dideuteriopenicillanic acid has been synthesized. In alkaline solution, the former isotope effect was found to be 0.95 {plus_minus} 0.01. These values support the B{sub AC}2 mechanism of hydrolysis with rate-determining formation of the tetrahedral intermediate that has been proposed for other {beta}-lactams. The measured {beta}-secondary kinetic isotope for the acid-catalyzed reaction was 1.00 {plus_minus} 0.01. The data indicates that a likely pathway of acid-catalyzed hydrolysis would be that of an A{sub AC}1 mechanism with an intermediate acylium ion. If this were so, the calculated {beta}-secondary isotope effect per hydrogen coplanar with the breaking C-N bond and corrected for the inductive effect of deuterium would be 1.06 {plus_minus} 0.01. This suggests an early A{sub AC}1 transition state, which would be reasonable in this case because of destabilization of the N-protonated amide with respect to the acylium ion because of ring strain. The absence of specific participation by solvent in the transition state, as would be expected of an A{sub AC}1 but not an associative mechanism, is supported by the strongly inverse solvent deuterium kinetic isotope effect of 0.25 {plus_minus} 0.00 in 1 M HCl and 0.22 {plus_minus} 0.01 in 33.3 wt % H{sub 2}SO{sub 4}. 1 fig., 3 tabs.

  18. Cellular consequences of copper complexes used to catalyze bioorthogonal click reactions.

    PubMed

    Kennedy, David C; McKay, Craig S; Legault, Marc C B; Danielson, Dana C; Blake, Jessie A; Pegoraro, Adrian F; Stolow, Albert; Mester, Zoltan; Pezacki, John Paul

    2011-11-01

    Copper toxicity is a critical issue in the development of copper-based catalysts for copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reactions for applications in living systems. The effects and related toxicity of copper on mammalian cells are dependent on the ligand environment. Copper complexes can be highly toxic, can induce changes in cellular metabolism, and can be rapidly taken up by cells, all of which can affect their ability to function as catalysts for CuAAC in living systems. Herein, we have evaluated the effects of a number of copper complexes that are typically used to catalyze CuAAC reactions on four human cell lines by measuring mitochondrial activity based on the metabolism of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) to study toxicity, inductively coupled plasma mass spectrometry to study cellular uptake, and coherent anti-Stokes Raman scattering (CARS) microscopy to study effects on lipid metabolism. We find that ligand environment around copper influences all three parameters. Interestingly, for the Cu(II)-bis-L-histidine complex (Cu(his)(2)), cellular uptake and metabolic changes are observed with no toxicity after 72 h at micromolar concentrations. Furthermore, we show that under conditions where other copper complexes kill human hepatoma cells, Cu(I)-L-histidine is an effective catalyst for CuAAC labeling of live cells following metabolic incorporation of an alkyne-labeled sugar (Ac(4)ManNAl) into glycosylated proteins expressed on the cell surface. This result suggests that Cu(his)(2) or derivatives thereof have potential for in vivo applications where toxicity as well as catalytic activity are critical factors for successful bioconjugation reactions. PMID:21970470

  19. Aminoacetylation Reaction Catalyzed by Leucyl-tRNA Synthetase Operates via a Self-Assisted Mechanism Using a Conserved Residue and the Aminoacyl Substrate.

    PubMed

    Aleksandrov, Alexey; Palencia, Andrés; Cusack, Stephen; Field, Martin

    2016-05-19

    Leucyl-tRNA synthetase catalyzes attachment of leucine amino acid to its cognate tRNA. During the second, aminoacetylation, step of the reaction, the leucyl moiety is transferred from leucyl-adenylate to the terminal A76 adenosine of tRNA. In this work, we have investigated the aminoacetylation step catalyzed by leucyl-tRNA synthase, using ab initio quantum chemical/molecular mechanical hybrid potentials in conjunction with reaction-path-location algorithms and molecular dynamics free energy simulations. We have modeled reaction mechanisms arising from both crystallographic studies and computational work. We invoke various groups as potential proton acceptors-namely, the phosphate and leucyl amino groups of leucyl-adenylate, the A76 base of tRNA, and the Asp80 and Glu532 residues of the protein-and consider both metal-assisted and metal-free reactions. Free energy calculations indicate that both the phosphate group of leucyl adenylate and Glu532 are not strong bases. This agrees with the results of the quantum chemical/molecular mechanical reaction path calculations which give high free energy barriers for the studied pathways involving these groups. A self-assisted mechanism with the leucyl amino group and Asp80 as proton acceptors is the most likely. Furthermore, in this mechanism the presence of a metal ion coordinated by the phosphate group and Glu532 strongly activates the reaction. PMID:27115861

  20. Palladium(0)/NHC-Catalyzed Reductive Heck Reaction of Enones: A Detailed Mechanistic Study.

    PubMed

    Raoufmoghaddam, Saeed; Mannathan, Subramaniyan; Minnaard, Adriaan J; de Vries, Johannes G; Reek, Joost N H

    2015-12-14

    We have studied the mechanism of the palladium-catalyzed reductive Heck reaction of para-substituted enones with 4-iodoanisole by using N,N-diisopropylethylamine (DIPEA) as the reductant. Kinetic studies and in situ spectroscopic analysis have provided a detailed insight into the reaction. Progress kinetic analysis demonstrated that neither catalyst decomposition nor product inhibition occurred during the catalysis. The reaction is first order in the palladium and aryl iodide, and zero order in the activated alkene, N-heterocyclic carbene (NHC) ligand, and DIPEA. The experiments with deuterated solvent ([D7]DMF) and deuterated base ([D15]Et3N) supported the role of the amine as a reductant in the reaction. The palladium complex [Pd(0)(NHC)(1)] has been identified as the resting state. The kinetic experiments by stopped-flow UV/Vis also revealed that the presence of the second substrate, benzylideneacetone 1, slows down the oxidative addition of 4-iodoanisole through its competing coordination to the palladium center. The kinetic and mechanistic studies indicated that the oxidative addition of the aryl iodide is the rate-determining step. Various scenarios for the oxidative addition step have been analyzed by using DFT calculations (bp86/def2-TZVP) that supported the inhibiting effect of substrate 1 by formation of resting state [Pd(0)(NHC)(1)] species at the cost of further increase in the energy barrier of the oxidative addition step. PMID:26561034

  1. Mechanisms of the Water-Gas Shift Reaction Catalyzed by Ruthenium Carbonyl Complexes.

    PubMed

    Liu, Naying; Guo, Ling; Cao, Zhaoru; Li, Wenli; Zheng, Xiaoli; Shi, Yayin; Guo, Juan; Xi, Yaru

    2016-04-21

    Density functional theory (DFT) is employed to study the water-gas shift (WGS) reaction in the gas phase for two complexes, Ru3(CO)12 and Ru(CO)5. Here we report four mechanisms of ruthenium carbonyl complexes catalyzed for WGS reaction. The energetic span model is applied to evaluate efficiency of the four catalytic pathways. Our results indicate that mechanism C and D show a good catalytic behavior, which is in agreement with results from the literature. The mechanism C and D not only include the important intermediate Ru3(CO)11H(-) but also exclude the energy-demanding OH(-) desorption and revise an unfavorable factor of the previous mechanism. Two complexes along mechanisms B have the highest turnover frequency (TOF) values. The trinuclear carbonyl complexes-Ru3(CO)12 is preferred over mononuclear carbonyl Ru(CO)5 by comparing TOF due to the fact that metal-metal cooperativity can enhance activity to the WGS reaction. In this work, the nature of interaction between transition states and intermediates is also analyzed by the detailed electronic densities of states, and we further clarify high catalytic activity of ruthenium carbonyl complexes as well. Our conclusions provide a guide to design catalysts for the WGS reaction. PMID:27064302

  2. Hydrogen generation from alcohols catalyzed by ruthenium-triphenylphosphine complexes: multiple reaction pathways.

    PubMed

    Sieffert, Nicolas; Bühl, Michael

    2010-06-16

    We report a comprehensive density functional theory (DFT) study of the mechanism of the methanol dehydrogenation reaction catalyzed by [RuH(2)(H(2))(PPh(3))(3)]. Using the B97-D dispersion-corrected functional, four pathways have been fully characterized, which differ in the way the critical beta-hydrogen transfer step is brought about (e.g., by prior dissociation of one PPh(3) ligand). All these pathways are found to be competitive (DeltaG(++) = 27.0-32.1 kcal/mol at 150 degrees C) and strongly interlocked. The reaction can thus follow multiple reaction channels, a feature which is expected to be at the origin of the good kinetics of this system. Our results also point to the active role of PPh(3) ligands, which undergo significant conformational changes as the reaction occurs, and provide insights into the role of the base, which acts as a "co-catalyst" by facilitating proton transfers within active species. Activation barriers decrease on going from methanol to ethanol and 2-propanol substrates, in accord with experiment. PMID:20481632

  3. Choline Chloride Catalyzed Amidation of Fatty Acid Ester to Monoethanolamide: A Green Approach.

    PubMed

    Patil, Pramod; Pratap, Amit

    2016-01-01

    Choline chloride catalyzed efficient method for amidation of fatty acid methyl ester to monoethanolamide respectively. This is a solvent free, ecofriendly, 100% chemo selective and economically viable path for alkanolamide synthesis. The Kinetics of amidation of methyl ester were studied and found to be first order with respect to the concentration of ethanolamine. The activation energy (Ea) for the amidation of lauric acid methyl ester catalyzed by choline chloride was found to be 50.20 KJ mol(-1). The 98% conversion of lauric acid monoethanolamide was obtained at 110°C in 1 h with 6% weight of catalyst and 1:1.5 molar ratio of methyl ester to ethanolamine under nitrogen atmosphere. PMID:26666271

  4. Organo-Iodine(III)-Catalyzed Oxidative Phenol-Arene and Phenol-Phenol Cross-Coupling Reaction.

    PubMed

    Morimoto, Koji; Sakamoto, Kazuma; Ohshika, Takao; Dohi, Toshifumi; Kita, Yasuyuki

    2016-03-01

    The direct oxidative coupling reaction has been an attractive tool for environmentally benign chemistry. Reported herein is that the hypervalent iodine catalyzed oxidative metal-free cross-coupling reaction of phenols can be achieved using Oxone as a terminal oxidant in 1,1,1,3,3,3-hexafluoropropan-2-ol (HFIP). This method features a high efficiency and regioselectivity, as well as functional-group tolerance under very mild reaction conditions without using metal catalysts. PMID:26879796

  5. Kinetics and mechanism of the heterogeneous catalyzed oxidative decolorization of Acid-Blue 92 using bimetallic metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    El-sharkawy, Rehab G.; El-din, Ahmed S. Badr; Etaiw, Safaa El-din H.

    2011-09-01

    The kinetics study of the oxidative decolorization of Acid-Blue 92 has been investigated by hydrogen peroxide catalyzed with bimetallic metal-organic frameworks. The used metal-organic frameworks (MOF) are [Ph 3SnCu(CN) 2·L] where L = pyrazine (pyz) 1, methylpyrazine (mepyz) 2, 4,4'-bipyridine (bpy) 3, trans-1,2-bis(4-pyridyl)ethene (tbpe) 4 or 1,2-bis(4-pyridyl)ethane (bpe) 5. The reaction was followed by conventional UV-Vis spectrophotometer at λmax = 571 nm. The reaction exhibited first-order kinetics with respect to [dye] and [H 2O 2]. The reactivity of the catalysts depends on the type of the medium and thereafter decreases in strong alkaline media. Addition of NaCl enhances the reaction rate. Also, the irradiation of the reaction with UV-light enhanced the rate of AB-92 mineralization by about 86.9%. The reaction was entropy-controlled as confirmed by the isokinetic relationship. A reaction mechanism was proposed with the formation of free radicals as an oxidant.

  6. Evidencing an inner-sphere mechanism for NHC-Au(I)-catalyzed carbene-transfer reactions from ethyl diazoacetate

    PubMed Central

    Fructos, Manuel R; Urbano, Juan

    2015-01-01

    Summary Kinetic experiments based on the measurement of nitrogen evolution in the reaction of ethyl diazoacetate (N2CHCO2Et, EDA) and styrene or methanol catalyzed by the [IPrAu]+ core (IPr = 1,3-bis(diisopropylphenyl)imidazole-2-ylidene) have provided evidence that the transfer of the carbene group CHCO2Et to the substrate (styrene or methanol) takes place in the coordination sphere of Au(I) by means of an inner-sphere mechanism, in contrast to the generally accepted proposal of outer-sphere mechanisms for Au(I)-catalyzed reactions. PMID:26664649

  7. The Contribution of Electrostatic and van der Waals Interactions to the Stereospecificity of the Reaction Catalyzed by Lactate Dehydrogenase

    PubMed Central

    van Beek, Jeroen; Callender, Robert; Gunner, M. R.

    1997-01-01

    Continuum electrostatic calculations in conjunction with molecular dynamics simulations have been used to investigate the source of the stereospecificity in the hydride transfer reaction catalyzed by lactate dehydrogenase (LDH). These studies show that favorable electrostatic interactions between the carboxamide group of the reduced nicotinamide adenine dinucleotide coenzyme and protein residues of the active site of LDH can account for much if not all of the stereospecificity of the LDH-catalyzed reaction, with A-side hydride transfer more than 107 times greater than B-side transfer. Unfavorable steric interactions within the binding complex for B-side transfer are not found. ImagesFIGURE 2 PMID:9017191

  8. Stereospecific nickel-catalyzed cross-coupling reactions of benzylic ethers and esters.

    PubMed

    Tollefson, Emily J; Hanna, Luke E; Jarvo, Elizabeth R

    2015-08-18

    This Account presents the development of a suite of stereospecific alkyl-alkyl cross-coupling reactions employing nickel catalysts. Our reactions complement related nickel-catalyzed stereoconvergent cross-coupling reactions from a stereochemical and mechanistic perspective. Most reactions of alkyl electrophiles with low-valent nickel complexes proceed through alkyl radicals and thus are stereoablative; the correct enantioselective catalyst can favor the formation of one enantiomer. Our reactions, in contrast, are stereospecific. Enantioenriched ethers and esters are cleanly converted to cross-coupled products with high stereochemical fidelity. While mechanistic details are still to be refined, our results are consistent with a polar, two-electron oxidative addition that avoids the formation of radical intermediates. This reactivity is unusual for a first-row transition metal. The cross-coupling reactions engage a range of benzylic ethers and esters, including methyl ethers, tetrahydropyrans, tetrahydrofurans, esters, and lactones. Coordination of the arene substituent to the nickel catalyst accelerates the reactions. Arenes with low aromatic stabilization energies, such as naphthalene, benzothiophene, and furan, serve as the best ligands and provide the highest reactivity. Traceless directing groups that accelerate reactions of sluggish substrates are described, providing partial compensation for arene coordination. Kumada, Negishi, and Suzuki reactions provide incorporation of a broad range of transmetalating agents. In Kumada coupling reactions, a full complement of Grigard reagents, including methyl, n-alkyl, and aryl Grignard reagents, are employed. In reactions employing methylmagnesium iodide, ligation of the nickel catalyst by rac-BINAP or DPEphos provides the highest yield and stereospecificity. For all other Grignard reagents, Ni(dppe)Cl2 has emerged as the best catalyst. Negishi cross-coupling reactions employing dimethylzinc are reported as a strategy to

  9. Stereospecific Nickel-Catalyzed Cross-Coupling Reactions of Benzylic Ethers and Esters

    PubMed Central

    2015-01-01

    Conspectus This Account presents the development of a suite of stereospecific alkyl–alkyl cross-coupling reactions employing nickel catalysts. Our reactions complement related nickel-catalyzed stereoconvergent cross-coupling reactions from a stereochemical and mechanistic perspective. Most reactions of alkyl electrophiles with low-valent nickel complexes proceed through alkyl radicals and thus are stereoablative; the correct enantioselective catalyst can favor the formation of one enantiomer. Our reactions, in contrast, are stereospecific. Enantioenriched ethers and esters are cleanly converted to cross-coupled products with high stereochemical fidelity. While mechanistic details are still to be refined, our results are consistent with a polar, two-electron oxidative addition that avoids the formation of radical intermediates. This reactivity is unusual for a first-row transition metal. The cross-coupling reactions engage a range of benzylic ethers and esters, including methyl ethers, tetrahydropyrans, tetrahydrofurans, esters, and lactones. Coordination of the arene substituent to the nickel catalyst accelerates the reactions. Arenes with low aromatic stabilization energies, such as naphthalene, benzothiophene, and furan, serve as the best ligands and provide the highest reactivity. Traceless directing groups that accelerate reactions of sluggish substrates are described, providing partial compensation for arene coordination. Kumada, Negishi, and Suzuki reactions provide incorporation of a broad range of transmetalating agents. In Kumada coupling reactions, a full complement of Grigard reagents, including methyl, n-alkyl, and aryl Grignard reagents, are employed. In reactions employing methylmagnesium iodide, ligation of the nickel catalyst by rac-BINAP or DPEphos provides the highest yield and stereospecificity. For all other Grignard reagents, Ni(dppe)Cl2 has emerged as the best catalyst. Negishi cross-coupling reactions employing dimethylzinc are reported as

  10. Chiral Phosphorus-Olefin Ligands for the Rh(I) -Catalyzed Asymmetric Addition of Aryl Boronic Acids to Electron-Deficient Olefins.

    PubMed

    Chen, Qian; Li, Liang; Zhou, Guangli; Ma, Xiaoli; Zhang, Lu; Guo, Fang; Luo, Yi; Xia, Wujiong

    2016-05-20

    New chiral phosphorus-olefin hybrid ligands derived from the rigid "privileged" l-proline have been conveniently prepared and applied in the rhodium-catalyzed asymmetric arylation of electron-deficient olefins with arylboronic acids at room temperature; this reaction provides the desired products in excellent yields and high enantioselectivities. The origin of observed stereoselectivity has been investigated by density functional theory (DFT) calculations. PMID:27017447

  11. Synthesis of theanine from glutamic acid gamma-methyl ester and ethylamine catalyzed by Escherichia coli having gamma-glutamyltranspeptidase activity.

    PubMed

    Zhang, Fei; Zheng, Qing-Zhong; Jiao, Qing-Cai; Liu, Jun-Zhong; Zhao, Gen-Hai

    2010-08-01

    Glutamic acid gamma-methyl ester (GAME) was used as substrate for theanine synthesis catalyzed by Escherichia coli cells possessing gamma-glutamyltranspeptidase activity. The yield was about 1.2-fold higher than with glutamine as substrate. The reaction was optimal at pH 10 and 45 degrees C, and the optimal substrate ratio of GAME to ethylamine was 1:10 (mol/mol). With GAME at 100 mmol, 95 mmol theanine was obtained after 8 h. PMID:20383735

  12. Palladium-Catalyzed α-Arylation of Aryl Acetic Acid Derivatives via Dienolate Intermediates with Aryl Chlorides and Bromides

    PubMed Central

    2016-01-01

    To date, examples of α-arylation of carboxylic acids remain scarce. Using a deprotonative cross-coupling process (DCCP), a method for palladium-catalyzed γ-arylation of aryl acetic acids with aryl halides has been developed. This protocol is applicable to a wide range of aryl bromides and chlorides. A procedure for the palladium-catalyzed α-arylation of styryl acetic acids is also described. PMID:25582024

  13. Mechanism of carboxypeptidase-Y-catalyzed reaction deduced from a pressure-dependence study.

    PubMed

    Fukuda, M; Kunugi, S

    1985-06-18

    The activation volumes for kcat of the carboxypeptidase-Y-catalyzed hydrolysis of ester substrates were slightly negative (-1 to -4 ml/mol), while those for peptide and depsi-peptide analog were highly positive (+10 to +27 ml/mol). These values and the contrasting pH dependences of these two groups of the substrates are explained by a mechanism involving three ionic states of the enzyme and the second stable intermediate (acyl-enzyme). Esters are mostly rate-controlled by the deacylation step and peptides are controlled by both the acylation and the deacylation steps. Pressure increase induced a partial shift of the rate-determining step. Reaction volumes for Km-1 of peptide and depsi-peptide analog showed large and positive values (+16 to +29 ml/mol) which reflects the electrostatic interaction in the substrate recognition by this enzyme. PMID:4006944

  14. Adrenodoxin supports reactions catalyzed by microsomal steroidogenic cytochrome P450s

    SciTech Connect

    Pechurskaya, Tatiana A. . E-mail: usanov@iboch.bas-net.by

    2007-02-16

    The interaction of adrenodoxin (Adx) and NADPH cytochrome P450 reductase (CPR) with human microsomal steroidogenic cytochrome P450s was studied. It is found that Adx, mitochondrial electron transfer protein, is able to support reactions catalyzed by human microsomal P450s: full length CYP17, truncated CYP17, and truncated CYP21. CPR, but not Adx, supports activity of truncated CYP19. Truncated and the full length CYP17s show distinct preference for electron donor proteins. Truncated CYP17 has higher activity with Adx compared to CPR. The alteration in preference to electron donor does not change product profile for truncated enzymes. The electrostatic contacts play a major role in the interaction of truncated CYP17 with either CPR or Adx. Similarly electrostatic contacts are predominant in the interaction of full length CYP17 with Adx. We speculate that Adx might serve as an alternative electron donor for CYP17 at the conditions of CPR deficiency in human.

  15. Palladium-catalyzed reactions in the synthesis of 3- and 4-substituted indoles. 4

    SciTech Connect

    Hegedus, L.S.; Sestrick, M.R.; Michaelson, E.T.; Harrington, P.J. )

    1989-08-18

    4-Bromo-1-tosylindole (1) was converted to tricyclic indole enone 11, a potential intermediate in the synthesis of tetracyclic ergot alkaloids, by a series of palladium-catalyzed processes. Attempts to construct the ergot D ring by the hetero-Diels-Alder reaction of enone 11 and 1-azabutadiene 12 produced not the expected (4 + 2) adduct 13 but the benz(cd)indoline derivative 14 resulting from attack of the aza diene at the indole 2-position. The thermodynamic stability of the naphthol nucleus makes enone 11 generally susceptible to attack at the indole 2-position, as evidenced by the attack of hydride and methyl cuprate nucleophiles at this portion forming indolines 16 and 17, respectively.

  16. Local Bifurcations of the Enzyme-Catalyzed Reaction Comprising a Branched Network

    NASA Astrophysics Data System (ADS)

    Zhang, Qiuyan; Liu, Lingling; Zhang, Weinian

    2015-06-01

    An enzyme-catalyzed reaction system with four parameters a, b, c, κ is discussed. The system can be reduced to a quartic polynomial differential system with four parameters, which leads to difficulties in the computation of semi-algebraic systems of large degree polynomials. Those systems have to be discussed on subsets of special biological sense, none of which is closed under operations of the polynomial ring. In this paper, we overcome those difficulties to determine the exact number of equilibria and their qualitative properties. Moreover, we obtain parameter conditions for all codimension-1 bifurcations such as saddle-node, transcritical, pitchfork and Hopf bifurcations. We compute varieties of Lyapunov quantities under the limitations of biological requirements and prove that the weak focus is of at most order 2. We further obtain parameter conditions for exact number of limit cycles arising from Hopf bifurcations.

  17. Transition Metal Catalyzed Reactions of Carbohydrates: a Nonoxidative Approach to Oxygenated Organics

    SciTech Connect

    Andrews, Mark

    1997-01-08

    There is a critical need for new environmentally friendly processes in the United States chemical industry as legislative and economic pressures push the industry to zero-waste and cradle-to-grave responsibility for the products they produce. Carbohydrates represent a plentiful, renewable resource, which for some processes might economically replace fossil feedstocks. While the conversion of biomass to fuels, is still not generally economical, the selective synthesis of a commodity or fine chemical, however, could compete effectively if appropriate catalytic conversion systems can be found. Oxygenated organics, found in a variety of products such as nylon and polyester, are particularly attractive targets. We believe that with concerted research efforts, homogeneous transition metal catalyzed reactions could play a significant role in bringing about this future green chemistry technology.

  18. Asymmetric Roadmap to Diverse Polycyclic Benzopyrans via Phosphine-Catalyzed Enantioselective [4 + 2]-Annulation Reaction.

    PubMed

    Danda, Adithi; Kesava-Reddy, Naredla; Golz, Christopher; Strohmann, Carsten; Kumar, Kamal

    2016-06-01

    The catalytic addition of the amino acid derived bifunctional N-acylaminophosphine to an α-substituted allene ester generated a zwitterionic dipole that engaged the vinylogous ester function of 3-cyano-chromones in a [4 + 2] annulation reaction to deliver tetrahydroxanthones embodying three consecutive chiral centers in high yields and with excellent enantioselectivities. The established asymmetric synthesis further paves the way to two different classes of complex, sp(3)-rich tetracyclic benzopyrans via efficient cascade reactions. PMID:27187586

  19. The Aerobic Oxidation of Bromide to Dibromine Catalyzed by Homogeneous Oxidation Catalysts and Initiated by Nitrate in Acetic Acid

    SciTech Connect

    Partenheimer, Walt; Fulton, John L.; Sorensen, Christina M.; Pham, Van Thai; Chen, Yongsheng

    2014-06-01

    A small amount of nitrate, ~0.002 molal, initiates the Co/Mn catalyzed aerobic oxidation of bromide compounds (HBr,NaBr,LiBr) to dibromine in acetic acid at room temperature. At temperatures 40oC or less , the reaction is autocatalytic. Co(II) and Mn(II) themselves and mixed with ionic bromide are known homogeneous oxidation catalysts. The reaction was discovered serendipitously when a Co/Br and Co/Mn/Br catalyst solution was prepared for the aerobic oxidation of methyaromatic compounds and the Co acetate contained a small amount of impurity i.e. nitrate. The reaction was characterized by IR, UV-VIS, MALDI and EXAFS spectroscopies and the coordination chemistry is described. The reaction is inhibited by water and its rate changed by pH. The change in these variables, as well as others, are identical to those observed during homogeneous, aerobic oxidation of akylaromatics. A mechanism is proposed. Accidental addition of a small amount of nitrate compound into a Co/Mn/Br/acetic acid mixture in a large, commercial feedtank is potentially dangerous.

  20. Conversion of alkenes to enol silyl ethers of acylsilanes by iridium-catalyzed reaction with a hydrosilane and carbon monoxide

    SciTech Connect

    Chatani, Naoto; Ikeda, Shin-ichi; Ohe, Kouichi

    1992-11-18

    We wish to report that iridium complexes [IrCl(CO){sub 3}]{sub n} and Ir{sub 4}(CO){sub 13} catalyze the reaction of alkenes with a hydrosilane HSiR{sub 3} and carbon monoxide (eq 1) to yield enol silyl ethers of acylsilanes. This unprecedented reaction results in regioselective introduction of carbon monoxide into the terminal carbon atom of alkenes, forming a siloxy(silyl)methylene unit(=C(SiR{sub 3})-OSiR{sub 3}). The present Ir-catalyzed reaction represents the first example of formation of acylsilane derivatives form the HSiR{sub 3}/CO combination. The new catalytic reaction can be applied to a wide variety of terminal alkenes. The acetal, cyano, and epoxide functional groups remain intact through this catalysis. The mechanism of the reaction may involve the possible intervention of a siloxycarbyne comple intermediate. 12 refs., 1 fig., 1 tab.

  1. Analysis of the HindIII-catalyzed reaction by time-resolved crystallography

    SciTech Connect

    Kawamura, Takashi; Kobayashi, Tomoki; Watanabe, Nobuhisa

    2015-02-01

    A time-resolved study using the freeze-trap method elucidates the mechanism of the DNA-cleaving reaction of HindIII. In order to investigate the mechanism of the reaction catalyzed by HindIII, structures of HindIII–DNA complexes with varying durations of soaking time in cryoprotectant buffer containing manganese ions were determined by the freeze-trap method. In the crystal structures of the complexes obtained after soaking for a longer duration, two manganese ions, indicated by relatively higher electron density, are clearly observed at the two metal ion-binding sites in the active site of HindIII. The increase in the electron density of the two metal-ion peaks followed distinct pathways with increasing soaking times, suggesting variation in the binding rate constant for the two metal sites. DNA cleavage is observed when the second manganese ion appears, suggesting that HindIII uses the two-metal-ion mechanism, or alternatively that its reactivity is enhanced by the binding of the second metal ion. In addition, conformational change in a loop near the active site accompanies the catalytic reaction.

  2. Lipase-catalyzed synthesis of ascorbyl oleate in acetone: optimization of reaction conditions and lipase reusability.

    PubMed

    Stojanović, Marija; Velićković, Dušan; Dimitrijević, Aleksandra; Milosavić, Nenad; Knežević-Jugović, Zorica; Bezbradica, Dejan

    2013-01-01

    Lipase-catalyzed ascorbyl oleate synthesis is eco-friendly and selective way of production of liposoluble biocompatible antioxidants, but still not present on an industrial level due to the high biocatalyst costs. In this study, response surface methodology was applied in order to estimate influence of individual experimental factors, identify interactions among them, and to determine optimum conditions for enzymatic synthesis of ascorbyl oleate in acetone, in terms of limiting substrate conversion, product yield, and yield per mass of consumed enzyme. As a biocatalyst, commercial immobilized preparation of lipase B from Candida antarctica, Novozym 435, was used. In order to develop cost-effective process, at reaction conditions at which maximum amount of product per mass of biocatalyst was produced (60°C, 0.018 % (v/v) of water, 0.135 M of vitamin C, substrates molar ratio 1:8, and 0.2 % (w/v) of lipase), possibilities for further increase of ester yield were investigated. Addition of molecular sieves at 4(th) hour of reaction enabled increase of yield from 16.7 mmol g⁻¹ to 19.3 mmol g⁻¹. Operational stability study revealed that after ten reaction cycles enzyme retained 48 % of its initial activity. Optimized synthesis with well-timed molecular sieves addition and repeated use of lipase provided production of 153 mmol per gram of enzyme. Further improvement of productivity was achieved using procedure for the enzyme reactivation. PMID:23985489

  3. Probing the Diastereoselectivity of Staudinger Reactions Catalyzed by N-Heterocyclic Carbenes.

    PubMed

    Hans, Morgan; Wouters, Johan; Demonceau, Albert; Delaude, Lionel

    2015-07-20

    The reaction of ethylphenylketene with 1,3-dimesitylimidazol-2-ylidene (IMes) or 1,3-dimesitylimidazolin-2-ylidene (SIMes) afforded the corresponding azolium enolates in high yields. The two zwitterions were fully characterized by various analytical techniques. Their thermal stabilities were monitored by thermogravimetric analysis and the molecular structure of SIMes⋅EtPhCCO was determined by means of X-ray crystallography. A mechanism was proposed to account for the trans-diastereoselectivity observed in the [2+2] cycloaddition of ketenes and N-protected imines catalyzed by N-heterocyclic carbenes and an extensive catalytic screening was performed to test its validity. The steric bulk of the NHC catalyst markedly affected the cis/trans ratio of the model β-lactam product. The nature of the solvent used to carry out the Staudinger reaction also significantly influenced its diastereoselectivity. Conversely, the nature of the substituent on the N-sulfonated imine reagent and the reaction temperature were less critical parameters. PMID:26073307

  4. Mechanistic insight into the Staudinger reaction catalyzed by N-heterocyclic carbenes.

    PubMed

    Hans, Morgan; Wouters, Johan; Demonceau, Albert; Delaude, Lionel

    2013-07-15

    Four zwitterions were prepared by treating 1,3-dimesitylimidazolin-2-ylidene (SIMes) or 1,3-dimesitylimidazol-2-ylidene (IMes) with either N-tosyl benzaldimine or diphenylketene. They were isolated in high yields and characterized by IR and NMR spectroscopy. The molecular structures of three of them were determined by using X-ray crystallography and their thermal stability was monitored by using thermogravimetric analysis. The imidazol(in)ium-2-amides were rather labile white solids that did not show any tendency to tautomerize into the corresponding 1,2,2-triaminoethene derivatives. They displayed a mediocre catalytic activity in the Staudinger reaction of N-tosyl benzaldimine with diphenylketene. In contrast, the imidazol(in)ium-2-enolates were orange-red crystalline materials that remained stable over extended periods of time. Despite their greater stability, these zwitterions turned out to be efficient promoters for the model cycloaddition under scrutiny. As a matter of fact, their catalytic activity matched those recorded with the free carbenes. Altogether, these results provide strong experimental insight into the mechanism of the Staudinger reaction catalyzed by N-heterocyclic carbenes. They also highlight the superior catalytic activity of the imidazole-based carbene IMes compared with its saturated analogue SIMes in the reaction under consideration. PMID:23754585

  5. Palladium-Based Nanomaterials: A Platform to Produce Reactive Oxygen Species for Catalyzing Oxidation Reactions.

    PubMed

    Long, Ran; Huang, Hao; Li, Yaping; Song, Li; Xiong, Yujie

    2015-11-25

    Oxidation reactions by molecular oxygen (O2 ) over palladium (Pd)-based nanomaterials are a series of processes crucial to the synthesis of fine chemicals. In the past decades, investigations of related catalytic materials have mainly been focused on the synthesis of Pd-based nanomaterials from the angle of tailoring their surface structures, compositions and supporting materials, in efforts to improve their activities in organic reactions. From the perspective of rational materials design, it is imperative to address the fundamental issues associated with catalyst performance, one of which should be oxygen activation by Pd-based nanomaterials. Here, the fundamentals that account for the transformation from O2 to reactive oxygen species over Pd, with a focus on singlet O2 and its analogue, are introduced. Methods for detecting and differentiating species are also presented to facilitate future fundamental research. Key factors for tuning the oxygen activation efficiencies of catalytic materials are then outlined, and recent developments in Pd-catalyzed oxygen-related organic reactions are summarized in alignment with each key factor. To close, we discuss the challenges and opportunities for photocatalysis research at this unique intersection as well as the potential impact on other research fields. PMID:26422795

  6. Acetyl xylan esterase of Aspergillus ficcum catalyzed the synthesis of peracetic acid from ethyl acetate and hydrogen peroxide.

    PubMed

    Park, Seung-Moon

    2011-11-01

    Recombinant acetyl xylan esterase (rAXE) of Aspergillus ficcum catalyzed the synthesis of peracetic acid (PAA) from ethyl acetate and hydrogen peroxide. Ten micrograms of rAXE catalyzed the synthesis of 1.34 mM of PAA, which can be used for the pretreatment of cellulosic biomass in situ. PMID:21824816

  7. Proton transfer reactions between nitric acid and acetone, hydroxyacetone, acetaldehyde and benzaldehyde in the solid phase.

    PubMed

    Lasne, Jérôme; Laffon, Carine; Parent, Philippe

    2012-12-01

    The heterogeneous and homogeneous reactions of acetone, hydroxyacetone, acetaldehyde and benzaldehyde with solid nitric acid (HNO(3)) films have been studied with Reflection-Absorption Infrared Spectroscopy (RAIRS) under Ultra-High Vacuum (UHV) conditions in the 90-170 K temperature range. In the bulk or at the surface of the films, nitric acid transfers its proton to the carbonyl function of the organic molecules, producing protonated acetone-H(+), hydroxyacetone-H(+), acetaldehyde-H(+) and benzaldehyde-H(+), and nitrate anions NO(3)(-), a reaction not observed when nitric acid is previously hydrated [J. Lasne, C. Laffon and Ph. Parent, Phys. Chem. Chem. Phys., 2012, 14, 697]. This provides a molecular-scale description of the carbonyl protonation reaction in an acid medium, the first step of the acid-catalyzed condensation of carbonyl compounds, fuelling the growth of secondary organic aerosols (SOA) in the atmosphere. PMID:23090634

  8. Boron-Catalyzed N-Alkylation of Amines using Carboxylic Acids.

    PubMed

    Fu, Ming-Chen; Shang, Rui; Cheng, Wan-Min; Fu, Yao

    2015-07-27

    A boron-based catalyst was found to catalyze the straightforward alkylation of amines with readily available carboxylic acids in the presence of silane as the reducing agent. Various types of primary and secondary amines can be smoothly alkylated with good selectivity and good functional-group compatibility. This metal-free amine alkylation was successfully applied to the synthesis of three commercial medicinal compounds, Butenafine, Cinacalcet. and Piribedil, in a one-pot manner without using any metal catalysts. PMID:26150397

  9. Acetic Acid Can Catalyze Succinimide Formation from Aspartic Acid Residues by a Concerted Bond Reorganization Mechanism: A Computational Study

    PubMed Central

    Takahashi, Ohgi; Kirikoshi, Ryota; Manabe, Noriyoshi

    2015-01-01

    Succinimide formation from aspartic acid (Asp) residues is a concern in the formulation of protein drugs. Based on density functional theory calculations using Ace-Asp-Nme (Ace = acetyl, Nme = NHMe) as a model compound, we propose the possibility that acetic acid (AA), which is often used in protein drug formulation for mildly acidic buffer solutions, catalyzes the succinimide formation from Asp residues by acting as a proton-transfer mediator. The proposed mechanism comprises two steps: cyclization (intramolecular addition) to form a gem-diol tetrahedral intermediate and dehydration of the intermediate. Both steps are catalyzed by an AA molecule, and the first step was predicted to be rate-determining. The cyclization results from a bond formation between the amide nitrogen on the C-terminal side and the side-chain carboxyl carbon, which is part of an extensive bond reorganization (formation and breaking of single bonds and the interchange of single and double bonds) occurring concertedly in a cyclic structure formed by the amide NH bond, the AA molecule and the side-chain C=O group and involving a double proton transfer. The second step also involves an AA-mediated bond reorganization. Carboxylic acids other than AA are also expected to catalyze the succinimide formation by a similar mechanism. PMID:25588215

  10. Structural Studies of Geosmin Synthase, a Bifunctional Sesquiterpene Synthase with αα Domain Architecture That Catalyzes a Unique Cyclization-Fragmentation Reaction Sequence.

    PubMed

    Harris, Golda G; Lombardi, Patrick M; Pemberton, Travis A; Matsui, Tsutomu; Weiss, Thomas M; Cole, Kathryn E; Köksal, Mustafa; Murphy, Frank V; Vedula, L Sangeetha; Chou, Wayne K W; Cane, David E; Christianson, David W

    2015-12-01

    Geosmin synthase from Streptomyces coelicolor (ScGS) catalyzes an unusual, metal-dependent terpenoid cyclization and fragmentation reaction sequence. Two distinct active sites are required for catalysis: the N-terminal domain catalyzes the ionization and cyclization of farnesyl diphosphate to form germacradienol and inorganic pyrophosphate (PPi), and the C-terminal domain catalyzes the protonation, cyclization, and fragmentation of germacradienol to form geosmin and acetone through a retro-Prins reaction. A unique αα domain architecture is predicted for ScGS based on amino acid sequence: each domain contains the metal-binding motifs typical of a class I terpenoid cyclase, and each domain requires Mg(2+) for catalysis. Here, we report the X-ray crystal structure of the unliganded N-terminal domain of ScGS and the structure of its complex with three Mg(2+) ions and alendronate. These structures highlight conformational changes required for active site closure and catalysis. Although neither full-length ScGS nor constructs of the C-terminal domain could be crystallized, homology models of the C-terminal domain were constructed on the basis of ∼36% sequence identity with the N-terminal domain. Small-angle X-ray scattering experiments yield low-resolution molecular envelopes into which the N-terminal domain crystal structure and the C-terminal domain homology model were fit, suggesting possible αα domain architectures as frameworks for bifunctional catalysis. PMID:26598179

  11. Mechanistic investigation of the uncatalyzed esterification reaction of acetic acid and acid halides with methanol: a DFT study.

    PubMed

    Lawal, Monsurat M; Govender, Thavendran; Maguire, Glenn E M; Honarparvar, Bahareh; Kruger, Hendrik G

    2016-10-01

    Implementation of catalysts to drive reactions from reactants to products remains a burden to synthetic and organic chemists. In spite of investigations into the kinetics and mechanism of catalyzed esterification reactions, less effort has been made to explore the possibility of an uncatalyzed esterification process. Therefore, a comprehensive mechanistic perspective for the uncatalyzed mechanism at the molecular level is presented. Herein, we describe the non-catalyzed esterification reaction of acetic acid and its halide derivatives (XAc, where X= OH, F, Cl, Br, I) with methanol (MeOH) through a concerted process. The reaction in vacuum and methanol was performed using the density functional theory (DFT) method at M06-2X level with def2-TZVP basis set after a careful literature survey and computations. Esterification through cyclic 4- or 6-membered transition state structures in one- or two-step concerted mechanisms were investigated. The present study outlines the possible cyclic geometry conformations that may occur during experiments at simple ratio of reactants. The free energy of activation for acetic acid and acetyl chloride are 36 kcal mol(-1) and 21 kcal mol(-1), respectively. These are in good agreement with available experimental results from the literature. The selected quantum chemical descriptors proved to be useful tools in chemical reactivity prediction for the reaction mechanism. This quantum mechanics study can serve as a necessary step towards revisiting uncatalyzed reaction mechanisms in some classical organic reactions. PMID:27604278

  12. Acid-catalyzed isomerization of rhenium alkyne complexes to rhenium allene complexes via 1-metallacyclopropene intermediates

    SciTech Connect

    Casey, C.P.; Brady, J.T.

    1998-10-12

    The alkyne complexes C{sub 5}Me{sub 5}(CO){sub 2}Re({eta}{sup 2}-MeC{triple_bond}CMe) (1) and C{sub 5}H{sub 5}(CO){sub 2}Re({eta}{sup 2}-MeC{triple_bond}CMe) (6) underwent acid-catalyzed isomerization by way of 1-metallacyclopropene intermediates to form the allene complexes C{sub 5}Me{sub 5}(CO){sub 2}Re({eta}{sup 2}-2,3-MeHC{double_bond}C{double_bond}CH{sub 2}) (5) and C{sub 5}H{sub 5}(CO){sub 2}Re({eta}{sup 2}-2,3-MeHC{double_bond}C{double_bond}CH{sub 2}) (7). Stoichiometric reaction of 1 with CF{sub 3}CO{sub 2}H initially produced the kinetic addition product C{sub 5}Me{sub 5}(CO){sub 2}Re[{eta}{sup 2}-(Z)-MeHC{double_bond}CMeO{sub 2}CCF{sub 3}] (8-Z), which slowly isomerized to the thermodynamically more stable E isomer 8-E. The reaction of 6 with CF{sub 3}CO{sub 2}H at {minus}73 C produced only C{sub 5}H{sub 5}(CO){sub 2}Re[{eta}{sup 2}-(E)-MeHC{double_bond}CMeO{sub 2}CCF{sub 3}] (9-E), which isomerized at -60 C to a 80:20 equilibrium mixture of 9-E and 9-Z. Treatment of 9-E and 9-Z with base led to formation of allene complex 7. The rate of this elimination was independent of base concentration. Labeling studies showed that the 1-metallacyclopropene intermediate C{sub 5}H{sub 5}(CO){sub 2}({eta}{sup 2}-CMeCHMe){sup +}CF{sub 3}CO{sub 2}{sup {minus}} (12-CF{sub 3}CO{sub 2}) undergoes a number of important reactions which include, in order of decreasing relative rates: (1) addition of trifluoroacetate to give enol trifluoroacetate complexes, (2) deprotonation to give complexed allenes, (3) degenerate 1,2-hydride migrations, (4) hydride migrations to give {eta}{sup 3}-allyl complexes, and (5) deprotonation to give complexed alkynes.

  13. Iodine-Catalyzed Polysaccharide Esterification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A review is provided of the recent reports to use iodine-catalyzed esterification reaction to produce esters from polysaccharides. The process entails reaction of the polysaccharide with an acid anhydride in the presence of a catalytic level of iodine, and in the absence of additional solvents. T...

  14. Asymmetric Synthesis of CF3- and Indole-Containing Thiochromanes via a Squaramide-Catalyzed Michael-Aldol Reaction.

    PubMed

    Zhu, Yuanyuan; Dong, Zhenghao; Cheng, Xin; Zhong, Xiaoling; Liu, Xiaolin; Lin, Li; Shen, Zhiqiang; Yang, Peiju; Li, Yuan; Wang, Hailin; Yan, Wenjin; Wang, Kairong; Wang, Rui

    2016-08-01

    A Michael-aldol reaction of 2-mercaptobenzaldehyde with β-indole-β-CF3 enones catalyzed by a squaramide has been realized. The method affords a series of 2-CF3-2-indole-substituted thiochromanes featuring a CF3-containing quaternary stereocenter in excellent yields, diastereoselectivities, and enantioselectivities. PMID:27390924

  15. Nafion®-catalyzed microwave-assisted Ritter reaction: An atom-economic solvent-free synthesis of amides

    EPA Science Inventory

    An atom-economic solvent-free synthesis of amides by the Ritter reaction of alcohols and nitriles under microwave irradiation is reported. This green protocol is catalyzed by solid supported Nafion®NR50 with improved efficiency and reduced waste production.

  16. New efficient ligand for sub-mol % copper-catalyzed C-N cross-coupling reactions running under air.

    PubMed

    Larsson, Per-Fredrik; Astvik, Peter; Norrby, Per-Ola

    2012-01-01

    A new efficient ligand, N,N''-dimethyldiethylene triamine (DMDETA), has been synthesized and evaluated for sub-mol % copper-catalyzed C-N cross-coupling reactions. The efficiency of the ligand was determined by kinetic methods. DMDETA proved to display efficiency similar to DMEDA and, in addition, the resulting catalyst was tolerant to air. PMID:23209530

  17. New efficient ligand for sub-mol % copper-catalyzed C–N cross-coupling reactions running under air

    PubMed Central

    Larsson, Per-Fredrik; Astvik, Peter

    2012-01-01

    Summary A new efficient ligand, N,N’’-dimethyldiethylene triamine (DMDETA), has been synthesized and evaluated for sub-mol % copper-catalyzed C–N cross-coupling reactions. The efficiency of the ligand was determined by kinetic methods. DMDETA proved to display efficiency similar to DMEDA and, in addition, the resulting catalyst was tolerant to air. PMID:23209530

  18. Rates of various reactions catalyzed by ATP synthase as related to the mechanism of ATP synthesis

    SciTech Connect

    Berkich, D.A.; Williams, G.D.; Masiakos, P.T.; Smith, M.B.; Boyer, P.D.; LaNoue, K.F. )

    1991-01-05

    The forward and reverse rates of the overall reaction catalyzed by the ATP synthase in intact rat heart mitochondria, as measured with 32P, were compared with the rates of two partial steps, as measured with 18O. Such rates have been measured previously, but their relationship to one another has not been determined, nor have the partial reactions been measured in intact mitochondria. The partial steps measured were the rate of medium Pi formation from bound ATP (in state 4 this also equals the rate of medium Pi into bound ATP) and the rate of formation of bound ATP from bound Pi within the catalytic site. The rates of both partial reactions can be measured by 31P NMR analysis of the 18O distribution in Pi and ATP released from the enzyme during incubation of intact mitochondria with highly labeled (18O)Pi. Data were obtained in state 3 and 4 conditions with variation in substrate concentrations, temperature, and mitochondrial membrane electrical potential gradient (delta psi m). Although neither binding nor release of ATP is necessary for phosphate/H2O exchange, in state 4 the rate of incorporation of at least one water oxygen atom into phosphate is approximately twice the rate of the overall reaction rate under a variety of conditions. This can be explained if the release of Pi or ATP at one catalytic site does not occur, unless ATP or Pi is bound at another catalytic site. Such coupling provides strong support for the previously proposed alternating site mechanism. In state 3 slow reversal of ATP synthesis occurs within the mitochondrial matrix and can be detected as incorporation of water oxygen atoms into medium Pi even though medium (32P)ATP does not give rise to 32Pi in state 3. These data can be explained by lack of translocation of ATP from the medium to the mitochondrial matrix.

  19. Configurationally Stable, Enantioenriched Organometallic Nucleophiles in Stereospecific Pd-Catalyzed Cross-Coupling Reactions: An Alternative Approach to Asymmetric Synthesis

    PubMed Central

    Wang, Chao-Yuan; Derosaa, Joseph

    2015-01-01

    Several research groups have recently developed methods to employ configurationally stable, enantioenriched organometallic nucleophiles in stereospecific Pd-catalyzed cross-coupling reactions. By establishing the absolute configuration of a chiral alkyltin or alkylboron nucleophile prior to its use in cross-coupling reactions, new stereogenic centers may be rapidly and reliably generated with preservation of the known initial stereochemistry. While this area of research is still in its infancy, such stereospecific cross-coupling reactions may emerge as simple, general methods to access diverse, optically active products from common enantioenriched organometallic building blocks. This minireview highlights recent progress towards the development of general, stereospecific Pd-catalyzed cross-coupling reactions using configurationally stable organometallic nucleophiles. PMID:26388985

  20. Mechanistic Studies Lead to Dramatically Improved Reaction Conditions for the Cu-Catalyzed Asymmetric Hydroamination of Olefins.

    PubMed

    Bandar, Jeffrey S; Pirnot, Michael T; Buchwald, Stephen L

    2015-11-25

    Enantioselective copper(I) hydride (CuH)-catalyzed hydroamination has undergone significant development over the past several years. To gain a general understanding of the factors governing these reactions, kinetic and spectroscopic studies were performed on the CuH-catalyzed hydroamination of styrene. Reaction profile analysis, rate order assessment, and Hammett studies indicate that the turnover-limiting step is regeneration of the CuH catalyst by reaction with a silane, with a phosphine-ligated copper(I) benzoate as the catalyst resting state. Spectroscopic, electrospray ionization mass spectrometry, and nonlinear effect studies are consistent with a monomeric active catalyst. With this insight, targeted reagent optimization led to the development of an optimized protocol with an operationally simple setup (ligated copper(II) precatalyst, open to air) and short reaction times (<30 min). This improved protocol is amenable to a diverse range of alkene and alkyne substrate classes. PMID:26522837

  1. Gallic Acid, Ellagic Acid and Pyrogallol Reaction with Metallic Iron

    NASA Astrophysics Data System (ADS)

    Jaén, J. A.; González, L.; Vargas, A.; Olave, G.

    2003-06-01

    The reaction between gallic acid, ellagic acid and pyrogallol with metallic iron was studied using infrared and Mössbauer spectroscopy. Most hydrolysable tannins with interesting anticorrosive or inhibition properties are structurally related to these compounds, thus they may be used as models for the study of hydrolysable tannins and related polyphenols. The interaction was followed up to 3 months. Results indicated two different behaviors. At polyphenol concentrations higher than 1% iron converts to sparingly soluble and amorphous ferric (and ferrous) polyphenolate complexes. At lower concentrations (0.1%), the hydrolysis reactions are dominant, resulting in the formation of oxyhydroxides, which can be further reduced to compounds like magnetite by the polyphenols.

  2. Mechanism of the Orotidine 5′-Monophosphate Decarboxylase-Catalyzed Reaction: Evidence for Substrate Destabilization

    SciTech Connect

    Chan, K.; Wood, M; Fedorov, A; Fedorov, E; Imker, H; Amyes, T; Richard, J; Almo, S; Gerlt, J

    2009-01-01

    The reaction catalyzed by orotidine 5'-monophosphate decarboxylase (OMPDC) involves a stabilized anionic intermediate, although the structural basis for the rate acceleration (kcat/knon, 7.1 x 1016) and proficiency (kcat/KM)/knon, 4.8 x 1022 M-1 is uncertain. That the OMPDCs from Methanothermobacter thermautotrophicus (MtOMPDC) and Saccharomyces cerevisiae (ScOMPDC) catalyze the exchange of H6 of the UMP product with solvent deuterium allows an estimate of a lower limit on the rate acceleration associated with stabilization of the intermediate and its flanking transition states (=1010). The origin of the 'missing' contribution, =107 (1017 total - =1010), is of interest. Based on structures of liganded complexes, unfavorable electrostatic interactions between the substrate carboxylate group and a proximal Asp (Asp 70 in MtOMPDC and Asp 91 in ScOMPDC) have been proposed to contribute to the catalytic efficiency. We investigated that hypothesis by structural and functional characterization of the D70N and D70G mutants of MtOMPDC and the D91N mutant of ScOMPDC. The substitutions for Asp 70 in MtOMPDC significantly decrease the value of kcat for decarboxylation of FOMP (a more reactive substrate analogue) but have little effect on the value of kex for exchange of H6 of FUMP with solvent deuterium; the structures of wild-type MtOMPDC and its mutants are superimposable when complexed with 6-azaUMP. In contrast, the D91N mutant of ScOMPDC does not catalyze exchange of H6 of FUMP; the structures of wild-type ScOMPDC and its D91N mutant are not superimposable when complexed with 6-azaUMP, with differences in both the conformation of the active site loop and the orientation of the ligand vis vis the active site residues. We propose that the differential effects of substitutions for Asp 70 of MtOMPDC on decarboxylation and exchange provide additional evidence for a carbanionic intermediate as well as the involvement of Asp 70 in substrate destabilization.

  3. DABCO-catalyzed unusual [4 + 2] cycloaddition reaction: non-substituted allenoate acts as a four-carbon synthon and facile synthesis of spirooxindoles.

    PubMed

    Liu, Yufen; Du, Yanlong; Yu, Aimin; Mu, Haifeng; Meng, Xiangtai

    2016-01-28

    A DABCO-catalyzed domino reaction between methyleneoxindoles and allenoates which enables the direct synthesis of spirooxindoles is reported. This is the first example of a non-substituted allenoate to act as a four-carbon synthon in a tertiary amine-catalyzed reaction. PMID:26677052

  4. Carbon-13 and deuterium isotope effects on the reaction catalyzed by glyceraldehyde-3-phosphate dehydrogenase

    SciTech Connect

    Canellas, P.F.; Cleland, W.W. )

    1991-09-10

    Carbon-13 and deuterium isotope effects have been measured on the reaction catalyzed by rabbit muscle glyceraldehyde-3-phosphate dehydrogenase in an effort to locate the rate-limiting steps. With D-glyceraldehyde 3-phosphate as substrate, hydride transfer is a major, but not the only, slow step prior to release of the first product, and the intrinsic primary deuterium and {sup 13}C isotope effects on this step are 5-5.5 and 1.034-1.040, and the sum of the commitments to catalysis is {approximately} 3. The {sup 13}C isotope effects on thiohemiacetal formation and thioester phosphorolysis are 1.005 or less. With D-glyceraldehyde as substrate, the isotope effects are similar, but the sum of commitments is {approximately} 1.5, so that hydride transfer is more, but still not solely, rate limiting for this slow substrate. The observed {sup 13}C and deuterium equilibrium isotope effects on the overall reaction from the hydrated aldehyde are 0.995 and 1.145, while the {sup 13}C equilibrium isotope effect for conversion of a thiohemiacetal to a thioester is 0.994, and that for conversion of a thioester to an acyl phosphate is 0.997. Somewhat uncertain values for the {sup 13}C equilibrium isotope effects on aldehyde dehydration and formation of a thiohemiacetal are 1.003 and 1.004.

  5. Polyoxymetalate liquid-catalyzed polyol fuel cell and the related photoelectrochemical reaction mechanism study

    NASA Astrophysics Data System (ADS)

    Wu, Weibing; Liu, Wei; Mu, Wei; Deng, Yulin

    2016-06-01

    A novel design of liquid catalyzed fuel cell (LCFC), which uses polyoxometalates (POMs) as the photocatalyst and charge carrier has been reported previously. In this paper, the adaptability of biomass fuels (e.g., glycerol and glucose) to the LCFC and corresponding cell performance were studied in detail here. An interesting finding that greatly differs from conventional fuel cell is that high molecular weight fuels rather than small molecule fuels (e.g., methanol and ethylene glycol) are favored by the novel LCFC with respect to the power densities. The power output of LCFC strongly depends on the number and structure of hydroxyl groups in the biomass fuels. The evidence of UV-Vis and 1H NMR spectra shows that the preassociation between POM and alcohol fuels, which determines the photoelectrochemical reaction pathway of POM, is enhanced as the number of hydroxyl increases. Experimental results also demonstrate that more hydroxyl groups in the molecules lead to faster photoelectrochemical reaction between POM and fuels, higher reduction degree of POM, and further higher power output of LCFC. Our study reveals that biomass-based polyhydroxyl compounds such as starch, hemicellulose and cellulose are potential high-performance fuels for LCFC.

  6. Role of Long-Range Protein Dynamics in Different Thymidylate Synthase Catalyzed Reactions

    PubMed Central

    Abeysinghe, Thelma; Kohen, Amnon

    2015-01-01

    Recent studies of Escherichia coli thymidylate synthase (ecTSase) showed that a highly conserved residue, Y209, that is located 8 Å away from the reaction site, plays a key role in the protein’s dynamics. Those crystallographic studies indicated that Y209W mutant is a structurally identical but dynamically altered relative to the wild type (WT) enzyme, and that its turnover catalytic rate governed by a slow hydride-transfer has been affected. The most challenging test of an examination of a fast chemical conversion that precedes the rate-limiting step has been achieved here. The physical nature of both fast and slow C-H bond activations have been compared between the WT and mutant by means of observed and intrinsic kinetic isotope effects (KIEs) and their temperature dependence. The findings indicate that the proton abstraction step has not been altered as much as the hydride transfer step. Additionally, the comparison indicated that other kinetic steps in the TSase catalyzed reaction were substantially affected, including the order of the substrate binding. Enigmatically, although Y209 is H-bonded to 3'-OH of 2'-deoxyuridine-5'-mono­phosphate (dUMP), its altered dynamics is more pronounced on the binding of the remote cofactor, (6R)-N5,N10-methylene-5,6,7,8-tetrahydrofolate (CH2H4folate), revealing the importance of long-range dynamics of the enzymatic complex and its catalytic function. PMID:25837629

  7. Palladium-Catalyzed α-Arylation of Zinc Enolates of Esters: Reaction Conditions and Substrate Scope

    PubMed Central

    Hama, Takuo; Ge, Shaozhong; Hartwig, John F.

    2013-01-01

    The intermolecular α-arylation of esters by palladium-catalyzed coupling of aryl bromides with zinc enolates of esters is reported. Reactions of three different types of zinc enolates have been developed. α-Arylation of esters occurs in high yields with isolated Reformatsky reagents, with Reformatsky reagents generated from α-bromo esters and activated zinc, and with zinc enolates generated by quenching lithium enolates of esters with zinc chloride. The use of zinc enolates, instead of alkali metal enolates, greatly expands the scope of the arylation of esters. The reactions occur at room temperature or at 70 °C with bromoarenes containing cyano, nitro, ester, keto, fluoro, enolizable hydrogen, hydroxyl or amino functionality and with bromopyridines. The scope of esters encompasses acyclic acetates, propionates, and isobutyrates, α-alkoxyesters, and lactones. The arylation of zinc enolates of esters was conducted with catalysts bearing the hindered pentaphenylferrocenyl di-tert-butylphosphine (Q-phos) or the highly reactive dimeric Pd(I) complex {[P(t-Bu)3]PdBr}2. PMID:23931445

  8. Reaction Pathways and Energetics of Etheric C–O Bond Cleavage Catalyzed by Lanthanide Triflates

    SciTech Connect

    Assary, Rajeev S.; Atesin, Abdurrahman C.; Li, Zhi; Curtiss, Larry A.; Marks, Tobin J.

    2013-09-06

    Efficient and selective cleavage of etheric C-O bonds is crucial for converting biomass into platform chemicals and liquid transportation fuels. In this contribution, computational methods at the DFT B3LYP level of theory are employed to understand the efficacy of lanthanide triflate catalysts (Ln(OTf)3, Ln = La, Ce, Sm, Gd, Yb, and Lu) in cleaving etheric C-O bonds. In agreement with experiment, the calculations indicate that the reaction pathway for C-O cleavage occurs via a C-H → O-H proton transfer in concert with weakening of the C-O bond of the coordinated ether substrate to ultimately yield a coordinated alkenol. The activation energy for this process falls as the lanthanide ionic radius decreases, reflecting enhanced metal ion electrophilicity. Details of the reaction mechanism for Yb(OTf)3-catalyzed ring opening are explored in depth, and for 1-methyl-d3-butyl phenyl ether, the computed primary kinetic isotope effect of 2.4 is in excellent agreement with experiment (2.7), confirming that etheric ring-opening pathway involves proton transfer from the methyl group alpha to the etheric oxygen atom, which is activated by the electrophilic lanthanide ion. Calculations of the catalytic pathway using eight different ether substrates indicate that the more rapid cleavage of acyclic versus cyclic ethers is largely due to entropic effects, with the former C-O bond scission processes increasing the degrees of freedom/particles as the transition state is approached.

  9. Role of long-range protein dynamics in different thymidylate synthase catalyzed reactions.

    PubMed

    Abeysinghe, Thelma; Kohen, Amnon

    2015-01-01

    Recent studies of Escherichia coli thymidylate synthase (ecTSase) showed that a highly conserved residue, Y209, that is located 8 Å away from the reaction site, plays a key role in the protein's dynamics. Those crystallographic studies indicated that Y209W mutant is a structurally identical but dynamically altered relative to the wild type (WT) enzyme, and that its turnover catalytic rate governed by a slow hydride-transfer has been affected. The most challenging test of an examination of a fast chemical conversion that precedes the rate-limiting step has been achieved here. The physical nature of both fast and slow C-H bond activations have been compared between the WT and mutant by means of observed and intrinsic kinetic isotope effects (KIEs) and their temperature dependence. The findings indicate that the proton abstraction step has not been altered as much as the hydride transfer step. Additionally, the comparison indicated that other kinetic steps in the TSase catalyzed reaction were substantially affected, including the order of the substrate binding. Enigmatically, although Y209 is H-bonded to 3'-OH of 2'-deoxyuridine-5'-mono-phosphate (dUMP), its altered dynamics is more pronounced on the binding of the remote cofactor, (6R)-N5,N10-methylene-5,6,7,8-tetrahydrofolate (CH2H4folate), revealing the importance of long-range dynamics of the enzymatic complex and its catalytic function. PMID:25837629

  10. Probing Nonadiabaticity in the Proton-Coupled Electron Transfer Reaction Catalyzed by Soybean Lipoxygenase

    PubMed Central

    2014-01-01

    Proton-coupled electron transfer (PCET) plays a vital role in many biological and chemical processes. PCET rate constant expressions are available for various well-defined regimes, and determining which expression is appropriate for a given system is essential for reliable modeling. Quantitative diagnostics have been devised to characterize the vibronic nonadiabaticity between the electron–proton quantum subsystem and the classical nuclei, as well as the electron–proton nonadiabaticity between the electrons and proton(s) within the quantum subsystem. Herein these diagnostics are applied to a model of the active site of the enzyme soybean lipoxygenase, which catalyzes a PCET reaction that exhibits unusually high deuterium kinetic isotope effects at room temperature. Both semiclassical and electronic charge density diagnostics illustrate vibronic and electron–proton nonadiabaticity for this PCET reaction, supporting the use of the Golden rule nonadiabatic rate constant expression with a specific form of the vibronic coupling. This type of characterization will be useful for theoretical modeling of a broad range of PCET processes. PMID:25258676

  11. Optimizing Metalloporphyrin-Catalyzed Reduction Reactions for In Situ Remediation of DOE Contaminants

    SciTech Connect

    Schlautman, Mark A.

    2013-07-14

    Past activities have resulted in a legacy of contaminated soil and groundwater at Department of Energy facilities nationwide. Uranium and chromium are among the most frequently encountered and highest-priority metal and radionuclide contaminants at DOE installations. Abiotic chemical reduction of uranium and chromium at contaminated DOE sites can be beneficial because the reduced metal species are less soluble in water, less mobile in the environment, and less toxic to humans and ecosystems. Although direct biological reduction has been reported for U(VI) and Cr(VI) in laboratory studies and at some field sites, the reactions can sometimes be slow or even inhibited due to unfavorable environmental conditions. One promising approach for the in-situ remediation of DOE contaminants is to develop electron shuttle catalysts that can be delivered precisely to the specific subsurface locations where contaminants reside. Previous research has shown that reduction of oxidized organic and inorganic contaminants often can be catalyzed by electron shuttle systems. Metalloporphyrins and their derivatives are well known electron shuttles for many biogeochemical systems, and thus were selected to study their catalytic capabilities for the reduction of chromium and uranium in the presence of reducing agents. Zero valent iron (ZVI) was chosen as the primary electron donor in most experimental systems. Research proceeded in three phases and the key findings of each phase are reported here. Phase I examined Cr(VI) reduction and utilized micro- and nano-sized ZVI as the electron donors. Electron shuttle catalysts tested were cobalt- and iron-containing metalloporphyrins and Vitamin B12. To aid in the recycle and reuse of the nano-sized ZVI and soluble catalysts, sol-gels and calcium-alginate gel beads were tested as immobilization/support matrices. Although the nano-sized ZVI could be incorporated within the alginate gel beads, preliminary attempts to trap it in sol-gels were not

  12. Stereochemical Course of the Reaction Catalyzed by RimO, a Radical SAM Methylthiotransferase.

    PubMed

    Landgraf, Bradley J; Booker, Squire J

    2016-03-01

    RimO is a member of the growing radical S-adenosylmethionine (SAM) superfamily of enzymes, which use a reduced [4Fe-4S] cluster to effect reductive cleavage of the 5' C-S bond of SAM to form a 5'-deoxyadenosyl 5'-radical (5'-dA(•)) intermediate. RimO uses this potent oxidant to catalyze the attachment of a methylthio group (-SCH3) to C3 of aspartate 89 of protein S12, one of 21 proteins that compose the 30S subunit of the bacterial ribosome. However, the exact mechanism by which this transformation takes place has remained elusive. Herein, we describe the stereochemical course of the RimO reaction. Using peptide mimics of the S12 protein bearing deuterium at the 3 pro-R or 3 pro-S positions of the target aspartyl residue, we show that RimO from Bacteroides thetaiotaomicron (Bt) catalyzes abstraction of the pro-S hydrogen atom, as evidenced by the transfer of deuterium into 5'-deoxyadenosine (5'-dAH). The observed kinetic isotope effect on H atom versus D atom abstraction is ∼1.9, suggesting that this step is at least partially rate determining. We also demonstrate that Bt RimO can utilize the flavodoxin/flavodoxin oxidoreductase/NADPH reducing system from Escherichia coli as a source of requisite electrons. Use of this in vivo reducing system decreases, but does not eliminate, formation of 5'-dAH in excess of methylthiolated product. PMID:26871608

  13. Copper-Catalyzed Aza-Diels-Alder Reaction and Halogenation: An Approach To Synthesize 7-Halogenated Chromenoquinolines.

    PubMed

    Yu, Xiaoqiang; Wang, Jiao; Xu, Zhanwei; Yamamoto, Yoshinori; Bao, Ming

    2016-05-20

    A new halogenation method to construct halogen-substituted quinoline moieties is described. The Cu-catalyzed intramolecular aza-Diels-Alder reaction and halogenation reaction proceeded smoothly under mild conditions to produce the corresponding 7-chloro-6H-chromeno[4,3-b]quinolines and 7-chloro-6H-thiochromeno[4,3-b]quinolines in satisfactory yields. PMID:27145113

  14. A palladium-catalyzed intramolecular carbonylative annulation reaction for the synthesis of 4,5-fused tricyclic 2-quinolones.

    PubMed

    Zhang, Xiwu; Liu, Haichao; Jia, Yanxing

    2016-06-01

    A concise and efficient synthetic route to 4,5-fused tricyclic 2-quinolones through the palladium-catalyzed carbonylative annulation of alkyne-tethered N-substituted o-iodoanilines has been developed. This reaction proceeds smoothly under mild reaction conditions and exhibits exceptional tolerance to a variety of functional groups. It has been successfully applied to the efficient synthesis of BI 224436, an HIV integrase inhibitor. PMID:27225232

  15. Metal-Catalyzed Double Migratory Cascade Reactions of Propargylic Esters and Phosphates

    PubMed Central

    Shiroodi, Roohollah Kazem

    2013-01-01

    Propargylic esters and phosphates are easily accessible substrates, which exhibit rich and tunable reactivities in the presence of transition metal catalysts. π-acidic metals, mostly gold and platinum salts, activate these substrates for an initial 1,2- or 1,3-acyloxy and phosphatyloxy migration processes to form reactive intermediates. These intermediates are able to undergo further cascade reactions leading to a variety of diverse structures. This tutorial review systematically introduces the double migratory reactions of propargylic esters and phosphates as a novel synthetic method, in which further cascade reaction of the reactive intermediate is accompanied by a second migration of a different group, thus offering a rapid route to a wide range of functionalized products. The serendipitous observations, as well as designed approaches involving the double migratory cascade reactions, will be discussed with emphasis placed on the mechanistic aspects and the synthetic utilities of the obtained products. PMID:23443274

  16. The Acid Hydrolysis Mechanism of Acetals Catalyzed by a Supramolecular Assembly in Basic Solution

    SciTech Connect

    Pluth, Michael D.; Bergman, Robert G.; Raymond, Kenneth N.

    2008-09-24

    A self-assembled supramolecular host catalyzes the hydrolysis of acetals in basic aqueous solution. The mechanism of hydrolysis is consistent with the Michaelis-Menten kinetic model. Further investigation of the rate limiting step of the reaction revealed a negative entropy of activation ({Delta}S{double_dagger} = -9 cal mol{sup -1}K{sup -1}) and an inverse solvent isotope effect (k(H{sub 2}O)/k(D{sub 2}O) = 0.62). These data suggest that the mechanism of hydrolysis that takes place inside the assembly proceeds through an A-2 mechanism, in contrast to the A-1 mechanism operating in the uncatalyzed reaction. Comparison of the rates of acetal hydrolysis in the assembly with the rate of the reaction of unencapsulated substrates reveals rate accelerations of up to 980 over the background reaction for the substrate diethoxymethane.

  17. Asymmetric epoxidation of allylic alcohols catalyzed by vanadium-binaphthylbishydroxamic Acid complex.

    PubMed

    Noji, Masahiro; Kobayashi, Toshihiro; Uechi, Yuria; Kikuchi, Asami; Kondo, Hisako; Sugiyama, Shigeo; Ishii, Keitaro

    2015-03-20

    A vanadium-binaphthylbishydroxamic acid (BBHA) complex-catalyzed asymmetric epoxidation of allylic alcohols is described. The optically active binaphthyl-based ligands BBHA 2a and 2b were synthesized from (S)-1,1'-binaphthyl-2,2'-dicarboxylic acid and N-substituted-O-trimethylsilyl (TMS)-protected hydroxylamines via a one-pot, three-step procedure. The epoxidations of 2,3,3-trisubstituted allylic alcohols using the vanadium complex of 2a were easily performed in toluene with a TBHP water solution to afford (2R)-epoxy alcohols in good to excellent enantioselectivities. PMID:25714329

  18. Palladium-catalyzed C–N and C–O bond formation of N-substituted 4-bromo-7-azaindoles with amides, amines, amino acid esters and phenols

    PubMed Central

    Surasani, Rajendra; Rao, A V Dhanunjaya; Chandrasekhar, K B

    2012-01-01

    Summary Simple and efficient procedures for palladium-catalyzed cross-coupling reactions of N-substituted 4-bromo-7-azaindole (1H-pyrrole[2,3-b]pyridine), with amides, amines, amino acid esters and phenols through C–N and C–O bond formation have been developed. The C–N cross-coupling reaction of amides, amines and amino acid esters takes place rapidly by using the combination of Xantphos, Cs2CO3, dioxane and palladium catalyst precursors Pd(OAc)2/Pd2(dba)3. The combination of Pd(OAc)2, Xantphos, K2CO3 and dioxane was found to be crucial for the C–O cross-coupling reaction. This is the first report on coupling of amides, amino acid esters and phenols with N-protected 4-bromo-7-azaindole derivatives. PMID:23209536

  19. Synthetic applications of Pd(II)-catalyzed C-H carboxylation and mechanistic insights: expedient routes to anthranilic acids, oxazolinones, and quinazolinones.

    PubMed

    Giri, Ramesh; Lam, Jonathan K; Yu, Jin-Quan

    2010-01-20

    A Pd(II)-catalyzed reaction protocol for the carboxylation of ortho-C-H bonds in anilides to form N-acyl anthranilic acids has been developed. This reaction procedure provides a novel and efficient strategy for the rapid assembly of biologically and pharmaceutically significant molecules, such as benzoxazinones and quinazolinones, from simple anilides without installing and removing an external directing group. The reaction conditions are also amenable to the carboxylation of N-phenyl pyrrolidinones. A monomeric palladacycle containing p-toluenesulfonate as an anionic ligand has been characterized by X-ray crystallography, and the crucial role of p-toluenesulfonic acid in the activation of C-H bonds in the presence of carbon monoxide is discussed. Identification of two key intermediates, a mixed anhydride and benzoxazinone formed by reductive elimination from organometallic Ar(CO)Pd(II)-OTs species, provides mechanistic evidence for a dual-reaction pathway. PMID:20000840

  20. Lewis acid tuned facial stereodivergent HDA reactions using beta-substituted N-vinyloxazolidinones.

    PubMed

    Gohier, Frédéric; Bouhadjera, Keltoum; Faye, Djibril; Gaulon, Catherine; Maisonneuve, Vincent; Dujardin, Gilles; Dhal, Robert

    2007-01-18

    The [4 + 2] acido-catalyzed heterocycloaddition between new beta-substituted N-vinyl-1,3-oxazolidin-2-ones (with R' = Me, Ar, CH2 Ar) and beta,gamma-unsaturated alpha-ketoesters (R = Ar) afforded heteroadducts with high levels of endo and facial selectivities. A complete reversal of facial differentiation was achieved by varying the Lewis acid, leading to the stereoselective formation of either endo-alpha or endo-beta adducts. [reaction: see text]. PMID:17217267

  1. Plant lipases: biocatalyst aqueous environment in relation to optimal catalytic activity in lipase-catalyzed synthesis reactions.

    PubMed

    Caro, Yanis; Pina, Michel; Turon, Fabrice; Guilbert, Stephane; Mougeot, Estelle; Fetsch, David V; Attwool, Philip; Graille, Jean

    2002-03-20

    Adsorption and desorption isotherms of two commercial enzyme preparations of papain and bromelain were determined with a Dynamic Vapor System. The Guggenheim-Anderson-deBoer (GAB) modeling of the obtained sorption isotherms allowed the definition of different levels of hydration of those samples. Afterward, these enzyme preparations were used as biocatalysts in water and solvent-free esterification and alcoholysis reactions. The evolution of the obtained fatty acid ester level as a function of the initial hydration level of the biocatalyst, i.e., thermodynamic water activity (a(w)) and water content, was studied. The results show an important correlation between the initial hydration level of the biocatalyst and its catalytic activity during the lipase-catalyzed synthesis reactions. Thus, the Carica papaya lipase (crude papain preparation) catalytic activity is highly dependent on the biocatalyst hydration state. The optimized synthesis reaction yield is obtained when the a(w) value of the enzyme preparation is stabilized at 0.22, which corresponds to 2% water content. This optimal level of hydration occurs on the linear part of the biocatalyst's sorption isotherm, where the water molecules can form a mono- or multiple layer with the protein network. The synthesis reaction yield decreases when the a(w) of the preparation is higher than 0.22, because the excess water molecules modify the system equilibrium leading to the reverse and competitive reaction, i.e., hydrolysis. These results show also that an optimal storage condition for the highly hydrophilic crude papain preparation is a relative humidity strictly lower than 70% to avoid an irreversible structural transition leading to a useless biocatalyst. Concerning the bromelain preparation, no effect of the hydration level on the catalytic activity during esterification reactions was observed. This biocatalyst has too weak a catalytic activity which makes it difficult to observe any differences. Furthermore, the

  2. Chimerogenesis in estimation of specificity and pathway directions for cytochrome p45017alpha catalyzed reactions.

    PubMed

    Gilep, A A; Estabrook, R W; Usanov, S A

    2004-04-01

    Cytochrome P45017alpha is a key enzyme in steroid hormone biosynthesis. It catalyzes the reaction of 17alpha-hydroxylation of progesterone (P4) and pregnenolone (P5) and the 17,20-lyase reaction resulting in side chain cleavage of C21 steroids to form C19 steroids. Depending on the activity of cytochrome P45017alpha, steroid hormone biosynthesis pathways are directed either for biosynthesis of mineralocorticoids and glucocorticoids or sex hormones. The formation of sex hormones starts from biosynthesis of androstenedione. Androstenedione formation is a result of two reactions: 17,20-lyase reaction of 17alpha-hydroxyprogesterone (Delta4-pathway) and 3beta-hydroxysteroid dehydrogenase/Delta4,Delta5-isomerase reaction using dehydroepiandrosterone as substrate (Delta5-pathway). In case of exclusive direction of the 17,20-lyase reaction either through the Delta4- or the Delta5-pathway, the formation of sex hormones depends more on specificity and activity of 3beta-hydroxysteroid-dehydrogenase/Delta4,Delta5-isomerase. Depending on species, the cytochromes P45017alpha can utilize as a substrate for 17,20-lyase activity Delta4-steroids, Delta5-steroids, or both types of steroids. To identify the structural elements of cytochrome P45017alpha responsible for substrate recognition, in the present work we used exchange of homologous fragments of cytochrome P45017alpha having different types of activities. We engineered more than 10 different types of chimeric cytochrome P45017alpha. Chimeric cytochromes P45017alpha have been expressed in E. coli and purified. The expression of chimeric cytochrome P45017alpha with the point of exchange between exons III and IV results in inability of the recombinant hemeprotein to properly bind heme. The determination of activity of chimeric cytochromes P45017alpha shows that the structural element responsible for switching activity between Delta4- or Delta5-pathway is located in the region of polypeptide chain coded by exons II-V of CYP17 gene

  3. I2-Catalyzed Multicomponent Reactions for Accessing Densely Functionalized Pyrazolo[1,5-a]pyrimidines and Their Disulphenylated Derivatives.

    PubMed

    Sun, Jun; Qiu, Jiang-Kai; Jiang, Bo; Hao, Wen-Juan; Guo, Cheng; Tu, Shu-Jiang

    2016-04-15

    New I2-catalyzed multicomponent bicyclization reactions of β-ketonitriles with sulfonyl hydrazides have been established, providing a direct and metal-free access toward unreported pyrazolo[1,5-a]pyrimidin-4-ium sulfonates. The latter could be quantitatively converted into densely functionalized pyrazolo[1,5-a]pyrimidines in the presence of bases. Using sulfonyl hydrazides as a sulfenylating agent, the resulting pyrazolo[1,5-a]pyrimidines enabled I2-catalyzed unprecedented disulphenylations to access fully substituted pyrazolo[1,5-a]pyrimidines through direct C(sp(2))-H bond bifunctionalization. PMID:26991413

  4. IAA-synthase, an enzyme complex from Arabidopsis thaliana catalyzing the formation of indole-3-acetic acid from (S)-tryptophan.

    PubMed

    Müller, A; Weiler, E W

    2000-08-01

    An enzyme complex was isolated from Arabidopsis thaliana that catalyzes the entire pathway of biosynthesis of the major plant growth hormone, indole-3-acetic acid (IAA), from (S)-tryptophan. The 160-180 kDa, soluble complex catalyzes a strictly O2-dependent reaction which requires no further added factors and is stereospecific for the substrate (S)-tryptophan (app. Km = 120 microM). H2(18)O labeling proved that both oxygen atoms of IAA were delivered via H2O. This, as well as immunological evidence for the presence of a nitrilase-like protein in the complex, suggests the reaction to proceed via the intermediate indole-3-acetonitrile. IAA-synthase forms a tight metabolite channel committed to IAA production and occurs in shoots, roots and cell cultures of A. thaliana. PMID:11030425

  5. Formation of linear polyenes in poly(vinyl alcohol) films catalyzed by phosphotungstic acid, aluminum chloride, and hydrochloric acid

    NASA Astrophysics Data System (ADS)

    Tretinnikov, O. N.; Sushko, N. I.; Malyi, A. B.

    2016-07-01

    Formation of linear polyenes-(CH=CH)n-via acid-catalyzed thermal dehydration of polyvinyl alcohol in 9- to 40-µm-thick films of this polymer containing hydrochloric acid, aluminum chloride, and phosphotungstic acid as dehydration catalysts was studied by electronic absorption spectroscopy. The concentration of long-chain ( n ≥ 8) polyenes in films containing phosphotungstic acid is found to monotonically increase with the duration of thermal treatment of films, although the kinetics of this process is independent of film thickness. In films containing hydrochloric acid and aluminum chloride, the formation rate of polyenes with n ≥ 8 rapidly drops as film thickness decreases and the annealing time increases. As a result, at a film thickness of less than 10-12 µm, long-chain polyenes are not formed at all in these films no matter how long thermal duration is. The reason for this behavior is that hydrochloric acid catalyzing polymer dehydration in these films evaporates from the films during thermal treatment, the evaporation rate inversely depending on film thickness.

  6. DNA and Protein Requirements for Substrate Conformational Changes Necessary for Human Flap Endonuclease-1-catalyzed Reaction*

    PubMed Central

    Algasaier, Sana I.; Exell, Jack C.; Bennet, Ian A.; Thompson, Mark J.; Gotham, Victoria J. B.; Shaw, Steven J.; Craggs, Timothy D.; Finger, L. David; Grasby, Jane A.

    2016-01-01

    Human flap endonuclease-1 (hFEN1) catalyzes the essential removal of single-stranded flaps arising at DNA junctions during replication and repair processes. hFEN1 biological function must be precisely controlled, and consequently, the protein relies on a combination of protein and substrate conformational changes as a prerequisite for reaction. These include substrate bending at the duplex-duplex junction and transfer of unpaired reacting duplex end into the active site. When present, 5′-flaps are thought to thread under the helical cap, limiting reaction to flaps with free 5′-termini in vivo. Here we monitored DNA bending by FRET and DNA unpairing using 2-aminopurine exciton pair CD to determine the DNA and protein requirements for these substrate conformational changes. Binding of DNA to hFEN1 in a bent conformation occurred independently of 5′-flap accommodation and did not require active site metal ions or the presence of conserved active site residues. More stringent requirements exist for transfer of the substrate to the active site. Placement of the scissile phosphate diester in the active site required the presence of divalent metal ions, a free 5′-flap (if present), a Watson-Crick base pair at the terminus of the reacting duplex, and the intact secondary structure of the enzyme helical cap. Optimal positioning of the scissile phosphate additionally required active site conserved residues Tyr40, Asp181, and Arg100 and a reacting duplex 5′-phosphate. These studies suggest a FEN1 reaction mechanism where junctions are bound and 5′-flaps are threaded (when present), and finally the substrate is transferred onto active site metals initiating cleavage. PMID:26884332

  7. Mechanistic study of chemoselectivity in Ni-catalyzed coupling reactions between azoles and aryl carboxylates.

    PubMed

    Lu, Qianqian; Yu, Haizhu; Fu, Yao

    2014-06-11

    Itami et al. recently reported the C-O electrophile-controlled chemoselectivity of Ni-catalyzed coupling reactions between azoles and esters: the decarbonylative C-H coupling product was generated with the aryl ester substrates, while C-H/C-O coupling product was generated with the phenol derivative substrates (such as phenyl pivalate). With the aid of DFT calculations (M06L/6-311+G(2d,p)-SDD//B3LYP/6-31G(d)-LANL2DZ), the present study systematically investigated the mechanism of the aforementioned chemoselective reactions. The decarbonylative C-H coupling mechanism involves oxidative addition of C(acyl)-O bond, base-promoted C-H activation of azole, CO migration, and reductive elimination steps (C-H/Decar mechanism). This mechanism is partially different from Itami's previous proposal (Decar/C-H mechanism) because the C-H activation step is unlikely to occur after the CO migration step. Meanwhile, C-H/C-O coupling reaction proceeds through oxidative addition of C(phenyl)-O bond, base-promoted C-H activation, and reductive elimination steps. It was found that the C-O electrophile significantly influences the overall energy demand of the decarbonylative C-H coupling mechanism, because the rate-determining step (i.e., CO migration) is sensitive to the steric effect of the acyl substituent. In contrast, in the C-H/C-O coupling mechanism, the release of the carboxylates occurs before the rate-determining step (i.e., base-promoted C-H activation), and thus the overall energy demand is almost independent of the acyl substituent. Accordingly, the decarbonylative C-H coupling product is favored for less-bulky group substituted C-O electrophiles (such as aryl ester), while C-H/C-O coupling product is predominant for bulky group substituted C-O electrophiles (such as phenyl pivalate). PMID:24823646

  8. Mechanical and microstructural properties of two-step acid-base catalyzed silica gels

    SciTech Connect

    Meyers, D.E.; Kirkbir, F.; Murata, H.; Chaudhuri, S.R.; Sarkar, A.

    1994-12-31

    The mechanical and microstructural properties of two-step acid-base catalyzed silica gels were examined as functions of aging time, catalyst concentration, and hydrolysis time. Cylindrical gels were prepared using Si(OC{sub 2}H{sub 5}){sub 4}, C{sub 2}H{sub 5}OH, and H{sub 2}O, with HCl followed by NH{sub 3} as catalysts. Mechanical properties were obtained from three-point bend tests, and the microstructures of dried gels were analyzed using nitrogen adsorption/desorption techniques. Gel strength initially increased with aging time at 70 C, then leveled off after about one week. When the sol was hydrolyzed for less than two hours, there were significant differences in the properties of gels catalyzed with relative molar amounts of 0.0001 and 0.0002 HCl. However, as the hydrolysis time was increased, the gels all had similar properties, independent of the amount of HCl. The amount of NH{sub 3} influenced gelation time and to a lesser extent, the strength, but had no observable effect on pore size. The two-step catalysis procedure produced gels with strength and pore size combinations intermediate to those of either single acid or base-catalyzed gels.

  9. Differential effects of methylmercuric chloride and mercuric chloride on oxidation and iodination reactions catalyzed by thyroid peroxidase.

    PubMed

    Nishida, M; Sato, K; Kawada, J

    1990-10-01

    Thyroid peroxidase (TPO), the major enzyme in the thyroid hormone synthesis, multifunctionally catalyzes (1) iodide oxidation, (2) iodination of the precursor protein, and (3) a coupling reaction of iodotyrosyl residues. The present study was carried out to examine the mercurial effects on the iodination, the second step of TPO. Purified porcine thyroglobulin or bovine serum albumin as acceptor protein was iodinated with [125I]NaI and H2O2 by purified porcine TPO. Iodinated protein was separated by acid precipitation on membrane filter or paper chromatography. Both CH3HgCl and HgCl2 dose-dependently inhibited the iodination, but HgCl2 was more potent to inhibit the iodination than CH3HgCl. These mercurial effects on the second step resemble the effects on the third step which were already reported; but are in marked contrast to the effects on the first step, where TPO was inhibited by HgCl2 but never by CH3HgCl. PMID:2090100

  10. Directing Group in Decarboxylative Cross-Coupling: Copper-Catalyzed Site-Selective C-N Bond Formation from Nonactivated Aliphatic Carboxylic Acids.

    PubMed

    Liu, Zhao-Jing; Lu, Xi; Wang, Guan; Li, Lei; Jiang, Wei-Tao; Wang, Yu-Dong; Xiao, Bin; Fu, Yao

    2016-08-01

    Copper-catalyzed directed decarboxylative amination of nonactivated aliphatic carboxylic acids is described. This intramolecular C-N bond formation reaction provides efficient access to the synthesis of pyrrolidine and piperidine derivatives as well as the modification of complex natural products. Moreover, this reaction presents excellent site-selectivity in the C-N bond formation step through the use of directing group. Our work can be considered as a big step toward controllable radical decarboxylative carbon-heteroatom cross-coupling. PMID:27439145

  11. Reactions of tetraphenyltitanium with organic acids

    SciTech Connect

    Razuvaev, G.A.; Vyshinskaya, L.I.; Vasil'eva, G.A.

    1987-12-10

    As a result of the reactions of tetraphenyltitanium with dibasic organic acids high yields were obtained of new thermally stable titanium(III) complexes: phenyltitanium(III)carboxylates. Under the action of proton-active reagents (hydrochloric acid, cyclopentadiene, methanol) the latter break down with the breakage of titanium-phenyl bond. The proposed structure was based on IR- and ESR-spectral data. The dinuclear structure of the complexes was established on the basis of a study of the triplet structure of the ESR spectra, which showed the existence of intermolecular titanium-titanium exchange through methylene groups of the dicarboxylate bridges.

  12. Direct evidence for an acyl phosphate intermediate in the folylpoly-. gamma. -glutamate synthetase and dihydrofolate synthetase-catalyzed reactions

    SciTech Connect

    Banerjee, R.

    1987-01-01

    The mechanism of the reactions catalyzed by two enzymes, namely dihydrofolate synthetase (DHFS) and folylpoly-..gamma..-glutamate synthetase (FPGS), has been investigated. The nature of the intermediate in each of the two reactions was monitored simultaneously in the multifunctional enzyme, FPGS/DHFS from E. coli. The latter was isolated from a transformant containing the cloned FPGS/DHFS gene. Incubation of (/sup 18/O)-H/sub 2/Pte and (/sup 17/O)-glutamate with ATP and the enzyme, resulted in the formation of (/sup 18/O)- and (/sup 17/O)-P/sub i/, thus providing strong evidence for the formation of an acyl phosphate species during catalysis of each reaction. The inorganic phosphate formed in the enzyme-catalyzed reaction was purified by chromatography on DEAE-cellulose, then converted to the trimethyl ester and analyzed by mass spectroscopy /sup 17/O NMR and /sup 31/P NMR. Stoichiometric formation of (/sup 17/O)- and (/sup 18/O)-Pi was observed. /sup 31/P NMR analysis showed the expected /sup 18/O-induced isotopic perturbations. The presence of (/sup 17/O)-trimethyl phosphate was revealed by /sup 17/O NMR. The mechanism of the FPGS-catalyzed reaction was also investigated with the antifolate (/sup 18/O)-methotrexate.

  13. Regioselective Enzymatic β-Carboxylation of para-Hydroxy- styrene Derivatives Catalyzed by Phenolic Acid Decarboxylases

    PubMed Central

    Wuensch, Christiane; Pavkov-Keller, Tea; Steinkellner, Georg; Gross, Johannes; Fuchs, Michael; Hromic, Altijana; Lyskowski, Andrzej; Fauland, Kerstin; Gruber, Karl; Glueck, Silvia M; Faber, Kurt

    2015-01-01

    We report on a ‘green’ method for the utilization of carbon dioxide as C1 unit for the regioselective synthesis of (E)-cinnamic acids via regioselective enzymatic carboxylation of para-hydroxystyrenes. Phenolic acid decarboxylases from bacterial sources catalyzed the β-carboxylation of para-hydroxystyrene derivatives with excellent regio- and (E/Z)-stereoselectivity by exclusively acting at the β-carbon atom of the C=C side chain to furnish the corresponding (E)-cinnamic acid derivatives in up to 40% conversion at the expense of bicarbonate as carbon dioxide source. Studies on the substrate scope of this strategy are presented and a catalytic mechanism is proposed based on molecular modelling studies supported by mutagenesis of amino acid residues in the active site. PMID:26190963

  14. Regulation of fatty acid sup 18 O exchange catalyzed by pancreatic carboxylester lipase. 1. Mechanism and kinetic properties

    SciTech Connect

    Muderhwa, J.M.; Schmid, P.C.; Brockman, H.L. )

    1992-01-14

    The exchange of {sup 18}O between H{sub 2}O and long-chain free fatty acids is catalyzed by pancreatic carboxylester lipase. For palmitic, oleic, and arachidonic acid in aqueous suspension and for 13,16-cis,cis-docosadienoic acid (DA) in monomolecular films, carboxyl oxygens were completely exchanged with water oxygens of the bulk aqueous phase. With enzyme at either substrate or catalytic concentrations in the argon-buffer interface, the exchange of DA oxygens obeyed a random sequential mechanism, i.e., {sup 18}O, {sup 18}O-DA {rightleftharpoons} {sup 18}O, {sup 16}O-DA {rightleftharpoons} {sup 16}O, {sup 16}O-DA. This indicates that the dissociation of the enzyme{center dot}DA complex is much faster than the rate-limiting step in the overall exchange reaction. Kinetic analysis of {sup 18}O exchange showed a first-order dependence on surface enzyme and DA concentrations, i.e., the reaction was limited by the acylation rate. The values of k{sub cat}/K{sub m}, 0.118 cm{sup 2} pmol{sup {minus}1} s{sup {minus}1}, for the exchange reaction was comparable to that for methyl oleate hydrolysis and 5-fold higher than that for cholesteryl oleate hydrolysis in monolayers. Thus, fatty acids are good substrates' for carboxylester lipase. With substrate levels of carboxylester lipase in the interfacial phase, the acylation rate constant k{sub cat}/K{sub m} was 200-fold lower than that obtained with catalytic levels of enzyme. This suggests a possible restriction of substrate diffusion in the protein-covered substrate monolayer.

  15. Selenium-catalyzed oxidations with aqueous hydrogen peroxide. 2. Baeyer-Villiger reactions in homogeneous solution.

    PubMed

    ten Brink, G J; Vis, J M; Arends, I W; Sheldon, R A

    2001-04-01

    Several diselenides were tested for catalytic activity in Baeyer-Villiger reactions with 60% aqueous hydrogen peroxide. Bis[3,5-bis(trifluoromethyl)phenyl] diselenide forms the corresponding 3,5-bis(trifluoromethyl)benzene seleninic acid in situ, which is a highly reactive and selective catalyst for the oxidation of carbonyl compounds in 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,2-trifluoroethanol, or dichloromethane. PMID:11281784

  16. Palladium-catalyzed bisarylation of 3-alkylbenzofurans to 3-arylalkyl-2-arylbenzofurans on water: tandem C(sp(3))-H and C(sp(2))-H activation reactions of 3-alkylbenzofurans.

    PubMed

    Cho, Beom Shin; Chung, Young Keun

    2015-10-01

    A protocol involving facile sequential C(sp(3))-H and C(sp(2))-H activation reactions of 3-alkylbenzofurans catalyzed by Pd(OAc)2 in the presence of pivalic acid, silver salt, and tricyclohexylphosphine 'on water' was developed. Aryl iodides were used as substrates in a tandem bisarylation reaction to generate 3-arylalkyl-2-arylbenzofurans in moderate to high yields at room temperature. The reaction revealed in this study is a rare example of consecutive C(sp(3))-H and C(sp(2))-H bond activation under mild reaction conditions. PMID:26287028

  17. Process limitations of a whole-cell P450 catalyzed reaction using a CYP153A-CPR fusion construct expressed in Escherichia coli.

    PubMed

    Lundemo, M T; Notonier, S; Striedner, G; Hauer, B; Woodley, J M

    2016-02-01

    Cytochrome P450s are interesting biocatalysts due to their ability to hydroxylate non-activated hydrocarbons in a selective manner. However, to date only a few P450-catalyzed processes have been implemented in industry due to the difficulty of developing economically feasible processes. In this study, we have used the CYP153A heme domain from Marinobacter aquaeolei fused to the reductase domain of CYP102A1 from Bacillus megaterium (BM3) expressed in Escherichia coli. This self-sufficient protein chimera CYP153A-CPRBM3 G307A mutant is able to selectively hydroxylate medium and long chain length fatty acids at the terminal position. ω-Hydroxylated fatty acids can be used in the field of high-end polymers and in the cosmetic and fragrance industry. Here, we have identified the limitations for implementation of a whole-cell P450-catalyzed reaction by characterizing the chosen biocatalyst as well as the reaction system. Despite a well-studied whole-cell P450 catalyst, low activity and poor stability of the artificial fusion construct are the main identified limitations to reach sufficient biocatalyst yield (mass of product/mass of biocatalyst) and space-time yield (volumetric productivity) essential for an economically feasible process. Substrate and product inhibition are also challenges that need to be addressed, and the application of solid substrate is shown to be a promising option to improve the process. PMID:26432459

  18. Kinetics of cytochrome P450 2E1-catalyzed oxidation of ethanol to acetic acid via acetaldehyde.

    PubMed

    Bell-Parikh, L C; Guengerich, F P

    1999-08-20

    The P450 2E1-catalyzed oxidation of ethanol to acetaldehyde is characterized by a kinetic deuterium isotope effect that increases K(m) with no effect on k(cat), and rate-limiting product release has been proposed to account for the lack of an isotope effect on k(cat) (Bell, L. C., and Guengerich, F. P. (1997) J. Biol. Chem. 272, 29643-29651). Acetaldehyde is also a substrate for P450 2E1 oxidation to acetic acid, and k(cat)/K(m) for this reaction is at least 1 order of magnitude greater than that for ethanol oxidation to acetaldehyde. Acetic acid accounts for 90% of the products generated from ethanol in a 10-min reaction, and the contribution of this second oxidation has been overlooked in many previous studies. The noncompetitive intermolecular kinetic hydrogen isotope effects on acetaldehyde oxidation to acetic acid ((H)(k(cat)/K(m))/(D)(k(cat)/K(m)) = 4.5, and (D)k(cat) = 1.5) are comparable with the isotope effects typically observed for ethanol oxidation to acetaldehyde, and k(cat) is similar for both reactions, suggesting a possible common catalytic mechanism. Rapid quench kinetic experiments indicate that acetic acid is formed rapidly from added acetaldehyde (approximately 450 min(-1)) with burst kinetics. Pulse-chase experiments reveal that, at a subsaturating concentration of ethanol, approximately 90% of the acetaldehyde intermediate is directly converted to acetic acid without dissociation from the enzyme active site. Competition experiments suggest that P450 2E1 binds acetic acid and acetaldehyde with relatively high K(d) values, which preclude simple tight binding as an explanation for rate-limiting product release. The existence of a rate-determining step between product formation and release is postulated. Also proposed is a conformational change in P450 2E1 occurring during the course of oxidation and the discrimination of P450 2E1 between acetaldehyde and its hydrated form, the gem-diol. This multistep P450 reaction is characterized by kinetic

  19. Effect of mass transfer on the oxygen reduction reaction catalyzed by platinum dendrimer encapsulated nanoparticles

    PubMed Central

    Dumitrescu, Ioana; Crooks, Richard M.

    2012-01-01

    Here we report on the effect of the mass transfer rate (kt) on the oxygen reduction reaction (ORR) catalyzed by Pt dendrimer-encapsulated nanoparticles (DENs) comprised of 147 and 55 atoms (Pt147 and Pt55). The experiments were carried out using a dual-electrode microelectrochemical device, which enables the study of the ORR under high kt conditions with simultaneous detection of H2O2. At low kt (0.02 to 0.12 cm s-1) the effective number of electrons involved in ORR, neff, is 3.7 for Pt147 and 3.4 for Pt55. As kt is increased, the mass-transfer-limited current for the ORR becomes significantly lower than the value predicted by the Levich equation for a 4-electron process regardless of catalyst size. However, the percentage of H2O2 detected remains constant, such that neff barely changes over the entire kt range explored (0.02 cm s-1). This suggests that mass transfer does not affect neff, which has implications for the mechanism of the ORR on Pt nanoparticles. Interestingly, there is a significant difference in neff for the two sizes of Pt DENs (neff = 3.7 and 3.5 for Pt147 and Pt55, respectively) that cannot be assigned to mass transfer effects and that we therefore attribute to a particle size effect. PMID:22665772

  20. New insights into atrazine degradation by cobalt catalyzed peroxymonosulfate oxidation: kinetics, reaction products and transformation mechanisms.

    PubMed

    Ji, Yuefei; Dong, Changxun; Kong, Deyang; Lu, Junhe

    2015-03-21

    The widespread occurrence of atrazine in waters poses potential risk to ecosystem and human health. In this study, we investigated the underlying mechanisms and transformation pathways of atrazine degradation by cobalt catalyzed peroxymonosulfate (Co(II)/PMS). Co(II)/PMS was found to be more efficient for ATZ elimination in aqueous solution than Fe(II)/PMS process. ATZ oxidation by Co(II)/PMS followed pseudo-first-order kinetics, and the reaction rate constant (k(obs)) increased appreciably with increasing Co(II) concentration. Increasing initial PMS concentration favored the decomposition of ATZ, however, no linear relationship between k(obs) and PMS concentration was observed. Higher efficiency of ATZ oxidation was observed around neutral pH, implying the possibility of applying Co(II)/PMS process under environmental realistic conditions. Natural organic matter (NOM), chloride (Cl(-)) and bicarbonate (HCO3(-)) showed detrimental effects on ATZ degradation, particularly at higher concentrations. Eleven products were identified by applying solid phase extraction-liquid chromatography-mass spectrometry (SPE-LC/MS) techniques. Major transformation pathways of ATZ included dealkylation, dechlorination-hydroxylation, and alkyl chain oxidation. Detailed mechanisms responsible for these transformation pathways were discussed. Our results reveal that Co(II)/PMS process might be an efficient technique for remediation of groundwater contaminated by ATZ and structurally related s-triazine herbicides. PMID:25544494

  1. The Origin of Anti-Markovnikov Regioselectivity in Alkene Hydroamination Reactions Catalyzed by [Rh(DPEphos)](.).

    PubMed

    Couce-Rios, Almudena; Lledós, Agustí; Ujaque, Gregori

    2016-06-27

    The development of regioselective anti-Markovnikov alkene's hydroamination is a long-standing goal in catalysis. The [Rh(COD)(DPEphos)](+) complex is the most general and regioselective group 9 catalyst for such a process. The reaction mechanism for intermolecular hydroamination of alkenes catalyzed by [Rh(DPEphos)](+) complex is analyzed by means of DFT calculations. Hydroamination (alkene vs. amine activation routes) as well as oxidative amination pathways are analyzed. According to the computational results the operating mechanism can be generally described by alkene coordination, amine nucleophilic addition, proton transfer through the metal center and reductive elimination steps. The mechanism for the formation of the oxidative amination side product goes via a β-elimination after the nucleophilic addition and metal center protonation steps. The origin of the regioselectivity for the addition process (Markovnikov vs. anti-Markovnikov additions) is shown to be not charge but orbitally driven. Remarkably, η(2) to η(1) slippage degree on the alkene coordination mode is directly related to the regioselective outcome. PMID:27226329

  2. Photoinduced Vesicle Formation via the Copper-Catalyzed Azide-Alkyne Cycloaddition Reaction.

    PubMed

    Konetski, Danielle; Gong, Tao; Bowman, Christopher N

    2016-08-16

    Synthetic vesicles have a wide range of applications from drug and cosmetic delivery to artificial cell and membrane studies, making simple and controlled formation of vesicles a large focus of the field today. Here, we report the use of the photoinitiated copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction using visible light to introduce spatiotemporal control into the formation of vesicles. Upon the establishment of the spatiotemporal control over vesicle formation, it became possible to adjust initiation conditions to modulate vesicle sizes resulting in the formation of controllably small or large vesicles based on light intensity or giant vesicles when the formation was initiated in flow-free conditions. Additionally, this photoinitiated method enables vesicle formation at a density 400-fold higher than initiation using sodium ascorbate as the catalyst. Together, these advances enable the formation of high-density, controlled size vesicles using low-energy wavelengths while producing enhanced control over the formation characteristics of the vesicle. PMID:27443396

  3. Microscopic analysis of ester hydrolysis reaction catalyzed by Candida rugosa lipase.

    PubMed

    Lee, Sumin; Hwang, Sangpill; Lee, Kangtaek; Ahn, Ik-Sung

    2006-01-15

    The relationship between the kinetics of the lipase-catalyzed oil hydrolysis and the surface area distribution of oil droplets was investigated using ethyl decanoate and gum Arabic (GA) as a model oil and an emulsifier, respectively. Along an ethyl decanoate concentration gradient between 2 and 8 mM, the initial hydrolysis rate increased at 0.25% (w/v) GA but did not change at 1.0% (w/v) GA. At 0.25% GA, the surface area of droplets was narrowly distributed regardless of the ethyl decanoate concentration. However, at 1.0% GA and with ethyl decanoate concentrations higher than 2 mM, the fraction of relatively large droplets with a surface area larger than approximately 200 microm2, suddenly increased. The microscopy of ethyl decanoate emulsion during the hydrolysis reaction indicates that the large oil droplets were not hydrolyzed. At 20 mM ethyl decanoate where the hydrolysis rate remained the same between 0.25% and 1.0% GA, the surface area of droplets was narrowly distributed at 0.25% and 1.0% GA. Therefore, the constant hydrolysis rate observed in the emulsion of ethyl decanoate between 2 and 8 mM containing GA at 1.0%, is believed to be caused by the relatively large oil droplets with the interface quality differing from that of the small oil droplets. PMID:16406517

  4. Effect of carbon on the Ni catalyzed methane cracking reaction: A DFT study

    NASA Astrophysics Data System (ADS)

    Li, Jingde; Croiset, Eric; Ricardez-Sandoval, Luis

    2014-08-01

    To understand the effects of carbon atoms on the Ni catalyzed methane cracking reactions, methane dissociation on clean, surface-carbon-covered, and subsurface-carbon-accumulated Ni(1 1 1) surfaces were investigated using density functional theory (DFT). The results show that the existence of surface and subsurface C atoms destabilized the adsorption of the surface hydrocarbon species when compared to the clean Ni(1 1 1) surface. The projected density state (PDOS) analysis shows that the deposition of C atoms on and into the Ni surface modified the electronic structure of the Ni surface, and thus reduced the catalytic activity of the bonded Ni atoms. Moreover, it was found that the presence carbon atoms increase the CHx (x = 4-1) species activation barriers especially on the surface carbon covered (1/4 ML) Ni(1 1 1) surface, where CHx (x = 4-1) species encounter highest energy barrier for dissociation due to the electronic deactivation induced by Csbnd Ni bonding and the strong repulsive carbon sbnd CHx interaction. The calculations also show that CHx dissociation barriers are not affected by its neighboring C atom at low surface carbon coverage (1/9 ML). This work can be used to estimate more realistic kinetic parameters for this system.

  5. A review on lipase-catalyzed reactions in ultrasound-assisted systems.

    PubMed

    Lerin, Lindomar A; Loss, Raquel A; Remonatto, Daniela; Zenevicz, Mara Cristina; Balen, Manuela; Netto, Vendelino Oenning; Ninow, Jorge L; Trentin, Cláudia M; Oliveira, J Vladimir; de Oliveira, Débora

    2014-12-01

    The named "green chemistry" has been receiving increasing prominence due to its environmentally friendly characteristics. The use of enzymes as catalysts in processes of synthesis to replace the traditional use of chemical catalysts present as main advantage the fact of following the principles of the green chemistry. However, processes of enzymatic nature generally provide lower yields when compared to the conventional chemical processes. Therefore, in the last years, the ultrasound has been extensively used in enzymatic processes, such as the production of esters with desirable characteristics for the pharmaceutical, cosmetics, and food industry, for the hydrolysis and glycerolysis of vegetable oils, production of biodiesel, etc. Several works found in the open literature suggest that the energy released by the ultrasound during the cavitation phenomena can be used to enhance mass transfer (substrate/enzyme), hence increasing the rate of products formation, and also contributing to enhance the enzyme catalytic activity. Furthermore, the ultrasound is considered a "green" technology due to its high efficiency, low instrumental requirement and significant reduction of the processing time in comparison to other techniques. The main goal of this review was to summarize studies available to date regarding the application of ultrasound in enzyme-catalyzed esterification, hydrolysis, glycerolysis and transesterification reactions. PMID:24906428

  6. Silver-catalyzed C(sp2)-H functionalization/C-O cyclization reaction at room temperature.

    PubMed

    Dai, Jian-Jun; Xu, Wen-Tao; Wu, Ya-Dong; Zhang, Wen-Man; Gong, Ying; He, Xia-Ping; Zhang, Xin-Qing; Xu, Hua-Jian

    2015-01-16

    Silver-catalyzed C(sp(2))-H functionalization/C-O cyclization has been developed. The scalable reaction proceeds at room temperature in an open flask. The present method exhibits good functional-group compatibility because of the mild reaction conditions. Using a AgNO3 catalyst and a (NH4)2S2O8 oxidant in CH2Cl2/H2O solvent, various lactones are obtained in good to excellent yields. A kinetic isotope effect (KIE) study indicates that the reaction may occur via a radical process. PMID:25495388

  7. Dissection of the early steps in the porphobilinogen synthase catalyzed reaction

    SciTech Connect

    Jaffe, E.K.; Hanes, D.

    1986-05-01

    The porphobilinogen (PBG) synthase catalyzed reaction involves the formation of a Schiff's base between enzyme and P-site 5-aminolevulinate (ALA), requiring both Zn(II) and enzyme SH groups for the production of PBG from two ALA molecules. Using NaBH/sub 4/ and (4-/sup 14/C)-ALA, they have investigated the involvement of both Zn(II) and SH groups in the binding of P- and A-site ALA and in the formation of the Schiff's base with active holoenzyme, inactive apoenzyme, and inactive methylmethane-thiosulfonate (MMTS) modified apoenzyme. ALA dependent NaBH/sub 4/ inactivation of these enzyme forms was quantified at 56%, 96%, and 95% inactivation respectively with concurrent /sup 14/C incorporation of 2.3, 3.8, and 3.4 per octamer respectively, representing the trapping of the P-site ALA Schiff's base. These results provide the first evidence of a partial enzyme reaction with ALA where PBG is not produced, and combined with ALA binding curves demonstrate the following: (1) Homooctameric PBG synthase binds no more than eight ALA per octamer (two per active site), four of which can be trapped as the P-site ALA Schiff's base; (2) P-site ALA binding and enzymic Schiff's base formation require neither Zn(II) nor SH groups; and (3) Zn(II) and/or SH groups are involved in the binding of A-site ALA and the cooperativity between ALA binding sites. These results isolate the role of Zn(II) to a step following P-site Schiff's base formation and define the sequence of events preceding formation of the active quaternary complex.

  8. Reactions catalyzed by 5-aminoimidazole ribonucleotide carboxylases from Escherichia coli and Gallus gallus: a case for divergent catalytic mechanisms.

    PubMed

    Firestine, S M; Poon, S W; Mueller, E J; Stubbe, J; Davisson, V J

    1994-10-01

    A comparative investigation of the substrate requirements for the enzyme 5-aminoimidazole ribonucleotide (AIR) carboxylase from E. coli and G. gallus has been conducted using in vivo and in vitro studies. In Escherichia coli, two enzymes PurK and PurE are required for the transformation of AIR to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR). The Gallus gallus PurCE is a bifunctional enzyme containing AIR carboxylase and 4-[(N-succinylamino)carbonyl]-5-aminoimidazole ribonucleotide (SAICAR) synthetase. The E. coli PurE and the C-terminal domain of the G. gallus PurCE protein maintain a significant degree of amino acid sequence identity and also share CAIR as a product of their enzymatic activities. The substrate requirements of AIR carboxylases from E. coli and G. gallus have been compared by a series of in vitro experiments. The carbamic acid, N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) is a substrate for the E. coli PurE (Mueller et al., 1994) but not for the G. gallus AIR carboxylase. In contrast, AIR and CO2 are substrates for the G. gallus AIR carboxylase. The recognition properties of the two proteins were also compared using inhibition studies with 4-nitro-5- aminoimidazole ribonucleotide (NAIR). NAIR is a tight-binding inhibitor of the G. gallus AIR carboxylase (K(i) = 0.34 nM) but only a steady-state inhibitor (K(i) = 0.5 microM) of the E. coli PurE. These data suggest significant differences in the transition states for the reactions catalyzed by these two evolutionarily related enzymes.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7918411

  9. Degradation of Anthraquinone Dye Reactive Blue 4 in Pyrite Ash Catalyzed Fenton Reaction

    PubMed Central

    Becelic-Tomin, Milena; Dalmacija, Bozo; Rajic, Ljiljana; Tomasevic, Dragana; Kerkez, Djurdja; Watson, Malcolm; Prica, Miljana

    2014-01-01

    Pyrite ash (PA) is created by burning pyrite in the chemical production of sulphuric acid. The high concentration of iron oxide, mostly hematite, present in pyrite ash, gives the basis for its application as a source of catalytic iron in a modified Fenton process for anthraquinone dye reactive blue 4 (RB4) degradation. The effect of various operating variables such as catalyst and oxidant concentration, initial pH and RB4 concentration on the abatement of total organic carbon, and dye has been assessed in this study. Here we show that degradation of RB4 in the modified Fenton reaction was efficient under the following conditions: pH = 2.5; [PA]0 = 0.2 g L−1; [H2O2]0 = 5 mM and initial RB4 concentration up to 100 mg L−1. The pyrite ash Fenton reaction can overcome limitations observed from the classic Fenton reaction, such as the early termination of the Fenton reaction. Metal (Pb, Zn, and Cu) content of the solution after the process suggests that an additional treatment step is necessary to remove the remaining metals from the water. These results provide basic knowledge to better understand the modified, heterogeneous Fenton process and apply the PA Fenton reaction for the treatment of wastewaters which contains anthraquinone dyes. PMID:24526885

  10. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production.

    PubMed

    Michelucci, Alessandro; Cordes, Thekla; Ghelfi, Jenny; Pailot, Arnaud; Reiling, Norbert; Goldmann, Oliver; Binz, Tina; Wegner, André; Tallam, Aravind; Rausell, Antonio; Buttini, Manuel; Linster, Carole L; Medina, Eva; Balling, Rudi; Hiller, Karsten

    2013-05-01

    Immunoresponsive gene 1 (Irg1) is highly expressed in mammalian macrophages during inflammation, but its biological function has not yet been elucidated. Here, we identify Irg1 as the gene coding for an enzyme producing itaconic acid (also known as methylenesuccinic acid) through the decarboxylation of cis-aconitate, a tricarboxylic acid cycle intermediate. Using a gain-and-loss-of-function approach in both mouse and human immune cells, we found Irg1 expression levels correlating with the amounts of itaconic acid, a metabolite previously proposed to have an antimicrobial effect. We purified IRG1 protein and identified its cis-aconitate decarboxylating activity in an enzymatic assay. Itaconic acid is an organic compound that inhibits isocitrate lyase, the key enzyme of the glyoxylate shunt, a pathway essential for bacterial growth under specific conditions. Here we show that itaconic acid inhibits the growth of bacteria expressing isocitrate lyase, such as Salmonella enterica and Mycobacterium tuberculosis. Furthermore, Irg1 gene silencing in macrophages resulted in significantly decreased intracellular itaconic acid levels as well as significantly reduced antimicrobial activity during bacterial infections. Taken together, our results demonstrate that IRG1 links cellular metabolism with immune defense by catalyzing itaconic acid production. PMID:23610393

  11. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production

    PubMed Central

    Michelucci, Alessandro; Cordes, Thekla; Ghelfi, Jenny; Pailot, Arnaud; Reiling, Norbert; Goldmann, Oliver; Binz, Tina; Wegner, André; Tallam, Aravind; Rausell, Antonio; Buttini, Manuel; Linster, Carole L.; Medina, Eva; Balling, Rudi; Hiller, Karsten

    2013-01-01

    Immunoresponsive gene 1 (Irg1) is highly expressed in mammalian macrophages during inflammation, but its biological function has not yet been elucidated. Here, we identify Irg1 as the gene coding for an enzyme producing itaconic acid (also known as methylenesuccinic acid) through the decarboxylation of cis-aconitate, a tricarboxylic acid cycle intermediate. Using a gain-and-loss-of-function approach in both mouse and human immune cells, we found Irg1 expression levels correlating with the amounts of itaconic acid, a metabolite previously proposed to have an antimicrobial effect. We purified IRG1 protein and identified its cis-aconitate decarboxylating activity in an enzymatic assay. Itaconic acid is an organic compound that inhibits isocitrate lyase, the key enzyme of the glyoxylate shunt, a pathway essential for bacterial growth under specific conditions. Here we show that itaconic acid inhibits the growth of bacteria expressing isocitrate lyase, such as Salmonella enterica and Mycobacterium tuberculosis. Furthermore, Irg1 gene silencing in macrophages resulted in significantly decreased intracellular itaconic acid levels as well as significantly reduced antimicrobial activity during bacterial infections. Taken together, our results demonstrate that IRG1 links cellular metabolism with immune defense by catalyzing itaconic acid production. PMID:23610393

  12. Salicylic acid-induced superoxide generation catalyzed by plant peroxidase in hydrogen peroxide-independent manner

    PubMed Central

    Kimura, Makoto; Kawano, Tomonori

    2015-01-01

    It has been reported that salicylic acid (SA) induces both immediate spike and long lasting phases of oxidative burst represented by the generation of reactive oxygen species (ROS) such as superoxide anion radical (O2•−). In general, in the earlier phase of oxidative burst, apoplastic peroxidase are likely involved and in the late phase of the oxidative burst, NADPH oxidase is likely involved. Key signaling events connecting the 2 phases of oxidative burst are calcium channel activation and protein phosphorylation events. To date, the known earliest signaling event in response to exogenously added SA is the cell wall peroxidase-catalyzed generation of O2•− in a hydrogen peroxide (H2O2)-dependent manner. However, this model is incomplete since the source of the initially required H2O2 could not be explained. Based on the recently proposed role for H2O2-independent mechanism for ROS production catalyzed by plant peroxidases (Kimura et al., 2014, Frontiers in Plant Science), we hereby propose a novel model for plant peroxidase-catalyzed oxidative burst fueled by SA. PMID:26633563

  13. Access to Isoquinolines and Isoquinolin-3-ols via Rh(III)-Catalyzed Coupling/Cyclization Cascade Reaction of Arylimidates and Diazo Compounds.

    PubMed

    Li, Xing Guang; Sun, Min; Jin, Qiao; Liu, Kai; Liu, Pei Nian

    2016-05-01

    A Rh(III)-catalyzed coupling/cyclization cascade reaction is described, which involves arylimidates and diazo compounds and proceeds via intermolecular C-C bond formation and subsequent intramolecular C-N bond formation. Mechanistic investigation revealed that the reaction is a two-step process: the initial Rh(III)-catalyzed coupling/cyclization proceeds very fast and the following dehydration is rather slow. The reaction provides a direct approach to isoquinolines and isoquinolin-3-ols without any oxidants. PMID:27042947

  14. Enantioselective acylation of β-phenylalanine acid and its derivatives catalyzed by penicillin G acylase from Alcaligenes faecalis.

    PubMed

    Li, Dengchao; Ji, Lilian; Wang, Xinfeng; Wei, Dongzhi

    2013-01-01

    This study developed a simple, efficient method for producing racemic β-phenylalanine acid (BPA) and its derivatives via the enantioselective acylation catalyzed by the penicillin G acylase from Alcaligenes faecalis (Af-PGA). When the reaction was run at 25°C and pH 10 in an aqueous medium containing phenylacetamide and BPA in a molar ratio of 2:1, 8 U/mL enzyme and 0.1 M BPA, the maximum BPA conversion efficiency at 40 min only reached 36.1%, which, however, increased to 42.9% as the pH value and the molar ratio of phenylacetamide to BPA were elevated to 11 and 3:1, respectively. Under the relatively optimum reaction conditions, the maximum conversion efficiencies of BPA derivatives all reached about 50% in a relatively short reaction time (45-90 min). The enantiomeric excess value of product (ee(p)) and enantiomeric excess value of substrate (ee(s)) were all above 98% and 95%, respectively. These results suggest that the method established in this study is practical, effective, and environmentally benign and may be applied to industrial production of enantiomerically pure BPA and its derivatives. PMID:23302108

  15. Lecithin-cholesterol acyltransferase (LCAT) catalyzes transacylation of intact cholesteryl esters. Evidence for the partial reversal of the forward LCAT reaction

    SciTech Connect

    Sorci-Thomas, M.; Babiak, J.; Rudel, L.L. )

    1990-02-15

    Lecithin-cholesterol acyltransferase (LCAT) catalyzes the intravascular synthesis of lipoprotein cholesteryl esters by converting cholesterol and lecithin to cholesteryl ester and lysolecithin. LCAT is unique in that it catalyzes sequential reactions within a single polypeptide sequence. In this report we find that LCAT mediates a partial reverse reaction, the transacylation of lipoprotein cholesteryl oleate, in whole plasma and in a purified, reconstituted system. As a result of the reverse transacylation reaction, a linear accumulation of (3H)cholesterol occurred during incubations of plasma containing high density lipoprotein labeled with (3H)cholesteryl oleate. When high density lipoprotein labeled with cholesteryl (14C)oleate was also included in the incubation the labeled fatty acyl moiety remained in the cholesteryl (14C)oleate pool showing that the formation of labeled cholesterol did not result from hydrolysis of the doubly labeled cholesteryl esters. The rate of release of (3H)cholesterol was only about 10% of the forward rate of esterification of cholesterol using partially purified human LCAT and was approximately 7% in whole monkey plasma. Therefore, net production of cholesterol via the reverse LCAT reaction would not occur. (3H)Cholesterol production from (3H)cholesteryl oleate was almost completely inhibited by a final concentration of 1.4 mM 5,5'-dithiobis(nitrobenzoic acid) during incubation with either purified LCAT or whole plasma. Addition of excess lysolecithin to the incubation system did not result in the formation of (14C)oleate-labeled lecithin, showing that the reverse reaction found here for LCAT was limited to the last step of the reaction. To explain these results we hypothesize that LCAT forms a (14C)oleate enzyme thioester intermediate after its attack on the cholesteryl oleate molecule.

  16. Palladium-Catalyzed One-Pot Reaction of Hydrazones, Dihaloarenes, and Organoboron Reagents: Synthesis and Cytotoxic Activity of 1,1-Diarylethylene Derivatives.

    PubMed

    Roche, Maxime; Salim, Salim Mmadi; Bignon, Jérôme; Levaique, Hélène; Brion, Jean-Daniel; Alami, Mouad; Hamze, Abdallah

    2015-07-01

    A new three-component assembly reaction between N-tosylhydrazones, dihalogenated arenes, and boronic acids or boronate esters was developed, producing highly substituted 1,1-diarylethylenes in good yields. The two C-C bonds formed through this coupling have been catalyzed by a single Pd-catalyst in a one-pot fashion. It is noted that the one-pot pinacol boronate cross-coupling reaction generally provides products in high yields, offers an expansive substrate scope, and can address a broad range of aryl, styrene, vinyl, and heterocyclic olefinic targets. The scope of this one-pot coupling has been also extended to the synthesis of the 1,1-diarylethylene skeleton of the natural product ratanhine. The new compounds were evaluated for their cytotoxic activity, and this allowed the identification of compound 4ab that exhibits excellent antiproliferative activity in the nanomolar concentration range against HCT116 cancer cell lines. PMID:26036279

  17. Negative resists for electron-beam lithography utilizing acid-catalyzed intramolecular dehydration of phenylcarbinol

    NASA Astrophysics Data System (ADS)

    Migitaka, Sonoko; Uchino, Shou-ichi; Ueno, Takumi; Yamamoto, Jiro; Kojima, Kyoko; Hashimoto, Michiaki; Shiraishi, Hiroshi

    1996-06-01

    Acid-catalyzed intramolecular dehydration of phenylcarbinol is used to design highly sensitive negative resists for electron beam lithography. Of the phenylcarbinol resists evaluated in this study, the resist composed of 1,3-bis(alpha-hydroxyisopropyl)benzene (Diol-1), m/p-cresol novolak resin, and diphenyliodonium triflate (DIT) shows the best lithographic performance in terms of sensitivity and resolution. Fine 0.25-micrometer line-and-space patterns were formed by using the resist containing Diol-1 with a dose of 3.6 (mu) C/cm2 in conjunction with a 50 kV electron beam exposure system.

  18. Synthesis of phytuberin. 4-endo-tet acid-catalyzed cyclization of alpha-hydroxy epoxides.

    PubMed

    Prangé, Thierry; Rodríguez, María S; Suárez, Ernesto

    2003-05-30

    The total synthesis of phytuberin, a phytoalexin of the Solanum genus, from (-)-alpha-santonin is reported. The key steps include (a) reductive cleavage of the C-O bond of the gamma-lactone with concomitant protection of the C1 double bond, (b) Sharpless stereocontrolled hydroxy-assisted epoxidation of allylic alcohol 6 and simultaneous deprotection of the C1 double bond, (c) a rare 4-endo-tet acid-catalyzed cyclization of an alpha-hydroxy epoxide, and (d) an unprecedented 4-exo selenocyclization of a homoallylic alcohol. PMID:12762747

  19. Assessment of theoretical procedures for calculating barrier heights for a diverse set of water-catalyzed proton-transfer reactions.

    PubMed

    Karton, Amir; O'Reilly, Robert J; Radom, Leo

    2012-04-26

    Accurate electronic barrier heights are obtained for a set of nine proton-transfer tautomerization reactions, which are either (i) uncatalyzed, (ii) catalyzed by one water molecule, or (iii) catalyzed by two water molecules. The barrier heights for reactions (i) and (ii) are obtained by means of the high-level ab initio W2.2 thermochemical protocol, while those for reaction (iii) are obtained using the W1 protocol. These three sets of benchmark barrier heights allow an assessment of the performance of more approximate theoretical procedures for the calculation of barrier heights of uncatalyzed and water-catalyzed reactions. We evaluate initially the performance of the composite G4 procedure and variants thereof (e.g., G4(MP2) and G4(MP2)-6X), as well as that of standard ab initio procedures (e.g., MP2, SCS-MP2, and MP4). We find that the performance of the G4(MP2)-type thermochemical procedures deteriorates with the number of water molecules involved in the catalysis. This behavior is linked to deficiencies in the MP2-based basis-set-correction term in the G4(MP2)-type procedures. This is remedied in the MP4-based G4 procedure, which shows good performance for both the uncatalyzed and the water-catalyzed reactions, with mean absolute deviations (MADs) from the benchmark values lying below the threshold of "chemical accuracy" (arbitrarily defined as 1 kcal mol(-1) ≈ 4.2 kJ mol(-1)). We also examine the performance of a large number of density functional theory (DFT) and double-hybrid DFT (DHDFT) procedures. We find that, with few exceptions (most notably PW6-B95 and B97-2), the performance of the DFT procedures that give good results for the uncatalyzed reactions deteriorates with the number of water molecules involved in the catalysis. The DHDFT procedures, on the other hand, show excellent performance for both the uncatalyzed and catalyzed reactions. Specifically, almost all of them afford MADs below the "chemical accuracy" threshold, with ROB2-PLYP and B2K

  20. Nickel-Catalyzed Hiyama-type Decarboxylative Coupling of Propiolic Acids and Organosilanes.

    PubMed

    Edwin Raja, Gabriel Charles; Irudayanathan, Francis Mariaraj; Kim, Han-Sung; Kim, Jimin; Lee, Sunwoo

    2016-06-17

    A Ni catalytic system was developed for the decarboxylative coupling reaction of alkynyl carboxylic acids with organosilanes. Ni(acac)2 and 1,10-phenanthroline showed the best result in the presence of CsF and CuF2 at 120 °C. This system tolerated the presence of alkyl, alkoxy, halogen, nitro, cyano, ketone, and ester functional groups. Moreover, the reaction with but-2-ynedioic acid and organosilane afforded the corresponding symmetrical diarylalkynes. PMID:27188502

  1. Oxygen exchange reactions catalyzed by vacuolar H(+)-translocating pyrophosphatase. Evidence for reversible formation of enzyme-bound pyrophosphate.

    PubMed

    Baykov, A A; Kasho, V N; Bakuleva, N P; Rea, P A

    1994-08-22

    Vacuolar membrane-derived vesicles isolated from Vigna radiata catalyze oxygen exchange between medium phosphate and water. On the basis of the inhibitor sensitivity and cation requirements of the exchange activity, it is almost exclusively attributable to the vacuolar H(+)-pyrophosphatase (V-PPase). The invariance of the partition coefficient and the results of kinetic modeling indicate that exchange proceeds via a single reaction pathway and results from the reversal of enzyme-bound pyrophosphate synthesis. Comparison of the exchange reactions catalyzed by V-PPase and soluble PPases suggests that the two classes of enzyme mediate P(i)-HOH exchange by the same mechanism and that the intrinsic reversibility of the V-PPase is no greater than that of soluble PPases. PMID:8070586

  2. Isoprene Epoxydiols as Precursors to Secondary Organic Aerosol Formation: Acid-Catalyzed Reactive Uptake Studies with Authentic Compounds

    PubMed Central

    Lin, Ying-Hsuan; Zhang, Zhenfa; Docherty, Kenneth S.; Zhang, Haofei; Budisulistiorini, Sri Hapsari; Rubitschun, Caitlin L.; Shaw, Stephanie L.; Knipping, Eladio M.; Edgerton, Eric S.; Kleindienst, Tadeusz E.; Gold, Avram; Surratt, Jason D.

    2011-01-01

    Isoprene epoxydiols (IEPOX), formed from the photooxidation of isoprene under low-NOx conditions, have recently been proposed as precursors of secondary organic aerosol (SOA) on the basis of mass spectrometric evidence. In the present study, IEPOX isomers were synthesized in high purity (> 99%) to investigate their potential to form SOA via reactive uptake in a series of controlled dark chamber studies followed by reaction product analyses. IEPOX-derived SOA was substantially observed only in the presence of acidic aerosols, with conservative lower-bound yields of 4.7–6.4% for β-IEPOX and 3.4–5.5% for δ-IEPOX, providing direct evidence for IEPOX isomers as precursors to isoprene SOA. These chamber studies demonstrate that IEPOX uptake explains the formation of known isoprene SOA tracers found in ambient aerosols, including 2-methyltetrols, C5-alkene triols, dimers, and IEPOX-derived organosulfates. Additionally, we show reactive uptake on the acidified sulfate aerosols supports a previously unreported acid-catalyzed intramolecular rearrangement of IEPOX to cis- and trans-3-methyltetrahydrofuran-3,4-diols (3-MeTHF-3,4-diols) in the particle phase. Analysis of these novel tracer compounds by aerosol mass spectrometry (AMS) suggests that they contribute to a unique factor resolved from positive matrix factorization (PMF) of AMS organic aerosol spectra collected from low-NOx, isoprene-dominated regions influenced by the presence of acidic aerosols. PMID:22103348

  3. Nanosheet-enhanced asymmetric induction of chiral α-amino acids in catalytic aldol reaction.

    PubMed

    Zhao, Li-Wei; Shi, Hui-Min; Wang, Jiu-Zhao; He, Jing

    2012-11-26

    An efficient ligand design strategy towards boosting asymmetric induction was proposed, which simply employed inorganic nanosheets to modify α-amino acids and has been demonstrated to be effective in vanadium-catalyzed epoxidation of allylic alcohols. Here, the strategy was first extended to zinc-catalyzed asymmetric aldol reaction, a versatile bottom-up route to make complex functional compounds. Zinc, the second-most abundant transition metal in humans, is an environment-friendly catalytic center. The strategy was then further proved valid for organocatalyzed metal-free asymmetric catalysis, that is, α-amino acid catalyzed asymmetric aldol reaction. Visible improvement of enantioselectivity was experimentally achieved irrespective of whether the nanosheet-attached α-amino acids were applied as chiral ligands together with catalytic Zn(II) centers or as chiral catalysts alone. The layered double hydroxide nanosheet was clearly found by theoretical calculations to boost ee through both steric and H-bonding effects; this resembles the role of a huge and rigid substituent. PMID:23074138

  4. Direct amidation of carboxylic acids catalyzed by ortho-iodo arylboronic acids: catalyst optimization, scope, and preliminary mechanistic study supporting a peculiar halogen acceleration effect.

    PubMed

    Gernigon, Nicolas; Al-Zoubi, Raed M; Hall, Dennis G

    2012-10-01

    The importance of amides as a component of biomolecules and synthetic products motivates the development of catalytic, direct amidation methods employing free carboxylic acids and amines that circumvent the need for stoichiometric activation or coupling reagents. ortho-Iodophenylboronic acid 4a has recently been shown to catalyze direct amidation reactions at room temperature in the presence of 4A molecular sieves as dehydrating agent. Herein, the arene core of ortho-iodoarylboronic acid catalysts has been optimized with regards to the electronic effects of ring substitution. Contrary to the expectation, it was found that electron-donating substituents are preferable, in particular, an alkoxy substituent positioned para to the iodide. The optimal new catalyst, 5-methoxy-2-iodophenylboronic acid (MIBA, 4f), was demonstrated to be kinetically more active than the parent des-methoxy catalyst 4a, providing higher yields of amide products in shorter reaction times under mild conditions at ambient temperature. Catalyst 4f is recyclable and promotes the formation of amides from aliphatic carboxylic acids and amines, and from heteroaromatic carboxylic acids and other functionalized substrates containing moieties like a free phenol, indole and pyridine. Mechanistic studies demonstrated the essential role of molecular sieves in this complex amidation process. The effect of substrate stoichiometry, concentration, and measurement of the catalyst order led to a possible catalytic cycle based on the presumed formation of an acylborate intermediate. The need for an electronically enriched ortho-iodo substituent in catalyst 4f supports a recent theoretical study (Marcelli, T. Angew. Chem. Int. Ed.2010, 49, 6840-6843) with a purported role for the iodide as a hydrogen-bond acceptor in the orthoaminal transition state. PMID:23013456

  5. Unified mechanism of alkali and alkaline earth catalyzed gasification reactions of carbon by CO2 and H2O

    USGS Publications Warehouse

    Chen, S.G.; Yang, R.T.

    1997-01-01

    From molecular orbital calculations, a unified mechanism is proposed for the gasification reactions of graphite by CO2 and H2O, both uncatalyzed and catalyzed by alkali and alkaline earth catalysts. In this mechanism, there are two types of oxygen intermediates that are bonded to the active edge carbon atoms: an in-plane semiquinone type, Cf(O), and an off-plane oxygen bonded to two saturated carbon atoms that are adjacent to the semiquinone species, C(O)Cf(O). The rate-limiting step is the decomposition of these intermediates by breaking the C-C bonds that are connected to Cf(O). A new rate equation is derived for the uncatalyzed reactions, and that for the catalyzed reactions is readily available from the proposed mechanism. The proposed mechanism can account for several unresolved experimental observations: TPD and TK (transient kinetics) desorption results of the catalyzed systems, the similar activation energies for the uncatalyzed and catalyzed reactions, and the relative activities of the alkali and alkaline earth elements. The net charge of the edge carbon active site is substantially changed by gaining electron density from the alkali or alkaline earth element (by forming C-O-M, where M stands for metal). The relative catalytic activities of these elements can be correlated with their abilities of donating electrons and changing the net charge of the edge carbon atom. As shown previously (Chen, S. G.; Yang, R. T. J. Catal. 1993, 141, 102), only clusters of the alkali compounds are active. This derives from the ability of the clusters to dissociate CO2 and H2O to form O atoms and the mobility of the dissociated O atoms facilitated by the clusters.

  6. Synthesis of chiral biphenol-based diphosphonite ligands and their application in palladium-catalyzed intermolecular asymmetric allylic amination reactions.

    PubMed

    Shi, Ce; Chien, Chih-Wei; Ojima, Iwao

    2011-02-01

    A library of new 2,2'-bis(diphenylphosphinoyloxy)-1,1'-binaphthyl (binapo)-type chiral diphosphonite ligands was designed and synthesized based on chiral 3,3',5,5',6,6'-hexasubstituted biphenols. These bop ligands have exhibited excellent efficiency in a palladium-catalyzed intermolecular allylic amination reaction, which provides a key intermediate for the total synthesis of Strychnos indole alkaloids with enantiopurities of up to 96% ee. PMID:21254441

  7. Tandem Rh(III)-Catalyzed C-H Amination/Annulation Reactions: Synthesis of Indoloquinoline Derivatives in Water.

    PubMed

    Shi, Liangliang; Wang, Baiquan

    2016-06-17

    An efficient Rh(III)-catalyzed synthetic method for indoloquinoline derivatives from readily available indoles and isoxazoles was developed. This annulation procedure undergoes tandem C-H activation, cyclization, and condensation steps. In this domino cyclization reaction, water is an efficient solvent. A catalytically competent five-membered rhodacycle has been isolated and characterized, thus revealing a key intermediate in the catalytic cycle. PMID:27266834

  8. Cu(I)-Catalyzed Tandem Reaction of Carbene Coupling and Horner-Wadsworth-Emmons Type Olefination: Access toward Enynes.

    PubMed

    Zhou, Yujing; Ye, Fei; Zhou, Qi; Zhang, Yan; Wang, Jianbo

    2016-05-01

    A novel strategy to synthesize 1,3-enynes has been successfully developed based on Cu(I)-catalyzed cross-coupling of α-diazo phosphonates and alkynes with a subsequent Horner-Wadsworth-Emmons (HWE) type reaction. This method provides straightforward access to conjugated enynes with high efficiency, good stereoselectivity and excellent functional group compatibility. Copper(I) carbene migratory insertion plays a crucial role in this transformation. PMID:27115055

  9. Convergent Synthesis of Diverse Nitrogen Heterocycles via Rh(III)-Catalyzed C-H Conjugate Addition/Cyclization Reactions.

    PubMed

    Weinstein, Adam B; Ellman, Jonathan A

    2016-07-01

    The development of Rh(III)-catalyzed C-H conjugate addition/cyclization reactions that provide access to synthetically useful fused bi- and tricyclic nitrogen heterocycles is reported. A broad scope of C-H functionalization substrates and electrophilic olefin coupling partners is effective, and depending on the nature of the directing group, cyclic imide, amide, or heteroaromatic products are obtained. An efficient synthesis of a pyrrolophenanthridine alkaloid natural product, oxoassoanine, highlights the utility of this method. PMID:27337641

  10. Synthesis of Highly Functionalized Triarylbismuthines by Functional Group Manipulation and Use in Palladium- and Copper-Catalyzed Arylation Reactions.

    PubMed

    Hébert, Martin; Petiot, Pauline; Benoit, Emeline; Dansereau, Julien; Ahmad, Tabinda; Le Roch, Adrien; Ottenwaelder, Xavier; Gagnon, Alexandre

    2016-07-01

    Organobismuthines are an attractive class of organometallic reagents that can be accessed from inexpensive and nontoxic bismuth salts. Triarylbismuthines are particularly interesting due to their air and moisture stability and high functional group tolerance. We report herein a detailed study on the preparation of highly functionalized triarylbismuth reagents by triple functional group manipulation and their use in palladium- and copper-catalyzed C-, N-, and O-arylation reactions. PMID:27231755

  11. Recent Advances in Recoverable Systems for the Copper-Catalyzed Azide-Alkyne Cycloaddition Reaction (CuAAC).

    PubMed

    Mandoli, Alessandro

    2016-01-01

    The explosively-growing applications of the Cu-catalyzed Huisgen 1,3-dipolar cycloaddition reaction between organic azides and alkynes (CuAAC) have stimulated an impressive number of reports, in the last years, focusing on recoverable variants of the homogeneous or quasi-homogeneous catalysts. Recent advances in the field are reviewed, with particular emphasis on systems immobilized onto polymeric organic or inorganic supports. PMID:27607998

  12. Production of Chiral (R)-3-Hydroxyoctanoic Acid Monomers, Catalyzed by Pseudomonas fluorescens GK13 Poly(3-Hydroxyoctanoic Acid) Depolymerase▿

    PubMed Central

    Gangoiti, Joana; Santos, Marta; Llama, María J.; Serra, Juan L.

    2010-01-01

    The extracellular medium-chain-length polyhydroxyalkanoate (MCL-PHA) depolymerase of Pseudomonas fluorescens GK13 catalyzes the hydrolysis of poly(3-hydroxyoctanoic acid) [P(3HO)]. Based on the strong tendency of the enzyme to interact with hydrophobic materials, a low-cost method which allows the rapid and easy purification and immobilization of the enzyme has been developed. Thus, the extracellular P(3HO) depolymerase present in the culture broth of cells of P. fluorescens GK13 grown on mineral medium supplemented with P(3HO) as the sole carbon and energy source has been tightly adsorbed onto a commercially available polypropylene support (Accurel MP-1000) with high yield and specificity. The activity of the pure enzyme was enhanced by the presence of detergents and organic solvents, and it was retained after treatment with an SDS-denaturing cocktail under both reducing and nonreducing conditions. The time course of the P(3HO) hydrolysis catalyzed by the soluble and immobilized enzyme has been assessed, and the resulting products have been identified. After 24 h of hydrolysis, the dimeric ester of 3-HO [(R)-3-HO-HO] was obtained as the main product of the soluble enzyme. However, the immobilized enzyme catalyzes almost the complete hydrolysis of P(3HO) polymer to (R)-3-HO monomers under the same conditions. PMID:20400568

  13. Organocatalytic Enantioselective Aza-Friedel-Crafts Reaction of Cyclic Ketimines with Pyrroles using Imidazolinephosphoric Acid Catalysts.

    PubMed

    Nakamura, Shuichi; Matsuda, Nazumi; Ohara, Mutsuyo

    2016-07-01

    Organocatalytic enantioselective aza-Friedel-Crafts reactions of cyclic ketimines with pyrroles or indoles were catalyzed by imidazoline/phosphoric acid catalysts. The reaction was applied to various 3H-indol-3-ones to afford products in excellent yields and enantioselectivities. The chiral catalysts can be recovered by a single separation step using column chromatography and are reusable without further purification. Based on the experimental investigations, a possible transition state has been proposed to explain the origin of the asymmetric induction. PMID:27124556

  14. 7-deoxyloganetic acid synthase catalyzes a key 3 step oxidation to form 7-deoxyloganetic acid in Catharanthus roseus iridoid biosynthesis.

    PubMed

    Salim, Vonny; Wiens, Brent; Masada-Atsumi, Sayaka; Yu, Fang; De Luca, Vincenzo

    2014-05-01

    Iridoids are key intermediates required for the biosynthesis of monoterpenoid indole alkaloids (MIAs), as well as quinoline alkaloids. Although most iridoid biosynthetic genes have been identified, one remaining three step oxidation required to form the carboxyl group of 7-deoxyloganetic acid has yet to be characterized. Here, it is reported that virus-induced gene silencing of 7-deoxyloganetic acid synthase (7DLS, CYP76A26) in Catharanthus roseus greatly decreased levels of secologanin and the major MIAs, catharanthine and vindoline in silenced leaves. Functional expression of this gene in Saccharomyces cerevisiae confirmed its function as an authentic 7DLS that catalyzes the 3 step oxidation of iridodial-nepetalactol to form 7-deoxyloganetic acid. The identification of CYP76A26 removes a key bottleneck for expression of iridoid and related MIA pathways in various biological backgrounds. PMID:24594312

  15. DFT Study of Solvent Effects in Acid-Catalyzed Diels-Alder Cycloadditions of 2,5-Dimethylfuran and Maleic Anhydride.

    PubMed

    Salavati-fard, Taha; Caratzoulas, Stavros; Doren, Douglas J

    2015-09-24

    Density functional theory electronic structure calculations were used to explore the mechanism for the Diels-Alder reaction between 2,5-dimethylfuran and maleic anhydride (MA). Reaction paths are reported for uncatalyzed and Lewis and Brønsted acid-catalyzed reactions in vacuum and in a broad range of solvents. The calculations show that, while the uncatalyzed Diels-Alder reaction is thermally feasible in vacuum, a Lewis acid (modeled as Na(+)) lowers the activation barrier by interacting with the dienophile (MA) and decreasing the HOMO-LUMO gap of the reactants. A Brønsted acid (modeled as a proton) can bind to a carbonyl oxygen in MA, changing the reaction mechanism from concerted to stepwise and eliminating the activation barrier. Solvation effects were studied with the SMD model. Electrostatic effects play the largest role in determining the solvation energy of the transition state, which tracks the net dipole moment at the transition state. For the uncatalyzed reaction, the dipole moment is largely determined by charge transfer between the reactants, but in the reactions with ionic catalysts, there is no simple relationship between solvation of the transition state and charge transfer between the reactants. Nonelectrostatic contributions to solvation of the reactants and transition state also make significant contributions to the activation energy. PMID:26331220

  16. Synthesis of steroid-ferrocene conjugates of steroidal 17-carboxamides via a palladium-catalyzed aminocarbonylation--copper-catalyzed azide-alkyne cycloaddition reaction sequence.

    PubMed

    Szánti-Pintér, Eszter; Balogh, János; Csók, Zsolt; Kollár, László; Gömöry, Agnes; Skoda-Földes, Rita

    2011-11-01

    Steroids with the 17-iodo-16-ene functionality were converted to ferrocene labeled steroidal 17-carboxamides via a two step reaction sequence. The first step involved the palladium-catalyzed aminocarbonylation of the alkenyl iodides with prop-2-yn-1-amine as the nucleophile in the presence of the Pd(OAc)(2)/PPh(3) catalyst system. In the second step, the product N-(prop-2-ynyl)-carboxamides underwent a facile azide-alkyne cycloaddition with ferrocenyl azides in the presence of CuSO(4)/sodium ascorbate to produce the steroid-ferrocene conjugates. The new compounds were obtained in good yield and were characterized by (1)H and (13)C NMR, IR, MS and elemental analysis. PMID:21787798

  17. Bifunctional Brønsted Base Catalyzes Direct Asymmetric Aldol Reaction of α-Keto Amides.

    PubMed

    Echave, Haizea; López, Rosa; Palomo, Claudio

    2016-03-01

    The first enantioselective direct cross-aldol reaction of α-keto amides with aldehydes, mediated by a bifunctional ureidopeptide-based Brønsted base catalyst, is described. The appropriate combination of a tertiary amine base and an aminal, and urea hydrogen-bond donor groups in the catalyst structure promoted the exclusive generation of the α-keto amide enolate which reacted with either non-enolizable or enolizable aldehydes to produce highly enantioenriched polyoxygenated aldol adducts without side-products resulting from dehydration, α-keto amide self-condensation, aldehyde enolization, and isotetronic acid formation. PMID:26835655

  18. Effect of mass transfer on the oxygen reduction reaction catalyzed by platinum dendrimer encapsulated nanoparticles.

    PubMed

    Dumitrescu, Ioana; Crooks, Richard M

    2012-07-17

    Here we report on the effect of the mass transfer rate (k(t)) on the oxygen reduction reaction (ORR) catalyzed by Pt dendrimer-encapsulated nanoparticles (DENs) comprised of 147 and 55 atoms (Pt(147) and Pt(55)). The experiments were carried out using a dual-electrode microelectrochemical device, which enables the study of the ORR under high k(t) conditions with simultaneous detection of H(2)O(2). At low k(t) (0.02 to 0.12 cm s(-1)) the effective number of electrons involved in ORR, n(eff), is 3.7 for Pt(147) and 3.4 for Pt(55). As k(t) is increased, the mass-transfer-limited current for the ORR becomes significantly lower than the value predicted by the Levich equation for a 4-electron process regardless of catalyst size. However, the percentage of H(2)O(2) detected remains constant, such that n(eff) barely changes over the entire k(t) range explored (0.02 cm s(-1)). This suggests that mass transfer does not affect n(eff), which has implications for the mechanism of the ORR on Pt nanoparticles. Interestingly, there is a significant difference in n(eff) for the two sizes of Pt DENs (n(eff) = 3.7 and 3.5 for Pt(147) and Pt(55), respectively) that cannot be assigned to mass transfer effects and that we therefore attribute to a particle size effect. PMID:22665772

  19. Unification of reaction pathway and kinetic scheme for N2 reduction catalyzed by nitrogenase

    PubMed Central

    Lukoyanov, Dmitriy; Yang, Zhi-Yong; Barney, Brett M.; Dean, Dennis R.; Seefeldt, Lance C.; Hoffman, Brian M.

    2012-01-01

    Nitrogenase catalyzes the reduction of N2 and protons to yield two NH3 and one H2. Substrate binding occurs at a complex organo-metallocluster called FeMo-cofactor (FeMo-co). Each catalytic cycle involves the sequential delivery of eight electrons/protons to this cluster, and this process has been framed within a kinetic scheme developed by Lowe and Thorneley. Rapid freezing of a modified nitrogenase under turnover conditions using diazene, methyldiazene (HN = N-CH3), or hydrazine as substrate recently was shown to trap a common intermediate, designated I. It was further concluded that the two N-atoms of N2 are hydrogenated alternately (“Alternating” (A) pathway). In the present work, Q-band CW EPR and 95Mo ESEEM spectroscopy reveal such samples also contain a common intermediate with FeMo-co in an integer-spin state having a ground-state “non-Kramers” doublet. This species, designated H, has been characterized by ESEEM spectroscopy using a combination of 14,15N isotopologs plus 1,2H isotopologs of methyldiazene. It is concluded that: H has NH2 bound to FeMo-co and corresponds to the penultimate intermediate of N2 hydrogenation, the state formed after the accumulation of seven electrons/protons and the release of the first NH3; I corresponds to the final intermediate in N2 reduction, the state formed after accumulation of eight electrons/protons, with NH3 still bound to FeMo-co prior to release and regeneration of resting-state FeMo-co. A proposed unification of the Lowe-Thorneley kinetic model with the “prompt” alternating reaction pathway represents a draft mechanism for N2 reduction by nitrogenase. PMID:22460797

  20. Aerobic oxidation reactions catalyzed by vanadium complexes of bis(phenolate) ligands.

    PubMed

    Zhang, Guoqi; Scott, Brian L; Wu, Ruilian; Silks, L A Pete; Hanson, Susan K

    2012-07-01

    Vanadium(V) complexes of the tridentate bis(phenolate)pyridine ligand H(2)BPP (H(2)BPP = 2,6-(HOC(6)H(2)-2,4-(t)Bu(2))(2)NC(5)H(3)) and the bis(phenolate)amine ligand H(2)BPA (H(2)BPA = N,N-bis(2-hydroxy-4,5-dimethylbenzyl)propylamine) have been synthesized and characterized. The ability of the complexes to mediate the oxidative C-C bond cleavage of pinacol was tested. Reaction of the complex (BPP)V(V)(O)(O(i)Pr) (4) with pinacol afforded the monomeric vanadium(IV) product (BPP)V(IV)(O)(HO(i)Pr) (6) and acetone. Vanadium(IV) complex 6 was oxidized rapidly by air at room temperature in the presence of NEt(3), yielding the vanadium(V) cis-dioxo complex [(BPP)V(V)(O)(2)]HNEt(3). Complex (BPA)V(V)(O)(O(i)Pr) (5) reacted with pinacol at room temperature, to afford acetone and the vanadium(IV) dimer [(BPA)V(IV)(O)(HO(i)Pr)](2). Complexes 4 and 5 were evaluated as catalysts for the aerobic oxidation of 4-methoxybenzyl alcohol and arylglycerol β-aryl ether lignin model compounds. Although both 4 and 5 catalyzed the aerobic oxidation of 4-methoxybenzyl alcohol, complex 4 was found to be a more active and robust catalyst for oxidation of the lignin model compounds. The catalytic activities and selectivities of the bis(phenolate) complexes are compared to previously reported catalysts. PMID:22708725