Science.gov

Sample records for acid ceramidase activity

  1. Acid Ceramidase in Melanoma

    PubMed Central

    Realini, Natalia; Palese, Francesca; Pizzirani, Daniela; Pontis, Silvia; Basit, Abdul; Bach, Anders; Ganesan, Anand; Piomelli, Daniele

    2016-01-01

    Acid ceramidase (AC) is a lysosomal cysteine amidase that controls sphingolipid signaling by lowering the levels of ceramides and concomitantly increasing those of sphingosine and its bioactive metabolite, sphingosine 1-phosphate. In the present study, we evaluated the role of AC-regulated sphingolipid signaling in melanoma. We found that AC expression is markedly elevated in normal human melanocytes and proliferative melanoma cell lines, compared with other skin cells (keratinocytes and fibroblasts) and non-melanoma cancer cells. High AC expression was also observed in biopsies from human subjects with Stage II melanoma. Immunofluorescence studies revealed that the subcellular localization of AC differs between melanocytes (where it is found in both cytosol and nucleus) and melanoma cells (where it is primarily localized to cytosol). In addition to having high AC levels, melanoma cells generate lower amounts of ceramides than normal melanocytes do. This down-regulation in ceramide production appears to result from suppression of the de novo biosynthesis pathway. To test whether AC might contribute to melanoma cell proliferation, we blocked AC activity using a new potent (IC50 = 12 nm) and stable inhibitor. AC inhibition increased cellular ceramide levels, decreased sphingosine 1-phosphate levels, and acted synergistically with several, albeit not all, antitumoral agents. The results suggest that AC-controlled sphingolipid metabolism may play an important role in the control of melanoma proliferation. PMID:26553872

  2. Interfacial regulation of acid ceramidase activity. Stimulation of ceramide degradation by lysosomal lipids and sphingolipid activator proteins.

    PubMed

    Linke, T; Wilkening, G; Sadeghlar, F; Mozcall, H; Bernardo, K; Schuchman, E; Sandhoff, K

    2001-02-23

    The lysosomal degradation of ceramide is catalyzed by acid ceramidase and requires sphingolipid activator proteins (SAP) as cofactors in vivo. The aim of this study was to investigate how ceramide is hydrolyzed by acid ceramidase at the water-membrane interface in the presence of sphingolipid activator proteins in a liposomal assay system. The degradation of membrane-bound ceramide was significantly increased both in the absence and presence of SAP-D when anionic lysosomal phospholipids such as bis(monoacylglycero)phosphate, phosphatidylinositol, and dolichol phosphate were incorporated into substrate-bearing liposomes. Higher ceramide degradation rates were observed in vesicles with increased membrane curvature. Dilution assays indicated that acid ceramidase remained bound to the liposomal surface during catalysis. Not only SAP-D, but also SAP-C and SAP-A, were found to be stimulators of ceramide hydrolysis in the presence of anionic phospholipids. This finding was confirmed by cell culture studies, in which SAP-A, -C, and -D reduced the amount of ceramide storage observed in fibroblasts of a patient suffering from prosaposin deficiency. Strong protein-lipid interactions were observed for both SAP-D and acid ceramidase in surface plasmon resonance experiments. Maximum binding of SAP-D and acid ceramidase to lipid bilayers occurred at pH 4.0. Our results demonstrate that anionic, lysosomal lipids are required for efficient hydrolysis of ceramide by acid ceramidase.

  3. Expression of Ceramide Synthase 6 Transcriptionally Activates Acid Ceramidase in a c-Jun N-terminal Kinase (JNK)-dependent Manner*

    PubMed Central

    Tirodkar, Tejas S.; Lu, Ping; Bai, Aiping; Scheffel, Matthew J.; Gencer, Salih; Garrett-Mayer, Elizabeth; Bielawska, Alicja; Ogretmen, Besim; Voelkel-Johnson, Christina

    2015-01-01

    A family of six ceramide synthases with distinct but overlapping substrate specificities is responsible for generation of ceramides with acyl chains ranging from ∼14–26 carbons. Ceramide synthase 6 (CerS6) preferentially generates C14- and C16-ceramides, and we have previously shown that down-regulation of this enzyme decreases apoptotic susceptibility. In this study, we further evaluated how increased CerS6 expression impacts sphingolipid composition and metabolism. Overexpression of CerS6 in HT29 colon cancer cells resulted in increased apoptotic susceptibility and preferential generation of C16-ceramide, which occurred at the expense of very long chain, saturated ceramides. These changes were also reflected in sphingomyelin composition. HT-CerS6 cells had increased intracellular levels of sphingosine, which is generated by ceramidases upon hydrolysis of ceramide. qRT-PCR analysis revealed that only expression of acid ceramidase (ASAH1) was increased. The increase in acid ceramidase was confirmed by expression and activity analyses. Pharmacological inhibition of JNK (SP600125) or curcumin reduced transcriptional up-regulation of acid ceramidase. Using an acid ceramidase promoter driven luciferase reporter plasmid, we demonstrated that CerS1 has no effect on transcriptional activation of acid ceramidase and that CerS2 slightly but significantly decreased the luciferase signal. Similar to CerS6, overexpression of CerS3–5 resulted in an ∼2-fold increase in luciferase reporter gene activity. Exogenous ceramide failed to induce reporter activity, while a CerS inhibitor and a catalytically inactive mutant of CerS6 failed to reduce it. Taken together, these results suggest that increased expression of CerS6 can mediate transcriptional activation of acid ceramidase in a JNK-dependent manner that is independent of CerS6 activity. PMID:25839235

  4. Expression of Ceramide Synthase 6 Transcriptionally Activates Acid Ceramidase in a c-Jun N-terminal Kinase (JNK)-dependent Manner.

    PubMed

    Tirodkar, Tejas S; Lu, Ping; Bai, Aiping; Scheffel, Matthew J; Gencer, Salih; Garrett-Mayer, Elizabeth; Bielawska, Alicja; Ogretmen, Besim; Voelkel-Johnson, Christina

    2015-05-22

    A family of six ceramide synthases with distinct but overlapping substrate specificities is responsible for generation of ceramides with acyl chains ranging from ∼14-26 carbons. Ceramide synthase 6 (CerS6) preferentially generates C14- and C16-ceramides, and we have previously shown that down-regulation of this enzyme decreases apoptotic susceptibility. In this study, we further evaluated how increased CerS6 expression impacts sphingolipid composition and metabolism. Overexpression of CerS6 in HT29 colon cancer cells resulted in increased apoptotic susceptibility and preferential generation of C16-ceramide, which occurred at the expense of very long chain, saturated ceramides. These changes were also reflected in sphingomyelin composition. HT-CerS6 cells had increased intracellular levels of sphingosine, which is generated by ceramidases upon hydrolysis of ceramide. qRT-PCR analysis revealed that only expression of acid ceramidase (ASAH1) was increased. The increase in acid ceramidase was confirmed by expression and activity analyses. Pharmacological inhibition of JNK (SP600125) or curcumin reduced transcriptional up-regulation of acid ceramidase. Using an acid ceramidase promoter driven luciferase reporter plasmid, we demonstrated that CerS1 has no effect on transcriptional activation of acid ceramidase and that CerS2 slightly but significantly decreased the luciferase signal. Similar to CerS6, overexpression of CerS3-5 resulted in an ∼2-fold increase in luciferase reporter gene activity. Exogenous ceramide failed to induce reporter activity, while a CerS inhibitor and a catalytically inactive mutant of CerS6 failed to reduce it. Taken together, these results suggest that increased expression of CerS6 can mediate transcriptional activation of acid ceramidase in a JNK-dependent manner that is independent of CerS6 activity.

  5. Acid ceramidase expression modulates the sensitivity of A375 melanoma cells to dacarbazine.

    PubMed

    Bedia, Carmen; Casas, Josefina; Andrieu-Abadie, Nathalie; Fabriàs, Gemma; Levade, Thierry

    2011-08-12

    Dacarbazine (DTIC) is the treatment of choice for metastatic melanoma, but its response in patients remains very poor. Ceramide has been shown to be a death effector and to play an important role in regulating cancer cell growth upon chemotherapy. Among ceramidases, the enzymes that catabolize ceramide, acid ceramidase (aCDase) has been implicated in cancer progression. Here we show that DTIC elicits a time- and dose-dependent decrease of aCDase activity and an increase of intracellular ceramide levels in human A375 melanoma cells. The loss of enzyme activity occurred as a consequence of reactive oxygen species-dependent activation of cathepsin B-mediated degradation of aCDase. These events preceded autophagic features and loss of cell viability. Down-regulation of acid but not neutral or alkaline ceramidase 2 resulted in elevated levels of ceramide and sensitization to the toxic effects of DTIC. Conversely, inducible overexpression of acid but not neutral ceramidase reduced ceramide levels and conferred resistance to DTIC. In conclusion, we report that increased levels of ceramide, due to enhanced degradation of aCDase, are in part responsible for the cell death effects of DTIC. These results suggest that down-regulation of aCDase alone or in combination with DTIC may represent a useful tool in the treatment of metastatic melanoma.

  6. Acid ceramidase in prostate cancer radiation therapy resistance and relapse

    NASA Astrophysics Data System (ADS)

    Cheng, Joseph C.

    Prostate tumor cell escape from ionizing radiation (IR)-induced killing can lead to disease progression and relapse. Sphingolipids such as ceramide and sphingosine 1-phosphate influence signal transduction pathways that regulate stress response in cancer cells. In particular, metabolism of apoptotic ceramide constitutes an important survival adaptation. Assessments of enzyme activity, mRNA, and protein demonstrated preferential upregulation of the ceramide deacylating enzyme acid ceramidase (AC) in irradiated cancer cells. Promoter-reporter and ChIP-qPCR assays revealed AC transcription by activator protein 1 (AP-1) is sensitive to pharmacological inhibition of de novo ceramide biosynthesis, identifying a protective feedback mechanism that mitigates the effects of IR-induced ceramide. Deregulation of c-Jun, in particular, induced marked radiosensitization in vitro and in vivo, which was rescued by ectopic AC over-expression. AC over-expression in prostate cancer clonogens surviving 80 Gray fractionated irradiation was associated with increased radioresistance and proliferation, suggesting a role in radiotherapy failure and relapse. Indeed, immunohistochemical analysis of human prostate cancer tissues revealed higher levels of AC after radiotherapy failure than therapy-naive adenocarcinoma, PIN, or benign tissues. By genetically downregulating AC with small interfering RNA (siRNA), we observed radiosensitization of cells using clonogenic and cytotoxicity assays. Finally, treatment with lysosomotropic small molecule inhibitors of AC, LCL385 or LCL521, induced prostate cancer xenograft radiosensitization and long-term suppression, suggesting AC is a tractable target for adjuvant radiotherapy.

  7. A neutral ceramidase homologue from Dictyostelium discoideum exhibits an acidic pH optimum.

    PubMed Central

    Monjusho, Hatsumi; Okino, Nozomu; Tani, Motohiro; Maeda, Mineko; Yoshida, Motonobu; Ito, Makoto

    2003-01-01

    The nucleotide sequence reported for the Dictyostelium discoideum ceramidase is available on the DNA Data Bank of Japan (DDBJ). Ceramidases (CDases) are currently classified into three categories (acid, neutral and alkaline) based on their optimal pHs and primary structures. Here, we report the first exception to this rule. We cloned the CDase cDNA, consisting of 2142 nucleotides encoding 714 amino-acid residues, from the slime mould, Dictyostelium discoideum. The putative amino-acid sequence indicates 32-42% identity with various neutral CDases, but does not show any similarity to the acid and alkaline CDases, indicating the enzyme should be classified as a neutral CDase. However, overexpression of the cDNA in D. discoideum resulted in increased CDase activity at an acidic, but not a neutral pH range. Knockout of the gene in slime mould eliminated CDase activity at acidic pH. The recombinant enzyme expressed in the slime mould was purified and then characterized. Consequently, the purified CDase was found to exhibit the maximal activity at approx. pH 3.0. The singular pH dependency of slime mould CDase is not derived from the specific post-translational modification in the slime mould, because the enzyme showed an acidic pH optimum even when expressed in Chinese hamster ovary cells, whereas rat neutral-CDase exhibited a neutral pH optimum when expressed in slime mould. PMID:12943537

  8. Molecular mechanism for sphingosine-induced Pseudomonas ceramidase expression through the transcriptional regulator SphR

    PubMed Central

    Okino, Nozomu; Ito, Makoto

    2016-01-01

    Pseudomonas aeruginosa, an opportunistic, but serious multidrug-resistant pathogen, secretes a ceramidase capable of cleaving the N-acyl linkage of ceramide to generate fatty acids and sphingosine. We previously reported that the secretion of P. aeruginosa ceramidase was induced by host-derived sphingolipids, through which phospholipase C-induced hemolysis was significantly enhanced. We herein investigated the gene(s) regulating sphingolipid-induced ceramidase expression and identified SphR, which encodes a putative AraC family transcriptional regulator. Disruption of the sphR gene in P. aeruginosa markedly decreased the sphingomyelin-induced secretion of ceramidase, reduced hemolytic activity, and resulted in the loss of sphingomyelin-induced ceramidase expression. A microarray analysis confirmed that sphingomyelin significantly induced ceramidase expression in P. aeruginosa. Furthermore, an electrophoretic mobility shift assay revealed that SphR specifically bound free sphingoid bases such as sphingosine, dihydrosphingosine, and phytosphingosine, but not sphingomyelin or ceramide. A β-galactosidase-assisted promoter assay showed that sphingosine activated ceramidase expression through SphR at a concentration of 100 nM. Collectively, these results demonstrated that sphingosine induces the secretion of ceramidase by promoting the mRNA expression of ceramidase through SphR, thereby enhancing hemolytic phospholipase C-induced cytotoxicity. These results facilitate understanding of the physiological role of bacterial ceramidase in host cells. PMID:27941831

  9. Radiation-induced acid ceramidase confers prostate cancer resistance and tumor relapse

    PubMed Central

    Cheng, Joseph C.; Bai, Aiping; Beckham, Thomas H.; Marrison, S. Tucker; Yount, Caroline L.; Young, Katherine; Lu, Ping; Bartlett, Anne M.; Wu, Bill X.; Keane, Barry J.; Armeson, Kent E.; Marshall, David T.; Keane, Thomas E.; Smith, Michael T.; Jones, E. Ellen; Drake, Richard R.; Bielawska, Alicja; Norris, James S.; Liu, Xiang

    2013-01-01

    Escape of prostate cancer (PCa) cells from ionizing radiation–induced (IR-induced) killing leads to disease progression and cancer relapse. The influence of sphingolipids, such as ceramide and its metabolite sphingosine 1-phosphate, on signal transduction pathways under cell stress is important to survival adaptation responses. In this study, we demonstrate that ceramide-deacylating enzyme acid ceramidase (AC) was preferentially upregulated in irradiated PCa cells. Radiation-induced AC gene transactivation by activator protein 1 (AP-1) binding on the proximal promoter was sensitive to inhibition of de novo ceramide biosynthesis, as demonstrated by promoter reporter and ChIP-qPCR analyses. Our data indicate that a protective feedback mechanism mitigates the apoptotic effect of IR-induced ceramide generation. We found that deregulation of c-Jun induced marked radiosensitization in vivo and in vitro, which was rescued by ectopic AC overexpression. AC overexpression in PCa clonogens that survived a fractionated 80-Gy IR course was associated with increased radioresistance and proliferation, suggesting a role for AC in radiotherapy failure and relapse. Immunohistochemical analysis of human PCa tissues revealed higher levels of AC after radiotherapy failure than those in therapy-naive PCa, prostatic intraepithelial neoplasia, or benign tissues. Addition of an AC inhibitor to an animal model of xenograft irradiation produced radiosensitization and prevention of relapse. These data indicate that AC is a potentially tractable target for adjuvant radiotherapy. PMID:24091326

  10. Molecular cloning and characterization of a human cDNA and gene encoding a novel acid ceramidase-like protein.

    PubMed

    Hong, S B; Li, C M; Rhee, H J; Park, J H; He, X; Levy, B; Yoo, O J; Schuchman, E H

    1999-12-01

    Computer-assisted database analysis of sequences homologous to human acid ceramidase (ASAH) revealed a 1233-bp cDNA (previously designated cPj-LTR) whose 266-amino-acid open reading frame had approximately 36% identity with the ASAH polypeptide. Based on this high degree of homology, we undertook further molecular characterization of cPj-LTR and now report the full-length cDNA sequence, complete gene structure (renamed human ASAHL since it is a human acid ceramidase-like sequence), chromosomal location, primer extension and promoter analysis, and transient expression results. The full-length human ASAHL cDNA was 1825 bp and contained an open-reading frame encoding a 359-amino-acid polypeptide that was 33% identical and 69% similar to the ASAH polypeptide over its entire length. Numerous short regions of complete identity were observed between these two sequences and two sequences obtained from the Caenorhabditis elegans genome database. The 30-kb human ASAHL genomic sequence contained 11 exons, which ranged in size from 26 to 671 bp, and 10 introns, which ranged from 150 bp to 6.4 kb. The gene was localized to the chromosomal region 4q21.1 by fluorescence in situ hybridization analysis. Northern blotting experiments revealed a major 2.0-kb ASAHL transcript that was expressed at high levels in the liver and kidney, but at relatively low levels in other tissues such as the lung, heart, and brain. Sequence analysis of the 5'-flanking region of the human ASAHL gene revealed a putative promoter region that lacked a TATA box and was GC rich, typical features of a housekeeping gene promoter, as well as several tissue-specific and/or hormone-induced transcription regulatory sites. 5'-Deletion analysis localized the promoter activity to a 1. 1-kb fragment within this region. A major transcription start site also was located 72 bp upstream from the ATG translation initiation site by primer extension analysis. Expression analysis of a green fluorescence protein/ASAHL fusion

  11. IRF8 Regulates Acid Ceramidase Expression to Mediate Apoptosis and Suppresses Myelogeneous Leukemia

    PubMed Central

    Hu, Xiaolin; Yang, Dafeng; Zimmerman, Mary; Liu, Feiyan; Yang, Jine; Kannan, Swati; Burchert, Andreas; Szulc, Zdzislaw; Bielawska, Alicja; Ozato, Keiko; Bhalla, Kapil; Liu, Kebin

    2011-01-01

    IFN regulatory factor 8 (IRF8) is a key transcription factor for myeloid cell differentiation and its expression is frequently lost in hematopoietic cells of human myeloid leukemia patients. IRF8-deficient mice exhibit uncontrolled clonal expansion of undifferentiated myeloid cells that can progress to a fatal blast crisis, thereby resembling human chronic myelogeneous leukemia (CML). Therefore, IRF8 is a myeloid leukemia suppressor. While the understanding of IRF8 function in CML has recently improved, the molecular mechanisms underlying IRF8 function in CML is still largely unknown. In this study, we identified acid ceramidase (A-CDase) as a general transcription target of IRF8. We demonstrated that IRF8 expression is regulated by IRF8 promoter DNA methylation in myeloid leukemia cells. Restoration of IRF8 expression repressed A-CDase expression, resulting in C16 ceramide accumulation and increased sensitivity of CML cells to FasL-induced apoptosis. In myeloid cells derived from IRF8-deficient mice, A-CDase protein level was dramatically increased. Furthermore, we demonstrated that IRF8 directly bind to the A-CDase promoter. At the functional level, inhibition of A-CDase activity, silencing A-CDase expression or application of exogenous C16 ceramide sensitized CML cells to FasL-induced apoptosis, whereas, overexpression of A-CDase decreased CML cells sensitivity to FasL-induced apoptosis. Consequently, restoration of IRF8 expression suppressed CML development in vivo at least partially through a Fas-dependent mechanism. In summary, our findings determine the mechanism of IRF8 downregulation in CML cells and they determine a primary pathway of resistance to Fas-mediated apoptosis and disease progression. PMID:21487040

  12. Acid Ceramidase Treatment Enhances the Outcome of Autologous Chondrocyte Implantation in a Rat Osteochondral Defect Model

    PubMed Central

    Frohbergh, Michael E.; Guevara, Johana M.; Grelsamer, Ronald P.; Barbe, Mary F.; He, Xingxuan; Simonaro, Calogera M.; Schuchman, Edward H.

    2015-01-01

    Objective The overall aim of this study was to evaluate how supplementation of chondrocyte media with recombinant acid ceramidase (rhAC) influenced cartilage repair in a rat osteochondral defect model. Methods Primary chondrocytes were grown as monolayers in polystyrene culture dishes with and without rhAC (added once at the time of cell plating) for 7 days, and then seeded onto Bio-Gide® collagen scaffolds and grown for an additional 3 days. The scaffolds were then introduced into osteochondroal defects created in Sprague-Dawley rat trochlea by a micordrilling procedure. Analysis was performed 6 weeks post-surgery macroscopically, by micro-CT, histologically, and by immunohistochemistry. Results Treatment with rhAC led to increased cell numbers and glycosaminoglycan production (~2 and 3-fold, respectively) following 7 days of expansion in vitro. Gene expression of collagen 2, aggrecan and Sox-9 also was significantly elevated. After seeding onto Bio-Gide®, more rhAC treated cells were evident within 4 hours. At 6 weeks post-surgery, defects containing rhAC-treated cells exhibited more soft tissue formation at the articular surface, as evidenced by microCT, as well as histological evidence of enhanced cartilage repair. Notably, collagen 2 immunostaining revealed greater surface expression in animals receiving rhAC treated cells as well. Collagen 10 staining was not enhanced. Conclusion The results further demonstrate the positive effects of rhAC treatment on chondrocyte growth and phenotype in vitro, and reveal for the first time the in vivo effects of the treated cells on cartilage repair. PMID:26524412

  13. Targeting (cellular) lysosomal acid ceramidase by B13: Design, synthesis and evaluation of novel DMG-B13 ester prodrugs

    PubMed Central

    Bai, Aiping; Szulc, Zdzislaw, M.; Bielawski, Jacek; Pierce, Jason S.; Rembisa, Barbara; Terzieva, Silva; Mao, Cungui; Xu, Ruijuan; Wu, Bill; Clarke, Christopher J.; Newcomb, Benjamin; Liu, Xiang; Norris, James; Hannun, Yusuf A.; Bielawska, Alicja

    2015-01-01

    Acid ceramidase (ACDase) is being recognized as a therapeutic target for cancer. B13 represents a moderate inhibitor of ACDase. The present study concentrates on the lysosomal targeting of B13 via its N, N-dimethylglycine (DMG) esters (DMG-B13 prodrugs). Novel analogs, the isomeric mono-DMG-B13, LCL522 (3-O-DMG-B13•HCl) and LCL596 (1-O-DMG-B13•HCl) and di-DMG-B13, LCL521 (1,3-O, O-DMG-B13•2HCl) conjugates, were designed and synthesized through N, N-dimethyl glycine (DMG) esterification of the hydroxyl groups of B13. In MCF7 cells, DMG-B13 prodrugs were efficiently metabolized to B13. The early inhibitory effect of DMG-B13 prodrugs on cellular ceramidases was ACDase specific by their lysosomal targeting. The corresponding dramatic decrease of cellular Sph (80-97% Control/1h) by DMG-B13 prodrugs was mainly from the inhibition of the lysosomal ACDase. PMID:25456083

  14. Molecular cloning and characterization of neutral ceramidase homologue from the red flour beetle, Tribolium castaneum.

    PubMed

    Zhou, Ying; Lin, Xian-Wen; Yang, Qiong; Zhang, Yan-Ru; Yuan, Jing-Qun; Lin, Xin-Da; Xu, Ruijuan; Cheng, Jiaan; Mao, Cungui; Zhu, Zeng-Rong

    2011-07-01

    Ceramidase plays an important role in regulating the metabolism of sphingolipids, such as ceramide, sphingosine (SPH), and sphingosine-1-phosphate (S1P), by controlling the hydrolysis of ceramide. Here we report the cloning and biochemical characterization of a neutral ceramidase from the red flour beetle Tribolium castaneum which is an important storage pest. The Tribolium castaneum neutral ceramidase (Tncer) is a protein of 696 amino acids. It shares a high degree of similarity in protein sequence to neutral ceramidases from various species. Tncer mRNA levels are higher in the adult stage than in pre-adult stages, and they are higher in the reproductive organs than in head, thorax, and midgut. The mature ovary has higher mRNA levels than the immature ovary. Tncer is localized to the plasma membrane. It uses various ceramides (D-erythro-C(6), C(12), C(16), C(18:1), and C(24:1)-ceramide) as substrates and has an abroad pH optimum for its in vitro activity. Tncer has an optimal temperature of 37 °C for its in vitro activity. Its activity is inhibited by Fe(2+). These results suggest that Tncer has distinct biochemical properties from neutral ceramidases from other species.

  15. In vivo delivery of human acid ceramidase via cord blood transplantation and direct injection of lentivirus as novel treatment approaches for Farber disease

    PubMed Central

    Ramsubir, Shobha; Nonaka, Takahiro; Girbés, Carmen Bedia; Carpentier, Stéphane; Levade, Thierry; Medin, Jeffrey A.

    2008-01-01

    Farber disease is a rare lysosomal storage disorder (LSD) caused by a deficiency of acid ceramidase (AC) activity and subsequent accumulation of ceramide. Currently, there is no treatment for Farber disease beyond palliative care and most patients succumb to the disorder at a very young age. Previously, our group showed that gene therapy using oncoretroviral vectors (RV) could restore enzyme activity in Farber patient cells. The studies described here employ novel RV and lentiviral (LV) vectors that engineer co-expression of AC and a cell surface marking transgene product, human CD25 (huCD25). Transduction of Farber patient fibroblasts and B cells with these vectors resulted in overexpression of AC and led to a 90% and 50% reduction in the accumulation of ceramide, respectively. Vectors were also evaluated in human hematopoietic stem/progenitor cells (HSPCs) and by direct in vivo delivery in mouse models. In a xenotransplantation model using NOD/SCID mice, we found that transduced CD34+ cells could repopulate irradiated recipient animals, as measured by CD25 expression. When virus was injected intravenously into mice, soluble CD25 was detected in the plasma and increased AC activity was present in the liver up to 14 weeks post-injection. These findings suggest that vector and transgene expression can persist long-term and offer the potential of a lasting cure. To our knowledge, this is the first report of in vivo testing of direct gene therapy strategies for Farber disease. PMID:18805722

  16. Discovery and evaluation of inhibitors of human ceramidase.

    PubMed

    Draper, Jeremiah M; Xia, Zuping; Smith, Ryan A; Zhuang, Yan; Wang, Wenxue; Smith, Charles D

    2011-11-01

    The ceramide/sphingosine-1-phosphate (S1P) rheostat has been hypothesized to play a critical role in regulating tumor cell fate, with elevated levels of ceramide inducing death and elevated levels of S1P leading to survival and proliferation. Ceramidases are key enzymes that control this rheostat by hydrolyzing ceramide to produce sphingosine and may also confer resistance to drugs and radiation. Therefore, ceramidase inhibitors have excellent potential for development as new anticancer drugs. In this study, we identify a novel ceramidase inhibitor (Ceranib-1) by screening a small molecule library and describe the synthesis of a more potent analogue (Ceranib-2). In a cell-based assay, both compounds were found to inhibit cellular ceramidase activity toward an exogenous ceramide analogue, induce the accumulation of multiple ceramide species, decrease levels of sphingosine and S1P, inhibit the proliferation of cells alone and in combination with paclitaxel, and induce cell-cycle arrest and cell death. In vivo, Ceranib-2 was found to delay tumor growth in a syngeneic tumor model without hematologic suppression or overt signs of toxicity. These data support the selection of ceramidases as suitable targets for anticancer drug development and provide the first nonlipid inhibitors of human ceramidase activity.

  17. Ceramidase Regulates Synaptic Vesicle Exocytosis and Trafficking

    PubMed Central

    Rohrbough, Jeffrey; Rushton, Emma; Palanker, Laura; Woodruff, Elvin; Matthies, Heinrich J. G.; Acharya, Usha; Acharya, Jairaj K.; Broadie, Kendal

    2009-01-01

    A screen for Drosophila synaptic dysfunction mutants identified slug-a-bed (slab). The slab gene encodes ceramidase, a central enzyme in sphingolipid metabolism and regulation. Sphingolipids are major constituents of lipid rafts, membrane domains with roles in vesicle trafficking, and signaling pathways. Null slab mutants arrest as fully developed embryos with severely reduced movement. The SLAB protein is widely expressed in different tissues but enriched in neurons at all stages of development. Targeted neuronal expression of slab rescues mutant lethality, demonstrating the essential neuronal function of the protein. C5-ceramide applied to living preparations is rapidly accumulated at neuromuscular junction (NMJ) synapses dependent on the SLAB expression level, indicating that synaptic sphingolipid trafficking and distribution is regulated by SLAB function. Evoked synaptic currents at slab mutant NMJs are reduced by 50–70%, whereas postsynaptic glutamate-gated currents are normal, demonstrating a specific presynaptic impairment. Hypertonic saline-evoked synaptic vesicle fusion is similarly impaired by 50–70%, demonstrating a loss of readily releasable vesicles. In addition, FM1-43 dye uptake is reduced in slab mutant presynaptic terminals, indicating a smaller cycling vesicle pool. Ultrastructural analyses of mutants reveal a normal vesicle distribution clustered and docked at active zones, but fewer vesicles in reserve regions, and a twofold to threefold increased incidence of vesicles linked together and tethered at the plasma membrane. These results indicate that SLAB ceramidase function controls presynaptic terminal sphingolipid composition to regulate vesicle fusion and trafficking, and thus the strength and reliability of synaptic transmission. PMID:15356190

  18. Evaluation of Acid Ceramidase Overexpression-Induced Activation of the Oncogenic Akt Pathway in Prostate Cancer

    DTIC Science & Technology

    2014-01-01

    with 10% fetal bovine serum and incubated in 5% CO2 at 37 1C. DU145-AC-EGFP/DU145-EGFP and PPC1-AC-V5/PPC1-LacZ-V5 have been described.3,5 PPC1 pLKO.1...immunostained as described below. Immunohistochemistry Formalin-fixed paraffin-embedded sections were deparaffinized in xylene, rehydrated in alcohol and...hamartomarous condition Cowden Syndrome , in which patients inherit a mutant PTEN allele and are susceptible to cancer, is Lysine289. This mutant form retains

  19. Cell Non-autonomous Function of Ceramidase in Photoreceptor Homeostasis

    PubMed Central

    Acharya, Jairaj K.; Dasgupta, Ujjaini; Rawat, Satinder S.; Yuan, Changqing; Sanxaridis, Parthena D.; Yonamine, Ikuko; Karim, Pusha; Nagashima, Kunio; Brodsky, Michael H.; Tsunoda, Susan; Acharya, Usha

    2008-01-01

    SUMMARY Neutral Ceramidase, a key enzyme of sphingolipid metabolism, hydrolyzes ceramide to sphingosine. These sphingolipids are critical structural components of cell membranes and act as second messengers in diverse signal transduction cascades. Here, we have isolated and characterized functional null mutants of Drosophila Ceramidase. We show that secreted Ceramidase functions in a cell non-autonomous manner to maintain photoreceptor homeostasis. In the absence of Ceramidase, photoreceptors degenerate in a light-dependent manner, are defective in normal endocytic turnover of Rhodopsin, and do not respond to light stimulus. Consistent with a cell non-autonomous function, our studies show that over expression of Ceramidase in a tissue distant from the photoreceptors can suppress photoreceptor degeneration in an Arrestin mutant and facilitate membrane turnover in a Rhodopsin null mutant. Furthermore, our results show that secreted CDase is internalized and localizes to endosomes. Our findings are the first to establish a role for a secreted sphingolipid enzyme in the regulation of photoreceptor structure and function. PMID:18184565

  20. Drug targeting of sphingolipid metabolism: sphingomyelinases and ceramidases

    PubMed Central

    Canals, Daniel; Perry, David M; Jenkins, Russell W; Hannun, Yusuf A

    2011-01-01

    Sphingolipids represent a class of diverse bioactive lipid molecules that are increasingly appreciated as key modulators of diverse physiologic and pathophysiologic processes that include cell growth, cell death, autophagy, angiogenesis, and stress and inflammatory responses. Sphingomyelinases and ceramidases are key enzymes of sphingolipid metabolism that regulate the formation and degradation of ceramide, one of the most intensely studied classes of sphingolipids. Improved understanding of these enzymes that control not only the levels of ceramide but also the complex interconversion of sphingolipid metabolites has provided the foundation for the functional analysis of the roles of sphingolipids. Our current understanding of the roles of various sphingolipids in the regulation of different cellular processes has come from loss-of-function/gain-of-function studies utilizing genetic deletion/downregulation/overexpression of enzymes of sphingolipid metabolism (e.g. knockout animals, RNA interference) and from the use of pharmacologic inhibitors of these same enzymes. While genetic approaches to evaluate the functional roles of sphingolipid enzymes have been instrumental in advancing the field, the use of pharmacologic inhibitors has been equally important in identifying new roles for sphingolipids in important cellular processes.The latter also promises the development of novel therapeutic targets with implications for cancer therapy, inflammation, diabetes, and neurodegeneration. In this review, we focus on the status and use of pharmacologic compounds that inhibit sphingomyelinases and ceramidases, and we will review the history, current uses and future directions for various small molecule inhibitors, and will highlight studies in which inhibitors of sphingolipid metabolizing enzymes have been used to effectively treat models of human disease. PMID:21615386

  1. Pseudomonas-Derived Ceramidase Induces Production of Inflammatory Mediators from Human Keratinocytes via Sphingosine-1-Phosphate

    PubMed Central

    Oizumi, Ami; Nakayama, Hitoshi; Okino, Nozomu; Iwahara, Chihiro; Kina, Katsunari; Matsumoto, Ryo; Ogawa, Hideoki; Takamori, Kenji; Ito, Makoto; Suga, Yasushi; Iwabuchi, Kazuhisa

    2014-01-01

    Ceramide is important for water retention and permeability barrier functions in the stratum corneum, and plays a key role in the pathogenesis of atopic dermatitis (AD). A Pseudomonas aeruginosa-derived neutral ceramidase (PaCDase) isolated from a patient with AD was shown to effectively degrade ceramide in the presence of Staphylococcus aureus-derived lipids or neutral detergents. However, the effect of ceramide metabolites on the functions of differentiating keratinocytes is poorly understood. We found that the ceramide metabolite sphingosine-1-phosphate (S1P) stimulated the production of inflammatory mediators such as TNF-α and IL-8 from three-dimensionally cultured human primary keratinocytes (termed “3D keratinocytes”), which form a stratum corneum. PaCDase alone did not affect TNF-α gene expression in 3D keratinocytes. In the presence of the detergent Triton X-100, which damages stratum corneum structure, PaCDase, but not heat-inactivated PaCDase or PaCDase-inactive mutant, induced the production of TNF-α, endothelin-1, and IL-8, indicating that this production was dependent on ceramidase activity. Among various ceramide metabolites, sphingosine and S1P enhanced the gene expression of TNF-α, endothelin-1, and IL-8. The PaCDase-enhanced expression of these genes was inhibited by a sphingosine kinase inhibitor and by an S1P receptor antagonist VPC 23019. The TNF-α-binding antibody infliximab suppressed the PaCDase-induced upregulation of IL-8, but not TNF-α, mRNA. PaCDase induced NF-κB p65 phosphorylation. The NF-κB inhibitor curcumin significantly inhibited PaCDase-induced expression of IL-8 and endothelin-1. VPC 23019 and infliximab inhibited PaCDase-induced NF-κB p65 phosphorylation and reduction in the protein level of the NF-κB inhibitor IκBα. Collectively, these findings suggest that (i) 3D keratinocytes produce S1P from sphingosine, which is produced through the hydrolysis of ceramide by PaCDase, (ii) S1P induces the production of TNF

  2. Induction of apoptosis in prostate cancer cells by the novel ceramidase inhibitor ceranib-2.

    PubMed

    Kus, Gokhan; Kabadere, Selda; Uyar, Ruhi; Kutlu, Hatice Mehtap

    2015-11-01

    Ceramidases are key enzymes that decrease ceramide levels in cells. A reduction in ceramide concentration impairs ceramide signalling, and results in apoptosis resistance in cancer cells. This study investigates the potential for ceranib-2, a novel ceramidase inhibitor, to affect the survival and/or promote apoptosis of prostate cancer cells (LNCaP and DU145) in vitro. Cell viability was determined using MTT, and apoptosis assessed via flow cytometry. We examined structural changes with both confocal and transmission electron microscopes. Ceranib-2 concentrations of 0.1, 1, 5, 10, 25 and 50 μM were applied to LNCaP and DU145 cell lines. The corresponding reduction in LNCaP cell viability (against the control) was 84%, 80%, 64%, 56%, 40% and 15% after 24 h, and 81%, 74%, 60%, 55%, 27% and 11% after 48 h. For DU145 cells, viability was reduced to 84%, 82%, 63%, 50%, 41% and 18% after 24 h, and 64%, 42%, 30%, 20%, 8% and 5% after 48 h. Following treatment with 25 and 50 μM ceranib-2, the respective observed rates of early apoptosis in LNCaP cells were 23% and 36% after 24 h and 27% and 58% after 48 h. The morphological and ultrastructural signs of apoptosis detected were fragmented nuclei, chromatin condensations and cytoskeleton laceration. The inhibitory effects of ceranib-2 on prostate cancer cell survival are dose and time dependent. For LNCaP cells, ceranib-2 toxicity was predominately apoptotic in nature, while for DU145 cells, cell death may be related to non-apoptotic mechanisms.

  3. Alkaline ceramidase 3 deficiency aggravates colitis and colitis-associated tumorigenesis in mice by hyperactivating the innate immune system.

    PubMed

    Wang, K; Xu, R; Snider, A J; Schrandt, J; Li, Y; Bialkowska, A B; Li, M; Zhou, J; Hannun, Y A; Obeid, L M; Yang, V W; Mao, C

    2016-03-03

    Increasing studies suggest that ceramides differing in acyl chain length and/or degree of unsaturation have distinct roles in mediating biological responses. However, still much remains unclear about regulation and role of distinct ceramide species in the immune response. Here, we demonstrate that alkaline ceramidase 3 (Acer3) mediates the immune response by regulating the levels of C18:1-ceramide in cells of the innate immune system and that Acer3 deficiency aggravates colitis in a murine model by augmenting the expression of pro-inflammatory cytokines in myeloid and colonic epithelial cells (CECs). According to the NCBI Gene Expression Omnibus (GEO) database, ACER3 is downregulated in immune cells in response to lipopolysaccharides (LPS), a potent inducer of the innate immune response. Consistent with these data, we demonstrated that LPS downregulated both Acer3 mRNA levels and its enzymatic activity while elevating C(18:1)-ceramide, a substrate of Acer3, in murine immune cells or CECs. Knocking out Acer3 enhanced the elevation of C(18:1)-ceramide and the expression of pro-inflammatory cytokines in immune cells and CECs in response to LPS challenge. Similar to Acer3 knockout, treatment with C(18:1)-ceramide, but not C18:0-ceramide, potentiated LPS-induced expression of pro-inflammatory cytokines in immune cells. In the mouse model of dextran sulfate sodium-induced colitis, Acer3 deficiency augmented colitis-associated elevation of colonic C(18:1)-ceramide and pro-inflammatory cytokines. Acer3 deficiency aggravated diarrhea, rectal bleeding, weight loss and mortality. Pathological analyses revealed that Acer3 deficiency augmented colonic shortening, immune cell infiltration, colonic epithelial damage and systemic inflammation. Acer3 deficiency also aggravated colonic dysplasia in a mouse model of colitis-associated colorectal cancer. Taken together, these results suggest that Acer3 has an important anti-inflammatory role by suppressing cellular or tissue C(18

  4. Antiprotozoal activity of betulinic acid derivatives.

    PubMed

    Domínguez-Carmona, D B; Escalante-Erosa, F; García-Sosa, K; Ruiz-Pinell, G; Gutierrez-Yapu, D; Chan-Bacab, M J; Giménez-Turba, A; Peña-Rodríguez, L M

    2010-04-01

    Betulinic acid (1), isolated from the crude extract of the leaves of Pentalinon andrieuxii (Apocynaceae), together with betulinic acid acetate (2), betulonic acid (3), betulinic acid methyl ester (4), and betulin (5) were evaluated for their antiprotozoal activity. The results showed that modifying the C-3 position increases leishmanicidal activity while modification of the C-3 and C-28 positions decreases trypanocidal activity.

  5. Vesicles protect activated acetic acid.

    PubMed

    Todd, Zoe R; House, Christopher H

    2014-10-01

    Abstract Methyl thioacetate, or activated acetic acid, has been proposed to be central to the origin of life and an important energy currency molecule in early cellular evolution. We have investigated the hydrolysis of methyl thioacetate under various conditions. Its uncatalyzed rate of hydrolysis is about 3 orders of magnitude faster (K=0.00663 s(-1); 100°C, pH 7.5, concentration=0.33 mM) than published rates for its catalyzed production, making it unlikely to accumulate under prebiotic conditions. However, our experiments showed that methyl thioacetate was protected from hydrolysis when inside its own hydrophobic droplets. Further, we found that methyl thioacetate protection from hydrolysis was also possible in droplets of hexane and in the membranes of nonanoic acid vesicles. Thus, the hydrophobic regions of prebiotic vesicles and early cell membranes could have offered a refuge for this energetic molecule, increasing its lifetime in close proximity to the reactions for which it would be needed. This model of early energy storage evokes an additional critical function for the earliest cell membranes.

  6. Acid Rain: Activities for Science Teachers.

    ERIC Educational Resources Information Center

    Johnson, Eric; And Others

    1983-01-01

    Seven complete secondary/college level acid rain activities are provided. Activities include overview; background information and societal implications; major concepts; student objectives; vocabulary/material lists; procedures; instructional strategies; and questions/discussion and extension suggestions. Activities consider effects of acid rain on…

  7. Differential activation of pregnane X receptor by carnosic acid, carnosol, ursolic acid, and rosmarinic acid.

    PubMed

    Seow, Chun Ling; Lau, Aik Jiang

    2017-03-10

    Pregnane X receptor (PXR) regulates the expression of many genes, including those involved in drug metabolism and transport, and has been linked to various diseases, including inflammatory bowel disease. In the present study, we determined whether carnosic acid and other chemicals in rosemary extract (carnosol, ursolic acid, and rosmarinic acid) are PXR activators. As assessed in dual-luciferase reporter gene assays, carnosic acid, carnosol, and ursolic acid, but not rosmarinic acid, activated human PXR (hPXR) and mouse PXR (mPXR), whereas carnosol and ursolic acid, but not carnosic acid or rosmarinic acid, activated rat PXR (rPXR). Dose-response experiments indicated that carnosic acid, carnosol, and ursolic acid activated hPXR with EC50 values of 0.79, 2.22, and 10.77μM, respectively. Carnosic acid, carnosol, and ursolic acid, but not rosmarinic acid, transactivated the ligand-binding domain of hPXR and recruited steroid receptor coactivator-1 (SRC-1), SRC-2, and SRC-3 to the ligand-binding domain of hPXR. Carnosic acid, carnosol, and ursolic acid, but not rosmarinic acid, increased hPXR target gene expression, as shown by an increase in CYP3A4, UGT1A3, and ABCB1 mRNA expression in LS180 human colon adenocarcinoma cells. Rosmarinic acid did not attenuate the extent of hPXR activation by rifampicin, suggesting it is not an antagonist of hPXR. Overall, carnosic acid, carnosol, and ursolic acid, but not rosmarinic acid, are hPXR agonists, and carnosic acid shows species-dependent activation of hPXR and mPXR, but not rPXR. The findings provide new mechanistic insight on the effects of carnosic acid, carnosol, and ursolic acid on PXR-mediated biological effects.

  8. Activation of carboxylic acids in asymmetric organocatalysis.

    PubMed

    Monaco, Mattia Riccardo; Poladura, Belén; Diaz de Los Bernardos, Miriam; Leutzsch, Markus; Goddard, Richard; List, Benjamin

    2014-07-01

    Organocatalysis, catalysis using small organic molecules, has recently evolved into a general approach for asymmetric synthesis, complementing both metal catalysis and biocatalysis. Its success relies to a large extent upon the introduction of novel and generic activation modes. Remarkably though, while carboxylic acids have been used as catalyst directing groups in supramolecular transition-metal catalysis, a general and well-defined activation mode for this useful and abundant substance class is still lacking. Herein we propose the heterodimeric association of carboxylic acids with chiral phosphoric acid catalysts as a new activation principle for organocatalysis. This self-assembly increases both the acidity of the phosphoric acid catalyst and the reactivity of the carboxylic acid. To illustrate this principle, we apply our concept in a general and highly enantioselective catalytic aziridine-opening reaction with carboxylic acids as nucleophiles.

  9. Alkaline Ceramidase 3 Deficiency Results in Purkinje Cell Degeneration and Cerebellar Ataxia Due to Dyshomeostasis of Sphingolipids in the Brain

    PubMed Central

    Preston, Chet; Wang, Louis; Yi, Jae Kyo; Lin, Chih-Li; Sun, Wei; Spyropoulos, Demetri D.; Rhee, Soyoung; Li, Mingsong; Zhou, Jie; Ge, Shaoyu; Zhang, Guofeng; Snider, Ashley J.; Hannun, Yusuf A.; Obeid, Lina M.; Mao, Cungui

    2015-01-01

    Dyshomeostasis of both ceramides and sphingosine-1-phosphate (S1P) in the brain has been implicated in aging-associated neurodegenerative disorders in humans. However, mechanisms that maintain the homeostasis of these bioactive sphingolipids in the brain remain unclear. Mouse alkaline ceramidase 3 (Acer3), which preferentially catalyzes the hydrolysis of C18:1-ceramide, a major unsaturated long-chain ceramide species in the brain, is upregulated with age in the mouse brain. Acer3 knockout causes an age-dependent accumulation of various ceramides and C18:1-monohexosylceramide and abolishes the age-related increase in the levels of sphingosine and S1P in the brain; thereby resulting in Purkinje cell degeneration in the cerebellum and deficits in motor coordination and balance. Our results indicate that Acer3 plays critically protective roles in controlling the homeostasis of various sphingolipids, including ceramides, sphingosine, S1P, and certain complex sphingolipids in the brain and protects Purkinje cells from premature degeneration. PMID:26474409

  10. Building biologically active nucleic acid nanocomplexes.

    PubMed

    Smith, C I Edvard; Lundin, Karin E; Simonson, Oscar E; Moreno, Pedro M D; Svahn, Mathias G; Wenska, Malgorzata; Strömberg, Roger

    2008-01-01

    The Bioplex technology allows the hybridization of functional entities to various forms of nucleic acids by the use of synthetic nucleic acid analogs. Such supramolecular assemblies can be made in a predetermined fashion and can confer new properties. The Zorro technology is based on a novel construct generated to simultaneously bind to both DNA strands. Such compounds may have gene silencing activity.

  11. Zymographic detection of cinnamic acid decarboxylase activity.

    PubMed

    Prim, Núria; Pastor, F I Javier; Diaz, Pilar

    2002-11-01

    The manuscript includes a concise description of a new, fast and simple method for detection of cinnamic acid decarboxylase activity. The method is based on a color shift caused a by pH change and may be an excellent procedure for large screenings of samples from natural sources, as it involves no complex sample processing or purification. The method developed can be used in preliminary approaches to biotransformation processes involving detection of hydroxycinnamic acid decarboxylase activity.

  12. The cytotoxic activity of ursolic acid derivatives.

    PubMed

    Ma, Chao-Mei; Cai, Shao-Qing; Cui, Jing-Rong; Wang, Rui-Qing; Tu, Peng-Fei; Hattori, Masao; Daneshtalab, Mohsen

    2005-06-01

    Ursolic acid and 2alpha-hydroxyursolic acid isolated from apple peels were found to show growth inhibitory activity against four tumor cell lines, HL-60, BGC, Bel-7402 and Hela. Structural modifications were performed on the C-3, C-28 and C-11 positions of ursolic acid and the cytotoxicity of the derivatives was evaluated. The SAR revealed that the triterpenes possessing two hydrogen-bond forming groups (an H-donor and a carbonyl group) at positions 3 and 28 exhibit cytotoxic activity. The configuration at C-3 was found to be important for the activity. Introduction of an amino group increased the cytotoxicity greatly. A 3beta-amino derivative was 20 times more potent than the parent ursolic acid. The 28-aminoalkyl dimer compounds showed selective cytotoxicity.

  13. Methane activation and oxidation in sulfuric acid.

    PubMed

    Goeppert, Alain; Dinér, Peter; Ahlberg, Per; Sommer, Jean

    2002-07-15

    The H/D exchange observed when methane is contacted with D(2)SO(4) at 270-330 degrees C shows that the alkane behaves as a sigma base and undergoes rapid and reversible protonation at this temperature. DFT studies of the hydrogen exchange between a monomer and a dimer of sulfuric acid and methane show that the transition states involved in the exchange are bifunctional, that is one hydrogen atom is transferred from a hydroxy group in sulfuric acid to methane, while one hydrogen atom is abstracted from methane by a non-hydroxy oxygen atom in sulfuric acid. All the transition states include a CH(5) moiety, which shows similarities to the methanium ion CH(5) (+). The calculated potential activation energy of the hydrogen exchange for the monomer is 174 kJ mol(-1), which is close to the experimental value (176 kJ mol(-1)). Solvation of the monomer and the transition state of the monomer with an extra sulfuric acid molecule, decrease the potential activation energy by 6 kJ mol(-1). The acid-base process is in competition, however, with an oxidative process involving methane and sulfuric acid which leads to CO(2), SO(2), and water, and thus to a decrease of acidity and loss of reactivity of the medium.

  14. Eicosapentaenoic Acid Modulates Trichomonas vaginalis Activity.

    PubMed

    Korosh, Travis; Jordan, Kelsey D; Wu, Ja-Shin; Yarlett, Nigel; Upmacis, Rita K

    2016-01-01

    Trichomonas vaginalis is a sexually transmitted parasite and, while it is often asymptomatic in males, the parasite is associated with disease in both sexes. Metronidazole is an effective treatment for trichomoniasis, but resistant strains have evolved and, thus, it has become necessary to investigate other possible therapies. In this study, we examined the effects of native and oxidized forms of the sodium salts of eicosapentaenoic, docosahexaenoic, and arachidonic acids on T. vaginalis activity. Eicosapentaenoic acid was the most toxic with 190 and 380 μM causing approximately 90% cell death in Casu2 and ATCC 50142 strains, respectively. In contrast, oxidized eicosapentaenoic acid was the least toxic, requiring > 3 mM to inhibit activity, while low levels (10 μM) were associated with increased parasite density. Mass spectrometric analysis of oxidized eicosapentaenoic acid revealed C20 products containing one to six additional oxygen atoms and various degrees of bond saturation. These results indicate that eicosapentaenoic acid has different effects on T. vaginalis survival, depending on whether it is present in the native or oxidized form. A better understanding of lipid metabolism in T. vaginalis may facilitate the design of synthetic fatty acids that are effective for the treatment of metronidazole-resistant T. vaginalis.

  15. Targeted Induction of Ceramide Degradation Leads to Improved Systemic Metabolism and Reduced Hepatic Steatosis

    PubMed Central

    Kusminski, Christine M.; Sun, Kai; Sharma, Ankit X.; Pearson, Mackenzie J.; Sifuentes, Angelika J.; McDonald, Jeffrey G.; Gordillo, Ruth; Scherer, Philipp E.

    2015-01-01

    Sphingolipids have garnered attention for their role in insulin resistance and lipotoxic cell death. Aberrant accumulation of ceramides correlates with hepatic insulin resistance and steatosis. To further investigate the tissue-specific effects of local changes in ceramidase activity, we have developed transgenic mice inducibly expressing acid ceramidase, to trigger the deacylation of ceramides. This represents the first inducible genetic model that acutely manipulates ceramides in adult mouse tissues. Hepatic overexpression of acid ceramidase prevents hepatic steatosis and prompts improvements in insulin action in liver and adipose tissue. Conversely, overexpression of acid ceramidase within adipose tissue prevents hepatic steatosis and insulin resistance. Induction of ceramidase activity in either tissue promotes a lowering of hepatic ceramides and reduced activation of the ceramide-activated protein kinase C isoform PKC-zeta. These observations suggest the existence of a rapidly acting "crosstalk" between liver and adipose tissue sphingolipids, critically regulating glucose metabolism and hepatic lipid uptake. PMID:26190650

  16. Microbial killing activity of peracetic acid.

    PubMed

    Thamlikitkul, V; Trakulsomboon, S; Louisirirotchanakul, S; Chaiprasert, A; Foongladda, S; Thipsuvan, K; Arjratanakool, W; Kunyok, R; Wasi, C; Santiprasitkul, S; Danchaivijitr, S

    2001-10-01

    In vitro killing activity of peracetic acid (Perasafe) at a concentration of 0.26 per cent w/v was tested against Escherichia coli, Enterobacter cloacae, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhi, Salmonella paratyphi A, Acinetobacter baumannii, Sternotrophomonas maltophilia, Enterococcus faecium, Enterococcus faecalis, methicillin-resistant Staphylococcus aureus (MRSA), Bacillus subtilis spore, Mycobacterium tuberculosis and human immuno-deficiency virus type I. Exposure to Peracetic acid (0.26% w/v) for 10 minutes resulted in massive killing of all the aforementioned organisms and spore.

  17. Antidiabetic Activity from Gallic Acid Encapsulated Nanochitosan

    NASA Astrophysics Data System (ADS)

    Purbowatiningrum; Ngadiwiyana; Ismiyarto; Fachriyah, E.; Eviana, I.; Eldiana, O.; Amaliyah, N.; Sektianingrum, A. N.

    2017-02-01

    Diabetes mellitus (DM) has become a health problem in the world because it causes death. One of the phenolic compounds that have antidiabetic activity is gallic acid. However, the use of this compound still provides unsatisfactory results due to its degradation during the absorption process. The solution offered to solve the problem is by encapsulated it within chitosan nanoparticles that serve to protect the bioactive compound from degradation, increases of solubility and delivery of a bioactive compound to the target site by using freeze-drying technique. The result of chitosan nanoparticle’s Scanning Electron Microscopy (SEM) showed that chitosan nanoparticle’s size is uniform and it is smaller than chitosan. The value of encapsulation efficiency (EE) of gallic acid which encapsulated within chitosan nanoparticles is about 50.76%. Inhibition test result showed that gallic acid-chitosan nanoparticles at 50 ppm could inhibite α-glucosidase activity in 28.87% with 54.94 in IC50. So it can be concluded that gallic acid can be encapsulated in nanoparticles of chitosan and proved that it could inhibit α-glucosidase.

  18. Antineoplastic activity of zoledronic acid and denosumab.

    PubMed

    Zwolak, Pawel; Dudek, Arkadiusz Z

    2013-08-01

    Cancer patients suffer from cancer-induced bone pain, hypercalcemia, and reduced quality of life caused by pathological fractures. Many of these complications related to cancer can be treated, or at least controlled, using new anticancer agents. Recently, two agents used initially to treat osteoporosis demonstrated direct and indirect anticancer activity. In this review, we summarize current knowledge about direct and indirect anticancer activity of zoledronic acid (a third-generation bisphosphonate), and denosumab antibody against RANKL. Zoledronic acid influences the proliferation and viability of tumor cells in vitro, and effectively reduces tumor burden, tumor-induced pain, and tumor growth in vivo. Denosumab is a fully human monoclonal antibody preventing the binding of RANKL to its receptor on osteoclasts' membrane, and through this mechanism inhibits the resorption of the bone. Furthermore, this agent demonstrates direct anticancer activity through the RANKL signaling pathway. Because of these features both drugs may gain broader application for the treatment of cancer patients. However, further pre-clinical and clinical evaluation is needed for both agents to fully assess the antineoplastic mechanisms of activity of both agents.

  19. Acid Sphingomyelinase Mediates Oxidized-LDL Induced Apoptosis in Macrophage via Endoplasmic Reticulum Stress

    PubMed Central

    Zhao, Min; Pan, Wei; Shi, Rui-zheng; Bai, Yong-ping; You, Bo-yang; Zhang, Kai; Fu, Qiong-mei; Schuchman, Edward H.

    2016-01-01

    Aim: Macrophage apoptosis is a vital event in advanced atherosclerosis, and oxidized low-density lipoprotein (ox-LDL) is a major contributor to this process. Acid sphingomyelinase (ASM) and ceramide are also involved in the induction of apoptosis, particularly in macrophages. Our current study focuses on ASM and investigates its role in ox-LDL-induced macrophage apoptosis. Methods: Human THP-1 and mouse peritoneal macrophages were cultured in vitro and treated with ox-LDL. ASM activity and ceramide levels were quantified using ultra performance liquid chromatography. Protein and mRNA levels were analyzed using Western blot analysis and quantitative realtime PCR, respectively. Cell apoptosis was determined using Hoechst staining and flow cytometry. Results: Ox-LDL-induced macrophage apoptosis was triggered by profound endoplasmic reticulum (ER) stress, leading to an upregulation of ASM activity and ceramide levels at an early stage. ASM was inhibited by siRNA or desipramine (DES), and/or ceramide was degraded by recombinant acid ceramidase (AC). These events attenuated the effect of ox-LDL on ER stress. In contrast, recombinant ASM upregulated ceramide and ER stress. ASM siRNA, DES, recombinant AC, and ER stress inhibitor 4-phenylbutyric acid were blocked by elevated levels of C/EBP homologous protein (CHOP); ox-LDL induced elevated levels of CHOP. These events attenuated macrophage apoptosis. Conclusion: These results indicate that ASM/ceramide signaling pathway is involved in ox-LDL-induced macrophage apoptosis via ER stress pathway. PMID:26923251

  20. Triboelectrification of active pharmaceutical ingredients: week acids and their salts.

    PubMed

    Fujinuma, Kenta; Ishii, Yuji; Yashihashi, Yasuo; Yonemochi, Estuo; Sugano, Kiyohiko; Tarada, Katsuhide

    2015-09-30

    The effect of salt formulation on the electrostatic property of active pharmaceutical ingredients was investigated. The electrostatic property of weak acids (carboxylic acids and amide-enole type acid) and their sodium salts was evaluated by a suction-type Faraday cage meter. Free carboxylic acids showed negative chargeability, whereas their sodium salts showed more positive chargeability than the free acids. However, no such trend was observed for amide-enole type acids.

  1. Micelles Protect and Concentrate Activated Acetic Acid

    NASA Astrophysics Data System (ADS)

    Todd, Zoe; House, C.

    2014-01-01

    As more and more exoplanets are discovered and the habitability of such planets is considered, one can turn to searching for the origin of life on Earth in order to better understand what makes a habitable planet. Activated acetic acid, or methyl thioacetate, has been proposed to be central to the origin of life on Earth, and also as an important energy currency molecule in early cellular evolution. We have investigated the hydrolysis of methyl thioacetate under various conditions. Its uncatalyzed rate of hydrolysis is about three orders of magnitude faster (K = 0.00663 s^-1; 100°C, pH 7.5, concentration = 0.33mM) than published rates for its catalyzed production making it unlikely to accumulate under prebiotic conditions. However, we also observed that methyl thioacetate was protected from hydrolysis when inside its own hydrophobic droplets. We found that methyl thioacetate protection from hydrolysis was also possible in droplets of hexane and in the membranes of nonanoic acid micelles. Thus, the hydrophobic regions of prebiotic micelles and early cell membranes could have offered a refuge for this energetic molecule increasing its lifetime in close proximity to the reactions for which it would be needed. Methyl thioacetate could thus be important for the origin of life on Earth and perhaps for better understanding the potential habitability of other planets.

  2. "JCE" Classroom Activity #109: My Acid Can Beat Up Your Acid!

    ERIC Educational Resources Information Center

    Putti, Alice

    2011-01-01

    In this guided-inquiry activity, students investigate the ionization of strong and weak acids. Bead models are used to study acid ionization on a particulate level. Students analyze seven strong and weak acid models and make generalizations about the relationship between acid strength and dissociation. (Contains 1 table and 2 figures.)

  3. Acid phosphatase and protease activities in immobilized rat skeletal muscles

    NASA Technical Reports Server (NTRS)

    Witzmann, F. A.; Troup, J. P.; Fitts, R. H.

    1982-01-01

    The effect of hind-limb immobilization on selected Iysosomal enzyme activities was studied in rat hing-limb muscles composed primarily of type 1. 2A, or 2B fibers. Following immobilization, acid protease and acid phosphatase both exhibited signifcant increases in their activity per unit weight in all three fiber types. Acid phosphatase activity increased at day 14 of immobilization in the three muscles and returned to control levels by day 21. Acid protease activity also changed biphasically, displaying a higher and earlier rise than acid phosphatase. The pattern of change in acid protease, but not acid phosphatase, closely parallels observed muscle wasting. The present data therefore demonstrate enhanced proteolytic capacity of all three fiber types early during muscular atrophy. In addition, the data suggest a dependence of basal hydrolytic and proteolytic activities and their adaptive response to immobilization on muscle fiber composition.

  4. Acaricidal activity of usnic acid and sodium usnic acid against Psoroptes cuniculi in vitro.

    PubMed

    Shang, Xiaofei; Miao, Xiaolou; Lv, Huiping; Wang, Dongsheng; Zhang, Jiqin; He, Hua; Yang, Zhiqiang; Pan, Hu

    2014-06-01

    Usnic acid, a major active compound in lichens, was first isolated in 1884. Since then, usnic acid and its sodium salt (sodium usnic acid) have been used in medicine, perfumery, cosmetics, and other industries due to its extensive biological activities. However, its acaricidal activity has not been studied. In this paper, we investigated the acaricidal activity of usnic acid and sodium usnic acid against Psoroptes cuniculi in vitro. After evaluating the acaricidal activity and toxicity of usnic acid and sodium usnic acid in vitro, the results showed that at doses of 250, 125, and 62.5 mg/ml, usnic acid and sodium usnic acid can kill mites with 91.67, 85.00, and 55.00% and 100, 100, and 60.00% mortality after treatment 24 h. The LT50 values were 4.208, 8.249, and 16.950 h and 3.712, 7.339, and 15.773 h for usnic acid and sodium usnic acid, respectively. Sodium usnic acid has a higher acaricidal activity than usnic acid, which may be related to the difference in their structures.

  5. Motualevic Acids and Analogs: Synthesis and Antimicrobial Structure Activity Relationships

    PubMed Central

    Cheruku, Pradeep; Keffer, Jessica L.; Dogo-Isonagie, Cajetan; Bewley, Carole A.

    2010-01-01

    Synthesis of the marine natural products motualevic acids A, E, and analogs in which modifications have been made to the ω-brominated lipid (E)-14,14-dibromotetra-deca-2,13-dienoic acid or amino acid unit are reported, together with antimicrobial activities against Staphylococcus aureus, methicillin-resistant S. aureus, Enterococcus faecium, and vancomycin-resistant Enterococcus. PMID:20538459

  6. Physiological activities of hydroxyl fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the search of value-added products from surplus soybean oil, we produced many new hydroxy fatty acids through microbial bioconversion. Hydroxy fatty acids are used in a wide range of industrial products, such as resins, waxes, nylons plastics, lubricants, cosmetics, and additives in coatings and...

  7. Transport and biological activities of bile acids.

    PubMed

    Zwicker, Brittnee L; Agellon, Luis B

    2013-07-01

    Bile acids have emerged as important biological molecules that support the solubilization of various lipids and lipid-soluble compounds in the gut, and the regulation of gene expression and cellular function. Bile acids are synthesized from cholesterol in the liver and eventually released into the small intestine. The majority of bile acids are recovered in the distal end of the small intestine and then returned to the liver for reuse. The components of the mechanism responsible for the recycling of bile acids within the enterohepatic circulation have been identified whereas the mechanism for intracellular transport is less understood. Recently, the ileal lipid binding protein (ILBP; human gene symbol FABP6) was shown to be needed for the efficient transport of bile acids from the apical side to the basolateral side of enterocytes in the distal intestine. This review presents an overview of the transport of bile acids between the liver and the gut as well as within hepatocytes and enterocytes. A variety of pathologies is associated with the malfunction of the bile acid transport system.

  8. Extensive mutagenesis of a transcriptional activation domain identifies single hydrophobic and acidic amino acids important for activation in vivo.

    PubMed Central

    Sainz, M B; Goff, S A; Chandler, V L

    1997-01-01

    C1 is a transcriptional activator of genes encoding biosynthetic enzymes of the maize anthocyanin pigment pathway. C1 has an amino terminus homologous to Myb DNA-binding domains and an acidic carboxyl terminus that is a transcriptional activation domain in maize and yeast cells. To identify amino acids critical for transcriptional activation, an extensive random mutagenesis of the C1 carboxyl terminus was done. The C1 activation domain is remarkably tolerant of amino acid substitutions, as changes at 34 residues had little or no effect on transcriptional activity. These changes include introduction of helix-incompatible amino acids throughout the C1 activation domain and alteration of most single acidic amino acids, suggesting that a previously postulated amphipathic alpha-helix is not required for activation. Substitutions at two positions revealed amino acids important for transcriptional activation. Replacement of leucine 253 with a proline or glutamine resulted in approximately 10% of wild-type transcriptional activation. Leucine 253 is in a region of C1 in which several hydrophobic residues align with residues important for transcriptional activation by the herpes simplex virus VP16 protein. However, changes at all other hydrophobic residues in C1 indicate that none are critical for C1 transcriptional activation. The other important amino acid in C1 is aspartate 262, as a change to valine resulted in only 24% of wild-type transcriptional activation. Comparison of our C1 results with those from VP16 reveal substantial differences in which amino acids are required for transcriptional activation in vivo by these two acidic activation domains. PMID:8972191

  9. Antifeedant activity of anticopalic acid isolated from Vitex hemsleyi.

    PubMed

    Villegas Gómez, Clarisa; Martínez-Vázquez, Mariano; Esquivel, Baldomero

    2009-01-01

    The known labdane-type diterpenoids anticopalic acid (1) and 3 beta-hydroxyanticopalic acid (2) were isolated from extracts of the aerial parts of Vitex hemsleyi Briq. (Labiatae). The acid 1 showed an antifeedant, dose-dependent activity against Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae). To our knowledge this is the first report on the antifeedant activity of a labdane-type diterpene against S. frugiperda.

  10. Acid activated montmorillonite as catalysts in methyl esterification reactions of lauric acid.

    PubMed

    Zatta, Leandro; Ramos, Luiz Pereira; Wypych, Fernando

    2012-01-01

    The catalytic activity of acid activated montmorillonite in the esterification of free fatty acids (FFA) is reported. Standard Montmorillonite (MMT) type STx-1 provided by the Clay Mineral Society repository was activated using phosphoric, nitric and sulphuric acids under different conditions and the resulting materials were characterized and evaluated as catalysts in the methyl esterification of lauric acid. Blank reactions carried out in the absence of any added catalyst presented conversions of 32.64, 69.79 and 79.23%, for alcohol:lauric acid molar ratios of 60:1, 12:1 and 6:1, respectively. In the presence of the untreated clay and using molar ratios of 12:1 and 6:1 with 12% of catalyst, conversions of 70.92 and 82.30% were obtained, respectively. For the acid activated clays, conversions up to 93.08% of lauric acid to methyl laurate were obtained, much higher than those observed for the thermal conversion or using untreated montmorillonite. Relative good correlations were observed between the catalytic activity and the development of acid sites and textural properties of the resulting materials. Therefore, a simple acid activation was able to improve the catalytic activity and produce clay catalysts that are environmental friendly, cost effective, noncorrosive and reusable.

  11. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity.

    PubMed

    Guzman, Juan David

    2014-11-25

    Antimicrobial natural preparations involving cinnamon, storax and propolis have been long used topically for treating infections. Cinnamic acids and related molecules are partly responsible for the therapeutic effects observed in these preparations. Most of the cinnamic acids, their esters, amides, aldehydes and alcohols, show significant growth inhibition against one or several bacterial and fungal species. Of particular interest is the potent antitubercular activity observed for some of these cinnamic derivatives, which may be amenable as future drugs for treating tuberculosis. This review intends to summarize the literature data on the antimicrobial activity of the natural cinnamic acids and related derivatives. In addition, selected hybrids between cinnamic acids and biologically active scaffolds with antimicrobial activity were also included. A comprehensive literature search was performed collating the minimum inhibitory concentration (MIC) of each cinnamic acid or derivative against the reported microorganisms. The MIC data allows the relative comparison between series of molecules and the derivation of structure-activity relationships.

  12. Method for enhancing amidohydrolase activity of fatty acid amide hydrolase

    SciTech Connect

    John, George; Nagarajan, Subbiah; Chapman, Kent; Faure, Lionel; Koulen, Peter

    2016-10-25

    A method for enhancing amidohydrolase activity of Fatty Acid Amide Hydrolase (FAAH) is disclosed. The method comprising administering a phenoxyacylethanolamide that causes the enhanced activity. The enhanced activity can have numerous effects on biological organisms including, for example, enhancing the growth of certain seedlings. The subject matter disclosed herein relates to enhancers of amidohydrolase activity.

  13. Chlorogenic Acid Inhibits Human Platelet Activation and Thrombus Formation

    PubMed Central

    Fuentes, Eduardo; Caballero, Julio; Alarcón, Marcelo; Rojas, Armando; Palomo, Iván

    2014-01-01

    Background Chlorogenic acid is a potent phenolic antioxidant. However, its effect on platelet aggregation, a critical factor in arterial thrombosis, remains unclear. Consequently, chlorogenic acid-action mechanisms in preventing platelet activation and thrombus formation were examined. Methods and Results Chlorogenic acid in a dose-dependent manner (0.1 to 1 mmol/L) inhibited platelet secretion and aggregation induced by ADP, collagen, arachidonic acid and TRAP-6, and diminished platelet firm adhesion/aggregation and platelet-leukocyte interactions under flow conditions. At these concentrations chlorogenic acid significantly decreased platelet inflammatory mediators (sP-selectin, sCD40L, CCL5 and IL-1β) and increased intraplatelet cAMP levels/PKA activation. Interestingly, SQ22536 (an adenylate cyclase inhibitor) and ZM241385 (a potent A2A receptor antagonist) attenuated the antiplatelet effect of chlorogenic acid. Chlorogenic acid is compatible to the active site of the adenosine A2A receptor as revealed through molecular modeling. In addition, chlorogenic acid had a significantly lower effect on mouse bleeding time when compared to the same dose of aspirin. Conclusions Antiplatelet and antithrombotic effects of chlorogenic acid are associated with the A2A receptor/adenylate cyclase/cAMP/PKA signaling pathway. PMID:24598787

  14. Surface-active properties of humic and sulfochlorohumic acids

    SciTech Connect

    Ryabova, I.N.; Mustafina, G.A.; Akkulova, Z.G.; Satymbaeva, A.S.

    2009-10-15

    The surface tension of alkaline solutions of humic acids and their sulfochloroderivatives, which are synthesized by sulfonation of chlorohumic acids isolated from coal chlorinated by the electrochemical method, is investigated. It is established that humic compounds possess weak surface activity. Basic adsorption parameters are calculated.

  15. Synthesis and biological activity of glutamic acid derivatives.

    PubMed

    Receveur, J M; Guiramand, J; Récasens, M; Roumestant, M L; Viallefont, P; Martinez, J

    1998-01-20

    In order to develop new specific glutamate analogues at metabotropic glutamate receptors, Diels-Alder, 1-4 ionic and radical reactions were performed starting from (2S)-4-methyleneglutamic acid. Preliminary pharmacological evaluation by measuring IP accumulation using rat forebrain synaptoneurosomes has shown that (2S)-4-(2-phthalimidoethyl)glutamic acid (3a), (2S)-4-(4-phthalimidobutyl)glutamic acid (3b) and 1-[(S)-2-amino-2-carboxyethyl]-3,4-dimethylcyclohex-3-ene-1-carbox ylic acid (8) presented moderate antagonist activities.

  16. Synthesis and biological activity of alkynoic acids derivatives against mycobacteria

    PubMed Central

    Vilchèze, Catherine; Leung, Lawrence W.; Bittman, Robert; Jacobs, William R.

    2015-01-01

    2-alkynoic acids have bactericidal activity against Mycobacterium smegmatis but their activity fall sharply as the length of the carbon chain increased. In this study, derivatives of 2- alkynoic acids were synthesized and tested against fast- and slow-growing mycobacteria. Their activity was first evaluated in M. smegmatis against their parental 2-alkynoic acids, as well as isoniazid, a first-line antituberculosis drug. The introduction of additional unsaturation or heteroatoms into the carbon chain enhanced the antimycobacterial activity of longer chain alkynoic acids (more than 19 carbons long). In contrast, although the modification of the carboxylic group did not improve the antimycobacterial activity, it significantly reduced the toxicity of the compounds against eukaryotic cells. Importantly, 4-(alkylthio)but-2-ynoic acids, had better bactericidal activity than the parental 2-alkynoic acids and on a par with isoniazid against the slow-grower Mycobacterium bovis BCG. These compounds had also low toxicity against eukaryotic cells, suggesting that they could be potential therapeutic agents against other types of topical mycobacterial infections causing skin diseases including Mycobacterium abscessus, Mycobacterium ulcerans, and Mycobacterium leprae. Moreover, they provide a possible scaffold for future drug development. PMID:26256431

  17. Antiproliferative activity of synthetic fatty acid amides from renewable resources.

    PubMed

    dos Santos, Daiane S; Piovesan, Luciana A; D'Oca, Caroline R Montes; Hack, Carolina R Lopes; Treptow, Tamara G M; Rodrigues, Marieli O; Vendramini-Costa, Débora B; Ruiz, Ana Lucia T G; de Carvalho, João Ernesto; D'Oca, Marcelo G Montes

    2015-01-15

    In the work, the in vitro antiproliferative activity of a series of synthetic fatty acid amides were investigated in seven cancer cell lines. The study revealed that most of the compounds showed antiproliferative activity against tested tumor cell lines, mainly on human glioma cells (U251) and human ovarian cancer cells with a multiple drug-resistant phenotype (NCI-ADR/RES). In addition, the fatty methyl benzylamide derived from ricinoleic acid (with the fatty acid obtained from castor oil, a renewable resource) showed a high selectivity with potent growth inhibition and cell death for the glioma cell line-the most aggressive CNS cancer.

  18. Antiprotozoal Activity of Triazole Derivatives of Dehydroabietic Acid and Oleanolic Acid.

    PubMed

    Pertino, Mariano Walter; Vega, Celeste; Rolón, Miriam; Coronel, Cathia; Rojas de Arias, Antonieta; Schmeda-Hirschmann, Guillermo

    2017-02-28

    Tropical parasitic diseases such as Chagas disease and leishmaniasis are considered a major public health problem affecting hundreds of millions of people worldwide. As the drugs currently used to treat these diseases have several disadvantages and side effects, there is an urgent need for new drugs with better selectivity and less toxicity. Structural modifications of naturally occurring and synthetic compounds using click chemistry have enabled access to derivatives with promising antiparasitic activity. The antiprotozoal activity of the terpenes dehydroabietic acid, dehydroabietinol, oleanolic acid, and 34 synthetic derivatives were evaluated against epimastigote forms of Trypanosoma cruzi and promastigotes of Leishmaniabraziliensis and Leishmania infantum. The cytotoxicity of the compounds was assessed on NCTC-Clone 929 cells. The activity of the compounds was moderate and the antiparasitic effect was associated with the linker length between the diterpene and the triazole in dehydroabietinol derivatives. For the oleanolic acid derivatives, a free carboxylic acid function led to better antiparasitic activity.

  19. Biological Activities of Oleanolic Acid Derivatives from Calendula officinalis Seeds.

    PubMed

    Zaki, Ahmed; Ashour, Ahmed; Mira, Amira; Kishikawa, Asuka; Nakagawa, Toshinori; Zhu, Qinchang; Shimizu, Kuniyoshi

    2016-05-01

    Phytochemical examination of butanol fraction of Calendula officinalis seeds led to the isolation of two compounds identified as 28-O-β-D-glucopyranosyl-oleanolic acid 3-O-β-D-glucopyranosyl (1→3)-β-D-glucopyranosiduronic acid (CS1) and oleanolic acid 3-O-β-D-glucopyranosyl (1→3)-β-D-glucopyranosiduronic acid (CS2). Biological evaluation was carried out for these two compounds such as melanin biosynthesis inhibitory, hyaluronic acid production activities, anti obesity using lipase inhibition and adipocyte differentiation as well as evaluation of the protective effect against hydrogen peroxide induced neurotoxicity in neuro-2A cells. The results showed that, compound CS2 has a melanin biosynthesis stimulatory activity; however, compound CS1 has a potent stimulatory effect for the production of hyaluronic acid on normal human dermal fibroblast from adult (NHDF-Ad). Both compounds did not show any inhibitory effect on both lipase and adipocyte differentiation. Compound CS2 could protect neuro-2A cells and increased cell viability against H2 O2 . These activities (melanin biosynthesis stimulatory and protective effect against H2 O2 of CS2 and hyaluronic acid productive activities of these triterpene derivatives) have been reported for the first time. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Fatty acid alcohol ester-synthesizing activity of lipoprotein lipase.

    PubMed

    Tsujita, T; Sumiyoshi, M; Okuda, H

    1999-12-01

    The fatty acid alcohol ester-synthesizing activity of lipoprotein lipase (LPL) was characterized using bovine milk LPL. Synthesizing activities were determined in an aqueous medium using oleic acid or trioleylglycerol as the acyl donor and equimolar amounts of long-chain alcohols as the acyl acceptor. When oleic acid and hexadecanol emulsified with gum arabic were incubated with LPL, palmityl oleate was synthesized, in a time- and dose-dependent manner. Apo-very low density lipoprotein (apoVLDL) stimulated LPL-catalyzed palmityl oleate synthesis. The apparent equilibrium ratio of fatty acid alcohol ester/oleic acid was estimated using a high concentration of LPL and a long (20 h) incubation period. The equilibrium ratio was affected by the incubation pH and the alcohol chain length. When the incubation pH was below pH 7.0 and long chain fatty acyl alcohols were used as substrates, the fatty acid alcohol ester/free fatty acid equilibrium ratio favored ester formation, with an apparent equilibrium ratio of fatty acid alcohol ester/fatty acid of about 0.9/0.1. The equilibrium ratio decreased sharply at alkaline pH (above pH 8.0). The ratio also decreased when fatty alcohols with acyl chains shorter than dodecanol were used. When a trioleoylglycerol/fatty acyl alcohol emulsion was incubated with LPL, fatty acid alcohol esters were synthesized in a dose- and time-dependent fashion. Fatty acid alcohol esters were easily synthesized from trioleoylglycerol when fatty alcohols with acyl chains longer than dodecanol were used, but synthesis was decreased with fatty alcohols with acyl chain lengths shorter than decanol, and little synthesizing activity was detected with shorter-chain fatty alcohols such as butanol or ethanol.

  1. Nanoencapsulation improves the in vitro antioxidant activity of lipoic acid.

    PubMed

    Külkamp, Irene C; Rabelo, Bruna D; Berlitz, Simone J; Isoppo, Mateus; Bianchin, Mariana D; Schaffazick, Scheila R; Pohlmann, Adriana R; Guterres, Sílvia S

    2011-08-01

    Lipoic acid is a widely studied substance, whose therapeutic effects are related to its antioxidant activity. Our objective was to develop lipoic acid-loaded lipid-core nanocapsules and evaluate their in vitro antioxidant effect against lipid peroxidation induced by ascorbyl free radicals, using soybean lecithin liposomes as the substrate. The nanocapsule suspensions were prepared by interfacial deposition of poly(epsilon-caprolactone) and characterized by particle size and polydispersion index (photon correlation spectroscopy), zeta potencial (eletrophoretic mobility), drug content and encapsulation efficiency (HPLC). The extent of lipid peroxidation was determined (TBARS). The nanostrucutures presented mean diameters of between 191 and 349 nm, zeta potential values from -14.1 +/- 4.5 to -10.4 +/- 0.6, and high lipoic acid encapsulation. A significant increase in the antioxidant activity of lipoic acid was achieved through nanoencapsulation or by increasing its concentration in the formulation. The protection results ranged from 48.9 +/- 3.4 to 57.4 +/- 9.1% for lipoic acid-loaded lipid-core nanocapsules. The lipoic acid release from nanostrucutures significantly decreased with increasing polymer concentration. Also, it was observed an increasing in the antioxidant activity as the lipoic acid release time decreased. The co-encapsulation of lipoic acid with melatonin in lipid-core nanocapsules did not improve the protection against lipid peroxidation. The results obtained demonstrate the optimal concentrations of polymer and lipoic acid in the formulations in terms of enhancing the antioxidant activity. Furthermore, by the strategy applied, it was verified that nanoencapsulation is an efficient alternative to increase the antioxidant effect of lipoic acid, representing a potential approach for therapeutic applications.

  2. Activity of earthworm in Latosol under simulated acid rain stress.

    PubMed

    Zhang, Jia-En; Yu, Jiayu; Ouyang, Ying

    2015-01-01

    Acid rain is still an issue of environmental concerns. This study investigated the impacts of simulated acid rain (SAR) upon earthworm activity from the Latosol (acidic red soil). Laboratory experiment was performed by leaching the soil columns grown with earthworms (Eisenia fetida) at the SAR pH levels ranged from 2.0 to 6.5 over a 34-day period. Results showed that earthworms tended to escape from the soil and eventually died for the SAR at pH = 2.0 as a result of acid toxicity. The catalase activity in the earthworms decreased with the SAR pH levels, whereas the superoxide dismutases activity in the earthworms showed a fluctuate pattern: decreasing from pH 6.5 to 5.0 and increasing from pH 5.0 to 4.0. Results implied that the growth of earthworms was retarded at the SAR pH ≤ 3.0.

  3. Thyroid peroxidase activity is inhibited by amino acids.

    PubMed

    Carvalho, D P; Ferreira, A C; Coelho, S M; Moraes, J M; Camacho, M A; Rosenthal, D

    2000-03-01

    Normal in vitro thyroid peroxidase (TPO) iodide oxidation activity was completely inhibited by a hydrolyzed TPO preparation (0.15 mg/ml) or hydrolyzed bovine serum albumin (BSA, 0.2 mg/ml). A pancreatic hydrolysate of casein (trypticase peptone, 0.1 mg/ml) and some amino acids (cysteine, tryptophan and methionine, 50 microM each) also inhibited the TPO iodide oxidation reaction completely, whereas casamino acids (0.1 mg/ml), and tyrosine, phenylalanine and histidine (50 microM each) inhibited the TPO reaction by 54% or less. A pancreatic digest of gelatin (0.1 mg/ml) or any other amino acid (50 microM) tested did not significantly decrease TPO activity. The amino acids that impair iodide oxidation also inhibit the TPO albumin iodination activity. The inhibitory amino acids contain side chains with either sulfur atoms (cysteine and methionine) or aromatic rings (tyrosine, tryptophan, histidine and phenylalanine). Among the amino acids tested, only cysteine affected the TPO guaiacol oxidation reaction, producing a transient inhibition at 25 or 50 microM. The iodide oxidation inhibitory activity of cysteine, methionine and tryptophan was reversed by increasing iodide concentrations from 12 to 18 mM, while no such effect was observed when the cofactor (H2O2) concentration was increased. The inhibitory substances might interfere with the enzyme activity by competing with its normal substrates for their binding sites, binding to the free substrates or reducing their oxidized form.

  4. Spectroscopic studies on the antioxidant activity of ellagic acid

    NASA Astrophysics Data System (ADS)

    Kilic, Ismail; Yeşiloğlu, Yeşim; Bayrak, Yüksel

    2014-09-01

    Ellagic acid (EA, C14H6O8) is a natural dietary polyphenol whose benefits in a variety of diseases shown in epidemiological and experimental studies involve anti-inflammation, anti-proliferation, anti-angiogenesis, anticarcinogenesis and anti-oxidation properties. In vitro radical scavenging and antioxidant capacity of EA were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2‧-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe2+) chelating activity and ferric ions (Fe3+) reducing ability. EA inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45 μg/mL concentration. On the other hand, butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), α-tocopherol and ascorbic acid displayed 69.8%, 66.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, EA had an effective DPPH• scavenging, ABTSrad + scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power and ferrous ions (Fe2+) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that EA can be used in the pharmacological, food industry and medicine because of these properties.

  5. Spectroscopic studies on the antioxidant activity of ellagic acid.

    PubMed

    Kilic, Ismail; Yeşiloğlu, Yeşim; Bayrak, Yüksel

    2014-09-15

    Ellagic acid (EA, C14H6O8) is a natural dietary polyphenol whose benefits in a variety of diseases shown in epidemiological and experimental studies involve anti-inflammation, anti-proliferation, anti-angiogenesis, anticarcinogenesis and anti-oxidation properties. In vitro radical scavenging and antioxidant capacity of EA were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe2+) chelating activity and ferric ions (Fe3+) reducing ability. EA inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45 μg/mL concentration. On the other hand, butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), α-tocopherol and ascorbic acid displayed 69.8%, 66.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, EA had an effective DPPH• scavenging, ABTS+ scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power and ferrous ions (Fe2+) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that EA can be used in the pharmacological, food industry and medicine because of these properties.

  6. LAT1 activity of carboxylic acid bioisosteres: Evaluation of hydroxamic acids as substrates.

    PubMed

    Zur, Arik A; Chien, Huan-Chieh; Augustyn, Evan; Flint, Andrew; Heeren, Nathan; Finke, Karissa; Hernandez, Christopher; Hansen, Logan; Miller, Sydney; Lin, Lawrence; Giacomini, Kathleen M; Colas, Claire; Schlessinger, Avner; Thomas, Allen A

    2016-10-15

    Large neutral amino acid transporter 1 (LAT1) is a solute carrier protein located primarily in the blood-brain barrier (BBB) that offers the potential to deliver drugs to the brain. It is also up-regulated in cancer cells, as part of a tumor's increased metabolic demands. Previously, amino acid prodrugs have been shown to be transported by LAT1. Carboxylic acid bioisosteres may afford prodrugs with an altered physicochemical and pharmacokinetic profile than those derived from natural amino acids, allowing for higher brain or tumor levels of drug and/or lower toxicity. The effect of replacing phenylalanine's carboxylic acid with a tetrazole, acylsulfonamide and hydroxamic acid (HA) bioisostere was examined. Compounds were tested for their ability to be LAT1 substrates using both cis-inhibition and trans-stimulation cell assays. As HA-Phe demonstrated weak substrate activity, its structure-activity relationship (SAR) was further explored by synthesis and testing of HA derivatives of other LAT1 amino acid substrates (i.e., Tyr, Leu, Ile, and Met). The potential for a false positive in the trans-stimulation assay caused by parent amino acid was evaluated by conducting compound stability experiments for both HA-Leu and the corresponding methyl ester derivative. We concluded that HA's are transported by LAT1. In addition, our results lend support to a recent account that amino acid esters are LAT1 substrates, and that hydrogen bonding may be as important as charge for interaction with the transporter binding site.

  7. Amino acid composition predicts prion activity.

    PubMed

    Afsar Minhas, Fayyaz Ul Amir; Ross, Eric D; Ben-Hur, Asa

    2017-04-10

    Many prion-forming proteins contain glutamine/asparagine (Q/N) rich domains, and there are conflicting opinions as to the role of primary sequence in their conversion to the prion form: is this phenomenon driven primarily by amino acid composition, or, as a recent computational analysis suggested, dependent on the presence of short sequence elements with high amyloid-forming potential. The argument for the importance of short sequence elements hinged on the relatively-high accuracy obtained using a method that utilizes a collection of length-six sequence elements with known amyloid-forming potential. We weigh in on this question and demonstrate that when those sequence elements are permuted, even higher accuracy is obtained; we also propose a novel multiple-instance machine learning method that uses sequence composition alone, and achieves better accuracy than all existing prion prediction approaches. While we expect there to be elements of primary sequence that affect the process, our experiments suggest that sequence composition alone is sufficient for predicting protein sequences that are likely to form prions. A web-server for the proposed method is available at http://faculty.pieas.edu.pk/fayyaz/prank.html, and the code for reproducing our experiments is available at http://doi.org/10.5281/zenodo.167136.

  8. Activation of the Glutamic Acid-Dependent Acid Resistance System in Escherichia coli BL21(DE3) Leads to Increase of the Fatty Acid Biotransformation Activity

    PubMed Central

    Woo, Ji-Min; Kim, Ji-Won; Song, Ji-Won; Blank, Lars M.; Park, Jin-Byung

    2016-01-01

    The biosynthesis of carboxylic acids including fatty acids from biomass is central in envisaged biorefinery concepts. The productivities are often, however, low due to product toxicity that hamper whole-cell biocatalyst performance. Here, we have investigated factors that influence the tolerance of Escherichia coli to medium chain carboxylic acid (i.e., n-heptanoic acid)-induced stress. The metabolic and genomic responses of E. coli BL21(DE3) and MG1655 grown in the presence of n-heptanoic acid indicated that the GadA/B-based glutamic acid-dependent acid resistance (GDAR) system might be critical for cellular tolerance. The GDAR system, which is responsible for scavenging intracellular protons by catalyzing decarboxylation of glutamic acid, was inactive in E. coli BL21(DE3). Activation of the GDAR system in this strain by overexpressing the rcsB and dsrA genes, of which the gene products are involved in the activation of GadE and RpoS, respectively, resulted in acid tolerance not only to HCl but also to n-heptanoic acid. Furthermore, activation of the GDAR system allowed the recombinant E. coli BL21(DE3) expressing the alcohol dehydrogenase of Micrococcus luteus and the Baeyer-Villiger monooxygenase of Pseudomonas putida to reach 60% greater product concentration in the biotransformation of ricinoleic acid (i.e., 12-hydroxyoctadec-9-enoic acid (1)) into n-heptanoic acid (5) and 11-hydroxyundec-9-enoic acid (4). This study may contribute to engineering E. coli-based biocatalysts for the production of carboxylic acids from renewable biomass. PMID:27681369

  9. Activation of the Glutamic Acid-Dependent Acid Resistance System in Escherichia coli BL21(DE3) Leads to Increase of the Fatty Acid Biotransformation Activity.

    PubMed

    Woo, Ji-Min; Kim, Ji-Won; Song, Ji-Won; Blank, Lars M; Park, Jin-Byung

    The biosynthesis of carboxylic acids including fatty acids from biomass is central in envisaged biorefinery concepts. The productivities are often, however, low due to product toxicity that hamper whole-cell biocatalyst performance. Here, we have investigated factors that influence the tolerance of Escherichia coli to medium chain carboxylic acid (i.e., n-heptanoic acid)-induced stress. The metabolic and genomic responses of E. coli BL21(DE3) and MG1655 grown in the presence of n-heptanoic acid indicated that the GadA/B-based glutamic acid-dependent acid resistance (GDAR) system might be critical for cellular tolerance. The GDAR system, which is responsible for scavenging intracellular protons by catalyzing decarboxylation of glutamic acid, was inactive in E. coli BL21(DE3). Activation of the GDAR system in this strain by overexpressing the rcsB and dsrA genes, of which the gene products are involved in the activation of GadE and RpoS, respectively, resulted in acid tolerance not only to HCl but also to n-heptanoic acid. Furthermore, activation of the GDAR system allowed the recombinant E. coli BL21(DE3) expressing the alcohol dehydrogenase of Micrococcus luteus and the Baeyer-Villiger monooxygenase of Pseudomonas putida to reach 60% greater product concentration in the biotransformation of ricinoleic acid (i.e., 12-hydroxyoctadec-9-enoic acid (1)) into n-heptanoic acid (5) and 11-hydroxyundec-9-enoic acid (4). This study may contribute to engineering E. coli-based biocatalysts for the production of carboxylic acids from renewable biomass.

  10. The antimicrobial activities of the cinnamaldehyde adducts with amino acids.

    PubMed

    Wei, Qing-Yi; Xiong, Jia-Jun; Jiang, Hong; Zhang, Chao; Wen Ye

    2011-11-01

    Cinnamaldehyde is a well-established natural antimicrobial compound. It is probable for cinnamaldehyde to react with amino acid forming Schiff base adduct in real food system. In this paper, 9 such kind of adducts were prepared by the direct reaction of amino acids with cinnamaldehyde at room temperature. Their antimicrobial activities against Bacillus subtilis, Escherichia coli and Saccharomyces cerevisiae were evaluated with benzoic acid as a reference. The adducts showed a dose-dependent activities against the three microbial strains. Both cinnamaldehyde and their adducts were more active against B. subtilis than on E. coli, and their antimicrobial activities were higher at lower pH. Both cinnamaldehyde and its adducts were more active than benzoic acid at the same conditions. The adduct compound A was non-toxic by primary oral acute toxicity study in mice. However, in situ effect of the adduct compound A against E. coli was a little lower than cinnamaldehyde in fish meat. This paper for the first time showed that the cinnamaldehyde adducts with amino acids had similar strong antimicrobial activities as cinnamaldehyde, which may provide alternatives to cinnamaldehyde in food to avoid the strong unacceptable odor of cinnamaldehyde.

  11. Acid phosphatase activities during the germination of Glycine max seeds.

    PubMed

    dos Prazeres, Janaina Nicanuzia; Ferreira, Carmen Veríssima; Aoyama, Hiroshi

    2004-01-01

    In this paper, we describe a study concerning the determination of some characteristics of soybean seedlings and the detection of acid phosphatase activities towards different substrates during the germination. Enzyme activities with p-nitrophenylphosphate (pNPP) and inorganic pyrophosphate (PPi) as substrates were detected from the 5th and 7th days after germination, respectively. Acid phosphatase activities with tyrosine phosphate (TyrP), glucose-6-phosphate (G6P) and phosphoenol pyruvate (PEP) were also observed but to a lesser extent. Under the same conditions, no enzyme activity was detected with phytic acid (PhyAc) as substrate. The appearance of phosphatase activity was coincident with the decrease of inorganic phosphate content during germination; over the same period, the protein content increased up to the 5th day, decreased until the 8th day, and remained constant after this period. Relative to phosphatase activity in the cotyledons, the activities detected in the hypocotyl and roots were 82% and 38%, respectively. During storage the enzyme maintained about 63% of its activity for 3 months at 5 degrees C. The specificity constant (Vmax/Km) values for pNPP and PPi were 212 and 64 mu kat mM-1 mg-1, respectively. Amongst the substrates tested, PPi could be a potential physiological substrate for acid phosphatase during the germination of soybean seeds.

  12. Antileishmanial activity of diterpene acids in copaiba oil

    PubMed Central

    dos Santos, Adriana Oliveira; Izumi, Erika; Ueda-Nakamura, Tânia; Dias-Filho, Benedito Prado; da Veiga-Júnior, Valdir Florêncio; Nakamura, Celso Vataru

    2013-01-01

    Leishmaniasis is a neglected tropical disease. According to the World Health Organization, there are approximately 1.5-two million new cases of cutaneous leishmaniasis each year worldwide. Chemotherapy against leishmaniasis is based on pentavalent antimonials, which were developed more than a century ago. The goals of this study were to investigate the antileishmanial activity of diterpene acids in copaiba oil, as well as some possible targets of their action against Leishmania amazonensis. Methyl copalate and agathic, hydroxycopalic, kaurenoic, pinifolic and polyaltic acids isolated from Copaifera officinales oleoresins were utilised. Ultrastructural changes and the specific organelle targets of diterpenes were investigated with electron microscopy and flow cytometry, respectively. All compounds had some level of activity against L. amazonensis. Hydroxycopalic acid and methyl copalate demonstrated the most activity against promastigotes and had 50% inhibitory concentration (IC50) values of 2.5 and 6.0 µg/mL, respectively. However, pinifolic and kaurenoic acid demonstrated the most activity against axenic amastigote and had IC50 values of 3.5 and 4.0 µg/mL, respectively. Agathic, kaurenoic and pinifolic acid caused significant increases in plasma membrane permeability and mitochondrial membrane depolarisation of the protozoan. In conclusion, copaiba oil and its diterpene acids should be explored for the development of new antileishmanial drugs. PMID:23440116

  13. Urease inhibitory activities of β-boswellic acid derivatives

    PubMed Central

    2013-01-01

    Background and the purpose of the study Boswellia carterii have been used in traditional medicine for many years for management different gastrointestinal disorders. In this study, we wish to report urease inhibitory activity of four isolated compound of boswellic acid derivative. Methods 4 pentacyclic triterpenoid acids were isolated from Boswellia carterii and identified by NMR and Mass spectroscopic analysis (compounds 1, 3-O-acetyl-9,11-dehydro-β-boswellic acid; 2, 3-O-acetyl-11-hydroxy-β-boswellic acid; 3. 3-O- acetyl-11-keto-β-boswellic acid and 4, 11-keto-β-boswellic acid. Their inhibitory activity on Jack bean urease were evaluated. Docking and pharmacophore analysis using AutoDock 4.2 and Ligandscout 3.03 programs were also performed to explain possible mechanism of interaction between isolated compounds and urease enzyme. Results It was found that compound 1 has the strongest inhibitory activity against Jack bean urease (IC50 = 6.27 ± 0.03 μM), compared with thiourea as a standard inhibitor (IC50 = 21.1 ± 0.3 μM). Conclusion The inhibition potency is probably due to the formation of appropriate hydrogen bonds and hydrophobic interactions between the investigated compounds and urease enzyme active site and confirms its traditional usage. PMID:23351363

  14. The Antimicrobial Activity of Liposomal Lauric Acids Against Propionibacterium acnes

    PubMed Central

    Yang, Darren; Pornpattananangkul, Dissaya; Nakatsuji, Teruaki; Chan, Michael; Carson, Dennis; Huang, Chun-Ming; Zhang, Liangfang

    2009-01-01

    This study evaluated the antimicrobial activity of lauric acid (LA) and its liposomal derivatives against Propionibacterium acnes (P. acnes), the bacterium that promotes inflammatory acne. First, the antimicrobial study of three free fatty acids (lauric acid, palmitic acid and oleic acid) demonstrated that LA gives the strongest bactericidal activity against P. acnes. However, a setback of using LA as a potential treatment for inflammatory acne is its poor water solubility. Then the LA was incorporated into a liposome formulation to aid its delivery to P. acnes. It's demonstrated that the antimicrobial activity of LA was not only well maintained in its liposomal derivatives but also enhanced at low LA concentration. In addition, the antimicrobial activity of LA-loaded liposomes (LipoLA) mainly depended on the LA loading concentration per single liposomes. Further study found that the LipoLA could fuse with the membranes of P. acnes and release the carried LA directly into the bacterial membranes, thereby killing the bacteria effectively. Since LA is a natural compound that is the main acid in coconut oil and also resides in human breast milk and liposomes have been successfully and widely applied as a drug delivery vehicle in the clinic, the LipoLA developed in this work holds great potential of becoming an innate, safe and effective therapeutic medication for acne vulgaris and other P. acnes associated diseases. PMID:19665786

  15. Synthesis and antimicrobial activities of new higher amino acid Schiff base derivatives of 6-aminopenicillanic acid and 7-aminocephalosporanic acid

    NASA Astrophysics Data System (ADS)

    Özdemir (nee Güngör), Özlem; Gürkan, Perihan; Özçelik, Berrin; Oyardı, Özlem

    2016-02-01

    Novel β-lactam derivatives (1c-3c) (1d-3d) were produced by using 6-aminopenicillanic acid (6-APA), 7-aminocephalosporanic acid (7-ACA) and the higher amino acid Schiff bases. The synthesized compounds were characterized by elemental analysis, IR, 1H/13C NMR and UV-vis spectra. Antibacterial activities of all the higher amino acid Schiff bases (1a-3a) (1b-3b) and β-lactam derivatives were screened against three gram negative bacteria (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Acinetobacter baumannii RSKK 02026), three gram positive bacteria (Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 07005, Bacillus subtilis ATCC 6633) and their drug-resistant isolates by using broth microdilution method. Two fungi (Candida albicans and Candida krusei) were used for antifungal activity.

  16. [Sorption of amino acids from aqueous solutions on activated charcoal].

    PubMed

    Nekliudov, A D; Tsibanov, V V

    1985-03-01

    Various methods for quantitative description of amino acid sorption from solutions for parenteral nutrition on activated charcoal were studied under dynamic and static conditions. With the use of the well-known Freindlich and Langmuir absorption isotherms it was shown to be possible to describe in a simplified way the complex multicomponent process of sorption of the amino acids and to estimate their loss at the filtration stage.

  17. Retinal pigment epithelial acid lipase activity and lipoprotein receptors: effects of dietary omega-3 fatty acids.

    PubMed Central

    Elner, Victor M

    2002-01-01

    PURPOSE: To show that fish oil-derived omega-3 polyunsaturated fatty acids, delivered to the retinal pigment epithelium (RPE) by circulating low-density lipoproteins (LDL), enhance already considerable RPE lysosomal acid lipase activity, providing for more efficient hydrolysis of intralysosomal RPE lipids, an effect that may help prevent development of age-related macular degeneration (ARMD). METHODS: Colorimetric biochemical and histochemical techniques were used to demonstrate RPE acid lipase in situ, in vitro, and after challenge with phagocytic stimuli. Receptor-mediated RPE uptake of fluorescently labeled native, aceto-acetylated, and oxidized LDL was studied in vitro and in vivo. LDL effects on RPE lysosomal enzymes were assessed. Lysosomal enzyme activity was compared in RPE cells from monkeys fed diets rich in fish oil to those from control animals and in cultured RPE cells exposed to sera from these monkeys. RESULTS: RPE acid lipase activity was substantial and comparable to that of mononuclear phagocytes. Acid lipase activity increased significantly following phagocytic challenge with photoreceptor outer segment (POS) membranes. Receptor-mediated RPE uptake of labeled lipoproteins was determined in vitro. Distinctive uptake of labeled lipoproteins occurred in RPE cells and mononuclear phagocytes in vivo. Native LDL enhanced RPE lysosomal enzyme activity. RPE lysosomal enzymes increased significantly in RPE cells from monkeys fed fish oil-rich diets and in cultured RPE cells exposed to their sera. CONCLUSIONS: RPE cells contain substantial acid lipase for efficient metabolism of lipids imbibed by POS phagocytosis and LDL uptake. Diets rich in fish oil-derived omega-3 fatty acids, by enhancing acid lipase, may reduce RPE lipofuscin accumulation, RPE oxidative damage, and the development of ARMD. PMID:12545699

  18. Recovery of rhenium from sulfuric acid solutions with activated coals

    SciTech Connect

    Troshkina, I.D.; Naing, K.Z.; Ushanova, O.N.; P'o, V.; Abdusalomov, A.A.

    2006-09-15

    Equilibrium and kinetic characteristics of rhenium sorption from sulfuric acid solutions (pH 2) by activated coals produced from coal raw materials (China) were studied. Constants of the Henry equation describing isotherms of rhenium sorption by activated coals were calculated. The effective diffusion coefficients of rhenium in the coals were determined. The dynamic characteristics of rhenium sorption and desorption were determined for the activated coal with the best capacity and kinetic characteristics.

  19. Pyrazinoic acid esters with broad spectrum in vitro antimycobacterial activity.

    PubMed

    Cynamon, M H; Gimi, R; Gyenes, F; Sharpe, C A; Bergmann, K E; Han, H J; Gregor, L B; Rapolu, R; Luciano, G; Welch, J T

    1995-09-29

    A series of substituted pyrazinoic acid esters has been prepared and examined for their in vitro activity against Mycobacterium avium and Mycobacterium kansasii as well as Mycobacterium tuberculosis. Modification of both the pyrazine nucleus and the ester functionality have been very successful in expanding the activity of pyrazinamide to include M. avium and M. kansasii, organisms normally not susceptible to pyrazinamide. Several of these compounds have activities 100-1000-fold greater than that of pyrazinamide against M. tuberculosis.

  20. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, potently activates PPARγ and stimulates adipogenesis.

    PubMed

    Goto, Tsuyoshi; Kim, Young-Il; Furuzono, Tomoya; Takahashi, Nobuyuki; Yamakuni, Kanae; Yang, Ha-Eun; Li, Yongjia; Ohue, Ryuji; Nomura, Wataru; Sugawara, Tatsuya; Yu, Rina; Kitamura, Nahoko; Park, Si-Bum; Kishino, Shigenobu; Ogawa, Jun; Kawada, Teruo

    2015-04-17

    Our previous study has shown that gut lactic acid bacteria generate various kinds of fatty acids from polyunsaturated fatty acids such as linoleic acid (LA). In this study, we investigated the effects of LA and LA-derived fatty acids on the activation of peroxisome proliferator-activated receptors (PPARs) which regulate whole-body energy metabolism. None of the fatty acids activated PPARδ, whereas almost all activated PPARα in luciferase assays. Two fatty acids potently activated PPARγ, a master regulator of adipocyte differentiation, with 10-oxo-12(Z)-octadecenoic acid (KetoA) having the most potency. In 3T3-L1 cells, KetoA induced adipocyte differentiation via the activation of PPARγ, and increased adiponectin production and insulin-stimulated glucose uptake. These findings suggest that fatty acids, including KetoA, generated in gut by lactic acid bacteria may be involved in the regulation of host energy metabolism.

  1. Effect of vanadium compounds on acid phosphatase activity.

    PubMed

    Vescina, C M; Sálice, V C; Cortizo, A M; Etcheverry, S B

    1996-01-01

    The direct effect of different vanadium compounds on acid phosphatase (ACP) activity was investigated. Vanadate and vanadyl but not pervanadate inhibited the wheat germ ACP activity. These vanadium derivatives did not alter the fibroblast Swiss 3T3 soluble fraction ACP activity. Using inhibitors of tyrosine phosphatases (PTPases), the wheat germ ACP was partially characterized as a PTPase. This study suggests that the inhibitory ability of different vanadium derivatives to modulate ACP activity seems to depend on the geometry around the vanadium atom more than on the oxidation state. Our results indicate a correlation between the PTPase activity and the sensitivity to vanadate and vanadyl cation.

  2. The Immunomodulatory Activity of Jacaric Acid, a Conjugated Linolenic Acid Isomer, on Murine Peritoneal Macrophages

    PubMed Central

    Liu, Wai Nam; Leung, Kwok Nam

    2015-01-01

    This study aims at demonstrating the immunomodulatory property of jacaric acid, a conjugated linolenic acid (CLNA) isomer that is present in jacaranda seed oil, on murine peritoneal macrophages. Our results showed that jacaric acid exhibited no significant cytotoxicity on the thioglycollate-elicited murine peritoneal macrophages as revealed by the neutral red uptake assay, but markedly increased their cytostatic activity on the T-cell lymphoma MBL-2 cells as measured by the fluorometric CyQuant® NF Cell Proliferation Assay Kit. Flow cytometric analysis indicated that jacaric acid could enhance the endocytic activity of macrophages and elevated their intracellular production of superoxide anion. Moreover, jacaric acid-treated macrophages showed an increase in the production of nitric oxide which was accompanied by an increase in the expression level of inducible nitric oxide synthase protein. In addition, the secretion of several pro-inflammatory cytokines, including interferon-γ, interleukin-1β and tumor necrosis factor-α, was up-regulated. Collectively, our results indicated that the naturally-occurring CLNA isomer, jacaric acid, could exhibit immunomodulating activity on the murine peritoneal macrophages in vitro, suggesting that this CLNA isomer may act as an immunopotentiator which can be exploited for the treatment of some immunological disorders with minimal toxicity and fewer side effects. PMID:26629697

  3. The Immunomodulatory Activity of Jacaric Acid, a Conjugated Linolenic Acid Isomer, on Murine Peritoneal Macrophages.

    PubMed

    Liu, Wai Nam; Leung, Kwok Nam

    2015-01-01

    This study aims at demonstrating the immunomodulatory property of jacaric acid, a conjugated linolenic acid (CLNA) isomer that is present in jacaranda seed oil, on murine peritoneal macrophages. Our results showed that jacaric acid exhibited no significant cytotoxicity on the thioglycollate-elicited murine peritoneal macrophages as revealed by the neutral red uptake assay, but markedly increased their cytostatic activity on the T-cell lymphoma MBL-2 cells as measured by the fluorometric CyQuant® NF Cell Proliferation Assay Kit. Flow cytometric analysis indicated that jacaric acid could enhance the endocytic activity of macrophages and elevated their intracellular production of superoxide anion. Moreover, jacaric acid-treated macrophages showed an increase in the production of nitric oxide which was accompanied by an increase in the expression level of inducible nitric oxide synthase protein. In addition, the secretion of several pro-inflammatory cytokines, including interferon-γ, interleukin-1β and tumor necrosis factor-α, was up-regulated. Collectively, our results indicated that the naturally-occurring CLNA isomer, jacaric acid, could exhibit immunomodulating activity on the murine peritoneal macrophages in vitro, suggesting that this CLNA isomer may act as an immunopotentiator which can be exploited for the treatment of some immunological disorders with minimal toxicity and fewer side effects.

  4. Acid activation of bentonites and polymer-clay nanocomposites.

    SciTech Connect

    Carrado, K. A.; Komadel, P.; Center for Nanoscale Materials; Slovak Academy of Sciences

    2009-04-01

    Modified bentonites are of widespread technological importance. Common modifications include acid activation and organic treatment. Acid activation has been used for decades to prepare bleaching earths for adsorbing impurities from edible and industrial oils. Organic treatment has sparked an explosive interest in a class of materials called polymer-clay nanocomposites (PCNs). The most commonly used clay mineral in PCNs is montmorillonite, which is the main constituent of bentonite. PCN materials are used for structural reinforcement and mechanical strength, for gas permeability barriers, as flame retardants, and to minimize surface erosion (ablation). Other specialty applications include use as conducting nanocomposites and bionanocomposites.

  5. Antimicrobial activity of poly(acrylic acid) block copolymers.

    PubMed

    Gratzl, Günther; Paulik, Christian; Hild, Sabine; Guggenbichler, Josef P; Lackner, Maximilian

    2014-05-01

    The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid-base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure.

  6. Potential anticancer activity of lichen secondary metabolite physodic acid.

    PubMed

    Cardile, V; Graziano, A C E; Avola, R; Piovano, M; Russo, A

    2017-02-01

    Secondary metabolites present in lichens, which comprise aliphatic, cycloaliphatic, aromatic and terpenic compounds, are unique with respect to those of higher plants and show interesting biological and pharmacological activities. However, only a few of these compounds, have been assessed for their effectiveness against various in vitro cancer models. In the present study, we investigated the cytotoxicity of three lichen secondary metabolites (atranorin, gyrophoric acid and physodic acid) on A375 melanoma cancer cell line. The tested compounds arise from different lichen species collected in different areas of Continental and Antarctic Chile. The obtained results confirm the major efficiency of depsidones. In fact, depsides atranorin and gyrophoric acid, showed a lower activity inhibiting the melanoma cancer cells only at more high concentrations. Whereas the depsidone physodic acid, showed a dose-response relationship in the range of 6.25-50 μM concentrations in A375 cells, activating an apoptotic process, that probably involves the reduction of Hsp70 expression. Although the molecular mechanism, by which apoptosis is induced by physodic acid remains unclear, and of course further studies are needed, the results here reported confirm the promising biological properties of depsidone compounds, and may offer a further impulse to the development of analogues with more powerful efficiency against melanoma cells.

  7. Pyrophosphate-condensing activity linked to nucleic acid synthesis.

    PubMed Central

    Volloch, V Z; Rits, S; Tumerman, L

    1979-01-01

    In some preparations of DNA dependent RNA polymerase a new enzymatic activity has been found which catalyzes the condensation of two pyrophosphate molecules, liberated in the process of RNA synthesis, to one molecule of orthophosphate and one molecule of Mg (or Mn) - chelate complex with trimetaphosphate. This activity can also cooperate with DNA-polymerase, on condition that both enzymes originate from the same cells. These results point to two general conclusions. First, energy is conserved in the overall process of nucleic acid synthesis and turnover, so that the process does not require an energy influx from the cell's general resources. Second, the synthesis of nucleic acids is catalyzed by a complex enzyme system which contains at least two separate enzymes, one responsible for nucleic acid polymerization and the other for energy conservation via pyrophosphate condensation. Images PMID:88040

  8. Oxygenation of Organoboronic Acids by a Nonheme Iron(II) Complex: Mimicking Boronic Acid Monooxygenase Activity.

    PubMed

    Chatterjee, Sayanti; Paine, Tapan Kanti

    2015-10-19

    Phenolic compounds are important intermediates in the bacterial biodegradation of aromatic compounds in the soil. An Arthrobacter sp. strain has been shown to exhibit boronic acid monooxygenase activity through the conversion of different substituted phenylboronic acids to the corresponding phenols using dioxygen. While a number of methods have been reported to cleave the C-B bonds of organoboronic acids, there is no report on biomimetic iron complex exhibiting this activity using dioxygen as the oxidant. In that direction, we have investigated the reactivity of a nucleophilic iron-oxygen oxidant, generated upon oxidative decarboxylation of an iron(II)-benzilate complex [(Tp(Ph2))Fe(II)(benzilate)] (Tp(Ph2) = hydrotris(3,5-diphenyl-pyrazol-1-yl)borate), toward organoboronic acids. The oxidant converts different aryl/alkylboronic acids to the corresponding oxygenated products with the incorporation of one oxygen atom from dioxygen. This method represents an efficient protocol for the oxygenation of boronic acids with dioxygen as the terminal oxidant.

  9. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    SciTech Connect

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2016-08-09

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  10. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    SciTech Connect

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2014-09-30

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  11. Teacher's Resource Guide on Acidic Precipitation with Laboratory Activities.

    ERIC Educational Resources Information Center

    Barrow, Lloyd H.

    The purpose of this teacher's resource guide is to help science teachers incorporate the topic of acidic precipitation into their curricula. A survey of recent junior high school science textbooks found a maximum of one paragraph devoted to the subject; in addition, none of these books had any related laboratory activities. It was on the basis of…

  12. Fungicidal Activities of Dihydroferulic Acid Alkyl Ester Analogues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The natural product dihydroferulic acid (DFA, 1) and the synthesized DFA methyl (4a), ethyl (4b), propyl (4c), hexyl (4d), octyl (4e), and decyl (4f) esters were examined for antifungal activity. Test fungi included Saccharomyces cerevisiae (wild type, and deletion mutants slt2delta and bck1delta), ...

  13. Fungicidal Activities of Dihydroferulic Acid Alkyl Ester Analogs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The natural product dihydroferulic acid (DFA, 1) and the synthesized DFA methyl (4a), ethyl (4b), propyl (4c), hexyl (4d), octyl (4e), and decyl (4f) esters were examined for antifungal activity. Test fungi included Saccharomyces cerevisiae (wild type, and deletion mutants slt2' and bck1'), Aspergil...

  14. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    SciTech Connect

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2012-10-16

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  15. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    DOEpatents

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2010-06-22

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  16. Pentagastrin gastroprotection against acid is related to H2 receptor activation but not acid secretion

    PubMed Central

    Tanaka, S; Akiba, Y; Kaunitz, J

    1998-01-01

    Background—Pentagastrin enhances gastric mucosal defence mechanisms against acid and protects the gastric mucosa from experimental injury. 
Aims—To investigate whether this gastroprotection is mediated by histamine receptors or occurs as a secondary effect of acid secretion stimulation. 
Methods—The effects of omeprazole (100 µmol/kg), ranitidine (20 mg/kg), and pyrilamine (10 mg/kg) on pentagastrin (80 µg/kg/h) induced gastroprotection against acidified aspirin injury were examined in a luminal pH controlled model. The effects of these compounds on pentagastrin enhanced gastroprotective mechanisms were investigated using intravital microscopy, in which intracellular pH of gastric surface cells (pHi), mucus gel thickness, gastric mucosal blood flow, and acid output were measured simultaneously. 
Results—Pentagastrin protected rat gastric mucosa from acidified aspirin injury. This gastroprotection was abolished by ranitidine, but not omeprazole or pyrilamine. Pentagastrin induced a hyperaemic response to luminal acid challenge, increased mucus gel thickness, and elevated pHi during acid challenge. Ranitidine reversed these enhanced defence mechanisms, whereas omeprazole and pyrilamine preserved these effects. 
Conclusions—These data indicate that pentagastrin associated gastroprotection and enhanced defence mechanisms against acid result mainly from activation of histamine H2 receptors, and not as an effect of the stimulation of acid secretion. 

 Keywords: gastric injury; gastric defence mechanisms; omeprazole; pyrilamine; ranitidine; intracellular pH PMID:9863477

  17. Saturated fatty acids activate TLR-mediated proinflammatory signaling pathways.

    PubMed

    Huang, Shurong; Rutkowsky, Jennifer M; Snodgrass, Ryan G; Ono-Moore, Kikumi D; Schneider, Dina A; Newman, John W; Adams, Sean H; Hwang, Daniel H

    2012-09-01

    Toll-like receptor 4 (TLR4) and TLR2 were shown to be activated by saturated fatty acids (SFAs) but inhibited by docosahexaenoic acid (DHA). However, one report suggested that SFA-induced TLR activation in cell culture systems is due to contaminants in BSA used for solubilizing fatty acids. This report raised doubt about proinflammatory effects of SFAs. Our studies herein demonstrate that sodium palmitate (C16:0) or laurate (C12:0) without BSA solubilization induced phosphorylation of inhibitor of nuclear factor-κB α, c-Jun N-terminal kinase (JNK), p44/42 mitogen-activated-kinase (ERK), and nuclear factor-κB subunit p65, and TLR target gene expression in THP1 monocytes or RAW264.7 macrophages, respectively, when cultured in low FBS (0.25%) medium. C12:0 induced NFκB activation through TLR2 dimerized with TLR1 or TLR6, and through TLR4. Because BSA was not used in these experiments, contaminants in BSA have no relevance. Unlike in suspension cells (THP-1), BSA-solubilized C16:0 instead of sodium C16:0 is required to induce TLR target gene expression in adherent cells (RAW264.7). C16:0-BSA transactivated TLR2 dimerized with TLR1 or TLR6 and through TLR4 as seen with C12:0. These results and additional studies with the LPS sequester polymixin B and in MyD88(-/-) macrophages indicated that SFA-induced activation of TLR2 or TLR4 is a fatty acid-specific effect, but not due to contaminants in BSA or fatty acid preparations.

  18. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, potently activates PPARγ and stimulates adipogenesis

    SciTech Connect

    Goto, Tsuyoshi; Kim, Young-Il; Furuzono, Tomoya; Takahashi, Nobuyuki; Yamakuni, Kanae; Yang, Ha-Eun; Li, Yongjia; Ohue, Ryuji; Nomura, Wataru; Sugawara, Tatsuya; Yu, Rina; Kitamura, Nahoko; and others

    2015-04-17

    Our previous study has shown that gut lactic acid bacteria generate various kinds of fatty acids from polyunsaturated fatty acids such as linoleic acid (LA). In this study, we investigated the effects of LA and LA-derived fatty acids on the activation of peroxisome proliferator-activated receptors (PPARs) which regulate whole-body energy metabolism. None of the fatty acids activated PPARδ, whereas almost all activated PPARα in luciferase assays. Two fatty acids potently activated PPARγ, a master regulator of adipocyte differentiation, with 10-oxo-12(Z)-octadecenoic acid (KetoA) having the most potency. In 3T3-L1 cells, KetoA induced adipocyte differentiation via the activation of PPARγ, and increased adiponectin production and insulin-stimulated glucose uptake. These findings suggest that fatty acids, including KetoA, generated in gut by lactic acid bacteria may be involved in the regulation of host energy metabolism. - Highlights: • Most LA-derived fatty acids from gut lactic acid bacteria potently activated PPARα. • Among tested fatty acids, KetoA and KetoC significantly activated PPARγ. • KetoA induced adipocyte differentiation via the activation of PPARγ. • KetoA enhanced adiponectin production and glucose uptake during adipogenesis.

  19. Soluble Uric Acid Activates the NLRP3 Inflammasome

    PubMed Central

    Braga, Tarcio Teodoro; Forni, Maria Fernanda; Correa-Costa, Matheus; Ramos, Rodrigo Nalio; Barbuto, Jose Alexandre; Branco, Paola; Castoldi, Angela; Hiyane, Meire Ioshie; Davanso, Mariana Rodrigues; Latz, Eicke; Franklin, Bernardo S.; Kowaltowski, Alicia J.; Camara, Niels Olsen Saraiva

    2017-01-01

    Uric acid is a damage-associated molecular pattern (DAMP), released from ischemic tissues and dying cells which, when crystalized, is able to activate the NLRP3 inflammasome. Soluble uric acid (sUA) is found in high concentrations in the serum of great apes, and even higher in some diseases, before the appearance of crystals. In the present study, we sought to investigate whether uric acid, in the soluble form, could also activate the NLRP3 inflammasome and induce the production of IL-1β. We monitored ROS, mitochondrial area and respiratory parameters from macrophages following sUA stimulus. We observed that sUA is released in a hypoxic environment and is able to induce IL-1β release. This process is followed by production of mitochondrial ROS, ASC speck formation and caspase-1 activation. Nlrp3−/− macrophages presented a protected redox state, increased maximum and reserve oxygen consumption ratio (OCR) and higher VDAC protein levels when compared to WT and Myd88−/− cells. Using a disease model characterized by increased sUA levels, we observed a correlation between sUA, inflammasome activation and fibrosis. These findings suggest sUA activates the NLRP3 inflammasome. We propose that future therapeutic strategies for renal fibrosis should include strategies that block sUA or inhibit its recognition by phagocytes. PMID:28084303

  20. Anti-cancer activities of ω-6 polyunsaturated fatty acids.

    PubMed

    Xu, Yi; Qian, Steven Y

    2014-01-01

    The ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) are two major families of PUFAs present as essential cellular components which possess diverse bioactivities. The ω-3s, mainly found in seafood, are associated with many beneficial effects on human health, while the ω-6s are more abundant in our daily diet and could be implicated in many pathological processes including cancer development. Increasing evidence suggests that the adverse effects of ω-6s may be largely attributed to arachidonic acid (AA, a downstream ω-6) and the metabolite prostaglandin E2 (PGE2) that stems from its cyclooxygenase (COX)-catalyzed lipid peroxidation. On the other hand, two of AA's upstream ω-6s, γ-linolenic acid (GLA) and dihomo-γ-linolenic acid (DGLA), are shown to possess certain anti-cancer activities, including inducing cell apoptosis and inhibiting cell proliferation. In this paper, we review the documented anti-cancer activities of ω-6 PUFAs, including the recent findings regarding the anti-cancer effects of free radical-mediated DGLA peroxidation. The possible mechanisms and applications of DGLA (and other ω-6s) in inducing anti-cancer activity are also discussed. Considering the wide availability of ω-6s in our daily diet, the study of the potential beneficial effect of ω-6 PUFAs may guide us to develop an ω-6-based diet care strategy for cancer prevention and treatment.

  1. Fatty acid conjugation enhances the activities of antimicrobial peptides.

    PubMed

    Li, Zhining; Yuan, Penghui; Xing, Meng; He, Zhumei; Dong, Chuanfu; Cao, Yongchang; Liu, Qiuyun

    2013-04-01

    Antimicrobial peptides are small molecules that play a crucial role in innate immunity in multi-cellular organisms, and usually expressed and secreted constantly at basal levels to prevent infection, but local production can be augmented upon an infection. The clock is ticking as rising antibiotic abuse has led to the emergence of many drug resistance bacteria. Due to their broad spectrum antibiotic and antifungal activities as well as anti-viral and anti-tumor activities, efforts are being made to develop antimicrobial peptides into future microbial agents. This article describes some of the recent patents on antimicrobial peptides with fatty acid conjugation. Potency and selectivity of antimicrobial peptide can be modulated with fatty acid tails of variable length. Interaction between membranes and antimicrobial peptides was affected by fatty acid conjugation. At concentrations above the critical miscelle concentration (CMC), propensity of solution selfassembly hampered binding of the peptide to cell membranes. Overall, fatty acid conjugation has enhanced the activities of antimicrobial peptides, and occasionally it rendered inactive antimicrobial peptides to be bioactive. Antimicrobial peptides can not only be used as medicine but also as food additives.

  2. Ribonucleic Acid Polymerase Activity in Sendai Virions and Nucleocapsid

    PubMed Central

    Robinson, William S.

    1971-01-01

    After dissociation of purified Sendai virus with the neutral detergent Nonidet P-40 and 2-mercaptoethanol, it catalyzed the incorporation of ribonucleoside triphosphates into an acid-insoluble product. The enzyme activity was associated with viral nucleocapsid as well as whole virions. The reaction product was ribonucleic acid (RNA) which annealed specifically with virion RNA. Sedimentation of the 3H-RNA reaction product revealed two components, a 45S component with properties of double-stranded RNA and 4 to 6S component which appeared to be mostly single-stranded RNA. PMID:4328418

  3. A potential plant-derived antifungal acetylenic acid mediates its activity by interfering with fatty acid homeostasis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    6-Nonadecynoic acid (6-NDA), a plant-derived acetylenic acid, exhibits strong inhibitory activity against the human fungal pathogens Candida albicans, Aspergillus fumigatus, and Trichophyton mentagrophytes. In the present study, transcriptional profiling coupled with mutant and biochemical analyses...

  4. The ketogenic diet; fatty acids, fatty acid-activated receptors and neurological disorders.

    PubMed

    Cullingford, Tim E

    2004-03-01

    This review outlines the molecular sensors that reprogram cellular metabolism in response to the ketogenic diet (KD). Special emphasis is placed on the fasting-, fatty acid- and drug-activated transcription factor, peroxisome proliferator-activated receptor alpha (PPARalpha). The KD causes a switch to ketogenesis that is coordinated with an array of changes in cellular lipid, amino acid, carbohydrate and inflammatory pathways. The role of both liver and brain PPARalpha in mediating such changes will be examined, with special reference to the anti-epileptic effects not only of the KD but a range of synthetic anti-epileptic drugs such as valproate. Finally, the implications of the KD and activated brain PPARalpha will be discussed in the context of their potential involvement in a range of disorders of neuro-degeneration and neuro-inflammation.

  5. Polyunsaturated fatty acid inhibition of fatty acid synthase transcription is independent of PPAR activation.

    PubMed

    Clarke, S D; Turini, M; Jump, D B; Abraham, S; Reedy, M

    1998-01-01

    Polyunsaturated fatty acids (PUFA) of the (n-6) and (n-3) families inhibit the rate of gene transcription for a number of hepatic lipogenic and glycolytic genes, e.g., fatty acid synthase (FAS). In contrast, saturated and monounsaturated fatty acids have no inhibitory capability. The suppression of gene transcription resulting from the addition of PUFA to a high carbohydrate diet: occurs quickly (< 3 h) after its addition to a high glucose diet; can be recreated with hepatocytes cultured in a serum-free medium containing insulin and glucocorticoids; can be demonstrated in diabetic rats fed fructose; and is independent of glucagon. While the nature of the intracellular PUFA inhibitor is unclear, it appears that delta-6 desaturation is a required step in the process. Recently, the fatty acid activated nuclear factor, peroxisome-proliferator activated receptor (PPAR) was suggested to be the PUFA-response factor. However, the potent PPAR activators ETYA and Wy-14643 did not suppress hepatic expression of FAS, but did induce the PPAR-responsive gene, acyl-CoA oxidase (AOX). Similarly, treating rat hepatocytes with 20:4 (n-6) suppressed FAS expression but had no effect on AOX. Thus, it appears that the PUFA regulation of gene transcription involves a PUFA-response factor that is independent from PPAR.

  6. Jasmonic acid and salicylic acid activate a common defense system in rice

    PubMed Central

    Tamaoki, Daisuke; Seo, Shigemi; Yamada, Shoko; Kano, Akihito; Miyamoto, Ayumi; Shishido, Hodaka; Miyoshi, Seika; Taniguchi, Shiduku; Akimitsu, Kazuya; Gomi, Kenji

    2013-01-01

    Jasmonic acid (JA) and salicylic acid (SA) play important roles in plant defense systems. JA and SA signaling pathways interact antagonistically in dicotyledonous plants, but, the status of crosstalk between JA and SA signaling is unknown in monocots. Our rice microarray analysis showed that more than half of the genes upregulated by the SA analog BTH are also upregulated by JA, suggesting that a major portion of the SA-upregulated genes are regulated by JA-dependent signaling in rice. A common defense system that is activated by both JA and SA is thus proposed which plays an important role in pathogen defense responses in rice. PMID:23518581

  7. Reconciling Ligase Ribozyme Activity with Fatty Acid Vesicle Stability

    PubMed Central

    Anella, Fabrizio; Danelon, Christophe

    2014-01-01

    The “RNA world” and the “Lipid world” theories for the origin of cellular life are often considered incompatible due to the differences in the environmental conditions at which they can emerge. One obstacle resides in the conflicting requirements for divalent metal ions, in particular Mg2+, with respect to optimal ribozyme activity, fatty acid vesicle stability and protection against RNA strand cleavage. Here, we report on the activity of a short L1 ligase ribozyme in the presence of myristoleic acid (MA) vesicles at varying concentrations of Mg2+. The ligation rate is significantly lower at low-Mg2+ conditions. However, the loss of activity is overcompensated by the increased stability of RNA leading to a larger amount of intact ligated substrate after long reaction periods. Combining RNA ligation assays with fatty acid vesicles we found that MA vesicles made of 5 mM amphiphile are stable and do not impair ligase ribozyme activity in the presence of approximately 2 mM Mg2+. These results provide a scenario in which catalytic RNA and primordial membrane assembly can coexist in the same environment. PMID:25513761

  8. Antiplatelet activity of a novel formula composed of malic acid, succinic acid and citric acid from Cornus officinalis fruit.

    PubMed

    Zhang, Qi-Chun; Zhao, Yue; Bian, Hui-Min

    2013-12-01

    The present study investigated the antiplatelet activity of a novel formula composed by malic acid, succinic acid and citric acid with a ratio of 3:2:2. The IC50 and inhibition of platelet aggregation induced by various agonists as well as platelet adhesion were evaluated in vitro. Of note, the IC50 for the formula inhibiting adenosine diphosphate (ADP)-induced platelet aggregation was 0.185 mg/mL. Meanwhile, the formula showed more potent inhibitory effect on platelet aggregation induced by ADP and thrombin than the single component at same concentration (0.37 mg/mL). Moreover, the formula could prevent platelet adhesion significantly without influence on platelet viability.

  9. Preparation and bactericide activity of gallic acid stabilized gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Moreno-Álvarez, S. A.; Martínez-Castañón, G. A.; Niño-Martínez, N.; Reyes-Macías, J. F.; Patiño-Marín, N.; Loyola-Rodríguez, J. P.; Ruiz, Facundo

    2010-10-01

    In this work, gold nanoparticles with three different sizes (13.7, 39.4, and 76.7 nm) were prepared using a simple aqueous method with gallic acid as the reducing and stabilizing agent, the different sizes were obtained varying some experimental parameters as the pH of the reaction and the amount of the gallic acid. The prepared nanoparticles were characterized using X-ray diffraction, transmission electron microscopy, dynamic light scattering, and UV-Vis spectroscopy. Samples were identified as elemental gold and present spherical morphology, a narrow size distribution and good stabilization according to TEM and DLS results. The antibacterial activity of this gallic acid stabilized gold nanoparticles against S. mutans (the etiologic agent of dental caries) was assessed using a microdilution method obtaining a minimum inhibitory concentration of 12.31, 12.31, and 49.25 μg/mL for 13.7, 39.4, and 76.7 nm gold nanoparticles, respectively. The antibacterial assay showed that gold nanoparticles prepared in this work present a bactericide activity by a synergistic action with gallic acid. The MIC found for this nanoparticles are much lower than those reported for mixtures of gold nanoparticles and antibiotics.

  10. Synthesis and antifungal activity of bile acid-derived oxazoles.

    PubMed

    Fernández, Lucía R; Svetaz, Laura; Butassi, Estefanía; Zacchino, Susana A; Palermo, Jorge A; Sánchez, Marianela

    2016-04-01

    Peracetylated bile acids (1a-g) were used as starting materials for the preparation of fourteen new derivatives bearing an oxazole moiety in their side chain (6a-g, 8a-g). The key step for the synthetic path was a Dakin-West reaction followed by a Robinson-Gabriel cyclodehydration. A simpler model oxazole (12) was also synthesized. The antifungal activity of the new compounds (6a-g) as well as their starting bile acids (1a-g) was tested against Candida albicans. Compounds 6e and 6g showed the highest percentages of inhibition (63.84% and 61.40% at 250 μg/mL respectively). Deacetylation of compounds 6a-g, led to compounds 8a-g which showed lower activities than the acetylated derivatives.

  11. In vivo antioxidant activity of deacetylasperulosidic Acid in noni.

    PubMed

    Ma, De-Lu; Chen, Mai; Su, Chen X; West, Brett J

    2013-01-01

    Deacetylasperulosidic acid (DAA) is a major phytochemical constituent of Morinda citrifolia (noni) fruit. Noni juice has demonstrated antioxidant activity in vivo and in human trials. To evaluate the role of DAA in this antioxidant activity, Wistar rats were fed 0 (control group), 15, 30, or 60 mg/kg body weight per day for 7 days. Afterwards, serum malondialdehyde concentration and superoxide dismutase and glutathione peroxidase activities were measured and compared among groups. A dose-dependent reduction in malondialdehyde was evident as well as a dose-dependent increase in superoxide dismutase activity. DAA ingestion did not influence serum glutathione peroxidase activity. These results suggest that DAA contributes to the antioxidant activity of noni juice by increasing superoxide dismutase activity. The fact that malondialdehyde concentrations declined with increased DAA dose, despite the lack of glutathione peroxidase-inducing activity, suggests that DAA may also increase catalase activity. It has been previously reported that noni juice increases catalase activity in vivo but additional research is required to confirm the effect of DAA on catalase. Even so, the current findings do explain a possible mechanism of action for the antioxidant properties of noni juice that have been observed in human clinical trials.

  12. Fatty acid transport and activation and the expression patterns of genes involved in fatty acid trafficking.

    PubMed

    Sandoval, Angel; Fraisl, Peter; Arias-Barrau, Elsa; Dirusso, Concetta C; Singer, Diane; Sealls, Whitney; Black, Paul N

    2008-09-15

    These studies defined the expression patterns of genes involved in fatty acid transport, activation and trafficking using quantitative PCR (qPCR) and established the kinetic constants of fatty acid transport in an effort to define whether vectorial acylation represents a common mechanism in different cell types (3T3-L1 fibroblasts and adipocytes, Caco-2 and HepG2 cells and three endothelial cell lines (b-END3, HAEC, and HMEC)). As expected, fatty acid transport protein (FATP)1 and long-chain acyl CoA synthetase (Acsl)1 were the predominant isoforms expressed in adipocytes consistent with their roles in the transport and activation of exogenous fatty acids destined for storage in the form of triglycerides. In cells involved in fatty acid processing including Caco-2 (intestinal-like) and HepG2 (liver-like), FATP2 was the predominant isoform. The patterns of Acsl expression were distinct between these two cell types with Acsl3 and Acsl5 being predominant in Caco-2 cells and Acsl4 in HepG2 cells. In the endothelial lines, FATP1 and FATP4 were the most highly expressed isoforms; the expression patterns for the different Acsl isoforms were highly variable between the different endothelial cell lines. The transport of the fluorescent long-chain fatty acid C(1)-BODIPY-C(12) in 3T3-L1 fibroblasts and 3T3-L1 adipocytes followed typical Michaelis-Menten kinetics; the apparent efficiency (k(cat)/K(T)) of this process increases over 2-fold (2.1 x 10(6)-4.5 x 10(6)s(-1)M(-1)) upon adipocyte differentiation. The V(max) values for fatty acid transport in Caco-2 and HepG2 cells were essentially the same, yet the efficiency was 55% higher in Caco-2 cells (2.3 x 10(6)s(-1)M(-1) versus 1.5 x 10(6)s(-1)M(-1)). The kinetic parameters for fatty acid transport in three endothelial cell types demonstrated they were the least efficient cell types for this process giving V(max) values that were nearly 4-fold lower than those defined form 3T3-L1 adipocytes, Caco-2 cells and HepG2 cells. The

  13. Tethered phytic acid as a probe for measuring phytase activity.

    PubMed

    Berry, Duane F; Berry, David A

    2005-06-15

    A novel approach for measuring phytase activity is presented. We have developed a new chromophoric substrate analog of phytic acid, 5-O-[6-(benzoylamino)hexyl]-d-myo-inositol-1,2,3,4,6-pentakisphosphate that permits direct measurement of the phosphate ester bond-cleavage reaction using HPLC. This compound, along with its dephosphorylated T-phosphatidylinositol intermediates, are quantified using reversed phase chromatography with UV detection.

  14. Role of lysine and acidic amino acid residues on the insecticidal activity of Jackbean urease.

    PubMed

    Real-Guerra, Rafael; Carlini, Célia Regina; Stanisçuaski, Fernanda

    2013-09-01

    Canavalia ensiformis has three isoforms of urease: Jackbean urease (JBU), Jackbean urease II and canatoxin. These isoforms present several biological activities, independent from the enzymatic property, such as entomotoxicity and antifungal properties. The entomotoxic activity is a property of the whole protein, as well as of a 10 kDa peptide released by insect digestive enzymes. Here we have used chemical modification to observe the influence of lysines and acidic residues on JBU enzymatic and insecticidal activities. Chemical modification of lysine residues was performed with dimethylamine-borane complex and formaldehyde, and acidic residues were modified by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and ethylenediamine. Derivatized ureases, called JBU-Lys (lysine-modified) and JBU-Ac (acidic residues-modified), were assayed for their biochemical and insecticidal properties. Neither modification altered significantly the kinetic parameters analyzed, indicating that no residue critical for the enzyme activity was affected and that the modifications did not incur in any significant structural alteration. On the other hand, both modifications reduced the toxic activity of the native protein fed to Dysdercus peruvianus. The changes observed in the entomotoxic property of the derivatized proteins reflect alterations in different steps of JBU's toxicity towards insects. JBU-Ac is not susceptible to hydrolysis by insect digestive enzymes, hence impairing the release of toxic peptide(s), while JBU-Lys is processed as the native protein. On the other hand, the antidiuretic effect of JBU on Rhodnius prolixus is altered in JBU-Lys, but not in JBU-Ac. Altogether, these data emphasize the role of lysine and acidic residues on the insecticidal properties of ureases.

  15. Intraluminal acid activates esophageal nodose C fibers after mast cell activation

    PubMed Central

    Zhang, Shizhong; Liu, Zhenyu; Heldsinger, Andrea; Owyang, Chung

    2013-01-01

    Acid reflux in the esophagus can induce esophageal painful sensations such as heartburn and noncardiac chest pain. The mechanisms underlying acid-induced esophageal nociception are not clearly understood. In our previous studies, we characterized esophageal vagal nociceptive afferents and defined their responses to noxious mechanical and chemical stimulation. In the present study, we aim to determine their responses to intraluminal acid infusion. Extracellular single-unit recordings were performed in nodose ganglion neurons with intact nerve endings in the esophagus using ex vivo esophageal-vagal preparations. Action potentials evoked by esophageal intraluminal acid perfusion were compared in naive and ovalbumin (OVA)-challenged animals, followed by measurements of transepithelial electrical resistance (TEER) and the expression of tight junction proteins (zona occludens-1 and occludin). In naive guinea pigs, intraluminal infusion with either acid (pH = 2–3) or capsaicin did not evoke an action potential discharge in esophageal nodose C fibers. In OVA-sensitized animals, following esophageal mast cell activation by in vivo OVA inhalation, intraluminal acid infusion for about 20 min started to evoke action potential discharges. This effect is further confirmed by selective mast cell activation using in vitro tissue OVA challenge in esophageal-vagal preparations. OVA inhalation leads to decreased TEER and zona occludens-1 expression, suggesting an impaired esophageal epithelial barrier function after mast cell activation. These data for the first time provide direct evidence of intraluminal acid-induced activation of esophageal nociceptive C fibers and suggest that mast cell activation may make esophageal epithelium more permeable to acid, which subsequently may increase esophageal vagal nociceptive C fiber activation. PMID:24264049

  16. Bactericidal activity of the human skin fatty acid cis-6-hexadecanoic acid on Staphylococcus aureus.

    PubMed

    Cartron, Michaël L; England, Simon R; Chiriac, Alina Iulia; Josten, Michaele; Turner, Robert; Rauter, Yvonne; Hurd, Alexander; Sahl, Hans-Georg; Jones, Simon; Foster, Simon J

    2014-07-01

    Human skin fatty acids are a potent aspect of our innate defenses, giving surface protection against potentially invasive organisms. They provide an important parameter in determining the ecology of the skin microflora, and alterations can lead to increased colonization by pathogens such as Staphylococcus aureus. Harnessing skin fatty acids may also give a new avenue of exploration in the generation of control measures against drug-resistant organisms. Despite their importance, the mechanism(s) whereby skin fatty acids kill bacteria has remained largely elusive. Here, we describe an analysis of the bactericidal effects of the major human skin fatty acid cis-6-hexadecenoic acid (C6H) on the human commensal and pathogen S. aureus. Several C6H concentration-dependent mechanisms were found. At high concentrations, C6H swiftly kills cells associated with a general loss of membrane integrity. However, C6H still kills at lower concentrations, acting through disruption of the proton motive force, an increase in membrane fluidity, and its effects on electron transfer. The design of analogues with altered bactericidal effects has begun to determine the structural constraints on activity and paves the way for the rational design of new antistaphylococcal agents.

  17. Biological Activity of Aminophosphonic Acids and Their Short Peptides

    NASA Astrophysics Data System (ADS)

    Lejczak, Barbara; Kafarski, Pawel

    The biological activity and natural occurrence of the aminophosphonic acids were described half a century ago. Since then the chemistry and biology of this class of compounds have developed into the separate field of phosphorus chemistry. Today it is well acknowledged that these compounds possess a wide variety of promising, and in some cases commercially useful, physiological activities. Thus, they have found applications ranging from agrochemical (with the herbicides glyphosate and bialaphos being the most prominent examples) to medicinal (with the potent antihypertensive fosinopril and antiosteoporetic bisphosphonates being examples).

  18. Synthesis and cytotoxic activity of new betulin and betulinic acid esters with conjugated linoleic acid (CLA).

    PubMed

    Tubek, Barbara; Mituła, Paweł; Niezgoda, Natalia; Kempińska, Katarzyna; Wietrzyk, Joanna; Wawrzeńczyk, Czesław

    2013-04-01

    The synthesis of new ester derivatives of betulin (3a-c) and betulinic acid (4) with conjugated linoleic acid isomers (CLA; in a mixture of 43.4% 9c, 11t; 49.5% 10t, 12c; 7.1% other isomers) is presented. Esterification was carried out with N,N'-dicyclohexylcarbodiimide (DCC) as the coupling agent in the presence of 4-dimethylamino-pyridine (DMAP) in dichloromethane (or pyridine). The in vitro cytotoxic effect of betulin (1), betulinic acid (2), a mixture of CLA isomers and their derivatives (3a-c, 4) was examined using the MTT assay against four cancer cell lines (P388, CEM/C2, CCRF/CEM and HL-60) and the SRB assay on the HT-29 cell line. Ester 4 was the most active among the esters synthesized against the CEM/C2 cell line with an ID50 value 16.9 +/- 6.5 microg/mL. Betulin (1), betulinic acid (2) and CLA were the most active agents against the cancer cell lines studied.

  19. Activity of dehydroabietic acid derivatives against wood contaminant fungi.

    PubMed

    Savluchinske-Feio, Sonia; Nunes, Lina; Pereira, Pablo Tavares; Silva, Ana M; Roseiro, José C; Gigante, Bárbara; Marcelo Curto, Maria João

    2007-09-01

    The antifungal activity of 10 dehydroabietic acid derivatives with different configuration in A and B rings (cis/trans A/B junction) and different substituents and/or functionalities was evaluated in bioassays in vitro and in situ (pine wood blocks). The test compounds dissolved in acetone were assayed at several concentrations w/w (test compound/culture medium) against the fungi. The Relative Inhibition (RI) was determined by measuring the radial growth of colonies of the fungi treated with the test compounds by comparison with those of control cultures; the results are expressed as EC(50). The results of bioassays in vitro have shown that hydroxyl and aldehyde functions are required for antifungal activity in this group of compounds and deisopropylation can increase the activity. Our assay of antifungal activity in situ (in pine wood blocks) provides a means to investigate the preservative activities of these antifungal compounds under actual conditions of use. The dehydroabietic acid derivative cis-deisopropyldehydroabietanol (10) inhibited the growth of several of the fungi tested, in vitro and in situ. The results obtained in situ with the test compound (10) at 6% and 8% were not significantly different from the reference products and a good level of protection of the wood against the organisms tested was achieved. The results in wood bioassays present new possibilities in the search for natural new compounds in the wood protection, as an alternative to conventional fungicides.

  20. Sulfation mediates activity of zosteric acid against biofilm formation.

    PubMed

    Kurth, Caroline; Cavas, Levent; Pohnert, Georg

    2015-01-01

    Zosteric acid (ZA), a metabolite from the marine sea grass Zostera marina, has attracted much attention due to its attributed antifouling (AF) activity. However, recent results on dynamic transformations of aromatic sulfates in marine phototrophic organisms suggest potential enzymatic desulfation of metabolites like ZA. The activity of ZA was thus re-investigated using biofilm assays and simultaneous analytical monitoring by liquid chromatography/mass spectrometry (LC/MS). Comparison of ZA and its non-sulfated form para-coumaric acid (CA) revealed that the active substance was in all cases the non-sulfated CA while ZA was virtually inactive. CA exhibited a strong biofilm inhibiting activity against Escherichia coli and Vibrio natriegens. The LC/MS data revealed that the apparent biofilm inhibiting effects of ZA on V. natriegens can be entirely attributed to CA released from ZA by sulfatase activity. In the light of various potential applications, the (a)biotic transformation of ZA to CA has thus to be considered in future AF formulations.

  1. Activation of peroxisome proliferator-activated receptor-{alpha} enhances fatty acid oxidation in human adipocytes

    SciTech Connect

    Lee, Joo-Young; Hashizaki, Hikari; Goto, Tsuyoshi; Sakamoto, Tomoya; Takahashi, Nobuyuki; Kawada, Teruo

    2011-04-22

    Highlights: {yields} PPAR{alpha} activation increased mRNA expression levels of adipocyte differentiation marker genes and GPDH activity in human adipocytes. {yields} PPAR{alpha} activation also increased insulin-dependent glucose uptake in human adipocytes. {yields} PPAR{alpha} activation did not affect lipid accumulation in human adipocytes. {yields} PPAR{alpha} activation increased fatty acid oxidation through induction of fatty acid oxidation-related genes in human adipocytes. -- Abstract: Peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPAR{alpha} in adipocytes have been unclarified. We examined the functions of PPAR{alpha} using human multipotent adipose tissue-derived stem cells as a human adipocyte model. Activation of PPAR{alpha} by GW7647, a potent PPAR{alpha} agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPAR{gamma}, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPAR{alpha} activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPAR{gamma} is activated. On the other hand, PPAR{alpha} activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPAR{alpha}-dependent manner. Moreover, PPAR{alpha} activation increased the production of CO{sub 2} and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPAR{alpha} stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPAR{alpha} agonists could improve insulin resistance without lipid accumulation in adipocytes. The expected

  2. Non-acidic activation of pain-related Acid-Sensing Ion Channel 3 by lipids.

    PubMed

    Marra, Sébastien; Ferru-Clément, Romain; Breuil, Véronique; Delaunay, Anne; Christin, Marine; Friend, Valérie; Sebille, Stéphane; Cognard, Christian; Ferreira, Thierry; Roux, Christian; Euller-Ziegler, Liana; Noel, Jacques; Lingueglia, Eric; Deval, Emmanuel

    2016-02-15

    Extracellular pH variations are seen as the principal endogenous signal that triggers activation of Acid-Sensing Ion Channels (ASICs), which are basically considered as proton sensors, and are involved in various processes associated with tissue acidification. Here, we show that human painful inflammatory exudates, displaying non-acidic pH, induce a slow constitutive activation of human ASIC3 channels. This effect is largely driven by lipids, and we identify lysophosphatidylcholine (LPC) and arachidonic acid (AA) as endogenous activators of ASIC3 in the absence of any extracellular acidification. The combination of LPC and AA evokes robust depolarizing current in DRG neurons at physiological pH 7.4, increases nociceptive C-fiber firing, and induces pain behavior in rats, effects that are all prevented by ASIC3 blockers. Lipid-induced pain is also significantly reduced in ASIC3 knockout mice. These findings open new perspectives on the roles of ASIC3 in the absence of tissue pH variation, as well as on the contribution of those channels to lipid-mediated signaling.

  3. Activation of Slo2.1 channels by niflumic acid

    PubMed Central

    Dai, Li; Garg, Vivek

    2010-01-01

    Slo2.1 channels conduct an outwardly rectifying K+ current when activated by high [Na+]i. Here, we show that gating of these channels can also be activated by fenamates such as niflumic acid (NFA), even in the absence of intracellular Na+. In Xenopus oocytes injected with <10 ng cRNA, heterologously expressed human Slo2.1 current was negligible, but rapidly activated by extracellular application of NFA (EC50 = 2.1 mM) or flufenamic acid (EC50 = 1.4 mM). Slo2.1 channels activated by 1 mM NFA exhibited weak voltage dependence. In high [K+]e, the conductance–voltage (G-V) relationship had a V1/2 of +95 mV and an effective valence, z, of 0.48 e. Higher concentrations of NFA shifted V1/2 to more negative potentials (EC50 = 2.1 mM) and increased the minimum value of G/Gmax (EC50 = 2.4 mM); at 6 mM NFA, Slo2.1 channel activation was voltage independent. In contrast, V1/2 of the G-V relationship was shifted to more positive potentials when [K+]e was elevated from 1 to 300 mM (EC50 = 21.2 mM). The slope conductance measured at the reversal potential exhibited the same [K+]e dependency (EC50 = 23.5 mM). Conductance was also [Na+]e dependent. Outward currents were reduced when Na+ was replaced with choline or mannitol, but unaffected by substitution with Rb+ or Li+. Neutralization of charged residues in the S1–S4 domains did not appreciably alter the voltage dependence of Slo2.1 activation. Thus, the weak voltage dependence of Slo2.1 channel activation is independent of charged residues in the S1–S4 segments. In contrast, mutation of R190 located in the adjacent S4–S5 linker to a neutral (Ala or Gln) or acidic (Glu) residue induced constitutive channel activity that was reduced by high [K+]e. Collectively, these findings indicate that Slo2.1 channel gating is modulated by [K+]e and [Na+]e, and that NFA uncouples channel activation from its modulation by transmembrane voltage and intracellular Na+. PMID:20176855

  4. Activation of Slo2.1 channels by niflumic acid.

    PubMed

    Dai, Li; Garg, Vivek; Sanguinetti, Michael C

    2010-03-01

    Slo2.1 channels conduct an outwardly rectifying K(+) current when activated by high [Na(+)](i). Here, we show that gating of these channels can also be activated by fenamates such as niflumic acid (NFA), even in the absence of intracellular Na(+). In Xenopus oocytes injected with <10 ng cRNA, heterologously expressed human Slo2.1 current was negligible, but rapidly activated by extracellular application of NFA (EC(50) = 2.1 mM) or flufenamic acid (EC(50) = 1.4 mM). Slo2.1 channels activated by 1 mM NFA exhibited weak voltage dependence. In high [K(+)](e), the conductance-voltage (G-V) relationship had a V(1/2) of +95 mV and an effective valence, z, of 0.48 e. Higher concentrations of NFA shifted V(1/2) to more negative potentials (EC(50) = 2.1 mM) and increased the minimum value of G/G(max) (EC(50) = 2.4 mM); at 6 mM NFA, Slo2.1 channel activation was voltage independent. In contrast, V(1/2) of the G-V relationship was shifted to more positive potentials when [K(+)](e) was elevated from 1 to 300 mM (EC(50) = 21.2 mM). The slope conductance measured at the reversal potential exhibited the same [K(+)](e) dependency (EC(50) = 23.5 mM). Conductance was also [Na(+)](e) dependent. Outward currents were reduced when Na(+) was replaced with choline or mannitol, but unaffected by substitution with Rb(+) or Li(+). Neutralization of charged residues in the S1-S4 domains did not appreciably alter the voltage dependence of Slo2.1 activation. Thus, the weak voltage dependence of Slo2.1 channel activation is independent of charged residues in the S1-S4 segments. In contrast, mutation of R190 located in the adjacent S4-S5 linker to a neutral (Ala or Gln) or acidic (Glu) residue induced constitutive channel activity that was reduced by high [K(+)](e). Collectively, these findings indicate that Slo2.1 channel gating is modulated by [K(+)](e) and [Na(+)](e), and that NFA uncouples channel activation from its modulation by transmembrane voltage and intracellular Na(+).

  5. Influence of ethylenediamine-n,n’-disuccinic acid (EDDS) concentration on the bactericidal activity of fatty acids in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The antibacterial activity of mixtures of ethylenediamine-N,N’-disuccinic acid (EDDS) and antibacterial fatty acids (FA) was examined using the agar diffusion assay. Solutions of caproic, caprylic, capric, and lauric acids dissolved in potassium hydroxide (KOH) were supplemented with 0, 5, or 10 mM ...

  6. Activated Persulfate Oxidation of Perfluorooctanoic Acid (PFOA) in Groundwater under Acidic Conditions

    PubMed Central

    Yin, Penghua; Hu, Zhihao; Song, Xin; Liu, Jianguo; Lin, Na

    2016-01-01

    Perfluorooctanoic acid (PFOA) is an emerging contaminant of concern due to its toxicity for human health and ecosystems. However, successful degradation of PFOA in aqueous solutions with a cost-effective method remains a challenge, especially for groundwater. In this study, the degradation of PFOA using activated persulfate under mild conditions was investigated. The impact of different factors on persulfate activity, including pH, temperature (25 °C–50 °C), persulfate dosage and reaction time, was evaluated under different experimental conditions. Contrary to the traditional alkaline-activated persulfate oxidation, it was found that PFOA can be effectively degraded using activated persulfate under acidic conditions, with the degradation kinetics following the pseudo-first-order decay model. Higher temperature, higher persulfate dosage and increased reaction time generally result in higher PFOA degradation efficiency. Experimental results show that a PFOA degradation efficiency of 89.9% can be achieved by activated persulfate at pH of 2.0, with the reaction temperature of 50 °C, molar ratio of PFOA to persulfate as 1:100, and a reaction time of 100 h. The corresponding defluorination ratio under these conditions was 23.9%, indicating that not all PFOA decomposed via fluorine removal. The electron paramagnetic resonance spectrometer analysis results indicate that both SO4−• and •OH contribute to the decomposition of PFOA. It is proposed that PFOA degradation occurs via a decarboxylation reaction triggered by SO4−•, followed by a HF elimination process aided by •OH, which produces one-CF2-unit-shortened perfluoroalkyl carboxylic acids (PFCAs, Cn−1F2n−1COOH). The decarboxylation and HF elimination processes would repeat and eventually lead to the complete mineralization all PFCAs. PMID:27322298

  7. Activating frataxin expression by repeat-targeted nucleic acids

    PubMed Central

    Li, Liande; Matsui, Masayuki; Corey, David R.

    2016-01-01

    Friedreich's ataxia is an incurable genetic disorder caused by a mutant expansion of the trinucleotide GAA within an intronic FXN RNA. This expansion leads to reduced expression of frataxin (FXN) protein and evidence suggests that transcriptional repression is caused by an R-loop that forms between the expanded repeat RNA and complementary genomic DNA. Synthetic agents that increase levels of FXN protein might alleviate the disease. We demonstrate that introducing anti-GAA duplex RNAs or single-stranded locked nucleic acids into patient-derived cells increases FXN protein expression to levels similar to analogous wild-type cells. Our data are significant because synthetic nucleic acids that target GAA repeats can be lead compounds for restoring curative FXN levels. More broadly, our results demonstrate that interfering with R-loop formation can trigger gene activation and reveal a new strategy for upregulating gene expression. PMID:26842135

  8. Antimicrobial Activity of Oleanolic and Ursolic Acids: An Update

    PubMed Central

    Jesus, Jéssica A.; Lago, João Henrique G.; Laurenti, Márcia D.; Yamamoto, Eduardo S.; Passero, Luiz Felipe D.

    2015-01-01

    Triterpenoids are the most representative group of phytochemicals, as they comprise more than 20,000 recognized molecules. These compounds are biosynthesized in plants via squalene cyclization, a C30 hydrocarbon that is considered to be the precursor of all steroids. Due to their low hydrophilicity, triterpenes were considered to be inactive for a long period of time; however, evidence regarding their wide range of pharmacological activities is emerging, and elegant studies have highlighted these activities. Several triterpenic skeletons have been described, including some that have presented with pentacyclic features, such as oleanolic and ursolic acids. These compounds have displayed incontestable biological activity, such as antibacterial, antiviral, and antiprotozoal effects, which were not included in a single review until now. Thus, the present review investigates the potential use of these triterpenes against human pathogens, including their mechanisms of action, via in vivo studies, and the future perspectives about the use of compounds for human or even animal health are also discussed. PMID:25793002

  9. Active site amino acid sequence of human factor D.

    PubMed

    Davis, A E

    1980-08-01

    Factor D was isolated from human plasma by chromatography on CM-Sephadex C50, Sephadex G-75, and hydroxylapatite. Digestion of reduced, S-carboxymethylated factor D with cyanogen bromide resulted in three peptides which were isolated by chromatography on Sephadex G-75 (superfine) equilibrated in 20% formic acid. NH2-Terminal sequences were determined by automated Edman degradation with a Beckman 890C sequencer using a 0.1 M Quadrol program. The smallest peptide (CNBr III) consisted of the NH2-terminal 14 amino acids. The other two peptides had molecular weights of 17,000 (CNBr I) and 7000 (CNBr II). Overlap of the NH2-terminal sequence of factor D with the NH2-terminal sequence of CNBr I established the order of the peptides. The NH2-terminal 53 residues of factor D are somewhat more homologous with the group-specific protease of rat intestine than with other serine proteases. The NH2-terminal sequence of CNBr II revealed the active site serine of factor D. The typical serine protease active site sequence (Gly-Asp-Ser-Gly-Gly-Pro was found at residues 12-17. The region surrounding the active site serine does not appear to be more highly homologous with any one of the other serine proteases. The structural data obtained point out the similarities between factor D and the other proteases. However, complete definition of the degree of relationship between factor D and other proteases will require determination of the remainder of the primary structure.

  10. Antiproliferative Activity of β-Hydroxy-β-Arylalkanoic Acids

    PubMed Central

    Dilber, Sanda P.; Žižak, Željko S.; Stanojković, Tatjana P.; Juranić, Zorica D.; Drakulić, Branko J.; Juranić, Ivan O.

    2007-01-01

    Article describes the synthesis of fifteen β-hydroxy-β-arylalkanoic acids by Reformatsky reaction using the 1-ethoxyethyl-2-bromoalkanoates, aromatic or cycloalkyl ketones or aromatic aldehydes. The short survey of previously reported synthetic procedures for title compounds, is given. The majority of obtained compounds exert antiproliferative activity in vitro toward human: HeLa, Fem-X cells, K562, and LS174 cells, having IC50 values from 62.20 to 205 μM. The most active compound is 3-OH-2,2-di-Me-3-(4- biphenylyl)-butanoic acid, having the IC50 value 62.20 μM toward HeLa cells. Seven examined compounds did not affect proliferation of healthy human blood peripheral mononuclear cells (PBMC and PBMC+ PHA), IC50 > 300 μM. The preliminary QSAR results show that estimated lipophilicity of compounds influences their antiproliferative activity in the first place. The ability of dehydration, and the spatial arrangement of hydrophobic portion, HBD and HBA in molecules are has almost equal importance as lipophilicity.

  11. Anti-Trichomonas vaginalis activity of betulinic acid derivatives.

    PubMed

    Hübner, Dariana Pimentel Gomes; de Brum Vieira, Patrícia; Frasson, Amanda Piccoli; Menezes, Camila Braz; Senger, Franciane Rios; Santos da Silva, Gloria Narjara; Baggio Gnoatto, Simone Cristina; Tasca, Tiana

    2016-12-01

    Caused by Trichomonas vaginalis, trichomoniasis is the most common non-viral STD worldwide. Currently, metronidazole and tinidazole are the only drugs approved for treatment of the condition. However, problems such as metronidazole-resistant T. vaginalis isolates and allergic reactions have been reported. Based on data previously published by our group, structural changes in betulinic acid (1) were performed, generating three new compounds that were tested for in vitro anti-T.vaginalis activity in this study. Whereas derivative 2 did not demonstrate anti-T. vaginalis activity, derivatives 3 and 4 reduced trophozoite viability by 100%, with MIC values of 50μM. The structural difference of two compounds was performed only on the C-28 position. Derivative 3 showed low cytotoxicity against Vero cells in 24h; however, derivative 4 was highly cytotoxic, but efficient when associated with metronidazole in the synergism assay. ROS production by neutrophils was reduced, and derivative 3 showed anti-inflammatory effect. Collectively, the results of this study provide in vitro evidence that betulinic acid derivatives 3 and 4 are potential compounds with anti-T. vaginalis activity.

  12. The biological activities of protein/oleic acid complexes reside in the fatty acid.

    PubMed

    Fontana, Angelo; Spolaore, Barbara; Polverino de Laureto, Patrizia

    2013-06-01

    A complex formed by human α-lactalbumin (α-LA) and oleic acid (OA), named HAMLET, has been shown to have an apoptotic activity leading to the selective death of tumor cells. In numerous publications it has been reported that in the complex α-LA is monomeric and adopts a partly folded or "molten globule" state, leading to the idea that partly folded proteins can have "beneficial effects". The protein/OA molar ratio initially has been reported to be 1:1, while recent data have indicated that the OA-complex is given by an oligomeric protein capable of binding numerous OA molecules per protein monomer. Proteolytic fragments of α-LA, as well as other proteins unrelated to α-LA, can form OA-complexes with biological activities similar to those of HAMLET, thus indicating that a generic protein can form a cytotoxic complex under suitable experimental conditions. Moreover, even the selective tumoricidal activity of HAMLET-like complexes has been questioned. There is recent evidence that the biological activity of long chain unsaturated fatty acids, including OA, can be ascribed to their effect of perturbing the structure of biological membranes and consequently the function of membrane-bound proteins. In general, it has been observed that the cytotoxic effects exerted by HAMLET-like complexes are similar to those reported for OA alone. Overall, these findings can be interpreted by considering that the protein moiety does not have a toxic effect on its own, but merely acts as a solubilising agent for the inherently toxic fatty acid.

  13. Depressed phosphatidic acid-induced contractile activity of failing cardiomyocytes.

    PubMed

    Tappia, Paramjit S; Maddaford, Thane G; Hurtado, Cecilia; Panagia, Vincenzo; Pierce, Grant N

    2003-01-10

    The effects of phosphatidic acid (PA), a known inotropic agent, on Ca(2+) transients and contractile activity of cardiomyocytes in congestive heart failure (CHF) due to myocardial infarction were examined. In control cells, PA induced a significant increase (25%) in active cell shortening and Ca(2+) transients. The phospholipase C (PLC) inhibitor, 2-nitro-4-carboxyphenyl N,N-diphenylcarbonate, blocked the positive inotropic action induced by PA, indicating that PA induces an increase in contractile activity and Ca(2+) transients through stimulation of PLC. Conversely, in failing cardiomyocytes there was a loss of PA-induced increase in active cell shortening and Ca(2+) transients. PA did not alter resting cell length. Both diastolic and systolic [Ca(2+)] were significantly elevated in the failing cardiomyocytes. In vitro assessment of the cardiac sarcolemmal (SL) PLC activity revealed that the impaired failing cardiomyocyte response to PA was associated with a diminished stimulation of SL PLC activity by PA. Our results identify an important defect in the PA-PLC signaling pathway in failing cardiomyocytes, which may have significant implications for the depressed contractile function during CHF.

  14. Synthesis and biological activity of novel deoxycholic acid derivatives.

    PubMed

    Popadyuk, Irina I; Markov, Andrey V; Salomatina, Oksana V; Logashenko, Evgeniya B; Shernyukov, Andrey V; Zenkova, Marina A; Salakhutdinov, Nariman F

    2015-08-01

    We report the synthesis and biological activity of new semi-synthetic derivatives of naturally occurring deoxycholic acid (DCA) bearing 2-cyano-3-oxo-1-ene, 3-oxo-1(2)-ene or 3-oxo-4(5)-ene moieties in ring A and 12-oxo or 12-oxo-9(11)-ene moieties in ring C. Bioassays using murine macrophage-like cells and tumour cells show that the presence of the 9(11)-double bond associated with the increased polarity of ring A or with isoxazole ring joined to ring A, improves the ability of the compounds to inhibit cancer cell growth.

  15. Synthesis and anticancer activity of novel fluorinated asiatic acid derivatives.

    PubMed

    Gonçalves, Bruno M F; Salvador, Jorge A R; Marín, Silvia; Cascante, Marta

    2016-05-23

    A series of novel fluorinated Asiatic Acid (AA) derivatives were successfully synthesized, tested for their antiproliferative activity against HeLa and HT-29 cell lines, and their structure activity relationships were evaluated. The great majority of fluorinated derivatives showed stronger antiproliferative activity than AA in a concentration dependent manner. The most active compounds have a pentameric A-ring containing an α,β-unsaturated carbonyl group. The compounds with better cytotoxic activity were then evaluated against MCF-7, Jurkat, PC-3, A375, MIA PaCa-2 and BJ cell lines. Derivative 14 proved to be the most active compound among all tested derivatives and its mechanism of action was further investigated in HeLa cell line. The results showed that compound 14 induced cell cycle arrest in G0/G1 stage as a consequence of up-regulation of p21(cip1/waf1) and p27(kip1) and down-regulation of cyclin D3 and Cyclin E. Furthermore, compound 14 was found to induce caspase driven-apoptosis with activation of caspases-8 and caspase-3 and the cleavage of PARP. The cleavage of Bid into t-Bid, the up-regulation of Bax and the down-regulation of Bcl-2 were also observed after treatment of HeLa cells with compound 14. Taken together, these mechanistic studies revealed the involvement of extrinsic and intrinsic pathways in the apoptotic process induced by compound 14. Importantly, the antiproliferative activity of this compound on the non-tumor BJ human fibroblast cell line is weaker than in the tested cancer cell lines. The enhanced potency (between 45 and 90-fold more active than AA in a panel of cancer cell lines) and selectivity of this new AA derivative warrant further preclinical evaluation.

  16. Fluorogenic Substrates for Visualizing Acidic Organelle Enzyme Activities

    PubMed Central

    Harlan, Fiona Karen; Lusk, Jason Scott; Mohr, Breanna Michelle; Guzikowski, Anthony Peter; Batchelor, Robert Hardy; Jiang, Ying

    2016-01-01

    Lysosomes are acidic cytoplasmic organelles that are present in all nucleated mammalian cells and are involved in a variety of cellular processes including repair of the plasma membrane, defense against pathogens, cholesterol homeostasis, bone remodeling, metabolism, apoptosis and cell signaling. Defects in lysosomal enzyme activity have been associated with a variety of neurological diseases including Parkinson’s Disease, Lysosomal Storage Diseases, Alzheimer's disease and Huntington's disease. Fluorogenic lysosomal staining probes were synthesized for labeling lysosomes and other acidic organelles in a live-cell format and were shown to be capable of monitoring lysosomal metabolic activity. The new targeted substrates were prepared from fluorescent dyes having a low pKa value for optimum fluorescence at the lower physiological pH found in lysosomes. They were modified to contain targeting groups to direct their accumulation in lysosomes as well as enzyme-cleavable functions for monitoring specific enzyme activities using a live-cell staining format. Application to the staining of cells derived from blood and skin samples of patients with Metachromatic Leukodystrophy, Krabbe and Gaucher Diseases as well as healthy human fibroblast and leukocyte control cells exhibited localization to the lysosome when compared with known lysosomal stain LysoTracker® Red DND-99 as well as with anti-LAMP1 Antibody staining. When cell metabolism was inhibited with chloroquine, staining with an esterase substrate was reduced, demonstrating that the substrates can be used to measure cell metabolism. When applied to diseased cells, the intensity of staining was reflective of lysosomal enzyme levels found in diseased cells. Substrates specific to the enzyme deficiencies in Gaucher or Krabbe disease patient cell lines exhibited reduced staining compared to that in non-diseased cells. The new lysosome-targeted fluorogenic substrates should be useful for research, diagnostics and

  17. Short- and medium-chain fatty acids exhibit antimicrobial activity for oral microorganisms

    PubMed Central

    Huang, Chifu B.; Altimova, Yelena; Myers, Taylor M.; Ebersole, Jeffrey L.

    2011-01-01

    Objectives This study assessed the antibacterial activity of short-, medium-, and long-chain fatty acids against various oral microorganisms. Methods The short-chain fatty acids [formic acid (C1), acetic acid (C2), propionic acid (C3), butyric acid (C4), isobutyric acid (C4), isovaleric acid (C5), hexanoic acid (C6)], medium-chain fatty acids [octanoic acid (C8), capric acid (C10), lauric acid (12)], and long-chain fatty acids [myristic acid (C14), palmitic acid (C16)], were investigated for antimicrobial activity against Streptococcus mutans, S. gordonii, S. sanguis, Candida albicans, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, and Porphyromonas gingivalis. Results The data demonstrated that the fatty acids exhibited patterns of inhibition against oral bacteria with some specificity that appeared related more to the bacterial species that the general structural characteristics of the microorganism. As a group the fatty acids were much less effective against C. albicans than the oral bacteria, with effectiveness limited to hexanoic, octanoic, and lauric acids. Formic acid, capric, and lauric acids were broadly inhibitory for the bacteria. Interestingly, fatty acids that are produced at metabolic end-products by a number of these bacteria, were specifically inactive against the producing species, while substantially inhibiting the growth of other oral microorganisms. Conclusions The results indicate that the antimicrobial activity of short-chain fatty acids (SCFAs), medium-chain fatty acids (MCFAs), long-chain fatty acids (LCFAs) could influence the microbial ecology in the oral cavity via at least 2 potential pathways. First, the agents delivered exogenously as therapeutic adjuncts could be packaged to enhance a microbial-regulatory environment in the subgingival sulcus. Second, it would be the intrinsic nature of these fatty acid inhibitors in contributing to the characteristics of the microbial biofilms, their evolution, and emergence of

  18. The antiviral activity of tetrazole phosphonic acids and their analogues.

    PubMed Central

    Hutchinson, D W; Naylor, M

    1985-01-01

    5-(Phosphonomethyl)-1H-tetrazole and a number of related tetrazoles have been prepared and their effects on the replication of Herpes Simplex Viruses-1 and -2 have been investigated as well as their abilities to inhibit the DNA polymerases induced by these viruses and the RNA transcriptase activity of influenza virus A. Contrary to an earlier report, 5-(phosphonomethyl)-1H-tetrazole was not an efficient inhibitor of the replication of HSV-1 and HSV-2 in tissue culture. Analogues of 5-(phosphonomethyl)-1H-tetrazole were also devoid of significant antiviral activity. Only 5-(phosphonomethyl)-1H-tetrazole and 5-(thiophosphonomethyl)-1H-tetrazole inhibited the influenza virus transcriptase, and both were more effective as inhibitors than phosphonoacetic acid under the same conditions. The DNA polymerases induced by HSV-1 and HSV-2 were inhibited slightly by 5-(phosphonomethyl)-1H-tetrazole and to a lesser extent by its N-ethyl analogue and 3-(phosphonomethyl)-1H-1,2,4-triazole. None of these compounds were as effective as phosphonoacetic acid. 5-(Thiophosphonomethyl)-1H-tetrazole was a better inhibitor of the DNA polymerase induced by HSV-1 than 5-(phosphonomethyl)-1H-tetrazole. PMID:2417198

  19. Acidic Properties and Structure-Activity Correlations of Solid Acid Catalysts Revealed by Solid-State NMR Spectroscopy.

    PubMed

    Zheng, Anmin; Li, Shenhui; Liu, Shang-Bin; Deng, Feng

    2016-04-19

    Solid acid materials with tunable structural and acidic properties are promising heterogeneous catalysts for manipulating and/or emulating the activity and selectivity of industrially important catalytic reactions. On the other hand, the performances of acid-catalyzed reactions are mostly dictated by the acidic features, namely, type (Brønsted vs Lewis acidity), amount, strength, and local environment of acid sites. The latter is relevant to their location (intra- vs extracrystalline), and possible confinement and Brønsted-Lewis acid synergy effects that may strongly affect the host-guest interactions, reaction mechanism, and shape selectivity of the catalytic system. This account aims to highlight some important applications of state-of-the-art solid-state NMR (SSNMR) techniques for exploring the structural and acidic properties of solid acid catalysts as well as their catalytic performances and relevant reaction pathway invoked. In addition, density functional theory (DFT) calculations may be exploited in conjunction with experimental SSNMR studies to verify the structure-activity correlations of the catalytic system at a microscopic scale. We describe in this Account the developments and applications of advanced ex situ and/or in situ SSNMR techniques, such as two-dimensional (2D) double-quantum magic-angle spinning (DQ MAS) homonuclear correlation spectroscopy for structural investigation of solid acids as well as study of their acidic properties. Moreover, the energies and electronic structures of the catalysts and detailed catalytic reaction processes, including the identification of reaction species, elucidation of reaction mechanism, and verification of structure-activity correlations, made available by DFT theoretical calculations were also discussed. Relevant discussions will focus primarily on results obtained from our laboratories in the past decade, including (i) quantitative and qualitative acidity characterization utilizing assorted probe molecules

  20. Destabilization, oligomerization and inhibition of the mitogenic activity of acidic fibroblast-growth factor by aurintricarboxylic acid.

    PubMed

    Lozano, R M; Rivas, G; Giménez-Gallego, G

    1997-08-15

    The triphenylmethane derivative aurintricarboxylic acid has been used to inhibit angiogenesis, vascular smooth muscle cell proliferation and cell transformation, an effect that has been attributed to its relatively nonspecific inhibitory activity of protein-nucleic acid interactions. Here, we show that this compound binds to acidic fibroblast growth factor, a prototypic member of a family of protein mitogens activated by heparin, altering its physicochemical properties and decreasing its mitogenic activity. Counteraction of the effects of aurintricarboxylic acid by heparin shows that the two compounds have opposite and reversible effects on acidic fibroblast growth factor structure and biological activity. The studies reported here may contribute to a deeper understanding of the inhibition of fibroblast-growth-factor-dependent mitogenesis of relevance to future pharmacologic developments.

  1. Activation of ceramide synthase 6 by celecoxib leads to a selective induction of C16:0-ceramide.

    PubMed

    Schiffmann, Susanne; Ziebell, Simone; Sandner, Jessica; Birod, Kerstin; Deckmann, Klaus; Hartmann, Daniela; Rode, Sina; Schmidt, Helmut; Angioni, Carlo; Geisslinger, Gerd; Grösch, Sabine

    2010-12-01

    Ceramides serve as bioactive molecules with important roles in cell proliferation and apoptosis. Ceramides (Cer) with different N-acyl side chains (C(14:0)-Cer-C(26:0)-Cer) possess distinctive roles in cell signaling and are differentially expressed in HCT-116 colon cancer cells. Celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, exhibiting antiproliferative effects, activates the sphingolipid pathway. To elucidate the mechanism, HCT-116 cells were treated with 50μM celecoxib leading to a significant increase of C(16:0)-Cer. Interestingly, 50μM celecoxib resulted in a 2.8-fold increase of ceramide synthase (CerS) activity as measured by a cell-based activity assay. siRNA against several CerSs revealed that CerS6 was predominantly responsible for the increase of C(16:0)-Cer in HCT-116 cells. Moreover, the silencing of CerS6 partially protected HCT-116 cells from the toxic effects induced by celecoxib. Treatment of cells with celecoxib and fumonisin B1 (inhibitor of CerSs) or myriocin (inhibitor of l-serine palmitoyl transferase) or desipramine (inhibitor of acid sphingomyelinase and acid ceramidase) revealed that the increase of C(16:0)-Cer results predominantly from activation of the salvage pathway. Using the nude mouse model we demonstrated that celecoxib induces also in vivo a significant increase of C(16:0)-Cer in stomach, small intestine and tumor tissue. In conclusion, celecoxib causes a specific increase of C(16:0)-Cer by activating CerS6 and the salvage pathway, which contribute to the toxic effects of celecoxib.

  2. Biologic activities of poly (2-azaadenylic acid) and poly (2-azainosinic acid).

    PubMed Central

    De Clercq, E; Huang, G F; Torrence, P F; Fukui, T; Kakiuchi, N; Ikehara, M

    1977-01-01

    Poly (2-azaadenylic acid) [(aza2A)n] and poly(2-azainosinic acid [(aza2I)n], two newly synthesized analogues of (A)n and (I)n, in which CH-2 of the purine ring is replaced by a nitrogen atom, have been evaluated in various biological assay systems. (Aza2A) n formed a complex with (U)n and (br5U)n, and (aza2I)n formed a complex with (C)n and (br5C)n, but these complexes were markedly destabilized relative to the corresponding (A)n or (I)n complexes. The (aza2A)n-and (aza2I)n-derived complexes failed to stimulate the production of interferon in primary rabbit kidney cells and human diploid fibroblasts, under conditions (A)n. (U)n, (I)n. (C)n and (I)n. (br5C)n induced high amounts of interferon. both (aza2A)n and (aza2I)n exerted a marked inhibitory effect on the endogenous RNA directed DNA polymerase (reverse transcriptase) activity associated with murine leukemia virus. They caused a relatively mild inhibition of complement activity in an hemolytic assay system. PMID:73166

  3. Influence of different forms of acidities on soil microbiological properties and enzyme activities at an acid mine drainage contaminated site.

    PubMed

    Sahoo, Prafulla Kumar; Bhattacharyya, Pradip; Tripathy, Subhasish; Equeenuddin, Sk Md; Panigrahi, M K

    2010-07-15

    Assessment of microbial parameters, viz. microbial biomass, fluorescence diacetate, microbial respiration, acid phosphatase, beta-glucosidase and urease with respect to acidity helps in evaluating the quality of soils. This study was conducted to investigate the effects of different forms of acidities on soil microbial parameters in an acid mine drainage contaminated site around coal deposits in Jainta Hills of India. Total potential and exchangeable acidity, extractable and exchangeable aluminium were significantly higher in contaminated soil compared to the baseline (p<0.01). Different forms of acidity were significantly and positively correlated with each other (p<0.05). Further, all microbial properties were positively and significantly correlated with organic carbon and clay (p<0.05). The ratios of microbial parameters with organic carbon were negatively correlated with different forms of acidity. Principal component analysis and cluster analyses showed that the microbial activities are not directly influenced by the total potential acidity and extractable aluminium. Though acid mine drainage affected soils had higher microbial biomass and activities due to higher organic matter content than those of the baseline soils, the ratios of microbial parameters/organic carbon indicated suppression of microbial growth and activities due to acidity stress.

  4. A novel nucleic acid analogue shows strong angiogenic activity

    SciTech Connect

    Tsukamoto, Ikuko; Sakakibara, Norikazu; Maruyama, Tokumi; Igarashi, Junsuke; Kosaka, Hiroaki; Kubota, Yasuo; Tokuda, Masaaki; Ashino, Hiromi; Hattori, Kenichi; Tanaka, Shinji; Kawata, Mitsuhiro; Konishi, Ryoji

    2010-09-03

    Research highlights: {yields} A novel nucleic acid analogue (2Cl-C.OXT-A, m.w. 284) showed angiogenic potency. {yields} It stimulated the tube formation, proliferation and migration of HUVEC in vitro. {yields} 2Cl-C.OXT-A induced the activation of ERK1/2 and MEK in HUVEC. {yields} Angiogenic potency in vivo was confirmed in CAM assay and rabbit cornea assay. {yields} A synthesized small angiogenic agent would have great clinical therapeutic value. -- Abstract: A novel nucleic acid analogue (2Cl-C.OXT-A) significantly stimulated tube formation of human umbilical endothelial cells (HUVEC). Its maximum potency at 100 {mu}M was stronger than that of vascular endothelial growth factor (VEGF), a positive control. At this concentration, 2Cl-C.OXT-A moderately stimulated proliferation as well as migration of HUVEC. To gain mechanistic insights how 2Cl-C.OXT-A promotes angiogenic responses in HUVEC, we performed immunoblot analyses using phospho-specific antibodies as probes. 2Cl-C.OXT-A induced robust phosphorylation/activation of MAP kinase ERK1/2 and an upstream MAP kinase kinase MEK. Conversely, a MEK inhibitor PD98059 abolished ERK1/2 activation and tube formation both enhanced by 2Cl-C.OXT-A. In contrast, MAP kinase responses elicited by 2Cl-C.OXT-A were not inhibited by SU5416, a specific inhibitor of VEGF receptor tyrosine kinase. Collectively these results suggest that 2Cl-C.OXT-A-induces angiogenic responses in HUVEC mediated by a MAP kinase cascade comprising MEK and ERK1/2, but independently of VEGF receptor tyrosine kinase. In vivo assay using chicken chorioallantoic membrane (CAM) and rabbit cornea also suggested the angiogenic potency of 2Cl-C.OXT-A.

  5. Acid Rain. Activities for Grades 4 to 12. A Teacher's Guide.

    ERIC Educational Resources Information Center

    Wood, David; Bryant, Jeannette

    This teacher's guide on acid rain is divided into three study areas to explain: (1) what causes acid rain; (2) what problems acid rain has created; and (3) what teachers and students can do to help combat acid rain. Instructions for activities within the study areas include suggested grade levels, objectives, materials needed, and directions for…

  6. Acid Rain: A Teacher's Guide. Activities for Grades 4 to 12.

    ERIC Educational Resources Information Center

    National Wildlife Federation, Washington, DC.

    This guide on acid rain for elementary and secondary students is divided into three study areas: (1) What Causes Acid Rain; (2) What Problems Acid Rain Has Created; (3) How You and Your Students Can Help Combat Acid Rain. Each section presents background information and a series of lessons pertaining to the section topic. Activities include…

  7. Nanofiltration and granular activated carbon treatment of perfluoroalkyl acids.

    PubMed

    Appleman, Timothy D; Dickenson, Eric R V; Bellona, Christopher; Higgins, Christopher P

    2013-09-15

    Perfluoroalkyl acids (PFAAs) are of concern because of their persistence in the environment and the potential toxicological effects on humans exposed to PFAAs through a variety of possible exposure routes, including contaminated drinking water. This study evaluated the efficacy of nanofiltration (NF) and granular activated carbon (GAC) adsorption in removing a suite of PFAAs from water. Virgin flat-sheet NF membranes (NF270, Dow/Filmtec) were tested at permeate fluxes of 17-75 Lm(-2)h(-1) using deionized (DI) water and artificial groundwater. The effects of membrane fouling by humic acid on PFAA rejection were also tested under constant permeate flux conditions. Both virgin and fouled NF270 membranes demonstrated >93% removal for all PFAAs under all conditions tested. GAC efficacy was tested using rapid small-scale columns packed with Calgon Filtrasorb300 (F300) carbon and DI water with and without dissolved organic matter (DOM). DOM effects were also evaluated with F600 and Siemens AquaCarb1240C. The F300 GAC had <20% breakthrough of all PFAAs in DI water for up to 125,000 bed volumes (BVs). When DOM was present, >20% breakthrough of all PFAAs by 10,000 BVs was observed for all carbons.

  8. Biological activity of phenylpropionic acid isolated from a terrestrial Streptomycetes.

    PubMed

    Narayana, Kolla J P; Prabhakar, Peddikotla; Vijayalakshmi, Muvva; Venkateswarlu, Yenamandra; Krishna, Palakodety S J

    2007-01-01

    The strain ANU 6277 was isolated from laterite soil and identified as Streptomyces sp. closely related to Streptomyces albidoflavus cluster by 16S rRNA analysis. The cultural, morphological and physiological characters of the strain were recorded. The strain exhibited resistance to chloramphenicol, penicillin and streptomycin. It had the ability to produce enzymes such as amylase and chitinase. A bioactive compound was isolated from the strain at stationary phase of culture and identified as 3-phenylpropionic acid (3-PPA) by FT-IR, EI-MS, 1H NMR and 13C NMR spectral studies. It exhibited antimicrobial activity against different bacteria like Bacillus cereus, B. subtilis, Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris, Pseudomonas aeruginosa, P. flourescens, Staphylococcus aureus and some fungi including Aspergillus flavus, A. niger, Candida albicans, Fusarium oxysporum, F. udum and Penicillium citrinum. The antifungal activity of 3-PPA of the strain was evaluated in in vivo and in vitro conditions against Fusarium udum causing wilt disease in pigeon pea. The compound 3-PPA is an effective antifungal agent when compared to tricyclozole (fungicide) to control wilt caused by F. udum, but it exhibited less antifungal activity than carbendazim.

  9. Macrophage Activation by Ursolic and Oleanolic Acids during Mycobacterial Infection.

    PubMed

    López-García, Sonia; Castañeda-Sanchez, Jorge Ismael; Jiménez-Arellanes, Adelina; Domínguez-López, Lilia; Castro-Mussot, Maria Eugenia; Hernández-Sanchéz, Javier; Luna-Herrera, Julieta

    2015-08-06

    Oleanolic (OA) and ursolic acids (UA) are triterpenes that are abundant in vegetables, fruits and medicinal plants. They have been described as active moieties in medicinal plants used for the treatment of tuberculosis. In this study, we analyzed the effects of these triterpenes on macrophages infected in vitro with Mycobacterium tuberculosis (MTB). We evaluated production of nitric oxide (NO), reactive oxygen species (ROS), and cytokines (TNF-α and TGF-β) as well as expression of cell membrane receptors (TGR5 and CD36) in MTB-infected macrophages following treatment with OA and UA. Triterpenes caused reduced MTB growth in macrophages, stimulated production of NO and ROS in the early phase, stimulated TNF-α, suppressed TGF-β and caused over-expression of CD36 and TGR5 receptors. Thus, our data suggest immunomodulatory properties of OA and UA on MTB infected macrophages. In conclusion, antimycobacterial effects induced by these triterpenes may be attributable to the conversion of macrophages from stage M2 (alternatively activated) to M1 (classically activated).

  10. Retinoic Acid-mediated Nuclear Receptor Activation and Hepatocyte Proliferation

    PubMed Central

    Bushue, Nathan; Wan, Yu-Jui Yvonne

    2016-01-01

    Due to their well-known differentiation and apoptosis-inducing abilities, retinoic acid (RA) and its analogs have strong anti-cancer efficacy in human cancers. However, in vivo RA is a liver mitogen. While speculation has persisted that RA-mediated signaling is likely involved in hepatocyte proliferation during liver regeneration, direct evidence is still required. Findings in support of this proposition include observations that a release of retinyl palmitate (the precursor of RA) occurs in liver stellate cells following liver injury. Nevertheless, the biological action of this released vitamin A is virtually unknown. More likely is that the released vitamin A is converted to RA, the biological form, and then bound to a specific receptor (retinoid x receptor; RXRα), which is most abundantly expressed in the liver. Considering the mitogenic effects of RA, the RA-activated RXRα would likely then influence hepatocyte proliferation and liver tissue repair. At present, the mechanism by which RA stimulates hepatocyte proliferation is largely unknown. This review summarizes the activation of nuclear receptors (peroxisome proliferator activated receptor-α, pregnane x receptor, constitutive androstane receptor, and farnesoid x receptor) in an RXRα dependent manner to induce hepatocyte proliferation, providing a link between RA and its proliferative role. PMID:27635169

  11. Pharmacological activation of lysophosphatidic acid receptors regulates erythropoiesis

    PubMed Central

    Lin, Kuan-Hung; Ho, Ya-Hsuan; Chiang, Jui-Chung; Li, Meng-Wei; Lin, Shi-Hung; Chen, Wei-Min; Chiang, Chi-Ling; Lin, Yu-Nung; Yang, Ya-Jan; Chen, Chiung-Nien; Lu, Jenher; Huang, Chang-Jen; Tigyi, Gabor; Yao, Chao-Ling; Lee, Hsinyu

    2016-01-01

    Lysophosphatidic acid (LPA), a growth factor-like phospholipid, regulates numerous physiological functions, including cell proliferation and differentiation. In a previous study, we have demonstrated that LPA activates erythropoiesis by activating the LPA 3 receptor subtype (LPA3) under erythropoietin (EPO) induction. In the present study, we applied a pharmacological approach to further elucidate the functions of LPA receptors during red blood cell (RBC) differentiation. In K562 human erythroleukemia cells, knockdown of LPA2 enhanced erythropoiesis, whereas knockdown of LPA3 inhibited RBC differentiation. In CD34+ human hematopoietic stem cells (hHSC) and K526 cells, the LPA3 agonist 1-oleoyl-2-methyl-sn-glycero-3-phosphothionate (2S-OMPT) promoted erythropoiesis, whereas the LPA2 agonist dodecyl monophosphate (DMP) and the nonlipid specific agonist GRI977143 (GRI) suppressed this process. In zebrafish embryos, hemoglobin expression was significantly increased by 2S-OMPT treatment but was inhibited by GRI. Furthermore, GRI treatment decreased, whereas 2S-OMPT treatment increased RBC counts and amount of hemoglobin level in adult BALB/c mice. These results indicate that LPA2 and LPA3 play opposing roles during RBC differentiation. The pharmacological activation of LPA receptor subtypes represent a novel strategies for augmenting or inhibiting erythropoiesis. PMID:27244685

  12. Unraveling fatty acid transport and activation mechanisms in Yarrowia lipolytica.

    PubMed

    Dulermo, Rémi; Gamboa-Meléndez, Heber; Ledesma-Amaro, Rodrigo; Thévenieau, France; Nicaud, Jean-Marc

    2015-09-01

    Fatty acid (FA) transport and activation have been extensively studied in the model yeast species Saccharomyces cerevisiae but have rarely been examined in oleaginous yeasts, such as Yarrowia lipolytica. Because the latter begins to be used in biodiesel production, understanding its FA transport and activation mechanisms is essential. We found that Y. lipolytica has FA transport and activation proteins similar to those of S. cerevisiae (Faa1p, Pxa1p, Pxa2p, Ant1p) but mechanism of FA peroxisomal transport and activation differs greatly with that of S. cerevisiae. While the ScPxa1p/ScPxa2p heterodimer is essential for growth on long-chain FAs, ΔYlpxa1 ΔYlpxa2 is not impaired for growth on FAs. Meanwhile, ScAnt1p and YlAnt1p are both essential for yeast growth on medium-chain FAs, suggesting they function similarly. Interestingly, we found that the ΔYlpxa1 ΔYlpxa2 ΔYlant1 mutant was unable to grow on short-, medium-, or long-chain FAs, suggesting that YlPxa1p, YlPxa2p, and YlAnt1p belong to two different FA degradation pathways. We also found that YlFaa1p is involved in FA storage in lipid bodies and that FA remobilization largely depended on YlFat1p, YlPxa1p and YlPxa2p. This study is the first to comprehensively examine FA intracellular transport and activation in oleaginous yeast.

  13. Acid-activated biochar increased sulfamethazine retention in soils.

    PubMed

    Vithanage, Meththika; Rajapaksha, Anushka Upamali; Zhang, Ming; Thiele-Bruhn, Sören; Lee, Sang Soo; Ok, Yong Sik

    2015-02-01

    Sulfamethazine (SMZ) is an ionizable and highly mobile antibiotic which is frequently found in soil and water environments. We investigated the sorption of SMZ onto soils amended with biochars (BCs) at varying pH and contact time. Invasive plants were pyrolyzed at 700 °C and were further activated with 30 % sulfuric (SBBC) and oxalic (OBBC) acids. The sorption rate of SMZ onto SBBC and OBBC was pronouncedly pH dependent and was decreased significantly when the values of soil pH increased from 3 to 5. Modeled effective sorption coefficients (K D,eff) values indicated excellent sorption on SBBC-treated loamy sand and sandy loam soils for 229 and 183 L/kg, respectively. On the other hand, the low sorption values were determined for OBBC- and BBC700-treated loamy sand and sandy loam soils. Kinetic modeling demonstrated that the pseudo second order model was the best followed by intra-particle diffusion and the Elovich model, indicating that multiple processes govern SMZ sorption. These findings were also supported by sorption edge experiments based on BC characteristics. Chemisorption onto protonated and ligand containing functional groups of the BC surface, and diffusion in macro-, meso-, and micro-pores of the acid-activated BCs are the proposed mechanisms of SMZ retention in soils. Calculated and experimental q e (amount adsorbed per kg of the adsorbent at equilibrium) values were well fitted to the pseudo second order model, and the predicted maximum equilibrium concentration of SBBC for loamy sand soils was 182 mg/kg. Overall, SBBC represents a suitable soil amendment because of its high sorption rate of SMZ in soils.

  14. Influence of acid and bile acid on ERK activity, PPARγ expression and cell proliferation in normal human esophageal epithelial cells

    PubMed Central

    Jiang, Zhi-Ru; Gong, Jun; Zhang, Zhen-Ni; Qiao, Zhe

    2006-01-01

    AIM: To observe the effects of acid and bile acid exposure on cell proliferation and the expression of extracellular signal-regulated protein kinase (ERK) and peroxisome proliferator-activated receptor γ (PPARγ) in normal human esophageal epithelial cells in vitro. METHODS: In vitro cultured normal human esophageal epithelial cells were exposed to acidic media (pH 4.0 - 6.5), media containing different bile acid (250 μmol/L), media containing acid and bile acid, respectively. Cell proliferation was assessed using MTT and flow cytometry. The expressions of phosphorylated ERK1/2 and PPARγ protein were determined by the immunoblotting technique. RESULTS: Acid-exposed (3 min) esophageal cells exhibited a significant increase in proliferation ratio, S phase of the cell cycle (P < 0.05) and the level of phosphorylated ERK1/2 protein. When the acid-exposure period exceeded 6 min, we observed a decrease in proliferation ratio and S phase of the cell cycle, with an increased apoptosis ratio (P < 0.05). Bile acid exposure (3-12 min) also produced an increase in proliferation ratio, S phase of the cell cycle (P < 0.05) and phosphorylated ERK1/2 expression. On the contrary, deoxycholic acid (DCA) exposure (> 20 min) decreased proliferation ratio. Compared with bile acid exposure (pH 7.4), bile acid exposure (pH 6.5, 4) significantly decreased proliferation ratio (P < 0.05). There was no expression of PPARγ in normal human esophageal epithelial cells. CONCLUSION: The rapid stimuli of acid or bile acid increase proliferation in normal human esophageal epithelial cells by activating the ERK pathway. PMID:16688842

  15. Production of activated carbon from a new precursor molasses by activation with sulphuric acid.

    PubMed

    Legrouri, K; Khouya, E; Ezzine, M; Hannache, H; Denoyel, R; Pallier, R; Naslain, R

    2005-02-14

    Activated carbon has been prepared from molasses, a natural precursor of vegetable origin resulting from the sugar industry in Morocco. The preparation of the activated carbon from the molasses has been carried out by impregnation of the precursor with sulphuric acid, followed by carbonisation at varying conditions (temperature and gas coverage) in order to optimize preparation parameters. The influence of activation conditions was investigated by determination of adsorption capacity of methylene blue and iodine, the BET surface area, and the pore volume of the activated carbon were determined while the micropore volume was determined by the Dubinin-Radushkevich (DR) equation. The activated materials are mainly microporous and reveal the type I isotherm of the Brunauer classification for nitrogen adsorption. The activated carbons properties in this study were found for activation of the mixture (molasses/sulphuric acid) in steam at 750 degrees C. The samples obtained in this condition were highly microporous, with high surface area (> or =1200 m2/g) and the maximum adsorption capacity of methylene blue and iodine were 435 and 1430 mg/g, respectively.

  16. Activity of flumequine against Escherichia coli: in vitro comparison with nalidixic and oxolinic acids.

    PubMed Central

    Greenwood, D

    1978-01-01

    The in vitro activity of the new antibacterial agent, flumequine, against Escherichia coli was compared with those of oxolinic acid and nalidixic acid. As judged by turbidimetric criteria, flumequine was considerably more active than nalidixic acid and slightly less active than oxolinic acid against both nalidixic acid-susceptible and -resistant strains. Resistance to all three drugs could be easily induced in vitro. The comparative efficacy of flumequine, oxolinic acid, and nalidixic acid was also tested in an in vitro model of the treatment of bacterial cystitis. In this system, suppression of bacterial growth was obtained with markedly lower concentrations of flumequine and oxolinic acid than of nalidixic acid, but prevention of the emergence of bacterial populations that exhibited increased resistance to these compounds depended on the maintenance of adequate drug levels. PMID:400825

  17. In vivo analgesic and anti-inflammatory activities of ursolic acid and oleanoic acid from Miconia albicans (Melastomataceae).

    PubMed

    Vasconcelos, Maria Anita L; Royo, Vanessa A; Ferreira, Daniele S; Crotti, Antonio E Miller; Andrade e Silva, Márcio L; Carvalho, José Carlos T; Bastos, Jairo Kenupp; Cunha, Wilson R

    2006-01-01

    The aim of this work was to use in vivo models to evaluate the analgesic and anti-inflammatory activities of ursolic acid (UA) and oleanoic acid (OA), the major compounds isolated as an isomeric mixture from the crude methylene chloride extract of Miconia albicans aerial parts in an attempt to clarify if these compounds are responsible for the analgesic properties displayed by this plant. Ursolic acid inhibited abdominal constriction in a dose-dependent manner, and the result obtained at a content of 40 mg kg(-1) was similar to that produced by administration of acetylsalicylic acid at a content of 100 mg kg(-1). Both acids reduced the number of paw licks in the second phase of the formalin test, and both of them displayed a significant anti-inflammatory effect at a content of 40 mg kg(-1). It is noteworthy that the administration of the isolated mixture, containing 65% ursolic acid/35% oleanolic acid, did not display significant analgesic and anti-inflammatory activities. On the basis of the obtained results, considering that the mixture of UA and OA was poorly active, it is suggested that other compounds, rather than UA and OA, should be responsible for the evaluated activities in the crude extract, since the crude extract samples displayed good activities.

  18. Quantitative structure-activity relationships for the in vitro antimycobacterial activity of pyrazinoic acid esters.

    PubMed

    Bergmann, K E; Cynamon, M H; Welch, J T

    1996-08-16

    Substituted pyrazinoic acid esters have previously been reported to have in vitro activity against Mycobacterium avium and Mycobacterium kansasii as well as Mycobacterium tuberculosis. Modification of both the pyrazine nucleus and the ester functionality was successful in expanding the antimycobacterial activity associated with pyrazinamide to include M. avium and M. kansasii, organisms usually not susceptible to pyrazinamide. In an attempt to understand the relationship between the activity of the esters with the needed biostability, a quantitative structure-activity relationship has been developed. This derived relationship is consistent with the observation that tert-butyl 5-chloropyrazinoate (13) and 2'-(2'-methyldecyl) 5-chloropyrazinoate (25), compounds which are both 100-fold more active than pyrazinamide against M. tuberculosis and possess a serum stability 900-1000 times greater than the lead compounds in the series.

  19. Antioxidant Activity and α-Glucosidase Inhibitory Activities of the Polycondensate of Catechin with Glyoxylic Acid

    PubMed Central

    Ma, Hanjun; Liu, Benguo

    2016-01-01

    In order to investigate polymeric flavonoids, the polycondensate of catechin with glyoxylic acid (PCG) was prepared and its chemically antioxidant, cellular antioxidant (CAA) and α-glucosidase inhibitory activities were evaluated. The DPPH and ABTS radical scavenging activities and antiproliferative effect of PCG were lower than those of catechin, while PCG had higher CAA activity than catechin. In addition, PCG had very high α-glucosidase inhibitory activities (IC50 value, 2.59 μg/mL) in comparison to catechin (IC50 value, 239.27 μg/mL). Inhibition kinetics suggested that both PCG and catechin demonstrated a mixture of noncompetitive and anticompetitive inhibition. The enhanced CAA and α-glucosidase inhibitor activities of PCG could be due to catechin polymerization enhancing the binding capacity to the cellular membrane and enzymes. PMID:26960205

  20. Antioxidant Activity and α-Glucosidase Inhibitory Activities of the Polycondensate of Catechin with Glyoxylic Acid.

    PubMed

    Geng, Sheng; Shan, Sharui; Ma, Hanjun; Liu, Benguo

    2016-01-01

    In order to investigate polymeric flavonoids, the polycondensate of catechin with glyoxylic acid (PCG) was prepared and its chemically antioxidant, cellular antioxidant (CAA) and α-glucosidase inhibitory activities were evaluated. The DPPH and ABTS radical scavenging activities and antiproliferative effect of PCG were lower than those of catechin, while PCG had higher CAA activity than catechin. In addition, PCG had very high α-glucosidase inhibitory activities (IC50 value, 2.59 μg/mL) in comparison to catechin (IC50 value, 239.27 μg/mL). Inhibition kinetics suggested that both PCG and catechin demonstrated a mixture of noncompetitive and anticompetitive inhibition. The enhanced CAA and α-glucosidase inhibitor activities of PCG could be due to catechin polymerization enhancing the binding capacity to the cellular membrane and enzymes.

  1. Stimulation of phosphatidylglycerolphosphate phosphatase activity by unsaturated fatty acids in rat heart.

    PubMed

    Cao, S G; Hatch, G M

    1994-07-01

    Phosphatidylglycerolphosphate (PGP) synthase and PGP phosphatase catalyze the sequential synthesis of phosphatidylglycerol from cytidine-5'-diphosphate 1,2-diacyl-sn-glycerol (CDP-DG) and glycerol-3-phosphate. PGP synthase and PGP phosphatase activities were characterized in rat heart mitochondrial fractions, and the effect of fatty acids on the activity of these enzymes was determined. PGP synthase was observed to be a heat labile enzyme that exhibited apparent Km values for CDP-PG and glycerol-3-phosphate of 46 and 20 microM, respectively. The addition of exogenous oleic acid to the assay mixture did not affect PGP synthase activity. PGP phosphatase was observed to be a heat labile enzyme, and addition of oleic acid to the assay mixture caused a concentration-dependent stimulation of PGP phosphatase activity. Maximum stimulation (1.9-fold) of enzyme activity was observed in the presence of 0.5 mM oleic acid, but the stimulation was slightly attenuated by the presence of albumin in the assay. The presence of oleic acid in the assay mixture caused the inactivation of PGP phosphatase activity to be retarded at 55 degrees C. Stimulation of PGP phosphatase activity was also observed with arachidonic acid, whereas taurocholic, stearic and palmitic acids did not significantly affect PGP phosphatase activity. The activity of mitochondrial phosphatidic acid phosphohydrolase was not affected by inclusion of oleic acid in the incubation mixture. We postulate that unsaturated fatty acids stimulate PGP phosphatase activity in rat heart.

  2. Lipophilic pyrazinoic acid amide and ester prodrugs stability, activation and activity against M. tuberculosis.

    PubMed

    Simões, Marta Filipa; Valente, Emília; Gómez, M José Rodríguez; Anes, Elsa; Constantino, Luís

    2009-06-28

    Pyrazinamide (PZA) is active against M. tuberculosis and is a first line agent for the treatment of human tuberculosis. PZA is itself a prodrug that requires activation by a pyrazinamidase to form its active metabolite pyrazinoic acid (POA). Since the specificity of cleavage is dependent on a single bacterial enzyme, resistance to PZA is often found in tuberculosis patients. Esters of POA have been proposed in the past as alternatives to PZA however the most promising compounds were rapidly degraded in the presence of serum. In order to obtain compounds that could survive during the transport phase, we synthesized lipophilic ester and amide POA derivatives, studied their activity against M. tuberculosis, their stability in plasma and rat liver homogenate and also their activation by a mycobacterial homogenate. The new lipophilic ester prodrugs were found to be active in concentrations 10-fold lower than those needed for PZA to kill sensitive M. tuberculosis and also have a suitable stability in the presence of plasma. Amides of POA although more stable in plasma have lower activity. The reason can probably be found in the rate of activation of both types of prodrugs; while esters are easily activated by mycobacterial esterases, amides are resistant to activation and are not transformed into POA at a suitable rate.

  3. [Activated Sludge Bacteria Transforming Cyanopyridines and Amides of Pyridinecarboxylic Acids].

    PubMed

    Demakov, V A; Vasil'ev, D M; Maksimova, Yu G; Pavlova, Yu A; Ovechkina, G V; Maksimov, A Yu

    2015-01-01

    Species diversity of bacteria from the activated sludge of Perm biological waste treatment facilities capable of transformation of cyanopyridines and amides of pyridinecarboxylic acids was investigated. Enrichment cultures in mineral media with 3-cyanopyridine as the sole carbon and nitrogen source were used to obtain 32 clones of gram-negative heterotrophic bacteria exhibiting moderate growth on solid and liquid media with 3- and 4-cyanopyridine. Sequencing of the 16S rRNA gene fragments revealed that the clones with homology of at least 99% belonged to the genera Acinetobacte, Alcaligenes, Delftia, Ochrobactrum, Pseudomonas, Stenotrophomonas, and Xanthobacter. PCR analysis showed that 13 out of 32 isolates contained the sequences (-1070 bp) homologous to the nitrilase genes reported previously in Alcaligenes faecalis JM3 (GenBank, D13419.1). Nine clones were capable of nitrile and amide transformation in minimal salt medium. Acinetobacter sp. 11 h and Alcaligenes sp. osv transformed 3-cyanopyridine to nicotinamide, while most of the clones possessed amidase activity (0.5 to 46.3 mmol/(g h) for acetamide and 0.1 to 5.6 mmol/(g h) for nicotinamide). Nicotinamide utilization by strain A. faecalis 2 was shown to result in excretion of a secondary metabolite, which was identified as dodecyl acrylate at 91% probability.

  4. Mapping human brain fatty acid amide hydrolase activity with PET

    PubMed Central

    Rusjan, Pablo M; Wilson, Alan A; Mizrahi, Romina; Boileau, Isabelle; Chavez, Sofia E; Lobaugh, Nancy J; Kish, Stephen J; Houle, Sylvain; Tong, Junchao

    2013-01-01

    Endocannabinoid tone has recently been implicated in a number of prevalent neuropsychiatric conditions. [11C]CURB is the first available positron emission tomography (PET) radiotracer for imaging fatty acid amide hydrolase (FAAH), the enzyme which metabolizes the prominent endocannabinoid anandamide. Here, we sought to determine the most suitable kinetic modeling approach for quantifying [11C]CURB that binds selectively to FAAH. Six healthy volunteers were scanned with arterial blood sampling for 90 minutes. Kinetic parameters were estimated regionally using a one-tissue compartment model (TCM), a 2-TCM with and without irreversible trapping, and an irreversible 3-TCM. The 2-TCM with irreversible trapping provided the best identifiability of PET outcome measures among the approaches studied (coefficient of variation (COV) of the net influx constant Ki and the composite parameter λk3 (λ=K1/k2) <5%, and COV(k3)<10%). Reducing scan time to 60 minutes did not compromise the identifiability of rate constants. Arterial spin labeling measures of regional cerebral blood flow were only slightly correlated with Ki, but not with k3 or λk3. Our data suggest that λk3 is sensitive to changes in FAAH activity, therefore, optimal for PET quantification of FAAH activities with [11C]CURB. Simulations showed that [11C]CURB binding in healthy subjects is far from a flow-limited uptake. PMID:23211960

  5. Chemical modifications of natural triterpenes - glycyrrhetinic and boswellic acids: evaluation of their biological activity

    PubMed Central

    Subba Rao, G. S. R.; Kondaiah, Paturu; Singh, Sanjay K.; Ravanan, Palaniyandi; Sporn, Michael B.

    2008-01-01

    Synthetic analogues of naturally occurring triterpenoids; glycyrrhetinic acid, arjunolic acid and boswellic acids, by modification of A-ring with a cyano- and enone- functionalities, have been reported. A novel method of synthesis of α-cyanoenones from isoxazoles is reported. Bio-assays using primary mouse macrophages and tumor cell lines indicate potent anti-inflammatory and cytotoxic activities associated with cyanoenones of boswellic acid and glycyrrhetinic acid. PMID:20622928

  6. Antibacterial and antibiofilm activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against periodontopathic bacteria.

    PubMed

    Sun, Mengjun; Zhou, Zichao; Dong, Jiachen; Zhang, Jichun; Xia, Yiru; Shu, Rong

    2016-10-01

    Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are two major omega-3 polyunsaturated fatty acids (n-3 PUFAs) with antimicrobial properties. In this study, we evaluated the potential antibacterial and antibiofilm activities of DHA and EPA against two periodontal pathogens, Porphyromonas gingivalis (P. gingivalis) and Fusobacterium nucleatum (F. nucleatum). MTT assay showed that DHA and EPA still exhibited no cytotoxicity to human oral tissue cells when the concentration came to 100 μM and 200 μM, respectively. Against P. gingivalis, DHA and EPA showed the same minimum inhibitory concentration (MIC) of 12.5 μM, and a respective minimum bactericidal concentration (MBC) of 12.5 μM and 25 μM. However, the MIC and MBC values of DHA or EPA against F. nucleatum were both greater than 100 μM. For early-stage bacteria, DHA or EPA displayed complete inhibition on the planktonic growth and biofilm formation of P. gingivalis from the lowest concentration of 12.5 μM. And the planktonic growth of F. nucleatum was slightly but not completely inhibited by DHA or EPA even at the concentration of 100 μM, however, the biofilm formation of F. nucleatum at 24 h was significantly restrained by 100 μM EPA. For exponential-phase bacteria, 100 μM DHA or EPA completely killed P. gingivalis and significantly decreased the viable counts of F. nucleatum. Meanwhile, the morphology of P. gingivalis was apparently damaged, and the virulence factor gene expression of P. gingivalis and F. nucleatum was strongly downregulated. Besides, the viability and the thickness of mature P. gingivalis biofilm, together with the viability of mature F. nucleatum biofilm were both significantly decreased in the presence of 100 μM DHA or EPA. In conclusion, DHA and EPA possessed antibacterial activities against planktonic and biofilm forms of periodontal pathogens, which suggested that DHA and EPA might be potentially supplementary therapeutic agents for prevention

  7. Synthesis and biological activity of novel amino acid-(N'-benzoyl) hydrazide and amino acid-(N'-nicotinoyl) hydrazide derivatives.

    PubMed

    Khattab, Sherine N

    2005-09-30

    The coupling reaction of benzoic acid and nicotinic acid hydrazides with N- protected L-amino acids including valine, leucine, phenylalanine, glutamic acid and tyrosine is reported. The target compounds, N-Boc-amino acid-(N;-benzoyl)- and N- Boc-amino acid-(N;-nicotinoyl) hydrazides 5a-5e and 6a-6e were prepared in very high yields and purity using N-[(dimethylamino)-1H-1,2,3-triazolo[4,5-b]pyridin-1-yl- methylene]-N-methyl-methanaminium hexafluorophosphate N-oxide (HATU) as coupling reagent. The antimicrobial activity of the Cu and Cd complexes of the designed compounds was tested. The products were deprotected affording the corresponding amino acid-(N;-benzoyl) hydrazide hydrochloride salts (7a-7e) and amino acid-(N;- nicotinoyl) hydrazide hydrochloride salts (8a-8e). These compounds and their Cu and Cd complexes were also tested for their antimicrobial activity. Several compounds showed comparable activity to that of ampicillin against S. aureus and E. coli.

  8. Oleic acid and linoleic acid from Tenebrio molitor larvae inhibit BACE1 activity in vitro: molecular docking studies.

    PubMed

    Youn, Kumju; Yun, Eun-Young; Lee, Jinhyuk; Kim, Ji-Young; Hwang, Jae-Sam; Jeong, Woo-Sik; Jun, Mira

    2014-02-01

    In our ongoing research to find therapeutic compounds for Alzheimer's disease (AD) from natural resources, the inhibitory activity of the BACE1 enzyme by Tenebrio molitor larvae and its major compounds were evaluated. The T. molitor larvae extract and its fractions exhibited strong BACE1 suppression. The major components of hexane fraction possessing both high yield and strong BACE1 inhibition were determined by thin layer chromatography, gas chromatography, and nuclear magnetic resonance analysis. A remarkable composition of unsaturated long chain fatty acids, including oleic acid and linoleic acid, were identified. Oleic acid, in particular, noncompetitively attenuated BACE1 activity with a half-maximal inhibitory concentration (IC₅₀) value of 61.31 μM and Ki value of 34.3 μM. Furthermore, the fatty acids were stably interacted with BACE1 at different allosteric sites of the enzyme bound with the OH of CYS319 and the NH₃ of TYR320 for oleic acid and with the C=O group of GLN304 for linoleic acid. Here, we first revealed novel pharmacophore features of oleic acids and linoleic acid to BACE1 by in silico docking studies. The present findings would clearly suggest potential guidelines for designing novel BACE1 selective inhibitors.

  9. Analgesic and antiinflammatory activity of kaur-16-en-19-oic acid from Annona reticulata L. bark.

    PubMed

    Chavan, Machindra J; Kolhe, Dinesh R; Wakte, Pravin S; Shinde, Devanand B

    2012-02-01

    Kaur-16-en-19-oic acid was isolated from the bark of Annona reticulata and studied for its analgesic and antiinflammatory activity. Analgesic activity was assessed using the hot plate test and acetic acid-induced writhing, and the antiinflammatory activity using the carrageenan induced rat paw oedema method. Kaur-16-en-19-oic acid, at doses of 10 and 20 mg/kg, exhibited significant (p < 0.05) analgesic and antiinflammatory activity. These activities were comparable to the standard drugs used, and furthermore the analgesic effect of kaur-16-en-19-oic acid was blocked by naloxone (2 mg/kg) in both analgesic models.

  10. Spectroscopic studies on the antioxidant activity of p-coumaric acid.

    PubMed

    Kiliç, Ismail; Yeşiloğlu, Yeşim

    2013-11-01

    p-coumaric acid (4-hydroxycinnamic acid), a phenolic acid, is a hydroxyl derivative of cinnamic acid. It decreases low density lipoprotein (LDL) peroxidation and reduces the risk of stomach cancer. In vitro radical scavenging and antioxidant capacity of p-coumaric acid were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe(2+)) chelating activity and ferric ions (Fe(3+)) reducing ability. p-Coumaric acid inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45μg/mL concentration. On the other hand, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), α-tocopherol and ascorbic acid displayed 66.8%, 69.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, p-coumaric acid had an effective DPPH scavenging, ABTS(+) scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe(3+)) reducing power and ferrous ions (Fe(2+)) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that p-coumaric acid can be used in the pharmacological and food industry because of these properties.

  11. Spectroscopic studies on the antioxidant activity of p-coumaric acid

    NASA Astrophysics Data System (ADS)

    Kiliç, Ismail; Yeşiloğlu, Yeşim

    2013-11-01

    p-coumaric acid (4-hydroxycinnamic acid), a phenolic acid, is a hydroxyl derivative of cinnamic acid. It decreases low density lipoprotein (LDL) peroxidation and reduces the risk of stomach cancer. In vitro radical scavenging and antioxidant capacity of p-coumaric acid were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2‧-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe2+) chelating activity and ferric ions (Fe3+) reducing ability. p-Coumaric acid inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45 μg/mL concentration. On the other hand, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), α-tocopherol and ascorbic acid displayed 66.8%, 69.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, p-coumaric acid had an effective DPPHrad scavenging, ABTSrad + scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power and ferrous ions (Fe2+) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that p-coumaric acid can be used in the pharmacological and food industry because of these properties.

  12. Antimicrobial activity of fatty acid methyl esters of some members of Chenopodiaceae.

    PubMed

    Chandrasekaran, Manivachagam; Kannathasan, Krishnan; Venkatesalu, Venugopalan

    2008-01-01

    Fatty acid methyl ester (FAME) extracts of four halophytic plants, viz. Arthrocnemum indicum, Salicornia brachiata, Suaeda maritima and Suaeda monoica belonging to the family Chenopodiaceae, were prepared and their composition was analyzed by GC-MS. The FAME extracts were also screened for antibacterial and antifungal activities. The GC-MS analysis revealed the presence of more saturated fatty acids than unsaturated fatty acids. Among the fatty acids analyzed, the relative percentage of lauric acid was high in S. brachiata (61.85%). The FAME extract of S. brachiata showed the highest antibacterial and antifungal activities among the extracts tested. The other three extracts showed potent antibacterial and moderate anticandidal activities.

  13. Salicylic acid induces mitochondrial injury by inhibiting ferrochelatase heme biosynthesis activity.

    PubMed

    Gupta, Vipul; Liu, Shujie; Ando, Hideki; Ishii, Ryohei; Tateno, Shumpei; Kaneko, Yuki; Yugami, Masato; Sakamoto, Satoshi; Yamaguchi, Yuki; Nureki, Osamu; Handa, Hiroshi

    2013-12-01

    Salicylic acid is a classic nonsteroidal anti-inflammatory drug. Although salicylic acid also induces mitochondrial injury, the mechanism of its antimitochondrial activity is not well understood. In this study, by using a one-step affinity purification scheme with salicylic acid-immobilized beads, ferrochelatase (FECH), a homodimeric enzyme involved in heme biosynthesis in mitochondria, was identified as a new molecular target of salicylic acid. Moreover, the cocrystal structure of the FECH-salicylic acid complex was determined. Structural and biochemical studies showed that salicylic acid binds to the dimer interface of FECH in two possible orientations and inhibits its enzymatic activity. Mutational analysis confirmed that Trp301 and Leu311, hydrophobic amino acid residues located at the dimer interface, are directly involved in salicylic acid binding. On a gel filtration column, salicylic acid caused a shift in the elution profile of FECH, indicating that its conformational change is induced by salicylic acid binding. In cultured human cells, salicylic acid treatment or FECH knockdown inhibited heme synthesis, whereas salicylic acid did not exert its inhibitory effect in FECH knockdown cells. Concordantly, salicylic acid treatment or FECH knockdown inhibited heme synthesis in zebrafish embryos. Strikingly, the salicylic acid-induced effect in zebrafish was partially rescued by FECH overexpression. Taken together, these findings illustrate that FECH is responsible for salicylic acid-induced inhibition of heme synthesis, which may contribute to its antimitochondrial and anti-inflammatory function. This study establishes a novel aspect of the complex pharmacological effects of salicylic acid.

  14. Effect of surface acidic oxides of activated carbon on adsorption of ammonia.

    PubMed

    Huang, Chen-Chia; Li, Hong-Song; Chen, Chien-Hung

    2008-11-30

    The influence of surface acidity of activated carbon (AC) was experimentally studied on adsorption of ammonia (NH(3)). Coconut shell-based AC was modified by various acids at different concentrations. There were five different acids employed to modified AC, which included nitric acid, sulfuric acid, hydrochloric acid, phosphoric acid, and acetic acid. Acidic functional groups on the surface of ACs were determined by a Fourier transform infrared spectrograph (FTIR) and by the Boehm titration method. Specific surface area and pore volume of the ACs were measured by a nitrogen adsorption apparatus. Adsorption amounts of NH(3) onto the ACs were measured by a dynamic adsorption system at room temperature according to the principle of the ASTM standard test method. The concentration of NH(3) in the effluent stream was monitored by a gas-detecting tube technique. Experimental results showed that adsorption amounts of NH(3) on the modified ACs were all enhanced. The ammonia adsorption amounts on various activated carbons modified by different acids are in the following order: nitric acid>sulfuric acid>acetic acid approximately phosphoric acid>hydrochloric acid. It is worth to note that the breakthrough capacity of NH(3) is linearly proportional to the amount of acidic functional groups of the ACs.

  15. Separation and recovery of nucleic acids with improved biological activity by acid-degradable polyacrylamide gel electrophoresis.

    PubMed

    Kim, Yoon Kyung; Kwon, Young Jik

    2010-05-01

    One of the fundamental challenges in studying biomacromolecules (e.g. nucleic acids and proteins) and their complexes in a biological system is isolating them in their structurally and functionally intact forms. Electrophoresis offers convenient and efficient separation and analysis of biomacromolecules but recovery of separated biomacromolecules is a significant challenge. In this study, DNAs of various sizes were separated by electrophoresis in an acid-degradable polyacrylamide gel. Almost 100% of the nucleic acids were recovered after the identified gel bands were hydrolyzed under a mildly acidic condition and purified using anion exchange resin. Further concentration by centrifugal filtration and a second purification using ion exchange column chromatography yielded 44-84% of DNA. The second conventional (non-degradable) gel electrophoresis confirmed that the nucleic acids recovered from acid-degradable gel bands preserved their electrophoretic properties through acidic gel hydrolysis, purification, and concentration processes. The plasmid DNA recovered from acid-degradable gel transfected cells significantly more efficiently than the starting plasmid DNA (i.e. improved biological activity via acid-degradable PAGE). Separation of other types of nucleic acids such as small interfering RNA using this convenient and efficient technique was also demonstrated.

  16. Activity of virgin coconut oil, lauric acid or monolaurin in combination with lactic acid against Staphylococcus aureus.

    PubMed

    Tangwatcharin, Pussadee; Khopaibool, Prapaporn

    2012-07-01

    The objective of this study was to investigate the in vitro activities of virgin coconut oil, lauric acid and monolaurin in combination with lactic acid against two strains of Staphylococcus aureus, ATCC 25923 and an isolate from a pig carcass, by determination of Fractional Bactericidal Concentration Index (FBCI), time-kill method, as well as scanning and transmission electron microscopy. Minimum bactericidal concentrations (MBC) of lauric acid, monolaurin and lactic acid were 3.2 mg/ml, 0.1 mg/ml and 0.4% (v/v), respectively. The effects of lauric acid + lactic acid and monolaurin + lactic acid combinations were synergistic against both strains, exhibiting FBCIs of 0.25 and 0.63, respectively. In time-kill studies, lauric acid and monolaurin + lactic acid combinations added at their minimum inhibitory concentrations produced a bactericidal effect. The induction of stress in non-stressed cells was dependent on the type and concentration of antimicrobial. This resulted in a loss and change of the cytoplasm and membrane in cells of the bacterium. In contrast, virgin coconut oil (10%) was not active against S. aureus. The bacterial counts found in pork loin treated with lauric acid and monolaurin alone were significantly higher (p <0.05) than those treated with both lipids in combination with lactic acid at sub-inhibitory concentrations. The color, odor and overall acceptability of the pork loins were adversely affected by treatment with the three lipids and lactic acid alone but when combinations of the agents were used the sensory quality was acceptable.

  17. Lactobacillus plantarum phytase activity is due to non-specific acid phosphatase.

    PubMed

    Zamudio, M; González, A; Medina, J A

    2001-03-01

    Microbial phytases suitable for food fermentations could be obtained from lactic acid bacteria isolated from natural vegetable fermentations. Phytase activity was evaluated for six lactic acid bacteria cultures. Although the highest activity was found for Lactobacillus plantarum, the phytase activity was very low. Further characterization of the enzyme with phytate-degrading activity showed a molecular weight of 52 kDa and an optimum activity at pH 5.5 and 65 degrees C. Enzyme activity was due to a non-specific acid phosphatase which had a higher hydrolysis rate with monophosphorylated compounds such as acetyl phosphate that could explain the low phytase activity.

  18. Biological Activities of Toninia candida and Usnea barbata Together with Their Norstictic Acid and Usnic Acid Constituents

    PubMed Central

    Ranković, Branislav; Kosanić, Marijana; Stanojković, Tatjana; Vasiljević, Perica; Manojlović, Nedeljko

    2012-01-01

    The aim of this study was to investigate the chemical composition of acetone extracts of the lichens Toninia candida and Usnea barbata and in vitro antioxidant, antimicrobial, and anticancer activities of these extracts together with some of their major metabolites. The chemical composition of T. candida and U. barbata extracts was determined using HPLC-UV analysis. The major phenolic compounds in these extracts were norstictic acid (T. candida) and usnic acid (U. barbata). Antioxidant activity was evaluated by free radical scavenging, superoxide anion radical scavenging, reducing power and determination of total phenolic compounds. Results of the study proved that norstictic acid had the largest antioxidant activity. The total content of phenols in the extracts was determined as the pyrocatechol equivalent. The antimicrobial activity was estimated by determination of the minimal inhibitory concentration using the broth microdilution method. The most active was usnic acid with minimum inhibitory concentration values ranging from 0.0008 to 0.5 mg/mL. Anticancer activity was tested against FemX (human melanoma) and LS174 (human colon carcinoma) cell lines using the microculture tetrazolium test. Usnic acid was found to have the strongest anticancer activity towards both cell lines with IC50 values of 12.72 and 15.66 μg/mL. PMID:23203090

  19. Production of starch with antioxidative activity by baking starch with organic acids.

    PubMed

    Miwa, Shoji; Nakamura, Megumi; Okuno, Michiko; Miyazaki, Hisako; Watanabe, Jun; Ishikawa-Takano, Yuko; Miura, Makoto; Takase, Nao; Hayakawa, Sachio; Kobayashi, Shoichi

    2011-01-01

    A starch ingredient with antioxidative activity, as measured by the DPPH method, was produced by baking corn starch with an organic acid; it has been named ANOX sugar (antioxidative sugar). The baking temperature and time were fixed at 170 °C and 60 min, and the organic acid used was selected from preliminary trials of various kinds of acid. The phytic acid ANOX sugar preparation showed the highest antioxidative activity, but the color of the preparation was almost black; we therefore selected L-tartaric acid which had the second highest antioxidative activity. The antioxidative activity of the L-tartaric acid ANOX sugar preparation was stable against temperature, light, and enzyme treatments (α-amylase and glucoamylase). However, the activity was not stable against variations in water content and pH value. The antioxidative activity of ANOX sugar was stabilized by treating with boiled water or nitrogen gas, or by pH adjustment.

  20. Boron removal from aqueous solutions by activated carbon impregnated with salicylic acid.

    PubMed

    Celik, Z Ceylan; Can, B Z; Kocakerim, M Muhtar

    2008-03-21

    In this study, the removal of boric acid from aqueous solution by activated carbon impregnated with salicylic acid was studied in batch system. pH, adsorbent amount, initial boron concentration, temperature, shaking rate and salicylic acid film thickness were chosen as parameters. Boron removal efficiencies increased with increasing adsorbent amount, temperature and pH, decreasing initial boron concentration. As thickness of salicylic acid film on activated carbon becomes thin up to 0.088nm, the efficiency increased, and then, the efficiency decreased with becoming thinner than 0.088nm of salicylic acid film. Shaking rate was no effect on removal efficiency. In result, it was determined that the use of salicylic acid as an impregnant for activated carbon led to the increase of the amount of boron adsorbed. A lactone ring, being the most appropriate conformation, forms between boric acid and -COOH and -OH groups of salicylic acid.

  1. [Degradation of Acid Orange 7 with Persulfate Activated by Silver Loaded Granular Activated Carbon].

    PubMed

    Wang, Zhong-ming; Huang, Tian-yin; Chen, Jia-bin; Li, Wen-wei; Zhang, Li-ming

    2015-11-01

    Granular activated carbon with silver loaded as activator (Ag/GAC) was prepared using impregnation method. N2 adsorption, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) were adopted to characterize the Ag/GAC, showing that silver was successfully loaded on granular activated carbon. The oxidation degradation of acid orange 7 (AO7) by the Ag/GAC activated by persulfate (PS) was investigated at ambient temperature. The influences of factors such as Ag loading, PS or Ag/GAC dosages and initial pH on the degradation of AO7 were evaluated. The results demonstrated that the degradation rate of AO7 could reach more than 95.0% after 180 min when the Ag loading content, PS/AO7 molar ratio, the Ag/GAC dosage were 12.7 mg x g(-1), 120: 1, 1.0 g x L(-1), respectively. The initial pH had significant effect on the AO7 degradation, with pH 5.0 as the optimal pH for the degradation of AO7. The possible degradation pathway was proposed for the AO7 degradation by using UV-visible spectroscopy and gas chromatography-mass spectrometry (GG/MS). The azo bond and naphthalene ring in the AO7 were destroyed during the degradation, with phthalic acid and acetophenone as the main degradation products.

  2. Arundo donax cane as a precursor for activated carbons preparation by phosphoric acid activation.

    PubMed

    Vernersson, T; Bonelli, P R; Cerrella, E G; Cukierman, A L

    2002-06-01

    Canes from Arundo donax, a herbaceous rapid-growing plant, were used as precursor for activated carbon preparation by phosphoric acid activation under a self-generated atmosphere. The influence of the carbonization temperature in the range 400-550 degrees C and of the weight ratio phosphoric acid to precursor (R = 1.5-2.5) on the developed porous structure of the resulting carbons was studied for 1 h of carbonization time. Surface properties of the activated carbons were dependent on a combined effect of the conditions employed. Carbons developed either with R = 1.5 over the range 400-500 degrees C, or with R = 2 at 500 degrees C exhibited surface areas of around 1100 m2/g, the latter conditions promoting a larger pore volume and enhanced mesoporous character. For both ratios, temperature above 500 degrees C led to reduction in porosity development. A similar effect was found for the highest ratio (R = 2.5) and 500 degrees C. The influence of carrying out the carbonization either for times shorter than 1 h or under flowing N2 was also examined at selected conditions (R = 2, 500 degrees C). Shorter times induced increase in the surface area (approximately 1300 m2/g), yielding carbons with smaller mean pore radius. Activated carbons obtained under flowing N2 possessed predominant microporous structures and larger ash contents than the samples derived in the self-generated atmosphere.

  3. Antibacterial activity of triterpene acids and semi-synthetic derivatives against oral pathogens.

    PubMed

    Scalon Cunha, Luis C; Andrade e Silva, Márcio L; Cardoso Furtado, Niege A J; Vinhólis, Adriana H C; Gomes Martins, Carlos H; da Silva Filho, Ademar A; Cunha, Wilson R

    2007-01-01

    Triterpene acids (ursolic, oleanoic, gypsogenic, and sumaresinolic acids) isolated from Miconia species, along with a mixture of ursolic and oleanolic acids and a mixture of maslinic and 2-a-hydroxyursolic acids, as well as ursolic acid derivatives were evaluated against the following microorganisms: Streptococcus mutans, Streptococcus mitis, Streptococcus sanguinis, Streptococcus salivarius, Streptococcus sobrinus, and Enterococcus faecalis, which are potentially responsible for the formation of dental caries in humans. The microdilution method was used for the determination of the minimum inhibitory concentration (MIC) during the evaluation of the antibacterial activity. All the isolated compounds, mixtures, and semi-synthetic derivatives displayed activity against all the tested bacteria, showing that they are promising antiplaque and anticaries agents. Ursolic and oleanolic acids displayed the most intense antibacterial effect, with MIC values ranging from 30 microg/mL to 80 microg/mL. The MIC values of ursolic acid derivatives, as well as those obtained for the mixture of ursolic and oleanolic acids showed that these compounds do not have higher antibacterial activity when compared with the activity observed with either ursolic acid or oleanolic acid alone. With regard to the structure-activity relationship of triterpene acids and derivatives, it is suggested that both hydroxy and carboxy groups present in the triterpenes are important for their antibacterial activity against oral pathogens.

  4. Synthesis, in vitro anticancer and antibacterial activities and in silico studies of new 4-substituted 1,2,3-triazole-coumarin hybrids.

    PubMed

    Kraljević, Tatjana Gazivoda; Harej, Anja; Sedić, Mirela; Pavelić, Sandra Kraljević; Stepanić, Višnja; Drenjančević, Domagoj; Talapko, Jasminka; Raić-Malić, Silvana

    2016-11-29

    The 4-substituted 1,2,3-triazole core in designed coumarin hybrids (4-35) with diverse physicochemical properties was introduced by eco-friendly copper(I)-catalyzed Huisgen 1,3-dipolar cycloaddition under microwave irradiation. Coumarin-1,2,3-triazole-benzofused heterocycle hybrids emerged as the class of compounds exhibiting the highest antiproliferative activity. The strong relationship between lipophilicity and antiproliferative activities was observed indicating that lipophilic 1,2,3-triazole-coumarin hybrids containing phenylethyl (13), 3,5-difluorophenyl (14), 5-iodoindole (30) and benzimidazole (33 and 35) subunits showed the most potent cytostatic effects. The 7-methylcoumarin-1,2,3-triazole-2-methylbenzimidazole hybrid 33 can be highlighted as a lead that exerted the highest cytotoxicity against hepatocellular carcinoma HepG2 cells with IC50 value of 0.9 μM and high selectivity (SI = 50). This compound induced cell death, mainly due to early apoptosis. Strong antiproliferative effect of 33 could be associated with its inhibition of 5-lipoxygenase (5-LO) activity and perturbation of sphingolipid signaling by interfering with intracellular acid ceramidase (ASAH) activity. Outlined considerable effect of lipophilicity on antiproliferative activity was not observed for antibacterial activity. The compounds with p-pentylphenyl (17), 2-chloro-4-fluorobenzenesulfonamide (23) and dithiocarbamate (27) moiety were endowed with high selectivity against Enterococcus species. Moreover, these compounds were found to be superior in inhibiting the growth of clinically isolated vancomycin-resistant Enterococcus faecium, while the reference antibiotics exhibited the lack of activity. Our findings indicate that coumarin-1,2,3-triazole could be used as the scaffold for structural optimization to develop more potent and selective anticancer agents and encourage further development of novel structurally related analogs of 33 as more effective 5-LO inhibitors.

  5. Adsorption of organic acids from dilute aqueous solution onto activated carbon

    SciTech Connect

    Wang, S.W.

    1980-06-01

    The radioisotope technique was used to study the removal of organic acid contaminants from dilute aqueous solutions onto activated carbon. Acetic acid, propionic acid, n-butyric acid, n-hexanoic acid and n-heptanoic acid were studied at 278, 298, and 313/sup 0/K. Three bi-solute acid mixtures (acetic and propionic acids, acetic and butanoic acids, and propionic and butanoic acids) were studied at 278 and 298/sup 0/K. Isotherms of the single-solute systems were obtained at three different temperatures in the very dilute concentration region (less than 1% by weight). These data are very important in the prediction of bi-solute equilibrium data. A Polanyi-based competitive adsorption potential theory was used to predict the bi-solute equilibrium uptakes. Average errors between calculated and experimental data ranges from 4% to 14%. It was found that the competitive adsorption potential theory gives slightly better results than the ideal adsorbed solution theory.

  6. Porous texture of activated carbons prepared by phosphoric acid activation of woods

    NASA Astrophysics Data System (ADS)

    Díaz-Díez, M. A.; Gómez-Serrano, V.; Fernández González, C.; Cuerda-Correa, E. M.; Macías-García, A.

    2004-11-01

    Activated carbons (ACs) have been prepared using chestnut, cedar and walnut wood shavings from furniture industries located in the Comunidad Autónoma de Extremadura (SW Spain). Phosphoric acid (H3PO4) at different concentrations (i.e. 36 and 85 wt.%) has been used as activating agent. ACs have been characterized from the results obtained by N2 adsorption at 77 K. Moreover, the fractal dimension (D) has been calculated in order to determine the AC surface roughness degree. Optimal textural properties of ACs have been obtained by chemical activation with H3PO4 36 wt.%. This is corroborated by the slightly lower values of D for samples treated with H3PO4 85 wt.%.

  7. Antioxidant activity, anti-proliferative activity, and amino acid profiles of ethanolic extracts of edible mushrooms.

    PubMed

    Panthong, S; Boonsathorn, N; Chuchawankul, S

    2016-10-17

    Biological activities of various mushrooms have recently been discovered, particularly, immunomodulatory and antitumor activities. Herein, three edible mushrooms, Auricularia auricula-judae (AA), Pleurotus abalonus (PA) and Pleurotus sajor-caju (PS) extracted using Soxhlet ethanol extraction were evaluated for their antioxidative, anti-proliferative effects on leukemia cells. Using the Folin-Ciocalteau method and Trolox equivalent antioxidant capacity assay, phenolics and antioxidant activity were found in all sample mushrooms. Additionally, anti-proliferative activity of mushroom extracts against U937 leukemia cells was determined using a viability assay based on mitochondrial activity. PA (0.5 mg/mL) and AA (0.25-0.5 mg/mL) significantly reduced cell viability. Interestingly, PS caused a hormetic-like biphasic dose-response. Low doses (0-0.25 mg/L) of PS promoted cell proliferation up to 140% relative to control, whereas higher doses (0.50 mg/mL) inhibited cell proliferation. Against U937 cells, AA IC50 was 0.28 ± 0.04 mg/mL, which was lower than PS or PA IC50 (0.45 ± 0.01 and 0.49 ± 0.001 mg/mL, respectively). Furthermore, lactate dehydrogenase (LDH) leakage conferred cytotoxicity. PS and PA were not toxic to U937 cells at any tested concentration; AA (0.50 mg/mL) showed high LDH levels and caused 50% cytotoxicity. Additionally, UPLC-HRMS data indicated several phytochemicals known to support functional activities as either antioxidant or anti-proliferative. Glutamic acid was uniquely found in ethanolic extracts of AA, and was considered an anti-cancer amino acid with potent anti-proliferative effects on U937 cells. Collectively, all mushroom extracts exhibited antioxidant effects, but their anti-proliferative effects were dose-dependent. Nevertheless, the AA extract, with highest potency, is a promising candidate for future applications.

  8. [The comparative investigation of antihypoxia activity of glutamic and N-acetylglutamic acids].

    PubMed

    Makarova, L M; Pogorelyĭ, V E

    2013-01-01

    Comparative study of antihypoxic activity of glutamic and N-acetylglutamic acid in doses of 1, 10, 50 and 100 mg/kg was realized. It was experimentally ascertained that the most apparent antihypoxic action of study objects occurs in conditions of hypobaric hypoxia of acetylated derivative of glutamic acid considerably exceeds glutamic acid.

  9. Molecular mechanisms behind the antimicrobial activity of hop iso-α-acids in Lactobacillus brevis.

    PubMed

    Schurr, Benjamin C; Hahne, Hannes; Kuster, Bernhard; Behr, Jürgen; Vogel, Rudi F

    2015-04-01

    The main bittering component in beer, hop iso-α-acids, have been characterised as weak acids, which act as ionophores impairing microbial cells' function under acidic conditions as present in beer. Besides medium pH, divalent cations play a central role regarding the efficacy of the antimicrobial effect. The iso-α-acids' non-bitter derivatives humulinic acids can be found in isomerised hop extracts and can be generated during hop storage. Therefore, they have been under investigation concerning their influence on beer sensory properties. This study sketches the molecular mechanism behind iso-α-acids' antimicrobial activity in Lactobacillus (L.) brevis regarding their ionophore activity versus the dependence of the inhibitory potential on manganese binding, and suggests humulinic acids as novel tasteless food preservatives. We designed and synthesised chemically modified iso-α-acids to enhance the basic understanding of the molecular mechanism of antimicrobial iso-α-acids. It could be observed that a manganese-binding dependent transmembrane redox reaction (oxidative stress) plays a crucial role in inhibition. Privation of an acidic hydroxyl group neither erased ionophore activity, nor did it entirely abolish antimicrobial activity. Humulinic acids proved to be highly inhibitory, even outperforming iso-α-acids.

  10. Infiltration of natural caries lesions in relation to their activity status and acid pretreatment in vitro.

    PubMed

    Neuhaus, K W; Schlafer, S; Lussi, A; Nyvad, B

    2013-01-01

    This study aimed at testing how active and inactive enamel caries lesions differ by their degree of resin infiltration, and whether the choice of acid pretreatment plays a crucial role. Four examiners assessed 104 human molars and premolars with noncavitated enamel lesions and classified them as 'active' or 'inactive' using the Nyvad criteria. Forty-five teeth were included in this study after independent unanimous lesion activity assessment. Lesions were cut perpendicularly into 2 halves. Each half lesion was pretreated with either 15% hydrochloric acid or 35% phosphoric acid. The lesions were infiltrated after staining with rhodamine isothiocyanate. Thin sections of 100 µm were prepared and the specimens were bleached with 30% hydrogen peroxide. The specimens were then counterstained with sodium fluorescein, subjected to confocal laser scanning microscopy and analyzed quantitatively. Outcome parameters were maximum and average infiltration depths as well as relative penetration depths and areas. In active lesions no significant difference of percentage maximum penetration depth and percentage average penetration depth between lesions pretreated with hydrochloric or phosphoric acid could be observed. In inactive lesions, however, phosphoric acid pretreatment resulted in significantly lower penetration compared to hydrochloric acid pretreatment. Surface conditioning with hydrochloric acid led to similar infiltration results in active and inactive lesions. Moreover, inactive lesions showed greater variability in all assessed infiltration parameters than did active lesions. In conclusion, caries lesion activity and acid pretreatment both influenced the infiltration. The use of phosphoric acid to increase permeability of the surface layer of active lesions should be further explored.

  11. Antiproliferative activity of aroylacrylic acids. Structure-activity study based on molecular interaction fields.

    PubMed

    Drakulić, Branko J; Stanojković, Tatjana P; Zižak, Zeljko S; Dabović, Milan M

    2011-08-01

    Antiproliferative activity of 27 phenyl-substituted 4-aryl-4-oxo-2-butenoic acids (aroylacrylic acids) toward Human cervix carcinoma (HeLa), Human chronic myelogenous leukemia (K562) and Human colon tumor (LS174) cell lines in vitro are reported. Compounds are active toward all examined cell lines. The most active compounds bear two or three branched alkyl or cycloalkyl substituents on phenyl moiety having potencies in low micromolar ranges. One of most potent derivatives arrests the cell cycle at S phase in HeLa cells. The 3D QSAR study, using molecular interaction fields (MIF) and derived alignment independent descriptors (GRIND-2), rationalize the structural characteristics correlated with potency of compounds. Covalent chemistry, most possibly involved in the mode of action of reported compounds, was quantitatively accounted using frontier molecular orbitals. Pharmacophoric pattern of most potent compounds are used as a template for virtual screening, to find similar ones in database of compounds screened against DTP-NCI 60 tumor cell lines. Potency of obtained hits is well predicted.

  12. Dietary omega-3 polyunsaturated fatty acids induce plasminogen activator activity and DNA damage in rabbit spermatozoa.

    PubMed

    Kokoli, A N; Lavrentiadou, S N; Zervos, I A; Tsantarliotou, M P; Georgiadis, M P; Nikolaidis, E A; Botsoglou, N; Boscos, C M; Taitzoglou, I A

    2017-02-20

    The aim of this study was to determine the effect(s) of dietary omega-3 polyunsaturated fatty acids (ω-3 PUFA) on rabbit semen. Adult rabbit bucks were assigned to two groups that were given two diets, a standard diet (control) and a diet supplemented with ω-3 PUFA. Sperm samples were collected from all bucks with the use of an artificial vagina in 20-day intervals, for a total period of 120 days. The enrichment of membranes in ω-3 PUFA was manifested by the elevation of the 22:5 ω-3 (docosapentaenoic acid [DPA]) levels within 40 days. This increase in DPA content did not affect semen characteristics (i.e., concentration, motility and viability). However, it was associated with the induction of lipid peroxidation in spermatozoa, as determined on the basis of the malondialdehyde content. Lipid peroxidation was associated with DNA fragmentation in ω-3 PUFA-enriched spermatozoa and a concomitant increase in plasminogen activator (PA) activity. The effects of ω-3 PUFA on sperm cells were evident within 40 days of ω-3 PUFA dietary intake and exhibited peack values on day 120. Our findings suggest that an ω-3 PUFA-rich diet may not affect semen characteristics; however, it may have a negative impact on the oxidative status and DNA integrity of the spermatozoa, which was associated with an induction of PAs activity.

  13. Serum Paraoxonase 1 Activity Is Associated with Fatty Acid Composition of High Density Lipoprotein

    PubMed Central

    Boshtam, Maryam; Pourfarzam, Morteza; Ani, Mohsen; Naderi, Gholam Ali; Basati, Gholam; Mansourian, Marjan; Dinani, Narges Jafari; Asgary, Seddigheh; Abdi, Soheila

    2013-01-01

    Introduction. Cardioprotective effect of high density lipoprotein (HDL) is, in part, dependent on its related enzyme, paraoxonase 1 (PON1). Fatty acid composition of HDL could affect its size and structure. On the other hand, PON1 activity is directly related to the structure of HDL. This study was designed to investigate the association between serum PON1 activity and fatty acid composition of HDL in healthy men. Methods. One hundred and forty healthy men participated in this research. HDL was separated by sequential ultracentrifugation, and its fatty acid composition was analyzed by gas chromatography. PON1 activity was measured spectrophotometrically using paraxon as substrate. Results. Serum PON1 activity was directly correlated with the amount of stearic acid and dihomo-gamma-linolenic acid (DGLA). PON1/HDL-C was directly correlated with the amount of miristic acid, stearic acid, and DGLA and was inversely correlated with total amount of ω6 fatty acids of HDL. Conclusion. The fatty acid composition of HDL could affect the activity of its associated enzyme, PON1. As dietary fats are the major determinants of serum lipids and lipoprotein composition, consuming some special dietary fatty acids may improve the activity of PON1 and thereby have beneficial effects on health. PMID:24167374

  14. Oxalic acid-induced modifications of postglycation activity of lysozyme and its glycoforms.

    PubMed

    Gao, Hong Ying; Yaylayan, Varoujan A; Yeboah, Faustinus

    2010-05-26

    The role of selected carboxylic acids and their potential to influence the glycation pattern and the enzymatic activity of lysozyme using glucose and ribose were investigated independently of the pH of the reaction medium. The model systems were incubated with and without selected carboxylic acids (maleic, acetic, oxalic, and citraconic) at 50 degrees C for 12 or 24 and 48 h at constant pH of 6.5. The effect of carboxylic acids on the glycation of lysozyme was studied by electrospray ionization mass spectrometry (ESI-MS) and by the measurement of the residual enzyme activity of lysozyme in the glycated samples. Of the carboxylic acids evaluated, oxalic acid showed the highest antiglycation activity. The residual lysozyme activity in both oxalic acid-glucose and oxalic acid-ribose systems was >80% compared with 46 and 36% activity in the controls of glucose and ribose systems, respectively. On the other hand, maleic, acetic, and citraconic acid containing systems with both sugars did not exhibit any enhanced enzyme activity relative to the controls. The results of this study show that oxalic acid was unique among the carboxylic acids evaluated with respect to its ability to interact with sugars and inhibit glycation.

  15. Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers.

    PubMed Central

    Keller, H; Dreyer, C; Medin, J; Mahfoudi, A; Ozato, K; Wahli, W

    1993-01-01

    The nuclear hormone receptors called PPARs (peroxisome proliferator-activated receptors alpha, beta, and gamma) regulate the peroxisomal beta-oxidation of fatty acids by induction of the acyl-CoA oxidase gene that encodes the rate-limiting enzyme of the pathway. Gel retardation and cotransfection assays revealed that PPAR alpha heterodimerizes with retinoid X receptor beta (RXR beta; RXR is the receptor for 9-cis-retinoic acid) and that the two receptors cooperate for the activation of the acyl-CoA oxidase gene promoter. The strongest stimulation of this promoter was obtained when both receptors were exposed simultaneously to their cognate activators. Furthermore, we show that natural fatty acids, and especially polyunsaturated fatty acids, activate PPARs as potently as does the hypolipidemic drug Wy 14,643, the most effective activator known so far. Moreover, we discovered that the synthetic arachidonic acid analogue 5,8,11,14-eicosatetraynoic acid is 100 times more effective than Wy 14,643 in the activation of PPAR alpha. In conclusion, our data demonstrate a convergence of the PPAR and RXR signaling pathways in the regulation of the peroxisomal beta-oxidation of fatty acids by fatty acids and retinoids. Images Fig. 1 Fig. 2 PMID:8384714

  16. The relationship between the acidity and the hydrocarbon cracking activity of ultrastable H-Y zeolite

    NASA Astrophysics Data System (ADS)

    Kuehne, Mark Andrew

    Changes in the structural, acidic, and catalytic properties of H-USY (acidic ultrastable Y zeolite) that occur during steam dealumination were investigated. This study focused on three factors that previously have been suggested to cause the enhanced activity of H-USY: (1) increased Bronsted acid strength caused by nonframework Al; (2) increased Bronsted acid strength caused by decreased framework Al content; and (3) direct participation of Lewis acid sites in the cracking reaction. Acidity was characterized by microcalorimetry and FTIR of NH3 adsorption. The 2-methylpentane cracking activity of H-USY at 573 K was 35 times higher than that of H-Y that had not been steamed. With further steaming of H-USY, the cracking activity decreased, although the activity per strong Bronsted acid site remained essentially constant. H-USY, with both Bronsted and Lewis acid sites, had a heterogeneous acid strength and many acid sites with heat of NH3 adsorption >130 kJ/mol. In contrast, zeolites containing only Bronsted acid sites had a rather homogeneous acid strength. The heat of NH3 adsorption did not exceed 130 U/mol for (H,NH4)-USY, in which the strongly acidic Lewis acid sites were covered by NH3, but its activity was equal to that of H-USY. Thus, Lewis acid sites are inactive for hydrocarbon cracking. Dealumination by ammonium hexafluorosilicate, which produces very little nonframework Al, resulted in a zeolite with a low heat of NH3 adsorption equal to that of H-Y, and activity only three times higher than that of H-Y. The mechanism of coke deactivation in H-USY was studied. Coke caused a proportionally larger decrease in n-hexane cracking activity than in the number of acid sites, but did not cause pore blockage or reduced n-hexane diffusivity. The evidence is consistent with a site poisoning deactivation model for a diffusion-limited reaction. In conclusion, the enhanced cracking activity of USY is not caused by Lewis acid sites nor by Bronsted acid sites with a very

  17. Benzenepolycarboxylic acids with potential anti-hemorrhagic properties and structure-activity relationships.

    PubMed

    Aung, Hnin Thanda; Nikai, Toshiaki; Niwa, Masatake; Takaya, Yoshiaki

    2011-12-01

    Previously, we reported the structural requirements of the cinnamic acid relatives for inhibition of snake venom hemorrhagic action. In the present study, we examined the effect of benzenepolycarboxylic acids and substituted benzoic acids against Protobothropsflavoviridis venom-induced hemorrhage. Pyromellitic acid (1,2,4,5-benzenetetracarboxylic acid) was found to be a potent inhibitor of hemorrhage, with an IC(50) value of 0.035 μM. In addition, most of the antihemorrhagic activity of compounds tested in this experiment showed good correlation to acidity.

  18. Ellagic acid derivatives from Syzygium cumini stem bark: investigation of their antiplasmodial activity.

    PubMed

    Simões-Pires, Claudia A; Vargas, Sandra; Marston, Andrew; Ioset, Jean-Robert; Paulo, Marçal Q; Matheeussen, An; Maes, Louis

    2009-10-01

    Bioguided fractionation of Syzygium cumini (Myrtaceae) bark decoction for antiplasmodial activity was performed, leading to the isolation of three known ellagic acid derivatives (ellagic acid, ellagic acid 4-O-alpha-L-2"-acetylrhamnopyranoside, 3-O-methylellagic acid 3'-O-alpha-L-rhamnopyranoside), as well as the new derivative 3-O-methylellagic acid 3'-O-beta-D-glucopyranoside. Activity investigation was based on the reduction of P. falciparum (PfK1) parasitaemia in vitro and the inhibition of beta-hematin formation, a known mechanism of action of some antimalarial drugs. Among the investigated ellagic acid derivatives, only ellagic acid was able to reduce P. falciparum parasitaemia in vitro and inhibit beta-hematin formation, suggesting that free hydroxyl groups are necessary for activity within this class of compounds.

  19. Efficiency of membrane technology, activated charcoal, and a micelle-clay complex for removal of the acidic pharmaceutical mefenamic acid.

    PubMed

    Khalaf, Samer; Al-Rimawi, Fuad; Khamis, Mustafa; Nir, Shlomo; Bufo, Sabino A; Scrano, Laura; Mecca, Gennaro; Karaman, Rafik

    2013-01-01

    The efficiency of sequential advanced membrane technology wastewater treatment plant towards removal of a widely used non-steroid anti-inflammatory drug (NSAID) mefenamic acid was investigated. The sequential system included activated sludge, ultrafiltration by hollow fibre membranes with 100 kDa cutoff, and spiral wound membranes with 20 kDa cutoff, activated carbon and a reverse osmosis (RO) unit. The performance of the integrated plant showed complete removal of mefenamic acid from spiked wastewater samples. The activated carbon column was the most effective component in removing mefenamic acid with a removal efficiency of 97.2%. Stability study of mefenamic acid in pure water and Al-Quds activated sludge revealed that the anti-inflammatory drug was resistant to degradation in both environments. Batch adsorption of mefenamic acid by activated charcoal and a composite micelle (otadecyltrimethylammonium (ODTMA)-clay (montmorillonite) was determined at 25.0°C. Langmuir isotherm was found to fit the data with Qmax of 90.9 mg g(-1) and 100.0 mg g(-1) for activated carbon and micelle-clay complex, respectively. Filtration experiment by micelle-clay columns mixed with sand in the mg L(-1) range revealed complete removal of the drug with much larger capacity than activated carbon column. The combined results demonstrated that an integration of a micelle-clay column in the plant system has a good potential to improve the removal efficiency of the plant towards NSAID drugs such as mefenamic acid.

  20. Inhibitory Activity of (+)-Usnic Acid against Non-Small Cell Lung Cancer Cell Motility.

    PubMed

    Yang, Yi; Nguyen, Thanh Thi; Jeong, Min-Hye; Crişan, Florin; Yu, Young Hyun; Ha, Hyung-Ho; Choi, Kyung Hee; Jeong, Hye Gwang; Jeong, Tae Cheon; Lee, Kwang Youl; Kim, Kyung Keun; Hur, Jae-Seoun; Kim, Hangun

    2016-01-01

    Lichens are symbiotic organisms that produce various unique chemicals that can be used for pharmaceutical purposes. With the aim of screening new anti-cancer agents that inhibit cancer cell motility, we tested the inhibitory activity of seven lichen species collected from the Romanian Carpathian Mountains against migration and invasion of human lung cancer cells and further investigated the molecular mechanisms underlying their anti-metastatic activity. Among them, Alectoria samentosa, Flavocetraria nivalis, Alectoria ochroleuca, and Usnea florida showed significant inhibitory activity against motility of human lung cancer cells. HPLC results showed that usnic acid is the main compound in these lichens, and (+)-usnic acid showed similar inhibitory activity that crude extract have. Mechanistically, β-catenin-mediated TOPFLASH activity and KITENIN-mediated AP-1 activity were decreased by (+)-usnic acid treatment in a dose-dependent manner. The quantitative real-time PCR data showed that (+)-usnic acid decreased the mRNA level of CD44, Cyclin D1 and c-myc, which are the downstream target genes of both β-catenin/LEF and c-jun/AP-1. Also, Rac1 and RhoA activities were decreased by treatment with (+)-usnic acid. Interestingly, higher inhibitory activity for cell invasion was observed when cells were treated with (+)-usnic acid and cetuximab. These results implied that (+)-usnic acid might have potential activity in inhibition of cancer cell metastasis, and (+)-usnic acid could be used for anti-cancer therapy with a distinct mechanisms of action.

  1. Discovery of a novel activator of 5-lipoxygenase from an anacardic acid derived compound collection

    PubMed Central

    Wisastra, Rosalina; Kok, Petra A.M; Eleftheriadis, Nikolaos; Baumgartner, Matthew P.; Camacho, Carlos J.; Haisma, Hidde J.; Dekker, Frank J.

    2013-01-01

    Lipoxygenases (LOXs) and cyclooxygenases (COXs) metabolize poly-unsaturated fatty acids into inflammatory signaling molecules. Modulation of the activity of these enzymes may provide new approaches for therapy of inflammatory diseases. In this study, we screened novel anacardic acid derivatives as modulators of human 5-LOX and COX-2 activity. Interestingly, a novel salicylate derivative 23a was identified as a surprisingly potent activator of human 5-LOX. This compound showed both non-competitive activation towards the human 5-LOX activator adenosine triphosphate (ATP) and non-essential mixed type activation against the substrate linoleic acid, while having no effect on the conversion of the substrate arachidonic acid. The kinetic analysis demonstrated a non-essential activation of the linoleic acid conversion with a KA of 8.65 μM, αKA of 0.38 μM and a β value of 1.76. It is also of interest that a comparable derivative 23d showed a mixed type inhibition for linoleic acid conversion. These observations indicate the presence of an allosteric binding site in human 5-LOX distinct from the ATP binding site. The activatory and inhibitory behavior of 23a and 23d on the conversion of linoleic compared to arachidonic acid are rationalized by docking studies, which suggest that the activator 23a stabilizes linoleic acid, whereas the larger inhibitor 23d blocks the enzyme active site. PMID:24231650

  2. Inhibitory Activity of (+)-Usnic Acid against Non-Small Cell Lung Cancer Cell Motility

    PubMed Central

    Yang, Yi; Nguyen, Thanh Thi; Jeong, Min-Hye; Crişan, Florin; Yu, Young Hyun; Ha, Hyung-Ho; Choi, Kyung Hee; Jeong, Hye Gwang; Jeong, Tae Cheon; Lee, Kwang Youl; Kim, Kyung Keun; Hur, Jae-Seoun; Kim, Hangun

    2016-01-01

    Lichens are symbiotic organisms that produce various unique chemicals that can be used for pharmaceutical purposes. With the aim of screening new anti-cancer agents that inhibit cancer cell motility, we tested the inhibitory activity of seven lichen species collected from the Romanian Carpathian Mountains against migration and invasion of human lung cancer cells and further investigated the molecular mechanisms underlying their anti-metastatic activity. Among them, Alectoria samentosa, Flavocetraria nivalis, Alectoria ochroleuca, and Usnea florida showed significant inhibitory activity against motility of human lung cancer cells. HPLC results showed that usnic acid is the main compound in these lichens, and (+)-usnic acid showed similar inhibitory activity that crude extract have. Mechanistically, β-catenin-mediated TOPFLASH activity and KITENIN-mediated AP-1 activity were decreased by (+)-usnic acid treatment in a dose-dependent manner. The quantitative real-time PCR data showed that (+)-usnic acid decreased the mRNA level of CD44, Cyclin D1 and c-myc, which are the downstream target genes of both β-catenin/LEF and c-jun/AP-1. Also, Rac1 and RhoA activities were decreased by treatment with (+)-usnic acid. Interestingly, higher inhibitory activity for cell invasion was observed when cells were treated with (+)-usnic acid and cetuximab. These results implied that (+)-usnic acid might have potential activity in inhibition of cancer cell metastasis, and (+)-usnic acid could be used for anti-cancer therapy with a distinct mechanisms of action. PMID:26751081

  3. Computer Aided Prediction of Biological Activity Spectra: Study of Correlation between Predicted and Observed Activities for Coumarin-4-Acetic Acids

    PubMed Central

    Basanagouda, M.; Jadhav, V. B.; Kulkarni, M. V.; Rao, R. Nagendra

    2011-01-01

    Coumarin-4-acetic acids have been synthesized from various phenols and citric acid under Pechmann cyclisation conditions. All the compounds have been evaluated for antiinflammatory and analgesic activity in acute models. Compounds have also been evaluated for their ulcerogenic potential. Using the computer program, prediction of activity spectra for substances, prediction results and their Pharma Expert software, we have found a correlation between the observed and predicted antiinflammatory activity. PMID:22131629

  4. Palmitoleic acid prevents palmitic acid-induced macrophage activation and consequent p38 MAPK-mediated skeletal muscle insulin resistance.

    PubMed

    Talbot, Nicola A; Wheeler-Jones, Caroline P; Cleasby, Mark E

    2014-08-05

    Obesity and saturated fatty acid (SFA) treatment are both associated with skeletal muscle insulin resistance (IR) and increased macrophage infiltration. However, the relative effects of SFA and unsaturated fatty acid (UFA)-activated macrophages on muscle are unknown. Here, macrophages were treated with palmitic acid, palmitoleic acid or both and the effects of the conditioned medium (CM) on C2C12 myotubes investigated. CM from palmitic acid-treated J774s (palm-mac-CM) impaired insulin signalling and insulin-stimulated glycogen synthesis, reduced Inhibitor κBα and increased phosphorylation of p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase in myotubes. p38 MAPK inhibition or siRNA partially ameliorated these defects, as did addition of tumour necrosis factor-α blocking antibody to the CM. Macrophages incubated with both FAs generated CM that did not induce IR, while palmitoleic acid-mac-CM alone was insulin sensitising. Thus UFAs may improve muscle insulin sensitivity and counteract SFA-mediated IR through an effect on macrophage activation.

  5. Aerobic degradation of sulfanilic acid using activated sludge.

    PubMed

    Chen, Gang; Cheng, Ka Yu; Ginige, Maneesha P; Kaksonen, Anna H

    2012-01-01

    This paper evaluates the aerobic degradation of sulfanilic acid (SA) by an acclimatized activated sludge. The sludge was enriched for over three months with SA (>500 mg/L) as the sole carbon and energy source and dissolved oxygen (DO, >5mg/L) as the primary electron acceptor. Effects of aeration rate (0-1.74 L/min), DO concentration (0-7 mg/L) and initial SA concentration (104-1085 mg/L) on SA biodegradation were quantified. A modified Haldane substrate inhibition model was used to obtain kinetic parameters of SA biodegradation and oxygen uptake rate (OUR). Positive linear correlations were obtained between OUR and SA degradation rate (R(2)≥ 0.91). Over time, the culture consumed more oxygen per SA degraded, signifying a gradual improvement in SA mineralization (mass ratio of O(2): SA at day 30, 60 and 120 were 0.44, 0.51 and 0.78, respectively). The concomitant release of near stoichiometric quantity of sulphate (3.2 mmol SO(4)(2-) released from 3.3 mmol SA) and the high chemical oxygen demand (COD) removal efficacy (97.1%) indicated that the enriched microbial consortia could drive the overall SA oxidation close to a complete mineralization. In contrast to other pure-culture systems, the ammonium released from the SA oxidation was predominately converted into nitrate, revealing the presence of ammonium-oxidizing bacteria (AOB) in the mixed culture. No apparent inhibitory effect of SA on the nitrification was noted. This work also indicates that aerobic SA biodegradation could be monitored by real-time DO measurement.

  6. Retroviral nucleocapsid proteins possess potent nucleic acid strand renaturation activity.

    PubMed Central

    Dib-Hajj, F.; Khan, R.; Giedroc, D. P.

    1993-01-01

    The nucleocapsid protein (NC) is the major genomic RNA binding protein that plays integral roles in the structure and replication of all animal retroviruses. In this report, select biochemical properties of recombinant Mason-Pfizer monkey virus (MPMV) and HIV-1 NCs are compared. Evidence is presented that two types of saturated Zn2 NC-polynucleotide complexes can be formed under conditions of low [NaCl] that differ in apparent site-size (n = 8 vs. n = 14). The formation of one or the other complex appears dependent on the molar ratio of NC to RNA nucleotide with the putative low site-size mode apparently predominating under conditions of protein excess. Both MPMV and HIV-1 NCs kinetically facilitate the renaturation of two complementary DNA strands, suggesting that this is a general property of retroviral NCs. NC proteins increase the second-order rate constant for renaturation of a 149-bp DNA fragment by more than four orders of magnitude over that obtained in the absence of protein at 37 degrees C. The protein-assisted rate is 100-200-fold faster than that obtained at 68 degrees C, 1 M NaCl, solution conditions considered to be optimal for strand renaturation. Provided that sufficient NC is present to coat all strands, the presence of 400-1,000-fold excess nonhomologous DNA does not greatly affect the reaction rate. The HIV-1 NC-mediated renaturation reaction functions stoichiometrically, requiring a saturated strand of DNA nucleotide:NC ratio of about 7-8, rather than 14. Under conditions of less protein, the rate acceleration is not realized. The finding of significant nucleic acid strand renaturation activity may have important implications for various events of reverse transcription particularly in initiation and cDNA strand transfer. PMID:8443601

  7. Hyaluronic acid-coated liposomes for active targeting of gemcitabine.

    PubMed

    Arpicco, Silvia; Lerda, Carlotta; Dalla Pozza, Elisa; Costanzo, Chiara; Tsapis, Nicolas; Stella, Barbara; Donadelli, Massimo; Dando, Ilaria; Fattal, Elias; Cattel, Luigi; Palmieri, Marta

    2013-11-01

    The aim of this work was the preparation, characterization, and preliminary evaluation of the targeting ability toward pancreatic adenocarcinoma cells of liposomes containing the gemcitabine lipophilic prodrug [4-(N)-lauroyl-gemcitabine, C12GEM]. Hyaluronic acid (HA) was selected as targeting agent since it is biodegradable, biocompatible, and can be chemically modified and its cell surface receptor CD44 is overexpressed on various tumors. For this purpose, conjugates between a phospholipid, the 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), and HA of two different low molecular weights 4800 Da (12 disaccharidic units) and 12,000 Da (32 disaccharidic units), were prepared, characterized, and introduced in the liposomes during the preparation. Different liposomal formulations were prepared and their characteristics were analyzed: size, Z potential, and TEM analyses underline a difference in the HA-liposomes from the non-HA ones. In order to better understand the HA-liposome cellular localization and to evaluate their interaction with CD44 receptor, confocal microscopy studies were performed. The results demonstrate that HA facilitates the recognition of liposomes by MiaPaCa2 cells (CD44(+)) and that the uptake increases with increase in the polymer molecular weight. Finally, the cytotoxicity of the different preparations was evaluated and data show that incorporation of C12GEM increases their cytotoxic activity and that HA-liposomes inhibit cell growth more than plain liposomes. Altogether, the results demonstrate the specificity of C12GEM targeting toward CD44-overexpressing pancreatic adenocarcinoma cell line using HA as a ligand.

  8. Sphingoid long chain bases prevent lung infection by Pseudomonas aeruginosa

    PubMed Central

    Pewzner-Jung, Yael; Tavakoli Tabazavareh, Shaghayegh; Grassmé, Heike; Becker, Katrin Anne; Japtok, Lukasz; Steinmann, Jörg; Joseph, Tammar; Lang, Stephan; Tuemmler, Burkhard; Schuchman, Edward H; Lentsch, Alex B; Kleuser, Burkhard; Edwards, Michael J; Futerman, Anthony H; Gulbins, Erich

    2014-01-01

    Cystic fibrosis patients and patients with chronic obstructive pulmonary disease, trauma, burn wound, or patients requiring ventilation are susceptible to severe pulmonary infection by Pseudomonas aeruginosa. Physiological innate defense mechanisms against this pathogen, and their alterations in lung diseases, are for the most part unknown. We now demonstrate a role for the sphingoid long chain base, sphingosine, in determining susceptibility to lung infection by P. aeruginosa. Tracheal and bronchial sphingosine levels were significantly reduced in tissues from cystic fibrosis patients and from cystic fibrosis mouse models due to reduced activity of acid ceramidase, which generates sphingosine from ceramide. Inhalation of mice with sphingosine, with a sphingosine analog, FTY720, or with acid ceramidase rescued susceptible mice from infection. Our data suggest that luminal sphingosine in tracheal and bronchial epithelial cells prevents pulmonary P. aeruginosa infection in normal individuals, paving the way for novel therapeutic paradigms based on inhalation of acid ceramidase or of sphingoid long chain bases in lung infection. PMID:25085879

  9. Probing the acidity of carboxylic acids in protic ionic liquids, water, and their binary mixtures: activation energy of proton transfer.

    PubMed

    Shukla, Shashi Kant; Kumar, Anil

    2013-02-28

    Acidity functions were used to express the ability of a solvent/solution to donate/accept a proton to a solute. The present work accounts for the acidity determination of HCOOH, CH3COOH, and CH3CH2COOH in the alkylimidazolium-based protic ionic liquids (PILs), incorporated with carboxylate anion, water, and in a binary mixture of PIL and water using the Hammett acidity function, H0. A reversal in the acidity trend was observed, when organic acids were transferred from water to PIL. It was emphasized that an increased stabilization offered by PIL cation toward the more basic conjugate anion of organic acid was responsible for this anomalous change in acidity order in PILs, which was absent in water. The greater stabilization of a basic organic anion by PIL cation is discussed in terms of the stable hard–soft acid base (HSAB) pairing. A change in the H0 values of these acids was observed with a change in temperature, and a linear correlation between the ln H0 and 1/T was noted. This relationship points toward the activation energy of proton transfer (E(a,H+)), a barrier provided by the medium during the proton transfer from Brønsted acid to indicator. The H0 function in binary mixtures points to the involvement of pseudosolvent, the behavior of which changes with the nature and concentration of acid. The presence of the maxima/minima in the H0 function is discussed in terms of the synergetic behavior of the pseudosolvent composed of the mixtures of aqueous PILs.

  10. Activation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells.

    PubMed

    Maruta, Hitomi; Yoshimura, Yukihiro; Araki, Aya; Kimoto, Masumi; Takahashi, Yoshitaka; Yamashita, Hiromi

    2016-01-01

    Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance. Administered acetic acid led to increased phosphorylation of AMP-activated protein kinase (AMPK) in both liver and skeletal muscle cells, and increased transcripts of myoglobin and glucose transporter 4 (GLUT4) genes in skeletal muscle of the rats. It was suggested that acetic acid improved the lipid metabolism in skeletal muscles. In this study, we examined the activation of AMPK and the stimulation of GLUT4 and myoglobin expression by acetic acid in skeletal muscle cells to clarify the physiological function of acetic acid in skeletal muscle cells. Acetic acid added to culture medium was taken up rapidly by L6 cells, and AMPK was phosphorylated upon treatment with acetic acid. We observed increased gene and protein expression of GLUT4 and myoglobin. Uptake of glucose and fatty acids by L6 cells were increased, while triglyceride accumulation was lower in treated cells compared to untreated cells. Furthermore, treated cells also showed increased gene and protein expression of myocyte enhancer factor 2A (MEF2A), which is a well-known transcription factor involved in the expression of myoglobin and GLUT4 genes. These results indicate that acetic acid enhances glucose uptake and fatty acid metabolism through the activation of AMPK, and increases expression of GLUT4 and myoglobin.

  11. Activation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells

    PubMed Central

    Maruta, Hitomi; Yoshimura, Yukihiro; Araki, Aya; Kimoto, Masumi; Takahashi, Yoshitaka; Yamashita, Hiromi

    2016-01-01

    Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance. Administered acetic acid led to increased phosphorylation of AMP-activated protein kinase (AMPK) in both liver and skeletal muscle cells, and increased transcripts of myoglobin and glucose transporter 4 (GLUT4) genes in skeletal muscle of the rats. It was suggested that acetic acid improved the lipid metabolism in skeletal muscles. In this study, we examined the activation of AMPK and the stimulation of GLUT4 and myoglobin expression by acetic acid in skeletal muscle cells to clarify the physiological function of acetic acid in skeletal muscle cells. Acetic acid added to culture medium was taken up rapidly by L6 cells, and AMPK was phosphorylated upon treatment with acetic acid. We observed increased gene and protein expression of GLUT4 and myoglobin. Uptake of glucose and fatty acids by L6 cells were increased, while triglyceride accumulation was lower in treated cells compared to untreated cells. Furthermore, treated cells also showed increased gene and protein expression of myocyte enhancer factor 2A (MEF2A), which is a well-known transcription factor involved in the expression of myoglobin and GLUT4 genes. These results indicate that acetic acid enhances glucose uptake and fatty acid metabolism through the activation of AMPK, and increases expression of GLUT4 and myoglobin. PMID:27348124

  12. Synthesis and biological activity of hydroxylated derivatives of linoleic acid and conjugated linoleic acids.

    PubMed

    Li, Zhen; Tran, Van H; Duke, Rujee K; Ng, Michelle C H; Yang, Depo; Duke, Colin C

    2009-03-01

    Allylic hydroxylated derivatives of the C18 unsaturated fatty acids were prepared from linoleic acid (LA) and conjugated linoleic acids (CLAs). The reaction of LA methyl ester with selenium dioxide (SeO(2)) gave mono-hydroxylated derivatives, 13-hydroxy-9Z,11E-octadecadienoic acid, 13-hydroxy-9E,11E-octadecadienoic acid, 9-hydroxy-10E,12Z-octadecadienoic acid and 9-hydroxy-10E,12E-octadecadienoic acid methyl esters. In contrast, the reaction of CLA methyl ester with SeO(2) gave di-hydroxylated derivatives as novel products including, erythro-12,13-dihydroxy-10E-octadecenoic acid, erythro-11,12-dihydroxy-9E-octadecenoic acid, erythro-10,11-dihydroxy-12E-octadecenoic acid and erythro-9,10-dihydroxy-11E-octadecenoic acid methyl esters. These products were purified by normal-phase short column vacuum chromatography followed by high-performance liquid chromatography (HPLC). Their chemical structures were characterized by liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance spectroscopy (NMR). The allylic hydroxylated derivatives of LA and CLA exhibited moderate in vitro cytotoxicity against a panel of human cancer cell lines including chronic myelogenous leukemia K562, myeloma RPMI8226, hepatocellular carcinoma HepG2 and breast adenocarcinoma MCF-7 cells (IC(50) 10-75 microM). The allylic hydroxylated derivatives of LA and CLA also showed toxicity to brine shrimp with LD(50) values in the range of 2.30-13.8 microM. However these compounds showed insignificant toxicity to honeybee at doses up to 100 microg/bee.

  13. Effect of acidic amino acids engineered into the active site cleft of Thermopolyspora flexuosa GH11 xylanase.

    PubMed

    Li, He; Turunen, Ossi

    2015-01-01

    Thermopolyspora flexuosa GH11 xylanase (XYN11A) shows optimal activity at pH 6-7 and 75-80 °C. We studied how mutation to aspartic acid (N46D and V48D) in the vicinity of the catalytic acid/base affects the pH activity of highly thermophilic GH11 xylanase. Both mutations shifted the pH activity profile toward acidic pH. In general, the Km values were lower at pH 4-5 than at pH 6, and in line with this, the rate of hydrolysis of xylotetraose was slightly faster at pH 4 than at pH 6. The N46D mutation and also lower pH in XYN11A increased the hydrolysis of xylotriose. The Km value increased remarkably (from 2.5 to 11.6 mg/mL) because of V48D, which indicates the weakening of binding affinity of the substrate to the active site. Xylotetraose functioned well as a substrate for other enzymes, but with lowered reaction rate for V48D. Both N46D and V48D increased the enzyme inactivation by ionic liquid [emim]OAc. In conclusion, the pH activity profile could be shifted to acidic pH due to an effect from two different directions, but the tightly packed GH11 active site can cause steric problems for the mutations.

  14. Active role of fatty acid amino acid conjugates in nitrogen metabolidm by Spodoptera litura larvae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since the first fatty acid amino acid conjugate (FAC) was isolated from regurgitant of Spodoptera exigua larvae in 1997 [volicitin: N-(17-hydroxylinolenoyl)- L-glutamine], their role as elicitors of induced responses in plants has been well documented. However, studies of the biosyntheses as well as...

  15. Exploration of the antiplatelet activity profile of betulinic acid on human platelets.

    PubMed

    Tzakos, Andreas G; Kontogianni, Vassiliki G; Tsoumani, Maria; Kyriakou, Eleni; Hwa, John; Rodrigues, Francisco A; Tselepis, Alexandros D

    2012-07-18

    Betulinic acid, a natural pentacyclic triterpene acid, presents a diverse mode of biological actions including antiretroviral, antibacterial, antimalarial, and anti-inflammatory activities. The potency of betulinic acid as an inhibitor of human platelet activation was evaluated, and its antiplatelet profile against in vitro platelet aggregation, induced by several platelet agonists (adenosine diphosphate, thrombin receptor activator peptide-14, and arachidonic acid), was explored. Flow cytometric analysis was performed to examine the effect of betulinic acid on P-selectin membrane expression and PAC-1 binding to activated platelets. Betulinic acid potently inhibits platelet aggregation and also reduced PAC-1 binding and the membrane expression of P-selectin. Principal component analysis was used to screen, on the chemical property space, for potential common pharmacophores of betulinic acid with approved antithrombotic drugs. A common pharmacophore was defined between the NMR-derived structure of betulinic acid and prostacyclin agonists (PGI2), and the importance of its carboxylate group in its antiplatelet activity was determined. The present results indicate that betulinic acid has potential use as an antithrombotic compound and suggest that the mechanism underlying the antiplatelet effects of betulinic acid is similar to that of the PGI2 receptor agonists, a hypothesis that deserves further investigation.

  16. Effect of acetic acid on lipid accumulation by glucose-fed activated sludge cultures

    SciTech Connect

    Mondala, Andro; Hernandez, Rafael; French, Todd; McFarland, Linda; Sparks, Darrell; Holmes, William; Haque, Monica

    2012-01-01

    The effect of acetic acid, a lignocellulose hydrolysis by-product, on lipid accumulation by activated sludge cultures grown on glucose was investigated. This was done to assess the possible application of lignocellulose as low-cost and renewable fermentation substrates for biofuel feedstock production. Results: Biomass yield was reduced by around 54% at a 2 g L -1 acetic acid dosage but was increased by around 18% at 10 g L -1 acetic acid dosage relative to the control run. The final gravimetric lipid contents at 2 and 10 g L -1 acetic acid levels were 12.5 + 0.7% and 8.8 + 3.2% w/w, respectively, which were lower than the control (17.8 + 2.8% w/w). However, biodiesel yields from activated sludge grown with acetic acid (5.6 + 0.6% w/w for 2 g L -1 acetic acid and 4.2 + 3.0% w/w for 10 g L -1 acetic acid) were higher than in raw activated sludge (1-2% w/w). The fatty acid profiles of the accumulated lipids were similar with conventional plant oil biodiesel feedstocks. Conclusions: Acetic acid enhanced biomass production by activated sludge at high levels but reduced lipid production. Further studies are needed to enhance acetic acid utilization by activated sludge microorganisms for lipid biosynthesis.

  17. Saturated fatty acids activate TLR-mediated pro-inflammatory signaling pathways

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Toll-like receptor 4 (TLR4) and TLR2 were shown to be activated by saturated fatty acids (SFAs) but inhibited by docosahexaenoic acid (DHA). However, one report (ATVB 11:1944, 2009) suggested that SFA-induced TLR activation in cell culture systems is due to contaminants in BSA used for conjugating f...

  18. Developmental toxicity of perfluorononanoic acid is dependent on peroxisome proliferator activated receptor-alpha.

    EPA Science Inventory

    Perfluorononanoic acid (PFNA) is one of the predominant perfluoroalkyl acids in the environment and in tissues of humans and wildlife. PFNA strongly activates the mouse and human peroxisome proliferator-activated receptor-alpha (PPARα) in vitro and negatively impacts development ...

  19. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta; Lital , Schultz; Peter G. , Zhang; Zhiwen

    2010-10-12

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  20. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    2011-08-30

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  1. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta, Lital [San Diego, CA; Schultz, Peter G [La Jolla, CA; Zhang, Zhiwen [San Diego, CA

    2012-02-14

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  2. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    2009-02-24

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  3. Benzoic acid and specific 2-oxo acids activate hepatic efflux of glutamate at OAT2.

    PubMed

    Pfennig, Till; Herrmann, Beate; Bauer, Tim; Schömig, Edgar; Gründemann, Dirk

    2013-02-01

    The liver is the principal source of glutamate in blood plasma. Recently we have discovered that efflux of glutamate from hepatocytes is catalyzed by the transporter OAT2 (human gene symbol SLC22A7). Organic anion transporter 2 (OAT2) is an integral membrane protein of the sinusoidal membrane domain; it is primarily expressed in liver and much less in kidney, both in rats and humans. Many years ago, Häussinger and coworkers have demonstrated in isolated perfused rat liver that benzoic acid or specific 2-oxo acid analogs of amino acids like e.g. 2-oxo-4-methyl-pentanoate ('2-oxo-leucine') strongly stimulate release of glutamate (up to 7-fold); '2-oxo-valine' and the corresponding amino acids were without effect. The molecular mechanism of efflux stimulation has remained unclear. In the present study, OAT2 from human and rat were heterologously expressed in 293 cells. Addition of 1 mmol/l benzoic acid to the external medium increased OAT2-specific efflux of glutamate up to 20-fold; '2-oxo-leucine' was also effective, but not '2-oxo-valine'. Similar effects were seen for efflux of radiolabeled orotic acid. Expression of OAT2 did not increase uptake of benzoic acid; thus, benzoic acid is no substrate, and trans-stimulation can be excluded. Instead, further experiments suggest that increased efflux of glutamate is caused by direct interaction of benzoic acid and specific 2-oxo acids with OAT2. We propose that stimulators bind to a distinct extracellular site and thereby accelerate relocation of the empty substrate binding site to the intracellular face. Increased glutamate efflux at OAT2 could be the main benefit of benzoate treatment in patients with urea cycle defects.

  4. How to build optically active alpha-amino acids.

    PubMed

    Calmes, M; Daunis, J

    1999-01-01

    Various methodologies published in the literature dealing with alpha-amino carboxylic acid asymmetric synthesis are presented in a digest form. In each case, only some recent or most typical works are mentioned.

  5. Carbobenzoxy amino acids: Structural requirements for cholecystokinin receptor antagonist activity

    SciTech Connect

    Maton, P.N.; Sutliff, V.E.; Jensen, R.T.; Gardner, J.D.

    1985-04-01

    The authors used dispersed acini prepared from guinea pig pancreas to examine 28 carbobenzoxy (CBZ) amino acids for their abilities to function as cholecystokinin receptor antagonists. All amino acid derivatives tested, except for CBZ-alanine, CBZ-glycine, and N alpha-CBZ- lysine, were able to inhibit the stimulation of amylase secretion caused by the C-terminal octapeptide of cholecystokinin. In general, there was a good correlation between the ability of a carbobenzoxy amino acid to inhibit stimulated amylase secretion and the ability of the amino acid derivative to inhibit binding of /sup 125/I-cholecystokinin. The inhibition of cholecystokinin-stimulated amylase secretion was competitive, fully reversible, and specific for those secretagogues that interact with the cholecystokinin receptor. The potencies with which the various carbobenzoxy amino acids inhibited the action of cholecystokinin varied 100-fold and CBZ-cystine was the most potent cholecystokinin receptor antagonist. This variation in potency was primarily but not exclusively a function of the hydrophobicity of the amino acid side chain.

  6. Protein adsorption, fibroblast activity and antibacterial properties of poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) grafted with chitosan and chitooligosaccharide after immobilized with hyaluronic acid.

    PubMed

    Hu, S-G; Jou, C-H; Yang, M C

    2003-07-01

    Poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV) membrane was treated with ozone and grafted with acrylic acid. The resulting membranes were further grafted with chitosan (CS) or chitooligosaccharide (COS) via esterification. Afterward hyaluronic acid (HA) was immobilized onto CS- or COS-grafting membranes. The antibacterial activity of CS and COS against Staphylococus aureus, Escherichia coli, and Pseudomonas aeruginosa was preserved after HA immobilization. Among them, CS-grafted PHBV membrane showed higher antibacterial activity than COS-grafted PHBV membrane. In addition, after CS- or COS-grafting, the L929 fibroblasts attachment and protein adsorption were improved, while the cell number was decrease. After immobilizing HA, the cell proliferation was promoted, the protein adsorption was decreased, and the cell attachment was slightly lower than CS- or COS-grafting PHBV.

  7. Corosolic acid protects hepatocytes against ethanol-induced damage by modulating mitogen-activated protein kinases and activating autophagy.

    PubMed

    Guo, Xiaolan; Cui, Ruibing; Zhao, Jianjian; Mo, Rui; Peng, Lei; Yan, Ming

    2016-11-15

    The reactive oxygen species(ROS)/mitogen-activated protein kinase (MAPK) destroyed autophagy and the reactive oxygen species/mitogen-activated protein kinase (MAPK) pathway are considered closely related to ethanol-induced hepatocellular injury. Previous work indicated that corosolic acid, the natural extracts of leaves of the banaba tree, Lagerstroemia speciosa L., could protect the liver against ethanol-induced damage, but the underlying mechanism is unclear. In the study we found that corosolic acid significantly inhibited ethanol-induced apoptosis, increased level of tumor necrosis factor-α(TNF-α) and reactive oxygen species accumulation in vitro. Corosolic acid inhibited ethanol-activated p38 and c-Jun N-terminal kinase MAPK signaling in BRL-3A and HepG2 cells as well as in experimental rats. Corosolic acid restored the ethanol-suppressed expression of autophagy-related genes, including beclin-1 and the ratio of microtubule-associated protein light chain 3II/I (LC3II/I) via AMP-activated protein kinase (AMPK) activation both in vitro and in vivo. In experimental rats, corosolic acid ameliorated the detrimental histopathological findings. Corosolic acid may protect the liver against ethanol-induced injury by modulation of MAPK signaling and autophagy activation. These findings suggested that corosolic acid might be a promising agent in treatment of alcoholic liver diseases.

  8. Effects of fatty acid activation on photosynthetic production of fatty acid-based biofuels in Synechocystis sp. PCC6803

    PubMed Central

    2012-01-01

    Background Direct conversion of solar energy and carbon dioxide to drop in fuel molecules in a single biological system can be achieved from fatty acid-based biofuels such as fatty alcohols and alkanes. These molecules have similar properties to fossil fuels but can be produced by photosynthetic cyanobacteria. Results Synechocystis sp. PCC6803 mutant strains containing either overexpression or deletion of the slr1609 gene, which encodes an acyl-ACP synthetase (AAS), have been constructed. The complete segregation and deletion in all mutant strains was confirmed by PCR analysis. Blocking fatty acid activation by deleting slr1609 gene in wild-type Synechocystis sp. PCC6803 led to a doubling of the amount of free fatty acids and a decrease of alkane production by up to 90 percent. Overexpression of slr1609 gene in the wild-type Synechocystis sp. PCC6803 had no effect on the production of either free fatty acids or alkanes. Overexpression or deletion of slr1609 gene in the Synechocystis sp. PCC6803 mutant strain with the capability of making fatty alcohols by genetically introducing fatty acyl-CoA reductase respectively enhanced or reduced fatty alcohol production by 60 percent. Conclusions Fatty acid activation functionalized by the slr1609 gene is metabolically crucial for biosynthesis of fatty acid derivatives in Synechocystis sp. PCC6803. It is necessary but not sufficient for efficient production of alkanes. Fatty alcohol production can be significantly improved by the overexpression of slr1609 gene. PMID:22433663

  9. Phase diagrams and water activities of aqueous dicarboxylic acid systems of atmospheric importance.

    PubMed

    Beyer, Keith D; Friesen, Katherine; Bothe, Jameson R; Palet, Benjamin

    2008-11-20

    We have studied liquid/solid phase diagrams and water activities of the dicarboxylic acid/water binary systems for maleic, dl-malic, glutaric, and succinc acids using differential scanning calorimetry, infrared (IR) spectroscopy of thin films, and conductivity analysis of saturated solutions. For each binary system we report the measurements of the ice melting envelope, the acid dissolution envelope, and the ice/acid eutectic temperature and composition. Water activities have been determined by using the freezing point depression of ice. Additionally, an irreversible solid/solid phase transition for maleic acid was observed in both DSC and IR studies likely due to the conversion of a meta-stable crystal form of maleic acid to its most stable crystal form. In general we find good agreement with literature values for temperature-dependent acid solubilities.

  10. Improvement of the antifungal activity of lactic acid bacteria by addition to the growth medium of phenylpyruvic acid, a precursor of phenyllactic acid.

    PubMed

    Valerio, Francesca; Di Biase, Mariaelena; Lattanzio, Veronica M T; Lavermicocca, Paola

    2016-04-02

    The aim of the current study was to improve the antifungal activity of eight lactic acid bacterial (LAB) strains by the addition of phenylpyruvic acid (PPA), a precursor of the antifungal compound phenyllactic acid (PLA), to a defined growth medium (DM). The effect of PPA addition on the LABs antifungal activity related to the production of organic acids (PLA, d-lactic, l-lactic, acetic, citric, formic and 4-hydroxy-phenyllactic acids) and of other phenylpyruvic-derived molecules, was investigated. In the presence of PPA the inhibitory activity (expressed as growth inhibition percentage) against fungal bread contaminants Aspergillus niger and Penicillium roqueforti significantly increased and was, even if not completely, associated to PLA increase (from a mean value of 0.44 to 0.93 mM). While the inhibitory activity against Endomyces fibuliger was mainly correlated to the low pH and to lactic, acetic and p-OH-PLA acids. When the PCA analysis based on data of growth inhibition percentage and organic acid concentrations was performed, strains grown in DM+PPA separated from those grown in DM and the most active strains Lactobacillus plantarum 21B, Lactobacillus fermentum 18B and Lactobacillus brevis 18F grouped together. The antifungal activity resulted to be strain-related, based on a different mechanism of action for filamentous fungi and the yeast and was not exclusively associated to the increase of PLA. Therefore, a further investigation on the unique unidentified peak in HPLC-UV chromatograms, was performed by LC-MS/MS analysis. Actually, full scan mass spectra (negative ion mode) recorded at the retention time of the unknown compound, showed a main peak of m/z 291.0 which was consistent with the nominal mass of the molecular ion [M-H](-) of polyporic acid, a PPA derivative whose antifungal activity has been previously reported (Brewer et al., 1977). In conclusion, the addition of PPA to the growth medium contributed to improve the antifungal activity of LAB

  11. Effects of humic acid-metal complexes on hepatic carnitine palmitoyltransferase, carnitine acetyltransferase and catalase activities

    SciTech Connect

    Fungjou Lu; Youngshin Chen . Dept. of Biochemistry); Tienshang Huang . Dept. of Medicine)

    1994-03-01

    A significant increase in activities of hepatic carnitine palmitoyltransferase and carnitine acetyltransferase was observed in male Balb/c mice intraperitoneally injected for 40 d with 0.125 mg/0.1 ml/d humic acid-metal complexes. Among these complexes, the humic acid-As complex was relatively effective, whereas humic acid-25 metal complex was more effective, and humic acid-26 metal complex was most effective. However, humic acid or metal mixtures, or metal such as As alone, was not effective. Humic acid-metal complexes also significantly decreased hepatic catalase activity. A marked decrease of 60-kDa polypeptide in liver cytoplasm was also observed on SDS-polyacrylamide gel electrophoresis after the mice had been injected with the complexes. Morphological analysis of a histopathological biopsy of such treated mice revealed several changes in hepatocytes, including focal necrosis and cell infiltration, mild fatty changes, reactive nuclei, and hypertrophy. Humic acid-metal complexes affect activities of metabolic enzymes of fatty acids, and this results in accumulation of hydrogen peroxide and increase of the lipid peroxidation. The products of lipid peroxidation may be responsible for liver damage and possible carcinogenesis. Previous studies in this laboratory had shown that humic acid-metal complex altered the coagulation system and that humic acid, per se, caused vasculopathy. Therefore, humic acid-metal complexes may be main causal factors of not only so-called blackfoot disease, but also the liver cancer prevailing on the southwestern coast of Taiwan.

  12. Mathematical models of antisickling activities of benzoic acid derivatives on red blood cells of sicklers.

    PubMed

    Fasanmade, A A; Olaniyi, A A; Ab-Yisak, W

    1994-12-01

    A classical drug design technique based on the quantitative structure--activity relationship is applied to a series of synthetic benzoic acid derivatives. Some of the active derivatives tested include; p-toluic acid, p-dimethyl-amino benzoic acid, p-fluorobenzoic acid, p-chlorobenzoic acid, m-chlorobenzoic acid, p-bromobenzoic acid, p-nitrobenzoic acid, and p-iodobenzoic acid. The Hansch lipophilicity, pi, and the Hammett electronic parameters; sigma, were found to predict activities of the agents on the reversal of sickle-shaped deoxygenated sickle red blood cell to normal morphology. A series of equations correlating the biological activities with the structure of the tested compounds were analysed using multiple regression techniques. The most applicable of the equations was found to be; Log BR = -A sigma + B pi--C pi 2 + K Interpretation of this equation in terms of the biological action of the drugs on red blood cells was attempted. In designing a potent antisickling agent, the benzoic acid should have strong electron donating group(s) attached to the benzene ring and should be made averagely lipophilic to satisfy the relationship derived in this study.

  13. Antitumor activity of palmitic acid found as a selective cytotoxic substance in a marine red alga.

    PubMed

    Harada, Hideki; Yamashita, Uki; Kurihara, Hideyuki; Fukushi, Eri; Kawabata, Jun; Kamei, Yuto

    2002-01-01

    In a previous report, we discussed an extract from a marine red alga, Amphiroa zonata, which shows selective cytotoxic activity to human leukemic cells, but no cytotoxicity to normal human dermal fibroblast (HDF) cells in vitro. In this study, we identified palmitic acid, a selective cytotoxic substance from the marine algal extract, and investigated its biological activities. At concentrations ranging from 12.5 to 50 micrograms/ml, palmitic acid shows selective cytotoxicity to human leukemic cells, but no cytotoxicity to normal HDF cells. Furthermore, palmitic acid induces apoptosis in the human leukemic cell line MOLT-4 at 50 micrograms/ml. Palmitic acid also shows in vivo antitumor activity in mice. One molecular target of palmitic acid in tumor cells is DNA topoisomerase I, however, interestingly, it does not affect DNA topoisomerase II, suggesting that palmitic acid may be a lead compound of anticancer drugs.

  14. Characterization of nutrients, amino acids, polyphenols and antioxidant activity of Ridge gourd (Luffa acutangula) peel.

    PubMed

    Swetha, M P; Muthukumar, S P

    2016-07-01

    Ridge gourd (Luffa acutangula) is consumed as a vegetable after peeling off the skin which is a domestic waste. Luffa acutangula peel (LAP) was observed to be a good source of fiber (20.6 %) and minerals (7.7 %). Amino acid analysis revealed presence of the highest content of Carnosine followed by aspartic acid and aminoadipic acid. Antioxidant activity of different extracts showed that ethyl acetate extract was more potent when compared to other solvent extractions. It exhibited a significant amount of phenolic acids like p-coumaric acid (68.64 mg/100 g of dry weight) followed by gallic acid (34.98 mg/100 g of dry weight), protocatechuic acid (30.52 mg/100 g of dry weight) in free form and ferulic acid (13.04 mg/100 g of dry weight) in bound form.

  15. A Potent Plant-Derived Antifungal Acetylenic Acid Mediates Its Activity by Interfering with Fatty Acid Homeostasis

    PubMed Central

    Xu, Tao; Tripathi, Siddharth K.; Feng, Qin; Lorenz, Michael C.; Wright, Marsha A.; Jacob, Melissa R.; Mask, Melanie M.; Baerson, Scott R.; Li, Xing-Cong; Clark, Alice M.

    2012-01-01

    6-Nonadecynoic acid (6-NDA), a plant-derived acetylenic acid, exhibits strong inhibitory activity against the human fungal pathogens Candida albicans, Aspergillus fumigatus, and Trichophyton mentagrophytes. In the present study, transcriptional profiling coupled with mutant and biochemical analyses were conducted using the model yeast Saccharomyces cerevisiae to investigate its mechanism of action. 6-NDA elicited a transcriptome response indicative of fatty acid stress, altering the expression of genes that are required for yeast growth in the presence of oleate. Mutants of S. cerevisiae lacking transcription factors that regulate fatty acid β-oxidation showed increased sensitivity to 6-NDA. Fatty acid profile analysis indicated that 6-NDA inhibited the formation of fatty acids longer than 14 carbons in length. In addition, the growth inhibitory effect of 6-NDA was rescued in the presence of exogenously supplied oleate. To investigate the response of a pathogenic fungal species to 6-NDA, transcriptional profiling and biochemical analyses were also conducted in C. albicans. The transcriptional response and fatty acid profile of C. albicans were comparable to those obtained in S. cerevisiae, and the rescue of growth inhibition with exogenous oleate was also observed in C. albicans. In a fluconazole-resistant clinical isolate of C. albicans, a fungicidal effect was produced when fluconazole was combined with 6-NDA. In hyphal growth assays, 6-NDA inhibited the formation of long hyphal filaments in C. albicans. Collectively, our results indicate that the antifungal activity of 6-NDA is mediated by a disruption in fatty acid homeostasis and that 6-NDA has potential utility in the treatment of superficial Candida infections. PMID:22430960

  16. Antioxidant activities of rosemary (Rosmarinus Officinalis L.) extract, blackseed (Nigella sativa L.) essential oil, carnosic acid, rosmarinic acid and sesamol.

    PubMed

    Erkan, Naciye; Ayranci, Guler; Ayranci, Erol

    2008-09-01

    Antioxidant activities of three pure compounds: carnosic acid, rosmarinic acid and sesamol, as well as two plant extracts: rosemary extract and blackseed essential oil, were examined by applying DPPH and ABTS(+) radical-scavenging assays and the ferric thiocyanate test. All three test methods proved that rosemary extract had a higher antioxidant activity than blackseed essential oil. The order of antioxidant activity of pure compounds showed variations in different tests. This was attributed to structural factors of individual compounds. Phenolic contents of blackseed essential oil and rosemary extract were also determined. Rosemary extract was found to have a higher phenolic content than blackseed essential oil. This fact was utilised in explaining the higher antioxidant activity of rosemary extract.

  17. Modification of sphingolipid metabolism by tamoxifen and N-desmethyltamoxifen in acute myelogenous leukemia--Impact on enzyme activity and response to cytotoxics.

    PubMed

    Morad, Samy A F; Tan, Su-Fern; Feith, David J; Kester, Mark; Claxton, David F; Loughran, Thomas P; Barth, Brian M; Fox, Todd E; Cabot, Myles C

    2015-07-01

    The triphenylethylene antiestrogen, tamoxifen, can be an effective inhibitor of sphingolipid metabolism. This off-target activity makes tamoxifen an interesting ancillary for boosting the apoptosis-inducing properties of ceramide, a sphingolipid with valuable tumor censoring activity. Here we show for the first time that tamoxifen and metabolite, N-desmethyltamoxifen (DMT), block ceramide glycosylation and inhibit ceramide hydrolysis (by acid ceramidase, AC) in human acute myelogenous leukemia (AML) cell lines and in AML cells derived from patients. Tamoxifen (1-10 μM) inhibition of AC in AML cells was accompanied by decreases in AC protein expression. Tamoxifen also depressed expression and activity of sphingosine kinase 1 (SphK1), the enzyme-catalyzing production of mitogenic sphingosine 1-phosphate (S1-P). Results from mass spectroscopy showed that tamoxifen and DMT (i) increased the levels of endogenous C16:0 and C24:1 ceramide molecular species, (ii) nearly totally halted production of respective glucosylceramide (GC) molecular species, (iii) drastically reduced levels of sphingosine (to 9% of control), and (iv) reduced levels of S1-P by 85%, in vincristine-resistant HL-60/VCR cells. The co-administration of tamoxifen with either N-(4-hydroxyphenyl)retinamide (4-HPR), a ceramide-generating retinoid, or a cell-deliverable form of ceramide, C6-ceramide, resulted in marked decreases in HL-60/VCR cell viability that far exceeded single agent potency. Combination treatments resulted in synergistic apoptotic cell death as gauged by increased Annexin V binding and DNA fragmentation and activation of caspase-3. These results show the versatility of adjuvant triphenylethylene with ceramide-centric therapies for magnifying therapeutic potential in AML. Such drug regimens could serve as effective strategies, even in the multidrug-resistant setting.

  18. Modification of sphingolipid metabolism by tamoxifen and N-desmethyltamoxifen in acute myelogenous leukemia – Impact on enzyme activity and response to cytotoxics

    PubMed Central

    Morad, Samy A. F.; Tan, Su-Fern; Feith, David J.; Kester, Mark; Claxton, David F.; Loughran, Thomas P.; Barth, Brian M.; Fox, Todd E.; Cabot, Myles C.

    2015-01-01

    The triphenylethylene antiestrogen, tamoxifen, can be an effective inhibitor of sphingolipid metabolism. This off-target activity makes tamoxifen an interesting ancillary for boosting the apoptosis-inducing properties of ceramide, a sphingolipid with valuable tumor censoring activity. Here we show for the first time that tamoxifen and metabolite, N –desmethyltamoxifen (DMT) block ceramide glycosylation and inhibit ceramide hydrolysis (by acid ceramidase, AC) in human acute myelogenous leukemia (AML) cell lines and in AML cells derived from patients. Tamoxifen (1-10 μM) inhibition of AC in AML cells was accompanied by decreases in AC protein expression. Tamoxifen also depressed expression and activity of sphingosine kinase 1 (SphK1), the enzyme catalyzing production of mitogenic sphingosine 1-phosphate (S1-P). Results from mass spectroscopy showed that tamoxifen and DMT, i ) increased the levels of endogenous C16:0- and C24:1 ceramide molecular species, ii) nearly totally halted production of respective glucosylceramide (GC) molecular species, iii ) drastically reduced levels of sphingosine ( to 9% of control), and iv ) reduced levels of S1-P by 85%, in vincristine-resistant HL-60/VCR cells. Co-administration of tamoxifen with either N-(4-hydroxyphenyl)retinamide (4-HPR), a ceramide-generating retinoid, or a cell-deliverable form of ceramide, C6-ceramide, resulted in marked decreases in HL-60/VCR cell viability that far exceeded single agent potency. Combination treatments resulted in synergistic apoptotic cell death as gauged by increased Annexin V binding and DNA fragmentation and activation of caspase-3. These results show the versatility of adjuvant triphenylethylene with ceramide-centric therapies for magnifying therapeutic potential in AML. Such drug regimens could serve as effective strategies, even in the multidrug resistant setting. PMID:25769964

  19. Phosphatidic acid phosphatase and phospholipdase A activities in plasma membranes from fusing muscle cells.

    PubMed

    Kent, C; Vagelos, P R

    1976-06-17

    Plasma membrane from fusing embryonic muscle cells were assayed for phospholipase A activity to determine if this enzyme plays a role in cell fusion. The membranes were assayed under a variety of conditions with phosphatidylcholine as the substrate and no phospholipase A activity was found. The plasma membranes did contain a phosphatidic acid phosphatase which was optimally active in the presence of Triton X-100 and glycerol. The enzyme activity was constant from pH 5.2 to 7.0, and did not require divalent cations. Over 97% of the phosphatidic acid phosphatase activity was in the particulate fraction. The subcellular distribution of the phosphatidic acid phosphatase was the same as the distributions of the plasma membrane markers, (Na+ + k+)-ATPase and the acetylcholine receptor, which indicates that this phosphatase is located exclusively in the plasma membranes. There was no detectable difference in the phosphatidic acid phosphatase activities of plasma membranes from fusing and non-fusing cells.

  20. Effect of low temperature on highly unsaturated fatty acid biosynthesis in activated sludge.

    PubMed

    He, Su; Ding, Li-Li; Xu, Ke; Geng, Jin-Ju; Ren, Hong-Qiang

    2016-07-01

    Low temperature is a limiting factor for the microbial activity of activated sludge for sewage treatment plant in winter. Highly unsaturated fatty acid (UFA) biosynthesis, phospholipid fatty acid (PLFA) constituents and microbial structure in activated sludge at low temperature were investigated. Over 12 gigabases of metagenomic sequence data were generated with the Illumina HiSeq 2000 platform. The result showed 43.11% of phospholipid fatty acid (PLFA) in the activated sludge participated in UFA biosynthesis, and γ-Linolenic could be converted to Arachidonic acid at low temperature. The highly UFA biosynthesis in activated sludge was n-6 highly UFA biosynthesis, rather than n-3 highly UFA biosynthesis. The microbial community structures of activated sludge were analyzed by PLFA and high-throughput sequencing (HiSeq) simultaneously. Acidovorax, Pseudomonas, Flavobacterium and Polaromonas occupied higher percentage at 5°C, and genetic changes of highly UFA biosynthesis derived from microbial community structures change.

  1. Biological activity of silylated amino acid containing substance P analogues.

    PubMed

    Cavelier, F; Marchand, D; Martinez, J; Sagan, S

    2004-03-01

    The need to replace natural amino acids in peptides with nonproteinogenic counterparts to obtain new medicinal agents has stimulated a great deal of innovation on synthetic methods. Here, we report the incorporation of non-natural silylated amino acids in substance P (SP), the binding affinity for the two hNK-1 binding sites and, the potency to stimulate phospholipase C (PLC) and adenylate cyclase of the resulting peptide. We also assess the improvement of their stability towards enzyme degradation. Altogether, we found that replacing glycine with silaproline (Sip) in position 9 of SP leads to a potent analogue exhibiting an increased resistance to angiotensin-converting enzyme hydrolysis.

  2. A novel acid-stable, acid-active beta-galactosidase potentially suited to the alleviation of lactose intolerance.

    PubMed

    O'Connell, Shane; Walsh, Gary

    2010-03-01

    Extracellular beta-galactosidase produced by a strain of Aspergillus niger van Tiegh was purified to homogeneity using a combination of gel filtration, ion-exchange, chromatofocusing, and hydrophobic interaction chromatographies. The enzyme displayed a temperature optimum of 65 degrees C and a low pH optimum of between 2.0 and 4.0. The monomeric glycosylated enzyme displayed a molecular mass of 129 kDa and an isoelectric point of 4.7. Protein database similarity searching using mass spectrometry-derived sequence data indicate that the enzyme shares homology with a previously sequenced A. niger beta-galactosidase. Unlike currently commercialised products, the enzyme displayed a high level of stability when exposed to simulated gastric conditions in vitro, retaining 68+/-2% of original activity levels. This acid-stable, acid-active beta-galactosidase was formulated, along with a neutral beta-galactosidase from Kluyveromyces marxianus DSM5418, in a novel two-segment capsule system designed to ensure delivery of enzymes of appropriate physicochemical properties to both stomach and small intestine. When subjected to simulated full digestive tract conditions, the twin lactase-containing capsule hydrolyzed, per unit activity, some 3.5-fold more lactose than did the commercial supplemental enzyme. The acid-stable, acid-active enzyme, along with the novel two-segment delivery system, may prove beneficial in the more effective treatment of lactose intolerance.

  3. The effect of feeding with a tryptophan-free amino acid mixture on rat liver magnesium ion-activated deoxyribonucleic acid-dependent ribonucleic acid polymerase

    PubMed Central

    Henderson, A. R.

    1970-01-01

    1. The Widnell & Tata (1966) assay method for Mg2+-activated DNA-dependent RNA polymerase was used for initial-velocity determinations of rat liver nuclear RNA polymerase. One unit (U) of RNA polymerase was defined as that amount of enzyme required for 1 mmol of [3H]GMP incorporation/min at 37°C. 2. Colony fed rats were found to have a mean RNA polymerase activity of 65.9μU/mg of DNA and 18h-starved rats had a mean activity of 53.2μU/mg of DNA. Longer periods of starvation did not significantly decrease RNA polymerase activity further. 3. Rats that had been starved for 18h were used for all feeding experiments. Complete and tryptophan-deficient amino acid mixtures were given by stomach tube and the animals were killed 15–120min later. The response of RNA polymerase to the feeding with the complete amino acid mixture was rapid and almost linear over the first hour of feeding, resulting in a doubling of activity. The activity was still elevated above the starvation value at 120min after feeding. The tryptophan-deficient amino acid mixture produced a much less vigorous response about 45min after the feeding, and the activity had returned to the starvation value by 120min after the feeding. 4. The response of RNA polymerase to the feeding with the complete amino acid mixture was shown to occur within a period of less than 5min to about 10min after the feeding. 5. Pretreatment of the animals with puromycin or cycloheximide was found to abolish the 15min RNA polymerase response to the feeding with the complete amino acid mixture, but the activity of the controls was unaffected. 6. The characteristics of the RNA polymerase from 18h-starved animals and animals fed with the complete or incomplete amino acid mixtures for 1h were examined. The effects of Mg2+ ions, pH, actinomycin D and nucleoside triphosphate omissions were determined. The [Mg2+]– and pH–activity profiles of the RNA polymerase from the animal fed with the complete mixture appeared to differ from

  4. One-step production of a biologically active novel furan fatty acid from 7,10-dihydroxy-8(E)-octadecenoic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Furan fatty acids (F-acids) gain special attentions since they are known to play important roles in biological systems including humans. Specifically F-acids are known to have strong antioxidant activity like radical scavenging activity. Although widely distributed in most biological systems, F-ac...

  5. Phenolic acids and antioxidant activities in husk of different Thai rice varieties.

    PubMed

    Butsat, S; Siriamornpun, S

    2010-08-01

    This study was designed to investigate the free and bound phenolic acids as well as their antioxidant activities in husk of 12 Thai rice varieties consisting of pigmented rice and normal rice. The pigmented rice husk gave higher free total phenolic contents than normal rice husk. However, there was no significant difference in bound total phenolic contents between pigmented rice and normal rice husks. Ferulic and p-coumaric acids were the major phenolic acids in the free fraction of pigmented rice husks, whereas vanillic acid was the dominant phenolic acid in the free fraction of normal rice husks. On the other hand, p-coumaric acid was highly found in bound form of both pigmented and normal rice husks. The antioxidant activity of husk extracts was positively correlated with the total free phenolics content and individual of phenolic acids especially ferulic acid. On the basis of this study, it is suggested that the rice husk could be a potential phenolic acid source and may therefore offer an effective source of natural antioxidant. Our findings provide valuable information on phenolic acids composition and antioxidant activity of husk for further food application.

  6. Phytanic acid, a novel activator of uncoupling protein-1 gene transcription and brown adipocyte differentiation.

    PubMed Central

    Schlüter, Agatha; Barberá, Maria José; Iglesias, Roser; Giralt, Marta; Villarroya, Francesc

    2002-01-01

    Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) is a phytol-derived branched-chain fatty acid present in dietary products. Phytanic acid increased uncoupling protein-1 (UCP1) mRNA expression in brown adipocytes differentiated in culture. Phytanic acid induced the expression of the UCP1 gene promoter, which was enhanced by co-transfection with a retinoid X receptor (RXR) expression vector but not with other expression vectors driving peroxisome proliferator-activated receptor (PPAR)alpha, PPARgamma or a form of RXR devoid of ligand-dependent sensitivity. The effect of phytanic acid on the UCP1 gene required the 5' enhancer region of the gene and the effects of phytanic acid were mediated in an additive manner by three binding sites for RXR. Moreover, phytanic acid activates brown adipocyte differentiation: long-term exposure of brown preadipocytes to phytanic acid promoted the acquisition of the brown adipocyte morphology and caused a co-ordinate induction of the mRNAs for gene markers of brown adipocyte differentiation, such as UCP1, adipocyte lipid-binding protein aP2, lipoprotein lipase, the glucose transporter GLUT4 or subunit II of cytochrome c oxidase. In conclusion, phytanic acid is a natural product of phytol metabolism that activates brown adipocyte thermogenic function. It constitutes a potential nutritional signal linking dietary status to adaptive thermogenesis. PMID:11829740

  7. Experiments on the origins of optical activity. [in amino acids

    NASA Technical Reports Server (NTRS)

    Bonner, W. A.; Flores, J. J.

    1975-01-01

    An investigation was conducted concerning the asymmetric adsorption of phenylalanine enantiomers by kaolin. No preferential adsorption of either phenylalanine enantiomer could be detected and there was no resolution of the racemic phenylalanine by kaolin. The attempted asymmetric polymerization of aspartic acid by kaolin is also discussed along with a strontium-90 bremsstrahlung radiolysis of leucine.

  8. ELEMENTAL MERCURY ADSORPTION BY ACTIVATED CARBON TREATED WITH SULFURIC ACID

    EPA Science Inventory

    The paper gives results of a study of the adsorption of elemental mercury at 125 C by a sulfuric-acid (H2S04, 50% w/w/ solution)-treated carbon for the removal of mercury from flue gas. The pore structure of the sample was characterized by nitrogen (N2) at -196 C and the t-plot m...

  9. Derivatives of diphosphonic acids: synthesis and biological activity

    NASA Astrophysics Data System (ADS)

    Zolotukhina, M. M.; Krutikov, V. I.; Lavrent'ev, A. N.

    1993-07-01

    The scientific-technical and patent literature on the synthesis of derivatives of diphosphonic acids is surveyed. Various methods of synthesis of diphosphonate, phosphonylphosphinyl, and phosphonophosphate compounds are described. The principal aspects of the use of the above compounds in medicine, biochemistry, and agriculture are examined. The bibliography includes 174 references.

  10. Effect of maternal fasting on ovine fetal and maternal branched-chain amino acid transaminase activities.

    PubMed

    Liechty, E A; Barone, S; Nutt, M

    1987-01-01

    Activities of branched-chain amino acid transaminase were assayed in maternal skeletal muscle, liver and fetal skeletal muscle, cardiac muscle, liver, kidney and placenta obtained from fed and 5-day-fasted late gestation ewes. Very high activities were found in placenta; fetal skeletal muscle also had high activity. Fetal brain had intermediate activity, followed by cardiac muscle and kidney. Fetal liver possessed negligible activity. Activities were low in both maternal liver and skeletal muscle. Trends were seen for fasting to increase activities in fetal placenta, skeletal muscle, brain, kidney, heart and maternal liver, but these changes were statistically significant only for fetal brain and placental tissue. Fetal skeletal muscle activity was 100 times that of maternal skeletal muscle. These data imply differences in the metabolism of the branched-chain amino acids by fetal and adult ruminants and expand the thesis that branched-chain amino acids are important to the metabolism of the ovine fetus.

  11. Excellent performance of cobalt-impregnated activated carbon in peroxymonosulfate activation for acid orange 7 oxidation.

    PubMed

    Huang, Tianyin; Chen, Jiabin; Wang, Zhongming; Guo, Xin; Crittenden, John C

    2017-03-01

    Cobalt-impregnated activated carbon (GAC/Co) was used to produce sulfate radical (SO4(·-)) from peroxymonosulfate (PMS) in aqueous solution (hereafter called PMS activation). We evaluated its effectiveness by examining the degradation of orange acid 7 (AO7). GAC/Co exhibited high activity to activate PMS to degrade AO7. The degradation efficiency of AO7 increased with increasing dosage of GAC/Co or PMS and elevated temperatures. pH 8 was most favorable for the degradation of AO7 by GAC/Co-activated PMS. The radical quenching experiments indicated that the reactions most likely took place both in the bulk solution and on the surface of GAC/Co. We found that SO4(·-) played a dominant role in AO7 degradation. Sodium chloride (NaCl) which presents in most dye wastewater had a significant impact on AO7 degradation. Low dosages (<0.4 M) of NaCl showed a slight inhibitory effect, whereas high dosages (0.8 M) increased the reaction rate. HOCl was confirmed as the main contributor for accelerating AO7 degradation with high concentration of NaCl. In a continuous-flow reaction with an empty-bed contact time of 1.35 min, AO7 was not detected in the effluent for 0 to 18.72 L of treated influent volume (156 h) and 85% removal efficiency was still observed after 40.32 L of treated volume (336 h). Finally, the azo bond and the naphthalene structure in AO7 were destroyed and the degradation pathway was proposed.

  12. Effects of exogenous fatty acids and cholesterol on aminopeptidase activities in rat astroglia.

    PubMed

    Ramírez-Expósito, M J; García, M J; Mayas, M D; Ramírez, M; Martínez-Martos, J M

    2002-12-01

    Several studies have addressed the interaction between fatty acids and lipids with central nervous system peptides. Because aminopeptidases (AP) are involved in the regulation of neuropeptides, this work studies several AP expressed in cultured astroglia, after exogenous addition of oleic and linoleic fatty acids and cholesterol to the culture medium. Alanyl-AP, arginyl-AP, cystyl-AP, leucyl-AP, tyrosyl-AP and pyroglutamyl-AP activities were analysed in whole cells using the corresponding aminoacyl-beta-naphthylamides as substrates. Oleic acid inhibits alanyl-AP, cystyl-AP and leucyl-AP activities, whereas linoleic acid inhibits alanyl-AP, arginyl-AP and tyrosyl-AP activities. Neither oleic acid nor linoleic acid modifies pyroglutamyl-AP activity. In contrast, cholesterol increases arginyl-AP, cystyl-AP, leucyl-AP, tyrosyl-AP and pyroglutamyl-AP activities, although it does not modify alanyl-AP activity. The changes reported here suggest that oleic and linoleic fatty acids and cholesterol can modulate peptide activities via their degradation route involving aminopeptidases; each of them being differentially regulated.

  13. Inhibition of type 1 and type 2 5alpha-reductase activity by free fatty acids, active ingredients of Permixon.

    PubMed

    Raynaud, Jean Pierre; Cousse, Henri; Martin, Pierre Marie

    2002-10-01

    In different cell systems, the lipido-sterolic extract of Serenoa repens (LSESr, Permixon inhibits both type 1 and type 2 5alpha-reductase activity (5alphaR1 and 5alphaR2). LSESr is mainly constituted of fatty acids (90+/-5%) essentially as free fatty acids (80%). Among these free fatty acids, the main components are oleic and lauric acids which represent 65% and linoleic and myristic acids 15%. To evaluate the inhibitory effect of the different components of LSESr on 5alphaR1 or 5alphaR2 activity, the corresponding type 1 and type 2 human genes have been cloned and expressed in the baculovirus-directed insect cell expression system Sf9. The cells were incubated at pH 5.5 (5alphaR2) and pH 7.4 (5alphaR1) with 1 or 3nM testosterone in presence or absence of various concentrations of LSESr or of its different components. Dihydrotestosterone formation was measured with an automatic system combining HPLC and an on-line radiodetector. The inhibition of 5alphaR1 and 5alphaR2 activity was only observed with free fatty acids: esterified fatty acids, alcohols as well as sterols assayed were inactive. A specificity of the fatty acids in 5alphaR1 or 5alphaR2 inhibition has been found. Long unsaturated chains (oleic and linolenic) were active (IC(50)=4+/-2 and 13+/-3 microg/ml, respectively) on 5alphaR1 but to a much lesser extent (IC(50)>100 and 35+/-21 microg/ml, respectively) on 5alphaR2. Palmitic and stearic acids were inactive on the two isoforms. Lauric acid was active on 5alphaR1 (IC(50)=17+/-3 microg/ml) and 5alphaR2 (IC(50)=19+/-9 microg/ml). The inhibitory activity of myristic acid was evaluated on 5alphaR2 only and found active on this isoform (IC(50)=4+/-2 microg/ml). The dual inhibitory activity of LSESr on 5alpha-reductase type 1 and type 2 can be attributed to its high content in free fatty acids.

  14. Rapid regulation of sialidase activity in response to neural activity and sialic acid removal during memory processing in rat hippocampus.

    PubMed

    Minami, Akira; Meguro, Yuko; Ishibashi, Sayaka; Ishii, Ami; Shiratori, Mako; Sai, Saki; Horii, Yuuki; Shimizu, Hirotaka; Fukumoto, Hokuto; Shimba, Sumika; Taguchi, Risa; Takahashi, Tadanobu; Otsubo, Tadamune; Ikeda, Kiyoshi; Suzuki, Takashi

    2017-04-07

    Sialidase cleaves sialic acids on the extracellular cell surface as well as inside the cell and is necessary for normal long-term potentiation (LTP) at mossy fiber-CA3 pyramidal cell synapses and for hippocampus-dependent spatial memory. Here, we investigated in detail the role of sialidase in memory processing. Sialidase activity measured with 4-methylumbelliferyl-α-d-N-acetylneuraminic acid (4MU-Neu5Ac) or 5-bromo-4-chloroindol-3-yl-α-d-N-acetylneuraminic acid (X-Neu5Ac) and Fast Red Violet LB was increased by high-K(+)-induced membrane depolarization. Sialidase activity was also increased by chemical LTP induction with forskolin and activation of BDNF signaling, non-NMDA receptors, or NMDA receptors. The increase in sialidase activity with neural excitation appears to be caused not by secreted sialidase or by an increase in sialidase expression but by a change in the subcellular localization of sialidase. Astrocytes as well as neurons are also involved in the neural activity-dependent increase in sialidase activity. Sialidase activity visualized with a benzothiazolylphenol-based sialic acid derivative (BTP3-Neu5Ac), a highly sensitive histochemical imaging probe for sialidase activity, at the CA3 stratum lucidum of rat acute hippocampal slices was immediately increased in response to LTP-inducible high-frequency stimulation on a time scale of seconds. To obtain direct evidence for sialic acid removal on the extracellular cell surface during neural excitation, the extracellular free sialic acid level in the hippocampus was monitored using in vivo microdialysis. The free sialic acid level was increased by high-K(+)-induced membrane depolarization. Desialylation also occurred during hippocampus-dependent memory formation in a contextual fear-conditioning paradigm. Our results show that neural activity-dependent desialylation by sialidase may be involved in hippocampal memory processing.

  15. Microbial activity inhibition in chilled mackerel (Scomber scombrus) by employment of an organic acid-icing system.

    PubMed

    Sanjuás-Rey, Minia; Gallardo, José M; Barros-Velázquez, Jorge; Aubourg, Santiago P

    2012-05-01

    The present study concerns Atlantic mackerel (Scomber scombrus) traded as a chilled product. The study was aimed to investigate the effect of including a mixture of organic acids (citric, ascorbic, and lactic) in the icing medium employed during the fish chilled storage. To this end and according to preliminary trials results, an aqueous solution including 0.050% (w/v) of each acid was employed as icing medium; its effect on the microbial activity development in mackerel muscle was monitored for up to 13 d of chilled storage and compared to a counterpart-fish batch kept under traditional water ice considered as control. Results indicated a lower bacterial growth in mackerel muscle subjected to storage in the organic acid-icing system by comparison with control fish. Thus, statistically-significant (P < 0.05) differences between both batches for all 6 microbial groups investigated (aerobes, anaerobes, psychrotrophes, Enterobacteriaceae, lipolytics, and proteolytics) and for 2 chemical indices related to microbial activity development (total volatile bases and trimethylamine) were obtained. The surface wash caused by the melting of the ice during storage and the subsequent antimicrobial effect of such acids on skin microflora of the fish can be invoked as the main reasons for the limited bacterial growth found in the corresponding mackerel muscle.

  16. Adsorption of acid dyes from aqueous solution on activated bleaching earth.

    PubMed

    Tsai, W T; Chang, C Y; Ing, C H; Chang, C F

    2004-07-01

    In the present study, activated bleaching earth was used as clay adsorbent for an investigation of the adsorbability and adsorption kinetics of acid dyes (i.e., acid orange 51, acid blue 9, and acid orange 10) with three different molecular sizes from aqueous solution at 25 degrees C in a batch adsorber. The rate of adsorption has been investigated under the most important process parameters (i.e., initial dye concentration). A simple pseudo-second-order model has been tested to predict the adsorption rate constant, equilibrium adsorbate concentration, and equilibrium adsorption capacity by the fittings of the experimental data. The results showed that the adsorbability of the acid acids by activated bleaching earth follows the order: acid orange 51 > acid blue 9 > acid orange 10, parallel to the molecular weights and molecular sizes of the acid dyes. The adsorption removals (below 3%) of acid blue 9 and acid orange 10 onto the clay adsorbent are far lower than that (approximately 24%) of acid orange 51. Further, the adsorption kinetic of acid orange 51 can be well described by the pseudo-second-order reaction model. Based on the isotherm data obtained from the fittings of the adsorption kinetics, the Langmuir model appears to fit the adsorption better than the Freundlich model. The external coefficients of mass transfer of the acid orange 51 molecule across the boundary layer of adsorbent particle have also been estimated at the order of 10(-4)-10(-5) cm s(-1) based on the film-pore model and pseudo-second-order reaction model.

  17. Purification and identification of bovine cheese whey fatty acids exhibiting in vitro antifungal activity.

    PubMed

    Clément, M; Tremblay, J; Lange, M; Thibodeau, J; Belhumeur, P

    2008-07-01

    Milk lipids contain several bioactive factors exhibiting antimicrobial activity against bacteria, viruses, and fungi. In the present study, we demonstrate that free fatty acids (FFA) derived from the saponification of bovine whey cream lipids are active in vitro at inhibiting the germination of Candida albicans, a morphological transition associated with pathogenicity. This activity was found to be significantly increased when bovine FFA were enriched in non-straight-chain FFA. At low cell density, this non-straight-chain FFA-enriched fraction was also found to inhibit in a dose-dependant manner the growth of both developmental forms of C. albicans as well as the growth of Aspergillus fumigatus. Using an assay-guided fractionation, the main components responsible for these activities were isolated. On the basis of mass spectroscopic and gas chromatographic analysis, antifungal compounds were identified as capric acid (C10:0), lauroleic acid (C12:1), 11-methyldodecanoic acid (iso-C13:0), myristoleic acid (C14:1n-5), and gamma-linolenic acid (C18:3n-6). The most potent compound was gamma-linolenic acid, with minimal inhibitory concentration values of 5.4 mg/L for C. albicans and 1.3 mg/L for A. fumigatus, in standardized conditions. The results of this study indicate that bovine whey contains bioactive fatty acids exhibiting antifungal activity in vitro against 2 important human fungal pathogens.

  18. Joint effect of organic acids and inorganic salts on cloud droplet activation

    NASA Astrophysics Data System (ADS)

    Frosch, M.; Prisle, N. L.; Bilde, M.; Varga, Z.; Kiss, G.

    2011-04-01

    We have investigated CCN properties of internally mixed particles composed of one organic acid (oxalic acid dihydrate, succinic acid, adipic acid, citric acid, cis-pinonic acid, or Nordic reference fulvic acid) and one inorganic salt (sodium chloride or ammonium sulphate). Surface tension and water activity of aqueous model solutions with concentrations relevant for CCN activation were measured using a tensiometer and osmometry, respectively. The measurements were used to calculate Köhler curves and critical supersaturations, which were compared to measured critical supersaturations of particles with the same chemical compositions, determined with a cloud condensation nucleus counter. Surfactant surface partitioning was not accounted for. For the aqueous solutions containing cis-pinonic acid and fulvic acid, a depression of surface tension was observed, but for the remaining solutions the effect on surface tension was negligible at concentrations relevant for cloud droplet activation. The surface tension depression of aqueous solutions containing both organic acid and inorganic salt was approximately the same as or smaller than that of aqueous solutions containing the same mass of the corresponding pure organic acids. Water activity was found to be highly dependent on the type and amount of inorganic salt. Sodium chloride was able to decrease water activity more than ammonium sulphate and both inorganic salts are predicted to have a smaller Raoult term than the studied organic acids. Increasing the mass ratio of the inorganic salt led to a decrease in water activity. Water activity measurements were compared to results from the E-AIM model and values estimated from both constant and variable van't Hoff factors. The correspondence between measurements and estimates was overall good, except for highly concentrated solutions. Critical supersaturations calculated with Köhler theory based on measured water activity and surface tension, but not accounting for surface

  19. Effect of L-ascorbic acid on the monophenolase activity of tyrosinase.

    PubMed Central

    Ros, J R; Rodríguez-López, J N; García-Cánovas, F

    1993-01-01

    The effect of ascorbic acid on the monophenolase activity of tyrosinase, using tyrosine as substrate, has been studied. Over the ranges of ascorbic acid concentration used, no direct effect on the enzyme is found. However, a shortening of the characteristic induction period of the hydroxylation reaction is observed. The evolution of the reaction is dependent on the concentration of ascorbic acid. Low concentrations permit the system to reach the steady state when all ascorbic acid is consumed, whereas high concentrations do not. In the light of these results it is proposed that the influence of ascorbic acid on the reaction is due to its ability to reduce the enzymically generated o-quinones. A relationship between the ascorbic acid concentration, and the induction period generated by it, with the diphenolase activity of tyrosinase is established, which can be used as a basis for the determination of trace amounts of this reducing agent. PMID:8216233

  20. Kinetics and Quantitative Structure—Activity Relationship Study on the Degradation Reaction from Perfluorooctanoic Acid to Trifluoroacetic Acid

    PubMed Central

    Gong, Chen; Sun, Xiaomin; Zhang, Chenxi; Zhang, Xue; Niu, Junfeng

    2014-01-01

    Investigation of the degradation kinetics of perfluorooctanoic acid (PFOA) has been carried out to calculate rate constants of the main elementary reactions using the multichannel Rice-Ramsperger-Kassel-Marcus theory and canonical variational transition state theory with small-curvature tunneling correction over a temperature range of 200~500 K. The Arrhenius equations of rate constants of elementary reactions are fitted. The decarboxylation is role step in the degradation mechanism of PFOA. For the perfluorinated carboxylic acids from perfluorooctanoic acid to trifluoroacetic acid, the quantitative structure–activity relationship of the decarboxylation was analyzed with the genetic function approximation method and the structure–activity model was constructed. The main parameters governing rate constants of the decarboxylation reaction from the eight-carbon chain to the two-carbon chain were obtained. As the structure–activity model shows, the bond length and energy of C1–C2 (RC1–C2 and EC1–C2) are positively correlated to rate constants, while the volume (V), the energy difference between EHOMO and ELUMO (ΔE), and the net atomic charges on atom C2 (QC2) are negatively correlated. PMID:25196516

  1. Antioxidant activity of propolis: role of caffeic acid phenethyl ester and galangin.

    PubMed

    Russo, A; Longo, R; Vanella, A

    2002-11-01

    Propolis, a natural product produced by the honeybee, has been used for thousands of years in folk medicine for several purposes. The extract contains amino acids, phenolic acids, phenolic acid esters, flavonoids, cinnamic acid, terpenes and caffeic acid. It possesses several biological activities such as antiinflammatory, immunostimulatory, antiviral and antibacterial. The exact mode of physiological or biochemical mechanisms responsible for the medical effects, however, is yet to be determined. In this work, we have investigated the antioxidant activity of a propolis extract deprived of caffeic acid phenethyl ester (CAPE). In addition, the activity of CAPE and galangin was also examined. Propolis extract (with and without CAPE) and its active components showed a dose-dependent free radical scavenging effect, a significant inhibition of xanthine oxidase activity, and an antilipoperoxidative capacity. Propolis extract with CAPE was more active than propolis extract without CAPE. CAPE, used alone, exhibited a strong antioxidant activity, higher than galangin. The experimental evidence, therefore, suggests that CAPE plays an important role in the antioxidant activity of propolis.

  2. The bile acid-sensitive ion channel (BASIC) is activated by alterations of its membrane environment.

    PubMed

    Schmidt, Axel; Lenzig, Pia; Oslender-Bujotzek, Adrienne; Kusch, Jana; Lucas, Susana Dias; Gründer, Stefan; Wiemuth, Dominik

    2014-01-01

    The bile acid-sensitive ion channel (BASIC) is a member of the DEG/ENaC family of ion channels. Channels of this family are characterized by a common structure, their physiological functions and modes of activation, however, are diverse. Rat BASIC is expressed in brain, liver and intestinal tract and activated by bile acids. The physiological function of BASIC and its mechanism of bile acid activation remain a puzzle. Here we addressed the question whether amphiphilic bile acids activate BASIC by directly binding to the channel or indirectly by altering the properties of the surrounding membrane. We show that membrane-active substances other than bile acids also affect the activity of BASIC and that activation by bile acids and other membrane-active substances is non-additive, suggesting that BASIC is sensitive for changes in its membrane environment. Furthermore based on results from chimeras between BASIC and ASIC1a, we show that the extracellular and the transmembrane domains are important for membrane sensitivity.

  3. HPLC Quantification of Phenolic Acids from Vetiveria zizanioides (L.) Nash and Its Antioxidant and Antimicrobial Activity

    PubMed Central

    Prajna, Jha; Richa, Jindal; Dipjyoti, Chakraborty

    2013-01-01

    Extraction procedure was standardized and for the soluble, glycoside, and wall-bound fractions of phenolic acids from Vetiveria zizanioides. The water soluble alkaline extract which represents the cell wall-bound fraction contained the highest amount of phenolic acids (2.62 ± 1.2 μM/g fwt GA equivalents). Increased phenolic content in the cell wall indicates more lignin deposition which has an important role in plant defense and stress mitigation. Antioxidant property expressed as percentage TEAC value obtained by ABTS assay was correlated with the amount of phenolic acids and showed a Pearson's coefficient 0.988 (significant at 0.01 level). The compounds p-coumaric acid, p-dihydroxybenzoic acid, and ferulic acid were detected in the acidic extracts by HPLC analysis. The plant extracts exhibited considerable antimicrobial activity against tested bacterial and fungal strains. PMID:26555971

  4. pH-Uncontrolled lactic acid fermentation with activated carbon as an adsorbent.

    PubMed

    Gao, Min-Tian; Shimamura, Takashi; Ishida, Nobuhiro; Takahashi, Haruo

    2011-05-06

    In this paper, we presented a novel process involving activated carbon (AC) as an adsorbent for lactic acid fermentation, separation and oligomerization. It was found that pH has a significant effect on the adsorption of lactic acid on AC. The use of AC for in situ removal of lactic acid successfully decreased the inhibitory effect of lactic acid, resulting in significant increases in both productivity and yield. Acetone was used to desorb lactic acid and it was confirmed that the acetone treatment did not decrease the optical purity of the lactic acid, i.e., the optical purity was as high as 99.5% after desorption. Due to the presence of little materials influencing lactic acid oligomerization, oligomers with an optical purity of above 96% and a weight-average molecular weight (M(w)) of 2400 were obtained in the oligomerization process.

  5. Mitigating the antimicrobial activities of selected organic acids and commercial sanitizers with various neutralizing agents.

    PubMed

    Park, Yoen Ju; Chen, Jinru

    2011-05-01

    This study was conducted to evaluate the abilities of five neutralizing agents, Dey-Engley (DE) neutralizing broth (single or double strength), morpholinepropanesulfonic acid (MOPS) buffer, phosphate-buffered saline (PBS), and sodium thiosulfate buffer, in mitigating the activities of acetic or lactic acid (2%) and an alkaline or acidic sanitizer (a manufacturer-recommended concentration) againt the cells of Shiga toxin-producing Escherichia coli (STEC; n = 9). To evaluate the possible toxicity of the neutralizing agents to the STEC cells, each STEC strain was exposed to each of the neutralizing agents at room temperature for 10 min. Neutralizing efficacy was evaluated by placing each STEC strain in a mixture of sanitizer and neutralizer under the same conditions. The neutralizing agents had no detectable toxic effect on the STEC strains. PBS was least effective for neutralizing the activity of selected organic acids and sanitizers. Single-strength DE and sodium thiosulfate neutralized the activity of both acetic and lactic acids. MOPS buffer neutralized the activity of acetic acid and lactic acid against six and five STEC strains, respectively. All neutralizing agents, except double-strength DE broth, had a limited neutralizing effect on the activity of the commercial sanitizers used in the study. The double-strength DE broth effectively neutralized the activity of the two commercial sanitizers with no detectable toxic effects on STEC cells.

  6. Fluorogenic sialic acid glycosides for quantification of sialidase activity upon unnatural substrates.

    PubMed

    Zamora, Cristina Y; d'Alarcao, Marc; Kumar, Krishna

    2013-06-01

    Herein we report the synthesis of N-acetyl neuraminic acid derivatives as 4-methylumbelliferyl glycosides and their use in fluorometrically quantifying human and bacterial sialidase activity and substrate specificities. We found that sialidases in the human promyelocytic leukemic cell line HL60 were able to cleave sialic acid substrates with fluorinated C-5 modifications, in some cases to a greater degree than the natural N-acetyl functionality. Human sialidases isoforms were also able to cleave unnatural substrates with bulky and hydrophobic C-5 modifications. In contrast, we found that a bacterial sialidase isolated from Clostridium perfringens to be less tolerant of sialic acid derivatization at this position, with virtually no cleavage of these glycosides observed. From our results, we conclude that human sialidase activity is a significant factor in sialic acid metabolic glycoengineering efforts utilizing unnatural sialic acid derivatives. Our fluorogenic probes have enabled further understanding of the activities and substrate specificities of human sialidases in a cellular context.

  7. [Vasorelaxant activity of caffeic acid derivatives from Cichorium intybus and Equisetum arvense].

    PubMed

    Sakurai, Nobuko; Iizuka, Tohru; Nakayama, Shigeki; Funayama, Hiroko; Noguchi, Mariko; Nagai, Masahiro

    2003-07-01

    The vasorelaxant activities of chicoric acid (Compound 1) from Cichorium intybus and dicaffeoyl-meso-tartaric acid (Compound 2) from Equisetum arvense L. in isolated rat aorta strips were studied. Compound 1 is a diester composed of (S,S)-tartaric acid and caffeic acid, and 2 is composed of its meso type. Both 1 and 2 showed slow relaxation activity against norepinephrine (NE)-induced contraction of rat aorta with/without endothelium. These compounds did not affect contraction induced by a high concentration of potassium (60 mM K+), while they inhibited NE-induced vasocontraction in the presence of nicardipine. These results show that the inhibition by 1 and 2 of NE-induced vasocontraction is due to a decrease in calcium influx from the extracellular space caused by NE. In addition, dicaffeoyl tartaric acids showed vasorelaxant activity, regardless of their stereochemistry.

  8. Lactic Acid Bacterial Starter Culture with Antioxidant and γ-Aminobutyric Acid Biosynthetic Activities Isolated from Flatfish-Sikhae Fermentation.

    PubMed

    Won, Yeong Geol; Yu, Hyun-Hee; Chang, Young-Hyo; Hwang, Han-Joon

    2015-12-01

    The aim of this study is to select a lactic acid bacterial strain as a starter culture for flatfish-Sikhae fermentation and to evaluate its suitability for application in a food system. Four strains of lactic acid bacteria isolated from commercial flatfish-Sikhae were identified and selected as starter culture candidates through investigation of growth rates, salt tolerance, food safety, and functional properties such as antioxidative and antimicrobial activities. The fermentation properties of the starter candidates were also examined in food systems prepared with these strains (candidate batch) in comparison with a spontaneous fermentation process without starter culture (control batch) at 15°C. The results showed that the candidate YG331 batch had better fermentation properties such as viable cell count, pH, and acidity than the other experimental batches, including the control batch. The results are expressed according to selection criteria based on a preliminary sensory evaluation and physiochemical investigation. Also, only a small amount of histamine was detected with the candidate YG331 batch. The radical scavenging activity of the candidate batches was better compared with the control batch, and especially candidate YG331 batch showed the best radical scavenging activity. Also, we isolated another starter candidate (identified as Lactobacillus brevis PM03) with γ-aminobutyric acid (GABA)-producing activity from commercial flatfish-Sikhae products. The sensory scores of the candidate YG331 batch were better than those of the other experimental batches in terms of flavor, color, and overall acceptance. In this study, we established selection criteria for the lactic acid bacterial starter for the flatfish-Sikhae production and finally selected candidate YG331 as the most suitable starter.

  9. Oleic acid stimulates complete oxidation of fatty acids through protein kinase A-dependent activation of SIRT1-PGC1α complex.

    PubMed

    Lim, Ji-Hong; Gerhart-Hines, Zachary; Dominy, John E; Lee, Yoonjin; Kim, Sungjin; Tabata, Mitsuhisa; Xiang, Yang K; Puigserver, Pere

    2013-03-08

    Fatty acids are essential components of the dynamic lipid metabolism in cells. Fatty acids can also signal to intracellular pathways to trigger a broad range of cellular responses. Oleic acid is an abundant monounsaturated omega-9 fatty acid that impinges on different biological processes, but the mechanisms of action are not completely understood. Here, we report that oleic acid stimulates the cAMP/protein kinase A pathway and activates the SIRT1-PGC1α transcriptional complex to modulate rates of fatty acid oxidation. In skeletal muscle cells, oleic acid treatment increased intracellular levels of cyclic adenosine monophosphate (cAMP) that turned on protein kinase A activity. This resulted in SIRT1 phosphorylation at Ser-434 and elevation of its catalytic deacetylase activity. A direct SIRT1 substrate is the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1α), which became deacetylated and hyperactive after oleic acid treatment. Importantly, oleic acid, but not other long chain fatty acids such as palmitate, increased the expression of genes linked to fatty acid oxidation pathway in a SIRT1-PGC1α-dependent mechanism. As a result, oleic acid potently accelerated rates of complete fatty acid oxidation in skeletal muscle cells. These results illustrate how a single long chain fatty acid specifically controls lipid oxidation through a signaling/transcriptional pathway. Pharmacological manipulation of this lipid signaling pathway might provide therapeutic possibilities to treat metabolic diseases associated with lipid dysregulation.

  10. Effects of tiaprofenic acid on plasminogen activators and inhibitors in human OA and RA synovium.

    PubMed

    Pelletier, J P; McCollum, R; Cloutier, J M; Martel-Pelletier, J

    1992-01-01

    The effect of therapeutic and pharmacological concentrations of tiaprofenic acid, a non-steroidal anti-inflammatory drug (NSAID), on the synthesis of the plasminogen activators, urokinase plasminogen activator (uPA) and tissue plasminogen activator (tPA), and the plasminogen activator inhibitors 1 and 2 (PAI-1 and PAI-2), by human synovial membranes isolated from osteoarthritis (OA) and rheumatoid arthritis (RA) sufferers was evaluated. Both forms of plasminogen activator (PA) and PA inhibitor (PAI) were synthesized by the arthritic synovium. PAI-1 and PAI-2 were both synthesized in greater amounts than the plasminogen activators. Tiaprofenic acid induced a dose-dependent decrease in uPA synthesis in both OA and RA, particularly in OA synovium, but had no true effect on tPA. Tiaprofenic acid also exerted a suppressive effect on the synthesis of PAI-1 in both OA and RA synovial membranes, and on the release of PAI-2 in RA synovium. The results of this study indicate that a decrease in uPA synthesis may be one of the mechanisms by which tiaprofenic acid could exert its effects on the arthritic process. The suppressive action of tiaprofenic acid on PAI is not likely to have a significant impact on the balance of plasminogen activators and plasminogen activator inhibitors, as plasminogen activator inhibitors are synthesized in greater amounts than plasminogen activators.

  11. Joint effect of organic acids and inorganic salts on cloud droplet activation

    NASA Astrophysics Data System (ADS)

    Frosch, M.; Prisle, N. L.; Bilde, M.; Varga, Z.; Kiss, G.

    2010-07-01

    We have investigated CCN properties of internally mixed particles composed of one organic acid (oxalic acid, succinic acid, adipic acid, citric acid, cis-pinonic acid, or nordic reference fulvic acid) and one inorganic salt (sodium chloride or ammonium sulphate). Surface tension and water activity of aqueous model solutions with concentrations relevant for CCN activation were measured using a tensiometer and osmometry, respectively. The measurements were used to calculate Köhler curves, which were compared to measured critical supersaturations of particles with the same chemical compositions, determined with a cloud condensation nucleus counter. Surfactant surface partitioning was not accounted for. For the mixtures containing cis-pinonic acid or fulvic acid, a depression of surface tension was observed, but for the remaining mixtures the effect on surface tension was negligle at concentrations relevant for cloud droplet activation, and water activity was the more significant term in the Köhler equation. The surface tension depression of aqueous solutions containing both organic acid and inorganic salt was approximately the same as or smaller than that of aqueous solutions containing the same mass of the corresponding pure organic acids. Water activity was found to be highly dependent on the type and amount of inorganic salt. Sodium chloride was able to decrease water activity more than ammonium sulphate and both inorganic compounds had a higher effect on water activity than the studied organic acids, and increasing the mass ratio of the inorganic compound led to a decrease in water activity. Water activity measurements were compared to results from the E-AIM model and values estimated from both constant and variable van't Hoff factors to evaluate the performance of these approaches. The correspondence between measuments and estimates was overall good, except for highly concentrated solutions. Critical supersaturations calculated with Köhler theory based on

  12. Synthesis, in vitro and in vivo antitumor activity of pyrazole-fused 23-hydroxybetulinic acid derivatives.

    PubMed

    Zhang, Hengyuan; Zhu, Peiqing; Liu, Jie; Lin, Yan; Yao, Hequan; Jiang, Jieyun; Ye, Wencai; Wu, Xiaoming; Xu, Jinyi

    2015-02-01

    A collection of pyrazole-fused 23-hydroxybetulinic acid derivatives were designed, synthesized and evaluated for their antitumor activity. Most of the newly synthesized compounds exhibited significant antiproliferative activity. Especially compound 15e displayed the most potent activity with the IC50 values of 5.58 and 6.13μM against B16 and SF763 cancer cell lines, respectively. Furthermore, the significant in vivo antitumor activity of 15e was validated in H22 liver cancer and B16 melanoma xenograft mouse models. The structure-activity relationships of these 23-hydroxybetulinic acid derivatives were also discussed based on the present investigation.

  13. Hepatic Fasting-Induced PPARα Activity Does Not Depend on Essential Fatty Acids.

    PubMed

    Polizzi, Arnaud; Fouché, Edwin; Ducheix, Simon; Lasserre, Frédéric; Marmugi, Alice P; Mselli-Lakhal, Laila; Loiseau, Nicolas; Wahli, Walter; Guillou, Hervé; Montagner, Alexandra

    2016-09-24

    The liver plays a central role in the regulation of fatty acid metabolism, which is highly sensitive to transcriptional responses to nutrients and hormones. Transcription factors involved in this process include nuclear hormone receptors. One such receptor, PPARα, which is highly expressed in the liver and activated by a variety of fatty acids, is a critical regulator of hepatic fatty acid catabolism during fasting. The present study compared the influence of dietary fatty acids and fasting on hepatic PPARα-dependent responses. Pparα(-/-) male mice and their wild-type controls were fed diets containing different fatty acids for 10 weeks prior to being subjected to fasting or normal feeding. In line with the role of PPARα in sensing dietary fatty acids, changes in chronic dietary fat consumption influenced liver damage during fasting. The changes were particularly marked in mice fed diets lacking essential fatty acids. However, fasting, rather than specific dietary fatty acids, induced acute PPARα activity in the liver. Taken together, the data imply that the potent signalling involved in triggering PPARα activity during fasting does not rely on essential fatty acid-derived ligand.

  14. p21 induction plays a dual role in anti-cancer activity of ursolic acid

    PubMed Central

    Zhang, Xudong; Song, Xinhua; Yin, Shutao; Zhao, Chong; Fan, Lihong

    2015-01-01

    Previous studies have shown that induction of G1 arrest and apoptosis by ursolic acid is associated with up-regulation of cyclin-dependent kinase inhibitor (CDKI) protein p21 in multiple types of cancer cells. However, the functional role of p21 induction in G1 cell cycle arrest and apoptosis, and the mechanisms of p21 induction by ursolic acid have not been critically addressed. In the current study, we demonstrated that p21 played a mediator role in G1 cell cycle arrest by ursolic acid, whereas p21-mediated up-regulation of Mcl-1 compromised apoptotic effect of ursolic acid. These results suggest that p21 induction plays a dual role in the anti-cancer activity of ursolic acid in terms of cell cycle and apoptosis regulation. p21 induction by ursolic acid was attributed to p53 transcriptional activation. Moreover, we found that ursolic acid was able to inhibit murine double minute-2 protein (MDM2) and T-LAK cell-originated protein kinase (TOPK), the two negative regulator of p53, which in turn contributed to ursolic acid-induced p53 activation. Our findings provided novel insights into understanding of the mechanisms involved in cell cycle arrest and apoptosis induction in response to ursolic acid exposure. PMID:26582056

  15. Ginkgolic acids induce neuronal death and activate protein phosphatase type-2C.

    PubMed

    Ahlemeyer, B; Selke, D; Schaper, C; Klumpp, S; Krieglstein, J

    2001-10-26

    The standardized extract from Ginkgo biloba (EGb 761) is used for the treatment of dementia. Because of allergenic and genotoxic effects, ginkgolic acids are restricted in EGb 761 to 5 ppm. The question arises whether ginkgolic acids also have neurotoxic effects. In the present study, ginkgolic acids caused death of cultured chick embryonic neurons in a concentration-dependent manner, in the presence and in the absence of serum. Ginkgolic acids-induced death showed features of apoptosis as we observed chromatin condensation, shrinkage of the nucleus and reduction of the damage by the protein synthesis inhibitor cycloheximide, demonstrating an active type of cell death. However, DNA fragmentation detected by the terminal-transferase-mediated ddUTP-digoxigenin nick-end labeling (TUNEL) assay and caspase-3 activation, which are also considered as hallmarks of apoptosis, were not seen after treatment with 150 microM ginkgolic acids in serum-free medium, a dose which increased the percentage of neurons with chromatin condensation and shrunken nuclei to 88% compared with 25% in serum-deprived, vehicle-treated controls. This suggests that ginkgolic acid-induced death showed signs of apoptosis as well as of necrosis. Ginkgolic acids specifically increased the activity of protein phosphatase type-2C, whereas other protein phosphatases such as protein phosphatases 1A, 2A and 2B, tyrosine phosphatase, and unspecific acid- and alkaline phosphatases were inhibited or remained unchanged, suggesting protein phosphatase 2C to play a role in the neurotoxic effect mediated by ginkgolic acids.

  16. Protein kinase A is activated by the n–3 polyunsaturated fatty acid eicosapentaenoic acid in rat ventricular muscle

    PubMed Central

    Szentandrássy, Norbert; Pérez-Bido, M R; Alonzo, E; Negretti, N; O'Neill, Stephen C

    2007-01-01

    During cardiac ischaemia antiarrhythmic n–3 polyunsaturated fatty acids (PUFAs) are released following activation of phospholipase A2, if they are in the diet prior to ischaemia. Here we show a positive lusitropic effect of one such PUFA, eicosapentaenoic acid (EPA) in the antiarrhythmic concentration range in Langendorff hearts and isolated rat ventricular myocytes due to activation of protein kinase A (PKA). Several different approaches indicated activation of PKA by EPA (5–10 μmol l−1): the time constant of decay of the systolic Ca2+ transient decreased to 65.3 ± 5.0% of control, Western blot analysis showed a fourfold increase in phospholamban phosphorylation, and PKA activity increased by 21.0 ± 7.3%. In addition myofilament Ca2+ sensitivity was reduced in EPA; this too may have resulted from PKA activation. We also found that EPA inhibited L-type Ca2+ current by 38.7 ± 3.9% but this increased to 63.3 ± 3.4% in 10 μmol l−1 H89 (to inhibit PKA), providing further evidence of activation of PKA by EPA. PKA inhibition also prevented the lusitropic effect of EPA on the systolic Ca2+ transient and contraction. Our measurements show, however, PKA activation in EPA cannot be explained by increased cAMP levels and alternative mechanisms for PKA activation are discussed. The combined lusitropic effect and inhibition of contraction by EPA may, respectively, combat diastolic dysfunction in ischaemic cardiac muscle and promote cell survival by preserving ATP. This is a further level of protection for the heart in addition to the well-documented antiarrhythmic qualities of these fatty acids. PMID:17510185

  17. Relationship of acid invertase activities to sugar content in sugarcane internodes during ripening and after harvest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been hypothesized that soluble acid invertase (SAI) and insoluble (cell wall) acid invertase (CWI) influence sucrose accumulation in sugarcane during ripening, and also postharvest deterioration. The activities of SAI and CWI were determined in selected immature and mature internodes during r...

  18. Antioxidant activities and fatty acid composition of wild grown myrtle (Myrtus communis L.) fruits.

    PubMed

    Serce, Sedat; Ercisli, Sezai; Sengul, Memnune; Gunduz, Kazim; Orhan, Emine

    2010-01-01

    The fruits of eight myrtles, Myrtus communis L. accessions from the Mediterranean region of Turkey were evaluated for their antioxidant activities and fatty acid contents. The antioxidant activities of the fruit extracts were determined by using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and beta-carotene-linoleic acid assays. The fatty acid contents of fruits were determined by using gas chromatography. The methanol extracts of fruits exhibited a high level of free radical scavenging activity. There was a wide range (74.51-91.65%) of antioxidant activity among the accessions in the beta-carotene-linoleic acid assay. The amount of total phenolics (TP) was determined to be between 44.41-74.44 mug Gallic acid equivalent (GAE)/mg, on a dry weight basis. Oleic acid was the dominant fatty acid (67.07%), followed by palmitic (10.24%), and stearic acid (8.19%), respectively. These results suggest the future utilization of myrtle fruit extracts as food additives or in chemoprevention studies.

  19. Pyrazinoic acid decreases the proton motive force, respiratory ATP synthesis activity, and cellular ATP levels.

    PubMed

    Lu, Ping; Haagsma, Anna C; Pham, Hoang; Maaskant, Janneke J; Mol, Selena; Lill, Holger; Bald, Dirk

    2011-11-01

    Pyrazinoic acid, the active form of the first-line antituberculosis drug pyrazinamide, decreased the proton motive force and respiratory ATP synthesis rates in subcellular mycobacterial membrane assays. Pyrazinoic acid also significantly lowered cellular ATP levels in Mycobacterium bovis BCG. These results indicate that the predominant mechanism of killing by this drug may operate by depletion of cellular ATP reserves.

  20. Transportation impact analysis for the shipment of low specific activity nitric acid. Revisison 1

    SciTech Connect

    Green, J.R.

    1995-05-16

    This is in support of the Plutonium-Uranium Extraction (PUREX) Facility Low Specific Activity (LSA) Nitric Acid Shipment Environmental Assessment. It analyzes potential toxicological and radiological risks associated with transportation of PUREX Facility LSA Nitric Acid from the Hanford Site to Portsmouth VA, Baltimore MD, and Port Elizabeth NJ.

  1. EVALUATION OF PERFLUOROALKYL ACID ACTIVITY USING PRIMARY MOUSE AND HUMAN HEPATOCYTES

    EPA Science Inventory

    While perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) have been studied at length, less is know about the biological activity of other environmental perfluoroalkyl acids (pFAAs). Using a transient transfection assay developed in COS-l cells, our group has previ...

  2. Evaluation of Perfluoroalkyl Acid Activity Using Primary Mouse and Human Hepatocytes.

    EPA Science Inventory

    While perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) have been studied at length, less is known about the biological activity of other perfluoroalkyl acids (PFAAs) in the environment. Using a transient transfection assay developed in COS-1 cells, our group h...

  3. The effect of the bacterial product, succinic acid, on neutrophil bactericidal activity.

    PubMed

    Abdul-Majid, K B; Kenny, P A; Finlay-Jones, J J

    1997-02-01

    We investigated the effect of succinic acid on neutrophil bactericidal activity in a model of intra-abdominal abscess induced in mice by the peritoneal inoculation of 5 x 10(6) cfu ml-1 E. coli and 5 x 10(8) cfu ml-1 B. fragilis plus 1 mg of bran as faecal fibre analogue. The mean pH of the induced abscesses at week 1 was 6.7, higher than the pH associated with succinic acid inhibitory activity. We therefore determined the effect of succinic acid (0-100 mM) at pH 6.7 on the bactericidal activity of mouse bone marrow-derived neutrophils. Phagocytic killing of Proteus mirabilis by neutrophils was significantly inhibited by 30-100 mM succinic acid at pH 6.7 but there was no significant effect of succinic acid on engulfment of bacteria at this pH. However, significant inhibition of intracellular killing (assayed by adding succinic acid to suspensions of neutrophils which had engulfed bacteria in low serum concentrations but in the absence of succinic acid) was noted at 70 and 100 mM. These results indicate that succinic acid inhibits neutrophil bactericidal activity at a physiological pH, principally through inhibition of intracellular killing mechanisms and therefore contributing to bacterial persistence in this model of abscess formation.

  4. Photodegradation of lipopolysaccharides and the inhibition of macrophage activation by anthraquinone-boronic acid hybrids.

    PubMed

    Takahashi, Daisuke; Miura, Takuya; Toshima, Kazunobu

    2012-08-07

    Target-selective photodegradation of 3-deoxy-D-manno-2-octulopyranosonic acid (KDO) was achieved without additives and under neutral conditions using a designed anthraquinone-boronic acid hybrid and long wavelength UV light irradiation. The hybrid can photodegrade lipopolysaccharides (LPS) and inhibit macrophage activation induced by LPS.

  5. Bactericidal activity of alkaline salts of fatty acids towards bacteria associated with poultry processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antibacterial activity of alkaline salts of caproic, caprylic, capric, lauric, and myristic acids were determined using the agar diffusion assay. A 0.5M concentration of each fatty acid (FA) was dissolved in 1.0 M potassium hydroxide (KOH), and pH of the mixtures was adjusted to 10.5 with citric aci...

  6. Studies on tetrahydrocannabinolic acid synthase that produces the acidic precursor of tetrahydrocannabinol, the pharmacologically active cannabinoid in marijuana.

    PubMed

    Taura, F

    2009-06-01

    Tetrahydrocannabinol (THC), the psychoactive component of marijuana, is now regarded as a promising medicine because this cannabinoid has been shown to exert a variety of therapeutic activities. It has been demonstrated that THC is generated from the acidic precursor, tetrahydrocannabinolic acid (THCA) by nonenzymatic decarboxylation, and that THCA is biosynthesized by THCA synthase, which catalyzes a unique biosynthetic reaction, the stereospecific oxidative cyclization of the geranyl group of the substrate cannabigerolic acid. Molecular characterization of THCA synthase has revealed its structural characteristics and reaction mechanism. THCA synthase is the first cannabinoid synthase to be studied and is potentially attractive target for various biotechnological applications as it produces the direct precursor of THC. This review describes the research history of this enzyme, i.e., purification, molecular cloning, biochemical characterization, and possible biotechnological application of THCA synthase.

  7. In Vitro and In Vivo Activities of Antimicrobial Peptides Developed Using an Amino Acid-Based Activity Prediction Method

    PubMed Central

    Wu, Xiaozhe; Wang, Zhenling; Li, Xiaolu; Fan, Yingzi; He, Gu; Wan, Yang; Yu, Chaoheng; Tang, Jianying; Li, Meng; Zhang, Xian; Zhang, Hailong; Xiang, Rong; Pan, Ying; Liu, Yan; Lu, Lian

    2014-01-01

    To design and discover new antimicrobial peptides (AMPs) with high levels of antimicrobial activity, a number of machine-learning methods and prediction methods have been developed. Here, we present a new prediction method that can identify novel AMPs that are highly similar in sequence to known peptides but offer improved antimicrobial activity along with lower host cytotoxicity. Using previously generated AMP amino acid substitution data, we developed an amino acid activity contribution matrix that contained an activity contribution value for each amino acid in each position of the model peptide. A series of AMPs were designed with this method. After evaluating the antimicrobial activities of these novel AMPs against both Gram-positive and Gram-negative bacterial strains, DP7 was chosen for further analysis. Compared to the parent peptide HH2, this novel AMP showed broad-spectrum, improved antimicrobial activity, and in a cytotoxicity assay it showed lower toxicity against human cells. The in vivo antimicrobial activity of DP7 was tested in a Staphylococcus aureus infection murine model. When inoculated and treated via intraperitoneal injection, DP7 reduced the bacterial load in the peritoneal lavage solution. Electron microscope imaging and the results indicated disruption of the S. aureus outer membrane by DP7. Our new prediction method can therefore be employed to identify AMPs possessing minor amino acid differences with improved antimicrobial activities, potentially increasing the therapeutic agents available to combat multidrug-resistant infections. PMID:24982064

  8. In vitro and in vivo activities of antimicrobial peptides developed using an amino acid-based activity prediction method.

    PubMed

    Wu, Xiaozhe; Wang, Zhenling; Li, Xiaolu; Fan, Yingzi; He, Gu; Wan, Yang; Yu, Chaoheng; Tang, Jianying; Li, Meng; Zhang, Xian; Zhang, Hailong; Xiang, Rong; Pan, Ying; Liu, Yan; Lu, Lian; Yang, Li

    2014-09-01

    To design and discover new antimicrobial peptides (AMPs) with high levels of antimicrobial activity, a number of machine-learning methods and prediction methods have been developed. Here, we present a new prediction method that can identify novel AMPs that are highly similar in sequence to known peptides but offer improved antimicrobial activity along with lower host cytotoxicity. Using previously generated AMP amino acid substitution data, we developed an amino acid activity contribution matrix that contained an activity contribution value for each amino acid in each position of the model peptide. A series of AMPs were designed with this method. After evaluating the antimicrobial activities of these novel AMPs against both Gram-positive and Gram-negative bacterial strains, DP7 was chosen for further analysis. Compared to the parent peptide HH2, this novel AMP showed broad-spectrum, improved antimicrobial activity, and in a cytotoxicity assay it showed lower toxicity against human cells. The in vivo antimicrobial activity of DP7 was tested in a Staphylococcus aureus infection murine model. When inoculated and treated via intraperitoneal injection, DP7 reduced the bacterial load in the peritoneal lavage solution. Electron microscope imaging and the results indicated disruption of the S. aureus outer membrane by DP7. Our new prediction method can therefore be employed to identify AMPs possessing minor amino acid differences with improved antimicrobial activities, potentially increasing the therapeutic agents available to combat multidrug-resistant infections.

  9. [Preparation and antitussive, expectorant and antiasthmatic activities of verticinone-bile acids salts].

    PubMed

    Xu, Fang-Zhou; Zhang, Yong-Hui; Ruan, Han-Li; Pi, Hui-Fang; Chen, Chang; Wu, Ji-Zhou

    2007-03-01

    To search for potential drugs with potent antitussive, expectorant, antiasthmatic activities and low toxicity, a series of verticinone-bile acids salts were prepared based on the clearly elucidated antitussive, expectorant and antiasthmatic activities of verticinone in bulbs of Fritillaria and different bile acids in Snake Bile. The antitussive, expectorant and antiasthmatic activities of these verticinone-bile acid salts were then screened with different animal models. Ver-CA (verticinone-cholic acid salt) and Ver-CDCA (verticinone-chenodeoxycholic acid salt) showed much more potent activities than other compounds. The bioactivities of Ver-CA and Ver-CDCA are worthy to be intensively studied, and it is also deserved to pay much attention to their much more potent antitussive effects than codeine phosphate. In order to elucidate whether they have synergistic effect and attenuated toxicity, their activities will be continuously compared with single verticinone, cholic acid and chenodeoxycholic acid at the same doses on different animal models. The application of "combination principles" in traditional Chinese medicinal formulations may be a novel way in triditional Chinese medicine research and discovery.

  10. Anti-inflammatory activities of the triterpene acids from the resin of Boswellia carteri.

    PubMed

    Banno, Norihiro; Akihisa, Toshihiro; Yasukawa, Ken; Tokuda, Harukuni; Tabata, Keiichi; Nakamura, Yuji; Nishimura, Reiko; Kimura, Yumiko; Suzuki, Takashi

    2006-09-19

    Boswellic acids are the main well-known active components of the resin of Boswellia carteri (Burseraceae) and these are still dealing with the ethnomedicinal use for the treatment of rheumatoid arthritis and other inflammatory diseases. Although several studies have already been reported on the pharmacological properties, especially on the anti-inflammatory activity, of Boswellia carteri resin and boswellic acids, the ethnomedicinal importance of Boswellia carteri and its components, boswellic acids, prompted us to undertake detailed investigation on the constituents of the resin and their anti-inflammatory activity. Fifteen triterpene acids, viz., seven of the beta-boswellic acids (ursane-type) (1-7), two of the alpha-boswellic acids (oleanane-type) (8, 9), two of the lupeolic acids (lupane-type) (10, 11), and four of the tirucallane-type (12-14, 16), along with two cembrane-type diterpenes (17, 18), were isolated and identified from the methanol extract of the resin of Boswellia carteri. Upon evaluation of 17 compounds, 1-14 and 16-18, and compound 15, semi-synthesized from 14 by acetylation, for their inhibitory activity against 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation (1 microg/ear) in mice, all of the compounds, except for 18, exhibited marked anti-inflammatory activity with a 50% inhibitory dose (ID(50)) of 0.05-0.49 mg/ear.

  11. Antidepressant-like activity of gallic acid in mice subjected to unpredictable chronic mild stress.

    PubMed

    Chhillar, Ritu; Dhingra, Dinesh

    2013-08-01

    This study was designed to evaluate antidepressant-like activity of gallic acid in Swiss young male albino mice subjected to unpredictable chronic mild stress and to explore the possible underlying mechanisms for this activity. Gallic acid (5, 10, 20 mg/kg, i.p.) and fluoxetine (10 mg/kg, i.p.) per se were administered daily to unstressed mice and other groups of mice subjected to unpredictable mild stress, 30 min after the injection for 21 successive days. The antidepressant-like activity was evaluated using forced swim test (FST) and sucrose preference test. Stress significantly increased immobility period of mice in FST. Gallic acid (10 and 20 mg/kg, i.p.) and fluoxetine significantly decreased immobility period of unstressed and stressed mice in FST and prevented the stress-induced decrease in sucrose preference, indicating significant antidepressant-like activity. There was no significant effect on locomotor activity of the mice by the drugs. Gallic acid (10 and 20 mg/kg, i.p.) significantly decreased Monoamine oxidase-A (MAO-A) activity, malondialdehyde levels, and catalase activity in unstressed mice; and significantly prevented the stress-induced decrease in reduced glutathione and catalase activity; and also significantly prevented stress-induced increase in MAO-A activity, malondialdehyde levels, plasma nitrite, and corticosterone levels. Thus, gallic acid showed antidepressant-like activity in unstressed and stressed mice probably due to its antioxidant activity and through inhibition of MAO-A activity and decrease in plasma nitrite levels. In addition, gallic acid also showed antidepressant-like activity in stressed mice probably through decrease in plasma corticosterone levels.

  12. Bacillus spp. produce antibacterial activities against lactic acid bacteria that contaminate fuel ethanol plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactic acid bacteria (LAB) frequently contaminate commercial fuel ethanol fermentations, reducing yields and decreasing profitability of biofuel production. Microorganisms from environmental sources in different geographic regions of Thailand were tested for antibacterial activity against LAB. Fou...

  13. Estrogenic Activity of Perfluoroalkyl Acids in Juvenile Rainbow Trout (Oncorhynchus Mykiss)

    EPA Science Inventory

    The potential estrogenic activity of perfluoroalkyl acids (PFAAs) was determined using separate screening and dose response studies with juvenile rainbow trout (Oncorhynchus mykiss). Results of this study indicate that some PFAAs may act as estrogens in fish.

  14. Differences in phytase activity and phytic acid content between cultivated and Tibetan annual wild barleys.

    PubMed

    Dai, Fei; Qiu, Long; Xu, Yang; Cai, Shengguan; Qiu, Boyin; Zhang, Guoping

    2010-11-24

    The Qinghai-Tibetan Plateau in China is considered to be one of the original centers of cultivated barley. At present, little is known about the phytase activity (Phy) or phytic acid content (PA) in grains of Tibetan annual wild barley. Phy and PA were determined in grains of 135 wild and 72 cultivated barleys. Phy ranged from 171.3 to 1299.2 U kg(-1) and from 219.9 to 998.2 U kg(-1) for wild and cultivated barleys, respectively. PA and protein contents were much higher in wild barley than in cultivated barley. Tibetan annual wild barley showed a larger genetic diversity in phytase activity and phytic acid and protein contents and is of value for barley breeding. There is no significant correlation between phytase activity and phytic acid or protein content in barley grains, indicating that endogenous phytase activity had little effect on the accumulation of phytic acid.

  15. Long-Chain Fatty Acids Activate Calcium Channels in Ventricular Myocytes

    NASA Astrophysics Data System (ADS)

    Huang, James Min-Che; Xian, Hu; Bacaner, Marvin

    1992-07-01

    Nonesterified fatty acids accumulate at sites of tissue injury and necrosis. In cardiac tissue the concentrations of oleic acid, arachidonic acid, leukotrienes, and other fatty acids increase greatly during ischemia due to receptor or nonreceptor-mediated activation of phospholipases and/or diminished reacylation. In ischemic myocardium, the time course of increase in fatty acids and tissue calcium closely parallels irreversible cardiac damage. We postulated that fatty acids released from membrane phospholipids may be involved in the increase of intracellular calcium. We report here that low concentrations (3-30 μM) of each long-chain unsaturated (oleic, linoleic, linolenic, and arachidonic) and saturated (palmitic, stearic, and arachidic) fatty acid tested induced multifold increases in voltage-dependent calcium currents (ICa) in cardiac myocytes. In contrast, neither short-chain fatty acids (<12 carbons) or fatty acid esters (oleic and palmitic methyl esters) had any effect on ICa, indicating that activation of calcium channels depended on chain length and required a free carboxyl group. Inhibition of protein kinases C and A, G proteins, eicosanoid production, or nonenzymatic oxidation did not block the fatty acid-induced increase in ICa. Thus, long-chain fatty acids appear to directly activate ICa, possibly by acting at some lipid sites near the channels or directly on the channel protein itself. We suggest that the combined effects of fatty acids released during ischemia on ICa may contribute to ischemia-induced pathogenic events on the heart that involve calcium, such as arrhythmias, conduction disturbances, and myocardial damage due to cytotoxic calcium overload.

  16. Nematicidal Activity of Kojic Acid Produced by Aspergillus oryzae against Meloidogyne incognita.

    PubMed

    Kim, Tae Yoon; Jang, Ja Yeong; Jeon, Sun Jeong; Lee, Hye Won; Bae, Chang-Hwan; Yeo, Joo Hong; Lee, Hyang Burm; Kim, In Seon; Park, Hae Woong; Kim, Jin-Cheol

    2016-08-28

    The fungal strain EML-DML3PNa1 isolated from leaf of white dogwood (Cornus alba L.) showed strong nematicidal activity with juvenile mortality of 87.6% at a concentration of 20% fermentation broth filtrate at 3 days after treatment. The active fungal strain was identified as Aspergillus oryzae, which belongs to section Flavi, based on the morphological characteristics and sequence analysis of the ITS rDNA, calmodulin (CaM), and β-tubulin (BenA) genes. The strain reduced the pH value to 5.62 after 7 days of incubation. Organic acid analysis revealed the presence of citric acid (515.0 mg/kg), malic acid (506.6 mg/kg), and fumaric acid (21.7 mg/kg). The three organic acids showed moderate nematicidal activities, but the mixture of citric acid, malic acid, and fumaric acid did not exhibit the full nematicidal activity of the culture filtrate of EML- DML3PNa1. Bioassay-guided fractionation coupled with (1)H- and (13)C-NMR and EI-MS analyses led to identification of kojic acid as the major nematicidal metabolite. Kojic acid exhibited dose-dependent mortality and inhibited the hatchability of M. incognita, showing EC50 values of 195.2 µg/ml and 238.3 µg/ml, respectively, at 72 h postexposure. These results suggest that A. oryzae EML-DML3PNa1 and kojic acid have potential as a biological control agent against M. incognita.

  17. Bibliography for acid-rock drainage and selected acid-mine drainage issues related to acid-rock drainage from transportation activities

    USGS Publications Warehouse

    Bradley, Michael W.; Worland, Scott C.

    2015-01-01

    Acid-rock drainage occurs through the interaction of rainfall on pyrite-bearing formations. When pyrite (FeS2) is exposed to oxygen and water in mine workings or roadcuts, the mineral decomposes and sulfur may react to form sulfuric acid, which often results in environmental problems and potential damage to the transportation infrastructure. The accelerated oxidation of pyrite and other sulfidic minerals generates low pH water with potentially high concentrations of trace metals. Much attention has been given to contamination arising from acid mine drainage, but studies related to acid-rock drainage from road construction are relatively limited. The U.S. Geological Survey, in cooperation with the Tennessee Department of Transportation, is conducting an investigation to evaluate the occurrence and processes controlling acid-rock drainage and contaminant transport from roadcuts in Tennessee. The basic components of acid-rock drainage resulting from transportation activities are described and a bibliography, organized by relevant categories (remediation, geochemical, microbial, biological impact, and secondary mineralization) is presented.

  18. Probiotic in lamb rennet paste enhances rennet lipolytic activity, and conjugated linoleic acid and linoleic acid content in Pecorino cheese.

    PubMed

    Santillo, A; Albenzio, M; Quinto, M; Caroprese, M; Marino, R; Sevi, A

    2009-04-01

    Cheeses manufactured using traditional lamb rennet paste, lamb rennet paste containing Lactobacillus acidophilus, and lamb rennet paste containing a mix of Bifidobacterium lactis and Bifidobacterium longum were characterized for the lipolytic pattern during ripening. Lipase activity of lamb rennet paste, lamb rennet containing Lb. acidophilus, and lamb rennet containing a mix of bifidobacteria was measured in sheep milk cream substrate. Rennet paste containing probiotics showed a lipase activity 2-fold greater than that displayed by traditional rennet. Total free fatty acid (FFA) in sheep milk cream was lower in lamb rennet paste (981 microg/g of milk cream) than in lamb rennet containing Lb. acidophilus (1,382.4 microg/g of milk cream) and in lamb rennet containing a mix of bifidobacteria (1,227.5 microg/g of milk cream) according to lipase activity of lamb rennet paste. The major increase of FFA in all cheeses occurred during the first 30 d of ripening with the greatest values being observed for C16:0, C18:0 C18:1. At 60 d of ripening all cheeses showed a reduction in the amount of free fatty acids; in particular, total free fatty acids underwent a decrease of more than 30% from 30 to 60 d in cheeses manufactured using traditional lamb rennet paste, whereas the same parameter decreased 10% in cheeses manufactured using lamb rennet paste containing Lb. acidophilus and cheeses manufactured using lamb rennet paste containing a mix of B. lactis and B. longum. Cheese containing Lb. acidophilus was characterized by the greatest levels of total conjugated linoleic acids (CLA) 9-cis, 11-trans CLA and 9-trans, 11-trans CLA, whereas cheese containing bifidobacteria displayed the greatest levels of free linoleic acid. Rennet pastes containing viable cells of Lb. acidophilus and a mix of B. lactis and B. longum were able to influence the amount of FFA and CLA in Pecorino cheese during ripening.

  19. Antimicrobial Peptides Containing Unnatural Amino Acid Exhibit Potent Bactericidal Activity against ESKAPE Pathogens

    DTIC Science & Technology

    2013-01-01

    Antimicrobial peptides containing unnatural amino acid exhibit potent bactericidal activity against ESKAPE pathogens R. P. Hicks a, J. J. Abercrombie...tic classes, membrane-disruptors and non -membrane-disrup- tors.30,31 Five different mechanisms have been proposed at one time or another to explain...DATES COVERED - 4. TITLE AND SUBTITLE Antimicrobial Peptides Containing Unnatural Amino Acid Exhibit Potent Bactericidal Activity Against

  20. Cloud Condensation Nucleus Activity of calcite and calcite coated with model humic and fulvic acids

    NASA Astrophysics Data System (ADS)

    Hatch, C. D.; Gierlus, K. M.; Schuttlefield, J. D.; Grassian, V. H.

    2007-12-01

    Many recent studies have shown that organics can alter the water adsorption and cloud condensation nuclei (CCN) activity of common deliquescent species in the Earth's atmosphere. However, very little is known about the effect of organics on water adsorption and CCN activity of common inactive cloud nuclei, such as mineral aerosol. As many studies have shown that a large fraction of unidentified organic material in aerosol particles is composed of polycarboxylic acids resembling humic substances, the presence of these large molecular weight Humic-Like Substances (HULIS) may also alter the water adsorption and CCN activity of mineral aerosol. Thus, we have measured the water adsorption and CCN activity of model humic and fulvic acids. Additionally, the water adsorption and CCN activity of mineral aerosol particles coated with humic and fulvic acids have been studied. We find that humic and fulvic acids show continual multilayer water adsorption as the relative humidity is raised. Additionally, we find that calcite particles mixed with humic and fulvic acids take up more water by mass, by a factor of two, compared to the uncoated calcite particles at approximately 70% RH. CCN measurements also indicate that internally mixed calcite-humic or fulvic acid aerosols are more CCN active than the otherwise inactive, uncoated calcite particles. Our results suggest that mineral aerosol particles coated with high molecular weight organic materials will take up more water and become more efficient CCN in the Earth's atmosphere than single-component mineral aerosol.

  1. Relevance of carnosic acid, carnosol, and rosmarinic acid concentrations in the in vitro antioxidant and antimicrobial activities of Rosmarinus officinalis (L.) methanolic extracts.

    PubMed

    Jordán, Maria J; Lax, Vanesa; Rota, Maria C; Lorán, Susana; Sotomayor, José A

    2012-09-26

    The importance of the diterpenic and rosmarinic acid content in the biological activities of rosemary extracts has been studied previously, but how the relationship between the concentration of these components affects their antioxidant and antibacterial activities has received little attention. Accordingly, from a total of 150 plants, 27 methanolic extracts were selected, for their similar diterpene contents but different ratios between carnosic acid and carnosol concentrations. In extracts with similar rosmarinic acid contents but differing proportions between carnosic acid and carnosol, the two diterpenes were seen to equally affect the in vitro antioxidant activity; however, and related with the antibacterial efficiency, this biological activity improved when carnosol was the major diterpene component.

  2. Sorbic acid stress activates the Candida glabrata high osmolarity glycerol MAP kinase pathway

    PubMed Central

    Jandric, Zeljkica; Gregori, Christa; Klopf, Eva; Radolf, Martin; Schüller, Christoph

    2013-01-01

    Weak organic acids such as sorbic acid are important food preservatives and powerful fungistatic agents. These compounds accumulate in the cytosol and disturb the cellular pH and energy homeostasis. Candida glabrata is in many aspects similar to Saccharomyces cerevisiae. However, with regard to confrontation to sorbic acid, two of the principal response pathways behave differently in C. glabrata. In yeast, sorbic acid stress causes activation of many genes via the transcription factors Msn2 and Msn4. The C. glabrata homologs CgMsn2 and CgMsn4 are apparently not activated by sorbic acid. In contrast, in C. glabrata the high osmolarity glycerol (HOG) pathway is activated by sorbic acid. Here we show that the MAP kinase of the HOG pathway, CgHog1, becomes phosphorylated and has a function for weak acid stress resistance. Transcript profiling of weak acid treated C. glabrata cells suggests a broad and very similar response pattern of cells lacking CgHog1 compared to wild type which is over lapping with but distinct from S. cerevisiae. The PDR12 gene was the highest induced gene in both species and it required CgHog1 for full expression. Our results support flexibility of the response cues for general stress signaling pathways, even between closely related yeasts, and functional extension of a specific response pathway. PMID:24324463

  3. 4-Hydroxy cinnamic acid as mushroom preservation: Anti-tyrosinase activity kinetics and application.

    PubMed

    Hu, Yong-Hua; Chen, Qing-Xi; Cui, Yi; Gao, Huan-Juan; Xu, Lian; Yu, Xin-Yuan; Wang, Ying; Yan, Chong-Ling; Wang, Qin

    2016-05-01

    Tyrosinase is a key enzyme in post-harvest browning of fruit and vegetable. To control and inhibit its activity is the most effective method for delaying the browning and extend the shelf life. In this paper, the inhibitory kinetics of 4-hydroxy cinnamic acid on mushroom tyrosinase was investigated using the kinetics method of substrate reaction. The results showed that the inhibition of tyrosinase by 4-hydroxy cinnamic acid was a slow, reversible reaction with fractional remaining activity. The microscopic rate constants were determined for the reaction on 4-hydroxy cinnamic acid with tyrosinase. Furthermore, the molecular docking was used to simulate 4-hydroxy cinnamic acid dock with tyrosinase. The results showed that 4-hydroxy cinnamic acid interacted with the enzyme active site mainly through the hydroxy competed with the substrate hydroxy group. The cytotoxicity study of 4-hydroxy cinnamic acid indicated that it had no effects on the proliferation of normal liver cells. Moreover, the results of effects of 4-hydroxy cinnamic acid on the preservation of mushroom showed that it could delay the mushroom browning. These results provide a comprehensive underlying the inhibitory mechanisms of 4-hydroxy cinnamic acid and its delaying post-harvest browning, that is beneficial for the application of this compound.

  4. Lactic acid bacteria: promising supplements for enhancing the biological activities of kombucha.

    PubMed

    Nguyen, Nguyen Khoi; Dong, Ngan Thi Ngoc; Nguyen, Huong Thuy; Le, Phu Hong

    2015-01-01

    Kombucha is sweetened black tea that is fermented by a symbiosis of bacteria and yeast embedded within a cellulose membrane. It is considered a health drink in many countries because it is a rich source of vitamins and may have other health benefits. It has previously been reported that adding lactic acid bacteria (Lactobacillus) strains to kombucha can enhance its biological functions, but in that study only lactic acid bacteria isolated from kefir grains were tested. There are many other natural sources of lactic acid bacteria. In this study, we examined the effects of lactic acid bacteria from various fermented Vietnamese food sources (pickled cabbage, kefir and kombucha) on kombucha's three main biological functions: glucuronic acid production, antibacterial activity and antioxidant ability. Glucuronic acid production was determined by high-performance liquid chromatography-mass spectrometry, antibacterial activity was assessed by the agar-well diffusion method and antioxidant ability was evaluated by determining the 2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity. Four strains of food-borne pathogenic bacteria were used in our antibacterial experiments: Listeria monocytogenes ATCC 19111, Escherichia coli ATCC 8739, Salmonella typhimurium ATCC 14028 and Bacillus cereus ATCC 11778. Our findings showed that lactic acid bacteria strains isolated from kefir are superior to those from other sources for improving glucuronic acid production and enhancing the antibacterial and antioxidant activities of kombucha. This study illustrates the potential of Lactobacillus casei and Lactobacillus plantarum isolated from kefir as biosupplements for enhancing the bioactivities of kombucha.

  5. Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria.

    PubMed

    Cueva, Carolina; Moreno-Arribas, M Victoria; Martín-Alvarez, Pedro J; Bills, Gerald; Vicente, M Francisca; Basilio, Angela; Rivas, Concepción López; Requena, Teresa; Rodríguez, Juan M; Bartolomé, Begoña

    2010-06-01

    Phenolic acids (benzoic, phenylacetic and phenylpropionic acids) are the most abundant phenolic structures found in fecal water. As an approach towards the exploration of their action in the gut, this paper reports the antimicrobial activity of thirteen phenolic acids towards Escherichia coli, Lactobacillus spp., Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. The growth of E. coli ATCC 25922 was inhibited by only four of the phenolic acids tested at a concentration of 1000 microg/mL, whereas pathogenic E. coli O157:H7 (CECT 5947) was susceptible to ten of them. The genetically manipulated E. coli lpxC/tolC strain was highly susceptible to phenolic acids. The growth of lactobacilli (Lactobacillus paraplantarum LCH7, Lactobacillus plantarum LCH17, Lactobacillus fermentum LPH1, L. fermentum CECT 5716, Lactobacillus brevis LCH23, and Lactobacillus coryniformis CECT 5711) and pathogens (S. aureus EP167 and C. albicans MY1055) was also inhibited by phenolic acids, but to varying extents. Only P. aeruginosa PAO1 was not susceptible to any of the phenolic compounds tested. Structure-activity relationships of phenolic acids and some of their diet precursors [(+)-catechin and (-)-epicatechin] were established, based on multivariate analysis of microbial activities. The antimicrobial properties of phenolic acids reported in this paper might be relevant in vivo.

  6. Antimicrobial activity of fatty acids from fruits of Peucedanum cervaria and P. alsaticum.

    PubMed

    Skalicka-Woźniak, Krystyna; Los, Renata; Głowniak, Kazimierz; Malm, Anna

    2010-11-01

    Plants of the genus Peucedanum have been used in traditional medicine for a long time to treat different diseases including infectious diseases. The hexane fruits extracts of Peucedanum cervaria and P. alsaticum were examined for antimicrobial activity and analyzed for their fatty acid content. Fatty acid composition of oils were analyzed by GC/FID in methyl ester form. Minimal inhibitory concentrations (MICs) of fatty acid fractions against twelve reference bacterial and yeast strains were performed by the twofold serial microdilution broth method. Fourteen fatty acids were identified. Oleic and linoleic acids were found to be dominant. The extracts from both plants examined exhibited inhibitory effects against Gram-positive strains tested with different MIC values (0.25-2 mg/ml); however, extract from P. alsaticum possessed stronger antibacterial properties and a broader spectrum. The growth of Gram-negative bacteria and Candida spp. strains was not inhibited even at the highest extract concentration used (MIC>4 mg/ml). Standard fatty acids exhibited inhibitory effects towards all bacterial and yeast strains used in this study; however, the majority of bacteria were more sensitive to linoleic than to oleic acid. These results revealed, for the first time, that hexane extracts obtained from fruits of P. alsaticum and P. cervaria possess moderate in vitro antibacterial activity against Gram-positive bacteria including staphylococci. Linoleic and oleic acids appear to be the compounds responsible for this effect, and a synergistic antimicrobial effect between these two fatty acids was indicated.

  7. Anti-Inflammatory Activities of Pentaherbs Formula, Berberine, Gallic Acid and Chlorogenic Acid in Atopic Dermatitis-Like Skin Inflammation.

    PubMed

    Tsang, Miranda S M; Jiao, Delong; Chan, Ben C L; Hon, Kam-Lun; Leung, Ping C; Lau, Clara B S; Wong, Eric C W; Cheng, Ling; Chan, Carmen K M; Lam, Christopher W K; Wong, Chun K

    2016-04-20

    Atopic dermatitis (AD) is a common allergic skin disease, characterized by dryness, itchiness, thickening and inflammation of the skin. Infiltration of eosinophils into the dermal layer and presence of edema are typical characteristics in the skin biopsy of AD patients. Previous in vitro and clinical studies showed that the Pentaherbs formula (PHF) consisting of five traditional Chinese herbal medicines, Flos Lonicerae, Herba Menthae, Cortex Phellodendri, Cortex Moutan and Rhizoma Atractylodis at w/w ratio of 2:1:2:2:2 exhibited therapeutic potential in treating AD. In this study, an in vivo murine model with oxazolone (OXA)-mediated dermatitis was used to elucidate the efficacy of PHF. Active ingredients of PHF water extract were also identified and quantified, and their in vitro anti-inflammatory activities on pruritogenic cytokine IL-31- and alarmin IL-33-activated human eosinophils and dermal fibroblasts were evaluated. Ear swelling, epidermis thickening and eosinophils infiltration in epidermal and dermal layers, and the release of serum IL-12 of the murine OXA-mediated dermatitis were significantly reduced upon oral or topical treatment with PHF (all p < 0.05). Gallic acid, chlorogenic acid and berberine contents (w/w) in PHF were found to be 0.479%, 1.201% and 0.022%, respectively. Gallic acid and chlorogenic acid could suppress the release of pro-inflammatory cytokine IL-6 and chemokine CCL7 and CXCL8, respectively, in IL-31- and IL-33-treated eosinophils-dermal fibroblasts co-culture; while berberine could suppress the release of IL-6, CXCL8, CCL2 and CCL7 in the eosinophil culture and eosinophils-dermal fibroblasts co-culture (all p < 0.05). These findings suggest that PHF can ameliorate allergic inflammation and attenuate the activation of eosinophils.

  8. [Muriatic secretion and acid-proteolytic activity of the stomach in vivo].

    PubMed

    Gorshkov, V A; Zhigalova, T N; Avalueva, E B

    2005-01-01

    The study of the basal (BAP) and stimulated (SAP) acid production effect on the average daily acidity and speed of proteolysis in the stomach in vivo was conducted in 498 patients with various functional states of the stomach. It was established that the aforesaid muriatic secretion indices influence the acidity and speed of proteolysis in natural conditions of digestion only within the low and normal range of their values. In the condition of HCl hypersecretion, the dependence between the muriatic secretion and acidity and proteolytic stomach activity in vivo gets lost. This can be explained by the autoregulation effect supporting the introgastral pH optimal for pepsin activity irrespective of the intensity of the acid glands hyperplasia.

  9. Changes in antioxidant activity and phenolic acid composition of tarhana with steel-cut oats.

    PubMed

    Kilci, A; Gocmen, D

    2014-02-15

    Steel-cut oats (SCO) was used to replace wheat flour in the tarhana formulation (control) at the levels of 10%, 20%, 30% and 40% (w/w). Control sample included no SCO. Substitution of wheat flour in tarhana formulation with SCO affected the mineral contents positively. SCO additions also increased phenolic acid contents of tarhana samples. The most abundant phenolic acids were ferulic and vanillic acids, followed by syringic acid in the samples with SCO. Tarhana samples with SCO also showed higher antioxidant activities than the control. Compared with the control, the total phenolic content increased when the level of SCO addition was increased. SCO addition did not have a deteriorative effect on sensory properties of tarhana samples and resulted in acceptable soup properties in terms of overall acceptability. SCO addition improved the nutritional and functional properties of tarhana by causing increases in antioxidant activity, phenolic content and phenolic acids.

  10. Total synthesis of racemic and (R) and (S)-4-methoxyalkanoic acids and their antifungal activity.

    PubMed

    Das, Biswanath; Shinde, Digambar Balaji; Kanth, Boddu Shashi; Kamle, Avijeet; Kumar, C Ganesh

    2011-07-01

    The total synthesis of 4-methoxydecanoic acid and 4-methoxyundecanoic acid in racemic and stereoselective [(R) and (S)] forms has been accomplished. For stereoselective synthesis of the compounds (S) and (R)-BINOL complexes have been used to generate the required chiral centres. The antifungal activity of these compounds has been studied against different organisms and the results were found to be impressive. The activity of the compounds in racemic and in stereoselective forms was compared. (R)-4-Methoxydecanoic acid was found to be most potent (MIC: 0.019 mg/mL against Candida albicans MTCC 227, C. albicans MTCC 4748, Aspergillus brasiliensis (niger) MTCC 281 and Issatchenkia orientalis MTCC 3020).

  11. Hydroxy monounsaturated fatty acids as agonists for peroxisome proliferator-activated receptors.

    PubMed

    Yokoi, Hiroshi; Mizukami, Hajime; Nagatsu, Akito; Tanabe, Hiroki; Inoue, Makoto

    2010-01-01

    The physiological and pathological role of oxidized polyunsaturated fatty acids (PUFAs) has been extensively studied, whereas those of hydroxy monounsaturated fatty acids (MUFAs) are not well understood. This study demonstrated that 11-hydroxy-(9Z)-octadecenoic acid ((9Z)-11-HOE), which was isolated from adlay seeds (Coix lacryma-jobi L. var. ma-yuen STAF.), can activate peroxisome proliferator-activated receptor (PPAR)alpha, delta and gamma in luciferase reporter assays more efficiently than (9Z)-octadecenoic acid (oleic acid), and to the same degree as linoleic acid. (9Z)-11-HOE increased the mRNA levels of UCP2 and CD36 in C2C12 myotubes and THP- 1 cells, respectively, and these effects were blocked by the PPARdelta- and gamma-specific antagonists GSK0660 and T0070907, respectively. Evaluation of the structure.activity relationship between hydroxy MUFAs and PPAR activation revealed that (9E)-11-HOE, the geometrical isomer of (9Z)-11-HOE, activated PPARs more potently than (9Z)-11-HOE, and that PPAR activation by hydroxyl MUFAs was not markedly influenced by the position of the hydroxy group or the double bond, although PPARdelta seemed to possess ligand specificity different to that of PPARalpha or gamma . Additionally, the finding that 11-hydroxy octadecanoic acid, the hydrogenated product of (9E)-11- HOE, was also capable of activating PPARs to a similar extent as (9E)-11-HOE indicates that the double bond in hydroxy MUFAs is not essential for PPAR activation. In conclusion, (9Z)-11-HOE derived from alday seeds and hydroxy MUFAs with a chain length of 16 or 18 acted as PPAR agonists. Hydroxylation of MUFAs may change these compounds from silent PPAR ligands to active PPAR agonists.

  12. A complex of equine lysozyme and oleic acid with bactericidal activity against Streptococcus pneumoniae.

    PubMed

    Clementi, Emily A; Wilhelm, Kristina R; Schleucher, Jürgen; Morozova-Roche, Ludmilla A; Hakansson, Anders P

    2013-01-01

    HAMLET and ELOA are complexes consisting of oleic acid and two homologous, yet functionally different, proteins with cytotoxic activities against mammalian cells, with HAMLET showing higher tumor cells specificity, possibly due to the difference in propensity for oleic acid binding, as HAMLET binds 5-8 oleic acid molecules per protein molecule and ELOA binds 11-48 oleic acids. HAMLET has been shown to possess bactericidal activity against a number of bacterial species, particularly those with a respiratory tropism, with Streptococcus pneumoniae displaying the greatest degree of sensitivity. We show here that ELOA also displays bactericidal activity against pneumococci, which at lower concentrations shows mechanistic similarities to HAMLET's bactericidal activity. ELOA binds to S. pneumoniae and causes perturbations of the plasma membrane, including depolarization and subsequent rupture, and activates an influx of calcium into the cells. Selective inhibition of calcium channels and sodium/calcium exchange activity significantly diminished ELOA's bactericidal activity, similar to what we have observed with HAMLET. Finally, ELOA-induced death was also accompanied by DNA fragmentation into high molecular weight fragments - an apoptosis-like morphological phenotype that is seen during HAMLET-induced death. Thus, in contrast to different mechanisms of eukaryote cell death induced by ELOA and HAMLET, these complexes are characterized by rather similar activities towards bacteria. Although the majority of these events could be mimicked using oleic acid alone, the concentrations of oleic acid required were significantly higher than those present in the ELOA complex, and for some assays, the results were not identical between oleic acid alone and the ELOA complex. This indicates that the lipid, as a common denominator in both complexes, is an important component for the complexes' bactericidal activities, while the proteins are required both to solubilize and/or present the

  13. Antimicrobial Activity of 8-Quinolinols, Salicylic Acids, Hydroxynaphthoic Acids, and Salts of Selected Quinolinols with Selected Hydroxy-Acids

    PubMed Central

    Gershon, Herman; Parmegiani, Raulo

    1962-01-01

    Seventy-seven compounds were screened by the disc-plate method against strains of five bacteria and five fungi. A new constant was proposed to describe the antimicrobial activity of a compound in a defined system of organisms. This constant includes not only the inhibitory level of activity of the material but also the number of organisms inhibited. This constant, the antimicrobial spectrum index, was compared with the antimicrobial index of Albert. PMID:13898066

  14. Poly(lactic acid) nanoparticles loaded with ursolic acid: Characterization and in vitro evaluation of radical scavenging activity and cytotoxicity.

    PubMed

    Antônio, Emilli; Antunes, Osmar Dos Reis; de Araújo, Isis Souza; Khalil, Najeh Maissar; Mainardes, Rubiana Mara

    2017-02-01

    The purpose of this study was to develop poly(lactic acid) (PLA) nanoparticles containing ursolic acid (UA) by an emulsification-solvent evaporation technique and evaluate the radical scavenging activity over hypochlorous acid (HOCl) and cytotoxicity over erythrocytes and tumor cells. Nanoparticles were successfully obtained and presented mean size of 246nm with spherical or slightly oval morphology, negative zeta potential and 96% of UA encapsulation efficiency. Analyses of FTIR, XRD and DSC-DTG suggest interaction/complexation of UA with PLA matrix and drug amorphization promoted by nanoencapsulation process. Stability study showed that room temperature was the best condition for nanoparticles storage. The in vitro release study showed UA was released from the polymeric matrix over two constants (α, β), suggesting a second order kinetics. After 120h of assay, 60% of UA were released by diffusion. In the HOCl scavenging activity, after 72h of assay UA-loaded nanoparticles presented the same efficacy of free drug. In cytotoxicity test over red blood cells, UA-loaded nanoparticles showed less toxicity on cells than free drug. The cytotoxicity assay over melanoma cells line (B16-F10) showed after 72h that nanoparticles were able to reduce the cell viability in 70%. PLA nanoparticles showed be potential carriers for UA maintaining the antioxidant and antitumor activity of the UA and decreasing its cytotoxicity over normal cells.

  15. Vascular lipoxygenase activity: synthesis of 15-hydroxyeicosatetraenoic acid from arachidonic acid by blood vessels and cultured vascular endothelial cells.

    PubMed

    Takayama, H; Gimbrone, M A; Schafer, A I

    1987-03-15

    Although indirect pharmacologic evidence has suggested the presence of a lipoxygenase pathway of arachidonic acid (AA) metabolism in blood vessels, direct biochemical evidence has been difficult to demonstrate. We have investigated lipoxygenase metabolism in both fresh vessel preparations and cultured vascular cells from various sources and species. Lipoxygenase-derived [3H] HETE (composed of 12-HETE, 15-HETE and 5-HETE), which was abolished by ETYA but not by aspirin, was formed when [3H]AA was incubated with fresh sections of rat aorta. Lipoxygenase activity was lost following deendothelialization. A single peak of [3H] 15-HETE was produced by cultured bovine aortic and human umbilical vein endothelial cells (EC) in response to exogenous [3H]AA or from [3H]AA released by ionophore A23187 from endogenous EC membrane phospholipid pools. Cultured bovine, rabbit or rat aorta smooth muscle cells had no detectable 15-lipoxygenase activity. [14C] Linoleic acid was converted by EC to its 15-lipoxygenase metabolite, [14C] 13-hydroxyoctadecadienoic acid. These results indicate that blood vessels from different sources and species have a 15-lipoxygenase system, and this activity resides predominantly in the endothelial cells.

  16. Influence of various concentrations of selenic acid (IV) on the activity of soil enzymes.

    PubMed

    Nowak, J; Kaklewski, K; Klódka, D

    2002-05-27

    The aim of this experiment was the assessment of the influence of various concentrations of H2SeO3 (0.05, 0.5 and 5 mM) on the activity of soil enzymes over 112 days. The lab experiment was performed using soil samples (dust-silt black soil of 1.92% organic C content, pH 7.7), 60% maximal water capacity. The soil samples were treated with a selenic acid water solution at the concentrations mentioned above. As a reference, natural soil was used (without the selenic acid). The activity of the following enzymes was tested: beta-glucosidase, nitrate reductase, urease, dehydrogenase, acid and alkaline phosphatases. The soil was sampled at days 0, 1, 3, 7, 14, 28, 56 and 112. The results of the study have shown that the selenic acid had no effect on the activity of the beta-glucosidase in soil. In the course of the whole experiment, the applied selenic acid inhibited activity of the nitrate reductase up to 70% at 5 mM, and the activity of dehydrogenase was also decreased--by up to 85% at 5 mM, similarly to urease (with the exception of days 14 and 28), and acid phosphatase (until day 56). The activity of alkaline phosphatase was increased by the lowest concentration of selenic acid and decreased by the highest, which was found in the course of the whole experiment. The 5-mM concentration of selenic acid inhibited the activity of all the enzymes tested in this experiment.

  17. Domoic acid disrupts the activity and connectivity of neuronal networks in organotypic brain slice cultures.

    PubMed

    Hiolski, E M; Ito, S; Beggs, J M; Lefebvre, K A; Litke, A M; Smith, D R

    2016-09-01

    Domoic acid is a neurotoxin produced by algae and is found in seafood during harmful algal blooms. As a glutamate agonist, domoic acid inappropriately stimulates excitatory activity in neurons. At high doses, this leads to seizures and brain lesions, but it is unclear how lower, asymptomatic exposures disrupt neuronal activity. Domoic acid has been detected in an increasing variety of species across a greater geographical range than ever before, making it critical to understand the potential health impacts of low-level exposure on vulnerable marine mammal and human populations. To determine whether prolonged domoic acid exposure altered neuronal activity in hippocampal networks, we used a custom-made 512 multi-electrode array with high spatial and temporal resolution to record extracellular potentials (spikes) in mouse organotypic brain slice cultures. We identified individual neurons based on spike waveform and location, and measured the activity and functional connectivity within the neuronal networks of brain slice cultures. Domoic acid exposure significantly altered neuronal spiking activity patterns, and increased functional connectivity within exposed cultures, in the absence of overt cellular or neuronal toxicity. While the overall spiking activity of neurons in domoic acid-exposed cultures was comparable to controls, exposed neurons spiked significantly more often in bursts. We also identified a subset of neurons that were electrophysiologically silenced in exposed cultures, and putatively identified those neurons as fast-spiking inhibitory neurons. These results provide evidence that domoic acid affects neuronal activity in the absence of cytotoxicity, and suggest that neurodevelopmental exposure to domoic acid may alter neurological function in the absence of clinical symptoms.

  18. Antiadhesive and antibiofilm activity of hyaluronic acid against bacteria responsible for respiratory tract infections.

    PubMed

    Drago, Lorenzo; Cappelletti, Laura; De Vecchi, Elena; Pignataro, Lorenzo; Torretta, Sara; Mattina, Roberto

    2014-10-01

    To address the problem of limited efficacy of existing antibiotics in the treatment of bacterial biofilm, it is necessary to find alternative remedies. One candidate could be hyaluronic acid; this study therefore aimed to evaluate the in vitro antiadhesive and antibiofilm activity of hyaluronic acid toward bacterial species commonly isolated from respiratory infections. Interference exerted on bacterial adhesion was evaluated by using Hep-2 cells, while the antibiofilm activity was assessed by means of spectrophotometry after incubation of biofilm with hyaluronic acid and staining with crystal violet. Our data suggest that hyaluronic acid is able to interfere with bacterial adhesion to a cellular substrate in a concentration-dependent manner, being notably active when assessed as pure substance. Moreover, we found that Staphylococcus aureus biofilm was more sensitive to the action of hyaluronic acid than biofilm produced by Haemophilus influenzae and Moraxella catarrhalis. In conclusion, hyaluronic acid is characterized by notable antiadhesive properties, while it shows a moderate activity against bacterial biofilm. As bacterial adhesion to oral cells is the first step for colonization, these results further sustain the role of hyaluronic acid in prevention of respiratory infections.

  19. Inhibition of neutrophil activation by alpha1-acid glycoprotein.

    PubMed Central

    Costello, M J; Gewurz, H; Siegel, J N

    1984-01-01

    We report that alpha1-acid glycoprotein (AAG), a naturally occurring human plasma protein and acute phase reactant of uncertain biological function, inhibits human neutrophil aggregation and superoxide anion generation induced by a variety of stimuli including zymosan treated serum, formyl-methionyl-leucyl-phenylalanine and phorbol myristate acetate. Inhibition was transient, directly proportional to the glycoprotein concentration and inversely proportional to the concentration of the stimulus added. Desialyzation, resulting in the removal of a substantial portion of the molecule's negative charge, did not alter the effectiveness of AAG. Removal of the penultimate galactose residues from desialyzed AAG resulted in a slight but significant reversal of inhibition, suggesting that the heteropolysaccharide units of AAG may be important for inhibition of cellular function. We therefore suggest that the acute phase glycoprotein AAG may be a significant modulator of neutrophil as well as platelet and lymphocyte function during inflammation. PMID:6321072

  20. Hydrazide-hydrazones of 3-methoxybenzoic acid and 4-tert-butylbenzoic acid with promising antibacterial activity against Bacillus spp.

    PubMed

    Popiołek, Łukasz; Biernasiuk, Anna

    2016-01-01

    A series of 28 hydrazide-hydrazones of 3-methoxybenzoic and 4-tert-butylbenzoic acid were synthesized and screened in vitro against the panel of reference strains of bacteria and fungi with the use of the broth microdilution method according to EUCAST and CLSI guidelines. Five of the synthesized compounds were found to exhibit high bacteriostatic or bactericidal activity against Gram-positive bacteria. The antimicrobial activity of compounds 13, 14, and 16 against Bacillus spp. was higher than that of commonly used antibiotics, like cefuroxime or ampicillin.

  1. A single amino acid change humanizes long-chain fatty acid binding and activation of mouse peroxisome proliferator-activated receptor α

    PubMed Central

    Oswal, Dhawal P.; Alter, Gerald M.; Rider, S. Dean; Hostetler, Heather A.

    2014-01-01

    Peroxisome proliferator-activated receptor α (PPARα) is an important regulator of hepatic lipid metabolism which functions through ligand binding. Despite high amino acid sequence identity (>90%), marked differences in PPARα ligand binding, activation and gene regulation have been noted across species. Similar to previous observations with synthetic agonists, we have recently reported differences in ligand affinities and extent of activation between human PPARα (hPPARα) and mouse PPARα (mPPARα) in response to long chain fatty acids (LCFA). The present study was aimed to determine if structural alterations could account for these differences. The binding of PPARα to LCFA was examined through in silico molecular modeling and docking simulations. Modeling suggested that variances at amino acid position 272 are likely to be responsible for differences in saturated LCFA binding to hPPARα and mPPARα. To confirm these results experimentally, LCFA binding, circular dichroism, and transactivation studies were performed using a F272I mutant form of mPPARα. Experimental data correlated with in silico docking simulations, further confirming the importance of amino acid 272 in LCFA binding. Although the driving force for evolution of species differences at this position are yet unidentified, this study enhances our understanding of ligand-induced regulation by PPARα and demonstrates the efficacy of molecular modeling and docking simulations. PMID:24858253

  2. Cobalt(II)-catalyzed 1,4-addition of organoboronic acids to activated alkenes: an application to highly cis-stereoselective synthesis of aminoindane carboxylic acid derivatives.

    PubMed

    Chen, Min-Hsien; Mannathan, Subramaniyan; Lin, Pao-Shun; Cheng, Chien-Hong

    2012-11-19

    It all adds up: The 1,4-addition of organoboronic acids to activated alkenes catalyzed by [Co(dppe)Cl(2)] is described. A [3+2]-annulation reaction of ortho-iminoarylboronic acids with acrylates to give various aminoindane carboxylic acid derivatives with cis-stereoselectivity is also demonstrated (see scheme; dppe = 1,2-bis(diphenylphosphino)ethane).

  3. Effect of nitric acid treatment on activated carbon derived from oil palm shell

    NASA Astrophysics Data System (ADS)

    Allwar, Allwar; Hartati, Retno; Fatimah, Is

    2017-03-01

    The primary object of this work is to study the effect of nitric acid on the porous and morphology structure of activated carbon. Production of activated carbon from oil palm shell was prepared with pyrolysis process at temperature 900°C and by introduction of 10 M nitric acid. Determination of surface area, pore volume and pore size distribution of activated carbon was conducted by the N2 adsorption-desorption isotherm at 77 K. Morphology structure and elemental micro-analysis of activated carbon were estimated by Scanning Electron Microscopy (SEM) and energy dispersive X-ray (EDX), respectively. The result shows that activated carbon after treating with nitric acid proved an increasing porous characteristics involving surface area, pore volume and pore size distribution. It also could remove the contaminants including metals and exhibit an increasing of pores and crevices all over the surface.

  4. Natural Product Anacardic Acid from Cashew Nut Shells Stimulates Neutrophil Extracellular Trap Production and Bactericidal Activity.

    PubMed

    Hollands, Andrew; Corriden, Ross; Gysler, Gabriela; Dahesh, Samira; Olson, Joshua; Raza Ali, Syed; Kunkel, Maya T; Lin, Ann E; Forli, Stefano; Newton, Alexandra C; Kumar, Geetha B; Nair, Bipin G; Perry, J Jefferson P; Nizet, Victor

    2016-07-01

    Emerging antibiotic resistance among pathogenic bacteria is an issue of great clinical importance, and new approaches to therapy are urgently needed. Anacardic acid, the primary active component of cashew nut shell extract, is a natural product used in the treatment of a variety of medical conditions, including infectious abscesses. Here, we investigate the effects of this natural product on the function of human neutrophils. We find that anacardic acid stimulates the production of reactive oxygen species and neutrophil extracellular traps, two mechanisms utilized by neutrophils to kill invading bacteria. Molecular modeling and pharmacological inhibitor studies suggest anacardic acid stimulation of neutrophils occurs in a PI3K-dependent manner through activation of surface-expressed G protein-coupled sphingosine-1-phosphate receptors. Neutrophil extracellular traps produced in response to anacardic acid are bactericidal and complement select direct antimicrobial activities of the compound.

  5. Nonsteroidal anti-inflammatory drug flufenamic acid is a potent activator of AMP-activated protein kinase.

    PubMed

    Chi, Yuan; Li, Kai; Yan, Qiaojing; Koizumi, Schuichi; Shi, Liye; Takahashi, Shuhei; Zhu, Ying; Matsue, Hiroyuki; Takeda, Masayuki; Kitamura, Masanori; Yao, Jian

    2011-10-01

    Flufenamic acid (FFA) is a nonsteroidal anti-inflammatory drug (NSAID). It has anti-inflammatory and antipyretic properties. In addition, it modulates multiple channel activities. The mechanisms underlying the pharmacological actions of FFA are presently unclear. Given that AMP-activated protein kinase (AMPK) has both anti-inflammatory and channel-regulating functions, we examined whether FFA induces AMPK activation. 1) Exposure of several different types of cells to FFA resulted in an elevation of AMPKα phosphorylation at Thr172. This effect of FFA was reproduced by functionally and structurally similar mefenamic acid, tolfenamic acid, niflumic acid, and meclofenamic acid. 2) FFA-induced activation of AMPK was largely abolished by the treatment of cells with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) (an intracellular Ca(2+) chelator) or depletion of extracellular Ca(2+), whereas it was mimicked by stimulation of cells with the Ca(2+) ionophore 5-(methylamino)-2-({(2R,3R,6S,8S,9R,11R)-3,9,11-trimethyl-8-[(1S)-1-methyl-2-oxo-2-(1H-pyrrol-2-yl)ethyl]-1,7-dioxaspiro[5.5]undec-2-yl}methyl)-1,3-benzoxazole-4-carboxylic acid (A23187) or ionomycin. 3) FFA triggered a rise in intracellular Ca(2+), which was abolished by cyclosporine, a blocker of mitochondrial permeability transition pore. Cyclosporine also abolished FFA-induced activation of AMPK. 4) Inhibition of Ca(2+)/calmodulin-dependent kinase kinase β (CaMKKβ) with 7-oxo-7H-benzimidazo[2,1-a]benz[de]isoquinoline-3-carboxylic acid acetate (STO-609) or down-regulation of CaMKKβ with short interfering RNA largely abrogated FFA-induced activation of AMPK. 5) FFA significantly suppressed nuclear factor-κB activity and inducible nitric-oxide synthase expression triggered by interleukin-1β and tumor necrosis factor α. This suppression was also largely abrogated by STO-609. Taken together, we conclude that FFA induces AMPK activation through the Ca(2+)-CaMKKβ pathway

  6. Effects of dipalmitoylglycerol and fatty acids on membrane structure and protein kinase C activity.

    PubMed Central

    Goldberg, E M; Zidovetzki, R

    1997-01-01

    The individual and combined effects of the saturated diacylglycerol (DAG) dipalmitin (DP) and saturated or polyunsaturated unesterified fatty acids (PUFAs) on both the structure of phosphatidylcholine/phosphatidylserine (PC/PS; 4:1 mol/mol) bilayers and on protein kinase C (PKC) activity were studied using 2H nuclear magnetic resonance (NMR) and enzyme activity assays. In the absence of DP, PUFAs only slightly activated PKC whereas palmitic acid had no effect. In the absence of fatty acids, DP induced lateral phase separation of the bilayer into liquid-crystalline and gel phases. Under these conditions virtually all DP was sequestered into the gel phase and no activation of PKC was observed. The addition of polyunsaturated arachidonic or docosahexaenoic acids to the DP-containing bilayers significantly increased the relative amounts of DP and other lipid components in the liquid-crystalline phase, correlating with a dramatic increase in PKC activity. Furthermore, the effect was greater with PS, resulting in an enrichment of PS in the liquid-crystalline domains. In the presence of DP, palmitic acid did not decrease the amount of gel phase lipid and had no effect on PKC activity. The results explain the observed lack of PKC-activating capacity of long-chain saturated DAGs as due to the sequestration of DAG into gel domains wherein it is complexed with phospholipids and thus not available for the required interaction with the enzyme. PMID:9370455

  7. Key mediators of intracellular amino acids signaling to mTORC1 activation.

    PubMed

    Duan, Yehui; Li, Fengna; Tan, Kunrong; Liu, Hongnan; Li, Yinghui; Liu, Yingying; Kong, Xiangfeng; Tang, Yulong; Wu, Guoyao; Yin, Yulong

    2015-05-01

    Mammalian target of rapamycin complex 1 (mTORC1) is activated by amino acids to promote cell growth via protein synthesis. Specifically, Ras-related guanosine triphosphatases (Rag GTPases) are activated by amino acids, and then translocate mTORC1 to the surface of late endosomes and lysosomes. Ras homolog enriched in brain (Rheb) resides on this surface and directly activates mTORC1. Apart from the presence of intracellular amino acids, Rag GTPases and Rheb, other mediators involved in intracellular amino acid signaling to mTORC1 activation include human vacuolar sorting protein-34 (hVps34) and mitogen-activating protein kinase kinase kinase kinase-3 (MAP4K3). Those molecular links between mTORC1 and its mediators form a complicate signaling network that controls cellular growth, proliferation, and metabolism. Moreover, it is speculated that amino acid signaling to mTORC1 may start from the lysosomal lumen. In this review, we discussed the function of these mediators in mTORC1 pathway and how these mediators are regulated by amino acids in details.

  8. Enhanced adsorption of humic acids on ordered mesoporous carbon compared with microporous activated carbon.

    PubMed

    Liu, Fengling; Xu, Zhaoyi; Wan, Haiqin; Wan, Yuqiu; Zheng, Shourong; Zhu, Dongqiang

    2011-04-01

    Humic acids are ubiquitous in surface and underground waters and may pose potential risk to human health when present in drinking water sources. In this study, ordered mesoporous carbon was synthesized by means of a hard template method and further characterized by X-ray diffraction, N2 adsorption, transition electron microscopy, elemental analysis, and zeta-potential measurement. Batch experiments were conducted to evaluate adsorption of two humic acids from coal and soil, respectively, on the synthesized carbon. For comparison, a commercial microporous activated carbon and nonporous graphite were included as additional adsorbents; moreover, phenol was adopted as a small probe adsorbate. Pore size distribution characterization showed that the synthesized carbon had ordered mesoporous structure, whereas the activated carbon was composed mainly of micropores with a much broader pore size distribution. Accordingly, adsorption of the two humic acids was substantially lower on the activated carbon than on the synthesized carbon, because of the size-exclusion effect. In contrast, the synthesized carbon and activated carbon showed comparable adsorption for phenol when the size-exclusion effect was not in operation. Additionally, we verified by size-exclusion chromatography studies that the synthesized carbon exhibited greater adsorption for the large humic acid fraction than the activated carbon. The pH dependence of adsorption on the three carbonaceous adsorbents was also compared between the two test humic acids. The findings highlight the potential of using ordered mesoporous carbon as a superior adsorbent for the removal of humic acids.

  9. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    SciTech Connect

    Chang, Binbin Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng

    2015-01-15

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl{sub 2} using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl{sub 2} at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of –SO{sub 3}H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N{sub 2} adsorption–desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of –SO{sub 3}H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of –SO{sub 3}H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and –SO{sub 3}H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles. - Graphical abstract: Sulfonated porous carbon nanospheres with high surface area and superior catalytic performance were prepared by a facile chemical activation route. - Highlights: • Porous carbon spheres solid acid prepared by a facile chemical activation. • It owns high surface area, superior porosity and uniform spherical morphology. • It possesses

  10. Understanding Fatty Acid Metabolism through an Active Learning Approach

    ERIC Educational Resources Information Center

    Fardilha, M.; Schrader, M.; da Cruz e Silva, O. A. B.; da Cruz e Silva, E. F.

    2010-01-01

    A multi-method active learning approach (MALA) was implemented in the Medical Biochemistry teaching unit of the Biomedical Sciences degree at the University of Aveiro, using problem-based learning as the main learning approach. In this type of learning strategy, students are involved beyond the mere exercise of being taught by listening. Less…

  11. Active principle of swine prostate extract: I. Isolation of active principle activating prostatic acid phosphatase and its effect on testosterone uptake of the prostate in castrated rats.

    PubMed

    Yoshida, Y; Mori, H; Inami, K; Koda, A

    1991-07-01

    There have been several reports concerning the therapeutic effect of an extract from animal prostates on benign prostatic hypertrophy. Previously, we reported that the swine prostate extract (PE) had the activity to enhance human prostatic acid phosphatase (PAPase) activity in vitro, and to increase the muscular tonicity of the urinary bladder by directly acting upon vesical muscles, suggesting that PE have an activity to elevate the intravesical voiding pressure in vivo. In the present study, it was attempted to isolate such an active principle of PE as activates human prostatic acid phosphatase (PAPase). The finally purified PE (PPE) was assessed as to some physico-chemical and pharmacological properties. 1) PPE was found to be a peptide with a molecular weight of about 8,800, composed largely of neutral amino acids (approximately 70%) and few of aromatic amino acids. 2) PPE activated PAPase in a dose-dependent fashion, resulting in an increase of the enzyme activity approximately twice in a dose of 2 X 10(-5) g/ml of PPE. Furthermore, PPE recovered PAPase activity dose-dependently from the 50% inhibition by 2 X 10(-3) M L-tartaric acid. 3) In castrated rats, the 3H-testosterone uptake of the prostate was significantly suppressed by the oral administration of PPE. PPE might be one of active principles of PE for the therapeutic effect on prostatic hypertrophy.

  12. Antibacterial and antiparasitic activity of oleanolic acid and its glycosides isolated from marigold (Calendula officinalis).

    PubMed

    Szakiel, Anna; Ruszkowski, Dariusz; Grudniak, Anna; Kurek, Anna; Wolska, Krystyna I; Doligalska, Maria; Janiszowska, Wirginia

    2008-11-01

    The antibacterial and antiparasitic activities of free oleanolic acid and its glucosides and glucuronides isolated from marigold (Calendula officinalis) were investigated. The MIC of oleanolic acid and the effect on bacterial growth were estimated by A600 measurements. Oleanolic acid's influence on bacterial survival and the ability to induce autolysis were measured by counting the number of cfu. Cell morphology and the presence of endospores were observed under electron and light microscopy, respectively. Oleanolic acid inhibited bacterial growth and survival, influenced cell morphology and enhanced the autolysis of Gram-positive bacteria suggesting that bacterial envelopes are the target of its activity. On the other hand, glycosides of oleanolic acid inhibited the development of L3 Heligmosomoides polygyrus larvae, the infective stage of this intestinal parasitic nematode. In addition, both oleanolic acid and its glycosides reduced the rate of L3 survival during prolonged storage, but only oleanolic acid glucuronides affected nematode infectivity. The presented results suggest that oleanolic acid and its glycosides can be considered as potential therapeutic agents.

  13. [Conjugated linolenic acids (CLnA, super CLA)--natural sources and biological activity].

    PubMed

    Białek, Agnieszka; Teryks, Marta; Tokarz, Andrzej

    2014-11-06

    Polyunsaturated fatty acids (PUFA) have a wide range of biological activity. Among them conjugated fatty acids are of great interest. Conjugated linoleic acids (CLA), which exert a multidirectional health-benefiting influence, and conjugated linolenic acids (CLnA, super CLA) are examples of this group of fatty acids. CLnA are a group of positional and geometric isomers of octadecatrienoic acid (C18:3), which possess double bonds at positions 9, 11, 13 or 8, 10, 12 of their chain. Some vegetable oils are rich sources of CLnA, e.g. bitter melon oil (from Momordica charantia seeds) and pomegranate oil (from Punica granatum seeds). The aim of this paper was to present information concerning natural sources and health-promoting activities of conjugated linolenic acids. The presented data reveal that conjugated linolenic acids may be very useful in prevention and treatment of many diseases, especially diabetes, arteriosclerosis , obesity and cancers (mammary, prostate and colon cancer). Among many potential mechanisms of their action, the fact that some CLnA are converted by oxidoreductases into CLA is very important. It seems to be very reasonable to conduct research concerning the possibility of CLnA use in prevention of many diseases.

  14. A Unique Dual Activity Amino Acid Hydroxylase in Toxoplasma gondii

    PubMed Central

    Gaskell, Elizabeth A.; Smith, Judith E.; Pinney, John W.; Westhead, Dave R.; McConkey, Glenn A.

    2009-01-01

    The genome of the protozoan parasite Toxoplasma gondii was found to contain two genes encoding tyrosine hydroxylase; that produces l-DOPA. The encoded enzymes metabolize phenylalanine as well as tyrosine with substrate preference for tyrosine. Thus the enzymes catabolize phenylalanine to tyrosine and tyrosine to l-DOPA. The catalytic domain descriptive of this class of enzymes is conserved with the parasite enzyme and exhibits similar kinetic properties to metazoan tyrosine hydroxylases, but contains a unique N-terminal extension with a signal sequence motif. One of the genes, TgAaaH1, is constitutively expressed while the other gene, TgAaaH2, is induced during formation of the bradyzoites of the cyst stages of the life cycle. This is the first description of an aromatic amino acid hydroxylase in an apicomplexan parasite. Extensive searching of apicomplexan genome sequences revealed an ortholog in Neospora caninum but not in Eimeria, Cryptosporidium, Theileria, or Plasmodium. Possible role(s) of these bi-functional enzymes during host infection are discussed. PMID:19277211

  15. Antitumor effect of sonodynamically activated pyrrolidine tris-acid fullerene

    NASA Astrophysics Data System (ADS)

    Iwase, Yumiko; Nishi, Koji; Fujimori, Junya; Fukai, Toshio; Yumita, Nagahiko; Ikeda, Toshihiko; Chen, Fu-shin; Momose, Yasunori; Umemura, Shin-ichiro

    2016-07-01

    In this study, the sonodynamically induced antitumor effect of pyrrolidine tris-acid fullerene (PTF) was investigated. Sonodynamically induced antitumor effects of PTF by focused ultrasound were investigated using isolated sarcoma-180 cells and mice bearing ectopically-implanted colon 26 carcinoma. Cell damage induced by ultrasonic exposure was enhanced by 5-fold in the presence of 80 µM PTF. The combined treatment of ultrasound and PTF suppressed the growth of the implanted colon 26 carcinoma. Ultrasonically induced 2,2,6,6-tetramethyl-4-piperidone-1-oxyl (4oxoTEMPO) production in the presence and absence of PTF was assessed, and it was shown that 80 µM PTF enhanced 4oxoTEMPO production as measured by ESR spectroscopy. Histidine, a reactive oxygen scavenger, significantly reduced cell damage and 4oxoTEMPO generation caused by ultrasonic exposure in the presence of PTF. These results suggest that singlet oxygen is likely to be involved in the ultrasonically induced cell damage enhanced by PTF.

  16. Boswellic acid activity against glioblastoma stem-like cells

    PubMed Central

    SCHNEIDER, HANNAH; WELLER, MICHAEL

    2016-01-01

    Boswellic acids (BAs) have long been considered as useful adjunct pharmacological agents for the treatment of patients with malignant brain tumors, notably glioblastoma. Two principal modes of action associated with BAs have been postulated: i) Anti-inflammatory properties, which are useful for containing edema formation, and ii) intrinsic antitumor cell properties, with a hitherto ill-defined mode of action. The present study assessed the effects of various BA derivatives on the viability and clonogenicity of a panel of nine long-term glioma cell lines and five glioma-initiating cell lines, studied cell cycle progression and the mode of cell death induction, and explored potential synergy with temozolomide (TMZ) or irradiation. BA induced the concentration-dependent loss of viability and clonogenicity that was independent of tumor protein 53 status and O6-methylguanine DNA methyltransferase expression. The treatment of glioma cells with BA resulted in cell death induction, prior to or upon S phase entry, and exhibited features of apoptotic cell death. Synergy with irradiation or TMZ was detected at certain concentrations; however, the inhibitory effects were mostly additive, and never antagonistic. While the intrinsic cytotoxic properties of BA at low micromolecular concentrations were confirmed and the potential synergy with irradiation and TMZ was identified, the proximate pharmacodynamic target of BA remains to be identified. PMID:27313764

  17. Inhibition of all-TRANS-retinoic acid metabolism by R116010 induces antitumour activity

    PubMed Central

    Van heusden, J; Van Ginckel, R; Bruwiere, H; Moelans, P; Janssen, B; Floren, W; van der Leede, B J; van Dun, J; Sanz, G; Venet, M; Dillen, L; Van Hove, C; Willemsens, G; Janicot, M; Wouters, W

    2002-01-01

    All-trans-retinoic acid is a potent inhibitor of cell proliferation and inducer of differentiation. However, the clinical use of all-trans-retinoic acid in the treatment of cancer is significantly hampered by its toxicity and the prompt emergence of resistance, believed to be caused by increased all-trans-retinoic acid metabolism. Inhibitors of all-trans-retinoic acid metabolism may therefore prove valuable in the treatment of cancer. In this study, we characterize R116010 as a new anticancer drug that is a potent inhibitor of all-trans-retinoic acid metabolism. In vitro, R116010 potently inhibits all-trans-retinoic acid metabolism in intact T47D cells with an IC50-value of 8.7 nM. In addition, R116010 is a selective inhibitor as indicated by its inhibition profile for several other cytochrome P450-mediated reactions. In T47D cell proliferation assays, R116010 by itself has no effect on cell proliferation. However, in combination with all-trans-retinoic acid, R116010 enhances the all-trans-retinoic acid-mediated antiproliferative activity in a concentration-dependent manner. In vivo, the growth of murine oestrogen-independent TA3-Ha mammary tumours is significantly inhibited by R116010 at doses as low as 0.16 mg kg−1. In conclusion, R116010 is a highly potent and selective inhibitor of all-trans-retinoic acid metabolism, which is able to enhance the biological activity of all-trans-retinoic acid, thereby exhibiting antitumour activity. R116010 represents a novel and promising anticancer drug with an unique mechanism of action. British Journal of Cancer (2002) 86, 605–611. DOI: 10.1038/sj/bjc/6600056 www.bjcancer.com © 2002 Cancer Research UK PMID:11870544

  18. Inhibition of all-TRANS-retinoic acid metabolism by R116010 induces antitumour activity.

    PubMed

    Van Heusden, J; Van Ginckel, R; Bruwiere, H; Moelans, P; Janssen, B; Floren, W; van der Leede, B J; van Dun, J; Sanz, G; Venet, M; Dillen, L; Van Hove, C; Willemsens, G; Janicot, M; Wouters, W

    2002-02-12

    All-trans-retinoic acid is a potent inhibitor of cell proliferation and inducer of differentiation. However, the clinical use of all-trans-retinoic acid in the treatment of cancer is significantly hampered by its toxicity and the prompt emergence of resistance, believed to be caused by increased all-trans-retinoic acid metabolism. Inhibitors of all-trans-retinoic acid metabolism may therefore prove valuable in the treatment of cancer. In this study, we characterize R116010 as a new anticancer drug that is a potent inhibitor of all-trans-retinoic acid metabolism. In vitro, R116010 potently inhibits all-trans-retinoic acid metabolism in intact T47D cells with an IC(50)-value of 8.7 nM. In addition, R116010 is a selective inhibitor as indicated by its inhibition profile for several other cytochrome P450-mediated reactions. In T47D cell proliferation assays, R116010 by itself has no effect on cell proliferation. However, in combination with all-trans-retinoic acid, R116010 enhances the all-trans-retinoic acid-mediated antiproliferative activity in a concentration-dependent manner. In vivo, the growth of murine oestrogen-independent TA3-Ha mammary tumours is significantly inhibited by R116010 at doses as low as 0.16 mg kg(-1). In conclusion, R116010 is a highly potent and selective inhibitor of all-trans-retinoic acid metabolism, which is able to enhance the biological activity of all-trans-retinoic acid, thereby exhibiting antitumour activity. R116010 represents a novel and promising anticancer drug with an unique mechanism of action.

  19. A study of aliphatic amino acids using simulated vibrational circular dichroism and Raman optical activity spectra*

    NASA Astrophysics Data System (ADS)

    Ganesan, Aravindhan; Brunger, Michael J.; Wang, Feng

    2013-11-01

    Vibrational optical activity (VOA) spectra, such as vibrational circular dichroism (VCD) and Raman optical activity (ROA) spectra, of aliphatic amino acids are simulated using density functional theory (DFT) methods in both gas phase (neutral form) and solution (zwitterionic form), together with their respective infrared (IR) and Raman spectra of the amino acids. The DFT models, which are validated by excellent agreements with the available experimental Raman and ROA spectra of alanine in solution, are employed to study other aliphatic amino acids. The inferred (IR) intensive region (below 2000 cm-1) reveals the signature of alkyl side chains, whereas the Raman intensive region (above 3000 cm-1) contains the information of the functional groups in the amino acids. Furthermore, the chiral carbons of the amino acids (except for glycine) dominate the VCD and ROA spectra in the gas phase, but the methyl group vibrations produce stronger VCD and ROA signals in solution. The C-H related asymmetric vibrations dominate the VOA spectra (i.e., VCD and ROA) > 3000 cm-1 reflecting the side chain structures of the amino acids. Finally the carboxyl and the C(2)H modes of aliphatic amino acids, together with the side chain vibrations, are very active in the VCD/IR and ROA/Raman spectra, which makes such the vibrational spectroscopic methods a very attractive means to study biomolecules.

  20. Use of Gallic Acid to Enhance the Antioxidant and Mechanical Properties of Active Fish Gelatin Film.

    PubMed

    Limpisophon, Kanokrat; Schleining, Gerhard

    2017-01-01

    This study explores the potential roles of gallic acid in fish gelatin film for improving mechanical properties, UV barrier, and providing antioxidant activities. Glycerol, a common used plasticizer, also impacts on mechanical properties of the film. A factorial design was used to investigate the effects of gallic acid and glycerol concentrations on antioxidant activities and mechanical properties of fish gelatin film. Increasing the amount of gallic acid increased the antioxidant capacities of the film measured by radical scavenging assay and the ferric reducing ability of plasma assay. The released antioxidant power of gallic acid from the film was not reduced by glycerol. The presence of gallic acid not only increased the antioxidant capacity of the film, but also increased the tensile strength, elongation at break, and reduced UV absorption due to interaction between gallic acid and protein by hydrogen bonding. Glycerol did not affect the antioxidant capacities of the film, but increased the elasticity of the films. Overall, this study revealed that gallic acid entrapped in the fish gelatin film provided antioxidant activities and improved film characteristics, namely UV barrier, strength, and elasticity of the film.

  1. Ileal and colonic fatty acid profiles in patients with active Crohn's disease.

    PubMed Central

    Bühner, S; Nagel, E; Körber, J; Vogelsang, H; Linn, T; Pichlmayr, R

    1994-01-01

    In patients with active Crohn's disease and in a control group the fatty acid profiles in the whole lipid fraction of ileal and colonic mucosal biopsy specimens were determined by capillary gas chromatography. The biopsy specimens in Crohn's disease patients were taken from the inflamed terminal ileum as well as from the inflamed and macroscopically normal colon. Compared with controls the fatty acid distribution in the inflamed ileal mucosa was significantly characterised by (a) a decrease of 18:2 n6 and 18:3 n3 accompanied by a substantial increase of the highly polyunsaturated fatty acids 20:4 n6, 22:4 n6, and 22:6 n3 and (b) a higher unsaturation index of total fatty acids compared with controls. These changes were similar in the inflamed colon. Additionally, both the inflamed and the macroscopically normal colonic mucosa showed an increase of saturated (18:0) and a decrease of monounsaturated fatty acids (18:1 n9). Fatty acid profiles of ileum and colon showed side variations in controls, but not in the Crohn's disease group. These data suggest that in Crohn's disease changes in the distribution of polyunsaturated fatty acids seem to be the general feature of inflamed mucosa in small and large intestine. Results further suggest that colonic fatty acid metabolism in Crohn's disease is altered by degrees, showing changes in saturated and monounsaturated fatty acids as an additional, primary event. PMID:7959199

  2. Active-Learning versus Teacher-Centered Instruction for Learning Acids and Bases

    ERIC Educational Resources Information Center

    Sesen, Burcin Acar; Tarhan, Leman

    2011-01-01

    Background and purpose: Active-learning as a student-centered learning process has begun to take more interest in constructing scientific knowledge. For this reason, this study aimed to investigate the effectiveness of active-learning implementation on high-school students' understanding of "acids and bases". Sample: The sample of this…

  3. Antioxidant activity of amino acids in soybean oil at frying temperature: structural effects and synergism with tocopherols

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study was to evaluate amino acids as natural antioxidants for frying. Twenty amino acids were added to soybean oil heated to 180 ºC, and the effects of amino acid structure on the antioxidant activity were investigated. Amino acids containing a thiol, a thioether, or an extra ami...

  4. Study of genotoxic, antigenotoxic and antioxidant activities of the digallic acid isolated from Pistacia lentiscus fruits.

    PubMed

    Bhouri, Wissem; Derbel, Safa; Skandrani, Ines; Boubaker, Jihed; Bouhlel, Ines; Sghaier, Mohamed B; Kilani, Soumaya; Mariotte, Anne M; Dijoux-Franca, Marie G; Ghedira, Kamel; Chekir-Ghedira, Leila

    2010-03-01

    The digallic acid obtained from the fruit Pistacia lentiscus exhibits an inhibitory activity against nitrofurantoine and B[a]P induced genotoxicity when tested by the SOS chromotest bacterial assay system in the presence of Escherichia coli PQ37 strain. The antioxidant activity of the tested compound was determined by its ability to scavenge the free radical ABTS(+), to inhibit the xanthine oxidase, involved in the generation of free radicals, and to inhibit the lipid peroxidation induced by H(2)O(2) in the K562 cell line. Our results revealed that digallic acid shows an important free radical scavenging activity towards the ABTS(+) radical (99%) and protection against lipid peroxidation (68%).

  5. Thyroid hormone activation of retinoic acid synthesis in hypothalamic tanycytes

    PubMed Central

    Stoney, Patrick N.; Helfer, Gisela; Rodrigues, Diana; Morgan, Peter J.

    2015-01-01

    Thyroid hormone (TH) is essential for adult brain function and its actions include several key roles in the hypothalamus. Although TH controls gene expression via specific TH receptors of the nuclear receptor class, surprisingly few genes have been demonstrated to be directly regulated by TH in the hypothalamus, or the adult brain as a whole. This study explored the rapid induction by TH of retinaldehyde dehydrogenase 1 (Raldh1), encoding a retinoic acid (RA)‐synthesizing enzyme, as a gene specifically expressed in hypothalamic tanycytes, cells that mediate a number of actions of TH in the hypothalamus. The resulting increase in RA may then regulate gene expression via the RA receptors, also of the nuclear receptor class. In vivo exposure of the rat to TH led to a significant and rapid increase in hypothalamic Raldh1 within 4 hours. That this may lead to an in vivo increase in RA is suggested by the later induction by TH of the RA‐responsive gene Cyp26b1. To explore the actions of RA in the hypothalamus as a potential mediator of TH control of gene regulation, an ex vivo hypothalamic rat slice culture method was developed in which the Raldh1‐expressing tanycytes were maintained. These slice cultures confirmed that TH did not act on genes regulating energy balance but could induce Raldh1. RA has the potential to upregulate expression of genes involved in growth and appetite, Ghrh and Agrp. This regulation is acutely sensitive to epigenetic changes, as has been shown for TH action in vivo. These results indicate that sequential triggering of two nuclear receptor signalling systems has the capability to mediate some of the functions of TH in the hypothalamus. GLIA 2016;64:425–439 PMID:26527258

  6. Quantitative structure-activity relationships of antimicrobial fatty acids and derivatives against Staphylococcus aureus *

    PubMed Central

    Zhang, Hui; Zhang, Lu; Peng, Li-juan; Dong, Xiao-wu; Wu, Di; Wu, Vivian Chi-Hua; Feng, Feng-qin

    2012-01-01

    Fatty acids and derivatives (FADs) are resources for natural antimicrobials. In order to screen for additional potent antimicrobial agents, the antimicrobial activities of FADs against Staphylococcus aureus were examined using a microplate assay. Monoglycerides of fatty acids were the most potent class of fatty acids, among which monotridecanoin possessed the most potent antimicrobial activity. The conventional quantitative structure-activity relationship (QSAR) and comparative molecular field analysis (CoMFA) were performed to establish two statistically reliable models (conventional QSAR: R 2=0.942, Q 2 LOO=0.910; CoMFA: R 2=0.979, Q 2=0.588, respectively). Improved forecasting can be achieved by the combination of these two models that provide a good insight into the structure-activity relationships of the FADs and that may be useful to design new FADs as antimicrobial agents. PMID:22302421

  7. The inhibitory effect of metals and other ions on acid phosphatase activity from Vigna aconitifolia seeds.

    PubMed

    Srivastava, Pramod Kumar; Anand, Asha

    2015-01-01

    Sensitivity of acid phosphatase from Vigna aconitifolia seeds to metal ions, fluoride, and phosphate was examined. All the effectors had different degree of inhibitory effect on the enzyme. Among metal ions, molybdate and ferric ion were observed to be most potent inhibitors and both exhibited mixed type of inhibition. Acid phosphatase activity was inhibited by Cu2+ in a noncompetitive manner. Zn and Mn showed mild inhibition on the enzyme activity. Inhibition kinetics analysis explored molybdate as a potent inhibitor for acid phosphatase in comparison with other effectors used in this study. Fluoride was the next most strong inhibitor for the enzyme activity, and caused a mixed type of inhibition. Phosphate inhibited the enzyme competitively, which demonstrates that inhibition due to phosphate is one of the regulatory factors for enzyme activity.

  8. Influence of phytic acid and its metal complexes on the activity of pectin degrading polygalacturonase.

    PubMed

    Asghar, Uzma; Rehman, Haneef Ur; Qader, Shah Ali Ul; Maqsood, Zahida Tasneem

    2013-06-05

    Polygalacturonase is one of the important requirements of different microorganism to cause pathogenicity and spoilage of fruits and vegetables that involved in degradation of pectin during plant tissue infections. In current study, 20 mM phytic acid inhibited 70% activity of polygalacturonase. The effect of different concentration of metal ions such as Cu(+2), Al(+3) and V(+4) were studied separately and it was found that the 20 mM of these metal ions inhibited 37.2%, 79%, and 53% activity of polygalacturonase, respectively. Finally, the complexes of phytic acid and these metals ions were prepared and 1:1 ratio of phytic acid and metal ions complexes showed maximum inhibitory activity of enzyme as compared to complexes having 1:2 and 1:3 ratio except phytate-copper complexes which showed no inhibitory effect on the activity of polygalacturonase.

  9. Aspartic acid aminotransferase activity is increased in actively spiking compared with non-spiking human epileptic cortex.

    PubMed Central

    Kish, S J; Dixon, L M; Sherwin, A L

    1988-01-01

    Increased concentration of the excitatory neurotransmitter aspartic acid in actively spiking human epileptic cerebral cortex was recently described. In order to further characterise changes in the aspartergic system in epileptic brain, the behaviour of aspartic acid aminotransferase (AAT), a key enzyme involved in aspartic acid metabolism has now been examined. Electrocorticography performed during surgery was employed to identify cortical epileptic spike foci in 16 patients undergoing temporal lobectomy for intractable seizures. Patients with spontaneously spiking lateral temporal cortex (n = 8) were compared with a non-spiking control group (n = 8) of patients in whom the epileptic lesions were confined to the hippocampus sparing the temporal convexity. Mean activity of AAT in spiking cortex was significantly elevated by 16-18%, with aspartic acid concentration increased by 28%. Possible explanations for the enhanced AAT activity include increased proliferation of cortical AAT-containing astrocytes at the spiking focus and/or a generalised increase in neuronal or extraneuronal metabolism consequent to the ongoing epileptic discharge. It is suggested that the data provide additional support for a disturbance of central excitatory aspartic acid mechanisms in human epileptic brain. PMID:2898010

  10. Simultaneous demonstration of bone alkaline and acid phosphatase activities in plastic-embedded sections and differential inhibition of the activities.

    PubMed

    Liu, C; Sanghvi, R; Burnell, J M; Howard, G A

    1987-01-01

    Bone alkaline (AlP) and acid phosphatase (AcP) activities were simultaneously demonstrated in tissue sections obtained from mice, rats, and humans. The method involved tissue fixation in ethanol, embedding in glycol methacrylate (GMA), and demonstration of AlP and AcP activities employing a simultaneous coupling azo dye technique using substituted naphthol phosphate as a substrate. AlP activity was demonstrated first followed by AcP activity. Both enzyme activities were demonstrated in tissue sections from bones fixed and/or stored in acetone or 70% ethanol for up to 14 days or stored in GMA for 2 months. AlP activity in tissue sections from bones fixed in 10% formalin, 2% glutaraldehyde, or formal-calcium, however, was markedly inhibited after 3-7 days and was no longer detectable after 14 days of fixation. Moreover, AlP activity was diminished in tissue sections from bones fixed in 70% ethanol or 10% formalin and subsequently demineralized in 10% EDTA (pH 7) for 2 days, and the activity was completely abolished in tissue sections from bones subsequently demineralized in 5% formic acid: 20% sodium citrate (1:1, pH 4.2) for 2 days. Methyl methacrylate (MMA) embedding at concentrations above 66% completely inhibited AlP activity. AcP activity, however, was only partially inhibited by formalin, glutaraldehyde, or formal-calcium after 7 or 14 days of fixation or by MMA embedding and was unaffected by the demineralizing agent formic acid-citrate for 2 days. While AcP activity was preserved in bones fixed in formalin and subsequently demineralized in EDTA, the activity was completely abolished when EDTA demineralization was carried out on bones previously fixed in 70% ethanol.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. High and low molecular weight hyaluronic acid differentially influence macrophage activation.

    PubMed

    Rayahin, Jamie E; Buhrman, Jason S; Zhang, Yu; Koh, Timothy J; Gemeinhart, Richard A

    2015-07-13

    Macrophages exhibit phenotypic diversity permitting wide-ranging roles in maintaining physiologic homeostasis. Hyaluronic acid, a major glycosaminoglycan of the extracellular matrix, has been shown to have differential signaling based on its molecular weight. With this in mind, the main objective of this study was to elucidate the role of hyaluronic acid molecular weight on macrophage activation and reprogramming. Changes in macrophage activation were assessed by activation state selective marker measurement, specifically quantitative real time polymerase chain reaction, and cytokine enzyme-linked immunoassays, after macrophage treatment with differing molecular weights of hyaluronic acid under four conditions: the resting state, concurrent with classical activation, and following inflammation involving either classically or alternatively activated macrophages. Regardless of initial polarization state, low molecular weight hyaluronic acid induced a classically activated-like state, confirmed by up-regulation of pro-inflammatory genes, including nos2, tnf, il12b, and cd80, and enhanced secretion of nitric oxide and TNF-α. High molecular weight hyaluronic acid promoted an alternatively activated-like state, confirmed by up regulation of pro-resolving gene transcription, including arg1, il10, and mrc1, and enhanced arginase activity. Overall, our observations suggest that macrophages undergo phenotypic changes dependent on molecular weight of hyaluronan that correspond to either (1) pro-inflammatory response for low molecular weight HA or (2) pro-resolving response for high molecular weight HA. These observations bring significant further understanding of the influence of extracellular matrix polymers, hyaluronic acid in particular, on regulating the inflammatory response of macrophages. This knowledge can be used to guide the design of HA-containing biomaterials to better utilize the natural response to HAs.

  12. High and low molecular weight hyaluronic acid differentially influence macrophage activation

    PubMed Central

    Rayahin, Jamie E.; Buhrman, Jason S.; Zhang, Yu; Koh, Timothy J.; Gemeinhart, Richard A.

    2015-01-01

    Macrophages exhibit phenotypic diversity permitting wide-ranging roles in maintaining physiologic homeostasis. Hyaluronic acid, a major glycosaminoglycan of the extracellular matrix, has been shown to have differential signaling based on its molecular weight. With this in mind, the main objective of this study was to elucidate the role of hyaluronic acid molecular weight on macrophage activation and reprogramming. Changes in macrophage activation were assessed by activation state selective marker measurement, specifically quantitative real time polymerase chain reaction, and cytokine enzyme-linked immunoassays, after macrophage treatment with differing molecular weights of hyaluronic acid under four conditions: the resting state, concurrent with classical activation, and following inflammation involving either classically or alternatively activated macrophages. Regardless of initial polarization state, low molecular weight hyaluronic acid induced a classically activated-like state, confirmed by up-regulation of pro-inflammatory genes, including nos2, tnf, il12b, and cd80, and enhanced secretion of nitric oxide and TNF-α. High molecular weight hyaluronic acid promoted an alternatively activated-like state, confirmed by up regulation of pro-resolving gene transcription, including arg1, il10, and mrc1, and enhanced arginase activity. Overall, our observations suggest that macrophages undergo phenotypic changes dependent on molecular weight of hyaluronan that correspond to either (1) pro-inflammatory response for low molecular weight HA or (2) pro-resolving response for high molecular weight HA. These observations bring significant further understanding of the influence of extracellular matrix polymers, hyaluronic acid in particular, on regulating the inflammatory response of macrophages. This knowledge can be used to guide the design of HA-containing biomaterials to better utilize the natural response to HAs. PMID:26280020

  13. Neuroprotective activity of L-theanine on 3-nitropropionic acid-induced neurotoxicity in rat striatum.

    PubMed

    Thangarajan, Sumathi; Deivasigamani, Asha; Natarajan, Suganya Sarumani; Krishnan, Prasanna; Mohanan, Sandhya Koombankallil

    2014-09-01

    The present study has been designed to investigate the protective effect of L-theanine against 3-nitropropionic acid (3-NP)-induced Huntington's disease (HD)-like symptoms in rats. The present experimental protocol design includes systemic 3-NP acid (10 mg/kg intraperitonially) treatment for 14 d. L-theanine (100 and 200 mg/kg) was given orally, once a day, 1 h before 3-NP acid treatment for 14 d. Body weight and behavioral parameters (Morris water maze, open field test (OFT), forced swim test (FST) and rotarod activity) were assessed on 1st, 5th, 10th and 15th day post-3-NP acid administration. Malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) levels and mitochondrial enzyme complex. Succinate dehydrogenase (SDH) were measured on the 15th day in the striatum. Systemic 3-NP acid treatment significantly reduced body weight, locomotor activity and oxidative defense. The mitochondrial enzyme activity was also significantly impaired in the striatum region in 3-NP acid-treated animals. L-theanine (100 and 200 mg/kg b.wt.) treatment significantly attenuated the impairment in behavioral, biochemical and mitochondrial enzyme activities as compared to the 3-NP acid-treated group. The results of the present study suggest that pretreatment with L-theanine significantly attenuated 3-NP induced oxidative stress and restored the decreased SOD, GSH, CAT and SDH activity. It also decreased the neuronal damage as evidenced by histopathological analysis of striatum. Based on the above study, it has been proved that L-theanine has neuroprotective activity against 3-NP induced neurotoxicity.

  14. Impacts of simulated acid rain on soil enzyme activities in a latosol.

    PubMed

    Ling, Da-Jiong; Huang, Qian-Chun; Ouyang, Ying

    2010-11-01

    Acid rain pollution is a serious environmental problem in the world. This study investigated impacts of simulated acid rain (SAR) upon four types of soil enzymes, namely the catalase, acid phosphatase, urease, and amylase, in a latosol. Latosol is an acidic red soil and forms in the tropical rainforest biome. Laboratory experiments were performed by spraying the soil columns with the SAR at pH levels of 2.5, 3.0, 3.5., 4.0, 4.5, 5.0, and 7.0 (control) over a 20-day period. Mixed results were obtained in enzyme activities for different kinds of enzymes under the influences of the SAR. The catalase activities increased rapidly from day 0 to 5, then decreased slightly from day 5 to 15, and finally decreased sharply to the end of the experiments, whereas the acid phosphatase activities decreased rapidly from day 0 to 5, then increased slightly from day 5 to 15, and finally decreased dramatically to the end of the experiments. A decrease in urease activities was observed at all of the SAR pH levels for the entire experimental period, while an increase from day 0 to 5 and then a decrease from day 5 to 20 in amylase activities were observed at all of the SAR pH levels. In general, the catalase, acid phosphatase, and urease activities increased with the SAR pH levels. However, the maximum amylase activity was found at pH 4.0 and decreased as the SAR pH increased from 4.0 to 5.0 or decreased from 4.0 to 2.5. It is apparent that acid rain had adverse environmental impacts on soil enzyme activities in the latosol. Our study further revealed that impacts of the SAR upon soil enzyme activities were in the following order: amylase>catalase>acid phosphatase>urease. These findings provide useful information on better understanding and managing soil biological processes in the nature under the influence of acid rains.

  15. The amino acid sequence of monal pheasant lysozyme and its activity.

    PubMed

    Araki, T; Matsumoto, T; Torikata, T

    1998-10-01

    The amino acid sequence of monal pheasant lysozyme and its activity were analyzed. Carboxymethylated lysozyme was digested with trypsin and the resulting peptides were sequenced. The established amino acid sequence had one amino acid substitution at position 102 (Arg to Gly) comparing with Indian peafowl lysozyme and four amino acid substitutions at positions 3 (Phe to Tyr), 15 (His to Leu), 41 (Gln to His), and 121 (Gln to His) with chicken lysozyme. Analysis of the time-courses of reaction using N-acetylglucosamine pentamer as a substrate showed a difference of binding free energy change (-0.4 kcal/mol) at subsites A between monal pheasant and Indian peafowl lysozyme. This was assumed to be caused by the amino acid substitution at subsite A with loss of a positive charge at position 102 (Arg102 to Gly).

  16. Synthesis of new lipoic acid conjugates and evaluation of their free radical scavenging and neuroprotective activities.

    PubMed

    Bolognesi, Maria Laura; Bergamini, Christian; Fato, Romana; Oiry, Joël; Vasseur, Jean-Jacques; Smietana, Michael

    2014-06-01

    A series of new lipoic acid derivatives were designed and synthesized as multitarget ligands against Alzheimer's disease. In particular, analogues combining both lipoic acid and cysteine core structures were synthesized. The antioxidant properties of these compounds were evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS(•+) ) radical cation scavenging assays and ferrous ion chelation. The antioxidant potential of the synthesized compounds was also evaluated in a cellular context and compared to α-lipoic acid and its reduced form, dihydrolipoic acid. The antioxidant effects observed for these compounds in vitro confirmed the importance of free thiol functions for effective antioxidant capacities. However, these promising in vitro results were not mirrored by the antioxidant activity in T67 cell line. This suggests that multiple factors are at stake and warrant further investigations.

  17. Disposition and transportation of surplus radioactive low specific activity nitric acid. Volume 1, Environmental Assessment

    SciTech Connect

    1995-05-01

    DOE is deactivating the PUREX plant at Hanford; this will involve the disposition of about 692,000 liters (183,000 gallons) of surplus nitric acid contaminated with low levels of U and other radionuclides. The nitric acid, designated as low specific activity, is stored in 4 storage tanks at PUREX. Five principal alternatives were evaluated: transfer for reuse (sale to BNF plc), no action, continued storage in Hanford upgraded or new facility, consolidation of DOE surplus acid, and processing the LSA nitric acid as waste. The transfer to BNF plc is the preferred alternative. From the analysis, it is concluded that the proposed disposition and transportation of the acid does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of NEPA; therefore an environmental impact statement is not required.

  18. Catalytic Decarboxylation of Fatty Acids to Aviation Fuels over Nickel Supported on Activated Carbon

    PubMed Central

    Wu, Jianghua; Shi, Juanjuan; Fu, Jie; Leidl, Jamie A.; Hou, Zhaoyin; Lu, Xiuyang

    2016-01-01

    Decarboxylation of fatty acids over non-noble metal catalysts without added hydrogen was studied. Ni/C catalysts were prepared and exhibited excellent activity and maintenance for decarboxylation. Thereafter, the effects of nickel loading, catalyst loading, temperature, and carbon number on the decarboxylation of fatty acids were investigated. The results indicate that the products of cracking increased with high nickel loading or catalyst loading. Temperature significantly impacted the conversion of stearic acid but did not influence the selectivity. The fatty acids with large carbon numbers tend to be cracked in this reaction system. Stearic acid can be completely converted at 370 °C for 5 h, and the selectivity to heptadecane was around 80%. PMID:27292280

  19. Synthesis of organic/inorganic hybrid gel with acid activated clay after γ-ray radiation.

    PubMed

    Kim, Donghyun; Lee, Hoik; Sohn, Daewon

    2014-08-01

    A hybrid gel was prepared from acid activated clay (AA clay) and acrylic acid by gamma ray irradiation. Irradiated inorganic particles which have peroxide groups act as initiator because it generates oxide radicals by increasing temperature. Inorganic nanoparticles which are rigid part in hybrid gel also contribute to increase the mechanical property as a crosslinker. We prepared two hybrid gels to compare the effect of acid activated treatment of clay; one is synthesized with raw clay particles and another is synthesized with AA clay particles. The composition and structure of AA clay particles and raw clay particles were confirmed by X-ray diffraction (XRD), X-ray fluorescence instrument and surface area analyzer. And chemical and physical property of hybrid gel with different ratios of acrylic acid and clay particle was tested by Raman spectroscope and universal testing machine (UTM). The synthesized hydrogel with 76% gel contents can elongated approximately 1000% of its original size.

  20. Loss and Gain of Human Acidic Mammalian Chitinase Activity by Nonsynonymous SNPs

    PubMed Central

    Okawa, Kazuaki; Ohno, Misa; Kashimura, Akinori; Kimura, Masahiro; Kobayashi, Yuki; Sakaguchi, Masayoshi; Sugahara, Yasusato; Kamaya, Minori; Kino, Yoshihiro; Bauer, Peter O.; Oyama, Fumitaka

    2016-01-01

    Acidic mammalian chitinase (AMCase) is implicated in asthma, allergic inflammation, and food processing. Little is known about genetic and evolutional regulation of chitinolytic activity of AMCase. Here, we relate human AMCase polymorphisms to the mouse AMCase, and show that the highly active variants encoded by nonsynonymous single-nucleotide polymorphisms (nsSNPs) are consistent with the mouse AMCase sequence. The chitinolytic activity of the recombinant human AMCase was significantly lower than that of the mouse counterpart. By creating mouse-human chimeric AMCase protein we found that the presence of the N-terminal region of human AMCase containing conserved active site residues reduced the enzymatic activity of the molecule. We were able to significantly increase the activity of human AMCase by amino acid substitutions encoded by nsSNPs (N45, D47, and R61) with those conserved in the mouse homologue (D45, N47, and M61). For abolition of the mouse AMCase activity, introduction of M61R mutation was sufficient. M61 is conserved in most of primates other than human and orangutan as well as in other mammals. Orangutan has I61 substitution, which also markedly reduced the activity of the mouse AMCase, indicating that the M61 is a crucial residue for the chitinolytic activity. Altogether, our data suggest that human AMCase has lost its chitinolytic activity by integration of nsSNPs during evolution and that the enzyme can be reactivated by introducing amino acids conserved in the mouse counterpart. PMID:27702777

  1. Role of degradation products of chlorogenic acid in the antioxidant activity of roasted coffee.

    PubMed

    Kamiyama, Masumi; Moon, Joon-Kwan; Jang, Hae Won; Shibamoto, Takayuki

    2015-02-25

    Antioxidant activities of brewed coffees prepared from six commercial brands ranged from 63.13 ± 1.01 to 96.80 ± 1.68% at the highest levels tested. Generally, the degree of antioxidant activity of the brewed coffee was inversely proportional to the total chlorogenic acid concentration. A sample obtained from the major chlorogenic acid, 5-caffeoylquinic acid (5-CQA), heated at 250 °C exhibited potent antioxidant activity (79.12 ± 2.49%) at the level of 10 μg/mL, whereas unheated 5-CQA showed only moderate antioxidant activity (44.41 ± 0.27%) at the level of 100 μg/mL. Heat produced relatively high levels of pyrocatechol (2,809.3 μg/g) and 2-methoxy-4-vinylphenol (46.4 μg/g) from 5-CQA, and their antioxidant activity levels were 76.57 ± 3.00 and 98.63 ± 0.01%, respectively. The results of the present study suggest that roasting degrades chlorogenic acids to form potent antioxidants and thus plays an important role in the preparation of high-antioxidant low-acid coffee.

  2. Ceramides increase the activity of the secretory phospholipase A2 and alter its fatty acid specificity.

    PubMed Central

    Koumanov, Kamen S; Momchilova, Albena B; Quinn, Peter J; Wolf, Claude

    2002-01-01

    Modulation of human recombinant secretory type II phospholipase A(2) activity by ceramide and cholesterol was investigated using model glycerophospholipid substrates composed of phosphatidylethanolamine and phosphatidylserine dispersed in aqueous medium. Enzyme activity was monitored by measurement of released fatty acids using capillary GC-MS. Fatty acids from the sn-2 position of the phospholipids were hydrolysed by the enzyme in proportion to the relative abundance of the phospholipid in the substrate. Addition of increasing amounts of ceramide to the substrate progressively enhanced phospholipase activity. The increased activity was accomplished largely by preferential hydrolysis of polyunsaturated fatty acids, particularly arachidonic acid, derived from phosphatidylethanolamine. The addition of sphingomyelin to the substrate glycerophospholipids inhibited phospholipase activity but its progressive substitution by ceramide, so as to mimic sphingomyelinase activity, counteracted the inhibition. The presence of cholesterol in dispersions of glycerophospholipid-substrate-containing ceramides suppressed activation of the enzyme resulting from the presence of ceramide. The molecular basis of enzyme modulation was investigated by analysis of the phase structure of the dispersed lipid substrate during temperature scans from 46 to 20 degrees C using small-angle synchrotron X-ray diffraction. These studies indicated that intermediate structures created after ceramide-dependent phase separation of hexagonal and lamellar phases represent the most susceptible form of the substrate for enzyme hydrolysis. PMID:11903045

  3. Investigation of platelet aggregation inhibitory activity by phenyl amides and esters of piperidinecarboxylic acids.

    PubMed

    de Candia, Modesto; Summo, Luciana; Carrieri, Antonio; Altomare, Cosimo; Nardecchia, Adele; Cellamare, Saverio; Carotti, Angelo

    2003-04-03

    A series of anilides and phenyl esters of piperidine-3-carboxylic acid (nipecotic acid) were synthesized and tested for the ability to inhibit aggregation of human platelet rich-plasma triggered by adenosine 5'-diphosphate (ADP) and adrenaline. As a rule, amides were about two times more active than the corresponding esters, and derivatives bearing substituents at the para position of the phenyl ring were significantly more active than the meta-substituted ones. Among the tested compounds, 4-hexyloxyanilide of nipecotic acid (18a) was found to be the most active one, its IC(50) value being close to that of the most active bis-3-carbamoylpiperidines reported in literature (ca. 40 micro M) and aspirin (ca. 60 microM) in ADP- and adrenaline-induced aggregation, respectively. Compared with the isomeric 4-hexyloxyanilides of piperidine-2-carboxylic (pipecolinic) and piperidine-4-carboxylic (isonipecotic) acids, compound 18a showed higher activity, and a Hansch-type quantitative structure-activity relationship (QSAR) study highlighted lipophilicity and increase in electron density of the phenyl ring as the properties which mainly increase the antiplatelet activity (r(2)=0.74, q(2)=0.64). The interaction of nipecotoyl anilides with phosphatidylinositol, a major component of the inner layer of the platelet membranes, was investigated by means of flexible docking calculation methods to give an account of a key event underlying their biological action.

  4. Activation of stratospheric chlorine by reactions in liquid sulphuric acid

    SciTech Connect

    Cox, R.A.; MacKenzie, A.R. ); Mueller, R.H.; Peter, Th.; Crutzen, P.J. )

    1994-06-22

    The authors discuss activation mechanisms for chlorine compounds in the stratosphere, based on laboratory measurements for the solubility and reaction rates of HOCl and HCl in H[sub 2]SO[sub 4] solutions, as found on aerosols in the stratosphere. Their interest is in the impact of the large increase in aerosol loading in the stratosphere in the winter on 1991-92 due to the Mt. Pinatubo eruption. While laboratory data is not available for the temperature range close to 190 K, they argue that should the solubility and hydrolysis rates be high enough, this excess aerosol density could have contributed a significant additional amount of reactive chlorine to the stratosphere.

  5. Nitrated Fatty Acids Reverse Cigarette Smoke-Induced Alveolar Macrophage Activation and Inhibit Protease Activity via Electrophilic S-Alkylation.

    PubMed

    Reddy, Aravind T; Lakshmi, Sowmya P; Muchumarri, Ramamohan R; Reddy, Raju C

    2016-01-01

    Nitrated fatty acids (NFAs), endogenous products of nonenzymatic reactions of NO-derived reactive nitrogen species with unsaturated fatty acids, exhibit substantial anti-inflammatory activities. They are both reversible electrophiles and peroxisome proliferator-activated receptor γ (PPARγ) agonists, but the physiological implications of their electrophilic activity are poorly understood. We tested their effects on inflammatory and emphysema-related biomarkers in alveolar macrophages (AMs) of smoke-exposed mice. NFA (10-nitro-oleic acid or 12-nitrolinoleic acid) treatment downregulated expression and activity of the inflammatory transcription factor NF-κB while upregulating those of PPARγ. It also downregulated production of inflammatory cytokines and chemokines and of the protease cathepsin S (Cat S), a key mediator of emphysematous septal destruction. Cat S downregulation was accompanied by decreased AM elastolytic activity, a major mechanism of septal destruction. NFAs downregulated both Cat S expression and activity in AMs of wild-type mice, but only inhibited its activity in AMs of PPARγ knockout mice, pointing to a PPARγ-independent mechanism of enzyme inhibition. We hypothesized that this mechanism was electrophilic S-alkylation of target Cat S cysteines, and found that NFAs bind directly to Cat S following treatment of intact AMs and, as suggested by in silico modeling and calculation of relevant parameters, elicit S-alkylation of Cys25 when incubated with purified Cat S. These results demonstrate that NFAs' electrophilic activity, in addition to their role as PPARγ agonists, underlies their protective effects in chronic obstructive pulmonary disease (COPD) and support their therapeutic potential in this disease.

  6. Lewis base activation of Lewis acids: development of a Lewis base catalyzed selenolactonization.

    PubMed

    Denmark, Scott E; Collins, William R

    2007-09-13

    The concept of Lewis base activation of Lewis acids has been applied to the selenolactonization reaction. Through the use of substoichiometric amounts of Lewis bases with "soft" donor atoms (S, Se, P) significant rate enhancements over the background reaction are seen. Preliminary mechanistic investigations have revealed the resting state of the catalyst as well as the significance of a weak Brønsted acid promoter.

  7. The enhancement of reproduction and biodegradation activity of eukaryiotic cells by humic acids.

    PubMed

    Siglova, M; Cejkova, A; Masak, J; Jirku, V; Snajdr, J; Valina, O

    2003-01-01

    Fourteen samples of humic acids (HA) were screened for ability to influence reproduction and biodegradation activity of eukaryotic cells in the presence of chosen toxic pollutants. Microorganisms Candida maltosa and Rhodotorula mucilaginosa (soil isolates) were used for all tests. It was observed during our experiments that some samples of humic acids served as a protection against the high concentration of toxic pollutants (phenol, naphtalene etc). This effect can be widely used in many bioremediation technologies.

  8. Activity of glycated chitosan and other adjuvants to PDT vaccines

    NASA Astrophysics Data System (ADS)

    Korbelik, Mladen; Banáth, Judit; Čiplys, Evaldas; Szulc, Zdzislaw; Bielawska, Alicja; Chen, Wei R.

    2015-03-01

    Glycated chitosan (GC), a water soluble galactose-conjugated natural polysaccharide, has proven to be an effective immunoadjuvant for treatment of tumors based on laser thermal therapy. It was also shown to act as adjuvant for tumor therapy with high-intensity ultrasound and in situ photodynamic therapy (PDT). In the present study, GC was examined as potential adjuvant to PDT-generated cancer vaccine. Two other agents, pure calreticulin protein and acid ceramidase inhibitor LCL521, were also tested as prospective adjuvants for use in conjunction with PDT vaccines. Single treatment with GC, included with PDT vaccine cells suspension, improved the therapeutic efficacy when compared to vaccine alone. This attractive prospect of GC application remains to be carefully optimized and mechanistically elucidated. Both calreticulin and LCL521 proved also effective adjuvants when combined with PDT vaccine tumor treatment.

  9. Biological activities of indoleacetylamino acids and their use as auxins in tissue culture

    SciTech Connect

    Hangarter, R.P.; Peterson, M.D.; Good, N.E.

    1980-05-01

    The auxin activities of a number of indoleacetylamino acid conjugates have been determined in three test systems: growth of tomato hypocotyl explants (Lycopersicon esculentum Mill. cv. Marglobe); growth of tobacco callus cultures (Nicotiana tabacum L. cv. Wisconsin 38); and ethylene production from pea stems (Pisum sativum L. cv. Alaska). The activities of the conjugates differ greatly depending on the amino acid moiety. Indoleacetyl-L-alanine supports rapid callus growth from the tomato hypocotyls while inhibiting growth of shoots and roots. Indoleacetlyglycine behaves in a similar manner but is somewhat less effective in supporting callus growth and in inhibiting growth of shoots and roots. Indoleacetylglycine behaves in a similar manner but is somewhat less effective in supporting callus growth and in inhibiting shoot formation. The other amino acid conjugates tested (valine, leucine, aspartic acid, threonine, methionine, phenylalanine, and proline) support shoot formation without supporting root formation or much callus growth. The tobacco callus system, which forms abundant shoots in the presence or absence of free indoleacetic acid, produces only rapid undifferentiated growth in the presence of indoleacetyl-L-alanine and indoleacetylglycine. The other conjugates inhibit shoot formatin weakly if at all. Most of the conjugates induce sustained ethylene production from the pea stems but at rates well below the initial rates observed with free indoleacetic acid. Many, but not all of the effects of conjugates such as indoleacetyl-L-alanine can be mimicked by frequent renewals of the supply of free indoleacetic acid.

  10. Adsorption of clofibric acid and ketoprofen onto powdered activated carbon: effect of natural organic matter.

    PubMed

    Gao, Yaohuan; Deshusses, Marc A

    2011-12-01

    The adsorption of two acidic pharmaceutically active compounds (PhACs), clofibric acid and ketoprofen, onto powdered activated carbon (PAC) was investigated with a particular focus on the influence of natural organic matter (NOM) on the adsorption of the PhACs. Suwannee River humic acids (SRHAs) were used as a substitute for NOM. Batch adsorption experiments were conducted to obtain adsorption kinetics and adsorption isotherms with and without SRHAs in the system. The adsorption isotherms and adsorption kinetics showed that the adsorption ofclofibric acid was not significantly affected by the presence of SRHAs at a concentration of 5 mg (as carbon) L(-1). An adsorption capacity of 70 to 140 mg g(-1) was observed and equilibrium was reached within 48 h. In contrast, the adsorption of ketoprofen was markedly decreased (from about 120 mg g(-1) to 70-100 mg g(-1)) in the presence of SRHAs. Higher initial concentrations of clofibric acid than ketoprofen during testing may explain the different behaviours that were observed. Also, the more hydrophobic ketoprofen molecules may have less affinity for PAC when humic acids (which are hydrophilic) are present. The possible intermolecular forces that could account for the different behaviour of clofibric acid and ketoprofen adsorption onto PAC are discussed. In particular, the relevance of electrostatic forces, electron donor-acceptor interaction, hydrogen bonding and London dispersion forces are discussed

  11. Novel chemical synthesis of ginkgolic acid (13:0) and evaluation of its tyrosinase inhibitory activity.

    PubMed

    Fu, Yuanqing; Hong, Shan; Li, Duo; Liu, Songbai

    2013-06-05

    A novel efficient synthesis of ginkgolic acid (13:0) from abundant 2,6-dihydroxybenzoic acid was successfully developed through a state-of-the-art palladium-catalyzed cross-coupling reaction and catalytic hydrogenation with an overall yield of 34% in five steps. The identity of the synthesized ginkgolic acid (13:0) was confirmed by nuclear magnetic resonance, mass spectrometry, infrared, and high-performance liquid chromatography. The reaction sequence of this method can be readily extended to the synthesis of other ginkgolic acids. The synthesized ginkgolic acid (13:0) exhibited promising anti-tyrosinase activity (IC₅₀ = 2.8 mg/mL) that was not correlated to antioxidant activity as probed by 1,1-diphenyl-2-picrylhydrazyl, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), ferric reducing ability of plasma, and oxygen radical absorbance capacity assays. The synthetic strategy developed in this work will significantly facilitate biological studies of ginkgolic acids that have great potential applications in food and pharmaceuticals.

  12. Biological activities of indoleacetylamino acids and their use as auxins in tissue culture.

    PubMed

    Hangarter, R P; Peterson, M D; Good, N E

    1980-05-01

    THE AUXIN ACTIVITIES OF A NUMBER OF INDOLEACETYLAMINO ACID CONJUGATES HAVE BEEN DETERMINED IN THREE TEST SYSTEMS: growth of tomato hypocotyl explants (Lycopersicon esculentum Mill. cv. Marglobe); growth of tobacco callus cultures (Nicotiana tabacum L. cv. Wisconsin 38); and ethylene production from pea stems (Pisum sativum L. cv. Alaska). The activities of the conjugates differ greatly depending on the amino acid moiety. Indoleacetyl-l-alanine supports rapid callus growth from the tomato hypocotyls while inhibiting growth of shoots and roots. Indoleacetylglycine behaves in a similar manner but is somewhat less effective in supporting callus growth and in inhibiting shoot formation. The other amino acid conjugates tested (valine, leucine, aspartic acid, threonine, methionine, phenylalanine, and proline) support shoot formation without supporting root formation or much callus growth. The tobacco callus system, which forms abundant shoots in the presence or absence of free indoleacetic acid, produces only rapid undifferentiated growth in the presence of indoleacetyl-l-alanine and indoleacetylglycine. The other conjugates inhibit shoot formation weakly if at all. Most of the conjugates induce sustained ethylene production from the pea stems but at rates well below the initial rates observed with free indoleacetic acid. Many, but not all of the effects of conjugates such as indoleacetyl-l-alanine can be mimicked by frequent renewals of the supply of free indoleacetic acid.

  13. Biological Activities of Indoleacetylamino Acids and Their Use as Auxins in Tissue Culture 1

    PubMed Central

    Hangarter, Roger P.; Peterson, Michael D.; Good, Norman E.

    1980-01-01

    The auxin activities of a number of indoleacetylamino acid conjugates have been determined in three test systems: growth of tomato hypocotyl explants (Lycopersicon esculentum Mill. cv. Marglobe); growth of tobacco callus cultures (Nicotiana tabacum L. cv. Wisconsin 38); and ethylene production from pea stems (Pisum sativum L. cv. Alaska). The activities of the conjugates differ greatly depending on the amino acid moiety. Indoleacetyl-l-alanine supports rapid callus growth from the tomato hypocotyls while inhibiting growth of shoots and roots. Indoleacetylglycine behaves in a similar manner but is somewhat less effective in supporting callus growth and in inhibiting shoot formation. The other amino acid conjugates tested (valine, leucine, aspartic acid, threonine, methionine, phenylalanine, and proline) support shoot formation without supporting root formation or much callus growth. The tobacco callus system, which forms abundant shoots in the presence or absence of free indoleacetic acid, produces only rapid undifferentiated growth in the presence of indoleacetyl-l-alanine and indoleacetylglycine. The other conjugates inhibit shoot formation weakly if at all. Most of the conjugates induce sustained ethylene production from the pea stems but at rates well below the initial rates observed with free indoleacetic acid. Many, but not all of the effects of conjugates such as indoleacetyl-l-alanine can be mimicked by frequent renewals of the supply of free indoleacetic acid. Images PMID:16661279

  14. Neuroprotective activity of thioctic acid in central nervous system lesions consequent to peripheral nerve injury.

    PubMed

    Tomassoni, Daniele; Amenta, Francesco; Di Cesare Mannelli, Lorenzo; Ghelardini, Carla; Nwankwo, Innocent E; Pacini, Alessandra; Tayebati, Seyed Khosrow

    2013-01-01

    Peripheral neuropathies are heterogeneous disorders presenting often with hyperalgesia and allodynia. This study has assessed if chronic constriction injury (CCI) of sciatic nerve is accompanied by increased oxidative stress and central nervous system (CNS) changes and if these changes are sensitive to treatment with thioctic acid. Thioctic acid is a naturally occurring antioxidant existing in two optical isomers (+)- and (-)-thioctic acid and in the racemic form. It has been proposed for treating disorders associated with increased oxidative stress. Sciatic nerve CCI was made in spontaneously hypertensive rats (SHRs) and in normotensive reference cohorts. Rats were untreated or treated intraperitoneally for 14 days with (+/-)-, (+)-, or (-)-thioctic acid. Oxidative stress, astrogliosis, myelin sheets status, and neuronal injury in motor and sensory cerebrocortical areas were assessed. Increase of oxidative stress markers, astrogliosis, and neuronal damage accompanied by a decreased expression of neurofilament were observed in SHR. This phenomenon was more pronounced after CCI. Thioctic acid countered astrogliosis and neuronal damage, (+)-thioctic acid being more active than (+/-)- or (-)-enantiomers. These findings suggest a neuroprotective activity of thioctic acid on CNS lesions consequent to CCI and that the compound may represent a therapeutic option for entrapment neuropathies.

  15. In vitro antimetastatic activity of koetjapic acid against breast cancer cells.

    PubMed

    Nassar, Zeyad D; Aisha, Abdalrahim F A; Al Suede, Fouad Saleih R; Abdul Majid, Aman Shah; Abdul Majid, Amin Malik Shah

    2012-01-01

    Breast cancer is the most common cancer in women, and it can metastasize very rapidly. Tumor metastasis is the primary cause of cancer deaths. In the present study, we investigated the capability of koetjapic acid, a natural triterpene, in the induction of apoptosis and the inhibition of metastasis in the breast cancer cell line (MCF 7). The effects of koetjapic acid against 4 steps of metastasis have been assessed, including cell survival, clonogenicity, migration and invasion. Koetjapic acid exhibited cytotoxic activity against MCF 7 cells with an IC(50) of 68.88±6.075 μg/mL. The mechanism of cell death was confirmed due to the induction of apoptosis machineries; early and late apoptosis-related changes were detected, including the stimulation of caspase 3/7 activities, apoptosis-related morphological changes such as membrane blebbing, chromatin condensation and DNA fragmentation. A mitochondrial apoptosis pathway was found to be involved in koetjapic acid-induced cell death induction. Moreover, at a sub-toxic dose (15 μg/mL), Koetjapic acid inhibited cell migration and invasion significantly. Finally, koetjapic acid inhibited the colony formation properties of MCF 7 significantly. These results indicate that koetjapic acid possesses significant antitumor and antimetastatic effects, and warrants further investigation.

  16. Neuroprotective Activity of Thioctic Acid in Central Nervous System Lesions Consequent to Peripheral Nerve Injury

    PubMed Central

    Ghelardini, Carla; Nwankwo, Innocent E.; Pacini, Alessandra

    2013-01-01

    Peripheral neuropathies are heterogeneous disorders presenting often with hyperalgesia and allodynia. This study has assessed if chronic constriction injury (CCI) of sciatic nerve is accompanied by increased oxidative stress and central nervous system (CNS) changes and if these changes are sensitive to treatment with thioctic acid. Thioctic acid is a naturally occurring antioxidant existing in two optical isomers (+)- and (−)-thioctic acid and in the racemic form. It has been proposed for treating disorders associated with increased oxidative stress. Sciatic nerve CCI was made in spontaneously hypertensive rats (SHRs) and in normotensive reference cohorts. Rats were untreated or treated intraperitoneally for 14 days with (+/−)-, (+)-, or (−)-thioctic acid. Oxidative stress, astrogliosis, myelin sheets status, and neuronal injury in motor and sensory cerebrocortical areas were assessed. Increase of oxidative stress markers, astrogliosis, and neuronal damage accompanied by a decreased expression of neurofilament were observed in SHR. This phenomenon was more pronounced after CCI. Thioctic acid countered astrogliosis and neuronal damage, (+)-thioctic acid being more active than (+/−)- or (−)-enantiomers. These findings suggest a neuroprotective activity of thioctic acid on CNS lesions consequent to CCI and that the compound may represent a therapeutic option for entrapment neuropathies. PMID:24527432

  17. Enzymatic modification of chitosan by cinnamic acids: Antibacterial activity against Ralstonia solanacearum.

    PubMed

    Yang, Caifeng; Zhou, Yu; Zheng, Yu; Li, Changlong; Sheng, Sheng; Wang, Jun; Wu, Fuan

    2016-06-01

    This study aimed to identify chitosan polymers that have antibacterial activity against the bacterial wilt pathogen. The chitosan polymers were enzymatically synthesized using chitosan and five cinnamic acids (CADs): caffeic acid (CA), ferulic acid (FA), cinnamic acid (CIA), p-coumaric acid (COA) and chlorogenic acid (CHA), using laccase from Pleurotus ostreatus as a catalyst. The reaction was performed in a phosphate buffered solution under heterogenous reaction conditions. The chitosan derivatives (CTS-g-CADs) were characterized by FT-IR, XRD, TGA and SEM. FT-IR demonstrated that the reaction products bound covalently to the free amino groups or hydroxyl groups of chitosan via band of amide I or ester band. XRD showed a reduced packing density for grafted chitosan comparing to original chitosan. TGA demonstrated that CTS-g-CADs have a higher thermostability than chitosan. Additionally, chitosan and its derivatives showed similar antibacterial activity. However, the IC50 value of the chitosan-caffeic acid derivative (CTS-g-CA) against the mulberry bacterial wilt pathogen RS-5 was 0.23mg/mL, which was two-fifths of the IC50 value of chitosan. Therefore, the enzymatically synthesized chitosan polymers can be used to control plant diseases in biotechnological domains.

  18. Mechanisms for the activation of Toll-like receptor 2/4 by saturated fatty acids and inhibition by docosahexaenoic acid.

    PubMed

    Hwang, Daniel H; Kim, Jeong-A; Lee, Joo Young

    2016-08-15

    Saturated fatty acids can activate Toll-like receptor 2 (TLR2) and TLR4 but polyunsaturated fatty acids, particularly docosahexaenoic acid (DHA) inhibit the activation. Lipopolysaccharides (LPS) and lipopetides, ligands for TLR4 and TLR2, respectively, are acylated by saturated fatty acids. Removal of these fatty acids results in loss of their ligand activity suggesting that the saturated fatty acyl moieties are required for the receptor activation. X-ray crystallographic studies revealed that these saturated fatty acyl groups of the ligands directly occupy hydrophobic lipid binding domains of the receptors (or co-receptor) and induce the dimerization which is prerequisite for the receptor activation. Saturated fatty acids also induce the dimerization and translocation of TLR4 and TLR2 into lipid rafts in plasma membrane and this process is inhibited by DHA. Whether saturated fatty acids induce the dimerization of the receptors by interacting with these lipid binding domains is not known. Many experimental results suggest that saturated fatty acids promote the formation of lipid rafts and recruitment of TLRs into lipid rafts leading to ligand independent dimerization of the receptors. Such a mode of ligand independent receptor activation defies the conventional concept of ligand induced receptor activation; however, this may enable diverse non-microbial molecules with endogenous and dietary origins to modulate TLR-mediated immune responses. Emerging experimental evidence reveals that TLRs play a key role in bridging diet-induced endocrine and metabolic changes to immune responses.

  19. Activity and Stability of Biofilm Uricase of Lactobacillus plantarum for Uric Acid Biosensor

    NASA Astrophysics Data System (ADS)

    Iswantini, Dyah; Rachmatia, Rescy; Diana, Novita Rose; Nurhidayat, Novik; Akhiruddin; Saprudin, Deden

    2016-01-01

    Research of uric acid biosensor used a Lactobacillus plantarum was successfully conducted. Lactobacillus plantarum could produce uricase that could be used as uric acid biosensor. Therefore, lifetime of bacteria were quite short that caused the bacteria could not detect uric acid for a long time. To avoid this problem, development of biofilm for uric acid biosensor is important. Biofilms is a structured community of bacterial cells, stick together and are able to maintain a bacteria in an extreme environments. The purpose of present study was to determine and compare the activity of uricase produced by L. plantarum, deposited whithin biofilm and planktonic bacteria on glassy carbon electrode (GCEb & GCE), also to determine the stability of biofilm. The optimization process was conducted by using temperature, pH, and substrate concentration as the parameters. It showed that the activity of uricase within biofilm was able to increase the oxidation current. GCEb and GCE yielded the oxidation current in the amount of 47.24 μA and 23.04 μA, respectively, under the same condition. Results indicated that the optimum condition for uric acid biosensor using biofilm were pH 10, temperature of 40 oC, and uric acid concentration of 5 mM. The stability of GCEb decreased after 10 hours used, with decreasing percentage over 86.33%. This low stability probably caused by the unprotected active site of the enzyme that the enzyme is easier to experience the denaturation.

  20. Synthesis and biological activity of thiazolyl-acetic acid derivatives as possible antimicrobial agents.

    PubMed

    Shirai, Akihiro; Fumoto, Yasuko; Shouno, Tomoaki; Maseda, Hideaki; Omasa, Takeshi

    2013-01-01

    5a-h, a series of (5-substituted-2-methyl-1,3-thiazole-4-yl) acetic acids as heterocyclic acetic acid derivatives, was designed and synthesized from ethyl acetoacetate. The synthesized compounds were screened for their antimicrobial activities against bacterial and fungal strains, and their characteristics were investigated by assays under various temperature and pH conditions. Cytotoxicity was evaluated with the use of sheep erythrocytes and human neonate dermal fibroblasts. Similarly, agents such as lauric acid 6 and parabens 7a-b, which are used as preservative agents for commercial cosmetics and detergents, were assayed for comparison. Although the structure of 5a is simple, comprising a thiazole attached with an octyl group and acetic acid moiety, the compound showed stronger and broader antibacterial and antifungal activities among the 5 series against the tested microbes other than gram-negative bacteria. Interestingly, 5a overcame the weak antifungal activity of parabens 7a-b. Also, the cytotoxicity of 5a was less than that of parabens 7a-b, especially to human dermal fibroblasts. These results suggest that thiazolyl-acetic acid 5a is a potentially effective biocide, and that it could be used as a preservative agent in commercially sold cosmetics and detergents, facilitated by the hydrophilic and charge properties of its carboxylic acid moiety.

  1. Antifungal hydroxy fatty acids produced during sourdough fermentation: microbial and enzymatic pathways, and antifungal activity in bread.

    PubMed

    Black, Brenna A; Zannini, Emanuele; Curtis, Jonathan M; Gänzle, Michael G

    2013-03-01

    Lactobacilli convert linoleic acid to hydroxy fatty acids; however, this conversion has not been demonstrated in food fermentations and it remains unknown whether hydroxy fatty acids produced by lactobacilli have antifungal activity. This study aimed to determine whether lactobacilli convert linoleic acid to metabolites with antifungal activity and to assess whether this conversion can be employed to delay fungal growth on bread. Aqueous and organic extracts from seven strains of lactobacilli grown in modified De Man Rogosa Sharpe medium or sourdough were assayed for antifungal activity. Lactobacillus hammesii exhibited increased antifungal activity upon the addition of linoleic acid as a substrate. Bioassay-guided fractionation attributed the antifungal activity of L. hammesii to a monohydroxy C(18:1) fatty acid. Comparison of its antifungal activity to those of other hydroxy fatty acids revealed that the monohydroxy fraction from L. hammesii and coriolic (13-hydroxy-9,11-octadecadienoic) acid were the most active, with MICs of 0.1 to 0.7 g liter(-1). Ricinoleic (12-hydroxy-9-octadecenoic) acid was active at a MIC of 2.4 g liter(-1). L. hammesii accumulated the monohydroxy C(18:1) fatty acid in sourdough to a concentration of 0.73 ± 0.03 g liter(-1) (mean ± standard deviation). Generation of hydroxy fatty acids in sourdough also occurred through enzymatic oxidation of linoleic acid to coriolic acid. The use of 20% sourdough fermented with L. hammesii or the use of 0.15% coriolic acid in bread making increased the mold-free shelf life by 2 to 3 days or from 2 to more than 6 days, respectively. In conclusion, L. hammesii converts linoleic acid in sourdough and the resulting monohydroxy octadecenoic acid exerts antifungal activity in bread.

  2. Skin Barrier Recovery by Protease-Activated Receptor-2 Antagonist Lobaric Acid

    PubMed Central

    Joo, Yeon Ah; Chung, Hyunjin; Yoon, Sohyun; Park, Jong Il; Lee, Ji Eun; Myung, Cheol Hwan; Hwang, Jae Sung

    2016-01-01

    Atopic dermatitis (AD) results from gene and environment interactions that lead to a range of immunological abnormalities and breakdown of the skin barrier. Protease-activated receptor 2 (PAR2) belongs to a family of G-protein coupled receptors and is expressed in suprabasal layers of the epidermis. PAR2 is activated by both trypsin and a specific agonist peptide, SLIGKV-NH2 and is involved in both epidermal permeability barrier homeostasis and epithelial inflammation. In this study, we investigated the effect of lobaric acid on inflammation, keratinocyte differentiation, and recovery of the skin barrier in hairless mice. Lobaric acid blocked trypsin-induced and SLIGKV-NH2-induced PAR2 activation resulting in decreased mobilization of intracellular Ca2+ in HaCaT keratinocytes. Lobaric acid reduced expression of interleukin-8 induced by SLIGKV-NH2 and thymus and activation regulated chemokine (TARC) induced by tumor necrosis factor-a (TNF-α) and IFN-γ in HaCaT keratinocytes. Lobaric acid also blocked SLIGKV-NH2-induced activation of ERK, which is a downstream signal of PAR2 in normal human keratinocytes (NHEKs). Treatment with SLIGKV-NH2 downregulated expression of involucrin, a differentiation marker protein in HaCaT keratinocytes, and upregulated expression of involucrin, transglutamase1 and filaggrin in NHEKs. However, lobaric acid antagonized the effect of SLIGKV-NH2 in HaCaT keratinocytes and NHEKs. Topical application of lobaric acid accelerated barrier recovery kinetics in a SKH-1 hairless mouse model. These results suggested that lobaric acid is a PAR2 antagonist and could be a possible therapeutic agent for atopic dermatitis. PMID:27169822

  3. Folic acid mediates activation of the pro-oncogene STAT3 via the Folate Receptor alpha.

    PubMed

    Hansen, Mariann F; Greibe, Eva; Skovbjerg, Signe; Rohde, Sarah; Kristensen, Anders C M; Jensen, Trine R; Stentoft, Charlotte; Kjær, Karina H; Kronborg, Camilla S; Martensen, Pia M

    2015-07-01

    The signal transducer and activator of transcription 3 (STAT3) is a well-described pro-oncogene found constitutively activated in several cancer types. Folates are B vitamins that, when taken up by cells through the Reduced Folate Carrier (RFC), are essential for normal cell growth and replication. Many cancer cells overexpress a glycophosphatidylinositol (GPI)-anchored Folate Receptor α (FRα). The function of FRα in cancer cells is still poorly described, and it has been suggested that transport of folate is not its primary function in these cells. We show here that folic acid and folinic acid can activate STAT3 through FRα in a Janus Kinase (JAK)-dependent manner, and we demonstrate that gp130 functions as a transducing receptor for this signalling. Moreover, folic acid can promote dose dependent cell proliferation in FRα-positive HeLa cells, but not in FRα-negative HEK293 cells. After folic acid treatment of HeLa cells, up-regulation of the STAT3 responsive genes Cyclin A2 and Vascular Endothelial Growth Factor (VEGF) were verified by qRT-PCR. The identification of this FRα-STAT3 signal transduction pathway activated by folic and folinic acid contributes to the understanding of the involvement of folic acid in preventing neural tube defects as well as in tumour growth. Previously, the role of folates in these diseases has been attributed to their roles as one-carbon unit donors following endocytosis into the cell. Our finding that folic acid can activate STAT3 via FRα adds complexity to the established roles of B9 vitamins in cancer and neural tube defects.

  4. A study of the trypanocidal activity of triterpene acids isolated from Miconia species.

    PubMed

    Cunha, Wilson Roberto; Crevelin, Eduardo J; Arantes, Glenda M; Crotti, Antonio E Miller; Andrade e Silva, Márcio L; Furtado, Niege A J Cardoso; Albuquerque, Sérgio; Ferreira, Daniele Da Silva

    2006-06-01

    Triterpene acids, including ursolic acid (1), urjinolic acid (4) and oleanoic acid (5) along with a mixture of 2alpha-hydroxyursolic acid (2) and maslic acid (3) were isolated from methylene chloride extracts of the Miconia sellowiana and M. ligustroides species and their activities against the trypomastigote blood forms of Trypanosoma cruzi were evaluated. The potassium salt derivative of ursolic acid (1a) was also tested. The in vitro assays showed that compounds 1, 5 and 1a were the most active (IC(50) 17.1 microm, 12.8 microm and 8.9 microm, respectively). In contrast, a mixture of 2 plus 3, that exhibit a hydroxyl at C-2 and C-3, is much less potent than a mixture of 1 and 5 (IC(50) 48.5 microm and 11.8 microm, respectively). In the same manner, compound 4, that differs from 5 by two additional hydroxyl groups (at C-2 and C-23) displayed weak trypanocidal activity (IC(50) 76.3 microm) when compared with the other triterpenes. These results suggest that the free hydroxyl at C-3 and the polarity of C-28 are the most influential structural features for determining the in vitro trypanocidal activity of triterpenes. In vivo assays were also undertaken for the most active compounds 1, 1a and the mixture of 1 plus 5. The most significant reduction in parasite number in the parasitemic peak were obtained for compound 1 and its salt derivative 1a (75.7% and 70.4%, respectively). Moreover, the survival time was increased for all the treated animals.

  5. Antioxidant, antimicrobial activities and fatty acid components of flower, leaf, stem and seed of Hypericum scabrum.

    PubMed

    Shafaghat, Ali

    2011-11-01

    The hexane extracts of flower, leaf, stem, and seed of Hypericum scabrum, which were collected from northwestern Iran, were obtained by extraction in a Soxhlet apparatus. The fatty acids were converted to methyl esters and determined by gas chromatography/flame ionization detector (GC/FID) and gas chromatography/mass spectrometry (GC/MS) systems. The hexane extract from the flower, leaf, stem, and seed contained 39.1%, 43.2%, 29.0%, and 37.6% of omega-3 fatty acids, respectively. The other main components of the flower extract were tetracosane (12.2%) and palmitic acid (9.3%), and that of the leaf extract was palmitic acid (7.4%). The stem and seed extracts contained bis(2-ethylhexyl)phthalate (18.7% and 35.7%), nonacosane (11.7% and 3.9%) and linoleic acid (6.5% and 6.9%) as major components. The hexane extracts of different parts from H. scabrum represent an important source of omega-3 fatty acids in several Hypericum species. The antioxidant activity of all hexane extracts was evaluated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging method. The results indicate that hexane extracts from different parts of H. scabrum possess considerable antioxidant activity. The highest radical scavenging activity was detected in seed, which had an IC50 = 165 microg/mL. The antimicrobial activity of the extracts of those samples were determined against seven Gram-positive and Gram-negative bacteria (Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus, S. epidermidis, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae), as well as three fungi (Candida albicans, Saccharomyces cerevisiae, and Aspergillus niger). The bioassay showed that the oil exhibited moderate antimicrobial activity. This study reveals that the all parts of this plant are attractive sources of fatty acid components, especially the essential ones, as well as of effective natural antioxidants.

  6. Bioconversion of volatile fatty acids derived from waste activated sludge into lipids by Cryptococcus curvatus.

    PubMed

    Liu, Jia; Liu, Jia-Nan; Yuan, Ming; Shen, Zi-Heng; Peng, Kai-Ming; Lu, Li-Jun; Huang, Xiang-Feng

    2016-07-01

    Pure volatile fatty acid (VFA) solution derived from waste activated sludge (WAS) was used to produce microbial lipids as culture medium in this study, which aimed to realize the resource recovery of WAS and provide low-cost feedstock for biodiesel production simultaneously. Cryptococcus curvatus was selected among three oleaginous yeast to produce lipids with VFAs derived from WAS. In batch cultivation, lipid contents increased from 10.2% to 16.8% when carbon to nitrogen ratio increased from about 3.5 to 165 after removal of ammonia nitrogen by struvite precipitation. The lipid content further increased to 39.6% and the biomass increased from 1.56g/L to 4.53g/L after cultivation for five cycles using sequencing batch culture (SBC) strategy. The lipids produced from WAS-derived VFA solution contained nearly 50% of monounsaturated fatty acids, including palmitic acid, heptadecanoic acid, ginkgolic acid, stearic acid, oleic acid, and linoleic acid, which showed the adequacy of biodiesel production.

  7. Structure-activity relationship between carboxylic acids and T cell cycle blockade.

    PubMed

    Gilbert, Kathleen M; DeLoose, Annick; Valentine, Jimmie L; Fifer, E Kim

    2006-04-04

    This study was designed to examine the potential structure-activity relationship between carboxylic acids, histone acetylation and T cell cycle blockade. Toward this goal a series of structural homologues of the short-chain carboxylic acid n-butyrate were studied for their ability to block the IL-2-stimulated proliferation of cloned CD4+ T cells. The carboxylic acids were also tested for their ability to inhibit histone deacetylation. In addition, Western blotting was used to examine the relative capacity of the carboxlic acids to upregulate the cyclin kinase-dependent inhibitor p21cip1 in T cells. As shown earlier n-butyrate effectively inhibited histone deacetylation. The increased acetylation induced by n-butyrate was associated with the upregulation of the cyclin-dependent kinase inhibitor p21cip1 and the cell cycle blockade of CD4+ T cells. Of the other carboxylic acids studied, the short chain acids, C3-C5, without branching were the best inhibitors of histone deacetylase. This inhibition correlated with increased expression of the cell cycle blocker p21cip1, and the associated suppression of CD4+ T cell proliferation. The branched-chain carboxylic acids tested were ineffective in all the assays. These results underline the relationship between the ability of a carboxylic acid to inhibit histone deacetylation, and their ability to block T cell proliferation, and suggests that branching inhibits these effects.

  8. Antimicrobial activity of acid-hydrolyzed Citrus unshiu peel extract in milk.

    PubMed

    Min, Keun Young; Kim, Hyun Jung; Lee, Kyoung Ah; Kim, Kee-Tae; Paik, Hyun-Dong

    2014-01-01

    Citrus fruit (Citrus unshiu) peels were extracted with hot water and then acid-hydrolyzed using hydrochloric acid. Antimicrobial activities of acid-hydrolyzed Citrus unshiu peel extract were evaluated against pathogenic bacteria, including Bacillus cereus, Staphylococcus aureus, and Listeria monocytogenes. Antilisterial effect was also determined by adding extracts at 1, 2, and 4% to whole, low-fat, and skim milk. The cell numbers of B. cereus, Staph. aureus, and L. monocytogenes cultures treated with acid-hydrolyzed extract for 12h at 35°C were reduced from about 8log cfu/mL to <1log cfu/mL. Bacillus cereus was more sensitive to acid-hydrolyzed Citrus unshiu peel extract than were the other bacteria. The addition of 4% acid-hydrolyzed Citrus unshiu extracts to all types of milk inhibited the growth of L. monocytogenes within 1d of storage at 4°C. The results indicated that Citrus unshiu peel extracts, after acid hydrolysis, effectively inhibited the growth of pathogenic bacteria. These findings indicate that acid hydrolysis of Citrus unshiu peel facilitates its use as a natural antimicrobial agent for food products.

  9. Chromosomal Integration of Retinoic Acid Response Elements Prevents Cooperative Transcriptional Activation by Retinoic Acid Receptor and Retinoid X Receptor

    PubMed Central

    Lefebvre, Bruno; Brand, Céline; Lefebvre, Philippe; Ozato, Keiko

    2002-01-01

    All-trans-retinoic acid receptors (RAR) and 9-cis-retinoic acid receptors (RXR) are nuclear receptors known to cooperatively activate transcription from retinoid-regulated promoters. By comparing the transactivating properties of RAR and RXR in P19 cells using either plasmid or chromosomal reporter genes containing the mRARβ2 gene promoter, we found contrasting patterns of transcriptional regulation in each setting. Cooperativity between RXR and RAR occurred at all times with transiently introduced promoters, but was restricted to a very early stage (<3 h) for chromosomal promoters. This time-dependent loss of cooperativity was specific for chromosomal templates containing two copies of a retinoid-responsive element (RARE) and was not influenced by the spacing between the two RAREs. This loss of cooperativity suggested a delayed acquisition of RAR full transcriptional competence because (i) cooperativity was maintained at RAR ligand subsaturating concentrations, (ii) overexpression of SRC-1 led to loss of cooperativity and even to strong repression of chromosomal templates activity, and (iii) loss of cooperativity was observed when additional cis-acting response elements were activated. Surprisingly, histone deacetylase inhibitors counteracted this loss of cooperativity by repressing partially RAR-mediated activation of chromosomal promoters. Loss of cooperativity was not correlated to local histone hyperacetylation or to alteration of constitutive RNA polymerase II (RNAP) loading at the promoter region. Unexpectedly, RNAP binding to transcribed regions was correlated to the RAR activation state as well as to acetylation levels of histones H3 and H4, suggesting that RAR acts at the mRARβ promoter by triggering the switch from an RNA elongation-incompetent RNAP form towards an RNA elongation-competent RNAP. PMID:11839811

  10. Rh(III)-catalyzed synthesis of sultones through C-H activation directed by a sulfonic acid group.

    PubMed

    Qi, Zisong; Wang, Mei; Li, Xingwei

    2014-09-04

    A new rhodium-catalyzed synthesis of sultones via the oxidative coupling of sulfonic acids with internal alkynes is described. The reaction proceeds via aryl C-H activation assisted by a sulfonic acid group.

  11. Facile synthesis of PtAu alloy nanoparticles with high activity for formic acid oxidation

    SciTech Connect

    Zhang, Sheng; Shao, Yuyan; Yin, Geping; Lin, Yuehe

    2010-02-15

    We report the facile synthesis of carbon supported PtAu alloy nanoparticles with high electrocatalytic activity as the anode catalyst for direct formic acid fuel cells (DFAFCs). PtAu alloy nanopaticles are synthesized by co-reducing HAuCl4 and H2PtCl6 with NaBH4 in the presence of sodium citrate and then the nanoparticles are deposited on Vulcan XC-72R carbon support (PtAu/C). The obtained catalysts are characterized with X-ray diffraction (XRD) and transmission electron microscope (TEM), which reveal PtAu alloy formation with an average diameter of 4.6 nm. PtAu/C exhibits 8 times higher catalytic activity toward formic acid oxidation than Pt/C. The enhanced activity of PtAu/C catalyst is attributed to noncontinuous Pt sites formed in the presence of the neighbored Au sites, which promotes direct oxidation of formic acid by avoiding poison CO.

  12. The presence of arachidonic acid-activated K+ channel, TREK-1, in human periodontal ligament fibroblasts.

    PubMed

    Saeki, Yukikazu; Ohara, Akito; Nishikawa, Masanori; Yamamoto, Takahiro; Yamamoto, Gaku

    2007-01-01

    Human periodontal ligament (PDL) fibroblasts expressed following two-pore-domain K(+) channels, TWIK-2 > TREK-1 > TWIK-1 > TASK-1 > TRAAK > TASK-2. TREK-2 message was not detectable. We found the presence of arachidonic acid-activated and mechanical stress-sensitive K(+) channel, TREK-1, in the PDL fibroblasts by patch-clamp technique. It was also found the significant increase of intracellular concentration of arachidonic acid upon the application of cyclic stretch. Therefore, we suppose that the mechanical stretch due to the mastication activates phospholipase A(2) to release arachidonic acid (AA) from membrane, then, the released AA activates TREK-1. Thus, TREK-1 K(+) channels may play a protective role to maintain the negative membrane potential of PDL fibroblasts against the environmental stimuli.

  13. Synthesis, activity, and docking study of phenylthiazole acids as potential agonists of PPARγ

    PubMed Central

    Ma, Liang; Wang, Taijin; Shi, Min; Ye, Haoyu

    2016-01-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-mediated transcription factor playing key roles in glucose and lipid homeostasis, and PPARγ ligands possess therapeutic potential in these as well as other areas. In this study, a series of phenylthiazole acids have been synthesized and evaluated for agonistic activity by a convenient fluorescence polarization-based PPARγ ligand screening assay. Compound 4t, as a potential PPARγ agonist with half maximal effective concentration (EC50) 0.75±0.20 μM, exhibited in vitro potency comparable with a 0.83±0.14 μM of the positive control rosiglitazone. Molecular docking and molecular dynamics simulations indicated that phenylthiazole acid 4t interacted with the amino acid residues of the active site of the PPARγ complex in a stable manner, consistent with the result of the in vitro ligand assay. PMID:27313447

  14. A Surprising Mechanistic “Switch” in Lewis Acid Activation: A Bifunctional, Asymmetric Approach to α-Hydroxy Acid Derivatives

    PubMed Central

    Abraham, Ciby J.; Paull, Daniel H.; Bekele, Tefsit; Scerba, Michael T.; Dudding, Travis; Lectka, Thomas

    2009-01-01

    We report a detailed synthetic and mechanistic study of an unusual bifunctional, sequential hetero-Diels–Alder/ring-opening reaction in which chiral, metal complexed ketene enolates react with o-quinones to afford highly enantioenriched, α-hydroxylated carbonyl derivatives in excellent yield. A number of Lewis acids were screened in tandem with cinchona alkaloid derivatives; surprisingly, trans-(Ph3P)2PdCl2 was found to afford the most dramatic increase in yield and rate of reaction. A series of Lewis acid binding motifs were explored through molecular modeling, as well as IR, UV and NMR spectroscopy. Our observations document a fundamental mechanistic “switch” – namely the formation of a tandem Lewis base/Lewis acid activated metal enolate in preference to a metal-coordinated quinone species (as observed in other reactions of o-quinone derivatives). This new method was applied to the syntheses of several pharmaceutical targets, each of which was obtained in high yield and enantioselectivity. PMID:19053448

  15. Cyclin D1 represses peroxisome proliferator-activated receptor alpha and inhibits fatty acid oxidation

    PubMed Central

    Hanse, Eric A.; Mashek, Douglas G.; Mashek, Mara T.; Hendrickson, Anna M.; Mullany, Lisa K.; Albrecht, Jeffrey H.

    2016-01-01

    Cyclin D1 is a cell cycle protein that promotes proliferation by mediating progression through key checkpoints in G1 phase. It is also a proto-oncogene that is commonly overexpressed in human cancers. In addition to its canonical role in controlling cell cycle progression, cyclin D1 affects other aspects of cell physiology, in part through transcriptional regulation. In this study, we find that cyclin D1 inhibits the activity of a key metabolic transcription factor, peroxisome proliferator-activated receptor α (PPARα), a member of nuclear receptor family that induces fatty acid oxidation and may play an anti-neoplastic role. In primary hepatocytes, cyclin D1 inhibits PPARα transcriptional activity and target gene expression in a cdk4-independent manner. In liver and breast cancer cells, knockdown of cyclin D1 leads to increased PPARα transcriptional activity, expression of PPARα target genes, and fatty acid oxidation. Similarly, cyclin D1 depletion enhances binding of PPARα to target sequences by chromatin immunoprecipitation. In proliferating hepatocytes and regenerating liver in vivo, induction of endogenous cyclin D1 is associated with diminished PPARα activity. Cyclin D1 expression is both necessary and sufficient for growth factor-mediated repression of fatty acid oxidation in proliferating hepatocytes. These studies indicate that in addition to playing a pivotal role in cell cycle progression, cyclin D1 represses PPARα activity and inhibits fatty acid oxidation. Our findings establish a new link between cyclin D1 and metabolism in both tumor cells and physiologic hepatocyte proliferation. PMID:27351284

  16. Cyclin D1 represses peroxisome proliferator-activated receptor alpha and inhibits fatty acid oxidation.

    PubMed

    Kamarajugadda, Sushama; Becker, Jennifer R; Hanse, Eric A; Mashek, Douglas G; Mashek, Mara T; Hendrickson, Anna M; Mullany, Lisa K; Albrecht, Jeffrey H

    2016-07-26

    Cyclin D1 is a cell cycle protein that promotes proliferation by mediating progression through key checkpoints in G1 phase. It is also a proto-oncogene that is commonly overexpressed in human cancers. In addition to its canonical role in controlling cell cycle progression, cyclin D1 affects other aspects of cell physiology, in part through transcriptional regulation. In this study, we find that cyclin D1 inhibits the activity of a key metabolic transcription factor, peroxisome proliferator-activated receptor α (PPARα), a member of nuclear receptor family that induces fatty acid oxidation and may play an anti-neoplastic role. In primary hepatocytes, cyclin D1 inhibits PPARα transcriptional activity and target gene expression in a cdk4-independent manner. In liver and breast cancer cells, knockdown of cyclin D1 leads to increased PPARα transcriptional activity, expression of PPARα target genes, and fatty acid oxidation. Similarly, cyclin D1 depletion enhances binding of PPARα to target sequences by chromatin immunoprecipitation. In proliferating hepatocytes and regenerating liver in vivo, induction of endogenous cyclin D1 is associated with diminished PPARα activity. Cyclin D1 expression is both necessary and sufficient for growth factor-mediated repression of fatty acid oxidation in proliferating hepatocytes. These studies indicate that in addition to playing a pivotal role in cell cycle progression, cyclin D1 represses PPARα activity and inhibits fatty acid oxidation. Our findings establish a new link between cyclin D1 and metabolism in both tumor cells and physiologic hepatocyte proliferation.

  17. The amino acid sensor GCN2 controls gut inflammation by inhibiting inflammasome activation

    PubMed Central

    Nakaya, Helder I; Khan, Nooruddin; Ma, Hualing; Gama, Leonardo; Machiah, Deepa K; Lawson, Benton; Hakimpour, Paul; Wang, Yi-chong; Li, Shuzhao; Sharma, Prachi; Kaufman, Randal J; Martinez, Jennifer; Pulendran, Bali

    2016-01-01

    Summary The integrated stress response (ISR) is a homeostatic mechanism by which eukaryotic cells sense and respond to stress-inducing signals, such as amino acid starvation. General controlled nonrepressed (GCN2) kinase is a key orchestrator of the ISR, and modulates cellular metabolism in response to amino acid starvation. Here we demonstrate that GCN2 controls intestinal inflammation by suppressing inflammasome activation. Enhanced activation of ISR was observed in intestinal antigen presenting cells (APCs) and epithelial cells during amino acid starvation, or intestinal inflammation. Genetic deletion of GCN2 in CD11c+ APCs or intestinal epithelial cells resulted in enhanced intestinal inflammation and Th17 responses, due to enhanced inflammasome activation and IL-1β production. This was caused by reduced autophagy in GCN2−/− intestinal APCs and epithelial cells, leading to increased reactive oxygen species (ROS), a potent activator of inflammasomes1. Thus, conditional ablation of Atg5 and Atg7 in intestinal APCs resulted in enhanced ROS and Th17 responses. Furthermore, in vivo blockade of ROS and IL-1β resulted in inhibition of Th17 responses and reduced inflammation in GCN2−/− mice. Importantly, acute amino acid starvation suppressed intestinal inflammation via a mechanism dependent on GCN2. These results reveal a mechanism that couples amino acid sensing with control of intestinal inflammation via GCN2. PMID:26982722

  18. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    NASA Astrophysics Data System (ADS)

    Chang, Binbin; Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng

    2015-01-01

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl2 using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl2 at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of -SO3H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N2 adsorption-desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of -SO3H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of -SO3H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and -SO3H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles.

  19. Anti-Inflammatory and Antinociceptive Activities of Anthraquinone-2-Carboxylic Acid.

    PubMed

    Park, Jae Gwang; Kim, Seung Cheol; Kim, Yun Hwan; Yang, Woo Seok; Kim, Yong; Hong, Sungyoul; Kim, Kyung-Hee; Yoo, Byong Chul; Kim, Shi Hyung; Kim, Jong-Hoon; Cho, Jae Youl

    2016-01-01

    Anthraquinone compounds are one of the abundant polyphenols found in fruits, vegetables, and herbs. However, the in vivo anti-inflammatory activity and molecular mechanisms of anthraquinones have not been fully elucidated. We investigated the activity of anthraquinones using acute inflammatory and nociceptive experimental conditions. Anthraquinone-2-carboxylic acid (9,10-dihydro-9,10-dioxo-2-anthracenecarboxylic acid, AQCA), one of the major anthraquinones identified from Brazilian taheebo, ameliorated various inflammatory and algesic symptoms in EtOH/HCl- and acetylsalicylic acid- (ASA-) induced gastritis, arachidonic acid-induced edema, and acetic acid-induced abdominal writhing without displaying toxic profiles in body and organ weight, gastric irritation, or serum parameters. In addition, AQCA suppressed the expression of inflammatory genes such as cyclooxygenase- (COX-) 2 in stomach tissues and lipopolysaccharide- (LPS-) treated RAW264.7 cells. According to reporter gene assay and immunoblotting analyses, AQCA inhibited activation of the nuclear factor- (NF-) κB and activator protein- (AP-) 1 pathways by suppression of upstream signaling involving interleukin-1 receptor-associated kinase 4 (IRAK1), p38, Src, and spleen tyrosine kinase (Syk). Our data strongly suggest that anthraquinones such as AQCA act as potent anti-inflammatory and antinociceptive components in vivo, thus contributing to the immune regulatory role of fruits and herbs.

  20. Anti-Inflammatory and Antinociceptive Activities of Anthraquinone-2-Carboxylic Acid

    PubMed Central

    Park, Jae Gwang; Kim, Seung Cheol; Kim, Yun Hwan; Yang, Woo Seok; Kim, Yong; Hong, Sungyoul; Kim, Kyung-Hee; Yoo, Byong Chul; Kim, Shi Hyung; Kim, Jong-Hoon; Cho, Jae Youl

    2016-01-01

    Anthraquinone compounds are one of the abundant polyphenols found in fruits, vegetables, and herbs. However, the in vivo anti-inflammatory activity and molecular mechanisms of anthraquinones have not been fully elucidated. We investigated the activity of anthraquinones using acute inflammatory and nociceptive experimental conditions. Anthraquinone-2-carboxylic acid (9,10-dihydro-9,10-dioxo-2-anthracenecarboxylic acid, AQCA), one of the major anthraquinones identified from Brazilian taheebo, ameliorated various inflammatory and algesic symptoms in EtOH/HCl- and acetylsalicylic acid- (ASA-) induced gastritis, arachidonic acid-induced edema, and acetic acid-induced abdominal writhing without displaying toxic profiles in body and organ weight, gastric irritation, or serum parameters. In addition, AQCA suppressed the expression of inflammatory genes such as cyclooxygenase- (COX-) 2 in stomach tissues and lipopolysaccharide- (LPS-) treated RAW264.7 cells. According to reporter gene assay and immunoblotting analyses, AQCA inhibited activation of the nuclear factor- (NF-) κB and activator protein- (AP-) 1 pathways by suppression of upstream signaling involving interleukin-1 receptor-associated kinase 4 (IRAK1), p38, Src, and spleen tyrosine kinase (Syk). Our data strongly suggest that anthraquinones such as AQCA act as potent anti-inflammatory and antinociceptive components in vivo, thus contributing to the immune regulatory role of fruits and herbs. PMID:27057092

  1. Oleanonic acid, a 3-oxotriterpene from Pistacia, inhibits leukotriene synthesis and has anti-inflammatory activity.

    PubMed

    Giner-Larza, E M; Máñez, S; Recio, M C; Giner, R M; Prieto, J M; Cerdá-Nicolás, M; Ríos, J L

    2001-09-28

    One of the best known bioactive triterpenoids is oleanolic acid, a widespread 3-hydroxy-17-carboxy oleanane-type compound. In order to determine whether further oxidation of carbon 3 affects anti-inflammatory activity in mice, different tests were carried out on oleanolic acid and its 3-oxo-analogue oleanonic acid, which was obtained from Pistacia terebinthus galls. The last one showed activity on the ear oedema induced by 12-deoxyphorbol-13-phenylacetate (DPP), the dermatitis induced by multiple applications of 12-O-tetradecanoyl-13-acetate (TPA) and the paw oedemas induced by bradykinin and phospholipase A2. The production of leukotriene B4 from rat peritoneal leukocytes was reduced by oleanonic acid with an IC50 of 17 microM. Negligible differences were observed in the response of both triterpenes to DPP, bradykinin, and phospholipase A2, while oleanonic acid was more active on the dermatitis by TPA and on the in vitro leukotriene formation. In conclusion, the presence of a ketone at C-3 implies an increase in the inhibitory effects on models related to 5-lipoxygenase activity and on associated in vivo inflammatory processes.

  2. Tomato fruit ascorbic acid content is linked with monodehydroascorbate reductase activity and tolerance to chilling stress.

    PubMed

    Stevens, R; Page, D; Gouble, B; Garchery, C; Zamir, D; Causse, M

    2008-08-01

    Quantitative trait loci (QTL) mapping is a step towards the identification of factors regulating traits such as fruit ascorbic acid content. A previously identified QTL controlling variations in tomato fruit ascorbic acid has been fine mapped and reveals that the QTL has a polygenic and epistatic architecture. A monodehydroascorbate reductase (MDHAR) allele is a candidate for a proportion of the increase in fruit ascorbic acid content. The MDHAR enzyme is active in different stages of fruit ripening, shows increased activity in the introgression lines containing the wild-type (Solanum pennellii) allele, and responds to chilling injury in tomato along with the reduced/oxidized ascorbate ratio. Low temperature storage of different tomato introgression lines with all or part of the QTL for ascorbic acid and with or without the wild MDHAR allele shows that enzyme activity explains 84% of the variation in the reduced ascorbic acid levels of tomato fruit following storage at 4 degrees C, compared with 38% at harvest under non-stress conditions. A role is indicated for MDHAR in the maintenance of ascorbate levels in fruit under stress conditions. Furthermore, an increased fruit MDHAR activity and a lower oxidation level of the fruit ascorbate pool are correlated with decreased loss of firmness because of chilling injury.

  3. Rapid loss of factor XII and XI activity in ellagic acid-activated normal plasma: role of plasma inhibitors and implications for automated activated partial thromboplastin time recording.

    PubMed

    Joist, J H; Cowan, J F; Khan, M

    1977-12-01

    Rapid prolongation of the aPTT of normal plasma upon incubation with ellagic acid containing aPTT reagents was observed. The aPTT prolongation was not due to time-dependent changes in pH in the incubation mixture or loss of activity of the labile coagulation factors VIII and V but occurred as a result of rapid progressive inactivation of ellagic acid-activated factors XII and XI. Prolongation of the aPTT and loss of contact factor activities was not observed in plasma incubated with particulate activator reagents. This finding seemed to indicate that adsorption of factors XII and XI to larger particles during the activation process might protect these factors from inactivation by naturally occurring plasma inhibitors. Evidence is presented which supports previous findings that C1-INH, alpha1-AT, and antithrombin (in the presence of heparin) contribute to factor XIIa and XI a inactivation in ellagic acid-activated plasma and that plasma albumin may compete with factor XII for ellagic acid binding. The data indicate that ellagic acid-containing aPTT reagents have unfavorable properties which seriously limit their usefulness in the clinical laboratory, particularly in respect to recording of the aPTT with certain fully automated clot timers.

  4. Modulation of membrane currents and mechanical activity by niflumic acid in rat vascular smooth muscle.

    PubMed

    Kirkup, A J; Edwards, G; Green, M E; Miller, M; Walker, S D; Weston, A H

    1996-12-12

    The effects of niflumic acid on whole-cell membrane currents and mechanical activity were examined in the rat portal vein. In freshly dispersed portal vein cells clamped at -60 mV in caesium (Cs+)-containing solutions, niflumic acid (1-100 microM) inhibited calcium (Ca2+)-activated chloride currents (IC1(Ca)) induced by caffeine (10 mM) and by noradrenaline (10 microM). In a potassium (K+)-containing solution and at a holding potential of - 10 mV, niflumic acid (10-100 microM) induced an outward K+ current (IK(ATP)) which was sensitive to glibenclamide (10-30 microM). At concentrations < 30 microM and at a holding potential of -2 mV, niflumic acid had no effect on the magnitude of the caffeine- or noradrenaline-stimulated current (IBK(Ca)) carried by the large conductance, Ca(2+)-sensitive K+ channel (BKCa). However, at a concentration of 100 microM, niflumic acid significantly inhibited IBK(Ca)) evoked by caffeine (10 mM) but not by NS1619 (1-(2'-hydroxy-5'-trifluoromethylphenyl)-5-trifluoromethyl-2(3 H) benzimidazolone; 20 microM). In Cs(+)-containing solutions, niflumic acid (10-100 microM) did not inhibit voltage-sensitive Ca2+ currents. In intact portal veins, niflumic acid (1-300 microM) inhibited spontaneous mechanical activity, an action which was partially antagonised by glibenclamide (1-10 microM), and contractions produced by noradrenaline (10 microM), an effect which was glibenclamide-insensitive. It is concluded that inhibition of ICl(Ca) and stimulation of IK(ATP) both contribute to the mechano-inhibitory actions of niflumic acid in the rat portal vein.

  5. Hypotonic shocks activate rat TRPV4 in Yeast in the Absence of Polyunsaturated Fatty Acids

    PubMed Central

    Loukin, Stephen H.; Su, Zhenwei; Kung, Ching

    2010-01-01

    Transient-receptor-potential channels (TRPs) underlie the sensing of chemicals, heat, and mechanical force. We expressed the rat TRPV1 and TRPV4 subtypes in yeast and monitored their activities in vivo as Ca2+ rise using transgenic aequorin. Heat and capsaicin activate TRPV1 but not TRPV4 in yeast. Hypotonic shocks activate TRPV4 but not TRPV1. Osmotic swelling is modeled to activate enzyme(s), producing polyunsaturated fatty acids (PUFAs) to open TRPV4 in mammalian cells. This model relegates mechanosensitivity to the enzyme and not the channel. Yeast has only a single Δ9 fatty-acid monodesaturase and cannot make PUFAs suggesting an alternative mechanism for TRPV4 activation. We discuss possible explanations of this difference. PMID:19174160

  6. The effects of allopurinol, uric acid, and inosine administration on xanthine oxidoreductase activity and uric acid concentrations in broilers.

    PubMed

    Settle, T; Carro, M D; Falkenstein, E; Radke, W; Klandorf, H

    2012-11-01

    The purpose of these studies was to determine the effects of uric acid (UA) and inosine administration on xanthine oxidoreductase activity in broilers. In experiment one, 25 broilers were assigned to 5 treatment groups: control, AL (25 mg of allopurinol/kg of body mass), AR (AL for 2 wk followed by allopurinol withdrawal over wk 3), UAF (AL plus 6.25 g of UA sodium salt/kg of feed), and UAI (AL plus 120 mg of UA sodium salt injected daily). The UA administration had no effect on plasma concentration of UA (P > 0.05), and all allopurinol-treated birds had lower (P < 0.05) UA levels than controls. The UA concentrations were restored in both plasma and kidney of AR birds at wk 3, but liver UA concentrations remained lower. Whereas xanthine oxidoreductase (XOR) activity in the liver (LXOR) was reduced (P < 0.05) by allopurinol treatment, XOR activity in the kidney (KXOR) was not affected (P = 0.05). In experiment two, 3 groups of 5 birds each were fed 0 (control), 0.6 M inosine/kg of feed (INO), or INO plus 50 mg of allopurinol/kg of body mass (INOAL). The INOAL birds showed lower total LXOR activity, but KXOR activity was not affected. Both INO and INOAL birds had higher plasma and kidney UA concentrations than controls. The results suggest that regulation of UA production is tissue dependent.

  7. Digallic acid from Pistascia lentiscus fruits induces apoptosis and enhances antioxidant activities.

    PubMed

    Bhouri, Wissem; Skandrani, Ines; Sghair, Mohamed Ben; Franca, Marie-Geneviève Djoux; Ghedira, Kamel; Ghedira, Leila Chekir

    2012-03-01

    The antioxidant and apoptotic activities of digallic acid, isolated from the fruits of Pistascia lentiscus, were investigated. The study demonstrated that digallic acid possessed pro-apoptotic effects, as shown by provoking DNA fragmentation of K562 cells. It also revealed a significant antioxidant potential and effective scavenging activity against 2,2-diphenyl-1-picrylhdrazyl (DPPH·) and O₂·⁻ radicals, and reduced cupric ions. We conclude that this integrated approach to apoptotic and antioxidant assessment may be useful to maximize the beneficial effects associated with using P. lentiscus derivatives as medicinal and dietary compounds.

  8. [Test for detection of activated partial thromboplastin time using ellagic acid].

    PubMed

    Berkovskiĭ, A L; Sergeeva, E V; Kachalova, N D; Prostakova, T M; Kozlov, A A

    1999-06-01

    A simple and sensitive method for estimation of activated partial thromboplastin time (APTT) is developed, making use a complex reagent containing the activator (plant phospholipids) and contact factor (ellagic acid). The test requires additionally only 0.025 M CaCl2. The test is more sensitive to the presence of heparin in the blood and to insufficiency of blood clotting factors VIII and IX than the reagents containing insoluble substances (kaolin and animal phosphatides). Addition of soluble ellagic acid into reagent for APTT estimation allows studies on optic coagulometers.

  9. Unsaturated fatty acids lactose esters: cytotoxicity, permeability enhancement and antimicrobial activity.

    PubMed

    Lucarini, Simone; Fagioli, Laura; Campana, Raffaella; Cole, Hannah; Duranti, Andrea; Baffone, Wally; Vllasaliu, Driton; Casettari, Luca

    2016-10-01

    Sugar based surfactants conjugated with fatty acid chains are an emerging broad group of highly biocompatible and biodegradable compounds with established and potential future applications in the pharmaceutical, cosmetic and food industries. In this work, we investigated absorption enhancing and antimicrobial properties of disaccharide lactose, monoesterified with unsaturated fatty acids through an enzymatic synthetic approach. After chemical and cytotoxicity characterizations, their permeability enhancing activity was demonstrated using intestinal Caco-2 monolayers through transepithelial electrical resistance (TEER) and permeability studies. The synthesized compounds, namely lactose palmitoleate (URB1076) and lactose nervonate (URB1077), were shown to exhibit antimicrobial activity versus eight pathogenic species belonging to Gram-positive, Gram-negative microorganisms and fungi.

  10. Investigating organic molecules responsible of auxin-like activity of humic acid fraction extracted from vermicompost.

    PubMed

    Scaglia, Barbara; Nunes, Ramom Rachide; Rezende, Maria Olímpia Oliveira; Tambone, Fulvia; Adani, Fabrizio

    2016-08-15

    This work studied the auxin-like activity of humic acids (HA) obtained from vermicomposts produced using leather wastes plus cattle dung at different maturation stages (fresh, stable and mature). Bioassays were performed by testing HA concentrations in the range of 100-6000mgcarbonL(-1). (13)C CPMAS-NMR and GC-MS instrumental methods were used to assess the effect of biological processes and starting organic mixtures on HA composition. Not all HAs showed IAA-like activity and in general, IAA-like activity increased with the length of the vermicomposting process. The presence of leather wastes was not necessary to produce the auxin-like activity of HA, since HA extracted from a mix of cattle manure and sawdust, where no leather waste was added, showed IAA-like activity as well. CPMAS (13)CNMR revealed that HAs were similar independently of the mix used and that the humification process involved the increasing concentration of pre-existing alkali soluble fractions in the biomass. GC/MS allowed the identification of the molecules involved in IAA-like effects: carboxylic acids and amino acids. The concentration of active molecules, rather than their simple presence in HA, determined the bio-stimulating effect, and a good linear regression between auxin-like activity and active stimulating molecules concentration was found (R(2)=-0.85; p<0.01, n=6).

  11. Synthesis and Activity of Dafachronic Acid Ligands for the C. elegans DAF-12 Nuclear Hormone Receptor

    PubMed Central

    Sharma, Kamalesh K.; Wang, Zhu; Motola, Daniel L.; Cummins, Carolyn L.; Mangelsdorf, David J.; Auchus, Richard J.

    2009-01-01

    The nuclear hormone receptor DAF-12 from Caenorhabditis elegans is activated by dafachronic acids, which derive from sterols upon oxidation by DAF-9, a cytochrome P450. DAF-12 activation is a critical checkpoint in C. elegans for acquisition of reproductive competence and for entry into adulthood rather than dauer diapause. Previous studies implicated the (25S)-Δ7-dafachronic acid isomer as the most potent compound, but the (25S)-Δ4-isomer was also identified as an activator of DAF-12. To explore the tolerance of DAF-12 for structural variations in the ligand and to enable further studies requiring large amounts of ligands for DAF-12 and homologs in other nematodes, we synthesized (25R)- and (25S)-isomers of five dafachronic acids differing in A/B-ring configurations. Both the (25S)- and (25R)-Δ7-dafachronic acids are potent transcriptional activators in a Gal4-transactivation assay using HEK-293 cells, with EC50 values of 23 and 33 nm, respectively, as are (25S)- and (25R)-Δ4-dafachronic acids, with EC50 values of 23 and 66 nm, respectively. The (25S)- and (25R)-Δ5-isomers were much less potent, with EC50 values approaching 1000 nm, and saturated 5α- and 5β-dafachronic acids showed mostly intermediate potencies. Rescue assays using daf- 9-null mutants confirmed the results from transactivation experiments, but this in vivo assay accentuated the greater potencies of the (25S)-epimers, particularly for the (25S)-Δ7-isomer. We conclude that DAF-12 accommodates a large range of structural variation in ligand geometry, but (25S)-Δ7-dafachronic acid is the most potent and probably biologically relevant isomer. Potency derives more from the A/B-ring configuration than from the stereochemistry at C-25. PMID:19196833

  12. Antibacterial activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against planktonic and biofilm growing Streptococcus mutans.

    PubMed

    Sun, Mengjun; Dong, Jiachen; Xia, Yiru; Shu, Rong

    2017-03-31

    The aim of this study was to evaluate the potential antibacterial activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against planktonic and biofilm modes of Streptococcus mutans (S. mutans). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. The effects on planktonic growth and biofilm metabolic activity were evaluated by growth curve determination and MTT assay, respectively. Then, colony forming unit (CFU) counting, scanning electron microscopy (SEM) and real-time PCR were performed to further investigate the actions of DHA and EPA on exponential phase-S. mutans. Confocal laser scanning microscopy (CLSM) was used to detect the influences on mature biofilms. The MICs of DHA and EPA against S. mutans were 100 μM and 50 μM, respectively; the MBC of both compounds was 100 μM. In the presence of 12.5 μM-100 μM DHA or EPA, the planktonic growth and biofilm metabolic activity were reduced in varying degrees. For exponential-phase S. mutans, the viable counts, the bacterial membranes and the biofilm-associated gene expression were damaged by 100 μM DHA or EPA treatment. For 1-day-old biofilms, the thickness was decreased and the proportion of membrane-damaged bacteria was increased in the presence of 100 μM DHA or EPA. These results indicated that, DHA and EPA possessed antibacterial activities against planktonic and biofilm growing S. mutans.

  13. Jacaric acid and its octadecatrienoic acid geoisomers induce apoptosis selectively in cancerous human prostate cells: a mechanistic and 3-D structure-activity study.

    PubMed

    Gasmi, Jihane; Thomas Sanderson, J

    2013-06-15

    Plant-derived non-essential fatty acids are important dietary nutrients, and some are purported to have chemopreventive properties against various cancers, including that of the prostate. In this study, we determined the ability of seven dietary C-18 fatty acids to cause cytotoxicity and induce apoptosis in various types of human prostate cancer cells. These fatty acids included jacaric and punicic acid found in jacaranda and pomegranate seed oil, respectively, three octadecatrienoic geometric isomers (alpha- and beta-calendic and catalpic acid) and two mono-unsaturated C-18 fatty acids (trans- and cis-vaccenic acid). Jacaric acid and four of its octadecatrienoic geoisomers selectively induced apoptosis in hormone-dependent (LNCaP) and -independent (PC-3) human prostate cancer cells, whilst not affecting the viability of normal human prostate epithelial cells (RWPE-1). Jacaric acid induced concentration- and time-depedent LNCaP cell death through activation of intrinsic and extrinsic apoptotic pathways resulting in cleavage of PARP-1, modulation of pro- and antiapoptotic Bcl-2 family of proteins and increased cleavage of caspase-3, -8 and -9. Moreover, activation of a cell death-inducing signalling cascade involving death receptor 5 was observed. Jacaric acid induced apoptosis in PC-3 cells by activation of the intrinsic pathway only. The spatial conformation cis, trans, cis of jacaric and punicic acid was shown to play a key role in the increased potency and efficacy of these two fatty acids in comparison to the five other C-18 fatty acids tested. Three-dimensional conformational analysis using the PubChem Database (http://pubchem.ncbi.nlm.nih.gov) showed that the cytotoxic potency of the C-18 fatty acids was related to their degree of conformational similarity to our cytotoxic reference compound, punicic acid, based on optimized shape (ST) and feature (CT) similarity scores, with jacaric acid being most 'biosimilar' (ST(ST-opt)=0.81; CT(CT-opt)=0.45). This 3-D

  14. Synthesis and evaluation of anti-oxidant and cytotoxic activities of novel 10-undecenoic acid methyl ester based lipoconjugates of phenolic acids

    PubMed Central

    Narra, Naganna; Prasad, Rachapudi Badari Narayana; Misra, Sunil; Dhevendar, Koude; Kontham, Venkateshwarlu

    2017-01-01

    The synthesis of five novel methyl 10-undecenoate-based lipoconjugates of phenolic acids from undecenoic acid was carried out. Undecenoic acid was methylated to methyl 10-undecenoate which was subjected to a thiol–ene reaction with cysteamine hydrochloride. Further amidation of the amine was carried out with different phenolic acids such as caffeic, ferulic, sinapic, coumaric and cinnamic acid. All synthesized compounds were fully characterized and their structures were confirmed by spectral data. The anti-oxidant activity of the synthesized lipoconjugates of phenolic acids was studied by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and also by the inhibition of linoleic acid oxidation in micellar medium by differential scanning calorimetry (DSC). The prepared compounds were also screened for their cytotoxic activity against five cell lines. It was observed that the lipoconjugates of caffeic acid, sinapic acid, ferulic acid, and coumaric acid displayed anticancer and anti-oxidant properties. The anticancer properties of these derivatives have been assessed by their IC50 inhibitory values in the proliferation of MDA-MB231, SKOV3, MCF7, DU 145 and HepG2 cancer cell lines. PMID:28179945

  15. Fatty acids, sterols, and antioxidant activity in minimally processed avocados during refrigerated storage.

    PubMed

    Plaza, Lucía; Sánchez-Moreno, Concepción; de Pascual-Teresa, Sonia; de Ancos, Begoña; Cano, M Pilar

    2009-04-22

    Avocado ( Persea americana Mill.) is a good source of bioactive compounds such as monounsaturated fatty acids and sterols. The impact of minimal processing on its health-promoting attributes was investigated. Avocados cut into slices or halves were packaged in plastic bags under nitrogen, air, or vacuum and stored at 8 degrees C for 13 days. The stabilities of fatty acids and sterols as well as the effect on antioxidant activity were evaluated. The main fatty acid identified and quantified in avocado was oleic acid (about 57% of total content), whereas beta-sitosterol was found to be the major sterol (about 89% of total content). In general, after refrigerated storage, a significant decrease in fatty acid content was observed. Vacuum/halves and air/slices were the samples that maintained better this content. With regard to phytosterols, there were no significant changes during storage. Antioxidant activity showed a slight positive correlation against stearic acid content. At the end of refrigerated storage, a significant increase in antiradical efficiency (AE) was found for vacuum samples. AE values were quite similar among treatments. Hence, minimal processing can be a useful tool to preserve health-related properties of avocado fruit.

  16. Antistaphylococcal and biofilm inhibitory activities of gallic, caffeic, and chlorogenic acids.

    PubMed

    Luís, Ângelo; Silva, Filomena; Sousa, Sónia; Duarte, Ana Paula; Domingues, Fernanda

    2014-01-01

    Staphylococcus aureus is a Gram-positive pathogen which is able to form biofilms, exhibiting a more pronounced resistance to antibiotics and disinfectants. The hurdles posed in eradicating biofilms have driven the search for new compounds able to fight these structures. Phenolic compounds constitute one of the most numerous and ubiquitous group of plant secondary metabolites with many biological activities. The aim of the present work was to study the potential antimicrobial and antibiofilm properties of gallic, caffeic, and chlorogenic acids against S. aureus as well to elucidate its mechanism of action. It was concluded that the phenolic acids studied in this work have antistaphylococcal properties. For instance, gallic acid is able to influence the adhesion properties of S. aureus. The phenolic acids tested were also able to inhibit the production of α-hemolysin by this microorganism, with the exception of chlorogenic acid. Regarding its mechanism of action, caffeic acid interferes with the stability of the cell membrane and with the metabolic activity of the cells of S. aureus.

  17. Photoprotective Activity of Vulpinic and Gyrophoric Acids Toward Ultraviolet B-Induced Damage in Human Keratinocytes.

    PubMed

    Varol, Mehmet; Türk, Ayşen; Candan, Mehmet; Tay, Turgay; Koparal, Ayşe Tansu

    2016-01-01

    Vulpinic and gyrophoric acids are known as ultraviolet filters for natural lichen populations because of their chemical structures. However, to the best of our knowledge, there has been no reference to their cosmetic potential for skin protection against ultraviolet B (UVB)-induced damage and, consequently, we propose to highlight their photoprotective profiles in human keratinocytes (HaCaT). Therefore, vulpinic acid and gyrophoric acid were isolated from acetone extracts of Letharia vulpina and Xanthoparmelia pokornyi, respectively. Their photoprotective activities on irradiated HaCaT cells and destructive effects on non-irradiated HaCaT cells were compared through in vitro experimentation: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assays, 4',6-diamino-2-phenylindole and tetramethylrhodamine B isothiocyanate-phalloidin staining protocols. Both of the lichen substances effectively prevented cytotoxic, apoptotic and cytoskeleton alterative activities of 2.5 J/cm(2) UVB in a dose-dependent manner. Moreover, vulpinic and gyrophoric acids showed no toxic, apoptotic or cytoskeleton alterative effects on non-irradiated HaCaT cells, except at high doses (≥400 μM) of gyrophoric acid. The findings suggest that vulpinic and gyrophoric acids can be promising cosmetic ingredients to photo-protect human skin cells and should therefore be further investigated by in vitro and in vivo multiple bioassays.

  18. Chronic effect of ferulic acid from Pseudosasa japonica leaves on enhancing exercise activity in mice.

    PubMed

    You, Yanghee; Kim, Kyungmi; Yoon, Ho-Geun; Lee, Kwang-Won; Lee, Jeongmin; Chun, Jiyeon; Shin, Dong-Hoon; Park, Jeongjin; Jun, Woojin

    2010-10-01

    Ferulic acid derived from Pseudosasa japonica leaves, which possessed antioxidative potentials with DPPH- (54%) and ABTs- (65%) radical scavenging activities, and lipid-peroxidation inhibitory activity (71%), was orally administered to mice for 12 days in order to investigate its effects on exercise endurance capacity and alterations of antioxidant defense systems. Exhaustive swimming time was increased in the ferulic acid-supplemented group compared with the control group on days 6 and 12 (1.7- and 1.8-fold, respectively). When the mice were exhaustively exercised for 2 consecutive days, a high decrease (53%) was shown in the control group, but no change was found in the ferulic acid-treated group. The administration of ferulic acid significantly protected the depletion of enzymatic- and non enzymatic-antioxidants due to exhaustive exercise. Also, lipid-peroxidation levels decreased in the ferulic acid-treated group compared with the non exercised- and control-groups. These results suggest that ferulic acid from Pseudosasa japonica leaves has a chronic effect on endurance exercise capacity, which is attributed to its ability to ameliorate oxidative stress by improving antioxidant potentials.

  19. Amino-acid transporters in T-cell activation and differentiation.

    PubMed

    Ren, W; Liu, G; Yin, J; Tan, B; Wu, G; Bazer, F W; Peng, Y; Yin, Y

    2017-03-02

    T-cell-mediated immune responses aim to protect mammals against cancers and infections, and are also involved in the pathogenesis of various inflammatory or autoimmune diseases. Cellular uptake and the utilization of nutrients is closely related to the T-cell fate decision and function. Research in this area has yielded surprising findings in the importance of amino-acid transporters for T-cell development, homeostasis, activation, differentiation and memory. In this review, we present current information on amino-acid transporters, such as LAT1 (l-leucine transporter), ASCT2 (l-glutamine transporter) and GAT-1 (γ-aminobutyric acid transporter-1), which are critically important for mediating peripheral naive T-cell homeostasis, activation and differentiation, especially for Th1 and Th17 cells, and even memory T cells. Mechanically, the influence of amino-acid transporters on T-cell fate decision may largely depend on the mechanistic target of rapamycin complex 1 (mTORC1) signaling. These discoveries remarkably demonstrate the role of amino-acid transporters in T-cell fate determination, and strongly indicate that manipulation of the amino-acid transporter-mTORC1 axis could ameliorate many inflammatory or autoimmune diseases associated with T-cell-based immune responses.

  20. Castor oil induces laxation and uterus contraction via ricinoleic acid activating prostaglandin EP3 receptors.

    PubMed

    Tunaru, Sorin; Althoff, Till F; Nüsing, Rolf M; Diener, Martin; Offermanns, Stefan

    2012-06-05

    Castor oil is one of the oldest drugs. When given orally, it has a laxative effect and induces labor in pregnant females. The effects of castor oil are mediated by ricinoleic acid, a hydroxylated fatty acid released from castor oil by intestinal lipases. Despite the wide-spread use of castor oil in conventional and folk medicine, the molecular mechanism by which ricinoleic acid acts remains unknown. Here we show that the EP(3) prostanoid receptor is specifically activated by ricinoleic acid and that it mediates the pharmacological effects of castor oil. In mice lacking EP(3) receptors, the laxative effect and the uterus contraction induced via ricinoleic acid are absent. Although a conditional deletion of the EP(3) receptor gene in intestinal epithelial cells did not affect castor oil-induced diarrhea, mice lacking EP(3) receptors only in smooth-muscle cells were unresponsive to this drug. Thus, the castor oil metabolite ricinoleic acid activates intestinal and uterine smooth-muscle cells via EP(3) prostanoid receptors. These findings identify the cellular and molecular mechanism underlying the pharmacological effects of castor oil and indicate a role of the EP(3) receptor as a target to induce laxative effects.

  1. Synthesis and characteristics of (Hydrogenated) ferulic acid derivatives as potential antiviral agents with insecticidal activity

    PubMed Central

    2013-01-01

    Background Plant viruses cause many serious plant diseases and are currently suppressed with the simultaneous use of virucides and insecticides. The use of such materials, however, increases the amounts of pollutants in the environment. To reduce environmental contaminants, virucides with insecticidal activity is an attractive option. Results A series of substituted ferulic acid amide derivatives 7 and the corresponding hydrogenated ferulic acid amide derivatives 13 were synthesized and evaluated for their antiviral and insecticidal activities. The majority of the synthesized compounds exhibited good levels of antiviral activity against the tobacco mosaic virus (TMW), with compounds 7a, 7b and 7d in particular providing higher levels of protective and curative activities against TMV at 500 μg/mL than the control compound ribavirin. Furthermore, these compounds displayed good insecticidal activities against insects with piercing-sucking mouthparts, which can spread plant viruses between and within crops. Conclusions Two series of ferulic acid derivatives have been synthesized efficiently. The bioassay showed title compounds not only inhibit the plant viral infection, but also prevented the spread of plant virus by insect vectors. These findings therefore demonstrate that the ferulic acid amides represent a new template for future antiviral studies. PMID:23409923

  2. Acid phosphatase activity: a marker of androgen action in prostate explant cultures.

    PubMed

    Shao, T C; Kong, A Y; Cunningham, G R

    1987-01-01

    Acid phosphatase activity in rat ventral prostate explants has been assayed to determine if this parameter could serve as a specific and quantitative marker of androgen action in this in vitro model. Dihydrotestosterone (10 nM) caused an absolute increase in both total (42.5 +/- 2.9 vs control 27.1 +/- 4.0 nmoles p-nitrophenol generated in 30 min/micrograms DNA, P less than .01) and tartrate-resistant acid phosphatase activity (34.1 +/- 1.5 vs control 17.2 +/- 2.8 U/micrograms DNA, P less than .05), and this effect was maximal on the 4th day of culture. This was the time when explant weight and DNA content tended to fall or only to be maintained by androgen. Similar changes were observed with the potent synthetic androgen, mibolerone. The addition of either the antiandrogen cyproterone acetate or flutamide in a 100-fold excess to that of androgen caused significant inhibition in acid phosphatase activity. No significant change was observed at low concentrations of estradiol or progesterone, and only minimal and inconsistent increases in activity were noted at high concentrations. No increase was noted when cortisol, cyproterone acetate, or flutamide was added to the media. We conclude that measurement of acid phosphatase activity in cultured explants of rat ventral prostate provides a biochemical marker of androgenicity that is more specific than measurement of [3H]-thymidine incorporation.

  3. The effect of citric acid on the activity, thermodynamics and conformation of mushroom polyphenoloxidase.

    PubMed

    Liu, Wei; Zou, Li-qiang; Liu, Jun-ping; Zhang, Zhao-qin; Liu, Cheng-mei; Liang, Rui-hong

    2013-09-01

    Few reports have focused on the effect of citric acid on thermodynamics and conformation of polyphenoloxidase (PPO). In this study, variations on activity, thermodynamics and conformation of mushroom PPO induced by citric acid (1-60mM) and relationships among these were investigated. It showed that with the increasing concentration of citric acid, the activity of PPO decreased gradually to an inactivity condition; inactivation rate constant (k) of PPO increased and the activation energy (Ea) as well as thermodynamic parameters (ΔG, ΔH, ΔS) decreased, which indicated that the thermosensitivity, stability and number of non-covalent bonds of PPO decreased. The conformation was gradually unfolded, which was reflected in the decrease of α-helix contents, increase of β-sheet and exposure of aromatic amino acid residuals. Moreover, two linear relationships of relative activities, enthalpies (ΔH) against α-helix contents were obtained. It indicated that changes of activity and thermodynamics might correlate to the unfolding of conformation.

  4. Peroxidase activity of bacterial cytochrome P450 enzymes: modulation by fatty acids and organic solvents.

    PubMed

    Rabe, Kersten S; Erkelenz, Michael; Kiko, Kathrin; Niemeyer, Christof M

    2010-08-01

    The modulation of peroxidase activity by fatty acid additives and organic cosolvents was determined and compared for four bacterial cytochrome P450 enzymes, thermostable P450 CYP119A1, the P450 domain of CYP102A1 (BMP), CYP152A1 (P450(bsbeta)), and CYP101A1 (P450(cam)). Utilizing a high-throughput microplate assay, we were able to readily screen more than 100 combinations of enzymes, additives and cosolvents in a convenient and highly reproducible assay format. We found that, in general, CYP119A1 and BMP showed an increase in peroxidative activity in the presence of fatty acids, whereas CYP152A1 revealed a decrease in activity and CYP101A1 was only slightly affected. In particular, we observed that the conversion of the fluorogenic peroxidase substrate Amplex Red by CYP119A1 and BMP was increased by a factor of 38 or 11, respectively, when isopropanol and lauric acid were present in the reaction mixture. The activity of CYP119A1 could thus be modulated to reach more than 90% of the activity of CYP152A1 without effectors, which is the system with the highest peroxidative activity. For all P450s investigated we found distinctive reactivity patterns, which suggest similarities in the binding site of CYP119A1 and BMP in contrast with the other two proteins studied. Therefore, this study points towards a role of fatty acids as activators for CYP enzymes in addition to being mere substrates. In general, our detailed description of fatty acid- and organic solvent-effects is of practical interest because it illustrates that optimization of modulators and cosolvents can lead to significantly increased yields in biocatalysis.

  5. Characterisation of Drosophila CMP-sialic acid synthetase activity reveals unusual enzymatic properties

    PubMed Central

    Mertsalov, Ilya B.; Novikov, Boris N.; Scott, Hilary; Dangott, Lawrence; Panin, Vladislav M.

    2016-01-01

    CMP-sialic acid synthetase (CSAS) is a key enzyme of the sialylation pathway. CSAS produces the activated sugar donor, CMP-sialic acid, which serves as a substrate for sialyltransferases to modify glycan termini with sialic acid. Unlike other animal CMP-Sia synthetases that normally localize in the nucleus, Drosophila melanogaster CSAS (DmCSAS) localizes in the cell secretory compartment, predominantly in the Golgi, which suggests that this enzyme has properties distinct from those of its vertebrate counterparts. To test this hypothesis, we purified recombinant DmCSAS and characterised its activity in vitro. Our experiments revealed several unique features of this enzyme. DmCSAS displays specificity for N-acetylneuraminic acid as a substrate, shows preference for lower pH and can function with a broad range of metal cofactors. When tested at a pH corresponding to the Golgi compartment, the enzyme showed significant activity with several metal cations, including Zn2+, Fe2+, Co2+ and Mn2+, while the activity with Mg2+ was found to be low. Protein sequence analysis and site-specific mutagenesis identified an aspartic acid residue that is necessary for enzymatic activity and predicted to be involved in coordinating a metal cofactor. DmCSAS enzymatic activity was found to be essential in vivo for rescuing the phenotype of DmCSAS mutants. Finally, our experiments revealed a steep dependence of the enzymatic activity on temperature. Taken together, our results indicate that DmCSAS underwent evolutionary adaptation to pH and ionic environment different from that of counterpart synthetases in vertebrates. Our data also suggest that environmental temperatures can regulate Drosophila sialylation, thus modulating neural transmission. PMID:27114558

  6. Ozone oxidation of oleic acid surface films decreases aerosol cloud condensation nuclei activity

    NASA Astrophysics Data System (ADS)

    Schwier, A. N.; Sareen, N.; Lathem, T. L.; Nenes, A.; McNeill, V. F.

    2011-08-01

    Heterogeneous oxidation of aerosols composed of pure oleic acid (C18H34O2, an unsaturated fatty acid commonly found in continental and marine aerosol) by gas-phase O3 is known to increase aerosol hygroscopicity and activity as cloud condensation nuclei (CCN). Whether this trend is preserved when the oleic acid is internally mixed with other electrolytes is unknown and addressed in this study. We quantify the CCN activity of sodium salt aerosols (NaCl and Na2SO4) internally mixed with sodium oleate (SO) and oleic acid (OA). We find that particles containing roughly one monolayer of SO/OA show similar CCN activity to pure salt particles, whereas a tenfold increase in organic concentration slightly depresses CCN activity. O3 oxidation of these multicomponent aerosols has little effect on the critical diameter for CCN activation for unacidified particles at all conditions studied, and the activation kinetics of the CCN are similar in each case to those of pure salts. SO-containing particles which are acidified to atmospherically relevant pH before analysis in order to form oleic acid, however, show depressed CCN activity upon oxidation. This effect is more pronounced at higher organic concentrations. The behavior after oxidation is consistent with the disappearance of the organic surface film, supported by Köhler Theory Analysis (KTA). The κ-Köhler calculations show a small decrease in hygroscopicity after oxidation. The important implication of this finding is that oxidative aging may not always enhance the hygroscopicity of internally mixed inorganic-organic aerosols.

  7. PGC-1alpha activates CYP7A1 and bile acid biosynthesis.

    PubMed

    Shin, Dong-Ju; Campos, Jose A; Gil, Gregorio; Osborne, Timothy F

    2003-12-12

    Cholesterol 7-alpha-hydroxylase (CYP7A1) is the key enzyme that commits cholesterol to the neutral bile acid biosynthesis pathway and is highly regulated. In the current studies, we have uncovered a role for the transcriptional co-activator PGC-1alpha in CYP7A1 gene transcription. PGC-1alpha plays a vital role in adaptive thermogenesis in brown adipose tissue and stimulates genes important to mitochondrial function and oxidative metabolism. It is also involved in the activation of hepatic gluconeogenesic gene expression during fasting. Because the mRNA for CYP7A1 was also induced in mouse liver by fasting, we reasoned that PGC-1alpha might be an important co-activator for CYP7A1. Here we show that PGC-1alpha and CYP7A1 are also co-induced in livers of mice in response to streptozotocin induced diabetes. Additionally, infection of cultured HepG2 cells with a recombinant adenovirus expressing PGC-1alpha directly activates CYP7A1 gene expression and increases bile acid biosynthesis as well. Furthermore, we show that PGC-1alpha activates the CYP7A1 promoter directly in transient transfection assays in cultured cells. Thus, PGC-1alpha is a key activator of CYP7A1 and bile acid biosynthesis and is likely responsible for the fasting and diabetes dependent induction of CYP7A1. PGC-1alpha has already been shown to be a critical activator of several other oxidative processes including adaptive thermogenesis and fatty acid oxidation. Our studies provide further evidence of the fundamental role played by PGC-1alpha in oxidative metabolism and define PGC-1alpha as a link between diabetes and bile acid metabolism.

  8. Characterization of Drosophila CMP-sialic acid synthetase activity reveals unusual enzymatic properties.

    PubMed

    Mertsalov, Ilya B; Novikov, Boris N; Scott, Hilary; Dangott, Lawrence; Panin, Vladislav M

    2016-07-01

    CMP-sialic acid synthetase (CSAS) is a key enzyme of the sialylation pathway. CSAS produces the activated sugar donor, CMP-sialic acid, which serves as a substrate for sialyltransferases to modify glycan termini with sialic acid. Unlike other animal CSASs that normally localize in the nucleus, Drosophila melanogaster CSAS (DmCSAS) localizes in the cell secretory compartment, predominantly in the Golgi, which suggests that this enzyme has properties distinct from those of its vertebrate counterparts. To test this hypothesis, we purified recombinant DmCSAS and characterized its activity in vitro Our experiments revealed several unique features of this enzyme. DmCSAS displays specificity for N-acetylneuraminic acid as a substrate, shows preference for lower pH and can function with a broad range of metal cofactors. When tested at a pH corresponding to the Golgi compartment, the enzyme showed significant activity with several metal cations, including Zn(2+), Fe(2+), Co(2+) and Mn(2+), whereas the activity with Mg(2+) was found to be low. Protein sequence analysis and site-specific mutagenesis identified an aspartic acid residue that is necessary for enzymatic activity and predicted to be involved in co-ordinating a metal cofactor. DmCSAS enzymatic activity was found to be essential in vivo for rescuing the phenotype of DmCSAS mutants. Finally, our experiments revealed a steep dependence of the enzymatic activity on temperature. Taken together, our results indicate that DmCSAS underwent evolutionary adaptation to pH and ionic environment different from that of counterpart synthetases in vertebrates. Our data also suggest that environmental temperatures can regulate Drosophila sialylation, thus modulating neural transmission.

  9. Nitrooleic acid, an endogenous product of nitrative stress, activates nociceptive sensory nerves via the direct activation of TRPA1.

    PubMed

    Taylor-Clark, Thomas E; Ghatta, Srinivas; Bettner, Weston; Undem, Bradley J

    2009-04-01

    Transient Receptor Potential A1 (TRPA1) is a nonselective cation channel, preferentially expressed on a subset of nociceptive sensory neurons, that is activated by a variety of reactive irritants via the covalent modification of cysteine residues. Excessive nitric oxide during inflammation (nitrative stress), leads to the nitration of phospholipids, resulting in the formation of highly reactive cysteine modifying agents, such as nitrooleic acid (9-OA-NO(2)). Using calcium imaging and electrophysiology, we have shown that 9-OA-NO(2) activates human TRPA1 channels (EC(50), 1 microM), whereas oleic acid had no effect on TRPA1. 9-OA-NO(2) failed to activate TRPA1 in which the cysteines at positions 619, 639, and 663 and the lysine at 708 had been mutated. TRPA1 activation by 9-OA-NO(2) was not inhibited by the NO scavenger carboxy-PTIO. 9-OA-NO(2) had no effect on another nociceptive-specific ion channel, TRPV1. 9-OA-NO(2) activated a subset of mouse vagal and trigeminal sensory neurons, which also responded to the TRPA1 agonist allyl isothiocyanate and the TRPV1 agonist capsaicin. 9-OA-NO(2) failed to activate neurons derived from TRPA1(-/-) mice. The action of 9-OA-NO(2) at nociceptive nerve terminals was investigated using an ex vivo extracellular recording preparation of individual bronchopulmonary C fibers in the mouse. 9-OA-NO(2) evoked robust action potential discharge from capsaicin-sensitive fibers with slow conduction velocities (0.4-0.7 m/s), which was inhibited by the TRPA1 antagonist AP-18. These data demonstrate that nitrooleic acid, a product of nitrative stress, can induce substantial nociceptive nerve activation through the selective and direct activation of TRPA1 channels.

  10. Alternative Oxidase Activity in Tobacco Leaf Mitochondria (Dependence on Tricarboxylic Acid Cycle-Mediated Redox Regulation and Pyruvate Activation).

    PubMed

    Vanlerberghe, G. C.; Day, D. A.; Wiskich, J. T.; Vanlerberghe, A. E.; McIntosh, L.

    1995-10-01

    Transgenic Nicotiana tabacum (cv Petit Havana SR1) containing high levels of mitochondrial alternative oxidase (AOX) protein due to the introduction of a sense transgene(s) of Aox1, the nuclear gene encoding AOX, were used to investigate mechanisms regulating AOX activity. After purification of leaf mitochondria, a large proportion of the AOX protein was present as the oxidized (covalently associated and less active) dimer. High AOX activity in these mitochondria was dependent on both reduction of the protein by DTT (to the noncovalently associated and more active dimer) and its subsequent activation by certain [alpha]-keto acids, particularly pyruvate. Reduction of AOX to its more active form could also be mediated by intramitochondrial reducing power generated by the oxidation of certain tricarboxylic acid cycle substrates, most notably isocitrate and malate. Our evidence suggests that NADPH may be specifically required for AOX reduction. All of the above regulatory mechanisms applied to AOX in wild-type mitochondria as well. Transgenic leaves lacking AOX due to the introduction of an Aox1 antisense transgene or multiple sense transgenes were used to investigate the potential physiological significance of the AOX-regulatory mechanisms. Under conditions in which respiratory carbon metabolism is restricted by the capacity of mitochondrial electron transport, feed-forward activation of AOX by mitochondrial reducing power and pyruvate may act to prevent redirection of carbon metabolism, such as to fermentative pathways.

  11. Active transport of amino acids by a guanidiniocarbonyl-pyrrole receptor.

    PubMed

    Urban, Christian; Schmuck, Carsten

    2010-08-16

    Herein we report the synthesis and characterization of a transporter 9 for N-acetylated amino acids. Transporter 9 is a conjugate of a guanidiniocarbonyl pyrrole cation, one of the most efficient carboxylate binding motifs reported so far, and a hydrophobic tris(dodecylbenzyl) group, which ensures solubility in organic solvents. In its protonated form, 9 binds N-acetylated amino acid carboxylates in wet organic solvents with association constants in the range of 10(4) M(-1) as estimated by extraction experiments. Aromatic amino acids are preferred due to additional cation-pi-interactions of the amino acid side chain with the guanidiniocarbonyl pyrrole moiety. U-tube experiments established efficient transport across a bulk liquid chloroform phase with fluxes approaching 10(-6) mol m(-2) s(-1). In experiments with single substrates, the release rate of the amino acid from the receptor-substrate complex at the interface with the receiving phase is rate determining. In contrast to this, in competition experiments with several substrates, the thermodynamic affinity to 9 becomes decisive. As 9 can only transport anions in its protonated form and has a pK(a) value of approximately 7, pH-driven active transport of amino acids is also possible. Transport occurs as a symport of the amino acid carboxylate and a proton.

  12. Amino acid sequence of homologous rat atrial peptides: natriuretic activity of native and synthetic forms.

    PubMed Central

    Seidah, N G; Lazure, C; Chrétien, M; Thibault, G; Garcia, R; Cantin, M; Genest, J; Nutt, R F; Brady, S F; Lyle, T A

    1984-01-01

    A substance called atrial natriuretic factor (ANF), localized in secretory granules of atrial cardiocytes, was isolated as four homologous natriuretic peptides from homogenates of rat atria. The complete sequence of the longest form showed that it is composed of 33 amino acids. The three other shorter forms (2-33, 3-33, and 8-33) represent amino-terminally truncated versions of the 33 amino acid parent molecule as shown by analysis of sequence, amino acid composition, or both. The proposed primary structure agrees entirely with the amino acid composition and reveals no significant sequence homology with any known protein or segment of protein. The short form ANF-(8-33) was synthesized by a multi-fragment condensation approach and the synthetic product was shown to exhibit specific activity comparable to that of the natural ANF-(3-33). PMID:6232612

  13. Factors influencing the rate of non-enzymatic activation of carboxylic and amino acids by ATP

    NASA Technical Reports Server (NTRS)

    Mullins, D. W., Jr.; Lacey, J. C., Jr.

    1981-01-01

    The nonenzymatic formation of adenylate anhydrides of carboxylic and amino acids is discussed as a necessary step in the origin of the genetic code and protein biosynthesis. Results of studies are presented which have shown the rate of activation to depend on the pKa of the carboxyl group, the pH of the medium, temperature, the divalent metal ion catalyst, salt concentration, and the nature of the amino acid. In particular, it was found that of the various amino acids investigated, phenylalanine had the greatest affinity for the adenine derivatives adenosine and ATP. Results thus indicate that selective affinities between amino acids and nucleotides were important during prebiotic chemical evolution, and may have played a major role in the origin of protein synthesis and genetic coding.

  14. Light-activated amino acid transport in Halobacterium halobium envelope vesicles

    NASA Technical Reports Server (NTRS)

    Macdonald, R. E.; Lanyi, J. K.

    1977-01-01

    Vesicles prepared from Halobacterium halobium cell envelopes accumulate amino acids in response to light-induced electrical and chemical gradients. Nineteen of 20 commonly occurring amino acids have been shown to be actively accumulated by these vesicles in response to illumination or in response to an artificially created Na+ gradient. On the basis of shared common carriers the transport systems can be divided into eight classes, each responsible for the transport of one or several amino acids: arginine, lysine, histidine; asparagine, glutamine; alanine, glycine, threonine, serine; leucine, valine, isoleucine, methionine; phenylalanine, tyrosine, tryptophan; aspartate; glutamate; proline. Available evidence suggests that these carriers are symmetrical in that amino acids can be transported equally well in both directions across the vesicle membranes. A tentative working model to account for these observations is presented.

  15. Amino acids assisted hydrothermal synthesis of hierarchically structured ZnO with enhanced photocatalytic activities

    NASA Astrophysics Data System (ADS)

    Guo, Yanxia; Lin, Siwen; Li, Xuan; Liu, Yuping

    2016-10-01

    Novel hierarchically structured ZnO, including rose-like, dandelion-like and flower-like, have been synthesized through a simple hydrothermal process using different amino acids (glutamine, histidine and glycine) as structure-directing agents and urea as deposition agent, followed by subsequent calcination. Amino acids played a crucial role in the formation of hierarchically structured ZnO, and different amino acids could induce different exquisite shapes and assembly ways, as well as more oxygen defects. The prepared hierarchically structured ZnO exhibited excellent photocatalytic activities for the photodegradation of Rhodamine B, which was associated with their special hierarchical structures, large BET surface area and the existence of more oxygen defects. Amino acid-assisted growth mechanism of hierarchically structured ZnO was also discussed.

  16. Activation of carboxyl group with cyanate: peptide bond formation from dicarboxylic acids.

    PubMed

    Danger, Grégoire; Charlot, Solenne; Boiteau, Laurent; Pascal, Robert

    2012-06-01

    The reaction of cyanate with C-terminal carboxyl groups of peptides in aqueous solution was considered as a potential pathway for the abiotic formation of peptide bonds under the condition of the primitive Earth. The catalytic effect of dicarboxylic acids on cyanate hydrolysis was definitely attributed to intramolecular nucleophilic catalysis by the observation of the 1H-NMR signal of succinic anhydride when reacting succinic acid with KOCN in aqueous solution (pH 2.2-5.5). The formation of amide bonds was noticed when adding amino acids or amino acid derivatives into the solution. The reaction of N-acyl aspartic acid derivatives was observed to proceed similarly and the scope of the cyanate-promoted reaction was analyzed from the standpoint of prebiotic peptide formation. The role of cyanate in activating peptide C-terminus constitutes a proof of principle that intramolecular reactions of adducts of peptides C-terminal carboxyl groups with activating agents represent a pathway for peptide activation in aqueous solution, the relevance of which is discussed in connexion with the issue of the emergence of homochirality.

  17. Acidic stimuli activates two distinct pathways in taste receptor cells from rat fungiform papillae.

    PubMed

    Liu, L; Simon, S A

    2001-12-27

    A sour taste sensation may be produced when acidic stimuli interact with taste receptor cells (TRCs) on the dorsal surface of the tongue. We have searched for pathways in TRCs that may be activated by acidic stimuli using RT-PCR and changes in intracellular calcium (Ca(2+)(I)) induced by acidic stimuli in rat fungiform papillae. RT-PCR revealed the presence of proton-gated subunits ASIC-beta and VR1. Ca(2+) imaging measurements of the TRCs revealed two distinct responses to acidic stimuli: Ca(2+)(i) was increased in 9% (28/308; Type I) and was decreased in 39% (121/308; Type II). Neither of these responses was affected by the removal of extracellular Ca(2+), indicating that the changes arise from the release and sequestration of Ca(2+) from intracellular stores. These responses were also not inhibited by the vanilloid receptor antagonist, capsazepine, suggesting they do not arise from the activation of vanilloid receptors. The Type I, but not the Type II response was inhibited by amiloride. Dose-response measurements for Types I and II responses yielded pH(50%) of 4.8 and 4.9, respectively. Type II responses were inhibited by pertussis toxin, suggesting G-protein involvement. TRCs that exhibit Type II responses could also be activated by quinine (which increased Ca(2+)(I)) thus suggesting a mechanism by which the addition of acid may be suppressive to other chemical stimuli.

  18. Activation of Oral Trigeminal Neurons by Fatty Acids is Dependent upon Intracellular Calcium

    PubMed Central

    Yu, Tian; Shah, Bhavik P.; Hansen, Dane R.; Park-York, MieJung; Gilbertson, Timothy A.

    2012-01-01

    The chemoreception of dietary fat in the oral cavity has largely been attributed to activation of the somatosensory system that conveys the textural properties of fat. However, the ability of fatty acids, which are believed to represent the proximate stimulus for fat taste, to stimulate rat trigeminal neurons has remained unexplored. Here, we found that several free fatty acids are capable of activating trigeminal neurons with different kinetics. Further, a polyunsaturated fatty acid, linoleic acid (LA), activates trigeminal neurons by increasing intracellular calcium concentration and generating depolarizing receptor potentials. Ion substitution and pharmacological approaches reveal that intracellular calcium store depletion is crucial for LA-induced signaling in a subset of trigeminal neurons. Using pseudorabies virus (PrV) as a live cell tracer, we identified a subset of lingual nerve-innervated trigeminal neurons that respond to different subsets of fatty acids. Quantitative real-time PCR of several transient receptor potential (TRP) channel markers in individual neurons validated that PrV labeled a subset but not the entire population of lingual-innervated trigeminal neurons. We further confirmed that the LA-induced intracellular calcium rise is exclusively coming from the release of calcium stores from the endoplasmic reticulum in this subset of lingual nerve-innervated trigeminal neurons. PMID:22644615

  19. Activation of Hepatic Lipase Expression by Oleic Acid: Possible Involvement of USF1

    PubMed Central

    van Deursen, Diederik; van Leeuwen, Marije; Akdogan, Deniz; Adams, Hadie; Jansen, Hans; Verhoeven, Adrie J.M.

    2009-01-01

    Polyunsaturated fatty acids affect gene expression mainly through peroxisome proliferator-activated receptors (PPARs) and sterol regulatory element binding proteins (SREBPs), but how monounsaturated fatty acids affect gene expression is poorly understood. In HepG2 cells, oleate supplementation has been shown to increase secretion of hepatic lipase (HL). We hypothesized that oleate affects HL gene expression at the transcriptional level. To test this, we studied the effect of oleate on HL promoter activity using HepG2 cells and the proximal HL promoter region (700 bp). Oleate increased HL expression and promoter activity 1.3–2.1 fold and reduced SREBP activity by 50%. Downregulation of SREBP activity by incubation with cholesterol+25-hydroxycholesterol had no effect on HL promoter activity. Overexpression of SREBP2, but not SREBP1, reduced HL promoter activity, which was effected mainly through the USF1 binding site at -307/-312. Oleate increased the nuclear abundance of USF1 protein 2.7 ± 0.6 fold, while USF1 levels were reduced by SREBP2 overexpression. We conclude that oleate increases HL gene expression via USF1. USF1 may be an additional fatty acid sensor in liver cells. PMID:22253973

  20. Augmenting the activity of antifungal agents against aspergilli using structural analogues of benzoic acid as chemosensitizing agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several benzoic acid analogs showed antifungal activity against strains of Aspergillus flavus, A. fumigatus and A. terreus, causative agents of human aspergillosis. Structure-activity analysis revealed that antifungal activities of benzoic and gallic acids increased by addition of a methyl, methoxyl...

  1. Phytochemical Analysis, Antioxidant Activity, Fatty Acids Composition, and Functional Group Analysis of Heliotropium bacciferum

    PubMed Central

    Ahmad, Sohail; Ahmad, Shabir; Bibi, Ahtaram; Ishaq, Muhammad Saqib; Afridi, Muhammad Siddique; Kanwal, Farina; Zakir, Muhammad; Fatima, Farid

    2014-01-01

    Heliotropium bacciferum is paramount in medicinal perspective and belongs to Boraginaceae family. The crude and numerous fractions of leaves, stem, and roots of the plant were investigated for phytochemical analysis and DPPH radical scavenging activity. Phytochemical analysis of crude and fractions of the plant revealed the presence of alkaloids, saponins, tannins, steroids, terpenoids, flavonoids, glycosides, and phenols. The antioxidant (free radical scavenging) activity of various extracts of the Heliotropium bacciferum was resolute against 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical with the avail of UV spectrophotometer at 517 nm. The stock solution (1000 mg/mL) and then several dilutions (50, 100, 150, 200, and 250 mg/mL) of the crude and fractions were prepared. Ascorbic acid was used as a standard. The plant leaves (52.59 ± 0.84 to 90.74 ± 1.00), stem (50.19 ± 0.92 to 89.42 ± 1.10), and roots extracts (49.19 ± 0.52 to 90.01 ± 1.02) divulged magnificent antioxidant activities. For the ascertainment of the fatty acid constituents a gas chromatograph hyphenated to mass spectrometer was used. The essential fatty acids for growth maintenance such as linoleic acid (65.70%), eicosadienoic acid (15.12%), oleic acid (8.72%), and palmitic acid (8.14%) were found in high percentage. The infrared spectra of all extracts of the plant were recorded by IR Prestige-21 FTIR model. PMID:25489605

  2. Antioxidant activities of fucoidan degraded by gamma irradiation and acidic hydrolysis

    NASA Astrophysics Data System (ADS)

    Lim, Sangyong; Choi, Jong-il; Park, Hyun

    2015-04-01

    Low molecular weight fucoidan, prepared by radical degradation using gamma ray was investigated for its antioxidant activities with different assay methods. As the molecular weight of fucoidan decreased with a higher absorbed dose, ferric-reducing antioxidant power values increased, but β-carotene bleaching inhibition did not change significantly. The antioxidant activity of acid-degraded fucoidan was also examined to investigate the effect of different degradation methods. At the same molecular weight, fucoidan degraded by gamma irradiation showed higher 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity than that observed with the acidic method. This result reveals that in addition to molecular weight, the degradation method affects the antioxidant activity of fucoidan.

  3. Molybdenum phosphosulfide: an active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction.

    PubMed

    Kibsgaard, Jakob; Jaramillo, Thomas F

    2014-12-22

    Introducing sulfur into the surface of molybdenum phosphide (MoP) produces a molybdenum phosphosulfide (MoP|S) catalyst with superb activity and stability for the hydrogen evolution reaction (HER) in acidic environments. The MoP|S catalyst reported herein exhibits one of the highest HER activities of any non-noble-metal electrocatalyst investigated in strong acid, while remaining perfectly stable in accelerated durability testing. Whereas mixed-metal alloy catalysts are well-known, MoP|S represents a more uncommon mixed-anion catalyst where synergistic effects between sulfur and phosphorus produce a high-surface-area electrode that is more active than those based on either the pure sulfide or the pure phosphide. The extraordinarily high activity and stability of this catalyst open up avenues to replace platinum in technologies relevant to renewable energies, such as proton exchange membrane (PEM) electrolyzers and solar photoelectrochemical (PEC) water-splitting cells.

  4. Surface properties of pillared acid-activated bentonite as catalyst for selective production of linear alkylbenzene

    NASA Astrophysics Data System (ADS)

    Faghihian, Hossein; Mohammadi, Mohammad Hadi

    2013-01-01

    Acid-activated and pillared montmorillonite were prepared as novel catalysts for alkylation of benzene with 1-decene for production of linear alkylbenzene. The catalysts were characterized by X-ray diffraction, FT-IR spectroscopy, N2 adsorption isotherms, temperature programmed desorption of NH3, scanning electron microscopy and elemental and thermal analysis techniques. It was found that acid-activation of clays prior to pillaring increased the porosity, total specific surface area, total pore volume and surface acidity of the catalysts. Optimization of the reaction conditions was performed by varying catalyst concentration (0.25-1.75 wt%), reactants ratio (benzene to 1-decene of 8.75, 12 and 15) and temperature (115-145 °C) in a batch slurry reactor. Under optimized conditions more than 98% conversion of 1-decene, and complete selectivity for monoalkylbenzenes were achieved.

  5. In vitro biological activities and fatty acid profiles of Pistacia terebinthus fruits and Pistacia khinjuk seeds.

    PubMed

    Hacıbekiroğlu, Işil; Yılmaz, Pelin Köseoğlu; Haşimi, Nesrin; Kılınç, Ersin; Tolan, Veysel; Kolak, Ufuk

    2015-01-01

    This study reports in vitro anticholinesterase, antioxidant and antimicrobial effects of the n-hexane, dichloromethane, ethanol and ethanol-water extracts prepared from Pistacia terebinthus L. fruits and Pistacia khinjuk Stocks seeds as well as their total phenolic and flavonoid contents, and fatty acid compositions. Ethanol and ethanol-water extracts of both species exhibited higher anticholinesterase activity than galanthamine. Among ABTS, DPPH and CUPRAC assays, the highest antioxidant capacity of the extracts was found in the last one. P. terebinthus ethanol extract being rich in flavonoid content showed the best cupric reducing effect. All extracts possessed no antimicrobial activity. The main fatty acid in P. terebinthus fruits (52.52%) and P. khinjuk seeds (59.44%) was found to be oleic acid. Our results indicate that P. terebinthus fruits and P. khinjuk seeds could be a good source of anticholinesterase compounds, and could be phytochemically investigated.

  6. Effect of chlorogenic acid on antioxidant activity of Flos Lonicerae extracts*

    PubMed Central

    Wu, Lan

    2007-01-01

    Flos Lonicerae is a medically useful traditional Chinese medicine herb. However, little is known about the antioxidant properties of Flos Lonicerae extracts. Here the antioxidant capacity of water, methanolic and ethanolic extracts prepared from Flos Lonicerae to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and reduce Fe3+ to Fe2+ is examined. Chlorogenic acid, a major component of Flos Lonicerae, is identified and further purified from 70% ethanolic extract with high performance liquid chromatography (HPLC) and its antioxidant capacity is characterized. The total phenolic compounds and chlorogenic acid contents in Flos Lonicerae are determined. The present results demonstrate that the Flos Lonicerae extracts exhibit antioxidant activity and chlorogenic acid is a major contributor to this activity. PMID:17726749

  7. Hygroscopic growth and droplet activation of soot particles: uncoated, succinic or sulfuric acid coated

    NASA Astrophysics Data System (ADS)

    Henning, S.; Ziese, M.; Kiselev, A.; Saathoff, H.; Möhler, O.; Mentel, T. F.; Buchholz, A.; Spindler, C.; Michaud, V.; Monier, M.; Sellegri, K.; Stratmann, F.

    2012-05-01

    The hygroscopic growth and droplet activation of uncoated soot particles and such coated with succinic acid and sulfuric acid were investigated during the IN-11 campaign at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) facility. A GFG-1000 soot generator applying either nitrogen or argon as carrier gas and a miniCAST soot generator were utilized to generate soot particles. Different organic carbon (OC) to black carbon (BC) ratios were adjusted for the CAST-soot by varying the fuel to air ratio. The hygroscopic growth was investigated by means of the mobile Leipzig Aerosol Cloud Interaction Simulator (LACIS-mobile) and two different Hygroscopicity Tandem Differential Mobility Analyzers (HTDMA, VHTDMA). Two Cloud Condensation Nucleus Counter (CCNC) were applied to measure the activation of the particles. For the untreated soot particles neither hygroscopic growth nor activation was observed at a supersaturation of 1%, with exception of a partial activation of GFG-soot generated with argon as carrier gas. Coatings of succinic acid lead to a detectable hygroscopic growth of GFG-soot and enhanced the activated fraction of GFG- (carrier gas: argon) and CAST-soot, whereas no hygroscopic growth of the coated CAST-soot was found. Sulfuric acid coatings led to an OC-content dependent hygroscopic growth of CAST-soot. Such a dependence was not observed for activation measurements. Coating with sulfuric acid decreased the amount of Polycyclic Aromatic Hydrocarbons (PAH), which were detected by AMS-measurements in the CAST-soot, and increased the amount of substances with lower molecular weight than the initial PAHs. We assume that these reaction products increased the hygroscopicity of the coated particles in addition to the coating substance itself.

  8. Hygroscopic growth and droplet activation of soot particles: uncoated, succinic or sulfuric acid coated

    NASA Astrophysics Data System (ADS)

    Henning, S.; Ziese, M.; Kiselev, A.; Saathoff, H.; Möhler, O.; Mentel, T. F.; Buchholz, A.; Spindler, C.; Michaud, V.; Monier, M.; Sellegri, K.; Stratmann, F.

    2011-10-01

    The hygroscopic growth and droplet activation of uncoated soot particles and such coated with succinic acid and sulfuric acid were investigated during the IN-11 campaign at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) facility. A GFG-1000 soot generator applying nitrogen, respectively argon as carrier gas and a miniCAST soot generator were utilized to generate soot particles. Different organic carbon (OC) to black carbon (BC) ratios were adjusted for the CAST-soot by varying the fuel to air ratio. The hygroscopic growth was investigated by means of the mobile Leipzig Aerosol Cloud Interaction Simulator (LACIS-mobile) and two different Hygroscopicity Tandem Differential Mobility Analyzers (HTDMA, VHTDMA). Two Cloud Condensation Nucleus Counter (CCNC) were applied to measure the activation of the particles. For the untreated soot particles neither hygroscopic growth nor activation was observed, with exception of a partial activation of GFG-soot generated with argon as carrier gas. Coatings of succinic acid lead to a detectable hygroscopic growth of GFG-soot and enhanced the activated fraction of GFG- (carrier gas: argon) and CAST-soot, whereas no hygroscopic growth of the coated CAST-soot was found. Sulfuric acid coatings lead to an OC-content dependent hygroscopic growth of CAST-soot. Such a dependence was not observed for activation measurements. Coating with sulfuric acid decreased the amount of Polycyclic Aromatic Hydrocarbons (PAH), which were detected by AMS-measurements in the CAST-soot, and increased the amount of substances with lower molecular weight than the initial PAHs. We assume, that these reaction products increased the hygroscopicity of the coated particles in addition to the coating substance itself.

  9. Metabolically inert perfluorinated fatty acids directly activate uncoupling protein 1 in brown-fat mitochondria.

    PubMed

    Shabalina, Irina G; Kalinovich, Anastasia V; Cannon, Barbara; Nedergaard, Jan

    2016-05-01

    The metabolically inert perfluorinated fatty acids perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) can display fatty acid-like activity in biological systems. The uncoupling protein 1 (UCP1) in brown adipose tissue is physiologically (re)activated by fatty acids, including octanoate. This leads to bioenergetically uncoupled energy dissipation (heat production, thermogenesis). We have examined here the possibility that PFOA/PFOS can directly (re)activate UCP1 in isolated mouse brown-fat mitochondria. In wild-type brown-fat mitochondria, PFOS and PFOA overcame GDP-inhibited thermogenesis, leading to increased oxygen consumption and dissipated membrane potential. The absence of this effect in brown-fat mitochondria from UCP1-ablated mice indicated that it occurred through activation of UCP1. A competitive type of inhibition by increased GDP concentrations indicated interaction with the same mechanistic site as that utilized by fatty acids. No effect was observed in heart mitochondria, i.e., in mitochondria without UCP1. The stimulatory effect of PFOA/PFOS was not secondary to non-specific mitochondrial membrane permeabilization or to ROS production. Thus, metabolic effects of perfluorinated fatty acids could include direct brown adipose tissue (UCP1) activation. The possibility that this may lead to unwarranted extra heat production and thus extra utilization of food resources, leading to decreased fitness in mammalian wildlife, is discussed, as well as possible negative effects in humans. However, a possibility to utilize PFOA-/PFOS-like substances for activating UCP1 therapeutically in obesity-prone humans may also be envisaged.

  10. Zoledronic acid inhibits aromatase activity and phosphorylation: potential mechanism for additive zoledronic acid and letrozole drug interaction.

    PubMed

    Schech, Amanda J; Nemieboka, Brandon E; Brodie, Angela H

    2012-11-01

    Zoledronic acid (ZA), a bisphosphonate originally indicated for use in osteoporosis, has been reported to exert a direct effect on breast cancer cells, although the mechanism of this effect is currently unknown. Data from the ABCSG-12 and ZO-FAST clinical trials suggest that treatment with the combination of ZA and aromatase inhibitors (AI) result in increased disease free survival in breast cancer patients over AI alone. To determine whether the mechanism of this combination involved inhibition of aromatase, AC-1 cells (MCF-7 human breast cancer cells transfected with an aromatase construct) were treated simultaneously with combinations of ZA and AI letrozole. This combination significantly increased inhibition of aromatase activity of AC-1 cells when compared to letrozole alone. Treatment of 1 nM letrozole in combination with 1 μM or 10 μM ZA resulted in an additive drug interaction on inhibition of cell viability, as measured by MTT assay. Treatment with ZA was found to inhibit phosphorylation of aromatase on serine residues. Zoledronic acid was also shown to be more effective in inhibiting cell viability in aromatase transfected AC-1 cells when compared to inhibition of cell viability observed in non-transfected MCF-7. Estradiol was able to partially rescue the effect of 1 μM and 10 μM ZA on cell viability following treatment for 72 h, as shown by a shift to the right in the estradiol dose-response curve. In conclusion, these results indicate that the combination of ZA and letrozole results in an additive inhibition of cell viability. Furthermore, ZA alone can inhibit aromatase activity through inhibition of serine phosphorylation events important for aromatase enzymatic activity and contributes to inhibition of cell viability.

  11. [Molluscacide activity of a mixture of 6-n-alkyl salicylic acids (anacardic acid) and 2 of its complexes with copper (II) and lead (II)].

    PubMed

    Mendes, N M; de Oliveira, A B; Guimarães, J E; Pereira, J P; Katz, N

    1990-01-01

    The molluscicide activity of hexanic extract from Anacardium occidentale L. (cashew) nut shell, of copper (II) complex, of lead (II) complex and anacardic acid has been compared in the laboratory in an attempt to obtain better stability than anacardic acid. This was obtained from the hexanic extract of the cashew nut shell by precipitation with lead (II) hydroxide or cupric sulfate plus sodium hydroxide or (II) cupric hydroxide followed by treatment of lead (II) complex with a diluted solution of sulfuric acid. Ten products of the mixture obtained were tested on adults snails of Biomphalaria glabrata at 1 to 10 ppm. The most active products were copper (II) complex, obtained by cupric sulfate plus sodium hydroxide, and anacardic acid (sodium hydroxide) which presented activity at 4 ppm. The anacardic acid's lead content was above the limits accepted by the United States standards.

  12. Fatty acid microemulsion for the treatment of neonatal conjunctivitis: quantification, characterisation and evaluation of antimicrobial activity.

    PubMed

    Butt, Ummara; ElShaer, Amr; Snyder, Lori A S; Chaidemenou, Athina; Alany, Raid G

    2016-12-01

    Fatty acids (FAs) are used by many organisms as defence mechanism against virulent bacteria. The high safety profile and broad spectrum of activity make them potential alternatives to currently used topical antibiotics for the treatment of eye infections in neonates. The current study utilised a Design of Experiment approach to optimise the quantification of five fatty acids namely; lauric acid, tridecanoic acid, myristoleic acid, palmitoleic acid and α-linolenic acid. The significance of the influence of the experimental parameters such as volume of catalyst, volume of n-hexane, incubation temperature, incubation time and the number of extraction steps on derivatisation was established by statistical screening with a factorial approach. Derivatisation was confirmed using attenuated total reflectance infrared (ATR) and 1H NMR spectrum. A gas chromatographic method (GC-FID) was developed and validated according to ICH guidelines for the identification and quantification of fatty acids. The results were found to be linear over the concentration range studied with coefficient of variation greater than 0.99 and high recovery values and low intra-day and inter-day variation values for all FAs. Then, different α-linolenic acid-based microemulsions (MEs) were prepared using Tween 80 as surfactant, polyethylene glycol 400 (PEG 400) as co surfactant and water as aqueous phase. The developed GC method was used to quantify the FA content in ME formulations. The results indicated that the developed GC method is very effective to quantify the FA content in the ME formulations. The antimicrobial efficacy of FA-based MEs were tested against Staphylococcus aureus. It was concluded that the FA-based MEs have strong antimicrobial effect against S. aureus.

  13. A multifunctional lipoxygenase with fatty acid hydroperoxide cleaving activity from the moss Physcomitrella patens.

    PubMed

    Senger, Toralf; Wichard, Thomas; Kunze, Susan; Göbel, Cornelia; Lerchl, Jens; Pohnert, Georg; Feussner, Ivo

    2005-03-04

    A complex mixture of fatty acid-derived aldehydes, ketones, and alcohols is released upon wounding of the moss Physcomitrella patens. To investigate the formation of these oxylipins at the molecular level we isolated a lipoxygenase from P. patens, which was identified in an EST library by sequence homology to lipoxygenases from plants. Sequence analysis of the cDNA showed that it exhibits a domain structure similar to that of type2 lipoxygenases from plants, harboring an N-terminal import signal for chloroplasts. The recombinant protein was identified as arachidonate 12-lipoxygenase and linoleate 13-lipoxygenase with a preference for arachidonic acid and eicosapentaenoic acid. In contrast to any other lipoxygenase cloned so far, this enzyme exhibited in addition an unusual high hydroperoxidase and also a fatty acid chain-cleaving lyase activity. Because of these unique features the pronounced formation of (2Z)-octen-1-ol, 1-octen-3-ol, the dienal (5Z,8Z,10E)-12-oxo-dodecatrienoic acid and 12-keto eicosatetraenoic acid was observed when arachidonic acid was administered as substrate. 12-Hydroperoxy eicosatetraenoic acid was found to be only a minor product. Moreover, the P. patens LOX has a relaxed substrate tolerance accepting C(18)-C(22) fatty acids giving rise to even more LOX-derived products. In contrast to other lipoxygenases a highly diverse product spectrum is formed by a single enzyme accounting for most of the observed oxylipins produced by the moss. This single enzyme might, in a fast and effective way, be involved in the formation of signal and/or defense molecules thus contributing to the broad resistance of mosses against pathogens.

  14. Synthesis, characterization and catalytic activity of acid-base bifunctional materials through protection of amino groups

    SciTech Connect

    Shao, Yanqiu; Liu, Heng; Yu, Xiaofang; Guan, Jingqi; Kan, Qiubin

    2012-03-15

    Graphical abstract: Acid-base bifunctional mesoporous material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized under low acidic medium through protection of amino groups. Highlights: Black-Right-Pointing-Pointer The acid-base bifunctional material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized through protection of amino groups. Black-Right-Pointing-Pointer The obtained bifunctional material was tested for aldol condensation. Black-Right-Pointing-Pointer The SO{sub 3}H-SBA-15-NH{sub 2} catalyst containing amine and sulfonic acid groups exhibited excellent acid-basic properties. -- Abstract: Acid-base bifunctional mesoporous material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized under low acidic medium through protection of amino groups. X-ray diffraction (XRD), N{sub 2} adsorption-desorption, transmission electron micrographs (TEM), back titration, {sup 13}C magic-angle spinning (MAS) NMR and {sup 29}Si magic-angle spinning (MAS) NMR were employed to characterize the synthesized materials. The obtained bifunctional material was tested for aldol condensation reaction between acetone and 4-nitrobenzaldehyde. Compared with monofunctional catalysts of SO{sub 3}H-SBA-15 and SBA-15-NH{sub 2}, the bifunctional sample of SO{sub 3}H-SBA-15-NH{sub 2} containing amine and sulfonic acid groups exhibited excellent acid-basic properties, which make it possess high activity for the aldol condensation.

  15. Isolation of Lactic Acid Bacteria Showing Antioxidative and Probiotic Activities from Kimchi and Infant Feces.

    PubMed

    Ji, Keunho; Jang, Na Young; Kim, Young Tae

    2015-09-01

    The purpose of this study was to investigate lactic acid bacteria with antioxidative and probiotic activities isolated from Korean healthy infant feces and kimchi. Isolates A1, A2, S1, S2, and S3 were assigned to Lactobacillus sp. and isolates A3, A4, E1, E2, E3, and E4 were assigned to Leuconostoc sp. on the basis of their physiological properties and 16S ribosomal DNA sequence analysis. Most strains were confirmed as safe bioresources through nonhemolytic activities and non-production of harmful enzymes such as β-glucosidase, β- glucuronidase and tryptophanase. The 11 isolates showed different resistance to acid and bile acids. In addition, they exhibited antibacterial activity against foodborne bacteria, especially Bacillus cereus, Listeria monocytogenes, and Escherichia coli. Furthermore, all strains showed significantly high levels of hydrophobicity. The antioxidant effects of culture filtrates of the 11 strains included 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging capacity, 2.2'- azino-bis (2-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical cation scavenging activity, and superoxide dismutase activity. The results revealed that most of the culture filtrates have effective scavenging activity for DPPH and ABTS radicals. All strains appeared to have effective superoxide dismutase activity. In conclusion, the isolated strains A1, A3, S1, and S3 have significant probiotic activities applicable to the development of functional foods and health-related products. These strains might also contribute to preventing and controlling several diseases associated with oxidative stress, when used as probiotics.

  16. A new phenolic fatty acid ester with lipoxygenase inhibitory activity from Jacaranda filicifolia.

    PubMed

    Ali, R M; Houghton, P J

    1999-06-01

    The dichloromethane extract of the stem of jacaranda filicifolia Don. showed inhibitory activity in vitro against soybean 5-lipoxygenase. Systematic fractionation to isolate the compounds responsible resulted in the isolation of three active compounds, 2 alpha, 3 alpha-dihydroxyurs-12-en-28-oic acid, beta-sitosterol, and one of which was new which was characterised as 2-(4-hydroxyphenyl)ethyl 1-dodecyloctadecanoate. This type of compound has not previously been reported to inhibit lipoxygenase.

  17. Phytate degrading activities of lactic acid bacteria isolated from traditional fermented food

    NASA Astrophysics Data System (ADS)

    Damayanti, Ema; Ratisiwi, Febiyani Ndaru; Istiqomah, Lusty; Sembiring, Langkah; Febrisiantosa, Andi

    2017-03-01

    The objective of this study was to determine the potential of LAB with phytate degrading activity from fermented traditional food grain-based and legume-based. Lactic acid bacteria were isolated from different sources of traditional fermented food from Gunungkidul Yogyakarta Indonesia such as gembus tempeh (tofu waste), soybean tempeh, lamtoro tempeh (Leucaena bean) and kara tempeh. Isolation of LAB was performed using Total Plate Count (TPC) on de Man Rogosa Sharpe Agar (MRSA) medium supplemented with CaCO3. They were screened for their ability to degrade myo-inositol hexaphosphate or IP6 by using qualitative streak platemethod with modified de Man Rogosa-MorpholinoPropanesulfonic Acid Sharpe (MRS-MOPS) medium contained sodium salt of phytic acid as substrate and cobalt chloride staining (plate assay) method. The selected isolates were further assayed for phytase activities using quantitative method with spectrophotometer and the two selected isolates growth were optimized. Furthermore, thhe isolates that shown the highest phytase activity was characterized and identified using API 50 CH kitand 16S rRNA gene sequencing. The results showed that there were 18 LAB isolates obtained from samplesand 13 isolates were able to degrade sodium phytate based on qualitative screening. According to quantitative assay, the highest phytate degrading activities were found in TG-2(23.562 U/mL) and TG-1 (19.641 U/mL) isolated from gembus tempeh. The phytate activity of TG-2 was optimum at 37 °C with agitation, while the phytate activity of TG-1 was optimum at 45 °C without agitation. Characterization and identification of TG-2 isolate with the highest phytate degrading activity using API 50 CH and 16S rRNA showed that TG-2had homology with Lactobacillus fermentum. It could be concluded that LAB from from fermented traditional food grain-based and legume-based produced the extracellular phytase. Keywords: lactic acid bacteria, tempeh, phytatedegrading activity

  18. Auxin Activity of Substituted Benzoic Acids and Their Effect on Polar Auxin Transport 1

    PubMed Central

    Keitt, George W.; Baker, Robert A.

    1966-01-01

    Six dichloro-, 3 trichloro-, 2 triiodo-, and 3 heterosubstituted benzoic acids (amiben, dinoben, dicamba), and N-1-naphthylphthalamic acid have been tested for effects on growth and on polar auxin transport. Growth activity with and without kinetin was measured by effects on fresh and dry weights of 30-day cultures of fresh tobacco pith. Transport inhibition was measured by following uptake and output of IAA-2-14C through 10 mm bean epicotyl sections. The distribution of callus growth on vascularized tobacco stem segments was also observed. Avena first internode extension assays established the relative activities: dicamba > amiben > dinoben suggested by pith growth results. Growth effects of active compounds were similar with and without kinetin, except that amiben was less active with kinetin, while 2,3,6-trichlorobenzoic acid was more active with kinetin than alone. The weak auxin activity of NPA was confirmed. Transport experiments showed that NPA was the most inhibitory compound tested, followed by TIBA. Other compounds tested were at least 300 times less inhibitory to IAA transport. The best growth promoters were the least inhibitory to transport, and the most effective transport inhibitors were at best poor auxins. It is suggested that the weak auxin and auxin synergistic activity of TIBA (and perhaps 2,3-dichlorobenzoic acid) in extension growth tests arises from its inhibition of transport of endogenous or added auxin out of the sections, rather than from its intrinsic auxin activity. Chemically induced apolar callus growth on vascularized tobacco stem explants can arise from inhibition of native auxin transport, apolar growth stimulation by auxinic action of the test compound, or both. PMID:16656441

  19. Mitochondrial Dysfunction Is Involved in the Toxic Activity of Boric Acid against Saprolegnia

    PubMed Central

    Ali, Shimaa E.; Thoen, Even; Evensen, Øystein; Wiik-Nielsen, Jannicke; Gamil, Amr A. A.; Skaar, Ida

    2014-01-01

    There has been a significant increase in the incidence of Saprolegnia infections over the past decades, especially after the banning of malachite green. Very often these infections are associated with high economic losses in salmonid farms and hatcheries. The use of boric acid to control the disease has been investigated recently both under in vitro and in vivo conditions, however its possible mode of action against fish pathogenic Saprolegnia is not known. In this study, we have explored the transformation in Saprolegnia spores/hyphae after exposure to boric acid (1 g/L) over a period 4–24 h post treatment. Using transmission electron microscopy (TEM), early changes in Saprolegnia spores were detected. Mitochondrial degeneration was the most obvious sign observed following 4 h treatment in about 20% of randomly selected spores. We also investigated the effect of the treatment on nuclear division, mitochondrial activity and function using confocal laser scanning microscopy (CLSM). Fluorescence microscopy was also used to test the effect of treatment on mitochondrial membrane potential and formation of reactive oxygen species. Additionally, the viability and proliferation of treated spores that correlated to mitochondrial enzymatic activity were tested using an MTS assay. All obtained data pointed towards changes in the mitochondrial structure, membrane potential and enzymatic activity following treatment. We have found that boric acid has no effect on the integrity of membranes of Saprolegnia spores at concentrations tested. It is therefore likely that mitochondrial dysfunction is involved in the toxic activity of boric acid against Saprolegnia spp. PMID:25354209

  20. Nanocrosses of lead sulphate as the negative active material of lead acid batteries

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Gao, Pengran; Bu, Xianfu; Kuang, Guizhi; Liu, Wei; Lei, Lixu

    2014-10-01

    Lead sulphate transforms into PbO2 and Pb in the positive and negative electrodes, respectively, when a lead acid battery is charged, thus, it is an active material. It is also generally acknowledged that sulphation results in the failure of lead acid batteries; therefore, it is very interesting to find out how to make lead sulphate more electrochemically active. Here, we demonstrate that nanocrystalline lead sulphate can be used as excellent negative active material in lead acid batteries. The lead sulphate nanocrystals, which are prepared by a facile chemical precipitation of aqueous lead acetate and sodium sulphate in a few minutes, look like crosses with diameter of each arm being 100 nm to 3 μm. The electrode is effectively formed in much shorter time than traditional technique, yet it discharges a capacity of 103 mA h g-1 at the current density of 120 mA g-1, which is 24% higher than that discharged by the electrode made from leady oxide under the same condition. During 100% DOD cycles, more than 80% of that capacity remains in 550 cycles. These results show that lead sulphate can be a nice negative active material in lead acid batteries.