Science.gov

Sample records for acid chemical reporters

  1. d-Amino Acid Chemical Reporters Reveal Peptidoglycan Dynamics of an Intracellular Pathogen

    PubMed Central

    2012-01-01

    Peptidoglycan (PG) is an essential component of the bacterial cell wall. Although experiments with organisms in vitro have yielded a wealth of information on PG synthesis and maturation, it is unclear how these studies translate to bacteria replicating within host cells. We report a chemical approach for probing PG in vivo via metabolic labeling and bioorthogonal chemistry. A wide variety of bacterial species incorporated azide and alkyne-functionalized d-alanine into their cell walls, which we visualized by covalent reaction with click chemistry probes. The d-alanine analogues were specifically incorporated into nascent PG of the intracellular pathogen Listeria monocytogenes both in vitro and during macrophage infection. Metabolic incorporation of d-alanine derivatives and click chemistry detection constitute a facile, modular platform that facilitates unprecedented spatial and temporal resolution of PG dynamics in vivo. PMID:23240806

  2. Acid evaporation property in chemically amplified resists

    NASA Astrophysics Data System (ADS)

    Hashimoto, Shuichi; Itani, Toshiro; Yoshino, Hiroshi; Yamana, Mitsuharu; Samoto, Norihiko; Kasama, Kunihiko

    1997-07-01

    The lithographic performance of a chemically amplified resist system very much depends on the photo-generated acid structure. In a previous paper, we reported the molecular structure dependence of two typical photo-generated acids (aromatic sulfonic acid and alkyl sulfonic acid) from the viewpoints of lithographic performance and acid characteristics such as acid generation efficiency, acid diffusion behavior and acid evaporation property. In this paper, we evaluate the effect of the remaining solvent in a resist film on the acid evaporation property. Four types of two-component chemically amplified positive KrF resists were prepared consisting of tert-butoxycarbonyl (t-BOC) protected polyhydroxystyrene and sulfonic acid derivative photo-acid generator (PAG). Here, a different combination of two types of PAGs [2,4-dimethylbenzenesulfonic acid (aromatic sulfonic acid) derivative PAG and cyclohexanesulfonic acid (alkyl sulfonic acid) derivative PAG] and two types of solvents (propylene glycol monomethyl ether acetate; PGMEA and ethyl lactate; EL) were evaluated. The aromatic sulfonic acid was able to evaporate easily during post exposure bake (PEB) treatment, but the alkyl sulfonic acid was not. The higher evaporation property of aromatic sulfonic acid might be due to the higher vapor pressure and the longer acid diffusion length. Furthermore, the amount of aromatic sulfonic acid in the PGMEA resist was reduced by more than that in the EL resist. The amount of acid loss also became smaller at a higher prebake temperature. The concentration of the remaining solvent in the resist film decreased with the increasing prebake temperature. We think that the acid evaporation property was affected by the remaining solvent in the resist, film; the large amount of remaining solvent promoted the acid diffusion and eventually accelerated the acid evaporation from the resist film surface in the PGMEA resist. In summary, the acid evaporation property depends on both the acid

  3. Phenotypic chemical screening using a zebrafish neural crest EMT reporter identifies retinoic acid as an inhibitor of epithelial morphogenesis.

    PubMed

    Jimenez, Laura; Wang, Jindong; Morrison, Monique A; Whatcott, Clifford; Soh, Katherine K; Warner, Steven; Bearss, David; Jette, Cicely A; Stewart, Rodney A

    2016-04-01

    The epithelial-to-mesenchymal transition (EMT) is a highly conserved morphogenetic program essential for embryogenesis, regeneration and cancer metastasis. In cancer cells, EMT also triggers cellular reprogramming and chemoresistance, which underlie disease relapse and decreased survival. Hence, identifying compounds that block EMT is essential to prevent or eradicate disseminated tumor cells. Here, we establish a whole-animal-based EMT reporter in zebrafish for rapid drug screening, calledTg(snai1b:GFP), which labels epithelial cells undergoing EMT to producesox10-positive neural crest (NC) cells. Time-lapse and lineage analysis ofTg(snai1b:GFP)embryos reveal that cranial NC cells delaminate from two regions: an early population delaminates adjacent to the neural plate, whereas a later population delaminates from within the dorsal neural tube. TreatingTg(snai1b:GFP)embryos with candidate small-molecule EMT-inhibiting compounds identified TP-0903, a multi-kinase inhibitor that blocked cranial NC cell delamination in both the lateral and medial populations. RNA sequencing (RNA-Seq) analysis and chemical rescue experiments show that TP-0903 acts through stimulating retinoic acid (RA) biosynthesis and RA-dependent transcription. These studies identify TP-0903 as a new therapeutic for activating RAin vivoand raise the possibility that RA-dependent inhibition of EMT contributes to its prior success in eliminating disseminated cancer cells. PMID:26794130

  4. Phenotypic chemical screening using a zebrafish neural crest EMT reporter identifies retinoic acid as an inhibitor of epithelial morphogenesis

    PubMed Central

    Jimenez, Laura; Wang, Jindong; Morrison, Monique A.; Whatcott, Clifford; Soh, Katherine K.; Warner, Steven; Bearss, David; Jette, Cicely A.; Stewart, Rodney A.

    2016-01-01

    ABSTRACT The epithelial-to-mesenchymal transition (EMT) is a highly conserved morphogenetic program essential for embryogenesis, regeneration and cancer metastasis. In cancer cells, EMT also triggers cellular reprogramming and chemoresistance, which underlie disease relapse and decreased survival. Hence, identifying compounds that block EMT is essential to prevent or eradicate disseminated tumor cells. Here, we establish a whole-animal-based EMT reporter in zebrafish for rapid drug screening, called Tg(snai1b:GFP), which labels epithelial cells undergoing EMT to produce sox10-positive neural crest (NC) cells. Time-lapse and lineage analysis of Tg(snai1b:GFP) embryos reveal that cranial NC cells delaminate from two regions: an early population delaminates adjacent to the neural plate, whereas a later population delaminates from within the dorsal neural tube. Treating Tg(snai1b:GFP) embryos with candidate small-molecule EMT-inhibiting compounds identified TP-0903, a multi-kinase inhibitor that blocked cranial NC cell delamination in both the lateral and medial populations. RNA sequencing (RNA-Seq) analysis and chemical rescue experiments show that TP-0903 acts through stimulating retinoic acid (RA) biosynthesis and RA-dependent transcription. These studies identify TP-0903 as a new therapeutic for activating RA in vivo and raise the possibility that RA-dependent inhibition of EMT contributes to its prior success in eliminating disseminated cancer cells. PMID:26794130

  5. Chemical reporters for biological discovery

    PubMed Central

    Grammel, Markus; Hang, Howard C.

    2013-01-01

    Functional tools are needed to understand complex biological systems. Here we review how chemical reporters in conjunction with bioorthogonal labeling methods can be used to image and retrieve nucleic acids, proteins, glycans, lipids and other metabolites in vitro, in cells as well as in whole organisms. By tagging these biomolecules, researchers can now monitor their dynamics in living systems and discover specific substrates of cellular pathways. These advances in chemical biology are thus providing important tools to characterize biological pathways and are poised to facilitate our understanding of human diseases. PMID:23868317

  6. Analysis of uncertainties in the regional acid deposition model, version 2 (RADM2), gas-phase chemical mechanism. Final report

    SciTech Connect

    Gao, D.; Milford, J.B.; Stockwell, W.R.

    1996-04-01

    This report describes the results of a detailed analysis of uncertainties in the RADM2 chemical mechanism, which was developed by Stockwell et al. (1990) for use in urban and regional scale models of the formation and transport of ozone and other photochemical air pollutants. The uncertainty analysis was conducted for box model simulations of chemical conditions representing summertime smog episodes in polluted rural and urban areas. Estimated uncertainties in the rate parameters and product yields of the mechanism were propagated through the simulations using Monte Carlo analysis with a Latin Hypercube Sampling scheme. Uncertainty estimates for the mechanism parameters were compiled from published reviews, supplemented as necessary by original estimates. Correlations between parameters were considered in the analysis as appropriate.

  7. Chemical composition of acid fog

    SciTech Connect

    Waldman, J.M.; Munger, J.W.; Jacob, D.J.; Flagan, R.C.; Morgan, J.J.; Hoffmann, M.R.

    1982-11-12

    Fog water collected at three sites in Los Angeles and Bakersfield, California, was found to have higher acidity and higher concentrations of sulfate, nitrate, and ammonium than previously observed in atmospheric water droplets. The pH of the fog water was in the range of 2.2 to 4.0. the dominant processes controlling the fog water chemistry appear to be the condensation and evaporation of water vapor on preexisting aerosol and the scavenging of gas-phase nitric acid.

  8. An Acid Hydrocarbon: A Chemical Paradox

    ERIC Educational Resources Information Center

    Burke, Jeffrey T.

    2004-01-01

    The chemical paradox of cyclopentadiene, a hydrocarbon, producing bubbles like a Bronsted acid is observed. The explanation that it is the comparative thermodynamic constancy of the fragrant cyclopentadienyl anion, which produces the powerful effect, resolves the paradox.

  9. Chemical of the Month: Nitric Acid.

    ERIC Educational Resources Information Center

    Pannu, Sardul S.

    1984-01-01

    Presents background information on nitric acid including old names, history, occurrence, methods of preparation, uses, production, and price. Includes such chemical properties as decomposition; acidity, oxidation of metals and nonmetals; reactions with organic and inorganic compounds; gaseous fluorine; and nitrating properties. Also discusses bond…

  10. Acid rain report focuses on forests

    NASA Astrophysics Data System (ADS)

    Recent research on acid precipitation yields “increasing general concern about possible effects on forests,” according to the second annual report of the National Acid Precipitation Assessment Program (NAPAP). Prepared by the Interagency Task Force on Acid Precipitation, the report outlines the accomplishments of the national program during fiscal 1983, summarizes the current state of scientific knowledge (including a change in the baseline acidity of precipitation), and describes the outlook for current progress by federally funded acid precipitation research. Chris Bernabo is the program's executive director.NAPAP's annual report agrees with the finding of a National Research Council (NRC) committee that a linear relationship exists between sulfur dioxide emissions and wet deposition of sulfate (Eos, July 26, 1983, p. 475). NRC's Committee on Atmospheric Transport and Chemical Transformation in Acid Precipitation, which issued its report last year, was chaired by Jack G. Calvert of the National Center for Atmospheric Research.

  11. [The forensic chemical investigation of acetylsalicylic acid].

    PubMed

    Shormanov, V K; Chupak, V V; Pobedonstseva, M N; Maslov, S V; Kibets, N A; Tikhopoeva, N N

    2015-01-01

    The objective of the present study was to develop the universal approach to the quantitative determination of acetylsalicylic acid in biological tissues and fluids to be applied in the practice of forensic chemical expertise with the use of thin-layer chromatography, gas chromatography and mass spectrometry, low-pressure column chromatography, and spectrophotometry. A system of solvents consisting of acetone and ethyl acetate (7:3) was proposed as a universal agent for extracting acetylsalicylic acid from the cadaveric tissues and blood. It was shown that acetylsalicylic acid and its principal metabolite, salicylic acid, can be purified from the endogenous admixtures present in the biological materials by column chromatography on silica gel L 40/100 mcm. Salicylic acid in extracts from biological materials was identified and quantified with the use of thin-layer chromatography, gas chromatography/mass spectrometry, and electronic spectrophotometry. The method for forensic chemical investigation of acetylsalicylic acid has been developed and applied in the analysis of the material provided for expertise. PMID:26856059

  12. Health Hazard Evaluation Report HETA 83-166-1594, Witco Chemical Corporation, Perth Amboy, New Jersey. [Ethylene oxide, glycols, and adipic acid

    SciTech Connect

    Cummings, C.E.; Roseman, J.

    1985-05-01

    Area and personel air samples were analyzed for ethylene oxide, glycols, and adipic-acid at the Witco Chemical Corporation, Perth Amboy, New Jersey from November to December, 1983 and May, 1984. The evaluation was requested by the union to investigate possible health effects due to polychlorinated biphenyls (PCBs), glycols, and ethylene oxide. The evaluation was assigned to the New Jersey State Department of Health. The authors conclude that health hazards due to ethylene oxide and airborne fatty acid exposures exist. Recommendations include improving ventilation and work practices and implementing an OSHA approved respirator program.

  13. Chemical abatement of acid mine drainage formation

    SciTech Connect

    Steven, J.

    1987-01-01

    Chemical and thermodynamic data were used to develop a unified model of hydroxo-, sulfato-, and bisulfato-iron complexes and their stability constants in iron-sulfate solutions. Free energy of formation for each ligand series species was hypothesized to be linear in ligand number because of supporting evidence from the literature. Laboratory tests on the inhibition of acid mine drainage bacteria were conducted. Benzoic acid, sorbic acid, and sodium lauryl sulfate at low concentrations (5 to 10 mg/liter) each effectively inhibited oxidation of ferrous iron in batch cultures of Thiobacillus ferrooxidans. The rate of chemical oxidation of ferrous iron in low-pH, sterile batch reactors was not substantially affected at the tested concentrations (5 to 50 mg/liter) of any of the compounds. Low-pH cultures of Thiobacillus thioxidans significantly increased zinc sulfide dissolution rates relative to sterile controls. Sodium lauryl sulfate, benzoic acid, and sorbic acid at concentrations of 10, 25, and 50 mg/liter, respectively, in identical low-pH, batch cultures of Thiobacillus thiooxidans, were sufficient for complete inhibition of bacterial zinc sulfide dissolution. Pilot-scale experiments on the abatement of acid mine drainage formation in both fresh and weathered pyritic coal refuse were also conducted. At doses of 0.5 g/kg and 5.0 g/kg in fresh and weathered refuse, respectively, sodium benzoate, potassium sorbate, and most significantly, sodium lauryl surface, reduced the rate of iron, sulfate, and acidity production in water-leached barrels of coal refuse material.

  14. Chemical Synthesis of a Hyaluronic Acid Decasaccharide

    PubMed Central

    Lu, Xiaowei; Kamat, Medha N.; Huang, Lijun; Huang, Xuefei

    2009-01-01

    The chemical synthesis of a hyaluronic acid decasaccharide using the pre-activation based chemoselective glycosylation strategy is described. Assembly of large oligosaccharides is generally challenging due to the increased difficulties in both glycosylation and deprotection. Indeed, the same building blocks previously employed for hyaluronic acid hexasaccharide syntheses failed to yield the desired decasaccharide. After extensive experimentation, the decasaccharide backbone was successfully constructed with an overall yield of 37% from disaccharide building blocks. The trichloroacetyl group was used as the nitrogen protective group for the glucosamine units and the addition of TMSOTf was found to be crucial to suppress the formation of trichloromethyl oxazoline side-product and enable high glycosylation yield. For deprotections, the combination of a mild basic condition and the monitoring methodology using 1H-NMR allowed the removal of all base-labile protective groups, which facilitated the generation of the fully deprotected HA decasaccharide. PMID:19764799

  15. Acid rain report released

    NASA Astrophysics Data System (ADS)

    Katzoff, Judith A.

    A joint report issued January 8, 1986, by special envoys from the United States and Canada recommends that the United States implement a 5-year, $5-billion commercial demonstration program for technologies to control emissions from the burning of coal. The recommendations call for government and industry to share the costs of the proposed program.The report was issued by Drew Lewis, former U.S. Secretary of Transportation, and William Davis, former Premier of Ontario, at the request of U.S. President Ronald Reagan and Canadian Prime Minister Brian Mulroney after a summit conference between the two leaders in March 1985. Discussion of the report is on the agenda for a second meeting this coming March. Reagan has said he will review the report but has not committed himself to endorse its recommendations.

  16. ICMS. Chemical Tracking, Management, and Reporting

    SciTech Connect

    Bramlette, J.; Miles, R.; Carlson, M.; Bargelski, C.

    1997-10-10

    The ICMS provides: management and system users a cost-effective method for identifying, reporting, and tracking chemicals from identifying the chemical when it is received until it enters a waste stream for a facility or area.

  17. Chemical hazards from acid crater lakes

    NASA Astrophysics Data System (ADS)

    van Bergen, M. J.; Sumarti, S.; Heikens, A.; Bogaard, T. A.; Hartiyatun, S.

    2003-04-01

    Acid crater lakes, which are hosted by a considerable number of active volcanoes, form a potential threat for local ecosystems and human health, as they commonly contain large amounts of dissolved chemicals. Subsurface seepage or overflow can lead to severe deterioration of the water quality of rivers and wells, as observations around several of these volcanoes have shown. The Ijen crater lake in East Java (Indonesia) is a striking example, as this reservoir of hyperacid (pH<0.5) sulphate, chloride and fluoride-rich water is the source of a ca. 50 km long acid river that transports substantial quantities of potentially toxic elements. A downstream trend of increasing pH from <1 to 2.5-4 is largely due to dilution with moderately acid springs (pH= ca. 4) and neutral tributaries (pH= ca. 7) inside the Ijen caldera. Geochemical controls that regulate element transport are subject to seasonal fluctuations in rainfall. Long-term monitoring has shown that fluoride levels pose some of the most severe environmental threats. Its concentration decreases from ca. 1300 mg/kg in the lake to ca. 10 mg/kg in a coastal area downstream, where virtually all of the river water is used for irrigating rice fields and other cropland. Apart from serious problems for agriculture, our survey of 55 drinking water wells in the irrigation area shows that 50% contain fluoride above the 1.5 ppm WHO limit, in line with the observation that dental fluorosis is widespread among the ca. 100,000 residents of the area. A conspicuous spatial correlation between fluoride concentrations and the irrigation system suggest that long-term (century) infiltration of irrigation water may have affected the quality of groundwater. Fluorosis is also a problem in some villages within the caldera, where well water sources may have a more direct subsurface connection with the lake system. From our observations we conclude that water-quality monitoring is especially needed for health reasons in volcanic areas where

  18. Nucleic Acid Templated Chemical Reaction in a Live Vertebrate

    PubMed Central

    2016-01-01

    Nucleic acid templated reactions are enabled by the hybridization of probe-reagent conjugates resulting in high effective reagent concentration and fast chemical transformation. We have developed a reaction that harnesses cellular microRNA (miRNA) to yield the cleavage of a linker releasing fluorogenic rhodamine in a live vertebrate. The reaction is based on the catalytic photoreduction of an azide by a ruthenium complex. We showed that this system reports specific expression of miRNA in living tissues of a vertebrate. PMID:27413783

  19. Role of succinic acid in chemical evolution

    NASA Technical Reports Server (NTRS)

    Negron-Mendoza, A.; Ponnamperuma, C.

    1982-01-01

    Succinic acid is converted into other carboxylic acids by ionizing radiation. The results obtained have been correlated with the ready formation of this compound in prebiotic experiments. Its role in biological systems may be related to its prebiotic occurrence.

  20. Catalytic upgrading of butyric acid towards fine chemicals and biofuels

    PubMed Central

    Sjöblom, Magnus; Matsakas, Leonidas; Christakopoulos, Paul; Rova, Ulrika

    2016-01-01

    Fermentation-based production of butyric acid is robust and efficient. Modern catalytic technologies make it possible to convert butyric acid to important fine chemicals and biofuels. Here, current chemocatalytic and biocatalytic conversion methods are reviewed with a focus on upgrading butyric acid to 1-butanol or butyl-butyrate. Supported Ruthenium- and Platinum-based catalyst and lipase exhibit important activities which can pave the way for more sustainable process concepts for the production of green fuels and chemicals. PMID:26994015

  1. Acid-functionalized polyolefin materials and their use in acid-promoted chemical reactions

    DOEpatents

    Oyola, Yatsandra; Tian, Chengcheng; Bauer, John Christopher; Dai, Sheng

    2016-06-07

    An acid-functionalized polyolefin material that can be used as an acid catalyst in a wide range of acid-promoted chemical reactions, wherein the acid-functionalized polyolefin material includes a polyolefin backbone on which acid groups are appended. Also described is a method for the preparation of the acid catalyst in which a precursor polyolefin is subjected to ionizing radiation (e.g., electron beam irradiation) of sufficient power and the irradiated precursor polyolefin reacted with at least one vinyl monomer having an acid group thereon. Further described is a method for conducting an acid-promoted chemical reaction, wherein an acid-reactive organic precursor is contacted in liquid form with a solid heterogeneous acid catalyst comprising a polyolefin backbone of at least 1 micron in one dimension and having carboxylic acid groups and either sulfonic acid or phosphoric acid groups appended thereto.

  2. Chemical sciences, annual report 1993

    SciTech Connect

    Not Available

    1994-10-01

    The Chemical Sciences Division (CSD) is one of eleven research Divisions of the Lawrence Berkeley Laboratory, a DOE National Laboratory. In FY 1993, the Division made considerable progress on developing two end-stations and a beamline to advance combustion dynamics at the Advanced Light Source (ALS). In support of DOE`s national role in combustion research and chemical science, the beamline effort will enable researchers from around the world to make fundamental advances in understanding the structure and reactivity of critical reaction intermediates and transients, and in understanding the dynamics of elementary chemical reactions. The Division has continued to place a strong emphasis on full compliance with environmental health and safety guidelines and regulations and has made progress in technology transfer to industry. Finally, the Division has begun a new program in advanced battery research and development that should help strengthen industrial competitiveness both at home and abroad.

  3. Chemical Safety Vulnerability Working Group Report

    SciTech Connect

    Not Available

    1994-09-01

    This report marks the culmination of a 4-month review conducted to identify chemical safety vulnerabilities existing at DOE facilities. This review is an integral part of DOE's efforts to raise its commitment to chemical safety to the same level as that for nuclear safety.

  4. The Chemical Structure and Acid Deterioration of Paper.

    ERIC Educational Resources Information Center

    Hollinger, William K., Jr.

    1984-01-01

    Describes the chemical structure of paper, including subatomic particles, atoms and molecules, and the forces that bond atoms into molecules, molecules into chains, chains into sheets, and sheets into layers. Acid is defined, and the deleterious role of acid in breaking the forces that bond atoms into molecules is detailed. (EJS)

  5. Chemical epidural abscess: case report.

    PubMed

    Vijayan, N; Dreyfus, P M

    1971-06-01

    Spinal epidural abscess accompanies blood-borne infection, vertebral osteomyelitis, or an overlying cutaneous source of infection. This report documents the development of non-infective epidural abscess where the inflammatory response was induced by the highly irritant contents (keratin and cholesterol) of an underlying epidermoid. This was associated with aseptic meningitis. PMID:5571318

  6. Chemical epidural abscess: case report

    PubMed Central

    Vijayan, N.; Dreyfus, P. M.

    1971-01-01

    Spinal epidural abscess accompanies blood-borne infection, vertebral osteomyelitis, or an overlying cutaneous source of infection. This report documents the development of non-infective epidural abscess where the inflammatory response was induced by the highly irritant contents (keratin and cholesterol) of an underlying epidermoid. This was associated with aseptic meningitis. Images PMID:5571318

  7. Chemical transformations of methane in trifluoroacetic acid

    NASA Astrophysics Data System (ADS)

    Vishnetskaya, M. V.; Svichkarev, O. M.; Budynina, E. M.; Mel'nikov, M. Ya.

    2013-12-01

    The reaction of methane conversion in anhydrous trifluoroacetic acid (TFA) is shown to take place at room temperature and atmospheric pressure and to result in the formation of a resinous product. Signals of ions with molecular weights of 684 and 700 are observed in MALDI-TOF spectra of the dry residue of methane conversion products.

  8. Chemical Sciences Division: Annual report 1992

    SciTech Connect

    Not Available

    1993-10-01

    The Chemical Sciences Division (CSD) is one of twelve research Divisions of the Lawrence Berkeley Laboratory, a Department of Energy National Laboratory. The CSD is composed of individual groups and research programs that are organized into five scientific areas: Chemical Physics, Inorganic/Organometallic Chemistry, Actinide Chemistry, Atomic Physics, and Physical Chemistry. This report describes progress by the CSD for 1992. Also included are remarks by the Division Director, a description of work for others (United States Office of Naval Research), and appendices of the Division personnel and an index of investigators. Research reports are grouped as Fundamental Interactions (Photochemical and Radiation Sciences, Chemical Physics, Atomic Physics) or Processes and Techniques (Chemical Energy, Heavy-Element Chemistry, and Chemical Engineering Sciences).

  9. Acid rain: a background report

    SciTech Connect

    Glustrom, L.; Stolzenberg, J.

    1982-07-08

    This Staff Brief was prepared for the Wisconsin Legislative Council's Special Committee on Acid Rain to provide an introduction to the issue of acid rain. It is divided into four parts. Part I provides an overview on the controversies surrounding the measurement, formation and effects of acid rain. As described in Part I, the term acid rain is used to describe the deposition of acidic components through both wet deposition (e.g., rain or snow) and dry deposition (e.g., direct contact between atmospheric constituents and the land, water or vegetation of the earth). Part II presents background information on state agency activities relating to acid rain in Wisconsin, describes what is known about the occurrence of, susceptibility to and effects of acid rain in Wisconsin, and provides information related to man-made sources of sulfur and nitrogen oxides in Wisconsin. Part III describes major policies and regulations relating to acid rain which have been or are being developed jointly by the United States and Canadian governments, by the United States government and by the State of Wisconsin. Part IV briefly discusses possible areas for Committee action.

  10. Biologically produced succinic acid: A new route to chemical intermediates

    SciTech Connect

    1995-09-01

    The national laboratory consortium has undertaken an R&D project with the Michigan Biotechnology Institute (MBI) to demonstrate the feasibility of producing a chemical intermediate, succinic acid, and various derivatives, from renewable agricultural resources. The projects near-term goal is to demonstrate an economically competetive process for producing 1,4-butanediol and other derivatives from biologically produced succinic acid without generating a major salt waste. The competitiveness to the petrochemical process must be demonstrated.

  11. Annual Report 2000. Chemical Structure and Dynamics

    SciTech Connect

    Colson, Steven D.; McDowell, Robin S.

    2001-04-15

    This annual report describes the research and accomplishments of the Chemical Structure and Dynamics Program in the year 2000, one of six research programs at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) - a multidisciplinary, national scientific user facility and research organization. The Chemical Structure and Dynamics (CS&D) program is meeting the need for a fundamental, molecular-level understanding by 1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; 2) developing a multidisciplinary capability for describing interfacial chemical processes relevant to environmental chemistry; and 3) developing state-of-the-art research and analytical methods for characterizing complex materials of the types found in natural and contaminated systems.

  12. Annual Report 2000. Chemical Structure and Dynamics

    SciTech Connect

    Colson, Steve D; McDowell, Rod S

    2001-04-15

    This annual report describes the research and accomplishments of the Chemical Structure and Dynamics Program in the year 2000, one of six research programs at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) - a multidisciplinary, national scientific user facility and research organization. The Chemical Structure and Dynamics (CS and D) program is meeting the need for a fundamental, molecular-level understanding by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes relevant to environmental chemistry; and (3) developing state-of-the-art research and analytical methods for characterizing complex materials of the types found in natural and contaminated systems.

  13. Safety in the Chemical Laboratory. Laboratory Chemical Reports: The First Step in Chemical Safety.

    ERIC Educational Resources Information Center

    Renfrew, Malcolm M., Ed.; Tenpas, Carl J.

    1980-01-01

    Describes a prelab activity, the chemistry report, that acquaints college students with the nature of the chemical(s) they are using in the laboratory. Methodology, experimental procedures and safety rules are emphasized, with particular emphasis on potential hazards, safety requirements and emergency procedures. (CS)

  14. Chemical Sintering Generates Uniform Porous Hyaluronic Acid Hydrogels

    PubMed Central

    Cam, Cynthia; Segura, Tatiana

    2014-01-01

    Implantation of scaffolds for tissue repair has been met with limited success primarily due to the inability to achieve vascularization within the construct. Many strategies have shifted to incorporate pores into these scaffolds to encourage rapid cellular infiltration and subsequent vascular ingrowth. We utilized an efficient chemical sintering technique to create a uniform network of polymethyl methacrylate (PMMA) microspheres for porous hyaluronic acid hydrogel formation. The porous hydrogels generated from chemical sintering possessed comparable pore uniformity and interconnectivity as the commonly used non- and heat sintering techniques. Moreover, similar cell response to the porous hydrogels generated from each sintering approach was observed in cell viability, spreading, proliferation in vitro, as well as, cellular invasion in vivo. We propose chemical sintering of PMMA microspheres using a dilute acetone solution as an alternative method to generating porous hyaluronic acid hydrogels since it requires equal or ten-fold less processing time as the currently used non-sintering or heat sintering technique, respectively. PMID:24120847

  15. Chemical functionalization of hyaluronic acid for drug delivery applications.

    PubMed

    Vasi, Ana-Maria; Popa, Marcel Ionel; Butnaru, Maria; Dodi, Gianina; Verestiuc, Liliana

    2014-05-01

    Functionalized hyaluronic acid (HA) derivatives were obtained by ring opening mechanism of maleic anhydride (MA). FTIR and H(1) NMR spectroscopy were used to confirm the chemical linkage of MA on the hyaluronic acid chains. Thermal analysis (TG-DTG and DSC) and GPC data for the new products revealed the formation of new functional groups, without significant changes in molecular weight and thermal stability. New gels based on hyaluronic acid modified derivatives were obtained by acrylic acid copolymerization in the presence of a redox initiation system. The resulted circular and interconnected pores of the gels were visualized by SEM. The release profiles of an ophthalmic model drug, pilocarpine from tested gels were studied in simulated media. Evaluation of the cytotoxicity and cell proliferation properties indicates the potential of the new systems to be used in contact with biological media in drug delivery applications. PMID:24656366

  16. Biologically produced succinic acid: A new route to chemical intermediates

    SciTech Connect

    Not Available

    1995-01-01

    The US Department of Energy (DOE) Alternative Feedstocks (AF) program is forging new links between the agricultural community and the chemicals industry through support of research and development (R & D) that uses `green` feedstocks to produce chemicals. The program promotes cost-effective industrial use of renewable biomass as feedstocks to manufacture high-volume chemical building blocks. Industrial commercialization of such processes would stimulate the agricultural sector by increasing the demand of agricultural and forestry commodities. New alternatives for American industry may lie in the nation`s forests and fields. The national laboratory consortium has undertaken a joint R&D project with the Michigan Biotechnology Institute to demonstrate the feasibility of producing a chemical intermediate, succinic acid, and various derivatives, from renewable agricultural resources.

  17. Chemical structure and dynamics: Annual report 1993

    SciTech Connect

    Colson, S.D.

    1994-07-01

    The Chemical Structure and Dynamics program responds to the need for a fundamental, molecular-level understanding of chemistry at the wide variety of environmentally-important interfaces. The research program is built around the established relationship between structure, thermodynamics, and kinetics. This research effort continues to evolve into a program of rigorous studies of fundamental molecular processes in model systems (e.g., well-characterized surfaces, single-component solutions, clusters, and biological molecules), and studies of complex systems found in the environment. Experimental studies of molecular and supramolecular structures and thermodynamics are key to understanding the nature of matter, and lead to direct comparison with computational results. Kinetic and mechanistic measurements, combined with real-time dynamics measurements of atomic and molecular motions during chemical reactions, provide for a molecular-level description of chemical reactions. The anticipated results of this work are the achievement of a quantitative understanding of chemical processes at complex interfaces, the development of new techniques for the detection and measurement of species at such interfaces, and the interpretation and extrapolation of the observations in terms of models of interfacial chemistry. The Chemical Structure and Dynamics research program includes five areas described in detail in this report: Reaction mechanisms at solid interfaces; Solution and solution interfaces; Structure and dynamics of biological systems; Analytical methods development; and atmospheric chemistry. Extended abstracts are presented for 23 studies.

  18. Chemical Synthesis of Uncommon Natural Bile Acids: The 9α-Hydroxy Derivatives of Chenodeoxycholic and Lithocholic Acids.

    PubMed

    Iida, Takashi; Namegawa, Kazunari; Nakane, Naoya; Iida, Kyoko; Hofmann, Alan Frederick; Omura, Kaoru

    2016-09-01

    The chemical synthesis of the 9α-hydroxy derivatives of chenodeoxycholic and lithocholic acids is reported. For initiating the synthesis of the 9α-hydroxy derivative of chenodeoxycholic acid, cholic acid was used; for the synthesis of the 9α-hydroxy derivative of lithocholic acid, deoxycholic acid was used. The principal reactions involved were (1) decarbonylation of conjugated 12-oxo-Δ(9(11))-derivatives using in situ generated monochloroalane (AlH2Cl) prepared from LiAlH4 and AlCl3, (2) epoxidation of the deoxygenated Δ(9(11))-enes using m-chloroperbenzoic acid catalyzed by 4,4'-thiobis-(6-tert-butyl-3-methylphenol), (3) subsequent Markovnikov 9α-hydroxylation of the Δ(9(11))-enes with AlH2Cl, and (4) selective oxidation of the primary hydroxyl group at C-24 in the resulting 3α,9α,24-triol and 3α,7α,9α,24-tetrol to the corresponding C-24 carboxylic acids using sodium chlorite (NaClO2) in the presence of a catalytic amount of 2,2,6,6-tetramethylpiperidine 1-oxyl free radical (TEMPO) and sodium hypochlorite (NaOCl). The (1)H- and (13)C-NMR spectra are reported. The 3α,7α,9α-trihydroxy-5β-cholan-24-oic acid has been reported to be present in the bile of the Asian bear, and its 7-deoxy derivative is likely to be a bacterial metabolite. These bile acids are now available as authentic reference standards, permitting their identification in vertebrate bile acids. PMID:27319285

  19. GPCR-Based Chemical Biosensors for Medium-Chain Fatty Acids.

    PubMed

    Mukherjee, Kuntal; Bhattacharyya, Souryadeep; Peralta-Yahya, Pamela

    2015-12-18

    A key limitation to engineering microbes for chemical production is a reliance on low-throughput chromatography-based screens for chemical detection. While colorimetric chemicals are amenable to high-throughput screens, many value-added chemicals are not colorimetric and require sensors for high-throughput screening. Here, we use G-protein coupled receptors (GPCRs) known to bind medium-chain fatty acids in mammalian cells to rapidly construct chemical sensors in yeast. Medium-chain fatty acids are immediate precursors to the advanced biofuel fatty acid methyl esters, which can serve as a "drop-in" replacement for D2 diesel. One of the sensors detects even-chain C8-C12 fatty acids with a 13- to 17-fold increase in signal after activation, with linear ranges up to 250 μM. Introduction of a synthetic response unit alters both dynamic and linear range, improving the sensor response to decanoic acid to a 30-fold increase in signal after activation, with a linear range up to 500 μM. To our knowledge, this is the first report of a whole-cell medium-chain fatty acid biosensor, which we envision could be applied to the evolutionary engineering of fatty acid-producing microbes. Given the affinity of GPCRs for a wide range of chemicals, it should be possible to rapidly assemble new biosensors by simply swapping the GPCR sensing unit. These sensors should be amenable to a variety of applications that require different dynamic and linear ranges, by introducing different response units. PMID:25992593

  20. 40 CFR 766.38 - Reporting on precursor chemical substances.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Reporting on precursor chemical... SUBSTANCES CONTROL ACT DIBENZO-PARA-DIOXINS/DIBENZOFURANS Specific Chemical Testing/Reporting Requirements § 766.38 Reporting on precursor chemical substances. (a) Identification of precursor chemical...

  1. 40 CFR 766.38 - Reporting on precursor chemical substances.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reporting on precursor chemical... SUBSTANCES CONTROL ACT DIBENZO-PARA-DIOXINS/DIBENZOFURANS Specific Chemical Testing/Reporting Requirements § 766.38 Reporting on precursor chemical substances. (a) Identification of precursor chemical...

  2. 40 CFR 766.38 - Reporting on precursor chemical substances.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Reporting on precursor chemical... SUBSTANCES CONTROL ACT DIBENZO-PARA-DIOXINS/DIBENZOFURANS Specific Chemical Testing/Reporting Requirements § 766.38 Reporting on precursor chemical substances. (a) Identification of precursor chemical...

  3. 40 CFR 766.38 - Reporting on precursor chemical substances.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Reporting on precursor chemical... SUBSTANCES CONTROL ACT DIBENZO-PARA-DIOXINS/DIBENZOFURANS Specific Chemical Testing/Reporting Requirements § 766.38 Reporting on precursor chemical substances. (a) Identification of precursor chemical...

  4. 40 CFR 766.38 - Reporting on precursor chemical substances.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Reporting on precursor chemical... SUBSTANCES CONTROL ACT DIBENZO-PARA-DIOXINS/DIBENZOFURANS Specific Chemical Testing/Reporting Requirements § 766.38 Reporting on precursor chemical substances. (a) Identification of precursor chemical...

  5. Formic and Acetic Acid Observations over Colorado by Chemical Ionization Mass Spectrometry and Organic Acids' Role in Air Quality

    NASA Astrophysics Data System (ADS)

    Treadaway, V.; O'Sullivan, D. W.; Heikes, B.; Silwal, I.; McNeill, A.

    2015-12-01

    Formic acid (HFo) and acetic acid (HAc) have both natural and anthropogenic sources and a role in the atmospheric processing of carbon. These organic acids also have an increasing importance in setting the acidity of rain and snow as precipitation nitrate and sulfate concentrations have decreased. Primary emissions for both organic acids include biomass burning, agriculture, and motor vehicle emissions. Secondary production is also a substantial source for both acids especially from biogenic precursors, secondary organic aerosols (SOAs), and photochemical production from volatile organic compounds (VOCs) and oxygenated volatile organic compounds (OVOCs). Chemical transport models underestimate organic acid concentrations and recent research has sought to develop additional production mechanisms. Here we report HFo and HAc measurements during two campaigns over Colorado using the peroxide chemical ionization mass spectrometer (PCIMS). Iodide clusters of both HFo and HAc were recorded at mass-to-charge ratios of 173 and 187, respectively. The PCIMS was flown aboard the NCAR Gulfstream-V platform during the Deep Convective Clouds and Chemistry Experiment (DC3) and aboard the NCAR C-130 during the Front Range Air Pollution and Photochemistry Experiment (FRAPPE). The DC3 observations were made in May and June 2012 extending from the surface to 13 km over the central and eastern United States. FRAPPE observations were made in July and August 2014 from the surface to 7 km over Colorado. DC3 measurements reported here are focused over the Colorado Front Range and complement the FRAPPE observations. DC3 HFo altitude profiles are characterized by a decrease up to 6 km followed by an increase either back to boundary layer mixing ratio values or higher (a "C" shape). Organic acid measurements from both campaigns are interpreted with an emphasis on emission sources (both natural and anthropogenic) over Colorado and in situ photochemical production especially ozone precursors.

  6. Crystallographic Studies of Chemically Modified Nucleic Acids: A Backward Glance

    PubMed Central

    Egli, Martin; Pallan, Pradeep S.

    2010-01-01

    Chemically modified nucleic acids (CNAs) are widely explored as antisense oligonucleotide or small interfering RNA (siRNA) candidates for therapeutic applications. CNAs are also of interest in diagnostics, high-throughput genomics and target validation, nanotechnology and as model systems in investigations directed at a better understanding of the etiology of nucleic acid structure as well as the physical-chemical and pairing properties of DNA and RNA and for probing protein-nucleic acid interactions. In this article we review research conducted by our laboratory over the past two decades with a focus on crystal structure analyses of CNAs and artificial pairing systems. We highlight key insights into issues ranging from conformational distortions as a consequence of modification to the modulation of pairing strength and RNA affinity by stereoelectronic effects and hydration. Although crystal structures have only been determined for a subset of the large number of modifications that were synthesized and analyzed in the oligonucleotide context to date, they have yielded guiding principles for the design of new analogs with tailormade properties, including pairing specificity, nuclease resistance and cellular uptake. And, perhaps less obviously, crystallographic studies of CNAs and synthetic pairing systems have shed light on fundamental aspects of DNA and RNA structure and function that would not have been disclosed by investigations solely focused on the natural nucleic acids. PMID:20087997

  7. Chemical Changes Associated with Increased Acid Resistance of Er:YAG Laser Irradiated Enamel

    PubMed Central

    Olea-Mejía, Oscar Fernando; García-Fabila, María Magdalena; Rodríguez-Vilchis, Laura Emma; Sánchez-Flores, Ignacio; Centeno-Pedraza, Claudia

    2014-01-01

    Background. An increase in the acid resistance of dental enamel, as well as morphological and structural changes produced by Er:YAG laser irradiation, has been reported. Purpose. To evaluate the chemical changes associated with acid resistance of enamel treated with Er:YAG laser. Methods. Forty-eight enamel samples were divided into 4 groups (n = 12). Group I (control); Groups II, III, and IV were irradiated with Er:YAG at 100 mJ (12.7 J/cm2), 200 mJ (25.5 J/cm2), and 300 mJ (38.2 J/cm2), respectively. Results. There were significant differences in composition of irradiated groups (with the exception of chlorine) and in the amount of calcium released. Conclusions. Chemical changes associated with an increase in acid resistance of enamel treated with Er:YAG laser showed a clear postirradiation pattern characterized by a decrease in C at.% and an increase in O, P, and Ca at.% and no changes in Cl at.%. An increased Ca/P ratio after Er:YAG laser irradiation was associated with the use of higher laser energy densities. Chemical changes produced by acid dissolution showed a similar trend among experimental groups. Stable or increased Ca/P ratio after acid dissolution was observed in the irradiated groups, with reduction of Ca released into the acid solution. PMID:24600327

  8. Amineborane Based Chemical Hydrogen Storage - Final Report

    SciTech Connect

    Sneddon, Larry G.

    2011-04-21

    demonstrated that H2-­release from chemical hydrides can occur by a number of different mechanistic pathways and strongly suggest that optimal chemical ­hydride based H2­release systems may require the use of synergistic dehydrogenation methods to induce H2­-loss from chemically different intermediates formed during release reactions. The efficient regeneration of ammonia borane from BNHx spent fuel is one of the most challenging problems that will have to be overcome in order to utilize AB-based hydrogen storage. Three Center partners, LANL, PNNL and Penn, each took different complimentary approaches to AB regeneration. The Penn approach focused on a strategy involving spent-fuel digestion with superacidic acids to produce boron-halides (BX3) that could then be converted to AB by coordination/reduction/displacement processes. While the Penn boron-halide reduction studies successfully demonstrated that a dialkylsulfide-based coordination/reduction/displacement process gave quantitative conversions of BBr3 to ammonia borane with efficient and safe product separations, the fact that AB spent-fuels could not be digested in good yields to BX3 halides led to a No-Go decision on this overall AB-regeneration strategy.

  9. Chitosan and chemically modified chitosan beads for acid dyes sorption.

    PubMed

    Azlan, Kamari; Wan Saime, Wan Ngah; Lai Ken, Liew

    2009-01-01

    The capabilities of chitosan and chitosan-EGDE (ethylene glycol diglycidyl ether) beads for removing Acid Red 37 (AR 37) and Acid Blue 25 (AB 25) from aqueous solution were examined. Chitosan beads were cross-linked with EGDE to enhance its chemical resistance and mechanical strength. Experiments were performed as a function of pH, agitation period and concentration of AR 37 and AB 25. It was shown that the adsorption capacities of chitosan for both acid dyes were comparatively higher than those of chitosan-EGDE. This is mainly because cross-linking using EGDE reduces the major adsorption sites -NH3+ on chitosan. Langmuir isotherm model showed the best conformity compared to Freundlich and BET. The kinetic experimental data agreed very well to the pseudo second-order kinetic model. The desorption study revealed that after three cycles of adsorption and desorption by NaOH and HCl, both adsorbents retained their promising adsorption abilities. FT-IR analysis proved that the adsorption of acid dyes onto chitosan-based adsorbents was a physical adsorption. Results also showed that chitosan and chitosan-EGDE beads were favourable adsorbers and could be employed as low-cost alternatives for the removal of acid dyes in wastewater treatment. PMID:19634439

  10. NATIONAL REPORT ON HUMAN EXPOSURE TO ENVIRONMENTAL CHEMICALS

    EPA Science Inventory

    The National Report on Human Exposure to Environmental Chemicals is a new publication that will provide an ongoing assessment of the U.S. population's exposure to environmental chemicals using biomonitoring. For this Report, an environmental chemical means a chemical compound or ...

  11. Chemical attenuation reactions of selenium; Final report

    SciTech Connect

    Zachara, J.M.; Rai, D.; Moore, D.A.; Turner, G.D.; Felmy, A.R.

    1994-02-01

    This report summarizes research on the geochemical behavior of Se present in utility coal-combustion wastes. Laboratory experiments quantified select geochemical reactions that control the concentrations of selenite (SeO{sub 3}{sup 2{minus}}) and selenate (SeO{sub 4}{sup 2{minus}}) in soil solutions and groundwater and determined the magnitude and mechanisms of chemical attenuation of these species in soils and subsurface materials. Thermodynamic data, equilibrium constants, and modeling procedures were developed that to utilities to make improved predictions of the mobility of Se species from ponded and dry landfill sites. An adsorption-constant database for selenite and selenate on common soil minerals was developed. The database, which can be used to estimate the extent of Se attenuation by adsorption in utility soils, was used to determine the specific mineral phases control the adsorption of selenite (Fe oxides) and selenate (Al oxides). Solubility studies were performed with two Se solid phases that may form in the environment [BaSeO{sub 4}(c) and Fe{sub 2}(SeO{sub 3}){sub 3}{lg_bullet}6H{sub 2}0(c)] to establish upper limits on Se concentrations. New thermodynamic data were developed to allow prediction of aqueous Se concentrations where these phases may exist. Eleven soil and subsurface materials, collected nationally and representative of properties frequently encountered at waste sites, were used in experiments involving adsorption of selenite and selenate to assess their potential for Se chemical attenuation and to determine chemical and mineralogic factors that control Se adsorption. Selenite was far more strongly adsorbed by the geologic materials than the selenate. The adsorption of both Se species depended on the type of natural materials and showed positive correlation with Fe and Al oxides associated with particle surfaces. Procedures were developed to predict Se adsorption from comprehensive chemical and mineralogic characterization data.

  12. Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water.

    PubMed

    Wang, Yanliang; Deng, Weiping; Wang, Binju; Zhang, Qinghong; Wan, Xiaoyue; Tang, Zhenchen; Wang, Ye; Zhu, Chun; Cao, Zexing; Wang, Guichang; Wan, Huilin

    2013-01-01

    The direct transformation of cellulose, which is the main component of lignocellulosic biomass, into building-block chemicals is the key to establishing biomass-based sustainable chemical processes. Only limited successes have been achieved for such transformations under mild conditions. Here we report the simple and efficient chemocatalytic conversion of cellulose in water in the presence of dilute lead(II) ions, into lactic acid, which is a high-value chemical used for the production of fine chemicals and biodegradable plastics. The lactic acid yield from microcrystalline cellulose and several lignocellulose-based raw biomasses is >60% at 463 K. Both theoretical and experimental studies suggest that lead(II) in combination with water catalyses a series of cascading steps for lactic acid formation, including the isomerization of glucose formed via the hydrolysis of cellulose into fructose, the selective cleavage of the C3-C4 bond of fructose to trioses and the selective conversion of trioses into lactic acid. PMID:23846730

  13. SECOND NATIONAL REPORT ON HUMAN EXPOSURE TO ENVIRONMENTAL CHEMICALS

    EPA Science Inventory

    The National Report on Human Exposure to Environmental Chemicals is an ongoing assessment of the exposure of the U.S. population to environmental chemicals using biomonitoring. The first Report on 27 chemicals was issued in March 2001. This Second Report, released in January 20...

  14. 40 CFR 712.30 - Chemical lists and reporting periods.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Chemical lists and reporting periods... SUBSTANCES CONTROL ACT CHEMICAL INFORMATION RULES Manufacturers Reporting-Preliminary Assessment Information § 712.30 Chemical lists and reporting periods. (a)(1) Persons subject to this subpart B must submit...

  15. 40 CFR 712.30 - Chemical lists and reporting periods.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Chemical lists and reporting periods... SUBSTANCES CONTROL ACT CHEMICAL INFORMATION RULES Manufacturers Reporting-Preliminary Assessment Information § 712.30 Chemical lists and reporting periods. (a)(1) Persons subject to this subpart B must submit...

  16. 40 CFR 712.30 - Chemical lists and reporting periods.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Chemical lists and reporting periods... SUBSTANCES CONTROL ACT CHEMICAL INFORMATION RULES Manufacturers Reporting-Preliminary Assessment Information § 712.30 Chemical lists and reporting periods. (a)(1) Persons subject to this subpart B must submit...

  17. Plasma-chemical waste treatment of acid gases

    SciTech Connect

    Harkness, J.B.L.; Doctor, R.D.; Daniels, E.J.

    1993-09-01

    The research to date has shown that a H{sub 2}S waste-treatment process based on plasma-chemical dissociation technology is compatible with refinery and high-carbon-oxide acid-gas streams. The minor amounts of impurities produced in the plasma-chemical reactor should be treatable by an internal catalytic reduction step. Furthermore, the plasma-chemical technology appears to be more efficient and more economical than the current technology. The principal key to achieving high conversions with relatively low energies of dissociation is the concept of the high-velocity, cyclonic-flow pattern in the plasma reaction zone coupled with the recycling of unconverted hydrogen sulfide. Future work will include testing the effects of components that might be carried over to the plasma reactor by ``upset`` conditions in the amine purification system of a plant and testing the plasma-chemical process on other industrial wastes streams that contain potentially valuable chemical reagents. The strategy for the commercialization of this technology is to form a Cooperative Research and Development Agreement with the Institute of Hydrogen Energy and Plasma Technology of the Russian Scientific Center/Kurchatov Institute and with an American start-up company to develop an ``American`` version of the process and to build a commercial-scale demonstration unit in the United States. The timetable proposed would involve building a ``field test`` facility which would test the plasma-chemical reactor and sulfur recovery unit operations on an industrial hydrogen sulfide waste s at a scale large enough to obtain the energy and material balance data required for a final analysis of the commercial potential of this technology. The field test would then be followed by construction of a commercial demonstration unit in two to three years. The commercial demonstration unit would be a fully integrated plant consisting of one commercial-scale module.

  18. Chemical and isotopic compositions in acid residues from various meteorites

    NASA Technical Reports Server (NTRS)

    Kano, N.; Yamakoshi, K.; Matsuzaki, H.; Nogami, K.

    1993-01-01

    We are planning to carry out systematic isotopic investigations of Ru, Mg, etc., in primordial samples. The investigations will be pursued in the context of a study of the pre-history of the solar system. It is hoped that the study will yield direct evidence for processes of nucleosynthesis in the pre-solar stage and detection of extinct radioactive nuclides. In this paper, we present the results of chemical compositions of acid residues obtained from three types of meteorites: Canyon Diablo (IA), Allende (CV3), and Nuevo Mercuro (H5); and the preliminary results of Ru isotopic compositions.

  19. Bioorthogonal chemical reporters for analyzing protein lipidation and lipid trafficking

    PubMed Central

    Hang, Howard C.; Wilson, John P.; Charron, Guillaume

    2014-01-01

    Conspectus Protein lipidation and lipid trafficking control many key biological functions in all kingdoms of life. The discovery of diverse lipid species and their covalent attachment to many proteins has revealed a complex and regulated network of membranes and lipidated proteins that are central to fundamental aspects of physiology and human disease. Given the complexity of lipid trafficking and the protein targeting mechanisms involved with membrane lipids, precise and sensitive methods are needed to monitor and identify these hydrophobic molecules in bacteria, yeast, and higher eukaryotes. Although many analytical methods have been developed for characterizing membrane lipids and covalently modified proteins, traditional reagents and approaches have limited sensitivity, do not faithfully report on the lipids of interest, or are not readily accessible. The invention of bioorthogonal ligation reactions, such as the Staudinger ligation and azide–alkyne cycloadditions, has provided new tools to address these limitations, and their use has begun to yield fresh insight into the biology of protein lipidation and lipid trafficking. In this Account, we discuss how these new bioorthogonal ligation reactions and lipid chemical reporters afford new opportunities for exploring the biology of lipid-modified proteins and lipid trafficking. Lipid chemical reporters from our laboratory and several other research groups have enabled improved detection and large-scale proteomic analysis of fatty-acylated and prenylated proteins. For example, fatty acid and isoprenoid chemical reporters in conjunction with bioorthogonal ligation methods have circumvented the limited sensitivity and hazards of radioactive analogs, allowing rapid and robust fluorescent detection of lipidated proteins in all organisms tested. These chemical tools have revealed alterations in protein lipidation in different cellular states and are beginning to provide unique insights in mechanisms of regulation

  20. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    SciTech Connect

    Chang, Binbin Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng

    2015-01-15

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl{sub 2} using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl{sub 2} at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of –SO{sub 3}H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N{sub 2} adsorption–desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of –SO{sub 3}H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of –SO{sub 3}H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and –SO{sub 3}H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles. - Graphical abstract: Sulfonated porous carbon nanospheres with high surface area and superior catalytic performance were prepared by a facile chemical activation route. - Highlights: • Porous carbon spheres solid acid prepared by a facile chemical activation. • It owns high surface area, superior porosity and uniform spherical morphology. • It possesses

  1. Tank 12H Acidic Chemical Cleaning Sample Analysis And Material Balance

    SciTech Connect

    Martino, C. J.; Reboul, S. H.; Wiersma, B. J.; Coleman, C. J.

    2013-11-08

    A process of Bulk Oxalic Acid (BOA) chemical cleaning was performed for Tank 12H during June and July of 2013 to remove all or a portion of the approximately 4400 gallon sludge heel. Three strikes of oxalic acid (nominally 4 wt% or 2 wt%) were used at 55°C and tank volumes of 96- to 140-thousand gallons. This report details the sample analysis of a scrape sample taken prior to BOA cleaning and dip samples taken during BOA cleaning. It also documents a rudimentary material balance for the Tank 12H cleaning results.

  2. Studies towards the development of chemically synthesized non-radioactive biotinylated nucleic acid hybridization probes.

    PubMed Central

    Al-Hakim, A H; Hull, R

    1986-01-01

    Non-radioactive nucleic acid hybridization probes have been constructed in which the reporter group is long chain biotin chemically linked to a basic macromolecule (histone H1, cytochrome C or polyethyleneimine). The modified basic macromolecule which carries many biotin residues can, in turn, be covalently linked to nucleic acids (DNA) via the bifunctional cross-linking reagents, glutaraldehyde, 1,2,7,8-diepoxyoctane, bis (succinimidyl) suberate or bis (sulfonosuccinimidyl) suberate. This provides a very sensitive probe by which as little as between 10-50fg of target DNA can be visualized using dot-blot hybridization procedures in conjunction with avidin or streptavidin enzyme conjugates. PMID:3027670

  3. Amino Acids from Icy Amines: A Radiation-Chemical Approach to Extraterrestrial Synthesis

    NASA Technical Reports Server (NTRS)

    Dworkin, J. P.; Moore, M. H.

    2010-01-01

    Detections of amino acids in meteorites go back several decades, with at least 100 such compounds being reported for the Murchison meteorite alone. The presence of these extraterrestrial molecules raises questions as to their formation, abundance, thermal stability, racemization, and possible subsequent reactions. Although all of these topics have been studied in laboratories, such work often involves many variables and unknowns. This has led us to seek out model systems with which to uncover reaction products, test chemical predictions, and sited light on underlying reaction mechanisms. This presentation will describe one such study, focusing on amino-acid formation in ices.

  4. Acid precipitation and human health: Final report

    SciTech Connect

    Hoffman, S.

    1989-08-01

    This report, written for environmental managers in electric utilities, reviews potential indirect human health effects of acid precipitation. Possible exposure routes and materials examined in this review include drinking water contamination (aluminum and mercury), corrosion of metals (lead, cadmium, arsenic, selenium, copper, and zinc) and asbestos from water piping, bioaccumulation of mercury and other metals in fish and game, and uptake of mobilized metals in crops. No direct effects (e.g., skin or eye irritation) of human exposure to acid precipitation have been identified, and air pollutant impacts on health are not included in this review, because these pollutants are acid precipitation precursors, not acid precipitation per se. The literature is summarized, presenting results from researchers' studies to support their conclusions. The review discusses potential acid precipitation impacts on metal levels in drinking water and food, summarizes the health effects of ingestion of these materials, and identifies areas of needed research. Metal-metal interactions in humans that may be related to acid precipitation are identified. Current research programs and planned assessments of the indirect human health effects of acid precipitation are summarized. 136 refs., 38 figs., 17 tabs

  5. Chemical Sciences Division annual report, 1990

    SciTech Connect

    Not Available

    1991-08-01

    This report contains sections on the following topics: photochemistry of materials in the stratosphere, energy transfer and structural studies of molecules on surfaces, crossed molecular beams, molecular interactions, theory of atomic and molecular collision processes, selective photochemistry, photodissociation of free radicals, physical chemistry with emphasis on thermodynamic properties, chemical physics at the high photon energies, high-energy atomic physics, atomic physics, high-energy oxidizers and delocalized-electron solids, catalytic hydrogenation of CO, transition metal-catalyzed conversion of CO, NO, H{sub 2}, and organic molecules to fuels and petrochemicals, formation of oxyacids of sulfur from SO{sub 2}, potentially catalytic and conducting polyorganometallics, actinide chemistry, and molecular thermodynamics for phase equilibria in mixtures.

  6. Chemical weathering of granite under acid rainfall environment, Korea

    NASA Astrophysics Data System (ADS)

    Lee, Seung Yeop; Kim, Soo Jin; Baik, Min Hoon

    2008-08-01

    Chemical weathering was investigated by collecting samples from five selected weathering profiles in a high elevation granitic environment located in Seoul, Korea. The overall changes of chemistry and mineralogical textures were examined reflecting weathering degrees of the samples, using polarization microscopy, X-ray diffraction (XRD), electron probe micro analysis (EPMA), X-ray fluorescence spectroscopy (XRF), and inductively coupled plasma-mass spectroscopy (ICP-MS). The chemical distribution in the weathering profiles shows that few trace elements are slightly immobile, whereas most major (particularly Ca and Na) and trace elements are mobile from the beginning of the granite weathering. On the other hand, there were mineralogical changes initiated from a plagioclase breakdown, which shows a characteristic circular dissolved pattern caused by a preferential leaching of Ca cation along grain boundaries and zoning. The biotite in that region is also supposed to be sensitive to exterior environmental condition and may be easily dissolved by acidic percolated water. As a result, it seems that some rock-forming minerals in the granitic rock located in Seoul are significantly unstable due to the environmental condition of acidic rainfall and steep slopes, where they are susceptible to be dissolved incongruently leading some elements to be highly depleted.

  7. Chemical weapons convention verifiability assessment. Final report

    SciTech Connect

    Mengel, R.W.; Meselson, M.; Dee, W.C.; Palarino, R.N.; Eimers, F.

    1994-01-18

    The U.S. is in the process of the ratification of the Chemical Weapons Convention (CWC). A significant element of this process is the evaluation of the verifiability of the CWC. In addition to U.S. Government assessment a separate independent evaluation has been conducted by a group of recognized non-governmental CWC experts. This report documents the findings, conclusions and recommendations of these experts. The verifiability assessment evaluated the kinds of violations that might be carried out undetected, the difficulty in accomplishing each violation, and he overall strengths and weaknesses of the CWC with regard to verification. Principle conclusions are: (1) reporting and routine inspection provisions of the CWC are adequate for verification of declarations; (2) restrictions on challenge inspection facility access and sampling and analysis limit verification; (3) difficulty in discriminating between permitted and prohibited activities at commercial facilities complicates verifiability; (4) fundamental to achieving verification aims is a highly qualified and trained corps of CWC inspectors; and, (5) technology to support improved verification will evolve into the future.

  8. Periodic quantum chemical studies on anhydrous and hydrated acid clinoptilolite.

    PubMed

    Valdiviés Cruz, Karell; Lam, Anabel; Zicovich-Wilson, Claudio M

    2014-08-01

    Periodic quantum chemistry methods as implemented in the crystal09 code were considered to study acid clinoptilolite (HEU framework type), both anhydrous and hydrated. The most probable location of acid sites and water molecules together with other structural details has been the object of particular attention. Calculations were performed at hybrid and pristine DFT levels of theory with a VDZP quality basis set in order to compare performances. It arises that PBE0 provides the best agreement with experimental data as concerns structural features and the most stable Al distribution in the framework. The role of the water molecule distribution in the stability of the systems, the most probable structure that they induce in the material, and their eventual influence on further chemical modification processes, such as dealumination, are discussed in detail. Results show that, apart from the usually considered interactions of water molecules with the zeolite framework, that is, a H-bond with Brönsted acid sites and coordination with framework Al as Lewis ones, it is necessary to consider cooperation of other weaker effects so as to fully understand the hydration effect in this kind of materials. PMID:24730675

  9. 40 CFR 712.30 - Chemical lists and reporting periods.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Chemical lists and reporting periods. 712.30 Section 712.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT CHEMICAL INFORMATION RULES Manufacturers Reporting-Preliminary Assessment Information § 712.30 Chemical lists and...

  10. 40 CFR 716.50 - Reporting physical and chemical properties.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... chemical properties. Studies of physical and chemical properties must be reported under this subpart if... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Reporting physical and chemical properties. 716.50 Section 716.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)...

  11. Chemical technology division: Annual technical report 1987

    SciTech Connect

    Not Available

    1988-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1987 are presented. In this period, CMT conducted research and development in the following areas: (1) high-performance batteries--mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (5) methods for the electromagnetic continuous casting of steel sheet and for the purification of ferrous scrap; (6) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (7) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor, and waste management; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for liquids and vapors at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; the thermochemistry of various minerals; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 54 figs., 9 tabs.

  12. Chemical Technology Division annual technical report, 1986

    SciTech Connect

    Not Available

    1987-06-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1986 are presented. In this period, CMT conducted research and development in areas that include the following: (1) high-performance batteries - mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants, the technology for fluidized-bed combustion, and a novel concept for CO/sub 2/ recovery from fossil fuel combustion; (5) methods for recovery of energy from municipal waste; (6) methods for the electromagnetic continuous casting of steel sheet; (7) techniques for treatment of hazardous waste such as reactive metals and trichloroethylenes; (8) nuclear technology related to waste management, a process for separating and recovering transuranic elements from nuclear waste, and the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor; and (9) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of catalytic hydrogenation and catalytic oxidation; materials chemistry for associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; the thermochemistry of zeolites and related silicates; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 127 refs., 71 figs., 8 tabs.

  13. Chemical Technology Division annual technical report 1989

    SciTech Connect

    Not Available

    1990-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1989 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including high-performance batteries (mainly lithium/iron sulfide and sodium/metal chloride), aqueous batteries (lead-acid and nickel/iron), and advanced fuel cells with molten carbonate and solid oxide electrolytes: (2) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste and for producing {sup 99}Mo from low-enriched uranium targets, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor (the Integral Fast Reactor), and waste management; and (5) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be administratively responsible for and the major user of the Analytical Chemistry Laboratory at Argonne National Laboratory (ANL).

  14. Long pulse chemical laser. Final technical report

    SciTech Connect

    Bardon, R.L.; Breidenthal, R.E.; Buonadonna, V.R.

    1989-02-01

    This report covers the technical effort through February, 1989. This effort was directed towards the technology associated with the development of a large scale, long pulse DF-CO{sub 2} chemical laser. Optics damage studies performed under Task 1 assessed damage thresholds for diamond-turned salt windows. Task 2 is a multi-faceted task involving the use of PHOCL-50 for laser gain measurements, LTI experiments, and detector testing by LANL personnel. To support these latter tests, PHOCL-50 was upgraded with Boeing funding to incorporate a full aperture outcoupler that increased its energy output by over a factor of 3, to a full kilojoule. The PHOCL-50 carbon block calorimeter was also recalibrated and compared with the LANL Scientech meter. Cloud clearing studies under Task 3 initially concentrated on delivering a Boeing built Cloud Simulation Facility to LANL, and currently involves design of a Cold Cloud Simulation Facility. A Boeing IRAD funded theoretical study on cold cloud clearing revealed that ice clouds may be easier to clear then warm clouds. Task 4 involves the theoretical and experimental study of flow system design as related to laser beam quality. Present efforts on this task are concentrating on temperature gradients induced by the gas filling process. General support for the LPCL field effort is listed under Task 5, with heavy emphasis on assuring reliable operation of the Boeing built Large Slide Valve and other device related tests. The modification of the PHOCL-50 system for testing long pulse DF (4{mu}m only) chemical laser operation is being done under Task 6.

  15. The multifaceted role of amino acids in chemical evolution

    NASA Astrophysics Data System (ADS)

    Strasdeit, Henry; Fox, Stefan; Dalai, Punam

    We present an overview of recent ideas about α-amino acids on the Hadean / early Archean Earth and Noachian Mars. Pertinent simulation experiments are discussed. Electrical dis-charges in early Earth's bulk, probably non-reducing atmosphere [1, 2] and in volcanic ash-gas clouds [3] are likely to have synthesized amino acids abiotically. In principle, this may have been followed by the synthesis of peptides. Different kinds of laboratory simulations have, however, revealed severe difficulties with the condensation process under presumed prebiotic conditions. It therefore appears that peptides on the early Earth were mainly di-, tri-and tetramers and slightly longer only in the case of glycine homopeptides. But even such short peptides may have shown primitive catalytic activity after complexation of metal ions to form proto-metalloenzymes. L-enantiomeric excesses (L-ee) of meteoritic amino acids were possibly involved in the origin of biohomochirality [4, 5]. This idea also faces some problems, mainly dilution of the amino acids on Earth and a resulting low overall L-ee. However, as yet unknown reactions might exist that are highly enantioselective even under such unfavorable conditions, perhaps by a combination of autocatalysis and inhibition (compare the Soai reaction). Primor-dial volcanic islands are prebiotically interesting locations. At their hot coasts, solid sea salt probably embedded amino acids [6]. Our laboratory experiments showed that further heating of the salt crusts, simulating the vicinity of lava streams, produced pyrroles among other prod-ucts. Pyrroles are building blocks of biomolecules such as bilins, chlorophylls and heme. Thus, an abiotic route from amino acids to the first photoreceptor and electron-transfer molecules might have existed. There is no reason to assume that the chemical evolutionary processes described above were singular events restricted to Earth and Mars. In fact, they might take place even today on terrestrial exoplanets

  16. Effect of different preservation processes on chemical composition and fatty acid profile of anchovy (Engraulis anchoita).

    PubMed

    Czerner, Marina; Agustinelli, Silvina P; Guccione, Silvana; Yeannes, María I

    2015-01-01

    The effects of salting-ripening, canning and marinating processes on chemical composition and fatty acid profile of anchovy (Engraulis anchoita) were evaluated (p = 0.01), with emphasis on long-chain polyunsaturated fatty acids. Fresh anchovy showed a high proportion of PUFAs (∼45 g/100 g total lipid) with an eicosapentaenoic (EPA) + docosahexaenoic (DHA) content of 27.08 g/100 g total lipid. The salting-ripening process led to the largest changes in the chemical composition and the fatty acid profile, which resulted in a reduction of ∼70% on the total EPA and DHA contents (g/100 g edible portion). Contrary, canned and marinated anchovy presented a fatty acid profile similar to that of fresh anchovy. The use of vegetable oil as covering liquid led to final products with increased ω-6 PUFAs content. Despite the modifications observed, the total amount of essential EPA and DHA fatty acids provided by these products remained high compared with values reported in literature for other foods. PMID:26576657

  17. 40 CFR 716.50 - Reporting physical and chemical properties.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Reporting physical and chemical properties. 716.50 Section 716.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.50 Reporting physical and chemical properties. Studies...

  18. 40 CFR 716.50 - Reporting physical and chemical properties.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Reporting physical and chemical properties. 716.50 Section 716.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.50 Reporting physical and chemical properties. Studies...

  19. 40 CFR 716.50 - Reporting physical and chemical properties.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Reporting physical and chemical properties. 716.50 Section 716.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.50 Reporting physical and chemical properties. Studies...

  20. Chemical characteristics, fatty acid composition and conjugated linoleic acid (CLA) content of traditional Greek yogurts.

    PubMed

    Serafeimidou, Amalia; Zlatanos, Spiros; Laskaridis, Kostas; Sagredos, Angelos

    2012-10-15

    Many studies with conjugated linoleic acid (CLA) indicate that it has a protective effect against mammary cancer. Because dairy products are the most important dietary sources of CLA, we have investigated the CLA concentrations and additionally the fatty acid profiles and chemical composition of several commercial, traditional, Greek yogurts from different geographical origin. The fat content of yogurts was in the order of goatacids (SFA) were found in low-fat yogurts, of monounsaturated fatty acids (MUFA) in sheep milk yogurts and of polyunsaturated fatty acid (PUFA) in low-fat cow milk yogurts. PMID:23442628

  1. Cometary impact and amino acid survival - Chemical kinetics and thermochemistry

    USGS Publications Warehouse

    Ross, D.S.

    2006-01-01

    The Arrhenius parameters for the initiating reactions in butane thermolysis and the formation of soot, reliable to at least 3000 K, have been applied to the question of the survival of amino acids in cometary impacts on early Earth. The pressure/temperature/time course employed here was that developed in hydrocode simulations for kilometer-sized comets (Pierazzo and Chyba, 1999), with attention to the track below 3000 K where it is shown that potential stabilizing effects of high pressure become unimportant kinetically. The question of survival can then be considered without the need for assignment of activation volumes and the related uncertainties in their application to extreme conditions. The exercise shows that the characteristic times for soot formation in the interval fall well below the cooling periods for impacts ranging from fully vertical down to about 9?? above horizontal. Decarboxylation, which emerges as more rapid than soot formation below 2000-3000 K, continues further down to extremely narrow impact angles, and accordingly cometa??ry delivery of amino acids to early Earth is highly unlikely. ?? 2006 American Chemical Society.

  2. Chemical and toxicological evaluation of pyrotechnically disseminated terephthalic acid smoke.

    PubMed

    Muse, W T; Anthony, J S; Bergmann, J D; Burnett, D C; Crouse, C L; Gaviola, B P; Thomson, S A

    1997-11-01

    The terephthalic acid (TPA) smoke obscurants (M-83 grenade and M-8 smoke pot) were developed by the U.S. Army for training purposes to replace the more toxic hexachloroethane (HC) smoke. Inhalation toxicity testing and chemical characterization of pyrotechnically generated TPA was conducted to assess the health hazard potential of TPA and its combustion products. Fisher 344 rats were subjected to acute and repeated exposures to TPA smoke generated from the M-83 grenade. Acute exposure levels ranged from 150-1,900 mg/m3 for 30 minutes and repeated dose exposures ranged from 128-1,965 mg/m3 for 30 min/day for 5 days. Exposed and control rats were evaluated for toxic signs, and histopathologic changes. During exposure, the rats exhibited slight to moderate lacrimation, rhinorrhea, lethargy and dyspnea, which reversed within 1-hr post-exposure. No deaths occurred, even at the highest smoke concentrations. Histopathological changes were confined to exposure related nasal necrosis and inflammation in both the acute and repeated dose exposures at levels above 900 mg/m3. Chemical characterization of the M-83 grenade and the M-8 smoke pot showed that formaldehyde, benzene and carbon monoxide were the major organic vapor by-products formed. These by-products were above their respective ACGIH threshold limit values at various concentrations, but should not pose a hazard if the smoke is deployed in an open area. Overall, TPA is a safer training smoke to replace the HC smoke. PMID:9433658

  3. CAPSULE REPORT: CONTROL OF ACIDIC AIR POLLUTANTS BY COATED BAGHOUSES

    EPA Science Inventory

    Emissions from the aluminum, glass, phosphate, fertilizer, and sulfuric acid industries and from waste incineration share several common problems, including combined particulate, corrosive acid vapor, and acid mist emissions. his capsule report presents an approach to alleviate t...

  4. Chemical Biodynamics Division. Annual report 1979

    SciTech Connect

    Not Available

    1980-08-01

    The Chemical Biodynamics Division of LBL continues to conduct basic research on the dynamics of living cells and on the interaction of radiant energy with organic matter. Many aspects of this basic research are related to problems of environmental and health effects of fossil fuel combustion, solar energy conversion and chemical/ viral carcinogenesis.

  5. Responding to chemical attack. Final report

    SciTech Connect

    Bagley, R.W.

    1991-02-11

    In view of Iraq's stated intention of using chemical weapons in the Persian Gulf War, the Coalition forces must be prepared to respond. Iraq is capable of conducting such an attack. While the use of chemical weapons may not be militarily significant, the political effect of the use and the response to it may be very significant. Responses including the use of chemical and nuclear weapons are assessed in terms of their legality, political cost, and military effectiveness and found unacceptable. Reliance on diplomatic protests and on post-war criminal sanctions are judged ineffective. A response in the form of increased conventional attack on the Iraqi chemical infrastructure is recommended because that response will preserve the present Coalition, effectively counter the chemical attack, contribute to regional stability, and enhance the reputation of the United States for lawfulness and dependability.

  6. Maximizing the electromagnetic and chemical resonances of surface-enhanced Raman scattering for nucleic acids.

    PubMed

    Freeman, Lindsay M; Pang, Lin; Fainman, Yeshaiahu

    2014-08-26

    Although surface-enhanced Raman spectroscopy (SERS) has previously been performed with nucleic acids, the measured intensities for each nucleic acid have varied significantly depending on the SERS substrate and excitation wavelength. We have demonstrated that the charge-transfer (CT) mechanism, also known as the chemical enhancement of SERS, is responsible for the discrepancies previously reported in literature. The electronic states of cytosine and guanine attached to silver atoms are computationally calculated and experimentally measured to be in the visible range, which leads to a resonance Raman effect at the corresponding maximum wavelengths. The resulting SERS measurements are in good agreement with the simulated values, in which cytosine-silver shows stronger enhancement at 532 nm and guanine-silver shows stronger enhancement at 785 nm. An atomic layer of aluminum oxide is deposited on substrates to prevent charge-transfer, and corresponding measurements show weaker Raman signals caused by the suppression of the chemical resonance. These findings suggest the optimal SERS signal can be achieved by tuning the excitation wavelength to match both the electromagnetic and chemical resonances, paving the way for future single molecule detection of nucleic acids other than adenine. PMID:25065837

  7. Chemical Sciences Division annual report 1994

    SciTech Connect

    1995-06-01

    The division is one of ten LBL research divisions. It is composed of individual research groups organized into 5 scientific areas: chemical physics, inorganic/organometallic chemistry, actinide chemistry, atomic physics, and chemical engineering. Studies include structure and reactivity of critical reaction intermediates, transients and dynamics of elementary chemical reactions, and heterogeneous and homogeneous catalysis. Work for others included studies of superconducting properties of high-{Tc} oxides. In FY 1994, the division neared completion of two end-stations and a beamline for the Advanced Light Source, which will be used for combustion and other studies. This document presents summaries of the studies.

  8. Chemical structure and dynamics. Annual report 1995

    SciTech Connect

    Colson, S.D.; McDowell, R.S.

    1996-05-01

    The Chemical Structure and Dynamics program is a major component of Pacific Northwest National Laboratory`s Environmental Molecular Sciences Laboratory (EMSL), providing a state-of-the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for the characterization of waste tanks and pollutant distributions, and for detection and monitoring of trace atmospheric species.

  9. Chemical Reactions at Surfaces. Final Progress Report

    SciTech Connect

    2003-02-21

    The Gordon Research Conference (GRC) on Chemical Reactions at Surfaces was held at Holiday Inn, Ventura, California, 2/16-21/03. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  10. Chemical structure and dynamics: Annual report 1996

    SciTech Connect

    Colson, S.D.; McDowell, R.S.

    1997-03-01

    The Chemical Structure and Dynamics (CS&D) program is a major component of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of-the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for characterizing waste tanks and pollutant distributions, and for detecting and monitoring trace atmospheric species.

  11. TECHNOLOGY EVALUATION REPORT: PEROX-PURE™ CHEMICAL OXIDATION TECHNOLOGY

    EPA Science Inventory

    The report evaluates the perox-pure™ chemical oxidation technology's ability to remove volatile organic compounds (VOC) and other organic contaminants present in liquid wastes. The report also presents economic data from the Superfund Innovative Technology Evaluation (SITE) demon...

  12. Compliance report, 1997. Acid rain program

    SciTech Connect

    1998-08-01

    The 1997 Compliance Report once again announces 100 percent compliance with the Acid Rain Program, now in its third year of sulfur dioxide (SO{sub 2}) compliance and its second year of nitrogen oxides (NO{sub x}) compliance. Affected facilities continued to exceed the targets set for both pollutants by the Clean Air Act Amendments of 1990. The early reductions seen in 1995 and 1996 for SO{sub 2} continue, with affected utility units beating their 1997 target by 23 percent. The overcompliance with the NO{sub x} target also continues, achieving an average emission rate for Phase 1 units 16 percent below the compliance rate.

  13. Chemical Structure and Dynamics annual report 1997

    SciTech Connect

    Colson, S.D.; McDowell, R.S.

    1998-03-01

    The Chemical Structure and Dynamics (CS and D) program is a major component of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of-the-art collaborative facility for studies of chemical structure and dynamics. The authors respond to the need for a fundamental, molecular level understanding of chemistry at a wide variety of environmentally important interfaces by: (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for characterizing complex materials of the types found in stored wastes and contaminated soils, and for detecting and monitoring trace atmospheric species. The focus of the research is defined primarily by DOE`s environmental problems: fate and transport of contaminants in the subsurface environment, processing and storage of waste materials, cellular effects of chemical and radiological insult, and atmospheric chemistry as it relates to air quality and global change. Twenty-seven projects are described under the following topical sections: Reaction mechanisms at interfaces; High-energy processes at environmental interfaces; Cluster models of the condensed phase; and Miscellaneous.

  14. Chemical Safety Vulnerability Working Group report. Volume 3

    SciTech Connect

    Not Available

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 3 consists of eleven appendices containing the following: Field verification reports for Idaho National Engineering Lab., Rocky Flats Plant, Brookhaven National Lab., Los Alamos National Lab., and Sandia National Laboratories (NM); Mini-visits to small DOE sites; Working Group meeting, June 7--8, 1994; Commendable practices; Related chemical safety initiatives at DOE; Regulatory framework and industry initiatives related to chemical safety; and Chemical inventory data from field self-evaluation reports.

  15. Supermacroporous chemically cross-linked poly(aspartic acid) hydrogels.

    PubMed

    Gyarmati, Benjámin; Mészár, E Zsuzsanna; Kiss, Lóránd; Deli, Mária A; László, Krisztina; Szilágyi, András

    2015-08-01

    Chemically cross-linked poly(aspartic acid) (PASP) gels were prepared by a solid-liquid phase separation technique, cryogelation, to achieve a supermacroporous interconnected pore structure. The precursor polymer of PASP, polysuccinimide (PSI) was cross-linked below the freezing point of the solvent and the forming crystals acted as templates for the pores. Dimethyl sulfoxide was chosen as solvent instead of the more commonly used water. Thus larger temperatures could be utilized for the preparation and the drawback of increase in specific volume of water upon freezing could be eliminated. The morphology of the hydrogels was characterized by scanning electron microscopy and interconnectivity of the pores was proven by the small flow resistance of the gels. Compression tests also confirmed the interconnected porous structure and the complete re-swelling and shape recovery of the supermacroporous PASP hydrogels. The prepared hydrogels are of interest for several biomedical applications as scaffolding materials because of their cytocompatibility, controllable morphology and pH-responsive character. PMID:25922304

  16. Nucleic Acid Nanostructures for Chemical and Biological Sensing.

    PubMed

    Chandrasekaran, Arun Richard; Wady, Heitham; Subramanian, Hari K K

    2016-05-01

    The nanoscale features of DNA have made it a useful molecule for bottom-up construction of nanomaterials, for example, two- and three-dimensional lattices, nanomachines, and nanodevices. One of the emerging applications of such DNA-based nanostructures is in chemical and biological sensing, where they have proven to be cost-effective, sensitive and have shown promise as point-of-care diagnostic tools. DNA is an ideal molecule for sensing not only because of its specificity but also because it is robust and can function under a broad range of biologically relevant temperatures and conditions. DNA nanostructure-based sensors provide biocompatibility and highly specific detection based on the molecular recognition properties of DNA. They can be used for the detection of single nucleotide polymorphism and to sense pH both in solution and in cells. They have also been used to detect clinically relevant tumor biomarkers. In this review, recent advances in DNA-based biosensors for pH, nucleic acids, tumor biomarkers and cancer cell detection are introduced. Some challenges that lie ahead for such biosensors to effectively compete with established technologies are also discussed. PMID:27040036

  17. Chemical structure and dynamics. Annual report 1994

    SciTech Connect

    Colson, S.D.

    1995-07-01

    The Chemical Structure and Dynamics program was organized as a major component of Pacific Northwest Laboratory`s Environmental and Molecular Sciences Laboratory (EMSL), a state-of-the-art collaborative facility for studies of chemical structure and dynamics. Our program responds to the need for a fundamental, molecular-level understanding of chemistry at the wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces, and (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage. This research effort was initiated in 1989 and will continue to evolve over the next few years into a program of rigorous studies of fundamental molecular processes in model systems, such as well-characterized surfaces, single-component solutions, clusters, and biological molecules; and studies of complex systems found in the environment (multispecies, multiphase solutions; solid/liquid, liquid/liquid, and gas/surface interfaces; colloidal dispersions; ultrafine aerosols; and functioning biological systems). The success of this program will result in the achievement of a quantitative understanding of chemical reactions at interfaces, and more generally in condensed media, that is comparable to that currently available for gas-phase reactions. This understanding will form the basis for the development of a priori theories for predictions of macroscopic chemical behavior in condensed and heterogeneous media, adding significantly to the value of field-scale environmental models, the prediction of short- and long-term nuclear waste storage stabilities, and other problems related to the primary missions of the DOE.

  18. Annual Report 1998: Chemical Structure and Dynamics

    SciTech Connect

    RS McDowell.

    1999-05-10

    The Chemical Structure and Dynamics (CS D) program is a major component of the William R. Wiley Environmental Molecular Sciences Labo- ratory (EMSL), developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of- the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interracial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in envi- ronmental chemistry and in nuclear waste proc- essing and storage; and (3) developing state-of- the-art analytical methods for characterizing com- plex materials of the types found in stored wastes and contaminated soils, and for detecting and monitoring trace atmospheric species. Our program aims at achieving a quantitative understanding of chemical reactions at interfaces and, more generally, in condensed media, compa- rable to that currently available for gas-phase reactions. This understanding will form the basis for the development of a priori theories for pre- dicting macroscopic chemical behavior in con- densed and heterogeneous media, which will add significantly to the value of field-scale envi- ronmental models, predictions of short- and long- term nuclear waste storage stabilities, and other areas related to the primary missions of the U.S. Department of Energy (DOE).

  19. Annual Report 1998: Chemical Structure and Dynamics

    SciTech Connect

    SD Colson; RS McDowell

    1999-05-10

    The Chemical Structure and Dynamics (CS&D) program is a major component of the William R. Wiley Environmental Molecular Sciences Labo- ratory (EMSL), developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of- the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interracial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in envi- ronmental chemistry and in nuclear waste proc- essing and storage; and (3) developing state-of- the-art analytical methods for characterizing com- plex materials of the types found in stored wastes and contaminated soils, and for detecting and monitoring trace atmospheric species. Our program aims at achieving a quantitative understanding of chemical reactions at interfaces and, more generally, in condensed media, compa- rable to that currently available for gas-phase reactions. This understanding will form the basis for the development of a priori theories for pre- dicting macroscopic chemical behavior in con- densed and heterogeneous media, which will add significantly to the value of field-scale envi- ronmental models, predictions of short- and long- term nuclear waste storage stabilities, and other areas related to the primary missions of the U.S. Department of Energy (DOE).

  20. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    NASA Astrophysics Data System (ADS)

    Chang, Binbin; Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng

    2015-01-01

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl2 using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl2 at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of -SO3H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N2 adsorption-desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of -SO3H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of -SO3H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and -SO3H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles.

  1. Application of positive mode atmospheric chemical ionisation to distinguish epimeric oleanolic and ursolic acids.

    PubMed

    Townley, Chloe; Brettell, Rhea C; Bowen, Richard D; Gallagher, Richard T; Martin, William H C

    2015-01-01

    A new and more reliable method is reported for distinguishing the equatorial and axial epimers of oleanolic and ursolic acids and related triterpenoids based primarily on the relative abundance of the [M+H](+) and [M+-H(2)O](+) signals in their positive mode atmospheric pressure chemical ionisation mass spectra. The rate of elimination of water, which is the principal primary fragmentation of protonated oleanolic and ursolic acids, depends systematically on the stereochemistry of the hydroxyl group in the 3 position. For the b-epimer, in which the 3-hydroxyl substituent is in an equatorial position,[M+-H(2)O](+) is the base peak. In contrast, for the α-epimer, where the 3-hydroxyl group is axial, [M + H](+) is the base peak. This trend, which is general for a range of derivatives of oleanolic and ursolic acids, including the corresponding methyl esters, allows epimeric triterpenoids in these series to be securely differentiated. Confirmatory information is available from the collision-induced dissociation of the [M+-H(2)O](+) primary fragment ions, which follow different pathways for the species derived from axial and equatorial epimers of oleanolic and ursolic acids. These two pieces of independent spectral information permit the stereochemistry of epimeric oleanolic and ursolic acids (and selected derivatives) to be assigned with confidence without relying either on chromatographic retention times or referring to the spectra or other properties of authentic samples of these triterpenoids. PMID:26307724

  2. Chemical cross-linking with NHS esters: a systematic study on amino acid reactivities.

    PubMed

    Mädler, Stefanie; Bich, Claudia; Touboul, David; Zenobi, Renato

    2009-05-01

    Structure elucidation of tertiary or quaternary protein structures by chemical cross-linking and mass spectrometry (MS) has recently gained importance. To locate the cross-linker modification, dedicated software is applied to analyze the mass or tandem mass spectra (MS/MS). Such software requires information on target amino acids to limit the data analysis time. The most commonly used homobifunctional N-hydroxy succinimide (NHS) esters are often described as reactive exclusively towards primary amines, although side reactions with tyrosine and serine have been reported. Our goal was to systematically study the reactivity of NHS esters and derive some general rules for their attack of nucleophilic amino acid side chains in peptides. We therefore studied the cross-linking reactions of synthesized and commercial model peptides with disuccinimidyl suberate (DSS). The first reaction site in all cases was expectedly the alpha-NH(2)-group of the N-terminus or the epsilon-NH(2)-group of lysine. As soon as additional cross-linkers were attached or loops were formed, other amino acids were also involved in the reaction. In addition to the primary amino groups, serine, threonine and tyrosine showed significant reactivity due to the effect of neighboring amino acids by intermediate or permanent Type-1 cross-link formation. The reactivity is highly dependent on the pH and on adjacent amino acids. PMID:19132714

  3. Chemical Safety Vulnerability Working Group report. Volume 2

    SciTech Connect

    Not Available

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 2 consists of seven appendices containing the following: Tasking memorandums; Project plan for the CSV Review; Field verification guide for the CSV Review; Field verification report, Lawrence Livermore National Lab.; Field verification report, Oak Ridge Reservation; Field verification report, Savannah River Site; and the Field verification report, Hanford Site.

  4. Accurate ab initio prediction of NMR chemical shifts of nucleic acids and nucleic acids/protein complexes

    PubMed Central

    Victora, Andrea; Möller, Heiko M.; Exner, Thomas E.

    2014-01-01

    NMR chemical shift predictions based on empirical methods are nowadays indispensable tools during resonance assignment and 3D structure calculation of proteins. However, owing to the very limited statistical data basis, such methods are still in their infancy in the field of nucleic acids, especially when non-canonical structures and nucleic acid complexes are considered. Here, we present an ab initio approach for predicting proton chemical shifts of arbitrary nucleic acid structures based on state-of-the-art fragment-based quantum chemical calculations. We tested our prediction method on a diverse set of nucleic acid structures including double-stranded DNA, hairpins, DNA/protein complexes and chemically-modified DNA. Overall, our quantum chemical calculations yield highly/very accurate predictions with mean absolute deviations of 0.3–0.6 ppm and correlation coefficients (r2) usually above 0.9. This will allow for identifying misassignments and validating 3D structures. Furthermore, our calculations reveal that chemical shifts of protons involved in hydrogen bonding are predicted significantly less accurately. This is in part caused by insufficient inclusion of solvation effects. However, it also points toward shortcomings of current force fields used for structure determination of nucleic acids. Our quantum chemical calculations could therefore provide input for force field optimization. PMID:25404135

  5. Accurate ab initio prediction of NMR chemical shifts of nucleic acids and nucleic acids/protein complexes.

    PubMed

    Victora, Andrea; Möller, Heiko M; Exner, Thomas E

    2014-12-16

    NMR chemical shift predictions based on empirical methods are nowadays indispensable tools during resonance assignment and 3D structure calculation of proteins. However, owing to the very limited statistical data basis, such methods are still in their infancy in the field of nucleic acids, especially when non-canonical structures and nucleic acid complexes are considered. Here, we present an ab initio approach for predicting proton chemical shifts of arbitrary nucleic acid structures based on state-of-the-art fragment-based quantum chemical calculations. We tested our prediction method on a diverse set of nucleic acid structures including double-stranded DNA, hairpins, DNA/protein complexes and chemically-modified DNA. Overall, our quantum chemical calculations yield highly/very accurate predictions with mean absolute deviations of 0.3-0.6 ppm and correlation coefficients (r(2)) usually above 0.9. This will allow for identifying misassignments and validating 3D structures. Furthermore, our calculations reveal that chemical shifts of protons involved in hydrogen bonding are predicted significantly less accurately. This is in part caused by insufficient inclusion of solvation effects. However, it also points toward shortcomings of current force fields used for structure determination of nucleic acids. Our quantum chemical calculations could therefore provide input for force field optimization. PMID:25404135

  6. Chemical transformations of CO2 in trifluoroacetic acid solutions

    NASA Astrophysics Data System (ADS)

    Vishnetskaya, M. V.; Ivanova, M. S.; Svichkarev, O. M.; Budynina, E. M.; Mel'nikov, M. Ya.

    2013-05-01

    It is established that a conversion reaction of carbon dioxide takes place at room temperature and atmospheric pressure in aqueous solutions of trifluoroacetic acid (TFA), which leads to the formation of oxalic acid and heavier polymerized products.

  7. Spectroscopic and quantum chemical analysis of Isonicotinic acid methyl ester

    NASA Astrophysics Data System (ADS)

    Shoba, D.; Periandy, S.; Govindarajan, M.; Gayathri, P.

    2015-02-01

    In this present study, an organic compound Isonicotinic acid methyl ester (INAME) was structurally characterized by FTIR, FT-Raman, and NMR and UV spectroscopy. The optimized geometrical parameters and energies of all different and possible conformers of INAME are obtained from Density Functional Theory (DFT) by B3LYP/6-311++G(d,p) method. There are three conformers (SI, SII-1, and SII-2) for this molecule (ground state). The most stable conformer of INAME is SI conformer. The molecular geometry and vibrational frequencies of INAME in the ground state have been calculated by using HF and density functional method (B3LYP) 6-311++G (d,p) basis set. Detailed vibrational spectral analysis has been carried out and assignments of the observed fundamental bands have been proposed on the basis of peak positions and relative intensities. The computed vibrational frequencies were compared with the experimental frequencies, which yield good agreement between observed and calculated frequencies. A study on the electronic properties, such as HOMO and LUMO energies were performed by time independent DFT approach. Besides, molecular electrostatic potential (MEP) and thermodynamic properties were performed. The electric dipole moment (μ) and first hyper polarizability (β) values of the investigated molecule were computed using ab initio quantum mechanical calculations. The calculated results show that the INAME molecule may have microscopic nonlinear optical (NLO) behavior with non zero values. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by gauge independent atomic orbital (GIAO) method.

  8. Proposed minimum reporting standards for chemical analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a general consensus that supports the need for standardized reporting of metadata or information describing large-scale metabolomics and other functional genomics data sets. Reporting of standard metadata provides a biological and empirical context for the data, facilitates experimental re...

  9. CHEMICAL FLUX IN AN ACID-STRESSED STREAM

    EPA Science Inventory

    The acidity of rain and snow falling on widely separated areas of the world has been increasing during the past 30 yr (refs 1-3). Acid rainfall consists of a dilute solution of sulphuric and nitric acids due to the oxidation and hydrolysis of airborne sulphur and nitrogen and fre...

  10. Influence of the chemical composition on gamma ray attenuation by fatty acids.

    PubMed

    Bhandal, G S; Singh, K

    1992-04-01

    The dependence of gamma ray attenuation on the chemical composition of fatty acids is investigated in the energy range from 10(-3) to 10(5) MeV. The mass attenuation coefficients (muF) and effective atomic numbers (Zeff) have been calculated for 27 different fatty acids. They show appreciable variation with the chemical composition of fatty acids in the region of gamma ray energies from 10(-3) to 10(5) MeV. PMID:1314792

  11. Modeling of the acid-leaching process in the preparation of chemical ultraclean coal

    SciTech Connect

    Wang, H.; Wang, Z.

    1995-12-31

    The paper is continued from ``Modeling of the Preparation of Chemical Ultraclean Coal`` presented at 11th Pittsburgh Coal Conference. As to acid-alkali deashing process, acid-leaching is a post-processing for the preparation of ultraclean coal, which can be used to remove chemical products caused by alkali-leaching processing. A soluble model is developed to establish an acid-leaching rate equation, which indicates that model result is compatible well with the experimental data.

  12. Chemical and biological status of lakes and streams in the upper midwest: assessment of acidic deposition effects

    USGS Publications Warehouse

    Wiener, J.G.; Eilers, J.M.

    1987-01-01

    Many lakes in three areas in the Upper Midwest - northeastern Minnesota, northern Wisconsin, and the Upper Peninsula of Michigan - have low acid neutralizing capacity (ANC) and may be susceptible to change by acidic deposition. Northcentral Wisconsin and the Upper Peninsula of Michigan together contain about 150-300 acidic lakes (ANC ≤ 0), whereas none have been found in Minnesota. These acidic lakes are precipitation-dominated, Clearwater seepage lakes having small surface area, shallow depth, and low concentrations of dissolved organic carbon. The spatial distribution of these acidic lakes parallels a west to east gradient of increasing sulfate and hydrogen ion deposition. Several of these acidic lakes exhibit chemical characteristics and biological changes consistent with those observed elsewhere in waters reported to be acidified by acidic deposition. However, an hypothesis of recent lake acidification is not supported by analyses of either historical chemical data or diatom remains in lake sediments, and natural sources of acidity and alternative ecological processes have not been conclusively eliminated as causative factors. Streams in this three-state region have high ANC and appear to be insensitive to acidic deposition. The species richness and composition of lacustrine fish communities in the region are partly related to pH and associated chemical factors. Sport fishes considered acid-sensitive and of primary concern with regard to acidification include walleye, smallmouth bass, and black crappie. The fishery in at least one lake, Morgan Lake in Wisconsin (pH 4.6), may have declined because of acidification. Given the general lack of quantitative fishery data for acidic Wisconsin and Michigan lakes, however, more general conclusions concerning impacts or the absence of impacts of acidification on the region's fishery resources are not possible.

  13. Production and applications of carbohydrate-derived sugar acids as generic biobased chemicals.

    PubMed

    Mehtiö, Tuomas; Toivari, Mervi; Wiebe, Marilyn G; Harlin, Ali; Penttilä, Merja; Koivula, Anu

    2016-10-01

    This review considers the chemical and biotechnological synthesis of acids that are obtained by direct oxidation of mono- or oligosaccharide, referred to as sugar acids. It focuses on sugar acids which can be readily derived from plant biomass sources and their current and future applications. The three main classes of sugar acids are aldonic, aldaric and uronic acids. Interest in organic acids derived from sugars has recently increased, as part of the interest to develop biorefineries which produce not only biofuels, but also chemicals to replace those currently derived from petroleum. More than half of the most desirable biologically produced platform chemicals are organic acids. Currently, the only sugar acid with high commercial production is d-gluconic acid. However, other sugar acids such as d-glucaric and meso-galactaric acids are being produced at a lower scale. The sugar acids have application as sequestering agents and binders, corrosion inhibitors, biodegradable chelators for pharmaceuticals and pH regulators. There is also considerable interest in the use of these molecules in the production of synthetic polymers, including polyamides, polyesters and hydrogels. Further development of these sugar acids will lead to higher volume production of the appropriate sugar acids and will help support the next generation of biorefineries. PMID:26177333

  14. Chemical Technology Division annual technical report, 2001.

    SciTech Connect

    Lewis, D.; Gay, E. C.; Miller, J. C.; Boparai, A. S.

    2002-07-02

    The Chemical Technology Division (CMT) is one of eight engineering research divisions within Argonne National Laboratory, one of the U.S. government's oldest and largest research laboratories. The University of Chicago oversees the laboratory on behalf of the U.S. Department of Energy (DOE). Argonne's mission is to conduct basic scientific research, to operate national scientific facilities, to enhance the nation's energy resources, and to develop better ways to manage environmental problems. Argonne has the further responsibility of strengthening the nation's technology base by developing innovative technology and transferring it to industry. CMT is a diverse early-stage engineering organization, specializing in the treatment of spent nuclear fuel, development of advanced electrochemical power sources, and management of both high- and low-level nuclear wastes. Although this work is often indistinguishable from basic research, our efforts are directed toward the practical devices and processes that are covered by Argonne's mission. Additionally, the Division operates the Analytical Chemistry Laboratory and Environment, Safety, and Health Analytical Chemistry services, which provide a broad range of analytical services to Argonne and other organizations. The Division is multidisciplinary. Its people have formal training as ceramists; physicists; material scientists; electrical, mechanical, chemical, and nuclear engineers; and chemists. They have experience working in academia; urban planning; and the petroleum, aluminum, and automotive industries. Their skills include catalysis, ceramics, electrochemistry, metallurgy, nuclear magnetic resonance spectroscopy, and petroleum refining, as well as the development of nuclear waste forms, batteries, and high-temperature superconductors.

  15. Miscellaneous chemical basin expedited site characterization report

    SciTech Connect

    Riha, B.D.; Pemberton, B.E.; Rossabi, J.

    1996-12-01

    A total of twenty nine cone penetrometer test (CPT) pushes in three weeks were conducted for vadose zone characterization of the Miscellaneous Chemical Basin (MCB) waste unit at the Savannah River Site. The shallow, unlined basin received liquid chemical wastes over an 18 year period beginning in 1956. This characterization was initiated to determine the vertical and lateral extent of contamination in the vadose zone and to install vadose zone wells for remediation by barometric pumping or active vapor extraction to help prevent further contamination of groundwater. The CPT locations within the waste site were selected based on results from previous shallow soil gas surveys, groundwater contamination data, and the suspected basin center. Geophysical data and soil gas samples were collected at twenty five locations and twenty five vadose zone wells were installed. The wells were screened to target the clay zones and areas of higher soil gas concentrations. The well construction diagrams are provided in Appendix B. Baro-Ball{trademark} valves for enhanced barometric pumping were installed on each well upon completion to immediately begin the remediation treatability study at the site.

  16. 76 FR 48093 - Hazardous Chemical Reporting: Revisions to the Emergency and Hazardous Chemical Inventory Forms...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-08

    ... governments with information concerning potential chemical hazards present in their communities.'' See 55 FR... rule published on November 3, 2008 (73 FR 65452), EPA clarified how to report a hazardous chemical... 12866 (58 FR 51735, October 4, 1993) and is therefore not subject to review under the Executive...

  17. Mitigation of acid deposition: Liming of surface waters. Final report

    SciTech Connect

    Bartoshesky, J.; Price, R.; DeMuro, J.

    1989-05-01

    In recent years acid deposition has become a serious concern internationally. Scientific literature has documented the acidification of numerous lakes and streams in North America and Scandinavia resulting in the depletion or total loss of fisheries and other aquatic biota. Liming represents the only common corrective practice aimed specifically at remediating an affected acid receptor. This report reviews a range of liming technologies and liming materials, as well as the effect of surface-water liming on water quality and aquatic biota. As background to the liming discussion, the hydrologic cycle and the factors that make surface waters sensitive to acid deposition are also discussed. Finally, a brief review of some of the liming projects that have been conducted, or are currently in operation is presented, giving special emphasis to mitigation efforts in Maryland. Liming has been effectively used to counteract surface-water acidification in parts of Scandinavia, Canada, and the U.S. To date, liming has generally been shown to improve physical and chemical conditions and enhance the biological recovery of aquatic ecosystems affected by acidification.

  18. Chemical applications of synchrotron radiation: Workshop report

    SciTech Connect

    Not Available

    1989-04-01

    The most recent in a series of topical meetings for Advanced Photon Source user subgroups, the Workshop on Chemical Applications of Synchrotron Radiation (held at Argonne National Laboratory, October 3-4, 1988) dealt with surfaces and kinetics, spectroscopy, small-angle scattering, diffraction, and topography and imaging. The primary objectives were to provide an educational resource for the chemistry community on the scientific research being conducted at existing synchrotron sources and to indicate some of the unique opportunities that will be made available with the Advanced Photon Source. The workshop organizers were also interested in gauging the interest of chemists in the field of synchrotron radiation. Interest expressed at the meeting has led to initial steps toward formation of a Chemistry Users Group at the APS. Individual projects are processed separately for the data bases.

  19. Chemical Technology Division annual technical report 1997

    SciTech Connect

    1998-06-01

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials and electrified interfaces. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division`s activities during 1997 are presented.

  20. 1998 Chemical Technology Division Annual Technical Report.

    SciTech Connect

    Ackerman, J.P.; Einziger, R.E.; Gay, E.C.; Green, D.W.; Miller, J.F.

    1999-08-06

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division's activities during 1998 are presented.

  1. Chemical Technology Division. Annual technical report, 1995

    SciTech Connect

    Laidler, J.J.; Myles, K.M.; Green, D.W.; McPheeters, C.C.

    1996-06-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1995 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (3) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (4) processes for separating and recovering selected elements from waste streams, concentrating low-level radioactive waste streams with advanced evaporator technology, and producing {sup 99}Mo from low-enriched uranium; (5) electrometallurgical treatment of different types of spent nuclear fuel in storage at Department of Energy sites; and (6) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems.

  2. Chemical and Laser Sciences Division annual report 1989

    SciTech Connect

    Haines, N.

    1990-06-01

    The Chemical and Laser Sciences Division Annual Report includes articles describing representative research and development activities within the Division, as well as major programs to which the Division makes significant contributions.

  3. [Laser enhanced chemical reaction studies]. [Progress report

    SciTech Connect

    Not Available

    1992-04-01

    Experimental studies of dynamic molecular processes are described with particular emphasis on the use of a powerful infrared diode laser probe technique developed in our laboratory. This technique allows us to determine the final states of CO{sub 2} (and other molecules) produced by collisions, photofragmentation, or chemical reactions with a spectral resolution of 0.0003 cm{sup {minus}1} and a time resolution of 10{sup {minus}7} sec. Such high spectral resolution provides a detailed picture of the vibrational and rotational states of molecules produced by these dynamic events. We have used this experimental method to probe collisions between hot hydrogen/deuterium atoms and CO{sub 2}, between O({sup 1}D) atoms and CO{sub 2}, to study the final states of DC1 molecules produced as a result of the reactions of hot Cl atoms, and to investigate the dynamics of the reaction between OH and CO molecules. Advances in our techniques over the past two years have allowed us to identify and study more than 200 final rotational states in ten different vibrational levels of CO{sub 2} encompassing all 3 normal modes, many overtones, and combination states of the molecule. We have extended the technique to probe a variety of new molecules such as OCS, N{sub 2}O, DCl, and CS{sub 2}. All of this work is aimed at providing experimental tests for polyatomic molecule potential energy surfaces, chemical transition states in complex systems, and theories of reaction dynamic in molecules with more than 3 atoms.

  4. 2002 Chemical Engineering Division annual report.

    SciTech Connect

    Lewis, D.; Graziano, D.; Miller, J. F.

    2003-05-22

    The Chemical Engineering Division is one of eight engineering research divisions within Argonne National Laboratory, one of the U.S. government's oldest and largest research laboratories. The University of Chicago oversees the laboratory on behalf of the U.S. Department of Energy (DOE). Argonne's mission is to conduct basic scientific research, to operate national scientific facilities, to enhance the nation's energy resources, and to develop better ways to manage environmental problems. Argonne has the further responsibility of strengthening the nation's technology base by developing innovative technology and transferring it to industry. The Division is a diverse early-stage engineering organization, specializing in the treatment of spent nuclear fuel, development of advanced electrochemical power sources, and management of both high- and low-level nuclear wastes. Although this work is often indistinguishable from basic research, our efforts are directed toward the practical devices and processes that are covered by Argonne's mission. Additionally, the Division operates the Analytical Chemistry Laboratory; Environment, Safety, and Health Analytical Chemistry services; and Dosimetry and Radioprotection services, which provide a broad range of analytical services to Argonne and other organizations. The Division is multidisciplinary. Its people have formal training as ceramists; physicists; material scientists; electrical, mechanical, chemical, and nuclear engineers; and chemists. They have experience working in academia; urban planning; and the petroleum, aluminum, and automotive industries. Their skills include catalysis, ceramics, electrochemistry, metallurgy, nuclear magnetic resonance spectroscopy, and petroleum refining, as well as the development of nuclear waste forms, batteries, and high-temperature superconductors. Our wide-ranging expertise finds ready application in solving energy and environmental problems. Division personnel are frequently called on by

  5. Research in chemical kinetics. Annual report, 1994

    SciTech Connect

    Rowland, F.S.

    1994-12-31

    Progress is reported on the three projects under this contract: Computational quantum chemistry applied to problems in atmospheric chemistry (heat of formation of HOBr); Methyl halides in seawater (rate of formation and destruction in the oceans); and Thermal reactions of {sup 38}Cl atoms (addition to multiple bonds and abstraction of hydrogen).

  6. Sandia National Laboratories, California Chemical Management Program annual report.

    SciTech Connect

    Brynildson, Mark E.

    2012-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Chemical Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This program annual report describes the activities undertaken during the calender past year, and activities planned in future years to implement the Chemical Management Program, one of six programs that supports environmental management at SNL/CA. SNL/CA is responsible for tracking chemicals (chemical and biological materials), providing Material Safety Data Sheets (MSDS) and for regulatory compliance reporting according to a variety of chemical regulations. The principal regulations for chemical tracking are the Emergency Planning Community Right-to-Know Act (EPCRA) and the California Right-to-Know regulations. The regulations, the Hazard Communication/Lab Standard of the Occupational Safety and Health Administration (OSHA) are also key to the CM Program. The CM Program is also responsible for supporting chemical safety and information requirements for a variety of Integrated Enabling Services (IMS) programs primarily the Industrial Hygiene, Waste Management, Fire Protection, Air Quality, Emergency Management, Environmental Monitoring and Pollution Prevention programs. The principal program tool is the Chemical Information System (CIS). The system contains two key elements: the MSDS library and the chemical container-tracking database that is readily accessible to all Members of the Sandia Workforce. The primary goal of the CM Program is to ensure safe and effective chemical management at Sandia/CA. This is done by efficiently collecting and managing chemical information for our customers who include Line, regulators, DOE and ES and H programs to ensure compliance with regulations and to streamline customer business processes that require chemical information.

  7. Distillation of natural fatty acids and their chemical derivatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Well over 1,000 different fatty acids are known which are natural components of fats, oils (triacylglycerols), and other related compounds. These fatty acids can have different alkyl chain lengths, 0-6 carbon-carbon double bonds possessing cis- or trans-geometry, and can contain a variety of functio...

  8. Chemically modified nucleic acids as immunodetectable probes in hybridization experiments.

    PubMed Central

    Tchen, P; Fuchs, R P; Sage, E; Leng, M

    1984-01-01

    Guanine residues in nucleic acids can be modified by treatment with N-acetoxy-N-2-acetylaminofluorene and its 7-iodo derivative in an in vitro nonenzymatic reaction. The modified nucleic acids (ribo or deoxyribo, single or double stranded) are recognized by specific antibodies. They can be immunoprecipitated or used as probes in hybridization experiments and detected by immunochemical techniques. Images PMID:6374657

  9. Chemical protection against ionizing radiation. Final report

    SciTech Connect

    Livesey, J.C.; Reed, D.J.; Adamson, L.F.

    1984-08-01

    The scientific literature on radiation-protective drugs is reviewed. Emphasis is placed on the mechanisms involved in determining the sensitivity of biological material to ionizing radiation and mechanisms of chemical radioprotection. In Section I, the types of radiation are described and the effects of ionizing radiation on biological systems are reviewed. The effects of ionizing radiation are briefly contrasted with the effects of non-ionizing radiation. Section II reviews the contributions of various natural factors which influence the inherent radiosensitivity of biological systems. Inlcuded in the list of these factors are water, oxygen, thiols, vitamins and antioxidants. Brief attention is given to the model describing competition between oxygen and natural radioprotective substances (principally, thiols) in determining the net cellular radiosensitivity. Several theories of the mechanism(s) of action of radioprotective drugs are described in Section III. These mechanisms include the production of hypoxia, detoxication of radiochemical reactive species, stabilization of the radiobiological target and the enhancement of damage repair processes. Section IV describes the current strategies for the treatment of radiation injury. Likely areas in which fruitful research might be performed are described in Section V. 495 references.

  10. Chemical Technology Division annual technical report, 1993

    SciTech Connect

    Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

    1994-04-01

    Chemical Technology (CMT) Division this period, conducted research and development in the following areas: advanced batteries and fuel cells; fluidized-bed combustion and coal-fired magnetohydrodynamics; treatment of hazardous waste and mixed hazardous/radioactive waste; reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; separating and recovering transuranic elements, concentrating radioactive waste streams with advanced evaporators, and producing {sup 99}Mo from low-enriched uranium; recovering actinide from IFR core and blanket fuel in removing fission products from recycled fuel, and disposing removal of actinides in spent fuel from commercial water-cooled nuclear reactors; and physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, thin-film diamond surfaces, effluents from wood combustion, and molten silicates; and the geochemical processes involved in water-rock interactions. The Analytical Chemistry Laboratory in CMT also provides a broad range of analytical chemistry support.

  11. Chemical Technology Division, Annual technical report, 1991

    SciTech Connect

    Not Available

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  12. Chemical Technology Division, Annual technical report, 1991

    SciTech Connect

    Not Available

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  13. Chemical Technology Division annual technical report, 1994

    SciTech Connect

    1995-06-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1994 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion; (3) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from waste streams, concentrating radioactive waste streams with advanced evaporator technology, and producing {sup 99}Mo from low-enriched uranium for medical applications; (6) electrometallurgical treatment of the many different types of spent nuclear fuel in storage at Department of Energy sites; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, and impurities in scrap copper and steel; and the geochemical processes involved in mineral/fluid interfaces and water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  14. Glacial Acetic Acid Adverse Events: Case Reports and Review of the Literature

    PubMed Central

    Doles, William; Wilkerson, Garrett; Morrison, Samantha

    2015-01-01

    Glacial acetic acid is a dangerous chemical that has been associated with several adverse drug events involving patients over recent years. When diluted to the proper concentration, acetic acid solutions have a variety of medicinal uses. Unfortunately, despite warnings, the improper dilution of concentrated glacial acetic acid has resulted in severe burns and other related morbidities. We report on 2 additional case reports of adverse drug events involving glacial acetic acid as well as a review of the literature. A summary of published case reports is provided, including the intended and actual concentration of glacial acetic acid involved, the indication for use, degree of exposure, and resultant outcome. Strategies that have been recommended to improve patient safety are summarized within the context of the key elements of the medication use process. PMID:26448660

  15. Environmental monitoring final report: groundwater chemical analyses

    SciTech Connect

    Not Available

    1984-02-01

    This report presents the results of analyses of groundwater qualtiy at the SRC-I Demonstration Plant site in Newman, Kentucky. Samples were obtained from a network of 23 groundwater observation wells installed during previous studies. The groundwater was well within US EPA Interim Primary Drinking Water Standards for trace metals, radioactivity, and pesticides, but exceeded the standard for coliform bacteria. Several US EPA Secondary Drinking Water Standards were exceeded, namely, manganese, color, iron, and total dissolved solids. Based on the results, Dames and Moore recommend that all wells should be sterilized and those wells built in 1980 should be redeveloped. 1 figure, 6 tables.

  16. Chemical Technology Division annual technical report, 1990

    SciTech Connect

    Not Available

    1991-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1990 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for coal- fired magnetohydrodynamics and fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for a high-level waste repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, concentrating plutonium solids in pyrochemical residues by aqueous biphase extraction, and treating natural and process waters contaminated by volatile organic compounds; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the scientific and engineering programs at Argonne National Laboratory (ANL). 66 refs., 69 figs., 6 tabs.

  17. Gluconic acid from biomass fast pyrolysis oils: specialty chemicals from the thermochemical conversion of biomass.

    PubMed

    Santhanaraj, Daniel; Rover, Marjorie R; Resasco, Daniel E; Brown, Robert C; Crossley, Steven

    2014-11-01

    Fast pyrolysis of biomass to produce a bio-oil followed by catalytic upgrading is a widely studied approach for the potential production of fuels from biomass. Because of the complexity of the bio-oil, most upgrading strategies focus on removing oxygen from the entire mixture to produce fuels. Here we report a novel method for the production of the specialty chemical, gluconic acid, from the pyrolysis of biomass. Through a combination of sequential condensation of pyrolysis vapors and water extraction, a solution rich in levoglucosan is obtained that accounts for over 30% of the carbon in the bio-oil produced from red oak. A simple filtration step yields a stream of high-purity levoglucosan. This stream of levoglucosan is then hydrolyzed and partially oxidized to yield gluconic acid with high purity and selectivity. This combination of cost-effective pyrolysis coupled with simple separation and upgrading could enable a variety of new product markets for chemicals from biomass. PMID:25204798

  18. Chemical cross-linking/mass spectrometry targeting acidic residues in proteins and protein complexes.

    PubMed

    Leitner, Alexander; Joachimiak, Lukasz A; Unverdorben, Pia; Walzthoeni, Thomas; Frydman, Judith; Förster, Friedrich; Aebersold, Ruedi

    2014-07-01

    The study of proteins and protein complexes using chemical cross-linking followed by the MS identification of the cross-linked peptides has found increasingly widespread use in recent years. Thus far, such analyses have used almost exclusively homobifunctional, amine-reactive cross-linking reagents. Here we report the development and application of an orthogonal cross-linking chemistry specific for carboxyl groups. Chemical cross-linking of acidic residues is achieved using homobifunctional dihydrazides as cross-linking reagents and a coupling chemistry at neutral pH that is compatible with the structural integrity of most protein complexes. In addition to cross-links formed through insertion of the dihydrazides with different spacer lengths, zero-length cross-link products are also obtained, thereby providing additional structural information. We demonstrate the application of the reaction and the MS identification of the resulting cross-linked peptides for the chaperonin TRiC/CCT and the 26S proteasome. The results indicate that the targeting of acidic residues for cross-linking provides distance restraints that are complementary and orthogonal to those obtained from lysine cross-linking, thereby expanding the yield of structural information that can be obtained from cross-linking studies and used in hybrid modeling approaches. PMID:24938783

  19. Chemical cross-linking/mass spectrometry targeting acidic residues in proteins and protein complexes

    PubMed Central

    Leitner, Alexander; Joachimiak, Lukasz A.; Unverdorben, Pia; Walzthoeni, Thomas; Frydman, Judith; Förster, Friedrich; Aebersold, Ruedi

    2014-01-01

    The study of proteins and protein complexes using chemical cross-linking followed by the MS identification of the cross-linked peptides has found increasingly widespread use in recent years. Thus far, such analyses have used almost exclusively homobifunctional, amine-reactive cross-linking reagents. Here we report the development and application of an orthogonal cross-linking chemistry specific for carboxyl groups. Chemical cross-linking of acidic residues is achieved using homobifunctional dihydrazides as cross-linking reagents and a coupling chemistry at neutral pH that is compatible with the structural integrity of most protein complexes. In addition to cross-links formed through insertion of the dihydrazides with different spacer lengths, zero-length cross-link products are also obtained, thereby providing additional structural information. We demonstrate the application of the reaction and the MS identification of the resulting cross-linked peptides for the chaperonin TRiC/CCT and the 26S proteasome. The results indicate that the targeting of acidic residues for cross-linking provides distance restraints that are complementary and orthogonal to those obtained from lysine cross-linking, thereby expanding the yield of structural information that can be obtained from cross-linking studies and used in hybrid modeling approaches. PMID:24938783

  20. 76 FR 50815 - TSCA Inventory Update Reporting Modifications; Chemical Data Reporting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-16

    ... Update Reporting Modifications; Chemical Data Reporting; Final Rule #0;#0;Federal Register / Vol. 76 , No... Parts 704, 710, and 711 RIN 2070-AJ43 TSCA Inventory Update Reporting Modifications; Chemical Data... definitional modifications and additions. 3. EPA is amending 40 CFR 710.53, which appears in the new 40...

  1. Research in Chemical Kinetics. Annual Report, 1993

    DOE R&D Accomplishments Database

    Rowland, F. S.

    1993-01-01

    Progress on the seven projects under this contract is reported. The projects are: (1) Chlorine atom reactions with vinyl bromide. Mass spectrometric investigations of the anti-Markownikoff rule. (2) Chlorine atom reactions with CF{sub 2}{double_bond}CFBr. (3) Gas phase thermal {sup 38}Cl reactions with (CH{sub 2}{double_bond}CH){sub n}M (M=Sn, Si, n=4; M=Sb, n=3; M=Hg, n=2). (4) Gas phase reactions of thermal chlorine atoms with (CH{sub 3}){sub 4}M (M=C, Si, Ge, Sn, Pb). (5) Hydrogen abstraction reactions by thermal chlorine atoms with HFCs, HCFCs, and halomethanes. (6) Half-stabilization pressure of chlorine atoms plus ethylene in a nitrogen bath. (7) {sup 14}C content of atmospheric OCS, C{sub 2}H{sub 6} and C{sub 3}H{sub 8}.

  2. Research in chemical kinetics. Annual report, 1993

    SciTech Connect

    Rowland, F.S.

    1993-12-31

    Progress on the seven projects under this contract is reported. The projects are: (1) Chlorine atom reactions with vinyl bromide. Mass spectrometric investigations of the anti-Markownikoff rule. (2) Chlorine atom reactions with CF{sub 2}{double_bond}CFBr. (3) Gas phase thermal {sup 38}Cl reactions with (CH{sub 2}{double_bond}CH){sub n}M (M=Sn, Si, n=4; M=Sb, n=3; M=Hg, n=2). (4) Gas phase reactions of thermal chlorine atoms with (CH{sub 3}){sub 4}M (M=C, Si, Ge, Sn, Pb). (5) Hydrogen abstraction reactions by thermal chlorine atoms with HFCs, HCFCs, and halomethanes. (6) Half-stabilization pressure of chlorine atoms plus ethylene in a nitrogen bath. (7) {sup 14}C content of atmospheric OCS, C{sub 2}H{sub 6} and C{sub 3}H{sub 8}.

  3. Formation of nitric acid hydrates - A chemical equilibrium approach

    NASA Technical Reports Server (NTRS)

    Smith, Roland H.

    1990-01-01

    Published data are used to calculate equilibrium constants for reactions of the formation of nitric acid hydrates over the temperature range 190 to 205 K. Standard enthalpies of formation and standard entropies are calculated for the tri- and mono-hydrates. These are shown to be in reasonable agreement with earlier calorimetric measurements. The formation of nitric acid trihydrate in the polar stratosphere is discussed in terms of these equilibrium constants.

  4. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: October-December 1997

    SciTech Connect

    Jubin, R.T.

    1999-02-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period October--December 1997. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within six major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information. Activities conducted within the area of Hot Cell Operations included efforts to optimize the processing conditions for Enhanced Sludge Washing of Hanford tank sludge, the testing of candidate absorbers and ion exchangers under continuous-flow conditions using actual supernatant from the Melton Valley Storage Tanks, and attempts to develop a cesium-specific spherical inorganic sorbent for the treatment of acidic high-salt waste solutions. Within the area of Process Chemistry and Thermodynamics, the problem of solids formation in process solutions from caustic treatment of Hanford sludge was addressed and experimental collaborative efforts with Russian scientists to determine the solidification conditions of yttrium barium, and copper oxides from their melts were completed.

  5. Acid rain information book. Draft final report

    SciTech Connect

    1980-12-01

    Acid rain is one of the most widely publicized environmental issues of the day. The potential consequences of increasingly widespread acid rain demand that this phenomenon be carefully evaluated. Reveiw of the literature shows a rapidly growing body of knowledge, but also reveals major gaps in understanding that need to be narrowed. This document discusses major aspects of the acid rain phenomenon, points out areas of uncertainty, and summarizes current and projected research by responsible government agencies and other concerned organizations.

  6. Temperature and magnetic field responsive hyaluronic acid particles with tunable physical and chemical properties

    NASA Astrophysics Data System (ADS)

    Ekici, Sema; Ilgin, Pinar; Yilmaz, Selahattin; Aktas, Nahit; Sahiner, Nurettin

    2011-01-01

    We report the preparation and characterization of thiolated-temperature-responsive hyaluronic acid-cysteamine-N-isopropyl acrylamide (HA-CYs-NIPAm) particles and thiolated-magnetic-responsive hyaluronic acid (HA-Fe-CYs) particles. Linear hyaluronic acid (HA) crosslinked with divinyl sulfone as HA particles was prepared using a water-in-oil micro emulsion system which were then oxidized HA-O with NaIO4 to develop aldehyde groups on the particle surface. HA-O hydrogel particles were then reacted with cysteamine (CYs) which interacted with aldehydes on the HA surface to form HA particles with cysteamine (HA-CYs) functionality on the surface. HA-CYs particles were further exposed to radical polymerization with NIPAm to obtain temperature responsive HA-CYs-NIPAm hydrogel particles. To acquire magnetic field responsive HA composites, magnetic iron particles were included in HA to form HA-Fe during HA particle preparation. HA-Fe hydrogel particles were also chemically modified. The prepared HA-CYs-NIPAm demonstrated temperature dependent size variations and phase transition temperature. HA-CYs-NIPAm and HA-Fe-CYs particles can be used as drug delivery vehicles. Sulfamethoxazole (SMZ), an antibacterial drug, was used as a model drug for temperature-induced release studies from these particles.

  7. Δ(9)-Tetrahydrocannabinolic acid synthase production in Pichia pastoris enables chemical synthesis of cannabinoids.

    PubMed

    Lange, Kerstin; Schmid, Andreas; Julsing, Mattijs K

    2015-10-10

    Δ(9)-Tetrahydrocannabinol (THC) is of increasing interest as a pharmaceutical and bioactive compound. Chemical synthesis of THC uses a laborious procedure and does not satisfy the market demand. The implementation of biocatalysts for specific synthesis steps might be beneficial for making natural product availability independent from the plant. Δ(9)-Tetrahydrocannabinolic acid synthase (THCAS) from C. sativa L. catalyzes the cyclization of cannabigerolic acid (CBGA) to Δ(9)-tetrahydrocannabinolic acid (THCA), which is non-enzymatically decarboxylated to THC. We report the preparation of THCAS in amounts sufficient for the biocatalytic production of THC(A). Active THCAS was most efficiently obtained from Pichia pastoris. THCAS was produced on a 2L bioreactor scale and the enzyme was isolated by single-step chromatography with a specific activity of 73Ug(-1)total protein. An organic/aqueous two-liquid phase setup for continuous substrate delivery facilitated in situ product removal. In addition, THCAS activity in aqueous environments lasted for only 20min whereas the presence of hexane stabilized the activity over 3h. In conclusion, production of THCAS in P. pastoris Mut(S) KM71 KE1, subsequent isolation, and its application in a two-liquid phase setup enables the synthesis of THCA on a mg scale. PMID:26197418

  8. Chemical characterisation and application of acid whey in fermented milk.

    PubMed

    Lievore, Paolla; Simões, Deise R S; Silva, Karolline M; Drunkler, Northon L; Barana, Ana C; Nogueira, Alessandro; Demiate, Ivo M

    2015-04-01

    Acid whey is a by-product from cheese processing that can be employed in beverage formulations due to its high nutritional quality. The objective of the present work was to study the physicochemical characterisation of acid whey from Petit Suisse-type cheese production and use this by-product in the formulation of fermented milk, substituting water. In addition, a reduction in the fermentation period was tested. Both the final product and the acid whey were analysed considering physicochemical determinations, and the fermented milk was evaluated by means of sensory analysis, including multiple comparison and acceptance tests, as well as purchase intention. The results of the physicochemical analyses showed that whey which was produced during both winter and summer presented higher values of protein (1.22 and 0.97 %, w/v, respectively), but there were no differences in lactose content. During the autumn, the highest solid extract was found in whey (6.00 %, w/v), with larger amounts of lactose (4.73 %, w/v) and ash (0.83 %, w/v). When analysing the fermented milk produced with added acid whey, the acceptance test resulted in 90 % of acceptance; the purchase intention showed that 54 % of the consumers would 'certainly buy' and 38 % would 'probably buy' the product. Using acid whey in a fermented milk formulation was technically viable, allowing by-product value aggregation, avoiding discharge, lowering water consumption and shortening the fermentation period. PMID:25829588

  9. Chemical Degradation Studies on a Series of Dithiophosphinic Acids

    SciTech Connect

    Freiderich, Melissa E; Delmau, Laetitia Helene; Peterman, D. R.; Marc, Philippe L; Klaehn, John D.

    2014-01-01

    In this study a significant increase in the stability of a series of dithiophosphinic acids (DPAHs) under oxidizing acidic conditions was achieved. The degradation behavior of a series of DPAHs, designed for lanthanide/actinide separation, was examined. The stability of the DPAHs, when contacted with varying nitric acid concentrations, was tested and monitored using 31P {1H} NMR. Changes in the functional groups of the DPAHs resulted in substantial increases in the stability. However, all the DPAHs eventually showed signs of degradation when placed in contact with 2 M HNO3. The addition of a radical scavenger, hydrazine, inhibited the degradation of the DPAHs. With small amounts of hydrazine, five of the DPAHs remained stable for over a month in direct contact with 2 M HNO3.

  10. Chemical Degradation Studies on a Series of Dithiophosphinic Acids

    SciTech Connect

    Melissa E. Freiderich; Dean R. Peterman; John R. Klaehn; Philippe Marc; Laetitia H. Delmau

    2014-04-01

    A significant increase in the stability of a series of dithiophosphinic acids (DPAHs) under oxidizing acidic conditions was achieved. The degradation behavior of a series of DPAHs, designed for lanthanide/actinide separation, was examined. The stability of the DPAHs, when contacted with varying nitric acid concentrations, was tested and monitored using 31P {1H} NMR. Changes in the functional groups of the DPAHs resulted in substantial increases in the stability. However, when placed in contact with 2 M HNO3 all the DPAHs eventually showed signs of degradation. The addition of a radical scavenger, hydrazine, inhibited the degradation of the DPAHs. In the presence of a small concentration of hydrazine, five of the DPAHs remained stable for over a month in direct contact with 2 M HNO3.

  11. Investigation of chemically-reacting supersonic internal flows. Progress report

    SciTech Connect

    Chitsomboon, T.; Tiwari, S.N.

    1985-09-01

    This report covers work done on the research project, Analysis and Computation of Internal Flow Field in a Scramjet Engine. The governing equations of two-dimensional chemically-reacting flows are presented together with the global two-step chemistry model. The finite-difference algorithm used is illustrated and the method of circumventing the stiffness is discussed. The computer program developed is used to solve two model problems of a premixed chemically-reacting flow. The results obtained are physically reasonable.

  12. Findings of the chlorofluorocarbon chemical substitutes international committee. Final report

    SciTech Connect

    Nelson, T.P.

    1988-04-01

    The report presents the findings of a select international committee of experts from industry and academia on the subject of chemical substitutes for fully halogenated chlorofluorocarbons (CFCs). The committee, over the course of two meetings, reviewed and discussed data and information on chemical alternatives for fully halogenated CFCs now in use. The committee acknowledged that, while there are many other possible chemical replacements, there is a dearth of information on these compounds with regard to property data, toxicity, and performance in end-use applications.

  13. NMR chemical shifts in amino acids: Effects of environments, electric field, and amine group rotation

    SciTech Connect

    Yoon, Young-Gui; Pfrommer, Bernd G.; Louie, Steven G.; Canning, Andrew

    2002-03-03

    The authors present calculations of NMR chemical shifts in crystalline phases of some representative amino acids such as glycine, alanine, and alanyl-alanine. To get an insight on how different environments affect the chemical shifts, they study the transition from the crystalline phase to completely isolated molecules of glycine. In the crystalline limit, the shifts are dominated by intermolecular hydrogen-bonds. In the molecular limit, however, dipole electric field effects dominate the behavior of the chemical shifts. They show that it is necessary to average the chemical shifts in glycine over geometries. Tensor components are analyzed to get the angle dependent proton chemical shifts, which is a more refined characterization method.

  14. Chemical doping of MoS2 multilayer by p-toluene sulfonic acid

    NASA Astrophysics Data System (ADS)

    Andleeb, Shaista; Singh, Arun Kumar; Eom, Jonghwa

    2015-06-01

    We report the tailoring of the electrical properties of mechanically exfoliated multilayer (ML) molybdenum disulfide (MoS2) by chemical doping. Electrical charge transport and Raman spectroscopy measurements revealed that the p-toluene sulfonic acid (PTSA) imposes n-doping in ML MoS2. The shift of threshold voltage for ML MoS2 transistor was analyzed as a function of reaction time. The threshold voltage shifted toward more negative gate voltages with increasing reaction time, which indicates an n-type doping effect. The shift of the Raman peak positions was also analyzed as a function of reaction time. PTSA treatment improved the field-effect mobility by a factor of ~4 without degrading the electrical characteristics of MoS2 devices.

  15. Malignant lymphoma and exposure to chemicals, especially organic solvents, chlorophenols and phenoxy acids: a case-control study.

    PubMed Central

    Hardell, L.; Eriksson, M.; Lenner, P.; Lundgren, E.

    1981-01-01

    A number of men with malignant lymphoma of the histiocytic type and previous exposure to phenoxy acids or chlorophenols were observed and reported in 1979. A matched case-control study has therefore been performed with cases of malignant lymphoma (Hodgkin's disease and non-Hodgkin lymphoma). This study included 169 cases and 338 controls. The results indicate that exposure to phenoxy acids, chlorophenols, and organic solvents may be a causative factor in malignant lymphoma. Combined exposure of these chemicals seemed to increase the risk. Exposure to various other agents was not obviously different in cases and in controls. PMID:7470379

  16. Acid-Base Chemistry According to Robert Boyle: Chemical Reactions in Words as well as Symbols

    ERIC Educational Resources Information Center

    Goodney, David E.

    2006-01-01

    Examples of acid-base reactions from Robert Boyle's "The Sceptical Chemist" are used to illustrate the rich information content of chemical equations. Boyle required lengthy passages of florid language to describe the same reaction that can be done quite simply with a chemical equation. Reading or hearing the words, however, enriches the student's…

  17. Chemical and biological nonproliferation program. FY99 annual report

    SciTech Connect

    2000-03-01

    This document is the first of what will become an annual report documenting the progress made by the Chemical and Biological Nonproliferation Program (CBNP). It is intended to be a summary of the program's activities that will be of interest to both policy and technical audiences. This report and the annual CBNP Summer Review Meeting are important vehicles for communication with the broader chemical and biological defense and nonproliferation communities. The Chemical and Biological Nonproliferation Program Strategic Plan is also available and provides additional detail on the program's context and goals. The body of the report consists of an overview of the program's philosophy, goals and recent progress in the major program areas. In addition, an appendix is provided with more detailed project summaries that will be of interest to the technical community.

  18. Green process for chemical functionalization of nanocellulose with carboxylic acids.

    PubMed

    Espino-Pérez, Etzael; Domenek, Sandra; Belgacem, Naceur; Sillard, Cécile; Bras, Julien

    2014-12-01

    An environmentally friendly and simple method, named SolReact, has been developed for a solvent-free esterification of cellulose nanocrystals (CNC) surface by using two nontoxic carboxylic acids (CA), phenylacetic acid and hydrocinnamic acid. In this process, the carboxylic acids do not only act as grafting agent, but also as solvent media above their melting point. Key is the in situ solvent exchange by water evaporation driving the esterification reaction without drying the CNC. Atomic force microscopy and X-ray diffraction analyses showed no significant change in the CNC dimensions and crystallinity index after this green process. The presence of the grafted carboxylic was characterized by analysis of the "bulk" CNC with elemental analysis, infrared spectroscopy, and (13)C NMR. The ability to tune the surface properties of grafted nanocrystals (CNC-g-CA) was evaluated by X-ray photoelectron spectroscopy analysis. The hydrophobicity behavior of the functionalized CNC was studied through the water contact-angle measurements and vapor adsorption. The functionalization of these bionanoparticles may offer applications in composite manufacturing, where these nanoparticles have limited dispersibility in hydrophobic polymer matrices and as nanoadsorbers due to the presence of phenolic groups attached on the surface. PMID:25353612

  19. Tanzawaic Acids, a Chemically Novel Set of Bacterial Conjugation Inhibitors

    PubMed Central

    Getino, María; Fernández-López, Raúl; Palencia-Gándara, Carolina; Campos-Gómez, Javier; Sánchez-López, Jose M.; Martínez, Marta; Fernández, Antonio; de la Cruz, Fernando

    2016-01-01

    Bacterial conjugation is the main mechanism for the dissemination of multiple antibiotic resistance in human pathogens. This dissemination could be controlled by molecules that interfere with the conjugation process. A search for conjugation inhibitors among a collection of 1,632 natural compounds, identified tanzawaic acids A and B as best hits. They specially inhibited IncW and IncFII conjugative systems, including plasmids mobilized by them. Plasmids belonging to IncFI, IncI, IncL/M, IncX and IncH incompatibility groups were targeted to a lesser extent, whereas IncN and IncP plasmids were unaffected. Tanzawaic acids showed reduced toxicity in bacterial, fungal or human cells, when compared to synthetic conjugation inhibitors, opening the possibility of their deployment in complex environments, including natural settings relevant for antibiotic resistance dissemination. PMID:26812051

  20. Microbial production of fatty acid-derived fuels and chemicals

    PubMed Central

    Lennen, Rebecca M; Pfleger, Brian F

    2013-01-01

    Fatty acid metabolism is an attractive route to produce liquid transportation fuels and commodity oleochemicals from renewable feedstocks. Recently, genes and enzymes, which comprise metabolic pathways for producing fatty acid-derived compounds (e.g. esters, alkanes, olefins, ketones, alcohols, polyesters) have been elucidated and used in engineered microbial hosts. The resulting strains often generate products at low percentages of maximum theoretical yields, leaving significant room for metabolic engineering. Economically viable processes will require strains to approach theoretical yields, particularly for replacement of petroleum-derived fuels. This review will describe recent progress toward this goal, highlighting the scientific discoveries of each pathway, ongoing biochemical studies to understand each enzyme, and metabolic engineering strategies that are being used to improve strain performance. PMID:23541503

  1. Glucosylation of aroma chemicals and hydroxy fatty acids.

    PubMed

    Huang, Fong-Chin; Hinkelmann, Jens; Schwab, Wilfried

    2015-12-20

    To explore the utility of glycosyltransferases as novel biocatalysts, we isolated the glycosyltransferase genes CaUGT2 and SbUGTA1 from Catharanthus roseus and Starmerella bombicola, respectively and heterologously expressed them in Escherichia coli. The purified recombinant proteins were assayed with a variety of small molecule substrates. Carvacrol and its phenol isomer thymol are efficiently glucosylated by CaUGT2. The Vmax/Km ratios show that CaUGT2 exhibits the highest specificity towards carvacrol, followed by thymol, geraniol, eugenol, vanillin, menthol, and tyrosol. In contrast, SbUGTA1 accepts ω-hydroxy fatty acids and 1-alkanols as substrates. The Vmax/Km ratios indicate that SbUGTA1 exhibits the highest specificity towards 16-hydroxy palmitic acid, followed by octanol, decanol, and hexadecanol. In biotransformation experiments 23, 88 and 99% of octanol, 16-hydroxy palmitic acid, and decanol, respectively is converted into the corresponding β-glucosides by E. coli cells expressing SbUGTA1 whereas those cells expressing CaUGT2 glucosylate 18, 61, 77 and 97% of applied eugenol, thymol, vanillin, and carvacrol, respectively. To optimize the biotransformation rate, the effects of the concentration of IPTG, glucose, and substrate on the production of glucosides were tested. Taken together, this procedure is a simple operation, environmentally friendly, and is useful for the preparation of glycosides as additives for food and cosmetics. PMID:26481830

  2. Acid-Base Chemistry of White Wine: Analytical Characterisation and Chemical Modelling

    PubMed Central

    Prenesti, Enrico; Berto, Silvia; Toso, Simona; Daniele, Pier Giuseppe

    2012-01-01

    A chemical model of the acid-base properties is optimized for each white wine under study, together with the calculation of their ionic strength, taking into account the contributions of all significant ionic species (strong electrolytes and weak one sensitive to the chemical equilibria). Coupling the HPLC-IEC and HPLC-RP methods, we are able to quantify up to 12 carboxylic acids, the most relevant substances responsible of the acid-base equilibria of wine. The analytical concentration of carboxylic acids and of other acid-base active substances was used as input, with the total acidity, for the chemical modelling step of the study based on the contemporary treatment of overlapped protonation equilibria. New protonation constants were refined (L-lactic and succinic acids) with respect to our previous investigation on red wines. Attention was paid for mixed solvent (ethanol-water mixture), ionic strength, and temperature to ensure a thermodynamic level to the study. Validation of the chemical model optimized is achieved by way of conductometric measurements and using a synthetic “wine” especially adapted for testing. PMID:22566762

  3. Phthalic acid chemical probes synthesized for protein-protein interaction analysis.

    PubMed

    Liang, Shih-Shin; Liao, Wei-Ting; Kuo, Chao-Jen; Chou, Chi-Hsien; Wu, Chin-Jen; Wang, Hui-Min

    2013-01-01

    Plasticizers are additives that are used to increase the flexibility of plastic during manufacturing. However, in injection molding processes, plasticizers cannot be generated with monomers because they can peel off from the plastics into the surrounding environment, water, or food, or become attached to skin. Among the various plasticizers that are used, 1,2-benzenedicarboxylic acid (phthalic acid) is a typical precursor to generate phthalates. In addition, phthalic acid is a metabolite of diethylhexyl phthalate (DEHP). According to Gene_Ontology gene/protein database, phthalates can cause genital diseases, cardiotoxicity, hepatotoxicity, nephrotoxicity, etc. In this study, a silanized linker (3-aminopropyl triethoxyslane, APTES) was deposited on silicon dioxides (SiO2) particles and phthalate chemical probes were manufactured from phthalic acid and APTES-SiO2. These probes could be used for detecting proteins that targeted phthalic acid and for protein-protein interactions. The phthalic acid chemical probes we produced were incubated with epithelioid cell lysates of normal rat kidney (NRK-52E cells) to detect the interactions between phthalic acid and NRK-52E extracted proteins. These chemical probes interacted with a number of chaperones such as protein disulfide-isomerase A6, heat shock proteins, and Serpin H1. Ingenuity Pathways Analysis (IPA) software showed that these chemical probes were a practical technique for protein-protein interaction analysis. PMID:23797655

  4. Using solid-phase microextraction to determine partition coefficients to humic acids and bioavailable concentrations of hydrophobic chemicals

    SciTech Connect

    Ramos, E.U.; Meijer, S.N.; Vaes, W.H.J.; Verhaar, H.J.M.; Hermens, J.L.M.

    1998-11-01

    In the current study, the suitability of negligible depletion solid-phase microextraction (nd-SPME) to determine free fractions of chemicals in aquatic environments was explored. The potential interferences of the dissolved matrix (i.e., humic acids) with the SPME measurements were tested. Results show that nd-SPME measures only the freely dissolved fraction and that the measurements are not disturbed by the humic acids. In addition, nd-SPME was used to determine partition coefficients between dissolved organic carbon and water for four hydrophobic chemicals. Obtained values are in excellent agreement with previously reported data. Finally, the bioaccumulation of hexachlorobenzene and PCB 77 to Daphnia magna was determined in the presence and absence of humic acids. The bioconcentration factors (BCF) were calculated based on total as well as on free concentration. Lower BCF values are obtained in the presence of humic acids using total concentrations, whereas equal BCFs are found using free concentrations measured with nd-SPME. Therefore, the authors can conclude that negligible depletion SPME is a good technique to determine bioavailable concentrations of hydrophobic chemicals in aquatic environments.

  5. Chemical evaluation of soil-solution in acid forest soils

    USGS Publications Warehouse

    Lawrence, G.B.; David, M.B.

    1996-01-01

    Soil-solution chemistry is commonly studied in forests through the use of soil lysimeters.This approach is impractical for regional survey studies, however, because lysimeter installation and operation is expensive and time consuming. To address these problems, a new technique was developed to compare soil-solution chemistry among red spruce stands in New York, Vermont, New Hampshire, Maine. Soil solutions were expelled by positive air pressure from soil that had been placed in a sealed cylinder. Before the air pressure was applied, a solution chemically similar to throughfall was added to the soil to bring it to approximate field capacity. After the solution sample was expelled, the soil was removed from the cylinder and chemically analyzed. The method was tested with homogenized Oa and Bs horizon soils collected from a red spruce stand in the Adirondack Mountains of New York, a red spruce stand in east-central Vermont, and a mixed hardwood stand in the Catskill Mountains of New York. Reproducibility, effects of varying the reaction time between adding throughfall and expelling soil solution (5-65 minutes) and effects of varying the chemical composition of added throughfall, were evaluated. In general, results showed that (i) the method was reproducible (coefficients of variation were generally < 15%), (ii) variations in the length of reaction-time did not affect expelled solution concentrations, and (iii) adding and expelling solution did not cause detectable changes in soil exchange chemistry. Concentrations of expelled solutions varied with the concentrations of added throughfall; the lower the CEC, the more sensitive expelled solution concentrations were to the chemical concentrations of added throughfall. Addition of a tracer (NaBr) showed that the expelled solution was a mixture of added solution and solution that preexisted in the soil. Comparisons of expelled solution concentrations with concentrations of soil solutions collected by zero-tension and

  6. Materials and Chemical Sciences Division annual report 1989

    SciTech Connect

    Not Available

    1990-07-01

    This report describes research conducted at Lawrence Berkeley Laboratories, programs are discussed in the following topics: materials sciences; chemical sciences; fossil energy; energy storage systems; health and environmental sciences; exploratory research and development funds; and work for others. A total of fifty eight programs are briefly presented. References, figures, and tables are included where appropriate with each program.

  7. The uronic acids assay: a method for the determination of chemical activity on biofilm EPS.

    PubMed

    Mojica, Kristina D A; Cooney, Michael J

    2010-01-01

    In this work, the uronic acids assay was evaluated for its potential to function as a bioassay to screen for antagonistic activity against the production of microbial biofilm exopolysaccharide (EPS). The assay was first applied to biofilms produced in the presence of two universal disinfectants (sodium hypochlorite and sodium dodecyl sulfate) known to inhibit microbial growth and biofilm formation. The performance of the assay was then characterized through statistical assessment of threshold concentrations for disinfection efficiency and consistency relative to values reported in the literature. The assay was then evaluated for its utility in screening for enzymatic or chemical inhibitors of biofilm formation (eg glycosidases, halogenated furanones, and semi-crude fractions extracted from minimally fouled marine plants) and its ability to distinguish between true anti-biofilm activity and simple disinfection. Activity was characterized as (i) no effect, (ii) a true positive effect (ie increased biofilm EPS), (iii) anti-bacterial activity (ie decreased biofilm EPS and analogous decrease in planktonic growth), and (iv) anti-biofilm EPS activity (ie decreased biofilm EPS, without analogous decrease in planktonic growth). Results demonstrate that the uronic acids assay can augment existing biofilm characterization methods by providing a quantitative measure of biofilm EPS. PMID:20087802

  8. Chemical modeling of acid-base properties of soluble biopolymers derived from municipal waste treatment materials.

    PubMed

    Tabasso, Silvia; Berto, Silvia; Rosato, Roberta; Marinos, Janeth Alicia Tafur; Ginepro, Marco; Zelano, Vincenzo; Daniele, Pier Giuseppe; Montoneri, Enzo

    2015-01-01

    This work reports a study of the proton-binding capacity of biopolymers obtained from different materials supplied by a municipal biowaste treatment plant located in Northern Italy. One material was the anaerobic fermentation digestate of the urban wastes organic humid fraction. The others were the compost of home and public gardening residues and the compost of the mix of the above residues, digestate and sewage sludge. These materials were hydrolyzed under alkaline conditions to yield the biopolymers by saponification. The biopolymers were characterized by 13C NMR spectroscopy, elemental analysis and potentiometric titration. The titration data were elaborated to attain chemical models for interpretation of the proton-binding capacity of the biopolymers obtaining the acidic sites concentrations and their protonation constants. The results obtained with the models and by NMR spectroscopy were elaborated together in order to better characterize the nature of the macromolecules. The chemical nature of the biopolymers was found dependent upon the nature of the sourcing materials. PMID:25658795

  9. Chemical Modeling of Acid-Base Properties of Soluble Biopolymers Derived from Municipal Waste Treatment Materials

    PubMed Central

    Tabasso, Silvia; Berto, Silvia; Rosato, Roberta; Tafur Marinos, Janeth Alicia; Ginepro, Marco; Zelano, Vincenzo; Daniele, Pier Giuseppe; Montoneri, Enzo

    2015-01-01

    This work reports a study of the proton-binding capacity of biopolymers obtained from different materials supplied by a municipal biowaste treatment plant located in Northern Italy. One material was the anaerobic fermentation digestate of the urban wastes organic humid fraction. The others were the compost of home and public gardening residues and the compost of the mix of the above residues, digestate and sewage sludge. These materials were hydrolyzed under alkaline conditions to yield the biopolymers by saponification. The biopolymers were characterized by 13C NMR spectroscopy, elemental analysis and potentiometric titration. The titration data were elaborated to attain chemical models for interpretation of the proton-binding capacity of the biopolymers obtaining the acidic sites concentrations and their protonation constants. The results obtained with the models and by NMR spectroscopy were elaborated together in order to better characterize the nature of the macromolecules. The chemical nature of the biopolymers was found dependent upon the nature of the sourcing materials. PMID:25658795

  10. Selective Chemical Conversion of Sugars in Aqueous Solutions without Alkali to Lactic Acid Over a Zn-Sn-Beta Lewis Acid-Base Catalyst

    NASA Astrophysics Data System (ADS)

    Dong, Wenjie; Shen, Zheng; Peng, Boyu; Gu, Minyan; Zhou, Xuefei; Xiang, Bo; Zhang, Yalei

    2016-05-01

    Lactic acid is an important platform molecule in the synthesis of a wide range of chemicals. However, in aqueous solutions without alkali, its efficient preparation via the direct catalysis of sugars is hindered by a side dehydration reaction to 5-hydroxymethylfurfural due to Brønsted acid, which originates from organic acids. Herein, we report that a previously unappreciated combination of common two metal mixed catalyst (Zn-Sn-Beta) prepared via solid-state ion exchange synergistically promoted this reaction. In water without a base, a conversion exceeding 99% for sucrose with a lactic acid yield of 54% was achieved within 2 hours at 190 °C under ambient air pressure. Studies of the acid and base properties of the Zn-Sn-Beta zeolite suggest that the introduction of Zn into the Sn-Beta zeolite sequentially enhanced both the Lewis acid and base sites, and the base sites inhibited a series of side reactions related to fructose dehydration to 5-hydroxymethylfurfural and its subsequent decomposition.

  11. Selective Chemical Conversion of Sugars in Aqueous Solutions without Alkali to Lactic Acid Over a Zn-Sn-Beta Lewis Acid-Base Catalyst.

    PubMed

    Dong, Wenjie; Shen, Zheng; Peng, Boyu; Gu, Minyan; Zhou, Xuefei; Xiang, Bo; Zhang, Yalei

    2016-01-01

    Lactic acid is an important platform molecule in the synthesis of a wide range of chemicals. However, in aqueous solutions without alkali, its efficient preparation via the direct catalysis of sugars is hindered by a side dehydration reaction to 5-hydroxymethylfurfural due to Brønsted acid, which originates from organic acids. Herein, we report that a previously unappreciated combination of common two metal mixed catalyst (Zn-Sn-Beta) prepared via solid-state ion exchange synergistically promoted this reaction. In water without a base, a conversion exceeding 99% for sucrose with a lactic acid yield of 54% was achieved within 2 hours at 190 °C under ambient air pressure. Studies of the acid and base properties of the Zn-Sn-Beta zeolite suggest that the introduction of Zn into the Sn-Beta zeolite sequentially enhanced both the Lewis acid and base sites, and the base sites inhibited a series of side reactions related to fructose dehydration to 5-hydroxymethylfurfural and its subsequent decomposition. PMID:27222322

  12. Selective Chemical Conversion of Sugars in Aqueous Solutions without Alkali to Lactic Acid Over a Zn-Sn-Beta Lewis Acid-Base Catalyst

    PubMed Central

    Dong, Wenjie; Shen, Zheng; Peng, Boyu; Gu, Minyan; Zhou, Xuefei; Xiang, Bo; Zhang, Yalei

    2016-01-01

    Lactic acid is an important platform molecule in the synthesis of a wide range of chemicals. However, in aqueous solutions without alkali, its efficient preparation via the direct catalysis of sugars is hindered by a side dehydration reaction to 5-hydroxymethylfurfural due to Brønsted acid, which originates from organic acids. Herein, we report that a previously unappreciated combination of common two metal mixed catalyst (Zn-Sn-Beta) prepared via solid-state ion exchange synergistically promoted this reaction. In water without a base, a conversion exceeding 99% for sucrose with a lactic acid yield of 54% was achieved within 2 hours at 190 °C under ambient air pressure. Studies of the acid and base properties of the Zn-Sn-Beta zeolite suggest that the introduction of Zn into the Sn-Beta zeolite sequentially enhanced both the Lewis acid and base sites, and the base sites inhibited a series of side reactions related to fructose dehydration to 5-hydroxymethylfurfural and its subsequent decomposition. PMID:27222322

  13. Quantitative Survey and Structural Classification of Fracking Chemicals Reported in Unconventional Gas Exploitation

    NASA Astrophysics Data System (ADS)

    Elsner, Martin; Schreglmann, Kathrin

    2015-04-01

    Few technologies are being discussed in such controversial terms as hydraulic fracturing ("fracking") in the recovery of unconventional gas. Particular concern regards the chemicals that may return to the surface as a result of hydraulic fracturing. These are either "fracking chemicals" - chemicals that are injected together with the fracking fluid to optimize the fracturing performance or geogenic substances which may turn up during gas production, in the so-called produced water originating from the target formation. Knowledge about them is warranted for several reasons. (1) Monitoring. Air emissions are reported to arise from well drilling, the gas itself or condensate tanks. In addition, potential spills and accidents bear the danger of surface and shallow groundwater contaminations. Monitoring strategies are therefore warranted to screen for "indicator" substances of potential impacts. (2) Chemical Analysis. To meet these analytical demands, target substances must be defined so that adequate sampling approaches and analytical methods can be developed. (3) Transformation in the Subsurface. Identification and classification of fracking chemicals (aromatics vs. alcohols vs. acids, esters, etc.) is further important to assess the possibility of subsurface reactions which may potentially generate new, as yet unidentified transformation products. (4) Wastewater Treatment. For the same reason chemical knowledge is important for optimized wastewater treatment strategies. (5) Human and Ecosystem Health. Knowledge of the most frequent fracking chemicals is further essential for risk assessment (environmental behavior, toxicity) (6) Public Discussions. Finally, an overview of reported fracking chemicals can provide unbiased scientific into current public debates and enable critical reviews of Green Chemistry approaches. Presently, however, such information is not readily available. We aim to close this knowledge gap by providing a quantitative overview of chemical

  14. Influence of Aerosol Acidity on the Chemical Composition of Secondary Organic Aerosol from β-caryophyllene

    NASA Astrophysics Data System (ADS)

    Chan, M.; Surratt, J. D.; Chan, A. W.; Schlling, K.; Offenberg, J. H.; Lewandowski, M.; Edney, E.; Kleindienst, T. E.; Jaoui, M.; Edgerton, E. S.; Tanner, R. L.; Shaw, S. L.; Zheng, M.; Knipping, E. M.; Seinfeld, J.

    2011-12-01

    The secondary organic aerosol (SOA) yield of β-caryophyllene photooxidation is enhanced by aerosol acidity. In the present study, the influence of aerosol acidity on the chemical composition of β-caryophyllene SOA is investigated using ultra performance liquid chromatography/electrospray ionization-time-of-flight mass spectrometry (UPLC/ESI- TOFMS). A number of first- , second- and higher-generation gas-phase products having carbonyl and carboxylic acid functional groups are detected in the particle phase. Particle-phase reaction products formed via hydration and organosulfate formation processes are also detected. Increased acidity leads to different effects on the abundance of individual products; significantly, abundances of organosulfates are correlated with aerosol acidity. The increase of certain particle-phase reaction products with increased acidity provides chemical evidence to support the acid-enhanced SOA yields. Based on the agreement between the chromatographic retention times and accurate mass measurements of chamber and field samples, three β-caryophyllene products (i.e., β-nocaryophyllon aldehyde, β-hydroxynocaryophyllon aldehyde, and β-dihydroxynocaryophyllon aldehyde) are suggested as chemical tracers for β-caryophyllene SOA. These compounds are detected in both day and night ambient samples collected in downtown Atlanta, GA and rural Yorkville, GA during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS).

  15. Influence of aerosol acidity on the chemical composition of secondary organic aerosol from β-caryophyllene

    NASA Astrophysics Data System (ADS)

    Chan, M. N.; Surratt, J. D.; Chan, A. W. H.; Schilling, K.; Offenberg, J. H.; Lewandowski, M.; Edney, E. O.; Kleindienst, T. E.; Jaoui, M.; Edgerton, E. S.; Tanner, R. L.; Shaw, S. L.; Zheng, M.; Knipping, E. M.; Seinfeld, J. H.

    2011-02-01

    The secondary organic aerosol (SOA) yield of β-caryophyllene photooxidation is enhanced by aerosol acidity. In the present study, the influence of aerosol acidity on the chemical composition of β-caryophyllene SOA is investigated using ultra performance liquid chromatography/electrospray ionization-time-of-flight mass spectrometry (UPLC/ESI-TOFMS). A number of first-, second- and higher-generation gas-phase products having carbonyl and carboxylic acid functional groups are detected in the particle phase. Particle-phase reaction products formed via hydration and organosulfate formation processes are also detected. Increased acidity leads to different effects on the abundance of individual products; significantly, abundances of organosulfates are correlated with aerosol acidity. To our knowledge, this is the first detection of organosulfates and nitrated organosulfates derived from a sesquiterpene. The increase of certain particle-phase reaction products with increased acidity provides chemical evidence to support the acid-enhanced SOA yields. Based on the agreement between the chromatographic retention times and accurate mass measurements of chamber and field samples, three β-caryophyllene products (i.e., β-nocaryophyllon aldehyde, β-hydroxynocaryophyllon aldehyde, and β-dihydroxynocaryophyllon aldehyde) are suggested as chemical tracers for β-caryophyllene SOA. These compounds are detected in both day and night ambient samples collected in downtown Atlanta, GA and rural Yorkville, GA during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS).

  16. Influence of aerosol acidity on the chemical composition of Secondary Organic Aerosol from β-caryophyllene

    NASA Astrophysics Data System (ADS)

    Chan, M. N.; Surratt, J. D.; Chan, A. W. H.; Schilling, K.; Offenberg, J. H.; Lewandowski, M.; Edney, E. O.; Kleindienst, T. E.; Jaoui, M.; Edgerton, E. S.; Tanner, R. L.; Shaw, S. L.; Zheng, M.; Knipping, E. M.; Seinfeld, J. H.

    2010-11-01

    The secondary organic aerosol (SOA) yield of β-caryophyllene photooxidation is enhanced by aerosol acidity. In the present study, the influence of aerosol acidity on the chemical composition of β-caryophyllene SOA is investigated using ultra performance liquid chromatography/electrospray ionization-time-of-flight mass spectrometry (UPLC/ESI-TOFMS). A number of first-, second- and higher-generation gas-phase products having carbonyl and carboxylic acid functional groups are detected in the particle phase. Particle-phase reaction products formed via hydration and organosulfate formation processes are also detected. Increase of acidity leads to different effects on the abundance of individual products; significantly, abundances of organosulfates are correlated with aerosol acidity. To our knowledge, this is the first detection of organosulfates and nitrated organosulfates derived from a sesquiterpene. The increase of certain particle-phase reaction products with increased acidity provides chemical evidence to support the acid-enhanced SOA yields. Based on the agreement between the chromatographic retention times and accurate mass measurements of chamber and field samples, three β-caryophyllene products (i.e., β-nocaryophyllon aldehyde, β-hydroxynocaryophyllon aldehyde, and β-dihydroxynocaryophyllon aldehyde) are identified as chemical tracers for β-caryophyllene SOA. These compounds are detected in both day and night ambient samples collected in downtown Atlanta, GA and rural Yorkville, GA during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS).

  17. Determination of organic acids in ground water by liquid chromatography/atmospheric pressure chemical ionization/mass spectrometry

    SciTech Connect

    Fang, J.; Barcelona, M.J.

    1999-05-01

    Current methods of determining organic acids in ground water are labor-intensive, time-consuming and require a large volume of sample (100 milliliter to 1.0 liter). This paper reports a new method developed to determine aliphatic, alicyclic, and aromatic acids in ground water using liquid chromatography/atmospheric pressure chemical ionization/mass spectrometry (LC/APCI/MS). This method was shown to be fast (less than 1 hour), effective, and reproducible, requiring only 1.0 mL of ground-water sample. Ground water was pH-adjusted, filtered through 0.45 {micro}m filters and directly injected into the LC. A binary solvent system consisting of 40 mM of aqueous ammonium acetate and methanol and a C18 column were used for chromatographical separation. The APCI was operated under negative ionization mode. Selected ion monitoring (SIM) was used for detection and quantitation of the analytes. This method was applied to the analysis of organic acids in ground-water samples collected from an aquifer contaminated with JP-4 fuel hydrocarbons at Wurtsmith Air Force Base in Oscoda, Michigan. Aromatic acids identified in the contaminated ground water include o-, m-toluic acids (2- and 3-methylbenzoic acids), 2,6-dimethylbenzoic acid, 2,3,5-and 2,4,6-trimethylbenzoic acids and two additional trimethylbenzoic acids with unknown location of methylation. The detection of aromatic acids in groundwater from the KC-135 site provided evidence for in situ microbial degradation of hydrocarbons occurring in the aquifer.

  18. Synthesis of a Sulfonated Two-Dimensional Covalent Organic Framework as an Efficient Solid Acid Catalyst for Biobased Chemical Conversion.

    PubMed

    Peng, Yongwu; Hu, Zhigang; Gao, Yongjun; Yuan, Daqiang; Kang, Zixi; Qian, Yuhong; Yan, Ning; Zhao, Dan

    2015-10-12

    Because of limited framework stability tolerance, de novo synthesis of sulfonated covalent organic frameworks (COFs) remains challenging and unexplored. Herein, a sulfonated two-dimensional crystalline COF, termed TFP-DABA, was synthesized directly from 1,3,5-triformylphloroglucinol and 2,5-diaminobenzenesulfonic acid through a previously reported Schiff base condensation reaction, followed by irreversible enol-to-keto tautomerization, which strengthened its structural stability. TFP-DABA is a highly efficient solid acid catalyst for fructose conversion with remarkable yields (97 % for 5-hydroxymethylfurfural and 65 % for 2,5-diformylfuran), good chemoselectivity, and good recyclability. The present study sheds light on the de novo synthesis of sulfonated COFs as novel solid acid catalysts for biobased chemical conversion. PMID:26448524

  19. Insights on FXR selective modulation. Speculation on bile acid chemical space in the discovery of potent and selective agonists

    PubMed Central

    Sepe, Valentina; Festa, Carmen; Renga, Barbara; Carino, Adriana; Cipriani, Sabrina; Finamore, Claudia; Masullo, Dario; del Gaudio, Federica; Monti, Maria Chiara; Fiorucci, Stefano; Zampella, Angela

    2016-01-01

    Bile acids are the endogenous modulators of the nuclear receptor FXR and the membrane receptor GPBAR1. FXR represents a promising pharmacological target for the treatment of cholestatic liver disorders. Currently available semisynthetic bile acid derivatives cover the same chemical space of bile acids and therefore they are poorly selective toward BA receptors, increasing patient risk for adverse side effects. In this report, we have investigated around the structure of CDCA describing the synthesis and the in vitro and in vivo pharmacological characterization of a novel family of compounds modified on the steroidal tetracyclic core and on the side chain. Pharmacological characterization resulted in the identification of several potent and selective FXR agonists. These novel agents might add utility in the treatment of cholestatic disorders by potentially mitigating side effects linked to unwanted activation of GPBAR1. PMID:26740187

  20. Insights on FXR selective modulation. Speculation on bile acid chemical space in the discovery of potent and selective agonists.

    PubMed

    Sepe, Valentina; Festa, Carmen; Renga, Barbara; Carino, Adriana; Cipriani, Sabrina; Finamore, Claudia; Masullo, Dario; Del Gaudio, Federica; Monti, Maria Chiara; Fiorucci, Stefano; Zampella, Angela

    2016-01-01

    Bile acids are the endogenous modulators of the nuclear receptor FXR and the membrane receptor GPBAR1. FXR represents a promising pharmacological target for the treatment of cholestatic liver disorders. Currently available semisynthetic bile acid derivatives cover the same chemical space of bile acids and therefore they are poorly selective toward BA receptors, increasing patient risk for adverse side effects. In this report, we have investigated around the structure of CDCA describing the synthesis and the in vitro and in vivo pharmacological characterization of a novel family of compounds modified on the steroidal tetracyclic core and on the side chain. Pharmacological characterization resulted in the identification of several potent and selective FXR agonists. These novel agents might add utility in the treatment of cholestatic disorders by potentially mitigating side effects linked to unwanted activation of GPBAR1. PMID:26740187

  1. Antioxidant Activity of Caffeic Acid against Iron-Induced Free Radical Generation--A Chemical Approach.

    PubMed

    Genaro-Mattos, Thiago C; Maurício, Ângelo Q; Rettori, Daniel; Alonso, Antonio; Hermes-Lima, Marcelo

    2015-01-01

    Caffeic acid (CA) is a phenolic compound widely found in coffee beans with known beneficial effects in vivo. Many studies showed that CA has anti-inflammatory, anti-mutagenic, antibacterial and anti-carcinogenic properties, which could be linked to its antioxidant activity. Taking in consideration the reported in vitro antioxidant mechanism of other polyphenols, our working hypothesis was that the CA antioxidant activity could be related to its metal-chelating property. With that in mind, we sought to investigate the chemical antioxidant mechanism of CA against in vitro iron-induced oxidative damage under different assay conditions. CA was able to prevent hydroxyl radical formation promoted by the classical Fenton reaction, as determined by 2-deoxyribose (2-DR) oxidative degradation and DMPO hydroxylation. In addition to its ability to prevent hydroxyl radical formation, CA had a great inhibition of membrane lipid peroxidation. In the lipid peroxidation assays CA acted as both metal-chelator and as hydrogen donor, preventing the deleterious action promoted by lipid-derived peroxyl and alkoxyl radicals. Our results indicate that the observed antioxidant effects were mostly due to the formation of iron-CA complexes, which are able to prevent 2-DR oxidation and DMPO hydroxylation. Noteworthy, the formation of iron-CA complexes and prevention of oxidative damage was directly related to the pH of the medium, showing better antioxidant activity at higher pH values. Moreover, in the presence of lipid membranes the antioxidant potency of CA was much higher, indicating its enhanced effectiveness in a hydrophobic environment. Overall, our results show that CA acts as an antioxidant through an iron chelating mechanism, preventing the formation of free hydroxyl radicals and, therefore, inhibiting Fenton-induced oxidative damage. The chemical properties of CA described here--in association with its reported signaling effects--could be an explanation to its beneficial effects

  2. Antioxidant Activity of Caffeic Acid against Iron-Induced Free Radical Generation—A Chemical Approach

    PubMed Central

    Genaro-Mattos, Thiago C.; Maurício, Ângelo Q.; Rettori, Daniel; Alonso, Antonio; Hermes-Lima, Marcelo

    2015-01-01

    Caffeic acid (CA) is a phenolic compound widely found in coffee beans with known beneficial effects in vivo. Many studies showed that CA has anti-inflammatory, anti-mutagenic, antibacterial and anti-carcinogenic properties, which could be linked to its antioxidant activity. Taking in consideration the reported in vitro antioxidant mechanism of other polyphenols, our working hypothesis was that the CA antioxidant activity could be related to its metal-chelating property. With that in mind, we sought to investigate the chemical antioxidant mechanism of CA against in vitro iron-induced oxidative damage under different assay conditions. CA was able to prevent hydroxyl radical formation promoted by the classical Fenton reaction, as determined by 2-deoxyribose (2-DR) oxidative degradation and DMPO hydroxylation. In addition to its ability to prevent hydroxyl radical formation, CA had a great inhibition of membrane lipid peroxidation. In the lipid peroxidation assays CA acted as both metal-chelator and as hydrogen donor, preventing the deleterious action promoted by lipid-derived peroxyl and alkoxyl radicals. Our results indicate that the observed antioxidant effects were mostly due to the formation of iron-CA complexes, which are able to prevent 2-DR oxidation and DMPO hydroxylation. Noteworthy, the formation of iron-CA complexes and prevention of oxidative damage was directly related to the pH of the medium, showing better antioxidant activity at higher pH values. Moreover, in the presence of lipid membranes the antioxidant potency of CA was much higher, indicating its enhanced effectiveness in a hydrophobic environment. Overall, our results show that CA acts as an antioxidant through an iron chelating mechanism, preventing the formation of free hydroxyl radicals and, therefore, inhibiting Fenton-induced oxidative damage. The chemical properties of CA described here—in association with its reported signaling effects—could be an explanation to its beneficial effects

  3. 76 FR 54932 - TSCA Inventory Update Reporting Modifications; Chemical Data Reporting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-06

    ...; Chemical Data Reporting Correction In rule document 2011-19922, appearing on pages 50816-50879 in the issue...)(ii) of the definition importer. ] PART 710--COMPILATION OF THE TSCA CHEMICAL SUBSTANCE INVENTORY 0 3.... * * * * * (b) This part applies to the activities associated with the compilation of the TSCA...

  4. Production of Fatty Acid-Derived Valuable Chemicals in Synthetic Microbes

    PubMed Central

    Yu, Ai-Qun; Pratomo Juwono, Nina Kurniasih; Leong, Susanna Su Jan; Chang, Matthew Wook

    2014-01-01

    Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fatty acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes. PMID:25566540

  5. The effect of lactic acid bacterial starter culture and chemical additives on wilted rice straw silage.

    PubMed

    Wang, Yan-Su; Shi, Wei; Huang, Lin-Ting; Ding, Cheng-Long; Dai, Chuan-Chao

    2016-04-01

    Lactic acid bacteria (LAB) are suitable for rice straw silage fermentation, but have been studied rarely, and rice straw as raw material for ensiling is difficult because of its disadvantages, such as low nutrition for microbial activities and low abundances of natural populations of LAB. So we investigated the effect of application of LAB and chemical additives on the fermentation quality and microbial community of wilted rice straw silage. Treatment with chemical additives increased the concentrations of crude protein (CP), water soluble carbohydrate (WSC), acetic acid and lactic acid, reduced the concentrations of acid detergent fiber (ADF) and neutral detergent fiber (NDF), but did not effectively inhibit the growth of spoilage organisms. Inoculation with LABs did not improve the nutritional value of the silage because of poor growth of LABs in wilted rice straw. Inoculation with LAB and addition of chemical materials improved the quality of silage similar to the effects of addition of chemical materials alone. Growth of aerobic and facultatively anaerobic bacteria was inhibited by this mixed treatment and the LAB gradually dominated the microbial community. In summary, the fermentation quality of wilted rice straw silage had improved by addition of LAB and chemical materials. PMID:26429595

  6. Low molecular weight chemicals, hypersensitivity, and direct toxicity: the acid anhydrides.

    PubMed Central

    Venables, K M

    1989-01-01

    The acid anhydrides are a group of reactive chemicals used widely in alkyd and epoxy resins. The major hazards to health are mucosal and skin irritation and sensitisation of the respiratory tract. Most occupational asthma caused by acid anhydrides appears to be immunologically mediated. Immunological mechanisms have been proposed to explain an influenza-like syndrome and pulmonary haemorrhage, but direct toxicity may also be important in the aetiology of these conditions. PMID:2653411

  7. Elucidating the interaction of H2O2 with polar amino acids - Quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Karmakar, Tarak; Balasubramanian, Sundaram

    2014-10-01

    Quantum chemical calculations have been carried out to investigate the interaction motifs of H2O2 with polar amino acid residues. Binding energies obtained from gas phase and continuum solvent phase calculations range between 2 and 30 kcal/mol. H2O2 interacts with the side chain of polar amino acids chiefly through the formation of hydrogen bonds. The sbnd CH group in side chains of a few residues provides additional stabilization to H2O2.

  8. Chemometrics review for chemical sensor development, task 7 report

    SciTech Connect

    1994-05-01

    This report, the seventh in a series on the evaluation of several chemical sensors for use in the U.S. Department of Energy`s (DOE`s) site characterization and monitoring programs, concentrates on the potential use of chemometrics techniques in analysis of sensor data. Chemometrics is the chemical discipline that uses mathematical, statistical, and other methods that employ formal logic to: design or select optimal measurement procedures and experiments and provide maximum relevant chemical information by analyzing chemical data. The report emphasizes the latter aspect. In a formal sense, two distinct phases are in chemometrics applications to analytical chemistry problems: (1) the exploratory data analysis phase and (2) the calibration and prediction phase. For use in real-world problems, it is wise to add a third aspect - the independent validation and verification phase. In practical applications, such as the ERWM work, and in order of decreasing difficulties, the most difficult tasks in chemometrics are: establishing the necessary infrastructure (to manage sampling records, data handling, and data storage and related aspects), exploring data analysis, and solving calibration problems, especially for nonlinear models. Chemometrics techniques are different for what are called zeroth-, first-, and second-order systems, and the details depend on the form of the assumed functional relationship between the measured response and the concentrations of components in mixtures. In general, linear relationships can be handled relatively easily, but nonlinear relationships can be difficult.

  9. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals.

    PubMed

    Runguphan, Weerawat; Keasling, Jay D

    2014-01-01

    As the serious effects of global climate change become apparent and access to fossil fuels becomes more limited, metabolic engineers and synthetic biologists are looking towards greener sources for transportation fuels. In recent years, microbial production of high-energy fuels by economically efficient bioprocesses has emerged as an attractive alternative to the traditional production of transportation fuels. Here, we engineered the budding yeast Saccharomyces cerevisiae to produce fatty acid-derived biofuels and chemicals from simple sugars. Specifically, we overexpressed all three fatty acid biosynthesis genes, namely acetyl-CoA carboxylase (ACC1), fatty acid synthase 1 (FAS1) and fatty acid synthase 2 (FAS2), in S. cerevisiae. When coupled to triacylglycerol (TAG) production, the engineered strain accumulated lipid to more than 17% of its dry cell weight, a four-fold improvement over the control strain. Understanding that TAG cannot be used directly as fuels, we also engineered S. cerevisiae to produce drop-in fuels and chemicals. Altering the terminal "converting enzyme" in the engineered strain led to the production of free fatty acids at a titer of approximately 400 mg/L, fatty alcohols at approximately 100mg/L and fatty acid ethyl esters (biodiesel) at approximately 5 mg/L directly from simple sugars. We envision that our approach will provide a scalable, controllable and economic route to this important class of chemicals. PMID:23899824

  10. Treatment of olive mill wastewater by chemical processes: effect of acid cracking pretreatment.

    PubMed

    Hande Gursoy-Haksevenler, B; Arslan-Alaton, Idil

    2014-01-01

    The effect of acid cracking (pH 2.0; T 70 °C) and filtration as a pretreatment step on the chemical treatability of olive mill wastewater (chemical oxygen demand (COD) 150,000 m/L; total organic carbon (TOC) 36,000 mg/L; oil-grease 8,200 mg/L; total phenols 3,800 mg/L) was investigated. FeCl3 coagulation, Ca(OH)2 precipitation, electrocoagulation using stainless steel electrodes and the Fenton's reagent were applied as chemical treatment methods. Removal performances were examined in terms of COD, TOC, oil-grease, total phenols, colour, suspended solids and acute toxicity with the photobacterium Vibrio fischeri. Significant oil-grease (95%) and suspended solids (96%) accompanied with 58% COD, 43% TOC, 39% total phenols and 80% colour removals were obtained by acid cracking-filtration pretreatment. Among the investigated chemical treatment processes, electrocoagulation and the Fenton's reagent were found more effective after pretreatment, especially in terms of total phenols removal. Total phenols removal increased from 39 to 72% when pretreatment was applied, while no significant additional (≈10-15%) COD and TOC removals were obtained when acid cracking was coupled with chemical treatment. The acute toxicity of the original olive mill wastewater sample increased considerably after pretreatment from 75 to 89% (measured for the 10-fold diluted wastewater sample). An operating cost analysis was also performed for the selected chemical treatment processes. PMID:24718336

  11. Biological and chemical technologies research. FY 1995 annual summary report

    SciTech Connect

    1996-03-01

    The annual summary report presents the fiscal year (FY) 1995 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program. This BCTR program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1995 (ASR 95) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization, selected technical and programmatic highlights for 1995; detailed descriptions of individual projects; a listing of program output, including a bibliography of published work; patents; and awards arising from work supported by the BCTR.

  12. Nine-size system for chemical defense gloves. Technical report

    SciTech Connect

    Robinette, K.M.; Annis, J.F.

    1986-07-01

    The purpose of this effort was to meet the need for improved sizing of chemical defense gloves for Air Force men and women. A nine-size system was developed from available hand data. The development process and size values are presented in this report. Some summary statistics and regression equations are provided to aid investigators who may wish to make modifications. Although the anthropometric sizing system outlined in this report is statistically sound, it is experimental. The authors recommend that anthropometric fit-testing be conducted prior to full-scale glove production.

  13. GLYCOLIC-NITRIC ACID FLOWSHEET DEMONSTRATION OF THE DWPF CHEMICAL PROCESS CELL WITH SLUDGE AND SUPERNATE SIMULANTS

    SciTech Connect

    Lambert, D.; Stone, M.; Newell, J.; Best, D.; Zamecnik, J.

    2012-08-28

    Savannah River Remediation (SRR) is evaluating changes to its current Defense Waste Processing Facility (DWPF) flowsheet to improve processing cycle times. This will enable the facility to support higher canister production while maximizing waste loading. Higher throughput is needed in the Chemical Process Cell (CPC) since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the DWPF gas chromatographs (GC) and the potential for production of flammable quantities of hydrogen, reducing or eliminating the amount of formic acid used in the CPC is being developed. Earlier work at Savannah River National Laboratory has shown that replacing formic acid with an 80:20 molar blend of glycolic and formic acids has the potential to remove mercury in the SRAT without any significant catalytic hydrogen generation. This report summarizes the research completed to determine the feasibility of processing without formic acid. In earlier development of the glycolic-formic acid flowsheet, one run (GF8) was completed without formic acid. It is of particular interest that mercury was successfully removed in GF8, no formic acid at 125% stoichiometry. Glycolic acid did not show the ability to reduce mercury to elemental mercury in initial screening studies, which is why previous testing focused on using the formic/glycolic blend. The objective of the testing detailed in this document is to determine the viability of the nitric-glycolic acid flowsheet in processing sludge over a wide compositional range as requested by DWPF. This work was performed under the guidance of Task Technical and Quality Assurance Plan (TT&QAP). The details regarding the simulant preparation and analysis have been documented previously.

  14. Modeling aqueous ozone/UV process using oxalic acid as probe chemical.

    PubMed

    Garoma, Temesgen; Gurol, Mirat D

    2005-10-15

    A kinetic model that describes the removal of organic pollutants by an ozone/UV process is described. Oxalic acid, which reacts with a very low rate constant with ozone and relatively high rate constant with hydroxyl radical (OH*), was used as the probe chemical to model the process. The model was verified by experimental data on concentrations of oxalic acid and hydrogen peroxide (H202) under various experimental conditions, i.e., ozone gas dosage, UV light intensity, and varying oxalic acid concentrations. PMID:16295862

  15. Top value platform chemicals: bio-based production of organic acids.

    PubMed

    Becker, Judith; Lange, Anna; Fabarius, Jonathan; Wittmann, Christoph

    2015-12-01

    Driven by the quest for sustainability, recent years have seen a tremendous progress in bio-based production routes from renewable raw materials to commercial goods. Particularly, the production of organic acids has crystallized as a competitive and fast-evolving field, related to the broad applicability of organic acids for direct use, as polymer building blocks, and as commodity chemicals. Here, we review recent advances in metabolic engineering and industrial market scenarios with focus on organic acids as top value products from biomass, accessible through fermentation and biotransformation. PMID:26360870

  16. Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities.

    PubMed

    Akhtar, M Kalim; Turner, Nicholas J; Jones, Patrik R

    2013-01-01

    Aliphatic hydrocarbons such as fatty alcohols and petroleum-derived alkanes have numerous applications in the chemical industry. In recent years, the renewable synthesis of aliphatic hydrocarbons has been made possible by engineering microbes to overaccumulate fatty acids. However, to generate end products with the desired physicochemical properties (e.g., fatty aldehydes, alkanes, and alcohols), further conversion of the fatty acid is necessary. A carboxylic acid reductase (CAR) from Mycobacterium marinum was found to convert a wide range of aliphatic fatty acids (C(6)-C(18)) into corresponding aldehydes. Together with the broad-substrate specificity of an aldehyde reductase or an aldehyde decarbonylase, the catalytic conversion of fatty acids to fatty alcohols (C(8)-C(16)) or fatty alkanes (C(7)-C(15)) was reconstituted in vitro. This concept was applied in vivo, in combination with a chain-length-specific thioesterase, to engineer Escherichia coli BL21(DE3) strains that were capable of synthesizing fatty alcohols and alkanes. A fatty alcohol titer exceeding 350 mg·L(-1) was obtained in minimal media supplemented with glucose. Moreover, by combining the CAR-dependent pathway with an exogenous fatty acid-generating lipase, natural oils (coconut oil, palm oil, and algal oil bodies) were enzymatically converted into fatty alcohols across a broad chain-length range (C(8)-C(18)). Together with complementing enzymes, the broad substrate specificity and kinetic characteristics of CAR opens the road for direct and tailored enzyme-catalyzed conversion of lipids into user-ready chemical commodities. PMID:23248280

  17. Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities

    PubMed Central

    Akhtar, M. Kalim; Turner, Nicholas J.; Jones, Patrik R.

    2013-01-01

    Aliphatic hydrocarbons such as fatty alcohols and petroleum-derived alkanes have numerous applications in the chemical industry. In recent years, the renewable synthesis of aliphatic hydrocarbons has been made possible by engineering microbes to overaccumulate fatty acids. However, to generate end products with the desired physicochemical properties (e.g., fatty aldehydes, alkanes, and alcohols), further conversion of the fatty acid is necessary. A carboxylic acid reductase (CAR) from Mycobacterium marinum was found to convert a wide range of aliphatic fatty acids (C6–C18) into corresponding aldehydes. Together with the broad-substrate specificity of an aldehyde reductase or an aldehyde decarbonylase, the catalytic conversion of fatty acids to fatty alcohols (C8–C16) or fatty alkanes (C7–C15) was reconstituted in vitro. This concept was applied in vivo, in combination with a chain-length-specific thioesterase, to engineer Escherichia coli BL21(DE3) strains that were capable of synthesizing fatty alcohols and alkanes. A fatty alcohol titer exceeding 350 mg·L−1 was obtained in minimal media supplemented with glucose. Moreover, by combining the CAR-dependent pathway with an exogenous fatty acid-generating lipase, natural oils (coconut oil, palm oil, and algal oil bodies) were enzymatically converted into fatty alcohols across a broad chain-length range (C8–C18). Together with complementing enzymes, the broad substrate specificity and kinetic characteristics of CAR opens the road for direct and tailored enzyme-catalyzed conversion of lipids into user-ready chemical commodities. PMID:23248280

  18. Five Decades with Polyunsaturated Fatty Acids: Chemical Synthesis, Enzymatic Formation, Lipid Peroxidation and Its Biological Effects

    PubMed Central

    Catalá, Angel

    2013-01-01

    I have been involved in research on polyunsaturated fatty acids since 1964 and this review is intended to cover some of the most important aspects of this work. Polyunsaturated fatty acids have followed me during my whole scientific career and I have published a number of studies concerned with different aspects of them such as chemical synthesis, enzymatic formation, metabolism, transport, physical, chemical, and catalytic properties of a reconstructed desaturase system in liposomes, lipid peroxidation, and their effects. The first project I became involved in was the organic synthesis of [1-14C] eicosa-11,14-dienoic acid, with the aim of demonstrating the participation of that compound as a possible intermediary in the biosynthesis of arachidonic acid “in vivo.” From 1966 to 1982, I was involved in several projects that study the metabolism of polyunsaturated fatty acids. In the eighties, we studied fatty acid binding protein. From 1990 up to now, our laboratory has been interested in the lipid peroxidation of biological membranes from various tissues and different species as well as liposomes prepared with phospholipids rich in PUFAs. We tested the effect of many antioxidants such as alpha tocopherol, vitamin A, melatonin and its structural analogues, and conjugated linoleic acid, among others. PMID:24490074

  19. Suppression of Acid Diffusion in Chemical Amplification Resists by Molecular Control of Base Matrix Polymers

    NASA Astrophysics Data System (ADS)

    Yoshimura, Toshiyuki; Shiraishi, Hiroshi; Okazaki, Shinji

    1995-12-01

    Suppression of acid diffusion during post-exposure baking (PEB) of chemical amplification resists is investigated from the standpoint of molecular control of base matrix polymers. Negative-type chemical amplification resists composed of cresol novolak-based matrix polymers, acid-catalyzed crosslinkers of melamine resins, and acid generators of onium salts are prepared. The molecular weight distributions of the base matrix polymers are controlled by means of a precipitation method. The resists are exposed with electron beams in isolated lines to evaluate the acid diffusion characteristics. Dependence of pattern sizes on the PEB time clearly shows that acid diffusion determines the resist pattern sizes based on Fick's law. The diffusion coefficients of resists with base matrix polymers with small polydispersities are smaller than those of resists with base matrix polymers with large polydispersities. Acid diffusion can still be suppressed by applying base matrix polymers with small weight-average molecular weights and small polydispersities. Diffusion coefficients can be further decreased by using base matrix polymers with more p-cresol components. A diffusion mechanism is proposed based on acid diffusion channels composed of active OH-groups and vacancies in the base matrix polymers.

  20. Correlation between chemical structure and rodent repellency of benzoic acid derivatives

    USGS Publications Warehouse

    Fearn, J.E.; DeWitt, J.B.

    1965-01-01

    Sixty-five benzoic acid derivatives were either prepared or obtained from commercial concerns, tested for rat repellency, and their indices of repellency computed. The data from these tests were considered analytically for any correlation between chemical structure and rat repellency. The results suggest a qualitative relationship which is useful in deciding probability of repellency in other compounds.

  1. Chemically modified fatty acid methyl esters: their potential for use as lubrication fluids and surfactants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A review of recent developments in the synthesis and characterization of lubrication fluids and surfactants from methyl oleate. The synthesis of materials made using an epoxidation route is the focus. This versatile method of chemical modification of fatty acid methyl esters improves their oxidati...

  2. EFFECTS OF ACID PRECIPITATION ON MICROBIOLOGICAL AND CHEMICAL PARAMETERS IN SOILS: THE FLORIDA EXPERIENCE

    EPA Science Inventory

    The effects of acid precipitation on microbiological and chemical parameters in soils were investigated under field conditions. The study site consisted of three transects, each including three 75 sq. m. plots. One transect served as a control, the second one was irrigated with a...

  3. Engineered Barrier Systems Thermal-Hydraulic-Chemical Column Test Report

    SciTech Connect

    W.E. Lowry

    2001-12-13

    The Engineered Barrier System (EBS) Thermal-Hydraulic-Chemical (THC) Column Tests provide data needed for model validation. The EBS Degradation, Flow, and Transport Process Modeling Report (PMR) will be based on supporting models for in-drift THC coupled processes, and the in-drift physical and chemical environment. These models describe the complex chemical interaction of EBS materials, including granular materials, with the thermal and hydrologic conditions that will be present in the repository emplacement drifts. Of particular interest are the coupled processes that result in mineral and salt dissolution/precipitation in the EBS environment. Test data are needed for thermal, hydrologic, and geochemical model validation and to support selection of introduced materials (CRWMS M&O 1999c). These column tests evaluated granular crushed tuff as potential invert ballast or backfill material, under accelerated thermal and hydrologic environments. The objectives of the THC column testing are to: (1) Characterize THC coupled processes that could affect performance of EBS components, particularly the magnitude of permeability reduction (increases or decreases), the nature of minerals produced, and chemical fractionation (i.e., concentrative separation of salts and minerals due to boiling-point elevation). (2) Generate data for validating THC predictive models that will support the EBS Degradation, Flow, and Transport PMR, Rev. 01.

  4. Toxic chemical report, first annual: a summary of information contained in the toxic chemical report forms for calendar year 1987. Final report

    SciTech Connect

    Carlson, R.L.; Lampe, J.A.; Goodner, J.F.

    1989-02-01

    This report summarizes the information contained in the Toxic Chemical Release Inventory Reporting Forms (Form R) for calendar year 1987 as submitted to the Illinois Environmental Protection Agency. The information includes all routine and non-routine releases of toxic chemicals in Illinois to the air, water, and land, as well as transfers of wastes to offsite treatment storage and disposal facilities. Title III, Section 313 of the Superfund Amendments and Reauthorization Act of 1986 (SARA) requires Form Rs to be filed by certain companies that release any of the listed toxic chemicals to the environment.

  5. DEFINITIVE SOX CONTROL PROCESS EVALUATIONS: AQUEOUS CARBONATE AND WELLMAN-LORD (ACID, ALLIED CHEMICAL, AND RESOX) FGD (FLUE GAS DESULFURIZATION) TECHNOLOGIES

    EPA Science Inventory

    The report gives results of economic evaluations of two processes: the Rockwell International aqueous carbonate process (ACP) and the Wellman-Lord process, the latter applied to a sulfuric acid plant, the Foster Wheeler Resox process, and the Allied Chemical coal reduction proces...

  6. BCTR: Biological and Chemical Technologies Research 1994 annual summary report

    SciTech Connect

    Petersen, G.

    1995-02-01

    The annual summary report presents the fiscal year (FY) 1994 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). Although the OIT was reorganized in 1991 and AICD no longer exists, this document reports on efforts conducted under the former structure. The annual summary report for 1994 (ASR 94) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization, selected technical and programmatic highlights for 1994; detailed descriptions of individual projects; a listing of program output, including a bibliography of published work; patents, and awards arising from work supported by BCTR.

  7. 77 FR 36170 - TSCA Inventory Update Reporting Modifications; Chemical Data Reporting; 2012 Submission Period...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ... Reporting Modifications; Chemical Data Reporting'' (76 FR 50816, August 16, 2011) (FRL-8872-9), EPA... ``Actions Concerning Regulations That Significantly Affect Energy Supply, Distribution, or Use'' (66 FR... and Review'' (58 FR 51735, October 4, 1993) and Executive Order 13563 entitled ``Improving...

  8. Chemically induced strength changes in sandstone. Report of Investigations/1993

    SciTech Connect

    Stroud, W.P.; Dolinar, D.R.

    1993-01-01

    Chemical alteration of the compressive strength of sandstone has been investigated by the U.S. Bureau of Mines (USBM). Successful development of this technology would offer an attractive alternative to the methods now used for stress control in mines. Sandstone cores were stressed to failure under uniaxial compression at two different strain rates. Specimens saturated with either distilled or tap water showed an average 14% reduction in stress at failure compared with those dried in vacuum. Samples saturated with dilute solutions of aluminum chloride, hydrochloric acid, and polyethylene oxide showed no statistically significant difference in failure stress compared with those saturated with water. By contrast, compressive strength of the cores was increased some 7% by saturation with the nonpolar solvent carbon tetrachloride. No correlation was found between zeta potential and compressive strength.

  9. Seismic and source characteristics of large chemical explosions. Final report

    SciTech Connect

    Adushkin, V.V.; Kostuchenko, V.N.; Pernik, L.M.; Sultanov, D.D.; Zcikanovsky, V.I.

    1995-01-01

    From the very beginning of its arrangement in 1947, the Institute for Dynamics of the Geospheres RAS (former Special Sector of the Institute for physics of the Earth, RAS) was providing scientific observations of effects of nuclear explosions, as well as large-scale detonations of HE, on environment. This report presents principal results of instrumental observations obtained from various large-scale chemical explosions conducted in the Former-Soviet Union in the period of time from 1957 to 1989. Considering principal aim of the work, tamped and equivalent chemical explosions have been selected with total weights from several hundreds to several thousands ton. In particular, the selected explosions were aimed to study scaling law from excavation explosions, seismic effect of tamped explosions, and for dam construction for hydropower stations and soil melioration. Instrumental data on surface explosions of total weight in the same range aimed to test military technics and special objects are not included.

  10. Environmental comparison of biobased chemicals from glutamic acid with their petrochemical equivalents.

    PubMed

    Lammens, Tijs M; Potting, José; Sanders, Johan P M; De Boer, Imke J M

    2011-10-01

    Glutamic acid is an important constituent of waste streams from biofuels production. It is an interesting starting material for the synthesis of biobased chemicals, thereby decreasing the dependency on fossil fuels. The objective of this paper was to compare the environmental impact of four biobased chemicals from glutamic acid with their petrochemical equivalents, that is, N-methylpyrrolidone (NMP), N-vinylpyrrolidone (NVP), acrylonitrile (ACN), and succinonitrile (SCN). A consequential life cycle assessment was performed, wherein glutamic acid was obtained from sugar beet vinasse. The removed glutamic acid was substituted with cane molasses and ureum. The comparison between the four biobased and petrochemical products showed that for NMP and NVP the biobased version had less impact on the environment, while for ACN and SCN the petrochemical version had less impact on the environment. For the latter two an optimized scenario was computed, which showed that the process for SCN can be improved to a level at which it can compete with the petrochemical process. For biobased ACN large improvements are required to make it competitive with its petrochemical equivalent. The results of this LCA and the research preceding it also show that glutamic acid can be a building block for a variety of molecules that are currently produced from petrochemical resources. Currently, most methods to produce biobased products are biotechnological processes based on sugar, but this paper demonstrates that the use of amino acids from low-value byproducts can certainly be a method as well. PMID:21870885

  11. Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: April-June 1998

    SciTech Connect

    Jubin, R.T.

    1999-04-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during th eperiod April-June 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications.

  12. Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: July-December 1998

    SciTech Connect

    Jubin, R.T.

    1999-06-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July-December 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications.

  13. Site remediation via Dispersion by Chemical Reaction (DCR). Special report

    SciTech Connect

    Marion, G.M.; Payne, J.R.; Brar, G.S.

    1997-08-01

    The DCR (Dispersion by Chemical Reaction) technologies are a group of patented waste treatment processes using CaO (quicklime) for the immobilization of heavily oiled sludges, oil-contaminated soils, acid-tars, and heavy metals in Ca(OH)2 and CaCO3 matrices. The objectives of this project were to: (1) evaluate the DCR process for remediating soils contaminated with pesticides, petroleum hydrocarbons (oils and fuels), and heavy metals in cold regions and (2) evaluate DCR-treated oil-contaminated soil as a non-frost-susceptible (NFS) construction material. Three major studies evaluated the DCR process to remediate (1) hydrocarbons at Eareckson Air Force Station on Shemya in the Aleutians, (2) pesticide-contaminated soils from Rocky Mt. Arsenal, and (3) heavy-metal contaminated soils from a former zinc smelter site at Palmerton, Pennsylvania. The DCR process was successful in stabilizing liquid organics and heavy metals in contaminated soils. The chemical properties of soils contaminated by solid organics (asphalt tar and pesticides) were not generally improved by the DCR process, but even in these cases, the physical properties were improved for potential reuse as construction materials.

  14. Chemical reporters for the illumination of protein and cell dynamics.

    PubMed

    Dieterich, Daniela C

    2010-10-01

    Fluorescent proteins have revolutionized cell biology and, therefore, our understanding of the complex molecular and cellular mechanisms that wire the brain together and enable its plasticity throughout life. The ability to visualize cell biological processes has inspired the development of alternative protein labeling strategies by both chemists and biologists. Among those approaches are the introduction of small bioorthogonal chemical reporters and new fluorescent probes by either genetic encoding or by utilizing the cell's own biosynthesis machinery in live cells. This review will highlight recent advances in approaches to track discrete proteins or whole subpopulations of a proteome including post-translational modifications with spatiotemporal resolution. PMID:20650631

  15. Influence of 4-cyano-4'-biphenylcarboxylic acid on the orientational ordering of cyanobiphenyl liquid crystals at chemically functionalized surfaces.

    PubMed

    Park, Joon-Seo; Jang, Chang-Hyun; Tingey, Matthew L; Lowe, Aaron M; Abbott, Nicholas L

    2006-12-15

    We report two methods that involve tailoring of the chemical composition of the nematic liquid crystal 4-cyano-4'-pentylbiphenyl to achieve control over the orientational ordering of the liquid crystal on chemically functionalized surfaces. The first method involves the direct addition of 4-cyano-4'-biphenylcarboxylic acid to 4-cyano-4'-pentylbiphenyl. The second method involves exposure of 4-cyano-4'-pentylbiphenyl to ultraviolet light and photochemical generation of a range of products, including 4-cyano-4'-biphenylcarboxylic acid. The addition of the acid or exposure to ultraviolet light accelerated the rate at which the liquid crystal exhibited an orientational transition from planar to perpendicular (homeotropic) alignment on surfaces presenting ammonium groups. The appearance of the homeotropic orientation of the UV-treated 4-cyano-4'-pentylbiphenyl on ammonium-terminated surfaces was dependent on the thickness of the film of liquid crystal (13-50 mum), consistent with a dipolar coupling between the liquid crystal and the electric field associated with an electrical double layer generated at the ammonium surface. Although the addition of 4-cyano-4'-biphenylcarboxylic acid or UV treatment of the liquid crystal also promoted homeotropic orientations on surfaces presenting hydroxyl groups, the orientations of the UV-treated liquid crystal on the hydroxyl-terminated surface did not change with thickness of the film of liquid crystal in the manner observed on the ammonium-terminated surfaces. The latter result indicates that the mechanism leading to homeotropic anchoring on hydroxyl-terminated surfaces is distinct from that on ammonium-terminated surfaces. Measurements performed using polarization modulation infrared reflection-absorption spectroscopy suggest that hydrogen bonding between the 4-cyano-4'-biphenylcarboxylic acid and the hydroxyl-terminated surface is responsible for the homeotropic anchoring on the surface. Finally, the orientation of the liquid

  16. NEXAFS Chemical State and Bond Lengths of p-Aminobenzoic Acid in Solution and Solid State

    NASA Astrophysics Data System (ADS)

    Stevens, J. S.; Gainar, A.; Suljoti, E.; Xiao, J.; Golnak, R.; Aziz, E. F.; Schroeder, S. L. M.

    2016-05-01

    Solid-state and solution pH-dependent NEXAFS studies allow direct observation of the electronic state of para-aminobenzoic acid (PABA) as a function of its chemical environment, revealing the chemical state and bonding of the chemical species. Variations in the ionization potential (IP) and 1s→π* resonances unequivocally identify the chemical species (neutral, cationic, or anionic) present and the varying local environment. Shifts in σ* shape resonances relative to the IP in the NEXAFS spectra vary with C-N bond length, and the important effect of minor alterations in bond length is confirmed with nitrogen FEFF calculations, leading to the possibility of bond length determination in solution.

  17. Wet-chemical green synthesis of L-lysine amino acid stabilized biocompatible iron-oxide magnetic nanoparticles.

    PubMed

    Krishna, Rahul; Titus, Elby; Krishna, Rohit; Bardhan, Neelkanth; Bahadur, Dhirendra; Gracio, José

    2012-08-01

    In this paper, we report a novel method for the synthesis of L-Lysine (lys) amino acid coated maghemite (gamma-Fe2O3) magnetic nanoparticles (MNPs). The facile and cost effective method permitted preparation of the high-quality superparamagnetic gamma-Fe2O3 MNPs with hydrophilic and biocompatible nature. For this work, first we synthesized magnetite phase Fe3O4/lys by wet chemical method and oxidized to y-Fe2O3 in controlled oxidizing environment, as evidenced by XRD and VSM magnetometry. The crystallite size and magnetization of gamma-Fe2O3/lys MNPs was found to be 14.5 nm, 40.6 emu/gm respectively. The surface functionalization by L-lysine amino acid and metal-ligand bonding was also confirmed by FTIR spectroscopy. The hydrodynamic diameter, colloidal stability and surface charge on MNPs were characterized by DLS and zeta potential analyser. PMID:22962801

  18. Comparative study of humic acid removal and floc characteristics by electrocoagulation and chemical coagulation.

    PubMed

    Semerjian, Lucy; Damaj, Ahmad; Salam, Darine

    2015-11-01

    The current study aims at investigating the efficiency of electrocoagulation for the removal of humic acid from contaminated waters. In parallel, conventional chemical coagulation was conducted to asses humic acid removal patterns. The effect of varying contributing parameters (matrix pH, humic acid concentration, type of electrode (aluminum vs. iron), current density, solution conductivity, and distance between electrodes) was considered to optimize the electrocoagulation process for the best attainable humic acid removal efficiencies. Optimum removals were recorded at pH of 5.0-5.5, an electrical conductivity of 3000 μS/cm at 25 °C, and an electrode distance of 1 cm for both electrode types. With aluminum electrodes, a current density of 0.05 mA/cm2 outperformed 0.1 mA/cm2 yet not higher densities, whereas a current density of 0.8 mA/cm2 was needed for iron electrodes to exhibit comparable performance. With both electrode types, higher initial humic acid concentrations were removed at a slower rate but ultimately attained almost complete removals. On the other hand, the best humic acid removals (∼90%) by chemical coagulation were achieved at 4 mg/L for both coagulants. Also, higher removals were attained at elevated initial humic acid concentrations. Humic acid removals of 90% or higher at an initial HA concentration of 40 mg/L were exhibited, yet alum performed better at the highest experimented concentration. It was evident that iron flocs were larger, denser, and more geometrical in shape compared to aluminum flocs. PMID:26439123

  19. Evidence that Chemical Chaperone 4-Phenylbutyric Acid Binds to Human Serum Albumin at Fatty Acid Binding Sites

    PubMed Central

    James, Joel; Shihabudeen, Mohamed Sham; Kulshrestha, Shweta; Goel, Varun; Thirumurugan, Kavitha

    2015-01-01

    Endoplasmic reticulum stress elicits unfolded protein response to counteract the accumulating unfolded protein load inside a cell. The chemical chaperone, 4-Phenylbutyric acid (4-PBA) is a FDA approved drug that alleviates endoplasmic reticulum stress by assisting protein folding. It is found efficacious to augment pathological conditions like type 2 diabetes, obesity and neurodegeneration. This study explores the binding nature of 4-PBA with human serum albumin (HSA) through spectroscopic and molecular dynamics approaches, and the results show that 4-PBA has high binding specificity to Sudlow Site II (Fatty acid binding site 3, subdomain IIIA). Ligand displacement studies, RMSD stabilization profiles and MM-PBSA binding free energy calculation confirm the same. The binding constant as calculated from fluorescence spectroscopic studies was found to be kPBA = 2.69 x 105 M-1. Like long chain fatty acids, 4-PBA induces conformational changes on HSA as shown by circular dichroism, and it elicits stable binding at Sudlow Site II (fatty acid binding site 3) by forming strong hydrogen bonding and a salt bridge between domain II and III of HSA. This minimizes the fluctuation of HSA backbone as shown by limited conformational space occupancy in the principal component analysis. The overall hydrophobicity of W214 pocket (located at subdomain IIA), increases upon occupancy of 4-PBA at any FA site. Descriptors of this pocket formed by residues from other subdomains largely play a role in compensating the dynamic movement of W214. PMID:26181488

  20. Applications of synchrotron radiation to Chemical Engineering Science: Workshop report

    SciTech Connect

    Not Available

    1991-07-01

    This report contains extended abstracts that summarize presentations made at the Workshop on Applications of Synchrotron Radiation to Chemical Engineering Science held at Argonne National Laboratory (ANL), Argonne, IL, on April 22--23, 1991. The talks emphasized the application of techniques involving absorption fluorescence, diffraction, and reflection of synchrotron x-rays, with a focus on problems in applied chemistry and chemical engineering, as well as on the use of x-rays in topographic, tomographic, and lithographic procedures. The attendees at the workshop included experts in the field of synchrotron science, scientists and engineers from ANL, other national laboratories, industry, and universities; and graduate and undergraduate students who were enrolled in ANL educational programs at the time of the workshop. Talks in the Plenary and Overview Session described the status of and special capabilities to be offered by the Advanced Photon Source (APS), as well as strategies and opportunities for utilization of synchrotron radiation to solve science and engineering problems. Invited talks given in subsequent sessions covered the use of intense infrared, ultraviolet, and x-ray photon beams (as provided by synchrotrons) in traditional and nontraditional areas of chemical engineering research related to electrochemical and corrosion science, catalyst development and characterization, lithography and imaging techniques, and microanalysis.

  1. Chemical disinfection of combined sewer overflow waters using performic acid or peracetic acids.

    PubMed

    Chhetri, Ravi Kumar; Thornberg, Dines; Berner, Jesper; Gramstad, Robin; Öjstedt, Ulrik; Sharma, Anitha Kumari; Andersen, Henrik Rasmus

    2014-08-15

    We investigated the possibility of applying performic acid (PFA) and peracetic acid (PAA) for disinfection of combined sewer overflow (CSO) in existing CSO management infrastructures. The disinfection power of PFA and PAA towards Escherichia coli (E. coli) and Enterococcus was studied in batch-scale and pre-field experiments. In the batch-scale experiment, 2.5 mg L(-1) PAA removed approximately 4 log unit of E. coli and Enterococcus from CSO with a 360 min contact time. The removal of E. coli and Enterococcus from CSO was always around or above 3 log units using 2-4 mg L(-1) PFA; with a 20 min contact time in both batch-scale and pre-field experiments. There was no toxicological effect measured by Vibrio fischeri when CSO was disinfected with PFA; a slight toxic effect was observed on CSO disinfected with PAA. When the design for PFA based disinfection was applied to CSO collected from an authentic event, the disinfection efficiencies were confirmed and degradation rates were slightly higher than predicted in simulated CSO. PMID:24918873

  2. Identification of nematicidal fatty acids and triglycerides from seeds of Jubaea chilensis by GC-EI-MS and chemical transformation methods.

    PubMed

    Gu, Jian-Qiao; Eppler, C Mark; Montenegro, Gloria; Timmins, Scott D; Timmermann, Barbara N

    2005-01-01

    Nematicidal bioassay-guided fractionation of the n-hexane extract of the seeds of Jubaea chilensis led to the identification of eight known fatty acids and a mixture of triglycerides, reported for the first time for this species. In addition, their corresponding methyl esters were identified to be artifacts generated during the extraction and isolation procedures by using GC-EI-MS and chemical transformation methods. The fatty acid composition of the triglycerides was analyzed by GC-EI-MS and chemical transformation techniques. Among the 17 compounds, only lauric acid and myristic acid exhibited significant inhibitory effects on the movement of Caenorhabditis elegans with minimum inhibitory concentrations (MIC) of 75 microg/ml. PMID:16163824

  3. Certain glycol ethers eliminated from toxic chemical release reporting requirements

    SciTech Connect

    1994-09-01

    Effective June 28, 1994, the U.S. Environmental Protection Agency (EPA) eliminated high molecular weight glycol ethers from the reporting requirements of section 313 of the Emergency Planning and Community Right-To-Know Act of 1986 (EPCRA). EPCRA (42 U.S.C. 11023) is also referred to as Title III of the Superfund Amendments and Reauthorization Act (SARA) of 1986. EPA redefined the glycol ethers category list of chemicals subject to reporting based on an EPA review of available human health data on short-chain glycol ethers. EPA is removing only the surfactant glycol ethers, which are high molecular weight glycol ethers, i.e., those with pendant alkyl groups and that typically have eight or more carbon atoms. The redefinition retains certain glycol ethers (i.e., ethylene glycol ethers where there are 1,2, or 3 repeating ethylene oxide groups) in the category. These are reasonably anticipated to cause adverse human health effects.

  4. Chemicals from wood by organic-solvent delignification. Final report

    SciTech Connect

    April, G.C.; Nayak, R.G.; Daley, P.L.; Jabali, F.; Meraab, J.

    1983-10-01

    Studies undertaken to evaluate the effectiveness of organic-solvent delignification of sweet gum and southern yellow pine wood are reported. Batch delignification investigations were conducted using aqueous n-butanol, ethanol, and phenol solutions at temperatures between 135C and 205C. Temperature, catalyst type and concentration, wood type, and treatment method were some of the variables considered. Southern yellow pine pretreatment studies were performed using water, and the use of semi-batch pulping methods was evaluated. Both delignification and pulp loss were described by first-order kinetics, and results generally agreed with those reported in the literature. Soluble pulp rate constants agreed closely with the bulk delignification rate constants, indicating the probability of a common mechanism describing the hydrolysis of wood during the initial periods. Second-step rate constants indicated a significantly slower delignification process. Finally, findings indicate that high temperatures are needed to effectively remove lignin from softwoods when no chemical additives are used.

  5. Department of Defense annual report on chemical warfare and Chemical/Biological Defense Research Program obligations for the period October 1, 1989 through September 30, 1990

    SciTech Connect

    Not Available

    1990-09-30

    This is an annual report of: Basic Research in Life Sciences, General Chemical Investigations, Testing, Physical Protection Investigations, Warning and Detection Investigations, Medical Defense Against Chemical Agents, Chemical Decontaminating Materiel, and Medical Chemical Defense Life Support Materiel.

  6. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry

    PubMed Central

    Ehrhart, S.; Kürten, A.; Adamov, A.; Bianchi, F.; Breitenlechner, M.; Duplissy, J.; Franchin, A.; Dommen, J.; Donahue, N. M.; Dunne, E. M.; Flagan, R. C.; Hakala, J.; Hansel, A.; Keskinen, H.; Kim, J.; Jokinen, T.; Lehtipalo, K.; Leiminger, M.; Praplan, A.; Riccobono, F.; Rissanen, M. P.; Sarnela, N.; Schobesberger, S.; Simon, M.; Sipilä, M.; Smith, J. N.; Tomé, A.; Tröstl, J.; Tsagkogeorgas, G.; Vaattovaara, P.; Winkler, P. M.; Williamson, C.; Wimmer, D.; Baltensperger, U.; Kirkby, J.; Kulmala, M.; Petäjä, T.; Worsnop, D. R.; Curtius, J.

    2016-01-01

    Abstract Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection of H2SO4 in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time in the CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI‐APi‐TOF (Chemical Ionization‐Atmospheric Pressure interface‐Time Of Flight) mass spectrometers. In addition, neutral sulfuric acid clusters were measured with the CI‐APi‐TOFs. The CLOUD7 measurements show that in the presence of dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS represents only a fraction of the total H2SO4, contained in the monomer and the clusters that is available for particle growth. Although it was found that the addition of dimethylamine dramatically changes the H2SO4 cluster distribution compared to binary (H2SO4‐H2O) conditions, the CIMS detection efficiency does not seem to depend substantially on whether an individual H2SO4 monomer is clustered with a DMA molecule. The experimental observations are supported by numerical simulations based on A Self‐contained Atmospheric chemistry coDe coupled with a molecular process model (Sulfuric Acid Water NUCleation) operated in the kinetic limit. PMID:27610289

  7. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Rondo, L.; Ehrhart, S.; Kürten, A.; Adamov, A.; Bianchi, F.; Breitenlechner, M.; Duplissy, J.; Franchin, A.; Dommen, J.; Donahue, N. M.; Dunne, E. M.; Flagan, R. C.; Hakala, J.; Hansel, A.; Keskinen, H.; Kim, J.; Jokinen, T.; Lehtipalo, K.; Leiminger, M.; Praplan, A.; Riccobono, F.; Rissanen, M. P.; Sarnela, N.; Schobesberger, S.; Simon, M.; Sipilä, M.; Smith, J. N.; Tomé, A.; Tröstl, J.; Tsagkogeorgas, G.; Vaattovaara, P.; Winkler, P. M.; Williamson, C.; Wimmer, D.; Baltensperger, U.; Kirkby, J.; Kulmala, M.; Petäjä, T.; Worsnop, D. R.; Curtius, J.

    2016-03-01

    Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection of H2SO4 in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time in the CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI-APi-TOF (Chemical Ionization-Atmospheric Pressure interface-Time Of Flight) mass spectrometers. In addition, neutral sulfuric acid clusters were measured with the CI-APi-TOFs. The CLOUD7 measurements show that in the presence of dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS represents only a fraction of the total H2SO4, contained in the monomer and the clusters that is available for particle growth. Although it was found that the addition of dimethylamine dramatically changes the H2SO4 cluster distribution compared to binary (H2SO4-H2O) conditions, the CIMS detection efficiency does not seem to depend substantially on whether an individual H2SO4 monomer is clustered with a DMA molecule. The experimental observations are supported by numerical simulations based on A Self-contained Atmospheric chemistry coDe coupled with a molecular process model (Sulfuric Acid Water NUCleation) operated in the kinetic limit.

  8. [Effects of abscisic acid on chemical components content and color of Glycyrrhiza uralensis].

    PubMed

    Xiang, Yu; Liu, Chun-sheng; Liu, Yong; Song, Xiao-na; Gu, Xuan

    2015-05-01

    An experiment was conducted using cultivated Glycyrrhiza uralensis in age of one year to study the effects of abscisic acid (ABA) on chemical components content and color of G. uralensis. By using different concentrations of ABA spraying on leaves, the change of the chemical component content was analyzed within 45 d after ABA stimulation, and the effects on quality were studied combined with colorimetric analysis data. It turned out that in some sense the content of glycyrrhizic acid and liquiritin had increased within 45 d, especially for liquiritin. After high concentrations of ABA (3.96 mg · L(-1)) stimulating, the content of glycyrrhizic acid rose 52% while liquiritin up 392% within 30 d. Then they both showed a decline in the content of glycyrrhizic acid and liquiritin on 45 d. Color index values of a* and b* were all significantly higher than that of the control group within 45 d, which meant the color of powders turned toward red and yellow. The conclusion was that ABA (3.96 mg · L(-1)) stimulating could not only improve the quality in the traditional sense through the color of G. uralensis, but also in the modern sense by improving the content of glycyrrhizic acid and liquiritin. PMID:26323130

  9. Chemical stability of acid rock drainage treatment sludge and implications for sludge management

    SciTech Connect

    Danny M. McDonald; John A. Webb; Jeff Taylor

    2006-03-15

    To assess the chemical stability of sludges generated by neutralizing acid rock drainage (ARD) with alkaline reagents, synthetic ARD was treated with hydrated lime (batch and high-density sludge process), limestone, and two proprietary reagents (KB-1 and Bauxsol). The amorphous metal hydroxide sludge produced was leached using deionized water, U.S. EPA methods (toxicity characteristic leaching procedure, synthetic precipitation leaching procedure), and the new strong acid leach test (SALT), which leaches the sludge with a series of sulfuric acid extractant solutions; the pH decreases by {approximately} 1 pH unit with each test, until the final pH is {approximately}2. Sludges precipitated by all reagents had very similar leachabilities except for KB-1 and Bauxsol, which released more aluminum. SALT showed that lowering the pH of the leaching solution mobilized more metals from the sludges. Iron, aluminum, copper, and zinc began to leach at pH 2.5-3, {approximately}4.5, {approximately}5.5, and 6-6.5, respectively. The leachability of ARD treatment sludges is determined by the final pH of the leachate. A higher neutralization potential (e.g., a greater content of unreacted neutralizing agent) makes sludges inherently more chemically stable. Thus, when ARD or any acidic metalliferous wastewater is treated, a choice must be made between efficient reagent use and resistance to acid attack. 26 refs., 5 figs., 2 tabs.

  10. Chemical stability of acid rock drainage treatment sludge and implications for sludge management.

    PubMed

    McDonald, Danny M; Webb, John A; Taylor, Jeff

    2006-03-15

    To assess the chemical stability of sludges generated by neutralizing acid rock drainage (ARD) with alkaline reagents, synthetic ARD was treated with hydrated lime (batch and high-density sludge process), limestone, and two proprietary reagents (KB-1 and Bauxsol). The amorphous metal hydroxide sludge produced was leached using deionized water, U.S. EPA methods (toxicity characteristic leaching procedure, synthetic precipitation leaching procedure), and the new strong acid leach test (SALT), which leaches the sludge with a series of sulfuric acid extractant solutions; the pH decreases by approximately 1 pH unit with each test, until the final pH is approximately 2. Sludges precipitated by all reagents had very similar leachabilities except for KB-1 and Bauxsol, which released more aluminum. SALT showed that lowering the pH of the leaching solution mobilized more metals from the sludges. Iron, aluminum, copper, and zinc began to leach at pH 2.5-3, approximately 4.5, approximately 5.5, and 6-6.5, respectively. The leachability of ARD treatment sludges is determined by the final pH of the leachate. A higher neutralization potential (e.g., a greater content of unreacted neutralizing agent) makes sludges inherently more chemically stable. Thus, when ARD or any acidic metalliferous wastewater is treated, a choice must be made between efficient reagent use and resistance to acid attack. PMID:16570625

  11. Beyond terrestrial biology: charting the chemical universe of α-amino acid structures.

    PubMed

    Meringer, Markus; Cleaves, H James; Freeland, Stephen J

    2013-11-25

    α-Amino acids are fundamental to biochemistry as the monomeric building blocks with which cells construct proteins according to genetic instructions. However, the 20 amino acids of the standard genetic code represent a tiny fraction of the number of α-amino acid chemical structures that could plausibly play such a role, both from the perspective of natural processes by which life emerged and evolved, and from the perspective of human-engineered genetically coded proteins. Until now, efforts to describe the structures comprising this broader set, or even estimate their number, have been hampered by the complex combinatorial properties of organic molecules. Here, we use computer software based on graph theory and constructive combinatorics in order to conduct an efficient and exhaustive search of the chemical structures implied by two careful and precise definitions of the α-amino acids relevant to coded biological proteins. Our results include two virtual libraries of α-amino acid structures corresponding to these different approaches, comprising 121 044 and 3 846 structures, respectively, and suggest a simple approach to exploring much larger, as yet uncomputed, libraries of interest. PMID:24152173

  12. Chemical repair of base lesions, AP-sites, and strand breaks on plasmid DNA in dilute aqueous solution by ascorbic acid

    SciTech Connect

    Hata, Kuniki; Urushibara, Ayumi; Yamashita, Shinichi; Shikazono, Naoya; Yokoya, Akinari; Katsumura, Yosuke

    2013-05-03

    Highlights: •We report a novel mechanism of radiation protection of DNA by chemical activity of ascorbic acid. •The “chemical repair” of DNA damage was revealed using biochemical assay and chemical kinetics analysis. •We found that ascorbic acid significantly repairs precursors of nucleobase lesions and abasic sites. •However, ascorbic acid seldom repairs precursors of DNA-strand breaks. -- Abstract: We quantified the damage yields produced in plasmid DNA by γ-irradiation in the presence of low concentrations (10–100 μM) of ascorbic acid, which is a major antioxidant in living systems, to clarify whether it chemically repairs radiation damage in DNA. The yield of DNA single strand breaks induced by irradiation was analyzed with agarose gel electrophoresis as conformational changes in closed circular plasmids. Base lesions and abasic sites were also observed as additional conformational changes by treating irradiated samples with glycosylase proteins. By comparing the suppression efficiencies to the induction of each DNA lesion, in addition to scavenging of the OH radicals derived from water radiolysis, it was found that ascorbic acid promotes the chemical repair of precursors of AP-sites and base lesions more effectively than those of single strand breaks. We estimated the efficiency of the chemical repair of each lesion using a kinetic model. Approximately 50–60% of base lesions and AP-sites were repaired by 10 μM ascorbic acid, although strand breaks were largely unrepaired by ascorbic acid at low concentrations. The methods in this study will provide a route to understanding the mechanistic aspects of antioxidant activity in living systems.

  13. Annual report, spring 2015. Alternative chemical cleaning methods for high level waste tanks-corrosion test results

    SciTech Connect

    Wyrwas, R. B.

    2015-07-06

    The testing presented in this report is in support of the investigation of the Alternative Chemical Cleaning program to aid in developing strategies and technologies to chemically clean radioactive High Level Waste tanks prior to tank closure. The data and conclusions presented here were the examination of the corrosion rates of A285 carbon steel and 304L stainless steel when interacted with the chemical cleaning solution composed of 0.18 M nitric acid and 0.5 wt. % oxalic acid. This solution has been proposed as a dissolution solution that would be used to remove the remaining hard heel portion of the sludge in the waste tanks. This solution was combined with the HM and PUREX simulated sludge with dilution ratios that represent the bulk oxalic cleaning process (20:1 ratio, acid solution to simulant) and the cumulative volume associated with multiple acid strikes (50:1 ratio). The testing was conducted over 28 days at 50°C and deployed two methods to invest the corrosion conditions; passive weight loss coupon and an active electrochemical probe were used to collect data on the corrosion rate and material performance. In addition to investigating the chemical cleaning solutions, electrochemical corrosion testing was performed on acidic and basic solutions containing sodium permanganate at room temperature to explore the corrosion impacts if these solutions were to be implemented to retrieve remaining actinides that are currently in the sludge of the tank.

  14. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: January--March 1997

    SciTech Connect

    Jubin, R.T.

    1998-01-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division (CTD) at Oak Ridge National Laboratory (ORNL) during the period January--March 1997. Created in March 1997 when the CTD Chemical Development and Energy Research sections were combined, the Chemical and Energy Research Section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within seven major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Separations and Materials Synthesis, Solution Thermodynamics, and Biotechnology Research. The name of a technical contact is included with each task described in the report, and readers are encouraged to contact these individuals if they need additional information.

  15. Study on NO2 absorption by ascorbic acid and various chemicals*

    PubMed Central

    Li, Wei; Wu, Cheng-zhi; Fang, He-liang; Shi, Yao; Lei, Le-cheng

    2006-01-01

    Study on NO2 absorption aimed at seeking a better NO2 absorption chemical at pH 4.5~7.0 for application to existing wet flue gas desulfurization (FGD). The results from the double-stirred reactor indicated that ascorbic acid has very high absorption rate at this pH range. The rate constant of ascorbic acid reaction with NO2 (0~1000×10−6 mol/mol) is about 3.54×106 mol/(L·s) at pH 5.4~6.5 at 55 °C. PMID:16365924

  16. Quantum-chemical study of electronically excited states of protolytic forms of vanillic acid

    NASA Astrophysics Data System (ADS)

    Vusovich, O. V.; Tchaikovskaya, O. N.; Sokolova, I. V.; Vasil'eva, N. Y.

    2015-12-01

    The paper describes an analysis of possible ways of deactivation of electronically excited states of 4-hydroxy- 3-methoxy-benzoic acid (vanillic acid) and its protolytic forms with the use of quantum-chemical methods INDO/S (intermediate neglect of differential overlap with a spectroscopic parameterization) and MEP (molecular electrostatic potential). The ratio of radiative and non-radiative deactivation channels of the electronic excitation energy is established. The rate constants of photophysical processes (internal and intercombination conversions) occurring after the absorption of light in these forms are evaluated.

  17. 40 CFR 372.85 - Toxic chemical release reporting form and instructions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 29 2012-07-01 2012-07-01 false Toxic chemical release reporting form... (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS TOXIC CHEMICAL RELEASE REPORTING: COMMUNITY RIGHT-TO-KNOW Forms and Instructions § 372.85 Toxic chemical release reporting form...

  18. 40 CFR 372.85 - Toxic chemical release reporting form and instructions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 28 2014-07-01 2014-07-01 false Toxic chemical release reporting form... (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS TOXIC CHEMICAL RELEASE REPORTING: COMMUNITY RIGHT-TO-KNOW Forms and Instructions § 372.85 Toxic chemical release reporting form...

  19. 40 CFR 372.85 - Toxic chemical release reporting form and instructions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 28 2011-07-01 2011-07-01 false Toxic chemical release reporting form... (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS TOXIC CHEMICAL RELEASE REPORTING: COMMUNITY RIGHT-TO-KNOW Forms and Instructions § 372.85 Toxic chemical release reporting form...

  20. 40 CFR 372.85 - Toxic chemical release reporting form and instructions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 27 2010-07-01 2010-07-01 false Toxic chemical release reporting form... (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS TOXIC CHEMICAL RELEASE REPORTING: COMMUNITY RIGHT-TO-KNOW Forms and Instructions § 372.85 Toxic chemical release reporting form...

  1. 40 CFR 372.85 - Toxic chemical release reporting form and instructions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 29 2013-07-01 2013-07-01 false Toxic chemical release reporting form... (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS TOXIC CHEMICAL RELEASE REPORTING: COMMUNITY RIGHT-TO-KNOW Forms and Instructions § 372.85 Toxic chemical release reporting form...

  2. Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: January-March 1998

    SciTech Connect

    Jubin, R.T.

    1999-03-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period January-March 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within nine major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Biotechnology, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies.

  3. Role of acid rain in atmospheric deposition. Final report

    SciTech Connect

    Winchester, J.W.

    1990-12-31

    A study was conducted to assess the potential importance of atmospheric nitrate deposition for a north Florida estuary. A comparison, based on statistical analysis of fluxes of ten dissolved constituents of rain water and river water, has been carried out for the watershed of the Apalachicola River, utilizing weekly rain water chemical data from the National Acid Deposition Program (NADP) for five sites within the watershed area, monitored from 1978-84 until late 1989, and less frequent river water chemical data from the U.S. Geological Survey for one site at Chattahoochee, Florida, monitored from 1965 until late 1989. Similar statistical analysis was performed on monitoring data for the Sopchoppy and Ochlockonee Rivers of north Florida. Atmospheric deposition to the watershed appears to be sufficient to account for essentially all the dissolved nitrate and ammonium and total organic nitrogen flow in the three rivers. However, after deposition most of the nitrate may be transformed to other chemical forms during the flow of the rivers toward their estuaries. In an additional statistical analysis of rain water monitoring data from the eight state southeastern USA region, it was found that both meteorological conditions and transport from pollution sources appear to control deposition fluxes of nitrate and sulfate acid air pollutants.

  4. Technology Evaluation Workshop Report for Tank Waste Chemical Characterization

    SciTech Connect

    Eberlein, S.J.

    1994-04-01

    A Tank Waste Chemical Characterization Technology Evaluation Workshop was held August 24--26, 1993. The workshop was intended to identify and evaluate technologies appropriate for the in situ and hot cell characterization of the chemical composition of Hanford waste tank materials. The participants were asked to identify technologies that show applicability to the needs and good prospects for deployment in the hot cell or tanks. They were also asked to identify the tasks required to pursue the development of specific technologies to deployment readiness. This report describes the findings of the workshop. Three focus areas were identified for detailed discussion: (1) elemental analysis, (2) molecular analysis, and (3) gas analysis. The technologies were restricted to those which do not require sample preparation. Attachment 1 contains the final workshop agenda and a complete list of attendees. An information package (Attachment 2) was provided to all participants in advance to provide information about the Hanford tank environment, needs, current characterization practices, potential deployment approaches, and the evaluation procedure. The participants also received a summary of potential technologies (Attachment 3). The workshop opened with a plenary session, describing the background and issues in more detail. Copies of these presentations are contained in Attachments 4, 5 and 6. This session was followed by breakout sessions in each of the three focus areas. The workshop closed with a plenary session where each focus group presented its findings. This report summarizes the findings of each of the focus groups. The evaluation criteria and information about specific technologies are tabulated at the end of each section in the report. The detailed notes from each focus group are contained in Attachments 7, 8 and 9.

  5. Potential human health effects of acid rain: report of a workshop

    PubMed Central

    Goyer, Robert A.; Bachmann, John; Clarkson, Thomas W.; Ferris, Benjamin G.; Graham, Judith; Mushak, Paul; Perl, Daniel P.; Rall, David P.; Schlesinger, Richard; Sharpe, William; Wood, John M.

    1985-01-01

    This report summarizes the potential impact of the acid precipitation phenomenon on human health. There are two major components to this phenomenon: the predepositional phase, during which there is direct human exposure to acidic substances from ambient air, and the post-depositional phase, in which the deposition of acid materials on water and soil results in the mobilization, transport, and even chemical transformation of toxic metals. Acidification increases bioconversion of mercury to methylmercury, which accumulates in fish, increasing the risk to toxicity in people who eat fish. Increase in water and soil content of lead and cadmium increases human exposure to these metals which become additive to other sources presently under regulatory control. The potential adverse health effects of increased human exposure to aluminum is not known at the present time. PMID:3896772

  6. Influence of alkaline suspended particles on the chemical composition of acid deposition in Kaohsiung City, Taiwan

    SciTech Connect

    Yuan, C.S.; Lin, Z.J.; Wu, M.Y.; Liu, J.I.; Yuan, C.

    1998-12-31

    This study investigated the influence of alkaline suspended particles on the chemical composition of acid deposition both temporally and spatially in Kaohsiung metropolitan area in Taiwan. During the period of January--December, 1996, both wet and dry deposition samples were collected by automatic acid precipitation samplers at six sampling sites which covered the entire metropolitan area. Major cations (NH{sub 4}{sup +}, K{sup +}, Na{sup +}, Ca{sup +2}, and Mg{sup +2}) and anions (F{sup {minus}}, Cl{sup {minus}}, NO{sub 3}{sup {minus}}, and SO{sub 4}{sup {minus}2}) of acid deposition samples were analyzed in a central laboratory, while the pH value and conductivity of rainwater samples were measured in situ. Results from chemical analysis indicated that Ca{sup +2} was the most abundant cation in acid deposition samples. Major cations were Ca{sup +2} and NH{sub 4}{sup +}, while major anions were SO{sub 4}{sup {minus}2} and NO{sub 3}{sup {minus}}. This study also revealed that the pH value, suspended solids, Ca{sup +2}, and NH{sub 4}{sup +} of rainwater decreased with rainy time in a sequential rainwater sampling process. It was estimated that approximately 80% of suspended particles could be washed out by rain droplets in the first hour of raining process. Therefore, alkaline suspended particles in the atmosphere played an very important role on the chemical composition of acid precipitation in Kaohsiung metropolitan area in Taiwan.

  7. Chemical Safety Vulnerability Working Group report. Volume 1

    SciTech Connect

    Not Available

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 1 contains the Executive summary; Introduction; Summary of vulnerabilities; Management systems weaknesses; Commendable practices; Summary of management response plan; Conclusions; and a Glossary of chemical terms.

  8. Physical and chemical limnological study of an acid mine lake in Sullivan County, Indiana

    SciTech Connect

    Broomall, P.A.

    1992-01-01

    Southwestern Indiana has numerous lakes developed in abandoned coal mine spoils which support recreational sports fisheries. Some lakes, due to exposure to acid mine drainage from coal wastes and pyritic spoils, are unsuitable habitats for fisheries development. This study examines a publicly owned acid mine lake with an area of approximately 51 ha, following reclamation and elimination of acid producing areas in its drainage basin. Fifteen physico-chemical sample collections were made over a thirteen month period (1991--1992). Parameters sampled included pH, total acidity, iron, manganese, and aluminum. Comparisons were made to historic pre-reclamation water quality data and to established models of acid mine lake recovery. Due to the local topography and exposure to prevailing winds, the lake was generally well mixed throughout the study. Virtually no summer stratification was found, but typical winter season stratification occurred. The water column was well oxygenated throughout the study. Secchi disk transparency varied from 2.5 m to clear to lake bottom (6 m). This study found no significant change in lake water pH (2.9--3.0 to 3.0--3.2 s.u.) since reclamation activities in 1988. However, changes in total acidity and total metal concentrations had occurred since reclamation which suggested that the lake was in early recovery stages. No trends in water quality improvement were determined which could assist in planning toward the eventual establishment of a sports fishery.

  9. A comparison of neutralization efficiency of chemicals with respect to acidic Kopili River water

    NASA Astrophysics Data System (ADS)

    Kapil, Nibedita; Bhattacharyya, Krishna G.

    2016-02-01

    Among all the renewable sources of energy, hydropower is the most potential source which is economical, non-polluting and eco-friendly. The efficiency of hydropower plant in the long run depends on many factors like water and sediment quality. Erosive and corrosive wear of machine parts like turbine is a complex phenomenon. The problem becomes more acute if the hydroenvironment is acidic in nature. The wear and tear due to corrosion/erosion caused by acid mine drainage (AMD) from coal mines reduces the efficiency and the life of the equipments. In this work, neutralization of the acidic water of the Kopili River, Assam, India was investigated using a number of basic chemicals and quantitatively estimating their effectiveness and actual requirement. The acidic water of the river, used as the cooling water, has been found responsible for damaging the equipments of the Kopili Hydro Electric Power Project (KHEP), Assam/Meghalaya, India by reducing the life of all metallic parts through corrosion. In this work, use is made of a number of basic materials like calcium carbonate, calcium hydroxide, calcium oxide, sodium carbonate, sodium hydroxide, and ammonia to examine their neutralization efficiency with respect to the acidic water and it was found that quick lime or raw lime (CaO) has the highest neutralization capacity. Suggestions have been made for meeting the problem of acidity of the river water.

  10. Fermentation inhibitors and their recovery from acid wood hydrolyzates as chemicals of value

    SciTech Connect

    Tran, Hao Cao.

    1986-01-01

    The principal objective of this study was to demonstrate the technical feasibility of fermentation inhibition removal from acid hydrolyzates of lignocellulosic materials and recovery of the by-products of acid hydrolysis as chemicals of value. The acid hydrolyzates of mixed hardwoods were produced from the continuous flow demonstration unit (CFDU) at the University of California Forest Products Laboratory. Two separate liquid product streams were the prehydrolyzate (S1H) and the second stage hydrolyzate (S2H). Candida utilis NRRL Y-900 and Saccharomyces cerevisiae NRRL 2034 were used to monitor the fermentability of these two product streams, respectively. Two pretreatment methods were investigated in detail: flashing and solvent extraction. For the S1H, flashing was adequate to enable cell production with Candida utilis. The S2H rehired solvent extraction to ensure ethanolic fermentation at high concentrations of glucose (12% or higher). A solvent was selected for the extraction process and process flow designs were proposed to recycle the solvent and isolate commercial by-products, including furfural, methanol, acetic acid and, potentially, formic acid, levulinic acid and 5-hydroxymethylfurfural.

  11. Preparation and physico-chemical properties of hydrogels from carboxymethyl cassava starch crosslinked with citric acid

    NASA Astrophysics Data System (ADS)

    Boonkham, Sasikan; Sangseethong, Kunruedee; Chatakanon, Pathama; Niamnuy, Chalida; Nakasaki, Kiyohiko; Sriroth, Klanarong

    2014-06-01

    Recently, environmentally friendly hydrogels prepared from renewable bio-based resources have drawn significant attention from both industrial and academic sectors. In this study, chemically crosslinked hydrogels have been developed from cassava starch which is a bio-based polymer using a non-toxic citric acid as a crosslinking agent. Cassava starch was first modified by carboxymethylation to improve its water absorbency property. The carboxymethyl cassava starch (CMCS) obtained was then crosslinked with citric acid at different concentrations and reaction times. The gel fraction of hydrogels increased progressively with increasing citric acid concentration. Free swelling capacity of hydrogels in de-ionized water, saline solution and buffers at various pHs as well as absorption under load were investigated. The results revealed that swelling behavior and mechanical characteristic of hydrogels depended on the citric acid concentration used in reaction. Increasing citric acid concentration resulted in hydrogels with stronger network but lower swelling and absorption capacity. The cassava starch hydrogels developed were sensitive to ionic strength and pH of surrounding medium, showing much reduced swelling capacity in saline salt solution and acidic buffers.

  12. Comparison of efficacy of chemical peeling with 25% trichloroacetic acid and 0.1% retinoic acid for facial rejuvenation

    PubMed Central

    Gurel, Mehmet Salih; Gungor, Sule; Tekeli, Omur; Canat, Dilek

    2016-01-01

    Introduction Skin aging is a problem which negatively affects the psyche of the person, social relations, as well as work life and health and which compels the patients to find appropriate treatment methods. Numerous treatment methods have been developed in order to delay aging and to reduce the aging effects in addition to having a younger, healthier and more beautiful facial appearance. Aim To compare the efficiency, cosmetic results and possible adverse effects of the peeling treatment with 25% trichloroacetic acid (TCA) and 0.1% retinoic acid for facial rejuvenation in patients presenting with skin aging. Material and methods Fifty female patients in total presenting with medium and advanced degree skin aging were subject to this study. Two separate treatment groups were formed; the first group underwent chemical skin treatment with 25% TCA while the other group was applied with 0.1% retinoic acid treatment. Following the 4 months’ treatment the patients were controlled three times in total for post lesional hypopigmentation, hyperpigmentation, scars, skin irritation and other possible changes per month. The pretreatment and first follow-up visit, and final control images were comparatively evaluated by three observers via specific software. Results The healing rates of the group subject to retinoic acid were statistically higher (p < 0.05) compared to patients in the TCA group in the final follow-up visit following the treatment according to the first and second observers. On the other hand, according to the third observer, patients applied with retinoic acid presented with higher healing rates compared to those treated with TCA, however; this rate was not statistically significant (p > 0.05). The frequency of TCA- and retinoic acid-associated adverse effects was similar in both groups (p > 0.05). As a result of both treatments, a reduction in the quality of life scores as well as a pronounced recovery (p = 0.001) in the quality of life of those patients

  13. Fatty Acid-Derived Biofuels and Chemicals Production in Saccharomyces cerevisiae.

    PubMed

    Zhou, Yongjin J; Buijs, Nicolaas A; Siewers, Verena; Nielsen, Jens

    2014-01-01

    Volatile energy costs and environmental concerns have spurred interest in the development of alternative, renewable, sustainable, and cost-effective energy resources. Environment-friendly processes involving microbes can be used to synthesize advanced biofuels. These fuels have the potential to replace fossil fuels in supporting high-power demanding machinery such as aircrafts and trucks. From an engineering perspective, the pathway for fatty acid biosynthesis is an attractive route for the production of advanced fuels such as fatty acid ethyl esters, fatty alcohols, and alkanes. The robustness and excellent accessibility to molecular genetics make the yeast Saccharomyces cerevisiae a suitable host for the purpose of bio-manufacturing. Recent advances in metabolic engineering, as well as systems and synthetic biology, have now provided the opportunity to engineer yeast metabolism for the production of fatty acid-derived fuels and chemicals. PMID:25225637

  14. Water chemical ionization mass spectrometry of aldehydes, ketones esters, and carboxylic acids

    SciTech Connect

    Hawthorne, S.B.; Miller, D.J.

    1986-11-01

    Chemical ionization mass spectrometry (CI) of aliphatic and aromatic carbonyl compounds using water as the reagent gas provides intense pseudomolecular ions and class-specific fragmentation patterns that can be used to identify aliphatic aldehydes, ketones, carboxylic acids, and esters. The length of ester acyl and alkyl groups can easily be determined on the basis of loss of alcohols from the protonated parent. Water CI provides for an approximately 200:1 selectivity of carbonyl species over alkanes. No reagent ions are detected above 55 amu, allowing species as small as acetone, propanal, acetic acid, and methyl formate to be identified. When deuterate water was used as the reagent, only the carboxylic acids and ..beta..-diketones showed significant H/D exchange. The use of water CI to identify carbonyl compounds in a wastewater from the supercritical water extraction of lignite coal, in lemon oil, and in whiskey volatiles is discussed.

  15. Effect of basic additives on sensitivity and diffusion of acid in chemical amplification resists

    NASA Astrophysics Data System (ADS)

    Asakawa, Koji; Ushirogouchi, Tohru; Nakase, Makoto

    1995-06-01

    The effect of amine additives in chemical amplification resists is discussed. Phenolic amines such as 4-aminophenol and 2-(4-aminophenyl)-2-(4-hydroxyphenyl) propane were investigated as model compounds from the viewpoint of sensitivity, diffusion and resolution. Equal molar amounts of acid and amine deactivated at the very beginning of post-exposure bake, and could not participate in decomposing the inhibitor as a catalyst. Only the acid which survived from the deactivation diffuses in the resist, decomposing the inhibitors from the middle to late stage of PEB. The basic additives reduce the diffusion range of the acid, especially for long-range diffusion, resulting in higher contrast at the interfaces between the exposed and unexposed areas. In addition, the amine concentration required is found to be less than the concentration which causes the resist sensitivity to start decreasing.

  16. Enhancement of volatile fatty acids production from rice straw via anaerobic digestion with chemical pretreatment.

    PubMed

    Park, Gwon Woo; Kim, Ilgook; Jung, Kwonsu; Seo, Charles; Han, Jong-In; Chang, Ho Nam; Kim, Yeu-Chun

    2015-08-01

    Rice straw is one of the most abundant renewable biomass sources and was selected as the feedstock for the production of volatile fatty acids (VFAs) from which microbial biodiesel can be produced. Two kinds of chemical pretreatments involving nitric acid and sodium hydroxide were investigated at 150 °C with 20 min of reaction time. The nitric acid pretreatment generated the most hemicellulose hydrolyzate, while significant reduction of the lignin occurred with sodium hydroxide pretreatment. Anaerobic digestion of 20 g/L rice straw yielded 6.00 and 7.09 g VFAs/L with 0.5% HNO3 and 2% NaOH, respectively. The VFAs yield with 2% NaOH was 0.35 g/g. PMID:25764527

  17. Coupling of hydrologic transport and chemical reactions in a stream affected by acid mine drainage

    USGS Publications Warehouse

    Kimball, B.A.; Broshears, R.E.; Bencala, K.E.; McKnight, Diane M.

    1994-01-01

    Experiments in St. Kevin Gulch, an acid mine drainage stream, examined the coupling of hydrologic transport to chemical reactions affecting metal concentrations. Injection of LiCl as a conservative tracer was used to determine discharge and residence time along a 1497-m reach. Transport of metals downstream from inflows of acidic, metal-rich water was evaluated based on synoptic samples of metal concentrations and the hydrologic characteristics of the stream. Transport of SO4 and Mn was generally conservative, but in the subreaches most affected by acidic inflows, transport was reactive. Both 0.1-??m filtered and particulate Fe were reactive over most of the stream reach. Filtered Al partitioned to the particulate phase in response to high instream concentrations. Simulations that accounted for the removal of SO4, Mn, Fe, and Al with first-order reactions reproduced the steady-state profiles. The calculated rate constants for net removal used in the simulations embody several processes that occur on a stream-reach scale. The comparison between rates of hydrologie transport and chemical reactions indicates that reactions are only important over short distances in the stream near the acidic inflows, where reactions occur on a comparable time scale with hydrologic transport and thus affect metal concentrations.

  18. C-1s NEXAFS spectroscopy reveals chemical fractionation of humic acid by cation-induced coagulation

    SciTech Connect

    Christl,I.; Kretzschmar, R.

    2007-01-01

    The influence of cation-induced coagulation on the chemical composition of dissolved and coagulated fractions of humic acid was investigated in batch coagulation experiments for additions of aluminum at pH 4 and 5, iron at pH 4, and calcium and lead at pH 6. The partitioning of organic carbon and metals was determined by analyzing total organic carbon and total metal contents of the dissolved phase. Both the dissolved and the coagulated humic acid fractions were characterized using synchrotron scanning transmission X-ray microscopy (STXM) and C-1s near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Intensities of {pi}* transitions of carboxyl carbon and {sigma}* transitions of alkyl, O-alkyl, and carboxyl carbon decreased with increasing metal concentration for the dissolved humic acid fractions. This decrease was accompanied by an increase of the respective intensities in the coagulated fraction as shown for lead. Intensities of aromatic and phenolic carbon were affected to a larger extent only by aluminum and iron additions. The changes observed in the C-1s NEXAFS spectra coincided with an increasing removal of organic carbon from the dissolved phase with increasing total metal concentrations. We conclude that humic acid was chemically fractionated by cation-induced coagulation, which preferentially removed functional groups involved in metal-cation binding from solution.

  19. Dioxin Registry report for Thompson Chemical Company, St. Louis, Missouri

    SciTech Connect

    Marlow, D.A.; Fingerhut, M.A.

    1991-01-01

    An industrial hygiene survey was conducted at the Thompson Chemical Company, St. Louis, Missouri. The company manufactured sodium-2,4,5-trichlorophenate (NaTCP), 2,4,5-trichlorophenoxyacetic-acid (2,4,5-T), and esters and amines of 2,4,5-T from 1949 through 1970. The company manufactured Agent-Orange for the Air Force from 1967 until 1969. The facility, its processes, its workforce, and 2,3,7,8-tetrachlorodibenzo-p-dioxin (1746016) (TCDD) analytical results for these products were examined. As this firm filed for bankruptcy in 1970, there was only limited data available. The facility employed about 12 persons year round and about double this number during the busy season and during the Agent-Orange contract. Almost no information was available about the production processes. Nine persons developed chloracne after an accident and fire in the NaTCP process. Few personnel records were available. The authors conclude that workers employed from 1949 through 1970 are suitable for inclusion into the Dioxin Registry. There is not enough information available to construct a TCDD exposure matrix for this site.

  20. Thermal and chemical degradation of inorganic membrane materials. Topical report

    SciTech Connect

    Krishnan, G.N.; Sanjurjo, A.; Wood, B.J.; Lau, K.H.

    1994-04-01

    This report describes the results of a literature review to evaluate the long-term thermal and chemical degradation of inorganic membranes that are being developed to separate gaseous products produced by the gasification or combustion of coal in fixed-, fluidized-, and entrained-bed gasifiers, direct coal-fired turbines, and pressurized-fluidized-bed combustors. Several impurities, such as H{sub 2}S, NH{sub 3}, SO{sub 2}, NO{sub x}, and trace metal compounds are generated during coal conversion, and they must be removed from the coal gas or the combustor flue gas to meet environmental standards. The use of membranes to separate these noxious gases is an attractive alternative to their removal by sorbents such as zinc titanate or calcium oxide. Inorganic membranes that have a high separation efficiency and exhibit both thermal and chemical stability would improve the economics of power generation from coal. The U.S. Department of Energy is supporting investigations to develop inorganic membranes for separating hydrogen from coal gas streams and noxious impurities from hot coal- and flue-gas streams. Membrane materials that have been investigated in the past include glass (silica), alumina, zirconia, carbon, and metals (Pd and Pt).

  1. [Lawrence Berkeley Laboratory] Chemical Sciences Division annual report 1991

    SciTech Connect

    Not Available

    1992-09-01

    Summaries are given of research in the following fields: photochemistry of materials in stratosphere, energy transfer and structural studies of molecules on surfaces, laser sources and techniques, crossed molecular beams, molecular interactions, theory of atomic and molecular collision processes, selective photochemistry, photodissociation of free radicals, physical chemistry with emphasis on thermodynamic properties, chemical physics at high photon energies, high-energy atomic physics, atomic physics, high-energy oxidizers and delocalized-electron solids, catalytic hydrogenation of CO, transition metal-catalyzed conversion of CO, NO, H[sub 2], and organic molecules to fuels and petrochemicals, formation of oxyacids of sulfur from SO[sub 2], potentially catalytic and conducting organometallics, actinide chemistry, and molecular thermodynamics for phase equilibria in mixtures. Under exploratory R and D funds, the following are discussed: technical evaluation of beamlines and experimental stations for chemical cynamics applications at the ALS synchrotron, and molecular beam threshold time-of-flight spectroscopy of rare gas atoms. Research on normal and superconducting properties of high-[Tc] systems is reported under work for others. (DLC)

  2. [Lawrence Berkeley Laboratory] Chemical Sciences Division annual report 1991

    SciTech Connect

    Not Available

    1992-09-01

    Summaries are given of research in the following fields: photochemistry of materials in stratosphere, energy transfer and structural studies of molecules on surfaces, laser sources and techniques, crossed molecular beams, molecular interactions, theory of atomic and molecular collision processes, selective photochemistry, photodissociation of free radicals, physical chemistry with emphasis on thermodynamic properties, chemical physics at high photon energies, high-energy atomic physics, atomic physics, high-energy oxidizers and delocalized-electron solids, catalytic hydrogenation of CO, transition metal-catalyzed conversion of CO, NO, H{sub 2}, and organic molecules to fuels and petrochemicals, formation of oxyacids of sulfur from SO{sub 2}, potentially catalytic and conducting organometallics, actinide chemistry, and molecular thermodynamics for phase equilibria in mixtures. Under exploratory R and D funds, the following are discussed: technical evaluation of beamlines and experimental stations for chemical cynamics applications at the ALS synchrotron, and molecular beam threshold time-of-flight spectroscopy of rare gas atoms. Research on normal and superconducting properties of high-{Tc} systems is reported under work for others. (DLC)

  3. Functional Imaging of Chemically Active Surfaces with Optical Reporter Microbeads

    PubMed Central

    Ahuja, Punkaj; Nair, Sumitha; Narayan, Sreenath; Gratzl, Miklós

    2015-01-01

    We have developed a novel approach to allow for continuous imaging of concentration fields that evolve at surfaces due to release, uptake, and mass transport of molecules, without significant interference of the concentration fields by the chemical imaging itself. The technique utilizes optical “reporter” microbeads immobilized in a thin layer of transparent and inert hydrogel on top of the surface. The hydrogel has minimal density and therefore diffusion in and across it is like in water. Imaging the immobilized microbeads over time provides quantitative concentration measurements at each location where an optical reporter resides. Using image analysis in post-processing these spatially discrete measurements can be transformed into contiguous maps of the dynamic concentration field across the entire surface. If the microbeads are small enough relative to the dimensions of the region of interest and sparsely applied then chemical imaging will not noticeably affect the evolution of concentration fields. In this work colorimetric optode microbeads a few micrometers in diameter were used to image surface concentration distributions on the millimeter scale. PMID:26332766

  4. Autopsy report for chemical burns from cresol solution.

    PubMed

    Emoto, Yuko; Yoshizawa, Katsuhiko; Shikata, Nobuaki; Tsubura, Airo; Nagasaki, Yasushi

    2016-01-01

    Cresol, which is used as a disinfectant and insecticide, has erosive effects on epidermal and epithelial tissues in the body. Oral exposure causes gastrointestinal corrosive injuries as a direct chemical burn. We report herein a case of suicidal poisoning by ingestion of cresol solution. An octogenarian man with depression was found dead approximately 14 h after exposure to less than 500 mL of saponated cresol solution. Macroscopically, corrosive lesions such as red-to-brown-colored epithelium and edematous thickening of walls were seen in the skin, mouth, oral cavity, esophagus, and stomach. Histopathologically, coagulative necrosis and vascular dilatation were detected from mucosal to muscular layers in the esophagus, stomach, and duodenum. Congestive edema of the lungs, edematous changes in the brain, and proximal tubular necrosis of the kidneys were seen, suggesting acute circulatory disturbance due to shock. This human case offers valuable information on the direct irritation and shock induced by systemic exposure to corrosive substances. PMID:26404918

  5. FY13 GLYCOLIC-NITRIC ACID FLOWSHEET DEMONSTRATIONS OF THE DWPF CHEMICAL PROCESS CELL WITH SIMULANTS

    SciTech Connect

    Lambert, D.; Zamecnik, J.; Best, D.

    2014-03-13

    Savannah River Remediation is evaluating changes to its current Defense Waste Processing Facility flowsheet to replace formic acid with glycolic acid in order to improve processing cycle times and decrease by approximately 100x the production of hydrogen, a potentially flammable gas. Higher throughput is needed in the Chemical Processing Cell since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the safety significant gas chromatographs and the potential for production of flammable quantities of hydrogen, eliminating the use of formic acid is highly desirable. Previous testing at the Savannah River National Laboratory has shown that replacing formic acid with glycolic acid allows the reduction and removal of mercury without significant catalytic hydrogen generation. Five back-to-back Sludge Receipt and Adjustment Tank (SRAT) cycles and four back-to-back Slurry Mix Evaporator (SME) cycles were successful in demonstrating the viability of the nitric/glycolic acid flowsheet. The testing was completed in FY13 to determine the impact of process heels (approximately 25% of the material is left behind after transfers). In addition, back-to-back experiments might identify longer-term processing problems. The testing was designed to be prototypic by including sludge simulant, Actinide Removal Product simulant, nitric acid, glycolic acid, and Strip Effluent simulant containing Next Generation Solvent in the SRAT processing and SRAT product simulant, decontamination frit slurry, and process frit slurry in the SME processing. A heel was produced in the first cycle and each subsequent cycle utilized the remaining heel from the previous cycle. Lower SRAT purges were utilized due to the low hydrogen generation. Design basis addition rates and boilup rates were used so the processing time was shorter than current processing rates.

  6. Cholinium-amino acid based ionic liquids: a new method of synthesis and physico-chemical characterization.

    PubMed

    De Santis, Serena; Masci, Giancarlo; Casciotta, Francesco; Caminiti, Ruggero; Scarpellini, Eleonora; Campetella, Marco; Gontrani, Lorenzo

    2015-08-28

    In the present work we report the synthesis and physico-chemical characterization in terms of the viscosity and density of a wide series of cholinium-amino acid based room temperature ionic liquids ([Ch][AA] RTILs). 18 different amino acids were used to obtain 14 room temperature ILs. Among the most common AAs, only valine did not form an RTIL but it is a liquid above 80 °C. With respect to the methods reported in the literature we propose a synthesis based on potentiometric titration which has several advantages such as shorter preparation time, stoichiometry within ±1%, very high yields (close to 100%), high reproducibility, and no use of organic solvents, thus being more environmentally friendly. We tried to prepare dianionic ILs with some AAs with two potentially ionisable groups but in all cases the salts were solids at room temperature. All the ILs were characterized by (1)H NMR to confirm the stoichiometry. Physico-chemical properties such as density, viscosity, refractive index and conductivity were measured as a function of temperature and correlated with empirical equations. The values were compared with the data already reported in the literature for some [Ch][AA] ILs. The thermal expansion coefficient αp and the molar volume Vm were also calculated from the experimental density values. Due to the high number of AAs explored and their structural heterogeneity we have been able to find some interesting correlations between the data obtained and the structural features of the AAs in terms of the alkyl chain length, hydrogen bonding ability, stacking and cyclization. Some parameters were also found to be in good agreement with those reported for other ILs. We think that these data can give an important contribution to the understanding of the structure-property relationship of ILs because they focused on the structural effect of the anions, while most data in the literature are focussed on the cations. PMID:26206450

  7. SIMULTANEOUS QUANTIFICATION OF JASMONIC ACID AND SALICYLIC ACID IN PLANTS BY VAPOR PHASE EXTRACTION AND GAS CHROMATOGRAPHY-CHEMICAL IONIZATION-MASS SPECTROMETRY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Jasmonic acid and salicylic acid represent important signaling compounds in plant defensive responses against other organisms. Here, we present a new method for the easy, sensitive and reproducible quantification of both compounds by vapor phase extraction and gas chromatography-positive ion chemic...

  8. Process for preparing a chemical compound enriched in isotope content. [nitrogen 15-enriched nitric acid

    DOEpatents

    Michaels, E.D.

    1981-02-25

    A process to prepare a chemical enriched in isotope content includes: a chemical exchange reaction between a first and second compound which yields an isotopically enriched first compound and an isotopically depleted second compound; the removal of a portion of the first compound as product and the removal of a portion of the second compound as spent material; the conversion of the remainder of the first compound to the second compound for reflux at the product end of the chemical exchange reaction region; the conversion of the remainder of the second compound to the first compound for reflux at the spent material end of the chemical exchange region; and the cycling of the additional chemicals produced by one conversion reaction to the other conversion reaction, for consumption therein. One of the conversion reactions is an oxidation reaction, and the energy that it yields is used to drive the other conversion reaction, a reduction. The reduction reaction is carried out in a solid polymer electrolyte electrolytic reactor. The overall process is energy efficient and yields no waste by-products. A particular embodiment of the process in the production of nitrogen-15-enriched nitric acid.

  9. 40 CFR 721.10512 - Fatty acid maleic acid amides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acid maleic acid amides (generic... Specific Chemical Substances § 721.10512 Fatty acid maleic acid amides (generic). (a) Chemical substance... fatty acid maleic acid amides (PMNs P-07-563 and P-07-564) are subject to reporting under this...

  10. 40 CFR 721.10512 - Fatty acid maleic acid amides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acid maleic acid amides (generic... Specific Chemical Substances § 721.10512 Fatty acid maleic acid amides (generic). (a) Chemical substance... fatty acid maleic acid amides (PMNs P-07-563 and P-07-564) are subject to reporting under this...

  11. Study on corrosion resistance of high - entropy alloy in medium acid liquid and chemical properties

    NASA Astrophysics Data System (ADS)

    Florea, I.; Buluc, G.; Florea, R. M.; Soare, V.; Carcea, I.

    2015-11-01

    High-entropy alloy is a new alloy which is different from traditional alloys. The high entropy alloys were started in Tsing Hua University of Taiwan since 1995 by Yeh et al. Consisting of a variety of elements, each element occupying a similar compared with other alloy elements to form a high entropy. We could define high entropy alloys as having approximately equal concentrations, made up of a group of 5 to 11 major elements. In general, the content of each element is not more than 35% by weight of the alloy. During the investigation it turned out that this alloy has a high hardness and is also corrosion proof and also strength and good thermal stability. In the experimental area, scientists used different tools, including traditional casting, mechanical alloying, sputtering, splat-quenching to obtain the high entropy alloys with different alloying elements and then to investigate the corresponding microstructures and mechanical, chemical, thermal, and electronic performances. The present study is aimed to investigate the corrosion resistance in a different medium acid and try to put in evidence the mechanical properties. Forasmuch of the wide composition range and the enormous number of alloy systems in high entropy alloys, the mechanical properties of high entropy alloys can vary significantly. In terms of hardness, the most critical factors are: hardness/strength of each composing phase in the alloy, distribution of the composing phases. The corrosion resistance of an high entropy alloy was made in acid liquid such as 10%HNO3-3%HF, 10%H2SO4, 5%HCl and then was investigated, respectively with weight loss experiment. Weight loss test was carried out by put the samples into the acid solution for corrosion. The solution was maintained at a constant room temperature. The liquid formulations used for tests were 3% hydrofluoric acid with 10% nitric acid, 10% sulphuric acid, 5% hydrochloric acid. Weight loss of the samples was measured by electronic scale.

  12. Optimization of the polar organic chemical integrative sampler for the sampling of acidic and polar herbicides.

    PubMed

    Fauvelle, Vincent; Mazzella, Nicolas; Belles, Angel; Moreira, Aurélie; Allan, Ian J; Budzinski, Hélène

    2014-05-01

    This paper presents an optimization of the pharmaceutical Polar Organic Chemical Integrative Sampler (POCIS-200) under controlled laboratory conditions for the sampling of acidic (2,4-dichlorophenoxyacetic acid (2,4-D), acetochlor ethanesulfonic acid (ESA), acetochlor oxanilic acid, bentazon, dicamba, mesotrione, and metsulfuron) and polar (atrazine, diuron, and desisopropylatrazine) herbicides in water. Indeed, the conventional configuration of the POCIS-200 (46 cm(2) exposure window, 200 mg of Oasis® hydrophilic lipophilic balance (HLB) receiving phase) is not appropriate for the sampling of very polar and acidic compounds because they rapidly reach a thermodynamic equilibrium with the Oasis HLB receiving phase. Thus, we investigated several ways to extend the initial linear accumulation. On the one hand, increasing the mass of sorbent to 600 mg resulted in sampling rates (R s s) twice as high as those observed with 200 mg (e.g., 287 vs. 157 mL day(-1) for acetochlor ESA). Although detection limits could thereby be reduced, most acidic analytes followed a biphasic uptake, proscribing the use of the conventional first-order model and preventing us from estimating time-weighted average concentrations. On the other hand, reducing the exposure window (3.1 vs. 46 cm(2)) allowed linear accumulations of all analytes over 35 days, but R s s were dramatically reduced (e.g., 157 vs. 11 mL day(-1) for acetochlor ESA). Otherwise, the observation of biphasic releases of performance reference compounds (PRC), though mirroring acidic herbicide biphasic uptake, might complicate the implementation of the PRC approach to correct for environmental exposure conditions. PMID:24691721

  13. F-Area Acid/Caustic Basin groundwater monitoring report

    SciTech Connect

    Not Available

    1992-06-01

    During first quarter 1992, samples from the six FAC monitoring wells at the F-Area Acid/Caustic Basin were analyzed for herbicides, indicator parameters, major ions, pesticides, radionuclides, turbidity, volatile organic compounds, and other constituents. Monitoring results that exceeded the US Environmental Protection Agency Primary Drinking Water Standards (PDWS) and the Savannah River Site flagging criteria and turbidity standards during the quarter are the focus of this report.

  14. Chemical Weapons: The legacy of Operation Desert Storm. Final report

    SciTech Connect

    Henscheid, M.R.

    1991-06-21

    United States and allied forces deploying in the 1991 War in the Persian Gulf region faced a formidable Iraqi offensive chemical weapons capability. This threat immediately challenged U.S. policy and resolve as outlined in the 1990 bilateral chemical weapons treaty with the Soviet Union. The necessity to assess retaliatory options, in the event of Iraqi chemical use, was apparent, and are evaluated in this analysis. The proliferation of chemical weapons worldwide, disarmament efforts, and chemical defense readiness are also reviewed in the context of the 1991 Gulf War. The conclusion that retaliation by conventional means alone as the only acceptable alternative supporting the presidential goal of increased stability in the Middle East is reached. Prospects for revitalized post-war multilateral chemical disarmament efforts, and a reduction in chemical warfare proliferation are also assessed. Recommendations for a post-war national chemical defense policy are made.

  15. Acid mine drainage treatment using by-products from quicklime manufacturing as neutralization chemicals.

    PubMed

    Tolonen, Emma-Tuulia; Sarpola, Arja; Hu, Tao; Rämö, Jaakko; Lassi, Ulla

    2014-12-01

    The aim of this research was to investigate whether by-products from quicklime manufacturing could be used instead of commercial quicklime (CaO) or hydrated lime (Ca(OH)2), which are traditionally used as neutralization chemicals in acid mine drainage treatment. Four by-products were studied and the results were compared with quicklime and hydrated lime. The studied by-products were partly burnt lime stored outdoors, partly burnt lime stored in a silo, kiln dust and a mixture of partly burnt lime stored outdoors and dolomite. Present application options for these by-products are limited and they are largely considered waste. Chemical precipitation experiments were performed with the jar test. All the studied by-products removed over 99% of Al, As, Cd, Co, Cu, Fe, Mn, Ni, Zn and approximately 60% of sulphate from acid mine drainage. However, the neutralization capacity of the by-products and thus the amount of by-product needed as well as the amount of sludge produced varied. The results indicated that two out of the four studied by-products could be used as an alternative to quicklime or hydrated lime for acid mine drainage treatment. PMID:25193795

  16. CORROSION TESTING OF CARBON STEEL IN OXALIC ACID CHEMICAL CLEANING SOLUTIONS

    SciTech Connect

    Wiersma, B.; Mickalonis, J.; Subramanian, K.; Ketusky, E.

    2011-10-14

    Radioactive liquid waste has been stored in underground carbon steel tanks for nearly 60 years at the Savannah River Site. The site is currently in the process of removing the waste from these tanks in order to place it into vitrified, stable state for longer term storage. The last stage in the removal sequence is a chemical cleaning step that breaks up and dissolves metal oxide solids that cannot be easily pumped out of the tank. Oxalic acid has been selected for this purpose because it is an effective chelating agent for the solids and is not as corrosive as other acids. Electrochemical and immersion studies were conducted to investigate the corrosion behavior of carbon steel in simulated chemical cleaning environments. The effects of temperature, agitation, and the presence of sludge solids in the oxalic acid on the corrosion rate and the likelihood of hydrogen evolution were determined. The testing showed that the corrosion rates decreased significantly in the presence of the sludge solids. Corrosion rates increased with agitation, however, the changes were less noticeable.

  17. Dissolution of cerium(IV)-lanthanide(III) oxides: Comparative effect of chemical composition, temperature, and acidity

    SciTech Connect

    Horlait, D.; Clavier, N.; Szenknect, S.; Dacheux, N.; Dubois, V.

    2012-03-15

    The dissolution of Ce{sub 1-x}Ln{sub x}O{sub 2-x/2} solid solutions was undertaken in various acid media in order to evaluate the effects of several physicochemical parameters such as chemical composition, temperature, and acidity on the reaction kinetics. The normalized dissolution rates (R{sub L,0}) were found to be strongly modified by the trivalent lanthanide incorporation rate, due to the presence of oxygen vacancies decreasing the samples cohesion. Conversely, the nature of the trivalent cation considered only weakly impacted the R{sub L,0} values. The dependence of the normalized dissolution rates on the temperature then appeared to be of the same order of magnitude than that of chemical composition. Moreover, it allowed determining the corresponding activation energy (E{sub A} ≅ 60-85 kJ.mol{sup -1}) which accounts for a dissolution driven by surface-controlled reactions. A similar conclusion was made regarding the acidity of the solution: the partial order related to (H{sub 3}O{sup +}) reaching about 0.7. Finally, the prevailing effect of the incorporation of aliovalent cations in the fluorite-type CeO{sub 2} matrix on the dissolution kinetics precluded the observation of slight effects such as those linked to the complexing agents or to the crystal structure of the samples. (authors)

  18. Chemical noise reduction via mass spectrometry and ion/ion charge inversion: amino acids.

    PubMed

    Hassell, Kerry M; LeBlanc, Yves C; McLuckey, Scott A

    2011-05-01

    Charge inversion ion/ion reactions can provide a significant reduction in chemical noise associated with mass spectra derived from complex mixtures for species composed of both acidic and basic sites, provided the ions derived from the matrix largely undergo neutralization. Amino acids constitute an important class of amphoteric compounds that undergo relatively efficient charge inversion. Precipitated plasma constitutes a relatively complex biological matrix that yields detectable signals at essentially every mass-to-charge value over a wide range. This chemical noise can be dramatically reduced using multiply charged reagent ions that can invert the charge of species amenable to the transfer of multiple charges upon a single interaction and by detecting product ions of opposite polarity. The principle is illustrated here with amino acids present in precipitated plasma subjected to ionization in the positive mode, reaction with anions derived from negative nanoelectrospray ionization of poly (amido amine) dendrimer generation 3.5, and mass analysis in the negative ion mode. PMID:21456599

  19. Bioassessment of a combined chemical-biological treatment for synthetic acid mine drainage.

    PubMed

    Pagnanelli, F; De Michelis, I; Di Muzio, S; Ferella, F; Vegliò, F

    2008-11-30

    In this work, ecotoxicological characteristics of synthetic samples of acid mine drainage (AMD) before and after a combined chemical-biological treatment were investigated by using Lepidium sativum and Daphnia magna. AMD treatment was performed in a two-column apparatus consisting of chemical precipitation by limestone and biological refinement by sulphate reducing bacteria. Synthetic samples of AMD before treatment were toxic for both L. sativum (germination index, G, lower than 10%) and D. magna (100% immobility) due to acid pH and presence of copper and zinc. Chemical treatment (raising pH to 5-6 and eliminating copper) generated effluents with reduced toxicity for L. sativum (G=33%), while 100% immobility was still observed for D. magna. Dynamic trends of toxicity for the first and fifth outputs of the biological column denoted a gradual improvement leading to hormesis for Lepidium (after the initial release of organic excess), while a constant residual toxicity remained for Daphnia (probably due to H(2)S produced by sulphate reducing bacteria). PMID:18394799

  20. Geochemistry, mineralogy, and chemical modeling of the acid crater lake of Kawah Ijen Volcano, Indonesia

    NASA Astrophysics Data System (ADS)

    Delmelle, Pierre; Bernard, Alain

    1994-06-01

    The Kawah Ijen volcano—with a record of phreatic eruptions—has its 1000 m wide crater filled with a lake that has existed for at least one century. At present, the lake waters are hot ( T ≈ 37° C), strongly mineralized (TDS = 105 g/L) and extremely acidic ( pH ≈ 0.4). By its volume, the Javanese lake is probably the largest accumulation in the world of such acidic waters. Mineralogy of the suspended solids within the lake waters suggests that concentrations of Si, Ca, Ti, and Ba are controlled by precipitation of silica, gypsum, anatase, and barite. Lake sediment is composed of chemical precipitates with composition similar to the suspended solids. Thermodynamic calculations predict that the lake waters have reached equilibrium with respect to α-cristobalite, barite, gypsum, anglesite, celestite, and amorphous silica, in agreement with the analytical observations. Significant concentrations of ferric iron suggest that the current lake waters are fairly oxidized. Sulfides are absent in the water column but are always present in the native S spherules that form porous aggregates which float on the lake. The presence of native S provides direct evidence of more reduced conditions at the lake floor where H 2S is probably being injected into the lake. With progressive addition of H 2S to the acid waters, native S, pyrite, and enargite are theoretically predicted to be saturated. Reactions between upward streaming H 2S-bearing gases discharged by subaqueous fumaroles, and metals dissolved in the acidic waters could initiate precipitation of these sulfides. A model of direct absorption of hot magmatic gases into cool water accounts for the extreme acidity of the crater lake. Results show that strongly acidic, sulfate-rich solutions are formed under oxidizing conditions at high gas/water ratios. Reactions between the acidic fluids and the Ijen andesite were modeled to account for elevated cation concentrations in lake water. Current concentrations of conservative

  1. The thermo-hand method: evaluation of a new indicator pad for acid permeation of chemical protective gloves.

    PubMed

    Vo, Evanly; Nicholson, Jonathan; Gao, Pengfei; Zhuang, Zhenzhen; Berardinelli, Stephen P

    2003-01-01

    The thermo-hand method was developed to evaluate a new indicator pad for acid permeation through chemical protective gloves under in-use conditions (controlled conditions for the hand's skin temperature, hand movements, and relative humidity inside gloves). An indicator pad was used to detect both organic and inorganic acid permeation through glove materials. Breakthrough times for five types of gloves were determined and found to range from 5 to 308 min for propionic acid, from 4 to 293 min for acrylic acid, and from 15 min to >6 hours for HCl. Quantification was performed for propionic and acrylic acids following solvent desorption and gas chromatography. Both acids exhibited >99% adsorption (including the volume of acid, which reacted with an indicator to contribute the color change) on the pads at a spiking level of 1.8 micro L for each acid. Acid recovery for the system was calculated for each acid, with results ranging from 52-72% (RSD < or =4.0%) for both acids over the spiking range 0.2-1.8 micro L. The quantitative mass of the acids on the pads at the time of breakthrough detection ranged from 253-276 and 270-296 micro g/cm(2) for propionic acid and acrylic acid, respectively. The thermo-hand method and a new acid indicator pad together should be useful in detecting, collecting, and quantitatively analyzing acid permeation samples in the workplace. PMID:14674803

  2. Chemical analyses of rocks, minerals, and detritus, Yucca Mountain--Preliminary report, special report No. 11

    SciTech Connect

    Hill, C.A.; Livingston, D.E.

    1993-09-01

    This chemical analysis study is part of the research program of the Yucca Mountain Project intended to provide the State of Nevada with a detailed assessment of the geology and geochemistry of Yucca Mountain and adjacent regions. This report is preliminary in the sense that more chemical analyses may be needed in the future and also in the sense that these chemical analyses should be considered as a small part of a much larger geological data base. The interpretations discussed herein may be modified as that larger data base is examined and established. All of the chemical analyses performed to date are shown in Table 1. There are three parts to this table: (1) trace element analyses on rocks (limestone and tuff) and minerals (calcite/opal), (2) rare earth analyses on rocks (tuff) and minerals (calcite/opal), and (3) major element analyses + CO{sub 2} on rocks (tuff) and detritus sand. In this report, for each of the three parts of the table, the data and its possible significance will be discussed first, then some overall conclusions will be made, and finally some recommendations for future work will be offered.

  3. CAPSULE REPORT: RECOVERY OF SPENT SULFURIC ACID FROM STEEL PICKLING OPERATIONS

    EPA Science Inventory

    This report provides small manufacturers using sulfuric acid pickling with the technical and economic information necessary to select the most appropriate treatment technologies for recovering or treating their sulfuric acid. reatment alternatives include recovery of the acid, ne...

  4. 1997 Toxic Chemical Release Inventory Report for the Emergency Planning and Community Right-to-Know Act of 1986, Title III, Section 313

    SciTech Connect

    Heather McBride

    1997-07-01

    The Emergency Planning and Community Right-to-Know Act of 1986 (EPCIL4), Title III, Section 313 [also known as the Superfund Amendment and Reauthorization Act (SARA)], as modified by Executive Order 12856, requires all federal facilities to submit an annual Toxic Chemical Release Inventory report every July for the preceding calendar year. Owners and operators of manufacturing, processing, or production facilities are required to report their toxic chemical releases to all environmental mediums (air, water, soil, etc.). At Los Alamos National Laboratory (LANL), nitric acid was the only toxic chemical used in 1997 that met the reportable threshold limit of 10,000 lb. Form R is the only documentation required by the Environmental Protection Agency, and it is included in the appendix of this report. This report, as requested by DOE, is provided for documentation purposes. In addition, a detailed description of the evaluation and reporting process for chemicals and processes at LANL has been included.

  5. Quantitative Survey and Structural Classification of Hydraulic Fracturing Chemicals Reported in Unconventional Gas Production.

    PubMed

    Elsner, Martin; Hoelzer, Kathrin

    2016-04-01

    Much interest is directed at the chemical structure of hydraulic fracturing (HF) additives in unconventional gas exploitation. To bridge the gap between existing alphabetical disclosures by function/CAS number and emerging scientific contributions on fate and toxicity, we review the structural properties which motivate HF applications, and which determine environmental fate and toxicity. Our quantitative overview relied on voluntary U.S. disclosures evaluated from the FracFocus registry by different sources and on a House of Representatives ("Waxman") list. Out of over 1000 reported substances, classification by chemistry yielded succinct subsets able to illustrate the rationale of their use, and physicochemical properties relevant for environmental fate, toxicity and chemical analysis. While many substances were nontoxic, frequent disclosures also included notorious groundwater contaminants like petroleum hydrocarbons (solvents), precursors of endocrine disruptors like nonylphenols (nonemulsifiers), toxic propargyl alcohol (corrosion inhibitor), tetramethylammonium (clay stabilizer), biocides or strong oxidants. Application of highly oxidizing chemicals, together with occasional disclosures of putative delayed acids and complexing agents (i.e., compounds designed to react in the subsurface) suggests that relevant transformation products may be formed. To adequately investigate such reactions, available information is not sufficient, but instead a full disclosure of HF additives is necessary. PMID:26902161

  6. Chemically Activated Formation of Organic Acids in Reactions of the Criegee Intermediate with Aldehydes and Ketones

    SciTech Connect

    Jalan, Amrit; Allen, Joshua W.; Green, William H.

    2013-08-08

    Reactions of the Criegee intermediate (CI, .CH2OO.) are important in atmospheric ozonolysis models. In this work, we compute the rates for reactions between .CH2OO. and HCHO, CH3CHO and CH3COCH3 leading to the formation of secondary ozonides (SOZ) and organic acids. Relative to infinitely separated reactants, the SOZ in all three cases is found to be 48–51 kcal mol-1 lower in energy, formed via 1,3- cycloaddition of .CH2OO. across the CQO bond. The lowest energy pathway found for SOZ decomposition is intramolecular disproportionation of the singlet biradical intermediate formed from cleavage of the O–O bond to form hydroxyalkyl esters. These hydroxyalkyl esters undergo concerted decomposition providing a low energy pathway from SOZ to acids. Geometries and frequencies of all stationary points were obtained using the B3LYP/MG3S DFT model chemistry, and energies were refined using RCCSD(T)-F12a/cc-pVTZ-F12 single-point calculations. RRKM calculations were used to obtain microcanonical rate coefficients (k(E)) and the reservoir state method was used to obtain temperature and pressure dependent rate coefficients (k(T, P)) and product branching ratios. At atmospheric pressure, the yield of collisionally stabilized SOZ was found to increase in the order HCHO o CH3CHO o CH3COCH3 (the highest yield being 10-4 times lower than the initial .CH2OO. concentration). At low pressures, chemically activated formation of organic acids (formic acid in the case of HCHO and CH3COCH3, formic and acetic acid in the case of CH3CHO) was found to be the major product channel in agreement with recent direct measurements. Collisional energy transfer parameters and the barrier heights for SOZ reactions were found to be the most sensitive parameters determining SOZ and organic acid yield.

  7. Amonia gas: an improved reagent for chemical ionization mass spectrometry of bile acid methyl ester acetates

    SciTech Connect

    DeMark, B.R.; Klein, P.D.

    1981-01-01

    The ammonia chemical ionization mass spectra of 28 methyl ester acetate derivatives of bile acids and related compounds have been determined by gas-liquid chromatography-mass spectrometry. Advantages of ammonia ionization over the previously studied isobutane ionization include a 130 to 270% enhancement in the sensitivity of base peak monitoring, and direct determination of molecular weight from the base peak (M + NH/sub 4//sup +/) in the mass spectrum of any of the derivatives. Minor ions in the ammonia spectra also allow selective detection of 3-keto compounds and can indicate unsaturation or double bond conjugation in the molecule. The significance of these studies for the detection and quantitation of bile acids is discussed. 2 tables.

  8. Modeling of fermentation with continuous lactic acid removal by extraction utilizing reversible chemical complexation

    SciTech Connect

    Dai, Y.; King, C.J.

    1995-07-01

    Extractive fermentation is a technique that can be used to reduce end-product inhibition by removing fermentation products in situ or in an external recycle loop. A model is presented for fermentation with continuous lactic acid removal by extraction utilizing chemical complexation. The model is formulated considering the kinetics of cell growth and the equilibrium distribution of lactic acid between aqueous and organic phases. Simulations have been carried out for different sets of operating conditions. The choice of pH balances faster kinetics at higher pH against lower product concentrations in the solvent and more difficult regeneration. A key need is for liquid extractants or solid sorbents combining stronger uptake ability with economical regeneration and satisfactory biocompatibility.

  9. A model for heterogeneous chemical processes on the surfaces of ice and nitric acid trihydrate particles

    NASA Technical Reports Server (NTRS)

    Tabazadeh, Azadeh; Turco, Richard P.

    1993-01-01

    The study presents a model that incorporates the physics and physical chemistry of ice surfaces relevant to polar stratospheric clouds. Surface concentrations of H2O, HCl, HOCl, ClONO2, and N2O5 on ice and nitric acid trihydrate (NAT) crystals are computed, and surface reaction rates and reaction probabilities (sticking coefficients) are determined. For gas pressures of about 10 exp -7 torr and temperatures in the range of 180-200 K, HCl completely coats ice and water-rich NAT surfaces, while HOCl, ClOHO2, and N2O5 may cover 0.01-1 percent of these surfaces. The energy parameters are used to calculate surface temperatures such as adsorption and desorption constants, surface coverages, reaction rate coefficients, surface diffusion coefficients, and reaction probabilities for various species and chemical interactions on ice and NAT surfaces. Implications for chemical processing on polar stratospheric clouds are discussed.

  10. Heterogeneous chemical reaction of chlorine nitrate and water on sulfuric-acid surfaces at room temperature

    NASA Astrophysics Data System (ADS)

    Rossi, Michel J.; Malhotra, Ripudaman; Golden, David M.

    1987-02-01

    It has been demonstrated that the reaction between gaseous chlorine nitrate and water on room temperature liquid sulfuric acid (95.6%) surfaces yields hypochlorous acid in the gas phase. First-order loss rate constants for chlorine nitrate (equivalent to a value of the sticking coefficient γ = 3.2 × 10-4) have been determined. This value is five orders-of-magnitude greater than reported values on similar areas of more inert surfaces. Application of results of this type to stratospheric models must await ongoing studies at lower temperatures.

  11. Synthesis of CuFeS2 thin films from acidic chemical baths

    NASA Astrophysics Data System (ADS)

    Tonpe, Dipak; Gattu, Ketan; More, Ganesh; Upadhye, Deepak; Mahajan, Sandip; Sharma, Ramphal

    2016-05-01

    The growth of Copper iron sulfide nanocrystalline thin films onto glass substrates has been achieved by chemical bath deposition at acidic values of pH. The deposited thin films were characterized for their optoelectronic properties using Raman, UV-Vis spectroscopy. The Raman analysis confirms the formation of CuFeS2 thin film. The thin film with nanosized crystallites of CuFeS2 showed a bandgap of 0.7eV from UV-vis absorption spectroscopy.

  12. Insights into 6‐Methylsalicylic Acid Bio‐assembly by Using Chemical Probes

    PubMed Central

    Parascandolo, James S.; Havemann, Judith; Potter, Helen K.; Huang, Fanglu; Riva, Elena; Connolly, Jack; Wilkening, Ina; Song, Lijiang; Leadlay, Peter F.

    2016-01-01

    Abstract Chemical probes capable of reacting with KS (ketosynthase)‐bound biosynthetic intermediates were utilized for the investigation of the model type I iterative polyketide synthase 6‐methylsalicylic acid synthase (6‐MSAS) in vivo and in vitro. From the fermentation of fungal and bacterial 6‐MSAS hosts in the presence of chain termination probes, a full range of biosynthetic intermediates was isolated and characterized for the first time. Meanwhile, in vitro studies of recombinant 6‐MSA synthases with both nonhydrolyzable and hydrolyzable substrate mimics have provided additional insights into substrate recognition, providing the basis for further exploration of the enzyme catalytic activities.

  13. White biotechnology for green chemistry: fermentative 2-oxocarboxylic acids as novel building blocks for subsequent chemical syntheses.

    PubMed

    Stottmeister, U; Aurich, A; Wilde, H; Andersch, J; Schmidt, S; Sicker, D

    2005-12-01

    Functionalized compounds, which are difficult to produce by classical chemical synthesis, are of special interest as biotechnologically available targets. They represent useful building blocks for subsequent organic syntheses, wherein they can undergo stereoselective or regioselective reactions. "White Biotechnology" (as defined by the European Chemical Industry [ http://www.europabio.org/white_biotech.htm ], as part of a sustainable "Green Chemistry,") supports new applications of chemicals produced via biotechnology. Environmental aspects of this interdisciplinary combination include: Use of renewable feedstock Optimization of biotechnological processes by means of: New "high performance" microorganisms On-line measurement of substrates and products in bioreactors Alternative product isolation, resulting in higher yields, and lower energy demand In this overview we describe biotechnologically produced pyruvic, 2-oxopentaric and 2-oxohexaric acids as promising new building blocks for synthetic chemistry. In the first part, the microbial formation of 2-oxocarboxylic acids (2-OCAs) in general, and optimization of the fermentation steps required to form pyruvic acid, 2-oxoglutaric acid, and 2-oxo-D-gluconic acid are described, highlighting the fundamental advantages in comparison to chemical syntheses. In the second part, a set of chemical formula schemes demonstrate that 2-OCAs are applicable as building blocks in the chemical synthesis of, e.g., hydrophilic triazines, spiro-connected heterocycles, benzotriazines, and pyranoic amino acids. Finally, some perspectives are discussed. PMID:15995855

  14. Lead-acid bipolar battery assembled with primary chemically formed positive pasted electrode

    NASA Astrophysics Data System (ADS)

    Karami, H.; Shamsipur, M.; Ghasemi, S.; Mousavi, M. F.

    Primary chemically formed lead dioxide (PbO 2) was used as positive electrode in preparation of lead-acid bipolar batteries. Chemical oxidation was carried out by both mixing and dipping methods using an optimized amount of ammonium persulfate as a suitable oxidizing agent. X-ray diffraction studies showed that the weight ratio of β-PbO 2 to α-PbO 2 is more for mixing method before electrochemical forming. The electrochemical impedance spectroscopy (EIS) was used to investigate charge transfer resistance of the lead dioxide obtained by mixing and dipping methods before and after electrochemical forming. Four types of bipolar lead-acid batteries were produced with: (1) lead substrate and conventional electroforming; (2) carbon doped polyethylene substrate with conventional electroforming; (3) carbon doped polyethylene substrate with chemical forming after curing and drying steps in oxidant bath, followed by electrochemical forming, and (4) carbon doped polyethylene substrate with primary chemical oxidation in mixing step, followed by conventional electroforming. The capacity and cycle-life tests of the prepared bipolar batteries were performed by a home-made battery tester and using the pulsed current method. The prepared batteries showed low weight, high capacity, high energy density and high power density. The first capacities of bipolar batteries of type 1-4 were found to be 152, 150, 180 and 198 mAh g -1, respectively. The experimental results showed that the prepared 6 V bipolar batteries of type 1-4 have power density (per cell unit) of 59.7, 57.4, 78.46 and 83.30 mW g -1 (W kg -1), respectively.

  15. Do enantiomers of benzenesulfonic acid exist? Electron diffraction and quantum chemical study of molecular structure of benzenesulfonic acid

    NASA Astrophysics Data System (ADS)

    Giricheva, Nina I.; Girichev, Georgiy V.; Medvedeva, Yulia S.; Ivanov, Sergey N.; Petrov, Vyacheslav M.; Fedorov, Mikhail S.

    2012-09-01

    Molecular structure of benzenesulfonic acid was studied by gas-phase electron diffraction and quantum chemical (B3LYP/cc-pVTZ, МР2/cc-pVDZ, МР2/cc-pVTZ) methods. On the base of mass spectrometric analysis it was found that saturated vapor at Т = 396(9) K is represented by only molecular species, monomeric benzenesulfonic acid. Theoretical calculations showed that the molecule has two mirror conformers of C1 symmetry which can invert to each other via transition state of Cs symmetry by rotation of OH-group around Ssbnd O(H) bond. Both computational methods, B3LYP and MP2, resulted in the same structure of enantiomers; the MP2/cc-pVDZ calculations denoted a over-barrier transition between enantiomers at the temperature of electron diffraction experiment, while B3LYP and MP2 calculations with cc-pVTZ basis set estimated the barrier height to be comparable with the thermal energy value. Two geometric models of C1 and Cs symmetry were examined in gas electron diffraction structural analysis. It was established that the structure of C1 symmetry (Rf = 3.3%) demonstrated the best fit with GED data in comparison with Cs structure (Rf = 3.8%). In conformer of C1 symmetry an ordinary bond Ssbnd O(Н) is located almost orthogonal to benzene ring plane, and an Osbnd H bond practically eclipses one of Sdbnd O bonds of SO3H fragment. The following internuclear distances (Å) in benzenesulfonic acid were determined: rh1(Csbnd H)av = 1.116(6), rh1(Csbnd C)ср = 1.402(4), rh1(Csbnd S) = 1.770(5), rh1(Sdbnd O)av = 1.438(4), rh1(Ssbnd O) = 1.623(4), rh1(Osbnd H) = 0.870(17). Calculations of internal rotation potential functions and NBO-analysis of electron density distribution in a conformer and transition states between enantiomers were performed to establish the reasons of stability of the found asymmetric structure of the studied molecule. The structure of free molecule of benzenesulfonic acid was compared with that of molecular form in crystal.

  16. Structural and spectroscopic characterization of 2,3-difluorobenzoic acid and 2,4-difluorobenzoic acid with experimental techniques and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Karabacak, Mehmet; Cinar, Zeliha; Cinar, Mehmet

    2011-09-01

    In this study, the molecular conformation, vibrational and electronic transition analysis of 2,3-difluorobenzoic acid and 2,4-difluorobenzoic acid (C 7H 4F 2O 2) were presented using experimental techniques (FT-IR, FT-Raman and UV) and quantum chemical calculations. FT-IR and FT-Raman spectra in solid state were recorded in the region 4000-400 cm -1 and 4000-5 cm -1, respectively. The UV absorption spectra of the compounds that dissolved in ethanol were recorded in the range of 200-800 nm. The structural properties of the molecules in the ground state were calculated using density functional theory (DFT) and second order Møller-Plesset perturbation theory (MP2) employing 6-311++G(d,p) basis set. Optimized structure of compounds was interpreted and compared with the earlier reported experimental values. The scaled vibrational wavenumbers were compared with experimental results. The complete assignments were performed on the basis of the experimental data and total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. A study on the electronic properties, such as absorption wavelength, excitation energy, dipole moment and frontier molecular orbital energy, were performed by time dependent DFT (TD-DFT) approach. Based on the UV spectra and TD-DFT calculations, the electronic structure and the assignments of the absorption bands of steady compounds were discussed. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecules.

  17. The Chemical and Physical Properties of Poly(ε-caprolactone) Scaffolds Functionalised with Poly(vinyl phosphonic acid-co-acrylic acid).

    PubMed

    Bassi, A K; Gough, J E; Zakikhani, M; Downes, S

    2011-01-01

    There is a clinical need for a synthetic alternative to bone graft substitute (BGS) derived from demineralised bone matrix. We report the electrospinning of Poly(ε-caprolactone) (PCL) to form a 3-dimensional scaffold for use as a synthetic BGS. Additionally, we have used Poly(vinyl phosphonic acid-co-acrylic acid) (PVPA) to improve bone formation. Fibres were formed using a 10% w/v PCL/acetone solution. Infrared spectroscopy confirmed that the electrospinning process had no effect on the functional groups present in the resulting structure. The electrospun scaffolds were coated with PVPA (PCL/PVPA), and characterised. The stability of the PVPA coating after immersion in culture medium was assessed over 21 days. There was rapid release of the coating until day 2, after which the coating became stable. The wettability of the PCL scaffolds improved significantly, from 123.3 ± 10.8° to 43.3 ± 1.2° after functionalisation with PVPA. The compressive strength of the PCL/PVPA scaffolds (72 MPa) was significantly higher to that of the PCL scaffold (14 MPa), and an intermediate between trabecular and cortical bone (7 MPa and 170 MPa, resp.). The study has demonstrated that the PCL/PVPA scaffold has the desired chemical and biomechanical characteristics required for a material designed to be used as a BGS. PMID:22073379

  18. The Chemical and Physical Properties of Poly(ε-caprolactone) Scaffolds Functionalised with Poly(vinyl phosphonic acid-co-acrylic acid)

    PubMed Central

    Bassi, A. K.; Gough, J. E.; Zakikhani, M.; Downes, S.

    2011-01-01

    There is a clinical need for a synthetic alternative to bone graft substitute (BGS) derived from demineralised bone matrix. We report the electrospinning of Poly(ε-caprolactone) (PCL) to form a 3-dimensional scaffold for use as a synthetic BGS. Additionally, we have used Poly(vinyl phosphonic acid-co-acrylic acid) (PVPA) to improve bone formation. Fibres were formed using a 10% w/v PCL/acetone solution. Infrared spectroscopy confirmed that the electrospinning process had no effect on the functional groups present in the resulting structure. The electrospun scaffolds were coated with PVPA (PCL/PVPA), and characterised. The stability of the PVPA coating after immersion in culture medium was assessed over 21 days. There was rapid release of the coating until day 2, after which the coating became stable. The wettability of the PCL scaffolds improved significantly, from 123.3 ± 10.8° to 43.3 ± 1.2° after functionalisation with PVPA. The compressive strength of the PCL/PVPA scaffolds (72 MPa) was significantly higher to that of the PCL scaffold (14 MPa), and an intermediate between trabecular and cortical bone (7 MPa and 170 MPa, resp.). The study has demonstrated that the PCL/PVPA scaffold has the desired chemical and biomechanical characteristics required for a material designed to be used as a BGS. PMID:22073379

  19. Investigation of reports of sexual dysfunction among male chemical workers manufacturing stilbene derivatives

    SciTech Connect

    Quinn, M.M.; Wegman, D.H.; Greaves, I.A.; Hammond, S.K.; Ellenbecker, M.J.; Spark, R.F.; Smith, E.R. )

    1990-01-01

    A Health Hazard Evaluation was conducted by the National Institute for Occupational Safety and Health in an area of a large chemical plant that manufactured the stilbene derivative 4,4'-diaminostilbene-2,2'-disulfonic acid, an intermediate used for the production of optical brightening agents. Men employed in the area reported problems with impotence. The study population consisted of 44 men aged 20-57 years (mean age 37) employed in the area at the time of the evaluation. An industrial hygiene investigation, health and work history questionnaire survey, physical examinations, and blood chemistry and serum hormone evaluation were conducted. Fourteen percent of the men reported symptoms of impotence over the preceding 6 or more months, 7% had potency problems of shorter duration, and 7% were not currently impotent but had experienced impotence for 6 or more months in the past; 36% experienced decreased libido, all since beginning work in the production area. Low levels of serum testosterone (less than 350 ng/dl) were observed in 37% of the men. The low serum testosterone concentrations were not accounted for fully by diurnal variation or an effect of rotating shift work. It is suggested that exposures to chemicals possessing estrogenic activity may be related to the observed health effects in these workers.

  20. P-Area Acid/Caustic Basin groundwater monitoring report

    SciTech Connect

    Thompson, C.Y.

    1993-03-01

    During fourth quarter 1992, samples from the six PAC monitoring wells at the P-Area Acid/Caustic Basin were analyzed for indicator parameters, groundwater quality parameters, and parameters characterizing suitability as a drinking water supply. Monitoring results that exceeded the final Primary Drinking Water Standards (PDWS) or the Savannah River Site (SRS) flagging criteria or turbidity standard during the quarter are discussed in this report. During fourth quarter 1992, a sample from well PAC 6 exceeded the SRS turbidity standard. Iron and manganese each exceeded its Flag 2 criterion in wells PAC 2, 5, and 6. No analytes exceeded the final PDWS in wells at the P-Area Acid/Caustic Basin during 1992.

  1. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: July--September 1997

    SciTech Connect

    Jubin, R.T.

    1998-07-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July--September 1997. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within nine major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Biotechnology, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information.

  2. Comparison of some spectroscopic and physico-chemical properties of humic acids extracted from sewage sludge and bottom sediments

    NASA Astrophysics Data System (ADS)

    Polak, J.; Bartoszek, M.; Sułkowski, W. W.

    2009-04-01

    Comparison of the physico-chemical properties was carried out for humic acids extracted from sewage sludge and bottom sediments. The isolated humic acids were investigated by means of EPR, IR, UV/vis spectroscopic methods and elementary analysis AE. On the basis of earlier studies it was stated that humic acids extracted from sewage sludge can be divided into humic acids extracted from raw sewage sludge and from sewage sludge after the digestion process. The digestion process was found to have the most significant effect on the physico-chemical properties of humic acids extracted from sludge during sewage treatment. Humic acids extracted from sewage sludge had higher free radical concentration than humic acid extracted from bottom sediments. Values of the g-factor were similar for all studied samples. However, it is noteworthy that g-factor values for humic acid extracted from raw sewage sludge and from bottom sediments were lower in comparison to the humic acid extracted from sewage sludge after the fermentation processes. The IR spectra of all studied humic acids confirmed the presence of functional groups characteristic for humic substances. It was also observed that humic acids extracted from bottom sediments had a more aromatic character and contained less carbon, nitrogen and hydrogen than those extracted from the sewage sludge.

  3. Biosynthesis and chemical synthesis of carboxyl-linked glucuronide of lithocholic acid.

    PubMed

    Panfil, I; Lehman, P A; Zimniak, P; Ernst, B; Franz, T; Lester, R; Radominska, A

    1992-06-22

    The glucuronidation of lithocholic acid (LA) by phenobarbital-induced male Fischer 344 rat liver microsomes supplemented with UDP-glucuronic acid was studied. A single radioactive metabolite was formed and its structure was determined by high pressure liquid chromatography/particle beam/mass spectrometry (HPLC/PB/MS), both with and without prior methylation and acetylation of the sample. The reaction product was rigorously identified as the 1-O-acyl-beta-D-glucuronide of LA by comparison with a chemically synthesized standard. The chemical synthesis of the acyl glucuronide of LA was accomplished via a condensation reaction using benzyl 2,3,4-tri-O-benzyl-D-glucopyranuronate. The latter compound was prepared in two steps from benzyl 2,3,4-tri-O-benzyl-1-O-methyl-alpha-D-glucopyranuronate via the 1-O-acetyl derivative. The stereoselective beta coupling of LA with 2,3,4-tri-O-benzyl-D-glucopyranuronate was achieved by the Mitsunobu reaction, in the presence of the free hydroxyl function of LA, using triphenylphosphine and diisopropyl azodicarboxylate in THF followed by preparative TLC. The benzylic ester and ether groups were cleaved by hydrogenation with Pd on charcoal as the catalyst. Positive identification of the glucuronide was established by HPLC/PB/MS and 1H-NMR spectra. No side products formed by acyl migration were detected, but the free acyl glucuronide underwent rapid transesterification in methanol. PMID:1627626

  4. Chemically modified nucleic acid aptamers for in vitro selections: evolving evolution.

    PubMed

    Kusser, W

    2000-03-01

    Combinatorial library selections through the systematic evolution of ligands by exponential enrichment (SELEX) technique identify so-called nucleic acid aptamers that bind with high-affinity and specificity to a wide range of selected molecules. However, the modest chemical functionality of nucleic acids poses some limits on their versatility as binders and catalysts, and, furthermore, the sensitivity of pure RNA- and DNA-based aptamers to nucleases restricts their use as therapeutic and diagnostic agents. Here we review synthetic chemistries for modifying nucleotides that have been developed to enhance the affinity of aptamers for targets and to increase their stability in biological fluids. Implementation of in vitro selections with modified nucleotides promises to be an elegant technique for the creation of ligands with novel physical and chemical properties and is anticipated to have a significant impact on biotechnology, diagnostics and drug development. The current molecular designs and applications of modified nucleotides for in vitro selections are reviewed, along with a discussion of future developments expected to further the utility of this approach in both practical and theoretical terms. PMID:10943570

  5. Biodistribution profiling of the chemical modified hyaluronic acid derivatives used for oral delivery system.

    PubMed

    Hsieh, Chien-Ming; Huang, Yu-Wen; Sheu, Ming-Thau; Ho, Hsiu-O

    2014-03-01

    A series of adipic acid dihydrazide (ADH)-modified hyaluronic acid (HA-ADH) compounds were synthesized and conjugated with QDots (QDots-HA conjugates) to assess the effects of the molecular weight (MW) and extent of chemical modification of HA on its biodistribution. Their physicochemical structures were confirmed by complementary application of GPC, (1)H NMR, FTIR, and UV-vis spectroscopic methods. In vivo imaging of QDots-HA conjugates after oral administration was analyzed to investigate their biodistribution in nude mice. Simultaneously, real-time bioimaging was confirmed by an anatomical analysis to investigate the organ-specific accumulation of conjugates. QDot-HA conjugates with a higher MW of HA or high modification presented relatively slow clearance leading to an extension of the retention time for up to 10 days, whereas those with lower MWs of HA or a low modification extent exhibited quick absorption and elimination after oral administration. Taken together, HA derivatives with suitable MWs and chemical modification extents can be used to design new, more-sophisticated, and intelligent HA-based vehicles for oral delivery with diverse characteristics. PMID:24315950

  6. Optimum concentration ratio of photodecomposable quencher to acid generator in chemically amplified extreme ultraviolet resists

    NASA Astrophysics Data System (ADS)

    Kozawa, Takahiro

    2015-12-01

    In chemically amplified resists used for ionizing radiations such as an extreme ultraviolet radiation, thermalized electrons and protons play important roles in pattern formation. Photodecomposable quenchers are important for 11 nm half-pitch fabrication because they capture both thermalized electrons and protons. However, their effects are complicated for the same reason. In this study, the optimum concentration ratio of photodecomposable quenchers to acid generators in terms of the trade-off relationships between resolution, line width roughness (LWR), and sensitivity was theoretically investigated, assuming line-and-space patterns of 11 nm half-pitch. To suppress LWR to less than 20% critical dimension (CD), the recommended total sensitizer concentration (the sum of acid generator and photodecomposable quencher concentrations) was in the range of 0.20-0.22 nm-3. The expected sensitivities were 30-40 mJ cm-2 when the resist performance of the latest chemically amplified resists was assumed. The optimum ratio of photodecomposable quencher concentration to the total sensitizer concentration was 0.55.

  7. Perfluorononanoic acid in combination with 14 chemicals exerts low-dose mixture effects in rats.

    PubMed

    Hadrup, Niels; Pedersen, Mikael; Skov, Kasper; Hansen, Niels Lund; Berthelsen, Line Olrik; Kongsbak, Kristine; Boberg, Julie; Dybdahl, Marianne; Hass, Ulla; Frandsen, Henrik; Vinggaard, Anne Marie

    2016-03-01

    Humans are simultaneously exposed to several chemicals that act jointly to induce mixture effects. At doses close to or higher than no-observed adverse effect levels, chemicals usually act additively in experimental studies. However, we are lacking knowledge on the importance of exposure to complex real-world mixtures at more relevant human exposure levels. We hypothesised that adverse mixture effects occur at doses approaching high-end human exposure levels. A mixture (Mix) of 14 chemicals at a combined dose of 2.5 mg/kg bw/day was tested in combination with perfluorononanoic acid (PFNA) at doses of 0.0125 (Low PFNA), 0.25 (Mid PFNA) and 5 (High PFNA) mg/kg bw/day by oral administration for 14 days in juvenile male rats. Indication of a toxicokinetic interaction was found, as simultaneous exposure to PFNA and the Mix caused a 2.8-fold increase in plasma PFNA concentrations at Low PFNA. An increase in testosterone and dihydrotestosterone plasma concentrations was observed for Low PFNA + Mix. This effect was considered non-monotonic, as higher doses did not cause this effect. Reduced LH plasma concentrations together with increased androgen concentrations indicate a disturbed pituitary-testis axis caused by the 15-chemical mixture. Low PFNA by itself increased the corticosterone plasma concentration, an effect which was normalised after simultaneous exposure to Mix. This combined with affected ACTH plasma concentrations and down-regulation of 11β HSD mRNA in livers indicates a disturbed pituitary-adrenal axis. In conclusion, our data suggest that mixtures of environmental chemicals at doses approaching high-end human exposure levels can cause a hormonal imbalance and disturb steroid hormones and their regulation. These effects may be non-monotonic and were observed at low doses. Whether this reflects a more general phenomenon that should be taken into consideration when predicting human mixture effects or represents a rarer phenomenon remains to be shown. PMID

  8. 48 CFR 52.223-14 - Toxic Chemical Release Reporting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... not manufacture, process, or otherwise use any toxic chemicals listed in 40 CFR 372.65; (2) The... established under section 313(f) of EPCRA, 42 U.S.C. 11023(f) (including the alternate thresholds at 40 CFR... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Toxic Chemical...

  9. Use of liquid chromatography-atmospheric pressure chemical ionization-ion trap mass spectrometry for identification of oleanolic acid and ursolic acid in Anoectochilus roxburghii (wall.) Lindl.

    PubMed

    Huang, Liying; Chen, Tianwen; Ye, Zhao; Chen, Guonan

    2007-07-01

    Oleanolic acid (OA) and ursolic acid (UA) are the two important bioactive compounds in Anoectochilus roxburghii (wall) Lindl (A. roxburghii), which has been used as a traditional Chinese medicine. So far, there has been no report to indicate that A. roxburghii contains these two bioactive compounds. It is necessary to develop an effective method to extract and analyze OA and UA in A. roxburghii. In this paper, a quantitative method, consisting of supercritical fluid extraction (SFE) followed by liquid chromatography-atmospheric pressure chemical ionization-ion trap mass spectrometry (LC-APCI-IT-MS) analysis, was developed for identification of OA and UA in A. roxburghii. The extraction was carried out by using CO(2) as the supercritical fluid and ethanol as the modifier before LC separation. The mobile phase used for LC separation consisted of acetic acid (1%, v/v), water (15%, v/v) and methanol (84%, v/v), and the elution was performed at a flow rate of 0.8 ml/min. The mass spectrometer was operated in APCI(+) mode with selected ion monitoring (SIM) to quantify OA and UA at m/z 439.4. Under optimum conditions, the linear responses of OA and UA were obtained in the concentration range of 0.5-80 (r = 0.9992) and 0.5-50 microg/ml (r = 0.9989) with the detection limits of 0.125 and 0.085 microg/ml, respectively. The proposed method has been used for the identification and quantitation of OA and UA in a real A. roxburghii sample. PMID:17535010

  10. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division, April--June 1997

    SciTech Connect

    Jubin, R.T.

    1998-06-01

    The Chemical and Energy Research Section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within six major areas of research: Hot Cell Operations, Process Chemistry and thermodynamics, Separations and Materials Synthesis, Solution Thermodynamics, biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information.

  11. The selective conversion of glutamic acid in amino acid mixtures using glutamate decarboxylase--a means of separating amino acids for synthesizing biobased chemicals.

    PubMed

    Teng, Yinglai; Scott, Elinor L; Sanders, Johan P M

    2014-01-01

    Amino acids (AAs) derived from hydrolysis of protein rest streams are interesting feedstocks for the chemical industry due to their functionality. However, separation of AAs is required before they can be used for further applications. Electrodialysis may be applied to separate AAs, but its efficiency is limited when separating AAs with similar isoelectric points. To aid the separation, specific conversion of an AA to a useful product with different charge behavior to the remaining compounds is desired. Here the separation of L-aspartic acid (Asp) and L-glutamic acid (Glu) was studied. L-Glutamate α-decarboxylase (GAD, Type I, EC 4.1.1.15) was applied to specifically convert Glu into γ-aminobutyric acid (GABA). GABA has a different charge behavior from Asp therefore allowing a potential separation by electrodialysis. Competitive inhibition and reduced operational stability caused by Asp could be eliminated by maintaining a sufficiently high concentration of Glu. Immobilization of GAD does not reduce the enzyme's initial activity. However, the operational stability was slightly reduced. An initial study on the reaction operating in a continuous mode was performed using a column reactor packed with immobilized GAD. As the reaction mixture was only passed once through the reactor, the conversion of Glu was lower than expected. To complete the conversion of Glu, the stream containing Asp and unreacted Glu might be recirculated back to the reactor after GABA has been removed. Overall, the reaction by GAD is specific to Glu and can be applied to aid the electrodialysis separation of Asp and Glu. PMID:24616376

  12. H-Area Acid/Caustic Basin groundwater monitoring report

    SciTech Connect

    Not Available

    1993-06-01

    During first quarter 1993, samples from the four HAC monitoring wells at the H-Area Acid/Caustic Basin received comprehensive analyses. Monitoring results that exceeded the final Primary Drinking Water Standards (PDWS) or the Savannah River Site (SRS) flagging criteria or turbidity standard during the quarter are the focus of this report. Tritium exceeded the final PDWS only in well HAC 1 during first quarter 1993. Aluminum exceeded its Flag 2 criterion in wells HAC 2, 3, and 4. Iron was elevated in well HAC 1, 2, and 3. No well samples exceeded the SRS turbidity standard.

  13. K-Area Acid/Caustic Basin groundwater monitoring report

    SciTech Connect

    Thompson, C.Y.

    1992-09-01

    During second quarter 1992, samples from the seven older KAC monitoring wells at the K-Area Acid/Caustic Basin were analyzed for herbicides, indicator parameters, major ions, pesticides, radionuclides, turbidity, and other constituents. New wells FAC 8 and 9 received the first of four quarters of comprehensive analyses and GC/MS VOA (gas chromatograph/ mass spectrometer volatile organic analyses). Monitoring results that exceeded the US Environmental Protection Agency's Primary Drinking Water Standards (PDWS) or the Savannah River Site (SRS) flagging criteria or turbidity standards during the quarter are discussed in this report.

  14. Fatty acid from the renewable sources: a promising feedstock for the production of biofuels and biobased chemicals.

    PubMed

    Liu, Hui; Cheng, Tao; Xian, Mo; Cao, Yujin; Fang, Fang; Zou, Huibin

    2014-01-01

    With the depletion of the nonrenewable petrochemical resources and the increasing concerns of environmental pollution globally, biofuels and biobased chemicals produced from the renewable resources appear to be of great strategic significance. The present review described the progress in the biosynthesis of fatty acid and its derivatives from renewable biomass and emphasized the importance of fatty acid serving as the platform chemical and feedstock for a variety of chemicals. Due to the low efficient conversions of lignocellulosic biomass or carbon dioxide to fatty acid, we also put forward that rational strategies for the production of fatty acid and its derivatives should further derive from the consideration of whole bioprocess (pretreatment, saccharification, fermentation, separation), multiscale analysis and interdisciplinary combinations (omics, kinetics, metabolic engineering, synthetic biology, fermentation and so on). PMID:24361277

  15. Production of levulinic acid and use as a platform chemical for derived products

    SciTech Connect

    Bozell, J.J.; Moens, L.; Elliott, D.C.; Wang, Y.; Neuenscwander, G.G.; Fitzpatrick, S.W.; Bilski, R.J.; Jarnefeld, J.L.

    1999-07-01

    Levulinic acid (LA) can be produced cost effectively and in high yield from renewable feedstocks in a new industrial process. The technology is being demonstrated on a one ton/day scale at a facility in South Glens Falls, New York. Low cost LA can be used as a platform chemical for the production of a wide range of value-added products. This research has demonstrated that LA can be converted to methyltetrahydrofuran (MTHF), a solvent and fuel extender. MTHF is produced in {gt}80% molar yield via a single stage catalytic hydrogenation process. A new preparation of {delta}-aminolevulinic acid (DALA), a broad spectrum herbicide from LA has also been developed. Each step in this new process proceeds in high ({gt}80%) yield and affords DALA (as the hydrochloride salt) in greater than 90% purity, giving a process that could be commercially viable. LA is also being investigated as a starting material for the production of diphenolic acid (DPA), a direct replacement for bisphenol A.

  16. Chemical and enzymatic preparation of acylglycerols containing C18 furanoid fatty acids.

    PubMed

    Lie Ken Jie, M S; Syed-Rahmatullah, M S

    1995-01-01

    C18 furanoid triacylglycerol [glycerol tri-(9,12-epoxy-9,11-octadecadienoate)] was prepared by chemical transformation of triricinolein isolated from castor oil. The procedure involved oxidation, epoxidation and cyclization of the epoxy-keto intermediate with sodium azide and ammonium chloride in aqueous ethanol. The furanoid triacylglycerol was also obtained by esterification of C18 furanoid fatty acid with glycerol using Novozyme 435 (Novo Nordisk A.S., Bagsvaerd, Denmark) as biocatalyst. When Lipozyme (Novo Nordisk A.S.) was used, a mixture of the furanoid 1(3)-rac-monoacylglycerol and 1,3-diacylglycerol was obtained. In order to obtain the C18 furanoid 1,2(2,3)-diacylglycerol, selective hydrolysis of the furanoid triacylglycerol was achieved using porcine pancreatic lipase in tris(hydroxymethyl) methylamine buffer. Interesterification of triolein with methyl C18 furanoid ester in the presence of Lipozyme showed maximum incorporation of 34% of furanoid fatty acid. Extension of the interesterification to vegetable oils (olive, peanut, sunflower, corn and palm oil) allowed a maximum of 24% furanoid acid incorporation to be achieved. PMID:7760692

  17. Quantum chemical modeling of humic acid/air equilibrium partitioning of organic vapors.

    PubMed

    Niederer, Christian; Goss, Kai-Uwe

    2007-05-15

    Classical approaches for predicting soil organic matter partition coefficients of organic compounds require a calibration with experimental partition data and, for good accuracy, experimental compound descriptors. In this study we evaluate the quantum chemical model COSMO-RS in its COSMOtherm implementation for the prediction of about 200 experimental Leonardite humic acid/air partition coefficients without calibration or experimental compound descriptors, but simply based on molecular structures. For this purpose a Leonardite Humic Acid model monomer limited to 31 carbon atoms was derived from 13C NMR analysis, elemental analysis, and acidic function analysis provided in the literature. Altogether the COSMOtherm calculations showed a good performance and we conclude that it may become a very promising tool for the prediction of sorption in soil organic matter for compounds for which the molecular structure is the only reliable information available. COSMOtherm can be expected to be very robust with respectto new and complex compound structures because its calculations are based on a fundamental assessment of the underlying intermolecular forces. In contrast, other empirical models that are also based on the molecular structure of the sorbate have an application domain that is limited by their calibration data set that is often unknown to the user. PMID:17547191

  18. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass.

    PubMed

    Steen, Eric J; Kang, Yisheng; Bokinsky, Gregory; Hu, Zhihao; Schirmer, Andreas; McClure, Amy; Del Cardayre, Stephen B; Keasling, Jay D

    2010-01-28

    Increasing energy costs and environmental concerns have emphasized the need to produce sustainable renewable fuels and chemicals. Major efforts to this end are focused on the microbial production of high-energy fuels by cost-effective 'consolidated bioprocesses'. Fatty acids are composed of long alkyl chains and represent nature's 'petroleum', being a primary metabolite used by cells for both chemical and energy storage functions. These energy-rich molecules are today isolated from plant and animal oils for a diverse set of products ranging from fuels to oleochemicals. A more scalable, controllable and economic route to this important class of chemicals would be through the microbial conversion of renewable feedstocks, such as biomass-derived carbohydrates. Here we demonstrate the engineering of Escherichia coli to produce structurally tailored fatty esters (biodiesel), fatty alcohols, and waxes directly from simple sugars. Furthermore, we show engineering of the biodiesel-producing cells to express hemicellulases, a step towards producing these compounds directly from hemicellulose, a major component of plant-derived biomass. PMID:20111002

  19. Composite nanoparticles based on hyaluronic acid chemically cross-linked with alpha,beta-polyaspartylhydrazide.

    PubMed

    Pitarresi, G; Craparo, E F; Palumbo, F S; Carlisi, B; Giammona, G

    2007-06-01

    In this paper, new composite nanoparticles based on hyaluronic acid (HA) chemically cross-linked with alpha,beta-polyaspartylhydrazide (PAHy) were prepared by the use of a reversed-phase microemulsion technique. HA-PAHy nanoparticles were characterized by FT-IR spectroscopy, confirming the occurrence of the chemical cross-linking, dimensional analysis, and transmission electron micrography, showing a sub-micrometer size and spherical shape. Zeta potential measurements demonstrated the presence of HA on the nanoparticle surface. A remarkable affinity of the obtained nanoparticles toward aqueous media that simulate some biological fluids was found. Stability studies showed the absence of chemical degradation in various media, while in the presence of hyaluronidase, a partial degradation occurred. Cell compatibility was evaluated by performing in vitro assays on human chronic myelogenous leukaemia cells (K-562) chosen as a model cell line and a haemolytic test. HA-PAHy nanoparticles were also able to entrap 5-fluorouracil, chosen as a model drug, and release it in a simulated physiological fluid and in human plasma with a mechanism essentially controlled by a Fickian diffusion. PMID:17521164

  20. pH-Sensitive ionomeric particles obtained via chemical conjugation of silk with poly(amino acid)s.

    PubMed

    Serban, Monica A; Kaplan, David L

    2010-12-13

    Silk-fibroin-based biomaterials have been widely utilized for a range of biomaterial-related systems. For all these previously reported systems, the β-sheet forming feature of the silk was the key stabilizing element of the final material structure. Herein, we describe a different strategy, based on the engineering of silk-based ionomers that can yield stable colloidal composites or particle suspensions through electrostatic interactions. These silk-based ionomers were obtained by carbodiimide-mediated coupling of silk fibroin with polylysine hydrobromide and polyglutamic acid sodium salts, respectively. Colloidal composites could be obtained by mixing the ionomeric pair at high concentration (i.e., 25% w/v), while combining them at lower concentrations (i.e., 5% w/v) yielded particle suspensions. The assembly of the ionomers was driven by electrostatic interactions, pH-dependent, and reversible. The network assembly appeared to be polarized, with the interacting poly(amino acid) chains clustered to the core of the particles and the silk backbone oriented outward. In agreement with this assembly mode, doxorubicin, a hydrophilic antitumor drug, could be released at a slow rate, in a pH-dependent manner, indicating that the inside of the ionomeric particles was mainly hydrophilic in nature. PMID:21028849

  1. K-Area Acid/Caustic Basin groundwater monitoring report

    SciTech Connect

    Not Available

    1992-03-01

    During fourth quarter 1991, samples from the KAC monitoring wells at the K-Area Acid/Caustic Basin of Savannah River Plant were analyzed for indicator parameters, turbidity, major ions, volatile organic compounds, radionuclides, and other constituents. Monitoring results that exceeded the US Environmental Protection Agency Primary Drinking Water Standards (PDWS) and the Savannah River Site (SRS) flagging criteria and turbidity standards during the quarter, with summary results for the year, are presented in this report. No constituents exceeded the PDWS at the K-Area Acid/Caustic Basin. Iron and total organic halogens exceeded Flag 2 criteria in sidegradient-to-downgradient well KAC 7 but not in other KAC wells. No priority pollutants (EPA, 1990) exceeded the PDWS or the Flag 2 criteria in wells KAC 1 and 3. None of the KAC wells exceeded the SRS turbidity standard. Lead exceeded the PDWS in well KAC 7 during first quarter. No other constituent exceeded the PDWS at the K-Area Acid/Caustic Basin during the year.

  2. CHARACTERIZATION OF INDIVIDUAL CHEMICAL REACTIONS CONSUMING ACID DURING NUCLEAR WASTE PROCESSING AT THE SAVANNAH RIVER SITE - 136B

    SciTech Connect

    Koopman, D.; Pickenheim, B.; Lambert, D.; Newell, J.; Stone, M.

    2009-09-02

    Conversion of legacy radioactive high-level waste at the Savannah River Site into a stable glass waste form involves a chemical pretreatment process to prepare the waste for vitrification. Waste slurry is treated with nitric and formic acids to achieve certain goals. The total quantity of acid added to a batch of waste slurry is constrained by the catalytic activity of trace noble metal fission products in the waste that can convert formic acid into hydrogen gas at many hundreds of times the radiolytic hydrogen generation rate. A large block of experimental process simulations were performed to characterize the chemical reactions that consume acid prior to hydrogen generation. The analysis led to a new equation for predicting the quantity of acid required to process a given volume of waste slurry.

  3. Materials and Chemical Sciences Division annual report, 1987

    SciTech Connect

    Not Available

    1988-07-01

    Research programs from Lawrence Berkeley Laboratory in materials science, chemical science, nuclear science, fossil energy, energy storage, health and environmental sciences, program development funds, and work for others is briefly described. (CBS)

  4. Chemical Composition, Nitrogen Fractions and Amino Acids Profile of Milk from Different Animal Species.

    PubMed

    Rafiq, Saima; Huma, Nuzhat; Pasha, Imran; Sameen, Aysha; Mukhtar, Omer; Khan, Muhammad Issa

    2016-07-01

    Milk composition is an imperative aspect which influences the quality of dairy products. The objective of study was to compare the chemical composition, nitrogen fractions and amino acids profile of milk from buffalo, cow, sheep, goat, and camel. Sheep milk was found to be highest in fat (6.82%±0.04%), solid-not-fat (11.24%±0.02%), total solids (18.05%±0.05%), protein (5.15%±0.06%) and casein (3.87%±0.04%) contents followed by buffalo milk. Maximum whey proteins were observed in camel milk (0.80%±0.03%), buffalo (0.68%±0.02%) and sheep (0.66%±0.02%) milk. The non-protein-nitrogen contents varied from 0.33% to 0.62% among different milk species. The highest r-values were recorded for correlations between crude protein and casein in buffalo (r = 0.82), cow (r = 0.88), sheep (r = 0.86) and goat milk (r = 0.98). The caseins and whey proteins were also positively correlated with true proteins in all milk species. A favorable balance of branched-chain amino acids; leucine, isoleucine, and valine were found both in casein and whey proteins. Leucine content was highest in cow (108±2.3 mg/g), camel (96±2.2 mg/g) and buffalo (90±2.4 mg/g) milk caseins. Maximum concentrations of isoleucine, phenylalanine, and histidine were noticed in goat milk caseins. Glutamic acid and proline were dominant among non-essential amino acids. Conclusively, current exploration is important for milk processors to design nutritious and consistent quality end products. PMID:26954163

  5. Chemical rescue, multiple ionizable groups, and general acid-base catalysis in the HDV genomic ribozyme.

    PubMed

    Perrotta, Anne T; Wadkins, Timothy S; Been, Michael D

    2006-07-01

    In the ribozyme from the hepatitis delta virus (HDV) genomic strand RNA, a cytosine side chain is proposed to facilitate proton transfer in the transition state of the reaction and, thus, act as a general acid-base catalyst. Mutation of this active-site cytosine (C75) reduced RNA cleavage rates by as much as one million-fold, but addition of exogenous cytosine and certain nucleobase or imidazole analogs can partially rescue activity in these mutants. However, pH-rate profiles for the rescued reactions were bell shaped, and only one leg of the pH-rate curve could be attributed to ionization of the exogenous nucleobase or buffer. When a second potential ionizable nucleobase (C41) was removed, one leg of the bell-shaped curve was eliminated in the chemical-rescue reaction. With this construct, the apparent pK(a) determined from the pH-rate profile correlated with the solution pK(a) of the buffer, and the contribution of the buffer to the rate enhancement could be directly evaluated in a free-energy or Brønsted plot. The free-energy relationship between the acid dissociation constant of the buffer and the rate constant for cleavage (Brønsted value, beta, = approximately 0.5) was consistent with a mechanism in which the buffer acted as a general acid-base catalyst. These data support the hypothesis that cytosine 75, in the intact ribozyme, acts as a general acid-base catalyst. PMID:16690998

  6. Chemical Composition, Nitrogen Fractions and Amino Acids Profile of Milk from Different Animal Species

    PubMed Central

    Rafiq, Saima; Huma, Nuzhat; Pasha, Imran; Sameen, Aysha; Mukhtar, Omer; Khan, Muhammad Issa

    2016-01-01

    Milk composition is an imperative aspect which influences the quality of dairy products. The objective of study was to compare the chemical composition, nitrogen fractions and amino acids profile of milk from buffalo, cow, sheep, goat, and camel. Sheep milk was found to be highest in fat (6.82%±0.04%), solid-not-fat (11.24%±0.02%), total solids (18.05%±0.05%), protein (5.15%±0.06%) and casein (3.87%±0.04%) contents followed by buffalo milk. Maximum whey proteins were observed in camel milk (0.80%±0.03%), buffalo (0.68%±0.02%) and sheep (0.66%±0.02%) milk. The non-protein-nitrogen contents varied from 0.33% to 0.62% among different milk species. The highest r-values were recorded for correlations between crude protein and casein in buffalo (r = 0.82), cow (r = 0.88), sheep (r = 0.86) and goat milk (r = 0.98). The caseins and whey proteins were also positively correlated with true proteins in all milk species. A favorable balance of branched-chain amino acids; leucine, isoleucine, and valine were found both in casein and whey proteins. Leucine content was highest in cow (108±2.3 mg/g), camel (96±2.2 mg/g) and buffalo (90±2.4 mg/g) milk caseins. Maximum concentrations of isoleucine, phenylalanine, and histidine were noticed in goat milk caseins. Glutamic acid and proline were dominant among non-essential amino acids. Conclusively, current exploration is important for milk processors to design nutritious and consistent quality end products. PMID:26954163

  7. Down Select Report of Chemical Hydrogen Storage Materials, Catalysts, and Spent Fuel Regeneration Processes - May 2008

    SciTech Connect

    Ott, Kevin C.; Linehan, Sue; Lipiecki, Frank; Christopher, Aardahl L.

    2008-05-12

    Chemical Hydrogen Storage Center of Excellence FY2008 Second Quarter Milestone Report: Technical report describing assessment of hydrogen storage materials and progress towards meeting DOE’s hydrogen storage targets.

  8. Simulating the Changes of Minerals and Elements under Chemical Weathering by Acid Hydrothermal Experiments

    NASA Astrophysics Data System (ADS)

    Lo, F.; Chen, H.

    2013-12-01

    In paleoenvironmental research, previous investigations reveal that the intensity of chemical weathering can be inferred from the elemental variations of marine or lacustrine sediments. Different kinds of rocks from Taiwan were applied in hydrothermal experiments to simulate element proportions and leaching sequence under chemical weathering. In our experiments, powder samples (2g) are treated in sulfuric acid solutions (20 ml) of 0.05M and 0.5M at 150°C for 1, 4, 7, 14, 30 and 60 days, respectively. We can further discuss mineral alteration and relative elemental migration according to the experimental results. There is no obvious variation in mineral phase and element at 0.05M, but the results of 0.5M have significant variations. The elemental contents are affected by the mineral leaching and secondary mineral deposited, so we use XRD and SEM to identify the existence of secondary minerals and their compositions. Our research exhibits that K/Rb, Ti/Al and Rb/Sr ratios show similar trend in most parent rocks (i.e. granite, andesite, quartz sandstone, calcite sandstone and mudstone) at 0.5M long-term experiments; however, the CIA value, was generally used as the proxy of chemical weathering, keep in a stable condition. The K/Rb and Ti/Al ratio increase, but Rb/Sr ratio decreases. In contrast, the actinolite schist and serpentinite show the different result. It is probably caused by the major mineral, chlorite and serpentinite in the rocks. We conclude that the major element Ti is relatively stable. Therefore, we use each element divided by Ti for judging relatively enriched or depleted under chemical weathering processes. Finally, we find that K/Rb ratio, which has obvious variations, is seldom influenced by mineral assemblage, so it can be regarded as a suitable weathering proxy.

  9. Development of Interim Chemical Protective Overgarment (ICPO). Final report

    SciTech Connect

    Roy, M.

    1994-04-01

    The Navy Clothing and Textile Research Facility was tasked by the Naval Sea Systems Command to develop an interim chemical protective overgarment (ICPO). When compared to the current chemical protective overgarment (CPO), the ICPO development was to improved fire protection; improved chemical agent protection with increased storage life; increased tolerance time, working in hot-humid environments; and improved compatibility with chemical defense (CD) and flight deck (ED) individual protective equipment (IPE). These near term improvements to the current CPO, included the replacement of the outer shell and activated charcoal inner liner materials, and needed design changes, which included the enlargement of the current hood to accommodate the cranial helmet and aural sound protectors worn by flight deck personnel. The goals to improve fire protection and chemical protection were achieved, and heat strain was equivalent to the current CPO. Compatibility with all CD and FD IPE was not achieved, particularly with respect the hood/chemical mask interface. As a result of these findings, further efforts to develop the ICPO abandoned, and the United Kingdom (UK) G Specification liner was substituted by current UK F Specification liner in the CPO.

  10. Chemical Computer Man: Chemical Agent Response Simulation (CARS). Technical report, January 1983-September 1985

    SciTech Connect

    Davis, E.G.; Mioduszewski, R.J.

    1988-03-01

    The Chemical Computer Man: Chemical Agent Response Simulation (CARS) is a computer model and simulation program for estimating the dynamic changes in human physiological dysfunction resulting from exposures to chemical-threat nerve agents. The newly developed CARS methodology simulates agent exposure effects on the following five indices of human physiological function: mental, vision, cardio-respiratory, visceral, and limbs. Mathematical models and the application of basic pharmacokinetic principles were incorporated into the simulation so that for each chemical exposure, the relationship between exposure dosage, absorbed dosage (agent blood plasma concentration), and level of physiological response are computed as a function of time. CARS, as a simulation tool, is designed for the users with little or no computer-related experience. The model combines maximum flexibility with a comprehensive user-friendly interactive menu-driven system. Users define an exposure problem and obtain immediate results displayed in tabular, graphical, and image formats. CARS has broad scientific and engineering applications, not only in technology for the soldier in the area of Chemical Defense, but also in minimizing animal testing in biomedical and toxicological research and the development of a modeling system for human exposure to hazardous-waste chemicals.

  11. Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks. Progress report, March 1-August 31, 1980

    SciTech Connect

    Wang, D. I.C.

    1980-09-01

    Progress is reported in this coordinated research program to effect the microbiological degradation of cellulosic biomass by anaerobic microorganisms possessing cellulolytic enzymes. Three main areas of research are discussed: increasing enzyme levels through genetics, mutations, and genetic manipulation; the direct conversion of cellulosic biomass to liquid fuel (ethanol); and the production of chemical feedstocks from biomass (acrylic acid, acetone/butanol, and acetic acid). (DMC)

  12. Simultaneous airborne nitric acid and formic acid measurements using a chemical ionization mass spectrometer around the UK: Analysis of primary and secondary production pathways

    NASA Astrophysics Data System (ADS)

    Le Breton, Michael; Bacak, Asan; Muller, Jennifer B. A.; Xiao, Ping; Shallcross, Beth M. A.; Batt, Rory; Cooke, Michael C.; Shallcross, Dudley E.; Bauguitte, S. J.-B.; Percival, Carl J.

    2014-02-01

    The first simultaneous measurements of formic and nitric acid mixing ratios around the United Kingdom were measured on the FAAM BAe-146 research aircraft with a chemical ionization mass spectrometer using I- reagent ions at 0.8 Hz. Analysis of the whole dataset shows that formic acid and nitric acid are positively correlated as illustrated by other studies (e.g. Veres et al., 2011). However, initial evidence indicates a prominent direct source of formic acid and also a significant source when O3 levels are high, suggesting the importance of the ozonolysis of 1-alkenes. A trajectory model was able to reproduce the formic acid concentrations by both the inclusion of a primary vehicle source and production via ozonolysis of propene equivalent 1-alkene levels. Inspection of data archives implies these levels of 1-alkene are possible after 11 am, but formic acid and nitric acid plumes early in the flight are too high for the model to replicate. These data show the relationship between nitric acid and formic acid cannot solely be attributed to related photochemical production. The simultaneous measurement of HCOOH and HNO3 has been implemented to estimate OH levels along the flight track assuming a relationship between formic and nitric acid in photochemical plumes and a constant source of 1-alkene.

  13. Increased neuronal and astroglial aquaporin-1 immunoreactivity in rat striatum by chemical preconditioning with 3-nitropropionic acid.

    PubMed

    Hoshi, Akihiko; Tsunoda, Ayako; Yamamoto, Teiji; Tada, Mari; Kakita, Akiyoshi; Ugawa, Yoshikazu

    2016-07-28

    Aquaporin-1 (AQP1) is a water channel expressed in the choroid plexus and participates in forming cerebrospinal fluid. Interestingly, reactive astrocytes also express AQP1 in the central nervous system under some pathological conditions. On the other hand, 3-nitropropionic acid (3NP) is a mitochondrial toxin that causes selective degeneration of striatum; however, its chemical preconditioning is neuroprotective against cerebral ischemia. We previously reported that mild 3NP application is accompanied with numerous reactive astrocytes in rat striatum devoid of typical necrotic lesions. Therefore, we studied whether AQP1 in the rat striatum could be upregulated with reactive astrocytosis using the 3NP model. Immunohistochemical or immunofluorescence analysis showed that reactive astrocytosis in the striatum, which upregulates glial fibrillary acidic protein and glutamine synthetase, was induced by mild doses of 3NP administration. Intriguingly, after 3NP treatment, AQP1 was intensely expressed not only by the subpopulation of astroglia but also by neurons. The AQP1 immunoreactivity became more intensified at the early-subtoxic stage (ES: 24-48h), but not as much in the delayed-subtoxic stage (DS: 96-120h). In contrast, AQP4 expression in the striatum was downregulated after 3NP treatment, in particular during the ES stage. AQP1 upregulation/AQP4 downregulation induced under subtoxic 3NP treatment may play a pivotal role in water homeostasis and cell viability in the striatum. PMID:27181510

  14. Inventory development for perfluorooctane sulfonic acid (PFOS) in Turkey: challenges to control chemicals in articles and products.

    PubMed

    Korucu, M Kemal; Gedik, Kadir; Weber, Roland; Karademir, Aykan; Kurt-Karakus, Perihan Binnur

    2015-10-01

    Perfluorooctane sulfonic acid (PFOS) and related substances have been listed as persistent organic pollutants (POPs) in the Stockholm Convention. Countries which have ratified the Convention need to take appropriate actions to control PFOS use and release. This study compiles and enhances the findings of the first inventory of PFOS and related substances use in Turkey conducted within the frame of the Stockholm Convention National Implementation Plan (NIP) update. The specific Harmonized Commodity Description and Coding System (Harmonized System (HS)) codes of imported and exported goods that possibly contain PFOS and 165 of Chemical Abstracts Service (CAS) numbers of PFOS-related substances were assessed for acquiring information from customs and other authorities. However, with the current approaches available, no useful information could be compiled since HS codes are not specific enough and CAS numbers are not used by customs. Furthermore, the cut-off volume in chemical databases in Turkey and the reporting limit in the HS system (0.1 %) are too high for controlling PFOS. The attempt of modeling imported volumes by a Monte Carlo simulation did not also result in a satisfactory estimate, giving an upper-bound estimate above the global production volumes. The replies to questionnaires were not satisfactory, highlighting that an elaborated approach is needed in the communication with potentially PFOS-using stakeholders. The experience of the challenges of gathering information on PFOS in articles and products revealed the gaps of controlling highly hazardous substances in products and articles and the need of improvements. PMID:25510609

  15. Chemical profile and seasonal variation of phenolic acid content in bastard balm (Melittis melissophyllum L., Lamiaceae).

    PubMed

    Skrzypczak-Pietraszek, Ewa; Pietraszek, Jacek

    2012-07-01

    Melittis melissophyllum L. is an old medicinal plant. Nowadays it is only used in the folk medicine but formerly it has been applied in the official medicine as a natural product described in French Pharmacopoeia. M. melissophyllum herbs used in our studies were collected from two localities in Poland in May and September. Methanolic plant extracts were purified by means of solid-phase extraction and then analysed by HPLC-DAD for their phenolic acid profile. Eleven compounds were identified in all plant samples and quantitatively analysed as: protocatechuic, chlorogenic, p-hydroxybenzoic, vanillic, caffeic, syringic, p-coumaric, ferulic, sinapic, o-coumaric and cinnamic acid. Plant materials contained free and bound phenolic acids. The main compounds were: p-hydroxybenzoic acid (30.21-54.16 mg/100 g dw and 37.04-56.75 mg/100 g dw, free and bound, respectively) and p-coumaric acid (40.48-80.55 mg/100 g dw and 28.09-40.85 mg/100 g dw, free and bound, respectively). The highest amounts of the investigated compounds were found in all samples collected in September, e.g. p-hydroxybenzoic acid (September 51.72-54.16 mg/100 g dw vs. May 30.21-34.07 mg/100 g dw), p-coumaric acid (September 77.14-80.55 mg/100 g dw vs. May 40.48-43.2 5mg/100 g dw). Multivariate statistical and data mining techniques, such as cluster analysis (CA) and principal component analysis (PCA), were used to characterize the sample populations according to the geographical localities, vegetation period and compound form (free or bound). To the best of our knowledge we report for the first time the results of quantitative analysis of M. melissophyllum phenolic acids and seasonal variation of their content. Plant herbs are usually collected at flowering for plant derived medical preparations. Our results show that it is not always the optimal time for the highest contents of active compounds. PMID:22513117

  16. Alternate fuels and chemicals from synthesis gas: Vinyl acetate monomer. Final report

    SciTech Connect

    Richard D. Colberg; Nick A. Collins; Edwin F. Holcombe; Gerald C. Tustin; Joseph R. Zoeller

    1999-01-01

    There has been a long-standing desire on the part of industry and the U.S. Department of Energy to replace the existing ethylene-based vinyl acetate monomer (VAM) process with an entirely synthesis gas-based process. Although there are a large number of process options for the conversion of synthesis gas to VAM, Eastman Chemical Company undertook an analytical approach, based on known chemical and economic principles, to reduce the potential candidate processes to a select group of eight processes. The critical technologies that would be required for these routes were: (1) the esterification of acetaldehyde (AcH) with ketene to generate VAM, (2) the hydrogenation of ketene to acetaldehyde, (3) the hydrogenation of acetic acid to acetaldehyde, and (4) the reductive carbonylation of methanol to acetaldehyde. This report describes the selection process for the candidate processes, the successful development of the key technologies, and the economic assessments for the preferred routes. In addition, improvements in the conversion of acetic anhydride and acetaldehyde to VAM are discussed. The conclusion from this study is that, with the technology developed in this study, VAM may be produced from synthesis gas, but the cost of production is about 15% higher than the conventional oxidative acetoxylation of ethylene, primarily due to higher capital associated with the synthesis gas-based processes.

  17. 40 CFR 372.22 - Covered facilities for toxic chemical release reporting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 27 2010-07-01 2010-07-01 false Covered facilities for toxic chemical... (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS TOXIC CHEMICAL RELEASE REPORTING: COMMUNITY RIGHT-TO-KNOW Reporting Requirements § 372.22 Covered facilities for toxic...

  18. 40 CFR 372.22 - Covered facilities for toxic chemical release reporting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 28 2014-07-01 2014-07-01 false Covered facilities for toxic chemical... (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS TOXIC CHEMICAL RELEASE REPORTING: COMMUNITY RIGHT-TO-KNOW Reporting Requirements § 372.22 Covered facilities for toxic...

  19. 40 CFR 372.22 - Covered facilities for toxic chemical release reporting.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 28 2011-07-01 2011-07-01 false Covered facilities for toxic chemical... (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS TOXIC CHEMICAL RELEASE REPORTING: COMMUNITY RIGHT-TO-KNOW Reporting Requirements § 372.22 Covered facilities for toxic...

  20. 40 CFR 372.22 - Covered facilities for toxic chemical release reporting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 29 2012-07-01 2012-07-01 false Covered facilities for toxic chemical... (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS TOXIC CHEMICAL RELEASE REPORTING: COMMUNITY RIGHT-TO-KNOW Reporting Requirements § 372.22 Covered facilities for toxic...

  1. 40 CFR 372.22 - Covered facilities for toxic chemical release reporting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 29 2013-07-01 2013-07-01 false Covered facilities for toxic chemical... (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS TOXIC CHEMICAL RELEASE REPORTING: COMMUNITY RIGHT-TO-KNOW Reporting Requirements § 372.22 Covered facilities for toxic...

  2. GLYCOLIC-FORMIC ACID FLOWSHEET FINAL REPORT FOR DOWNSELECTION DECISION

    SciTech Connect

    Lambert, D.; Pickenheim, B.; Stone, M.; Newell, J.; Best, D.

    2011-03-10

    Flowsheet testing was performed to develop the nitric-glycolic-formic acid flowsheet (referred to as the glycolic-formic flowsheet throughout the rest of the report) as an alternative to the nitric/formic flowsheet currently being processed at the DWPF. This new flowsheet has shown that mercury can be removed in the Sludge Receipt and Adjustment Tank (SRAT) with minimal hydrogen generation. All processing objectives were also met, including greatly reducing the Slurry Mix Evaporator (SME) product yield stress as compared to the baseline nitric/formic flowsheet. Forty-six runs were performed in total, including the baseline run and the melter feed preparation runs. Significant results are summarized. The baseline nitric/formic flowsheet run, using the SB6 simulant produced by Harrell was extremely difficult to process successfully under existing DWPF acceptance criteria with this simulant at the HM levels of noble metals. While nitrite was destroyed and mercury was removed to near the DWPF limit, the rheology of the SRAT and SME products were well above design basis and hydrogen generation far exceeded the DWPF SRAT limit. In addition, mixing during the SME cycle was very poor. In this sense, the nitric/glycolic/formic acid flowsheet represents a significant upgrade over the current flowsheet. Mercury was successfully removed with almost no hydrogen generation and the SRAT and SME products yield stresses were within process limits or previously processed ranges. The glycolic-formic flowsheet has a very wide processing window. Testing was completed from 100% to 200% of acid stoichiometry and using a glycolic-formic mixture from 40% to 100% glycolic acid. The testing met all processing requirements throughout these processing windows. This should allow processing at an acid stoichiometry of 100% and a glycolic-formic mixture of 80% glycolic acid with minimal hydrogen generation. It should also allow processing endpoints in the SRAT and SME at significantly higher

  3. Identification of Catalytic Amino Acid Residues by Chemical Modification in Dextranase.

    PubMed

    Ko, Jin-A; Nam, Seung-Hee; Kim, Doman; Lee, Jun-Ho; Kim, Young-Min

    2016-05-28

    A novel endodextranase isolated from Paenibacillus sp. was found to produce isomaltotetraose and small amounts of cycloisomaltooligosaccharides with a degree of polymerization of 7-14 from dextran. To determine the active site, the enzyme was modified with 1-ethyl-3-[3- (dimethylamino)-propyl]-carbodiimide (EDC) and α-epoxyalkyl α-glucosides (EAGs), an affinity labeling reagent. The inactivation followed pseudo first-order kinetics. Kinetic analysis and chemical modification using EDC and EAGs indicated that carboxyl groups are essential for the enzymatic activity. Three Asp and one Glu residues were identified as candidate catalytic amino acids, since these residues are completely conserved across the GH family of 66 enzymes. Replacement of Asp189, Asp340, or Glu412 completely abolished the enzyme activity, indicating that these residues are essential for catalytic activity. PMID:26907761

  4. Trapping of organophosphorus chemical nerve agents in water with amino acid functionalized baskets.

    PubMed

    Ruan, Yian; Dalkiliç, Erdin; Peterson, Paul W; Pandit, Aroh; Dastan, Arif; Brown, Jason D; Polen, Shane M; Hadad, Christopher M; Badjić, Jovica D

    2014-04-01

    We prepared eleven amino-acid functionalized baskets and used (1) H NMR spectroscopy to quantify their affinity for entrapping dimethyl methylphosphonate (DMMP, 118 Å(3) ) in aqueous phosphate buffer at pH=7.0±0.1; note that DMMP guest is akin in size to chemical nerve agent sarin (132 Å(3) ). The binding interaction (Ka ) was found to vary with the size of substituent groups at the basket's rim. In particular, the degree of branching at the first carbon of each substituent had the greatest effect on the host-guest interaction, as described with the Verloop's B1 steric parameter. The branching at the remote carbons, however, did not perturb the encapsulation, which is important for guiding the design of more effective hosts and catalysts in future. PMID:24616086

  5. Towards Self-Replicating Chemical Systems Based on Cytidylic and Guanylic Acids

    NASA Technical Reports Server (NTRS)

    Kanavarioti, Anastassia

    1999-01-01

    This project was aimed towards a better understanding of template-directed reactions and, based on this, towards the development of efficient non-enzymatic RNA replicating systems. These systems could serve as models for the prebiotic synthesis of an RNA world. The major objectives of this project are: (a) To elucidate the mechanistic aspects of template-directed (TD) chemistry and (b) to identify active boundary regions, or conditions, environmental and other, that favor "organized chemistry" and stereo-selective polymerization of nucleotides. "Organized chemistry" may lead to enhanced polymerization efficiency which in turn is expected to facilitate the road towards a self-replicating chemical system based on all four nucleic acid bases.

  6. Insights into 6‐Methylsalicylic Acid Bio‐assembly by Using Chemical Probes

    PubMed Central

    Parascandolo, James S.; Havemann, Judith; Potter, Helen K.; Huang, Fanglu; Riva, Elena; Connolly, Jack; Wilkening, Ina; Song, Lijiang; Leadlay, Peter F.

    2016-01-01

    Abstract Chemical probes capable of reacting with KS (ketosynthase)‐bound biosynthetic intermediates were utilized for the investigation of the model type I iterative polyketide synthase 6‐methylsalicylic acid synthase (6‐MSAS) in vivo and in vitro. From the fermentation of fungal and bacterial 6‐MSAS hosts in the presence of chain termination probes, a full range of biosynthetic intermediates was isolated and characterized for the first time. Meanwhile, in vitro studies of recombinant 6‐MSA synthases with both nonhydrolyzable and hydrolyzable substrate mimics have provided additional insights into substrate recognition, providing the basis for further exploration of the enzyme catalytic activities. PMID:26833898

  7. Chemical evolution. XXI - The amino acids released on hydrolysis of HCN oligomers

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Wos, J. D.; Nooner, D. W.; Oro, J.

    1974-01-01

    Major amino acids released by hydrolysis of acidic and basic HCN oligomers are identified by chromatography as Gly, Asp, and diaminosuccinic acid. Smaller amounts of Ala, Ile and alpha-aminoisobutyric acid are also detected. The amino acids released did not change appreciably when the hydrolysis medium was changed from neutral to acidic or basic. The presence of both meso and d, l-diaminosuccinic acids was established by paper chromatography and on an amino acid analyzer.

  8. NIPER/DOE Chemical EOR Workshop. Final report

    SciTech Connect

    Gall, B.L.; Llave, F.M.; Tham, Min K.

    1993-10-01

    A Chemical EOR Workshop was held on June 23--24, 1993 in Houston, Texas. The objectives of this workshop were to evaluate the potential for chemical Enhanced Oil Recovery (EOR) to repower significant quantities of remaining domestic oil, to assess the role of the Department of Energy (DOE) and petroleum industry to achieve this potential, and to assess the research needs in chemical EOR. Fifty-six research engineers and scientists from major oil companies, independent oil companies, academic institutes, research institutes, and DOE attended this workshop. Opening remarks were given by Alex Crawley from DOE Bartlesville Project Office and Thomas E. Burchfield of the National Institute for Petroleum and Energy Research (NIPER). The keynote address was delivered by Donald Juckett, Acting Deputy Assistant Secretary for Gas and Petroleum Technology. Ten papers on the state-of-the-art in chemical EOR technologies and recent field test experience were presented on the first day. Two workshops, one on surfactant/alkali flooding and the other on profile modification/polymer flooding, were held on the second day. It was concluded that chemical EOR has the potential of recovering significant quantities of remaining oil, and it is the only method that has the potential of economically recovering residual oil from reservoirs of shallow and medium depth. It is recommended that funding of support research in chemical EOR be continued and sustained to provide continuity and expertise for future advanced oil recovery technologies. Selected papers are being indexed separately for inclusion in the Energy Science and Technology Database.

  9. PWR steam generator chemical cleaning. Phase II. Final report

    SciTech Connect

    Not Available

    1980-01-01

    Two techniques believed capable of chemically dissolving the corrosion products in the annuli between tubes and support plates were developed in laboratory work in Phase I of this project and were pilot tested in Indian Point Unit No. 1 steam generators. In Phase II, one of the techniques was shown to be inadequate on an actual sample taken from an Indian Point Unit No. 2 steam generator. The other technique was modified slightly, and it was demonstrated that the tube/support plate annulus could be chemically cleaned effectively.

  10. Synthesis, structural characterization and quantum chemical studies of silicon-containing benzoic acid derivatives

    NASA Astrophysics Data System (ADS)

    Zaltariov, Mirela-Fernanda; Cojocaru, Corneliu; Shova, Sergiu; Sacarescu, Liviu; Cazacu, Maria

    2016-09-01

    The present paper is concerned with the synthesis and molecular structure investigation of two new benzoic acid derivatives having trimethylsilyl tails, 4-((trimethylsilyl)methoxy) and 4-(3-(trimethylsilyl)propoxy)benzoic acids. The structures of the novel compounds have been confirmed by X-ray crystallography, Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (1H and 13C NMR). The theoretical studies of molecules were conducted by using the quantum chemical methods, such as Density Functional Theory (DFT B3LYP/6-31 + G**), Hartree-Fock (HF/6-31 + G**) and semiempirical computations (PM3, PM6 and PM7). The optimized molecular geometries have been found to be in good agreement with experimental structures resulted from the X-ray diffraction. The maximum electronic absorption bands observed at 272-287 nm (UV-vis spectra) have been assigned to π → π* transitions, which were in reasonable agreement with the time dependent density functional theory (TD-DFT) calculations. The computed vibrational frequencies by DFT method were assigned and compared with the experimental FTIR spectra. The mapped electrostatic potentials revealed the reactive sites, which corroborated the observation of the dimer supramolecular structures formed in the crystals by hydrogen-bonding. The energies of frontier molecular orbitals (HOMO and LUMO), energy gap, dipole moment and molecular descriptors for the new compounds were calculated and discussed.

  11. Humic Acid Metal Cation Interaction Studied by Spectromicroscopy Techniques in Combination with Quantum Chemical Calculations

    SciTech Connect

    Plaschke, M.; Rothe, J; Armbruster, M; Denecke, M; Naber, A; Geckeis, H

    2010-01-01

    Humic acids (HA) have a high binding capacity towards traces of toxic metal cations, thus affecting their transport in aquatic systems. Eu(III)-HA aggregates are studied by synchrotron-based scanning transmission X-ray microscopy (STXM) at the carbon K-edge and laser scanning luminescence microscopy (LSLM) at the {sup 5}D{sub 0} {yields} {sup 7}F{sub 1,2} fluorescence emission lines. Both methods provide the necessary spatial resolution in the sub-micrometre range to resolve characteristic aggregate morphologies: optically dense zones embedded in a matrix of less dense material in STXM images correspond to areas with increased Eu(III) luminescence yield in the LSLM micrographs. In the C 1s-NEXAFS of metal-loaded polyacrylic acid (PAA), used as a HA model compound, a distinct complexation effect is identified. This effect is similar to trends observed in the dense fraction of HA/metal cation aggregates. The strongest complexation effect is observed for the Zr(IV)-HA/PAA system. This effect is confirmed by quantum chemical calculations performed at the ab initio level for model complexes with different metal centres and complex geometries. Without the high spatial resolution of STXM and LSLM and without the combination of molecular modelling with experimental results, the different zones indicating a 'pseudo'-phase separation into strong complexing domains and weaker complexing domains of HA would never have been identified. This type of strategy can be used to study metal interaction with other organic material.

  12. Surface Chemical Compositions and Dispersity of Starch Nanocrystals Formed by Sulfuric and Hydrochloric Acid Hydrolysis

    PubMed Central

    Wei, Benxi; Xu, Xueming; Jin, Zhengyu; Tian, Yaoqi

    2014-01-01

    Surface chemical compositions of starch nanocrystals (SNC) prepared using sulfuric acid (H2SO4) and hydrochloric acid (HCl) hydrolysis were analyzed by X-ray photoelectron spectroscopy (XPS) and FT-IR. The results showed that carboxyl groups and sulfate esters were presented in SNC after hydrolysis with H2SO4, while no sulfate esters were detected in SNC during HCl-hydrolysis. TEM results showed that, compared to H2SO4-hydrolyzed sample, a wider size distribution of SNC prepared by HCl-hydrolysis were observed. Zeta-potentials were −23.1 and −5.02 mV for H2SO4- and HCl-hydrolyzed SNC suspensions at pH 6.5, respectively. Nevertheless, the zeta-potential values decreased to −32.3 and −10.2 mV as the dispersion pH was adjusted to 10.6. After placed 48 h at pH 10.6, zeta-potential increased to −24.1 mV for H2SO4-hydrolyzed SNC, while no change was detected for HCl-hydrolyzed one. The higher zeta-potential and relative small particle distribution of SNC caused more stable suspensions compared to HCl-hydrolyzed sample. PMID:24586246

  13. Quantum chemical computations, vibrational spectroscopic analysis and antimicrobial studies of 2,3-Pyrazinedicarboxylic acid.

    PubMed

    Beaula, T Joselin; Packiavathi, A; Manimaran, D; Joe, I Hubert; Rastogi, V K; Jothy, V Bena

    2015-03-01

    Density Functional Theory (DFT) calculations at B3PW91 level with 6-311G (d) basis sets were carried out for 2,3-Pyrazinedicarboxylic acid (PDCA) to analyze in detail the equilibrium geometries and vibrational spectra. Calculations reveal that the optimized geometry closely resembles the experimental XRD data. Vibrational spectra were analyzed on the basis of potential energy distribution (PED) of each vibrational mode, which provides quantitative as well as qualitative interpretation of IR and Raman spectra. Information about size, shape, charge density distribution and site of chemical reactivity of the molecule were obtained by mapping electron density isosurface with the electrostatic potential surface (ESP). Based on optimized ground state geometries, NBO analysis was performed to study donor-acceptor (bond-antibond) interactions. TD-DFT analysis was also performed to calculate energies, oscillator strength of electronic singlet-singlet transitions and the absorption wavelengths. The (13)C and (1)H nuclear magnetic resonance (NMR) chemical shifts of the molecule in the ground state were calculated by gauge independent atomic orbital (GIAO) method and compared with the experimental values. PDCA was screened for its antimicrobial activity and found to exhibit antifungal and antibacterial effects. Molecular docking was also performed for the different receptors. PMID:25544188

  14. Quantum chemical computations, vibrational spectroscopic analysis and antimicrobial studies of 2,3-Pyrazinedicarboxylic acid

    NASA Astrophysics Data System (ADS)

    Beaula, T. Joselin; Packiavathi, A.; Manimaran, D.; Joe, I. Hubert; Rastogi, V. K.; Jothy, V. Bena

    2015-03-01

    Density Functional Theory (DFT) calculations at B3PW91 level with 6-311G (d) basis sets were carried out for 2,3-Pyrazinedicarboxylic acid (PDCA) to analyze in detail the equilibrium geometries and vibrational spectra. Calculations reveal that the optimized geometry closely resembles the experimental XRD data. Vibrational spectra were analyzed on the basis of potential energy distribution (PED) of each vibrational mode, which provides quantitative as well as qualitative interpretation of IR and Raman spectra. Information about size, shape, charge density distribution and site of chemical reactivity of the molecule were obtained by mapping electron density isosurface with the electrostatic potential surface (ESP). Based on optimized ground state geometries, NBO analysis was performed to study donor-acceptor (bond-antibond) interactions. TD-DFT analysis was also performed to calculate energies, oscillator strength of electronic singlet-singlet transitions and the absorption wavelengths. The 13C and 1H nuclear magnetic resonance (NMR) chemical shifts of the molecule in the ground state were calculated by gauge independent atomic orbital (GIAO) method and compared with the experimental values. PDCA was screened for its antimicrobial activity and found to exhibit antifungal and antibacterial effects. Molecular docking was also performed for the different receptors.

  15. Conformational, structural, vibrational, electronic and quantum chemical investigations of cis-2-methoxycinnamic acid

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Anitha, R.; Marchewka, M. K.; Mohan, S.; Yang, Haifeng

    2015-01-01

    The Fourier transform infrared (FTIR) and FT-Raman spectra of cis-2-methoxycinnamic acid have been measured in the range 4000-400 and 4000-100 cm-1, respectively. Complete vibrational assignment and analysis of the fundamental modes of the compound were carried out using the observed FTIR and FT-Raman data. The geometry was optimised without any symmetry constrains using the DFT/B3LYP method utilising 6-311++G∗∗ and cc-pVTZ basis sets. The thermodynamic stability and chemical reactivity descriptors of the molecule have been determined. The exact environment of C and H of the molecule has been analysed by NMR spectroscopies through 1H and 13C NMR chemical shifts of the molecule. The energies of the frontier molecular orbitals have also been determined. Complete NBO analysis was also carried out to find out the intramolecular electronic interactions and their stabilisation energy. The vibrational frequencies which were determined experimentally are compared with those obtained theoretically from density functional theory (DFT) gradient calculations employing the B3LYP/6-311++G∗∗ and cc-pVTZ methods.

  16. Protective effect of celosian, an acidic polysaccharide, on chemically and immunologically induced liver injuries.

    PubMed

    Hase, K; Kadota, S; Basnet, P; Takahashi, T; Namba, T

    1996-04-01

    Hepatoprotective effect of celosian, an acidic polysaccharide isolated from the water extract of the seed of Celosia argentea, was investigated using chemical and immunological liver injury models. Celosian inhibited the elevation of serum enzyme (GPT, GOT, LDH) and bilirubin levels on carbon tetrachloride (CC1(4))-induced liver injuries in rat. In addition, the hepatoprotective effect of celosian was also observed in this model of liver injury by histopathological findings. Moreover, celosian suppressed rises in GPT or mortality on fulminant hepatitis induced by D-galactosamine/lipopolysaccharide (D-Ga1N/LPS) or Propionibacterium acnes/LPS in mice. These findings suggested that celosian is an active component in protection against chemical and immunological hepatitis and the activity was found to be a dose dependent. Celosian showed a concentration dependent inhibitory effect on lipid peroxide (LPO) generation in vitro. Though celosian did not reduce the release of tumor necrosis factor-alpha (TNF-alpha), it protected against recombinant human TNF-alpha (rhTNF-alpha)-induced liver injury in D-galactosamine sensitized mice. PMID:8860960

  17. Effect of a chemical chaperone, tauroursodeoxycholic acid, on HDM-induced allergic airway disease.

    PubMed

    Siddesha, Jalahalli M; Nakada, Emily M; Mihavics, Bethany R; Hoffman, Sidra M; Rattu, Gurkiranjit K; Chamberlain, Nicolas; Cahoon, Jonathon M; Lahue, Karolyn G; Daphtary, Nirav; Aliyeva, Minara; Chapman, David G; Desai, Dhimant H; Poynter, Matthew E; Anathy, Vikas

    2016-06-01

    Endoplasmic reticulum (ER) stress-induced unfolded protein response plays a critical role in inflammatory diseases, including allergic airway disease. However, the benefits of inhibiting ER stress in the treatment of allergic airway disease are not well known. Herein, we tested the therapeutic potential of a chemical chaperone, tauroursodeoxycholic acid (TUDCA), in combating allergic asthma, using a mouse model of house dust mite (HDM)-induced allergic airway disease. TUDCA was administered during the HDM-challenge phase (preventive regimen), after the HDM-challenge phase (therapeutic regimen), or therapeutically during a subsequent HDM rechallenge (rechallenge regimen). In the preventive regimen, TUDCA significantly decreased HDM-induced inflammation, markers of ER stress, airway hyperresponsiveness (AHR), and fibrosis. Similarly, in the therapeutic regimen, TUDCA administration efficiently decreased HDM-induced airway inflammation, mucus metaplasia, ER stress markers, and AHR, but not airway remodeling. Interestingly, TUDCA administered therapeutically in the HDM rechallenge regimen markedly attenuated HDM-induced airway inflammation, mucus metaplasia, ER stress markers, methacholine-induced AHR, and airway fibrotic remodeling. These results indicate that the inhibition of ER stress in the lungs through the administration of chemical chaperones could be a valuable strategy in the treatment of allergic airway diseases. PMID:27154200

  18. Life in the light: nucleic acid photoproperties as a legacy of chemical evolution.

    PubMed

    Beckstead, Ashley A; Zhang, Yuyuan; de Vries, Mattanjah S; Kohler, Bern

    2016-09-21

    Photophysical investigations of the canonical nucleobases that make up DNA and RNA during the past 15 years have revealed that excited states formed by the absorption of UV radiation decay with subpicosecond lifetimes (i.e., <10(-12) s). Ultrashort lifetimes are a general property of absorbing sunscreen molecules, suggesting that the nucleobases are molecular survivors of a harsh UV environment. Encoding the genome using photostable building blocks is an elegant solution to the threat of photochemical damage. Ultrafast excited-state deactivation strongly supports the hypothesis that UV radiation played a major role in shaping molecular inventories on the early Earth before the emergence of life and the subsequent development of a protective ozone shield. Here, we review the general physical and chemical principles that underlie the photostability, or "UV hardiness", of modern nucleic acids and discuss the possible implications of these findings for prebiotic chemical evolution. In RNA and DNA strands, much longer-lived excited states are observed, which at first glance appear to increase the risk of photochemistry. It is proposed that the dramatically different photoproperties that emerge from assemblies of photostable building blocks may explain the transition from a world of molecular survival to a world in which energy-rich excited electronic states were eventually tamed for biological purposes such as energy transduction, signaling, and repair of the genetic machinery. PMID:27539809

  19. Chemical Genetics Uncovers Novel Inhibitors of Lignification, Including p-Iodobenzoic Acid Targeting CINNAMATE-4-HYDROXYLASE.

    PubMed

    Van de Wouwer, Dorien; Vanholme, Ruben; Decou, Raphaël; Goeminne, Geert; Audenaert, Dominique; Nguyen, Long; Höfer, René; Pesquet, Edouard; Vanholme, Bartel; Boerjan, Wout

    2016-09-01

    Plant secondary-thickened cell walls are characterized by the presence of lignin, a recalcitrant and hydrophobic polymer that provides mechanical strength and ensures long-distance water transport. Exactly the recalcitrance and hydrophobicity of lignin put a burden on the industrial processing efficiency of lignocellulosic biomass. Both forward and reverse genetic strategies have been used intensively to unravel the molecular mechanism of lignin deposition. As an alternative strategy, we introduce here a forward chemical genetic approach to find candidate inhibitors of lignification. A high-throughput assay to assess lignification in Arabidopsis (Arabidopsis thaliana) seedlings was developed and used to screen a 10-k library of structurally diverse, synthetic molecules. Of the 73 compounds that reduced lignin deposition, 39 that had a major impact were retained and classified into five clusters based on the shift they induced in the phenolic profile of Arabidopsis seedlings. One representative compound of each cluster was selected for further lignin-specific assays, leading to the identification of an aromatic compound that is processed in the plant into two fragments, both having inhibitory activity against lignification. One fragment, p-iodobenzoic acid, was further characterized as a new inhibitor of CINNAMATE 4-HYDROXYLASE, a key enzyme of the phenylpropanoid pathway synthesizing the building blocks of the lignin polymer. As such, we provide proof of concept of this chemical biology approach to screen for inhibitors of lignification and present a broad array of putative inhibitors of lignin deposition for further characterization. PMID:27485881

  20. Free and chemically bonded phenolic acids in barks of Viburnum opulus L. and Sambucus nigra L.

    PubMed

    Turek, Sebastian; Cisowski, Wojciech

    2007-01-01

    Liquid column chromatography, planar chromatography (TLC) on modified and unmodified silica layers, reversed-phase high-pressure liquid chromatography (HPLC), as well as ESI-TOF MS and 1H-NMR have been used for separation, purification and identification of phenolic acids in the barks of Sambucus nigra and Viburnum opulus (Caprifoliaceae). By the use of these procedures three cinnamic acid derivatives: caffeic acid, p-coumaric, and ferulic acid, four benzoic acid derivatives: gallic acid, protocatechuic acid, syringic acid, 3,4,5-trimethoxybenzoic acid, two phenylacetic acid derivatives: 3,4-dihydroxyphenylacetic acid, homogentisic acid, and two depsides: chlorogenic acid and ellagic acid were detected and identified in the bark of Viburnum opulus. Caffeic acid, p-coumaric acid, ferulic acid, gallic acid, syringic acid, 3,4,5-trimethoxybenzoic acid and chlorogenic acid were also detected and identified in the bark of Sambucus nigra. Except for chlorogenic acid, this is the first time these phenolic acids have been isolated, detected, and identified in the bark of V. opulus and S. nigra. PMID:18536165

  1. Removal of NO sub x from flue gases using the urea acidic process; Kinetics of the chemical reaction of nitrous acid with urea

    SciTech Connect

    Lasalle, A.; Roizard, C.; Midoux, N.; Bourret, P.; Dyens, P.J. )

    1992-03-01

    This paper deals with the removal of nitrogen oxides from flue gases using the acidic urea process. The chemical hydrolysis of nitrous acid, which leads to NO formation, is avoided by nitrous acid reaction with urea. Products of this reaction are gases, e.g. CO{sub 2} and N{sub 2} which can then be directly released into the atmosphere. The aim here is to determine the kinetic parameters of the chemical reaction of nitrous acid with urea. Experiments are performed in a closed stirred reactor. The manometric method (measurement of the pressure versus time curve) leads to the determination of the concentration of HNO{sub 2} and then to the chemical rate versus time. Operating parameters are the concentration of urea (333-3330 mol m{sup {minus}3}), the pH (0.75-1.25), and the temperature (3-40{degrees}C). The experimental results are as follows: the order relative to nitrous acid is 1; the rate constant decreases with pH; the influence of temperature on the rate constant can be expressed by (pH = 1) k = 1.82 {times} 10{sup 8} exp ({minus}(60400/RT)) (SI units).

  2. Special Report: Facts and Figures for Chemical R&D.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1985

    1985-01-01

    Presents and analyzes data on sources of research and development (R&D) funds; R&D spending by government agencies; how industry apportions its R&D outlays; spending by individual chemical companies; manpower in industrial R&D; sources/uses of academic R&D funds; largest spenders on R&D; and demographic trends. (JN)

  3. Analysis of chemical coal cleaning processes. Final report

    SciTech Connect

    Not Available

    1980-06-01

    Six chemical coal cleaning processes were examined. Conceptual designs and costs were prepared for these processes and coal preparation facilities, including physical cleaning and size reduction. Transportation of fine coal in agglomerated and unagglomerated forms was also discussed. Chemical cleaning processes were: Pittsburgh Energy Technology Center, Ledgemont, Ames Laboratory, Jet Propulsion Laboratory (two versions), and Guth Process (KVB). Three of the chemical cleaning processes are similar in concept: PETC, Ledgemont, and Ames. Each of these is based on the reaction of sulfur with pressurized oxygen, with the controlling factor being the partial pressure of oxygen in the reactor. All of the processes appear technically feasible. Economic feasibility is less certain. The recovery of process chemicals is vital to the JPL and Guth processes. All of the processes consume significant amounts of energy in the form of electric power and coal. Energy recovery and increased efficiency are potential areas for study in future more detailed designs. The Guth process (formally designed KVB) appears to be the simplest of the systems evaluated. All of the processes require future engineering to better determine methods for scaling laboratory designs/results to commercial-scale operations. A major area for future engineering is to resolve problems related to handling, feeding, and flow control of the fine and often hot coal.

  4. Generalized chemical route to develop fatty acid capped highly dispersed semiconducting metal sulphide nanocrystals

    SciTech Connect

    Patel, Jayesh D.; Mighri, Frej; Ajji, Abdellah

    2012-08-15

    Highlights: ► Chemical route for the synthesis of OA-capped CdS, ZnS and PbS at low temperature. ► Synthesized nanocrystals via thermolysis of their metal–oleate complexes. ► Size quantized nanocrystals were highly dispersed and stable at room temperature. -- Abstract: This work deals with the synthesis of highly dispersed semiconducting nanocrystals (NCs) of cadmium sulphide (CdS), zinc sulphide (ZnS) and lead sulphide (PbS) through a simple and generalized process using oleic acid (OA) as surfactant. To synthesize these NCs, metal–oleate (M–O) complexes were obtained from the reaction at 140 °C between metal acetates and OA in hexanes media. Subsequently, M–O complexes were sulphurized using thioacetamide at the same temperature. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) characterizations show that the synthesized products are of nanoscale-size with highly crystalline cubic phase. The optical absorption of OA-capped metal sulphide NCs confirms that their size quantization induced a large shift towards visible region. Photoluminescence (PL) spectrum of CdS NCs shows a broad band-edge emission with shallow and deep-trap emissions, while PL spectrum of ZnS NCs reveals a broad emission due to defects states on the surface. The thermogravimetric analysis (TGA) and Fourier transform infrared (FTIR) spectroscopy indicate that fatty acid monolayers were bound strongly on the nanocrystal surface as a carboxylate and the two oxygen atoms of the carboxylate were coordinated symmetrically to the surface of the NCs. The strong binding between the fatty acid and the NCs surface enhances the stability of NCs colloids. In general, this generalized route has a great potential in developing nanoscale metal sulphides for opto-electronic devices.

  5. Light-Activated Amino Acid Transport Systems in Halobacterium halobium Envelope Vesicles: Role of Chemical and Electrical Gradients

    NASA Technical Reports Server (NTRS)

    MacDonald, Russell E.; Greene, Richard V.; Lanyi, Janos K.

    1977-01-01

    The accumulation of 20 commonly occurring L-amino acids by cell envelope vesicles of Halobacterium halobium, in response to light-induced membrane potential and an artificially created sodium gradient, has been studied. Nineteen of these amino acids are actively accumulated under either or both of these conditions. Glutamate is unique in that its uptake is driven only by a chemical gradient for sodium. Amino acid concentrations at half-maximal uptake rates (Km) and maximal transport rates (V(sub max) have been determined for the uptake of all 19 amino acids. The transport systems have been partially characterized with respect to groups of amino acids transported by common carriers, cation effects, and relative response to the electrical and chemical components of the sodium gradient, the driving forces for uptake. The data presented clearly show that the carrier systems, which are responsible for uptake of individual amino acids, are as variable in their properties as those found in other organisms, i. e., some are highly specific for individual amino acids, some transport several amino acids competitively, some are activated by a chemical gradient of sodium only, and some function also in the complete absence of such a gradient. For all amino acids, Na(+) and K(+) are both required for maximal rate of uptake. The carriers for L-leucine and L-histidine are symmetrical in that these amino acids are transported in both directions across the vesicle membrane. It is suggested that coupling of substrate transport to metabolic energy via transient ionic gradients may be a general phenomenon in procaryotes.

  6. K-Area Acid/Caustic Basin groundwater monitoring report

    SciTech Connect

    Not Available

    1993-03-01

    During fourth quarter 1992, samples from the KAC monitoring wells at the K-Area Acid/Caustic Basin were analyzed for indicator parameters, groundwater quality parameters, parameters indicating suitability as drinking water, and other constituents. New wells KAC 8 and 9 also were sampled for GC/MS VOA (gas chromatograph/mass spectrometer volatile organic analyses). Monitoring results that exceeded the final Primary Drinking Water Standards (PDWS) or the Savannah River Site (SRS) flagging criteria or turbidity standard during the quarter are discussed in this report. Iron exceeded the Flag 2 criterion in wells KAC 6 and 7, and specific conductance exceeded the Flag 2 criterion in new well KAC 9. No samples exceeded the SRS turbidity standard.

  7. H-area acid/caustic basin groundwater monitoring report

    SciTech Connect

    Thompson, C.Y.

    1992-06-01

    During first quarter 1992, samples from the four HAC monitoring wells at the H-Area Acid/Caustic Basin of Savannah River Plant were analyzed for herbicides, indicator parameters, major ions, pesticides, radionuclides, turbidity, volatile organic compounds, and other constituents. Monitoring results that exceeded the US Environmental Protection Agency Primary Drinking Water Standards (PDWS) and the Savannah River Site (SRS) flagging criteria and turbidity standards during the quarter are the focus of this report. Tritium exceeded the PDWS in HAC 1, 2, 3, and 4 during first quarter 1992. Tritium activities in upgradient well HAC 4 appeared similar to tritium levels in well HAC 1, 2, and 3. Specific conductance and manganese exceeded Flag 2 criteria in wells HAC 2 and 3, respectively. No well samples exceeded the SRS turbidity standard.

  8. H-Area Acid/Caustic Basin groundwater monitoring report

    SciTech Connect

    Not Available

    1992-03-01

    During fourth quarter 1991, samples from the HAC monitoring wells at the H-Area Acid/Caustic Basin of Savannah River Plant were analyzed for indicator parameters, turbidity, major ions, volatile organic compounds, radionuclides, and other constituents. Monitoring results that exceeded the US Environmental Protection Agency primary drinking water standards (PDWS) and the Savannah River Site (SRS) flagging criteria and turbidity standards during the quarter, with summary results for the year, are the focus of this report. Tritium activities exceeded the PDWS in 4 wells. Iron and manganese exceeded Flag 2 criteria in 1 well, and specific conductance exceeded the Flag 2 criterion in well HAC 2. No priority pollutant (EPA, 1990) exceeded the PDWS or Flag 2 criteria in 2 wells. None of the HAC wells exceeded the SRS turbidity standard. Elevated tritium activities were found in all four HAC wells every quarter. Elevated total radium occurred in well HAC 2 during third quarter.

  9. Chemical Reporter for Visualizing Metabolic Cross-Talk between Carbohydrate Metabolism and Protein Modification

    PubMed Central

    2015-01-01

    Metabolic chemical reporters have been largely used to study posttranslational modifications. Generally, it was assumed that these reporters entered one biosynthetic pathway, resulting in labeling of one type of modification. However, because they are metabolized by cells before their addition onto proteins, metabolic chemical reporters potentially provide a unique opportunity to read-out on both modifications of interest and cellular metabolism. We report here the development of a metabolic chemical reporter 1-deoxy-N-pentynyl glucosamine (1-deoxy-GlcNAlk). This small-molecule cannot be incorporated into glycans; however, treatment of mammalian cells results in labeling of a variety proteins and enables their visualization and identification. Competition of this labeling with sodium acetate and an acetyltransferase inhibitor suggests that 1-deoxy-GlcNAlk can enter the protein acetylation pathway. These results demonstrate that metabolic chemical reporters have the potential to isolate and potentially discover cross-talk between metabolic pathways in living cells. PMID:25062036

  10. First Chemical Feature Based Pharmacophore Modeling of Potent Retinoidal Retinoic Acid Metabolism Blocking Agents (RAMBAs): Identification of Novel RAMBA Scaffolds

    PubMed Central

    Purushottamachar, Puranik; Patel, Jyoti B.; Gediya, Lalji K; Clement, Omoshile O.; Njar, Vincent C. O.

    2011-01-01

    The first three-dimensional (3D) pharmacophore model was developed for potent retinoidal retinoic acid metabolism blocking agents (RAMBAs) with IC50 values ranging from 0.0009 to 5.84 nM. The seven common chemical features in these RAMBAs as deduced by the Catalyst/HipHop program include five hydrophobic groups (hydrophobes), one hydrogen bond acceptor (HBA) and one ring aromatic group. Using the pharmacophore model as a 3D search query against NCI and Maybridge conformational Catalyst formatted databases; we retrieved several compounds with different structures (scaffolds) as hits. Twenty one retrieved hits were tested for RAMBA activity at 100 nM concentration. The most potent of these compounds, NCI10308597 and HTS01914 showed inhibitory potencies less (54.7% and 53.2%, respectively, at 100 nM) than those of our best previously reported RAMBAs VN/12-1 and VN/14-1 (90% and 86%, respectively, at 100 nM). Docking studies using a CYP26A1 homology model revealed that our most potent RAMBAs showed similar binding to the one observed for a series of RAMBAs reported previously by others. Our data shows the potential of our pharmacophore model in identifying structurally diverse and potent RAMBAs. Further refinement of the model and searches of other robust databases is currently in progress with a view to identifying and optimizing new leads. PMID:22130607

  11. In Situ Sensors for the Chemical Industry- Final Report

    SciTech Connect

    Tate, J D; Knittel, Trevor

    2006-06-30

    The project focused on analytical techniques that can be applied in situ. The innovative component of this project is the focus on achieving a significant breakthrough in two of the three primary Process Analytical (PA) fields. PA measurements can roughly be broken down into:Single component measurements, Multiple component measurements and Multiple component isomer analysis. This project targeted single component measurements and multiple component measurements with two basic technologies, and to move these measurements to the process, achieving many of the process control needs. During the project the following achievements were made: Development of a low cost Tunable Diode Laser (TDL) Analyzer system for measurement of 1) Oxygen in process and combustion applications, 2) part per million (ppm) H2O impurities in aggressive service, 3) ppm CO in large scale combustion systems. This product is now commercially available Development of a process pathlength enhanced (high sensitivity) Laser Based Analyzer for measurement of product impurities. This product is now commercially available. Development of signal processing methods to eliminate measurement errors in complex and changing backgrounds (critical to chemical industry measurements). This development is incorporated into 2 commercially available products. Development of signal processing methods to allow multi-component measurements in complex chemical streams. This development is incorporated into 2 commercially available products. Development of process interface designs to allow in-situ application of TDL technology in aggressive (corrosive, high temperature, high pressure) commonly found in chemical processes. This development is incorporated in the commercially available ASI TDL analyzer. Field proving of 3 laser-based analyzer systems in process control and combustion applications at Dow Chemical. Laser based analyzers have been available for >5yrs, however significant product price/performance issues have

  12. Studies of coupled chemical and catalytic coal conversion methods. Fifth quarterly report, October--December 1988

    SciTech Connect

    Stock, L.M.

    1988-12-31

    Liquefaction of coal by depolymerization in an organic solvent has been studied for several years. The liquefied coal extract which results from such a process is far more suitable for conversion into liquid fuel by hydrogenolysis than is the untreated coal. Investigations on the chemical structure and the reactive sites of coal can help to select useful reactions for the production of liquids from coal. Sternberg et al. demonstrated that the reductive alkylation method transforms bituminous coal into an enormously soluble substance, irrespective of the mild reaction conditions. The effectiveness of newly introduced alkyl groups for the disruption of intermolecular hydrogen bonds and pi-pi interactions between the aromatic sheets in coal macromolecules has been recognized. It has been reported by Ignasiak et al. that a C-alkylabon reaction using sodium or potassium amide in liquid ammonia can be used to introduce alkyl groups at acidic carbon sites. A method has been developed recently in this laboratory for the solubilization of high rank coals. In the previous reports it was shown that n-butyl lithium and potassium t-butoxide in refluxing heptane produced coal anions which could be alkylated with different alkyl halides. Such alkylated coals were soluble up to 92% in solvents like pyridine. Though the solubilization of coal depended very much on the length of the alkyl group, it also depended very much on the nature of the base used. Strong bases like n-butyl lithium (pKa=42) can cause proton abstraction from aromatic structures, if the more acidic benzylic protons are absent. The utility of this procedure, initially developed and used by Miyake and Stock, has now been tested with the high oxygen containing, low rank Illinois No. 6 and Wyodak coals.

  13. Quarterly progress report for the Chemical Development Section of the Chemical Technology Division: July--September 1996

    SciTech Connect

    Jubin, R.T.

    1997-03-01

    This report summarizes the major activities conducted in the Chemical Development Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July-September 1996. The report describes 12 tasks conducted in 4 major areas of research and development within the section. The name of a contact is included with each task in the report, and readers are encouraged to consult these individuals if they need additional information. The first major research area--Chemical Processes for Waste Management-- includes the following tasks: Comprehensive Supernate Treatment, Partitioning of Sludge Components by Caustic Leaching, Studies on Treatment of Dissolved MVST Sludge Using TRUEX Process, ACT*DE*CON{sup SM} Test Program, Hot Demonstration of Proposed Commercial Nuclide Removal Technology, Sludge Treatment Studies, and Development and Testing of Inorganic Sorbents. Within the third research area--Thermodynamics--efforts continued in the Thermodynamics and Kinetics of Energy-Related Materials task. The fourth major research area--Processes for Waste Management--includes work on these tasks: Ion-Exchange Process for Heavy Metals Removal, Hot Cell Cross-Flow Filtration Studies of Gunite Tank Sludges, and Chemical Conversion of Nitrate Directly to Nitrogen Gas: A Feasibility Study.

  14. Title III section 313 release reporting guidance: Estimating chemical releases from textile dyeing

    SciTech Connect

    Not Available

    1988-02-01

    Facilities engaged in textile dyeing may be required to report annually any releases to the environment of certain chemicals regulated under Section 313, Title III, of the Superfund Amendments and Reauthorization Act (SARA) of 1986. The document has been developed to assist textile dyers in the completion of Part III (Chemical Specific Information) of the Toxic Chemical Release Inventory Reporting Form. Included herein is general information on toxic chemicals used and process wastes generated, along with several examples to demonstrate the types of data needed and various methodologies available for estimating releases.

  15. Title III section 313 release reporting guidance: Estimating chemical releases from leather tanning and finishing

    SciTech Connect

    Not Available

    1988-02-01

    Facilities engaged in leather tanning and finishing may be required to report annually any releases to the environment of certain chemicals regulated under Section 313, Title III, of the Superfund Amendments and Reauthorization Act (SARA) of 1986. The document has been developed to assist those in the leather tanning and finishing industry in the completion of Part III (Chemical Specific Information) of the Toxic Chemical Release Inventory Reporting Form. Included herein is general information on toxic chemicals used and process wastes generated, along with several examples to demonstrate the types of data needed and various methodologies available for estimating releases.

  16. Proteomic Analysis of Fatty-acylated Proteins in Mammalian Cells with Chemical Reporters Reveals S-Acylation of Histone H3 Variants

    PubMed Central

    Wilson, John P.; Raghavan, Anuradha S.; Yang, Yu-Ying; Charron, Guillaume; Hang, Howard C.

    2011-01-01

    Bioorthogonal chemical reporters are useful tools for visualizing and identifying post-translational modifications on proteins. Here we report the proteomic analysis of mammalian proteins targeted by a series of fatty acid chemical reporters ranging from myristic to stearic acid. The large-scale analysis of total cell lysates from fully solubilized Jurkat T cells identified known fatty-acylated proteins and many new candidates, including nuclear proteins and in particular histone H3 variants. We demonstrate that histones H3.1, H3.2, and H3.3 are modified with fatty acid chemical reporters and identify the conserved cysteine 110 as a new site of S-acylation on histone H3.2. This newly discovered modification of histone H3 could have implications for nuclear organization and chromatin regulation. The unbiased proteomic analysis of fatty-acylated proteins using chemical reporters has revealed a greater diversity of lipid-modified proteins in mammalian cells and identified a novel post-translational modification of histones. PMID:21076176

  17. DEPOSITION TANK CORROSION TESTING FOR ENHANCED CHEMICAL CLEANING POST OXALIC ACID DESTRUCTION

    SciTech Connect

    Mickalonis, J.

    2011-08-29

    An Enhanced Chemical Cleaning (ECC) process is being developed to aid in the high level waste tank closure at the Savannah River Site. The ECC process uses an advanced oxidation process (AOP) to destroy the oxalic acid that is used to remove residual sludge from a waste tank prior to closure. The AOP process treats the dissolved sludge with ozone to decompose the oxalic acid through reactions with hydroxyl radicals. The effluent from this oxalic acid decomposition is to be sent to a Type III waste tank and may be corrosive to these tanks. As part of the hazardous simulant testing that was conducted at the ECC vendor location, corrosion testing was conducted to determine the general corrosion rate for the deposition tank and to assess the susceptibility to localized corrosion, especially pitting. Both of these factors impact the calculation of hydrogen gas generation and the structural integrity of the tanks, which are considered safety class functions. The testing consisted of immersion and electrochemical testing of A537 carbon steel, the material of construction of Type III tanks, and 304L stainless steel, the material of construction for transfer piping. Tests were conducted in solutions removed from the destruction loop of the prototype ECC set up. Hazardous simulants, which were manufactured at SRNL, were used as representative sludges for F-area and H-area waste tanks. Oxalic acid concentrations of 1 and 2.5% were used to dissolve the sludge as a feed to the ECC process. Test solutions included the uninhibited effluent, as well as the effluent treated for corrosion control. The corrosion control options included mixing with an inhibited supernate and the addition of hydroxide. Evaporation of the uninhibited effluent was also tested since it may have a positive impact on reducing corrosion. All corrosion testing was conducted at 50 C. The uninhibited effluent was found to increase the corrosion rate by an order of magnitude from less than 1 mil per year (mpy

  18. Chemical durability of glaze on Zsolnay architectural ceramics (Budapest, Hungary) in acid solutions

    NASA Astrophysics Data System (ADS)

    Baricza, Ágnes; Bajnóczi, Bernadett; May, Zoltán; Tóth, Mária; Szabó, Csaba

    2015-04-01

    Zsolnay glazed architectural ceramics are among the most famous Hungarian ceramics, however, there is no profound knowledge about the deterioration of these building materials. The present study aims to reveal the influence of acidic solutions in the deterioration of Zsolnay ceramics. The studied ceramics are glazed roof tiles, which originate from two buildings in Budapest: one is located in the densely built-up city centre with high traffic rate and another one is in a city quarter with moderate traffic and more open space. The roof tiles represent the construction and the renovation periods of the buildings. The ceramics were mainly covered by lead glazes in the construction period and mainly alkali glazes in the renovation periods. The glaze of the tiles were coloured with iron (for yellow glaze) or chromium/copper/iron (for green glazes) in the case of the building located in the city centre, whereas cobalt was used as colorant and tin oxide as opacifier for the blue glaze of the ceramics of the other building. Six tiles were selected from each building. Sulphuric acid (H2SO4) solutions of pH2 and pH4 were used to measure the durability of the glazes up to 14 days at room temperature. The surfaces of the glazed ceramics after the treatment were measured by X-ray diffraction, Raman spectroscopy and SEM-EDS techniques to determine the precipitated phases on the surface of the glaze. Electron microprobe analysis was used to quantitatively characterise phases found and to determine the chemical composition of the treated glaze. The recovered sulphuric acid solutions were measured with ICP-OES technique in order to quantify the extent of the ion exchange between the glaze and the solutions. There is a significant difference in the dissolution rates in the treatments with sulphuric acid solutions of pH2 and pH4, respectively. The solution of pH2 induced greater ion exchange (approx. 7-10 times) from the glaze compared to the solution of pH4. Alkali and alkali earth

  19. Comparative analysis of chemical compositions between non-transgenic soybean seeds and those from plants over-expressing AtJMT, the gene for jasmonic acid carboxyl methyltransferase.

    PubMed

    Nam, Kyong-Hee; Kim, Do Young; Pack, In-Soon; Park, Jung-Ho; Seo, Jun Sung; Choi, Yang Do; Cheong, Jong-Joo; Kim, Chung Ho; Kim, Chang-Gi

    2016-04-01

    Transgenic overexpression of the Arabidopsis gene for jasmonic acid carboxyl methyltransferase (AtJMT) is involved in regulating jasmonate-related plant responses. To examine its role in the compositional profile of soybean (Glycine max), we compared the seeds from field-grown plants that over-express AtJMT with those of the non-transgenic, wild-type (WT) counterpart. Our analysis of chemical compositions included proximates, amino acids, fatty acids, isoflavones, and antinutrients. Overexpression of AtJMT in the seeds resulted in decreased amounts of tryptophan, palmitic acid, linolenic acid, and stachyose, but increased levels of gadoleic acid and genistein. In particular, seeds from the transgenic soybeans contained 120.0-130.5% more genistein and 60.5-82.1% less stachyose than the WT. A separate evaluation of ingredient values showed that all were within the reference ranges reported for commercially available soybeans, thereby demonstrating the substantial equivalence of these transgenic and non-transgenic seeds. PMID:26593488

  20. Chemical Profiles of Microalgae with Emphasis on Lipids: Final Report

    SciTech Connect

    Benemann, J. R.; Tillett, D. M.; Suen, Y.; Hubbard, J.; Tornabene, T. G.

    1986-02-01

    This final report details progress during the third year of this subcontract. The overall objective of this subcontract was two fold: to provide the analytical capability required for selecting microalgae strains with high energy contents and to develop fundamental knowledge required for optimizing the energy yield from microalgae cultures. The progress made towards these objectives during this year is detailed in this report.

  1. Final Technical Report "Energy Partitioning in Elementary Chemical Reactions"

    SciTech Connect

    Richard Bersohn; James J. Valentini

    2005-10-03

    This is the final technical report of the subject grant. It describes the scientific results obtained during the reporting period. These results are focused on the reactions of atomic oxygen with terminal alkenes. We have studied the production of vinoxy in these reactions. We have characterized the energy disposal in the reactions and have elaborated the reaction mechanism.

  2. Chemical Reaction between Boric Acid and Phosphine Indicates Boric Acid as an Antidote for Aluminium Phosphide Poisoning

    PubMed Central

    Soltani, Motahareh; Shetab-Boushehri, Seyed F.; Shetab-Boushehri, Seyed V.

    2016-01-01

    Objectives: Aluminium phosphide (AlP) is a fumigant pesticide which protects stored grains from insects and rodents. When it comes into contact with moisture, AlP releases phosphine (PH3), a highly toxic gas. No efficient antidote has been found for AlP poisoning so far and most people who are poisoned do not survive. Boric acid is a Lewis acid with an empty p orbital which accepts electrons. This study aimed to investigate the neutralisation of PH3 gas with boric acid. Methods: This study was carried out at the Baharlou Hospital, Tehran University of Medical Sciences, Tehran, Iran, between December 2013 and February 2014. The volume of released gas, rate of gas evolution and changes in pH were measured during reactions of AlP tablets with water, acidified water, saturated boric acid solution, acidified saturated boric acid solution, activated charcoal and acidified activated charcoal. Infrared spectroscopy was used to study the resulting probable adduct between PH3 and boric acid. Results: Activated charcoal significantly reduced the volume of released gas (P <0.01). Although boric acid did not significantly reduce the volume of released gas, it significantly reduced the rate of gas evolution (P <0.01). A gaseous adduct was formed in the reaction between pure AlP and boric acid. Conclusion: These findings indicate that boric acid may be an efficient and non-toxic antidote for PH3 poisoning. PMID:27606109

  3. Efficient conversion of polyamides to ω-hydroxyalkanoic acids: a new method for chemical recycling of waste plastics.

    PubMed

    Kamimura, Akio; Ikeda, Kosuke; Suzuki, Shuzo; Kato, Kazunari; Akinari, Yugo; Sugimoto, Tsunemi; Kashiwagi, Kohichi; Kaiso, Kouji; Matsumoto, Hiroshi; Yoshimoto, Makoto

    2014-09-01

    An efficient transformation of polyamides to ω-hydroxy alkanoic acids was achieved. Treatment of nylon-12 with supercritical MeOH in the presence of glycolic acid gave methyl ω-hydroxydodecanoate in 85% yield and the alcohol/alkene selectivity in the product was enhanced to up to 9.5:1. The use of (18)O-enriched acetic acid for the reaction successfully introduced an (18)O atom at the alcoholic OH group in the product. This strategy may provide a new and economical solution for the chemical recycling of waste plastics. PMID:25044218

  4. Olfaction Presentation System Using Odor Scanner and Odor-Emitting Apparatus Coupled with Chemical Capsules of Alginic Acid Polymer

    NASA Astrophysics Data System (ADS)

    Sakairi, Minoru; Nishimura, Ayako; Suzuki, Daisuke

    For the purpose of the application of odor to information technology, we have developed an odor-emitting apparatus coupled with chemical capsules made of alginic acid polymer. This apparatus consists of a chemical capsule cartridge including chemical capsules of odor ingredients, valves to control odor emission, and a temperature control unit. Different odors can be easily emitted by using the apparatus. We have developed an integrated system of vision, audio and olfactory information in which odor strength can be controlled coinciding with on-screen moving images based on analytical results from the odor scanner.

  5. Chemical, crystallographic and stable isotopic properties of alunite and jarosite from acid-Hypersaline Australian lakes

    USGS Publications Warehouse

    Alpers, C.N.; Rye, R.O.; Nordstrom, D.K.; White, L.D.; King, B.-S.

    1992-01-01

    Chemical, crystallographic and isotopic analyses were made on samples containing alunite and jarosite from the sediments of four acid, hypersaline lakes in southeastern and southwestern Australia. The alunite and jarosite are K-rich with relatively low Na contents based on chemical analysis and determination of unit cell dimensions by powder X-ray diffraction. Correcting the chemical analyses of fine-grained mineral concentrates from Lake Tyrrell, Victoria, for the presence of halite, silica and poorly crystalline aluminosilicates, the following formulas indicate best estimates for solid-solution compositions: for alunite, K0.87Na0.04(H3O)0.09(Al 0.92Fe0.08)3(SO4)2(OH) 6 and for jarosite, K0.89Na0.07(H3O)0.04(Fe 0.80Al0.20)3(SO4)2(OH) 6. The ??D-values of alunite are notably larger than those for jarosite from Lake Tyrrell and it appears that the minerals have closely approached hydrogen isotope equilibrium with the acidic regional groundwaters. The ??D results are consistent with a fractionation ???60-70??? between alunite and jarosite observed in other areas. However, interpretation of ??D results is complicated by large variability in fluid ??DH2O from evaporation, mixing and possible ion hydration effects in the brine. ??D-values of water derived from jarosite by step-wise heating tend to be smaller at 250??C, at which temperature hydronium and other non-hydroxyl water is liberated, than at 550??C, where water is derived from the hydroxyl site, but the differences are not sufficiently different to invalidate measurements of total ??D obtained by conventional, single-step heating methods. ??34S-values for alunite and jarosite from the four lakes (+19.7 to +21.2??? CDT) and for aqueous sulfate from Lake Tyrrell (+18.3 to +19.8???) are close to the values for modern evaporites (+21.5 ??0.3???) and seawater (+20??0.5???) and are probably typical of seawater-derived aerosols in arid coastal environments. ??34-S-values slightly smaller than that for seawater may

  6. 40 CFR 712.30 - Chemical lists and reporting periods.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-3 Ethyl tert-butyl ether 12/28/94 2/27/95 994-05-8 Tert-amyl methyl ether 12/28/94 2/27/95 1163-19-5...-7 Stannane, dimethylbis - 7/11/03 9/9/03 88185-22-2 Benzoic acid, 3- -, 2-ethoxy-1-methyl-2-oxoethyl...-84-2 Propanal, 2-methyl- 9/30/91 11/27/91 78-85-3 2-Propenal, 2-methyl- 9/30/91 11/27/91...

  7. Chemical vapor deposition of amorphous semiconductor films. Final subcontract report

    SciTech Connect

    Rocheleau, R.E.

    1984-12-01

    Chemical vapor deposition (CVD) from higher order silanes has been studied for fabricating amorphous hydrogenated silicon thin-film solar cells. Intrinsic and doped a-Si:H films were deposited in a reduced-pressure, tubular-flow reactor, using disilane feed-gas. Conditions for depositing intrinsic films at growth rates up to 10 A/s were identified. Electrical and optical properties, including dark conductivity, photoconductivity, activation energy, optical absorption, band-gap and sub-band-gap absorption properties of CVD intrinsic material were characterized. Parameter space for depositing intrinsic and doped films, suitable for device analysis, was identified.

  8. Report of the Fifth Biennial Conference on Chemical Education: Content.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1979

    1979-01-01

    Two papers are reported on, one dealing with a course on inorganic reaction mechanisms for college seniors, and the other on the set-up necessary to provide students with an automatic potentiometric titration facility. (BB)

  9. Thermodynamic and kinetic aspects of surface acidity. Progress report

    SciTech Connect

    Dumesic, J.A.

    1992-04-01

    Our research in the general area of acid catalysis involves the characterization of solid acidity and the corresponding assessment of catalytic performance of acidic materials. Acid characterization studies are required to provide essential information about the type of acid site (i.e., Lewis versus Bronsted), the strength of the sites, and the mobility of molecules adsorbed on the acid sites. An accurate measure of acid strength is given by the heat of adsorption of a basic probe molecule on the acid site. A thermodynamic representation of the mobility of adsorbed species on these sites is given by the entropy of adsorption. Important techniques used in these acid site characterization studies include microcalorimetry, thermogravimetric measurements, temperature programmed desorption, infrared spectroscopy and solid state nuclear magnetic resonance. The combination of these acid site characterization studies with reaction kinetics measurements of selected catalytic processes allows the elucidation of possible relationships between surface thermodynamic and kinetic properties of acidic sites. Such relationships are important milestones in formulating effective strategies for the effective utilization of solid acid catalysts. Current work in this direction involves methylamine syntheses over various zeolites, and the basic probe molecules employed include ammonia, methanol, water and mono-, di- and tri-methylamines. 31 refs., 18 figs., 1 tab.

  10. Amino Acid Proximities in Two Sup35 Prion Strains Revealed by Chemical Cross-linking.

    PubMed

    Wong, Shenq-Huey; King, Chih-Yen

    2015-10-01

    Strains of the yeast prion [PSI] are different folding patterns of the same Sup35 protein, which stacks up periodically to form a prion fiber. Chemical cross-linking is employed here to probe different fiber structures assembled with a mutant Sup35 fragment. The photo-reactive cross-linker, p-benzoyl-l-phenylalanine (pBpa), was biosynthetically incorporated into bacterially prepared recombinant Sup(1-61)-GFP, containing the first 61 residues of Sup35, followed by the green fluorescent protein. Four methionine substitutions and two alanine substitutions were introduced at fixed positions in Sup(1-61) to allow cyanogen bromide cleavage to facilitate subsequent mass spectrometry analysis. Amyloid fibers of pBpa and Met/Ala-substituted Sup(1-61)-GFP were nucleated from purified yeast prion particles of two different strains, namely VK and VL, and shown to faithfully transmit specific strain characteristics to yeast expressing the wild type Sup35 protein. Intra- and intermolecular cross-linking were distinguished by tandem mass spectrometry analysis on fibers seeded from solutions containing equal amounts of (14)N- and (15)N-labeled protein. Fibers propagating the VL strain type exhibited intra- and intermolecular cross-linking between amino acid residues 3 and 28, as well as intra- and intermolecular linking between 32 and 55. Inter- and intramolecular cross-linking between residues 32 and 55 were detected in fibers propagating the VK strain type. Adjacencies of amino acid residues in space revealed by cross-linking were used to constrain possible chain folds of different [PSI] strains. PMID:26265470

  11. Light-induced nitrous acid (HONO) production from NO2 heterogeneous reactions on household chemicals

    NASA Astrophysics Data System (ADS)

    Gómez Alvarez, Elena; Sörgel, Matthias; Gligorovski, Sasho; Bassil, Sabina; Bartolomei, Vincent; Coulomb, Bruno; Zetzsch, Cornelius; Wortham, Henri

    2014-10-01

    Nitrous acid (HONO) can be generated in various indoor environments directly during combustion processes or indirectly via heterogeneous NO2 reactions with water adsorbed layers on diverse surfaces. Indoors not only the concentrations of NO2 are higher but the surface to volume (S/V) ratios are larger and therefore the potential of HONO production is significantly elevated compared to outdoors. It has been claimed that the UV solar light is largely attenuated indoors. Here, we show that solar light (λ > 340 nm) penetrates indoors and can influence the heterogeneous reactions of gas-phase NO2 with various household surfaces. The NO2 to HONO conversion mediated by light on surfaces covered with domestic chemicals has been determined at atmospherically relevant conditions i.e. 50 ppb NO2 and 50% RH. The formation rates of HONO were enhanced in presence of light for all the studied surfaces and are determined in the following order: 1.3·109 molecules cm-2 s-1 for borosilicate glass, 1.7·109 molecules cm-2 s-1 for bathroom cleaner, 1.0·1010 molecules cm-2 s-1 on alkaline detergent (floor cleaner), 1.3·1010 molecules cm-2 s-1 for white wall paint and 2.7·1010 molecules cm-2 s-1 for lacquer. These results highlight the potential of household chemicals, used for cleaning purposes to generate HONO indoors through light-enhanced NO2 heterogeneous reactions. The results obtained have been applied to predict the timely evolution of HONO in a real indoor environment using a dynamic mass balance model. A steady state mixing ratio of HONO has been estimated at 1.6 ppb assuming a contribution from glass, paint and lacquer and considering the photolysis of HONO as the most important loss process.

  12. A model for heterogeneous chemical processes on the surfaces of ice and nitric acid trihydrate particles

    SciTech Connect

    Tabazadeh, A.; Turco, R.P.

    1993-07-20

    A model is developed that incorporates the physics and physical chemistry of ice surfaces relevant to polar stratospheric clouds. The Langmuir and Brunauer, Emmett, and Teller (BET) adsorption isotherms are used to compute surface concentrations of H{sub 2}O, HCl, HOCl, ClONO{sub 2} and N{sub 2}O{sub 5} on ice and nitric acid trihydrate (NAT) crystals. Assuming pseudo-first-order kinetics with respect to adsorbed HOCl, ClONO{sub 2} and N{sub 2}O{sub 5}, surface reaction rates and reaction probabilities (sticking coefficients) are determined. The model parameters (surface morphology and energies) are extracted from measured uptake coefficients and reaction probabilities. For gas pressures of about 10{sup {minus}7} torr and temperatures in the range of 180-200 K, HCl completely coats ice and water-rich NAT surfaces, while HOCl, ClONO{sub 2} and N{sub 2}O{sub 5} may cover 0.01-1% of these surfaces. The model is applied to analyze laboratory data, leading to estimates of adsorption free energies, enthalpies and entropies for HCl, HOCl, ClONO{sub 2} and N{sub 2}O{sub 5} on ice and NAT surfaces, and activation energies for the heterogeneous reactions of HCl and H{sub 2}O with HOCl, ClONO{sub 2} and N{sub 2}O{sub 5} on these surfaces. The energy parameters are used to calculate surface parameters such as adsorption and desorption consistants, surface coverages, reaction rate coefficients, surface diffusion coefficients and reaction probabilities for various species and chemical interactions on ice and NAT surfaces. Implications for chemical processing on polar stratospheric clouds are discussed. 53 refs., 6 figs., 4 tabs.

  13. Herbivore induction of jasmonic acid and chemical defences reduce photosynthesis in Nicotiana attenuata.

    PubMed

    Nabity, Paul D; Zavala, Jorge A; DeLucia, Evan H

    2013-01-01

    Herbivory initiates a shift in plant metabolism from growth to defence that may reduce fitness in the absence of further herbivory. However, the defence-induced changes in carbon assimilation that precede this reallocation in resources remain largely undetermined. This study characterized the response of photosynthesis to herbivore induction of jasmonic acid (JA)-related defences in Nicotiana attenuata to increase understanding of these mechanisms. It was hypothesized that JA-induced defences would immediately reduce the component processes of photosynthesis upon attack and was predicted that wild-type plants would suffer greater reductions in photosynthesis than plants lacking JA-induced defences. Gas exchange, chlorophyll fluorescence, and thermal spatial patterns were measured together with the production of defence-related metabolites after attack and through recovery. Herbivore damage immediately reduced electron transport and gas exchange in wild-type plants, and gas exchange remained suppressed for several days after attack. The sustained reductions in gas exchange occurred concurrently with increased defence metabolites in wild-type plants, whereas plants lacking JA-induced defences suffered minimal suppression in photosynthesis and no increase in defence metabolite production. This suppression in photosynthesis occurred only after sustained defence signalling and defence chemical mobilization, whereas a short bout of feeding damage only transiently altered components of photosynthesis. It was identified that lipoxygenase signalling interacted with photosynthetic electron transport and that the resulting JA-related metabolites reduced photosynthesis. These data represent a metabolic cost to mounting a chemical defence against herbivory and link defence-signalling networks to the differential effects of herbivory on photosynthesis in remaining leaf tissues in a time-dependent manner. PMID:23264519

  14. Chemical composition and minerals in pyrite ash of an abandoned sulphuric acid production plant.

    PubMed

    Oliveira, Marcos L S; Ward, Colin R; Izquierdo, Maria; Sampaio, Carlos H; de Brum, Irineu A S; Kautzmann, Rubens M; Sabedot, Sydney; Querol, Xavier; Silva, Luis F O

    2012-07-15

    The extraction of sulphur produces a hematite-rich waste, known as roasted pyrite ash, which contains significant amounts of environmentally sensitive elements in variable concentrations and modes of occurrence. Whilst the mineralogy of roasted pyrite ash associated with iron or copper mining has been studied, as this is the main source of sulphur worldwide, the mineralogy, and more importantly, the characterization of submicron, ultrafine and nanoparticles, in coal-derived roasted pyrite ash remain to be resolved. In this work we provide essential data on the chemical composition and nanomineralogical assemblage of roasted pyrite ash. XRD, HR-TEM and FE-SEM were used to identify a large variety of minerals of anthropogenic origin. These phases result from highly complex chemical reactions occurring during the processing of coal pyrite of southern Brazil for sulphur extraction and further manufacture of sulphuric acid. Iron-rich submicron, ultrafine and nanoparticles within the ash may contain high proportions of toxic elements such as As, Se, U, among others. A number of elements, such as As, Cr, Cu, Co, La, Mn, Ni, Pb, Sb, Se, Sr, Ti, Zn, and Zr, were found to be present in individual nanoparticles and submicron, ultrafine and nanominerals (e.g. oxides, sulphates, clays) in concentrations of up to 5%. The study of nanominerals in roasted pyrite ash from coal rejects is important to develop an understanding on the nature of this by-product, and to assess the interaction between emitted nanominerals, ultra-fine particles, and atmospheric gases, rain or body fluids, and thus to evaluate the environmental and health impacts of pyrite ash materials. PMID:22613465

  15. Chemical measurements in the Los Angeles atmosphere. Final report

    SciTech Connect

    Brenner, S.; Brewer, R.L.; Kaplan, I.R.; Wong, W.W.

    1980-07-01

    An exploratory study was made of the Battelle Megavolume Sampler. This device collects gram quantities of aerosol particles from air at high flow rates, by impaction and electrostatic precipitation, in three ranges of particle size, namely 0-1.7 ..mu..m, 1.7-3.5 ..mu..m, and >3.5 ..mu..m. The usefulness of various sample treatments and analyses were examined. Samples were taken at the foothill location northeast of Los Angeles, where intense photochemical smog is often encountered. Samples were extracted into organic or aqueous solvents for chromatographic and spectroscopic treatments. Individual components were identified in the following classes: alkanes, fatty acids, dicarboxylic acids, carbonyl compounds, polynuclear aromatic hydrocarbons, inorganic anions, and metals. Elemental analyses for C, H, and N, /sup 13/C//sup 12/C ratios, electron spin resonance, and /sup 14/C radio-activities were also run. The sampler was simple to operate and gave suitable samples, but quantitative recovery of material from the sampler was difficult. The distribution of certain homologous series of organic compounds, the high electron spin densities, and the finding from /sup 14/C activities that only about 50% of the noncarbonate aerosol was fossil, all indicated that a substantial part of the aerosol was biogenic.

  16. Chemical production from industrial by-product gases: Final report

    SciTech Connect

    Lyke, S.E.; Moore, R.H.

    1981-04-01

    The potential for conservation of natural gas is studied and the technical and economic feasibility and the implementation of ventures to produce such chemicals using carbon monoxide and hydrogen from byproduct gases are determined. A survey was performed of potential chemical products and byproduct gas sources. Byproduct gases from the elemental phosphorus and the iron and steel industries were selected for detailed study. Gas sampling, preliminary design, market surveys, and economic analyses were performed for specific sources in the selected industries. The study showed that production of methanol or ammonia from byproduct gas at the sites studied in the elemental phosphorus and the iron and steel industries is technically feasible but not economically viable under current conditions. Several other applications are identified as having the potential for better economics. The survey performed identified a need for an improved method of recovering carbon monoxide from dilute gases. A modest experimental program was directed toward the development of a permselective membrane to fulfill that need. A practical membrane was not developed but further investigation along the same lines is recommended. (MCW)

  17. Chemical transport through continental crust: (Annual) progress report, 1988

    SciTech Connect

    Not Available

    1989-03-20

    The main objective of these studies is to understand the extent and mechanisms of chemical migration over a range of temperatures and in diverse geologic media. During 1988--1989 we continued to attack these problems through studies in the granite-pegmatite systems of the Black Hills, South Dakota. Mineral chemistry, major element chemistry and trace element modeling of the Harney Peak Granite (Black Hills, South Dakota) suggest that 75% to 80% fractional crystallization was the dominant mechanism in producing evolved tourmaline-bearing granite (high B, Li, Rb, Cs, Be, Nb) from a biotite-muscovite granite. To evaluate the petrogenetic-evolutionary relations between the granite and the surrounding rare-element pegmatite field, over 500 K-feldspars (Kf) were analyzed from 60 unzoned to complexly zoned pegmatites. Pegmatites with Kf relatively high in Ba (>140 ppM) and relatively low in Rb (<1000 ppM) and Cs (<30 ppM) are distributed in regions of high pegmatite density (>200 pegmatites/sq. mile), whereas highly evolved pegmatites with Kf enriched in Rb (>4000 ppM) and Cs (>500 ppM) are distributed in regions of low pegmatite density (<100 pegmatites/sq. mile). The extent of pegmatite evolution as reflected in the Kf documents the relation between the degree of fractionation and internal zoning characteristics. Modeling of these data is a major task for the next grant year to provide new insights into chemical and thermal transport in the midcrust.

  18. Chemical defense with topical skin protectant (TSP). Contractor report

    SciTech Connect

    McNally, R.E.; Hutton, M.I.; Morrison, M.B.; Berndt, J.E.; Fisher, J.E.

    1993-12-01

    The mission of the U.S. Army Medical Research and Developmental Command (USAMRDC) Research Program is to preserve combat effectiveness by timely provision of medical countermeasures in response to Joint Service Chemical Warfare Defense Requirements. One of the program's research goals in support of the mission is to provide the soldier individual level prevention and protection so as to sustain fighting strength. This study objective is to evaluate the effectiveness of the developmental TSP(Topical Skin Protectant) against a vesicant (HD), two nerve agents (Soman and VX), and dusty agents. The primary focus of this study is on the operational advantages provided by the use of TSP against these hazards. A secondary focus is on casualty reduction. In general, the simulations indicated that using TSP would result in significant reductions in casualties whenever used in conjunction with at least some chemical protective equipment. The most significant piece of protective equipment of the agent hazards studied, both with and without TSP, would by the protective mask. The results showed that TSP would not substitute for protective clothing but would work very well in conjunction with protective clothing in reducing casualties.

  19. Acidification in the Adirondacks: defining the biota in trophic levels of 30 chemically diverse acid-impacted lakes.

    PubMed

    Nierzwicki-Bauer, Sandra A; Boylen, Charles W; Eichler, Lawrence W; Harrison, James P; Sutherland, James W; Shaw, William; Daniels, Robert A; Charles, Donald F; Acker, Frank W; Sullivan, Timothy J; Momen, Bahram; Bukaveckas, Paul

    2010-08-01

    The Adirondack Mountains in New York State have a varied surficial geology and chemically diverse surface waters that are among the most impacted by acid deposition in the U.S. No single Adirondack investigation has been comprehensive in defining the effects of acidification on species diversity, from bacteria through fish, essential for understanding the full impact of acidification on biota. Baseline midsummer chemistry and community composition are presented for a group of chemically diverse Adirondack lakes. Species richness of all trophic levels except bacteria is significantly correlated with lake acid-base chemistry. The loss of taxa observed per unit pH was similar: bacterial genera (2.50), bacterial classes (1.43), phytoplankton (3.97), rotifers (3.56), crustaceans (1.75), macrophytes (3.96), and fish (3.72). Specific pH criteria were applied to the communities to define and identify acid-tolerant (pH<5.0), acid-resistant (pH 5.0-5.6), and acid-sensitive (pH>5.6) species which could serve as indicators. Acid-tolerant and acid-sensitive categories are at end-points along the pH scale, significantly different at P<0.05; the acid-resistant category is the range of pH between these end-points, where community changes continually occur as the ecosystem moves in one direction or another. The biota acid tolerance classification (batc) system described herein provides a clear distinction between the taxonomic groups identified in these subcategories and can be used to evaluate the impact of acid deposition on different trophic levels of biological communities. PMID:20614900

  20. Stereoregularity of poly (lactic acid) and their model compounds as studied by NMR and quantum chemical calculations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to understand the origin of the tacticity splitting in the NMR spectrum of poly(lactic acid), monomer model compound and dimer model compounds (both isotactic and syndiotactic) were synthesized and their 1H and 13C NMR chemical shifts observed. Two energetically stable conformations were o...

  1. Chemical compositions, free amino acid contents and antioxidant activities of Hanwoo (Bos taurus coreanae) beef by cut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to evaluate chemical compositions, free amino acid contents, and antioxidant activities of different cuts of Hanwoo (Bos taurus coreanae) beef. Beef preferences and prices in the Korean market depend on cut. Therefore, comparisons were made between high-preference (gr...

  2. Acidification in the Adirondacks: Defining the Biota in trophic Levels of 30 Chemically Diverse Acid-Impacted Lakes

    EPA Science Inventory

    The Adirondack Mountains in New York State have a varied surficial geology and chemically diverse surface waters that are among the most impacted by acid deposition in the U.S. No single Adirondack investigation has been comprehensive in defining the effects of acidification on ...

  3. State acid rain permitting programs: A report from EPA

    SciTech Connect

    Miller, R.L.

    1995-12-31

    States and EPA are laying the groundwork for state acid rain permitting in Phase 2 of the Acid Rain Program. Early indications suggest a high degree of state compliance with the acid rain permitting requirements of the Acid Rain Program. Phase 2 acid rain permitting forms have been revised and are available on EPA`s Technology Transfer Network. EPA has developed a policy and rationale concerning submission of Phase 2 permit applications, as well as suggested state timing and methodology regarding adoption of 40 CFR Part 76, the NO{sub x} regulation.

  4. COMPARISON OF OXALIC ACID CLEANING RESULTS AT SRS AND HANFORD AND THE IMPACT ON ENHANCED CHEMICAL CLEANING DEPLOYMENT

    SciTech Connect

    Spires, R.; Ketusky, E.

    2010-01-05

    Waste tanks must be rendered clean enough to satisfy very rigorous tank closure requirements. During bulk waste removal, most of the radioactive sludge and salt waste is removed from the waste tank. The waste residue on the tank walls and interior components and the waste heel at the bottom of the tank must be removed prior to tank closure to render the tank clean enough to meet the regulatory requirement for tank closure. Oxalic acid has been used within the DOE complex to clean residual materials from carbon steel tanks with varying degrees of success. Oxalic acid cleaning will be implemented at both the Savannah River Site and Hanford to clean tanks and serves as the core cleaning technology in the process known as Enhanced Chemical Cleaning. Enhanced Chemical Cleaning also employs a process that decomposes the spent oxalic acid solutions. The oxalic acid cleaning campaigns that have been performed at the two sites dating back to the 1980's are compared. The differences in the waste characteristics, oxalic acid concentrations, flushing, available infrastructure and execution of the campaigns are discussed along with the impact on the effectiveness of the process. The lessons learned from these campaigns that are being incorporated into the project for Enhanced Chemical Cleaning are also explored.

  5. Dexterity testing of chemical-defense gloves. Technical report

    SciTech Connect

    Robinette, K.M.; Ervin; Zehner, G.F.

    1986-05-01

    Chemical-defense gloves (12.5-mil Epichlorohydron/Butyl, 14-mil Epichlorohydron/Butyl, and 7-mil Butyl with Nomex overgloves) were subjected to four dexterity tests (O'Connor Finger Dexterity Test, Pennsylvania Bi-Manual Worksample-Assembly, Minnesota Rate of Manipulation Turning, and the Crawford Small Test). Results indicated that subjects performances were most impaired by the 7-mil Butyl with Nomex overglove. Though differences between the other three gloved conditions were not always statistically significant, subjects performed silghtly better while wearing the Epichlorohydron/Butyl gloves, no matter which thickness, than they did while wearing the 15-mil butyl gloves. High negative correlation between anthropometry and gloved tests scores of subjects suggested that poor glove fit may also have affected subjects performances.

  6. Final Report - Experiments and Models for Chemical Diffusion in Silicate Melts

    SciTech Connect

    Richter, Frank

    1999-10-01

    The final report describes experimental measurements of chemical diffusion and self-diffusion in silicate melts. The data are then used to validate a theoretical model for calculating the diffusion matrix of non-ideal liquids.

  7. Chemical kinetic studies on dry sorbents. Final report. [Sodium bicarbonate

    SciTech Connect

    Davis, W.T.; Keener, T.C.

    1982-02-15

    The scope of this research investigation has included a review of potential additives suitable for dry flue-gas desulfurization (FGD) and a bench scale laboratory study to determine the chemical kinetics for the reaction of five different sorbents with sulfur dioxide. The sorbents chosen included sodium bicarbonate (NaHCO/sub 3/), soda ash (Na/sub 2/CO/sub 3/), trona, lime (CaO) and hydrated lime (Ca(OH)/sub 2/). This study has shown that: (1) The reaction rate increases with temperature for soda ash and calcium oxide. The reaction temperature has an inverse effect on sodium bicarbonate and trona due, primarily, to the simultaneous thermal activation reaction. The calcium hydroxide-SO/sub 2/ reaction increased up to 550/sup 0/F, and then decreased, due to uneven gas flow distribution. (2) The reaction rates for soda ash, calcium oxide and calcium hydroxide were increased by decreasing their particle size. This effect was not confirmed for sodium bicarbonate and trona where reaction temperature was the most important reaction parameter. (3) Reaction with soda ash was found to be limited by the presence of an impervious ash layer which prevented interparticle gaseous diffusion. Calcium oxide and calcium hydroxide were found to be limited by a slow chemical reaction rate. Results on the rate-limiting steps for sodium bicarbonate and trona were inconclusive because of the simultaneous thermal activation reaction. (4) The effect of thermal activation was to increase the reaction rate for sodium bicarbonate and trona at lower temperatures. This effect was less pronounced at higher temperatures. (5) Results obtained for nitric oxide show limited adsorption for the five sorbents tested as compared to the finding for sulfur dioxide.

  8. Chemical and structural properties of sweet potato starch treated with organic and inorganic acid.

    PubMed

    Babu, A Surendra; Parimalavalli, R; Jagannadham, K; Rao, J Sudhakara

    2015-09-01

    In the present study sweet potato starch was treated with hydrochloric acid or citric acid at 1 or 5 % concentration and its properties were investigated. Citric acid treatment resulted higher starch yield. Water holding capacity and water absorption index was increased with increased acid concentration. Emulsion properties improved at 5 % acid concentration. The DE value of acid-thinned sweet potato starches was ranged between 1.93 and 3.76 %. Hydrochloric acid treated starches displayed a higher fraction of amylose. X-ray diffraction (XRD) study revealed that all the starches displayed C-type crystalline pattern with varied crystallinity. FT-IR spectra perceived a slight change in percentage intensity of C-H stretch of citric acid modified starches. Starch granules tended to appear less smooth than the native starch granules after acid treatment in Scanning Electron Micrographs (SEM) with granule size ranging between 8.00 and 8.90 μm. A drastic decrease in the pasting profile was noticed in hydrochloric acid (5 %) treated starch. While 5 % citric acid treated starch exhibited higher pasting profile. Differential Scanning Calorimeter (DSC) showed that peak and conclusion gelatinisation temperatures increased with increase in hydrochloric acid or citric acid concentration. Hence citric acid was found to mimic the hydrochloric acid with some variation which suggests that it may have promising scope in acid modification. PMID:26344988

  9. Chemical characteristics and sources of organic acids in precipitation at a semi-urban site in Southwest China

    NASA Astrophysics Data System (ADS)

    Zhang, Y. L.; Lee, X. Q.; Cao, F.

    2011-01-01

    In order to investigate the chemical characteristics and sources of organic acids in precipitation in Southwest China, 105 rainwater samples were collected at a semi-urban site in Anshun from June 2007 to June 2008. Organic acids and major anions were analyzed along with pH and electrical conductivity. The pH values varied from 3.57 to 7.09 for all the rainfall events sampled, with an average of 4.67 which was typical acidic value. Formic, acetic and oxalic acids were found to be the predominant carboxylic acids and their volume weighted average (VWA) concentrations were 8.77, 6.93 and 2.84 μmol l -1, respectively. These organic acids were estimated to account for 8.1% to the total free acidity (TFA) in precipitation. The concentrations of the majority organic acids at studied site had a clear seasonal pattern, reaching higher levels during the non-growing season than those in growing season, which was attributed to dilution effect of heavy rainfall during the growing season. The seasonal variation of wet deposition flux of these organic acids confirmed higher source strength of biogenic emissions from vegetation during the growing season. Formic-to-acetic acids ratio (F/A), an indicator of primary versus secondary sources of these organic acids, suggested that primary sources from vehicular emission, biomass burning, soil and vegetation emissions were dominant sources. In addition, the lowest concentrations of organic acids were found under type S, when air masses originated from the marine (South China Sea) during Southern Asian Monsoon period. And the highest concentrations were observed in precipitation events from Northeast China (type NE), prevailing mostly during winter with the lowest rainfall.

  10. Department of Defense Nuclear/Biological/Chemical (NBC) defense: Annual report to Congress. Annual report

    SciTech Connect

    1997-03-01

    The National Defense Authorization Act for Fiscal Year 1994, Public Law No. 103-160, Section 1703 (50 USC 1522), mandates the consolidation of all Department of Defense chemical and biological (CB) defense programs. As part of this consolidation, the Secretary of Defense is directed to submit an assessment and a description of plans to improve readiness to survive, fight and win in a nuclear, biological and chemical (NBC) contaminated environment. This report contains modernization plan summaries that highlight the Department`s approach to improve current NBC defense equipment and resolve current shortcomings in the program. 50 USC 1522 has been a critical tool for ensuring the elimination of redundant programs, focusing funds on program priorities, and enhancing readiness. While many problems remain in consolidating the NBC defense program, significant and measurable progress has been made in fulfilling the letter and the intent of Congress. There has been a consolidation of the research, development and acquisition organizations for NBC defense, including the consolidation of all research, development, test and evaluation, and procurement funds for NBC defense. There has been significant progress in the development of Joint training, doctrine development, and requirements generation. Modernization and technology plans have been developed that will begin to show real savings and true consolidation of efforts among the Services. The fruits of these plans will be realized over the next few years as the public law has time to take effect and will result in the increased readiness of U.S. forces. The objective of the Department of Defense (DoD) NBC defense program is to enable our forces to survive, fight, and win in NBC warfare environments. Numerous rapidly changing factors continually influence the program and its management.

  11. Thermo-chemical pretreatment of rice straw for further processing for levulinic acid production.

    PubMed

    Elumalai, Sasikumar; Agarwal, Bhumica; Sangwan, Rajender S

    2016-10-01

    A variety of pretreatment protocols for rice straw fiber reconstruction were evaluated under mild conditions (upto 0.2%wt. and 121°C) with the object of improving polymer susceptibility to chemical attack while preserving carbohydrate sugars for levulinic acid (LA) production. Each of the protocols tested significantly enhanced pretreatment recoveries of carbohydrate sugars and lignin, and a NaOH protocol showed the most promise, with enhanced carbohydrate preservation (upto 20% relative to the other protocols) and more effective lignin dissolution (upto 60%). Consequently, post-pretreatment fibers were evaluated for LA preparation using an existing co-solvent system consisting of HCl and THF, in addition supplementation of DMSO was attempted, in order to improve final product recovery. In contrast to pretreatment response, H2SO4 protocol fibers yielded highest LA conc. (21%wt. with 36% carbohydrate conversion efficiency) under the modest reaction conditions. Apparent spectroscopic analysis witnessed for fiber destruction and delocalization of inherent constituents during pretreatment protocols. PMID:27371796

  12. Effects of chemical oxidants on perfluoroalkyl acid transport in one-dimensional porous media columns.

    PubMed

    McKenzie, Erica R; Siegrist, Robert L; McCray, John E; Higgins, Christopher P

    2015-02-01

    In situ chemical oxidation (ISCO) is a remediation approach that is often used to remediate soil and groundwater contaminated with fuels and chlorinated solvents. At many aqueous film-forming foam-impacted sites, perfluoroalkyl acids (PFAAs) can also be present at concentrations warranting concern. Laboratory experiments were completed using flow-through one-dimensional columns to improve our understanding of how ISCO (i.e., activated persulfate, permanganate, or catalyzed hydrogen peroxide) could affect the fate and transport of PFAAs in saturated porous media. While the resultant data suggest that standard ISCO is not a viable remediation strategy for PFAA decomposition, substantial changes in PFAA transport were observed upon and following the application of ISCO. In general, activated persulfate decreased PFAA transport, while permanganate and catalyzed hydrogen peroxide increased PFAA transport. PFAA sorption increased in the presence of increased aqueous polyvalent cation concentrations or decreased pH. The changes in contaminant mobility were greater than what would be predicted on the basis of aqueous chemistry considerations alone, suggesting that the application of ISCO results in changes to the porous media matrix (e.g., soil organic matter quality) that also influence transport. The application of ISCO is likely to result in changes in PFAA transport, where the direction (increased or decreased transport) and magnitude are dependent on PFAA characteristics, oxidant characteristics, and site-specific factors. PMID:25621878

  13. Chemical nature of phytic acid conversion coating on AZ61 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Pan, Fusheng; Yang, Xu; Zhang, Dingfei

    2009-07-01

    Phytic acid (PA) conversion coating on AZ61 magnesium alloy was prepared by the method of deposition. The influences of pH, time and PA concentration on the formation process, microstructure and properties of the conversion coating were investigated. Scanning electron microscopy (SEM) was used to observe the microstructure. The chemical nature of conversion coating was investigated by energy dispersive X-ray spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) techniques. The corrosion resistance was examined by means of potentiodynamic polarization method. The adhesive ability was tested by score experiments. The results showed that the growth and microstructure of the conversion coatings were all obviously affected by pH, time and PA concentration. In 0.5 mg/ml PA solution with a pH of 5, an optimization conversion coating formed after 20 min immersion time by deposition of PA on AZ61 magnesium alloy surface through chelating with Al 3+. It made the corrosion potential Ecorr of sample shifted positively about 171 mV than that of the untreated sample, and the adhesive ability reached to Grade 1 (in accordance with GB/T 9286).

  14. Reexamination of the Association Between Melting Point, Buoyant Density, and Chemical Base Composition of Deoxyribonucleic Acid

    PubMed Central

    De Ley, J.

    1970-01-01

    The equations currently used for the calculation of the chemical base composition of deoxyribonucleic acid (DNA), expressed as moles per cent guanine plus cytosine (% GC), from either buoyant density (ρ) or midpoint of thermal denaturation (Tm) were recalculated by using only sets of data on DNA determined with the same strains. All available information from the literature was screened and supplemented by unpublished data. The results were calculated by regression and correlation analysis and treated statistically. From the data on 96 strains of bacteria, it was calculated that% GC = 2.44 (Tm – 69.4). Tm appears to be unaffected by the substitution of cytosine by hydroxymethylcytosine. This equation is also valid for nonbacterial DNA. From the data on 84 strains of bacteria, the relation% GC = 1038.47 (–1.6616) was calculated. The constants in this equation are slightly modified when data on nonbacterial DNA are included. Both correlations differ only slightly from those currently used, but now they lean on a statistically sound basis. As a control, the relation between ρ and Tm was calculated from data of 197 strains; it agrees excellently with the above two equations. PMID:5438045

  15. Evaluation of Biomonitoring Data from the CDC National Exposure Report in a Risk Assessment Context: Perspectives across Chemicals

    EPA Science Inventory

    BACKGROUND: Biomonitoring data reported in the National Report on Human Exposure to Environmental Chemicals (NER) provide information on the presence and concentrations of more than 400 chemicals in human blood and urine. Biomonitoring Equivalents (BEs) and other risk assessment...

  16. Ceramic films and interfaces: Chemical and mechanical properties. Final report

    SciTech Connect

    Raj, R.

    1993-06-05

    Results are reported in two areas: (1) understanding the mechanism of superplasticity in those that show unusual resistance to intergranular cavitation, and (2) understanding the growth of heteroepitaxial films of oxides by CVD (NiO, TiO{sub 2}).

  17. Insight into acid-base nucleation experiments by comparison of the chemical composition of positive, negative, and neutral clusters.

    PubMed

    Bianchi, Federico; Praplan, Arnaud P; Sarnela, Nina; Dommen, Josef; Kürten, Andreas; Ortega, Ismael K; Schobesberger, Siegfried; Junninen, Heikki; Simon, Mario; Tröstl, Jasmin; Jokinen, Tuija; Sipilä, Mikko; Adamov, Alexey; Amorim, Antonio; Almeida, Joao; Breitenlechner, Martin; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Kangasluoma, Juha; Keskinen, Helmi; Kim, Jaeseok; Kirkby, Jasper; Laaksonen, Ari; Lawler, Michael J; Lehtipalo, Katrianne; Leiminger, Markus; Makhmutov, Vladimir; Mathot, Serge; Onnela, Antti; Petäjä, Tuukka; Riccobono, Francesco; Rissanen, Matti P; Rondo, Linda; Tomé, António; Virtanen, Annele; Viisanen, Yrjö; Williamson, Christina; Wimmer, Daniela; Winkler, Paul M; Ye, Penglin; Curtius, Joachim; Kulmala, Markku; Worsnop, Douglas R; Donahue, Neil M; Baltensperger, Urs

    2014-12-01

    We investigated the nucleation of sulfuric acid together with two bases (ammonia and dimethylamine), at the CLOUD chamber at CERN. The chemical composition of positive, negative, and neutral clusters was studied using three Atmospheric Pressure interface-Time Of Flight (APi-TOF) mass spectrometers: two were operated in positive and negative mode to detect the chamber ions, while the third was equipped with a nitrate ion chemical ionization source allowing detection of neutral clusters. Taking into account the possible fragmentation that can happen during the charging of the ions or within the first stage of the mass spectrometer, the cluster formation proceeded via essentially one-to-one acid-base addition for all of the clusters, independent of the type of the base. For the positive clusters, the charge is carried by one excess protonated base, while for the negative clusters it is carried by a deprotonated acid; the same is true for the neutral clusters after these have been ionized. During the experiments involving sulfuric acid and dimethylamine, it was possible to study the appearance time for all the clusters (positive, negative, and neutral). It appeared that, after the formation of the clusters containing three molecules of sulfuric acid, the clusters grow at a similar speed, independent of their charge. The growth rate is then probably limited by the arrival rate of sulfuric acid or cluster-cluster collision. PMID:25406110

  18. Management response plan for the Chemical Safety Vulnerability Working Group report. Volume 1

    SciTech Connect

    Not Available

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 146 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 1 contains a discussion of the chemical safety improvements planned or already underway at DOE sites to correct facility or site-specific vulnerabilities. The main part of the report is a discussion of each of the programmatic deficiencies; a description of the tasks to be accomplished; the specific actions to be taken; and the organizational responsibilities for implementation.

  19. Determination of thermodynamic and transport parameters of naphthenic acids and organic process chemicals in oil sand tailings pond water.

    PubMed

    Wang, Xiaomeng; Robinson, Lisa; Wen, Qing; Kasperski, Kim L

    2013-07-01

    Oil sand tailings pond water contains naphthenic acids and process chemicals (e.g., alkyl sulphates, quaternary ammonium compounds, and alkylphenol ethoxylates). These chemicals are toxic and can seep through the foundation of the tailings pond to the subsurface, potentially affecting the quality of groundwater. As a result, it is important to measure the thermodynamic and transport parameters of these chemicals in order to study the transport behavior of contaminants through the foundation as well as underground. In this study, batch adsorption studies and column experiments were performed. It was found that the transport parameters of these chemicals are related to their molecular structures and other properties. The computer program (CXTFIT) was used to further evaluate the transport process in the column experiments. The results from this study show that the transport of naphthenic acids in a glass column is an equilibrium process while the transport of process chemicals seems to be a non-equilibrium process. At the end of this paper we present a real-world case study in which the transport of the contaminants through the foundation of an external tailings pond is calculated using the lab-measured data. The results show that long-term groundwater monitoring of contaminant transport at the oil sand mining site may be necessary to avoid chemicals from reaching any nearby receptors. PMID:23736740

  20. Microbial degradation of volatile anthropogenic organic chemicals. Final report

    SciTech Connect

    Alexander, M.; Roch, F.

    1995-02-01

    Experiments were conducted to study the degradation of trichloroethylene (TCE) by bacteria able to grow on methane (methanotrophs) and to consider specific aspects relative to the ultimate design of a bioreactor to purify air streams contaminated with TCE that could originate from air stripping of contaminated aquifers. A procedure was investigated that consisted of initially sorbing TCE from the gas phase to granular activated carbon (GAC). The GAC then was treated by first extracting TCE from the GAC by using methanol and then providing the methanol containing TCE to methanotrophs. The experiments indicated that neither TCE nor methane could be significantly degraded by methanotrophs in the presence of a high but nontoxic concentration of methanol in water. A study was conducted to determine whether there is a concentration of TCE (a threshold) below which methanotrophs growing on methane would not be able to degrade TCE. TCE was degraded below a concentration of about 2 parts per trillion, and thus no threshold was found. The degradation of TCE by methanotrophs in the presence of different packing materials was assessed. The results showed that some packing materials inhibited TCE degradation unless they were first washed with an aqueous solution of ethylenediaminetetraacetic acid (EDTA).

  1. Case Report: Valproic Acid and Risperidone Treatment Leading to Development of Hyperammonemia and Mania

    ERIC Educational Resources Information Center

    Carlson, Teri; Reynolds, Charles A.; Caplan, Rochelle

    2007-01-01

    This case report describes two children who developed hyperammonemia together with frank manic behavior during treatment with a combination of valproic acid and risperidone. One child had been maintained on valproic acid for years and risperidone was added. In the second case, valproic acid was introduced to a child who had been treated with…

  2. Development of chemical vapor composites, CVC materials. Final report

    SciTech Connect

    1998-10-05

    Industry has a critical need for high-temperature operable ceramic composites that are strong, non-brittle, light weight, and corrosion resistant. Improvements in energy efficiency, reduced emissions and increased productivity can be achieved in many industrial processes with ceramic composites if the reaction temperature and pressure are increased. Ceramic composites offer the potential to meet these material requirements in a variety of industrial applications. However, their use is often restricted by high cost. The Chemical Vapor composite, CVC, process can reduce the high costs and multiple fabrication steps presently required for ceramic fabrication. CVC deposition has the potential to eliminate many difficult processing problems and greatly increase fabrication rates for composites. With CVC, the manufacturing process can control the composites` density, microstructure and composition during growth. The CVC process: can grow or deposit material 100 times faster than conventional techniques; does not require an expensive woven preform to infiltrate; can use high modulus fibers that cannot be woven into a preform; can deposit composites to tolerances of less than 0.025 mm on one surface without further machining.

  3. Oral chemical burns caused by self-medication in a child: case report.

    PubMed

    Antunes, Lívia Azeredo A; Kuchler, Erika Calvano; de Andrade Risso, Patrícia; Maia, Lucianne Cople

    2009-01-01

    There are few published reports that discuss oral burns in children. Electrical, chemical, and thermal agents are the main causative agents of these burns. Some chemicals can cause burning in the mucosa of cheeks, lips, tongue, and palate. Because of the clinical state of acute pain associated with lack of or inadequate care to relieve the symptoms, some patients use self-medication. The purpose of this work is to report the case of oral chemical burns caused by topical self-medication for tooth pain relief, and also to discuss the clinical presentation and the treatment performed. PMID:19506514

  4. Chemical reactions of excited nitrogen atoms for short wavelength chemical lasers. Final technical report

    SciTech Connect

    Not Available

    1989-12-15

    Accomplishments of this program include the following: (1) Scalable, chemical generation of oxygen atoms by reaction of fluorine atoms and water vapor. (2) Production of nitrogen atom densities of 1 {times} 10{sup 1}5 cm{sup {minus}3} with 5% electrical efficiency by injecting trace amounts of fluorine into microwave discharged nitrogen. (3) Production of cyanide radicals by reaction of high densities of N atoms with cyanogen. (4) Production of carbon atoms by reaction of nitrogen atoms with cyanogen or with fluorine atoms and hydrogen cyanide. (5) Confirmation that the reaction of carbon atoms and carbonyl sulfide produces CS(a{sup 3} {Pi}{sub r}), as predicted by conservation of electron spin and orbital angular momenta and as proposed by others under another SWCL program. (6) Production of cyanide radicals by injection of cyanogen halides into active nitrogen and use as spectroscopic calibration source. (7) Demonstration that sodium atoms react with cyanogen chloride, bromide and iodide and with cyanuric trifluoride to produce cyanide radicals. (8) Demonstration of the potential utility of the fluorine atom plus ammonia reaction system in the production of NF(b{sup l}{Sigma}{sup +}) via N({sup 2}D) + F{sub 2}.

  5. Perceived treatment efficacy for conventional and alternative therapies reported by persons with multiple chemical sensitivity.

    PubMed Central

    Gibson, Pamela Reed; Elms, Amy Nicole-Marie; Ruding, Lisa Ann

    2003-01-01

    Multiple chemical sensitivity (MCS) is a condition in which persons experience negative health effects in multiple organ systems from exposure to low levels of common chemicals. Although symptoms experienced from particular chemicals vary across persons, they are generally stable within persons. The sensitivities often spread over time, first to related chemicals and then to other classes of chemicals. This study examined self-reported perceived treatment efficacy of 101 treatments used by 917 persons with self-reported MCS. Treatments examined included environmental medicine techniques, holistic therapies, individual nutritional supplements, detoxification techniques, body therapies, Eastern-origin techniques, newer therapies, prescription items, and others. The three most highly rated treatments were creating a chemical-free living space, chemical avoidance, and prayer. Both creating a chemical-free living space and chemical avoidance were rated by 95% of respondents as helpful. Results for most therapies were mixed. Participants had consulted a mean of 12 health care providers and spent over one-third of their annual income on health care costs. We discuss this drain on personal resources and describe respondents' attitudes toward the possibility of healing from MCS. PMID:12948890

  6. Quarterly progress report for the chemical development section of the Chemical Technology Division: October--December 1995

    SciTech Connect

    Jubin, R.T.

    1996-03-01

    This quarterly report is intended to provide a timely summary of the major activities being conducted in the Chemical Development Section of the Chemical Technology Division at the Oak Ridge National Laboratory (ORNL) during the period September-December 1995. The report summarizes ten major tasks conducted within five major areas of research and development within the section. The first major research area-Chemical Processes for Waste Management-includes the following tasks: Comprehensive Supernate Treatment, Partitioning of Sludge Compounds by Caustic Leaching, Studies on Treatment of Dissolved MVST Sludge Using TRUEX Process, ACT*DE*CON{sup SM} Test Program, Hot Demonstration of Proposed Commercial Nuclide Removal Technology, and Sludge Washing and Dissolution of ORNL Waste: Data for Modeling Sludge Science. The Comprehensive Supernate task is currently evaluating several sorbents in batch tests for removing strontium, technetium, and cesium from ORNL Melton Valley Storage Tank (MVST) supernatant solutions. Nine sorbents have been evaluated for removing strontium from MVST W-29 supernatant, and seven have been tested for technetium removal. All planned batch testing of cesium sorbents has been completed; however, additional cesium tests may be made as new sorbents become available. At the request of Hanford personnel, some batch tests were made to evaluate the effect on cesium distribution of selected sorbents which had been treated with an organic such as tributyl phosphate.

  7. Quarterly progress report for the Chemical Development Section of the Chemical Technology Division: January--March 1996

    SciTech Connect

    Jubin, R.T.

    1996-06-01

    This report provides a timely summary of the major activities conducted in the Chemical Development Section of the Chemical Technology Division at the Oak Ridge National Laboratory (ORNL) during the period January--March 1996. The report summarizes ten major tasks conducted with five major areas of research and development within the section. The first major research area--Chemical Processes for Waste Management--includes the following tasks: Comprehensive Supernate Treatment, Partitioning of Sludge Compounds by Caustic Leaching, Studies on Treatment of Dissolved MVST Sludge Using TRUEX Process, ACT{asterisk}DE{asterisk}CON{sup SM} Test Program, Hot Demonstration of Proposed Commercial Nuclide Removal Technology, and Sludge Washing and Dissolution of ORNL Waste: Data for Modeling Sludge Science. The other four tasks are: Reactor fuel chemistry--Technical assistance in review of advanced reactors; Thermodynamics and kinetics of energy-related materials; Processes for waste management--Ion-exchange process for heavy metals removal; and US Army field artillery liquid propellant stability program.

  8. Gallic Acid as a Complexing Agent for Copper Chemical Mechanical Polishing Slurries at Neutral pH

    NASA Astrophysics Data System (ADS)

    Kim, Yung Jun; Kang, Min Cheol; Kwon, Oh Joong; Kim, Jae Jeong

    2011-05-01

    Gallic acid was investigated as a new complexing agent for copper (Cu) chemical mechanical polishing slurries at neutral pH. Addition of 0.03 M gallic acid and 1.12 M H2O2 at pH 7 resulted in a Cu removal rate of 560.73±17.49 nm/min, and the ratio of the Cu removal rate to the Cu dissolution rate was 14.8. Addition of gallic acid improved the slurry performance compared to glycine addition. X-ray photoelectron spectroscopy analysis and contact angle measurements showed that addition of gallic acid enhanced the Cu polishing behavior by suppressing the formation of surface Cu oxide.

  9. The chemical structure of highly aromatic humic acids in three volcanic ash soils as determined by dipolar dephasing NMR studies

    USGS Publications Warehouse

    Hatcher, P.G.; Schnitzer, M.; Vassallo, A.M.; Wilson, M.A.

    1989-01-01

    Dipolar dephasing 13C NMR studies of three highly aromatic humic acids, one from a modern soil and two from paleosols, have permitted the determination of the degree of aromatic substitution. From these data and the normal solid-state 13C NMR data we have been able to develop a model for the average chemical structure of these humic acids that generally correlates well with permanganate oxidation data. The models depict these humic acids as benzene di- and tricarboxylic acids interconnected by biphenyl linkages. An increasing degree of substitution is observed with increasing geologic age. These structures may be characteristic of the resistant aromatic part of the "core" of humic substances that survives degradation. ?? 1989.

  10. Simultaneous Determination of Gallic Acid, Ellagic Acid, and Eugenol in Syzygium aromaticum and Verification of Chemical Antagonistic Effect by the Combination with Curcuma aromatica Using Regression Analysis

    PubMed Central

    Seo, Chang-Seob; Kim, Seong-Sil; Ha, Hyekyung

    2013-01-01

    This study was designed to perform simultaneous determination of three reference compounds in Syzygium aromaticum (SA), gallic acid, ellagic acid, and eugenol, and to investigate the chemical antagonistic effect when combining Curcuma aromatica (CA) with SA, based on chromatographic analysis. The values of LODs and LOQs were 0.01–0.11 μg/mL and 0.03–0.36 μg/mL, respectively. The intraday and interday precisions were <3.0 of RSD values, and the recovery was in the range of 92.19–103.24%, with RSD values <3.0%. Repeatability and stability were 0.38–0.73% and 0.49–2.24%, respectively. Compared with the content of reference and relative peaks in SA and SA combined with CA (SAC), the amounts of gallic acid and eugenol were increased, while that of ellagic acid was decreased in SAC (compared with SA), and most of peak areas in SA were reduced in SAC. Regression analysis of the relative peak areas between SA and SAC showed r2 values >0.87, indicating a linear relationship between SA and SAC. These results demonstrate that the components contained in CA could affect the extraction of components of SA mainly in a decreasing manner. The antagonistic effect of CA on SA was verified by chemical analysis. PMID:23878761

  11. The possible role of hydrothermal vents in chemical evolution: Succinic acid radiolysis and thermolysis

    NASA Astrophysics Data System (ADS)

    Cruz-Castañeda, J.; Colín-García, M.; Negrón-Mendoza, A.

    2014-07-01

    In this research, the behavior under a high radiation field or high temperature of succinic acid, a dicarboxylic acid clue in metabolic routes, is studied. For this purpose, the molecule was irradiated with gamma rays in oxygen-free aqueous solutions, and the thermal decomposition was studied in a static system at temperatures up to 90 °C, simulating a white hydrothermal vent. Our results indicate that a succinic acid is a relatively stable compound under irradiation. The gamma radiolysis yields carbon dioxide and di- and tricarboxylic acids such as malonic, carboxysuccinic, and citric acids. The main products obtained by the thermal treatment were CO2 and propionic acid.

  12. Physical and chemical studies of chlorophyll in microemulsions. Progress report

    SciTech Connect

    1980-01-01

    Studies designed to provide fundamental information on both the nature of photoreactions in microemulsions and the utility of these media as solvents for absorbers of solar energy were conducted. As a test system, the photoreduction of absorbed dye (principally methyl red) sensitized by chlorophyll a in an anionic mineral oil in water microemulsion was investiged. Using ascorbate as the water soluble reducing agent and pigment concentrations of up to eight per drop (10mM), the reaction exhibits a pseudo zero order dependence on methyl red. The effect of sensitizer, ascorbate concentration and light intensity on the quantum yield was examined, as well as the effect of varying the microemulsion charge type, product catalysis, and the use of synthetic porphyrin sensitizers. In microemulsions containing up to eight chlorophyll molecules per microdroplet, the quantum yield remains constant over five orders of magnitude concentration. The intrinsic quantum yield is independent of droplet surface charge, but is dependent on pH. One of the products of the chemical reduction of methyl red, N, N-dimethyl-p-phenylenediamine (DMPD), increases the limiting quantum yield two to three fold. Synthetic porphyrins have been found to act as sensitizers, and a number of tetrapyridyl porphyrin derivatives containing one to four carbon chains of varying length have been made and examined. The results show that the quantum yield increases with increasing chain length for the monoalkyl compounds, and also indicate the possible involvement of a sensitizer orientation effect. The transport of oil soluble electroactive species in nonionic microemulsions has been found to exhibit percolation behavior, which has potential photogalvanic applications.

  13. Volatile organic chemical emissions from carpets. Final report

    SciTech Connect

    Hodgson, A.T.; Wooley, J.D.; Daisey, J.M.

    1992-04-01

    The primary objective of this research, was to measure the emission rates of selected individual VOC, including low molecular-weight aldehydes, released by samples of four new carpets that are typical of the major types of carpets used in residences, schools and offices. The carpet samples were collected directly from the manufacturers` mills and packaged to preserve their chemical integrity. The measurements of the concentrations and emission rates of these compounds were made under simulated indoor conditions in a 20-M{sup 3} environmental chamber designed specifically for investigations of VOC. The measurements were conducted over a period of one week following the installation of the carpet samples in the chamber. Duplicate experiments were conducted for one carpet. In addition, the concentrations and emission rates of VOC resulting from the installation of a new carpet in a residence were measured over a period of seven weeks. The stabilities of the week-long ventilation rates and temperatures were one percent relative standard deviation. The four carpets emitted a variety of VOC, 40 of which were positively identified. Eight of these were considered to be dominant. They were (in order of chromatographic retention time) formaldehyde, vinyl acetate, 2,2,4-trimethylpentane (isooctane), 1,2-propanediol (propylene glycol), styrene, 2-ethyl-l-hexanol, 4-phenylcyclohexene (4-PCH), and 2,6 di-tert-butyl-4-methylphenol (BHT). With the exception of formaldehyde, only limited data are available on the toxicity and irritancy of these compounds at low concentrations. Therefore, it is difficult to determine at this time the potential magnitude of the health and comfort effects that may occur among the population from exposures to emissions from new carpets. The concentrations and emission rates of most compounds decreased rapidly over the first 12 h of the experiments.

  14. Evaluation of accelerated H/sup +/ applications in predicting soil chemical and microbial changes due to acid rain

    SciTech Connect

    Killham, K.; Firestone, M.K.

    1982-01-01

    A comparison was made between three acidified, simulated rain treatments which have been used to assess the impact of acid rain on soil chemical and microbial processes. There were significant differences in effects on chemical and microbial characteristics of soil exposed to the three treatments due to differences in the rate of H/sup +/ ion application, even though the total quantity of protons supplied was the same in each case. An input of 30 cm of simulated rain of pH 3.0 over 6 months increased microbial activity and caused only slight changes in soil pH and soil nitrogen status. Treatments in which the rate of H/sup +/ input was accelerated by increasing solution volume, or acidity, inhibited microbial activity and caused soil chemical changes in excess of those produced by the more gradual yet equivalent H/sup +/ loading. We conclude that the effects of short-term, accelerated acid treatments cannot be used to realistically forecast long-term impacts of acid rain. The results of such experiments may be useful in identifying processes or parameters for studies of longer duration.

  15. Single-step enantioselective amino acid flux analysis by capillary electrophoresis using on-line sample preconcentration with chemical derivatization.

    PubMed

    Ptolemy, Adam S; Tran, Lara; Britz-McKibbin, Philip

    2006-07-15

    Capillary electrophoresis (CE) represents a versatile platform for integrating sample pretreatment with chemical analysis because of its ability to tune analyte electromigration and band dispersion properties in discontinuous electrolyte systems. In this article, a single-step method that combines on-line sample preconcentration with in-capillary chemical derivatization is developed for rapid, sensitive, and enantioselective analysis of micromolar levels of amino acids that lack intrinsic chromophores by CE with UV detection. Time-resolved electrophoretic studies revealed two distinct stages of amino acid band narrowing within the original long sample injection plug occurring both prior to and after in-capillary labeling via zone passing by ortho-phthalaldehyde/N-acetyl l-cysteine (OPA/NAC). This technique enabled direct analysis of d-amino acids in a 95% enantiomeric excess mixture with sub-micromolar detection limits and minimal sample handling, where the capillary functions as a preconcentrator, microreactor, and chiral selector. On-line sample preconcentration with chemical derivatization CE (SPCD-CE) was applied to study the enantioselective amino acid flux in Escherichia coli bacteria cultures, which demonstrated a unique l-Ala efflux into the extracellular medium. New strategies for high-throughput analyses of low-abundance metabolites are important for understanding fundamental physiological processes in bacteria required for screening the efficacy of new classes of antibiotics as well as altered metabolism in genetically modified mutant strains. PMID:16753129

  16. K-Area Acid/Caustic Basin groundwater monitoring report. Second quarter report 1992

    SciTech Connect

    Thompson, C.Y.

    1992-09-01

    During second quarter 1992, samples from the seven older KAC monitoring wells at the K-Area Acid/Caustic Basin were analyzed for herbicides, indicator parameters, major ions, pesticides, radionuclides, turbidity, and other constituents. New wells FAC 8 and 9 received the first of four quarters of comprehensive analyses and GC/MS VOA (gas chromatograph/ mass spectrometer volatile organic analyses). Monitoring results that exceeded the US Environmental Protection Agency`s Primary Drinking Water Standards (PDWS) or the Savannah River Site (SRS) flagging criteria or turbidity standards during the quarter are discussed in this report.

  17. P-Area Acid/Caustic Basin Groundwater Monitoring Report. Fourth quarterly report and summary 1993

    SciTech Connect

    Not Available

    1994-03-01

    During fourth quarter 1993, samples from the six PAC monitoring wells at the P-Area Acid/Caustic Basin were collected and analyzed for indicator parameters, groundwater quality parameters, parameters characterizing suitability as a drinking water supply, and other constituents. Monitoring results that exceeded the final Primary Drinking Water Standards (PDWS) or the Savannah River Site (SRS) flagging criteria or turbidity standard during the quarter are discussed in this report. During fourth quarter 1993, no constituents exceeded the final PDWS. Aluminum and iron exceeded the SRS Flag 2 criteria in five wells. Manganese exceeded its Flag 2 criterion in three wells, while specific conductance exceeded its Flag 2 criterion in one well.

  18. Biolubricant basestocks from chemically modified plant oils: ricinoleic acid based-tetraesters

    PubMed Central

    2013-01-01

    Background Plant oils have been investigated as a potential source of environmentally favorable biolubricants because of their biodegradability, renewability and excellent lubrication performance. Low oxidation and thermal stability, poor low-temperature properties and a narrow range of available viscosities, however, limit their potential application as industrial lubricants. The inherent problems of plant oils can be improved by attaching functional groups at the sites of unsaturation through chemical modifications. In this article, we will demonstrate how functionalization helps overcome these disadvantages. Results In this work, mono-, tri- and tetra-esters have been synthesized, including 10,12-dihydroxy-9-(stearoyloxy)octadecanoic acid 3; 9,10,12-tris(stearoyloxy)octadecanoic acid 4; and 18-(4-ethylhexyloxy)-18-oxooctadecane-7,9,10-triyl tristearate 5. Pour-point and cloud-point measurements have shown that these derivatives have improved low-temperature properties as compared to the precursor. The tetra ester compound, 18-(4-ethylhexyloxy)-18-oxooctadecane-7,9,10-triyl tristearate 5, had the lowest pour point (PP) (−44.37°C) and the lowest cloud point (CP) (−41.25°C). This derivatization also improved the compound’s thermo-oxidative stability, measured using pressurized differential scanning calorimetry (PDSC) and thin-film micro-oxidation (TFMO) testing. 18-(4-Ethylhexyloxy)-18-oxooctadecane-7,9,10-triyl tristearate 5 also had the highest onset temperature (OT) (282.10°C) and the lowest volatile loss and insoluble deposit (37.39% and 50.87%, respectively). Furthermore, the compounds’ tribological behaviors were evaluated using the four-ball method. 18-(4-Ethylhexyloxy)-18-oxooctadecane-7,9,10-triyl tristearate 5 also had the lowest coefficient of friction (μ) (0.44). Conclusions The results showed that, in general, these derivatives have good anti-wear and friction-reducing properties at relatively low concentrations under all of the test loads

  19. Re-engineering nalidixic acid's chemical scaffold: A step towards the development of novel anti-tubercular and anti-bacterial leads for resistant pathogens.

    PubMed

    Peraman, Ramalingam; Varma, Raghu Veer; Reddy, Y Padmanabha

    2015-10-01

    Occurrence of antibacterial and antimycobacterial resistance stimulated a thrust to discover new drugs for infectious diseases. Herein we report the work on re-engineering nalidixic acid's chemical scaffold for newer leads. Stepwise clubbing of quinoxaline, 1,2,4-triazole/1,3,4-oxadiazole with nalidixic acid yielded better compounds. Compounds were screened against ciprofloxacin resistant bacteria and Mycobacterium tuberculosis H37Rv species. Results were obtained as minimum inhibitory concentration, it was evident that molecule with quinoxaline linked azide as side chain served as antitubercular lead (<6.25 μg/ml) whilst molecule with oxadiazole or triazole linked quinoxaline side chain served as anti-bacterial lead. Few compounds were significantly active against Escherichia coli and Proteus vulgaris with MIC less than 0.06 μg/ml and relatively potent than ciprofloxacin. No true compound was potentially active against Salmonella species as compared to amoxicillin. PMID:26277407

  20. Chemical vectors for gene delivery: a current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers

    PubMed Central

    Midoux, Patrick; Pichon, Chantal; Yaouanc, Jean-Jacques; Jaffrès, Paul-Alain

    2009-01-01

    DNA/cationic lipid (lipoplexes), DNA/cationic polymer (polyplexes) and DNA/cationic polymer/cationic lipid (lipopolyplexes) electrostatic complexes are proposed as non-viral nucleic acids delivery systems. These DNA-nanoparticles are taken up by the cells through endocytosis processes, but the low capacity of DNA to escape from endosomes is regarded as the major limitations of their transfection efficiency. Here, we present a current report on a particular class of carriers including the polymers, peptides and lipids, which is based on the exploitation of the imidazole ring as an endosome destabilization device to favour the nucleic acids delivery in the cytosol. The imidazole ring of histidine is a weak base that has the ability to acquire a cationic charge when the pH of the environment drops bellow 6. As it has been demonstrated for poly(histidine), this phenomena can induce membrane fusion and/or membrane permeation in an acidic medium. Moreover, the accumulation of histidine residues inside acidic vesicles can induce a proton sponge effect, which increases their osmolarity and their swelling. The proof of concept has been shown with polylysine partially substituted with histidine residues that has caused a dramatic increase by 3–4.5 orders of magnitude of the transfection efficiency of DNA/polylysine polyplexes. Then, several histidine-rich polymers and peptides as well as lipids with imidazole, imidazolinium or imidazolium polar head have been reported to be efficient carriers to deliver nucleic acids including genes, mRNA or SiRNA in vitro and in vivo. More remarkable, histidylated carriers are often weakly cytotoxic, making them promising chemical vectors for nucleic acids delivery. This article is part of a themed section on Vector Design and Drug Delivery. For a list of all articles in this section see the end of this paper, or visit: http://www3.interscience.wiley.com/journal/121548564/issueyear?year=2009 PMID:19459843

  1. Mechanistic Insights into the Decomposition of Fructose to Hydroxy Methyl Furfural in Neutral and Acidic Environments Using High-Level Quantum Chemical Methods

    SciTech Connect

    Assary, Rajeev S.; Redfern, Paul C.; Greeley, Jeffrey P.; Curtiss, Larry A.

    2011-04-21

    Efficient catalytic chemical transformation of fructose to hydroxy methyl furfural (HMF) is one of the key steps for attaining industrial level conversion of biomass to useful chemicals. We report an investigation of the reaction mechanisms for the decomposition of fructose to HMF in both neutral and acidic environments at the Gaussian-4 level of theory including calculation of enthalpies, free energies, and effective solvation interactions. In neutral water solvent, the transformation of fructose to HMF involves a four step reaction sequence with four transition states. The effective activation energy relative to fructose in neutral water at 298 K is very large, about 74 kcal/mol, so that transformation in neutral media around this temperature is unlikely. In contrast, the computed potential energy surface is much more favorable for the transformation in acidic media at 498 K, as the effective activation barrier is about 39 kcal/mol. The transformation in acidic media is a much more complex mechanism involving dehydration and hydrogen transfer steps, which are more favorable when protonated intermediates are involved.

  2. Mechanistic Insights into the Decomposition of Fructose to Hydroxy Methyl Furfural in Neutral and Acidic Environments Using High-Level Quantum Chemical Methods

    SciTech Connect

    Assary, Rajeev S.; Redfern, Paul C.; Greeley, Jeffrey; Curtiss, Larry A.

    2011-03-28

    Efficient catalytic chemical transformation of fructose to hydroxy methyl furfural (HMF) is one of the key steps for attaining industrial level conversion of biomass to useful chemicals. We report an investigation of the reaction mechanisms for the decomposition of fructose to HMF in both neutral and acidic environments at the Gaussian-4 level of theory including calculation of enthalpies, free energies, and effective solvation interactions. In neutral water solvent, the transformation of fructose to HMF involves a four step reaction sequence with four transition states. The effective activation energy relative to fructose in neutral water at 298 K is very large, about 74 kcal/mol, so that transformation in neutral media around this temperature is unlikely. In contrast, the computed potential energy surface is much more favorable for the transformation in acidic media at 498 K, as the effective activation barrier is about 39 kcal/mol. The transformation in acidic media is a much more complex mechanism involving dehydration and hydrogen transfer steps, which are more favorable when protonated intermediates are involved.

  3. Mechanistic insights into the decomposition of fructose to hydroxy methyl furfural in neutral and acidic environments using high-level quantum chemical methods.

    PubMed

    Assary, Rajeev S; Redfern, Paul C; Greeley, Jeffrey; Curtiss, Larry A

    2011-04-21

    Efficient catalytic chemical transformation of fructose to hydroxy methyl furfural (HMF) is one of the key steps for attaining industrial level conversion of biomass to useful chemicals. We report an investigation of the reaction mechanisms for the decomposition of fructose to HMF in both neutral and acidic environments at the Gaussian-4 level of theory including calculation of enthalpies, free energies, and effective solvation interactions. In neutral water solvent, the transformation of fructose to HMF involves a four step reaction sequence with four transition states. The effective activation energy relative to fructose in neutral water at 298 K is very large, about 74 kcal/mol, so that transformation in neutral media around this temperature is unlikely. In contrast, the computed potential energy surface is much more favorable for the transformation in acidic media at 498 K, as the effective activation barrier is about 39 kcal/mol. The transformation in acidic media is a much more complex mechanism involving dehydration and hydrogen transfer steps, which are more favorable when protonated intermediates are involved. PMID:21443225

  4. Mechanistic insights into the decomposition of fructose to hydroxy methyl furfural in neutral and acidic environments using high-level quantum chemical methods.

    SciTech Connect

    Assary, R. S.; Redfern, P. C.; Greeley, J.; Curtiss, L. A.

    2011-03-28

    Efficient catalytic chemical transformation of fructose to hydroxy methyl furfural (HMF) is one of the key steps for attaining industrial level conversion of biomass to useful chemicals. We report an investigation of the reaction mechanisms for the decomposition of fructose to HMF in both neutral and acidic environments at the Gaussian-4 level of theory including calculation of enthalpies, free energies, and effective solvation interactions. In neutral water solvent, the transformation of fructose to HMF involves a four step reaction sequence with four transition states. The effective activation energy relative to fructose in neutral water at 298 K is very large, about 74 kcal/mol, so that transformation in neutral media around this temperature is unlikely. In contrast, the computed potential energy surface is much more favorable for the transformation in acidic media at 498 K, as the effective activation barrier is about 39 kcal/mol. The transformation in acidic media is a much more complex mechanism involving dehydration and hydrogen transfer steps, which are more favorable when protonated intermediates are involved.

  5. Quarterly progress report for the Chemical Development Section of the Chemical Technology Division: April--June 1996

    SciTech Connect

    Jubin, R.T.

    1996-11-01

    This report summarizes the major activities conducted in the Chemical Development Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period April--June 1996. The report describes 12 tasks conducted in 4 major areas of research and development within the section. The first major research area--Chemical Processes for Waste Management--includes the following tasks: Comprehensive Supernate Treatment, Partitioning of Sludge Components by Caustic Leaching, Studies on Treatment of Dissolved MVST Sludge Using TRUEX Process, ACT*DE*CON{sup SM} Test Program, Hot Demonstration of Proposed Commercial Nuclide Removal Technology, Sludge Treatment Studies, and Development and Testing of Inorganic Sorbents. Within the second research area--Reactor Fuel Chemistry--a new scope of work for the Technical Assistance in Review of Advanced Reactors task has been established to include assessments of iodine behavior nd pH control in operating nuclear reactor containments as well as in advanced reactor systems. This task is on hold, awaiting finalization of the revised proposal and receipt of the necessary information from Westinghouse to permit the start of the study. Within the third research area--Thermodynamics--the Thermodynamics and Kinetics of Energy-Related Materials task has used a differential thermal analysis (DTA)/thermogravimetric analysis (TGA) to study the phase transitions of phase-pure YBa{sub 2}Cu{sub 3}O{sub 6+x} (123). The fourth major research area--Processes for Waste Management--includes work on these tasks: Ion Exchange Process for Heavy Metals Removal, Hot Cell Cross-Flow Filtration Studies of Gunite Tank Sludges, and Chemical Conversion of Nitrate Directly to Nitrogen Gas: A Feasibility Study.

  6. Production of carrier-peptide conjugates using chemically reactive unnatural amino acids

    SciTech Connect

    Young, Travis; Schultz, Peter G

    2013-12-17

    Provided are methods of making carrier polypeptide that include incorporating a first unnatural amino acid into a carrier polypeptide variant, incorporating a second unnatural amino acid into a target polypeptide variant, and reacting the first and second unnatural amino acids to produce the conjugate. Conjugates produced using the provided methods are also provided. In addition, orthogonal translation systems in methylotrophic yeast and methods of using these systems to produce carrier and target polypeptide variants comprising unnatural amino acids are provided.

  7. Production of carrier-peptide conjugates using chemically reactive unnatural amino acids

    SciTech Connect

    Young, Travis; Schultz, Peter G

    2014-01-28

    Provided are methods of making carrier polypeptide that include incorporating a first unnatural amino acid into a carrier polypeptide variant, incorporating a second unnatural amino acid into a target polypeptide variant, and reacting the first and second unnatural amino acids to produce the conjugate. Conjugates produced using the provided methods are also provided. In addition, orthogonal translation systems in methylotrophic yeast and methods of using these systems to produce carrier and target polypeptide variants comprising unnatural amino acids are provided.

  8. Production of carrier-peptide conjugates using chemically reactive unnatural amino acids

    SciTech Connect

    Young, Travis; Schultz, Peter G.

    2015-08-18

    Provided are methods of making carrier polypeptide that include incorporating a first unnatural amino acid into a carrier polypeptide variant, incorporating a second unnatural amino acid into a target polypeptide variant, and reacting the first and second unnatural amino acids to produce the conjugate. Conjugates produced using the provided methods are also provided. In addition, orthogonal translation systems in methylotrophic yeast and methods of using these systems to produce carrier and target polypeptide variants comprising unnatural amino acids are provided.

  9. The chemical processing of gas-phase carbonyl compounds by sulfuric acid aerosols: 2,4-pentanedione

    NASA Astrophysics Data System (ADS)

    Nozière, Barbara; Riemer, Daniel D.

    This work investigates the interactions between gas-phase carbonyl compounds and sulfuric acid aerosols. It focuses on understanding the chemical processes, giving a first estimate of their importance in the atmosphere, and suggesting directions for further investigations. The solubility and reactivity of a compound with a large enolization constant, 2,4-pentanedione, in water/sulfuric acid solutions 0-96 wt% have been investigated at room temperature using the bubble column/GC-FID technique. 2,4-pentanedione was found to undergo aldol condensation at acidities as low as 20 wt% H 2SO 4, that is, well in the tropospheric range of aerosol composition. In agreement with well-established organic chemical knowledge, this reaction resulted in changes of color of the solutions of potential importance for the optical properties of the aerosols. 2,4-pentanedione was also found to undergo retroaldol reaction, specific to dicarbonyl compounds, producing acetone and acetaldehyde. The Henry's law coefficient for 2,4-pentanedione was found to be a factor 5 larger than the one of acetone over the whole range of acidity, with a value in water of H (297 K)=(155±27) M atm -1. A chemical system is proposed to describe the transformations of carbonyl compounds in sulfuric acid aerosols. Aldol condensation is likely to be the most common reaction for these compounds, probably involving a large number of the ones present in the atmosphere and a wide range of aerosol compositions. The enolization constant contributes as a proportional factor to the rate constant for aldol condensation, and is shown in this work to contribute as an additive constant to the Henry's law coefficient. In addition to the many important aspects of these reactions illustrated in this work, the rate of aldol condensation was estimated to be potentially fast enough for the losses of some compounds in acidic aerosols to compete with their gas-phase chemistry in the atmosphere.

  10. Towards Self-Replicating Chemical Systems Based on Cytidylic and Guanylic Acids

    NASA Technical Reports Server (NTRS)

    Kanavarioti, Anastassia; Bernasconi, Claude F.

    1997-01-01

    This project is aimed towards a better understanding of template-directed reactions and, based on this, towards the development of efficient non-enzymatic RNA replicating systems. These systems could serve as models for the prebiotic synthesis of an RNA world. The major objectives of this project were: (a) To elucidate the mechanistic aspects of template-directed (TD) chemistry, (b) to identify the conditions, environmental and other, that favor "organized chemistry" and stereo selective polymerization of nucleotides and (c) to search and, hopefully, find catalysts that will improve the efficiency of these reactions. Enhanced efficiency is expected to facilitate the road towards a self-replicating chemical system based on all four nucleic acid bases. During the first nine months of the granting period from January 1997 to October 1997, we have made substantial progress towards the first two objectives. During this period our activities were directed towards (1) synthesizing activated nucleotides to be used as substrates, (2) using these substrates in order to determine the effect of the leaving group (imidazole (Im), 2-methylimidazole (2-MeIm), and 2,4-dimethylimidazole (2,4-diMeIm)) in the product distribution, (3) developing techniques for analysis of mixtures by LC/MS, (4) creating a protocol in order to obtain kinetic parameters of the dimerization reaction and (5) analyzing kinetic data obtained with the poly(C)/2-MeImpG system. With the exception of item (5), the experimental work for the projects (1) - (4) is still in progress. A list of publications and manuscripts resulted from this research is enclosed.

  11. Chemical surface modification of calcium carbonate particles with stearic acid using different treating methods

    NASA Astrophysics Data System (ADS)

    Cao, Zhi; Daly, Michael; Clémence, Lopez; Geever, Luke M.; Major, Ian; Higginbotham, Clement L.; Devine, Declan M.

    2016-08-01

    Calcium carbonate (CaCO3) is often treated with stearic acid (SA) to decrease its polarity. However, the method of application of the SA treatments has a strong influence on CaCO3 thermoplastic composite's interfacial structure and distribution. Several of papers describe the promising effects of SA surface treatment, but few compare the treatment process and its effect on the properties of the final thermoplastic composite. In the current study, we assessed a new SA treatment method, namely, complex treatment for polymer composite fabrication with HDPE. Subsequently, a comparative study was performed between the "complex" process and the other existing methods. The composites were assessed using different experiments included scanning electron microscopy (SEM), void content, density, wettability, differential scanning calorimetry (DSC), and tensile tests. It was observed that the "complex" surface treatment yielded composites with a significantly lower voids content and higher density compared to other surface treatments. This indicates that after the "complex" treatment process, the CaCO3 particles and HDPE matrix are more tightly packed than other methods. DSC and wettability results suggest that the "wet" and "complex" treated CaCO3 composites had a significantly higher heat of fusion and moisture resistance compared to the "dry" treated CaCO3 composites. Furthermore, "wet" and "complex" treated CaCO3 composites have a significantly higher tensile strength than the composites containing untreated and "dry" treated CaCO3. This is mainly because the "wet" and "complex" treatment processes have increased adsorption density of stearate, which enhances the interfacial interaction between matrix and filler. These results confirm that the chemical adsorption of the surfactant ions at the solid-liquid interface is higher than at other interface. From this study, it was concluded that the utilization of the "complex" method minimised the negative effects of void

  12. Chemical composition and bioactivity properties of size-fractions separated from a vermicompost humic acid.

    PubMed

    Canellas, Luciano P; Piccolo, Alessandro; Dobbss, Leonardo B; Spaccini, Riccardo; Olivares, Fábio L; Zandonadi, Daniel B; Façanha, Arnoldo R

    2010-01-01

    Preparative high performance size-exclusion chromatography (HPSEC) was applied to humic acids (HA) extracted from vermicompost in order to separate humic matter of different molecular dimension and evaluate the relationship between chemical properties of size-fractions (SF) and their effects on plant root growth. Molecular dimensions of components in humic SF was further achieved by diffusion-ordered nuclear magnetic resonance spectroscopy (DOSY-NMR) based on diffusion coefficients (D), while carbon distribution was evaluated by solid state (CP/MAS) (13)C NMR. Seedlings of maize and Arabidopsis were treated with different concentrations of SF to evaluate root growth. Six different SF were obtained and their carbohydrate-like content and alkyl chain length decreased with decreasing molecular size. Progressive reduction of aromatic carbon was also observed with decreasing molecular size of separated fractions. Diffusion-ordered spectroscopy (DOSY) spectra showed that SF were composed of complex mixtures of aliphatic, aromatic and carbohydrates constituents that could be separated on the basis of their diffusion. All SF promoted root growth in Arabidopsis and maize seedlings but the effects differed according to molecular size and plant species. In Arabidopsis seedlings, the bulk HA and its SF revealed a classical large auxin-like exogenous response, i.e.: shortened the principal root axis and induced lateral roots, while the effects in maize corresponded to low auxin-like levels, as suggested by enhanced principal axis length and induction of lateral roots. The reduction of humic heterogeneity obtained in HPSEC separated size-fractions suggested that their physiological influence on root growth and architecture was less an effect of their size than their content of specific bioactive molecules. However, these molecules may be dynamically released from humic superstructures and exert their bioactivity when weaker is the humic conformational stability as that obtained

  13. Should the pharmacological actions of dietary fatty acids in cardiometabolic disorders be classified based on biological or chemical function?

    PubMed

    Poudyal, Hemant; Brown, Lindsay

    2015-07-01

    Westernised dietary patterns are characterised by an increased intake of saturated (SFA) and trans fat (TFA) and a high n-6:n-3 polyunsaturated fatty acid (PUFA) ratio. These changes together with increased sugar intake have been implicated in the progression and development of metabolic syndrome. It is now recognised that the type of dietary fat plays a far more significant role in well-being than the absolute amount. This has led to the generalisations that TFA and SFA are detrimental, MUFA is neutral and PUFA is cardioprotective. However, different dietary fatty acids even within the same chemical class elicit different physiological responses. Thus, generalising fatty acids by the degree of unsaturation or the configuration of double bonds alone is unlikely to predict biological responses. In this review, we have examined the effects of different dietary fatty acids on the cardiometabolic risk factors and propose a revised classification based on current evidence of biological activity, rather than chemical structure. Specifically, we propose that dietary fatty acids be classified into five classes as neutral, reduce one or more cardiometabolic risk factors, increase one or more cardiometabolic risk factor, controversial evidence to allow classification and inadequate research to allow classification as a basis for further discussions. PMID:26205317

  14. Integrated chemical and multi-scale structural analyses for the processes of acid pretreatment and enzymatic hydrolysis of corn stover.

    PubMed

    Chen, Longjian; Li, Junbao; Lu, Minsheng; Guo, Xiaomiao; Zhang, Haiyan; Han, Lujia

    2016-05-01

    Corn stover was pretreated with acid under moderate conditions (1.5%, w/w, 121°C, 60min), and kinetic enzymolysis experiments were performed on the pretreated substrate using a mixture of Celluclast 1.5L (20FPU/g dry substrate) and Novozyme 188 (40CBU/g dry substrate). Integrated chemical and multi-scale structural methods were then used to characterize both processes. Chemical analysis showed that acid pretreatment removed considerable hemicellulose (from 19.7% in native substrate to 9.28% in acid-pretreated substrate) and achieved a reasonably high conversion efficiency (58.63% of glucose yield) in the subsequent enzymatic hydrolysis. Multi-scale structural analysis indicated that acid pretreatment caused structural changes via cleaving acetyl linkages, solubilizing hemicellulose, relocating cell wall surfaces and enlarging substrate porosity (pore volume increased from 0.0067cm(3)/g in native substrate to 0.019cm(3)/g in acid-pretreated substrate), thereby improving the polysaccharide digestibility. PMID:26876990

  15. Process for chemical reaction of amino acids and amides yielding selective conversion products

    DOEpatents

    Holladay, Jonathan E.

    2006-05-23

    The invention relates to processes for converting amino acids and amides to desirable conversion products including pyrrolidines, pyrrolidinones, and other N-substituted products. L-glutamic acid and L-pyroglutamic acid provide general reaction pathways to numerous and valuable selective conversion products with varied potential industrial uses.

  16. A chemical basis for sour taste perception of acid solutions and fresh-pack dill pickles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sour taste is influenced by pH and acids present in foods. It is not currently possible, however, to accurately predict and modify sour taste intensity in foods containing organic acids. The objective of this study was to investigate the roles of protonated (undissociated) organic acid species and h...

  17. 2004 Toxic Chemical Release Inventory Report for the Emergency Planning and Community Right-to-Know Act of 1986, Title III, Section 313

    SciTech Connect

    M. Stockton

    2006-01-15

    Section 313 of Emergency Planning and Community Right-to-Know Act (EPCRA) specifically requires facilities to submit a Toxic Chemical Release Inventory Report (Form R) to the U.S. Environmental Protection Agency (EPA) and state agencies if the owners and operators manufacture, process, or otherwise use any of the listed toxic chemicals above listed threshold quantities. EPA compiles this data in the Toxic Release Inventory database. Form R reports for each chemical over threshold quantities must be submitted on or before July 1 each year and must cover activities that occurred at the facility during the previous year. For reporting year 2004, Los Alamos National Laboratory (LANL or the Laboratory) submitted Form R reports for lead compounds, nitric acid, and nitrate compounds as required under the EPCRA Section 313. No other EPCRA Section 313 chemicals were used in 2004 above the reportable thresholds. This document provides a description of the evaluation of EPCRA Section 313 chemical use and threshold determinations for LANL for calendar year 2004, as well as background information about data included on the Form R reports.

  18. A ω-mercaptoundecylphosphonic acid chemically modified gold electrode for uranium determination in waters in presence of organic matter.

    PubMed

    Merli, Daniele; Protti, Stefano; Labò, Matteo; Pesavento, Maria; Profumo, Antonella

    2016-05-01

    A chemically modified electrode (CME) on a gold surface assembled with a ω-phosphonic acid terminated thiol was investigated for its capability to complex uranyl ions. The electrode, characterized by electrochemical techniques, demonstrated to be effective for the determination of uranyl at sub-μgL(-1) level by differential pulse adsorptive stripping voltammetry (DPAdSV) in environmental waters, also in presence of humic matter and other potential chelating agents. The accuracy of the measurements was investigated employing as model probes ligands of different complexing capability (humic acids and EDTA). PMID:26946018

  19. Graphene decorated microelectrodes for simultaneous detection of ascorbic, dopamine, and folic acids by means of chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Namdar, N.; Hassanpour Amiri, M.; Dehghan Nayeri, F.; Gholizadeh, A.; Mohajerzadeh, S.

    2015-09-01

    In this paper, high quality and large area graphene layers were synthesized using thermal chemical vapour deposition on copper foil substrates. We use graphene incorporated electrodes to measure simultaneously ascorbic acid, dopamine and folic acid. Cyclic voltammetry and differential pulse voltammetry methods were used to evaluate electrochemical behaviour of the grown graphene layers. The graphene-modified electrode shows large electrochemical potential difference compared to bare gold electrodes with higher current responses. Also our fabricated electrodes configuration can be used easily for microfluidic analysis.

  20. PEROX-PURE CHEMICAL OXIDATION TECHNOLOGY PEROXIDATION SYSTEMS, INC. - APPLICATIONS ANALYSIS REPORT

    EPA Science Inventory

    This report evaluates the perox-pure™ chemical oxidation technology’s ability to remove volatile organic compounds (VOC) and other organic contaminants present in liquid wastes. This report also presents economic data from the Superfund Innovative Technology Evaluation (SITE) dem...

  1. Analysis of issues concerning acid rain. Report to the Congress

    SciTech Connect

    Not Available

    1984-12-01

    Although science has largely determined that man made emissions cause acid rain, there is uncertainty concerning the extent and timing of its anticipated effects. Thus, at the present time scientific information alone does not lead unequivocally to a conclusion on whether it is appropriate to begin control actions now or to avail better understanding. Given this uncertainty, decisionmakers must weight the risks of further, potentially avoidable environmental damage against the risks of economic impacts from acid rain control actions which may ultimately prove to be unwarranted. The implications of current scientific knowledge for policy decisions on acid rain are examined.

  2. Characterization and chemical composition of fatty acids content of watermelon and muskmelon cultivars in Saudi Arabia using gas chromatography/mass spectroscopy

    PubMed Central

    Albishri, Hassan M.; Almaghrabi, Omar A.; Moussa, Tarek A. A.

    2013-01-01

    Background: The growth in the production of biodiesel, which is principally fatty acid methyl esters (FAME), has been phenomenal in the last ten years because of the general desire to cut down on the release of greenhouse gases into the atmosphere, and also as a result of the increasing cost of fossil fuels. Objective: Establish whether there is any relationship between two different species (watermelon and muskmelon) within the same family (Cucurbitaceae) on fatty acid compositions and enumerate the different fatty acids in the two species. Materials and Methods: Extraction of fatty acids from the two species and preparation the extract to gas chromatography/mass spectroscopy analysis to determine the fatty acids compositions qualitatively and quantitatively. Results: The analyzed plants (watermelon and muskmelon) contain five saturated fatty acids; tetrdecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid and octadecanoic acid with different concentrations, while muskmelon contains an extra saturated fatty acid named eicosanoic acid. The watermelon plant contains five unsaturated fatty acids while muskmelon contains three only, the two plants share in two unsaturated fatty acids named 9-hexadecenoic acid and 9-octadecenoic acid, the muskmelon plant contains higher amounts of these two acids (2.04% and 10.12%, respectively) over watermelon plant (0.88% and 0.25%, respectively). Conclusion: The chemical analysis of watermelon and muskmelon revealed that they are similar in saturated fatty acids but differ in unsaturated fatty acids which may be a criterion of differentiation between the two plants. PMID:23661995

  3. Microbial production of amino acids and derived chemicals: synthetic biology approaches to strain development.

    PubMed

    Wendisch, Volker F

    2014-12-01

    Amino acids are produced at the multi-million-ton-scale with fermentative production of l-glutamate and l-lysine alone being estimated to amount to more than five million tons in the year 2013. Metabolic engineering constantly improves productivities of amino acid producing strains, mainly Corynebacterium glutamicum and Escherichia coli strains. Classical mutagenesis and screening have been accelerated by combination with intracellular metabolite sensing. Synthetic biology approaches have allowed access to new carbon sources to realize a flexible feedstock concept. Moreover, new pathways for amino acid production as well as fermentative production of non-native compounds derived from amino acids or their metabolic precursors were developed. These include dipeptides, α,ω-diamines, α,ω-diacids, keto acids, acetylated amino acids and ω-amino acids. PMID:24922334

  4. Uranium recovery from wet-process phosphoric acid with octylphenyl acid phosphate. Progress report

    SciTech Connect

    Arnold, W.D.; McKamey, D.R.; Baes, C.F.

    1980-01-01

    Studies were continued of a process for recovering uranium from wet-process phosphoric acid with octylphenyl acid phosphate (OPAP), a mixture of mono- and dioctylphenyl phosphoric acids. The mixture contained at least nine impurities, the principal one being octyl phenol, and also material that readily hydrolyzed to octyl phenol and orthophosphoric acid. The combination of mono- and dioctylphenyl phosphoric acids was the principal uranium extractant, but some of the impurities also extracted uranium. Hydrolysis of the extractant had little effect on uranium extraction, as did the presence of moderate concentrations of octyl phenol and trioctylphenyl phosphate. Diluent choice among refined kerosenes, naphthenic mixtures, and paraffinic hydrocarbons also had little effect on uranium extraction, but extraction was much lower when an aromatic diluent was used. Purified OPAP fractions were sparingly soluble in aliphatic hydrocarbon diluents. The solubility was increased by the presence of impurities such as octyl phenol, and by the addition of water or an acidic solution to the extractant-diluent mixture. In continuous stability tests, extractant loss by distribution to the aqueous phase was much less to wet-process phosphoric acid than to reagent grade acid. Uranium recovery from wet-process acid decreased steadily because of the combined effects of extractant poisoning and precipitation of the extractant as a complex with ferric iron. Unaccountable losses of organic phase volume occurred in the continuous tests. While attempts to recover the lost organic phase were unsuccessful, the test results indicate it was not lost by entrainment or dissolution in the phosphoric acid solutions. 21 figures, 8 tables.

  5. Physical and chemical stability of gum arabic-stabilized conjugated linoleic acid oil-in-water emulsions.

    PubMed

    Yao, Xiaolin; Xu, Qiong; Tian, Dazhi; Wang, Nana; Fang, Yapeng; Deng, Zhongyang; Phillips, Glyn O; Lu, Jiang

    2013-05-15

    Oil-in-water (O/W) emulsions have been used as a delivery system to protect conjugated linoleic acid (CLA), a polyunsaturated fatty acid, from oxidation. Conventional gum arabic (GA) and two matured gum arabic samples (EM2 and EM10) were used as emulsifiers to prepare CLA-in-water emulsions. The emulsions have optimal physical and chemical stability at gum concentrations of 5% for all three gums. Emulsions with higher gum concentrations are more susceptible to lipid oxidation. This is attributed to reduced physical stability at higher gum concentrations because of the coalescence and depletion-induced flocculation of the emulsion droplets. The prooxidants iron and copper intrinsically contained in the gums could also contribute to this instability. Among the three gums, EM10 provides the most effective protection for CLA both physically and chemically, because of its superior interfacial properties over GA and EM2. PMID:23614832

  6. Hybrid molecularly imprinted poly(methacrylic acid-TRIM)-silica chemically modified with (3-glycidyloxypropyl)trimethoxysilane for the extraction of folic acid in aqueous medium.

    PubMed

    de Oliveira, Fernanda Midori; Segatelli, Mariana Gava; Tarley, César Ricardo Teixeira

    2016-02-01

    In the present study a hybrid molecularly imprinted poly(methacrylic acid-trimethylolpropane trimethacrylate)-silica (MIP) was synthesized and modified with (3-glycidyloxypropyl)trimethoxysilane (GPTMS) with posterior opening of epoxy ring to provide hydrophilic properties of material in the extraction of folic acid from aqueous medium. The chemical and structural aggregates of hybrid material were characterized by means of Fourier Transform Infrared (FT-IR), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Thermogravimetric analysis (TGA) and textural data. Selectivity data of MIP were compared to non-imprinted polymer (NIP) through competitive sorption studies in the presence of caffeine, paracetamol or 4-aminobenzamide yielding relative selectivity coefficients (k′) higher than one unit, thus confirming the selective character of MIP even in the presence of structurally smaller compounds than the folic acid. The lower hydrophobic sorption by bovine serum albumin (BSA) in the MIP as compared to unmodified MIP proves the hydrophilicity of polymer surface by using GPTMS with opening ring. Under acid medium(pH 1.5) the sorption of folic acid onto MIP from batch experiments was higher than the one achieved for NIP. Equilibrium sorption of folic acid was reached at 120 min for MIP, NIP and MIP without GPTMS and kinetic sorption data were well described by pseudo-second-order, Elovich and intraparticle diffusion models. Thus, these results indicate the existence of different binding energy sites in the polymers and a complex mechanism consisting of both surface sorption and intraparticle transport of folic acid within the pores of polymers. PMID:26652418

  7. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities

    NASA Astrophysics Data System (ADS)

    Van Wyngarden, A. L.; Pérez-Montaño, S.; Bui, J. V. H.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.

    2014-11-01

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt %) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, Attenuated Total Reflectance-Fourier Transform Infrared and 1H Nuclear Magnetic Resonance spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene, which was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence for products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and methylglyoxal

  8. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities

    NASA Astrophysics Data System (ADS)

    Van Wyngarden, A. L.; Pérez-Montaño, S.; Bui, J. V. H.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.

    2015-04-01

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt%) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and 1H nuclear magnetic resonance (NMR) spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene that was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher-order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence of products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and

  9. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities

    PubMed Central

    Van Wyngarden, A. L.; Pérez-Montaño, S.; Bui, J. V. H.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.

    2016-01-01

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40–80 wt %) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, attenuated total reflectance–Fourier transform infrared (ATR-FTIR) and 1H nuclear magnetic resonance (NMR) spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene that was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher-order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence of products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and

  10. Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: July-September 1999

    SciTech Connect

    Jubin, R.T.

    2001-04-16

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July-September 1999. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within ten major areas of research: Hot Cell Operations, Process Chemistry, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Physical Properties Research, Biochemical Engineering, Separations and Materials Synthesis, Fluid Structures and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information. Activities conducted within the area of the Cell Operations involved the testing of two continuously stirred tank reactors in series to evaluate the Savannah River-developed process of small-tank tetraphenylborate precipitation to remove cesium, strontium and transuranics from supernatant. Within the area of Process Chemistry, various topics related to solids formation in process solutions from caustic treatment of Hanford sludge were addressed. Saltcake dissolution efforts continued, including the development of a predictive algorithm. New initiatives for the section included modeling activities centered on detection of hydrogen in {sup 233}U storage wells and wax formation in petroleum mixtures, as well as support for the Spallation Neutron Source (investigation of transmutation products formed during operation). Other activities involved in situ grouting and evaluation of options for use (i.e., as castable shapes) of depleted uranium. In a continuation of activities of the preceding

  11. Dynamics of sinking particles in northern Japan trench in the western North Pacific: biogenic chemical components and fatty acids biomarkers

    NASA Astrophysics Data System (ADS)

    Shin, K. H.; Noriki, S.; Itou, M.; Tsunogai, S.

    Biogenic opal was predominant component, and had strongly positive correlation with organic carbon in both traps. The average atomic ratios of biogenic opal and calcium carbonate (CaCO 3) were also large (7.1 and 11 in the shallow and deep trap, respectively) and the highest ratio was found in May 1995, when the biogenic opal proportion (%) to the total particle flux and C org/C inorg ratio increased concomitantly. However, transient switching of the biogenic opal and CaCO 3 ratios (0.6 and 0.8) was observed in winter 1995, which seems to be related to a warm-core ring developed in the northwestern Pacific. Downward fluxes of fatty acids as molecular markers were determined and compared with major biogenic chemical components in sinking particles. As a diatom index of fatty acids, the 16:1(n-7)/16:0 ratio is positively related to biogenic opal contribution (%) to the sinking particles in the shallow and deep traps. 20:5(n-3) proportion (%) was also correlated with opal content (%) in sinking particles in the 1-km trap. In addition, a major source of sinking fatty acids in the western North Pacific might be characterized by algal fatty acids as a diatom marker (16:1(n-7)), comparing to a zooplankton fatty acid (18:1(n-9)) in the central North Pacific and fecal pellets and coccolithophores in the eastern North Pacific, respectively. Also, PUFA index (a measure of polyunsaturated fatty acids contribution to the total fatty acids) correlated well with Chl a inventory in surface 0-50 m water. These results suggest that undegraded diatomaceous fatty acids are present in sinking particles, and the composition of fatty acids is useful to understand the origin of sinking organic particles.

  12. Maternal B vitamin status in pregnancy week 18 according to reported use of folic acid supplements

    PubMed Central

    Bjørke-Monsen, Anne Lise; Roth, Christine; Magnus, Per; Midttun, Øivind; Nilsen, Roy M.; Reichborn-Kjennerud, Ted; Stoltenberg, Camilla; Susser, Ezra; Vollset, Stein Emil; Ueland, Per Magne

    2013-01-01

    Scope Epidemiological studies on the association between pregnancy outcomes and use of periconceptional folic acid are often based on maternal reported intake. Use of folic acid during pregnancy is associated with a higher socioeconomic status known to have an impact on diet quality. We have studied plasma B vitamin status according to reported use of folic acid supplements during the periconceptional period in Norwegian women. Methods and results Plasma levels of folate, cobalamin, pyridoxal 5′-phosphate (vitamin B6), riboflavin and the metabolic markers total homocysteine, methylmalonic acid and 3-hydroxykynurenine were measured in pregnancy week 18 and related to reported intake of folic acid from 4 weeks prior to conception throughout week 18 in 2911 women from the Norwegian Mother and Child Cohort Study (MoBa) conducted by the Norwegian Institute of Public Health. Being a folic acid user during the periconceptional period was associated with a better socioeconomic status, and a higher intake of several micronutrients, including vitamins, trace-metals and omega 3 fatty acids. Folic acid users had a significantly better plasma B vitamin status. Conclusions Epidemiological data based on maternal reported intake of folic acid supplements during pregnancy, should take into account the numerous nutritional implications, in addition to higher blood folate levels, of being a folic acid user. PMID:23001761

  13. The facile surface chemical modification of a single glass nanopore and its use in the nonenzymatic detection of uric acid.

    PubMed

    He, Haili; Xu, Xiaolong; Wang, Ping; Chen, Lizhen; Jin, Yongdong

    2015-02-01

    A conical glass nanopore was first modified with ultrathin gold nanofilm via a simple and innovative chemical reduction of HAuCl4 on a surface-attached poly(L-histidine) monolayer in the presence of a mild reductant, NH2OH·HCl, followed by surface functionalization with 2-thiouracil, and exploited for the selective nonenzymatic detection of uric acid and especially for serum sample detection. PMID:25531580

  14. Efficiency of Fatty Acids as Chemical Penetration Enhancers: Mechanisms and Structure Enhancement Relationship

    PubMed Central

    Ibrahim, Sarah A.; Li, S. Kevin

    2010-01-01

    Purpose The present study evaluated the effects of fatty acids commonly present in cosmetic and topical formulations on permeation enhancement across human epidermal membrane (HEM) lipoidal pathway when the fatty acids saturated the SC lipid domain without cosolvents (Emax). Methods HEM was treated with neat fatty acids or fatty acid suspensions to determine Emax. A volatile solvent system was used to deposit fatty acids on HEM surface to compare fatty acid enhancer efficiency in topical volatile formulations with Emax. To elucidate permeation enhancement mechanism(s), estradiol (E2β) uptake into fatty acid-treated SC lipid domain was determined. Results Emax of fatty acids was shown to increase with their octanol solubilities and decrease with their lipophilicities, similar to our previous findings with other enhancers. Emax of solid fatty acids was shown to depend on their melting points, an important parameter to the effectiveness of the enhancers. The E2β uptake results suggest that enhancer-induced permeation enhancement across HEM is related to enhanced permeant partitioning into the SC lipid domain. Conclusions The results suggest Emax as a model for studying the permeation enhancement effect of the fatty acids and their structure enhancement relationship. PMID:19911256

  15. Studies on acid oils and fatty acids for chickens III. Effect of chemical composition on metabolisable energy of by-products of vegetable oil refining.

    PubMed

    Vila, B; Esteve-Garcia, E

    1996-03-01

    1. Fourteen by-products of oil refining, selected for their variability in free fatty acid and unsaponifiable contents, were analysed chemically with the objective of relating the determined ME values of the products to chemical composition by means of multiple linear regression analysis. Refined sunflower oil was included as a reference fat. 2. Twenty-one 2-week-old chicks were used to determine fat digestibilities and AMEn values of diets, using the total collection method. Fats were included in a wheat-soyabean meal diet at 100 g/kg. Multiple linear regression analysis was used to express the ME values of fats as functions of the parameters measured (moisture, gross energy, impurities, unsaponifiables, non eluted material, free fatty acid content, unsaturated: saturated ratio, peroxide value, TBA test). 3. The ME of the fat products lay in the range l2.62 to 24.35 MJ/kg, and 29.26 MJ/kg for refined sunflower oil. Free fatty acid content of the fats was shown to be a poor predictor of their ME values, whereas non eluted material (NEM) of the fat products showed a good correlation with their ME. A regression equation could be derived (R2 0.6548; SEE 2.0064) with the unsaturated: saturated ratio (U:S) and NEM. An ME prediction equation based on the U:S, NEM and unsaponifiable content is also proposed (R2= 0.7l68; SEE= 1.9058). PMID:8833534

  16. Quantification of trace fatty acid methyl esters in diesel fuel by using multidimensional gas chromatography with electron and chemical ionization mass spectrometry.

    PubMed

    Webster, R L; Rawson, P M; Evans, D J; Marriott, P J

    2016-07-01

    Measurement of contamination of marine and naval diesel fuels (arising from product mixing or adulteration) with biodiesel or fatty acid methyl esters can be problematic, especially at very low levels. A suitable solution for this task for trace amounts of individual fatty acid methyl esters with resolution and quantification can be achieved by using a multidimensional gas chromatographic approach with electron and chemical ionization mass spectrometric detection. A unique column set comprising a 100 m methyl-siloxane nonpolar first dimension column and high-temperature ionic liquid column in the second dimension enabled identification of individual fatty acid methyl esters at below the lowest concentrations required to be reported in a diesel fuel matrix. Detection limits for individual fatty acid methyl esters compounds ranged from 0.5 to 5.0 mg/L, with excellent linearity up to 5000 mg/L and repeatability of the method from 1.3 to 3.2%. The method was applied to the analysis of diesel fuel samples with suspected biodiesel contamination. Contamination at 568 mg/L was calculated for an unknown sample and interpretation of the results permitted the determination of a likely source of the contamination. PMID:27159197

  17. Investigations of the uptake of transuranic radionuclides by humic and fulvic acids chemically immobilized on silica gel and their competitive release by complexing agents

    SciTech Connect

    Bulman, R.A.; Szabo, G.; Clayton, R.F.; Clayton, C.R.

    1998-07-01

    The chemistry of the interactions of transuranic elements (TUs) with humic substances needs to be understood so that humate-mediated movement of transuranic radionuclides through the environment can be predicted. This paper reports the chemical immobilization on silica gel of humic and fulvic acids and evaluates the potential of these new materials for the retention of Pu and Am. In addition to the preparation of the foregoing immobilized humic substances, other low molecular weight metal-binding ligands have also been immobilized on silica gel to investigate the binding sites for transuranic elements (TUs) in humic substances. The X-ray photoelectron spectra (XPS) of Th(IV) complexed by humic acid and the immobilized humic acid are similar thus it appears that immobilization of humic acid does not generate any configurational changes in the Th(IV)-binding sites of the macromolecule. A variety of chelating agents partly mobilize these TUs sorbed on the solid phases. A batch method was used to determine the distribution coefficients (R{sub d}) of Pu and Am between the silica gels and aqueous solutions of phosphate and citrate. The effects of the immobilized ligands, the anions and pH in the solution on sorption were assessed. Distributed coefficients (R{sub d}) for the uptake of Pu and Am by these prepared solid phases are, in some cases, of a similar order of magnitude as those determined for soil and particles suspended in terrestrial surface waters.

  18. Short wavelength chemical laser demonstration based on N({sup 2}D) chemistry. Final technical report

    SciTech Connect

    Not Available

    1990-01-19

    The overall goal of this project was to demonstrate lasing on the NCl(b{yields}x) transition at 665 nm. Our scheme is based on chemical production of excited nitrogen atoms in the {sup 2}D metastable state and subsequent reaction of N({sup 2}D) with Cl{sub 2} to produce NCl(b). Our intermediate objectives were: (1) demonstrate chemical generation of N({sup 2}D), (2) identify and measure rate constants important to the chemical scheme, and (3) demonstrate production of NCl(b) from the N({sup 2}D) + Cl{sub 2} reaction. The program results and accomplishments are summarized in this report.

  19. Chemical Biodynamics Division: Annual report, October 1, 1985-September 30, 1986

    SciTech Connect

    Not Available

    1986-10-01

    The research in the Laboratory of Chemical Biodynamics is almost entirely fundamental research. The biological research component is strongly dominated by a long term interest in two main themes which make up our Structural Biology Program. The first interest has to do with understanding the molecular dynamics of photosynthesis. The Laboratory's investigators are studying the various components that make up the photosynthetic reaction center complexes in many different organisms. This work not only involves understanding the kinetics of energy transfer and storage in plants, but also includes studies to work out how photosynthetic cells regulate the expression of genes encoding the photosynthetic apparatus. The second biological theme is a series of investigations into the relationship between structure and function in nucleic acids. Our basic mission in this program is to couple our chemical and biophysical expertise to understand how not only the primary structure of nucleic acids, but also higher levels of structure including interactions with proteins and other nucleic acids regulate the functional activity of genes. In the chemical sciences work in the Laboratory, our investigators are increasing our understanding of the fundamental chemistry of electronically excited molecules, a critical dimension of every photosynthetic energy storage process. We are developing approaches not only toward the utilization of sophisticated chemistry to store photon energy, but also to develop systems that can emulate the photosynthetic apparatus in the trapping and transfer of photosynthetic energy.

  20. A Development of Ceramics Cylinder Type Sulfuric Acid Decomposer for Thermo-Chemical Iodine-Sulfur Process Pilot Plant

    SciTech Connect

    Hiroshi Fukui; Isao Minatsuki; Kazuo Ishino

    2006-07-01

    The hydrogen production method applying thermo-chemical Iodine-Sulfur process (IS process) which uses a nuclear high temperature gas cooled reactor is world widely greatly concerned from the view point of a combination as a clean method, free carbon dioxide in essence. In this process, it is essential a using ceramic material, especially SiC because a operation condition of this process is very corrosive due to a sulfuric acid atmosphere with high temperature and high pressure. In the IS process, a sulfuric acid decomposer is the key component which performs evaporating of sulfuric acid from liquid to gas and disassembling to SO{sub 2} gas. SiC was selected as ceramic material to apply for the sulfuric acid decomposer and a new type of binding material was also developed for SiC junction. This technology is expected to wide application not only for a sulfuric acid decomposer but also for various type components in this process. Process parameters were provided as design condition for the decomposer. The configuration of the sulfuric acid decomposer was studied, and a cylindrical tubes assembling type was selected. The advantage of this type is applicable for various type of components in the IS process due to manufacturing with using only simple shape part. A sulfuric acid decomposer was divided into two regions of the liquid and the gaseous phase of sulfuric acid. The thermal structural integrity analysis was studied for the liquid phase part. From the result of this analysis, it was investigated that the stress was below the strength of the breakdown probability 1/100,000 at any position, base material or junction part. The prototype model was manufactured, which was a ceramic portion in the liquid phase part, comparatively complicated configuration, of a sulfuric acid decomposer. The size of model was about 1.9 m in height, 1.0 m in width. Thirty-six cylinders including inlet and outlet nozzles were combined and each part article was joined using the new binder

  1. A Development of Ceramics Cylinder Type Sulfuric Acid Decomposer for Thermo-Chemical Iodine-Sulfur Process Pilot Plant

    NASA Astrophysics Data System (ADS)

    Minatsuki, Isao; Fukui, Hiroshi; Ishino, Kazuo

    The hydrogen production method applying thermo-chemical Iodine-Sulfur process (IS process) which uses a nuclear high temperature gas cooled reactor is world widely greatly concerned from the view point of a combination as a clean method, free carbon dioxide in essence. In this process, it is essential a using ceramic material, especially SiC because a operation condition of this process is very corrosive due to a sulfuric acid atmosphere with high temperature and high pressure. In the IS process, a sulfuric acid decomposer is the key component which performs evaporating of sulfuric acid from liquid to gas and disassembling to SO2 gas. SiC was selected as ceramic material to apply for the sulfuric acid decomposer and a new type of binding material was also developed for SiC junction. This technology is expected to wide application not only for a sulfuric acid decomposer but also for various type components in this process. Process parameters were provided as design condition for the decomposer. The configuration of the sulfuric acid decomposer was studied, and a cylindrical tubes assembling type was selected. The advantage of this type is applicable for various type of components in the IS process due to manufacturing with using only simple shape part. A sulfuric acid decomposer was divided into two regions of the liquid and the gaseous phase of sulfuric acid. The thermal structural integrity analysis was studied for the liquid phase part. From the result of this analysis, it was investigated that the stress was below the strength of the breakdown probability 1/100,000 at any position, base material or junction part. The prototype model was manufactured, which was a ceramic portion in the liquid phase part, comparatively complicated configuration, of a sulfuric acid decomposer. The size of model was about 1.9m in height, 1.0m in width. Thirty-six cylinders including inlet and outlet nozzles were combined and each part article was joined using the new binder (slurry

  2. Methods of chemical analysis for selected species in marble and limestone surfaces exposed to the acidic outdoor environment

    SciTech Connect

    Jensen, K.J.; Williams, F.L.; Huff, E.A.; Youngdahl, C.A.

    1986-03-01

    There is concern for marble and limestone exposed to the acidic outdoor environment because they are widely used as the exterior structures of buildings and monuments and because the calcium carbonate stones are especially sensitive to acid. Field tests of these building materials under carefully monitored environmental conditions are being conducted to measure damage rates and ultimately to quantify the individual effects of the important damage mechanisms. The development of further quantitative understanding will provide an improved basis for control strategies. The demonstration, verification, and application of a technique to measure selected surface anionic and cationic species are important contributions to this study. These methods of stone surface chemical analysis, developed for and applied in the National Acid Precipitation Assessment Program (NAPAP), are appropriate to monitor selected species of program interest and are sufficient to determine surface sulfate and nitrate reaction products.

  3. Preparation of betulinic acid derivatives by chemical and biotransformation methods and determination of cytotoxicity against selected cancer cell lines.

    PubMed

    Baratto, Leopoldo C; Porsani, Mariana V; Pimentel, Ida C; Pereira Netto, Adaucto B; Paschke, Reinhard; Oliveira, Brás H

    2013-10-01

    Several novel 2,4-dinitrophenylhydrazone betulinic acid derivatives have been prepared by chemical and biotransformation methods using fungi and carrot cells. Some compounds showed significant cytotoxicity and selectivity against some tumor cell lines. The most active, 3-[(2,4-dinitrophenyl)hydrazono]lup-(20R)-29-oxolupan-28-oic acid, showed IC50 values between 1.76 and 2.51 μM against five human cancer cell lines. The most selective, 3-hydroxy-20-[(2,4-dinitrophenyl)hydrazono]-29-norlupan-28-oic acid, was five to seven times more selective for cancer cells when compared to fibroblasts. Cell cycle analysis and apoptosis induction were studied for the most active derivatives. PMID:23973824

  4. Isolation and chemical structure of aklanonic acid, an early intermediate in the biosynthesis of anthracyclines.

    PubMed

    Eckardt, K; Tresselt, D; Schumann, G; Ihn, W; Wagner, C

    1985-08-01

    The fermentation, isolation and structure elucidation of aklanonic acid are described. The compound was isolated from fermentations of Streptomyces strain ZIMET 43,717. Aklanonic acid is a yellow-orange crystalline substance, melting at 203-204 degrees C (dec), having the molecular formula C21H16O8, and possessing UV maxima at 258, 282 (sh) and 438 nm (CHCl3). In dimethyl sulfoxide or pyridine aklanonic acid is unstable and a new compound (aklanone) is formed as a conversion product. The elucidation of the structures has shown that aklanonic acid and aklanone are derivatives of 1,8-dihydroxyanthraquinone. PMID:3862658

  5. Safety in the Chemical Laboratory: Nitric Acid, Nitrates, and Nitro Compounds.

    ERIC Educational Resources Information Center

    Bretherick, Leslie

    1989-01-01

    Discussed are the potential hazards associated with nitric acid, inorganic and organic nitrate salts, alkyl nitrates, acyl nitrates, aliphatic nitro compounds, aromatic nitro compounds, and nitration reactions. (CW)

  6. Effects of acid fog and ozone on conifers. Final report

    SciTech Connect

    Bytnerowicz, A.; Olszyk, D.M.; Takemoto, B.K.; McCool, P.M.; Musselman, R.C.

    1989-05-01

    This study evaluated the effects of acidic fog (pH 2.0, 3.0, or 4.0) on the physiological, biochemical, and growth responses of two coniferous tree species (Pinus ponderosa and Abies concolor), and determined if exposure to acidic fog predisposed the tree seedlings to the phytotoxic effects of ozone (O{sub 3}). Results provide evidence that the growth and metabolic responses of two coniferous tree species could be altered by multiple applications of acidic fog, and by exposure to ambient O{sub 3}. In general, the alterations were slight to modest, which may be attributed to the low degree of stress severity, and the slow rate of tree growth. The findings indicate that exposure to acidic fog followed by O{sub 3} does not cause detectable changes in conifer seedling growth within a single-growing season. Nevertheless, it is clear that acidic fog and O{sub 3} cause temporal alterations in seedling physiology and biochemistry.

  7. Heat, Acid and Chemically Induced Unfolding Pathways, Conformational Stability and Structure-Function Relationship in Wheat α-Amylase

    PubMed Central

    Singh, Kritika; Shandilya, Manish; Kundu, Suman; Kayastha, Arvind M.

    2015-01-01

    Wheat α-amylase, a multi-domain protein with immense industrial applications, belongs to α+β class of proteins with native molecular mass of 32 kDa. In the present study, the pathways leading to denaturation and the relevant unfolded states of this multi-domain, robust enzyme from wheat were discerned under the influence of temperature, pH and chemical denaturants. The structural and functional aspects along with thermodynamic parameters for α-amylase unfolding were probed and analyzed using fluorescence, circular dichroism and enzyme assay methods. The enzyme exhibited remarkable stability up to 70°C with tendency to aggregate at higher temperature. Acid induced unfolding was also incomplete with respect to the structural content of the enzyme. Strong ANS binding at pH 2.0 suggested the existence of a partially unfolded intermediate state. The enzyme was structurally and functionally stable in the pH range 4.0–9.0 with 88% recovery of hydrolytic activity. Careful examination of biophysical properties of intermediate states populated in urea and GdHCl induced denaturation suggests that α-amylase unfolding undergoes irreversible and non-coincidental cooperative transitions, as opposed to previous reports of two-state unfolding. Our investigation highlights several structural features of the enzyme in relation to its catalytic activity. Since, α-amylase has been comprehensively exploited for use in a range of starch-based industries, in addition to its physiological significance in plants and animals, knowledge regarding its stability and folding aspects will promote its biotechnological applications. PMID:26053142

  8. Inter-laboratory variation in the chemical analysis of acidic forest soil reference samples from eastern North America

    USGS Publications Warehouse

    Ross, Donald S.; Bailiey, Scott W; Briggs, Russell D; Curry, Johanna; Fernandez, Ivan J.; Fredriksen, Guinevere; Goodale, Christine L.; Hazlett, Paul W.; Heine, Paul R; Johnson, Chris E.; Larson, John T; Lawrence, Gregory B.; Kolka, Randy K; Ouimet, Rock; Pare, D; Richter, Daniel D.; Shirmer, Charles D; Warby, Richard A.F.

    2015-01-01

    Long-term forest soil monitoring and research often requires a comparison of laboratory data generated at different times and in different laboratories. Quantifying the uncertainty associated with these analyses is necessary to assess temporal changes in soil properties. Forest soil chemical properties, and methods to measure these properties, often differ from agronomic and horticultural soils. Soil proficiency programs do not generally include forest soil samples that are highly acidic, high in extractable Al, low in extractable Ca and often high in carbon. To determine the uncertainty associated with specific analytical methods for forest soils, we collected and distributed samples from two soil horizons (Oa and Bs) to 15 laboratories in the eastern United States and Canada. Soil properties measured included total organic carbon and nitrogen, pH and exchangeable cations. Overall, results were consistent despite some differences in methodology. We calculated the median absolute deviation (MAD) for each measurement and considered the acceptable range to be the median 6 2.5 3 MAD. Variability among laboratories was usually as low as the typical variability within a laboratory. A few areas of concern include a lack of consistency in the measurement and expression of results on a dry weight basis, relatively high variability in the C/N ratio in the Bs horizon, challenges associated with determining exchangeable cations at concentrations near the lower reporting range of some laboratories and the operationally defined nature of aluminum extractability. Recommendations include a continuation of reference forest soil exchange programs to quantify the uncertainty associated with these analyses in conjunction with ongoing efforts to review and standardize laboratory methods.

  9. 76 FR 70361 - Methyl Mercaptan; Toxic Chemicals Release Reporting; Community Right-to-Know; Stay of Reporting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-14

    ... date note is added to read as follows: Effective Date Note: At 59 FR 43050, Aug. 22, 1994, in Sec. 372... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 372 Methyl Mercaptan; Toxic Chemicals Release Reporting; Community Right-to-Know;...

  10. Effects of acidity and ozone on airway epithelium. Final report

    SciTech Connect

    Sheppard, D.; Wang, A.; Cone, R.; Cohen, S.

    1991-12-01

    The study examined the in vitro effects of acidity and/or ozone on primary cultures of guinea pig airway epithelial cells. Surface acidification to pH 6 or pH 5, reduced protein synthesis and induced the synthesis of two stress proteins: hsp 72 and grp 78. No such effect was produced by nitric acid vapor (50 to 18,000 micrograms/cum). Acid exposure did not affect cytotoxicity or glycoconjugate, fibronectin or TGF(beta) synthesis or secretion. Exposure of these cells to ozone (0.05 - 0.2 ppm) caused concentration-dependent cytotoxicity and decreased protein synthesis, but produced no other detectable effects on cellular metabolism.

  11. Final Report: Evaluation of Alternative Technologies for Ethylene, Caustic-Chlorine, Ethylene Oxide, Ammonia, and Terephthalic Acid

    SciTech Connect

    none,

    2007-12-01

    This report evaluates alternative technologies for chemicals manufacturing which may present energy efficiency improvements compared to existing technologies. It is an extension of the Chemical Bandwidth Study, which evaluates energy and exergy losses in the U.S. chemicals industry.

  12. Acute renal failure following oxalic acid poisoning: a case report

    PubMed Central

    2012-01-01

    Oxalic acid poisoning is being recognized as an emerging epidemic in the rural communities of Sri Lanka as it is a component of locally produced household laundry detergents. Herein we describe a case of a 32 year old female, presenting after direct ingestion of oxalic acid. She then went on to develop significant metabolic acidosis and acute renal failure, requiring dialysis. Renal biopsy revealed acute tubulointerstitial nephritis associated with diffuse moderate acute tubular damage with refractile crystals in some of the tubules. The patient symptomatically improved with haemodialysis and renal functions subsequently returned to normal. PMID:22978510

  13. A solid-state (11)b NMR and computational study of boron electric field gradient and chemical shift tensors in boronic acids and boronic esters.

    PubMed

    Weiss, Joseph W E; Bryce, David L

    2010-04-22

    The results of a solid-state (11)B NMR study of a series of 10 boronic acids and boronic esters with aromatic substituents are reported. Boron-11 electric field gradient (EFG) and chemical shift (CS) tensors obtained from analyses of spectra acquired in magnetic fields of 9.4 and 21.1 T are demonstrated to be useful for gaining insight into the molecular and electronic structure about the boron nucleus. Data collected at 21.1 T clearly show the effects of chemical shift anisotropy (CSA), with tensor spans (Omega) on the order of 10-40 ppm. Signal enhancements of up to 2.95 were achieved with a DFS-modified QCPMG pulse sequence. To understand the relationship between the measured tensors and the local structure better, calculations of the (11)B EFG and magnetic shielding tensors for these compounds were conducted. The best agreement was found between experimental results and those obtained from GGA revPBE DFT calculations. A positive correlation was found between Omega and the dihedral angle (phi(CCBO)), which describes the orientation of the boronic acid/ester functional group relative to an aromatic system bound to boron. The small boron CSA is discussed in terms of paramagnetic shielding contributions as well as diamagnetic shielding contributions. Although there is a region of overlap, both Omega and the (11)B quadrupolar coupling constants tend to be larger for boronic acids than for the esters. We conclude that the span is generally the most characteristic boron NMR parameter of the molecular and electronic environment for boronic acids and esters, and show that the values result from a delicate interplay of several competing factors, including hydrogen bonding, the value of phi(CCBO), and the electron-donating or withdrawing substituents bound to the aromatic ring. PMID:20337440

  14. F-Area Acid/Caustic Basin Groundwater Monitoring Report. Fourth quarterly report and summary 1993

    SciTech Connect

    Not Available

    1994-03-01

    During fourth quarter 1993, samples from the six FAC monitoring wells at the F-Area Acid/Caustic Basin were collected and analyzed for indicator parameters, groundwater quality parameters, parameters indicating suitability as drinking water, and other constituents. One of the FAC piezometers was scheduled for these analyses but was dry. Analytical results that exceeded the final Primary Drinking Water Standards (PDWS) or the Savannah River Site (SRS) flagging criteria or turbidity standard during the quarter are the focus of this report. Gross alpha exceeded the final PDWS in two wells. Aluminum exceeded its Flag 2 criterion in five wells. Iron exceeded standards in four wells, manganese exceeded standards in two wells, and total organic halogens exceeded standards in one well. Turbidity exceeded the SRS standard in well FAC 3.

  15. Organic acid modeling and model validation: Workshop summary. Final report

    SciTech Connect

    Sullivan, T.J.; Eilers, J.M.

    1992-08-14

    A workshop was held in Corvallis, Oregon on April 9--10, 1992 at the offices of E&S Environmental Chemistry, Inc. The purpose of this workshop was to initiate research efforts on the entitled ``Incorporation of an organic acid representation into MAGIC (Model of Acidification of Groundwater in Catchments) and testing of the revised model using Independent data sources.`` The workshop was attended by a team of internationally-recognized experts in the fields of surface water acid-bass chemistry, organic acids, and watershed modeling. The rationale for the proposed research is based on the recent comparison between MAGIC model hindcasts and paleolimnological inferences of historical acidification for a set of 33 statistically-selected Adirondack lakes. Agreement between diatom-inferred and MAGIC-hindcast lakewater chemistry in the earlier research had been less than satisfactory. Based on preliminary analyses, it was concluded that incorporation of a reasonable organic acid representation into the version of MAGIC used for hindcasting was the logical next step toward improving model agreement.

  16. Relationship between Uric Acid Level and Achievement Motivation. Final Report.

    ERIC Educational Resources Information Center

    Mueller, Ernst F.; French, John R. P., Jr.

    In an investigation of the relationship of uric acid (a metabolic end product) to achievement, this study hypothesized that a person's serum urate level (a factor often associated with gout) is positively related to achievement need as well as indicators of actual achievement. (Speed of promotion and number of yearly publications were chosen as…

  17. A linked spatial and temporal model of the chemical and biological status of a large, acid-sensitive river network.

    PubMed

    Evans, Chris D; Cooper, David M; Juggins, Steve; Jenkins, Alan; Norris, Dave

    2006-07-15

    Freshwater sensitivity to acidification varies according to geology, soils and land-use, and consequently it remains difficult to quantify the current extent of acidification, or its biological impacts, based on limited spot samples. The problem is particularly acute for river systems, where the transition from acid to circum-neutral conditions can occur within short distances. This paper links an established point-based long-term acidification model (MAGIC) with a landscape-based mixing model (PEARLS) to simulate spatial and temporal variations in acidification for a 256 km(2) catchment in North Wales. Empirical relationships are used to predict changes in the probability of occurrence of an indicator invertebrate species, Baetis rhodani, across the catchment as a function of changing chemical status. Results suggest that, at present, 27% of the river network has a mean acid neutralising capacity (ANC) below a biologically-relevant threshold of 20 microeq l(-1). At high flows, this proportion increases to 45%. The model suggests that only around 16% of the stream network had a mean ANC < 20 microeq l(-1) in 1850, but that this increased to 42% at the sulphur deposition peak around 1970. By 2050 recovery is predicted, but with some persistence of acid conditions in the most sensitive, peaty headwaters. Stream chemical suitability for Baetis rhodani is also expected to increase in formerly acidified areas, but for overall abundance to remain below that simulated in 1850. The approach of linking plot-scale process-based models to catchment mixing models provides a potential means of predicting the past and future spatial extent of acidification within large, heterogeneous river networks and regions. Further development of ecological response models to include other chemical predictor variables and the effects of acid episodes would allow more realistic simulation of the temporal and spatial dynamics of ecosystem recovery from acidification. PMID:16580046

  18. 40 CFR 721.3260 - Ethanediimidic acids.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Ethanediimidic acids. 721.3260 Section... Substances § 721.3260 Ethanediimidic acids. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified as ethanediimidic acids (PMNs P-90-1472 and...

  19. 40 CFR 721.3260 - Ethanediimidic acids.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Ethanediimidic acids. 721.3260 Section... Substances § 721.3260 Ethanediimidic acids. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified as ethanediimidic acids (PMNs P-90-1472 and...

  20. 40 CFR 721.3260 - Ethanediimidic acids.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Ethanediimidic acids. 721.3260 Section... Substances § 721.3260 Ethanediimidic acids. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified as ethanediimidic acids (PMNs P-90-1472 and...