Science.gov

Sample records for acid chemical reporters

  1. A case report of a chemical burn due to the misuse of glacial acetic acid.

    PubMed

    Yoo, Jun-Ho; Roh, Si-Gyun; Lee, Nae-Ho; Yang, Kyung-Moo; Moon, Ji-Hyun

    2010-12-01

    As young and elastic skin is what everyone dreams of, various measures have been implemented including chemical, laser resurfacing and dermabrasion to improve the condition of ageing skin. However, the high cost of these procedures prevents the poor from having access to treatment. Glacial acetic acid is widely used as a substitute for chemical peeling because it is readily easily available and affordable. However, its use can result in a number of serious complications. A 28-year-old female patient was admitted to our hospital with deep second-degree chemical burns on her face caused by the application of a mixture of glacial acetic acid and flour for chemical peeling. During a 6-month follow-up, hypertrophic scarring developed on the both nasolabial folds despite scar management. Glacial acetic acid is a concentrated form of the organic acid, which gives vinegar its sour taste and pungent smell, and it is also an important reagent during the production of organic compounds. Unfortunately, misleading information regarding the use of glacial acetic acid for chemical peeling is causing serious chemical burns. Furthermore, there is high possibility of a poor prognosis, which includes inflammation, hypertrophic scar formation and pigmentation associated with its misuse. Therefore, we report a case of facial chemical burning, due to the misuse of glacial acetic acid, and hope that this report leads to a better understanding regarding the use of this reagent.

  2. Chemical Data Reporting

    EPA Pesticide Factsheets

    The Chemical Data Reporting (CDR) site provides information on reporting requirements under TSCA's Chemical Data Reporting Rule. The site provides instruction to data submitters on how to report and enable users to download the reported information.

  3. Phenotypic chemical screening using a zebrafish neural crest EMT reporter identifies retinoic acid as an inhibitor of epithelial morphogenesis

    PubMed Central

    Jimenez, Laura; Wang, Jindong; Morrison, Monique A.; Whatcott, Clifford; Soh, Katherine K.; Warner, Steven; Bearss, David; Jette, Cicely A.; Stewart, Rodney A.

    2016-01-01

    ABSTRACT The epithelial-to-mesenchymal transition (EMT) is a highly conserved morphogenetic program essential for embryogenesis, regeneration and cancer metastasis. In cancer cells, EMT also triggers cellular reprogramming and chemoresistance, which underlie disease relapse and decreased survival. Hence, identifying compounds that block EMT is essential to prevent or eradicate disseminated tumor cells. Here, we establish a whole-animal-based EMT reporter in zebrafish for rapid drug screening, called Tg(snai1b:GFP), which labels epithelial cells undergoing EMT to produce sox10-positive neural crest (NC) cells. Time-lapse and lineage analysis of Tg(snai1b:GFP) embryos reveal that cranial NC cells delaminate from two regions: an early population delaminates adjacent to the neural plate, whereas a later population delaminates from within the dorsal neural tube. Treating Tg(snai1b:GFP) embryos with candidate small-molecule EMT-inhibiting compounds identified TP-0903, a multi-kinase inhibitor that blocked cranial NC cell delamination in both the lateral and medial populations. RNA sequencing (RNA-Seq) analysis and chemical rescue experiments show that TP-0903 acts through stimulating retinoic acid (RA) biosynthesis and RA-dependent transcription. These studies identify TP-0903 as a new therapeutic for activating RA in vivo and raise the possibility that RA-dependent inhibition of EMT contributes to its prior success in eliminating disseminated cancer cells. PMID:26794130

  4. Analysis of uncertainties in the regional acid deposition model, version 2 (RADM2), gas-phase chemical mechanism. Final report

    SciTech Connect

    Gao, D.; Milford, J.B.; Stockwell, W.R.

    1996-04-01

    This report describes the results of a detailed analysis of uncertainties in the RADM2 chemical mechanism, which was developed by Stockwell et al. (1990) for use in urban and regional scale models of the formation and transport of ozone and other photochemical air pollutants. The uncertainty analysis was conducted for box model simulations of chemical conditions representing summertime smog episodes in polluted rural and urban areas. Estimated uncertainties in the rate parameters and product yields of the mechanism were propagated through the simulations using Monte Carlo analysis with a Latin Hypercube Sampling scheme. Uncertainty estimates for the mechanism parameters were compiled from published reviews, supplemented as necessary by original estimates. Correlations between parameters were considered in the analysis as appropriate.

  5. Chemical and biological characteristics of Emerald Lake and the streams in its watershed and the responses of the lake and streams to acidic deposition. Final report

    SciTech Connect

    Melack, J.M.; Cooper, S.D.; Jenkins, T.M.; Barmuta, L.; Hamilton, S.

    1989-03-14

    This report describes the results of field work conducted at Emerald Lake in Sequoia National Park during the period of 1983-88, with an emphasis on the effects of acid deposition on a high-elevation lake in the Sierra Nevada. Time-series data were collected for major ions, nutrients, trace metals, chlorophyll, zooplankton and zoobenthos. Mass balances were calculated for major solutes in the lake, including analysis of the inflows and major solutes in the lake, including analysis of the inflows and outflow from the lake. The ecology and population dynamics of the resident population of brook trout were studied in detail. Biological surveys indicated the presence of the Pacific tree frog in small ponds in the vicinity of Emerald Lake. Experimental acidification of large bags in the lake was used to develop dose-response relationships for the major zooplankton species, especially Daphnia. The conclusion of the research to date is that Emerald Lake is not currently showing serious chemical or biological effects of acidification. Acid-sensitive animals are found in the lake and associated streams. The surface waters of the Emerald Basin are extremely dilute and ANC-generating processes in the lake are small compared to that of the watershed. Acidic episodes have been recorded. If these episodes were to increase, the surface waters and the biological populations could be readily affected.

  6. An Acid Hydrocarbon: A Chemical Paradox

    ERIC Educational Resources Information Center

    Burke, Jeffrey T.

    2004-01-01

    The chemical paradox of cyclopentadiene, a hydrocarbon, producing bubbles like a Bronsted acid is observed. The explanation that it is the comparative thermodynamic constancy of the fragrant cyclopentadienyl anion, which produces the powerful effect, resolves the paradox.

  7. Chemical of the Month: Nitric Acid.

    ERIC Educational Resources Information Center

    Pannu, Sardul S.

    1984-01-01

    Presents background information on nitric acid including old names, history, occurrence, methods of preparation, uses, production, and price. Includes such chemical properties as decomposition; acidity, oxidation of metals and nonmetals; reactions with organic and inorganic compounds; gaseous fluorine; and nitrating properties. Also discusses bond…

  8. Quantum chemical characterization of solid acid catalysts

    NASA Astrophysics Data System (ADS)

    Ramani, Sriram

    Liquid and solid acids are used as catalysts in many industrially-important petrochemical processes, alternate fuel production methods and synthesis of gasoline octane-number boosters. Liquid acids pose several disadvantages such as health problems, water pollution and high cost of separation from the product stream. While solid acid catalysts do not have any of these disadvantages, their catalytic efficiency is less than that of liquid acids. Thus, a better understanding of the origin and nature of solid acidity is necessary to design solid acids of strength and stability comparable to that of the strong liquid acids in use. In addition, because of the heterogeneous nature of the solid acid, sites the acidity characterization methods used with liquid acids cannot provide a reliable measure of the solid acidity. Ongoing experimental research worldwide to develop a solid acidity scale has been only partly successful. This provides the motivation to use theoretical approaches such as computational chemistry methods to gain insight on the solid acidity, and thus complement the experimental studies. This work employs ab initio quantum mechanical computational chemistry techniques to calculate the electronic properties which provide a fundamental measure of the solid acidity. The objective of this dissertation is to examine the genesis and nature of solid acidity in silica-alumina, supported Mo oxide and sulfated Zr oxide catalysts as a function of their chemical composition and structural and electronic properties. This study also successfully demonstrates a strategy for the development of a solid acidity scale based on the calculated adsorption strength of standard gas-phase molecules on the solid acids.

  9. Health Hazard Evaluation Report HETA 83-166-1594, Witco Chemical Corporation, Perth Amboy, New Jersey. [Ethylene oxide, glycols, and adipic acid

    SciTech Connect

    Cummings, C.E.; Roseman, J.

    1985-05-01

    Area and personel air samples were analyzed for ethylene oxide, glycols, and adipic-acid at the Witco Chemical Corporation, Perth Amboy, New Jersey from November to December, 1983 and May, 1984. The evaluation was requested by the union to investigate possible health effects due to polychlorinated biphenyls (PCBs), glycols, and ethylene oxide. The evaluation was assigned to the New Jersey State Department of Health. The authors conclude that health hazards due to ethylene oxide and airborne fatty acid exposures exist. Recommendations include improving ventilation and work practices and implementing an OSHA approved respirator program.

  10. [The forensic chemical investigation of acetylsalicylic acid].

    PubMed

    Shormanov, V K; Chupak, V V; Pobedonstseva, M N; Maslov, S V; Kibets, N A; Tikhopoeva, N N

    2015-01-01

    The objective of the present study was to develop the universal approach to the quantitative determination of acetylsalicylic acid in biological tissues and fluids to be applied in the practice of forensic chemical expertise with the use of thin-layer chromatography, gas chromatography and mass spectrometry, low-pressure column chromatography, and spectrophotometry. A system of solvents consisting of acetone and ethyl acetate (7:3) was proposed as a universal agent for extracting acetylsalicylic acid from the cadaveric tissues and blood. It was shown that acetylsalicylic acid and its principal metabolite, salicylic acid, can be purified from the endogenous admixtures present in the biological materials by column chromatography on silica gel L 40/100 mcm. Salicylic acid in extracts from biological materials was identified and quantified with the use of thin-layer chromatography, gas chromatography/mass spectrometry, and electronic spectrophotometry. The method for forensic chemical investigation of acetylsalicylic acid has been developed and applied in the analysis of the material provided for expertise.

  11. Chemical Reporters for Exploring Protein Acylation

    PubMed Central

    Thinon, Emmanuelle; Hang, Howard C.

    2015-01-01

    Proteins are acylated by a variety of metabolites that regulates many important cellular pathways in all kingdoms of life. Acyl groups in cells can vary in structure from the smallest unit, acetate, to modified long chain fatty acids, all of which can be activated and covalently attached to diverse amino acid side chains and consequently modulate protein function. For example, acetylation of Lys residues can alter the charge state of proteins and generate new recognition elements for protein–protein interactions. Alternatively, long chain fatty-acylation targets proteins to membranes and enables spatial control of cell signalling. To facilitate the analysis of protein acylation in biology, acyl analogues bearing alkyne or azide tags have been developed that enable fluorescent imaging and proteomic profiling of modified proteins using bioorthogonal ligation methods. Herein, we summarize the currently available acylation chemical reporters and highlight their utility to discover and quantify the roles of protein acylation in biology. PMID:25849926

  12. Anionic Lewis Acids. A Chemical Oxymoron.

    DTIC Science & Technology

    1995-10-17

    NUMBER OF PAGES12 anionic lewis acid ab initio synthesis 1 2 methide FT NMR 16. PRICE CODE imide multi-nule r 17. SECURITY CLASSIFICATION 18...chemically robust, thermally stable, non-toxic, environmentally safe, and cost-effective. One of our current areas of interest involves the synthesis and...developing a predictive knowledge base that can be used to guide the synthesis of new locally electron-deficient anions. Additionally, we proposed to

  13. Chemicals Reported for the 2012 Chemical Data Reporting (CDR) in Alphabetical Order

    EPA Pesticide Factsheets

    For the 2012 CDR, 7,674 unique chemicals were reported by manufacturers (including importers).Chemicals are listed in alphabetical order by CA Index Name (for non-confidential chemicals) or by generic chemical name.

  14. Chemical and physical structures of proteinoids and related polyamino acids

    NASA Astrophysics Data System (ADS)

    Mita, Hajime; Kuwahara, Yusuke; Nomoto, Shinya

    Studies of polyamino acid formation pathways in the prebiotic condition are important for the study of the origins of life. Several pathways of prebiotic polyamino acid formation have been reported. Heating of monoammonium malate [1] and heating of amino acids in molten urea [2] are important pathways of the prebiotic peptide formation. The former case, globular structure called proteinoid microsphere is formed in aqueous conditions. The later case, polyamino acids are formed from unrestricted amino acid species. Heating of aqueous aspargine is also interesting pathway for the prebiotic polyamino acid formation, because polyamino acid formation proceeds in aqueous condition [3]. In this study, we analyzed the chemical structure of the proteinoids and related polyamino acids formed in the above three pathways using with mass spectrometer. In addition, their physical structures are analyzed by the electron and optical microscopes, in order to determine the self-organization abilities. We discuss the relation between the chemical and the physical structures for the origins of life. References [1] Harada, K., J. Org. Chem., 24, 1662 (1959), Fox, S. W., Harada, K., and Kendrick, J., Science, 129, 1221 (1959). [2] Terasaki, M., Nomoto, S., Mita, H., and Shimoyama, A., Chem. Lett., 480 (2002), Mita, H., Nomoto, S., Terasaki, M., Shimoyama, A., and Yamamoto, Y., Int. J. Astrobiol., 4, 145 (2005). [3] Kovacs, K and Nagy, H., Nature, 190, 531 (1961), Munegumi, T., Tanikawa, N., Mita, H. and Harada, K., Viva Origino, 22, 109 (1994).

  15. Chemical Synthesis of a Hyaluronic Acid Decasaccharide

    PubMed Central

    Lu, Xiaowei; Kamat, Medha N.; Huang, Lijun; Huang, Xuefei

    2009-01-01

    The chemical synthesis of a hyaluronic acid decasaccharide using the pre-activation based chemoselective glycosylation strategy is described. Assembly of large oligosaccharides is generally challenging due to the increased difficulties in both glycosylation and deprotection. Indeed, the same building blocks previously employed for hyaluronic acid hexasaccharide syntheses failed to yield the desired decasaccharide. After extensive experimentation, the decasaccharide backbone was successfully constructed with an overall yield of 37% from disaccharide building blocks. The trichloroacetyl group was used as the nitrogen protective group for the glucosamine units and the addition of TMSOTf was found to be crucial to suppress the formation of trichloromethyl oxazoline side-product and enable high glycosylation yield. For deprotections, the combination of a mild basic condition and the monitoring methodology using 1H-NMR allowed the removal of all base-labile protective groups, which facilitated the generation of the fully deprotected HA decasaccharide. PMID:19764799

  16. Chemical sciences, annual report 1993

    SciTech Connect

    Not Available

    1994-10-01

    The Chemical Sciences Division (CSD) is one of eleven research Divisions of the Lawrence Berkeley Laboratory, a DOE National Laboratory. In FY 1993, the Division made considerable progress on developing two end-stations and a beamline to advance combustion dynamics at the Advanced Light Source (ALS). In support of DOE`s national role in combustion research and chemical science, the beamline effort will enable researchers from around the world to make fundamental advances in understanding the structure and reactivity of critical reaction intermediates and transients, and in understanding the dynamics of elementary chemical reactions. The Division has continued to place a strong emphasis on full compliance with environmental health and safety guidelines and regulations and has made progress in technology transfer to industry. Finally, the Division has begun a new program in advanced battery research and development that should help strengthen industrial competitiveness both at home and abroad.

  17. Quantum chemical calculations of glycine glutaric acid

    NASA Astrophysics Data System (ADS)

    Arioǧlu, ćaǧla; Tamer, Ömer; Avci, Davut; Atalay, Yusuf

    2017-02-01

    Density functional theory (DFT) calculations of glycine glutaric acid were performed by using B3LYP levels with 6-311++G(d,p) basis set. The theoretical structural parameters such as bond lengths and bond angles are in a good agreement with the experimental values of the title compound. HOMO and LUMO energies were calculated, and the obtained energy gap shows that charge transfer occurs in the title compound. Vibrational frequencies were calculated and compare with experimental ones. 3D molecular surfaces of the title compound were simulated using the same level and basis set. Finally, the 13C and 1H NMR chemical shift values were calculated by the application of the gauge independent atomic orbital (GIAO) method.

  18. Chemical Safety Vulnerability Working Group Report

    SciTech Connect

    Not Available

    1994-09-01

    This report marks the culmination of a 4-month review conducted to identify chemical safety vulnerabilities existing at DOE facilities. This review is an integral part of DOE's efforts to raise its commitment to chemical safety to the same level as that for nuclear safety.

  19. Chemical hazards from acid crater lakes

    NASA Astrophysics Data System (ADS)

    van Bergen, M. J.; Sumarti, S.; Heikens, A.; Bogaard, T. A.; Hartiyatun, S.

    2003-04-01

    Acid crater lakes, which are hosted by a considerable number of active volcanoes, form a potential threat for local ecosystems and human health, as they commonly contain large amounts of dissolved chemicals. Subsurface seepage or overflow can lead to severe deterioration of the water quality of rivers and wells, as observations around several of these volcanoes have shown. The Ijen crater lake in East Java (Indonesia) is a striking example, as this reservoir of hyperacid (pH<0.5) sulphate, chloride and fluoride-rich water is the source of a ca. 50 km long acid river that transports substantial quantities of potentially toxic elements. A downstream trend of increasing pH from <1 to 2.5-4 is largely due to dilution with moderately acid springs (pH= ca. 4) and neutral tributaries (pH= ca. 7) inside the Ijen caldera. Geochemical controls that regulate element transport are subject to seasonal fluctuations in rainfall. Long-term monitoring has shown that fluoride levels pose some of the most severe environmental threats. Its concentration decreases from ca. 1300 mg/kg in the lake to ca. 10 mg/kg in a coastal area downstream, where virtually all of the river water is used for irrigating rice fields and other cropland. Apart from serious problems for agriculture, our survey of 55 drinking water wells in the irrigation area shows that 50% contain fluoride above the 1.5 ppm WHO limit, in line with the observation that dental fluorosis is widespread among the ca. 100,000 residents of the area. A conspicuous spatial correlation between fluoride concentrations and the irrigation system suggest that long-term (century) infiltration of irrigation water may have affected the quality of groundwater. Fluorosis is also a problem in some villages within the caldera, where well water sources may have a more direct subsurface connection with the lake system. From our observations we conclude that water-quality monitoring is especially needed for health reasons in volcanic areas where

  20. Chemical Sciences Division: Annual report 1992

    SciTech Connect

    Not Available

    1993-10-01

    The Chemical Sciences Division (CSD) is one of twelve research Divisions of the Lawrence Berkeley Laboratory, a Department of Energy National Laboratory. The CSD is composed of individual groups and research programs that are organized into five scientific areas: Chemical Physics, Inorganic/Organometallic Chemistry, Actinide Chemistry, Atomic Physics, and Physical Chemistry. This report describes progress by the CSD for 1992. Also included are remarks by the Division Director, a description of work for others (United States Office of Naval Research), and appendices of the Division personnel and an index of investigators. Research reports are grouped as Fundamental Interactions (Photochemical and Radiation Sciences, Chemical Physics, Atomic Physics) or Processes and Techniques (Chemical Energy, Heavy-Element Chemistry, and Chemical Engineering Sciences).

  1. Role of succinic acid in chemical evolution

    NASA Technical Reports Server (NTRS)

    Negron-Mendoza, A.; Ponnamperuma, C.

    1982-01-01

    Succinic acid is converted into other carboxylic acids by ionizing radiation. The results obtained have been correlated with the ready formation of this compound in prebiotic experiments. Its role in biological systems may be related to its prebiotic occurrence.

  2. Catalytic upgrading of butyric acid towards fine chemicals and biofuels

    PubMed Central

    Sjöblom, Magnus; Matsakas, Leonidas; Christakopoulos, Paul; Rova, Ulrika

    2016-01-01

    Fermentation-based production of butyric acid is robust and efficient. Modern catalytic technologies make it possible to convert butyric acid to important fine chemicals and biofuels. Here, current chemocatalytic and biocatalytic conversion methods are reviewed with a focus on upgrading butyric acid to 1-butanol or butyl-butyrate. Supported Ruthenium- and Platinum-based catalyst and lipase exhibit important activities which can pave the way for more sustainable process concepts for the production of green fuels and chemicals. PMID:26994015

  3. Acid-functionalized polyolefin materials and their use in acid-promoted chemical reactions

    DOEpatents

    Oyola, Yatsandra; Tian, Chengcheng; Bauer, John Christopher; Dai, Sheng

    2016-06-07

    An acid-functionalized polyolefin material that can be used as an acid catalyst in a wide range of acid-promoted chemical reactions, wherein the acid-functionalized polyolefin material includes a polyolefin backbone on which acid groups are appended. Also described is a method for the preparation of the acid catalyst in which a precursor polyolefin is subjected to ionizing radiation (e.g., electron beam irradiation) of sufficient power and the irradiated precursor polyolefin reacted with at least one vinyl monomer having an acid group thereon. Further described is a method for conducting an acid-promoted chemical reaction, wherein an acid-reactive organic precursor is contacted in liquid form with a solid heterogeneous acid catalyst comprising a polyolefin backbone of at least 1 micron in one dimension and having carboxylic acid groups and either sulfonic acid or phosphoric acid groups appended thereto.

  4. TSCA Chemical Data Reporting Fact Sheet: Reporting Manufactured Chemical Substances from Metal Mining and Related Activities

    EPA Pesticide Factsheets

    This fact sheet provides guidance on the Chemical Data Reporting (CDR) rule requirements related to the reporting of mined metals, intermediates, and byproducts manufactured during metal mining and related activities.

  5. Annual Report 2000. Chemical Structure and Dynamics

    SciTech Connect

    Colson, Steven D.; McDowell, Robin S.

    2001-04-15

    This annual report describes the research and accomplishments of the Chemical Structure and Dynamics Program in the year 2000, one of six research programs at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) - a multidisciplinary, national scientific user facility and research organization. The Chemical Structure and Dynamics (CS&D) program is meeting the need for a fundamental, molecular-level understanding by 1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; 2) developing a multidisciplinary capability for describing interfacial chemical processes relevant to environmental chemistry; and 3) developing state-of-the-art research and analytical methods for characterizing complex materials of the types found in natural and contaminated systems.

  6. Chemical Data Reporting Byproduct and Recycling Scenarios

    EPA Pesticide Factsheets

    This document addresses a series of 18 industry scenarios and questions related to EPA’s Chemical Data Reporting (CDR) rule. The primary goal of this document is to help the regulated community comply with the requirements of the CDR rule.

  7. TSCA Chemical Data Reporting Fact Sheet: Articles

    EPA Pesticide Factsheets

    This fact sheet provides guidance on classifying articles under the Toxic Substances Control Act (TSCA) and determining the applicability of EPA’s articles exclusion policy for purposes of the Chemical Data Reporting (CDR) rule. The primary goal of this document is to help the regulated community comply with the requirements of the CDR rule.

  8. Safety in the Chemical Laboratory. Laboratory Chemical Reports: The First Step in Chemical Safety.

    ERIC Educational Resources Information Center

    Renfrew, Malcolm M., Ed.; Tenpas, Carl J.

    1980-01-01

    Describes a prelab activity, the chemistry report, that acquaints college students with the nature of the chemical(s) they are using in the laboratory. Methodology, experimental procedures and safety rules are emphasized, with particular emphasis on potential hazards, safety requirements and emergency procedures. (CS)

  9. Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water.

    PubMed

    Wang, Yanliang; Deng, Weiping; Wang, Binju; Zhang, Qinghong; Wan, Xiaoyue; Tang, Zhenchen; Wang, Ye; Zhu, Chun; Cao, Zexing; Wang, Guichang; Wan, Huilin

    2013-01-01

    The direct transformation of cellulose, which is the main component of lignocellulosic biomass, into building-block chemicals is the key to establishing biomass-based sustainable chemical processes. Only limited successes have been achieved for such transformations under mild conditions. Here we report the simple and efficient chemocatalytic conversion of cellulose in water in the presence of dilute lead(II) ions, into lactic acid, which is a high-value chemical used for the production of fine chemicals and biodegradable plastics. The lactic acid yield from microcrystalline cellulose and several lignocellulose-based raw biomasses is >60% at 463 K. Both theoretical and experimental studies suggest that lead(II) in combination with water catalyses a series of cascading steps for lactic acid formation, including the isomerization of glucose formed via the hydrolysis of cellulose into fructose, the selective cleavage of the C3-C4 bond of fructose to trioses and the selective conversion of trioses into lactic acid.

  10. The Chemical Structure and Acid Deterioration of Paper.

    ERIC Educational Resources Information Center

    Hollinger, William K., Jr.

    1984-01-01

    Describes the chemical structure of paper, including subatomic particles, atoms and molecules, and the forces that bond atoms into molecules, molecules into chains, chains into sheets, and sheets into layers. Acid is defined, and the deleterious role of acid in breaking the forces that bond atoms into molecules is detailed. (EJS)

  11. Chemical structure and dynamics: Annual report 1993

    SciTech Connect

    Colson, S.D.

    1994-07-01

    The Chemical Structure and Dynamics program responds to the need for a fundamental, molecular-level understanding of chemistry at the wide variety of environmentally-important interfaces. The research program is built around the established relationship between structure, thermodynamics, and kinetics. This research effort continues to evolve into a program of rigorous studies of fundamental molecular processes in model systems (e.g., well-characterized surfaces, single-component solutions, clusters, and biological molecules), and studies of complex systems found in the environment. Experimental studies of molecular and supramolecular structures and thermodynamics are key to understanding the nature of matter, and lead to direct comparison with computational results. Kinetic and mechanistic measurements, combined with real-time dynamics measurements of atomic and molecular motions during chemical reactions, provide for a molecular-level description of chemical reactions. The anticipated results of this work are the achievement of a quantitative understanding of chemical processes at complex interfaces, the development of new techniques for the detection and measurement of species at such interfaces, and the interpretation and extrapolation of the observations in terms of models of interfacial chemistry. The Chemical Structure and Dynamics research program includes five areas described in detail in this report: Reaction mechanisms at solid interfaces; Solution and solution interfaces; Structure and dynamics of biological systems; Analytical methods development; and atmospheric chemistry. Extended abstracts are presented for 23 studies.

  12. TSCA Chemical Data Reporting Fact Sheet: Imported Articles

    EPA Pesticide Factsheets

    This fact sheet provides guidance and sample reporting scenarios on the reporting exemption for the import of a chemical substance as part of an article, for purposes of the Chemical Data Reporting (CDR) rule.

  13. 40 CFR 766.38 - Reporting on precursor chemical substances.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Reporting on precursor chemical... SUBSTANCES CONTROL ACT DIBENZO-PARA-DIOXINS/DIBENZOFURANS Specific Chemical Testing/Reporting Requirements § 766.38 Reporting on precursor chemical substances. (a) Identification of precursor chemical...

  14. 40 CFR 766.38 - Reporting on precursor chemical substances.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Reporting on precursor chemical... SUBSTANCES CONTROL ACT DIBENZO-PARA-DIOXINS/DIBENZOFURANS Specific Chemical Testing/Reporting Requirements § 766.38 Reporting on precursor chemical substances. (a) Identification of precursor chemical...

  15. 40 CFR 766.38 - Reporting on precursor chemical substances.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reporting on precursor chemical... SUBSTANCES CONTROL ACT DIBENZO-PARA-DIOXINS/DIBENZOFURANS Specific Chemical Testing/Reporting Requirements § 766.38 Reporting on precursor chemical substances. (a) Identification of precursor chemical...

  16. Chemical Approaches to Studying Labile Amino Acid Phosphorylation.

    PubMed

    Marmelstein, Alan M; Moreno, Javier; Fiedler, Dorothea

    2017-04-01

    Phosphorylation of serine, threonine, and tyrosine residues is the archetypal posttranslational modification of proteins. While phosphorylation of these residues has become standard textbook knowledge, phosphorylation of other amino acid side chains is underappreciated and minimally characterized by comparison. This disparity is rooted in the relative instability of these chemically distinct amino acid side chain moieties, namely phosphoramidates, acyl phosphates, thiophosphates, and phosphoanhydrides. In the case of the O-phosphorylated amino acids, synthetic constructs were critical to assessing their stability and developing tools for their study. As the chemical biology community has become more aware of these alternative phosphorylation sites, methodology has been developed for the synthesis of well-characterized standards and close mimics of these phosphorylated amino acids as well. In this article, we review the synthetic chemistry that is a prerequisite to progress in this field.

  17. Chemical processes induced by OH attack on nucleic acids

    NASA Astrophysics Data System (ADS)

    Kuwabara, Mikinori

    Recent studies concerning the chemical processes in nucleic acids starting with OH attack to produce free radicals and ending with the formation of stable products were reviewed. Using nucleosides, nucleotides and homopolynucleotides as model compounds, and DNA itself, free radicals produced by OH attack on nucleic acids have been mainly studied by a method combining ESR, spin trapping and high-performance liquid chromatography. For identification of final products in both base and sugar moieties of nucleic acids, mass and NMR spectroscopies combined with gas chromatography or high-performance liquid chromatography are usually employed. Kinetic measurements of structural alterations in the polynucleotides and DNA after OH attack have been made by a method combining electron-pulse irradiation and laser-light scattering. From these studies, the chemical reaction processes from the generation of free radicals in nucleic acids by OH attack, through the formation of unstable intermediates, to the formation of final products can be described.

  18. Amineborane Based Chemical Hydrogen Storage - Final Report

    SciTech Connect

    Sneddon, Larry G.

    2011-04-21

    demonstrated that H2-­release from chemical hydrides can occur by a number of different mechanistic pathways and strongly suggest that optimal chemical ­hydride based H2­release systems may require the use of synergistic dehydrogenation methods to induce H2­-loss from chemically different intermediates formed during release reactions. The efficient regeneration of ammonia borane from BNHx spent fuel is one of the most challenging problems that will have to be overcome in order to utilize AB-based hydrogen storage. Three Center partners, LANL, PNNL and Penn, each took different complimentary approaches to AB regeneration. The Penn approach focused on a strategy involving spent-fuel digestion with superacidic acids to produce boron-halides (BX3) that could then be converted to AB by coordination/reduction/displacement processes. While the Penn boron-halide reduction studies successfully demonstrated that a dialkylsulfide-based coordination/reduction/displacement process gave quantitative conversions of BBr3 to ammonia borane with efficient and safe product separations, the fact that AB spent-fuels could not be digested in good yields to BX3 halides led to a No-Go decision on this overall AB-regeneration strategy.

  19. Chemical remodeling of cell-surface sialic acids through a palladium-triggered bioorthogonal elimination reaction.

    PubMed

    Wang, Jie; Cheng, Bo; Li, Jie; Zhang, Zhaoyue; Hong, Weiyao; Chen, Xing; Chen, Peng R

    2015-04-27

    We herein report a chemical decaging strategy for the in situ generation of neuramic acid (Neu), a unique type of sialic acid, on live cells by the use of a palladium-mediated bioorthogonal elimination reaction. Palladium nanoparticles (Pd NPs) were found to be a highly efficient and biocompatible depropargylation catalyst for the direct conversion of metabolically incorporated N-(propargyloxycarbonyl)neuramic acid (Neu5Proc) into Neu on cell-surface glycans. This conversion chemically mimics the enzymatic de-N-acetylation of N-acetylneuramic acid (Neu5Ac), a proposed mechanism for the natural occurrence of Neu on cell-surface glycans. The bioorthogonal elimination was also exploited for the manipulation of cell-surface charge by unmasking the free amine at C5 to neutralize the negatively charged carboxyl group at C1 of sialic acids.

  20. Glutamic Acid Selective Chemical Cleavage of Peptide Bonds.

    PubMed

    Nalbone, Joseph M; Lahankar, Neelam; Buissereth, Lyssa; Raj, Monika

    2016-03-04

    Site-specific hydrolysis of peptide bonds at glutamic acid under neutral aqueous conditions is reported. The method relies on the activation of the backbone amide chain at glutamic acid by the formation of a pyroglutamyl (pGlu) imide moiety. This activation increases the susceptibility of a peptide bond toward hydrolysis. The method is highly specific and demonstrates broad substrate scope including cleavage of various bioactive peptides with unnatural amino acid residues, which are unsuitable substrates for enzymatic hydrolysis.

  1. TSCA Chemical Data Reporting Fact Sheet: Chemical Substances which are the Subject of Certain TSCA Actions

    EPA Pesticide Factsheets

    This fact sheet provides guidance for people who may be subject to the Chemical Data Reporting (CDR) rule on how their requirements for reporting for 2016 may be affected when chemical substances are the subject of certain TSCA actions.

  2. Growth of Azotobacter chroococcum in chemically defined media containing p-hydroxybenzoic acid and protocatechuic acid.

    PubMed

    Juarez, B; Martinez-Toledo, M V; Gonzalez-Lopez, J

    2005-06-01

    Growth and utilization of different phenolic acids present in olive mill wastewater (OMW) by Azotobacter chroococcum were studied in chemically defined media. Growth and utilization of phenolic acids were only detected when the microorganism was cultured on p-hydroxybenzoic acid at concentration from 0.01% to 0.5% (w/v) and protocatechuic acid at concentration from 0.01% to 0.3% (w/v) as sole carbon sources suggesting that only these phenolic compounds could be utilized as a carbon source by A. chroococcum. Moreover when culture media were added with a mixture of 0.3% of protocatechuic acid and 0.3% p-hydroxybenzoic acid, the microorganism degradated in first place protocatechuic acid and once the culture medium was depleted of this compound, the degradation of p-hydroxybenzoic acid commenced very fast.

  3. Chemical Sciences Division annual report, 1990

    SciTech Connect

    Not Available

    1991-08-01

    This report contains sections on the following topics: photochemistry of materials in the stratosphere, energy transfer and structural studies of molecules on surfaces, crossed molecular beams, molecular interactions, theory of atomic and molecular collision processes, selective photochemistry, photodissociation of free radicals, physical chemistry with emphasis on thermodynamic properties, chemical physics at the high photon energies, high-energy atomic physics, atomic physics, high-energy oxidizers and delocalized-electron solids, catalytic hydrogenation of CO, transition metal-catalyzed conversion of CO, NO, H{sub 2}, and organic molecules to fuels and petrochemicals, formation of oxyacids of sulfur from SO{sub 2}, potentially catalytic and conducting polyorganometallics, actinide chemistry, and molecular thermodynamics for phase equilibria in mixtures.

  4. Chemical modification of alginic acid by ultrasonic irradiation

    NASA Astrophysics Data System (ADS)

    Murdzheva, Dilyana; Denev, Panteley

    2016-03-01

    Abstract: Chemical modification of alginic acid has been done by ultrasonic irradiation to obtain its methylated, ethylated and isopropylated derivatives. The influence of ultrasonic frequency and power on esterification process of alginic acid has been investigated. Alginate derivatives have been characterized by degree of esterification (DE) and IR-FT spectroscopy. It has been found that 45 kHz ultrasonic frequency accelerated modification process as reduced the reaction time from 16 hours to 2 hours. The obtained results showed that ultrasound irradiation increased the reaction efficiency in methanol and depended on the ratio of the M/G.

  5. Chemical equilibrium of minced turkey meat in organic acid solutions.

    PubMed

    Goli, T; Abi Nakhoul, P; Zakhia-Rozis, N; Trystram, G; Bohuon, P

    2007-02-01

    The distribution of acid (HA), anions (A(-)), free protons (H(3)O(+)) and bound protons (H(b)), in homogenized turkey meat was evaluated at various meat/water mass ratios of (1/4-1/10) during titration with acetic acid (0.25N) or lactic acid (0.2N). H(b) concentration was determined by titration with hydrochloric acid (0.075N) and a correlation for [H(b)]=f(pH) was proposed. A procedure was used to calculate the fractions of the various species in equilibrium, starting from an initial acid concentration in a meat/water system and assuming the accuracy of the pK(a) value of the pure weak acids despite the chemical complexity of meat. Calculated results were in very good agreement (±0.15) with experimental pH values, whatever the acid, meat batch or meat/water mass ratios used. Less than 1% of the total protons were free (H(3)O(+)) and determined the meat pH.

  6. 48 CFR 52.223-14 - Toxic Chemical Release Reporting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Toxic Chemical Release....223-14 Toxic Chemical Release Reporting. As prescribed in 23.906(b), insert the following clause: Toxic Chemical Release Reporting (AUG 2003) (a) Unless otherwise exempt, the Contractor, as owner...

  7. 40 CFR 712.30 - Chemical lists and reporting periods.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Chemical lists and reporting periods. 712.30 Section 712.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT CHEMICAL INFORMATION RULES Manufacturers Reporting-Preliminary Assessment Information § 712.30 Chemical lists and...

  8. Long pulse chemical laser. Final technical report

    SciTech Connect

    Bardon, R.L.; Breidenthal, R.E.; Buonadonna, V.R.

    1989-02-01

    This report covers the technical effort through February, 1989. This effort was directed towards the technology associated with the development of a large scale, long pulse DF-CO{sub 2} chemical laser. Optics damage studies performed under Task 1 assessed damage thresholds for diamond-turned salt windows. Task 2 is a multi-faceted task involving the use of PHOCL-50 for laser gain measurements, LTI experiments, and detector testing by LANL personnel. To support these latter tests, PHOCL-50 was upgraded with Boeing funding to incorporate a full aperture outcoupler that increased its energy output by over a factor of 3, to a full kilojoule. The PHOCL-50 carbon block calorimeter was also recalibrated and compared with the LANL Scientech meter. Cloud clearing studies under Task 3 initially concentrated on delivering a Boeing built Cloud Simulation Facility to LANL, and currently involves design of a Cold Cloud Simulation Facility. A Boeing IRAD funded theoretical study on cold cloud clearing revealed that ice clouds may be easier to clear then warm clouds. Task 4 involves the theoretical and experimental study of flow system design as related to laser beam quality. Present efforts on this task are concentrating on temperature gradients induced by the gas filling process. General support for the LPCL field effort is listed under Task 5, with heavy emphasis on assuring reliable operation of the Boeing built Large Slide Valve and other device related tests. The modification of the PHOCL-50 system for testing long pulse DF (4{mu}m only) chemical laser operation is being done under Task 6.

  9. Chemical Technology Division annual technical report 1989

    SciTech Connect

    Not Available

    1990-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1989 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including high-performance batteries (mainly lithium/iron sulfide and sodium/metal chloride), aqueous batteries (lead-acid and nickel/iron), and advanced fuel cells with molten carbonate and solid oxide electrolytes: (2) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste and for producing {sup 99}Mo from low-enriched uranium targets, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor (the Integral Fast Reactor), and waste management; and (5) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be administratively responsible for and the major user of the Analytical Chemistry Laboratory at Argonne National Laboratory (ANL).

  10. Chemical technology division: Annual technical report 1987

    SciTech Connect

    Not Available

    1988-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1987 are presented. In this period, CMT conducted research and development in the following areas: (1) high-performance batteries--mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (5) methods for the electromagnetic continuous casting of steel sheet and for the purification of ferrous scrap; (6) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (7) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor, and waste management; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for liquids and vapors at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; the thermochemistry of various minerals; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 54 figs., 9 tabs.

  11. Chemical Technology Division annual technical report, 1986

    SciTech Connect

    Not Available

    1987-06-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1986 are presented. In this period, CMT conducted research and development in areas that include the following: (1) high-performance batteries - mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants, the technology for fluidized-bed combustion, and a novel concept for CO/sub 2/ recovery from fossil fuel combustion; (5) methods for recovery of energy from municipal waste; (6) methods for the electromagnetic continuous casting of steel sheet; (7) techniques for treatment of hazardous waste such as reactive metals and trichloroethylenes; (8) nuclear technology related to waste management, a process for separating and recovering transuranic elements from nuclear waste, and the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor; and (9) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of catalytic hydrogenation and catalytic oxidation; materials chemistry for associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; the thermochemistry of zeolites and related silicates; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 127 refs., 71 figs., 8 tabs.

  12. Formic and Acetic Acid Observations over Colorado by Chemical Ionization Mass Spectrometry and Organic Acids' Role in Air Quality

    NASA Astrophysics Data System (ADS)

    Treadaway, V.; O'Sullivan, D. W.; Heikes, B.; Silwal, I.; McNeill, A.

    2015-12-01

    Formic acid (HFo) and acetic acid (HAc) have both natural and anthropogenic sources and a role in the atmospheric processing of carbon. These organic acids also have an increasing importance in setting the acidity of rain and snow as precipitation nitrate and sulfate concentrations have decreased. Primary emissions for both organic acids include biomass burning, agriculture, and motor vehicle emissions. Secondary production is also a substantial source for both acids especially from biogenic precursors, secondary organic aerosols (SOAs), and photochemical production from volatile organic compounds (VOCs) and oxygenated volatile organic compounds (OVOCs). Chemical transport models underestimate organic acid concentrations and recent research has sought to develop additional production mechanisms. Here we report HFo and HAc measurements during two campaigns over Colorado using the peroxide chemical ionization mass spectrometer (PCIMS). Iodide clusters of both HFo and HAc were recorded at mass-to-charge ratios of 173 and 187, respectively. The PCIMS was flown aboard the NCAR Gulfstream-V platform during the Deep Convective Clouds and Chemistry Experiment (DC3) and aboard the NCAR C-130 during the Front Range Air Pollution and Photochemistry Experiment (FRAPPE). The DC3 observations were made in May and June 2012 extending from the surface to 13 km over the central and eastern United States. FRAPPE observations were made in July and August 2014 from the surface to 7 km over Colorado. DC3 measurements reported here are focused over the Colorado Front Range and complement the FRAPPE observations. DC3 HFo altitude profiles are characterized by a decrease up to 6 km followed by an increase either back to boundary layer mixing ratio values or higher (a "C" shape). Organic acid measurements from both campaigns are interpreted with an emphasis on emission sources (both natural and anthropogenic) over Colorado and in situ photochemical production especially ozone precursors.

  13. Chemical Data Reporting: Factors to Consider When Using the Database

    EPA Pesticide Factsheets

    The 2012 Chemical Data Reporting (CDR) database provides non-confidential information on the manufacture, import, processing, and use of chemicals in commerce at national and regional levels. This fact sheet highlights factors to consider.

  14. TSCA Chemical Data Reporting Fact Sheet: Toll Manufacturing

    EPA Pesticide Factsheets

    This fact sheet provides information on existing Chemical Data Reporting (CDR) regulations to persons who are involved in toll manufacturing of chemical substances which may be subject to the CDR rule.

  15. Partial Exemption of Certain Chemical Substances from Reporting Additional Chemical Data

    EPA Pesticide Factsheets

    This Federal Register notice amends the list of chemical substances that are partially exempt from reporting additional information by adding six chemicals in response to a petition the Agency received.

  16. Chemical Changes Associated with Increased Acid Resistance of Er:YAG Laser Irradiated Enamel

    PubMed Central

    Olea-Mejía, Oscar Fernando; García-Fabila, María Magdalena; Rodríguez-Vilchis, Laura Emma; Sánchez-Flores, Ignacio; Centeno-Pedraza, Claudia

    2014-01-01

    Background. An increase in the acid resistance of dental enamel, as well as morphological and structural changes produced by Er:YAG laser irradiation, has been reported. Purpose. To evaluate the chemical changes associated with acid resistance of enamel treated with Er:YAG laser. Methods. Forty-eight enamel samples were divided into 4 groups (n = 12). Group I (control); Groups II, III, and IV were irradiated with Er:YAG at 100 mJ (12.7 J/cm2), 200 mJ (25.5 J/cm2), and 300 mJ (38.2 J/cm2), respectively. Results. There were significant differences in composition of irradiated groups (with the exception of chlorine) and in the amount of calcium released. Conclusions. Chemical changes associated with an increase in acid resistance of enamel treated with Er:YAG laser showed a clear postirradiation pattern characterized by a decrease in C at.% and an increase in O, P, and Ca at.% and no changes in Cl at.%. An increased Ca/P ratio after Er:YAG laser irradiation was associated with the use of higher laser energy densities. Chemical changes produced by acid dissolution showed a similar trend among experimental groups. Stable or increased Ca/P ratio after acid dissolution was observed in the irradiated groups, with reduction of Ca released into the acid solution. PMID:24600327

  17. [Uric acid and oxalate lithiasis. Physico-chemical and crystallo-chemical explanation of the relationship].

    PubMed

    Leskovar, P

    1980-03-01

    It is tried to explain physico-chemically or crystallo-chemically the so-called "salting out effect", i.e. the influence of the Ca-oxalate precipitation by uric often discussed in urolith research which, indeed, is regarded as real by several researchers and by other investigators refused with emphasis, in order to understand better the connections between hyperuricosuria and oxalate lithiasis which obtrude themselves from the observation material. However, this phenomenon of the facilitated oxalate precipitation at increased uric acid level in the urine further needs directed research.

  18. Chemical Biodynamics Division. Annual report 1979

    SciTech Connect

    Not Available

    1980-08-01

    The Chemical Biodynamics Division of LBL continues to conduct basic research on the dynamics of living cells and on the interaction of radiant energy with organic matter. Many aspects of this basic research are related to problems of environmental and health effects of fossil fuel combustion, solar energy conversion and chemical/ viral carcinogenesis.

  19. Responding to chemical attack. Final report

    SciTech Connect

    Bagley, R.W.

    1991-02-11

    In view of Iraq's stated intention of using chemical weapons in the Persian Gulf War, the Coalition forces must be prepared to respond. Iraq is capable of conducting such an attack. While the use of chemical weapons may not be militarily significant, the political effect of the use and the response to it may be very significant. Responses including the use of chemical and nuclear weapons are assessed in terms of their legality, political cost, and military effectiveness and found unacceptable. Reliance on diplomatic protests and on post-war criminal sanctions are judged ineffective. A response in the form of increased conventional attack on the Iraqi chemical infrastructure is recommended because that response will preserve the present Coalition, effectively counter the chemical attack, contribute to regional stability, and enhance the reputation of the United States for lawfulness and dependability.

  20. Chemical Sciences Division annual report 1994

    SciTech Connect

    1995-06-01

    The division is one of ten LBL research divisions. It is composed of individual research groups organized into 5 scientific areas: chemical physics, inorganic/organometallic chemistry, actinide chemistry, atomic physics, and chemical engineering. Studies include structure and reactivity of critical reaction intermediates, transients and dynamics of elementary chemical reactions, and heterogeneous and homogeneous catalysis. Work for others included studies of superconducting properties of high-{Tc} oxides. In FY 1994, the division neared completion of two end-stations and a beamline for the Advanced Light Source, which will be used for combustion and other studies. This document presents summaries of the studies.

  1. Examples and Case Studies for the 2012 Chemical Data Reporting

    EPA Pesticide Factsheets

    This document presents examples and case studies to help you in reporting for 2012 Chemical Data Reporting (CDR), formerly known as Inventory Update Reporting (IUR).EPA designed these examples to illustrate the new reporting requirements, which were published as part of the CDR Rule (published August 16, 2011), and to address general reporting issues from the 2006 IUR.

  2. Chemical Reactions at Surfaces. Final Progress Report

    SciTech Connect

    2003-02-21

    The Gordon Research Conference (GRC) on Chemical Reactions at Surfaces was held at Holiday Inn, Ventura, California, 2/16-21/03. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  3. Chemical structure and dynamics: Annual report 1996

    SciTech Connect

    Colson, S.D.; McDowell, R.S.

    1997-03-01

    The Chemical Structure and Dynamics (CS&D) program is a major component of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of-the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for characterizing waste tanks and pollutant distributions, and for detecting and monitoring trace atmospheric species.

  4. Chemical structure and dynamics. Annual report 1995

    SciTech Connect

    Colson, S.D.; McDowell, R.S.

    1996-05-01

    The Chemical Structure and Dynamics program is a major component of Pacific Northwest National Laboratory`s Environmental Molecular Sciences Laboratory (EMSL), providing a state-of-the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for the characterization of waste tanks and pollutant distributions, and for detection and monitoring of trace atmospheric species.

  5. Chemical and isotopic compositions in acid residues from various meteorites

    NASA Technical Reports Server (NTRS)

    Kano, N.; Yamakoshi, K.; Matsuzaki, H.; Nogami, K.

    1993-01-01

    We are planning to carry out systematic isotopic investigations of Ru, Mg, etc., in primordial samples. The investigations will be pursued in the context of a study of the pre-history of the solar system. It is hoped that the study will yield direct evidence for processes of nucleosynthesis in the pre-solar stage and detection of extinct radioactive nuclides. In this paper, we present the results of chemical compositions of acid residues obtained from three types of meteorites: Canyon Diablo (IA), Allende (CV3), and Nuevo Mercuro (H5); and the preliminary results of Ru isotopic compositions.

  6. TECHNOLOGY EVALUATION REPORT: PEROX-PURE™ CHEMICAL OXIDATION TECHNOLOGY

    EPA Science Inventory

    The report evaluates the perox-pure™ chemical oxidation technology's ability to remove volatile organic compounds (VOC) and other organic contaminants present in liquid wastes. The report also presents economic data from the Superfund Innovative Technology Evaluation (SITE) demon...

  7. Tank 12H Acidic Chemical Cleaning Sample Analysis And Material Balance

    SciTech Connect

    Martino, C. J.; Reboul, S. H.; Wiersma, B. J.; Coleman, C. J.

    2013-11-08

    A process of Bulk Oxalic Acid (BOA) chemical cleaning was performed for Tank 12H during June and July of 2013 to remove all or a portion of the approximately 4400 gallon sludge heel. Three strikes of oxalic acid (nominally 4 wt% or 2 wt%) were used at 55°C and tank volumes of 96- to 140-thousand gallons. This report details the sample analysis of a scrape sample taken prior to BOA cleaning and dip samples taken during BOA cleaning. It also documents a rudimentary material balance for the Tank 12H cleaning results.

  8. Amino Acids from Icy Amines: A Radiation-Chemical Approach to Extraterrestrial Synthesis

    NASA Technical Reports Server (NTRS)

    Dworkin, J. P.; Moore, M. H.

    2010-01-01

    Detections of amino acids in meteorites go back several decades, with at least 100 such compounds being reported for the Murchison meteorite alone. The presence of these extraterrestrial molecules raises questions as to their formation, abundance, thermal stability, racemization, and possible subsequent reactions. Although all of these topics have been studied in laboratories, such work often involves many variables and unknowns. This has led us to seek out model systems with which to uncover reaction products, test chemical predictions, and sited light on underlying reaction mechanisms. This presentation will describe one such study, focusing on amino-acid formation in ices.

  9. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    SciTech Connect

    Chang, Binbin Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng

    2015-01-15

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl{sub 2} using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl{sub 2} at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of –SO{sub 3}H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N{sub 2} adsorption–desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of –SO{sub 3}H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of –SO{sub 3}H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and –SO{sub 3}H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles. - Graphical abstract: Sulfonated porous carbon nanospheres with high surface area and superior catalytic performance were prepared by a facile chemical activation route. - Highlights: • Porous carbon spheres solid acid prepared by a facile chemical activation. • It owns high surface area, superior porosity and uniform spherical morphology. • It possesses

  10. TSCA Chemical Data Reporting Fact Sheet: Reporting for Electricity Generating Sites

    EPA Pesticide Factsheets

    This fact sheet provides information on existing Chemical Data Reporting (CDR) rule requirements related to the reporting of chemical substances manufactured during operations conducted at electricity generating sites, such as utilities.

  11. Chemical Structure and Dynamics annual report 1997

    SciTech Connect

    Colson, S.D.; McDowell, R.S.

    1998-03-01

    The Chemical Structure and Dynamics (CS and D) program is a major component of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of-the-art collaborative facility for studies of chemical structure and dynamics. The authors respond to the need for a fundamental, molecular level understanding of chemistry at a wide variety of environmentally important interfaces by: (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for characterizing complex materials of the types found in stored wastes and contaminated soils, and for detecting and monitoring trace atmospheric species. The focus of the research is defined primarily by DOE`s environmental problems: fate and transport of contaminants in the subsurface environment, processing and storage of waste materials, cellular effects of chemical and radiological insult, and atmospheric chemistry as it relates to air quality and global change. Twenty-seven projects are described under the following topical sections: Reaction mechanisms at interfaces; High-energy processes at environmental interfaces; Cluster models of the condensed phase; and Miscellaneous.

  12. Chemical Safety Vulnerability Working Group report. Volume 3

    SciTech Connect

    Not Available

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 3 consists of eleven appendices containing the following: Field verification reports for Idaho National Engineering Lab., Rocky Flats Plant, Brookhaven National Lab., Los Alamos National Lab., and Sandia National Laboratories (NM); Mini-visits to small DOE sites; Working Group meeting, June 7--8, 1994; Commendable practices; Related chemical safety initiatives at DOE; Regulatory framework and industry initiatives related to chemical safety; and Chemical inventory data from field self-evaluation reports.

  13. Annual Report 1998: Chemical Structure and Dynamics

    SciTech Connect

    SD Colson; RS McDowell

    1999-05-10

    The Chemical Structure and Dynamics (CS&D) program is a major component of the William R. Wiley Environmental Molecular Sciences Labo- ratory (EMSL), developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of- the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interracial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in envi- ronmental chemistry and in nuclear waste proc- essing and storage; and (3) developing state-of- the-art analytical methods for characterizing com- plex materials of the types found in stored wastes and contaminated soils, and for detecting and monitoring trace atmospheric species. Our program aims at achieving a quantitative understanding of chemical reactions at interfaces and, more generally, in condensed media, compa- rable to that currently available for gas-phase reactions. This understanding will form the basis for the development of a priori theories for pre- dicting macroscopic chemical behavior in con- densed and heterogeneous media, which will add significantly to the value of field-scale envi- ronmental models, predictions of short- and long- term nuclear waste storage stabilities, and other areas related to the primary missions of the U.S. Department of Energy (DOE).

  14. Chemical structure and dynamics. Annual report 1994

    SciTech Connect

    Colson, S.D.

    1995-07-01

    The Chemical Structure and Dynamics program was organized as a major component of Pacific Northwest Laboratory`s Environmental and Molecular Sciences Laboratory (EMSL), a state-of-the-art collaborative facility for studies of chemical structure and dynamics. Our program responds to the need for a fundamental, molecular-level understanding of chemistry at the wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces, and (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage. This research effort was initiated in 1989 and will continue to evolve over the next few years into a program of rigorous studies of fundamental molecular processes in model systems, such as well-characterized surfaces, single-component solutions, clusters, and biological molecules; and studies of complex systems found in the environment (multispecies, multiphase solutions; solid/liquid, liquid/liquid, and gas/surface interfaces; colloidal dispersions; ultrafine aerosols; and functioning biological systems). The success of this program will result in the achievement of a quantitative understanding of chemical reactions at interfaces, and more generally in condensed media, that is comparable to that currently available for gas-phase reactions. This understanding will form the basis for the development of a priori theories for predictions of macroscopic chemical behavior in condensed and heterogeneous media, adding significantly to the value of field-scale environmental models, the prediction of short- and long-term nuclear waste storage stabilities, and other problems related to the primary missions of the DOE.

  15. 76 FR 50815 - TSCA Inventory Update Reporting Modifications; Chemical Data Reporting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-16

    ... subset of chemical substances listed on the TSCA Inventory. 4. To improve the usefulness of the... Update Reporting Modifications; Chemical Data Reporting; Final Rule #0;#0;Federal Register / Vol. 76 , No... Parts 704, 710, and 711 RIN 2070-AJ43 TSCA Inventory Update Reporting Modifications; Chemical...

  16. Chemical Safety Vulnerability Working Group report. Volume 2

    SciTech Connect

    Not Available

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 2 consists of seven appendices containing the following: Tasking memorandums; Project plan for the CSV Review; Field verification guide for the CSV Review; Field verification report, Lawrence Livermore National Lab.; Field verification report, Oak Ridge Reservation; Field verification report, Savannah River Site; and the Field verification report, Hanford Site.

  17. Periodic quantum chemical studies on anhydrous and hydrated acid clinoptilolite.

    PubMed

    Valdiviés Cruz, Karell; Lam, Anabel; Zicovich-Wilson, Claudio M

    2014-08-07

    Periodic quantum chemistry methods as implemented in the crystal09 code were considered to study acid clinoptilolite (HEU framework type), both anhydrous and hydrated. The most probable location of acid sites and water molecules together with other structural details has been the object of particular attention. Calculations were performed at hybrid and pristine DFT levels of theory with a VDZP quality basis set in order to compare performances. It arises that PBE0 provides the best agreement with experimental data as concerns structural features and the most stable Al distribution in the framework. The role of the water molecule distribution in the stability of the systems, the most probable structure that they induce in the material, and their eventual influence on further chemical modification processes, such as dealumination, are discussed in detail. Results show that, apart from the usually considered interactions of water molecules with the zeolite framework, that is, a H-bond with Brönsted acid sites and coordination with framework Al as Lewis ones, it is necessary to consider cooperation of other weaker effects so as to fully understand the hydration effect in this kind of materials.

  18. Proposed minimum reporting standards for chemical analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a general consensus that supports the need for standardized reporting of metadata or information describing large-scale metabolomics and other functional genomics data sets. Reporting of standard metadata provides a biological and empirical context for the data, facilitates experimental re...

  19. The multifaceted role of amino acids in chemical evolution

    NASA Astrophysics Data System (ADS)

    Strasdeit, Henry; Fox, Stefan; Dalai, Punam

    We present an overview of recent ideas about α-amino acids on the Hadean / early Archean Earth and Noachian Mars. Pertinent simulation experiments are discussed. Electrical dis-charges in early Earth's bulk, probably non-reducing atmosphere [1, 2] and in volcanic ash-gas clouds [3] are likely to have synthesized amino acids abiotically. In principle, this may have been followed by the synthesis of peptides. Different kinds of laboratory simulations have, however, revealed severe difficulties with the condensation process under presumed prebiotic conditions. It therefore appears that peptides on the early Earth were mainly di-, tri-and tetramers and slightly longer only in the case of glycine homopeptides. But even such short peptides may have shown primitive catalytic activity after complexation of metal ions to form proto-metalloenzymes. L-enantiomeric excesses (L-ee) of meteoritic amino acids were possibly involved in the origin of biohomochirality [4, 5]. This idea also faces some problems, mainly dilution of the amino acids on Earth and a resulting low overall L-ee. However, as yet unknown reactions might exist that are highly enantioselective even under such unfavorable conditions, perhaps by a combination of autocatalysis and inhibition (compare the Soai reaction). Primor-dial volcanic islands are prebiotically interesting locations. At their hot coasts, solid sea salt probably embedded amino acids [6]. Our laboratory experiments showed that further heating of the salt crusts, simulating the vicinity of lava streams, produced pyrroles among other prod-ucts. Pyrroles are building blocks of biomolecules such as bilins, chlorophylls and heme. Thus, an abiotic route from amino acids to the first photoreceptor and electron-transfer molecules might have existed. There is no reason to assume that the chemical evolutionary processes described above were singular events restricted to Earth and Mars. In fact, they might take place even today on terrestrial exoplanets

  20. Effect of different preservation processes on chemical composition and fatty acid profile of anchovy (Engraulis anchoita).

    PubMed

    Czerner, Marina; Agustinelli, Silvina P; Guccione, Silvana; Yeannes, María I

    2015-01-01

    The effects of salting-ripening, canning and marinating processes on chemical composition and fatty acid profile of anchovy (Engraulis anchoita) were evaluated (p = 0.01), with emphasis on long-chain polyunsaturated fatty acids. Fresh anchovy showed a high proportion of PUFAs (∼45 g/100 g total lipid) with an eicosapentaenoic (EPA) + docosahexaenoic (DHA) content of 27.08 g/100 g total lipid. The salting-ripening process led to the largest changes in the chemical composition and the fatty acid profile, which resulted in a reduction of ∼70% on the total EPA and DHA contents (g/100 g edible portion). Contrary, canned and marinated anchovy presented a fatty acid profile similar to that of fresh anchovy. The use of vegetable oil as covering liquid led to final products with increased ω-6 PUFAs content. Despite the modifications observed, the total amount of essential EPA and DHA fatty acids provided by these products remained high compared with values reported in literature for other foods.

  1. A chemical relaxation study of human prostatic acid phosphatase.

    PubMed

    Shear, D B; Kustin, K

    1968-01-01

    Chemical relaxation methods and a dilution technique were applied to the study of the hydrolysis of p-nitrophenyl phosphate by human prostatic acid phosphatase. Although the reaction mechanism was not elucidated, rate constants and equilibrium constants were obtained for the reaction of enzyme and p-nitrophenol to form a complex. A slow, 2-sec relaxation effect which showed no concentration dependence was observed in various reaction mixtures, including some lacking the substrate and products of the hydrolytic reaction. The conclusion drawn is that there are two forms of the prostatic enzyme, which are normally in equilibrium with each other, but which undergo a relatively slow interconversion when this equilibrium is perturbed. A preliminary calculation indicates that these forms are present in the equilibrium ratio of 2:1.

  2. Chemical Exposures | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  3. Chemically triggered release of 5-aminolevulinic acid from liposomes*

    PubMed Central

    Plaunt, Adam J.; Harmatys, Kara M.; Hendrie, Kyle A.; Musso, Anthony J.

    2014-01-01

    5-Aminolevulinic acid (5-ALA), a prodrug of Protoporphyrin IX (PpIX), is used for photodynamic therapy of several medical conditions, and as an adjunct for fluorescence guided surgery. The clinical problem of patient photosensitivity after systemic administration could likely be ameliorated if the 5-ALA was delivered more selectivity to the treatment site. Liposomal formulations are inherently attractive as targeted delivery vehicles but it is hard to regulate the spatiotemporal release of aqueous contents from a liposome. Here, we demonstrate chemically triggered leakage of 5-ALA from stealth liposomes in the presence of cell culture. The chemical trigger is a zinc(II)-dipicolylamine (ZnBDPA) coordination complex that selectively targets liposome membranes containing a small amount of anionic phosphatidylserine. Systematic screening of several ZnBDPA complexes uncovered a compound with excellent performance in biological media. Cell culture studies showed triggered release of 5-ALA from stealth liposomes followed by uptake into neighboring mammalian cells and intracellular biosynthesis to form fluorescent PpIX. PMID:25414791

  4. Annual Report, Fall 2016: Alternative Chemical Cleaning of Radioactive High Level Waste Tanks - Corrosion Test Results

    SciTech Connect

    Wyrwas, R. B.

    2016-09-01

    The testing presented in this report is in support of the investigation of the Alternative Chemical Cleaning program to aid in developing strategies and technologies to chemically clean radioactive High Level Waste tanks prior to tank closure. The data and conclusions presented here were the examination of the corrosion rates of A285 carbon steel and 304L stainless steel exposed to two proposed chemical cleaning solutions: acidic permanganate (0.18 M nitric acid and 0.05M sodium permanganate) and caustic permanganate. (10 M sodium hydroxide and 0.05M sodium permanganate). These solutions have been proposed as a chemical cleaning solution for the retrieval of actinides in the sludge in the waste tanks, and were tested with both HM and PUREX sludge simulants at a 20:1 ratio.

  5. 40 CFR 716.50 - Reporting physical and chemical properties.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... properties. 716.50 Section 716.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC... chemical properties. Studies of physical and chemical properties must be reported under this subpart if... they investigated one or more of the following properties: (a) Water solubility. (b)...

  6. Incomplete oxidation of ethylenediaminetetraacetic acid in chemical oxygen demand analysis.

    PubMed

    Anderson, James E; Mueller, Sherry A; Kim, Byung R

    2007-09-01

    Ethylenediaminetetraacetic acid (EDTA) was found to incompletely oxidize in chemical oxygen demand (COD) analysis, leading to incorrect COD values for water samples containing relatively large amounts of EDTA. The degree of oxidation depended on the oxidant used, its concentration, and the length of digestion. The COD concentrations measured using COD vials with a potassium dichromate concentration of 0.10 N (after dilution by sample and sulfuric acid) were near theoretical oxygen demand values. However, COD measured with dichromate concentrations of 0.010 N and 0.0022 N were 30 to 40% lower than theoretical oxygen demand values. Similarly, lower COD values were observed with manganic sulfate as oxidant at 0.011 N. Extended digestion yielded somewhat higher COD values, suggesting incomplete and slower oxidation of EDTA, as a result of lower oxidant concentrations. For wastewater in which EDTA is a large fraction of COD, accurate COD measurement may not be achieved with methods using dichromate concentrations less than 0.1 N.

  7. Cometary impact and amino acid survival - Chemical kinetics and thermochemistry

    USGS Publications Warehouse

    Ross, D.S.

    2006-01-01

    The Arrhenius parameters for the initiating reactions in butane thermolysis and the formation of soot, reliable to at least 3000 K, have been applied to the question of the survival of amino acids in cometary impacts on early Earth. The pressure/temperature/time course employed here was that developed in hydrocode simulations for kilometer-sized comets (Pierazzo and Chyba, 1999), with attention to the track below 3000 K where it is shown that potential stabilizing effects of high pressure become unimportant kinetically. The question of survival can then be considered without the need for assignment of activation volumes and the related uncertainties in their application to extreme conditions. The exercise shows that the characteristic times for soot formation in the interval fall well below the cooling periods for impacts ranging from fully vertical down to about 9?? above horizontal. Decarboxylation, which emerges as more rapid than soot formation below 2000-3000 K, continues further down to extremely narrow impact angles, and accordingly cometa??ry delivery of amino acids to early Earth is highly unlikely. ?? 2006 American Chemical Society.

  8. 1998 Chemical Technology Division Annual Technical Report.

    SciTech Connect

    Ackerman, J.P.; Einziger, R.E.; Gay, E.C.; Green, D.W.; Miller, J.F.

    1999-08-06

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division's activities during 1998 are presented.

  9. Chemical Technology Division annual technical report 1997

    SciTech Connect

    1998-06-01

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials and electrified interfaces. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division`s activities during 1997 are presented.

  10. Chemical applications of synchrotron radiation: Workshop report

    SciTech Connect

    Not Available

    1989-04-01

    The most recent in a series of topical meetings for Advanced Photon Source user subgroups, the Workshop on Chemical Applications of Synchrotron Radiation (held at Argonne National Laboratory, October 3-4, 1988) dealt with surfaces and kinetics, spectroscopy, small-angle scattering, diffraction, and topography and imaging. The primary objectives were to provide an educational resource for the chemistry community on the scientific research being conducted at existing synchrotron sources and to indicate some of the unique opportunities that will be made available with the Advanced Photon Source. The workshop organizers were also interested in gauging the interest of chemists in the field of synchrotron radiation. Interest expressed at the meeting has led to initial steps toward formation of a Chemistry Users Group at the APS. Individual projects are processed separately for the data bases.

  11. Chemical Technology Division. Annual technical report, 1995

    SciTech Connect

    Laidler, J.J.; Myles, K.M.; Green, D.W.; McPheeters, C.C.

    1996-06-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1995 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (3) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (4) processes for separating and recovering selected elements from waste streams, concentrating low-level radioactive waste streams with advanced evaporator technology, and producing {sup 99}Mo from low-enriched uranium; (5) electrometallurgical treatment of different types of spent nuclear fuel in storage at Department of Energy sites; and (6) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems.

  12. Chemical and Laser Sciences Division annual report 1989

    SciTech Connect

    Haines, N.

    1990-06-01

    The Chemical and Laser Sciences Division Annual Report includes articles describing representative research and development activities within the Division, as well as major programs to which the Division makes significant contributions.

  13. 40 CFR 766.38 - Reporting on precursor chemical substances.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SUBSTANCES CONTROL ACT DIBENZO-PARA-DIOXINS/DIBENZOFURANS Specific Chemical Testing/Reporting Requirements... molecular structure is conducive to HDD/HDF formation under favorable reaction conditions when they are...

  14. 40 CFR 766.38 - Reporting on precursor chemical substances.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SUBSTANCES CONTROL ACT DIBENZO-PARA-DIOXINS/DIBENZOFURANS Specific Chemical Testing/Reporting Requirements... molecular structure is conducive to HDD/HDF formation under favorable reaction conditions when they are...

  15. Sandia National Laboratories, California Chemical Management Program annual report.

    SciTech Connect

    Brynildson, Mark E.

    2012-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Chemical Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This program annual report describes the activities undertaken during the calender past year, and activities planned in future years to implement the Chemical Management Program, one of six programs that supports environmental management at SNL/CA. SNL/CA is responsible for tracking chemicals (chemical and biological materials), providing Material Safety Data Sheets (MSDS) and for regulatory compliance reporting according to a variety of chemical regulations. The principal regulations for chemical tracking are the Emergency Planning Community Right-to-Know Act (EPCRA) and the California Right-to-Know regulations. The regulations, the Hazard Communication/Lab Standard of the Occupational Safety and Health Administration (OSHA) are also key to the CM Program. The CM Program is also responsible for supporting chemical safety and information requirements for a variety of Integrated Enabling Services (IMS) programs primarily the Industrial Hygiene, Waste Management, Fire Protection, Air Quality, Emergency Management, Environmental Monitoring and Pollution Prevention programs. The principal program tool is the Chemical Information System (CIS). The system contains two key elements: the MSDS library and the chemical container-tracking database that is readily accessible to all Members of the Sandia Workforce. The primary goal of the CM Program is to ensure safe and effective chemical management at Sandia/CA. This is done by efficiently collecting and managing chemical information for our customers who include Line, regulators, DOE and ES and H programs to ensure compliance with regulations and to streamline customer business processes that require chemical information.

  16. Chemical characteristics, fatty acid composition and conjugated linoleic acid (CLA) content of traditional Greek yogurts.

    PubMed

    Serafeimidou, Amalia; Zlatanos, Spiros; Laskaridis, Kostas; Sagredos, Angelos

    2012-10-15

    Many studies with conjugated linoleic acid (CLA) indicate that it has a protective effect against mammary cancer. Because dairy products are the most important dietary sources of CLA, we have investigated the CLA concentrations and additionally the fatty acid profiles and chemical composition of several commercial, traditional, Greek yogurts from different geographical origin. The fat content of yogurts was in the order of goatacids (SFA) were found in low-fat yogurts, of monounsaturated fatty acids (MUFA) in sheep milk yogurts and of polyunsaturated fatty acid (PUFA) in low-fat cow milk yogurts.

  17. Chemical Technology Division annual technical report, 1993

    SciTech Connect

    Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

    1994-04-01

    Chemical Technology (CMT) Division this period, conducted research and development in the following areas: advanced batteries and fuel cells; fluidized-bed combustion and coal-fired magnetohydrodynamics; treatment of hazardous waste and mixed hazardous/radioactive waste; reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; separating and recovering transuranic elements, concentrating radioactive waste streams with advanced evaporators, and producing {sup 99}Mo from low-enriched uranium; recovering actinide from IFR core and blanket fuel in removing fission products from recycled fuel, and disposing removal of actinides in spent fuel from commercial water-cooled nuclear reactors; and physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, thin-film diamond surfaces, effluents from wood combustion, and molten silicates; and the geochemical processes involved in water-rock interactions. The Analytical Chemistry Laboratory in CMT also provides a broad range of analytical chemistry support.

  18. Chemical Technology Division, Annual technical report, 1991

    SciTech Connect

    Not Available

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  19. Chemical Technology Division annual technical report, 1994

    SciTech Connect

    1995-06-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1994 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion; (3) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from waste streams, concentrating radioactive waste streams with advanced evaporator technology, and producing {sup 99}Mo from low-enriched uranium for medical applications; (6) electrometallurgical treatment of the many different types of spent nuclear fuel in storage at Department of Energy sites; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, and impurities in scrap copper and steel; and the geochemical processes involved in mineral/fluid interfaces and water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  20. Chemical Technology Division, Annual technical report, 1991

    SciTech Connect

    Not Available

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  1. Chemical protection against ionizing radiation. Final report

    SciTech Connect

    Livesey, J.C.; Reed, D.J.; Adamson, L.F.

    1984-08-01

    The scientific literature on radiation-protective drugs is reviewed. Emphasis is placed on the mechanisms involved in determining the sensitivity of biological material to ionizing radiation and mechanisms of chemical radioprotection. In Section I, the types of radiation are described and the effects of ionizing radiation on biological systems are reviewed. The effects of ionizing radiation are briefly contrasted with the effects of non-ionizing radiation. Section II reviews the contributions of various natural factors which influence the inherent radiosensitivity of biological systems. Inlcuded in the list of these factors are water, oxygen, thiols, vitamins and antioxidants. Brief attention is given to the model describing competition between oxygen and natural radioprotective substances (principally, thiols) in determining the net cellular radiosensitivity. Several theories of the mechanism(s) of action of radioprotective drugs are described in Section III. These mechanisms include the production of hypoxia, detoxication of radiochemical reactive species, stabilization of the radiobiological target and the enhancement of damage repair processes. Section IV describes the current strategies for the treatment of radiation injury. Likely areas in which fruitful research might be performed are described in Section V. 495 references.

  2. Chemical Technology Division annual technical report, 1990

    SciTech Connect

    Not Available

    1991-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1990 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for coal- fired magnetohydrodynamics and fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for a high-level waste repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, concentrating plutonium solids in pyrochemical residues by aqueous biphase extraction, and treating natural and process waters contaminated by volatile organic compounds; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the scientific and engineering programs at Argonne National Laboratory (ANL). 66 refs., 69 figs., 6 tabs.

  3. Environmental monitoring final report: groundwater chemical analyses

    SciTech Connect

    Not Available

    1984-02-01

    This report presents the results of analyses of groundwater qualtiy at the SRC-I Demonstration Plant site in Newman, Kentucky. Samples were obtained from a network of 23 groundwater observation wells installed during previous studies. The groundwater was well within US EPA Interim Primary Drinking Water Standards for trace metals, radioactivity, and pesticides, but exceeded the standard for coliform bacteria. Several US EPA Secondary Drinking Water Standards were exceeded, namely, manganese, color, iron, and total dissolved solids. Based on the results, Dames and Moore recommend that all wells should be sterilized and those wells built in 1980 should be redeveloped. 1 figure, 6 tables.

  4. Research in Chemical Kinetics. Annual Report, 1993

    DOE R&D Accomplishments Database

    Rowland, F. S.

    1993-01-01

    Progress on the seven projects under this contract is reported. The projects are: (1) Chlorine atom reactions with vinyl bromide. Mass spectrometric investigations of the anti-Markownikoff rule. (2) Chlorine atom reactions with CF{sub 2}{double_bond}CFBr. (3) Gas phase thermal {sup 38}Cl reactions with (CH{sub 2}{double_bond}CH){sub n}M (M=Sn, Si, n=4; M=Sb, n=3; M=Hg, n=2). (4) Gas phase reactions of thermal chlorine atoms with (CH{sub 3}){sub 4}M (M=C, Si, Ge, Sn, Pb). (5) Hydrogen abstraction reactions by thermal chlorine atoms with HFCs, HCFCs, and halomethanes. (6) Half-stabilization pressure of chlorine atoms plus ethylene in a nitrogen bath. (7) {sup 14}C content of atmospheric OCS, C{sub 2}H{sub 6} and C{sub 3}H{sub 8}.

  5. Supermacroporous chemically cross-linked poly(aspartic acid) hydrogels.

    PubMed

    Gyarmati, Benjámin; Mészár, E Zsuzsanna; Kiss, Lóránd; Deli, Mária A; László, Krisztina; Szilágyi, András

    2015-08-01

    Chemically cross-linked poly(aspartic acid) (PASP) gels were prepared by a solid-liquid phase separation technique, cryogelation, to achieve a supermacroporous interconnected pore structure. The precursor polymer of PASP, polysuccinimide (PSI) was cross-linked below the freezing point of the solvent and the forming crystals acted as templates for the pores. Dimethyl sulfoxide was chosen as solvent instead of the more commonly used water. Thus larger temperatures could be utilized for the preparation and the drawback of increase in specific volume of water upon freezing could be eliminated. The morphology of the hydrogels was characterized by scanning electron microscopy and interconnectivity of the pores was proven by the small flow resistance of the gels. Compression tests also confirmed the interconnected porous structure and the complete re-swelling and shape recovery of the supermacroporous PASP hydrogels. The prepared hydrogels are of interest for several biomedical applications as scaffolding materials because of their cytocompatibility, controllable morphology and pH-responsive character.

  6. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    NASA Astrophysics Data System (ADS)

    Chang, Binbin; Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng

    2015-01-01

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl2 using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl2 at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of -SO3H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N2 adsorption-desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of -SO3H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of -SO3H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and -SO3H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles.

  7. STUDENT AWARD FINALIST: Plasma Acid: A Chemically and Physically Metastable Substance

    NASA Astrophysics Data System (ADS)

    Shainsky, Natalie; Dobrynin, Danil; Ercan, Utku; Joshi, Suresh; Brooks, Ari; Ji, Haifeng; Fridman, Gregory; Cho, Young; Fridman, Alexander; Friedman, Gennady

    2011-10-01

    Non-thermal atmospheric pressure dielectric barrier discharge applied to the surface of a liquid creates a chemically and physically metastable substance. The properties and lifetime of the substance depend on the treatment conditions such as gas atmosphere and liquid medium used, treatment dose, and other parameters. When deionized water is used, the metastable substance becomes a strong oxidizer. We show that direct exposure of deionized water to neutral and charged species produced in plasma creates a strong oxidizer and acidic substance in this water which, for the lack of a better term, we termed plasma acid. Plasma acid can remain stable for relatively long time and its oxidizing power may be linked to the significant lowering of its pH. We report experiments that demonstrate plasma acid's metastability. We also show that observed pH of as low as 2.0 cannot be completely accounted for by the production of nitric acid; and that the conjugate base derived from superoxide is at least partly responsible for both, lowering of the pH and increase in the oxidizing power of the solution.

  8. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: October-December 1997

    SciTech Connect

    Jubin, R.T.

    1999-02-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period October--December 1997. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within six major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information. Activities conducted within the area of Hot Cell Operations included efforts to optimize the processing conditions for Enhanced Sludge Washing of Hanford tank sludge, the testing of candidate absorbers and ion exchangers under continuous-flow conditions using actual supernatant from the Melton Valley Storage Tanks, and attempts to develop a cesium-specific spherical inorganic sorbent for the treatment of acidic high-salt waste solutions. Within the area of Process Chemistry and Thermodynamics, the problem of solids formation in process solutions from caustic treatment of Hanford sludge was addressed and experimental collaborative efforts with Russian scientists to determine the solidification conditions of yttrium barium, and copper oxides from their melts were completed.

  9. Investigation of chemically-reacting supersonic internal flows. Progress report

    SciTech Connect

    Chitsomboon, T.; Tiwari, S.N.

    1985-09-01

    This report covers work done on the research project, Analysis and Computation of Internal Flow Field in a Scramjet Engine. The governing equations of two-dimensional chemically-reacting flows are presented together with the global two-step chemistry model. The finite-difference algorithm used is illustrated and the method of circumventing the stiffness is discussed. The computer program developed is used to solve two model problems of a premixed chemically-reacting flow. The results obtained are physically reasonable.

  10. Chemical modeling of acid-base properties of soluble biopolymers derived from municipal waste treatment materials.

    PubMed

    Tabasso, Silvia; Berto, Silvia; Rosato, Roberta; Marinos, Janeth Alicia Tafur; Ginepro, Marco; Zelano, Vincenzo; Daniele, Pier Giuseppe; Montoneri, Enzo

    2015-02-04

    This work reports a study of the proton-binding capacity of biopolymers obtained from different materials supplied by a municipal biowaste treatment plant located in Northern Italy. One material was the anaerobic fermentation digestate of the urban wastes organic humid fraction. The others were the compost of home and public gardening residues and the compost of the mix of the above residues, digestate and sewage sludge. These materials were hydrolyzed under alkaline conditions to yield the biopolymers by saponification. The biopolymers were characterized by 13C NMR spectroscopy, elemental analysis and potentiometric titration. The titration data were elaborated to attain chemical models for interpretation of the proton-binding capacity of the biopolymers obtaining the acidic sites concentrations and their protonation constants. The results obtained with the models and by NMR spectroscopy were elaborated together in order to better characterize the nature of the macromolecules. The chemical nature of the biopolymers was found dependent upon the nature of the sourcing materials.

  11. TSCA Chemical Data Reporting Fact Sheet: Byproducts Reporting for the Printed Circuit Board Industry

    EPA Pesticide Factsheets

    This fact sheet provides information on existing Chemical Data Reporting (CDR) rule requirements related to byproducts reporting by persons who manufacture printed circuit boards and may be subject to CDR.

  12. Findings of the chlorofluorocarbon chemical substitutes international committee. Final report

    SciTech Connect

    Nelson, T.P.

    1988-04-01

    The report presents the findings of a select international committee of experts from industry and academia on the subject of chemical substitutes for fully halogenated chlorofluorocarbons (CFCs). The committee, over the course of two meetings, reviewed and discussed data and information on chemical alternatives for fully halogenated CFCs now in use. The committee acknowledged that, while there are many other possible chemical replacements, there is a dearth of information on these compounds with regard to property data, toxicity, and performance in end-use applications.

  13. Questions and Answers for Reporting for the 2006 Partial Updating of the TSCA Chemical Inventory Database: Inorganic Chemicals Addendum

    EPA Pesticide Factsheets

    This document addresses specific questions related to reporting inorganic chemicals under the IUR and is an addendum to the Questions and Answers for Reporting for the 2006 Partial Updating of the TSCA Chemical Inventory Database (Questions and Answers Document).

  14. Chemical and biological nonproliferation program. FY99 annual report

    SciTech Connect

    2000-03-01

    This document is the first of what will become an annual report documenting the progress made by the Chemical and Biological Nonproliferation Program (CBNP). It is intended to be a summary of the program's activities that will be of interest to both policy and technical audiences. This report and the annual CBNP Summer Review Meeting are important vehicles for communication with the broader chemical and biological defense and nonproliferation communities. The Chemical and Biological Nonproliferation Program Strategic Plan is also available and provides additional detail on the program's context and goals. The body of the report consists of an overview of the program's philosophy, goals and recent progress in the major program areas. In addition, an appendix is provided with more detailed project summaries that will be of interest to the technical community.

  15. Mitigation of acid deposition: Liming of surface waters. Final report

    SciTech Connect

    Bartoshesky, J.; Price, R.; DeMuro, J.

    1989-05-01

    In recent years acid deposition has become a serious concern internationally. Scientific literature has documented the acidification of numerous lakes and streams in North America and Scandinavia resulting in the depletion or total loss of fisheries and other aquatic biota. Liming represents the only common corrective practice aimed specifically at remediating an affected acid receptor. This report reviews a range of liming technologies and liming materials, as well as the effect of surface-water liming on water quality and aquatic biota. As background to the liming discussion, the hydrologic cycle and the factors that make surface waters sensitive to acid deposition are also discussed. Finally, a brief review of some of the liming projects that have been conducted, or are currently in operation is presented, giving special emphasis to mitigation efforts in Maryland. Liming has been effectively used to counteract surface-water acidification in parts of Scandinavia, Canada, and the U.S. To date, liming has generally been shown to improve physical and chemical conditions and enhance the biological recovery of aquatic ecosystems affected by acidification.

  16. 2-Keto acids based biosynthesis pathways for renewable fuels and chemicals.

    PubMed

    Tashiro, Yohei; Rodriguez, Gabriel M; Atsumi, Shota

    2015-03-01

    Global energy and environmental concerns have driven the development of biological chemical production from renewable sources. Biological processes using microorganisms are efficient and have been traditionally utilized to convert biomass (i.e., glucose) to useful chemicals such as amino acids. To produce desired fuels and chemicals with high yield and rate, metabolic pathways have been enhanced and expanded with metabolic engineering and synthetic biology approaches. 2-Keto acids, which are key intermediates in amino acid biosynthesis, can be converted to a wide range of chemicals. 2-Keto acid pathways were engineered in previous research efforts and these studies demonstrated that 2-keto acid pathways have high potential for novel metabolic routes with high productivity. In this review, we discuss recently developed 2-keto acid-based pathways.

  17. Spectroscopic and quantum chemical analysis of Isonicotinic acid methyl ester

    NASA Astrophysics Data System (ADS)

    Shoba, D.; Periandy, S.; Govindarajan, M.; Gayathri, P.

    2015-02-01

    In this present study, an organic compound Isonicotinic acid methyl ester (INAME) was structurally characterized by FTIR, FT-Raman, and NMR and UV spectroscopy. The optimized geometrical parameters and energies of all different and possible conformers of INAME are obtained from Density Functional Theory (DFT) by B3LYP/6-311++G(d,p) method. There are three conformers (SI, SII-1, and SII-2) for this molecule (ground state). The most stable conformer of INAME is SI conformer. The molecular geometry and vibrational frequencies of INAME in the ground state have been calculated by using HF and density functional method (B3LYP) 6-311++G (d,p) basis set. Detailed vibrational spectral analysis has been carried out and assignments of the observed fundamental bands have been proposed on the basis of peak positions and relative intensities. The computed vibrational frequencies were compared with the experimental frequencies, which yield good agreement between observed and calculated frequencies. A study on the electronic properties, such as HOMO and LUMO energies were performed by time independent DFT approach. Besides, molecular electrostatic potential (MEP) and thermodynamic properties were performed. The electric dipole moment (μ) and first hyper polarizability (β) values of the investigated molecule were computed using ab initio quantum mechanical calculations. The calculated results show that the INAME molecule may have microscopic nonlinear optical (NLO) behavior with non zero values. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by gauge independent atomic orbital (GIAO) method.

  18. Accurate ab initio prediction of NMR chemical shifts of nucleic acids and nucleic acids/protein complexes

    PubMed Central

    Victora, Andrea; Möller, Heiko M.; Exner, Thomas E.

    2014-01-01

    NMR chemical shift predictions based on empirical methods are nowadays indispensable tools during resonance assignment and 3D structure calculation of proteins. However, owing to the very limited statistical data basis, such methods are still in their infancy in the field of nucleic acids, especially when non-canonical structures and nucleic acid complexes are considered. Here, we present an ab initio approach for predicting proton chemical shifts of arbitrary nucleic acid structures based on state-of-the-art fragment-based quantum chemical calculations. We tested our prediction method on a diverse set of nucleic acid structures including double-stranded DNA, hairpins, DNA/protein complexes and chemically-modified DNA. Overall, our quantum chemical calculations yield highly/very accurate predictions with mean absolute deviations of 0.3–0.6 ppm and correlation coefficients (r2) usually above 0.9. This will allow for identifying misassignments and validating 3D structures. Furthermore, our calculations reveal that chemical shifts of protons involved in hydrogen bonding are predicted significantly less accurately. This is in part caused by insufficient inclusion of solvation effects. However, it also points toward shortcomings of current force fields used for structure determination of nucleic acids. Our quantum chemical calculations could therefore provide input for force field optimization. PMID:25404135

  19. Chemical and biological status of lakes and streams in the upper midwest: assessment of acidic deposition effects

    USGS Publications Warehouse

    Wiener, J.G.; Eilers, J.M.

    1987-01-01

    Many lakes in three areas in the Upper Midwest - northeastern Minnesota, northern Wisconsin, and the Upper Peninsula of Michigan - have low acid neutralizing capacity (ANC) and may be susceptible to change by acidic deposition. Northcentral Wisconsin and the Upper Peninsula of Michigan together contain about 150-300 acidic lakes (ANC ≤ 0), whereas none have been found in Minnesota. These acidic lakes are precipitation-dominated, Clearwater seepage lakes having small surface area, shallow depth, and low concentrations of dissolved organic carbon. The spatial distribution of these acidic lakes parallels a west to east gradient of increasing sulfate and hydrogen ion deposition. Several of these acidic lakes exhibit chemical characteristics and biological changes consistent with those observed elsewhere in waters reported to be acidified by acidic deposition. However, an hypothesis of recent lake acidification is not supported by analyses of either historical chemical data or diatom remains in lake sediments, and natural sources of acidity and alternative ecological processes have not been conclusively eliminated as causative factors. Streams in this three-state region have high ANC and appear to be insensitive to acidic deposition. The species richness and composition of lacustrine fish communities in the region are partly related to pH and associated chemical factors. Sport fishes considered acid-sensitive and of primary concern with regard to acidification include walleye, smallmouth bass, and black crappie. The fishery in at least one lake, Morgan Lake in Wisconsin (pH 4.6), may have declined because of acidification. Given the general lack of quantitative fishery data for acidic Wisconsin and Michigan lakes, however, more general conclusions concerning impacts or the absence of impacts of acidification on the region's fishery resources are not possible.

  20. Anaerobic Fermentation for Production of Carboxylic Acids as Bulk Chemicals from Renewable Biomass.

    PubMed

    Wang, Jufang; Lin, Meng; Xu, Mengmeng; Yang, Shang-Tian

    Biomass represents an abundant carbon-neutral renewable resource which can be converted to bulk chemicals to replace petrochemicals. Carboxylic acids have wide applications in the chemical, food, and pharmaceutical industries. This chapter provides an overview of recent advances and challenges in the industrial production of various types of carboxylic acids, including short-chain fatty acids (acetic, propionic, butyric), hydroxy acids (lactic, 3-hydroxypropionic), dicarboxylic acids (succinic, malic, fumaric, itaconic, adipic, muconic, glucaric), and others (acrylic, citric, gluconic, pyruvic) by anaerobic fermentation. For economic production of these carboxylic acids as bulk chemicals, the fermentation process must have a sufficiently high product titer, productivity and yield, and low impurity acid byproducts to compete with their petrochemical counterparts. System metabolic engineering offers the tools needed to develop novel strains that can meet these process requirements for converting biomass feedstock to the desirable product.

  1. Glacial Acetic Acid Adverse Events: Case Reports and Review of the Literature

    PubMed Central

    Doles, William; Wilkerson, Garrett; Morrison, Samantha

    2015-01-01

    Glacial acetic acid is a dangerous chemical that has been associated with several adverse drug events involving patients over recent years. When diluted to the proper concentration, acetic acid solutions have a variety of medicinal uses. Unfortunately, despite warnings, the improper dilution of concentrated glacial acetic acid has resulted in severe burns and other related morbidities. We report on 2 additional case reports of adverse drug events involving glacial acetic acid as well as a review of the literature. A summary of published case reports is provided, including the intended and actual concentration of glacial acetic acid involved, the indication for use, degree of exposure, and resultant outcome. Strategies that have been recommended to improve patient safety are summarized within the context of the key elements of the medication use process. PMID:26448660

  2. Emerging biotechnologies for production of itaconic acid and its applications as a platform chemical

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently, itaconic acid (IA), an unsaturated C5-dicarboxylic acid, has attracted much attention as a biobased building block chemical. It is produced industrially (> 80 g L**-1) from glucose by fermentation with Aspergillus terreus. The titer is low compared with citric acid production (> 200 g L**-...

  3. Production and applications of carbohydrate-derived sugar acids as generic biobased chemicals.

    PubMed

    Mehtiö, Tuomas; Toivari, Mervi; Wiebe, Marilyn G; Harlin, Ali; Penttilä, Merja; Koivula, Anu

    2016-10-01

    This review considers the chemical and biotechnological synthesis of acids that are obtained by direct oxidation of mono- or oligosaccharide, referred to as sugar acids. It focuses on sugar acids which can be readily derived from plant biomass sources and their current and future applications. The three main classes of sugar acids are aldonic, aldaric and uronic acids. Interest in organic acids derived from sugars has recently increased, as part of the interest to develop biorefineries which produce not only biofuels, but also chemicals to replace those currently derived from petroleum. More than half of the most desirable biologically produced platform chemicals are organic acids. Currently, the only sugar acid with high commercial production is d-gluconic acid. However, other sugar acids such as d-glucaric and meso-galactaric acids are being produced at a lower scale. The sugar acids have application as sequestering agents and binders, corrosion inhibitors, biodegradable chelators for pharmaceuticals and pH regulators. There is also considerable interest in the use of these molecules in the production of synthetic polymers, including polyamides, polyesters and hydrogels. Further development of these sugar acids will lead to higher volume production of the appropriate sugar acids and will help support the next generation of biorefineries.

  4. Materials and Chemical Sciences Division annual report 1989

    SciTech Connect

    Not Available

    1990-07-01

    This report describes research conducted at Lawrence Berkeley Laboratories, programs are discussed in the following topics: materials sciences; chemical sciences; fossil energy; energy storage systems; health and environmental sciences; exploratory research and development funds; and work for others. A total of fifty eight programs are briefly presented. References, figures, and tables are included where appropriate with each program.

  5. Chemical modifications of natural triterpenes - glycyrrhetinic and boswellic acids: evaluation of their biological activity

    PubMed Central

    Subba Rao, G. S. R.; Kondaiah, Paturu; Singh, Sanjay K.; Ravanan, Palaniyandi; Sporn, Michael B.

    2008-01-01

    Synthetic analogues of naturally occurring triterpenoids; glycyrrhetinic acid, arjunolic acid and boswellic acids, by modification of A-ring with a cyano- and enone- functionalities, have been reported. A novel method of synthesis of α-cyanoenones from isoxazoles is reported. Bio-assays using primary mouse macrophages and tumor cell lines indicate potent anti-inflammatory and cytotoxic activities associated with cyanoenones of boswellic acid and glycyrrhetinic acid. PMID:20622928

  6. Modeling acid transport in chemically amplified resist films

    NASA Astrophysics Data System (ADS)

    Patil, Abhijit A.; Doxastakis, Manolis; Stein, Gila E.

    2014-03-01

    The acid-catalyzed deprotection of glassy poly(4-hydroxystyrene-co-tert butyl acrylate) films was studied with infrared absorbance spectroscopy and stochastic simulations. Experimental data were interpreted with a simple description of subdiffusive acid transport coupled to second-order acid loss. This model predicts key attributes of observed deprotection rates, such as fast reaction at short times, slow reaction at long times, and a non-linear dependence on acid loading. The degree of anomalous character is reduced by increasing the post-exposure bake temperature or adding plasticizing agents to the polymer resin. These findings indicate that the acid mobility and overall deprotection kinetics are coupled to glassy matrix dynamics. Furthermore, the acid diffusion lengths were calculated from the anomalous transport model and compared with nanopattern line widths. The consistent scaling between experiments and simulations suggests that the anomalous diffusion model could be further developed into a predictive lithography tool.

  7. Acid rain information book. Draft final report

    SciTech Connect

    1980-12-01

    Acid rain is one of the most widely publicized environmental issues of the day. The potential consequences of increasingly widespread acid rain demand that this phenomenon be carefully evaluated. Reveiw of the literature shows a rapidly growing body of knowledge, but also reveals major gaps in understanding that need to be narrowed. This document discusses major aspects of the acid rain phenomenon, points out areas of uncertainty, and summarizes current and projected research by responsible government agencies and other concerned organizations.

  8. Amino acid composition and chemical evaluation of protein quality of cereals as affected by insect infestation.

    PubMed

    Jood, S; Kapoor, A C; Singh, R

    1995-09-01

    A significant decrease in essential amino acids of wheat, maize and sorghum was observed due to grain infestation caused by mixed populations of Trogoderma granarium Everts and Rhizopertha dominica Fabricius (50:50). Non-essential amino acids were also adversely affected. Among the essential amino acids, maximum reduction was found in methionine, isoleucine and lysine in infested wheat, maize and sorghum grains, respectively. Lysine, with lowest chemical score in uninfested and infested grains of three cereals, is the first limiting amino acid. Insect infestation caused significant (p < 0.05) reduction in the chemical score of all the essential amino acids, yet did not change the position of first and second limiting amino acids in wheat and sorghum. However, in case of maize, isoleucine became the second limiting amino acid. Infested grains also showed substantial reduction in essential amino acid index, calculated biological value and requirement index.

  9. Distillation of natural fatty acids and their chemical derivatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Well over 1,000 different fatty acids are known which are natural components of fats, oils (triacylglycerols), and other related compounds. These fatty acids can have different alkyl chain lengths, 0-6 carbon-carbon double bonds possessing cis- or trans-geometry, and can contain a variety of functio...

  10. Cluster Formation of Sulfuric Acid with Dimethylamine or Diamines and Detection with Chemical Ionization

    NASA Astrophysics Data System (ADS)

    Jen, C. N.; McMurry, P. H.; Hanson, D. R.

    2015-12-01

    Chemical ionization (CI) mass spectrometers are used to study atmospheric nucleation by detecting clusters produced by reactions of sulfuric acid and various basic gases. These instruments typically use nitrate to chemically ionize clusters for detection. In this study, we compare measured cluster concentrations formed by reacting sulfuric acid vapor with dimethylamine, ethylene diamine, tetramethylethylene diamine, or butanediamine (also known as putrescine) using nitrate and acetate ions. We show from flow reactor measurements that nitrate is unable to chemically ionize clusters with weak acidities. In addition, we vary the ion-molecule reaction time to probe the chemical ionization processes and lifetimes of ions composed of sulfuric acid and base molecules. We then model the neutral and ion cluster formation pathways, including chemical ionization, ion-induced clustering, and ion decomposition, to better identify which cluster types cannot be chemically ionized by nitrate. Our results show that sulfuric acid dimer with two diamines and sulfuric acid trimer with 2 or more base molecules cannot be chemical ionized by nitrate. We conclude that cluster concentrations measured with acetate CI gives a better representation of both cluster abundancies and their base content than nitrate CI.

  11. Quantitative Survey and Structural Classification of Fracking Chemicals Reported in Unconventional Gas Exploitation

    NASA Astrophysics Data System (ADS)

    Elsner, Martin; Schreglmann, Kathrin

    2015-04-01

    Few technologies are being discussed in such controversial terms as hydraulic fracturing ("fracking") in the recovery of unconventional gas. Particular concern regards the chemicals that may return to the surface as a result of hydraulic fracturing. These are either "fracking chemicals" - chemicals that are injected together with the fracking fluid to optimize the fracturing performance or geogenic substances which may turn up during gas production, in the so-called produced water originating from the target formation. Knowledge about them is warranted for several reasons. (1) Monitoring. Air emissions are reported to arise from well drilling, the gas itself or condensate tanks. In addition, potential spills and accidents bear the danger of surface and shallow groundwater contaminations. Monitoring strategies are therefore warranted to screen for "indicator" substances of potential impacts. (2) Chemical Analysis. To meet these analytical demands, target substances must be defined so that adequate sampling approaches and analytical methods can be developed. (3) Transformation in the Subsurface. Identification and classification of fracking chemicals (aromatics vs. alcohols vs. acids, esters, etc.) is further important to assess the possibility of subsurface reactions which may potentially generate new, as yet unidentified transformation products. (4) Wastewater Treatment. For the same reason chemical knowledge is important for optimized wastewater treatment strategies. (5) Human and Ecosystem Health. Knowledge of the most frequent fracking chemicals is further essential for risk assessment (environmental behavior, toxicity) (6) Public Discussions. Finally, an overview of reported fracking chemicals can provide unbiased scientific into current public debates and enable critical reviews of Green Chemistry approaches. Presently, however, such information is not readily available. We aim to close this knowledge gap by providing a quantitative overview of chemical

  12. Pisces field chemical emissions monitoring project: Site 117 emissions report

    SciTech Connect

    1995-12-01

    This report is one of a series sponsored by the Electric Power Research Institute in the area of trace substance emissions from fossil-fuel power plants. This report presents the results of a sampling and analytical study to characterize trace substances emissions at Site 117. Site 117 is a 1 MW selective catalytic reduction (SCR) pilot plant. The host boiler is an 850 MW boiler which burned a residual fuel oil. The objective of this report is to transmit the detailed data to the U.S. Environmental Protection Agency (EPA) to assist the Agency in evaluating utility trace chemical emissions as well as the associated health risk impacts - as mandated in Title III of the 1990 Clean Air Act Amendments. This report does not attempt to compare the results with other sites. An assessment of data from all plants that have been tested is presented in the Electric Utility Trace Substances Synthesis Report.

  13. Formation of nitric acid hydrates - A chemical equilibrium approach

    NASA Technical Reports Server (NTRS)

    Smith, Roland H.

    1990-01-01

    Published data are used to calculate equilibrium constants for reactions of the formation of nitric acid hydrates over the temperature range 190 to 205 K. Standard enthalpies of formation and standard entropies are calculated for the tri- and mono-hydrates. These are shown to be in reasonable agreement with earlier calorimetric measurements. The formation of nitric acid trihydrate in the polar stratosphere is discussed in terms of these equilibrium constants.

  14. Chemometrics review for chemical sensor development, task 7 report

    SciTech Connect

    1994-05-01

    This report, the seventh in a series on the evaluation of several chemical sensors for use in the U.S. Department of Energy`s (DOE`s) site characterization and monitoring programs, concentrates on the potential use of chemometrics techniques in analysis of sensor data. Chemometrics is the chemical discipline that uses mathematical, statistical, and other methods that employ formal logic to: design or select optimal measurement procedures and experiments and provide maximum relevant chemical information by analyzing chemical data. The report emphasizes the latter aspect. In a formal sense, two distinct phases are in chemometrics applications to analytical chemistry problems: (1) the exploratory data analysis phase and (2) the calibration and prediction phase. For use in real-world problems, it is wise to add a third aspect - the independent validation and verification phase. In practical applications, such as the ERWM work, and in order of decreasing difficulties, the most difficult tasks in chemometrics are: establishing the necessary infrastructure (to manage sampling records, data handling, and data storage and related aspects), exploring data analysis, and solving calibration problems, especially for nonlinear models. Chemometrics techniques are different for what are called zeroth-, first-, and second-order systems, and the details depend on the form of the assumed functional relationship between the measured response and the concentrations of components in mixtures. In general, linear relationships can be handled relatively easily, but nonlinear relationships can be difficult.

  15. Δ(9)-Tetrahydrocannabinolic acid synthase production in Pichia pastoris enables chemical synthesis of cannabinoids.

    PubMed

    Lange, Kerstin; Schmid, Andreas; Julsing, Mattijs K

    2015-10-10

    Δ(9)-Tetrahydrocannabinol (THC) is of increasing interest as a pharmaceutical and bioactive compound. Chemical synthesis of THC uses a laborious procedure and does not satisfy the market demand. The implementation of biocatalysts for specific synthesis steps might be beneficial for making natural product availability independent from the plant. Δ(9)-Tetrahydrocannabinolic acid synthase (THCAS) from C. sativa L. catalyzes the cyclization of cannabigerolic acid (CBGA) to Δ(9)-tetrahydrocannabinolic acid (THCA), which is non-enzymatically decarboxylated to THC. We report the preparation of THCAS in amounts sufficient for the biocatalytic production of THC(A). Active THCAS was most efficiently obtained from Pichia pastoris. THCAS was produced on a 2L bioreactor scale and the enzyme was isolated by single-step chromatography with a specific activity of 73Ug(-1)total protein. An organic/aqueous two-liquid phase setup for continuous substrate delivery facilitated in situ product removal. In addition, THCAS activity in aqueous environments lasted for only 20min whereas the presence of hexane stabilized the activity over 3h. In conclusion, production of THCAS in P. pastoris Mut(S) KM71 KE1, subsequent isolation, and its application in a two-liquid phase setup enables the synthesis of THCA on a mg scale.

  16. Temperature and magnetic field responsive hyaluronic acid particles with tunable physical and chemical properties

    NASA Astrophysics Data System (ADS)

    Ekici, Sema; Ilgin, Pinar; Yilmaz, Selahattin; Aktas, Nahit; Sahiner, Nurettin

    2011-01-01

    We report the preparation and characterization of thiolated-temperature-responsive hyaluronic acid-cysteamine-N-isopropyl acrylamide (HA-CYs-NIPAm) particles and thiolated-magnetic-responsive hyaluronic acid (HA-Fe-CYs) particles. Linear hyaluronic acid (HA) crosslinked with divinyl sulfone as HA particles was prepared using a water-in-oil micro emulsion system which were then oxidized HA-O with NaIO4 to develop aldehyde groups on the particle surface. HA-O hydrogel particles were then reacted with cysteamine (CYs) which interacted with aldehydes on the HA surface to form HA particles with cysteamine (HA-CYs) functionality on the surface. HA-CYs particles were further exposed to radical polymerization with NIPAm to obtain temperature responsive HA-CYs-NIPAm hydrogel particles. To acquire magnetic field responsive HA composites, magnetic iron particles were included in HA to form HA-Fe during HA particle preparation. HA-Fe hydrogel particles were also chemically modified. The prepared HA-CYs-NIPAm demonstrated temperature dependent size variations and phase transition temperature. HA-CYs-NIPAm and HA-Fe-CYs particles can be used as drug delivery vehicles. Sulfamethoxazole (SMZ), an antibacterial drug, was used as a model drug for temperature-induced release studies from these particles.

  17. NMR chemical shifts in amino acids: Effects of environments, electric field, and amine group rotation

    SciTech Connect

    Yoon, Young-Gui; Pfrommer, Bernd G.; Louie, Steven G.; Canning, Andrew

    2002-03-03

    The authors present calculations of NMR chemical shifts in crystalline phases of some representative amino acids such as glycine, alanine, and alanyl-alanine. To get an insight on how different environments affect the chemical shifts, they study the transition from the crystalline phase to completely isolated molecules of glycine. In the crystalline limit, the shifts are dominated by intermolecular hydrogen-bonds. In the molecular limit, however, dipole electric field effects dominate the behavior of the chemical shifts. They show that it is necessary to average the chemical shifts in glycine over geometries. Tensor components are analyzed to get the angle dependent proton chemical shifts, which is a more refined characterization method.

  18. Biological and chemical technologies research. FY 1995 annual summary report

    SciTech Connect

    1996-03-01

    The annual summary report presents the fiscal year (FY) 1995 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program. This BCTR program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1995 (ASR 95) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization, selected technical and programmatic highlights for 1995; detailed descriptions of individual projects; a listing of program output, including a bibliography of published work; patents; and awards arising from work supported by the BCTR.

  19. Nine-size system for chemical defense gloves. Technical report

    SciTech Connect

    Robinette, K.M.; Annis, J.F.

    1986-07-01

    The purpose of this effort was to meet the need for improved sizing of chemical defense gloves for Air Force men and women. A nine-size system was developed from available hand data. The development process and size values are presented in this report. Some summary statistics and regression equations are provided to aid investigators who may wish to make modifications. Although the anthropometric sizing system outlined in this report is statistically sound, it is experimental. The authors recommend that anthropometric fit-testing be conducted prior to full-scale glove production.

  20. 75 FR 8287 - Control of Ergocristine, a Chemical Precursor Used in the Illicit Manufacture of Lysergic Acid...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ... in the Illicit Manufacture of Lysergic Acid Diethylamide, as a List I Chemical AGENCY: Drug... schedule I controlled substance lysergic acid diethylamide (LSD). If finalized as proposed, handlers of... ``For Further Information'' paragraph. Background Lysergic acid diethylamide (LSD) is a...

  1. PISCES field chemical emissions monitoring project: Site 21 emissions report

    SciTech Connect

    1995-12-01

    This report is one of a series sponsored by the Electric Power Research Institute in the area of trace substance emissions from fossil-fuel power plants. This report presents the results of a sampling and analytical study to characterize trace substances emissions at Site 21. Site 21 is a pilot-scale electrostatic precipitator and wet flue gas desulfurization (FGD) system. The flue gas for the pilot unit is provided by an adjacent power plant boiler which bums a medium-sulfur bituminous, coal. The primary objective in the Site 21 sampling and analytical program was to quantify the various components of variance in the measurement of trace chemical species. In addition to the replicate sample trains typically conducted at previous PISCES field measurements, duplicate analyses and duplicate (simultaneous) sample trains were also conducted. This enabled the variance due to sampling, analytical, and process conditions to be estimated. The objective of this report is to transmit the detailed data to the U.S. Environmental Protection Agency (EPA) to assist the Agency in evaluating utility trace chemical emissions as well as the associated health risk impacts - as mandated in Title III of the 1990 Clean Air Act Amendments. This report does not attempt to compare the results with other sites. An assessment of data from all plants that have been tested is presented in the Electric Utility Trace Substances Synthesis Report.

  2. Chemical doping of MoS2 multilayer by p-toluene sulfonic acid

    PubMed Central

    Andleeb, Shaista; Kumar Singh, Arun; Eom, Jonghwa

    2015-01-01

    We report the tailoring of the electrical properties of mechanically exfoliated multilayer (ML) molybdenum disulfide (MoS2) by chemical doping. Electrical charge transport and Raman spectroscopy measurements revealed that the p-toluene sulfonic acid (PTSA) imposes n-doping in ML MoS2. The shift of threshold voltage for ML MoS2 transistor was analyzed as a function of reaction time. The threshold voltage shifted toward more negative gate voltages with increasing reaction time, which indicates an n-type doping effect. The shift of the Raman peak positions was also analyzed as a function of reaction time. PTSA treatment improved the field-effect mobility by a factor of ~4 without degrading the electrical characteristics of MoS2 devices. PMID:27877810

  3. Chemical characterisation and application of acid whey in fermented milk.

    PubMed

    Lievore, Paolla; Simões, Deise R S; Silva, Karolline M; Drunkler, Northon L; Barana, Ana C; Nogueira, Alessandro; Demiate, Ivo M

    2015-04-01

    Acid whey is a by-product from cheese processing that can be employed in beverage formulations due to its high nutritional quality. The objective of the present work was to study the physicochemical characterisation of acid whey from Petit Suisse-type cheese production and use this by-product in the formulation of fermented milk, substituting water. In addition, a reduction in the fermentation period was tested. Both the final product and the acid whey were analysed considering physicochemical determinations, and the fermented milk was evaluated by means of sensory analysis, including multiple comparison and acceptance tests, as well as purchase intention. The results of the physicochemical analyses showed that whey which was produced during both winter and summer presented higher values of protein (1.22 and 0.97 %, w/v, respectively), but there were no differences in lactose content. During the autumn, the highest solid extract was found in whey (6.00 %, w/v), with larger amounts of lactose (4.73 %, w/v) and ash (0.83 %, w/v). When analysing the fermented milk produced with added acid whey, the acceptance test resulted in 90 % of acceptance; the purchase intention showed that 54 % of the consumers would 'certainly buy' and 38 % would 'probably buy' the product. Using acid whey in a fermented milk formulation was technically viable, allowing by-product value aggregation, avoiding discharge, lowering water consumption and shortening the fermentation period.

  4. Prediction algorithm for amino acid types with their secondary structure in proteins (PLATON) using chemical shifts.

    PubMed

    Labudde, D; Leitner, D; Krüger, M; Oschkinat, H

    2003-01-01

    The algorithm PLATON is able to assign sets of chemical shifts derived from a single residue to amino acid types with its secondary structure (amino acid species). A subsequent ranking procedure using optionally two different penalty functions yields predictions for possible amino acid species for the given set of chemical shifts. This was demonstrated in the case of the alpha-spectrin SH3 domain and applied to 9 further protein data sets taken from the BioMagRes database. A database consisting of reference chemical shift patterns (reference CSPs) was generated from assigned chemical shifts of proteins with known 3D-structure. This reference CSP database is used in our approach for extracting distributions of amino acid types with their most likely secondary structure elements (namely alpha-helix, beta-sheet, and coil) for single amino acids by comparison with query CSPs. Results obtained for the 10 investigated proteins indicates that the percentage of correct amino acid species in the first three positions in the ranking list, ranges from 71.4% to 93.2% for the more favorable penalty function. Where only the top result of the ranking list for these 10 proteins is considered, 36.5% to 83.1% of the amino acid species are correctly predicted. The main advantage of our approach, over other methods that rely on average chemical shift values is the ability to increase database content by incorporating newly derived CSPs, and therefore to improve PLATON's performance over time.

  5. Acid-Base Chemistry According to Robert Boyle: Chemical Reactions in Words as well as Symbols

    ERIC Educational Resources Information Center

    Goodney, David E.

    2006-01-01

    Examples of acid-base reactions from Robert Boyle's "The Sceptical Chemist" are used to illustrate the rich information content of chemical equations. Boyle required lengthy passages of florid language to describe the same reaction that can be done quite simply with a chemical equation. Reading or hearing the words, however, enriches the student's…

  6. Chemical Degradation Studies on a Series of Dithiophosphinic Acids

    SciTech Connect

    Melissa E. Freiderich; Dean R. Peterman; John R. Klaehn; Philippe Marc; Laetitia H. Delmau

    2014-04-01

    A significant increase in the stability of a series of dithiophosphinic acids (DPAHs) under oxidizing acidic conditions was achieved. The degradation behavior of a series of DPAHs, designed for lanthanide/actinide separation, was examined. The stability of the DPAHs, when contacted with varying nitric acid concentrations, was tested and monitored using 31P {1H} NMR. Changes in the functional groups of the DPAHs resulted in substantial increases in the stability. However, when placed in contact with 2 M HNO3 all the DPAHs eventually showed signs of degradation. The addition of a radical scavenger, hydrazine, inhibited the degradation of the DPAHs. In the presence of a small concentration of hydrazine, five of the DPAHs remained stable for over a month in direct contact with 2 M HNO3.

  7. Chemical Degradation Studies on a Series of Dithiophosphinic Acids

    SciTech Connect

    Freiderich, Melissa E; Delmau, Laetitia Helene; Peterman, D. R.; Marc, Philippe L; Klaehn, John D.

    2014-01-01

    In this study a significant increase in the stability of a series of dithiophosphinic acids (DPAHs) under oxidizing acidic conditions was achieved. The degradation behavior of a series of DPAHs, designed for lanthanide/actinide separation, was examined. The stability of the DPAHs, when contacted with varying nitric acid concentrations, was tested and monitored using 31P {1H} NMR. Changes in the functional groups of the DPAHs resulted in substantial increases in the stability. However, all the DPAHs eventually showed signs of degradation when placed in contact with 2 M HNO3. The addition of a radical scavenger, hydrazine, inhibited the degradation of the DPAHs. With small amounts of hydrazine, five of the DPAHs remained stable for over a month in direct contact with 2 M HNO3.

  8. Engineered Barrier Systems Thermal-Hydraulic-Chemical Column Test Report

    SciTech Connect

    W.E. Lowry

    2001-12-13

    The Engineered Barrier System (EBS) Thermal-Hydraulic-Chemical (THC) Column Tests provide data needed for model validation. The EBS Degradation, Flow, and Transport Process Modeling Report (PMR) will be based on supporting models for in-drift THC coupled processes, and the in-drift physical and chemical environment. These models describe the complex chemical interaction of EBS materials, including granular materials, with the thermal and hydrologic conditions that will be present in the repository emplacement drifts. Of particular interest are the coupled processes that result in mineral and salt dissolution/precipitation in the EBS environment. Test data are needed for thermal, hydrologic, and geochemical model validation and to support selection of introduced materials (CRWMS M&O 1999c). These column tests evaluated granular crushed tuff as potential invert ballast or backfill material, under accelerated thermal and hydrologic environments. The objectives of the THC column testing are to: (1) Characterize THC coupled processes that could affect performance of EBS components, particularly the magnitude of permeability reduction (increases or decreases), the nature of minerals produced, and chemical fractionation (i.e., concentrative separation of salts and minerals due to boiling-point elevation). (2) Generate data for validating THC predictive models that will support the EBS Degradation, Flow, and Transport PMR, Rev. 01.

  9. 76 FR 54932 - TSCA Inventory Update Reporting Modifications; Chemical Data Reporting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-06

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 704, 710, and 711 RIN 2070-AJ43 TSCA Inventory Update Reporting Modifications; Chemical Data Reporting Correction In rule document 2011-19922, appearing on pages 50816-50879 in the...

  10. Chemical force mapping of phosphate and carbon on acid-modified tapioca starch surface.

    PubMed

    Wuttisela, Karntarat; Triampo, Wannapong; Triampo, Darapond

    2009-01-01

    Surface chemical microstructure of hydrochloric acid hydrolyzed tapioca starch producing different amylose:amylopectin (Am:Ap) ratios were studied with scanning chemical force microscopy (CFM). The chemical force probes were functionalized of two types with -OH (phosphate specific) and -CH3 (carbon specific). Lateral force trace-minus-retrace (TMR) images from -OH and -CH3 probes revealed changes in the phosphate domains and the carbon backbone for the varying acid hydrolyzed tapioca starch compared to that of the native tapioca starch. Scanning electron micrographs (SEM) showed different degree of the granule surface disruption before and after hydrolysis. The exterior structures of the acid hydrolyzed starch granules were chemically investigated with CFM to study the relationships of the surface molecular structures and the Am:Ap ratios.

  11. BCTR: Biological and Chemical Technologies Research 1994 annual summary report

    SciTech Connect

    Petersen, G.

    1995-02-01

    The annual summary report presents the fiscal year (FY) 1994 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). Although the OIT was reorganized in 1991 and AICD no longer exists, this document reports on efforts conducted under the former structure. The annual summary report for 1994 (ASR 94) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization, selected technical and programmatic highlights for 1994; detailed descriptions of individual projects; a listing of program output, including a bibliography of published work; patents, and awards arising from work supported by BCTR.

  12. Phenylboronic acid-based (19)F MRI probe for the detection and imaging of hydrogen peroxide utilizing its large chemical-shift change.

    PubMed

    Nonaka, Hiroshi; An, Qi; Sugihara, Fuminori; Doura, Tomohiro; Tsuchiya, Akira; Yoshioka, Yoshichika; Sando, Shinsuke

    2015-01-01

    Herein, we report on a new (19)F MRI probe for the detection and imaging of H2O2. Our designed 2-fluorophenylboronic acid-based (19)F probe promptly reacted with H2O2 to produce 2-fluorophenol via boronic acid oxidation. The accompanying (19)F chemical-shift change reached 31 ppm under our experimental conditions. Such a large chemical-shift change allowed for the imaging of H2O2 by (19)F chemical-shift-selective MRI.

  13. Seismic and source characteristics of large chemical explosions. Final report

    SciTech Connect

    Adushkin, V.V.; Kostuchenko, V.N.; Pernik, L.M.; Sultanov, D.D.; Zcikanovsky, V.I.

    1995-01-01

    From the very beginning of its arrangement in 1947, the Institute for Dynamics of the Geospheres RAS (former Special Sector of the Institute for physics of the Earth, RAS) was providing scientific observations of effects of nuclear explosions, as well as large-scale detonations of HE, on environment. This report presents principal results of instrumental observations obtained from various large-scale chemical explosions conducted in the Former-Soviet Union in the period of time from 1957 to 1989. Considering principal aim of the work, tamped and equivalent chemical explosions have been selected with total weights from several hundreds to several thousands ton. In particular, the selected explosions were aimed to study scaling law from excavation explosions, seismic effect of tamped explosions, and for dam construction for hydropower stations and soil melioration. Instrumental data on surface explosions of total weight in the same range aimed to test military technics and special objects are not included.

  14. A new boronic acid based fluorescent reporter for catechol.

    PubMed

    Wu, Zhongyu; Li, Minyong; Fang, Hao; Wang, Binghe

    2012-12-01

    Catechol skeleton widely exists in natural products and bioactive substances. Fluorescent reporters which could recognize catechol are very promising for the construction of chemosensors to detect catechol and its derivatives in biological environment. Herein, we reported a novel catechol reporter, 2-(4-boronophenyl)quinoline-4-carboxylic acid, which exhibits significant fluorescent property changes upon binding catechol containing molecules in an aqueous solution.

  15. Microbial production of fatty acid-derived fuels and chemicals

    PubMed Central

    Lennen, Rebecca M; Pfleger, Brian F

    2013-01-01

    Fatty acid metabolism is an attractive route to produce liquid transportation fuels and commodity oleochemicals from renewable feedstocks. Recently, genes and enzymes, which comprise metabolic pathways for producing fatty acid-derived compounds (e.g. esters, alkanes, olefins, ketones, alcohols, polyesters) have been elucidated and used in engineered microbial hosts. The resulting strains often generate products at low percentages of maximum theoretical yields, leaving significant room for metabolic engineering. Economically viable processes will require strains to approach theoretical yields, particularly for replacement of petroleum-derived fuels. This review will describe recent progress toward this goal, highlighting the scientific discoveries of each pathway, ongoing biochemical studies to understand each enzyme, and metabolic engineering strategies that are being used to improve strain performance. PMID:23541503

  16. Tanzawaic Acids, a Chemically Novel Set of Bacterial Conjugation Inhibitors

    PubMed Central

    Getino, María; Fernández-López, Raúl; Palencia-Gándara, Carolina; Campos-Gómez, Javier; Sánchez-López, Jose M.; Martínez, Marta; Fernández, Antonio; de la Cruz, Fernando

    2016-01-01

    Bacterial conjugation is the main mechanism for the dissemination of multiple antibiotic resistance in human pathogens. This dissemination could be controlled by molecules that interfere with the conjugation process. A search for conjugation inhibitors among a collection of 1,632 natural compounds, identified tanzawaic acids A and B as best hits. They specially inhibited IncW and IncFII conjugative systems, including plasmids mobilized by them. Plasmids belonging to IncFI, IncI, IncL/M, IncX and IncH incompatibility groups were targeted to a lesser extent, whereas IncN and IncP plasmids were unaffected. Tanzawaic acids showed reduced toxicity in bacterial, fungal or human cells, when compared to synthetic conjugation inhibitors, opening the possibility of their deployment in complex environments, including natural settings relevant for antibiotic resistance dissemination. PMID:26812051

  17. Swatch Test Results of Phase 2 Commercial Chemical Protective Gloves to Challenge by Chemical Warfare Agents: Summary Report

    DTIC Science & Technology

    2001-01-01

    TEST RESULTS OF PHASE 2 COMMERCIAL CHEMICAL PROTECTIVE GLOVES TO CHALLENGE BY CHEMICAL WARFARE AGENTS : SUMMARY REPORT Robert S...Swatch testing Permeation testing GB Chemical protective gloves 15. NUMBER OF PAGES 53 16. PRICE CODE 17... warfare (CW) agent environment. Swatches of material from each glove design were tested for resistance to

  18. Acid-Base Chemistry of White Wine: Analytical Characterisation and Chemical Modelling

    PubMed Central

    Prenesti, Enrico; Berto, Silvia; Toso, Simona; Daniele, Pier Giuseppe

    2012-01-01

    A chemical model of the acid-base properties is optimized for each white wine under study, together with the calculation of their ionic strength, taking into account the contributions of all significant ionic species (strong electrolytes and weak one sensitive to the chemical equilibria). Coupling the HPLC-IEC and HPLC-RP methods, we are able to quantify up to 12 carboxylic acids, the most relevant substances responsible of the acid-base equilibria of wine. The analytical concentration of carboxylic acids and of other acid-base active substances was used as input, with the total acidity, for the chemical modelling step of the study based on the contemporary treatment of overlapped protonation equilibria. New protonation constants were refined (L-lactic and succinic acids) with respect to our previous investigation on red wines. Attention was paid for mixed solvent (ethanol-water mixture), ionic strength, and temperature to ensure a thermodynamic level to the study. Validation of the chemical model optimized is achieved by way of conductometric measurements and using a synthetic “wine” especially adapted for testing. PMID:22566762

  19. Acid-base chemistry of white wine: analytical characterisation and chemical modelling.

    PubMed

    Prenesti, Enrico; Berto, Silvia; Toso, Simona; Daniele, Pier Giuseppe

    2012-01-01

    A chemical model of the acid-base properties is optimized for each white wine under study, together with the calculation of their ionic strength, taking into account the contributions of all significant ionic species (strong electrolytes and weak one sensitive to the chemical equilibria). Coupling the HPLC-IEC and HPLC-RP methods, we are able to quantify up to 12 carboxylic acids, the most relevant substances responsible of the acid-base equilibria of wine. The analytical concentration of carboxylic acids and of other acid-base active substances was used as input, with the total acidity, for the chemical modelling step of the study based on the contemporary treatment of overlapped protonation equilibria. New protonation constants were refined (L-lactic and succinic acids) with respect to our previous investigation on red wines. Attention was paid for mixed solvent (ethanol-water mixture), ionic strength, and temperature to ensure a thermodynamic level to the study. Validation of the chemical model optimized is achieved by way of conductometric measurements and using a synthetic "wine" especially adapted for testing.

  20. Using solid-phase microextraction to determine partition coefficients to humic acids and bioavailable concentrations of hydrophobic chemicals

    SciTech Connect

    Ramos, E.U.; Meijer, S.N.; Vaes, W.H.J.; Verhaar, H.J.M.; Hermens, J.L.M.

    1998-11-01

    In the current study, the suitability of negligible depletion solid-phase microextraction (nd-SPME) to determine free fractions of chemicals in aquatic environments was explored. The potential interferences of the dissolved matrix (i.e., humic acids) with the SPME measurements were tested. Results show that nd-SPME measures only the freely dissolved fraction and that the measurements are not disturbed by the humic acids. In addition, nd-SPME was used to determine partition coefficients between dissolved organic carbon and water for four hydrophobic chemicals. Obtained values are in excellent agreement with previously reported data. Finally, the bioaccumulation of hexachlorobenzene and PCB 77 to Daphnia magna was determined in the presence and absence of humic acids. The bioconcentration factors (BCF) were calculated based on total as well as on free concentration. Lower BCF values are obtained in the presence of humic acids using total concentrations, whereas equal BCFs are found using free concentrations measured with nd-SPME. Therefore, the authors can conclude that negligible depletion SPME is a good technique to determine bioavailable concentrations of hydrophobic chemicals in aquatic environments.

  1. Chemical Modeling of Acid-Base Properties of Soluble Biopolymers Derived from Municipal Waste Treatment Materials

    PubMed Central

    Tabasso, Silvia; Berto, Silvia; Rosato, Roberta; Tafur Marinos, Janeth Alicia; Ginepro, Marco; Zelano, Vincenzo; Daniele, Pier Giuseppe; Montoneri, Enzo

    2015-01-01

    This work reports a study of the proton-binding capacity of biopolymers obtained from different materials supplied by a municipal biowaste treatment plant located in Northern Italy. One material was the anaerobic fermentation digestate of the urban wastes organic humid fraction. The others were the compost of home and public gardening residues and the compost of the mix of the above residues, digestate and sewage sludge. These materials were hydrolyzed under alkaline conditions to yield the biopolymers by saponification. The biopolymers were characterized by 13C NMR spectroscopy, elemental analysis and potentiometric titration. The titration data were elaborated to attain chemical models for interpretation of the proton-binding capacity of the biopolymers obtaining the acidic sites concentrations and their protonation constants. The results obtained with the models and by NMR spectroscopy were elaborated together in order to better characterize the nature of the macromolecules. The chemical nature of the biopolymers was found dependent upon the nature of the sourcing materials. PMID:25658795

  2. Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: July-December 1998

    SciTech Connect

    Jubin, R.T.

    1999-06-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July-December 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications.

  3. Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: April-June 1998

    SciTech Connect

    Jubin, R.T.

    1999-04-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during th eperiod April-June 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications.

  4. Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities.

    PubMed

    Akhtar, M Kalim; Turner, Nicholas J; Jones, Patrik R

    2013-01-02

    Aliphatic hydrocarbons such as fatty alcohols and petroleum-derived alkanes have numerous applications in the chemical industry. In recent years, the renewable synthesis of aliphatic hydrocarbons has been made possible by engineering microbes to overaccumulate fatty acids. However, to generate end products with the desired physicochemical properties (e.g., fatty aldehydes, alkanes, and alcohols), further conversion of the fatty acid is necessary. A carboxylic acid reductase (CAR) from Mycobacterium marinum was found to convert a wide range of aliphatic fatty acids (C(6)-C(18)) into corresponding aldehydes. Together with the broad-substrate specificity of an aldehyde reductase or an aldehyde decarbonylase, the catalytic conversion of fatty acids to fatty alcohols (C(8)-C(16)) or fatty alkanes (C(7)-C(15)) was reconstituted in vitro. This concept was applied in vivo, in combination with a chain-length-specific thioesterase, to engineer Escherichia coli BL21(DE3) strains that were capable of synthesizing fatty alcohols and alkanes. A fatty alcohol titer exceeding 350 mg·L(-1) was obtained in minimal media supplemented with glucose. Moreover, by combining the CAR-dependent pathway with an exogenous fatty acid-generating lipase, natural oils (coconut oil, palm oil, and algal oil bodies) were enzymatically converted into fatty alcohols across a broad chain-length range (C(8)-C(18)). Together with complementing enzymes, the broad substrate specificity and kinetic characteristics of CAR opens the road for direct and tailored enzyme-catalyzed conversion of lipids into user-ready chemical commodities.

  5. Chemical speciation and mobilization of copper and zinc in naturally contaminated mine soils with citric and tartaric acids.

    PubMed

    Pérez-Esteban, Javier; Escolástico, Consuelo; Moliner, Ana; Masaguer, Alberto

    2013-01-01

    A one-step extraction procedure and a leaching column experiment were performed to assess the effects of citric and tartaric acids on Cu and Zn mobilization in naturally contaminated mine soils to facilitate assisted phytoextraction. A speciation modeling of the soil solution and the metal fractionation of soils were performed to elucidate the chemical processes that affected metal desorption by organic acids. Different extracting solutions were prepared, all of which contained 0.01 M KNO(3) and different concentrations of organic acids: control without organic acids, 0.5 mM citric, 0.5 mM tartaric, 10 mM citric, 10 mM tartaric, and 5 mM citric +5 mM tartaric. The results of the extraction procedure showed that higher concentrations of organic acids increased metal desorption, and citric acid was more effective at facilitating metal desorption than tartaric acid. Metal desorption was mainly influenced by the decreasing pH and the dissolution of Fe and Mn oxides, not by the formation of soluble metal-organic complexes as was predicted by the speciation modeling. The results of the column study reported that low concentrations of organic acids did not significantly increase metal mobilization and that higher doses were also not able to mobilize Zn. However, 5-10 mM citric acid significantly promoted Cu mobilization (from 1 mg kg(-1) in the control to 42 mg kg(-1) with 10 mM citric acid) and reduced the exchangeable (from 21 to 3 mg kg(-1)) and the Fe and Mn oxides (from 443 to 277 mg kg(-1)) fractions. Citric acid could efficiently facilitate assisted phytoextraction techniques.

  6. Applications of synchrotron radiation to Chemical Engineering Science: Workshop report

    SciTech Connect

    Not Available

    1991-07-01

    This report contains extended abstracts that summarize presentations made at the Workshop on Applications of Synchrotron Radiation to Chemical Engineering Science held at Argonne National Laboratory (ANL), Argonne, IL, on April 22--23, 1991. The talks emphasized the application of techniques involving absorption fluorescence, diffraction, and reflection of synchrotron x-rays, with a focus on problems in applied chemistry and chemical engineering, as well as on the use of x-rays in topographic, tomographic, and lithographic procedures. The attendees at the workshop included experts in the field of synchrotron science, scientists and engineers from ANL, other national laboratories, industry, and universities; and graduate and undergraduate students who were enrolled in ANL educational programs at the time of the workshop. Talks in the Plenary and Overview Session described the status of and special capabilities to be offered by the Advanced Photon Source (APS), as well as strategies and opportunities for utilization of synchrotron radiation to solve science and engineering problems. Invited talks given in subsequent sessions covered the use of intense infrared, ultraviolet, and x-ray photon beams (as provided by synchrotrons) in traditional and nontraditional areas of chemical engineering research related to electrochemical and corrosion science, catalyst development and characterization, lithography and imaging techniques, and microanalysis.

  7. PISCES field chemical emissions monitoring project: Site 112 emissions report

    SciTech Connect

    1995-12-01

    This report is one of a series sponsored by the Electric Power Research Institute in the area of trace substance emissions from fossil-fuel power plants. This report presents the results of a sampling and analytical study to characterize trace substances emissions at Site 112. Site 112 is a tangentially fired boiler firing residual oil. Site 112 employs electrostatic precipitators and a flue gas desulfurization system for particulate and SO{sub 2} control. Sampling at Site 112 was performed in July and August of 1992 for volatile organic compounds (VOCs) and mercury. The objective of this report is to transmit the detailed data to the U.S. Environmental Protection Agency (EPA) to assist the Agency in evaluating utility trace chemical emissions as well as the associated health risk impacts - as mandated in Title III of the 1990 Clean Air Act Amendments. This report does not attempt to compare the results with other sites. An assessment of data from all plants that have been tested is presented in the Electric Utility Trace Substances Synthesis Report (EPRI TR-104614).

  8. Bile acid aspiration associated with lung chemical profile linked to other biomarkers of injury after lung transplantation.

    PubMed

    Neujahr, D C; Uppal, K; Force, S D; Fernandez, F; Lawrence, C; Pickens, A; Bag, R; Lockard, C; Kirk, A D; Tran, V; Lee, K; Jones, D P; Park, Y

    2014-04-01

    Aspiration of gastrointestinal contents has been linked to worse outcomes following lung transplantation but uncertainty exists about underlying mechanisms. We applied high-resolution metabolomics of bronchoalveolar lavage fluid (BALF) in patients with episodic aspiration (defined by bile acids in the BALF) to identify potential metabolic changes associated with aspiration. Paired samples, one with bile acids and another without, from 29 stable lung transplant patients were studied. Liquid chromatography coupled to high-resolution mass spectroscopy was used to interrogate metabolomic contents of these samples. Data were obtained for 7068 ions representing intermediary metabolites, environmental agents and chemicals associated with microbial colonization. A substantial number (2302) differed between bile acid positive and negative samples when analyzed by false discovery rate at q = 0.01. These included pathways associated with microbial metabolism. Hierarchical cluster analysis defined clusters of chemicals associated with bile acid aspiration that were correlated to previously reported biomarkers of lung injury including T cell granzyme B level and the chemoattractants CXCL9 and CXCL10. These data specifically link bile acids presence in lung allografts to inflammatory pathways known to segregate with worsening allograft outcome, and provide additional mechanistic insight into the association between reflux and lung allograft injury.

  9. Capsule report: Adipic acid-enhanced lime/limestone test results at the EPA alkali scrubbing test facility

    SciTech Connect

    Burbank, D.A.; Wang, S.C.

    1982-04-01

    The fifth in a series of reports describing the results of the Shawnee Lime and Limestone Wet Scrubbing Test Program, the report describes the results of adipic acid-enhanced limestone wet scrubbing systems. A primary objective of the program was to enhance sulfur oxide removal and improve the reliability and economics of lime and limestone wet scrubbing systems by use of adipic acid as a chemical additive.

  10. Selective Chemical Conversion of Sugars in Aqueous Solutions without Alkali to Lactic Acid Over a Zn-Sn-Beta Lewis Acid-Base Catalyst

    PubMed Central

    Dong, Wenjie; Shen, Zheng; Peng, Boyu; Gu, Minyan; Zhou, Xuefei; Xiang, Bo; Zhang, Yalei

    2016-01-01

    Lactic acid is an important platform molecule in the synthesis of a wide range of chemicals. However, in aqueous solutions without alkali, its efficient preparation via the direct catalysis of sugars is hindered by a side dehydration reaction to 5-hydroxymethylfurfural due to Brønsted acid, which originates from organic acids. Herein, we report that a previously unappreciated combination of common two metal mixed catalyst (Zn-Sn-Beta) prepared via solid-state ion exchange synergistically promoted this reaction. In water without a base, a conversion exceeding 99% for sucrose with a lactic acid yield of 54% was achieved within 2 hours at 190 °C under ambient air pressure. Studies of the acid and base properties of the Zn-Sn-Beta zeolite suggest that the introduction of Zn into the Sn-Beta zeolite sequentially enhanced both the Lewis acid and base sites, and the base sites inhibited a series of side reactions related to fructose dehydration to 5-hydroxymethylfurfural and its subsequent decomposition. PMID:27222322

  11. Selective Chemical Conversion of Sugars in Aqueous Solutions without Alkali to Lactic Acid Over a Zn-Sn-Beta Lewis Acid-Base Catalyst

    NASA Astrophysics Data System (ADS)

    Dong, Wenjie; Shen, Zheng; Peng, Boyu; Gu, Minyan; Zhou, Xuefei; Xiang, Bo; Zhang, Yalei

    2016-05-01

    Lactic acid is an important platform molecule in the synthesis of a wide range of chemicals. However, in aqueous solutions without alkali, its efficient preparation via the direct catalysis of sugars is hindered by a side dehydration reaction to 5-hydroxymethylfurfural due to Brønsted acid, which originates from organic acids. Herein, we report that a previously unappreciated combination of common two metal mixed catalyst (Zn-Sn-Beta) prepared via solid-state ion exchange synergistically promoted this reaction. In water without a base, a conversion exceeding 99% for sucrose with a lactic acid yield of 54% was achieved within 2 hours at 190 °C under ambient air pressure. Studies of the acid and base properties of the Zn-Sn-Beta zeolite suggest that the introduction of Zn into the Sn-Beta zeolite sequentially enhanced both the Lewis acid and base sites, and the base sites inhibited a series of side reactions related to fructose dehydration to 5-hydroxymethylfurfural and its subsequent decomposition.

  12. Chemical reduction of europium(III) in hydrochloric acid

    SciTech Connect

    Atanasyants, A.G.; Gurinov, Yu.S.; Sofenina, E.V.

    1988-07-10

    The authors have devised a method for use at set pH and temperature, in which the volume of hydrogen produced is recorded and samples are taken for europium(II) analysis. The solution is poured into a glass cell with a thermostatic jacket; argon is passed through a capillary tube 2 for 0.5 h before the reduction is started, with the bubbling rate determined from the change in level in a burette. This burette is also used to record the hydrogen volume. The europium(II) concentration is determined by titration with potassium dichromate by a standard method. Europium is reduced by zinc in acid solution. The zinc consumption in hydrogen production can be reduced by operating at pH 2-3, with the precipitant introduced after the reaction starts.

  13. Fact Sheet: EPCRA Amendments to Emergency Planning and Notification; Emergency Release Notification and Hazardous Chemical Reporting

    EPA Pesticide Factsheets

    2008 minor revisions to the emergency planning and emergency release notification sections; as well as the revisions to hazardous chemical reporting regulations covering the Tier I and Tier II forms, and how to report hazardous chemicals in a mixture.

  14. Modification of wheat starch with succinic acid/acetanhydride and azelaic acid/acetanhydride mixtures. II. Chemical and physical properties.

    PubMed

    Ačkar, Durđica; Subarić, Drago; Babić, Jurislav; Miličević, Borislav; Jozinović, Antun

    2014-08-01

    The aim of this research was to investigate the influence of modification with succinic acid/acetanhydride and azelaic acid/acetanhydride mixtures on chemical and physical properties of wheat starch. Starch was isolated from two wheat varieties and modified with mixtures of succinic acid and acetanhydride and azelaic acid and acetanhydride in 4, 6 and 8% (w/w). Total starch content, resistant starch content, degree of modification, changes in FT-IR spectra, colour, gel texture and freeze-thaw stability were determined. Results showed that resistant starch content increased by both investigated modifications, and degree of modification increased proportionally to amount of reagents used. FT-IR analysis of modified starches showed peak around 1,740 cm(-1), characteristic for carbonyl group of ester. Total colour difference caused by modifications was detectable by trained people. Adhesiveness significantly increased, while freeze-thaw stability decreased by both investigated modifications.

  15. Boric acid application guidelines for intergranular corrosion inhibition: Topical report

    SciTech Connect

    Hermer, R.E.

    1987-12-01

    A significant fraction of the operating Pressurized Water Reactor steam generators have used or are using boric acid as an inhibitor to control stress corrosion cracking, intergranular attack, or denting. Boric acid is applied via crevice flushing, low power soaks, on-line, or using a combination of these methods. When boric acid is used it is important to have knowledge about its chemical and physical properties, its effect on corrosion, and how it should be correctly applied. The data on these subjects may be found in a diversity of sources, which are often not readily available or convenient to use. This document has been prepared to be a comprehensive treatise on boric acid relevant to its application in nuclear steam generators. 49 refs., 31 figs., 16 tabs.

  16. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: January--March 1997

    SciTech Connect

    Jubin, R.T.

    1998-01-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division (CTD) at Oak Ridge National Laboratory (ORNL) during the period January--March 1997. Created in March 1997 when the CTD Chemical Development and Energy Research sections were combined, the Chemical and Energy Research Section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within seven major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Separations and Materials Synthesis, Solution Thermodynamics, and Biotechnology Research. The name of a technical contact is included with each task described in the report, and readers are encouraged to contact these individuals if they need additional information.

  17. Synthesis of a Sulfonated Two-Dimensional Covalent Organic Framework as an Efficient Solid Acid Catalyst for Biobased Chemical Conversion.

    PubMed

    Peng, Yongwu; Hu, Zhigang; Gao, Yongjun; Yuan, Daqiang; Kang, Zixi; Qian, Yuhong; Yan, Ning; Zhao, Dan

    2015-10-12

    Because of limited framework stability tolerance, de novo synthesis of sulfonated covalent organic frameworks (COFs) remains challenging and unexplored. Herein, a sulfonated two-dimensional crystalline COF, termed TFP-DABA, was synthesized directly from 1,3,5-triformylphloroglucinol and 2,5-diaminobenzenesulfonic acid through a previously reported Schiff base condensation reaction, followed by irreversible enol-to-keto tautomerization, which strengthened its structural stability. TFP-DABA is a highly efficient solid acid catalyst for fructose conversion with remarkable yields (97 % for 5-hydroxymethylfurfural and 65 % for 2,5-diformylfuran), good chemoselectivity, and good recyclability. The present study sheds light on the de novo synthesis of sulfonated COFs as novel solid acid catalysts for biobased chemical conversion.

  18. Antioxidant Activity of Caffeic Acid against Iron-Induced Free Radical Generation—A Chemical Approach

    PubMed Central

    Genaro-Mattos, Thiago C.; Maurício, Ângelo Q.; Rettori, Daniel; Alonso, Antonio; Hermes-Lima, Marcelo

    2015-01-01

    Caffeic acid (CA) is a phenolic compound widely found in coffee beans with known beneficial effects in vivo. Many studies showed that CA has anti-inflammatory, anti-mutagenic, antibacterial and anti-carcinogenic properties, which could be linked to its antioxidant activity. Taking in consideration the reported in vitro antioxidant mechanism of other polyphenols, our working hypothesis was that the CA antioxidant activity could be related to its metal-chelating property. With that in mind, we sought to investigate the chemical antioxidant mechanism of CA against in vitro iron-induced oxidative damage under different assay conditions. CA was able to prevent hydroxyl radical formation promoted by the classical Fenton reaction, as determined by 2-deoxyribose (2-DR) oxidative degradation and DMPO hydroxylation. In addition to its ability to prevent hydroxyl radical formation, CA had a great inhibition of membrane lipid peroxidation. In the lipid peroxidation assays CA acted as both metal-chelator and as hydrogen donor, preventing the deleterious action promoted by lipid-derived peroxyl and alkoxyl radicals. Our results indicate that the observed antioxidant effects were mostly due to the formation of iron-CA complexes, which are able to prevent 2-DR oxidation and DMPO hydroxylation. Noteworthy, the formation of iron-CA complexes and prevention of oxidative damage was directly related to the pH of the medium, showing better antioxidant activity at higher pH values. Moreover, in the presence of lipid membranes the antioxidant potency of CA was much higher, indicating its enhanced effectiveness in a hydrophobic environment. Overall, our results show that CA acts as an antioxidant through an iron chelating mechanism, preventing the formation of free hydroxyl radicals and, therefore, inhibiting Fenton-induced oxidative damage. The chemical properties of CA described here—in association with its reported signaling effects—could be an explanation to its beneficial effects

  19. Mathematical Characterization of Protein Sequences Using Patterns as Chemical Group Combinations of Amino Acids.

    PubMed

    Das, Jayanta Kumar; Das, Provas; Ray, Korak Kumar; Choudhury, Pabitra Pal; Jana, Siddhartha Sankar

    2016-01-01

    Comparison of amino acid sequence similarity is the fundamental concept behind the protein phylogenetic tree formation. By virtue of this method, we can explain the evolutionary relationships, but further explanations are not possible unless sequences are studied through the chemical nature of individual amino acids. Here we develop a new methodology to characterize the protein sequences on the basis of the chemical nature of the amino acids. We design various algorithms for studying the variation of chemical group transitions and various chemical group combinations as patterns in the protein sequences. The amino acid sequence of conventional myosin II head domain of 14 family members are taken to illustrate this new approach. We find two blocks of maximum length 6 aa as 'FPKATD' and 'Y/FTNEKL' without repeating the same chemical nature and one block of maximum length 20 aa with the repetition of chemical nature which are common among all 14 members. We also check commonality with another motor protein sub-family kinesin, KIF1A. Based on our analysis we find a common block of length 8 aa both in myosin II and KIF1A. This motif is located in the neck linker region which could be responsible for the generation of mechanical force, enabling us to find the unique blocks which remain chemically conserved across the family. We also validate our methodology with different protein families such as MYOI, Myosin light chain kinase (MLCK) and Rho-associated protein kinase (ROCK), Na+/K+-ATPase and Ca2+-ATPase. Altogether, our studies provide a new methodology for investigating the conserved amino acids' pattern in different proteins.

  20. Assessing the Chemical Accuracy of Protein Structures via Peptide Acidity

    PubMed Central

    Anderson, Janet S.; Hernández, Griselda; LeMaster, David M.

    2012-01-01

    Although the protein native state is a Boltzmann conformational ensemble, practical applications often require a representative model from the most populated region of that distribution. The acidity of the backbone amides, as reflected in hydrogen exchange rates, is exquisitely sensitive to the surrounding charge and dielectric volume distribution. For each of four proteins, three independently determined X-ray structures of differing crystallographic resolution were used to predict exchange for the static solvent-exposed amide hydrogens. The average correlation coefficients range from 0.74 for ubiquitin to 0.93 for Pyrococcus furiosus rubredoxin, reflecting the larger range of experimental exchange rates exhibited by the latter protein. The exchange prediction errors modestly correlate with the crystallographic resolution. MODELLER 9v6-derived homology models at ~60% sequence identity (36% identity for chymotrypsin inhibitor CI2) yielded correlation coefficients that are ~0.1 smaller than for the cognate X-ray structures. The most recently deposited NOE-based ubiquitin structure and the original NMR structure of CI2 fail to provide statistically significant predictions of hydrogen exchange. However, the more recent RECOORD refinement study of CI2 yielded predictions comparable to the X-ray and homology model-based analyses. PMID:23182463

  1. Simple quantification of surface carboxylic acids on chemically oxidized multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Gong, Hyejin; Kim, Seong-Taek; Lee, Jong Doo; Yim, Sanggyu

    2013-02-01

    The surface of multi-walled carbon nanotube (MWCNT) was chemically oxidized using nitric acid and sulfuric-nitric acid mixtures. Thermogravimetric analysis, transmission electron microscopy and infrared spectroscopy revealed that the use of acid mixtures led to higher degree of oxidation. More quantitative identification of surface carboxylic acids was carried out using X-ray photoelectron spectroscopy (XPS) and acid-base titration. However, these techniques are costly and require very long analysis times to promptly respond to the extent of the reaction. We propose a much simpler method using pH measurements and pre-determined pKa value in order to estimate the concentration of carboxylic acids on the oxidized MWCNT surfaces. The results from this technique were consistent with those obtained from XPS and titration, and it is expected that this simple quantification method can provide a cheap and fast way to monitor and control the oxidation reaction of MWCNT.

  2. Emerging biotechnologies for production of itaconic acid and its applications as a platform chemical.

    PubMed

    Saha, Badal C

    2017-02-01

    Recently, itaconic acid (IA), an unsaturated C5-dicarboxylic acid, has attracted much attention as a biobased building block chemical. It is produced industrially (>80 g L(-1)) from glucose by fermentation with Aspergillus terreus. The titer is low compared with citric acid production (>200 g L(-1)). This review summarizes the latest progress on enhancing the yield and productivity of IA production. IA biosynthesis involves the decarboxylation of the TCA cycle intermediate cis-aconitate through the action of cis-aconitate decarboxylase (CAD) enzyme encoded by the CadA gene in A. terreus. A number of recombinant microorganisms have been developed in an effort to overproduce it. IA is used as a monomer for production of superabsorbent polymer, resins, plastics, paints, and synthetic fibers. Its applications as a platform chemical are highlighted. It has a strong potential to replace petroleum-based methylacrylic acid in industry which will create a huge market for IA.

  3. Microwave assisted conversion of microcrystalline cellulose into value added chemicals using dilute acid catalyst.

    PubMed

    Ching, Teck Wei; Haritos, Victoria; Tanksale, Akshat

    2017-02-10

    One of the grand challenges of this century is to transition fuels and chemicals production derived from fossil feedstocks to renewable feedstocks such as cellulosic biomass. Here we describe fast microwave conversion of microcrystalline cellulose (MCC) in water, with dilute acid catalyst to produce valuable platform chemicals. Single 10min microwave assisted treatment was able to convert >60% of MCC, with >50mol% yield of desirable products such as glucose, HMF, furfural and levulinic acid. Recycling of residual MCC with make-up fresh MCC resulted in an overall conversion of >93% after 5 cycles while maintaining >60% conversion in each cycle. Addition of isopropanol (70%v/v) as a co-solvent increased the yields of HMF and levulinic acid. This work shows for the first time proof of concept for complete conversion of recalcitrant microcrystalline cellulose in mild conditions of low temperature, dilute acid and short residence time using energy efficient microwave technology.

  4. The effect of lactic acid bacterial starter culture and chemical additives on wilted rice straw silage.

    PubMed

    Wang, Yan-Su; Shi, Wei; Huang, Lin-Ting; Ding, Cheng-Long; Dai, Chuan-Chao

    2016-04-01

    Lactic acid bacteria (LAB) are suitable for rice straw silage fermentation, but have been studied rarely, and rice straw as raw material for ensiling is difficult because of its disadvantages, such as low nutrition for microbial activities and low abundances of natural populations of LAB. So we investigated the effect of application of LAB and chemical additives on the fermentation quality and microbial community of wilted rice straw silage. Treatment with chemical additives increased the concentrations of crude protein (CP), water soluble carbohydrate (WSC), acetic acid and lactic acid, reduced the concentrations of acid detergent fiber (ADF) and neutral detergent fiber (NDF), but did not effectively inhibit the growth of spoilage organisms. Inoculation with LABs did not improve the nutritional value of the silage because of poor growth of LABs in wilted rice straw. Inoculation with LAB and addition of chemical materials improved the quality of silage similar to the effects of addition of chemical materials alone. Growth of aerobic and facultatively anaerobic bacteria was inhibited by this mixed treatment and the LAB gradually dominated the microbial community. In summary, the fermentation quality of wilted rice straw silage had improved by addition of LAB and chemical materials.

  5. Chemical ionization of clusters formed from sulfuric acid and dimethylamine or diamines

    NASA Astrophysics Data System (ADS)

    Jen, Coty N.; Zhao, Jun; McMurry, Peter H.; Hanson, David R.

    2016-10-01

    Chemical ionization (CI) mass spectrometers are used to study atmospheric nucleation by detecting clusters produced by reactions of sulfuric acid and various basic gases. These instruments typically use nitrate to deprotonate and thus chemically ionize the clusters. In this study, we compare cluster concentrations measured using either nitrate or acetate. Clusters were formed in a flow reactor from vapors of sulfuric acid and dimethylamine, ethylene diamine, tetramethylethylene diamine, or butanediamine (also known as putrescine). These comparisons show that nitrate is unable to chemically ionize clusters with high base content. In addition, we vary the ion-molecule reaction time to probe ion processes which include proton-transfer, ion-molecule clustering, and decomposition of ions. Ion decomposition upon deprotonation by acetate/nitrate was observed. More studies are needed to quantify to what extent ion decomposition affects observed cluster content and concentrations, especially those chemically ionized with acetate since it deprotonates more types of clusters than nitrate.Model calculations of the neutral and ion cluster formation pathways are also presented to better identify the cluster types that are not efficiently deprotonated by nitrate. Comparison of model and measured clusters indicate that sulfuric acid dimers with two diamines and sulfuric acid trimers with two or more base molecules are not efficiently chemical ionized by nitrate. We conclude that acetate CI provides better information on cluster abundancies and their base content than nitrate CI.

  6. Production of Fatty Acid-derived valuable chemicals in synthetic microbes.

    PubMed

    Yu, Ai-Qun; Pratomo Juwono, Nina Kurniasih; Leong, Susanna Su Jan; Chang, Matthew Wook

    2014-01-01

    Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fatty acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes.

  7. Production of Fatty Acid-Derived Valuable Chemicals in Synthetic Microbes

    PubMed Central

    Yu, Ai-Qun; Pratomo Juwono, Nina Kurniasih; Leong, Susanna Su Jan; Chang, Matthew Wook

    2014-01-01

    Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fatty acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes. PMID:25566540

  8. Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: January-March 1998

    SciTech Connect

    Jubin, R.T.

    1999-03-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period January-March 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within nine major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Biotechnology, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies.

  9. Chemical Safety Vulnerability Working Group report. Volume 1

    SciTech Connect

    Not Available

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 1 contains the Executive summary; Introduction; Summary of vulnerabilities; Management systems weaknesses; Commendable practices; Summary of management response plan; Conclusions; and a Glossary of chemical terms.

  10. Low molecular weight chemicals, hypersensitivity, and direct toxicity: the acid anhydrides.

    PubMed Central

    Venables, K M

    1989-01-01

    The acid anhydrides are a group of reactive chemicals used widely in alkyd and epoxy resins. The major hazards to health are mucosal and skin irritation and sensitisation of the respiratory tract. Most occupational asthma caused by acid anhydrides appears to be immunologically mediated. Immunological mechanisms have been proposed to explain an influenza-like syndrome and pulmonary haemorrhage, but direct toxicity may also be important in the aetiology of these conditions. PMID:2653411

  11. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals.

    PubMed

    Runguphan, Weerawat; Keasling, Jay D

    2014-01-01

    As the serious effects of global climate change become apparent and access to fossil fuels becomes more limited, metabolic engineers and synthetic biologists are looking towards greener sources for transportation fuels. In recent years, microbial production of high-energy fuels by economically efficient bioprocesses has emerged as an attractive alternative to the traditional production of transportation fuels. Here, we engineered the budding yeast Saccharomyces cerevisiae to produce fatty acid-derived biofuels and chemicals from simple sugars. Specifically, we overexpressed all three fatty acid biosynthesis genes, namely acetyl-CoA carboxylase (ACC1), fatty acid synthase 1 (FAS1) and fatty acid synthase 2 (FAS2), in S. cerevisiae. When coupled to triacylglycerol (TAG) production, the engineered strain accumulated lipid to more than 17% of its dry cell weight, a four-fold improvement over the control strain. Understanding that TAG cannot be used directly as fuels, we also engineered S. cerevisiae to produce drop-in fuels and chemicals. Altering the terminal "converting enzyme" in the engineered strain led to the production of free fatty acids at a titer of approximately 400 mg/L, fatty alcohols at approximately 100mg/L and fatty acid ethyl esters (biodiesel) at approximately 5 mg/L directly from simple sugars. We envision that our approach will provide a scalable, controllable and economic route to this important class of chemicals.

  12. Annual report, spring 2015. Alternative chemical cleaning methods for high level waste tanks-corrosion test results

    SciTech Connect

    Wyrwas, R. B.

    2015-07-06

    The testing presented in this report is in support of the investigation of the Alternative Chemical Cleaning program to aid in developing strategies and technologies to chemically clean radioactive High Level Waste tanks prior to tank closure. The data and conclusions presented here were the examination of the corrosion rates of A285 carbon steel and 304L stainless steel when interacted with the chemical cleaning solution composed of 0.18 M nitric acid and 0.5 wt. % oxalic acid. This solution has been proposed as a dissolution solution that would be used to remove the remaining hard heel portion of the sludge in the waste tanks. This solution was combined with the HM and PUREX simulated sludge with dilution ratios that represent the bulk oxalic cleaning process (20:1 ratio, acid solution to simulant) and the cumulative volume associated with multiple acid strikes (50:1 ratio). The testing was conducted over 28 days at 50°C and deployed two methods to invest the corrosion conditions; passive weight loss coupon and an active electrochemical probe were used to collect data on the corrosion rate and material performance. In addition to investigating the chemical cleaning solutions, electrochemical corrosion testing was performed on acidic and basic solutions containing sodium permanganate at room temperature to explore the corrosion impacts if these solutions were to be implemented to retrieve remaining actinides that are currently in the sludge of the tank.

  13. [Lawrence Berkeley Laboratory] Chemical Sciences Division annual report 1991

    SciTech Connect

    Not Available

    1992-09-01

    Summaries are given of research in the following fields: photochemistry of materials in stratosphere, energy transfer and structural studies of molecules on surfaces, laser sources and techniques, crossed molecular beams, molecular interactions, theory of atomic and molecular collision processes, selective photochemistry, photodissociation of free radicals, physical chemistry with emphasis on thermodynamic properties, chemical physics at high photon energies, high-energy atomic physics, atomic physics, high-energy oxidizers and delocalized-electron solids, catalytic hydrogenation of CO, transition metal-catalyzed conversion of CO, NO, H{sub 2}, and organic molecules to fuels and petrochemicals, formation of oxyacids of sulfur from SO{sub 2}, potentially catalytic and conducting organometallics, actinide chemistry, and molecular thermodynamics for phase equilibria in mixtures. Under exploratory R and D funds, the following are discussed: technical evaluation of beamlines and experimental stations for chemical cynamics applications at the ALS synchrotron, and molecular beam threshold time-of-flight spectroscopy of rare gas atoms. Research on normal and superconducting properties of high-{Tc} systems is reported under work for others. (DLC)

  14. [Lawrence Berkeley Laboratory] Chemical Sciences Division annual report 1991

    SciTech Connect

    Not Available

    1992-09-01

    Summaries are given of research in the following fields: photochemistry of materials in stratosphere, energy transfer and structural studies of molecules on surfaces, laser sources and techniques, crossed molecular beams, molecular interactions, theory of atomic and molecular collision processes, selective photochemistry, photodissociation of free radicals, physical chemistry with emphasis on thermodynamic properties, chemical physics at high photon energies, high-energy atomic physics, atomic physics, high-energy oxidizers and delocalized-electron solids, catalytic hydrogenation of CO, transition metal-catalyzed conversion of CO, NO, H[sub 2], and organic molecules to fuels and petrochemicals, formation of oxyacids of sulfur from SO[sub 2], potentially catalytic and conducting organometallics, actinide chemistry, and molecular thermodynamics for phase equilibria in mixtures. Under exploratory R and D funds, the following are discussed: technical evaluation of beamlines and experimental stations for chemical cynamics applications at the ALS synchrotron, and molecular beam threshold time-of-flight spectroscopy of rare gas atoms. Research on normal and superconducting properties of high-[Tc] systems is reported under work for others. (DLC)

  15. Functional Imaging of Chemically Active Surfaces with Optical Reporter Microbeads

    PubMed Central

    Ahuja, Punkaj; Nair, Sumitha; Narayan, Sreenath; Gratzl, Miklós

    2015-01-01

    We have developed a novel approach to allow for continuous imaging of concentration fields that evolve at surfaces due to release, uptake, and mass transport of molecules, without significant interference of the concentration fields by the chemical imaging itself. The technique utilizes optical “reporter” microbeads immobilized in a thin layer of transparent and inert hydrogel on top of the surface. The hydrogel has minimal density and therefore diffusion in and across it is like in water. Imaging the immobilized microbeads over time provides quantitative concentration measurements at each location where an optical reporter resides. Using image analysis in post-processing these spatially discrete measurements can be transformed into contiguous maps of the dynamic concentration field across the entire surface. If the microbeads are small enough relative to the dimensions of the region of interest and sparsely applied then chemical imaging will not noticeably affect the evolution of concentration fields. In this work colorimetric optode microbeads a few micrometers in diameter were used to image surface concentration distributions on the millimeter scale. PMID:26332766

  16. Size-dependent chemical ageing of oleic acid aerosol under dry and humidified conditions

    NASA Astrophysics Data System (ADS)

    Al-Kindi, Suad S.; Pope, Francis D.; Beddows, David C.; Bloss, William J.; Harrison, Roy M.

    2016-12-01

    A chemical reaction chamber system has been developed for the processing of oleic acid aerosol particles with ozone under two relative humidity conditions: dry and humidified to 65 %. The apparatus consists of an aerosol flow tube, in which the ozonolysis occurs, coupled to a scanning mobility particle sizer (SMPS) and an aerosol time-of-flight mass spectrometer (ATOFMS) which measure the evolving particle size and composition. Under both relative humidity conditions, ozonolysis results in a significant decrease in particle size and mass which is consistent with the formation of volatile products that partition from the particle to the gas phase. Mass spectra derived from the ATOFMS reveal the presence of the typically observed reaction products: azelaic acid, nonanal, oxononanoic acid and nonanoic acid, as well as a range of higher molecular weight products deriving from the reactions of reaction intermediates with oleic acid and its oxidation products. These include octanoic acid and 9- and 10-oxooctadecanoic acid, as well as products of considerably higher molecular weight. Quantitative evaluation of product yields with the ATOFMS shows a marked dependence upon both particle size association (from 0.3 to 2.1 µm diameter) and relative humidity. Under both relative humidity conditions, the percentage residual of oleic acid increases with increasing particle size and the main lower molecular weight products are nonanal and oxononanoic acid. Under dry conditions, the percentage of higher molecular weight products increases with increasing particle size due to the poorer internal mixing of the larger particles. Under humidified conditions, the percentage of unreacted oleic acid is greater, except in the smallest particle fraction, with little formation of high molecular weight products relative to the dry particles. It is postulated that water reacts with reactive intermediates, competing with the processes which produce high molecular weight products. Whilst the

  17. Mathematical Characterization of Protein Sequences Using Patterns as Chemical Group Combinations of Amino Acids

    PubMed Central

    Choudhury, Pabitra Pal; Jana, Siddhartha Sankar

    2016-01-01

    Comparison of amino acid sequence similarity is the fundamental concept behind the protein phylogenetic tree formation. By virtue of this method, we can explain the evolutionary relationships, but further explanations are not possible unless sequences are studied through the chemical nature of individual amino acids. Here we develop a new methodology to characterize the protein sequences on the basis of the chemical nature of the amino acids. We design various algorithms for studying the variation of chemical group transitions and various chemical group combinations as patterns in the protein sequences. The amino acid sequence of conventional myosin II head domain of 14 family members are taken to illustrate this new approach. We find two blocks of maximum length 6 aa as ‘FPKATD’ and ‘Y/FTNEKL’ without repeating the same chemical nature and one block of maximum length 20 aa with the repetition of chemical nature which are common among all 14 members. We also check commonality with another motor protein sub-family kinesin, KIF1A. Based on our analysis we find a common block of length 8 aa both in myosin II and KIF1A. This motif is located in the neck linker region which could be responsible for the generation of mechanical force, enabling us to find the unique blocks which remain chemically conserved across the family. We also validate our methodology with different protein families such as MYOI, Myosin light chain kinase (MLCK) and Rho-associated protein kinase (ROCK), Na+/K+-ATPase and Ca2+-ATPase. Altogether, our studies provide a new methodology for investigating the conserved amino acids’ pattern in different proteins. PMID:27930687

  18. GLYCOLIC-NITRIC ACID FLOWSHEET DEMONSTRATION OF THE DWPF CHEMICAL PROCESS CELL WITH SLUDGE AND SUPERNATE SIMULANTS

    SciTech Connect

    Lambert, D.; Stone, M.; Newell, J.; Best, D.; Zamecnik, J.

    2012-08-28

    Savannah River Remediation (SRR) is evaluating changes to its current Defense Waste Processing Facility (DWPF) flowsheet to improve processing cycle times. This will enable the facility to support higher canister production while maximizing waste loading. Higher throughput is needed in the Chemical Process Cell (CPC) since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the DWPF gas chromatographs (GC) and the potential for production of flammable quantities of hydrogen, reducing or eliminating the amount of formic acid used in the CPC is being developed. Earlier work at Savannah River National Laboratory has shown that replacing formic acid with an 80:20 molar blend of glycolic and formic acids has the potential to remove mercury in the SRAT without any significant catalytic hydrogen generation. This report summarizes the research completed to determine the feasibility of processing without formic acid. In earlier development of the glycolic-formic acid flowsheet, one run (GF8) was completed without formic acid. It is of particular interest that mercury was successfully removed in GF8, no formic acid at 125% stoichiometry. Glycolic acid did not show the ability to reduce mercury to elemental mercury in initial screening studies, which is why previous testing focused on using the formic/glycolic blend. The objective of the testing detailed in this document is to determine the viability of the nitric-glycolic acid flowsheet in processing sludge over a wide compositional range as requested by DWPF. This work was performed under the guidance of Task Technical and Quality Assurance Plan (TT&QAP). The details regarding the simulant preparation and analysis have been documented previously.

  19. Top value platform chemicals: bio-based production of organic acids.

    PubMed

    Becker, Judith; Lange, Anna; Fabarius, Jonathan; Wittmann, Christoph

    2015-12-01

    Driven by the quest for sustainability, recent years have seen a tremendous progress in bio-based production routes from renewable raw materials to commercial goods. Particularly, the production of organic acids has crystallized as a competitive and fast-evolving field, related to the broad applicability of organic acids for direct use, as polymer building blocks, and as commodity chemicals. Here, we review recent advances in metabolic engineering and industrial market scenarios with focus on organic acids as top value products from biomass, accessible through fermentation and biotransformation.

  20. Modeling aqueous ozone/UV process using oxalic acid as probe chemical.

    PubMed

    Garoma, Temesgen; Gurol, Mirat D

    2005-10-15

    A kinetic model that describes the removal of organic pollutants by an ozone/UV process is described. Oxalic acid, which reacts with a very low rate constant with ozone and relatively high rate constant with hydroxyl radical (OH*), was used as the probe chemical to model the process. The model was verified by experimental data on concentrations of oxalic acid and hydrogen peroxide (H202) under various experimental conditions, i.e., ozone gas dosage, UV light intensity, and varying oxalic acid concentrations.

  1. Five Decades with Polyunsaturated Fatty Acids: Chemical Synthesis, Enzymatic Formation, Lipid Peroxidation and Its Biological Effects

    PubMed Central

    Catalá, Angel

    2013-01-01

    I have been involved in research on polyunsaturated fatty acids since 1964 and this review is intended to cover some of the most important aspects of this work. Polyunsaturated fatty acids have followed me during my whole scientific career and I have published a number of studies concerned with different aspects of them such as chemical synthesis, enzymatic formation, metabolism, transport, physical, chemical, and catalytic properties of a reconstructed desaturase system in liposomes, lipid peroxidation, and their effects. The first project I became involved in was the organic synthesis of [1-14C] eicosa-11,14-dienoic acid, with the aim of demonstrating the participation of that compound as a possible intermediary in the biosynthesis of arachidonic acid “in vivo.” From 1966 to 1982, I was involved in several projects that study the metabolism of polyunsaturated fatty acids. In the eighties, we studied fatty acid binding protein. From 1990 up to now, our laboratory has been interested in the lipid peroxidation of biological membranes from various tissues and different species as well as liposomes prepared with phospholipids rich in PUFAs. We tested the effect of many antioxidants such as alpha tocopherol, vitamin A, melatonin and its structural analogues, and conjugated linoleic acid, among others. PMID:24490074

  2. Evaluation of the recovery of Adirondack acid lakes by chemical manipulation

    SciTech Connect

    Depinto, J.V.; Edzwald, J.K.

    1982-06-01

    This study specifically addressed an evaluation of materials (calcium hydroxide and carbonate, agricultural limestone, fly ash, water treatment plant softening sludge, cement plant by-pass dust) for their neutralizing effectiveness and for establishing a neutral pH buffer system, and an evaluation of the effect of various lake recovery materials on algal growth. Laboratory continuous-flow microcosims were used as models to assess acid lake recovery. These models were filled with actual acid lake water over a layer of lake sediments, subjected to a given chemical treatment, and continuously fed water of selected quality (e.g., acid rain). A simulation of sediment-water-air kinetic interactions on a treated acid lake was obtained by careful monitoring of the microcosm chemical response. Agricultural limestone was determined to be the most appropriate material for acid lake recovery treatment based on its neutralizing properties, assessment of its potential impact on biota, its availability, and its relative cost: the results of this laboratory study suggest that full-scale recovery of an Adirondack acid lake is technically feasible. It is, however, recommended that an acid lake recovery field demonstration project be undertaken. 58 references, 36 figures, 29 tables.

  3. Chemically modified fatty acid methyl esters: their potential for use as lubrication fluids and surfactants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A review of recent developments in the synthesis and characterization of lubrication fluids and surfactants from methyl oleate. The synthesis of materials made using an epoxidation route is the focus. This versatile method of chemical modification of fatty acid methyl esters improves their oxidati...

  4. Correlation between chemical structure and rodent repellency of benzoic acid derivatives

    USGS Publications Warehouse

    Fearn, J.E.; DeWitt, J.B.

    1965-01-01

    Sixty-five benzoic acid derivatives were either prepared or obtained from commercial concerns, tested for rat repellency, and their indices of repellency computed. The data from these tests were considered analytically for any correlation between chemical structure and rat repellency. The results suggest a qualitative relationship which is useful in deciding probability of repellency in other compounds.

  5. Chemical and enzymatic stability of amino acid prodrugs containing methoxy, ethoxy and propylene glycol linkers.

    PubMed

    Gupta, Deepak; Gupta, Sheeba Varghese; Lee, Kyung-Dall; Amidon, Gordon L

    2009-01-01

    We evaluated the chemical and enzymatic stabilities of prodrugs containing methoxy, ethoxy and propylene glycol linkers in order to find a suitable linker for prodrugs of carboxylic acids with amino acids. l-Valine and l-phenylalanine prodrugs of model compounds (benzoic acid and phenyl acetic acid) containing methoxy, ethoxy and propylene glycol linkers were synthesized. The hydrolysis rate profile of each compound was studied at physiologically relevant pHs (1.2, 4, 6 and 7.4). Enzymatic hydrolysis of propylene glycol containing compounds was studied using Caco-2 homogenate as well as purified enzyme valacyclovirase. It was observed that the stability of the prodrugs increases with the linker length (propyl > ethyl > methyl). The model prodrugs were stable at acidic pH as compared to basic pH. It was observed that the prodrug with the aliphatic amino acid promoiety was more stable compared to its aromatic counterpart. The comparison between benzyl and the phenyl model compounds revealed that the amino acid side chain is significant in determining the stability of the prodrug whereas the benzyl or phenyl carboxylic acid had little or no effect on the stability. The enzymatic activation studies of propylene glycol linker prodrug in the presence of valacyclovirase and cell homogenate showed faster generation of the parent drug at pH 7.4. The half-life of prodrugs at pH 7.4 was more than 12 h, whereas in the presence of cell homogenate the half-lives were less than 1 h. Hydrolysis by Caco-2 homogenate generated the parent compound in two steps, where the prodrug was first converted to the intermediate, propylene glycol benzoate, which was then converted to the parent compound (benzoic acid). Enzymatic hydrolysis of propylene glycol containing prodrugs by valacyclovirase showed hydrolysis of the amino acid ester part to generate the propylene glycol ester of model compound (propylene glycol benzoate) as the major product. The amino acid prodrugs containing methoxy

  6. PISCES field chemical emissions monitoring project: Site 19 emissions report. Final report

    SciTech Connect

    1995-12-01

    This report is one of a series sponsored by the Electric Power Research institute in the area of trace substance emissions from fossil-fuel power plants. This report presents the results of a sampling and analytical study to characterize trace substances emissions at Site 19. Site 19 is a pulverized coal-fired boiler burning a medium-sulfur bituminous coal. Site 19 employs electrostatic precipitators for particulate control. The objective of this report is to transmit the detailed data to the US Environmental Protection Agency (EPA) to assist the Agency in evaluating utility trace chemical emissions as well as the associated health risk impacts--as mandated in Title III of the 1990 Clean Air Act Amendments. This report does not attempt to compare the results with other sites. An assessment of data from all plants that have been tested is presented in the Electric Utility Trace Substances Synthesis Report (EPRI TR-104614).

  7. PISCES field chemical emissions monitoring project: Site 102 emissions report. Final report

    SciTech Connect

    1995-12-01

    This report is one of a series sponsored by the Electric Power Research Institute in the area of trace substance emissions from fossil-fuel power plants. This report presents the results of a sampling and analytical study to characterize trace substances emissions at Site 102. Site 102 is a cyclone boiler burning a sub-bituminous coal. Site 102 employs an electrostatic precipitator for particulate control. The objective of this report is to transmit the detailed data to the US Environmental Protection Agency (EPA) to assist the Agency in evaluating utility trace chemical emissions as well as the associated health risk impacts--as mandated in Title III of the 1990 Clean Air Act Amendments. This report does not attempt to compare the results with other sites. An assessment of data from all plants that have been tested is presented in the Electric Utility Trace Substances Synthesis Report (EPRI TR-104614).

  8. PISCES field chemical emissions monitoring project: Site 118 emissions report. Final report

    SciTech Connect

    1995-12-01

    This report is one of a series sponsored by the Electric Power Research Institute in the area of trace substance emissions from fossil-fuel power plants. This report presents the results of a sampling and analytical study to characterize trace substances emissions at Site 118. Site 118 is a residual oil-fired boiler, with an electrostatic precipitator for particulate control. The objective of this report is to transmit the detailed data to the US Environmental Protection Agency (EPA) to assist the Agency in evaluating utility trace chemical emissions as well as the associated health risk impacts--as mandated in Title III of the 1990 Clean Air Act Amendments. This report does not attempt to compare the results with other sites. An assessment of data from all plants that have been tested is presented in the Electric Utility Trace Substances Synthesis Report (EPRI TR-104614).

  9. PISCES Field Chemical Emissions Monitoring project: Site 15 emissions report. Final report

    SciTech Connect

    1995-11-01

    This report is one of a series sponsored by the Electric Power Research Institute in the area of trace substance emissions from fossil-fuel power plants. This report presents the results of a sampling and analytical study to characterize trace substances emissions at Site 15. Site 15 is a pulverized coal-fired boiler burning a medium-sulfur bituminous coal. Site 15 employs electrostatic precipitators for particulate control. The objective of this report is to transmit the detailed data to the US Environmental Protection Agency (EPA) to assist the Agency in evaluating utility trace chemical emissions as well as the associated health risk impacts--as mandated in Title III of the 1990 Clean Air Act Amendments. This report does not attempt to compare the results with other sites. An assessment of data from all plants that have been tested is presented in the Electric Utility Trace Substances Synthesis Report (EPRI TR-104614).

  10. Chemical Weapons: The legacy of Operation Desert Storm. Final report

    SciTech Connect

    Henscheid, M.R.

    1991-06-21

    United States and allied forces deploying in the 1991 War in the Persian Gulf region faced a formidable Iraqi offensive chemical weapons capability. This threat immediately challenged U.S. policy and resolve as outlined in the 1990 bilateral chemical weapons treaty with the Soviet Union. The necessity to assess retaliatory options, in the event of Iraqi chemical use, was apparent, and are evaluated in this analysis. The proliferation of chemical weapons worldwide, disarmament efforts, and chemical defense readiness are also reviewed in the context of the 1991 Gulf War. The conclusion that retaliation by conventional means alone as the only acceptable alternative supporting the presidential goal of increased stability in the Middle East is reached. Prospects for revitalized post-war multilateral chemical disarmament efforts, and a reduction in chemical warfare proliferation are also assessed. Recommendations for a post-war national chemical defense policy are made.

  11. Acid-induced structural modifications of unsaturated Fatty acids and phenolic olive oil constituents by nitrite ions: a chemical assessment.

    PubMed

    Napolitano, Alessandra; Panzella, Lucia; Savarese, Maria; Sacchi, Raffaele; Giudicianni, Italo; Paolillo, Livio; d'Ischia, Marco

    2004-10-01

    The structural modifications of the unsaturated fatty acid components of triglycerides in extra virgin olive oil (EVOO) following exposure to nitrite ions in acidic media were determined by two-dimensional (2D) NMR spectroscopy, aided by (15)N labeling and GC analysis, allowing investigation of the matrix without fractionation steps. In the presence of excess nitrite ions in a 1% sulfuric acid/oil biphasic system, extensive double bond isomerization of the oleic/linoleic acid components of triglycerides was observed associated with nitration/oxidation processes. Structurally modified species were identified as E/Z-nitroalkene, 1,2-nitrohydroxy, and 3-nitro-1-alkene(1,5-diene) derivatives based on (1)H, (13)C, and (15)N 2D NMR analysis in comparison with model compounds. Minor constituents of EVOO, including phenolic compounds and tocopherols, were also substantially modified by nitrite-derived nitrating species, even under milder reaction conditions relevant to those occurring in the gastric compartments. Novel nitrated derivatives of tyrosol, hydroxytyrosol, and oleuropein (6-8) were identified by LC/MS analysis of the polar fraction of EVOO and by comparison with synthetic samples. Overall, these results provide the first systematic description at the chemical level of the consequences of exposing EVOO to nitrite ions at acidic pH and offer an improved basis for further investigations in the field of toxic nitrosation/nitration reactions and dietary antinitrosating agents.

  12. Environmental comparison of biobased chemicals from glutamic acid with their petrochemical equivalents.

    PubMed

    Lammens, Tijs M; Potting, José; Sanders, Johan P M; De Boer, Imke J M

    2011-10-01

    Glutamic acid is an important constituent of waste streams from biofuels production. It is an interesting starting material for the synthesis of biobased chemicals, thereby decreasing the dependency on fossil fuels. The objective of this paper was to compare the environmental impact of four biobased chemicals from glutamic acid with their petrochemical equivalents, that is, N-methylpyrrolidone (NMP), N-vinylpyrrolidone (NVP), acrylonitrile (ACN), and succinonitrile (SCN). A consequential life cycle assessment was performed, wherein glutamic acid was obtained from sugar beet vinasse. The removed glutamic acid was substituted with cane molasses and ureum. The comparison between the four biobased and petrochemical products showed that for NMP and NVP the biobased version had less impact on the environment, while for ACN and SCN the petrochemical version had less impact on the environment. For the latter two an optimized scenario was computed, which showed that the process for SCN can be improved to a level at which it can compete with the petrochemical process. For biobased ACN large improvements are required to make it competitive with its petrochemical equivalent. The results of this LCA and the research preceding it also show that glutamic acid can be a building block for a variety of molecules that are currently produced from petrochemical resources. Currently, most methods to produce biobased products are biotechnological processes based on sugar, but this paper demonstrates that the use of amino acids from low-value byproducts can certainly be a method as well.

  13. NEXAFS Chemical State and Bond Lengths of p-Aminobenzoic Acid in Solution and Solid State

    NASA Astrophysics Data System (ADS)

    Stevens, J. S.; Gainar, A.; Suljoti, E.; Xiao, J.; Golnak, R.; Aziz, E. F.; Schroeder, S. L. M.

    2016-05-01

    Solid-state and solution pH-dependent NEXAFS studies allow direct observation of the electronic state of para-aminobenzoic acid (PABA) as a function of its chemical environment, revealing the chemical state and bonding of the chemical species. Variations in the ionization potential (IP) and 1s→π* resonances unequivocally identify the chemical species (neutral, cationic, or anionic) present and the varying local environment. Shifts in σ* shape resonances relative to the IP in the NEXAFS spectra vary with C-N bond length, and the important effect of minor alterations in bond length is confirmed with nitrogen FEFF calculations, leading to the possibility of bond length determination in solution.

  14. Treatment of wastewater containing acid rose red dye by biologically aerated filter after chemical oxidation.

    PubMed

    Wang, X; Gu, X; Zhou, X; Wang, W; Lin, D

    2007-08-01

    Combined processes of pre-chemical oxidation and biological aerated filter (BAF) were used to treat wastewater containing non-biodegradable acid rose red dye. Advance oxidation processes (AOPs) of ozone and Fenton reagent were applied for pre-chemical oxidation, which reduced the degree of color and organic matter simultaneously increasing the biodegradability of the wastewater. The majority of the organic matter was removed by BAF. When using ozone as pre-chemical oxidation, the operation is simpler. The combined processes of AOPs, including ozone and Fenton reagent, followed by BAF reduced the color and chemical oxygen demand (COD) to less than 20 degrees and 40 mg l(-1), respectively from the influent concentration of about 4000 degree color and 300 mg l(-1) COD. The effluent water quality could meet the required standard for grey water reuses.

  15. PISCES field chemical emissions monitoring project: Site 101 emissions report. Final report

    SciTech Connect

    1995-12-01

    This report is one of a series sponsored by the Electric Power Research Institute in the area of trace substance emissions from fossil-fuel power plants. This report presents the results of a sampling and analytical study to characterize trace substances emissions at Site 101. Site 101 is a pulverized coal-fired boiler burning a sub-bituminous coal. Site 101 employs a reverse-gas fabric filter for particulate control and a wet limestone flue gas desulfurization system for SO{sub 2} control. The objective of this report is to transmit the detailed data to the US Environmental Protection Agency (EPA) to assist the Agency in evaluating utility trace chemical emissions as well as the associated health risk impacts-as mandated in Title III of the 1990 Clean Air Act Amendments. This report does not attempt to compare the results with other sites.

  16. PISCES field chemical emissions monitoring project: Site 14 emissions report. Final report

    SciTech Connect

    1995-11-01

    This report is one of a series sponsored by the Electric Power Research Institute in the area of trace substance emissions from fossil-fuel power plants. This report presents the results of a sampling and analytical study to characterize trace substances emissions at Site 14. Site 14 is a pilot-scale dry flue gas desulfurization (FGD) system consisting of a spray dryer and fabric filter. The flue gas for the pilot unit is provided by an adjacent power plant boiler which bums a medium-sulfur bituminous coal. The objective of this report is to transmit the detailed data to the US Environmental Protection Agency (EPA) to assist the Agency m evaluating utility trace chemical emissions as well as the associated health risk impacts-as mandated in Title III of the 1990 Clean Air Act Amendments. This report does not attempt to compare the results with other sites.

  17. PISCES field chemical emissions monitoring project: Site 22 emissions report. Final report

    SciTech Connect

    1995-12-01

    This report is one of a series sponsored by the Electric Power Research Institute in the area of trace substance emissions from fossil-fuel power plants. This report presents the results of a sampling and analytical study to characterize trace substances emissions at Site 22. Site 22 is a large, pulverized coal-fired boiler burning a low-sulfur sub-bituminous coal. Site 22 employs electrostatic precipitators for particulate control. The objective of this report is to transmit the detailed data to the US Environmental Protection Agency (EPA) to assist the Agency in evaluating utility trace chemical emissions as well as the associated health risk impacts-as mandated in Title III of the 1990 Clean Air Act Amendments. This report does not attempt to compare the results with other sites.

  18. PISCES field chemical emissions monitoring project: Site 16 emissions report. Final report

    SciTech Connect

    1995-11-01

    This report is one of a series sponsored by the Electric Power Research Institute in the area of trace substance emissions from fossil-fuel power plants. This report presents the results of a sampling and analytical study to characterize trace substances emissions at Site 16. Site 16 is a pulverized coal-fired boiler burning a medium-sulfur bituminous coal. Site 16 employs electrostatic precipitators for particulate control. Measurements were conducted under two modifications: overfire air and a combination of overfire air with low-NO{sub x} burners. The objective of this report is to transmit the detailed data to the US Environmental Protection Agency (EPA) to assist the Agency in evaluating utility trace chemical emissions as well as the associated health risk impacts -- as mandated in Title III of the 1990 Clean Air Act Amendments. This report does not attempt to compare the results with other sites.

  19. PISCES field chemical emissions monitoring project: Site 20 emissions report. Final report

    SciTech Connect

    1995-12-01

    This report is one of a series sponsored by the Electric Power Research Institute in the area of trace substance emissions from fossil-fuel power Plants. This report presents the results of a sampling and analytical study to characterize trace substances emissions at Site 20. Site 20 is a pulverized coal-fired boiler burning a medium-sulfur bituminous coal. Site 20 is a large, pulverized coal-fired power plant that bums a lignite coal. Site 20 employs electrostatic precipitators and a flue gas desulfurization system for particulate and SO{sub 2} control. The objective of this report is to transmit the detailed data to the US Environmental Protection Agency (EPA) to assist the Agency in evaluating utility trace chemical emissions as well as the associated health risk impacts-as mandated in Title III of the 1990 Clean Air Act Amendments. This report does not attempt to compare the results with other sites.

  20. Observations of formic and acetic acid by chemical ionization mass spectrometry in the Deep Convective Clouds and Chemistry Experiment

    NASA Astrophysics Data System (ADS)

    Treadaway, V.; McNeill, A.; Heikes, B.; O'Sullivan, D. W.; Silwal, I.

    2013-12-01

    Formic (HFo) and acetic acid (HAc) are part of the atmospheric processing of carbon and their measurement is relevant to defining oxygenated volatile organic carbon (OVOC) emissions, to examining photochemical processing of volatile organic carbon (VOC) and OVOCs, and to the photochemical processing of organic aerosol. Further, they can serve as photochemical tracers of convective transport, cloud chemical processes, and precipitation scavenging. The addition of HFo and HAc measurements to the Deep Convective Clouds and Chemistry Experiment (DC3) is relevant to the DC3 science objectives and complements the suite of chemicals already observed during DC3. The peroxide chemical ionization mass spectrometer (PCIMS) was flown aboard the NCAR Gulfstream-V platform in DC3 and while its primary function was to observe hydrogen peroxide and methylhydroperoxide it recorded signals attributed to iodide cluster ions of HFo and HAc at mass-charge ratios of 173 and 187, respectively. Post-mission laboratory experiments were performed to determine the CIMS instrument's sensitivity to these acids under the varying water vapor and sample flow conditions encountered during DC3 flights. The results of field measurements, laboratory experiments and the HFo and HAc recovery process are reported and HFo and HAc measurement quality assessed. The resultant HFo and HAc data are presented and interpreted with respect to atmospheric chemistry within measurement constraints. The DC3 observations were made in May and June 2012 and extended from the surface to 13 km over the central United States.

  1. Land treatment field studies. Volume 5. Wastewater treatment sludge from batch organic chemical synthesis. Final report Sep 77-Feb 81

    SciTech Connect

    Berkowitz, J.B.; Bysshe, S.E.; Goodwin, B.E.; Harris, J.C.; Land, D.B.

    1983-07-01

    This report presents the results of field measurements and observations of a land treatment operation using a sludge generated from organic chemical manufacture. The sludge is applied to a turf farm which contains acidic soil; the sludge reduces the lime addition requirements for pH adjustment. The sub-soils are porous and the quality of the groundwater located at 20-30' below the ground surface is pristine.

  2. Chemical composition and amino acid profiles of goose muscles from native Polish breeds.

    PubMed

    Okruszek, A; Woloszyn, J; Haraf, G; Orkusz, A; Werenska, M

    2013-04-01

    The aim of the study was to compare the chemical and amino acid composition of breast (pectoralis major) and thigh (biceps femoris) muscles in 17-wk-old geese from 2 Polish conservative flocks: Rypińska (Ry, n = 20) and Garbonosa (Ga, n = 20). The geese were fed ad libitum during the experimental period on the same complete feed. Genotypes affected the moisture and fat content of breast and thigh meat. The Ga geese were characterized by higher moisture as well as lower fat lipid content compared with the Ry breast and thigh muscles. The amino acid proportions of meat proteins depended on the goose flock and type of muscles, where significant differences were found. The proteins of Ga breast muscles contained more glutamic acid, glycine, lysine, tryptophan, histidine, and methionine, and less aspartic acid, proline, serine, leucine, valine, phenyloalanine, tyrosine, and threonine than the Ry geese (P ≤ 0.05). The proteins of Ry thigh muscles were characterized by higher content of proline, serine, and essential amino acids (without lysine and methionine) and lower glutamic and asparagine acid, alanine, and glycine compared with the Ga flock. According to the Food and Agriculture Organization of the United Nations/World Health Organization (1991) standard, tryptophan was the amino acid limiting the nutritional value of meat proteins of Ry breast muscles (amino acid score for tryptophan = 90%). Except for tryptophan, the meat proteins of the investigated raw materials contained more essential amino acids than the standard. The total content of essential amino acids for all investigated muscles was also higher (52.51 to 55.54%) than the standard (33.90%). It is evident that muscle protein from both flocks of geese have been characterized by high nutritional value. The values of the essential amino acid index of breast muscle proteins were similar in both flocks.

  3. Acid generation mechanism in anion-bound chemically amplified resists used for extreme ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Komuro, Yoshitaka; Yamamoto, Hiroki; Kobayashi, Kazuo; Ohomori, Katsumi; Kozawa, Takahiro

    2015-03-01

    Extreme ultraviolet (EUV) lithography is the most promising candidate for the high-volume production of semiconductor devices with half-pitches of sub 10nm. An anion-bound polymer(ABP), in which at the anion part of onium salts is polymerized, has attracted much attention from the viewpoint of the control of acid diffusion. In this study, the acid generation mechanism in ABP films was investigated using γ and EUV radiolysis. On the basis of experimental results, the acid generation mechanism in anion-bound chemically amplified resists was proposed. The protons of acids are considered to be mainly generated through the reaction of phenyl radicals with diphenylsulfide radical cations that are produced through the hole transfer to the decomposition products of onium salts.

  4. Potential human health effects of acid rain: report of a workshop

    PubMed Central

    Goyer, Robert A.; Bachmann, John; Clarkson, Thomas W.; Ferris, Benjamin G.; Graham, Judith; Mushak, Paul; Perl, Daniel P.; Rall, David P.; Schlesinger, Richard; Sharpe, William; Wood, John M.

    1985-01-01

    This report summarizes the potential impact of the acid precipitation phenomenon on human health. There are two major components to this phenomenon: the predepositional phase, during which there is direct human exposure to acidic substances from ambient air, and the post-depositional phase, in which the deposition of acid materials on water and soil results in the mobilization, transport, and even chemical transformation of toxic metals. Acidification increases bioconversion of mercury to methylmercury, which accumulates in fish, increasing the risk to toxicity in people who eat fish. Increase in water and soil content of lead and cadmium increases human exposure to these metals which become additive to other sources presently under regulatory control. The potential adverse health effects of increased human exposure to aluminum is not known at the present time. PMID:3896772

  5. Chemical repair of base lesions, AP-sites, and strand breaks on plasmid DNA in dilute aqueous solution by ascorbic acid

    SciTech Connect

    Hata, Kuniki; Urushibara, Ayumi; Yamashita, Shinichi; Shikazono, Naoya; Yokoya, Akinari; Katsumura, Yosuke

    2013-05-03

    Highlights: •We report a novel mechanism of radiation protection of DNA by chemical activity of ascorbic acid. •The “chemical repair” of DNA damage was revealed using biochemical assay and chemical kinetics analysis. •We found that ascorbic acid significantly repairs precursors of nucleobase lesions and abasic sites. •However, ascorbic acid seldom repairs precursors of DNA-strand breaks. -- Abstract: We quantified the damage yields produced in plasmid DNA by γ-irradiation in the presence of low concentrations (10–100 μM) of ascorbic acid, which is a major antioxidant in living systems, to clarify whether it chemically repairs radiation damage in DNA. The yield of DNA single strand breaks induced by irradiation was analyzed with agarose gel electrophoresis as conformational changes in closed circular plasmids. Base lesions and abasic sites were also observed as additional conformational changes by treating irradiated samples with glycosylase proteins. By comparing the suppression efficiencies to the induction of each DNA lesion, in addition to scavenging of the OH radicals derived from water radiolysis, it was found that ascorbic acid promotes the chemical repair of precursors of AP-sites and base lesions more effectively than those of single strand breaks. We estimated the efficiency of the chemical repair of each lesion using a kinetic model. Approximately 50–60% of base lesions and AP-sites were repaired by 10 μM ascorbic acid, although strand breaks were largely unrepaired by ascorbic acid at low concentrations. The methods in this study will provide a route to understanding the mechanistic aspects of antioxidant activity in living systems.

  6. pH-Dependent sorption of acidic organic chemicals to soil organic matter.

    PubMed

    Tülp, Holger C; Fenner, Kathrin; Schwarzenbach, René P; Goss, Kai-Uwe

    2009-12-15

    Due to their increased polarity, many contemporary biologically active chemicals exhibit acid functions and may thus dissociate to their anionic conjugated base at pH values typically present in the environment. Despite its negative charge, soil organic matter (SOM) has been demonstrated to be the main sorbent in soils, even for the anionic species of organic acids. Nevertheless, few data exist that allow for a systematic interpretation of the sorption of organic acids into SOM. Therefore, in this study, the sorption of the neutral and anionic species of 32 diverse organic acids belonging to nine different chemical groups to SOM was investigated. Partition coefficients were determined from HPLC retention volumes on a column packed with peat, at three Ca(2+)-concentrations and over a pH range of 4.5-7.5. The influence of Ca(2+)-concentrations on anion sorption was small (factor 2 in the usual environmental Ca(2+)-concentration range) and independent of molecular structure. Generally, the organic carbon-water partition coefficients, K(oc), of both the neutral and anionic species increased with increasing molecular size and decreased with increasing polarity. At an environmentally relevant Ca(2+)-concentration of 10 mM, the investigated anions sorbed between a factor of 7-60 less than the corresponding neutral acid. This factor was more homogeneous within a group of structurally related compounds. These results indicate that while similar nonionic interactions seem to govern the partitioning of both the neutral and anionic species into SOM, the electrostatic interactions of the anionic species with SOM are a complex and currently not well understood function of the type of acidic functional group. The HPLC-based, flow through method presented in this study was shown to yield consistent results for a wide range of organic acids in a high-throughput manner. It should therefore prove highly useful in further investigating how different acidic functional groups affect

  7. Quantitative Survey and Structural Classification of Hydraulic Fracturing Chemicals Reported in Unconventional Gas Production.

    PubMed

    Elsner, Martin; Hoelzer, Kathrin

    2016-04-05

    Much interest is directed at the chemical structure of hydraulic fracturing (HF) additives in unconventional gas exploitation. To bridge the gap between existing alphabetical disclosures by function/CAS number and emerging scientific contributions on fate and toxicity, we review the structural properties which motivate HF applications, and which determine environmental fate and toxicity. Our quantitative overview relied on voluntary U.S. disclosures evaluated from the FracFocus registry by different sources and on a House of Representatives ("Waxman") list. Out of over 1000 reported substances, classification by chemistry yielded succinct subsets able to illustrate the rationale of their use, and physicochemical properties relevant for environmental fate, toxicity and chemical analysis. While many substances were nontoxic, frequent disclosures also included notorious groundwater contaminants like petroleum hydrocarbons (solvents), precursors of endocrine disruptors like nonylphenols (nonemulsifiers), toxic propargyl alcohol (corrosion inhibitor), tetramethylammonium (clay stabilizer), biocides or strong oxidants. Application of highly oxidizing chemicals, together with occasional disclosures of putative delayed acids and complexing agents (i.e., compounds designed to react in the subsurface) suggests that relevant transformation products may be formed. To adequately investigate such reactions, available information is not sufficient, but instead a full disclosure of HF additives is necessary.

  8. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry.

    PubMed

    Rondo, L; Ehrhart, S; Kürten, A; Adamov, A; Bianchi, F; Breitenlechner, M; Duplissy, J; Franchin, A; Dommen, J; Donahue, N M; Dunne, E M; Flagan, R C; Hakala, J; Hansel, A; Keskinen, H; Kim, J; Jokinen, T; Lehtipalo, K; Leiminger, M; Praplan, A; Riccobono, F; Rissanen, M P; Sarnela, N; Schobesberger, S; Simon, M; Sipilä, M; Smith, J N; Tomé, A; Tröstl, J; Tsagkogeorgas, G; Vaattovaara, P; Winkler, P M; Williamson, C; Wimmer, D; Baltensperger, U; Kirkby, J; Kulmala, M; Petäjä, T; Worsnop, D R; Curtius, J

    2016-03-27

    Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection of H2SO4 in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time in the CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI-APi-TOF (Chemical Ionization-Atmospheric Pressure interface-Time Of Flight) mass spectrometers. In addition, neutral sulfuric acid clusters were measured with the CI-APi-TOFs. The CLOUD7 measurements show that in the presence of dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS represents only a fraction of the total H2SO4, contained in the monomer and the clusters that is available for particle growth. Although it was found that the addition of dimethylamine dramatically changes the H2SO4 cluster distribution compared to binary (H2SO4-H2O) conditions, the CIMS detection efficiency does not seem to depend substantially on whether an individual H2SO4 monomer is clustered with a DMA molecule. The experimental observations are supported by numerical simulations based on A Self-contained Atmospheric chemistry coDe coupled with a molecular process model (Sulfuric Acid Water NUCleation) operated in the kinetic limit.

  9. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Rondo, L.; Ehrhart, S.; Kürten, A.; Adamov, A.; Bianchi, F.; Breitenlechner, M.; Duplissy, J.; Franchin, A.; Dommen, J.; Donahue, N. M.; Dunne, E. M.; Flagan, R. C.; Hakala, J.; Hansel, A.; Keskinen, H.; Kim, J.; Jokinen, T.; Lehtipalo, K.; Leiminger, M.; Praplan, A.; Riccobono, F.; Rissanen, M. P.; Sarnela, N.; Schobesberger, S.; Simon, M.; Sipilä, M.; Smith, J. N.; Tomé, A.; Tröstl, J.; Tsagkogeorgas, G.; Vaattovaara, P.; Winkler, P. M.; Williamson, C.; Wimmer, D.; Baltensperger, U.; Kirkby, J.; Kulmala, M.; Petäjä, T.; Worsnop, D. R.; Curtius, J.

    2016-03-01

    Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection of H2SO4 in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time in the CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI-APi-TOF (Chemical Ionization-Atmospheric Pressure interface-Time Of Flight) mass spectrometers. In addition, neutral sulfuric acid clusters were measured with the CI-APi-TOFs. The CLOUD7 measurements show that in the presence of dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS represents only a fraction of the total H2SO4, contained in the monomer and the clusters that is available for particle growth. Although it was found that the addition of dimethylamine dramatically changes the H2SO4 cluster distribution compared to binary (H2SO4-H2O) conditions, the CIMS detection efficiency does not seem to depend substantially on whether an individual H2SO4 monomer is clustered with a DMA molecule. The experimental observations are supported by numerical simulations based on A Self-contained Atmospheric chemistry coDe coupled with a molecular process model (Sulfuric Acid Water NUCleation) operated in the kinetic limit.

  10. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry

    PubMed Central

    Ehrhart, S.; Kürten, A.; Adamov, A.; Bianchi, F.; Breitenlechner, M.; Duplissy, J.; Franchin, A.; Dommen, J.; Donahue, N. M.; Dunne, E. M.; Flagan, R. C.; Hakala, J.; Hansel, A.; Keskinen, H.; Kim, J.; Jokinen, T.; Lehtipalo, K.; Leiminger, M.; Praplan, A.; Riccobono, F.; Rissanen, M. P.; Sarnela, N.; Schobesberger, S.; Simon, M.; Sipilä, M.; Smith, J. N.; Tomé, A.; Tröstl, J.; Tsagkogeorgas, G.; Vaattovaara, P.; Winkler, P. M.; Williamson, C.; Wimmer, D.; Baltensperger, U.; Kirkby, J.; Kulmala, M.; Petäjä, T.; Worsnop, D. R.; Curtius, J.

    2016-01-01

    Abstract Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection of H2SO4 in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time in the CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI‐APi‐TOF (Chemical Ionization‐Atmospheric Pressure interface‐Time Of Flight) mass spectrometers. In addition, neutral sulfuric acid clusters were measured with the CI‐APi‐TOFs. The CLOUD7 measurements show that in the presence of dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS represents only a fraction of the total H2SO4, contained in the monomer and the clusters that is available for particle growth. Although it was found that the addition of dimethylamine dramatically changes the H2SO4 cluster distribution compared to binary (H2SO4‐H2O) conditions, the CIMS detection efficiency does not seem to depend substantially on whether an individual H2SO4 monomer is clustered with a DMA molecule. The experimental observations are supported by numerical simulations based on A Self‐contained Atmospheric chemistry coDe coupled with a molecular process model (Sulfuric Acid Water NUCleation) operated in the kinetic limit. PMID:27610289

  11. Design of a New Type of Compact Chemical Heater for Isothermal Nucleic Acid Amplification

    PubMed Central

    Shah, Kamal G.; Guelig, Dylan; Diesburg, Steven; Buser, Joshua; Burton, Robert; LaBarre, Paul; Richards-Kortum, Rebecca; Weigl, Bernhard

    2015-01-01

    Previous chemical heater designs for isothermal nucleic acid amplification have been based on solid-liquid phase transition, but using this approach, developers have identified design challenges en route to developing a low-cost, disposable device. Here, we demonstrate the feasibility of a new heater configuration suitable for isothermal amplification in which one reactant of an exothermic reaction is a liquid-gas phase-change material, thereby eliminating the need for a separate phase-change compartment. This design offers potentially enhanced performance and energy density compared to other chemical and electric heaters. PMID:26430883

  12. Highly efficient chemical process to convert mucic acid into adipic acid and DFT studies of the mechanism of the rhenium-catalyzed deoxydehydration.

    PubMed

    Li, Xiukai; Wu, Di; Lu, Ting; Yi, Guangshun; Su, Haibin; Zhang, Yugen

    2014-04-14

    The production of bulk chemicals and fuels from renewable bio-based feedstocks is of significant importance for the sustainability of human society. Adipic acid, as one of the most-demanded drop-in chemicals from a bioresource, is used primarily for the large-volume production of nylon-6,6 polyamide. It is highly desirable to develop sustainable and environmentally friendly processes for the production of adipic acid from renewable feedstocks. However, currently there is no suitable bio-adipic acid synthesis process. Demonstrated herein is the highly efficient synthetic protocol for the conversion of mucic acid into adipic acid through the oxorhenium-complex-catalyzed deoxydehydration (DODH) reaction and subsequent Pt/C-catalyzed transfer hydrogenation. Quantitative yields (99 %) were achieved for the conversion of mucic acid into muconic acid and adipic acid either in separate sequences or in a one-step process.

  13. Chemical stability of acid rock drainage treatment sludge and implications for sludge management

    SciTech Connect

    Danny M. McDonald; John A. Webb; Jeff Taylor

    2006-03-15

    To assess the chemical stability of sludges generated by neutralizing acid rock drainage (ARD) with alkaline reagents, synthetic ARD was treated with hydrated lime (batch and high-density sludge process), limestone, and two proprietary reagents (KB-1 and Bauxsol). The amorphous metal hydroxide sludge produced was leached using deionized water, U.S. EPA methods (toxicity characteristic leaching procedure, synthetic precipitation leaching procedure), and the new strong acid leach test (SALT), which leaches the sludge with a series of sulfuric acid extractant solutions; the pH decreases by {approximately} 1 pH unit with each test, until the final pH is {approximately}2. Sludges precipitated by all reagents had very similar leachabilities except for KB-1 and Bauxsol, which released more aluminum. SALT showed that lowering the pH of the leaching solution mobilized more metals from the sludges. Iron, aluminum, copper, and zinc began to leach at pH 2.5-3, {approximately}4.5, {approximately}5.5, and 6-6.5, respectively. The leachability of ARD treatment sludges is determined by the final pH of the leachate. A higher neutralization potential (e.g., a greater content of unreacted neutralizing agent) makes sludges inherently more chemically stable. Thus, when ARD or any acidic metalliferous wastewater is treated, a choice must be made between efficient reagent use and resistance to acid attack. 26 refs., 5 figs., 2 tabs.

  14. [Effects of abscisic acid on chemical components content and color of Glycyrrhiza uralensis].

    PubMed

    Xiang, Yu; Liu, Chun-sheng; Liu, Yong; Song, Xiao-na; Gu, Xuan

    2015-05-01

    An experiment was conducted using cultivated Glycyrrhiza uralensis in age of one year to study the effects of abscisic acid (ABA) on chemical components content and color of G. uralensis. By using different concentrations of ABA spraying on leaves, the change of the chemical component content was analyzed within 45 d after ABA stimulation, and the effects on quality were studied combined with colorimetric analysis data. It turned out that in some sense the content of glycyrrhizic acid and liquiritin had increased within 45 d, especially for liquiritin. After high concentrations of ABA (3.96 mg · L(-1)) stimulating, the content of glycyrrhizic acid rose 52% while liquiritin up 392% within 30 d. Then they both showed a decline in the content of glycyrrhizic acid and liquiritin on 45 d. Color index values of a* and b* were all significantly higher than that of the control group within 45 d, which meant the color of powders turned toward red and yellow. The conclusion was that ABA (3.96 mg · L(-1)) stimulating could not only improve the quality in the traditional sense through the color of G. uralensis, but also in the modern sense by improving the content of glycyrrhizic acid and liquiritin.

  15. Chemical stability of acid rock drainage treatment sludge and implications for sludge management.

    PubMed

    McDonald, Danny M; Webb, John A; Taylor, Jeff

    2006-03-15

    To assess the chemical stability of sludges generated by neutralizing acid rock drainage (ARD) with alkaline reagents, synthetic ARD was treated with hydrated lime (batch and high-density sludge process), limestone, and two proprietary reagents (KB-1 and Bauxsol). The amorphous metal hydroxide sludge produced was leached using deionized water, U.S. EPA methods (toxicity characteristic leaching procedure, synthetic precipitation leaching procedure), and the new strong acid leach test (SALT), which leaches the sludge with a series of sulfuric acid extractant solutions; the pH decreases by approximately 1 pH unit with each test, until the final pH is approximately 2. Sludges precipitated by all reagents had very similar leachabilities except for KB-1 and Bauxsol, which released more aluminum. SALT showed that lowering the pH of the leaching solution mobilized more metals from the sludges. Iron, aluminum, copper, and zinc began to leach at pH 2.5-3, approximately 4.5, approximately 5.5, and 6-6.5, respectively. The leachability of ARD treatment sludges is determined by the final pH of the leachate. A higher neutralization potential (e.g., a greater content of unreacted neutralizing agent) makes sludges inherently more chemically stable. Thus, when ARD or any acidic metalliferous wastewater is treated, a choice must be made between efficient reagent use and resistance to acid attack.

  16. 40 CFR 372.85 - Toxic chemical release reporting form and instructions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS TOXIC CHEMICAL RELEASE REPORTING: COMMUNITY RIGHT-TO-KNOW Forms and Instructions § 372.85 Toxic chemical release reporting form and..., using the TRI online-reporting software provided by EPA. (1) EPA will no longer accept...

  17. 1997 Toxic Chemical Release Inventory Report for the Emergency Planning and Community Right-to-Know Act of 1986, Title III, Section 313

    SciTech Connect

    Heather McBride

    1997-07-01

    The Emergency Planning and Community Right-to-Know Act of 1986 (EPCIL4), Title III, Section 313 [also known as the Superfund Amendment and Reauthorization Act (SARA)], as modified by Executive Order 12856, requires all federal facilities to submit an annual Toxic Chemical Release Inventory report every July for the preceding calendar year. Owners and operators of manufacturing, processing, or production facilities are required to report their toxic chemical releases to all environmental mediums (air, water, soil, etc.). At Los Alamos National Laboratory (LANL), nitric acid was the only toxic chemical used in 1997 that met the reportable threshold limit of 10,000 lb. Form R is the only documentation required by the Environmental Protection Agency, and it is included in the appendix of this report. This report, as requested by DOE, is provided for documentation purposes. In addition, a detailed description of the evaluation and reporting process for chemicals and processes at LANL has been included.

  18. Deuterium isotope effect on 13C chemical shifts of tetrabutylammonium salts of Schiff bases amino acids.

    PubMed

    Rozwadowski, Z

    2006-09-01

    Deuterium isotope effects on 13C chemical shift of tetrabutylammonium salts of Schiff bases, derivatives of amino acids (glycine, L-alanine, L-phenylalanine, L-valine, L-leucine, L-isoleucine and L-methionine) and various ortho-hydroxyaldehydes in CDCl3 have been measured. The results have shown that the tetrabutylammonium salts of the Schiff bases amino acids, being derivatives of 2-hydroxynaphthaldehyde and 3,5-dibromosalicylaldehyde, exist in the NH-form, while in the derivatives of salicylaldehyde and 5-bromosalicylaldehyde a proton transfer takes place. The interactions between COO- and NH groups stabilize the proton-transferred form through a bifurcated intramolecular hydrogen bond.

  19. Study on NO(2) absorption by ascorbic acid and various chemicals.

    PubMed

    Li, Wei; Wu, Cheng-Zhi; Fang, He-Liang; Shi, Yao; Lei, Le-Cheng

    2006-01-01

    Study on NO(2) absorption aimed at seeking a better NO(2) absorption chemical at pH 4.5 approximately 7.0 for application to existing wet flue gas desulfurization (FGD). The results from the double-stirred reactor indicated that ascorbic acid has very high absorption rate at this pH range. The rate constant of ascorbic acid reaction with NO(2) (0 approximately 1,000 x 10(-6) mol/mol) is about 3.54 x 10(6) mol/(Ls) at pH 5.4 approximately 6.5 at 55 degrees C.

  20. Study on NO2 absorption by ascorbic acid and various chemicals*

    PubMed Central

    Li, Wei; Wu, Cheng-zhi; Fang, He-liang; Shi, Yao; Lei, Le-cheng

    2006-01-01

    Study on NO2 absorption aimed at seeking a better NO2 absorption chemical at pH 4.5~7.0 for application to existing wet flue gas desulfurization (FGD). The results from the double-stirred reactor indicated that ascorbic acid has very high absorption rate at this pH range. The rate constant of ascorbic acid reaction with NO2 (0~1000×10−6 mol/mol) is about 3.54×106 mol/(L·s) at pH 5.4~6.5 at 55 °C. PMID:16365924

  1. Chemical disinfection of combined sewer overflow waters using performic acid or peracetic acids.

    PubMed

    Chhetri, Ravi Kumar; Thornberg, Dines; Berner, Jesper; Gramstad, Robin; Öjstedt, Ulrik; Sharma, Anitha Kumari; Andersen, Henrik Rasmus

    2014-08-15

    We investigated the possibility of applying performic acid (PFA) and peracetic acid (PAA) for disinfection of combined sewer overflow (CSO) in existing CSO management infrastructures. The disinfection power of PFA and PAA towards Escherichia coli (E. coli) and Enterococcus was studied in batch-scale and pre-field experiments. In the batch-scale experiment, 2.5 mg L(-1) PAA removed approximately 4 log unit of E. coli and Enterococcus from CSO with a 360 min contact time. The removal of E. coli and Enterococcus from CSO was always around or above 3 log units using 2-4 mg L(-1) PFA; with a 20 min contact time in both batch-scale and pre-field experiments. There was no toxicological effect measured by Vibrio fischeri when CSO was disinfected with PFA; a slight toxic effect was observed on CSO disinfected with PAA. When the design for PFA based disinfection was applied to CSO collected from an authentic event, the disinfection efficiencies were confirmed and degradation rates were slightly higher than predicted in simulated CSO.

  2. Instructions for the 2012 TSCA Chemical Data Reporting

    EPA Pesticide Factsheets

    This document, which pertains to EPA CDR reporting during 2012, updates guidance issued for reporting in 2006 to incorporate instructions relevant to 2012 reporting. It provides detailed information and examples to in reporting under the CDR rule.

  3. Investigation of reports of sexual dysfunction among male chemical workers manufacturing stilbene derivatives

    SciTech Connect

    Quinn, M.M.; Wegman, D.H.; Greaves, I.A.; Hammond, S.K.; Ellenbecker, M.J.; Spark, R.F.; Smith, E.R. )

    1990-01-01

    A Health Hazard Evaluation was conducted by the National Institute for Occupational Safety and Health in an area of a large chemical plant that manufactured the stilbene derivative 4,4'-diaminostilbene-2,2'-disulfonic acid, an intermediate used for the production of optical brightening agents. Men employed in the area reported problems with impotence. The study population consisted of 44 men aged 20-57 years (mean age 37) employed in the area at the time of the evaluation. An industrial hygiene investigation, health and work history questionnaire survey, physical examinations, and blood chemistry and serum hormone evaluation were conducted. Fourteen percent of the men reported symptoms of impotence over the preceding 6 or more months, 7% had potency problems of shorter duration, and 7% were not currently impotent but had experienced impotence for 6 or more months in the past; 36% experienced decreased libido, all since beginning work in the production area. Low levels of serum testosterone (less than 350 ng/dl) were observed in 37% of the men. The low serum testosterone concentrations were not accounted for fully by diurnal variation or an effect of rotating shift work. It is suggested that exposures to chemicals possessing estrogenic activity may be related to the observed health effects in these workers.

  4. 40 CFR 712.30 - Chemical lists and reporting periods.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...., Monday through Friday, excluding legal holidays. The telephone number for the DCO is (202)564-8930. (d... shown in the table below. The substances are listed in Chemical Abstracts Service Registry Number order... alphabetic order with the chemical substances within each category listed by ascending numerical CAS...

  5. Electrode materials for hydrobromic acid electrolysis in Texas Instruments' solar chemical converter

    SciTech Connect

    Luttmer, J.D.; Konrad, D.; Trachtenberg, I.

    1985-05-01

    Texas Instruments has developed a solar chemical converter (SCC) which converts solar energy into chemical energy via the electrolysis of hydrobromic acid. Various materials were evaluated as anodes and cathodes for the electrolysis of the acid. Emphasis was placed on obtaining low overvoltage electrodes with good long-term stability. Sputtered platinum-iridium thin films were identified as the best choice as the cathode material, and sputtered iridium and iridium oxide thin films were identified as the best choice as anode materials. Electrochemical measurements indicate that low overvoltage losses are encountered on these materials at operating current densitities in the SCC. Accelerated corrosion tests of the materials predict acceptable electrode stability for 20 years in an environment representative of onthe-roof service.

  6. 76 FR 17778 - Control of Ergocristine, a Chemical Precursor Used in the Illicit Manufacture of Lysergic Acid...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-31

    ... in the Illicit Manufacture of Lysergic Acid Diethylamide, as a List I Chemical AGENCY: Drug... illicitly manufacture the schedule I controlled substance lysergic acid diethylamide (LSD). This rule is..., VA 22152; telephone: (202) 307-7183. SUPPLEMENTARY INFORMATION: Background Lysergic acid...

  7. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: July--September 1997

    SciTech Connect

    Jubin, R.T.

    1998-07-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July--September 1997. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within nine major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Biotechnology, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information.

  8. Chemical modification of amino acid residues in glycerinated Vorticella stalk and Ca(2+)-induced contractility.

    PubMed

    Kono, R; Ochiai, T; Asai, H

    1997-01-01

    The glycerinated stalk of the peritrich ciliate Vorticella, was treated with various reagents to chemically modify the amino acid residues. The influences of these modifcations on spasmoneme contractility were investigated. First, it was confirmed that the spasmoneme contraction is not inhibited by alteration of SH groups. It was also demonstrated that chemical modification of methionine and tryptophan residues abolishes spasmoneme contractility. The reagents used for chemical modification were N-bromosuccinimide (NBS), chloramine T, and 2-hydroxy-5-nitrobenzyl bromide (HNBB), which abolished spasmoneme contractility at concentrations of 40-50 microM, 200-300 microM, and 4 mM, respectively. These results suggest that, along with Ca2+ binding proteins, there are other as yet to be identified proteins involved in contractility.

  9. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division, April--June 1997

    SciTech Connect

    Jubin, R.T.

    1998-06-01

    The Chemical and Energy Research Section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within six major areas of research: Hot Cell Operations, Process Chemistry and thermodynamics, Separations and Materials Synthesis, Solution Thermodynamics, biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information.

  10. Chemical nature and immunotoxicological properties of arachidonic acid degradation products formed by exposure to ozone.

    PubMed Central

    Madden, M C; Friedman, M; Hanley, N; Siegler, E; Quay, J; Becker, S; Devlin, R; Koren, H S

    1993-01-01

    Ozone (O3) exposure in vivo has been reported to degrade arachidonic acid (AA) in the lungs of rodents. The O3-degraded AA products may play a role in the responses to this toxicant. To study the chemical nature and biological activity of O3-exposed AA, we exposed AA in a cell-free, aqueous environment to air, 0.1 ppm O3, or 1.0 ppm O3 for 30-120 min. AA exposed to air was not degraded. All O3 exposures degraded > 98% of the AA to more polar products, which were predominantly aldehydic substances (as determined by reactivity with 2,4-dinitrophenylhydrazine and subsequent separation by HPLC) and hydrogen peroxide. The type and amount of aldehydic substances formed depended on the O3 concentration and exposure duration. A human bronchial epithelial cell line (BEAS-2B, S6 subclone) exposed in vitro to either 0.1 ppm or 1.0 ppm O3 for 1 hr produced AA-derived aldehydic substances, some of which eluted with similar retention times as the aldehydic substances derived from O3 degradation of AA in the cell-free system. In vitro, O3-degraded AA induced an increase in human peripheral blood polymorphonuclear leukocyte (PMN) polarization, decreased human peripheral blood T-lymphocyte proliferation in response to mitogens, and decreased human peripheral blood natural killer cell lysis of K562 target cells. The aldehydic substances, but not hydrogen peroxide, appeared to be the principal active agents responsible for the observed effects. O3-degraded AA may play a role in the PMN influx into lungs and in decreased T-lymphocyte mitogenesis and natural killer cell activity observed in humans and rodents exposed to O3. PMID:8354202

  11. Chemical nature and immunotoxicological properties of arachidonic acid degradation products formed by exposure to ozone

    SciTech Connect

    Madden, M.C.; Friedman, M.; Hanley, N.; Siegler, E.; Quay, J.; Becker, S.; Devlin, R.; Koren, H.S. )

    1993-06-01

    Ozone (O3) exposure in vivo has been reported to degrade arachidonic acid (AA) in the lungs of rodents. The O3-degraded AA products may play a role in the responses to this toxicant. To study the chemical nature and biological activity of O3-exposed AA, we exposed AA in a cell-free, aqueous environment to air, 0.1 ppm O3, or 1.0 ppm O3 for 30-120 min. AA exposed to air was not degraded. All O3 exposures degraded > 98% of the AA to more polar products, which were predominantly aldehydic substances (as determined by reactivity with 2,4-dinitrophenylhydrazine and subsequent separation by HPLC) and hydrogen peroxide. The type and amount of aldehydic substances formed depended on the O3 concentration and exposure duration. A human bronchial epithelial cell line (BEAS-2B, S6 subclone) exposed in vitro to either 0.1 ppm or 1.0 ppm O3 for 1 hr produced AA-derived aldehydic substances, some of which eluted with similar retention times as the aldehydic substances derived from O3 degradation of AA in the cell-free system. In vitro, O3-degraded AA induced an increase in human peripheral blood polymorphonuclear leukocyte (PMN) polarization, decreased human peripheral blood T-lymphocyte proliferation in response to mitogens, and decreased human peripheral blood natural killer cell lysis of K562 target cells. The aldehydic substances, but not hydrogen peroxide, appeared to be the principal active agents responsible for the observed effects. O3-degraded AA may play a role in the PMN influx into lungs and in decreased T-lymphocyte mitogenesis and natural killer cell activity observed in humans and rodents exposed to O3.

  12. Concentration of Nitric Acid Strongly Influences Chemical Composition of Graphite Oxide.

    PubMed

    Jankovsky, Ondrej; Novacek, Michal; Luxa, Jan; Sedmidubsky, David; Bohacova, Marie; Pumera, Martin; Sofer, Zdenek

    2017-02-28

    Graphite oxide is the most widely used precursor for the synthesis of graphene by top-down methods. We demonstrate a significant influence of nitric acid concentration on the structure and composition of the graphite oxide prepared by graphite oxidation. In general, two main chlorate based oxidation methods are currently used for graphite oxide synthesis, Staudenmaier method dealing with 98 wt.% nitric acid and Hofmann method dealing with 68 wt.% nitric acid. However a gradual change of nitric acid concentration allowed for the continuous change of the graphite oxide composition. The prepared samples were thoroughly characterized by microscopic techniques as well as various spectroscopic and analytical methods. Lowering of nitric acid concentration led to an increase of oxidation degree and in particular to a concentration of epoxy and hydroxyl groups. This knowledge is not only useful for the large scale synthesis of graphite oxide with tunable size and chemical composition, but the use of nitric acid in lower concentration can also significantly reduce the overall cost of the synthesis.

  13. Preparation and physico-chemical properties of hydrogels from carboxymethyl cassava starch crosslinked with citric acid

    NASA Astrophysics Data System (ADS)

    Boonkham, Sasikan; Sangseethong, Kunruedee; Chatakanon, Pathama; Niamnuy, Chalida; Nakasaki, Kiyohiko; Sriroth, Klanarong

    2014-06-01

    Recently, environmentally friendly hydrogels prepared from renewable bio-based resources have drawn significant attention from both industrial and academic sectors. In this study, chemically crosslinked hydrogels have been developed from cassava starch which is a bio-based polymer using a non-toxic citric acid as a crosslinking agent. Cassava starch was first modified by carboxymethylation to improve its water absorbency property. The carboxymethyl cassava starch (CMCS) obtained was then crosslinked with citric acid at different concentrations and reaction times. The gel fraction of hydrogels increased progressively with increasing citric acid concentration. Free swelling capacity of hydrogels in de-ionized water, saline solution and buffers at various pHs as well as absorption under load were investigated. The results revealed that swelling behavior and mechanical characteristic of hydrogels depended on the citric acid concentration used in reaction. Increasing citric acid concentration resulted in hydrogels with stronger network but lower swelling and absorption capacity. The cassava starch hydrogels developed were sensitive to ionic strength and pH of surrounding medium, showing much reduced swelling capacity in saline salt solution and acidic buffers.

  14. A comparison of neutralization efficiency of chemicals with respect to acidic Kopili River water

    NASA Astrophysics Data System (ADS)

    Kapil, Nibedita; Bhattacharyya, Krishna G.

    2016-02-01

    Among all the renewable sources of energy, hydropower is the most potential source which is economical, non-polluting and eco-friendly. The efficiency of hydropower plant in the long run depends on many factors like water and sediment quality. Erosive and corrosive wear of machine parts like turbine is a complex phenomenon. The problem becomes more acute if the hydroenvironment is acidic in nature. The wear and tear due to corrosion/erosion caused by acid mine drainage (AMD) from coal mines reduces the efficiency and the life of the equipments. In this work, neutralization of the acidic water of the Kopili River, Assam, India was investigated using a number of basic chemicals and quantitatively estimating their effectiveness and actual requirement. The acidic water of the river, used as the cooling water, has been found responsible for damaging the equipments of the Kopili Hydro Electric Power Project (KHEP), Assam/Meghalaya, India by reducing the life of all metallic parts through corrosion. In this work, use is made of a number of basic materials like calcium carbonate, calcium hydroxide, calcium oxide, sodium carbonate, sodium hydroxide, and ammonia to examine their neutralization efficiency with respect to the acidic water and it was found that quick lime or raw lime (CaO) has the highest neutralization capacity. Suggestions have been made for meeting the problem of acidity of the river water.

  15. 15 CFR 745.2 - End-Use Certificate reporting requirements under the Chemical Weapons Convention.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... requirements under the Chemical Weapons Convention. 745.2 Section 745.2 Commerce and Foreign Trade Regulations... EXPORT ADMINISTRATION REGULATIONS CHEMICAL WEAPONS CONVENTION REQUIREMENTS § 745.2 End-Use Certificate reporting requirements under the Chemical Weapons Convention. Note: The End-Use Certificate requirement...

  16. 15 CFR 745.2 - End-Use Certificate reporting requirements under the Chemical Weapons Convention.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... requirements under the Chemical Weapons Convention. 745.2 Section 745.2 Commerce and Foreign Trade Regulations... EXPORT ADMINISTRATION REGULATIONS CHEMICAL WEAPONS CONVENTION REQUIREMENTS § 745.2 End-Use Certificate reporting requirements under the Chemical Weapons Convention. Note: The End-Use Certificate requirement...

  17. 15 CFR 745.2 - End-Use Certificate reporting requirements under the Chemical Weapons Convention.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... requirements under the Chemical Weapons Convention. 745.2 Section 745.2 Commerce and Foreign Trade Regulations... EXPORT ADMINISTRATION REGULATIONS CHEMICAL WEAPONS CONVENTION REQUIREMENTS § 745.2 End-Use Certificate reporting requirements under the Chemical Weapons Convention. Note: The End-Use Certificate requirement...

  18. 15 CFR 745.2 - End-Use Certificate reporting requirements under the Chemical Weapons Convention.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... requirements under the Chemical Weapons Convention. 745.2 Section 745.2 Commerce and Foreign Trade Regulations... EXPORT ADMINISTRATION REGULATIONS CHEMICAL WEAPONS CONVENTION REQUIREMENTS § 745.2 End-Use Certificate reporting requirements under the Chemical Weapons Convention. Note: The End-Use Certificate requirement...

  19. 15 CFR 745.2 - End-Use Certificate reporting requirements under the Chemical Weapons Convention.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... requirements under the Chemical Weapons Convention. 745.2 Section 745.2 Commerce and Foreign Trade Regulations... EXPORT ADMINISTRATION REGULATIONS CHEMICAL WEAPONS CONVENTION REQUIREMENTS § 745.2 End-Use Certificate reporting requirements under the Chemical Weapons Convention. Note: The End-Use Certificate requirement...

  20. Direct solid surface fluorescence spectroscopy of standard chemicals and humic acid in ternary system.

    PubMed

    Mounier, S; Nicolodelli, G; Redon, R; Milori, D M B P

    2017-04-15

    The front face fluorescence spectroscopy is often used to quantify chemicals in well-known matrices as it is a rapid and powerful technique, with no sample preparation. However it was not used to investigate extracted organic matter like humic substances. This work aims to fully investigate for the first time front face fluorescence spectroscopy response of a ternary system including boric acid, tryptophan and humic substances, and two binaries system containing quinine sulfate or humic substance in boric acid. Pure chemicals, boric acid, tryptophan, quinine sulfate and humic acid were mixed together in solid pellet at different contents from 0 to 100% in mass. The measurement of excitation emission matrix of fluorescence (3D fluorescence) and laser induced fluorescence were then done in the front face mode. Fluorescence matrices were decomposed using the CP/PARAFAC tools after scattering treatments. Results show that for 3D fluorescence there is no specific component for tryptophan and quinine sulfate, and that humic substances lead to a strong extinction effect for mixture containing quinine sulfate. Laser induced fluorescence gives a very good but non-specific related response for both quinine sulfate and tryptophan. No humic substances fluorescence response was found, but extinction effect is observed as for 3D fluorescence. This effect is stronger for quinine sulfate than for tryptophan. These responses were modeled using a simple absorbance versus emission model.

  1. Physico-chemical modifications of conjugated linoleic acid for ruminal protection and oxidative stability.

    PubMed

    Moon, Hyun-Seuk; Lee, Hong-Gu; Chung, Chung-Soo; Choi, Yun-Jaie; Cho, Chong-Su

    2008-06-01

    Conjugated linoleic acid (CLA) is a mixture of positional and geometric isomers of octadecadienoic acid [linoleic acid (LA), 18:2n-6]. Although ruminant milk and meat products represent the largest natural source of CLA and therefore, their concentration in ruminant lipids are of interest to human health, chemical or physical modifications of CLA should be needed as a means to enhance oxidative stability, to improve post-ruminal bioavailability, and to increase the clinical application. In fact, CLA are rapidly decomposed to form furan fatty acids when its are oxidized in air, and the effectiveness of dietary supplements of CLA may be related to the extent that their metabolisms by rumen bacteria are avoided. For these reasons, many scientists have examined the effect of manufacturing and protection on the stability of CLA in ruminants and food products. In this review, physico-chemical modifications of CLA for ruminal protection such as calcium salt (Ca), formaldehyde protection (FP), lipid encapsulation (LE), and amide linkage (AL), and for oxidative stability such as green tea catechin (GTC), cyclodextrin (CD), arginine (Arg), amylase, and PEGylation are proposed.

  2. Physico-chemical modifications of conjugated linoleic acid for ruminal protection and oxidative stability

    PubMed Central

    Moon, Hyun-Seuk; Lee, Hong-Gu; Chung, Chung-Soo; Choi, Yun-Jaie; Cho, Chong-Su

    2008-01-01

    Conjugated linoleic acid (CLA) is a mixture of positional and geometric isomers of octadecadienoic acid [linoleic acid (LA), 18:2n-6]. Although ruminant milk and meat products represent the largest natural source of CLA and therefore, their concentration in ruminant lipids are of interest to human health, chemical or physical modifications of CLA should be needed as a means to enhance oxidative stability, to improve post-ruminal bioavailability, and to increase the clinical application. In fact, CLA are rapidly decomposed to form furan fatty acids when its are oxidized in air, and the effectiveness of dietary supplements of CLA may be related to the extent that their metabolisms by rumen bacteria are avoided. For these reasons, many scientists have examined the effect of manufacturing and protection on the stability of CLA in ruminants and food products. In this review, physico-chemical modifications of CLA for ruminal protection such as calcium salt (Ca), formaldehyde protection (FP), lipid encapsulation (LE), and amide linkage (AL), and for oxidative stability such as green tea catechin (GTC), cyclodextrin (CD), arginine (Arg), amylase, and PEGylation are proposed. PMID:18513443

  3. Coupling of hydrologic transport and chemical reactions in a stream affected by acid mine drainage

    USGS Publications Warehouse

    Kimball, B.A.; Broshears, R.E.; Bencala, K.E.; McKnight, Diane M.

    1994-01-01

    Experiments in St. Kevin Gulch, an acid mine drainage stream, examined the coupling of hydrologic transport to chemical reactions affecting metal concentrations. Injection of LiCl as a conservative tracer was used to determine discharge and residence time along a 1497-m reach. Transport of metals downstream from inflows of acidic, metal-rich water was evaluated based on synoptic samples of metal concentrations and the hydrologic characteristics of the stream. Transport of SO4 and Mn was generally conservative, but in the subreaches most affected by acidic inflows, transport was reactive. Both 0.1-??m filtered and particulate Fe were reactive over most of the stream reach. Filtered Al partitioned to the particulate phase in response to high instream concentrations. Simulations that accounted for the removal of SO4, Mn, Fe, and Al with first-order reactions reproduced the steady-state profiles. The calculated rate constants for net removal used in the simulations embody several processes that occur on a stream-reach scale. The comparison between rates of hydrologie transport and chemical reactions indicates that reactions are only important over short distances in the stream near the acidic inflows, where reactions occur on a comparable time scale with hydrologic transport and thus affect metal concentrations.

  4. Direct solid surface fluorescence spectroscopy of standard chemicals and humic acid in ternary system

    NASA Astrophysics Data System (ADS)

    Mounier, S.; Nicolodelli, G.; Redon, R.; Milori, D. M. B. P.

    2017-04-01

    The front face fluorescence spectroscopy is often used to quantify chemicals in well-known matrices as it is a rapid and powerful technique, with no sample preparation. However it was not used to investigate extracted organic matter like humic substances. This work aims to fully investigate for the first time front face fluorescence spectroscopy response of a ternary system including boric acid, tryptophan and humic substances, and two binaries system containing quinine sulfate or humic substance in boric acid. Pure chemicals, boric acid, tryptophan, quinine sulfate and humic acid were mixed together in solid pellet at different contents from 0 to 100% in mass. The measurement of excitation emission matrix of fluorescence (3D fluorescence) and laser induced fluorescence were then done in the front face mode. Fluorescence matrices were decomposed using the CP/PARAFAC tools after scattering treatments. Results show that for 3D fluorescence there is no specific component for tryptophan and quinine sulfate, and that humic substances lead to a strong extinction effect for mixture containing quinine sulfate. Laser induced fluorescence gives a very good but non-specific related response for both quinine sulfate and tryptophan. No humic substances fluorescence response was found, but extinction effect is observed as for 3D fluorescence. This effect is stronger for quinine sulfate than for tryptophan. These responses were modeled using a simple absorbance versus emission model.

  5. Cholinium-amino acid based ionic liquids: a new method of synthesis and physico-chemical characterization.

    PubMed

    De Santis, Serena; Masci, Giancarlo; Casciotta, Francesco; Caminiti, Ruggero; Scarpellini, Eleonora; Campetella, Marco; Gontrani, Lorenzo

    2015-08-28

    In the present work we report the synthesis and physico-chemical characterization in terms of the viscosity and density of a wide series of cholinium-amino acid based room temperature ionic liquids ([Ch][AA] RTILs). 18 different amino acids were used to obtain 14 room temperature ILs. Among the most common AAs, only valine did not form an RTIL but it is a liquid above 80 °C. With respect to the methods reported in the literature we propose a synthesis based on potentiometric titration which has several advantages such as shorter preparation time, stoichiometry within ±1%, very high yields (close to 100%), high reproducibility, and no use of organic solvents, thus being more environmentally friendly. We tried to prepare dianionic ILs with some AAs with two potentially ionisable groups but in all cases the salts were solids at room temperature. All the ILs were characterized by (1)H NMR to confirm the stoichiometry. Physico-chemical properties such as density, viscosity, refractive index and conductivity were measured as a function of temperature and correlated with empirical equations. The values were compared with the data already reported in the literature for some [Ch][AA] ILs. The thermal expansion coefficient αp and the molar volume Vm were also calculated from the experimental density values. Due to the high number of AAs explored and their structural heterogeneity we have been able to find some interesting correlations between the data obtained and the structural features of the AAs in terms of the alkyl chain length, hydrogen bonding ability, stacking and cyclization. Some parameters were also found to be in good agreement with those reported for other ILs. We think that these data can give an important contribution to the understanding of the structure-property relationship of ILs because they focused on the structural effect of the anions, while most data in the literature are focussed on the cations.

  6. Acid generation mechanism in anion-bound chemically amplified resists used for extreme ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Komuro, Yoshitaka; Yamamoto, Hiroki; Kobayashi, Kazuo; Utsumi, Yoshiyuki; Ohomori, Katsumi; Kozawa, Takahiro

    2014-11-01

    Extreme ultraviolet (EUV) lithography is the most promising candidate for the high-volume production of semiconductor devices with half-pitches of sub-10 nm. An anion-bound polymer (ABP), in which the anion part of onium salts is polymerized, has attracted much attention from the viewpoint of the control of acid diffusion. In this study, the acid generation mechanism in ABP films was investigated using electron (pulse), γ, and EUV radiolyses. On the basis of experimental results, the acid generation mechanism in anion-bound chemically amplified resists was proposed. The major path for proton generation in the absence of effective proton sources is considered to be the reaction of phenyl radicals with diphenylsulfide radical cations that are produced through hole transfer to the decomposition products of onium salts.

  7. Fatty Acid-Derived Biofuels and Chemicals Production in Saccharomyces cerevisiae.

    PubMed

    Zhou, Yongjin J; Buijs, Nicolaas A; Siewers, Verena; Nielsen, Jens

    2014-01-01

    Volatile energy costs and environmental concerns have spurred interest in the development of alternative, renewable, sustainable, and cost-effective energy resources. Environment-friendly processes involving microbes can be used to synthesize advanced biofuels. These fuels have the potential to replace fossil fuels in supporting high-power demanding machinery such as aircrafts and trucks. From an engineering perspective, the pathway for fatty acid biosynthesis is an attractive route for the production of advanced fuels such as fatty acid ethyl esters, fatty alcohols, and alkanes. The robustness and excellent accessibility to molecular genetics make the yeast Saccharomyces cerevisiae a suitable host for the purpose of bio-manufacturing. Recent advances in metabolic engineering, as well as systems and synthetic biology, have now provided the opportunity to engineer yeast metabolism for the production of fatty acid-derived fuels and chemicals.

  8. Water chemical ionization mass spectrometry of aldehydes, ketones esters, and carboxylic acids

    SciTech Connect

    Hawthorne, S.B.; Miller, D.J.

    1986-11-01

    Chemical ionization mass spectrometry (CI) of aliphatic and aromatic carbonyl compounds using water as the reagent gas provides intense pseudomolecular ions and class-specific fragmentation patterns that can be used to identify aliphatic aldehydes, ketones, carboxylic acids, and esters. The length of ester acyl and alkyl groups can easily be determined on the basis of loss of alcohols from the protonated parent. Water CI provides for an approximately 200:1 selectivity of carbonyl species over alkanes. No reagent ions are detected above 55 amu, allowing species as small as acetone, propanal, acetic acid, and methyl formate to be identified. When deuterate water was used as the reagent, only the carboxylic acids and ..beta..-diketones showed significant H/D exchange. The use of water CI to identify carbonyl compounds in a wastewater from the supercritical water extraction of lignite coal, in lemon oil, and in whiskey volatiles is discussed.

  9. Materials and Chemical Sciences Division annual report, 1987

    SciTech Connect

    Not Available

    1988-07-01

    Research programs from Lawrence Berkeley Laboratory in materials science, chemical science, nuclear science, fossil energy, energy storage, health and environmental sciences, program development funds, and work for others is briefly described. (CBS)

  10. Multiple reporter gene assays for the assessment and estimation of chemical toxicity.

    PubMed

    Takahashi, Junko; Iwahashi, Hitoshi

    2004-01-01

    To detect chemical toxicity, we are making new bioassay systems that use promoters selected from yeast DNA microarray experiments. We performed multiple reporter gene assays using the promoters of these genes; the promoter regions were inserted upstream of green fluorescence protein (GFP). In this report, six genes (HSP26, MET17, YLL057C, FIT2, CUP1 and OYE3) were selected and assays were carried out for 55 chemicals. The promoters of these genes showed different responses to chemicals within 4 h. This result indicates that this technique enables us to predict the toxicity of chemicals in the environment and to understand toxicities of newly synthesized chemicals.

  11. In situ chemical functionalization of gallium nitride with phosphonic acid derivatives during etching.

    PubMed

    Wilkins, Stewart J; Greenough, Michelle; Arellano, Consuelo; Paskova, Tania; Ivanisevic, Albena

    2014-03-04

    In situ functionalization of polar (c plane) and nonpolar (a plane) gallium nitride (GaN) was performed by adding (3-bromopropyl) phosphonic acid or propyl phosphonic acid to a phosphoric acid etch. The target was to modulate the emission properties and oxide formation of GaN, which was explored through surface characterization with atomic force microscopy, X-ray photoelectron spectroscopy, photoluminescence (PL), inductively coupled plasma-mass spectrometry, and water contact angle. The use of (3-bromopropyl) phosphonic acid and propyl phosphonic acid in phosphoric acid demonstrated lower amounts of gallium oxide formation and greater hydrophobicity for both sample sets, while also improving PL emission of polar GaN samples. In addition to crystal orientation, growth-related factors such as defect density in bulk GaN versus thin GaN films residing on sapphire substrates were investigated as well as their responses to in situ functionalization. Thin nonpolar GaN layers were the most sensitive to etching treatments due in part to higher defect densities (stacking faults and threading dislocations), which accounts for large surface depressions. High-quality GaN (both free-standing bulk polar and bulk nonpolar) demonstrated increased sensitivity to oxide formation. Room-temperature PL stands out as an excellent technique to identify nonradiative recombination as observed in the spectra of heteroepitaxially grown GaN samples. The chemical methods applied to tune optical and physical properties of GaN provide a quantitative framework for future novel chemical and biochemical sensor development.

  12. Comparison of efficacy of chemical peeling with 25% trichloroacetic acid and 0.1% retinoic acid for facial rejuvenation

    PubMed Central

    Gurel, Mehmet Salih; Gungor, Sule; Tekeli, Omur; Canat, Dilek

    2016-01-01

    Introduction Skin aging is a problem which negatively affects the psyche of the person, social relations, as well as work life and health and which compels the patients to find appropriate treatment methods. Numerous treatment methods have been developed in order to delay aging and to reduce the aging effects in addition to having a younger, healthier and more beautiful facial appearance. Aim To compare the efficiency, cosmetic results and possible adverse effects of the peeling treatment with 25% trichloroacetic acid (TCA) and 0.1% retinoic acid for facial rejuvenation in patients presenting with skin aging. Material and methods Fifty female patients in total presenting with medium and advanced degree skin aging were subject to this study. Two separate treatment groups were formed; the first group underwent chemical skin treatment with 25% TCA while the other group was applied with 0.1% retinoic acid treatment. Following the 4 months’ treatment the patients were controlled three times in total for post lesional hypopigmentation, hyperpigmentation, scars, skin irritation and other possible changes per month. The pretreatment and first follow-up visit, and final control images were comparatively evaluated by three observers via specific software. Results The healing rates of the group subject to retinoic acid were statistically higher (p < 0.05) compared to patients in the TCA group in the final follow-up visit following the treatment according to the first and second observers. On the other hand, according to the third observer, patients applied with retinoic acid presented with higher healing rates compared to those treated with TCA, however; this rate was not statistically significant (p > 0.05). The frequency of TCA- and retinoic acid-associated adverse effects was similar in both groups (p > 0.05). As a result of both treatments, a reduction in the quality of life scores as well as a pronounced recovery (p = 0.001) in the quality of life of those patients

  13. PISCES field chemical emissions monitoring project: Site 119 emissions report. Final report

    SciTech Connect

    1995-12-01

    This report is one of a series sponsored by the Electric Power Research Institute in the area of trace substance emissions from fossil-fuel power plants. This report presents the results of a sampling and analytical study to characterize trace substances emissions at Site 119. Site 119 is a residual oil-fired boiler, with an electrostatic precipitator for particulate control. Site 119 employs close-coupled overfire air and burner modifications for NO{sub x} control. The objective of this report is to transmit the detailed data to the US Environmental Protection Agency (EPA) to assist the Agency in evaluating utility trace chemical emissions as well as the associated health risk impacts--as mandated in Title III of the 1990 Clean Air Act Amendments. This report does not attempt to compare the results with other sites. An assessment of data from all plants that have been tested is presented in the Electric Utility Trace Substances Synthesis Report (EPRI TR-104614).

  14. PISCES field chemical emissions monitoring project: Site 12 emissions report. Final report

    SciTech Connect

    1995-10-01

    This report is one of a series sponsored by the Electric Power Research Institute in the area of trace substance emissions from fossil-fuel power plants. This report presents the results of a sampling and analytical study to characterize trace substances emissions at Site 12. Site 12 is a large, pulverized coal-fired power plant that burns a medium-sulfur bituminous coal. Site 12 employs electrostatic precipitators and a flue gas desulfurization system for particulate and S02 control. Testing at Site 12 was performed in the summer of 1990, with additional retests in August and December of 1992 for volatile organic compounds (VOCs) and mercury, respectively. Sampling and analytical problems during the initial test period necessitated the retests. The objective of this report is to transmit the detailed data to the U.S. Environmental Protection Agency (EPA) to assist the Agency in evaluating utility trace chemical emissions as well as the associated health risk impacts-as mandated in Title III of the 1990 Clean Air Act Amendments. This report does not attempt to compare the results with other sites. An assessment of data from all plants that have been tested is presented in the Electric Utility Trace Substances Synthesis Report (EPRI TR-104614).

  15. PISCES field chemical emissions monitoring project: Site 13 emissions report. Final report

    SciTech Connect

    1995-11-01

    This report is one of a series sponsored by the Electric Power Research Institute in the area of trace substance emissions from fossil-fuel power plants. This report presents the results of a sampling and analytical study to characterize trace substances emissions at Site 13. Site 13 consists of a boiler burning No. 6 fuel oil. No air pollution control equipment was available to control emissions from the boiler; however, a pilot-scale pulse-jet fabric filter treating a small fraction of the flue gas from this unit was also tested. The objective of this report is to transmit the detailed data to the US Environmental Protection Agency (EPA) to assist the Agency in evaluating utility trace chemical emissions as well as the associated health risk impacts--as mandated in Title III of the 1990 Clean Air Act Amendments. This report does not attempt to compare the results with other sites. An assessment of data from all plants that have been tested is presented in the Electric Utility Trace Substances Synthesis Report (EPRI TR-104614).

  16. PISCES Field Chemical Emissions Monitoring Project: Site 18 emissions report. Final report

    SciTech Connect

    1995-11-01

    This report is one of a series sponsored by the Electric Power Research Institute in the area of trace substance emissions from fossil-fuel power plants. This report presents the results of a sampling and analytical study to characterize trace substances emissions at Site 18. Site 18 is a pulverized coal-fired boiler burning a medium-sulfur bituminous coal. Site 18 employs electrostatic precipitators for particulate control. During the sampling project, a pilot pulse-jet fabric filter treated a small fraction of the flue gas downstream of the ESP. Measurements were also conducted around the pilot fabric filter. The objective of this report is to transmit the detailed data to the US Environmental Protection Agency (EPA) to assist the Agency in evaluating utility trace chemical emissions as well as the associated health risk impacts -- as mandated in Title III of the 1990 Clean Air Act Amendments. This report does not attempt to compare the results with other sites. An assessment of data from all plants that have been tested is presented in the Electric Utility Trace Substances Synthesis Report (EPRI TR-104614).

  17. PISCES field chemical emissions monitoring project: Site 11 emissions report. Final report

    SciTech Connect

    1995-12-01

    This report is one of a series sponsored by the Electric Power Research Institute in the area of trace substance emissions from fossil-fuel power plants. This report presents the results of a sampling and analytical study to characterize trace substances emissions at Site 11. Site 11 is a large, pulverized coal-fired power plant that burns a low-sulfur sub-bituminous coal. Site 11 employs electrostatic precipitators and a flue gas desulfurization system for particulate and SO{sub 2} control. Testing at Site 11 was performed in the summer of 1990, with additional retests in August 1992 and April 1993 for volatile organic compounds (VOCs) and mercury, respectively. Sampling and analytical problems during the initial test period necessitated the retests. The objective of this report is to transmit the detailed data to the US Environmental Protection Agency (EPA) to assist the Agency in evaluating utility trace chemical emissions as well as the associated health risk impacts--as mandated in Title III of the 1990 Clean Air Act Amendments. This report does not attempt to compare the results with other sites. An assessment of data from all plants that have been tested is presented in the Electric Utility Trace Substances Synthesis Report (EPRI TR-104614).

  18. Lymphohematopoietic Cancers Induced by Chemicals and Other Agents: Overview and Implications for Risk Assessment (Final Report)

    EPA Science Inventory

    EPA announced the release of the final report, Lymphohematopoietic Cancers Induced by Chemicals and Other Agents: Overview and Implications for Risk Assessment . This report provides an overview of the types of mechanisms underlying the lymphohematopoietic cancers induc...

  19. 75 FR 52355 - Draft National Conversation on Public Health and Chemical Exposures Work Group Reports...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-25

    ... Prevention Draft National Conversation on Public Health and Chemical Exposures Work Group Reports... collaborative initiative through which many organizations and individuals are helping develop an action agenda... exposures. This notice announces the availability of draft National Conversation work group reports...

  20. 40 CFR 710.25 - Chemical substances for which information must be reported.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT TSCA CHEMICAL INVENTORY REGULATIONS 2002 Inventory Update Reporting... the Master Inventory File at the beginning of a reporting period described in § 710.33, unless...

  1. Down Select Report of Chemical Hydrogen Storage Materials, Catalysts, and Spent Fuel Regeneration Processes - May 2008

    SciTech Connect

    Ott, Kevin C.; Linehan, Sue; Lipiecki, Frank; Christopher, Aardahl L.

    2008-05-12

    Chemical Hydrogen Storage Center of Excellence FY2008 Second Quarter Milestone Report: Technical report describing assessment of hydrogen storage materials and progress towards meeting DOE’s hydrogen storage targets.

  2. FY13 GLYCOLIC-NITRIC ACID FLOWSHEET DEMONSTRATIONS OF THE DWPF CHEMICAL PROCESS CELL WITH SIMULANTS

    SciTech Connect

    Lambert, D.; Zamecnik, J.; Best, D.

    2014-03-13

    Savannah River Remediation is evaluating changes to its current Defense Waste Processing Facility flowsheet to replace formic acid with glycolic acid in order to improve processing cycle times and decrease by approximately 100x the production of hydrogen, a potentially flammable gas. Higher throughput is needed in the Chemical Processing Cell since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the safety significant gas chromatographs and the potential for production of flammable quantities of hydrogen, eliminating the use of formic acid is highly desirable. Previous testing at the Savannah River National Laboratory has shown that replacing formic acid with glycolic acid allows the reduction and removal of mercury without significant catalytic hydrogen generation. Five back-to-back Sludge Receipt and Adjustment Tank (SRAT) cycles and four back-to-back Slurry Mix Evaporator (SME) cycles were successful in demonstrating the viability of the nitric/glycolic acid flowsheet. The testing was completed in FY13 to determine the impact of process heels (approximately 25% of the material is left behind after transfers). In addition, back-to-back experiments might identify longer-term processing problems. The testing was designed to be prototypic by including sludge simulant, Actinide Removal Product simulant, nitric acid, glycolic acid, and Strip Effluent simulant containing Next Generation Solvent in the SRAT processing and SRAT product simulant, decontamination frit slurry, and process frit slurry in the SME processing. A heel was produced in the first cycle and each subsequent cycle utilized the remaining heel from the previous cycle. Lower SRAT purges were utilized due to the low hydrogen generation. Design basis addition rates and boilup rates were used so the processing time was shorter than current processing rates.

  3. Process for preparing a chemical compound enriched in isotope content. [nitrogen 15-enriched nitric acid

    DOEpatents

    Michaels, E.D.

    1981-02-25

    A process to prepare a chemical enriched in isotope content includes: a chemical exchange reaction between a first and second compound which yields an isotopically enriched first compound and an isotopically depleted second compound; the removal of a portion of the first compound as product and the removal of a portion of the second compound as spent material; the conversion of the remainder of the first compound to the second compound for reflux at the product end of the chemical exchange reaction region; the conversion of the remainder of the second compound to the first compound for reflux at the spent material end of the chemical exchange region; and the cycling of the additional chemicals produced by one conversion reaction to the other conversion reaction, for consumption therein. One of the conversion reactions is an oxidation reaction, and the energy that it yields is used to drive the other conversion reaction, a reduction. The reduction reaction is carried out in a solid polymer electrolyte electrolytic reactor. The overall process is energy efficient and yields no waste by-products. A particular embodiment of the process in the production of nitrogen-15-enriched nitric acid.

  4. Control of red phosphorus, white phosphorus and hypophosphorous acid (and its salts) as list I chemicals; exclusions and waivers. Final rule.

    PubMed

    2003-06-24

    On October 17, 2001, DEA published a Final Rulemaking (66 FR 52670) in which DEA added red phosphorus, white phosphorus (also known as yellow phosphorus) and hypophosphorous acid (and its salts) as List I chemicals. This action was taken because of the use and importance of these chemicals in the illicit manufacture of methamphetamine (a Schedule II controlled substance). As List I chemicals, handlers of these materials became subject to Controlled Substances Act (CSA) chemical regulatory controls including registration, recordkeeping, reporting, and import/export requirements. DEA had determined that these controls are necessary to prevent the diversion of these chemicals to clandestine drug laboratories. In order to provide flexibility for legitimate businesses, the October 17, 2001 rule established, on an interim basis, specific exclusions and waivers for chemical handlers engaged in certain activities. DEA has completed its review of comments pertaining to these interim provisions. This rulemaking finalizes these exclusions and waivers related to the handling of the listed chemicals red phosphorus, white phosphorus, and hypophosphorous acid (and its salts).

  5. 40 CFR 372.22 - Covered facilities for toxic chemical release reporting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 27 2010-07-01 2010-07-01 false Covered facilities for toxic chemical release reporting. 372.22 Section 372.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS TOXIC CHEMICAL RELEASE REPORTING: COMMUNITY RIGHT-TO-KNOW...

  6. 40 CFR 710.45 - Chemical substances for which information must be reported.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Chemical substances for which information must be reported. 710.45 Section 710.45 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT TSCA CHEMICAL INVENTORY REGULATIONS Inventory Update Reporting...

  7. 40 CFR 372.22 - Covered facilities for toxic chemical release reporting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 29 2013-07-01 2013-07-01 false Covered facilities for toxic chemical... (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS TOXIC CHEMICAL RELEASE REPORTING: COMMUNITY RIGHT-TO-KNOW Reporting Requirements § 372.22 Covered facilities for toxic...

  8. 40 CFR 370.14 - How do I report mixtures containing hazardous chemicals?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 27 2010-07-01 2010-07-01 false How do I report mixtures containing...: COMMUNITY RIGHT-TO-KNOW Who Must Comply § 370.14 How do I report mixtures containing hazardous chemicals? (a) For a mixture containing a hazardous chemical, use the following table to determine if a...

  9. 40 CFR 370.14 - How do I report mixtures containing hazardous chemicals?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 28 2011-07-01 2011-07-01 false How do I report mixtures containing...: COMMUNITY RIGHT-TO-KNOW Who Must Comply § 370.14 How do I report mixtures containing hazardous chemicals? (a) For a mixture containing a hazardous chemical, use the following table to determine if a...

  10. 40 CFR 370.14 - How do I report mixtures containing hazardous chemicals?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 29 2013-07-01 2013-07-01 false How do I report mixtures containing...: COMMUNITY RIGHT-TO-KNOW Who Must Comply § 370.14 How do I report mixtures containing hazardous chemicals? (a) For a mixture containing a hazardous chemical, use the following table to determine if a...

  11. 40 CFR 370.14 - How do I report mixtures containing hazardous chemicals?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 29 2012-07-01 2012-07-01 false How do I report mixtures containing...: COMMUNITY RIGHT-TO-KNOW Who Must Comply § 370.14 How do I report mixtures containing hazardous chemicals? (a) For a mixture containing a hazardous chemical, use the following table to determine if a...

  12. 40 CFR 370.14 - How do I report mixtures containing hazardous chemicals?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 28 2014-07-01 2014-07-01 false How do I report mixtures containing...: COMMUNITY RIGHT-TO-KNOW Who Must Comply § 370.14 How do I report mixtures containing hazardous chemicals? (a) For a mixture containing a hazardous chemical, use the following table to determine if a...

  13. PISCES field chemical emissions monitoring project: Site 116 emissions report. Final report

    SciTech Connect

    1995-12-01

    This report is one of a series sponsored by the Electric Power Research Institute in the area of trace substance emissions from fossil-fuel power plants. This report presents the results of a sampling and analytical study to characterize trace substances emissions at Site 116. Site 116 consists of a pulverized coal-fired boiler burning a bituminous coal, with an electrostatic precipitator for particulate control. Site 116 also included s a Babcock & Wilcox`s DOE Clean Coal Technology Program`s 5{minus}MWe SO{sub x}{minus}NO{sub x}-Rox Box {trademark} (SNRB{trademark}) Field Demonstration. The objective of this report is to transmit the detailed data to the US Environmental Protection Agency (EPA) to assist the Agency in evaluating utility trace chemical emissions as well as the associated health risk impacts-as mandated in Title III of the 1990 Clean Air Act Amendments. This report does not attempt to compare the results with other sites.

  14. PISCES Field Chemical Emissions Monitoring project: Site 10 emissions report. Final report

    SciTech Connect

    1995-11-01

    This report is one of a series sponsored by the Electric Power Research Institute in the area of trace substance emissions at Site 10. Site 10 is a fluidized bed combustor that burns a low-sulfur sub-bituminous coal. Site l0 is a fluidized bed combustor that burns a low-sulfur sub-bituminous coal. Site 10 employs a fabric filter for particulate control. Limestone is fed into the fluidized bed for SO{sub 2} control. Testing at Site 10 was performed in the summer of 1990, with addition retests conducted for volatile organic compounds (VOCs). The objective of this report is to transmit the detailed data to the US Environmental Protection Agency (EPA) to assist the Agency in evaluating utility trace chemical emissions as well as the associated health risk impacts--as mandated in Title III of the 1990 Clean Air Act Amendments. This report does not attempt to compare the results with other sites. An assessment of data from all plants that have been tested is presented in the Electric Utility Trace Substances Synthesis Report (EPRI TR-104614).

  15. NIPER/DOE Chemical EOR Workshop. Final report

    SciTech Connect

    Gall, B.L.; Llave, F.M.; Tham, Min K.

    1993-10-01

    A Chemical EOR Workshop was held on June 23--24, 1993 in Houston, Texas. The objectives of this workshop were to evaluate the potential for chemical Enhanced Oil Recovery (EOR) to repower significant quantities of remaining domestic oil, to assess the role of the Department of Energy (DOE) and petroleum industry to achieve this potential, and to assess the research needs in chemical EOR. Fifty-six research engineers and scientists from major oil companies, independent oil companies, academic institutes, research institutes, and DOE attended this workshop. Opening remarks were given by Alex Crawley from DOE Bartlesville Project Office and Thomas E. Burchfield of the National Institute for Petroleum and Energy Research (NIPER). The keynote address was delivered by Donald Juckett, Acting Deputy Assistant Secretary for Gas and Petroleum Technology. Ten papers on the state-of-the-art in chemical EOR technologies and recent field test experience were presented on the first day. Two workshops, one on surfactant/alkali flooding and the other on profile modification/polymer flooding, were held on the second day. It was concluded that chemical EOR has the potential of recovering significant quantities of remaining oil, and it is the only method that has the potential of economically recovering residual oil from reservoirs of shallow and medium depth. It is recommended that funding of support research in chemical EOR be continued and sustained to provide continuity and expertise for future advanced oil recovery technologies. Selected papers are being indexed separately for inclusion in the Energy Science and Technology Database.

  16. Alternate fuels and chemicals from synthesis gas: Vinyl acetate monomer. Final report

    SciTech Connect

    Richard D. Colberg; Nick A. Collins; Edwin F. Holcombe; Gerald C. Tustin; Joseph R. Zoeller

    1999-01-01

    There has been a long-standing desire on the part of industry and the U.S. Department of Energy to replace the existing ethylene-based vinyl acetate monomer (VAM) process with an entirely synthesis gas-based process. Although there are a large number of process options for the conversion of synthesis gas to VAM, Eastman Chemical Company undertook an analytical approach, based on known chemical and economic principles, to reduce the potential candidate processes to a select group of eight processes. The critical technologies that would be required for these routes were: (1) the esterification of acetaldehyde (AcH) with ketene to generate VAM, (2) the hydrogenation of ketene to acetaldehyde, (3) the hydrogenation of acetic acid to acetaldehyde, and (4) the reductive carbonylation of methanol to acetaldehyde. This report describes the selection process for the candidate processes, the successful development of the key technologies, and the economic assessments for the preferred routes. In addition, improvements in the conversion of acetic anhydride and acetaldehyde to VAM are discussed. The conclusion from this study is that, with the technology developed in this study, VAM may be produced from synthesis gas, but the cost of production is about 15% higher than the conventional oxidative acetoxylation of ethylene, primarily due to higher capital associated with the synthesis gas-based processes.

  17. Structural resistance of chemically modified 1-D nanostructured titanates in inorganic acid environment

    SciTech Connect

    Marinkovic, Bojan A.; Fredholm, Yann C.; Morgado, Edisson

    2010-10-15

    Sodium containing one-dimensional nanostructured layered titanates (1-D NSLT) were produced both from commercial anatase powder and Brazilian natural rutile mineral sands by alkali hydrothermal process. The 1-D NSLT were chemically modified with proton, cobalt or iron via ionic exchange and all products were additionally submitted to intensive inorganic acid aging (pH = 0.5) for 28 days. The morphology and crystal structure transformations of chemically modified 1-D NSLT were followed by transmission electron microscopy, powder X-ray diffraction, selected area electron diffraction and energy dispersive spectroscopy. It was found that the original sodium rich 1-D NSLT and cobalt substituted 1-D NSLT were completely converted to rutile nanoparticles, while the protonated form was transformed in a 70%-30% (by weight) anatase-rutile nanoparticles mixture, very similar to that of the well-known TiO{sub 2}-photocatalyst P25 (Degussa). The iron substituted 1-D NSLT presented better acid resistance as 13% of the original structure and morphology remained, the rest being converted in rutile. A significant amount of remaining 1-D NSLT was also observed after the acid treatment of the product obtained from rutile sand. The results showed that phase transformation of NSLT into titanium dioxide polymorph in inorganic acid conditions were controllable by varying the exchanged cations. Finally, the possibility to transform, through acid aging, 1-D NSLT obtained from Brazilian natural rutile sand into TiO{sub 2}-polymorphs was demonstrated for the first time to the best of authors' knowledge, opening path for producing TiO{sub 2}-nanoproducts with different morphologies through a simple process and from a low cost precursor.

  18. PWR steam generator chemical cleaning. Phase II. Final report

    SciTech Connect

    Not Available

    1980-01-01

    Two techniques believed capable of chemically dissolving the corrosion products in the annuli between tubes and support plates were developed in laboratory work in Phase I of this project and were pilot tested in Indian Point Unit No. 1 steam generators. In Phase II, one of the techniques was shown to be inadequate on an actual sample taken from an Indian Point Unit No. 2 steam generator. The other technique was modified slightly, and it was demonstrated that the tube/support plate annulus could be chemically cleaned effectively.

  19. Ferulic Acid Orchestrates Anti-Oxidative Properties of Danggui Buxue Tang, an Ancient Herbal Decoction: Elucidation by Chemical Knock-Out Approach

    PubMed Central

    Gong, Amy G. W.; Huang, Vincent Y.; Wang, Huai Y.; Lin, Huang Q.; Dong, Tina T. X.; Tsim, Karl W. K.

    2016-01-01

    Ferulic acid, a phenolic acid derived mainly from a Chinese herb Angelica Sinensis Radix (ASR), was reported to reduce the formation of free radicals. Danggui Buxue Tang (DBT), a herbal decoction composing of Astragali Radix (AR) and ASR, has been utilized for more than 800 years in China having known anti-oxidative property. Ferulic acid is a major active ingredient in DBT; however, the role of ferulic acid within the herbal mixture has not been resolved. In order to elucidate the function of ferulic acid within this herbal decoction, a ferulic acid-depleted herbal decoction was created and named as DBTΔfa. The anti-oxidative properties of chemically modified DBT decoction were systemically compared in cultured H9C2 rat cardiomyoblast cell line. The application of DBT and DBTΔfa into the cultures showed functions in (i) decreasing the reactive oxygen species (ROS) formation, detected by laser confocal; (ii) increasing of the activation of Akt; (iii) increasing the transcriptional activity of anti-oxidant response element (ARE); and (iv) increasing the expressions of anti-oxidant enzymes, i.e. NQO1 and GCLM. In all scenario, the aforementioned anti-oxidative properties of DBTΔfa in H9C2 cells were significantly reduced, as compared to authentic DBT. Thus, ferulic acid could be an indispensable chemical in DBT to orchestrate multi-components of DBT as to achieve maximal anti-oxidative functions. PMID:27824860

  20. 1987 Final Rule: Emergency and Hazardous Chemical Inventory Forms and Community Right-to-Know Reporting Requirements 52 FR 38344

    EPA Pesticide Factsheets

    Defines hazard categories, inventory requirements, and Material Safety Data Sheet reporting for Tier I and Tier II reporting forms. Sets out forms and instructions for reporting chemicals, hazardous chemicals, and extremely hazardous substances.

  1. CORROSION TESTING OF CARBON STEEL IN OXALIC ACID CHEMICAL CLEANING SOLUTIONS

    SciTech Connect

    Wiersma, B.; Mickalonis, J.; Subramanian, K.; Ketusky, E.

    2011-10-14

    Radioactive liquid waste has been stored in underground carbon steel tanks for nearly 60 years at the Savannah River Site. The site is currently in the process of removing the waste from these tanks in order to place it into vitrified, stable state for longer term storage. The last stage in the removal sequence is a chemical cleaning step that breaks up and dissolves metal oxide solids that cannot be easily pumped out of the tank. Oxalic acid has been selected for this purpose because it is an effective chelating agent for the solids and is not as corrosive as other acids. Electrochemical and immersion studies were conducted to investigate the corrosion behavior of carbon steel in simulated chemical cleaning environments. The effects of temperature, agitation, and the presence of sludge solids in the oxalic acid on the corrosion rate and the likelihood of hydrogen evolution were determined. The testing showed that the corrosion rates decreased significantly in the presence of the sludge solids. Corrosion rates increased with agitation, however, the changes were less noticeable.

  2. Acid mine drainage treatment using by-products from quicklime manufacturing as neutralization chemicals.

    PubMed

    Tolonen, Emma-Tuulia; Sarpola, Arja; Hu, Tao; Rämö, Jaakko; Lassi, Ulla

    2014-12-01

    The aim of this research was to investigate whether by-products from quicklime manufacturing could be used instead of commercial quicklime (CaO) or hydrated lime (Ca(OH)2), which are traditionally used as neutralization chemicals in acid mine drainage treatment. Four by-products were studied and the results were compared with quicklime and hydrated lime. The studied by-products were partly burnt lime stored outdoors, partly burnt lime stored in a silo, kiln dust and a mixture of partly burnt lime stored outdoors and dolomite. Present application options for these by-products are limited and they are largely considered waste. Chemical precipitation experiments were performed with the jar test. All the studied by-products removed over 99% of Al, As, Cd, Co, Cu, Fe, Mn, Ni, Zn and approximately 60% of sulphate from acid mine drainage. However, the neutralization capacity of the by-products and thus the amount of by-product needed as well as the amount of sludge produced varied. The results indicated that two out of the four studied by-products could be used as an alternative to quicklime or hydrated lime for acid mine drainage treatment.

  3. Dissolution of cerium(IV)-lanthanide(III) oxides: Comparative effect of chemical composition, temperature, and acidity

    SciTech Connect

    Horlait, D.; Clavier, N.; Szenknect, S.; Dacheux, N.; Dubois, V.

    2012-03-15

    The dissolution of Ce{sub 1-x}Ln{sub x}O{sub 2-x/2} solid solutions was undertaken in various acid media in order to evaluate the effects of several physicochemical parameters such as chemical composition, temperature, and acidity on the reaction kinetics. The normalized dissolution rates (R{sub L,0}) were found to be strongly modified by the trivalent lanthanide incorporation rate, due to the presence of oxygen vacancies decreasing the samples cohesion. Conversely, the nature of the trivalent cation considered only weakly impacted the R{sub L,0} values. The dependence of the normalized dissolution rates on the temperature then appeared to be of the same order of magnitude than that of chemical composition. Moreover, it allowed determining the corresponding activation energy (E{sub A} ≅ 60-85 kJ.mol{sup -1}) which accounts for a dissolution driven by surface-controlled reactions. A similar conclusion was made regarding the acidity of the solution: the partial order related to (H{sub 3}O{sup +}) reaching about 0.7. Finally, the prevailing effect of the incorporation of aliovalent cations in the fluorite-type CeO{sub 2} matrix on the dissolution kinetics precluded the observation of slight effects such as those linked to the complexing agents or to the crystal structure of the samples. (authors)

  4. Treatment of Arctic wastewater by chemical coagulation, UV and peracetic acid disinfection.

    PubMed

    Chhetri, Ravi Kumar; Klupsch, Ewa; Andersen, Henrik Rasmus; Jensen, Pernille Erland

    2017-02-16

    Conventional wastewater treatment is challenging in the Arctic region due to the cold climate and scattered population. Thus, no wastewater treatment plant exists in Greenland, and raw wastewater is discharged directly to nearby waterbodies without treatment. We investigated the efficiency of physicochemical wastewater treatment, in Kangerlussuaq, Greenland. Raw wastewater from Kangerlussuaq was treated by chemical coagulation and UV disinfection. By applying 7.5 mg Al/L polyaluminium chloride (PAX XL100), 73% of turbidity and 28% phosphate was removed from raw wastewater. E. coli and Enterococcus were removed by 4 and 2.5 log, respectively, when UV irradiation of 0.70 kWh/m(3) was applied to coagulated wastewater. Furthermore, coagulated raw wastewater in Denmark, which has a chemical quality similar to Greenlandic wastewater, was disinfected by peracetic acid or UV irradiation. Removal of heterotrophic bacteria by applying 6 and 12 mg/L peracetic acid was 2.8 and 3.1 log, respectively. Similarly, removal of heterotrophic bacteria by applying 0.21 and 2.10 kWh/m(3) for UV irradiation was 2.1 and greater than 4 log, respectively. Physicochemical treatment of raw wastewater followed by UV irradiation and/or peracetic acid disinfection showed the potential for treatment of arctic wastewater.

  5. Analysis of chemical coal cleaning processes. Final report

    SciTech Connect

    Not Available

    1980-06-01

    Six chemical coal cleaning processes were examined. Conceptual designs and costs were prepared for these processes and coal preparation facilities, including physical cleaning and size reduction. Transportation of fine coal in agglomerated and unagglomerated forms was also discussed. Chemical cleaning processes were: Pittsburgh Energy Technology Center, Ledgemont, Ames Laboratory, Jet Propulsion Laboratory (two versions), and Guth Process (KVB). Three of the chemical cleaning processes are similar in concept: PETC, Ledgemont, and Ames. Each of these is based on the reaction of sulfur with pressurized oxygen, with the controlling factor being the partial pressure of oxygen in the reactor. All of the processes appear technically feasible. Economic feasibility is less certain. The recovery of process chemicals is vital to the JPL and Guth processes. All of the processes consume significant amounts of energy in the form of electric power and coal. Energy recovery and increased efficiency are potential areas for study in future more detailed designs. The Guth process (formally designed KVB) appears to be the simplest of the systems evaluated. All of the processes require future engineering to better determine methods for scaling laboratory designs/results to commercial-scale operations. A major area for future engineering is to resolve problems related to handling, feeding, and flow control of the fine and often hot coal.

  6. P-Area Acid/Caustic Basin groundwater monitoring report

    SciTech Connect

    Thompson, C.Y.

    1993-03-01

    During fourth quarter 1992, samples from the six PAC monitoring wells at the P-Area Acid/Caustic Basin were analyzed for indicator parameters, groundwater quality parameters, and parameters characterizing suitability as a drinking water supply. Monitoring results that exceeded the final Primary Drinking Water Standards (PDWS) or the Savannah River Site (SRS) flagging criteria or turbidity standard during the quarter are discussed in this report. During fourth quarter 1992, a sample from well PAC 6 exceeded the SRS turbidity standard. Iron and manganese each exceeded its Flag 2 criterion in wells PAC 2, 5, and 6. No analytes exceeded the final PDWS in wells at the P-Area Acid/Caustic Basin during 1992.

  7. 40 CFR 721.10512 - Fatty acid maleic acid amides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acid maleic acid amides (generic... Specific Chemical Substances § 721.10512 Fatty acid maleic acid amides (generic). (a) Chemical substance... fatty acid maleic acid amides (PMNs P-07-563 and P-07-564) are subject to reporting under this...

  8. 40 CFR 721.10512 - Fatty acid maleic acid amides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acid maleic acid amides (generic... Specific Chemical Substances § 721.10512 Fatty acid maleic acid amides (generic). (a) Chemical substance... fatty acid maleic acid amides (PMNs P-07-563 and P-07-564) are subject to reporting under this...

  9. 40 CFR 372.85 - Toxic chemical release reporting form and instructions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 29 2013-07-01 2013-07-01 false Toxic chemical release reporting form... of total releases in pounds (except for dioxin and dioxin-like compounds, which shall be reported in... dioxin-like compounds category. (A) For reports pertaining to a reporting year ending on or...

  10. Geochemistry, mineralogy, and chemical modeling of the acid crater lake of Kawah Ijen Volcano, Indonesia

    NASA Astrophysics Data System (ADS)

    Delmelle, Pierre; Bernard, Alain

    1994-06-01

    The Kawah Ijen volcano—with a record of phreatic eruptions—has its 1000 m wide crater filled with a lake that has existed for at least one century. At present, the lake waters are hot ( T ≈ 37° C), strongly mineralized (TDS = 105 g/L) and extremely acidic ( pH ≈ 0.4). By its volume, the Javanese lake is probably the largest accumulation in the world of such acidic waters. Mineralogy of the suspended solids within the lake waters suggests that concentrations of Si, Ca, Ti, and Ba are controlled by precipitation of silica, gypsum, anatase, and barite. Lake sediment is composed of chemical precipitates with composition similar to the suspended solids. Thermodynamic calculations predict that the lake waters have reached equilibrium with respect to α-cristobalite, barite, gypsum, anglesite, celestite, and amorphous silica, in agreement with the analytical observations. Significant concentrations of ferric iron suggest that the current lake waters are fairly oxidized. Sulfides are absent in the water column but are always present in the native S spherules that form porous aggregates which float on the lake. The presence of native S provides direct evidence of more reduced conditions at the lake floor where H 2S is probably being injected into the lake. With progressive addition of H 2S to the acid waters, native S, pyrite, and enargite are theoretically predicted to be saturated. Reactions between upward streaming H 2S-bearing gases discharged by subaqueous fumaroles, and metals dissolved in the acidic waters could initiate precipitation of these sulfides. A model of direct absorption of hot magmatic gases into cool water accounts for the extreme acidity of the crater lake. Results show that strongly acidic, sulfate-rich solutions are formed under oxidizing conditions at high gas/water ratios. Reactions between the acidic fluids and the Ijen andesite were modeled to account for elevated cation concentrations in lake water. Current concentrations of conservative

  11. Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks. Progress report, March 1-August 31, 1980

    SciTech Connect

    Wang, D. I.C.

    1980-09-01

    Progress is reported in this coordinated research program to effect the microbiological degradation of cellulosic biomass by anaerobic microorganisms possessing cellulolytic enzymes. Three main areas of research are discussed: increasing enzyme levels through genetics, mutations, and genetic manipulation; the direct conversion of cellulosic biomass to liquid fuel (ethanol); and the production of chemical feedstocks from biomass (acrylic acid, acetone/butanol, and acetic acid). (DMC)

  12. In Situ Sensors for the Chemical Industry- Final Report

    SciTech Connect

    Tate, J D; Knittel, Trevor

    2006-06-30

    The project focused on analytical techniques that can be applied in situ. The innovative component of this project is the focus on achieving a significant breakthrough in two of the three primary Process Analytical (PA) fields. PA measurements can roughly be broken down into:Single component measurements, Multiple component measurements and Multiple component isomer analysis. This project targeted single component measurements and multiple component measurements with two basic technologies, and to move these measurements to the process, achieving many of the process control needs. During the project the following achievements were made: Development of a low cost Tunable Diode Laser (TDL) Analyzer system for measurement of 1) Oxygen in process and combustion applications, 2) part per million (ppm) H2O impurities in aggressive service, 3) ppm CO in large scale combustion systems. This product is now commercially available Development of a process pathlength enhanced (high sensitivity) Laser Based Analyzer for measurement of product impurities. This product is now commercially available. Development of signal processing methods to eliminate measurement errors in complex and changing backgrounds (critical to chemical industry measurements). This development is incorporated into 2 commercially available products. Development of signal processing methods to allow multi-component measurements in complex chemical streams. This development is incorporated into 2 commercially available products. Development of process interface designs to allow in-situ application of TDL technology in aggressive (corrosive, high temperature, high pressure) commonly found in chemical processes. This development is incorporated in the commercially available ASI TDL analyzer. Field proving of 3 laser-based analyzer systems in process control and combustion applications at Dow Chemical. Laser based analyzers have been available for >5yrs, however significant product price/performance issues have

  13. Chemical reporter for visualizing metabolic cross-talk between carbohydrate metabolism and protein modification.

    PubMed

    Zaro, Balyn W; Chuh, Kelly N; Pratt, Matthew R

    2014-09-19

    Metabolic chemical reporters have been largely used to study posttranslational modifications. Generally, it was assumed that these reporters entered one biosynthetic pathway, resulting in labeling of one type of modification. However, because they are metabolized by cells before their addition onto proteins, metabolic chemical reporters potentially provide a unique opportunity to read-out on both modifications of interest and cellular metabolism. We report here the development of a metabolic chemical reporter 1-deoxy-N-pentynyl glucosamine (1-deoxy-GlcNAlk). This small-molecule cannot be incorporated into glycans; however, treatment of mammalian cells results in labeling of a variety proteins and enables their visualization and identification. Competition of this labeling with sodium acetate and an acetyltransferase inhibitor suggests that 1-deoxy-GlcNAlk can enter the protein acetylation pathway. These results demonstrate that metabolic chemical reporters have the potential to isolate and potentially discover cross-talk between metabolic pathways in living cells.

  14. A model for heterogeneous chemical processes on the surfaces of ice and nitric acid trihydrate particles

    NASA Technical Reports Server (NTRS)

    Tabazadeh, Azadeh; Turco, Richard P.

    1993-01-01

    The study presents a model that incorporates the physics and physical chemistry of ice surfaces relevant to polar stratospheric clouds. Surface concentrations of H2O, HCl, HOCl, ClONO2, and N2O5 on ice and nitric acid trihydrate (NAT) crystals are computed, and surface reaction rates and reaction probabilities (sticking coefficients) are determined. For gas pressures of about 10 exp -7 torr and temperatures in the range of 180-200 K, HCl completely coats ice and water-rich NAT surfaces, while HOCl, ClOHO2, and N2O5 may cover 0.01-1 percent of these surfaces. The energy parameters are used to calculate surface temperatures such as adsorption and desorption constants, surface coverages, reaction rate coefficients, surface diffusion coefficients, and reaction probabilities for various species and chemical interactions on ice and NAT surfaces. Implications for chemical processing on polar stratospheric clouds are discussed.

  15. A model for heterogeneous chemical processes on the surfaces of ice and nitric acid trihydrate particles

    NASA Astrophysics Data System (ADS)

    Tabazadeh, Azadeh; Turco, Richard P.

    1993-07-01

    The study presents a model that incorporates the physics and physical chemistry of ice surfaces relevant to polar stratospheric clouds. Surface concentrations of H2O, HCl, HOCl, ClONO2, and N2O5 on ice and nitric acid trihydrate (NAT) crystals are computed, and surface reaction rates and reaction probabilities (sticking coefficients) are determined. For gas pressures of about 10 exp -7 torr and temperatures in the range of 180-200 K, HCl completely coats ice and water-rich NAT surfaces, while HOCl, ClOHO2, and N2O5 may cover 0.01-1 percent of these surfaces. The energy parameters are used to calculate surface temperatures such as adsorption and desorption constants, surface coverages, reaction rate coefficients, surface diffusion coefficients, and reaction probabilities for various species and chemical interactions on ice and NAT surfaces. Implications for chemical processing on polar stratospheric clouds are discussed.

  16. White biotechnology for green chemistry: fermentative 2-oxocarboxylic acids as novel building blocks for subsequent chemical syntheses.

    PubMed

    Stottmeister, U; Aurich, A; Wilde, H; Andersch, J; Schmidt, S; Sicker, D

    2005-12-01

    Functionalized compounds, which are difficult to produce by classical chemical synthesis, are of special interest as biotechnologically available targets. They represent useful building blocks for subsequent organic syntheses, wherein they can undergo stereoselective or regioselective reactions. "White Biotechnology" (as defined by the European Chemical Industry [ http://www.europabio.org/white_biotech.htm ], as part of a sustainable "Green Chemistry,") supports new applications of chemicals produced via biotechnology. Environmental aspects of this interdisciplinary combination include: Use of renewable feedstock Optimization of biotechnological processes by means of: New "high performance" microorganisms On-line measurement of substrates and products in bioreactors Alternative product isolation, resulting in higher yields, and lower energy demand In this overview we describe biotechnologically produced pyruvic, 2-oxopentaric and 2-oxohexaric acids as promising new building blocks for synthetic chemistry. In the first part, the microbial formation of 2-oxocarboxylic acids (2-OCAs) in general, and optimization of the fermentation steps required to form pyruvic acid, 2-oxoglutaric acid, and 2-oxo-D-gluconic acid are described, highlighting the fundamental advantages in comparison to chemical syntheses. In the second part, a set of chemical formula schemes demonstrate that 2-OCAs are applicable as building blocks in the chemical synthesis of, e.g., hydrophilic triazines, spiro-connected heterocycles, benzotriazines, and pyranoic amino acids. Finally, some perspectives are discussed.

  17. Lignosulfonates carboxylated with chloroacetic acid as additives in oil recovery processes involving chemical recovery agents

    SciTech Connect

    Kalfoglou, G.

    1981-05-19

    A process for producing petroleum from subterranean formations is disclosed wherein production from the formation is obtained by driving a fluid from an injection well to a production well. The process involves injecting via the injection well into the formation an aqueous solution of lignosulfonates carboxylated with chloroacetic acid as a sacrificial agent to inhibit the deposition of surfactant and/or polymer on the reservoir matrix. The process may best be carried out by injecting the lignosulfonates carboxylated with chloroacetic acid into the formation through the injection well mixed with either a polymer, a surfactant solution and/or a micellar dispersion. This mixture would then be followed by a drive fluid such as water to push the chemicals to the production well.

  18. Determination of Gymnemic Acid I as a Protein Biosynthesis Inhibitor Using Chemical Proteomics.

    PubMed

    Capolupo, Angela; Esposito, Roberta; Zampella, Angela; Festa, Carmen; Riccio, Raffaele; Casapullo, Agostino; Tosco, Alessandra; Monti, Maria Chiara

    2017-03-03

    The plant Gymnema sylvestre has been used widely in traditional medicine as a remedy for several diseases, and its leaf extract is known to contain a group of bioactive triterpene saponins belonging to the gymnemic acid class. Gymnemic acid I (1) is one of the main components among this group of secondary metabolites and is endowed with an interesting bioactivity profile. Since there is a lack of information about its specific biological targets, the full interactome of 1 was investigated through a quantitative chemical proteomic approach, based on stable-isotope dimethyl labeling. The ribosome complex was found to be the main partner of compound 1, and a full validation of the proteomics results was achieved by orthogonal approaches. Further biochemical and biological investigations revealed an inhibitory effect of 1 on the ribosome machinery.

  19. Lead-acid bipolar battery assembled with primary chemically formed positive pasted electrode

    NASA Astrophysics Data System (ADS)

    Karami, H.; Shamsipur, M.; Ghasemi, S.; Mousavi, M. F.

    Primary chemically formed lead dioxide (PbO 2) was used as positive electrode in preparation of lead-acid bipolar batteries. Chemical oxidation was carried out by both mixing and dipping methods using an optimized amount of ammonium persulfate as a suitable oxidizing agent. X-ray diffraction studies showed that the weight ratio of β-PbO 2 to α-PbO 2 is more for mixing method before electrochemical forming. The electrochemical impedance spectroscopy (EIS) was used to investigate charge transfer resistance of the lead dioxide obtained by mixing and dipping methods before and after electrochemical forming. Four types of bipolar lead-acid batteries were produced with: (1) lead substrate and conventional electroforming; (2) carbon doped polyethylene substrate with conventional electroforming; (3) carbon doped polyethylene substrate with chemical forming after curing and drying steps in oxidant bath, followed by electrochemical forming, and (4) carbon doped polyethylene substrate with primary chemical oxidation in mixing step, followed by conventional electroforming. The capacity and cycle-life tests of the prepared bipolar batteries were performed by a home-made battery tester and using the pulsed current method. The prepared batteries showed low weight, high capacity, high energy density and high power density. The first capacities of bipolar batteries of type 1-4 were found to be 152, 150, 180 and 198 mAh g -1, respectively. The experimental results showed that the prepared 6 V bipolar batteries of type 1-4 have power density (per cell unit) of 59.7, 57.4, 78.46 and 83.30 mW g -1 (W kg -1), respectively.

  20. Pb"1"-"xFe"xS nanoparticle films grown from acidic chemical bath [rapid communication

    NASA Astrophysics Data System (ADS)

    Joshi, Rakesh K.; Subbaraju, G. V.; Sharma, Renu; Sehgal, H. K.

    2004-12-01

    Pb 1- xFe xS ( x=0.25, 0.50, 0.75) films were grown from an acidic chemical bath. Nanoparticle films were structurally characterized by XRD and TEM. Optical band gap of films is observed to vary from 1.65 to 1.42 eV with increase in their iron concentration from x=0.25 to 0.75 in the films. Increased optical band gap of the ternary films compared to the estimated bulk value is attributed to quantum confinement in the nanocrystals deposited on solid substrates.

  1. Synthesis of CuFeS2 thin films from acidic chemical baths

    NASA Astrophysics Data System (ADS)

    Tonpe, Dipak; Gattu, Ketan; More, Ganesh; Upadhye, Deepak; Mahajan, Sandip; Sharma, Ramphal

    2016-05-01

    The growth of Copper iron sulfide nanocrystalline thin films onto glass substrates has been achieved by chemical bath deposition at acidic values of pH. The deposited thin films were characterized for their optoelectronic properties using Raman, UV-Vis spectroscopy. The Raman analysis confirms the formation of CuFeS2 thin film. The thin film with nanosized crystallites of CuFeS2 showed a bandgap of 0.7eV from UV-vis absorption spectroscopy.

  2. Title III section 313 release reporting guidance: Estimating chemical releases from electrodeposition of organic coatings

    SciTech Connect

    Not Available

    1988-01-01

    Appliers of organic coatings via electrodeposition (EDP) may be required to report annually any releases to the environment of certain chemicals regulated under Section 313, Title III, of the Superfund Amendments and Reauthorization Act (SARA) of 1986. The document has been developed to assist appliers of organic coatings in the completion of Part III (Chemical Specific Information) of the Toxic Chemical Release Inventory Reporting Form. Included herein is general information on toxic chemicals used and process wastes generated, along with several examples to demonstrate the types of data needed and various methodologies available for estimating releases.

  3. Title III section 313 release reporting guidance: Estimating chemical releases from electroplating operations

    SciTech Connect

    Not Available

    1988-01-01

    Facilities engaged in electroplating operations may be required to report annually any releases to the environment of certain chemicals regulated under Section 313, Title III, of the Superfund Amendments and Reauthorization Act (SARA) of 1986. The document has been developed to assist those who perform electroplating operations in the completion of Part III (Chemical Specific Information) of the Toxic Chemical Release Inventory Reporting Form. Included herein is general information on toxic chemicals used and process wastes generated, along with several examples to demonstrate the types of data needed and various methodologies available for estimating releases.

  4. Title III section 313 release reporting guidance: Estimating chemical releases from formulation of aqueous solutions

    SciTech Connect

    Not Available

    1988-03-01

    Formulators of aqueous solutions may be required to report annually any releases to the environment of certain chemicals regulated under Section 313, Title III, of the Superfund Amendments and Reauthorization Act (SARA) of 1986. The document has been developed to assist formulators of aqueous solutions, emulsions, and slurries in the completion of Part III (Chemical Specific Information) of the Toxic Chemical Release Inventory Reporting Form. Included herein is general information on toxic chemicals used and process wastes generated, along with several examples to demonstrate the types of data needed and various methodologies available for estimating releases.

  5. Title III section 313 release reporting guidance: Estimating chemical releases from textile dyeing

    SciTech Connect

    Not Available

    1988-02-01

    Facilities engaged in textile dyeing may be required to report annually any releases to the environment of certain chemicals regulated under Section 313, Title III, of the Superfund Amendments and Reauthorization Act (SARA) of 1986. The document has been developed to assist textile dyers in the completion of Part III (Chemical Specific Information) of the Toxic Chemical Release Inventory Reporting Form. Included herein is general information on toxic chemicals used and process wastes generated, along with several examples to demonstrate the types of data needed and various methodologies available for estimating releases.

  6. Title III section 313 release reporting guidance: Estimating chemical releases from semiconductor manufacturing

    SciTech Connect

    Not Available

    1988-01-01

    Manufacturers of semiconductors may be required to report annually any releases to the environment of certain chemicals regulated under Section 313, Title III, of the Superfund Amendments and Reauthorization Act (SARA) of 1986. The document has been developed to assist semiconductor manufacturers in the completion of Part III (Chemical Specific Information) of the Toxic Chemical Release Inventory Reporting Form. Included herein is general information on toxic chemicals used and process wastes generated, along with several examples to demonstrate the types of data needed and various methodologies available for estimating releases.

  7. Title III section 313 release reporting guidance: Estimating chemical releases from paper and paperboard production

    SciTech Connect

    Not Available

    1988-02-01

    Facilities engaged in paper and paperboard production may be required to report annually any releases to the environment of certain chemicals regulated under Section 313, Title III, of the Superfund Amendments and Reauthorization Act (SARA) of 1986. The document has been developed to assist those engaged in paper and paperboard production in the completion of Part III (Chemical Specific Information) of the Toxic Chemical Release Inventory Reporting Form. Included herein is general information on toxic chemicals used and process wastes generated, along with several examples to demonstrate the types of data needed and various methodologies available for estimating releases.

  8. Title III section 313 release reporting guidance: Estimating chemical releases from spray application of organic coatings

    SciTech Connect

    Not Available

    1988-01-01

    Spray applicators of organic coatings may be required to report annually any releases to the environment of certain chemicals regulated under Section 313, Title III, of the Superfund Amendments and Reauthorization Act (SARA) of 1986. The document has been developed to assist appliers of organic coatings in the completion of Part III (Chemical Specific Information) of the Toxic Chemical Release Inventory Reporting Form. Included herein is general information on toxic chemicals used and process wastes generated, along with several examples to demonstrate the types of data needed and various methodologies available for estimating releases.

  9. Title III section 313 release reporting guidance: Estimating chemical releases from monofilament fiber manufacturing

    SciTech Connect

    Not Available

    1988-01-01

    Manufacturers of monofilament fibers may be required to report annually any releases to the environment of certain chemicals regulated under Section 313, Title III, of the Superfund Amendments and Reauthorization Act (SARA) of 1986. The document has been developed to assist monofilament fiber manufacturers in the completion of Part III (Chemical Specific Information) of the Toxic Chemical Release Inventory Reporting Form. Included herein is general information on toxic chemicals used and process wastes generated, along with several examples to demonstrate the types of data needed and various methodologies available for estimating releases.

  10. Title III section 313 release reporting guidance: Estimating chemical releases from printing operations

    SciTech Connect

    Not Available

    1988-01-01

    Printers may be required to report annually any releases to the environment of certain chemicals regulated under Section 313, Title III, of the Superfund Amendments and Reauthorization Act (SARA) of 1986. The document has been developed to assist printers in the completion of Part III (Chemical Specific Information) of the Toxic Chemical Release Inventory Reporting Form. Included herein is general information on toxic chemicals used and process wastes generated, along with several examples to demonstrate the types of data needed and various methodologies available for estimating releases.

  11. Title III section 313 release reporting guidance: Estimating chemical releases from wood preserving operations

    SciTech Connect

    Not Available

    1988-02-01

    Facilities engaged in wood preserving operations may be required to report annually any releases to the environment of certain chemicals regulated under Section 313, Title III, of the Superfund Amendments and Reauthorization Act (SARA) of 1986. The document has been developed to assist facilities engaged in wood preserving operations in the completion of Part III (Chemical Specific Information) of the Toxic Chemical Release Inventory Reporting Form. Included herein is general information on toxic chemicals used and process wastes generated, along with several examples to demonstrate the types of data needed and various methodologies available for estimating releases.

  12. Title III section 313 release reporting guidance: Estimating chemical releases from leather tanning and finishing

    SciTech Connect

    Not Available

    1988-02-01

    Facilities engaged in leather tanning and finishing may be required to report annually any releases to the environment of certain chemicals regulated under Section 313, Title III, of the Superfund Amendments and Reauthorization Act (SARA) of 1986. The document has been developed to assist those in the leather tanning and finishing industry in the completion of Part III (Chemical Specific Information) of the Toxic Chemical Release Inventory Reporting Form. Included herein is general information on toxic chemicals used and process wastes generated, along with several examples to demonstrate the types of data needed and various methodologies available for estimating releases.

  13. Title III section 313 release reporting guidance: Estimating chemical releases from rubber production and compounding

    SciTech Connect

    Not Available

    1988-03-01

    Facilities engaged in rubber production and compounding may be required to report annually any releases to the environment of certain chemicals regulated under Section 313, Title III, of the Superfund Amendments and Reauthorization Act (SARA) of 1986. The document has been developed to assist those who produce rubber in the completion of Part III (Chemical Specific Information) of the Toxic Chemical Release Inventory Reporting Form. Included herein is general information on toxic chemicals used and process wastes generated, along with several examples to demonstrate the types of data needed and various methodologies available for estimating releases.

  14. Chemically activated formation of organic acids in reactions of the Criegee intermediate with aldehydes and ketones.

    PubMed

    Jalan, Amrit; Allen, Joshua W; Green, William H

    2013-10-21

    Reactions of the Criegee intermediate (CI, ˙CH2OO˙) are important in atmospheric ozonolysis models. In this work, we compute the rates for reactions between ˙CH2OO˙ and HCHO, CH3CHO and CH3COCH3 leading to the formation of secondary ozonides (SOZ) and organic acids. Relative to infinitely separated reactants, the SOZ in all three cases is found to be 48-51 kcal mol(-1) lower in energy, formed via 1,3-cycloaddition of ˙CH2OO˙ across the C=O bond. The lowest energy pathway found for SOZ decomposition is intramolecular disproportionation of the singlet biradical intermediate formed from cleavage of the O-O bond to form hydroxyalkyl esters. These hydroxyalkyl esters undergo concerted decomposition providing a low energy pathway from SOZ to acids. Geometries and frequencies of all stationary points were obtained using the B3LYP/MG3S DFT model chemistry, and energies were refined using RCCSD(T)-F12a/cc-pVTZ-F12 single-point calculations. RRKM calculations were used to obtain microcanonical rate coefficients (k(E)) and the reservoir state method was used to obtain temperature and pressure dependent rate coefficients (k(T, P)) and product branching ratios. At atmospheric pressure, the yield of collisionally stabilized SOZ was found to increase in the order HCHO < CH3CHO < CH3COCH3 (the highest yield being 10(-4) times lower than the initial ˙CH2OO˙ concentration). At low pressures, chemically activated formation of organic acids (formic acid in the case of HCHO and CH3COCH3, formic and acetic acid in the case of CH3CHO) was found to be the major product channel in agreement with recent direct measurements. Collisional energy transfer parameters and the barrier heights for SOZ reactions were found to be the most sensitive parameters determining SOZ and organic acid yield.

  15. Chemically Activated Formation of Organic Acids in Reactions of the Criegee Intermediate with Aldehydes and Ketones

    SciTech Connect

    Jalan, Amrit; Allen, Joshua W.; Green, William H.

    2013-08-08

    Reactions of the Criegee intermediate (CI, .CH2OO.) are important in atmospheric ozonolysis models. In this work, we compute the rates for reactions between .CH2OO. and HCHO, CH3CHO and CH3COCH3 leading to the formation of secondary ozonides (SOZ) and organic acids. Relative to infinitely separated reactants, the SOZ in all three cases is found to be 48–51 kcal mol-1 lower in energy, formed via 1,3- cycloaddition of .CH2OO. across the CQO bond. The lowest energy pathway found for SOZ decomposition is intramolecular disproportionation of the singlet biradical intermediate formed from cleavage of the O–O bond to form hydroxyalkyl esters. These hydroxyalkyl esters undergo concerted decomposition providing a low energy pathway from SOZ to acids. Geometries and frequencies of all stationary points were obtained using the B3LYP/MG3S DFT model chemistry, and energies were refined using RCCSD(T)-F12a/cc-pVTZ-F12 single-point calculations. RRKM calculations were used to obtain microcanonical rate coefficients (k(E)) and the reservoir state method was used to obtain temperature and pressure dependent rate coefficients (k(T, P)) and product branching ratios. At atmospheric pressure, the yield of collisionally stabilized SOZ was found to increase in the order HCHO o CH3CHO o CH3COCH3 (the highest yield being 10-4 times lower than the initial .CH2OO. concentration). At low pressures, chemically activated formation of organic acids (formic acid in the case of HCHO and CH3COCH3, formic and acetic acid in the case of CH3CHO) was found to be the major product channel in agreement with recent direct measurements. Collisional energy transfer parameters and the barrier heights for SOZ reactions were found to be the most sensitive parameters determining SOZ and organic acid yield.

  16. Detection of Aryl Hydrocarbon Receptor Activation by Some Chemicals in Food Using a Reporter Gene Assay

    PubMed Central

    Amakura, Yoshiaki; Tsutsumi, Tomoaki; Yoshimura, Morio; Nakamura, Masafumi; Handa, Hiroshi; Matsuda, Rieko; Teshima, Reiko; Watanabe, Takahiro

    2016-01-01

    The purpose of this study was to examine whether a simple bioassay used for the detection of dioxins (DXNs) could be applied to detect trace amounts of harmful DXN-like substances in food products. To identify substances with possible DXN-like activity, we assessed the ability of various compounds in the environment to bind the aryl hydrocarbon receptor (AhR) that binds specifically to DXNs. The compounds tested included 19 polycyclic aromatic hydrocarbons (PAHs), 20 PAH derivatives (nitrated, halogenated, and aminated derivatives), 23 pesticides, six amino acids, and eight amino acid metabolites. The AhR binding activities (AhR activity) of these compounds were measured using the chemical activated luciferase gene expression (CALUX) reporter gene assay system. The majority of the PAHs exhibited marked AhR activity that increased in a concentration-dependent manner. Furthermore, there was a positive link between AhR activity and the number of aromatic rings in the PAH derivatives. Conversely, there appeared to be a negative correlation between AhR activity and the number of chlorine residues present on halogenated PAH derivatives. However, there was no correlation between AhR activity and the number and position of substituents among nitrated and aminated derivatives. Among the pesticides tested, the indole-type compounds carbendazim and thiabendazole showed high levels of activity. Similarly, the indole compound tryptamine was the only amino acid metabolite to induce AhR activity. The results are useful in understanding the identification and characterization of AhR ligands in the CALUX assay. PMID:28231110

  17. Sequential fractionation with concurrent chemical and toxicological characterization of the combustion products of chlorogenic acid.

    PubMed

    Kaur, Navneet; Lacasse, Martine; Fürtös, Alexandra; Waldron, Karen C; Morin, André

    2009-06-05

    Chlorogenic acid is the most abundant polyphenol found in the tobacco plant. The biological effects of its combustion products remain largely unknown. In this study, chlorogenic acid was burned at 640 degrees C for 2 min and the particulate matter of the smoke was collected onto Cambridge filter pads followed by selective extraction in five different solvents. Various fractions of the chlorogenic acid combustion products were tested for induction of micronuclei in V79 Chinese hamster fibroblast cells. Over 40 compounds were identified in the dimethyl sulfoxide (DMSO) extract by high-performance liquid chromatography coupled to electrospray time-of-flight mass spectrometry (HPLC/TOF-MS). The DMSO extract was then fractionated into three major fractions by preparative LC. The fraction inducing the highest degree of toxicity was further separated into four sub-fractions. The sub-fraction responsible for the most toxic response was determined to contain catechol as its major component. The overall reproducibility of the combustion, the extraction procedure and the chemical characterization of the compounds responsible for the toxicity in the chlorogenic acid smoke were evaluated by LC/TOF-MS.

  18. Physical, morphological and chemical characteristics, oil recovery and fatty acid composition of Balanites aegyptiaca Del. kernels.

    PubMed

    Mohamed, A M; Wolf, W; Spiess, W E L

    2002-01-01

    Balanites aegyptiaca Del. kernels were chemically, physically and morphologically characterized. Crude oil (49.0%) and crude protein (32.4%) were the two major constituents of the kernels. Phytic acid content was relatively high compared to other legumes. In contrast, antitryptic activities of the kernel flours were very low. Sapogenin contents of the full fat, defatted and testa flours were 1.5, 2.7 and 3.0%, respectively. The hardness of the kernel was found to be about 10.4 x 10(5) N/m2, which was somewhat high. The morphological structure of the kernel using a scanning electron microscope revealed that the protein matrix was embedded in a lake of oil droplets. Oil recovery, as a function of pressing time, pressure, temperature and particle size was investigated. With increasing temperature up to 70 degrees C at 400 bar, for 120 min, an oil recovery of 79.4% was obtained. Using an expeller at 115 degrees C, about 85% of the kernel oil was recovered. The reduction of particle size had a negative effect on oil recovery under the same conditions. The fatty acid composition was not affected by the pressing temperature up to 115 degrees C. The total amount of the unsaturated fatty acids was found to be up to 74.8% (50 degrees C) and 75.1% (115 degrees C) of the total fatty acids content.

  19. Effluent discharge chemical demilitarization alternate technology research hd chemical neutralization and bio-treatment. Final report, September-February 1996

    SciTech Connect

    Ware, J.A.; Haley, M.V.; Kurnas, C.W.

    1996-09-01

    A review was undertaken to establish technical regulatory guidance on the discharge of waste, to a Federally Owned, or Publicly Owned Treatment Works, resulting from the neutralization and biodegradation of HD mustard agent. This report is a review of specific and general pretreatment requirements, proper hazardous waste exclusion, and statute and regulatory prohibition on discharge of chemical warfare agent. A waste water discharge resulting from the proper treatment of chemical warfare agent, which destroys the agent and reduces toxicity, can meet applicable federal, state, and local discharge standards and laws.

  20. Chemical Profiles of Microalgae with Emphasis on Lipids: Final Report

    SciTech Connect

    Benemann, J. R.; Tillett, D. M.; Suen, Y.; Hubbard, J.; Tornabene, T. G.

    1986-02-01

    This final report details progress during the third year of this subcontract. The overall objective of this subcontract was two fold: to provide the analytical capability required for selecting microalgae strains with high energy contents and to develop fundamental knowledge required for optimizing the energy yield from microalgae cultures. The progress made towards these objectives during this year is detailed in this report.

  1. K-Area Acid/Caustic Basin groundwater monitoring report

    SciTech Connect

    Not Available

    1992-03-01

    During fourth quarter 1991, samples from the KAC monitoring wells at the K-Area Acid/Caustic Basin of Savannah River Plant were analyzed for indicator parameters, turbidity, major ions, volatile organic compounds, radionuclides, and other constituents. Monitoring results that exceeded the US Environmental Protection Agency Primary Drinking Water Standards (PDWS) and the Savannah River Site (SRS) flagging criteria and turbidity standards during the quarter, with summary results for the year, are presented in this report. No constituents exceeded the PDWS at the K-Area Acid/Caustic Basin. Iron and total organic halogens exceeded Flag 2 criteria in sidegradient-to-downgradient well KAC 7 but not in other KAC wells. No priority pollutants (EPA, 1990) exceeded the PDWS or the Flag 2 criteria in wells KAC 1 and 3. None of the KAC wells exceeded the SRS turbidity standard. Lead exceeded the PDWS in well KAC 7 during first quarter. No other constituent exceeded the PDWS at the K-Area Acid/Caustic Basin during the year.

  2. Chemical burns

    PubMed Central

    Cartotto, Robert C.; Peters, Walter J.; Neligan, Peter C.; Douglas, Leith G.; Beeston, Jeff

    1996-01-01

    Objectives To report a burn unit’s experience with chemical burns and to discuss the fundamental principles in managing chemical burns. Design A chart review. Setting A burn centre at a major university-affiliated hospital. Patients Twenty-four patients with chemical burns, representing 2.6% of all burn admissions over an 8-year period at the Ross Tilley Regional Adult Burn Centre. Seventy-five percent of the burn injuries were work-related accidents. Chemicals involved included hydrofluoric acid, sulfuric acid, black liquor, various lyes, potassium permanganate and phenol. Results Fourteen patients required excision and skin grafting. Complications were frequent and included ocular chemical contacts, wound infections, tendon exposures, toe amputation and systemic reactions from absorption of chemical. One patient died from a chemical scald burn to 98% of the body surface area. Conclusions The key principles in the management of chemical burns include removal of the chemical, copious irrigation, limited use of antidotes, correct estimation of the extent of injury, identification of systemic toxicity, treatment of ocular contacts and management of chemical inhalation injury. Individualized treatment is emphasized. PMID:8640619

  3. Do enantiomers of benzenesulfonic acid exist? Electron diffraction and quantum chemical study of molecular structure of benzenesulfonic acid

    NASA Astrophysics Data System (ADS)

    Giricheva, Nina I.; Girichev, Georgiy V.; Medvedeva, Yulia S.; Ivanov, Sergey N.; Petrov, Vyacheslav M.; Fedorov, Mikhail S.

    2012-09-01

    Molecular structure of benzenesulfonic acid was studied by gas-phase electron diffraction and quantum chemical (B3LYP/cc-pVTZ, МР2/cc-pVDZ, МР2/cc-pVTZ) methods. On the base of mass spectrometric analysis it was found that saturated vapor at Т = 396(9) K is represented by only molecular species, monomeric benzenesulfonic acid. Theoretical calculations showed that the molecule has two mirror conformers of C1 symmetry which can invert to each other via transition state of Cs symmetry by rotation of OH-group around Ssbnd O(H) bond. Both computational methods, B3LYP and MP2, resulted in the same structure of enantiomers; the MP2/cc-pVDZ calculations denoted a over-barrier transition between enantiomers at the temperature of electron diffraction experiment, while B3LYP and MP2 calculations with cc-pVTZ basis set estimated the barrier height to be comparable with the thermal energy value. Two geometric models of C1 and Cs symmetry were examined in gas electron diffraction structural analysis. It was established that the structure of C1 symmetry (Rf = 3.3%) demonstrated the best fit with GED data in comparison with Cs structure (Rf = 3.8%). In conformer of C1 symmetry an ordinary bond Ssbnd O(Н) is located almost orthogonal to benzene ring plane, and an Osbnd H bond practically eclipses one of Sdbnd O bonds of SO3H fragment. The following internuclear distances (Å) in benzenesulfonic acid were determined: rh1(Csbnd H)av = 1.116(6), rh1(Csbnd C)ср = 1.402(4), rh1(Csbnd S) = 1.770(5), rh1(Sdbnd O)av = 1.438(4), rh1(Ssbnd O) = 1.623(4), rh1(Osbnd H) = 0.870(17). Calculations of internal rotation potential functions and NBO-analysis of electron density distribution in a conformer and transition states between enantiomers were performed to establish the reasons of stability of the found asymmetric structure of the studied molecule. The structure of free molecule of benzenesulfonic acid was compared with that of molecular form in crystal.

  4. Prospects of In vivo Incorporation of Non-canonical Amino Acids for the Chemical Diversification of Antimicrobial Peptides

    PubMed Central

    Baumann, Tobias; Nickling, Jessica H.; Bartholomae, Maike; Buivydas, Andrius; Kuipers, Oscar P.; Budisa, Nediljko

    2017-01-01

    The incorporation of non-canonical amino acids (ncAA) is an elegant way for the chemical diversification of recombinantly produced antimicrobial peptides (AMPs). Residue- and site-specific installation methods in several bacterial production hosts hold great promise for the generation of new-to-nature AMPs, and can contribute to tackle the ongoing emergence of antibiotic resistance in pathogens. Especially from a pharmacological point of view, desirable improvements span pH and protease resistance, solubility, oral availability and circulation half-life. Although the primary focus of this report is on ribosomally synthesized and post-translationally modified peptides (RiPPs), we have included selected cases of peptides produced by solid phase peptide synthesis to comparatively show the potential and impact of ncAA introduction. Generally speaking, the introduction of ncAAs in recombinant AMPs delivers novel levels of chemical diversification. Cotranslationally incorporated, they can take part in AMP biogenesis either through direction interaction with elements of the post-translational modification (PTM) machinery or as untargeted sites with unique physicochemical properties and chemical handles for further modification. Together with genetic libraries, genome mining and processing by PTM machineries, ncAAs present not a mere addition to this process, but a highly diverse pool of building blocks to significantly broaden the chemical space of this valuable class of molecules. This perspective summarizes new developments of ncAA containing peptides. Challenges to be resolved in order to reach large-scale pharmaceutical production of these promising compounds and prospects for future developments are discussed. PMID:28210246

  5. Chemical Exposures - Prevention Summary Table | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  6. Chemical treatment of olive pomace: effect on acid-basic properties and metal biosorption capacity.

    PubMed

    Martín-Lara, M A; Pagnanelli, F; Mainelli, S; Calero, M; Toro, L

    2008-08-15

    In this study, olive pomace, an agricultural waste that is very abundant in Mediterranean area, was modified by two chemical treatments in order to improve its biosorption capacity. Potentiometric titrations and IR analyses were used to characterise untreated olive pomace (OP), olive pomace treated by phosphoric acid (PAOP) and treated by hydrogen peroxide (HPOP). Acid-base properties of all investigated biosorbents were characterised by two main kinds of active sites, whose nature and concentration were determined by a mechanistic model assuming continuous distribution for the proton affinity constants. Titration modelling denoted that all investigated biosorbents (OP, PAOP and HPOP) were characterised by the same kinds of active sites (carboxylic and phenolic), but with different total concentrations with PAOP richer than OP and HPOP. Single metal equilibrium studies in batch reactors were carried out to determine the capacity of these sorbents for copper and cadmium ions at constant pH. Experimental data were analysed and compared using the Langmuir isotherm. The order of maximum uptake capacity of copper and cadmium ions on different biosorbents was PAOP>HPOP>OP. The maximum adsorption capacity of copper and cadmium, was obtained as 0.48 and 0.10 mmol/g, respectively, for PAOP. Metal biosorption tests in presence of Na(+) in solution were also carried out in order to evaluate the effect of chemical treatment on biomass selectivity. These data showed that PAOP is more selective for cadmium than the other sorbents, while similar selectivity was observed for copper.

  7. 40 CFR 712.30 - Chemical lists and reporting periods.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Dibromoneopentyl glycol 1/11/90 3/12/90 12185-10-3 White phosphorus 1/26/94 3/28/94 16691-43-3 3-Amino-5-mercapto-1... 104-43-8 4-Dodecylphenol 3/29/96 5/29/96 136-81-2 Phenol, 2-pentyl- 8/4/00 10/3/00 140-66-9 Phenol, 4...-, 1-methylethyl ester 1/26/94 3/28/94 21982-43-4 2-Propenoic acid, 2-cyano-, ethoxyethyl ester......

  8. 40 CFR 712.30 - Chemical lists and reporting periods.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Dibromoneopentyl glycol 1/11/90 3/12/90 12185-10-3 White phosphorus 1/26/94 3/28/94 16691-43-3 3-Amino-5-mercapto-1... 104-43-8 4-Dodecylphenol 3/29/96 5/29/96 136-81-2 Phenol, 2-pentyl- 8/4/00 10/3/00 140-66-9 Phenol, 4...-, 1-methylethyl ester 1/26/94 3/28/94 21982-43-4 2-Propenoic acid, 2-cyano-, ethoxyethyl ester......

  9. 40 CFR 712.30 - Chemical lists and reporting periods.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Dibromoneopentyl glycol 1/11/90 3/12/90 12185-10-3 White phosphorus 1/26/94 3/28/94 16691-43-3 3-Amino-5-mercapto-1... 104-43-8 4-Dodecylphenol 3/29/96 5/29/96 136-81-2 Phenol, 2-pentyl- 8/4/00 10/3/00 140-66-9 Phenol, 4...-, 1-methylethyl ester 1/26/94 3/28/94 21982-43-4 2-Propenoic acid, 2-cyano-, ethoxyethyl ester......

  10. Chemical transport through continental crust: (Annual) progress report, 1988

    SciTech Connect

    Not Available

    1989-03-20

    The main objective of these studies is to understand the extent and mechanisms of chemical migration over a range of temperatures and in diverse geologic media. During 1988--1989 we continued to attack these problems through studies in the granite-pegmatite systems of the Black Hills, South Dakota. Mineral chemistry, major element chemistry and trace element modeling of the Harney Peak Granite (Black Hills, South Dakota) suggest that 75% to 80% fractional crystallization was the dominant mechanism in producing evolved tourmaline-bearing granite (high B, Li, Rb, Cs, Be, Nb) from a biotite-muscovite granite. To evaluate the petrogenetic-evolutionary relations between the granite and the surrounding rare-element pegmatite field, over 500 K-feldspars (Kf) were analyzed from 60 unzoned to complexly zoned pegmatites. Pegmatites with Kf relatively high in Ba (>140 ppM) and relatively low in Rb (<1000 ppM) and Cs (<30 ppM) are distributed in regions of high pegmatite density (>200 pegmatites/sq. mile), whereas highly evolved pegmatites with Kf enriched in Rb (>4000 ppM) and Cs (>500 ppM) are distributed in regions of low pegmatite density (<100 pegmatites/sq. mile). The extent of pegmatite evolution as reflected in the Kf documents the relation between the degree of fractionation and internal zoning characteristics. Modeling of these data is a major task for the next grant year to provide new insights into chemical and thermal transport in the midcrust.

  11. Chemical production from industrial by-product gases: Final report

    SciTech Connect

    Lyke, S.E.; Moore, R.H.

    1981-04-01

    The potential for conservation of natural gas is studied and the technical and economic feasibility and the implementation of ventures to produce such chemicals using carbon monoxide and hydrogen from byproduct gases are determined. A survey was performed of potential chemical products and byproduct gas sources. Byproduct gases from the elemental phosphorus and the iron and steel industries were selected for detailed study. Gas sampling, preliminary design, market surveys, and economic analyses were performed for specific sources in the selected industries. The study showed that production of methanol or ammonia from byproduct gas at the sites studied in the elemental phosphorus and the iron and steel industries is technically feasible but not economically viable under current conditions. Several other applications are identified as having the potential for better economics. The survey performed identified a need for an improved method of recovering carbon monoxide from dilute gases. A modest experimental program was directed toward the development of a permselective membrane to fulfill that need. A practical membrane was not developed but further investigation along the same lines is recommended. (MCW)

  12. Glycolic acid chemical peeling improves inflammatory acne eruptions through its inhibitory and bactericidal effects on Propionibacterium acnes.

    PubMed

    Takenaka, Yuko; Hayashi, Nobukazu; Takeda, Mikiko; Ashikaga, Sayaka; Kawashima, Makoto

    2012-04-01

    Glycolic acid chemical peeling is effective for treating comedones, and some clinical data show that it also improves inflammatory eruptions. The purpose of this study was to identify the mechanism of glycolic acid chemical peeling to improve inflammatory acne. To assess growth inhibitory and bactericidal effects of glycolic acid on Propionibacterium acnes in vitro, we used an agar diffusion method and a time-kill method. To reveal bactericidal effects in vivo, we established an agar-attached method which correlated well with the ordinary swab-wash method, and we used the agar-attached method to compare the numbers of propionibacteria on the cheek treated with glycolic acid chemical peeling. Our results show that 30% glycolic acid (at pH 1.5, 3.5 and 5.5) formed growth inhibitory circles in the agar diffusion method, but the diameters of those circles were smaller than with 1% nadifloxacin lotion or 1% clindamycin gel. In the time-kill method, 30% glycolic acid (at pH 1.5 and 3.5) or 1% nadifloxacin lotion reduced the number of P. acnes to less than 100 CFU/mL within 5 min. In contrast, in 30% glycolic acid (at pH 5.5) or in 1% clindamycin gel, P. acnes survived for more than 4 h. Chemical peeling with 35% glycolic acid (at pH 1.2) decreased the number of propionibacteria on the cheeks of patients compared with untreated controls (P < 0.01). Our results demonstrate that glycolic acid has moderate growth inhibitory and bactericidal effects on P. acnes, and that chemical peeling with glycolic acid works on inflammatory acne via those effects.

  13. Chemically binding carboxylic acids onto TiO2 nanoparticles with adjustable coverage by solvothermal strategy.

    PubMed

    Qu, Qiyun; Geng, Hongwei; Peng, Ruixiang; Cui, Qi; Gu, Xiaohong; Li, Fanqing; Wang, Mingtai

    2010-06-15

    This paper presents a solvothermal strategy for chemical modification of TiO(2) nanoparticles with carboxylic acids. Solvothermal reaction between the TiO(2) nanoparticles and carboxylic acid molecules in an autoclave at 100 degrees C provides carboxylic acid-modified TiO(2) particles with a modification efficiency much higher than the conventional immersion method. TiO(2) nanoparticles were prepared by hydrolysis of titanium isopropoxide in nitric acid solution; the modified nanoparticles were characterized by powder X-ray diffraction pattern, scanning electron microscopy, absorption and Fourier transform infrared spectra, and thermogravimetric analysis. Results show that the binding form of the modifier molecules on TiO(2) surface is in a bidentate chelating mode, the crystalline phase composition and morphological structure of the preformed TiO(2) nanoparticles are not affected by the solvothermal reaction, and the surface coverage of the modifier molecules can be adjusted by the weight ratio of modifier/TiO(2) during feeding. It is evident that the reaction processes in the solvothermal strategy involve the formation of double hydrogen bondings between carboxylic acid molecule and TiO(2) at the same Ti site and the coordination at solvothermal temperature by dehydration from the hydrogen bondings. The solvothermal strategy for modifying TiO(2) nanoparticles is expected to find potential applications in many fields; for example, our results demonstrate that the photovoltaic performance of the TiO(2) nanoparticles can be improved by the solvothermal modification even with an insulating modifier and controlled by the modifier coverage.

  14. 77 FR 76419 - Health and Safety Data Reporting; Addition of Certain Chemicals; Withdrawal of Final Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-28

    ...-2011-0363; FRL-9375-3] RIN 2070-AJ89 Health and Safety Data Reporting; Addition of Certain Chemicals.... SUMMARY: EPA is withdrawing the final Toxic Substances Control Act (TSCA) section 8(d) Health and Safety Data Reporting Rule that it issued on December 3, 2012. The health and safety data reporting rule...

  15. Fatty acid from the renewable sources: a promising feedstock for the production of biofuels and biobased chemicals.

    PubMed

    Liu, Hui; Cheng, Tao; Xian, Mo; Cao, Yujin; Fang, Fang; Zou, Huibin

    2014-01-01

    With the depletion of the nonrenewable petrochemical resources and the increasing concerns of environmental pollution globally, biofuels and biobased chemicals produced from the renewable resources appear to be of great strategic significance. The present review described the progress in the biosynthesis of fatty acid and its derivatives from renewable biomass and emphasized the importance of fatty acid serving as the platform chemical and feedstock for a variety of chemicals. Due to the low efficient conversions of lignocellulosic biomass or carbon dioxide to fatty acid, we also put forward that rational strategies for the production of fatty acid and its derivatives should further derive from the consideration of whole bioprocess (pretreatment, saccharification, fermentation, separation), multiscale analysis and interdisciplinary combinations (omics, kinetics, metabolic engineering, synthetic biology, fermentation and so on).

  16. 40 CFR 372.85 - Toxic chemical release reporting form and instructions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... which the chemical is released. (8) Name of the facility's parent company and its Dun and Bradstreet... December 31, 2007, report a distribution of the chemicals included in the dioxin and dioxin-like compounds category. Such distribution shall either represent the distribution of the total quantity of dioxin...

  17. 40 CFR 710.25 - Chemical substances for which information must be reported.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Chemical substances for which information must be reported. 710.25 Section 710.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT TSCA CHEMICAL INVENTORY REGULATIONS 2002 Inventory Update...

  18. Gas transport model for chemical vapor infiltration. Topical report

    SciTech Connect

    Starr, T.L.

    1995-05-01

    A node-bond percolation model is presented for the gas permeability and pore surface area of the coarse porosity in woven fiber structures during densification by chemical vapor infiltration (CVI). Model parameters include the number of nodes per unit volume and their spatial distribution, and the node and bond radii and their variability. These parameters relate directly to structural features of the weave. Some uncertainty exists in the proper partition of the porosity between {open_quotes}node{close_quotes} and{open_quote}bond{close_quotes} and between intra-tow and inter-tow, although the total is constrained by the known fiber loading in the structure. Applied to cloth layup preforms the model gives good agreement with the limited number of available measurements.

  19. Dexterity testing of chemical-defense gloves. Technical report

    SciTech Connect

    Robinette, K.M.; Ervin; Zehner, G.F.

    1986-05-01

    Chemical-defense gloves (12.5-mil Epichlorohydron/Butyl, 14-mil Epichlorohydron/Butyl, and 7-mil Butyl with Nomex overgloves) were subjected to four dexterity tests (O'Connor Finger Dexterity Test, Pennsylvania Bi-Manual Worksample-Assembly, Minnesota Rate of Manipulation Turning, and the Crawford Small Test). Results indicated that subjects performances were most impaired by the 7-mil Butyl with Nomex overglove. Though differences between the other three gloved conditions were not always statistically significant, subjects performed silghtly better while wearing the Epichlorohydron/Butyl gloves, no matter which thickness, than they did while wearing the 15-mil butyl gloves. High negative correlation between anthropometry and gloved tests scores of subjects suggested that poor glove fit may also have affected subjects performances.

  20. GLYCOLIC-FORMIC ACID FLOWSHEET FINAL REPORT FOR DOWNSELECTION DECISION

    SciTech Connect

    Lambert, D.; Pickenheim, B.; Stone, M.; Newell, J.; Best, D.

    2011-03-10

    Flowsheet testing was performed to develop the nitric-glycolic-formic acid flowsheet (referred to as the glycolic-formic flowsheet throughout the rest of the report) as an alternative to the nitric/formic flowsheet currently being processed at the DWPF. This new flowsheet has shown that mercury can be removed in the Sludge Receipt and Adjustment Tank (SRAT) with minimal hydrogen generation. All processing objectives were also met, including greatly reducing the Slurry Mix Evaporator (SME) product yield stress as compared to the baseline nitric/formic flowsheet. Forty-six runs were performed in total, including the baseline run and the melter feed preparation runs. Significant results are summarized. The baseline nitric/formic flowsheet run, using the SB6 simulant produced by Harrell was extremely difficult to process successfully under existing DWPF acceptance criteria with this simulant at the HM levels of noble metals. While nitrite was destroyed and mercury was removed to near the DWPF limit, the rheology of the SRAT and SME products were well above design basis and hydrogen generation far exceeded the DWPF SRAT limit. In addition, mixing during the SME cycle was very poor. In this sense, the nitric/glycolic/formic acid flowsheet represents a significant upgrade over the current flowsheet. Mercury was successfully removed with almost no hydrogen generation and the SRAT and SME products yield stresses were within process limits or previously processed ranges. The glycolic-formic flowsheet has a very wide processing window. Testing was completed from 100% to 200% of acid stoichiometry and using a glycolic-formic mixture from 40% to 100% glycolic acid. The testing met all processing requirements throughout these processing windows. This should allow processing at an acid stoichiometry of 100% and a glycolic-formic mixture of 80% glycolic acid with minimal hydrogen generation. It should also allow processing endpoints in the SRAT and SME at significantly higher

  1. Initial chemical and biological characterization of hydrotreated solvent refined coal (SRC-II) liquids: a status report

    SciTech Connect

    Weimer, W.C.; Wilson, B.W.; Pelroy, R.A.; Craun, J.C.

    1980-07-01

    This report presents the results of both chemical and biomedical research performed on a solvent refined coal (SRC-II) research material (distillate blend) which was produced by the pilot plant facility at Fort Lewis, Washington. Samples of this distillate blend were subjected to research-scale hydrotreatment by Universal Oil Products, Inc., prior to chemical and biological analysis at PNL. The samples are considered to be, in general, generically representative of raw or hydrotreated materials which might be produced by demonstration or commercial-scale facilities. The above described feedstock and hydrotreated materials were analyzed for chemical composition both prior to and after chemical fractionation. The fractionation procedure used was an acid-base-neutral solvent extraction. The fractions produced, as well as the unfractionated materials, were subjected to microbial mutagenesis testing (Ames assay) and to further chemical analysis. The principal components of the unmodified distillate blend are two and three ringed aromatic and heteroatomic species together with high concentrations of phenolic and polynuclear aromatic components relative to typical levels found in petroleum crudes. The Ames assay mutagenic response for the unfractionated material, as well as the fractions produced by the solvent separation, was reduced considerably in the hydrotreated materials compared to that of the feedstock. Total mutagenic response for the hydrotreated products was approximately 1% of that in the untreated feedstock. The concentrations of two important genetically active compound classes, the polynuclear aromatic hydrocarbons and the primary aromatic amines, were considerably reduced in both of the hydrotreated products compared to the feedstock.

  2. Chemical kinetic studies on dry sorbents. Final report. [Sodium bicarbonate

    SciTech Connect

    Davis, W.T.; Keener, T.C.

    1982-02-15

    The scope of this research investigation has included a review of potential additives suitable for dry flue-gas desulfurization (FGD) and a bench scale laboratory study to determine the chemical kinetics for the reaction of five different sorbents with sulfur dioxide. The sorbents chosen included sodium bicarbonate (NaHCO/sub 3/), soda ash (Na/sub 2/CO/sub 3/), trona, lime (CaO) and hydrated lime (Ca(OH)/sub 2/). This study has shown that: (1) The reaction rate increases with temperature for soda ash and calcium oxide. The reaction temperature has an inverse effect on sodium bicarbonate and trona due, primarily, to the simultaneous thermal activation reaction. The calcium hydroxide-SO/sub 2/ reaction increased up to 550/sup 0/F, and then decreased, due to uneven gas flow distribution. (2) The reaction rates for soda ash, calcium oxide and calcium hydroxide were increased by decreasing their particle size. This effect was not confirmed for sodium bicarbonate and trona where reaction temperature was the most important reaction parameter. (3) Reaction with soda ash was found to be limited by the presence of an impervious ash layer which prevented interparticle gaseous diffusion. Calcium oxide and calcium hydroxide were found to be limited by a slow chemical reaction rate. Results on the rate-limiting steps for sodium bicarbonate and trona were inconclusive because of the simultaneous thermal activation reaction. (4) The effect of thermal activation was to increase the reaction rate for sodium bicarbonate and trona at lower temperatures. This effect was less pronounced at higher temperatures. (5) Results obtained for nitric oxide show limited adsorption for the five sorbents tested as compared to the finding for sulfur dioxide.

  3. Controlling biological deterioration of wood with volatile chemicals. Final report

    SciTech Connect

    Graham, R.D.; Corden, M.E.

    1980-08-01

    Volatile fungicides placed in holes in pressure-treated Douglas-fir transmission poles with internal decay diffuse as vapors for about 2.4 m above and below the groundline to control decay for at least 10 y. The presence of fungitoxic vapors of chloropicrin (trichloronitromethane) in these poles suggests added years of control. Vapam (sodium N-methyldithiocarbamate) was less effective, but both of these chemicals are used nationwide. Methylisotiocyanate (MS), which appears especially promising in both laboratory wood-block screening tests and in poles 2 years after treatment, may prove outstanding as a control for internal decay of poles. Successfully formulated as a solid, MS could increase the safety and versatility of fumigant use. A comparison of devices for inspecting Douglas-fir poles for decay emphasized the importance of having well-trained inspectors who know the limitations of the tools and methods they use. A manual for the maintenance of Douglas-fir and western redcedar poles was published to aid inspectors and managers of wood pole systems. Fumigants varied in their residual protection against invasion by decay fungi with chloropicrin having the highest residual fungitoxicity. Fumigants had no adverse effect on vegetation around poles, nor on the strength properties of wood. Of the 8 decay fungi isolated from over 15,600 pressure-treated Douglas-fir poles, Poria carbonica and Poria placenta were by far the most prevalent. Of the five most prevalent nondecay fungi isolated from these poles, a Scytalidium species can produce an environment unsuitable for reinvasion of the wood by decay fungi. The resistance of the Scytalidium species to chloropicrin raises the possibility of a combined chemical-biological control of internal decay.

  4. Calibration of a chemical ionization mass spectrometer for the measurement of gaseous sulfuric acid.

    PubMed

    Kürten, Andreas; Rondo, Linda; Ehrhart, Sebastian; Curtius, Joachim

    2012-06-21

    The accurate measurement of the gaseous sulfuric acid concentration is crucial within many fields of atmospheric science. Instruments utilizing chemical ionization mass spectrometry (CIMS) measuring H(2)SO(4), therefore, require a careful calibration. We have set up a calibration source that can provide a stable and adjustable concentration of H(2)SO(4). The calibration system initiates the production of sulfuric acid through the oxidation of SO(2) by OH. The hydroxyl radical is produced by UV photolysis of water vapor. A numerical model calculates the H(2)SO(4) concentration provided at the outlet of the calibration source. From comparison of this concentration and the signals measured by CIMS, a calibration factor is derived. This factor is evaluated to be 1.1 × 10(10) cm(-3), which is in good agreement with values found in the literature for other CIMS instruments measuring H(2)SO(4). The calibration system is described in detail and the results are discussed. Because the setup is external to the CIMS instrument, it offers the possibility for future CIMS intercomparison measurements by providing defined and stable concentrations of sulfuric acid.

  5. Development of Sulfuric Acid Decomposer for Thermo-Chemical IS Process

    SciTech Connect

    Hiroki, Noguchi; Hiroyuki, Ota; Atsuhiko, Terada; Shinji, Kubo; Kaoru, Onuki; Ryutaro, Hino

    2006-07-01

    The Japan Atomic Energy Agency (JAEA) has been conducting R and D on thermo-chemical Iodine-Sulfur (IS) process, which is one of most attractive water-splitting hydrogen production methods using nuclear heat of a high-temperature gas-cooled reactor (HTGR). In the IS process, sulfuric acid is evaporated and decomposed into H{sub 2}O and SO{sub 3} in a sulfuric acid decomposer operated under high temperature condition up to 500 deg C. Necessary heat is supplied by high temperature helium gas from the HTGR. Since the sulfuric acid decomposer will be exposed to severe corrosion condition, we have proposed a new decomposer concept of a block type heat exchanger made of SiC ceramic which has excellent corrosion and mechanical strength performance. To verify the concept, integrity of new type gaskets applied for boundary seal of the decomposer was examined as a first step. Pure gold gaskets coupled with absorption mechanism against thermal expansion showed good seal performance under 500 deg C. Based on this result, a mock-up model for a IS pilot-plant with 30 m{sup 3}/h-hydrogen production rate was test-fabricated as the next step. Through the fabrication and gas-tight tests, fabricability and structural integrity were confirmed. Also, the decomposer showed good mechanical strength and seal performances against horizontal loading simulating earthquake motion. (authors)

  6. Surfactant toxicity to Artemia Franciscana and the influence of humic acid and chemical composition

    PubMed Central

    Deese, Rachel D.; LeBlanc, Madeline R.

    2016-01-01

    Surfactants can be extremely toxic to aquatic species and are introduced to the environment in a variety of ways. It is thus important to understand how other environmental constituents, in this case humic acids (HAs), may alter the toxicity of anthropogenic surfactants. Hatching and mortality assays of Artemia Franciscana were performed for three different toxic surfactants: Triton X-100 (Tx-100, non-ionic), cetylpyridinium chloride (CPC, cationic), and sodium dodecyl sulfate (SDS, anionic). Humic acids of varying composition and concentrations were added to the assays to determine the toxicity mitigating ability of the HAs. Tx-100 had a significant toxic effect on Artemia mortality rates and HAs from terrestrial sources were able to mitigate the toxicity, but an aquatic HA did not. CPC and SDS limited hatching success of the Artemia and, as HAs were added, the hatching percentages increased for all HA sources, indicating toxicity mitigation. In order to determine which functional groups within HAs were responsible for the interaction with the surfactants, the HAs were chemically modified by: (i) bleaching to reduce aromatics, (ii) Soxhlet extraction to reduce lipids, and (iii) acid hydrolysis to reduce O- and N-alkyl groups. Although most of the modified HAs had some toxicity mitigating ability for each of the surfactants, there were two notable differences: 1) the lipid-extracted HA did not reduce the toxicity of Tx-100 and 2) the bleached HA had a lower toxicity mitigating ability for CPC than the other modified HAs. PMID:27453688

  7. Interim Report: CHEMICAL SPECIES OF MIGRATING RADIONUCLIDES AT COMMERCIAL SHALLOW LAND BURIAL SITES

    SciTech Connect

    Kirby, L. J.; Rickard, W. H.; Toste, A. P.

    1982-08-01

    This is the first quarterly report for .the project "Chemical Species of Migrating Radionuclides at Commercial Shallow Land Burial Site" under the new reporting schedule requested by the sponsor. Future reports will be issued following each fiscal quarter, with the next report scheduled in October, 1982. The primary purpose of this project is to develop an understanding of the processes responsible for radionuclide migration at low-level waste burial sites. Chemical measurements of waste trench leachate and identification of chemical changes in leachate during migration will provide a basis for geochemical waste transport models. This project will produce for the U.S. Nuclear Regulatory Commission information to support guidance for implementation of 10 CFR 61, particularly in the development of criteria for low level waste disposal site selection, management, permanent closure and monitoring. Topics covered include: Experimental Trench and Well Study; Chemical Species Characterization; Specific Radionuclide Mapping; Organic Complexing Compounds,

  8. Report: U.S. Chemical Safety and Hazard Investigation Board Needs to Complete More Timely Investigations

    EPA Pesticide Factsheets

    Report #13-P-0337, July 30, 2013. CSB does not have an effective management system to meet its established performance goal to “conduct incident investigations and safety studies concerning releases of hazardous chemical substances.”

  9. EPA Resolves Violations with Newport Beach, Calif. Company for Failure to Report Imported Agricultural Chemicals

    EPA Pesticide Factsheets

    LOS ANGELES -The U.S. Environmental Protection Agency settled its case against American Vanguard Corporation, located in Newport Beach, Calif., for failure to report toxic chemical substances imported by two of its subsidiary companies. American Vang

  10. 40 CFR 710.45 - Chemical substances for which information must be reported.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT TSCA CHEMICAL INVENTORY REGULATIONS Inventory Update Reporting for... substance which is in the Master Inventory File at the beginning of a submission period described in §...

  11. Evaluation of Biomonitoring Data from the CDC National Exposure Report in a Risk Assessment Context: Perspectives across Chemicals

    EPA Science Inventory

    BACKGROUND: Biomonitoring data reported in the National Report on Human Exposure to Environmental Chemicals (NER) provide information on the presence and concentrations of more than 400 chemicals in human blood and urine. Biomonitoring Equivalents (BEs) and other risk assessment...

  12. The selective conversion of glutamic acid in amino acid mixtures using glutamate decarboxylase--a means of separating amino acids for synthesizing biobased chemicals.

    PubMed

    Teng, Yinglai; Scott, Elinor L; Sanders, Johan P M

    2014-01-01

    Amino acids (AAs) derived from hydrolysis of protein rest streams are interesting feedstocks for the chemical industry due to their functionality. However, separation of AAs is required before they can be used for further applications. Electrodialysis may be applied to separate AAs, but its efficiency is limited when separating AAs with similar isoelectric points. To aid the separation, specific conversion of an AA to a useful product with different charge behavior to the remaining compounds is desired. Here the separation of L-aspartic acid (Asp) and L-glutamic acid (Glu) was studied. L-Glutamate α-decarboxylase (GAD, Type I, EC 4.1.1.15) was applied to specifically convert Glu into γ-aminobutyric acid (GABA). GABA has a different charge behavior from Asp therefore allowing a potential separation by electrodialysis. Competitive inhibition and reduced operational stability caused by Asp could be eliminated by maintaining a sufficiently high concentration of Glu. Immobilization of GAD does not reduce the enzyme's initial activity. However, the operational stability was slightly reduced. An initial study on the reaction operating in a continuous mode was performed using a column reactor packed with immobilized GAD. As the reaction mixture was only passed once through the reactor, the conversion of Glu was lower than expected. To complete the conversion of Glu, the stream containing Asp and unreacted Glu might be recirculated back to the reactor after GABA has been removed. Overall, the reaction by GAD is specific to Glu and can be applied to aid the electrodialysis separation of Asp and Glu.

  13. Management response plan for the Chemical Safety Vulnerability Working Group report. Volume 1

    SciTech Connect

    Not Available

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 146 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 1 contains a discussion of the chemical safety improvements planned or already underway at DOE sites to correct facility or site-specific vulnerabilities. The main part of the report is a discussion of each of the programmatic deficiencies; a description of the tasks to be accomplished; the specific actions to be taken; and the organizational responsibilities for implementation.

  14. Inventory development for perfluorooctane sulfonic acid (PFOS) in Turkey: challenges to control chemicals in articles and products.

    PubMed

    Korucu, M Kemal; Gedik, Kadir; Weber, Roland; Karademir, Aykan; Kurt-Karakus, Perihan Binnur

    2015-10-01

    Perfluorooctane sulfonic acid (PFOS) and related substances have been listed as persistent organic pollutants (POPs) in the Stockholm Convention. Countries which have ratified the Convention need to take appropriate actions to control PFOS use and release. This study compiles and enhances the findings of the first inventory of PFOS and related substances use in Turkey conducted within the frame of the Stockholm Convention National Implementation Plan (NIP) update. The specific Harmonized Commodity Description and Coding System (Harmonized System (HS)) codes of imported and exported goods that possibly contain PFOS and 165 of Chemical Abstracts Service (CAS) numbers of PFOS-related substances were assessed for acquiring information from customs and other authorities. However, with the current approaches available, no useful information could be compiled since HS codes are not specific enough and CAS numbers are not used by customs. Furthermore, the cut-off volume in chemical databases in Turkey and the reporting limit in the HS system (0.1 %) are too high for controlling PFOS. The attempt of modeling imported volumes by a Monte Carlo simulation did not also result in a satisfactory estimate, giving an upper-bound estimate above the global production volumes. The replies to questionnaires were not satisfactory, highlighting that an elaborated approach is needed in the communication with potentially PFOS-using stakeholders. The experience of the challenges of gathering information on PFOS in articles and products revealed the gaps of controlling highly hazardous substances in products and articles and the need of improvements.

  15. CHARACTERIZATION OF INDIVIDUAL CHEMICAL REACTIONS CONSUMING ACID DURING NUCLEAR WASTE PROCESSING AT THE SAVANNAH RIVER SITE - 136B

    SciTech Connect

    Koopman, D.; Pickenheim, B.; Lambert, D.; Newell, J.; Stone, M.

    2009-09-02

    Conversion of legacy radioactive high-level waste at the Savannah River Site into a stable glass waste form involves a chemical pretreatment process to prepare the waste for vitrification. Waste slurry is treated with nitric and formic acids to achieve certain goals. The total quantity of acid added to a batch of waste slurry is constrained by the catalytic activity of trace noble metal fission products in the waste that can convert formic acid into hydrogen gas at many hundreds of times the radiolytic hydrogen generation rate. A large block of experimental process simulations were performed to characterize the chemical reactions that consume acid prior to hydrogen generation. The analysis led to a new equation for predicting the quantity of acid required to process a given volume of waste slurry.

  16. pH-Sensitive ionomeric particles obtained via chemical conjugation of silk with poly(amino acid)s.

    PubMed

    Serban, Monica A; Kaplan, David L

    2010-12-13

    Silk-fibroin-based biomaterials have been widely utilized for a range of biomaterial-related systems. For all these previously reported systems, the β-sheet forming feature of the silk was the key stabilizing element of the final material structure. Herein, we describe a different strategy, based on the engineering of silk-based ionomers that can yield stable colloidal composites or particle suspensions through electrostatic interactions. These silk-based ionomers were obtained by carbodiimide-mediated coupling of silk fibroin with polylysine hydrobromide and polyglutamic acid sodium salts, respectively. Colloidal composites could be obtained by mixing the ionomeric pair at high concentration (i.e., 25% w/v), while combining them at lower concentrations (i.e., 5% w/v) yielded particle suspensions. The assembly of the ionomers was driven by electrostatic interactions, pH-dependent, and reversible. The network assembly appeared to be polarized, with the interacting poly(amino acid) chains clustered to the core of the particles and the silk backbone oriented outward. In agreement with this assembly mode, doxorubicin, a hydrophilic antitumor drug, could be released at a slow rate, in a pH-dependent manner, indicating that the inside of the ionomeric particles was mainly hydrophilic in nature.

  17. Evaluation of Chemical Abstracts(4) - Analysis of Technical Reports Collection -

    NASA Astrophysics Data System (ADS)

    Tan, Nobumasa

    It has been long time since various data bases appeared. Amid so-called information flood data bases have played a role in improving performances of industrial activities or social life by providing appropriate information at right time from them. Particularly CA Search is indispensable and important to persons who are engaged in R & D in chemistry and the related fields. For the purpose of advancing on-line searching efficiency by clarifying the scope and coverage by document type the author analyzed the information covered in CA, which results were reported in the series of articles "Evaluation of CA". In this article the author analyzed the coverage of technical reports and compared the result with NTIS file.

  18. Final Report on Oxygen Plant Development (Employing Regenerative Chemicals)

    DTIC Science & Technology

    1945-05-31

    addition to a chronological description of each plant or study involved in the program , the report contains a bibliography of correspondence, memoranda...the following month, January, 1942, Kellogg formally agreed to become the central engineering agency for the NDRC oxygen program . On January 27...Z - Iquator. The Salcomine program also visualized the develop- ment of unite for use on shipboard and in long-range bombing planes. A ground unit

  19. Chemical Composition, Nitrogen Fractions and Amino Acids Profile of Milk from Different Animal Species

    PubMed Central

    Rafiq, Saima; Huma, Nuzhat; Pasha, Imran; Sameen, Aysha; Mukhtar, Omer; Khan, Muhammad Issa

    2016-01-01

    Milk composition is an imperative aspect which influences the quality of dairy products. The objective of study was to compare the chemical composition, nitrogen fractions and amino acids profile of milk from buffalo, cow, sheep, goat, and camel. Sheep milk was found to be highest in fat (6.82%±0.04%), solid-not-fat (11.24%±0.02%), total solids (18.05%±0.05%), protein (5.15%±0.06%) and casein (3.87%±0.04%) contents followed by buffalo milk. Maximum whey proteins were observed in camel milk (0.80%±0.03%), buffalo (0.68%±0.02%) and sheep (0.66%±0.02%) milk. The non-protein-nitrogen contents varied from 0.33% to 0.62% among different milk species. The highest r-values were recorded for correlations between crude protein and casein in buffalo (r = 0.82), cow (r = 0.88), sheep (r = 0.86) and goat milk (r = 0.98). The caseins and whey proteins were also positively correlated with true proteins in all milk species. A favorable balance of branched-chain amino acids; leucine, isoleucine, and valine were found both in casein and whey proteins. Leucine content was highest in cow (108±2.3 mg/g), camel (96±2.2 mg/g) and buffalo (90±2.4 mg/g) milk caseins. Maximum concentrations of isoleucine, phenylalanine, and histidine were noticed in goat milk caseins. Glutamic acid and proline were dominant among non-essential amino acids. Conclusively, current exploration is important for milk processors to design nutritious and consistent quality end products. PMID:26954163

  20. Chemical composition of acid deposition and its seasonal variation in Kaohsiung City, Taiwan

    SciTech Connect

    Yuan, C.S.; Wu, D.Y.; Chen, K.S.

    1997-12-31

    This study investigated the acidification of wet and dry depositions collected in Kaohsiung metropolitan area during the period of January to May in 1996. An acid deposition sampling network including six sampling stations was originally established for this particular study. Both wet and dry depositions were sampled by an automatic rainwater sampler at each station. Major cations (K{sup +}, Na{sup +}, Ca{sup 2+}, Mg{sup 2+}, NH{sup 4+}) and anions (F{sup {minus}}, Cl{sup {minus}}, NO{sub 3}{sup {minus}}, and SO{sub 4}{sup 2{minus}}) of acid deposition were determined at Air Pollution Laboratory in the Institute of Environmental Engineering at National Sun Yat-Sen University except that the pH value and conductivity of samples were measured in situ. During the period of investigation, the pH value of rainwater ranged from 3.45 to 7.36 with a mode of 4.4--4.8. The volume-weighted average pH value was 4.65. The probability of acid rain during investigation period was approximately 77.3%. The probability of acid rain in rainy season was much higher than that in dry season. A lower probability in dry season was mainly attributed to the fact that alkaline particles suspended in the atmosphere to be washed by rainwater droplets. Results from correlation analysis indicated that major chemical species (r > 0.85) in rainwater droplets were NaCl, NH{sub 4}NO{sub 3}, Na{sub 2}NO{sub 3}, and NaCl{sub 2}. Furthermore, the deposition of hydrogen ion in wet process was much higher than that in dry process.

  1. First reported fatalities associated with the 'research chemical' 2-methoxydiphenidine.

    PubMed

    Elliott, Simon P; Brandt, Simon D; Wallach, Jason; Morris, Hamilton; Kavanagh, Pierce V

    2015-05-01

    2-Methoxydiphenidine, i.e. 1-[1-(2-methoxyphenyl)-2-phenylethyl]piperidine, also known as 'MXP' or '2-MeO-diphenidine' (or 2-MXP), has been available as a 'research chemical' since 2013 as a purported alternative to the 'dissociative anesthetics' methoxetamine and ketamine. Three deaths which involved the detection of 2-MXP in post-mortem blood and urine were encountered in forensic casework. The 2-, 3- and 4-methoxyphenyl positional isomers were synthesized to confirm the identity and concentration of 2-MXP. The 2-MXP femoral blood concentrations in the cases were found to be 24.0, 2.0 and 1.36 mg/L (the latter with an alternative cause of death). Some additional prescription drugs were encountered at therapeutic concentrations in all three cases. Analysis of the biofluids allowed the detection and characterization of various metabolites, including the suggested presence of hydroxy-2-MXP as the main metabolite with the hydroxyl group located on the piperidine rather than the phenyl or benzyl moiety. Additional metabolites included O-desmethyl-2-MXP and hydroxylated O-desmethyl-2-MXP. Diphenidine and hydroxy-diphenidine, also showing the presence of the hydroxyl group on the piperidine ring, were also detected. It was not possible to identify whether these arose from 2-MXP biotransformation or whether they represented the presence of diphenidine as a separate substance. These are the first published fatalities involving 2-MXP and presents analytical data to assist analytical toxicologists with future casework.

  2. Development of chemical vapor composites, CVC materials. Final report

    SciTech Connect

    1998-10-05

    Industry has a critical need for high-temperature operable ceramic composites that are strong, non-brittle, light weight, and corrosion resistant. Improvements in energy efficiency, reduced emissions and increased productivity can be achieved in many industrial processes with ceramic composites if the reaction temperature and pressure are increased. Ceramic composites offer the potential to meet these material requirements in a variety of industrial applications. However, their use is often restricted by high cost. The Chemical Vapor composite, CVC, process can reduce the high costs and multiple fabrication steps presently required for ceramic fabrication. CVC deposition has the potential to eliminate many difficult processing problems and greatly increase fabrication rates for composites. With CVC, the manufacturing process can control the composites` density, microstructure and composition during growth. The CVC process: can grow or deposit material 100 times faster than conventional techniques; does not require an expensive woven preform to infiltrate; can use high modulus fibers that cannot be woven into a preform; can deposit composites to tolerances of less than 0.025 mm on one surface without further machining.

  3. K-Area Acid/Caustic Basin groundwater monitoring report

    SciTech Connect

    Not Available

    1993-03-01

    During fourth quarter 1992, samples from the KAC monitoring wells at the K-Area Acid/Caustic Basin were analyzed for indicator parameters, groundwater quality parameters, parameters indicating suitability as drinking water, and other constituents. New wells KAC 8 and 9 also were sampled for GC/MS VOA (gas chromatograph/mass spectrometer volatile organic analyses). Monitoring results that exceeded the final Primary Drinking Water Standards (PDWS) or the Savannah River Site (SRS) flagging criteria or turbidity standard during the quarter are discussed in this report. Iron exceeded the Flag 2 criterion in wells KAC 6 and 7, and specific conductance exceeded the Flag 2 criterion in new well KAC 9. No samples exceeded the SRS turbidity standard.

  4. Perceived treatment efficacy for conventional and alternative therapies reported by persons with multiple chemical sensitivity.

    PubMed Central

    Gibson, Pamela Reed; Elms, Amy Nicole-Marie; Ruding, Lisa Ann

    2003-01-01

    Multiple chemical sensitivity (MCS) is a condition in which persons experience negative health effects in multiple organ systems from exposure to low levels of common chemicals. Although symptoms experienced from particular chemicals vary across persons, they are generally stable within persons. The sensitivities often spread over time, first to related chemicals and then to other classes of chemicals. This study examined self-reported perceived treatment efficacy of 101 treatments used by 917 persons with self-reported MCS. Treatments examined included environmental medicine techniques, holistic therapies, individual nutritional supplements, detoxification techniques, body therapies, Eastern-origin techniques, newer therapies, prescription items, and others. The three most highly rated treatments were creating a chemical-free living space, chemical avoidance, and prayer. Both creating a chemical-free living space and chemical avoidance were rated by 95% of respondents as helpful. Results for most therapies were mixed. Participants had consulted a mean of 12 health care providers and spent over one-third of their annual income on health care costs. We discuss this drain on personal resources and describe respondents' attitudes toward the possibility of healing from MCS. PMID:12948890

  5. Aristoxazole analogues. Conversion of 8-nitro-1-naphthoic acid to 2-methylnaphtho[1,2-d]oxazole-9-carboxylic acid: comments on the chemical mechanism of formation of DNA adducts by the aristolochic acids.

    PubMed

    Priestap, Horacio A; Barbieri, Manuel A; Johnson, Francis

    2012-07-27

    2-Methylnaphtho[1,2-d]oxazole-9-carboxylic acid was obtained by reduction of 8-nitro-1-naphthoic acid with zinc-acetic acid. This naphthoxazole is a condensation product between an 8-nitro-1-naphthoic acid reduction intermediate and acetic acid and is a lower homologue of aristoxazole, a similar condensation product of aristolochic acid I with acetic acid that was previously reported. Both oxazoles are believed to arise via a common nitrenium/carbocation ion mechanism that is likely related to that which leads to aristolochic acid-DNA-adducts.

  6. Terminal alkenes as versatile chemical reporter groups for metabolic oligosaccharide engineering.

    PubMed

    Späte, Anne-Katrin; Schart, Verena F; Schöllkopf, Sophie; Niederwieser, Andrea; Wittmann, Valentin

    2014-12-08

    The Diels-Alder reaction with inverse electron demand (DAinv reaction) of 1,2,4,5-tetrazines with electron rich or strained alkenes was proven to be a bioorthogonal ligation reaction that proceeds fast and with high yields. An important application of the DAinv reaction is metabolic oligosaccharide engineering (MOE) which allows the visualization of glycoconjugates in living cells. In this approach, a sugar derivative bearing a chemical reporter group is metabolically incorporated into cellular glycoconjugates and subsequently derivatized with a probe by means of a bioorthogonal ligation reaction. Here, we investigated a series of new mannosamine and glucosamine derivatives with carbamate-linked side chains of varying length terminated by alkene groups and their suitability for labeling cell-surface glycans. Kinetic investigations showed that the reactivity of the alkenes in DAinv reactions increases with growing chain length. When applied to MOE, one of the compounds, peracetylated N-butenyloxycarbonylmannosamine, was especially well suited for labeling cell-surface glycans. Obviously, the length of its side chain represents the optimal balance between incorporation efficiency and speed of the labeling reaction. Sialidase treatment of the cells before the bioorthogonal labeling reaction showed that this sugar derivative is attached to the glycans in form of the corresponding sialic acid derivative and not epimerized to another hexosamine derivative to a considerable extent.

  7. Volatile organic chemical emissions from carpets. Final report

    SciTech Connect

    Hodgson, A.T.; Wooley, J.D.; Daisey, J.M.

    1992-04-01

    The primary objective of this research, was to measure the emission rates of selected individual VOC, including low molecular-weight aldehydes, released by samples of four new carpets that are typical of the major types of carpets used in residences, schools and offices. The carpet samples were collected directly from the manufacturers` mills and packaged to preserve their chemical integrity. The measurements of the concentrations and emission rates of these compounds were made under simulated indoor conditions in a 20-M{sup 3} environmental chamber designed specifically for investigations of VOC. The measurements were conducted over a period of one week following the installation of the carpet samples in the chamber. Duplicate experiments were conducted for one carpet. In addition, the concentrations and emission rates of VOC resulting from the installation of a new carpet in a residence were measured over a period of seven weeks. The stabilities of the week-long ventilation rates and temperatures were one percent relative standard deviation. The four carpets emitted a variety of VOC, 40 of which were positively identified. Eight of these were considered to be dominant. They were (in order of chromatographic retention time) formaldehyde, vinyl acetate, 2,2,4-trimethylpentane (isooctane), 1,2-propanediol (propylene glycol), styrene, 2-ethyl-l-hexanol, 4-phenylcyclohexene (4-PCH), and 2,6 di-tert-butyl-4-methylphenol (BHT). With the exception of formaldehyde, only limited data are available on the toxicity and irritancy of these compounds at low concentrations. Therefore, it is difficult to determine at this time the potential magnitude of the health and comfort effects that may occur among the population from exposures to emissions from new carpets. The concentrations and emission rates of most compounds decreased rapidly over the first 12 h of the experiments.

  8. Chemical characterization of Campylobacter jejuni lipopolysaccharides containing N-acetylneuraminic acid and 2,3-diamino-2,3-dideoxy-D-glucose.

    PubMed Central

    Moran, A P; Rietschel, E T; Kosunen, T U; Zähringer, U

    1991-01-01

    Lipopolysaccharides (LPS) of four nonencapsulated strains of the human enteric pathogen Campylobacter jejuni were chemically characterized. When applied to two of the strains, extraction by a modified phenol-chloroform-petroleum ether method (H. Brade and C. Galanos, Eur. J. Biochem. 122:233-237, 1982) gave better yields of LPS than did extraction by the conventional hot phenol-water technique. Constituents common to all LPS were D-glucose, D-galactose, L-glycero-D-manno-heptose, 3-deoxy-D-manno-2-octulosonic acid, D-glucuronic acid, D-galactosamine, and phosphorylethanolamine. Phosphate was present in a relatively high amount. In addition, the LPS of three strains contained N-acetylneuraminic acid, whereas the LPS of the strain lacking this component contained 3-amino-3,6-dideoxy-D-glucose. The lipid A component contained phosphate with D-glucosamine and 2,3-diamino-2,3-dideoxy-D-glucose as the major amino sugars. Ethanolamine-phosphate was present also. The major fatty acids were ester- and amide-bound 3-hydroxytetradecanoic and ester-bound hexadecanoic acids, with a minor amount of ester-bound tetradecanoic acid. This is the first report of N-acetylneuraminic acid in the oligosaccharide moiety and diaminoglucose in the lipid A of C. jejuni LPS. PMID:1987154

  9. Towards Self-Replicating Chemical Systems Based on Cytidylic and Guanylic Acids

    NASA Technical Reports Server (NTRS)

    Kanavarioti, Anastassia

    1999-01-01

    This project was aimed towards a better understanding of template-directed reactions and, based on this, towards the development of efficient non-enzymatic RNA replicating systems. These systems could serve as models for the prebiotic synthesis of an RNA world. The major objectives of this project are: (a) To elucidate the mechanistic aspects of template-directed (TD) chemistry and (b) to identify active boundary regions, or conditions, environmental and other, that favor "organized chemistry" and stereo-selective polymerization of nucleotides. "Organized chemistry" may lead to enhanced polymerization efficiency which in turn is expected to facilitate the road towards a self-replicating chemical system based on all four nucleic acid bases.

  10. Trapping of organophosphorus chemical nerve agents in water with amino acid functionalized baskets.

    PubMed

    Ruan, Yian; Dalkiliç, Erdin; Peterson, Paul W; Pandit, Aroh; Dastan, Arif; Brown, Jason D; Polen, Shane M; Hadad, Christopher M; Badjić, Jovica D

    2014-04-07

    We prepared eleven amino-acid functionalized baskets and used (1) H NMR spectroscopy to quantify their affinity for entrapping dimethyl methylphosphonate (DMMP, 118 Å(3) ) in aqueous phosphate buffer at pH=7.0±0.1; note that DMMP guest is akin in size to chemical nerve agent sarin (132 Å(3) ). The binding interaction (Ka ) was found to vary with the size of substituent groups at the basket's rim. In particular, the degree of branching at the first carbon of each substituent had the greatest effect on the host-guest interaction, as described with the Verloop's B1 steric parameter. The branching at the remote carbons, however, did not perturb the encapsulation, which is important for guiding the design of more effective hosts and catalysts in future.

  11. Simultaneous airborne nitric acid and formic acid measurements using a chemical ionization mass spectrometer around the UK: Analysis of primary and secondary production pathways

    NASA Astrophysics Data System (ADS)

    Le Breton, Michael; Bacak, Asan; Muller, Jennifer B. A.; Xiao, Ping; Shallcross, Beth M. A.; Batt, Rory; Cooke, Michael C.; Shallcross, Dudley E.; Bauguitte, S. J.-B.; Percival, Carl J.

    2014-02-01

    The first simultaneous measurements of formic and nitric acid mixing ratios around the United Kingdom were measured on the FAAM BAe-146 research aircraft with a chemical ionization mass spectrometer using I- reagent ions at 0.8 Hz. Analysis of the whole dataset shows that formic acid and nitric acid are positively correlated as illustrated by other studies (e.g. Veres et al., 2011). However, initial evidence indicates a prominent direct source of formic acid and also a significant source when O3 levels are high, suggesting the importance of the ozonolysis of 1-alkenes. A trajectory model was able to reproduce the formic acid concentrations by both the inclusion of a primary vehicle source and production via ozonolysis of propene equivalent 1-alkene levels. Inspection of data archives implies these levels of 1-alkene are possible after 11 am, but formic acid and nitric acid plumes early in the flight are too high for the model to replicate. These data show the relationship between nitric acid and formic acid cannot solely be attributed to related photochemical production. The simultaneous measurement of HCOOH and HNO3 has been implemented to estimate OH levels along the flight track assuming a relationship between formic and nitric acid in photochemical plumes and a constant source of 1-alkene.

  12. Study of the chemical mechanisms of the reaction of neutralization of calcium hydroxide by phosphoric acid

    NASA Astrophysics Data System (ADS)

    Elgadi, M.; Mejdoubi, E.; Elansari, L. L.; Essaddek, A.; Abouricha, S.; Lamhamdi, A.

    2005-03-01

    Calcium phosphates reported in this study, are prepared following an acido-basic reaction between phosphoric acid and calcium hydroxide. These phosphates are the brushite, tricalcium phosphate, hydroxyapatite and oxygenated apatite. The follow-up of the reaction by infra-red spectroscopy of absorption showed that the alkaline pH of calcium hydroxide solution, favours the formation of carbonated apatite, at the start of the reaction. Following the addition of phosphoric acid, the pH becomes increasingly favourable to the formation of the desired phase. The insertion of molecular oxygen in the apatitic tunnel is carried out by the use of hydrogen peroxide. The molecular oxygen rate in the apatite is then determined by volumetric analysis.

  13. Thoracic Duct Chylous Fistula Following Severe Electric Injury Combined with Sulfuric Acid Burns: A Case Report.

    PubMed

    Chang, Fei; Cheng, Dasheng; Qian, Mingyuan; Lu, Wei; Li, Huatao; Tang, Hongtai; Xia, Zhaofan

    2016-10-11

    BACKGROUND As patients with thoracic duct injuries often suffer from severe local soft tissue defects, integrated surgical treatment is needed to achieve damage repair and wound closure. However, thoracic duct chylous fistula is rare in burn patients, although it typically involves severe soft tissue damage in the neck or chest. CASE REPORT A 32-year-old male patient fell after accidentally contacting an electric current (380 V) and knocked over a barrel of sulfuric acid. The sulfuric acid continuously poured onto his left neck and chest, causing combined electrical and sulfuric acid burn injuries to his anterior and posterior torso, and various parts of his limbs (25% of his total body surface area). During treatment, chylous fistula developed in the left clavicular region, which we diagnosed as thoracic duct chylous fistula. We used diet control, intravenous nutritional support, and continuous somatostatin to reduce the chylous fistula output, and hydrophilic silver ion-containing dressings for wound coverage. A boneless muscle flap was used to seal the left clavicular cavity, and, integrated, these led to resolution of the chylous fistula. CONCLUSIONS Patients with severe electric or chemical burns in the neck or chest may be complicated with thoracic duct injuries. Although conservative treatment can control chylous fistula, wound cavity filling using a muscle flap is an effective approach for wound healing.

  14. In vitro evolution of chemically-modified nucleic acid aptamers: Pros and cons, and comprehensive selection strategies.

    PubMed

    Lipi, Farhana; Chen, Suxiang; Chakravarthy, Madhuri; Rakesh, Shilpa; Veedu, Rakesh N

    2016-12-01

    Nucleic acid aptamers are single-stranded DNA or RNA oligonucleotide sequences that bind to a specific target molecule with high affinity and specificity through their ability to adopt 3-dimensional structure in solution. Aptamers have huge potential as targeted therapeutics, diagnostics, delivery agents and as biosensors. However, aptamers composed of natural nucleotide monomers are quickly degraded in vivo and show poor pharmacodynamic properties. To overcome this, chemically-modified nucleic acid aptamers are developed by incorporating modified nucleotides after or during the selection process by Systematic Evolution of Ligands by EXponential enrichment (SELEX). This review will discuss the development of chemically-modified aptamers and provide the pros and cons, and new insights on in vitro aptamer selection strategies by using chemically-modified nucleic acid libraries.

  15. In vitro evolution of chemically-modified nucleic acid aptamers: Pros and cons, and comprehensive selection strategies

    PubMed Central

    Chen, Suxiang; Chakravarthy, Madhuri; Rakesh, Shilpa; Veedu, Rakesh N.

    2016-01-01

    ABSTRACT Nucleic acid aptamers are single-stranded DNA or RNA oligonucleotide sequences that bind to a specific target molecule with high affinity and specificity through their ability to adopt 3-dimensional structure in solution. Aptamers have huge potential as targeted therapeutics, diagnostics, delivery agents and as biosensors. However, aptamers composed of natural nucleotide monomers are quickly degraded in vivo and show poor pharmacodynamic properties. To overcome this, chemically-modified nucleic acid aptamers are developed by incorporating modified nucleotides after or during the selection process by Systematic Evolution of Ligands by EXponential enrichment (SELEX). This review will discuss the development of chemically-modified aptamers and provide the pros and cons, and new insights on in vitro aptamer selection strategies by using chemically-modified nucleic acid libraries. PMID:27715478

  16. An oxazetidine amino acid for chemical protein synthesis by rapid, serine-forming ligations

    NASA Astrophysics Data System (ADS)

    Pusterla, Ivano; Bode, Jeffrey W.

    2015-08-01

    Amide-forming ligation reactions allow the chemical synthesis of proteins by the union of unprotected peptide segments, and enable the preparation of protein derivatives not accessible by expression or bioengineering approaches. The native chemical ligation (NCL) of thioesters and N-terminal cysteines is unquestionably the most successful approach, but is not ideal for all synthetic targets. Here we describe the synthesis of an Fmoc-protected oxazetidine amino acid for use in the α-ketoacid-hydroxylamine (KAHA) amide ligation. When incorporated at the N-terminus of a peptide segment, this four-membered cyclic hydroxylamine can be used for rapid serine-forming ligations with peptide α-ketoacids. This ligation operates at low concentration (100 μM-5 mM) and mild temperatures (20-25 °C). The utility of the reaction was demonstrated by the synthesis of S100A4, a 12 kDa calcium-binding protein not easily accessible by NCL or other amide-forming reactions due to its primary sequence and properties.

  17. Quantum chemical computations, vibrational spectroscopic analysis and antimicrobial studies of 2,3-Pyrazinedicarboxylic acid

    NASA Astrophysics Data System (ADS)

    Beaula, T. Joselin; Packiavathi, A.; Manimaran, D.; Joe, I. Hubert; Rastogi, V. K.; Jothy, V. Bena

    2015-03-01

    Density Functional Theory (DFT) calculations at B3PW91 level with 6-311G (d) basis sets were carried out for 2,3-Pyrazinedicarboxylic acid (PDCA) to analyze in detail the equilibrium geometries and vibrational spectra. Calculations reveal that the optimized geometry closely resembles the experimental XRD data. Vibrational spectra were analyzed on the basis of potential energy distribution (PED) of each vibrational mode, which provides quantitative as well as qualitative interpretation of IR and Raman spectra. Information about size, shape, charge density distribution and site of chemical reactivity of the molecule were obtained by mapping electron density isosurface with the electrostatic potential surface (ESP). Based on optimized ground state geometries, NBO analysis was performed to study donor-acceptor (bond-antibond) interactions. TD-DFT analysis was also performed to calculate energies, oscillator strength of electronic singlet-singlet transitions and the absorption wavelengths. The 13C and 1H nuclear magnetic resonance (NMR) chemical shifts of the molecule in the ground state were calculated by gauge independent atomic orbital (GIAO) method and compared with the experimental values. PDCA was screened for its antimicrobial activity and found to exhibit antifungal and antibacterial effects. Molecular docking was also performed for the different receptors.

  18. Quarterly progress report for the Chemical Development Section of the Chemical Technology Division: April--June 1996

    SciTech Connect

    Jubin, R.T.

    1996-11-01

    This report summarizes the major activities conducted in the Chemical Development Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period April--June 1996. The report describes 12 tasks conducted in 4 major areas of research and development within the section. The first major research area--Chemical Processes for Waste Management--includes the following tasks: Comprehensive Supernate Treatment, Partitioning of Sludge Components by Caustic Leaching, Studies on Treatment of Dissolved MVST Sludge Using TRUEX Process, ACT*DE*CON{sup SM} Test Program, Hot Demonstration of Proposed Commercial Nuclide Removal Technology, Sludge Treatment Studies, and Development and Testing of Inorganic Sorbents. Within the second research area--Reactor Fuel Chemistry--a new scope of work for the Technical Assistance in Review of Advanced Reactors task has been established to include assessments of iodine behavior nd pH control in operating nuclear reactor containments as well as in advanced reactor systems. This task is on hold, awaiting finalization of the revised proposal and receipt of the necessary information from Westinghouse to permit the start of the study. Within the third research area--Thermodynamics--the Thermodynamics and Kinetics of Energy-Related Materials task has used a differential thermal analysis (DTA)/thermogravimetric analysis (TGA) to study the phase transitions of phase-pure YBa{sub 2}Cu{sub 3}O{sub 6+x} (123). The fourth major research area--Processes for Waste Management--includes work on these tasks: Ion Exchange Process for Heavy Metals Removal, Hot Cell Cross-Flow Filtration Studies of Gunite Tank Sludges, and Chemical Conversion of Nitrate Directly to Nitrogen Gas: A Feasibility Study.

  19. Chemical evolution. XXI - The amino acids released on hydrolysis of HCN oligomers

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Wos, J. D.; Nooner, D. W.; Oro, J.

    1974-01-01

    Major amino acids released by hydrolysis of acidic and basic HCN oligomers are identified by chromatography as Gly, Asp, and diaminosuccinic acid. Smaller amounts of Ala, Ile and alpha-aminoisobutyric acid are also detected. The amino acids released did not change appreciably when the hydrolysis medium was changed from neutral to acidic or basic. The presence of both meso and d, l-diaminosuccinic acids was established by paper chromatography and on an amino acid analyzer.

  20. Chemical genetics reveals negative regulation of abscisic acid signaling by a plant immune response pathway.

    PubMed

    Kim, Tae-Houn; Hauser, Felix; Ha, Tracy; Xue, Shaowu; Böhmer, Maik; Nishimura, Noriyuki; Munemasa, Shintaro; Hubbard, Katharine; Peine, Nora; Lee, Byeong-Ha; Lee, Stephen; Robert, Nadia; Parker, Jane E; Schroeder, Julian I

    2011-06-07

    Coordinated regulation of protection mechanisms against environmental abiotic stress and pathogen attack is essential for plant adaptation and survival. Initial abiotic stress can interfere with disease-resistance signaling [1-6]. Conversely, initial plant immune signaling may interrupt subsequent abscisic acid (ABA) signal transduction [7, 8]. However, the processes involved in this crosstalk between these signaling networks have not been determined. By screening a 9600-compound chemical library, we identified a small molecule [5-(3,4-dichlorophenyl)furan-2-yl]-piperidine-1-ylmethanethione (DFPM) that rapidly downregulates ABA-dependent gene expression and also inhibits ABA-induced stomatal closure. Transcriptome analyses show that DFPM also stimulates expression of plant defense-related genes. Major early regulators of pathogen-resistance responses, including EDS1, PAD4, RAR1, and SGT1b, are required for DFPM-and notably also for Pseudomonas-interference with ABA signal transduction, whereas salicylic acid, EDS16, and NPR1 are not necessary. Although DFPM does not interfere with early ABA perception by PYR/RCAR receptors or ABA activation of SnRK2 kinases, it disrupts cytosolic Ca(2+) signaling and downstream anion channel activation in a PAD4-dependent manner. Our findings provide evidence that activation of EDS1/PAD4-dependent plant immune responses rapidly disrupts ABA signal transduction and that this occurs at the level of Ca(2+) signaling, illuminating how the initial biotic stress pathway interferes with ABA signaling.

  1. Iron Oxide Surface Chemistry: Effect of Chemical Structure on Binding in Benzoic Acid and Catechol Derivatives.

    PubMed

    Korpany, Katalin V; Majewski, Dorothy D; Chiu, Cindy T; Cross, Shoronia N; Blum, Amy Szuchmacher

    2017-03-13

    The excellent performance of functionalized iron oxide nanoparticles (IONPs) in nanomaterial and biomedical applications often relies on achieving the attachment of ligands to the iron oxide surface both in sufficient number and with proper orientation. Toward this end, we determine relationships between the ligand chemical structure and surface binding on magnetic IONPs for a series of related benzoic acid and catechol derivatives. Ligand exchange was used to introduce the model ligands, and the resultant nanoparticles were characterized using Fourier transform infrared-attenuated internal reflectance spectroscopy, transmission electron microscopy, and nanoparticle solubility behavior. An in-depth analysis of ligand electronic effects and reaction conditions reveals that the nature of ligand binding does not solely depend on the presence of functional groups known to bind to IONPs. The structure of the resultant ligand-surface complex was primarily influenced by the relative positioning of hydroxyl and carboxylic acid groups within the ligand and whether or not HCl(aq) was added to the ligand-exchange reaction. Overall, this study will help guide future ligand-design and ligand-exchange strategies toward realizing truly custom-built IONPs.

  2. Surface chemical compositions and dispersity of starch nanocrystals formed by sulfuric and hydrochloric acid hydrolysis.

    PubMed

    Wei, Benxi; Xu, Xueming; Jin, Zhengyu; Tian, Yaoqi

    2014-01-01

    Surface chemical compositions of starch nanocrystals (SNC) prepared using sulfuric acid (H2SO4) and hydrochloric acid (HCl) hydrolysis were analyzed by X-ray photoelectron spectroscopy (XPS) and FT-IR. The results showed that carboxyl groups and sulfate esters were presented in SNC after hydrolysis with H2SO4, while no sulfate esters were detected in SNC during HCl-hydrolysis. TEM results showed that, compared to H2SO4-hydrolyzed sample, a wider size distribution of SNC prepared by HCl-hydrolysis were observed. Zeta-potentials were -23.1 and -5.02 mV for H2SO4- and HCl-hydrolyzed SNC suspensions at pH 6.5, respectively. Nevertheless, the zeta-potential values decreased to -32.3 and -10.2 mV as the dispersion pH was adjusted to 10.6. After placed 48 h at pH 10.6, zeta-potential increased to -24.1 mV for H2SO4-hydrolyzed SNC, while no change was detected for HCl-hydrolyzed one. The higher zeta-potential and relative small particle distribution of SNC caused more stable suspensions compared to HCl-hydrolyzed sample.

  3. Humic acid metal cation interaction studied by spectromicroscopy techniques in combination with quantum chemical calculations.

    PubMed

    Plaschke, M; Rothe, J; Armbruster, M K; Denecke, M A; Naber, A; Geckeis, H

    2010-03-01

    Humic acids (HA) have a high binding capacity towards traces of toxic metal cations, thus affecting their transport in aquatic systems. Eu(III)-HA aggregates are studied by synchrotron-based scanning transmission X-ray microscopy (STXM) at the carbon K-edge and laser scanning luminescence microscopy (LSLM) at the (5)D(0) --> (7)F(1,2) fluorescence emission lines. Both methods provide the necessary spatial resolution in the sub-micrometre range to resolve characteristic aggregate morphologies: optically dense zones embedded in a matrix of less dense material in STXM images correspond to areas with increased Eu(III) luminescence yield in the LSLM micrographs. In the C 1s-NEXAFS of metal-loaded polyacrylic acid (PAA), used as a HA model compound, a distinct complexation effect is identified. This effect is similar to trends observed in the dense fraction of HA/metal cation aggregates. The strongest complexation effect is observed for the Zr(IV)-HA/PAA system. This effect is confirmed by quantum chemical calculations performed at the ab initio level for model complexes with different metal centres and complex geometries. Without the high spatial resolution of STXM and LSLM and without the combination of molecular modelling with experimental results, the different zones indicating a ;pseudo'-phase separation into strong complexing domains and weaker complexing domains of HA would never have been identified. This type of strategy can be used to study metal interaction with other organic material.

  4. PEROX-PURE CHEMICAL OXIDATION TECHNOLOGY PEROXIDATION SYSTEMS, INC. - APPLICATIONS ANALYSIS REPORT

    EPA Science Inventory

    This report evaluates the perox-pure™ chemical oxidation technology’s ability to remove volatile organic compounds (VOC) and other organic contaminants present in liquid wastes. This report also presents economic data from the Superfund Innovative Technology Evaluation (SITE) dem...

  5. Double bond localization in minor homoallylic fatty acid methyl esters using acetonitrile chemical ionization tandem mass spectrometry.

    PubMed

    Michaud, Anthony L; Diau, Guan-Yeu; Abril, Reuben; Brenna, J Thomas

    2002-08-15

    Double bond position in natural fatty acids is critical to biochemical properties, however, common instrument-based methods cannot locate double bonds in fatty acid methyl esters (FAME), the predominant analysis form of fatty acids. A recently described mass spectrometry (MS) method for locating double bonds in FAME is reported here for the analysis of minor (<1%) components of real FAME mixtures derived from three natural sources; golden algae (Schizochytrium sp.), primate brain white matter, and transgenic mouse liver. Acetonitrile chemical ionization tandem MS was used to determine double bond positions in 39 FAME, most at concentrations well below 1% of all fatty acid methyl esters. FAME identified in golden algae are 14:1n-6, 14:3n-3, 16:1n-7, 16:2n-6, 16:3n-6, 16:3n-3, 16:4n-3, 18:2n-7, 18:3n-7, 18:3n-8, 18:4n-3, 18:4n-5, 20:3n-7, 20:4n-3, 20:4n-5, 20:4n-7, 20:5n-3, and 22:4n-9. Additional FAME identified in primate brain white matter are 20:1n-7, 20:1n-9, 20:2n-7, 20:2n-9, 22:1n-7, 22:1n-9, 22:1n-13, 22:2n-6, 22:2n-7, 22:2n-9, 22:3n-6, 22:3n-7, 22:3n-9, 22:4n-6, 24:1n-7, 24:1n-9, and 24:4n-6. Additional FAME identified in mouse liver are 26:5n-6, 26:6n-3, 28:5n-6, and 28:6n-3. The primate brain 22:3n-7 and algae 18:4n-5 are novel fatty acids. These results demonstrate the usefulness of the technique for analysis of real samples. Tables are presented to aid in interpretation of acetonitrile CIMS/MS spectra.

  6. First Chemical Feature Based Pharmacophore Modeling of Potent Retinoidal Retinoic Acid Metabolism Blocking Agents (RAMBAs): Identification of Novel RAMBA Scaffolds

    PubMed Central

    Purushottamachar, Puranik; Patel, Jyoti B.; Gediya, Lalji K; Clement, Omoshile O.; Njar, Vincent C. O.

    2011-01-01

    The first three-dimensional (3D) pharmacophore model was developed for potent retinoidal retinoic acid metabolism blocking agents (RAMBAs) with IC50 values ranging from 0.0009 to 5.84 nM. The seven common chemical features in these RAMBAs as deduced by the Catalyst/HipHop program include five hydrophobic groups (hydrophobes), one hydrogen bond acceptor (HBA) and one ring aromatic group. Using the pharmacophore model as a 3D search query against NCI and Maybridge conformational Catalyst formatted databases; we retrieved several compounds with different structures (scaffolds) as hits. Twenty one retrieved hits were tested for RAMBA activity at 100 nM concentration. The most potent of these compounds, NCI10308597 and HTS01914 showed inhibitory potencies less (54.7% and 53.2%, respectively, at 100 nM) than those of our best previously reported RAMBAs VN/12-1 and VN/14-1 (90% and 86%, respectively, at 100 nM). Docking studies using a CYP26A1 homology model revealed that our most potent RAMBAs showed similar binding to the one observed for a series of RAMBAs reported previously by others. Our data shows the potential of our pharmacophore model in identifying structurally diverse and potent RAMBAs. Further refinement of the model and searches of other robust databases is currently in progress with a view to identifying and optimizing new leads. PMID:22130607

  7. Generalized chemical route to develop fatty acid capped highly dispersed semiconducting metal sulphide nanocrystals

    SciTech Connect

    Patel, Jayesh D.; Mighri, Frej; Ajji, Abdellah

    2012-08-15

    Highlights: ► Chemical route for the synthesis of OA-capped CdS, ZnS and PbS at low temperature. ► Synthesized nanocrystals via thermolysis of their metal–oleate complexes. ► Size quantized nanocrystals were highly dispersed and stable at room temperature. -- Abstract: This work deals with the synthesis of highly dispersed semiconducting nanocrystals (NCs) of cadmium sulphide (CdS), zinc sulphide (ZnS) and lead sulphide (PbS) through a simple and generalized process using oleic acid (OA) as surfactant. To synthesize these NCs, metal–oleate (M–O) complexes were obtained from the reaction at 140 °C between metal acetates and OA in hexanes media. Subsequently, M–O complexes were sulphurized using thioacetamide at the same temperature. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) characterizations show that the synthesized products are of nanoscale-size with highly crystalline cubic phase. The optical absorption of OA-capped metal sulphide NCs confirms that their size quantization induced a large shift towards visible region. Photoluminescence (PL) spectrum of CdS NCs shows a broad band-edge emission with shallow and deep-trap emissions, while PL spectrum of ZnS NCs reveals a broad emission due to defects states on the surface. The thermogravimetric analysis (TGA) and Fourier transform infrared (FTIR) spectroscopy indicate that fatty acid monolayers were bound strongly on the nanocrystal surface as a carboxylate and the two oxygen atoms of the carboxylate were coordinated symmetrically to the surface of the NCs. The strong binding between the fatty acid and the NCs surface enhances the stability of NCs colloids. In general, this generalized route has a great potential in developing nanoscale metal sulphides for opto-electronic devices.

  8. Light-Activated Amino Acid Transport Systems in Halobacterium halobium Envelope Vesicles: Role of Chemical and Electrical Gradients

    NASA Technical Reports Server (NTRS)

    MacDonald, Russell E.; Greene, Richard V.; Lanyi, Janos K.

    1977-01-01

    The accumulation of 20 commonly occurring L-amino acids by cell envelope vesicles of Halobacterium halobium, in response to light-induced membrane potential and an artificially created sodium gradient, has been studied. Nineteen of these amino acids are actively accumulated under either or both of these conditions. Glutamate is unique in that its uptake is driven only by a chemical gradient for sodium. Amino acid concentrations at half-maximal uptake rates (Km) and maximal transport rates (V(sub max) have been determined for the uptake of all 19 amino acids. The transport systems have been partially characterized with respect to groups of amino acids transported by common carriers, cation effects, and relative response to the electrical and chemical components of the sodium gradient, the driving forces for uptake. The data presented clearly show that the carrier systems, which are responsible for uptake of individual amino acids, are as variable in their properties as those found in other organisms, i. e., some are highly specific for individual amino acids, some transport several amino acids competitively, some are activated by a chemical gradient of sodium only, and some function also in the complete absence of such a gradient. For all amino acids, Na(+) and K(+) are both required for maximal rate of uptake. The carriers for L-leucine and L-histidine are symmetrical in that these amino acids are transported in both directions across the vesicle membrane. It is suggested that coupling of substrate transport to metabolic energy via transient ionic gradients may be a general phenomenon in procaryotes.

  9. Thermodynamic and kinetic aspects of surface acidity. Progress report

    SciTech Connect

    Dumesic, J.A.

    1992-04-01

    Our research in the general area of acid catalysis involves the characterization of solid acidity and the corresponding assessment of catalytic performance of acidic materials. Acid characterization studies are required to provide essential information about the type of acid site (i.e., Lewis versus Bronsted), the strength of the sites, and the mobility of molecules adsorbed on the acid sites. An accurate measure of acid strength is given by the heat of adsorption of a basic probe molecule on the acid site. A thermodynamic representation of the mobility of adsorbed species on these sites is given by the entropy of adsorption. Important techniques used in these acid site characterization studies include microcalorimetry, thermogravimetric measurements, temperature programmed desorption, infrared spectroscopy and solid state nuclear magnetic resonance. The combination of these acid site characterization studies with reaction kinetics measurements of selected catalytic processes allows the elucidation of possible relationships between surface thermodynamic and kinetic properties of acidic sites. Such relationships are important milestones in formulating effective strategies for the effective utilization of solid acid catalysts. Current work in this direction involves methylamine syntheses over various zeolites, and the basic probe molecules employed include ammonia, methanol, water and mono-, di- and tri-methylamines. 31 refs., 18 figs., 1 tab.

  10. Comparative analysis of some essential amino acids and available lysine in Acacia colei and A. tumida seeds using chemical methods and an amino acid analyzer.

    PubMed

    Falade, Olumuyiwa S; Adewusi, Steve R A

    2013-01-01

    Methionine, cysteine, tryptophan, and available lysine were determined in Acacia colei and A. tumida seeds and some cereals using chemical methods, and the results were compared to those obtained using an amino acid analyzer. Ba(OH)2 hydrolysis gave the best result of the three methods of hydrolysis (acid, base, and enzyme) tried. Oxidized methionine, cysteine, and tryptophan were not detected, but S-carboxyethylcysteine was estimated as cysteine by the chemical methods, thus overestimating cysteine's content in Acacia seeds. Tryptophan and methionine were higher in cereals than in Acacia seeds, while the level of cysteine and available lysine was higher in Acacia seeds than in cereals. These results agreed with values obtained using the amino acid analyzer and could therefore be used in low budget laboratories.

  11. 2004 Toxic Chemical Release Inventory Report for the Emergency Planning and Community Right-to-Know Act of 1986, Title III, Section 313

    SciTech Connect

    M. Stockton

    2006-01-15

    Section 313 of Emergency Planning and Community Right-to-Know Act (EPCRA) specifically requires facilities to submit a Toxic Chemical Release Inventory Report (Form R) to the U.S. Environmental Protection Agency (EPA) and state agencies if the owners and operators manufacture, process, or otherwise use any of the listed toxic chemicals above listed threshold quantities. EPA compiles this data in the Toxic Release Inventory database. Form R reports for each chemical over threshold quantities must be submitted on or before July 1 each year and must cover activities that occurred at the facility during the previous year. For reporting year 2004, Los Alamos National Laboratory (LANL or the Laboratory) submitted Form R reports for lead compounds, nitric acid, and nitrate compounds as required under the EPCRA Section 313. No other EPCRA Section 313 chemicals were used in 2004 above the reportable thresholds. This document provides a description of the evaluation of EPCRA Section 313 chemical use and threshold determinations for LANL for calendar year 2004, as well as background information about data included on the Form R reports.

  12. State acid rain permitting programs: A report from EPA

    SciTech Connect

    Miller, R.L.

    1995-12-31

    States and EPA are laying the groundwork for state acid rain permitting in Phase 2 of the Acid Rain Program. Early indications suggest a high degree of state compliance with the acid rain permitting requirements of the Acid Rain Program. Phase 2 acid rain permitting forms have been revised and are available on EPA`s Technology Transfer Network. EPA has developed a policy and rationale concerning submission of Phase 2 permit applications, as well as suggested state timing and methodology regarding adoption of 40 CFR Part 76, the NO{sub x} regulation.

  13. Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: July-September 1999

    SciTech Connect

    Jubin, R.T.

    2001-04-16

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July-September 1999. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within ten major areas of research: Hot Cell Operations, Process Chemistry, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Physical Properties Research, Biochemical Engineering, Separations and Materials Synthesis, Fluid Structures and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information. Activities conducted within the area of the Cell Operations involved the testing of two continuously stirred tank reactors in series to evaluate the Savannah River-developed process of small-tank tetraphenylborate precipitation to remove cesium, strontium and transuranics from supernatant. Within the area of Process Chemistry, various topics related to solids formation in process solutions from caustic treatment of Hanford sludge were addressed. Saltcake dissolution efforts continued, including the development of a predictive algorithm. New initiatives for the section included modeling activities centered on detection of hydrogen in {sup 233}U storage wells and wax formation in petroleum mixtures, as well as support for the Spallation Neutron Source (investigation of transmutation products formed during operation). Other activities involved in situ grouting and evaluation of options for use (i.e., as castable shapes) of depleted uranium. In a continuation of activities of the preceding

  14. Chemical durability of glaze on Zsolnay architectural ceramics (Budapest, Hungary) in acid solutions

    NASA Astrophysics Data System (ADS)

    Baricza, Ágnes; Bajnóczi, Bernadett; May, Zoltán; Tóth, Mária; Szabó, Csaba

    2015-04-01

    Zsolnay glazed architectural ceramics are among the most famous Hungarian ceramics, however, there is no profound knowledge about the deterioration of these building materials. The present study aims to reveal the influence of acidic solutions in the deterioration of Zsolnay ceramics. The studied ceramics are glazed roof tiles, which originate from two buildings in Budapest: one is located in the densely built-up city centre with high traffic rate and another one is in a city quarter with moderate traffic and more open space. The roof tiles represent the construction and the renovation periods of the buildings. The ceramics were mainly covered by lead glazes in the construction period and mainly alkali glazes in the renovation periods. The glaze of the tiles were coloured with iron (for yellow glaze) or chromium/copper/iron (for green glazes) in the case of the building located in the city centre, whereas cobalt was used as colorant and tin oxide as opacifier for the blue glaze of the ceramics of the other building. Six tiles were selected from each building. Sulphuric acid (H2SO4) solutions of pH2 and pH4 were used to measure the durability of the glazes up to 14 days at room temperature. The surfaces of the glazed ceramics after the treatment were measured by X-ray diffraction, Raman spectroscopy and SEM-EDS techniques to determine the precipitated phases on the surface of the glaze. Electron microprobe analysis was used to quantitatively characterise phases found and to determine the chemical composition of the treated glaze. The recovered sulphuric acid solutions were measured with ICP-OES technique in order to quantify the extent of the ion exchange between the glaze and the solutions. There is a significant difference in the dissolution rates in the treatments with sulphuric acid solutions of pH2 and pH4, respectively. The solution of pH2 induced greater ion exchange (approx. 7-10 times) from the glaze compared to the solution of pH4. Alkali and alkali earth

  15. DEPOSITION TANK CORROSION TESTING FOR ENHANCED CHEMICAL CLEANING POST OXALIC ACID DESTRUCTION

    SciTech Connect

    Mickalonis, J.

    2011-08-29

    An Enhanced Chemical Cleaning (ECC) process is being developed to aid in the high level waste tank closure at the Savannah River Site. The ECC process uses an advanced oxidation process (AOP) to destroy the oxalic acid that is used to remove residual sludge from a waste tank prior to closure. The AOP process treats the dissolved sludge with ozone to decompose the oxalic acid through reactions with hydroxyl radicals. The effluent from this oxalic acid decomposition is to be sent to a Type III waste tank and may be corrosive to these tanks. As part of the hazardous simulant testing that was conducted at the ECC vendor location, corrosion testing was conducted to determine the general corrosion rate for the deposition tank and to assess the susceptibility to localized corrosion, especially pitting. Both of these factors impact the calculation of hydrogen gas generation and the structural integrity of the tanks, which are considered safety class functions. The testing consisted of immersion and electrochemical testing of A537 carbon steel, the material of construction of Type III tanks, and 304L stainless steel, the material of construction for transfer piping. Tests were conducted in solutions removed from the destruction loop of the prototype ECC set up. Hazardous simulants, which were manufactured at SRNL, were used as representative sludges for F-area and H-area waste tanks. Oxalic acid concentrations of 1 and 2.5% were used to dissolve the sludge as a feed to the ECC process. Test solutions included the uninhibited effluent, as well as the effluent treated for corrosion control. The corrosion control options included mixing with an inhibited supernate and the addition of hydroxide. Evaporation of the uninhibited effluent was also tested since it may have a positive impact on reducing corrosion. All corrosion testing was conducted at 50 C. The uninhibited effluent was found to increase the corrosion rate by an order of magnitude from less than 1 mil per year (mpy

  16. CYP94A1, a plant cytochrome P450-catalyzing fatty acid omega-hydroxylase, is selectively induced by chemical stress in Vicia sativa seedlings.

    PubMed

    Benveniste, Irène; Bronner, Roberte; Wang, Yong; Compagnon, Vincent; Michler, Pierre; Schreiber, Lukas; Salaün, Jean-Pierre; Durst, Francis; Pinot, Franck

    2005-08-01

    CYP94A1 is a cytochrome P450 (P450) catalyzing fatty acid (FA) omega-hydroxylation in Vicia sativa seedlings. To study the physiological role of this FA monooxygenase, we report here on its regulation at the transcriptional level (Northern blot). Transcripts of CYP94A1, as those of two other P450-dependent FA hydroxylases (CYP94A2 and CYP94A3) from V. sativa, are barely detectable during the early development of the seedlings. CYP94A1 transcripts, in contrast to those of the two other isoforms, are rapidly (less than 20 min) and strongly (more than 100 times) enhanced after treatment by clofibrate, an hypolipidemic drug in animals and an antiauxin (p-chlorophenoxyisobutyric acid) in plants, by auxins (2,4-dichlorophenoxyacetic acid and indole-3-acetic acid), by an inactive auxin analog (2,3-dichlorophenoxyacetic acid), and also by salicylic acid. All these compounds activate CYP94A1 transcription only at high concentrations (50-500 microM range). In parallel, these high levels of clofibrate and auxins modify seedling growth and development. Therefore, the expression of CYP94A1 under these conditions and the concomitant morphological and cytological modifications would suggest the implication of this P450 in a process of plant defense against chemical injury.

  17. Efficient conversion of polyamides to ω-hydroxyalkanoic acids: a new method for chemical recycling of waste plastics.

    PubMed

    Kamimura, Akio; Ikeda, Kosuke; Suzuki, Shuzo; Kato, Kazunari; Akinari, Yugo; Sugimoto, Tsunemi; Kashiwagi, Kohichi; Kaiso, Kouji; Matsumoto, Hiroshi; Yoshimoto, Makoto

    2014-09-01

    An efficient transformation of polyamides to ω-hydroxy alkanoic acids was achieved. Treatment of nylon-12 with supercritical MeOH in the presence of glycolic acid gave methyl ω-hydroxydodecanoate in 85% yield and the alcohol/alkene selectivity in the product was enhanced to up to 9.5:1. The use of (18)O-enriched acetic acid for the reaction successfully introduced an (18)O atom at the alcoholic OH group in the product. This strategy may provide a new and economical solution for the chemical recycling of waste plastics.

  18. Chemical, crystallographic and stable isotopic properties of alunite and jarosite from acid-Hypersaline Australian lakes

    USGS Publications Warehouse

    Alpers, C.N.; Rye, R.O.; Nordstrom, D.K.; White, L.D.; King, B.-S.

    1992-01-01

    Chemical, crystallographic and isotopic analyses were made on samples containing alunite and jarosite from the sediments of four acid, hypersaline lakes in southeastern and southwestern Australia. The alunite and jarosite are K-rich with relatively low Na contents based on chemical analysis and determination of unit cell dimensions by powder X-ray diffraction. Correcting the chemical analyses of fine-grained mineral concentrates from Lake Tyrrell, Victoria, for the presence of halite, silica and poorly crystalline aluminosilicates, the following formulas indicate best estimates for solid-solution compositions: for alunite, K0.87Na0.04(H3O)0.09(Al 0.92Fe0.08)3(SO4)2(OH) 6 and for jarosite, K0.89Na0.07(H3O)0.04(Fe 0.80Al0.20)3(SO4)2(OH) 6. The ??D-values of alunite are notably larger than those for jarosite from Lake Tyrrell and it appears that the minerals have closely approached hydrogen isotope equilibrium with the acidic regional groundwaters. The ??D results are consistent with a fractionation ???60-70??? between alunite and jarosite observed in other areas. However, interpretation of ??D results is complicated by large variability in fluid ??DH2O from evaporation, mixing and possible ion hydration effects in the brine. ??D-values of water derived from jarosite by step-wise heating tend to be smaller at 250??C, at which temperature hydronium and other non-hydroxyl water is liberated, than at 550??C, where water is derived from the hydroxyl site, but the differences are not sufficiently different to invalidate measurements of total ??D obtained by conventional, single-step heating methods. ??34S-values for alunite and jarosite from the four lakes (+19.7 to +21.2??? CDT) and for aqueous sulfate from Lake Tyrrell (+18.3 to +19.8???) are close to the values for modern evaporites (+21.5 ??0.3???) and seawater (+20??0.5???) and are probably typical of seawater-derived aerosols in arid coastal environments. ??34-S-values slightly smaller than that for seawater may

  19. P-Area Acid/Caustic Basin Groundwater Monitoring Report. Fourth quarterly report and summary 1993

    SciTech Connect

    Not Available

    1994-03-01

    During fourth quarter 1993, samples from the six PAC monitoring wells at the P-Area Acid/Caustic Basin were collected and analyzed for indicator parameters, groundwater quality parameters, parameters characterizing suitability as a drinking water supply, and other constituents. Monitoring results that exceeded the final Primary Drinking Water Standards (PDWS) or the Savannah River Site (SRS) flagging criteria or turbidity standard during the quarter are discussed in this report. During fourth quarter 1993, no constituents exceeded the final PDWS. Aluminum and iron exceeded the SRS Flag 2 criteria in five wells. Manganese exceeded its Flag 2 criterion in three wells, while specific conductance exceeded its Flag 2 criterion in one well.

  20. Investigating the chemical changes of chlorogenic acids during coffee brewing: conjugate addition of water to the olefinic moiety of chlorogenic acids and their quinides.

    PubMed

    Matei, Marius Febi; Jaiswal, Rakesh; Kuhnert, Nikolai

    2012-12-12

    Coffee is one of the most popular and consumed beverages in the world and is associated with a series of benefits for human health. In this study we focus on the reactivity of chlorogenic acids, the most abundant secondary metabolites in coffee, during the coffee brewing process. We report on the hydroxylation of the chlorogenic acid cinnamoyl substituent by conjugate addition of water to form 3-hydroxydihydrocaffeic acid derivatives using a series of model compounds including monocaffeoyl and dicaffeoylquinic acids and quinic acid lactones. The regiochemistry of conjugate addition was established based on targeted tandem MS experiments. Following conjugate addition of water a reversible water elimination yielding cis-cinnamoyl derivatives accompanied by acyl migration products was observed in model systems. We also report the formation of all of these derivatives during the coffee brewing process.

  1. Long-term chemical and biological improvement in an acid mine drainage-impacted watershed.

    PubMed

    Underwood, Bruce E; Kruse, Natalie A; Bowman, Jennifer R

    2014-11-01

    Acid mine drainage (AMD) is a common result of coal and metal mining worldwide caused by weathering of metal sulfides exposed during mining. AMD typically results in low-pH, high-metal, high-conductivity water that does not support aquatic life. Chemical water quality improvement does not necessarily lead to rapid biological recovery. Little Raccoon Creek, a major tributary to Raccoon Creek in the Western Allegheny Plateau of Ohio, drains 401 km(2), has a legacy of AMD that stems from mining activities over more than a century. Since 1999, seven major passive treatments systems have been installed in the watershed to a total of over $6.5 million. This study analyzes the hourly water quality data collected at a United States Geological Survey gage station alongside trends in fish and macroinvertebrate communities. Both fish and macroinvertebrate communities have shown a statistically significant improvement in the lower reaches of Little Raccoon Creek since treatment began. Long-term chemical monitoring shows a significant increase in pH, but no significant change in conductivity. The conductivity data is well correlated with sulfate concentrations and discharge, while the pH is well correlated with net  alkalinity data, but not with discharge. Significant investment in passive treatment systems and land reclamation has decreased the percent occurrence of pH measurements below the target of 6.5 and has led to recovery of both fish and macroinvertebrate communities in the downstream reaches of Little Raccoon Creek. Long-term monitoring has proven to be a valuable tool to assess success of a high-cost remediation program.

  2. Acid base properties of cyanobacterial surfaces. II: Silica as a chemical stressor influencing cell surface reactivity

    NASA Astrophysics Data System (ADS)

    Lalonde, S. V.; Smith, D. S.; Owttrim, G. W.; Konhauser, K. O.

    2008-03-01

    Bacteria grow in complex solutions where the adsorption of aqueous species and nucleation of mineral phases on the cell surface may interfere with membrane-dependent homeostatic functions. While previous investigations have provided evidence that bacteria may alter their surface chemical properties in response to environmental stimuli, to our knowledge no effort has been made to evaluate surface compositional changes resulting from non-nutritional chemical stresses within a quantitative framework applicable to surface complexation modeling. We consider here the influence of exposure to silica on cyanobacterial surface chemistry, particularly in light of the propensity for cyanobacteria to become silicified in geothermal environments. Using data modeled from over 50 potentiometric titrations of the unsheathed cyanobacterium Anabaena sp. strain PCC 7120, we find that both abiotic geochemical and biotic biochemical-assimilatory factors have important and different effects on cell surface chemistry. Changes in functional group distribution that resulted from growth by different nitrogen assimilation pathways were greatest in the absence of dissolved silica and less important in its presence. Furthermore, out of the three nitrogen assimilation pathways investigated, in terms of surface functional group distribution, nitrate-reducing cultures were least sensitive, and ammonium-assimilating cultures were most sensitive, to changes in media silica concentration. When functional group distributions were plotted as a function of silica concentration, it appears that, with higher silica concentrations, basic groups (p Ka > 7) increase in concentration relative to acidic groups (p Ka < 7), and the total ligand densities (on a per-weight basis) decreased. The results imply a decrease in both the magnitude and density of surface charge as the net result of growth at high silica concentrations. Thus, Anabaena sp. appears to actively respond to growth in silicifying solutions by

  3. Herbivore induction of jasmonic acid and chemical defences reduce photosynthesis in Nicotiana attenuata.

    PubMed

    Nabity, Paul D; Zavala, Jorge A; DeLucia, Evan H

    2013-01-01

    Herbivory initiates a shift in plant metabolism from growth to defence that may reduce fitness in the absence of further herbivory. However, the defence-induced changes in carbon assimilation that precede this reallocation in resources remain largely undetermined. This study characterized the response of photosynthesis to herbivore induction of jasmonic acid (JA)-related defences in Nicotiana attenuata to increase understanding of these mechanisms. It was hypothesized that JA-induced defences would immediately reduce the component processes of photosynthesis upon attack and was predicted that wild-type plants would suffer greater reductions in photosynthesis than plants lacking JA-induced defences. Gas exchange, chlorophyll fluorescence, and thermal spatial patterns were measured together with the production of defence-related metabolites after attack and through recovery. Herbivore damage immediately reduced electron transport and gas exchange in wild-type plants, and gas exchange remained suppressed for several days after attack. The sustained reductions in gas exchange occurred concurrently with increased defence metabolites in wild-type plants, whereas plants lacking JA-induced defences suffered minimal suppression in photosynthesis and no increase in defence metabolite production. This suppression in photosynthesis occurred only after sustained defence signalling and defence chemical mobilization, whereas a short bout of feeding damage only transiently altered components of photosynthesis. It was identified that lipoxygenase signalling interacted with photosynthetic electron transport and that the resulting JA-related metabolites reduced photosynthesis. These data represent a metabolic cost to mounting a chemical defence against herbivory and link defence-signalling networks to the differential effects of herbivory on photosynthesis in remaining leaf tissues in a time-dependent manner.

  4. Chemical composition and minerals in pyrite ash of an abandoned sulphuric acid production plant.

    PubMed

    Oliveira, Marcos L S; Ward, Colin R; Izquierdo, Maria; Sampaio, Carlos H; de Brum, Irineu A S; Kautzmann, Rubens M; Sabedot, Sydney; Querol, Xavier; Silva, Luis F O

    2012-07-15

    The extraction of sulphur produces a hematite-rich waste, known as roasted pyrite ash, which contains significant amounts of environmentally sensitive elements in variable concentrations and modes of occurrence. Whilst the mineralogy of roasted pyrite ash associated with iron or copper mining has been studied, as this is the main source of sulphur worldwide, the mineralogy, and more importantly, the characterization of submicron, ultrafine and nanoparticles, in coal-derived roasted pyrite ash remain to be resolved. In this work we provide essential data on the chemical composition and nanomineralogical assemblage of roasted pyrite ash. XRD, HR-TEM and FE-SEM were used to identify a large variety of minerals of anthropogenic origin. These phases result from highly complex chemical reactions occurring during the processing of coal pyrite of southern Brazil for sulphur extraction and further manufacture of sulphuric acid. Iron-rich submicron, ultrafine and nanoparticles within the ash may contain high proportions of toxic elements such as As, Se, U, among others. A number of elements, such as As, Cr, Cu, Co, La, Mn, Ni, Pb, Sb, Se, Sr, Ti, Zn, and Zr, were found to be present in individual nanoparticles and submicron, ultrafine and nanominerals (e.g. oxides, sulphates, clays) in concentrations of up to 5%. The study of nanominerals in roasted pyrite ash from coal rejects is important to develop an understanding on the nature of this by-product, and to assess the interaction between emitted nanominerals, ultra-fine particles, and atmospheric gases, rain or body fluids, and thus to evaluate the environmental and health impacts of pyrite ash materials.

  5. Light-induced nitrous acid (HONO) production from NO2 heterogeneous reactions on household chemicals

    NASA Astrophysics Data System (ADS)

    Gómez Alvarez, Elena; Sörgel, Matthias; Gligorovski, Sasho; Bassil, Sabina; Bartolomei, Vincent; Coulomb, Bruno; Zetzsch, Cornelius; Wortham, Henri

    2014-10-01

    Nitrous acid (HONO) can be generated in various indoor environments directly during combustion processes or indirectly via heterogeneous NO2 reactions with water adsorbed layers on diverse surfaces. Indoors not only the concentrations of NO2 are higher but the surface to volume (S/V) ratios are larger and therefore the potential of HONO production is significantly elevated compared to outdoors. It has been claimed that the UV solar light is largely attenuated indoors. Here, we show that solar light (λ > 340 nm) penetrates indoors and can influence the heterogeneous reactions of gas-phase NO2 with various household surfaces. The NO2 to HONO conversion mediated by light on surfaces covered with domestic chemicals has been determined at atmospherically relevant conditions i.e. 50 ppb NO2 and 50% RH. The formation rates of HONO were enhanced in presence of light for all the studied surfaces and are determined in the following order: 1.3·109 molecules cm-2 s-1 for borosilicate glass, 1.7·109 molecules cm-2 s-1 for bathroom cleaner, 1.0·1010 molecules cm-2 s-1 on alkaline detergent (floor cleaner), 1.3·1010 molecules cm-2 s-1 for white wall paint and 2.7·1010 molecules cm-2 s-1 for lacquer. These results highlight the potential of household chemicals, used for cleaning purposes to generate HONO indoors through light-enhanced NO2 heterogeneous reactions. The results obtained have been applied to predict the timely evolution of HONO in a real indoor environment using a dynamic mass balance model. A steady state mixing ratio of HONO has been estimated at 1.6 ppb assuming a contribution from glass, paint and lacquer and considering the photolysis of HONO as the most important loss process.

  6. Chemically defined media and auxotrophy of the prolific l-lactic acid producer Lactococcus lactis IO-1.

    PubMed

    Machii, Miki; Watanabe, Satoru; Zendo, Takeshi; Chibazakura, Taku; Sonomoto, Kenji; Shimizu-Kadota, Mariko; Yoshikawa, Hirofumi

    2013-05-01

    Two chemically defined media, CDM-1G and CDM-1X, that use glucose and xylose as carbon sources, respectively, were prepared for Lactococcus lactis strain IO-1. The maximal cell density at 600 nm in CDM-1G exceeded 2. Omission growth experiments indicated that IO-1 is auxotrophic for 2 vitamins and 6 amino acids.

  7. Acidification in the Adirondacks: Defining the Biota in trophic Levels of 30 Chemically Diverse Acid-Impacted Lakes

    EPA Science Inventory

    The Adirondack Mountains in New York State have a varied surficial geology and chemically diverse surface waters that are among the most impacted by acid deposition in the U.S. No single Adirondack investigation has been comprehensive in defining the effects of acidification on ...

  8. Chemical compositions, free amino acid contents and antioxidant activities of Hanwoo (Bos taurus coreanae) beef by cut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to evaluate chemical compositions, free amino acid contents, and antioxidant activities of different cuts of Hanwoo (Bos taurus coreanae) beef. Beef preferences and prices in the Korean market depend on cut. Therefore, comparisons were made between high-preference (gr...

  9. Stereoregularity of poly (lactic acid) and their model compounds as studied by NMR and quantum chemical calculations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to understand the origin of the tacticity splitting in the NMR spectrum of poly(lactic acid), monomer model compound and dimer model compounds (both isotactic and syndiotactic) were synthesized and their 1H and 13C NMR chemical shifts observed. Two energetically stable conformations were o...

  10. Amino Acid Proximities in Two Sup35 Prion Strains Revealed by Chemical Cross-linking*

    PubMed Central

    Wong, Shenq-Huey; King, Chih-Yen

    2015-01-01

    Strains of the yeast prion [PSI] are different folding patterns of the same Sup35 protein, which stacks up periodically to form a prion fiber. Chemical cross-linking is employed here to probe different fiber structures assembled with a mutant Sup35 fragment. The photo-reactive cross-linker, p-benzoyl-l-phenylalanine (pBpa), was biosynthetically incorporated into bacterially prepared recombinant Sup(1–61)-GFP, containing the first 61 residues of Sup35, followed by the green fluorescent protein. Four methionine substitutions and two alanine substitutions were introduced at fixed positions in Sup(1–61) to allow cyanogen bromide cleavage to facilitate subsequent mass spectrometry analysis. Amyloid fibers of pBpa and Met/Ala-substituted Sup(1–61)-GFP were nucleated from purified yeast prion particles of two different strains, namely VK and VL, and shown to faithfully transmit specific strain characteristics to yeast expressing the wild type Sup35 protein. Intra- and intermolecular cross-linking were distinguished by tandem mass spectrometry analysis on fibers seeded from solutions containing equal amounts of 14N- and 15N-labeled protein. Fibers propagating the VL strain type exhibited intra- and intermolecular cross-linking between amino acid residues 3 and 28, as well as intra- and intermolecular linking between 32 and 55. Inter- and intramolecular cross-linking between residues 32 and 55 were detected in fibers propagating the VK strain type. Adjacencies of amino acid residues in space revealed by cross-linking were used to constrain possible chain folds of different [PSI] strains. PMID:26265470

  11. Amino Acid Proximities in Two Sup35 Prion Strains Revealed by Chemical Cross-linking.

    PubMed

    Wong, Shenq-Huey; King, Chih-Yen

    2015-10-09

    Strains of the yeast prion [PSI] are different folding patterns of the same Sup35 protein, which stacks up periodically to form a prion fiber. Chemical cross-linking is employed here to probe different fiber structures assembled with a mutant Sup35 fragment. The photo-reactive cross-linker, p-benzoyl-l-phenylalanine (pBpa), was biosynthetically incorporated into bacterially prepared recombinant Sup(1-61)-GFP, containing the first 61 residues of Sup35, followed by the green fluorescent protein. Four methionine substitutions and two alanine substitutions were introduced at fixed positions in Sup(1-61) to allow cyanogen bromide cleavage to facilitate subsequent mass spectrometry analysis. Amyloid fibers of pBpa and Met/Ala-substituted Sup(1-61)-GFP were nucleated from purified yeast prion particles of two different strains, namely VK and VL, and shown to faithfully transmit specific strain characteristics to yeast expressing the wild type Sup35 protein. Intra- and intermolecular cross-linking were distinguished by tandem mass spectrometry analysis on fibers seeded from solutions containing equal amounts of (14)N- and (15)N-labeled protein. Fibers propagating the VL strain type exhibited intra- and intermolecular cross-linking between amino acid residues 3 and 28, as well as intra- and intermolecular linking between 32 and 55. Inter- and intramolecular cross-linking between residues 32 and 55 were detected in fibers propagating the VK strain type. Adjacencies of amino acid residues in space revealed by cross-linking were used to constrain possible chain folds of different [PSI] strains.

  12. Perfluorinated acids as novel chemical tracers of global circulation of ocean waters.

    PubMed

    Yamashita, Nobuyoshi; Taniyasu, Sachi; Petrick, Gert; Wei, Si; Gamo, Toshitaka; Lam, Paul K S; Kannan, Kurunthachalam

    2008-01-01

    Perfluorinated acids (PFAs) such as perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) are global environmental contaminants. The physicochemical properties of PFAs are unique in that they have high water solubilities despite the low reactivity of carbon-fluorine bond, which also imparts high stability in the environment. Because of the high water solubilities, the open-ocean water column is suggested to be the final sink for PFOS and PFOA. However, little is known on the distribution of PFAs in the oceans around the world. Here we describe the horizontal (spatial) and vertical distribution of PFAs in ocean waters worldwide. PFOS and PFOA concentrations in the North Atlantic Ocean ranged from 8.6 to 36pg l(-1) and from 52 to 338pg l(-1), respectively, whereas the corresponding concentrations in the Mid Atlantic Ocean were 13-73pg l(-1) and 67-439pg l(-1). These were completely different from the surface waters of the South Pacific Ocean and the Indian Ocean (overall range of <5-11pg l(-1) for PFOS and PFOA). Vertical profiles of PFAs in the marine water column were associated with the global ocean circulation theory. Vertical profiles of PFAs in water columns from the Labrador Sea reflected the influx of the North Atlantic Current in surface waters, the Labrador Current in subsurface waters, and the Denmark Strait Overflow Water in deep layers below 2000m. Striking differences in the vertical and spatial distribution of PFAs, depending on the oceans, suggest that these persistent acids can serve as useful chemical tracers to allow us to study oceanic transportation by major water currents. The results provide evidence that PFA concentrations and profiles in the oceans adhere to a pattern consistent with the global "Broecker's Conveyor Belt" theory of open ocean water circulation.

  13. Quantum Chemical Benchmarking, Validation, and Prediction of Acidity Constants for Substituted Pyridinium Ions and Pyridinyl Radicals.

    PubMed

    Keith, John A; Carter, Emily A

    2012-09-11

    Sensibly modeling (photo)electrocatalytic reactions involving proton and electron transfer with computational quantum chemistry requires accurate descriptions of protonated, deprotonated, and radical species in solution. Procedures to do this are generally nontrivial, especially in cases that involve radical anions that are unstable in the gas phase. Recently, pyridinium and the corresponding reduced neutral radical have been postulated as key catalysts in the reduction of CO2 to methanol. To assess practical methodologies to describe the acid/base chemistry of these species, we employed density functional theory (DFT) in tandem with implicit solvation models to calculate acidity constants for 22 substituted pyridinium cations and their corresponding pyridinyl radicals in water solvent. We first benchmarked our calculations against experimental pyridinium deprotonation energies in both gas and aqueous phases. DFT with hybrid exchange-correlation functionals provide chemical accuracy for gas-phase data and allow absolute prediction of experimental pKas with unsigned errors under 1 pKa unit. The accuracy of this economical pKa calculation approach was further verified by benchmarking against highly accurate (but very expensive) CCSD(T)-F12 calculations. We compare the relative importance and sensitivity of these energies to selection of solvation model, solvation energy definitions, implicit solvation cavity definition, basis sets, electron densities, model geometries, and mixed implicit/explicit models. After determining the most accurate model to reproduce experimentally-known pKas from first principles, we apply the same approach to predict pKas for radical pyridinyl species that have been proposed relevant under electrochemical conditions. This work provides considerable insight into the pitfalls using continuum solvation models, particularly when used for radical species.

  14. Chemical Biodynamics Division: Annual report, October 1, 1985-September 30, 1986

    SciTech Connect

    Not Available

    1986-10-01

    The research in the Laboratory of Chemical Biodynamics is almost entirely fundamental research. The biological research component is strongly dominated by a long term interest in two main themes which make up our Structural Biology Program. The first interest has to do with understanding the molecular dynamics of photosynthesis. The Laboratory's investigators are studying the various components that make up the photosynthetic reaction center complexes in many different organisms. This work not only involves understanding the kinetics of energy transfer and storage in plants, but also includes studies to work out how photosynthetic cells regulate the expression of genes encoding the photosynthetic apparatus. The second biological theme is a series of investigations into the relationship between structure and function in nucleic acids. Our basic mission in this program is to couple our chemical and biophysical expertise to understand how not only the primary structure of nucleic acids, but also higher levels of structure including interactions with proteins and other nucleic acids regulate the functional activity of genes. In the chemical sciences work in the Laboratory, our investigators are increasing our understanding of the fundamental chemistry of electronically excited molecules, a critical dimension of every photosynthetic energy storage process. We are developing approaches not only toward the utilization of sophisticated chemistry to store photon energy, but also to develop systems that can emulate the photosynthetic apparatus in the trapping and transfer of photosynthetic energy.

  15. Chemical Reaction between Boric Acid and Phosphine Indicates Boric Acid as an Antidote for Aluminium Phosphide Poisoning

    PubMed Central

    Soltani, Motahareh; Shetab-Boushehri, Seyed F.; Shetab-Boushehri, Seyed V.

    2016-01-01

    Objectives: Aluminium phosphide (AlP) is a fumigant pesticide which protects stored grains from insects and rodents. When it comes into contact with moisture, AlP releases phosphine (PH3), a highly toxic gas. No efficient antidote has been found for AlP poisoning so far and most people who are poisoned do not survive. Boric acid is a Lewis acid with an empty p orbital which accepts electrons. This study aimed to investigate the neutralisation of PH3 gas with boric acid. Methods: This study was carried out at the Baharlou Hospital, Tehran University of Medical Sciences, Tehran, Iran, between December 2013 and February 2014. The volume of released gas, rate of gas evolution and changes in pH were measured during reactions of AlP tablets with water, acidified water, saturated boric acid solution, acidified saturated boric acid solution, activated charcoal and acidified activated charcoal. Infrared spectroscopy was used to study the resulting probable adduct between PH3 and boric acid. Results: Activated charcoal significantly reduced the volume of released gas (P <0.01). Although boric acid did not significantly reduce the volume of released gas, it significantly reduced the rate of gas evolution (P <0.01). A gaseous adduct was formed in the reaction between pure AlP and boric acid. Conclusion: These findings indicate that boric acid may be an efficient and non-toxic antidote for PH3 poisoning. PMID:27606109

  16. Predictability of idiosyncratic drug toxicity risk for carboxylic acid-containing drugs based on the chemical stability of acyl glucuronide.

    PubMed

    Sawamura, Ryoko; Okudaira, Noriko; Watanabe, Kengo; Murai, Takahiro; Kobayashi, Yoshimasa; Tachibana, Masaya; Ohnuki, Takashi; Masuda, Kayoko; Honma, Hidehito; Kurihara, Atsushi; Okazaki, Osamu

    2010-10-01

    Acyl glucuronides (AGs) formed from carboxylic acid-containing drugs have been considered to be a cause of idiosyncratic drug toxicity (IDT). Chemical stability of AGs is supposed to relate to their reactivity. In this study, the half-lives of 21 AGs of carboxylic drugs in potassium phosphate buffer (KPB), human serum albumin (HSA) solution, and human fresh plasma were analyzed in relation to the IDT risk derived from these drugs. The carboxylic drugs were classified into three safety categories of "safe," "warning," and "withdrawn" in terms of their IDT risk. As for the results, the half-lives of AGs in KPB correlated with the IDT risk better than those in HSA solution or in human fresh plasma with regard to the separation of the safe drugs from the warning drugs or the withdrawn drugs. In KPB, whereas the half-lives in the safe category were 7.2 h or longer, those in the withdrawn category were 1.7 h or shorter. The classification value of the half-life in KPB, which separated the safe drugs from the withdrawn drugs was calculated to be 3.6 h by regression analysis. In conclusion, this is the first report that clearly shows the relationship between the IDT risk and chemical stability of AGs in several in vitro systems. The KPB system was considered to be the best for evaluating the stability of AGs, and the classification value of the half-life in KPB serves as a useful key predictor for the IDT risk.

  17. Acidification in the Adirondacks: defining the biota in trophic levels of 30 chemically diverse acid-impacted lakes.

    PubMed

    Nierzwicki-Bauer, Sandra A; Boylen, Charles W; Eichler, Lawrence W; Harrison, James P; Sutherland, James W; Shaw, William; Daniels, Robert A; Charles, Donald F; Acker, Frank W; Sullivan, Timothy J; Momen, Bahram; Bukaveckas, Paul

    2010-08-01

    The Adirondack Mountains in New York State have a varied surficial geology and chemically diverse surface waters that are among the most impacted by acid deposition in the U.S. No single Adirondack investigation has been comprehensive in defining the effects of acidification on species diversity, from bacteria through fish, essential for understanding the full impact of acidification on biota. Baseline midsummer chemistry and community composition are presented for a group of chemically diverse Adirondack lakes. Species richness of all trophic levels except bacteria is significantly correlated with lake acid-base chemistry. The loss of taxa observed per unit pH was similar: bacterial genera (2.50), bacterial classes (1.43), phytoplankton (3.97), rotifers (3.56), crustaceans (1.75), macrophytes (3.96), and fish (3.72). Specific pH criteria were applied to the communities to define and identify acid-tolerant (pH<5.0), acid-resistant (pH 5.0-5.6), and acid-sensitive (pH>5.6) species which could serve as indicators. Acid-tolerant and acid-sensitive categories are at end-points along the pH scale, significantly different at P<0.05; the acid-resistant category is the range of pH between these end-points, where community changes continually occur as the ecosystem moves in one direction or another. The biota acid tolerance classification (batc) system described herein provides a clear distinction between the taxonomic groups identified in these subcategories and can be used to evaluate the impact of acid deposition on different trophic levels of biological communities.

  18. COMPARISON OF OXALIC ACID CLEANING RESULTS AT SRS AND HANFORD AND THE IMPACT ON ENHANCED CHEMICAL CLEANING DEPLOYMENT

    SciTech Connect

    Spires, R.; Ketusky, E.

    2010-01-05

    Waste tanks must be rendered clean enough to satisfy very rigorous tank closure requirements. During bulk waste removal, most of the radioactive sludge and salt waste is removed from the waste tank. The waste residue on the tank walls and interior components and the waste heel at the bottom of the tank must be removed prior to tank closure to render the tank clean enough to meet the regulatory requirement for tank closure. Oxalic acid has been used within the DOE complex to clean residual materials from carbon steel tanks with varying degrees of success. Oxalic acid cleaning will be implemented at both the Savannah River Site and Hanford to clean tanks and serves as the core cleaning technology in the process known as Enhanced Chemical Cleaning. Enhanced Chemical Cleaning also employs a process that decomposes the spent oxalic acid solutions. The oxalic acid cleaning campaigns that have been performed at the two sites dating back to the 1980's are compared. The differences in the waste characteristics, oxalic acid concentrations, flushing, available infrastructure and execution of the campaigns are discussed along with the impact on the effectiveness of the process. The lessons learned from these campaigns that are being incorporated into the project for Enhanced Chemical Cleaning are also explored.

  19. Highly efficient coupling of beta-substituted aminoethane sulfonyl azides with thio acids, toward a new chemical ligation reaction.

    PubMed

    Merkx, Remco; Brouwer, Arwin J; Rijkers, Dirk T S; Liskamp, Rob M J

    2005-03-17

    [reaction: see text] A highly efficient coupling of protected beta-substituted aminoethane sulfonyl azides with thio acids is reported. In the case of peptide thio acids, this method encompasses a new chemoselective ligation method. Furthermore, the resulting alpha-amino acyl sulfonamides can be alkylated with suitable electrophiles to obtain densely functionalized sulfonamide scaffolds.

  20. Case Report: Valproic Acid and Risperidone Treatment Leading to Development of Hyperammonemia and Mania

    ERIC Educational Resources Information Center

    Carlson, Teri; Reynolds, Charles A.; Caplan, Rochelle

    2007-01-01

    This case report describes two children who developed hyperammonemia together with frank manic behavior during treatment with a combination of valproic acid and risperidone. One child had been maintained on valproic acid for years and risperidone was added. In the second case, valproic acid was introduced to a child who had been treated with…

  1. Harnessing Yeast Peroxisomes for Biosynthesis of Fatty-Acid-Derived Biofuels and Chemicals with Relieved Side-Pathway Competition.

    PubMed

    Zhou, Yongjin J; Buijs, Nicolaas A; Zhu, Zhiwei; Gómez, Diego Orol; Boonsombuti, Akarin; Siewers, Verena; Nielsen, Jens

    2016-11-30

    Establishing efficient synthetic pathways for microbial production of biochemicals is often hampered by competing pathways and/or insufficient precursor supply. Compartmentalization in cellular organelles can isolate synthetic pathways from competing pathways, and provide a compact and suitable environment for biosynthesis. Peroxisomes are cellular organelles where fatty acids are degraded, a process that is inhibited under typical fermentation conditions making them an interesting workhouse for production of fatty-acid-derived molecules. Here, we show that targeting synthetic pathways to peroxisomes can increase the production of fatty-acid-derived fatty alcohols, alkanes and olefins up to 700%. In addition, we demonstrate that biosynthesis of these chemicals in the peroxisomes results in significantly decreased accumulation of byproducts formed by competing enzymes. We further demonstrate that production can be enhanced up to 3-fold by increasing the peroxisome population. The strategies described here could be used for production of other chemicals, especially acyl-CoA-derived molecules.

  2. Fresh cheese as a vehicle for polyunsaturated fatty acids integration: effect on physico-chemical, microbiological and sensory characteristics.

    PubMed

    Dal Bello, Barbara; Torri, Luisa; Piochi, Maria; Bertolino, Marta; Zeppa, Giuseppe

    2017-03-20

    Five different vegetable oils were used in the production of fresh cheese to increase the concentration of polyunsaturated fatty acids (PUFAs), particularly α-linolenic acid (ALA), the most important omega-3 fatty acid of vegetable origin. Physico-chemical and microbiological characteristics of functionalized cheeses were evaluated after 1 and 3 days of ripening at 4 °C while the consumer appreciation was evaluated in the final product at 3 days of ripening. After 3 days, the cheeses with Camelina sativa and Echium plantagineum oils added exhibited the highest retention of PUFAs (mostly ALA) compared to those with flaxseed, raspberry and blackcurrant oils. The addition of oil showed little effects on physico-chemical characteristics and also consumers' evaluation highlighted that all of the fresh cheeses were considered acceptable although those with flaxseed and raspberry oils were the most appreciated.

  3. Zirconium(IV) tungstate nanoparticles prepared through chemical co-precipitation method and its function as solid acid catalyst

    NASA Astrophysics Data System (ADS)

    Sadanandan, Manoj; Bhaskaran, Beena

    2014-08-01

    In this paper, we report the synthesis of zirconium(IV) tungstate nanoparticles, a new and efficient catalyst for the oxidation of benzyl alcohol and esterification of acetic acid with various alcohols. The nanoparticle catalyst was prepared using the room temperature chemical co-precipitation method. The catalyst was characterized with thermogravimetric and differential thermal analysis, elemental analysis, X-ray diffraction analysis (XRD), fourier transform infrared spectroscopy (FT-IR), high-resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM) and the Brunauer-Emmett-Teller (BET) surface area. The crystallite size was found to be ~20 nm as revealed by XRD, HRTEM and AFM. The Na+ exchange capacity was found to be 2.76 meq g-1 and the surface area of the compound measured using BET method was found to be 250-265 m2 g-1. The high value of ion exchange capacity indicates the presence of surface hydroxyl groups. The prepared nanoparticles have proven to be excellent catalysts for both oxidation and ester synthesis under mild reaction conditions. The mechanism of the catalytic reaction was studied as well.

  4. Toxic chemical release inventory reporting: Questions and answers (Qs&As)

    SciTech Connect

    Not Available

    1994-03-01

    On September 22, 1992, the Secretary of Energy directed the Department to participate in the Environmental Protection Agency`s (EPA) 33/50 Pollution Prevention Program and to initiate Toxic Chemical Release Inventory (TRI) reporting, pursuant to Section 313 of the Emergency Planning and Community Right-to-Know Act (EPCRA), at Department of Energy (DOE) sites. The Office of Environmental Guidance, RCRA/CERCLA Division (EH-231) issued interim guidance on March 4, 1993, entitled ``Toxic Chemical Release Inventory and 33/50 Pollution Prevention Program`` that provided instructions on implementing the Secretarial directive. As stated in the interim guidance, all DOE sites not currently reporting under EPCRA Section 313, which meet the criteria for DOE TRI reporting, will initiate reporting of all TRI chemical releases and transfers for the 1993 calendar year with the annual report due to EPA, States and a courtesy copy to EH-20 by July 1, 1994. All other DOE sites which currently report under EPCRA Section 313 will also follow the criteria for DOE TRI reporting.

  5. Thermo-chemical pretreatment of rice straw for further processing for levulinic acid production.

    PubMed

    Elumalai, Sasikumar; Agarwal, Bhumica; Sangwan, Rajender S

    2016-10-01

    A variety of pretreatment protocols for rice straw fiber reconstruction were evaluated under mild conditions (upto 0.2%wt. and 121°C) with the object of improving polymer susceptibility to chemical attack while preserving carbohydrate sugars for levulinic acid (LA) production. Each of the protocols tested significantly enhanced pretreatment recoveries of carbohydrate sugars and lignin, and a NaOH protocol showed the most promise, with enhanced carbohydrate preservation (upto 20% relative to the other protocols) and more effective lignin dissolution (upto 60%). Consequently, post-pretreatment fibers were evaluated for LA preparation using an existing co-solvent system consisting of HCl and THF, in addition supplementation of DMSO was attempted, in order to improve final product recovery. In contrast to pretreatment response, H2SO4 protocol fibers yielded highest LA conc. (21%wt. with 36% carbohydrate conversion efficiency) under the modest reaction conditions. Apparent spectroscopic analysis witnessed for fiber destruction and delocalization of inherent constituents during pretreatment protocols.

  6. Cell morphology of extrusion foamed poly(lactic acid) using endothermic chemical foaming agent.

    PubMed

    Matuana, Laurent M; Faruk, Omar; Diaz, Carlos A

    2009-12-01

    Poly(lactic acid) (PLA) was foamed with an endothermic chemical foaming agent (CFA) through an extrusion process. The effects of polymer melt flow index, CFA content, and processing speed on the cellular structures, void fraction, and cell-population density of foamed PLA were investigated. The apparent melt viscosity of PLA was measured to understand the effect of melt index on the cell morphology of foamed PLA samples. The void fraction was strongly dependent on the PLA melt index. It increased with increasing melt index, reaching a maximum value, after which it decreased. Melt index showed no significant effect on the cell-population density of foamed samples within the narrow range studied. A gas containment limit was observed in PLA foamed with CFA. Both the void fraction and cell-population density increased with an initial increase in CFA content, reached a maximum value, and then decreased as CFA content continued to increase. The processing speed also affected the morphology of PLA foams. The void fraction reached a maximum value as the extruder's screw speed increased to 40 rpm and a further increase in the processing speed tended to reduce the void fraction of foamed samples. By contrast, cell-population density increased one order of magnitude by increasing the screw speed from 20 to 120 rpm. The experimental results indicate that a homogeneous and finer cellular morphology could be successfully achieved in PLA foamed in an extrusion process with a proper combination of polymer melt flow index, CFA content, and processing speed.

  7. Chemical modification of zinc hydroxide nitrate and Zn-Al-layered double hydroxide with dicarboxylic acids.

    PubMed

    Arizaga, Gregorio Guadalupe Carbajal; Mangrich, Antonio Salvio; da Costa Gardolinski, José Eduardo Ferreira; Wypych, Fernando

    2008-04-01

    A zinc hydroxide nitrate (ZHN), Zn5(OH)8(NO3)2.2H2O, and a layered double hydroxide (LDH), Zn/Al-NO3 were doped with 0.2 mol% of Cu2+ during alkaline chemical precipitation. Both compounds were intercalated with adipate ((-)OOC(CH2)4COO(-)), azelate ((-)OOC(CH2)7COO(-)), and benzoate (C6H5COO(-)) ions through ion exchange reactions. Solid state 13C nuclear magnetic resonance spectroscopy showed only one signal of carboxylic carbon for adipate and azelate intercalated into LDH, indicating that the carboxylic ends of both acids were equivalent, whereas the signal split when the intercalation was into the ZHN matrix. The electron paramagnetic resonance (EPR) spectrum of copper in octahedral cation sites of LDH layers showed a Hamiltonian parameter ratio g ||/A ||=170 cm and, after intercalation of adipate, the change was not significant: g ||/A ||=174 cm. This result indicates that the carboxylate ions did not coordinate with copper centers. Nonetheless, the intercalation of azelate increased the ratio to g ||/A ||=194 cm, similar to the spectra of ZHN modified with adipate, g ||/A ||=199 cm, and azelate, g ||/A ||=183 and 190 cm, which are associated with the coordination of copper by weak carboxylate anion ligands. Copper occupies octahedral or tetrahedral sites in ZHN layers, and the EPR spectra indicate that the dicarboxylate anions reacted preferentially with octahedral sites, whereas benzoate reacted with both sites.

  8. Chemical nature of phytic acid conversion coating on AZ61 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Pan, Fusheng; Yang, Xu; Zhang, Dingfei

    2009-07-01

    Phytic acid (PA) conversion coating on AZ61 magnesium alloy was prepared by the method of deposition. The influences of pH, time and PA concentration on the formation process, microstructure and properties of the conversion coating were investigated. Scanning electron microscopy (SEM) was used to observe the microstructure. The chemical nature of conversion coating was investigated by energy dispersive X-ray spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) techniques. The corrosion resistance was examined by means of potentiodynamic polarization method. The adhesive ability was tested by score experiments. The results showed that the growth and microstructure of the conversion coatings were all obviously affected by pH, time and PA concentration. In 0.5 mg/ml PA solution with a pH of 5, an optimization conversion coating formed after 20 min immersion time by deposition of PA on AZ61 magnesium alloy surface through chelating with Al 3+. It made the corrosion potential Ecorr of sample shifted positively about 171 mV than that of the untreated sample, and the adhesive ability reached to Grade 1 (in accordance with GB/T 9286).

  9. Determination of thermodynamic and transport parameters of naphthenic acids and organic process chemicals in oil sand tailings pond water.

    PubMed

    Wang, Xiaomeng; Robinson, Lisa; Wen, Qing; Kasperski, Kim L

    2013-07-01

    Oil sand tailings pond water contains naphthenic acids and process chemicals (e.g., alkyl sulphates, quaternary ammonium compounds, and alkylphenol ethoxylates). These chemicals are toxic and can seep through the foundation of the tailings pond to the subsurface, potentially affecting the quality of groundwater. As a result, it is important to measure the thermodynamic and transport parameters of these chemicals in order to study the transport behavior of contaminants through the foundation as well as underground. In this study, batch adsorption studies and column experiments were performed. It was found that the transport parameters of these chemicals are related to their molecular structures and other properties. The computer program (CXTFIT) was used to further evaluate the transport process in the column experiments. The results from this study show that the transport of naphthenic acids in a glass column is an equilibrium process while the transport of process chemicals seems to be a non-equilibrium process. At the end of this paper we present a real-world case study in which the transport of the contaminants through the foundation of an external tailings pond is calculated using the lab-measured data. The results show that long-term groundwater monitoring of contaminant transport at the oil sand mining site may be necessary to avoid chemicals from reaching any nearby receptors.

  10. 77 FR 36170 - TSCA Inventory Update Reporting Modifications; Chemical Data Reporting; 2012 Submission Period...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ... not have substantial direct effects on State or tribal governments, on the relationship between the... instructions and additional information about the docket available at http://www.epa.gov/dockets . FOR FURTHER INFORMATION CONTACT: Chenise Farquharson, Chemical Control Division (7405M), Office of Pollution...

  11. Chemical modification of human albumin at cys34 by ethacrynic acid: structural characterisation and binding properties.

    PubMed

    Bertucci, C; Nanni, B; Raffaelli, A; Salvadori, P

    1998-10-01

    Derivatization of the free cys3,4 in human albumin, which is reported to occur under physiological conditions, has been performed in vitro by reaction of the protein with ethacrynic acid. This modification has been investigated by mass spectrometry and circular dichroism. Ethacrynic acid has been proven to bind human albumin either covalently and non-covalently. This post-translational modification does not determine significant changes in the secondary structure of the protein, as shown by the comparable circular dichroism spectra of the native and the modified proteins. Furthermore, the binding properties of the human albumin samples have been investigated by circular dichroism and equilibrium dialysis. The affinity to the higher affinity binding sites does not change either for drugs binding to site I, like phenylbutazone, or to site II, like diazepam, while a small but significant increase has been observed for bilirubin, known to bind to site III. Nevertheless significant decreases of the affinity at the lower affinity binding sites of the modified protein were observed for both drugs binding to site I or to site II.

  12. Si Passivation and Chemical Vapor Deposition of Silicon Nitride: Final Technical Report, March 18, 2007

    SciTech Connect

    Atwater, H. A.

    2007-11-01

    This report investigated chemical and physical methods for Si surface passivation for application in crystalline Si and thin Si film photovoltaic devices. Overall, our efforts during the project were focused in three areas: i) synthesis of silicon nitride thin films with high hydrogen content by hot-wire chemical vapor deposition; ii) investigation of the role of hydrogen passivation of defects in crystalline Si and Si solar cells by out diffusion from hydrogenated silicon nitride films; iii) investigation of the growth kinetics and passivation of hydrogenated polycrystalline. Silicon nitride films were grown by hot-wire chemical vapor deposition and film properties have been characterized as a function of SiH4/NH3 flow ratio. It was demonstrated that hot-wire chemical vapor deposition leads to growth of SiNx films with controllable stoichiometry and hydrogen.

  13. Chemical characteristics and sources of organic acids in precipitation at a semi-urban site in Southwest China

    NASA Astrophysics Data System (ADS)

    Zhang, Y. L.; Lee, X. Q.; Cao, F.

    2011-01-01

    In order to investigate the chemical characteristics and sources of organic acids in precipitation in Southwest China, 105 rainwater samples were collected at a semi-urban site in Anshun from June 2007 to June 2008. Organic acids and major anions were analyzed along with pH and electrical conductivity. The pH values varied from 3.57 to 7.09 for all the rainfall events sampled, with an average of 4.67 which was typical acidic value. Formic, acetic and oxalic acids were found to be the predominant carboxylic acids and their volume weighted average (VWA) concentrations were 8.77, 6.93 and 2.84 μmol l -1, respectively. These organic acids were estimated to account for 8.1% to the total free acidity (TFA) in precipitation. The concentrations of the majority organic acids at studied site had a clear seasonal pattern, reaching higher levels during the non-growing season than those in growing season, which was attributed to dilution effect of heavy rainfall during the growing season. The seasonal variation of wet deposition flux of these organic acids confirmed higher source strength of biogenic emissions from vegetation during the growing season. Formic-to-acetic acids ratio (F/A), an indicator of primary versus secondary sources of these organic acids, suggested that primary sources from vehicular emission, biomass burning, soil and vegetation emissions were dominant sources. In addition, the lowest concentrations of organic acids were found under type S, when air masses originated from the marine (South China Sea) during Southern Asian Monsoon period. And the highest concentrations were observed in precipitation events from Northeast China (type NE), prevailing mostly during winter with the lowest rainfall.

  14. Chemical and structural properties of sweet potato starch treated with organic and inorganic acid.

    PubMed

    Babu, A Surendra; Parimalavalli, R; Jagannadham, K; Rao, J Sudhakara

    2015-09-01

    In the present study sweet potato starch was treated with hydrochloric acid or citric acid at 1 or 5 % concentration and its properties were investigated. Citric acid treatment resulted higher starch yield. Water holding capacity and water absorption index was increased with increased acid concentration. Emulsion properties improved at 5 % acid concentration. The DE value of acid-thinned sweet potato starches was ranged between 1.93 and 3.76 %. Hydrochloric acid treated starches displayed a higher fraction of amylose. X-ray diffraction (XRD) study revealed that all the starches displayed C-type crystalline pattern with varied crystallinity. FT-IR spectra perceived a slight change in percentage intensity of C-H stretch of citric acid modified starches. Starch granules tended to appear less smooth than the native starch granules after acid treatment in Scanning Electron Micrographs (SEM) with granule size ranging between 8.00 and 8.90 μm. A drastic decrease in the pasting profile was noticed in hydrochloric acid (5 %) treated starch. While 5 % citric acid treated starch exhibited higher pasting profile. Differential Scanning Calorimeter (DSC) showed that peak and conclusion gelatinisation temperatures increased with increase in hydrochloric acid or citric acid concentration. Hence citric acid was found to mimic the hydrochloric acid with some variation which suggests that it may have promising scope in acid modification.

  15. Correlation between chemical reactivity and the Hammett acidity function in amorphous solids using inversion of sucrose as a model reaction.

    PubMed

    Chatterjee, Koustuv; Shalaev, Evgenyi Y; Suryanarayanan, Raj; Govindarajan, Ramprakash

    2008-01-01

    The goal was to evaluate the effects of acidity, expressed as the Hammett acidity function, on chemical reactivity in freeze-dried materials (lyophiles). Dextran-sucrose-citrate and polyvinyl pyrrolidone (PVP)-sucrose-citrate aqueous solutions, adjusted to pH values of 2.6, 2.8, and 3.0 were freeze dried, and characterized by X-ray powder diffractometry, DSC, isothermal microcalorimetry, and Karl Fischer titrimetry. Lyophiles were also prepared from identical solutions but containing bromophenol blue (BB). Diffuse reflectance-visible spectroscopy was used to measure the extent of BB protonation from which the Hammett acidity functions were determined. The stability studies were performed at 60 degrees C. All the freeze-dried samples were observed to be X-ray amorphous with <0.15% w/w water content. The T(g) of dextran lyophiles were approximately 20 degrees C higher than that of PVP lyophiles whereas enthalpy relaxation rates at 60 degrees C were similar. The Hammett acidity functions were significantly lower (i.e., higher acidity) for dextran systems (<2.2-2.6) when compared with PVP systems (3.3-3.9). The rate of sucrose inversion was significantly (an order of magnitude) higher in dextran lyophiles. This study showed that in amorphous matrices with comparable water content and structural relaxation times, chemical reactivity could be significantly different depending on the matrix "acidity".

  16. Insight into acid-base nucleation experiments by comparison of the chemical composition of positive, negative, and neutral clusters.

    PubMed

    Bianchi, Federico; Praplan, Arnaud P; Sarnela, Nina; Dommen, Josef; Kürten, Andreas; Ortega, Ismael K; Schobesberger, Siegfried; Junninen, Heikki; Simon, Mario; Tröstl, Jasmin; Jokinen, Tuija; Sipilä, Mikko; Adamov, Alexey; Amorim, Antonio; Almeida, Joao; Breitenlechner, Martin; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Kangasluoma, Juha; Keskinen, Helmi; Kim, Jaeseok; Kirkby, Jasper; Laaksonen, Ari; Lawler, Michael J; Lehtipalo, Katrianne; Leiminger, Markus; Makhmutov, Vladimir; Mathot, Serge; Onnela, Antti; Petäjä, Tuukka; Riccobono, Francesco; Rissanen, Matti P; Rondo, Linda; Tomé, António; Virtanen, Annele; Viisanen, Yrjö; Williamson, Christina; Wimmer, Daniela; Winkler, Paul M; Ye, Penglin; Curtius, Joachim; Kulmala, Markku; Worsnop, Douglas R; Donahue, Neil M; Baltensperger, Urs

    2014-12-02

    We investigated the nucleation of sulfuric acid together with two bases (ammonia and dimethylamine), at the CLOUD chamber at CERN. The chemical composition of positive, negative, and neutral clusters was studied using three Atmospheric Pressure interface-Time Of Flight (APi-TOF) mass spectrometers: two were operated in positive and negative mode to detect the chamber ions, while the third was equipped with a nitrate ion chemical ionization source allowing detection of neutral clusters. Taking into account the possible fragmentation that can happen during the charging of the ions or within the first stage of the mass spectrometer, the cluster formation proceeded via essentially one-to-one acid-base addition for all of the clusters, independent of the type of the base. For the positive clusters, the charge is carried by one excess protonated base, while for the negative clusters it is carried by a deprotonated acid; the same is true for the neutral clusters after these have been ionized. During the experiments involving sulfuric acid and dimethylamine, it was possible to study the appearance time for all the clusters (positive, negative, and neutral). It appeared that, after the formation of the clusters containing three molecules of sulfuric acid, the clusters grow at a similar speed, independent of their charge. The growth rate is then probably limited by the arrival rate of sulfuric acid or cluster-cluster collision.

  17. Enteral diets enriched with medium-chain triglycerides and N-3 fatty acids prevent chemically induced experimental colitis in rats.

    PubMed

    Kono, Hiroshi; Fujii, Hideki; Ogiku, Masahito; Tsuchiya, Masato; Ishii, Kenichi; Hara, Michio

    2010-11-01

    The specific purpose of this study was to evaluate the significant effects of medium-chain triglycerides (MCTs) and N-3 fatty acids on chemically induced experimental colitis induced by 2,4,6-trinitrobenzene sulphonic acid (TNBS) in rats. Male Wistar rats were fed liquid diets enriched with N-6 fatty acid (control diets), N-3 fatty acid (MCT- diets), and N-3 fatty acid and MCT (MCT+ diets) for 2 weeks and then were given an intracolonic injection of TNBS. Serum and tissue samples were collected 5 days after ethanol or TNBS enema. The severity of colitis was evaluated pathologically, and tissue myeloperoxidase activity was measured in colonic tissues. Furthermore, protein levels for inflammatory cytokines and a chemokine were assessed by an enzyme-linked immunosorbent assay in colonic tissues. Induction of proinflammatory cytokines tumor necrosis factor-α and interleukin-1β in the colon by TNBS enema was markedly attenuated by the MCT+ diet among the 3 diets studied. Furthermore, the induction of chemokines macrophage inflammatory protein-2 and monocyte chemotactic protein-1 also was blunted significantly in animals fed the MCT+ diets. As a result, MPO activities in the colonic tissue also were blunted significantly in animals fed the MCT+ diets compared with those fed the control diets or the MCT- diets. Furthermore, the MCT+ diet improved chemically induced colitis significantly among the 3 diets studied. Diets enriched with both MCTs and N-3 fatty acids may be effective for the therapy of inflammatory bowel disease as antiinflammatory immunomodulating nutrients.

  18. Truck transport of hazardous chemicals: 1-butanol. Final report, September 1993-April 1995

    SciTech Connect

    1995-09-01

    The transport of hazardous materials by all modes is a major concern of the U.S. Department of Transportation. Estimates place the total amount of hazardous materials transported in the United States in excess of 1.5 billion tons per year. Highway, water, and rail account for nearly all hazardous materials shipments; air shipments are negligible. Fuels, such as gasoline and diesel, account for about half of all hazardous materials transported. Chemicals account for most of the remainder. This report presents estimates of truck shipments of 1-butanol, one of the 147 large-volume chemicals that account for at least 80 percent of U.S. truck shipments of hazardous chemicals. All of the reports in this series are based on the best available information at the time the research was conducted.

  19. STRESS PATHWAY-BASED REPORTER ASSAYS TO ASSESS TOXICITY OF ENVIRONMENTAL CHEMICALS.

    EPA Science Inventory

    There is an increasing need for assays for the rapid and efficient assessment of toxicities of large numbers of environmental chemicals. To meet this need, we are developing cell-based reporter assays that measure the activation of key molecular stress pathways. We are using pro...

  20. [Diffusion/dispersion transport of chemically reacting species]. Progress report, FY 1992--1993

    SciTech Connect

    Helgeson, H.C.

    1993-07-01

    Progress is reported on the following: calculation of activity coefficients for aqueous silica in alkali metal chloride solutions; calculation of degrees of formation of polyatomic clusters of Al in alkali chloride solutions; bulk composition-pH diagrams for arkosic sediments; and chemical interaction of petroleum, oil field brines, and authigenic mineral assemblages. Plans for future research are given.

  1. U.S. EPA requires Cupertino cement company to report toxic chemicals, commit to environmental projects

    EPA Pesticide Factsheets

    SAN FRANCISCO - The U.S. Environmental Protection Agency announced a settlement with Lehigh Southwest Cement Company for failing to properly report releases of toxic chemicals at its Cupertino, Calif. plant. The company is required to pay a $47,600

  2. Strategies Reported Used by Instructors to Address Student Alternate Conceptions in Chemical Equilibrium

    ERIC Educational Resources Information Center

    Piquette, Jeff S.; Heikkinen, Henry W.

    2005-01-01

    This study explores general-chemistry instructors' awareness of and ability to identify and address common student learning obstacles in chemical equilibrium. Reported instructor strategies directed at remediating student alternate conceptions were investigated and compared with successful, literature-based conceptual change methods. Fifty-two…

  3. Chemical Technology Division progress report, April 1, 1983-March 31, 1985

    SciTech Connect

    Not Available

    1985-10-01

    The status of the following programs is reported: fission energy; nuclear and chemical waste management; environmental control technology; basic science and technology; biotechnology programs; transuranium-element processing; Nuclear Regulatory Commission programs; Consolidated Edison Uranium Solidification Project; radioactive materials production; computer 1 engineering applications; and miscellanous programs.

  4. Spectroscopic (FT-IR, FT-Raman) investigations and quantum chemical calculations of 4-hydroxy-2-oxo-1,2-dihydroquinoline-7-carboxylic acid.

    PubMed

    Ulahannan, Rajeev T; Panicker, C Yohannan; Varghese, Hema Tresa; Van Alsenoy, C; Musiol, Robert; Jampilek, Josef; Anto, P L

    2014-01-01

    Quinoline derivatives have good nonlinear optical properties and have been extensively studied due to their great potential application in the field of organic light emitting diodes. Quantum chemical calculations of the equilibrium geometry, harmonic vibrational frequencies, infrared intensities and Raman activities of 4-hydroxy-2-oxo-1,2-dihydroquinoline-7-carboxylic acid in the ground state were reported. Potential energy distribution of normal modes of vibrations was done using GAR2PED program. The synthesis, (1)H NMR and PES scan results are also discussed. Nonlinear optical behavior of the examined molecule was investigated by the determination of first hyperpolarizability. The calculated HOMO and LUMO energies show the chemical activity of the molecule. The stability of the molecule arising from hyperconjugative interaction and charge delocalization has been analyzed using NBO analysis. The calculated geometrical parameters are in agreement with that of similar derivatives.

  5. Final Report: Evaluation of Alternative Technologies for Ethylene, Caustic-Chlorine, Ethylene Oxide, Ammonia, and Terephthalic Acid

    SciTech Connect

    none,

    2007-12-01

    This report evaluates alternative technologies for chemicals manufacturing which may present energy efficiency improvements compared to existing technologies. It is an extension of the Chemical Bandwidth Study, which evaluates energy and exergy losses in the U.S. chemicals industry.

  6. Selective elimination of the free fatty acid fraction from esterified fatty acids in rat plasma through chemical derivatization and immobilization on amino functionalized silica nano-particles.

    PubMed

    Chen, Jun; Lyu, Qiang; Yang, Mingqing; Chen, Zhi; He, Junhui

    2016-01-29

    A high throughput and low cost approach to separate free fatty acids (FFAs) from phospholipid and acylglycerols (esterified fatty acids, EFAs) has been demonstrated, which may be widely used as a sample preparation method in the metabolomics and lipid research. The optimal conditions for FFAs reacting with N-hydroxysuccinimide (NHS) only need 10min at room temperature to obtain a 93.5% yield of FFAs-NHS ester. The rest 6% FFA transformed into N-cyclohexyl-fatty acid-amide which is stable to methyl esterification adopted for fatty acids analysis. 10min are taken for FFAs-NHS ester to react with amino functionalized silica nanoparticles to immobilize the FFAs. The separation of FFAs from EFAs could be carried out readily by centrifugation. The whole process including derivatization, immobilization, and centrifugation takes less than 40min. Much more accurate fatty acids composition of rat plasma EFAs could be obtained by this approach than the previous reported methods.

  7. Re-engineering nalidixic acid's chemical scaffold: A step towards the development of novel anti-tubercular and anti-bacterial leads for resistant pathogens.

    PubMed

    Peraman, Ramalingam; Varma, Raghu Veer; Reddy, Y Padmanabha

    2015-10-01

    Occurrence of antibacterial and antimycobacterial resistance stimulated a thrust to discover new drugs for infectious diseases. Herein we report the work on re-engineering nalidixic acid's chemical scaffold for newer leads. Stepwise clubbing of quinoxaline, 1,2,4-triazole/1,3,4-oxadiazole with nalidixic acid yielded better compounds. Compounds were screened against ciprofloxacin resistant bacteria and Mycobacterium tuberculosis H37Rv species. Results were obtained as minimum inhibitory concentration, it was evident that molecule with quinoxaline linked azide as side chain served as antitubercular lead (<6.25 μg/ml) whilst molecule with oxadiazole or triazole linked quinoxaline side chain served as anti-bacterial lead. Few compounds were significantly active against Escherichia coli and Proteus vulgaris with MIC less than 0.06 μg/ml and relatively potent than ciprofloxacin. No true compound was potentially active against Salmonella species as compared to amoxicillin.

  8. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: January-March 1999

    SciTech Connect

    Jubin, R.T.

    1999-11-01

    This reports summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period January--March 1999. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within eight major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information. Activities conducted within the area of Hot Cell Operations included column loading of cesium from Melton Valley Storage Tank supematants using an engineered form of crystalline silicotitanate. A second task was to design and construct a continuously stirred tank reactor system to test the Savannah River-developed process of small-tank tetraphenylborate precipitation to remove cesium, strontium, and transuranics from supematant. Within the area of Process Chemistry and Thermodynamics, the problem of solids formation in process solutions from caustic treatment of Hanford sludge was addressed, including issues such as pipeline plugging and viscosity measurements. Investigation of solution conditions required to dissolve Hanford saltcake was also continued. MSRE Remediation Studies focused on recovery of {sup 233}U and its transformation into a stable oxide and radiolysis experiments to permit remediation of MSRE fuel salt. In the area of Chemistry Research, activities included studies relative to molecular imprinting for

  9. Single-step enantioselective amino acid flux analysis by capillary electrophoresis using on-line sample preconcentration with chemical derivatization.

    PubMed

    Ptolemy, Adam S; Tran, Lara; Britz-McKibbin, Philip

    2006-07-15

    Capillary electrophoresis (CE) represents a versatile platform for integrating sample pretreatment with chemical analysis because of its ability to tune analyte electromigration and band dispersion properties in discontinuous electrolyte systems. In this article, a single-step method that combines on-line sample preconcentration with in-capillary chemical derivatization is developed for rapid, sensitive, and enantioselective analysis of micromolar levels of amino acids that lack intrinsic chromophores by CE with UV detection. Time-resolved electrophoretic studies revealed two distinct stages of amino acid band narrowing within the original long sample injection plug occurring both prior to and after in-capillary labeling via zone passing by ortho-phthalaldehyde/N-acetyl l-cysteine (OPA/NAC). This technique enabled direct analysis of d-amino acids in a 95% enantiomeric excess mixture with sub-micromolar detection limits and minimal sample handling, where the capillary functions as a preconcentrator, microreactor, and chiral selector. On-line sample preconcentration with chemical derivatization CE (SPCD-CE) was applied to study the enantioselective amino acid flux in Escherichia coli bacteria cultures, which demonstrated a unique l-Ala efflux into the extracellular medium. New strategies for high-throughput analyses of low-abundance metabolites are important for understanding fundamental physiological processes in bacteria required for screening the efficacy of new classes of antibiotics as well as altered metabolism in genetically modified mutant strains.

  10. Acute generalized exanthematous pustulosis (AGEP) due to exposure to sulfuric acid and bromic acid vapor: a case report.

    PubMed

    Bilac, Dilek Bayraktar; Ermertcan, Aylin Turel; Ozturkcan, Serap; Sahin, M Turhan; Temiz, Peyker

    2008-01-01

    Acute generalized exanthematous pustulosis (AGEP, toxic pustuloderma, pustular drug eruption) is a not uncommon cutaneous reaction pattern that is usually related to drug administration. The eruption is of sudden onset and appears 7-10 days after the medication is started. A 22-year-old male patient who was a student at a chemical faculty attended our outpatient clinic with a complaint of pustular eruption on his face. According to his history, the eruption started with pruritus and erythema on his chin 3 days ago and spread to his face and chest. He explained that he had performed an experiment with sulfuric acid and bromic acid and was exposed to their vapor. His dermatological examination revealed erythema and pustules on his cheeks, on his chin, above his upper lip, and on his eyebrows. He also had a few pustules on his chest. There were no ocular, mucous membrane, or pulmonary symptoms. Histopathological examination of the skin biopsy specimen revealed superficial orthokeratosis, focal subcorneal pustule formation, and perivascular chronic inflammatory cell infiltration in superficial dermis. After administration of systemic antihistamines and wet dressing topically, we observed rapid healing of the lesions. Because there was no systemic drug intake in his history, we were concerned that exposure to sulfuric acid and bromic acid vapor caused AGEP in this patient. We present this rare case to show that the vapor of chemical materials may cause AGEP or other drug eruptions.

  11. Gallic Acid as a Complexing Agent for Copper Chemical Mechanical Polishing Slurries at Neutral pH

    NASA Astrophysics Data System (ADS)

    Kim, Yung Jun; Kang, Min Cheol; Kwon, Oh Joong; Kim, Jae Jeong

    2011-05-01

    Gallic acid was investigated as a new complexing agent for copper (Cu) chemical mechanical polishing slurries at neutral pH. Addition of 0.03 M gallic acid and 1.12 M H2O2 at pH 7 resulted in a Cu removal rate of 560.73±17.49 nm/min, and the ratio of the Cu removal rate to the Cu dissolution rate was 14.8. Addition of gallic acid improved the slurry performance compared to glycine addition. X-ray photoelectron spectroscopy analysis and contact angle measurements showed that addition of gallic acid enhanced the Cu polishing behavior by suppressing the formation of surface Cu oxide.

  12. A case report of massive acute boric acid poisoning.

    PubMed

    Corradi, Francesco; Brusasco, Claudia; Palermo, Salvatore; Belvederi, Giulio

    2010-02-01

    Boric acid comes as colourless, odourless white powder and, if ingested, has potential fatal effects including metabolic acidosis, acute renal failure and shock. An 82-year-old male was brought to the emergency room 3 h after unintentional ingestion of a large amount of boric acid. Clinical course was monitored by collecting data at admittance, 12 h after admission, every 24 h for 5 days and again 1 week after admission. During the first 132 h, serum and urinary concentrations of boric acid were measured. Serum boric acid levels decreased from 1800 to 530 microg/ml after haemodialysis and from 530 to 30 microg/ml during the forced diuresis period. During dialysis, boric acid clearance averaged 235 ml/min with an extraction ratio of 70%. The overall patient's condition steadily improved over 84 h after admission. In conclusion, early treatment with forced diuresis and haemodialysis may be considered for boric acid poisoning, even if signs of renal dysfunction are not apparent, to prevent severe renal damage and its complications.

  13. Biolubricant basestocks from chemically modified plant oils: ricinoleic acid based-tetraesters

    PubMed Central

    2013-01-01

    Background Plant oils have been investigated as a potential source of environmentally favorable biolubricants because of their biodegradability, renewability and excellent lubrication performance. Low oxidation and thermal stability, poor low-temperature properties and a narrow range of available viscosities, however, limit their potential application as industrial lubricants. The inherent problems of plant oils can be improved by attaching functional groups at the sites of unsaturation through chemical modifications. In this article, we will demonstrate how functionalization helps overcome these disadvantages. Results In this work, mono-, tri- and tetra-esters have been synthesized, including 10,12-dihydroxy-9-(stearoyloxy)octadecanoic acid 3; 9,10,12-tris(stearoyloxy)octadecanoic acid 4; and 18-(4-ethylhexyloxy)-18-oxooctadecane-7,9,10-triyl tristearate 5. Pour-point and cloud-point measurements have shown that these derivatives have improved low-temperature properties as compared to the precursor. The tetra ester compound, 18-(4-ethylhexyloxy)-18-oxooctadecane-7,9,10-triyl tristearate 5, had the lowest pour point (PP) (−44.37°C) and the lowest cloud point (CP) (−41.25°C). This derivatization also improved the compound’s thermo-oxidative stability, measured using pressurized differential scanning calorimetry (PDSC) and thin-film micro-oxidation (TFMO) testing. 18-(4-Ethylhexyloxy)-18-oxooctadecane-7,9,10-triyl tristearate 5 also had the highest onset temperature (OT) (282.10°C) and the lowest volatile loss and insoluble deposit (37.39% and 50.87%, respectively). Furthermore, the compounds’ tribological behaviors were evaluated using the four-ball method. 18-(4-Ethylhexyloxy)-18-oxooctadecane-7,9,10-triyl tristearate 5 also had the lowest coefficient of friction (μ) (0.44). Conclusions The results showed that, in general, these derivatives have good anti-wear and friction-reducing properties at relatively low concentrations under all of the test loads

  14. Chemical vectors for gene delivery: a current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers

    PubMed Central

    Midoux, Patrick; Pichon, Chantal; Yaouanc, Jean-Jacques; Jaffrès, Paul-Alain

    2009-01-01

    DNA/cationic lipid (lipoplexes), DNA/cationic polymer (polyplexes) and DNA/cationic polymer/cationic lipid (lipopolyplexes) electrostatic complexes are proposed as non-viral nucleic acids delivery systems. These DNA-nanoparticles are taken up by the cells through endocytosis processes, but the low capacity of DNA to escape from endosomes is regarded as the major limitations of their transfection efficiency. Here, we present a current report on a particular class of carriers including the polymers, peptides and lipids, which is based on the exploitation of the imidazole ring as an endosome destabilization device to favour the nucleic acids delivery in the cytosol. The imidazole ring of histidine is a weak base that has the ability to acquire a cationic charge when the pH of the environment drops bellow 6. As it has been demonstrated for poly(histidine), this phenomena can induce membrane fusion and/or membrane permeation in an acidic medium. Moreover, the accumulation of histidine residues inside acidic vesicles can induce a proton sponge effect, which increases their osmolarity and their swelling. The proof of concept has been shown with polylysine partially substituted with histidine residues that has caused a dramatic increase by 3–4.5 orders of magnitude of the transfection efficiency of DNA/polylysine polyplexes. Then, several histidine-rich polymers and peptides as well as lipids with imidazole, imidazolinium or imidazolium polar head have been reported to be efficient carriers to deliver nucleic acids including genes, mRNA or SiRNA in vitro and in vivo. More remarkable, histidylated carriers are often weakly cytotoxic, making them promising chemical vectors for nucleic acids delivery. This article is part of a themed section on Vector Design and Drug Delivery. For a list of all articles in this section see the end of this paper, or visit: http://www3.interscience.wiley.com/journal/121548564/issueyear?year=2009 PMID:19459843

  15. GoAmazon 2014/15 Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS) Field Campaign Report

    SciTech Connect

    Smith, JN

    2016-04-01

    The Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS) deployment to the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility T3 site in Manacapuru, Brazil, was motivated by two main scientific objectives of the Green Ocean Amazon (GoAmazon) 2014/15 field campaign. 1) Study the interactions between anthropogenic and biogenic emissions by determining important molecular species in ambient nanoparticles. To address this, TDCIMS data will be combined with coincident measurements such as gas-phase sulfuric acid to determine the contribution of sulfuric acid condensation to nucleation and growth. We can then compare that result to TDCIMS-derived nanoparticle composition to determine the fraction of growth that can be attributed to the uptake of organic compounds. The molecular composition of sampled particles will also be used to attribute specific chemical species and mechanisms to growth, such as the condensation of low-volatility species or the oligomerization of α-dicarbonyl compounds. 2) Determine the source of new ambient nanoparticles in the Amazon. The hypothesis prior to measurements was that potassium salts formed from the evaporation of primary particles emitted by fungal spores can provide a unique and important pathway for new particle production in the Amazon basin. To explore this hypothesis, the TDCIMS recorded the mass spectra of sampled ambient particles using a protonated water cluster Chemical Ionization Mass Spectrometer (CIMS). Laboratory tests performed using potassium salts show that the TDCIMS can detect potassium with high sensitivity with this technique.

  16. Episodic acidification of streams in the northeastern United States: Chemical and biological results of the episodic response project. Final report

    SciTech Connect

    Wigington, P.J.; Baker, J.P.; DeWalle, D.R.; Kretser, W.A.; Murdoch, P.S.

    1993-10-01

    The document is the result of a cooperative research effort involving scientists from several agencies as part of the Aquatic Effects Research Program (AERP) of the U.S. Environmental Protection Agency (EPA). The Episodic Response Project (ERP) is an intensive study conducted at a limited number of sites, rather than an extensive regional study. The three areas targeted by the ERP are the Northern Appalachian Plateau of Pennsylvania, and the Adirondack and Catskill Mountains of New York. Each stream was monitored from fall 1988 through spring 1990, with continuous measurement of discharge and automated water sampling at fixed time intervals or at specified stage level changes. The water samples underwent chemical analysis for acid neutralizing capacity (ANC), pH, total dissolved aluminum, dissolved organic carbon (DOC), sulfate, nitrate, chloride, calcium, magnesium, potassium, and sodium. Furthermore, a subset of samples were analyzed for inorganic aluminum. Specific streams, participating institutions and cooperators, methods, and results are presented in the report.

  17. Evaluation of modeled cloud chemistry mechanism against laboratory irradiation experiments: The HxOy/iron/carboxylic acid chemical system

    NASA Astrophysics Data System (ADS)

    Long, Yoann; Charbouillot, Tiffany; Brigante, Marcello; Mailhot, Gilles; Delort, Anne-Marie; Chaumerliac, Nadine; Deguillaume, Laurent

    2013-10-01

    Currently, cloud chemistry models are including more detailed and explicit multiphase mechanisms based on laboratory experiments that determine such values as kinetic constants, stability constants of complexes and hydration constants. However, these models are still subject to many uncertainties related to the aqueous chemical mechanism they used. Particularly, the role of oxidants such as iron and hydrogen peroxide in the oxidative capacity of the cloud aqueous phase has typically never been validated against laboratory experimental data. To fill this gap, we adapted the M2C2 model (Model of Multiphase Cloud Chemistry) to simulate irradiation experiments on synthetic aqueous solutions under controlled conditions (e.g., pH, temperature, light intensity) and for actual cloud water samples. Various chemical compounds that purportedly contribute to the oxidative budget in cloud water (i.e., iron, oxidants, such as hydrogen peroxide: H2O2) were considered. Organic compounds (oxalic, formic and acetic acids) were taken into account as target species because they have the potential to form iron complexes and are good indicators of the oxidative capacity of the cloud aqueous phase via their oxidation in this medium. The range of concentrations for all of the chemical compounds evaluated was representative of in situ measurements. Numerical outputs were compared with experimental data that consisted of a time evolution of the concentrations of the target species. The chemical mechanism in the model describing the “oxidative engine” of the HxOy/iron (HxOy = H2O2, HO2rad /O2rad - and HOrad ) chemical system was consistent with laboratory measurements. Thus, the degradation of the carboxylic acids evaluated was closely reproduced by the model. However, photolysis of the Fe(C2O4)+ complex needs to be considered in cloud chemistry models for polluted conditions (i.e., acidic pH) to correctly reproduce oxalic acid degradation. We also show that iron and formic acid lead to

  18. Chemical Biodynamics Division: Annual report, October 1, 1986-September 30, 1987

    SciTech Connect

    Not Available

    1987-09-01

    Investigators are studying the various components that make up the photosynthetic reaction center complexes in many different organisms. This work not only involves understanding the kinetics of energy transfer and storage in plants, but also includes studies to work out how photosynthetic cells regulate the expression of genes encoding the photosynthetic apparatus. The second biological theme is a series of investigations into the relationship between structure and function in nucleic acids. Our basic mission in this program is to couple our chemical and biophysical expertise to understand how not only the primary structure of nucleic acids, but also higher levels of structure including interactions with proteins and other nucleic acids regulate the functional activity of genes. In the chemical sciences investigators are increasing our understanding of the fundamental chemistry of electronically excited molecules, a critical dimension of every photosynthetic energy storage process. We are developing approaches not only toward the utilization of sophisticated chemistry to store photon energy, but also to develop systems that can emulate the photosynthetic apparatus in the trapping and transfer of photosynthetic energy. Individual projects are processed separately for the data base.

  19. F-Area Acid/Caustic Basin Groundwater Monitoring Report. Fourth quarterly report and summary 1993

    SciTech Connect

    Not Available

    1994-03-01

    During fourth quarter 1993, samples from the six FAC monitoring wells at the F-Area Acid/Caustic Basin were collected and analyzed for indicator parameters, groundwater quality parameters, parameters indicating suitability as drinking water, and other constituents. One of the FAC piezometers was scheduled for these analyses but was dry. Analytical results that exceeded the final Primary Drinking Water Standards (PDWS) or the Savannah River Site (SRS) flagging criteria or turbidity standard during the quarter are the focus of this report. Gross alpha exceeded the final PDWS in two wells. Aluminum exceeded its Flag 2 criterion in five wells. Iron exceeded standards in four wells, manganese exceeded standards in two wells, and total organic halogens exceeded standards in one well. Turbidity exceeded the SRS standard in well FAC 3.

  20. Chemical and geochemical studies off the coast of Washington. Progress report, September 1982-July 1983

    SciTech Connect

    Carpenter, R.

    1983-07-01

    This report summarizes progress from September 1982 through July 1983 on a series of marine chemical and geochemical investigations involving both laboratory studies and field studies off the coast of Washington. Most field work the past few years has been on the Washington continental shelf, slope, and the submarine canyons indenting the shelf north of the Columbia River. Our aim is to provide basic data required to characterize underlying chemical and physical processes and their rates which control the distributions, concentrations, and ultimate fate of some of the potentially hazardous agents associated with fossil fuel and/or nuclear power production or transportation. Laboratory and field experiments and theories derived from them are being used iteratively to investigate: (1) vertical transfer or trace chemicals from surface seawaters to underlying waters and sediments; (2) processes which may transfer certain chemicals from sediments back into the overlying water column; (3) redox processes which besides changing valence states of certain chemicals may alter their precipitation/dissolution tendencies, their biological availability and/or toxicity; and (4) accumulation histories of potentialy hazardous chemicals in sediments during the past 100 years.

  1. Chemical and geochemical studies off the coast of Washington. Progress report, September 1981-July 1982

    SciTech Connect

    Carpenter, R.

    1982-07-01

    Progress is reported on a series of marine chemical and geochemical investigations involving both laboratory studies and field studies off the coast of Washington. Most of the field work the past few years has been on the Washington continental shelf, slope, and the submarine canyons indenting the shelf north of the Columbia River. The aim is to provide basic data required to characterize underlying chemical and physical processes and their rates which control the distributions, concentrations, and ultimate fate of some of the potentially hazardous agents associated with fossil fuel and/or nuclear power production or transportation. Several processes of special importance in the sea, and methodologies and expertise to study them are being emphasized. Laboratory and field experiments and theories derived from them are being used iteratively to investigate: vertical transfer of trace chemicals from surface seawaters to underlying waters and sediments; processes which may transfer certain chemicals from sediments back into the overlying water column; redox processes which besides changing valence states of certain chemicals may alter their precipitation/dissolution tendencies, their biological availability and/or toxicity; and accumulation histories of potentially hazardous chemicals in sediments during the past 100 years.

  2. Chemical and geochemical studies off the coast of Washington. Progress report, September 1980-July 1981

    SciTech Connect

    Carpenter, R.

    1981-07-01

    This report summarizes progress from September 1980 through July 1981 on a series of marine chemical and geochemical investigations involving both laboratory studies and field studies off the coast of Washington. Most of the field work has been on the Washington continental shelf, slope, and the submarine canyons indenting the shelf north of the Columbia River. The aim is to provide basic data required to characterize underlying chemical and physical processes and their rates which control the distributions, concentrations, and ultimate fate of some of the potentially hazardous agents associated with fossil fuel and/or nuclear power production or transportation. We are concentrating on several processes which we feel are of special importance in the sea, and developing methodologies and expertise to study them. Laboratory and field experiments and theories derived from them are being used iteratively to investigate: (1) vertical transfer of trace chemicals from surface seawaters to underlying waters and sediments; (2) processes which may transfer certain chemicals from sediments back into the overlying water column; (3) redox processes which besides changing valence states of certain chemicals may alter their precipitation/dissolution tendencies, their biological availability and/or toxicity; and (4) accumulation histories of potentially hazardous chemicals in sediments during the past 100 years.

  3. Towards Self-Replicating Chemical Systems Based on Cytidylic and Guanylic Acids

    NASA Technical Reports Server (NTRS)

    Kanavarioti, Anastassia; Bernasconi, Claude F.

    1997-01-01

    This project is aimed towards a better understanding of template-directed reactions and, based on this, towards the development of efficient non-enzymatic RNA replicating systems. These systems could serve as models for the prebiotic synthesis of an RNA world. The major objectives of this project were: (a) To elucidate the mechanistic aspects of template-directed (TD) chemistry, (b) to identify the conditions, environmental and other, that favor "organized chemistry" and stereo selective polymerization of nucleotides and (c) to search and, hopefully, find catalysts that will improve the efficiency of these reactions. Enhanced efficiency is expected to facilitate the road towards a self-replicating chemical system based on all four nucleic acid bases. During the first nine months of the granting period from January 1997 to October 1997, we have made substantial progress towards the first two objectives. During this period our activities were directed towards (1) synthesizing activated nucleotides to be used as substrates, (2) using these substrates in order to determine the effect of the leaving group (imidazole (Im), 2-methylimidazole (2-MeIm), and 2,4-dimethylimidazole (2,4-diMeIm)) in the product distribution, (3) developing techniques for analysis of mixtures by LC/MS, (4) creating a protocol in order to obtain kinetic parameters of the dimerization reaction and (5) analyzing kinetic data obtained with the poly(C)/2-MeImpG system. With the exception of item (5), the experimental work for the projects (1) - (4) is still in progress. A list of publications and manuscripts resulted from this research is enclosed.

  4. Chemical kinetic behavior of chlorogenic acid in protecting erythrocyte and DNA against radical-induced oxidation.

    PubMed

    Tang, You-Zhi; Liu, Zai-Qun

    2008-11-26

    As an abundant ingredient in coffee, chlorogenic acid (CGA) is a well-known antioxidant. Although some works have dealt with its radical-scavenging property, the present work investigated the protective effects of CGA on the oxidation of DNA and on the hemolysis of human erythrocytes induced by 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH) by means of chemical kinetics. The inhibition period (t(inh)) derived from the protective effect of CGA on erythrocyte and DNA was proportional to its concentration, t(inh) = (n/R(i))[CGA], where R(i) refers to the radical-initiation rate, and n indicates the number of radical-propagation chains terminated by CGA. It was found that the n of CGA to protect erythrocytes was 0.77, lower than that of vitamin E (2.0), but higher than that of vitamin C (0.19). Furthermore, CGA facilitated a mutual protective effect with VE and VC on AAPH-induced hemolysis by increasing n of VE and VC. CGA was also found to be a membrane-stabilizer to protect erythrocytes against hemin-induced hemolysis. Moreover, the n of CGA was only 0.41 in the process of protecting DNA. This fact revealed that CGA served as an efficient antioxidant to protect erythrocytes more than to protect DNA. Finally, the reaction between CGA and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) radical cation (ABTS(+*)) or 2,2'-diphenyl-1-picrylhydrazyl (DPPH) revealed that CGA was able to trap radicals by reducing radicals more than by donating its hydrogen atoms to radicals.

  5. Chemical composition and bioactivity properties of size-fractions separated from a vermicompost humic acid.

    PubMed

    Canellas, Luciano P; Piccolo, Alessandro; Dobbss, Leonardo B; Spaccini, Riccardo; Olivares, Fábio L; Zandonadi, Daniel B; Façanha, Arnoldo R

    2010-01-01

    Preparative high performance size-exclusion chromatography (HPSEC) was applied to humic acids (HA) extracted from vermicompost in order to separate humic matter of different molecular dimension and evaluate the relationship between chemical properties of size-fractions (SF) and their effects on plant root growth. Molecular dimensions of components in humic SF was further achieved by diffusion-ordered nuclear magnetic resonance spectroscopy (DOSY-NMR) based on diffusion coefficients (D), while carbon distribution was evaluated by solid state (CP/MAS) (13)C NMR. Seedlings of maize and Arabidopsis were treated with different concentrations of SF to evaluate root growth. Six different SF were obtained and their carbohydrate-like content and alkyl chain length decreased with decreasing molecular size. Progressive reduction of aromatic carbon was also observed with decreasing molecular size of separated fractions. Diffusion-ordered spectroscopy (DOSY) spectra showed that SF were composed of complex mixtures of aliphatic, aromatic and carbohydrates constituents that could be separated on the basis of their diffusion. All SF promoted root growth in Arabidopsis and maize seedlings but the effects differed according to molecular size and plant species. In Arabidopsis seedlings, the bulk HA and its SF revealed a classical large auxin-like exogenous response, i.e.: shortened the principal root axis and induced lateral roots, while the effects in maize corresponded to low auxin-like levels, as suggested by enhanced principal axis length and induction of lateral roots. The reduction of humic heterogeneity obtained in HPSEC separated size-fractions suggested that their physiological influence on root growth and architecture was less an effect of their size than their content of specific bioactive molecules. However, these molecules may be dynamically released from humic superstructures and exert their bioactivity when weaker is the humic conformational stability as that obtained

  6. Chemical surface modification of calcium carbonate particles with stearic acid using different treating methods

    NASA Astrophysics Data System (ADS)

    Cao, Zhi; Daly, Michael; Clémence, Lopez; Geever, Luke M.; Major, Ian; Higginbotham, Clement L.; Devine, Declan M.

    2016-08-01

    Calcium carbonate (CaCO3) is often treated with stearic acid (SA) to decrease its polarity. However, the method of application of the SA treatments has a strong influence on CaCO3 thermoplastic composite's interfacial structure and distribution. Several of papers describe the promising effects of SA surface treatment, but few compare the treatment process and its effect on the properties of the final thermoplastic composite. In the current study, we assessed a new SA treatment method, namely, complex treatment for polymer composite fabrication with HDPE. Subsequently, a comparative study was performed between the "complex" process and the other existing methods. The composites were assessed using different experiments included scanning electron microscopy (SEM), void content, density, wettability, differential scanning calorimetry (DSC), and tensile tests. It was observed that the "complex" surface treatment yielded composites with a significantly lower voids content and higher density compared to other surface treatments. This indicates that after the "complex" treatment process, the CaCO3 particles and HDPE matrix are more tightly packed than other methods. DSC and wettability results suggest that the "wet" and "complex" treated CaCO3 composites had a significantly higher heat of fusion and moisture resistance compared to the "dry" treated CaCO3 composites. Furthermore, "wet" and "complex" treated CaCO3 composites have a significantly higher tensile strength than the composites containing untreated and "dry" treated CaCO3. This is mainly because the "wet" and "complex" treatment processes have increased adsorption density of stearate, which enhances the interfacial interaction between matrix and filler. These results confirm that the chemical adsorption of the surfactant ions at the solid-liquid interface is higher than at other interface. From this study, it was concluded that the utilization of the "complex" method minimised the negative effects of void

  7. Antioxidant activity of rosmarinic acid and its principal metabolites in chemical and cellular systems: Importance of physico-chemical characteristics.

    PubMed

    Adomako-Bonsu, Amma G; Chan, Sue Lf; Pratten, Margaret; Fry, Jeffrey R

    2017-04-01

    Persistent accumulation of reactive oxygen species causes cellular oxidative stress which contributes strongly towards the induction and progression of various diseases. Therapeutic focus has therefore shifted towards the use of antioxidants, with recent interest in those of plant origin. In the current study, rosmarinic acid (RA) and its key metabolites were evaluated in non-cellular and cellular antioxidant assays, using quercetin (Q) as a positive control. The non-cellular assay was performed as scavenging of DPPH radical, whilst the cellular assay was performed as protection from an oxidant stress. Radical-scavenging activity of RA and two of its primary metabolites, CA and DHPLA, were comparable to that of Q, whilst FA was of lower potency and m-CoA was inactive. In the cellular assay, RA and CA were markedly less potent than Q, with DHPLA, FA and m-CoA being inactive, this being true in short-term (5-h) or long-term (20-h) exposure conditions. However, antioxidant potency of Q and methyl rosmarinate, a non-ionisable ester of RA, was similar in the non-cellular and short-term cellular assays. It is proposed that marked ionisation of organic acids such as RA and its metabolites at physiological pH greatly limits their intracellular accumulation, and so attenuates intrinsic antioxidant ability demonstrated in the non-cellular assay. This study demonstrates some of the factors that prevent well-known phytochemicals from progressing further along the drug discovery chain.

  8. Nutritional value of 15 corn gluten meals for growing pigs: chemical composition, energy content and amino acid digestibility.

    PubMed

    Ji, Ying; Zuo, Lei; Wang, Fengli; Li, Defa; Lai, Changhua

    2012-08-01

    The objectives of this study were to determine the chemical composition, energy content and amino acid digestibility for corn gluten meals (CGM) and to develop prediction equations for estimating energy content and amino acid digestibility for growing pigs based on the chemical characteristics of these meals. The 15 CGM tested were obtained from seven Chinese companies. Experiment 1 was conducted to determine the digestible (DE) and metabolisable energy (ME) of the 15 CGM. The 18 growing barrows (38 +/- 4 kg) were assigned to three 6 x 6 Latin square designs. The 15 CGM test diets were formulated to contain 19.20% CGM, which replaced 20% of the energy supplied by corn and crystalline amino acid in the basal diet. Experiment 2 was conducted to determine the apparent (AID) and standardised (SID) ileal digestibility of the crude protein (CP) and amino acids in the 15 CGM using chromic oxide as an inert marker. The 18 growing barrows (25 +/- 2 kg) fitted with a simple T-cannula were assigned to three 6 x 6 Latin square designs. The 15 test diets contained 35% of one of the 15 CGM as the sole source of amino acids in the diet. The results showed a considerable variation in the chemical composition of CGM within and among plants. On dry matter basis, the DE and ME content of the CGM ranged from 18.8 to 21.0 MJ/kg and from 18.0 to 19.9 MJ/kg, respectively. There were no significant differences in the AID and SID for CP, arginine, lysine, glycine and proline among the 15 CGM, however, for all the other amino acids, significant differences were found for their AID and SID. With R2 values exceeding 0.50, the DE of CGM can be predicted accurately from CP and fibre content and ME from starch and fibre content. Suitable prediction equations for SID of methionine were also developed.

  9. Chemical Technology Division progress report, July 1, 1991--December 31, 1992

    SciTech Connect

    Genung, R.K.; Hightower, J.R.; Bell, J.T.

    1993-05-01

    This progress report reviews the mission of the Chemical Technology Division (Chem Tech) and presents a summary of organizational structure, programmatic sponsors, and funding levels for the period July 1, 1991, through December 31, 1992. The report also summarizes the missions and activities of organizations within Chem Tech for the reporting period. Specific projects performed within Chem Tech`s energy research programs, waste and environmental programs, and radiochemical processing programs are highlighted. Special programmatic activities conducted by the division are identified and described. Other information regarding publications, patents, awards, and conferences organized by Chem Tech staff is also included.

  10. Chemical Technology Division progress report, October 1, 1989--June 30, 1991

    SciTech Connect

    Not Available

    1992-04-01

    This progress report reviews the mission of the Chemical Technology Division (Chem Tech) and presents a summary of organizational structure, programmatic sponsors, and funding levels for the period October 1, 1988, through June 30, 1991. The report also summarizes the missions and activities of organizations within Chem Tech for the reporting period. Specific projects performed within Chem Tech`s energy research programs, waste and environmental programs, and radiochemical processing programs are highlighted. Other information regarding publications, patents, awards, and conferences organized by Chem Tech staff is also included.

  11. Chemical Technology Division progress report, October 1, 1989--June 30, 1991

    SciTech Connect

    Not Available

    1992-04-01

    This progress report reviews the mission of the Chemical Technology Division (Chem Tech) and presents a summary of organizational structure, programmatic sponsors, and funding levels for the period October 1, 1988, through June 30, 1991. The report also summarizes the missions and activities of organizations within Chem Tech for the reporting period. Specific projects performed within Chem Tech's energy research programs, waste and environmental programs, and radiochemical processing programs are highlighted. Other information regarding publications, patents, awards, and conferences organized by Chem Tech staff is also included.

  12. Effects of acid fog and ozone on conifers. Final report

    SciTech Connect

    Bytnerowicz, A.; Olszyk, D.M.; Takemoto, B.K.; McCool, P.M.; Musselman, R.C.

    1989-05-01

    This study evaluated the effects of acidic fog (pH 2.0, 3.0, or 4.0) on the physiological, biochemical, and growth responses of two coniferous tree species (Pinus ponderosa and Abies concolor), and determined if exposure to acidic fog predisposed the tree seedlings to the phytotoxic effects of ozone (O{sub 3}). Results provide evidence that the growth and metabolic responses of two coniferous tree species could be altered by multiple applications of acidic fog, and by exposure to ambient O{sub 3}. In general, the alterations were slight to modest, which may be attributed to the low degree of stress severity, and the slow rate of tree growth. The findings indicate that exposure to acidic fog followed by O{sub 3} does not cause detectable changes in conifer seedling growth within a single-growing season. Nevertheless, it is clear that acidic fog and O{sub 3} cause temporal alterations in seedling physiology and biochemistry.

  13. Effects of acid rain on forest nutrient status. Final report

    SciTech Connect

    Johnson, D.W.; Cole, D.W.

    1985-04-01

    In five forest sites (three in eastern Tennessee and two in western Washington) the effect of natural carbonic acid production on soil leaching was equaled or exceeded by that of atmospheric acid inputs. In a nitrogen-fixing red alder site in Washington, however, internal leaching by nitrification and nitric acid formation far exceeded atmospheric H/sup +/ inputs at any site. All other sites retained NO/sub 3//sup -/, and soil SO/sub 4//sup 2 -/ adsorption reduced the effectiveness of atmospheric H/sub 2/SO/sub 4/ inputs on soil leaching in two of the Tennessee sites and in the Washington red alder site. Atmospheric sulfur inputs exceeded the forest sulfur requirement in all five sites. Decomposer invertebrates appeared to be affected negatively by unrealistically large applications of SO/sub 4//sup 2 -/, either as KHSO/sub 4/ or K/sub 2/SO/sub 4/. Forest floor buffering prevented large changes in pH with acid SO/sub 4//sup 2 -/ treatments. Results indicate that effects of acid deposition on decomposer invertebrates are unlikely except at input levels much higher than ambient.

  14. Graphene decorated microelectrodes for simultaneous detection of ascorbic, dopamine, and folic acids by means of chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Namdar, N.; Hassanpour Amiri, M.; Dehghan Nayeri, F.; Gholizadeh, A.; Mohajerzadeh, S.

    2015-09-01

    In this paper, high quality and large area graphene layers were synthesized using thermal chemical vapour deposition on copper foil substrates. We use graphene incorporated electrodes to measure simultaneously ascorbic acid, dopamine and folic acid. Cyclic voltammetry and differential pulse voltammetry methods were used to evaluate electrochemical behaviour of the grown graphene layers. The graphene-modified electrode shows large electrochemical potential difference compared to bare gold electrodes with higher current responses. Also our fabricated electrodes configuration can be used easily for microfluidic analysis.

  15. Production of carrier-peptide conjugates using chemically reactive unnatural amino acids

    DOEpatents

    Young, Travis; Schultz, Peter G.

    2015-08-18

    Provided are methods of making carrier polypeptide that include incorporating a first unnatural amino acid into a carrier polypeptide variant, incorporating a second unnatural amino acid into a target polypeptide variant, and reacting the first and second unnatural amino acids to produce the conjugate. Conjugates produced using the provided methods are also provided. In addition, orthogonal translation systems in methylotrophic yeast and methods of using these systems to produce carrier and target polypeptide variants comprising unnatural amino acids are provided.

  16. Production of carrier-peptide conjugates using chemically reactive unnatural amino acids

    DOEpatents

    Young, Travis; Schultz, Peter G

    2013-12-17

    Provided are methods of making carrier polypeptide that include incorporating a first unnatural amino acid into a carrier polypeptide variant, incorporating a second unnatural amino acid into a target polypeptide variant, and reacting the first and second unnatural amino acids to produce the conjugate. Conjugates produced using the provided methods are also provided. In addition, orthogonal translation systems in methylotrophic yeast and methods of using these systems to produce carrier and target polypeptide variants comprising unnatural amino acids are provided.

  17. Production of carrier-peptide conjugates using chemically reactive unnatural amino acids

    DOEpatents

    Young, Travis; Schultz, Peter G

    2014-01-28

    Provided are methods of making carrier polypeptide that include incorporating a first unnatural amino acid into a carrier polypeptide variant, incorporating a second unnatural amino acid into a target polypeptide variant, and reacting the first and second unnatural amino acids to produce the conjugate. Conjugates produced using the provided methods are also provided. In addition, orthogonal translation systems in methylotrophic yeast and methods of using these systems to produce carrier and target polypeptide variants comprising unnatural amino acids are provided.

  18. Acute renal failure and metabolic acidosis due to oxalic acid intoxication: a case report.

    PubMed

    Yamamoto, Rie; Morita, Seiji; Aoki, Hiromichi; Nakagawa, Yoshihide; Yamamoto, Isotoshi; Inokuchi, Sadaki

    2011-12-20

    Most of the reports of oxalic acid intoxication are in cases of ethylene glycol intoxication. These symptoms are known to be central nerve system manifestations, cardiopulmonary manifestations and acute renal failure. There have been only a few reports of direct oxalic acid intoxication. However, there have been a few recent reports of oxalic acid intoxication due to the ingestion of star fruit and ascorbic acid. We herein report the case of a patient with acute renal failure and metabolic acidosis caused directly by consumption of oxalic acid. During the initial examination by the physician at our hospital, the patient presented with tachypnea, a precordinal burning sensation, nausea and metabolic acidosis. After admission, the patient developed renal failure and anion gap high metabolic acidosis, but did not develop any CNS or cardio-pulmonary manifestations in the clinical course. The patient benefitted symptomatically from hemodialysis.

  19. Process for chemical reaction of amino acids and amides yielding selective conversion products

    DOEpatents

    Holladay, Jonathan E.

    2006-05-23

    The invention relates to processes for converting amino acids and amides to desirable conversion products including pyrrolidines, pyrrolidinones, and other N-substituted products. L-glutamic acid and L-pyroglutamic acid provide general reaction pathways to numerous and valuable selective conversion products with varied potential industrial uses.

  20. 75 FR 19319 - Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release Reporting; Extension of Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-14

    ... AGENCY 40 CFR Part 372 RIN 2025-AA27 Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release...) section 313 toxic chemical release reporting requirements for hydrogen sulfide (Chemical Abstracts Service... otherwise use hydrogen sulfide. Potentially affected categories and entities may include, but are...