Science.gov

Sample records for acid cinnamic acid

  1. Decarboxylative functionalization of cinnamic acids.

    PubMed

    Borah, Arun Jyoti; Yan, Guobing

    2015-08-14

    Decarboxylative functionalization of α,β-unsaturated carboxylic acids is an emerging area that has been developed significantly in recent years. This critical review focuses on the different decarboxylative functionalization reactions of cinnamic acids leading to the formation of various C-C and C-heteroatom bonds. Apart from metal carboxylates, decarboxylation in cinnamic acids has been achieved efficiently under metal-free conditions, particularly via the use of hypervalent iodine reagents. We believe this review will encourage organic chemists to develop vinylic decarboxylation in a more appealing way with an understanding of new mechanistic insight.

  2. Anticancer agents derived from natural cinnamic acids.

    PubMed

    Su, Ping; Shi, Yaling; Wang, Jinfeng; Shen, Xiuxiu; Zhang, Jie

    2015-01-01

    Cancer is the most dangerous disease that causes deaths all over the world. Natural products have afforded a rich source of drugs in a number of therapeutic fields including anticancer agents. Many significant drugs have been derived from natural sources by structural optimization of natural products. Cinnamic acid has gained great interest due to its antiproliferative, antioxidant, antiangiogenic and antitumorigenic potency. Currently it has been observed that cinnamic acid and its analogs such as caffeic acid, sinapic acid, ferulic acid, and isoferulic acid display various pharmacological activities, such as immunomodulation, anti-inflammation, anticancer and antioxidant. They have served to be the major sources of potential leading anticancer compounds. In this review, we focus on the anticancer potency of cinnamic acid derivatives and novel strategies to design these derivatives. We hope this review will be useful for researchers who are interested in developing anticancer agents.

  3. Enzymatic synthesis of cinnamic acid derivatives.

    PubMed

    Lee, Gia-Sheu; Widjaja, Arief; Ju, Yi-Hsu

    2006-04-01

    Using Novozym 435 as catalyst, the syntheses of ethyl ferulate (EF) from ferulic acid (4-hydroxy 3-methoxy cinnamic acid) and ethanol, and octyl methoxycinnamate (OMC) from p-methoxycinnamic acid and 2-ethyl hexanol were successfully carried out in this study. A conversion of 87% was obtained within 2 days at 75 degrees C for the synthesis of EF. For the synthesis of OMC at 80 degrees C, 90% conversion can be obtained within 1 day. The use of solvent and high reaction temperature resulted in better conversion for the synthesis of cinnamic acid derivatives. Some cinnamic acid esters could also be obtained with higher conversion and shorter reaction times in comparison to other methods reported in the literature. The enzyme can be reused several times before significant activity loss was observed.

  4. Zymographic detection of cinnamic acid decarboxylase activity.

    PubMed

    Prim, Núria; Pastor, F I Javier; Diaz, Pilar

    2002-11-01

    The manuscript includes a concise description of a new, fast and simple method for detection of cinnamic acid decarboxylase activity. The method is based on a color shift caused a by pH change and may be an excellent procedure for large screenings of samples from natural sources, as it involves no complex sample processing or purification. The method developed can be used in preliminary approaches to biotransformation processes involving detection of hydroxycinnamic acid decarboxylase activity.

  5. Antioxidant and antimicrobial activities of cinnamic acid derivatives.

    PubMed

    Sova, M

    2012-07-01

    Cinnamic acid is an organic acid occurring naturally in plants that has low toxicity and a broad spectrum of biological activities. In the search for novel pharmacologically active compounds, cinnamic acid derivatives are important and promising compounds with high potential for development into drugs. Many cinnamic acid derivatives, especially those with the phenolic hydroxyl group, are well-known antioxidants and are supposed to have several health benefits due to their strong free radical scavenging properties. It is also well known that cinnamic acid has antimicrobial activity. Cinnamic acid derivatives, both isolated from plant material and synthesized, have been reported to have antibacterial, antiviral and antifungal properties. Acids, esters, amides, hydrazides and related derivatives of cinnamic acid with such activities are here reviewed.

  6. Multitarget molecular hybrids of cinnamic acids.

    PubMed

    Peperidou, Aikaterini; Kapoukranidou, Dorothea; Kontogiorgis, Christos; Hadjipavlou-Litina, Dimitra

    2014-12-02

    In an attempt to synthesize potential new multitarget agents, 11 novel hybrids incorporating cinnamic acids and paracetamol, 4-/7-hydroxycoumarin, benzocaine, p-aminophenol and m-aminophenol were synthesized. Three hybrids-2e, 2a, 2g-and 3b were found to be multifunctional agents. The hybrid 2e derived from the phenoxyphenyl cinnamic acid and m-acetamidophenol showed the highest lipoxygenase (LOX) inhibition and analgesic activity (IC50 = 0.34 μΜ and 98.1%, whereas the hybrid 3b of bromobenzyloxycinnamic acid and hymechromone exhibited simultaneously good LOX inhibitory activity (IC50 = 50 μΜ) and the highest anti-proteolytic activity (IC50= 5 μΜ). The hybrid 2a of phenyloxyphenyl acid with paracetamol showed a high analgesic activity (91%) and appears to be a promising agent for treating peripheral nerve injuries. Hybrid 2g which has an ester and an amide bond presents an interesting combination of anti-LOX and anti-proteolytic activity. The esters were found very potent and especially those derived from paracetamol and m-acetamidophenol. The amides follow. Based on 2D-structure-activity relationships it was observed that both steric and electronic parameters play major roles in the activity of these compounds. Molecular docking studies point to the fact that allosteric interactions might govern the LOX-inhibitor binding.

  7. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity.

    PubMed

    Guzman, Juan David

    2014-11-25

    Antimicrobial natural preparations involving cinnamon, storax and propolis have been long used topically for treating infections. Cinnamic acids and related molecules are partly responsible for the therapeutic effects observed in these preparations. Most of the cinnamic acids, their esters, amides, aldehydes and alcohols, show significant growth inhibition against one or several bacterial and fungal species. Of particular interest is the potent antitubercular activity observed for some of these cinnamic derivatives, which may be amenable as future drugs for treating tuberculosis. This review intends to summarize the literature data on the antimicrobial activity of the natural cinnamic acids and related derivatives. In addition, selected hybrids between cinnamic acids and biologically active scaffolds with antimicrobial activity were also included. A comprehensive literature search was performed collating the minimum inhibitory concentration (MIC) of each cinnamic acid or derivative against the reported microorganisms. The MIC data allows the relative comparison between series of molecules and the derivation of structure-activity relationships.

  8. Bioconversion of cinnamic acid derivatives by Schizophyllum commune.

    PubMed

    Nimura, Yoshifumi; Tsujiyama, Sho-ichi; Ueno, Masayoshi

    2010-10-01

    To investigate the production of useful phenols from plant resources, we examined the metabolism of cinnamic acid derivatives by a wood-rotting fungus, Schizophyllum commune. Four cinnamic acid derivatives (cinnamic, p-coumaric, ferulic, and sinapic acids) were tested as substrates. Two main reactions, reduction and cleavage of the side chain, were observed. Reduction of the side chain was confirmed in cinnamic acid and p-coumaric acid metabolism. The side chain cleavage occurred in p-coumaric acid and ferulic acid metabolism but the initial reactions of these acids differed. Sinapic acid was not metabolized by S. commune. p-Hydroxybenzaldehyde accumulation was observed in the culture to which p-coumaric acid was added. This suggests that S. commune is a useful agent for transforming p-coumaric acid into p-hydroxybenzaldehyde.

  9. Cinnamic acid production using Streptomyces lividans expressing phenylalanine ammonia lyase.

    PubMed

    Noda, Shuhei; Miyazaki, Takaya; Miyoshi, Takanori; Miyake, Michiru; Okai, Naoko; Tanaka, Tsutomu; Ogino, Chiaki; Kondo, Akihiko

    2011-05-01

    Cinnamic acid production was demonstrated using Streptomyces as a host. A gene encoding phenylalanine ammonia lyase (PAL) from Streptomyces maritimus was introduced into Streptomyces lividans, and its expression was confirmed by Western blot analysis. After 4 days cultivation using glucose as carbon source, the maximal level of cinnamic acid reached 210 mg/L. When glycerol (30 g/L) was used as carbon source, the maximal level of produced cinnamic acid reached 450 mg/L. In addition, using raw starch, xylose or xylan as carbon source, the maximal level of cinnamic acid reached 460, 300, and 130 mg/L, respectively. We demonstrated that S. lividans has great potential to produce cinnamic acid as well as other aromatic compounds.

  10. High-yield synthesis of bioactive ethyl cinnamate by enzymatic esterification of cinnamic acid.

    PubMed

    Wang, Yun; Zhang, Dong-Hao; Zhang, Jiang-Yan; Chen, Na; Zhi, Gao-Ying

    2016-01-01

    In this paper, Lipozyme TLIM-catalyzed synthesis of ethyl cinnamate through esterification of cinnamic acid with ethanol was studied. In order to increase the yield of ethyl cinnamate, several media, including acetone, isooctane, DMSO and solvent-free medium, were investigated in this reaction. The reaction showed a high yield by using isooctane as reaction medium, which was found to be much higher than the yields reported previously. Furthermore, several parameters such as shaking rate, water activity, reaction temperature, substrate molar ratio and enzyme loading had important influences on this reaction. For instance, when temperature increased from 10 to 50 °C, the initial reaction rate increased by 18 times and the yield of ethyl cinnamate increased by 6.2 times. Under the optimum conditions, lipase-catalyzed synthesis of ethyl cinnamate gave a maximum yield of 99%, which was of general interest for developing industrial processes for the preparation of ethyl cinnamate.

  11. Cinnamic acid derivatives as anticancer agents-a review.

    PubMed

    De, P; Baltas, M; Bedos-Belval, F

    2011-01-01

    Cinnamic acid and its phenolic analogues are natural substances. Chemically, in cinnamic acids the 3-phenyl acrylic acid functionality offers three main reactive sites; substitution at the phenyl ring, addition at the α,β- unsaturation and the reactions of the carboxylic acid functionality. Owing to these chemical aspects cinnamic acid derivatives received much attention in medicinal research as traditional as well as recent synthetic antitumor agents. We observed that in spite of their rich medicinal tradition, cinnamic acid derivatives and their anticancer potentials remained underutilized for several decades since the first published clinical use in 1905. In last two decades, there has been huge attention towards various cinnamoyl derivatives and their antitumor efficacy. This review provides a comprehensive and unprecedented literature compilation concerning the synthesis and biological evaluation of various cinnamoyl acids, esters, amides, hydrazides and related derivatives in anticancer research. We envisage that our effort in this review contributes a much needed and timely addition to the literature of medicinal research.

  12. Cinnamic acid increases lignin production and inhibits soybean root growth.

    PubMed

    Salvador, Victor Hugo; Lima, Rogério Barbosa; dos Santos, Wanderley Dantas; Soares, Anderson Ricardo; Böhm, Paulo Alfredo Feitoza; Marchiosi, Rogério; Ferrarese, Maria de Lourdes Lucio; Ferrarese-Filho, Osvaldo

    2013-01-01

    Cinnamic acid is a known allelochemical that affects seed germination and plant root growth and therefore influences several metabolic processes. In the present work, we evaluated its effects on growth, indole-3-acetic acid (IAA) oxidase and cinnamate 4-hydroxylase (C4H) activities and lignin monomer composition in soybean (Glycine max) roots. The results revealed that exogenously applied cinnamic acid inhibited root growth and increased IAA oxidase and C4H activities. The allelochemical increased the total lignin content, thus altering the sum and ratios of the p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) lignin monomers. When applied alone or with cinnamic acid, piperonylic acid (PIP, a quasi-irreversible inhibitor of C4H) reduced C4H activity, lignin and the H, G, S monomer content compared to the cinnamic acid treatment. Taken together, these results indicate that exogenously applied cinnamic acid can be channeled into the phenylpropanoid pathway via the C4H reaction, resulting in an increase in H lignin. In conjunction with enhanced IAA oxidase activity, these metabolic responses lead to the stiffening of the cell wall and are followed by a reduction in soybean root growth.

  13. Cinnamic acid increases lignin production and inhibits soybean root growth.

    PubMed

    Salvador, Victor Hugo; Lima, Rogério Barbosa; dos Santos, Wanderley Dantas; Soares, Anderson Ricardo; Böhm, Paulo Alfredo Feitoza; Marchiosi, Rogério; Ferrarese, Maria de Lourdes Lucio; Ferrarese-Filho, Osvaldo

    2013-01-01

    Cinnamic acid is a known allelochemical that affects seed germination and plant root growth and therefore influences several metabolic processes. In the present work, we evaluated its effects on growth, indole-3-acetic acid (IAA) oxidase and cinnamate 4-hydroxylase (C4H) activities and lignin monomer composition in soybean (Glycine max) roots. The results revealed that exogenously applied cinnamic acid inhibited root growth and increased IAA oxidase and C4H activities. The allelochemical increased the total lignin content, thus altering the sum and ratios of the p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) lignin monomers. When applied alone or with cinnamic acid, piperonylic acid (PIP, a quasi-irreversible inhibitor of C4H) reduced C4H activity, lignin and the H, G, S monomer content compared to the cinnamic acid treatment. Taken together, these results indicate that exogenously applied cinnamic acid can be channeled into the phenylpropanoid pathway via the C4H reaction, resulting in an increase in H lignin. In conjunction with enhanced IAA oxidase activity, these metabolic responses lead to the stiffening of the cell wall and are followed by a reduction in soybean root growth. PMID:23922685

  14. Biotransformation of cinnamic acid, p-coumaric acid, caffeic acid, and ferulic acid by plant cell cultures of Eucalyptus perriniana.

    PubMed

    Katsuragi, Hisashi; Shimoda, Kei; Kubota, Naoji; Nakajima, Nobuyoshi; Hamada, Hatsuyuki; Hamada, Hiroki

    2010-01-01

    Biotransformations of phenylpropanoids such as cinnamic acid, p-coumaric acid, caffeic acid, and ferulic acid were investigated with plant-cultured cells of Eucalyptus perriniana. The plant-cultured cells of E. perriniana converted cinnamic acid into cinnamic acid β-D-glucopyranosyl ester, p-coumaric acid, and 4-O-β-D-glucopyranosylcoumaric acid. p-Coumaric acid was converted into 4-O-β-D-glucopyranosylcoumaric acid, p-coumaric acid β-D-glucopyranosyl ester, 4-O-β-D-glucopyranosylcoumaric acid β-D-glucopyranosyl ester, a new compound, caffeic acid, and 3-O-β-D-glucopyranosylcaffeic acid. On the other hand, incubation of caffeic acid with cultured E. perriniana cells gave 3-O-β-D-glucopyranosylcaffeic acid, 3-O-(6-O-β-D-glucopyranosyl)-β-D-glucopyranosylcaffeic acid, a new compound, 3-O-β-D-glucopyranosylcaffeic acid β-D-glucopyranosyl ester, 4-O-β-D-glucopyranosylcaffeic acid, 4-O-β-D-glucopyranosylcaffeic acid β-D-glucopyranosyl ester, ferulic acid, and 4-O-β-D-glucopyranosylferulic acid. 4-O-β-D-Glucopyranosylferulic acid, ferulic acid β-D-glucopyranosyl ester, and 4-O-β-D-glucopyranosylferulic acid β-D-glucopyranosyl ester were isolated from E. perriniana cells treated with ferulic acid.

  15. Alternative fermentation pathway of cinnamic acid production via phenyllactic acid.

    PubMed

    Masuo, Shunsuke; Kobayashi, Yuta; Oinuma, Ken-Ichi; Takaya, Naoki

    2016-10-01

    Cinnamic acid (CA) is the chemical basis for bulk production of flavoring reagents and chemical intermediates, and it can be fermented from biomass. Phenylalanine ammonia lyase (PAL) has been used exclusively in the bacterial fermentation of sugar biomass in which the fermentation intermediate phenylalanine is deaminated to CA. Here, we designed an alternative metabolic pathway for fermenting glucose to CA. An Escherichia coli strain that generates phenylalanine in this pathway also produces Wickerhamia fluorescens phenylpyruvate reductase and ferments glucose to D-phenyllactate (D-PhLA) (Fujita et al. Appl Microbiol Biotechnol 97: 8887-8894, 2013). Thereafter, phenyllactate dehydratase encoded by fldABCI genes in Clostridium sporogenes converts the resulting D-PhLA into CA. The phenyllactate dehydratase expressed by fldABCI in the D-PhLA-producing bacterium fermented glucose to CA, but D-PhLA fermentation and phenyllactate dehydration were aerobic and anaerobic processes, respectively, which disrupted high-yield CA fermentation in single batch cultures. We overcame this disruption by sequentially culturing the two strains under aerobic and anaerobic conditions. We optimized the incubation periods of the respective aeration steps to produce 1.7 g/L CA from glucose, which exceeded the yield from PAL-dependent glucose fermentation to CA 11-fold. This process is a novel, efficient alternative to conventional PAL-dependent CA production.

  16. Synthesis and antifungal activity of cinnamic acid esters.

    PubMed

    Tawata, S; Taira, S; Kobamoto, N; Zhu, J; Ishihara, M; Toyama, S

    1996-05-01

    Cinnamic, p-coumaric and ferulic acids were isolated from pineapple stems (Ananas comosus var. Cayenne). Twenty-four kinds of esters were prepared from these acids, alcohols and the components of Alpinia. Isopropyl 4-hydroxycinnamate (11) and butyl 4-hydroxycinnamate (12) were found to have almost the same effectiveness in antifungal activity against Pythium sp. at 10 ppm as that of the commercial fungicide iprobenfos (kitazin P).

  17. In vitro genotoxicity assessment of caffeic, cinnamic and ferulic acids.

    PubMed

    Maistro, E L; Angeli, J P F; Andrade, S F; Mantovani, M S

    2011-06-14

    Phenols are a large and diverse class of compounds, many of which occur naturally in a variety of food plants; they exhibit a wide range of biological effects, including antibacterial, anti-inflammatory, antiallergic, hepatoprotective, antithrombotic, antiviral, anticarcinogenic, and vasodilatory actions. We examined the genotoxic and clastogenic potential of three phenolic compounds: caffeic, cinnamic and ferulic acids, using the comet and micronucleus assays in vitro. Drug-metabolizing rat hepatoma tissue cells (HTCs) were used. Three different concentrations (50, 500 and 1500 μM) of these phenolic acids were tested on the HTCs for 24 h. The caffeic, cinnamic and ferulic acids were not genotoxic by the comet assay (P > 0.05). However, the micronucleus test showed an increase in the frequency of micronucleated cells for the three compounds, indicating that these substances have clastogenic effects in HTC.

  18. Fe-pillared clay as a Fenton-type heterogeneous catalyst for cinnamic acid degradation.

    PubMed

    Tabet, Djamel; Saidi, Mohamed; Houari, Mohamed; Pichat, Pierre; Khalaf, Hussein

    2006-09-01

    Fe-pillared montmorillonite has been used as a Fenton-type heterogeneous catalyst for the removal of cinnamic acid in water. The influences of the cinnamic acid, catalyst and H2O2 concentrations and pH on the removal rate of cinnamic acid have been studied. The results show that the efficiency of Fe-pillared montmorillonite is higher than that of the Fe ions in the homogeneous phase, and less sensitive to pH. PMID:16546315

  19. A novel approach in cinnamic acid synthesis: direct synthesis of cinnamic acids from aromatic aldehydes and aliphatic carboxylic acids in the presence of boron tribromide.

    PubMed

    Chiriac, Constantin I; Tanasa, Fulga; Onciu, Marioara

    2005-02-28

    Cinnamic acids have been prepared in moderate to high yields by a new direct synthesis using aromatic aldehydes and aliphatic carboxylic acids, in the presence of boron tribromide as reagent, 4-dimethylaminopyridine (4-DMAP) and pyridine (Py) as bases and N-methyl-2-pyrolidinone (NMP) as solvent, at reflux (180-190 degrees C) for 8-12 hours.

  20. [Accumulation characteristics of applied cinnamic acid in cucumber seedling-soil system under NaCl stress].

    PubMed

    Wang, Ying; Wu, Feng-Zhi; Wang, Yu-Yan

    2011-11-01

    Taking cucumber cultivars' Jinlv No. 5' (salt-tolerant) and 'Jinyou No. 1' (salt-sensitive) as test materials, a pot experiment was conducted to study the effects of applying cinnamic acid on the accumulation of applied cinnamic acid in cucumber seedling-soil system under NaCl (585 mg x kg(-1) soil) stress. The concentration of applied cinnamic acid was the main factor affecting the accumulation of the exogenous cinnamic acid in the cucumber plant and soil. With the increasing concentration of applied cinnamic acid, except in the treatment of highest concentration (200 mg x kg(-1) soil) cinnamic acid, the total content of cinnamic acid in cucumber plant was increased. NaCl stress enhanced the toxicity of cinnamic acid. In the treatments of low and medium concentration cinnamic acid, the cinnamic acid content in cucumber plant increased; whereas in the treatments of high concentration cinnamic acid, the decline of the seedlings growth was observed, and led to the decrease of the cinnamic acid content in the plant. The content of cinnamic acid in 'Jinlv No. 5' plant decreased at the concentration of applied cinnamic acid being > 200 mg x kg(-1) soil, while that in 'Jinyou No. 1' started to decrease when the concentration of applied cinnamic acid was > 100 mg x kg(-1) soil, reflecting the discrepancy in salt tolerance of the two cultivars. For the cucumber plant, its leaf had the highest content of cinnamic acid. In the cucumber seedling-soil system, most of applied cinnamic acid was mainly accumulated in soil.

  1. Kinetics of non-isothermal decomposition of cinnamic acid

    NASA Astrophysics Data System (ADS)

    Zhao, Ming-rui; Qi, Zhen-li; Chen, Fei-xiong; Yue, Xia-xin

    2014-07-01

    The thermal stability and kinetics of decomposition of cinnamic acid were investigated by thermogravimetry and differential scanning calorimetry at four heating rates. The activation energies of this process were calculated from analysis of TG curves by methods of Flynn-Wall-Ozawa, Doyle, Distributed Activation Energy Model, Šatava-Šesták and Kissinger, respectively. There are only one stage of thermal decomposition process in TG and two endothermic peaks in DSC. For this decomposition process of cinnamic acid, E and log A[s-1] were determined to be 81.74 kJ mol-1 and 8.67, respectively. The mechanism was Mampel Power law (the reaction order, n = 1), with integral form G(α) = α (α = 0.1-0.9). Moreover, thermodynamic properties of Δ H ≠, Δ S ≠, Δ G ≠ were 77.96 kJ mol-1, -90.71 J mol-1 K-1, 119.41 kJ mol-1.

  2. Cinnamic acid and its derivatives inhibit fructose-mediated protein glycation.

    PubMed

    Adisakwattana, Sirichai; Sompong, Weerachat; Meeprom, Aramsri; Ngamukote, Sathaporn; Yibchok-Anun, Sirintorn

    2012-01-01

    Cinnamic acid and its derivatives have shown a variety of pharmacologic properties. However, little is known about the antiglycation properties of cinnamic acid and its derivatives. The present study sought to characterize the protein glycation inhibitory activity of cinnamic acid and its derivatives in a bovine serum albumin (BSA)/fructose system. The results demonstrated that cinnamic acid and its derivatives significantly inhibited the formation of advanced glycation end products (AGEs) by approximately 11.96-63.36% at a concentration of 1 mM. The strongest inhibitory activity against the formation of AGEs was shown by cinnamic acid. Furthermore, cinnamic acid and its derivatives reduced the level of fructosamine, the formation of N(ɛ)-(carboxymethyl) lysine (CML), and the level of amyloid cross β-structure. Cinnamic acid and its derivatives also prevented oxidative protein damages, including effects on protein carbonyl formation and thiol oxidation of BSA. Our findings may lead to the possibility of using cinnamic acid and its derivatives for preventing AGE-mediated diabetic complications.

  3. 4-Hydroxy cinnamic acid as mushroom preservation: Anti-tyrosinase activity kinetics and application.

    PubMed

    Hu, Yong-Hua; Chen, Qing-Xi; Cui, Yi; Gao, Huan-Juan; Xu, Lian; Yu, Xin-Yuan; Wang, Ying; Yan, Chong-Ling; Wang, Qin

    2016-05-01

    Tyrosinase is a key enzyme in post-harvest browning of fruit and vegetable. To control and inhibit its activity is the most effective method for delaying the browning and extend the shelf life. In this paper, the inhibitory kinetics of 4-hydroxy cinnamic acid on mushroom tyrosinase was investigated using the kinetics method of substrate reaction. The results showed that the inhibition of tyrosinase by 4-hydroxy cinnamic acid was a slow, reversible reaction with fractional remaining activity. The microscopic rate constants were determined for the reaction on 4-hydroxy cinnamic acid with tyrosinase. Furthermore, the molecular docking was used to simulate 4-hydroxy cinnamic acid dock with tyrosinase. The results showed that 4-hydroxy cinnamic acid interacted with the enzyme active site mainly through the hydroxy competed with the substrate hydroxy group. The cytotoxicity study of 4-hydroxy cinnamic acid indicated that it had no effects on the proliferation of normal liver cells. Moreover, the results of effects of 4-hydroxy cinnamic acid on the preservation of mushroom showed that it could delay the mushroom browning. These results provide a comprehensive underlying the inhibitory mechanisms of 4-hydroxy cinnamic acid and its delaying post-harvest browning, that is beneficial for the application of this compound.

  4. [Regulation effects of grafting on cinnamic acid and vanillin in eggplant root exudates].

    PubMed

    Chen, Shao-li; Zhou, Bao-li; Wang, Ru-hua; Fu, Ya-wen

    2008-11-01

    Cinnamic acid and vanillin are the allelochemicals commonly existed in eggplant root exudates. With pot culture experiment, the regulation effects of grafting on the cinnamic acid and vanillin in eggplant root exudates were studied, and the results showed that grafting decreased the amount of the two substances, especially of vanillin, in eggplants root system. The maximum reduction amount of cinnamic acid reached 68.96%, and that of vanillin reached 100%. Under the stress of exotic cinnamic acid and vanillin, especially of exotic cinnamic acid, grafting relieved the autotoxicity of the two substances on eggplants. Compared with own-rooted eggplant, grafted eggplant had a higher plant height and a larger stem diameter, its leaf chlorophyll content increased by 5.26%-13.12%, root electric conductivity and MDA content decreased, and root SOD activity enhanced.

  5. Mechanism of cinnamic acid-induced trypsin inhibition: a multi-technique approach.

    PubMed

    Zhang, Hongmei; Zhou, Qiuhua; Cao, Jian; Wang, Yanqing

    2013-12-01

    In order to investigate the association of the protease trypsin with cinnamic acid, the interaction was characterized by using fluorescence, UV-vis absorption spectroscopy, molecular modeling and an enzymatic inhibition assay. The binding process may be outlined as follows: cinnamic acid can interact with trypsin with one binding site to form cinnamic acid-trypsin complex, resulting in inhibition of trypsin activity; the spectroscopic data show that the interaction is a spontaneous process with the estimated enthalpy and entropy changes being -8.95 kJ mol(-1) and 50.70 J mol(-1) K(-1), respectively. Noncovalent interactions make the main contribution to stabilize the trypsin-cinnamic acid complex; cinnamic acid can enter into the primary substrate-binding pocket and alter the environment around Trp and Tyr residues.

  6. Doxorubicin-loaded microgels composed of cinnamic acid-gelatin conjugate and cinnamic acid-Pluronic F127 conjugate.

    PubMed

    Zhang, Hong; Kim, Jin-Chul

    2016-01-01

    Microgels were prepared by cinnamic acid-gelatin (type B) conjugate (CA-GelB) and cinnamic acid-Pluronic F127 conjugate (CA-Plur). (1)H NMR confirmed that CA was conjugated to gelatin and the gelatin to CA residue molar ratio was estimated to be 1:4.7 by a colorimetric method. CA-Plur of which the CA residue to Plur molar ratio was 1.2:1 was used as a thermo-sensitive polymer. The CA residues of CA-Plur/CA-GelB mixture were readily photo-dimerized to form microgels by UV irradiation. The isoelectric point of the microgel was found to be pH 5.8 and the hydrodynamic diameter decreased when the suspension temperature increased. The microgel could hardly retard the release of doxorubicin (DOX) at pH 3.0 and pH 5.0, but it could suppress and control the release at pH 7.4 possibly due to electrostatic attraction. Meanwhile, the release of DOX at pH 7.4 was less suppressed when the medium temperature was higher, possibly because of thermal thinning of Pluronic chain layer.

  7. Adsorption of bile acid by chitosan salts prepared with cinnamic acid and analogue compounds.

    PubMed

    Murata, Yoshifumi; Nagaki, Kumiko; Kofuji, Kyouko; Sanae, Fujiko; Kontani, Hitoshi; Kawashima, Susumu

    2006-01-01

    A chitosan (CS) powder treated with cinnamic acid and an analogue compound (CN) was prepared as CS-CN. Using it, bile acid adsorption by CS-CN and the release of CN were investigated in vitro. When CS-CN was soaked in a taurocholate solution, it released CN and simultaneously adsorbed the bile acid. For CS-CN prepared with cinnamic acid, the amount of CN released was 0.286 +/- 0.001 mmol/g CS-CN; the amount of taurocholate adsorbed was 0.284 +/- 0.003 mmol/g CS-CN. These two functions were recognized on alginate or pectin gel beads containing CS-CN. The amount of released CN was altered extensively by the species of CN used for gel-bead preparation. Results suggest that CS-CN is a candidate for complementary medicine to prevent lifestyle-related diseases.

  8. cis-Cinnamic acid selective suppressors distinct from auxin inhibitors.

    PubMed

    Okuda, Katsuhiro; Nishikawa, Keisuke; Fukuda, Hiroshi; Fujii, Yoshiharu; Shindo, Mitsuru

    2014-01-01

    The activity of cis-cinnamic acid (cis-CA), one of the allelochemicals, in plants is very similar to that of indole-3-acetic acid (IAA), a natural auxin, and thus cis-CA has long been believed to be an analog of auxin. We have reported some structure-activity relationships studies by synthesizing over 250 cis-CA derivatives and estimating their inhibitory activities on root growth inhibition in lettuce. In this study, the compounds that showed low- or no-activity on root growth inhibition were recruited as candidates suppressors against cis-CA and/or auxin and tested for their activity. In the presence of cis-CA, lettuce root growth was inhibited; however, the addition of some cis-CA derivatives restored control-level root growth. Four compounds, (Z)-3-(4-isopropylphenyl)acrylic acid, (Z)-3-(3-butoxyphenyl)acrylic acid, (Z)-3-[3-(pentyloxy)phenyl]acrylic acid, and (Z)-3-(naphthalen-1-yl)acrylic acid were selected as candidates for a cis-CA selective suppressor they allowed the recovery of root growth from inhibition by cis-CA treatment without any effects on the IAA-induced effect or elongating activity by themselves. Three candidates significantly ameliorated the root shortening by the potent inhibitor derived from cis-CA. In brief, we have found some cis-CA selective suppressors which have never been reported from inactive cis-CA derivatives for root growth inhibition. cis-CA selective suppressors will play an important role in elucidating the mechanism of plant growth regulation.

  9. Contribution of cinnamic acid analogues in rosmarinic acid to inhibition of snake venom induced hemorrhage.

    PubMed

    Aung, Hnin Thanda; Furukawa, Tadashi; Nikai, Toshiaki; Niwa, Masatake; Takaya, Yoshiaki

    2011-04-01

    In our previous paper, we reported that rosmarinic acid (1) of Argusia argentea could neutralize snake venom induced hemorrhagic action. Rosmarinic acid (1) consists of two phenylpropanoids: caffeic acid (2) and 3-(3,4-dihydroxyphenyl)lactic acid (3). In this study, we investigated the structural requirements necessary for inhibition of snake venom activity through the use of compounds, which are structurally related to rosmarinic acid (1). By examining anti-hemorrhagic activity of cinnamic acid analogs against Protobothrops flavoviridis (Habu) venom, it was revealed that the presence of the E-enoic acid moiety (-CH=CH-COOH) was critical. Furthermore, among the compound tested, it was concluded that rosmarinic acid (1) (IC(50) 0.15 μM) was the most potent inhibitor against the venom.

  10. Spectra, energy levels, and energy transition of lanthanide complexes with cinnamic acid and its derivatives

    NASA Astrophysics Data System (ADS)

    Zhou, Kaining; Feng, Zhongshan; Shen, Jun; Wu, Bing; Luo, Xiaobing; Jiang, Sha; Li, Li; Zhou, Xianju

    2016-04-01

    High resolution spectra and luminescent lifetimes of 6 europium(III)-cinnamic acid complex {[Eu2L6(DMF)(H2O)]·nDMF·H2O}m (L = cinnamic acid I, 4-methyl-cinnamic acid II, 4-chloro-cinnamic acid III, 4-methoxy-cinnamic acid IV, 4-hydroxy-cinnamic acid V, 4-nitro-cinnamic acid VI; DMF = N, N-dimethylformamide, C3H7NO) were recorded from 8 K to room temperature. The energy levels of Eu3 + in these 6 complexes are obtained from the spectra analysis. It is found that the energy levels of the central Eu3 + ions are influenced by the nephelauxetic effect, while the triplet state of ligand is lowered by the p-π conjugation effect of the para-substituted functional groups. The best energy matching between the ligand triplet state and the central ion excited state is found in complex I. While the other complexes show poorer matching because the gap of 5D0 and triplet state contracts.

  11. Spectra, energy levels, and energy transition of lanthanide complexes with cinnamic acid and its derivatives.

    PubMed

    Zhou, Kaining; Feng, Zhongshan; Shen, Jun; Wu, Bing; Luo, Xiaobing; Jiang, Sha; Li, Li; Zhou, Xianju

    2016-04-01

    High resolution spectra and luminescent lifetimes of 6 europium(III)-cinnamic acid complex {[Eu2L6(DMF)(H2O)]·nDMF·H2O}m (L=cinnamic acid I, 4-methyl-cinnamic acid II, 4-chloro-cinnamic acid III, 4-methoxy-cinnamic acid IV, 4-hydroxy-cinnamic acid V, 4-nitro-cinnamic acid VI; DMF=N, N-dimethylformamide, C3H7NO) were recorded from 8 K to room temperature. The energy levels of Eu(3+) in these 6 complexes are obtained from the spectra analysis. It is found that the energy levels of the central Eu(3+) ions are influenced by the nephelauxetic effect, while the triplet state of ligand is lowered by the p-π conjugation effect of the para-substituted functional groups. The best energy matching between the ligand triplet state and the central ion excited state is found in complex I. While the other complexes show poorer matching because the gap of (5)D0 and triplet state contracts.

  12. Spectra, energy levels, and energy transition of lanthanide complexes with cinnamic acid and its derivatives.

    PubMed

    Zhou, Kaining; Feng, Zhongshan; Shen, Jun; Wu, Bing; Luo, Xiaobing; Jiang, Sha; Li, Li; Zhou, Xianju

    2016-04-01

    High resolution spectra and luminescent lifetimes of 6 europium(III)-cinnamic acid complex {[Eu2L6(DMF)(H2O)]·nDMF·H2O}m (L=cinnamic acid I, 4-methyl-cinnamic acid II, 4-chloro-cinnamic acid III, 4-methoxy-cinnamic acid IV, 4-hydroxy-cinnamic acid V, 4-nitro-cinnamic acid VI; DMF=N, N-dimethylformamide, C3H7NO) were recorded from 8 K to room temperature. The energy levels of Eu(3+) in these 6 complexes are obtained from the spectra analysis. It is found that the energy levels of the central Eu(3+) ions are influenced by the nephelauxetic effect, while the triplet state of ligand is lowered by the p-π conjugation effect of the para-substituted functional groups. The best energy matching between the ligand triplet state and the central ion excited state is found in complex I. While the other complexes show poorer matching because the gap of (5)D0 and triplet state contracts. PMID:26802538

  13. Crystal engineering: co-crystals of cinnamic acid derivatives with a pyridyl derivative co-crystallizer.

    PubMed

    Lorenzo, Daniel A; Forrest, Sebastian J K; Sparkes, Hazel A

    2016-02-01

    A number of hydrogen-bonded co-crystals, consisting of a cinnamic acid derivative and a pyridyl co-crystallizer, have been synthesized and their properties investigated by X-ray diffraction. Samples were prepared by recrystallization or solvent drop grinding of trans-cinnamic acid (1), 4-methylcinnamic acid (2), 4-methoxy cinnamic acid (3) or 3,4-methoxy cinnamic acid (4), with 4,4-dipyridyl (A), iso-nicotinamide (B) or nicotinamide (C). The X-ray single-crystal structures of seven novel co-crystals, obtained through recrystallization, are examined and the hydrogen-bonding interactions discussed. Consistent hydrogen-bonding motifs were observed for samples prepared when using 4,4-dipyridyl (A) or iso-nicotinamide (B) as the co-crystallizing agent. Powder X-ray diffraction analysis of the samples prepared by solvent drop grinding suggests the formation of ten co-crystals.

  14. Enhanced lignin monomer production caused by cinnamic Acid and its hydroxylated derivatives inhibits soybean root growth.

    PubMed

    Lima, Rogério Barbosa; Salvador, Victor Hugo; dos Santos, Wanderley Dantas; Bubna, Gisele Adriana; Finger-Teixeira, Aline; Soares, Anderson Ricardo; Marchiosi, Rogério; Ferrarese, Maria de Lourdes Lucio; Ferrarese-Filho, Osvaldo

    2013-01-01

    Cinnamic acid and its hydroxylated derivatives (p-coumaric, caffeic, ferulic and sinapic acids) are known allelochemicals that affect the seed germination and root growth of many plant species. Recent studies have indicated that the reduction of root growth by these allelochemicals is associated with premature cell wall lignification. We hypothesized that an influx of these compounds into the phenylpropanoid pathway increases the lignin monomer content and reduces the root growth. To confirm this hypothesis, we evaluated the effects of cinnamic, p-coumaric, caffeic, ferulic and sinapic acids on soybean root growth, lignin and the composition of p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) monomers. To this end, three-day-old seedlings were cultivated in nutrient solution with or without allelochemical (or selective enzymatic inhibitors of the phenylpropanoid pathway) in a growth chamber for 24 h. In general, the results showed that 1) cinnamic, p-coumaric, caffeic and ferulic acids reduced root growth and increased lignin content; 2) cinnamic and p-coumaric acids increased p-hydroxyphenyl (H) monomer content, whereas p-coumaric, caffeic and ferulic acids increased guaiacyl (G) content, and sinapic acid increased sinapyl (S) content; 3) when applied in conjunction with piperonylic acid (PIP, an inhibitor of the cinnamate 4-hydroxylase, C4H), cinnamic acid reduced H, G and S contents; and 4) when applied in conjunction with 3,4-(methylenedioxy)cinnamic acid (MDCA, an inhibitor of the 4-coumarate:CoA ligase, 4CL), p-coumaric acid reduced H, G and S contents, whereas caffeic, ferulic and sinapic acids reduced G and S contents. These results confirm our hypothesis that exogenously applied allelochemicals are channeled into the phenylpropanoid pathway causing excessive production of lignin and its main monomers. By consequence, an enhanced stiffening of the cell wall restricts soybean root growth.

  15. Amelioration of cyclophosphamide induced myelosuppression and oxidative stress by cinnamic acid.

    PubMed

    Patra, Kartick; Bose, Samadrita; Sarkar, Shehnaz; Rakshit, Jyotirmoy; Jana, Samarjit; Mukherjee, Avik; Roy, Abhishek; Mandal, Deba Prasad; Bhattacharjee, Shamee

    2012-02-01

    Cinnamic acid (C9H8O2), is a major constituent of the oriental Ayurvedic plant Cinnamomum cassia (Family: Lauraceae). This phenolic acid has been reported to possess various pharmacological properties of which its antioxidant activity is a prime one. Therefore it is rational to hypothesize that it may ameliorate myelosuppression and oxidative stress induced by cyclophosphamide, a widely used chemotherapeutic agent. Commercial cyclophosphamide, Endoxan, was administered intraperitoneally to Swiss albino mice (50mg/kg) pretreated with 15, 30 and 60mg/kg doses of cinnamic acid orally at alternate days for 15days. Cinnamic acid pre-treatment was found to reduce cyclophosphamide induced hypocellularity in the bone marrow and spleen. This recovery was also reflected in the peripheral blood count. Amelioration of hypocellularity could be correlated with the modulation of cell cycle phase distribution. Cinnamic acid pre-treatment reduced bone marrow and hepatic oxidative stress as evident by lipid peroxidation and activity assays of antioxidant enzymes such as superoxide dismutase, catalase and glutathione-S-transferase. The present study indicates that cinnamic acid pretreatment has protective influence on the myelosuppression and oxidative stress induced by cyclophosphamide. This investigation is an attempt and is the first of its kind to establish cinnamic acid as an agent whose consumption provides protection to normal cells from the toxic effects of a widely used anti-cancer drug.

  16. [Effects of cinnamic acid on physiological characteristics of Cucumis sativus seedling].

    PubMed

    Wu, Fengzhi; Pan, Kai; Zhou, Xiuyan

    2005-05-01

    With substrate culture, this paper studied the effects of different concentrations of cinnamic acid on the physiological characteristics of Cucumis sativus seedling. The results showed that 25 micromol.L(-1) of cinnamic acid had an inhibition effect on carotenoids, but a promotion effect on chlorophyll a and b. 50 micromol.L(-1) of this compound could significantly inhibit the photosynthetic rate, transpiration rate and root activity (P < 0.05), and this effect was getting stronger when the concentration was higher. 150 micromol cinnamic acid.L(-1) had a significant inhibition effect on chlorophyll a and b (P < 0.05). Cinnamic acid had a weak inhibition effect on root activity when its concentration was low (25-50 micromol.L(-1)), but the effect was significant when the concentration was high (100-150 micromol.L(-1)), which became stronger with the longer handling time (P < 0.05).

  17. Cinnamic acid induces apoptotic cell death and cytoskeleton disruption in human melanoma cells.

    PubMed

    Niero, Evandro Luís de Oliveira; Machado-Santelli, Gláucia Maria

    2013-05-23

    Anticancer activities of cinnamic acid derivatives include induction of apoptosis by irreversible DNA damage leading to cell death. The present work aimed to compare the cytotoxic and genotoxic potential of cinnamic acid in human melanoma cell line (HT-144) and human melanocyte cell line derived from blue nevus (NGM). Viability assay showed that the IC50 for HT-144 cells was 2.4 mM, while NGM cells were more resistant to the treatment. The growth inhibition was probably associated with DNA damage leading to DNA synthesis inhibition, as shown by BrdU incorporation assay, induction of nuclear aberrations and then apoptosis. The frequency of cell death caused by cinnamic acid was higher in HT-144 cells. Activated-caspase 3 staining showed apoptosis after 24 hours of treatment with cinnamic acid 3.2 mM in HT-144 cells, but not in NGM. We observed microtubules disorganization after cinnamic acid exposure, but this event and cell death seem to be independent according to M30 and tubulin labeling. The frequency of micronucleated HT-144 cells was higher after treatment with cinnamic acid (0.4 and 3.2 mM) when compared to the controls. Cinnamic acid 3.2 mM also increased the frequency of micronucleated NGM cells indicating genotoxic activity of the compound, but the effects were milder. Binucleation and multinucleation counting showed similar results. We conclude that cinnamic acid has effective antiproliferative activity against melanoma cells. However, the increased frequency of micronucleation in NGM cells warrants the possibility of genotoxicity and needs further investigation.

  18. Cinnamic acid induces apoptotic cell death and cytoskeleton disruption in human melanoma cells

    PubMed Central

    2013-01-01

    Anticancer activities of cinnamic acid derivatives include induction of apoptosis by irreversible DNA damage leading to cell death. The present work aimed to compare the cytotoxic and genotoxic potential of cinnamic acid in human melanoma cell line (HT-144) and human melanocyte cell line derived from blue nevus (NGM). Viability assay showed that the IC50 for HT-144 cells was 2.4 mM, while NGM cells were more resistant to the treatment. The growth inhibition was probably associated with DNA damage leading to DNA synthesis inhibition, as shown by BrdU incorporation assay, induction of nuclear aberrations and then apoptosis. The frequency of cell death caused by cinnamic acid was higher in HT-144 cells. Activated-caspase 3 staining showed apoptosis after 24 hours of treatment with cinnamic acid 3.2 mM in HT-144 cells, but not in NGM. We observed microtubules disorganization after cinnamic acid exposure, but this event and cell death seem to be independent according to M30 and tubulin labeling. The frequency of micronucleated HT-144 cells was higher after treatment with cinnamic acid (0.4 and 3.2 mM) when compared to the controls. Cinnamic acid 3.2 mM also increased the frequency of micronucleated NGM cells indicating genotoxic activity of the compound, but the effects were milder. Binucleation and multinucleation counting showed similar results. We conclude that cinnamic acid has effective antiproliferative activity against melanoma cells. However, the increased frequency of micronucleation in NGM cells warrants the possibility of genotoxicity and needs further investigation. PMID:23701745

  19. Spectroscopic analysis of cinnamic acid using quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Vinod, K. S.; Periandy, S.; Govindarajan, M.

    2015-02-01

    In this present study, FT-IR, FT-Raman, 13C NMR and 1H NMR spectra for cinnamic acid have been recorded for the vibrational and spectroscopic analysis. The observed fundamental frequencies (IR and Raman) were assigned according to their distinctiveness region. The computed frequencies and optimized parameters have been calculated by using HF and DFT (B3LYP) methods and the corresponding results are tabulated. On the basis of the comparison between computed and experimental results assignments of the fundamental vibrational modes are examined. A study on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies, were performed by HF and DFT methods. The alternation of the vibration pattern of the pedestal molecule related to the substitutions was analyzed. The 13C and 1H NMR spectra have been recorded and the chemical shifts have been calculated using the gauge independent atomic orbital (GIAO) method. The Mulliken charges, UV spectral analysis and HOMO-LUMO analysis of have been calculated and reported. The molecular electrostatic potential (MEP) was constructed.

  20. Spectroscopic analysis of cinnamic acid using quantum chemical calculations.

    PubMed

    Vinod, K S; Periandy, S; Govindarajan, M

    2015-02-01

    In this present study, FT-IR, FT-Raman, (13)C NMR and (1)H NMR spectra for cinnamic acid have been recorded for the vibrational and spectroscopic analysis. The observed fundamental frequencies (IR and Raman) were assigned according to their distinctiveness region. The computed frequencies and optimized parameters have been calculated by using HF and DFT (B3LYP) methods and the corresponding results are tabulated. On the basis of the comparison between computed and experimental results assignments of the fundamental vibrational modes are examined. A study on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies, were performed by HF and DFT methods. The alternation of the vibration pattern of the pedestal molecule related to the substitutions was analyzed. The (13)C and (1)H NMR spectra have been recorded and the chemical shifts have been calculated using the gauge independent atomic orbital (GIAO) method. The Mulliken charges, UV spectral analysis and HOMO-LUMO analysis of have been calculated and reported. The molecular electrostatic potential (MEP) was constructed.

  1. In vitro characterization of polyesters of aconitic acid, glycerol, and cinnamic acid for bone tissue engineering.

    PubMed

    Kanitkar, Akanksha; Chen, Cong; Smoak, Mollie; Hogan, Katie; Scherr, Thomas; Aita, Giovanna; Hayes, Daniel

    2015-03-01

    In this study, a novel class of polyesters of glycerol, aconitic acid, and cinnamic acid were synthesized along with their hydroxyapatite (HA) composites, and studied for their potential application in bone defect repair. An osteogenic study was conducted with human adipose derived mesenchymal stem cells (hASCs) to determine the osteoinductive ability of aconitic acid-glycerol (AG) polyesters, AG:HA (80:20), aconitic acid-glycerol-cinnamic acid (AGC) polyesters, and AGC:HA (80:20) to serve as bone scaffolds. The results indicate that AGC scaffolds have the highest mechanical strength in comparison to AG, AG:HA (80:20), and AGC:HA (80:20) scaffolds due to its low porosity. It was determined by cytotoxicity and osteogenesis experiments that hASCs cultured for 21 days on AG:HA (80:20) scaffolds in stromal medium exhibited a greater number of live cells than control PCL:HA composites. Moreover, hASCs cultured on foamed AG:HA (80:20) scaffolds resulted in the highest levels of mineralization, increased alkaline phosphatase (ALP) expression, and the greatest osteocalcin (OCN) expression after 21 days. Overall, AG:HA (100:0 and 80:20) scaffolds had higher mechanical strength and cytocompatibility than the PCL:HA control. In vitro osteogenic study demonstrated that AG:HA (100:0 and 80:20) synthesized using sugarcane industry by-products hold potential as scaffolds for bone tissue engineering applications.

  2. Polydopamine-coated magnetic molecularly imprinted polymer for the selective solid-phase extraction of cinnamic acid, ferulic acid and caffeic acid from radix scrophulariae sample.

    PubMed

    Yin, Yuli; Yan, Liang; Zhang, Zhaohui; Wang, Jing; Luo, Ningjing

    2016-04-01

    We describe novel cinnamic acid polydopamine-coated magnetic imprinted polymers for the simultaneous selective extraction of cinnamic acid, ferulic acid and caffeic acid from radix scrophulariae sample. The novel magnetic imprinted polymers were synthesized by surface imprinting polymerization using magnetic multi-walled carbon nanotubes as the support material, cinnamic acid as the template and dopamine as the functional monomer. The magnetic imprinted polymers were characterized by transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and vibrating sample magnetometry. The results revealed that the magnetic imprinted polymers had outstanding magnetic properties, high adsorption capacity, selectivity and fast kinetic binding toward cinnamic acid, ferulic acid and caffeic acid. Coupled with high-performance liquid chromatography, the extraction conditions of the magnetic imprinted polymers as a magnetic solid-phase extraction sorbent were investigated in detail. The proposed imprinted magnetic solid phase extraction procedure has been used for the purification and enrichment of cinnamic acid, ferulic acid and caffeic acid successfully from radix scrophulariae extraction sample with recoveries of 92.4-115.0% for cinnamic acid, 89.4-103.0% for ferulic acid and 86.6-96.0% for caffeic acid.

  3. Graphene quantum dots as additives in capillary electrophoresis for separation cinnamic acid and its derivatives.

    PubMed

    Sun, Yaming; Bi, Qing; Zhang, Xiaoli; Wang, Litao; Zhang, Xia; Dong, Shuqing; Zhao, Liang

    2016-05-01

    A facile capillary electrophoresis (CE) method for the separation of cinnamic acid and its derivatives (3,4-dimethoxycinnamic acid, 4-methoxycinnamic acid, isoferulic acid, sinapic acid, cinnamic acid, ferulic acid, and trans-4-hydroxycinnamic acid) using graphene quantum dots (GQDs) as additives with direct ultraviolet (UV) detection is reported. GQDs were synthesized by chemical oxidization and further purified by a macroporous resin column to remove salts (Na2SO4 and NaNO3) and other impurities. Transmission electron microscopy (TEM) indicated that GQDs have a relatively uniform particle size (2.3 nm). Taking into account the structural features of GQDs, cinnamic acid and its derivatives were adopted as model compounds to investigate whether GQDs can be used to improve CE separations. The separation performance of GQDs used as additives in CE was studied through variations of pH, concentration of the background electrolyte (BGE), and contents of GQDs. The results indicated that excellent separation can be achieved in less than 18 min, which is mainly attributed to the interaction between the analytes and GQDs, especially isoferulic acid, sinapic acid, and cinnamic acid.

  4. Insulin-releasing properties of a series of cinnamic acid derivatives in vitro and in vivo.

    PubMed

    Adisakwattana, Sirichai; Moonsan, Preecha; Yibchok-Anun, Sirintorn

    2008-09-10

    Cinnamic acid derivatives are naturally occurring substances found in fruits, vegetables, and flowers and are consumed as dietary phenolic compounds. In the present study, cinnamic acid and its derivatives were evaluated for insulin secreting activity in perfused rat pancreas and pancreatic beta-cells (INS-1) as well as an increase in [Ca(2+)]i in vitro. The presence of m-hydroxy or p-methoxy residues on cinnamic acid was a significantly important substituent as an effective insulin releasing agent. The introduction of p-hydroxy and m-methoxy-substituted groups in cinnamic acid structure (ferulic acid) displayed the most potent insulin secreting agent among those of cinnamic acid derivatives. In particular, the stimulatory insulin secreting activities of test compounds were associated with a rise of [Ca(2+)]i in INS-1. In perfused rat pancreas, m-hydroxycinnamic acid, p-methoxycinnamic acid, and ferulic acid (100 microM) significantly stimulated insulin secretion during 10 min of administration. The onset time of insulin secretion of those compounds was less than 1 min and reached its peak at 4 min that was about 2.8-, 3.3-, and 3.4-fold of the baseline level, respectively. Intravenous administration of p-methoxycinnamic acid and ferulic acid (5 mg/kg) significantly decreased plasma glucose and increased insulin concentration in normal rats and maintained its level for 15 min until the end of experiment. Meanwhile, m-hydroxycinnamic acid induced a significant lowering of plasma glucose after 6 min, but the effects were transient with plasma glucose concentration, rapidly returning to basal levels. Our findings suggested that p-methoxycinnamic acid and ferulic acid may be beneficial for the treatment of diabetes mellitus because they regulated blood glucose level by stimulating insulin secretion from pancreatic beta-cells.

  5. Cinnamic acid exerts anti-diabetic activity by improving glucose tolerance in vivo and by stimulating insulin secretion in vitro.

    PubMed

    Hafizur, Rahman M; Hameed, Abdul; Shukrana, Mishkat; Raza, Sayed Ali; Chishti, Sidra; Kabir, Nurul; Siddiqui, Rehan A

    2015-02-15

    Although the anti-diabetic activity of cinnamic acid, a pure compound from cinnamon, has been reported but its mechanism(s) is not yet clear. The present study was designed to explore the possible mechanism(s) of anti-diabetic activity of cinnamic acid in in vitro and in vivo non-obese type 2 diabetic rats. Non-obese type 2 diabetes was developed by injecting 90 mg/kg streptozotocin in 2-day-old Wistar pups. Cinnamic acid and cinnamaldehyde were administered orally to diabetic rats for assessing acute blood glucose lowering effect and improvement of glucose tolerance. Additionally, insulin secretory activity of cinnamic acid and cinnamaldehyde was evaluated in isolated mice islets. Cinnamic acid, but not cinnamaldehyde, decreased blood glucose levels in diabetic rats in a time- and dose-dependent manner. Oral administration of cinnamic acid with 5 and 10 mg/kg doses to diabetic rats improved glucose tolerance in a dose-dependent manner. The improvement by 10 mg/kg cinnamic acid was comparable to that of standard drug glibenclamide (5 mg/kg). Further in vitro studies showed that cinnamaldehyde has little or no effect on glucose-stimulated insulin secretion; however, cinnamic acid significantly enhanced glucose-stimulated insulin secretion in isolated islets. In conclusion, it can be said that cinnamic acid exerts anti-diabetic activity by improving glucose tolerance in vivo and stimulating insulin secretion in vitro.

  6. Overexpression of PAD1 and FDC1 results in significant cinnamic acid decarboxylase activity in Saccharomyces cerevisiae.

    PubMed

    Richard, Peter; Viljanen, Kaarina; Penttilä, Merja

    2015-01-01

    The S. cerevisiae PAD1 gene had been suggested to code for a cinnamic acid decarboxylase, converting trans-cinnamic acid to styrene. This was suggested for the reason that the over-expression of PAD1 resulted in increased tolerance toward cinnamic acid, up to 0.6 mM. We show that by over-expression of the PAD1 together with the FDC1 the cinnamic acid decarboxylase activity can be increased significantly. The strain over-expressing PAD1 and FDC1 tolerated cinnamic acid concentrations up to 10 mM. The cooperation of Pad1p and Fdc1p is surprising since the PAD1 has a mitochondrial targeting sequence and the FDC1 codes for a cytosolic protein. The cinnamic acid decarboxylase activity was also seen in the cell free extract. The activity was 0.019 μmol per minute and mg of extracted protein. The overexpression of PAD1 and FDC1 resulted also in increased activity with the hydroxycinnamic acids ferulic acid, p-coumaric acid and caffeinic acid. This activity was not seen when FDC1 was overexpressed alone. An efficient cinnamic acid decarboxylase is valuable for the genetic engineering of yeast strains producing styrene. Styrene can be produced from endogenously produced L-phenylalanine which is converted by a phenylalanine ammonia lyase to cinnamic acid and then by a decarboxylase to styrene.

  7. Cinnamic acid derivatives induce cell cycle arrest in carcinoma cell lines.

    PubMed

    Sova, Matej; Žižak, Željko; Stanković, Jelena A Antic; Prijatelj, Matevž; Turk, Samo; Juranić, Zorica D; Mlinarič-Raščan, Irena; Gobec, Stanislav

    2013-08-01

    Cinnamic acid derivatives can be found in plant material, and they possess a remarkable variety of biological effects. In the present study, we have investigated the cytotoxic effects of representative cinnamic acid esters and amides. The cytotoxicity was determined by MTT test on human cervix adenocarcinoma (HeLa), myelogenous leukemia (K562), malignant melanoma (Fem-x), and estrogen-receptor-positive breast cancer (MCF-7) cells, versus peripheral blood mononuclear cells (PBMCs) without or with the addition of the plant lectin phytohemaglutinin (PHA). The compounds tested showed significant cytotoxicity (IC50s between 42 and 166 µM) and furthermore selectivity of these cytotoxic effects on the malignant cell lines versus the PBMCs was also seen, especially when electron-withdrawing groups, such as a cyano group (compound 5), were present on the aromatic rings of the alcohol or amine parts of the cinnamic acid derivatives. The additional study on cell cycle phase distribution indicated that novel cinnamic acid derivatives inhibit cell growth by induction of cell death. Thus, cinnamic acids derivatives represent important lead compounds for further development of antineoplastic agents.

  8. Radical scavenging activity of lipophilized products from lipase-catalyzed transesterification of triolein with cinnamic and ferulic acids.

    PubMed

    Choo, Wee-Sim; Birch, Edward John

    2009-02-01

    Lipase-catalyzed transesterification of triolein with cinnamic and ferulic acids using an immobilized lipase from Candida antarctica (E.C. 3.1.1.3) was conducted to evaluate the antioxidant activity of the lipophilized products as model systems for enhanced protection of unsaturated oil. The lipophilized products were identified using ESI-MS. Free radical scavenging activity was determined using the DPPH radical method. The polarity of the solvents proved important in determining the radical scavenging activity of the substrates. Ferulic acid showed much higher radical scavenging activity than cinnamic acid, which has limited activity. The esterification of cinnamic acid and ferulic acid with triolein resulted in significant increase and decrease in the radical scavenging activity, respectively. These opposite effects were due to the effect of addition of electron-donating alkyl groups on the predominant mechanism of reaction (hydrogen atom transfer or electron transfer) of a species with DPPH. The effect of esterification of cinnamic acid was confirmed using ethyl cinnamate which greatly enhances the radical scavenging activity. Although, compared to the lipophilized cinnamic acid product, the activity was lower. The radical scavenging activity of the main component isolated from lipophilized cinnamic acid product using solid phase extraction, monocinnamoyl dioleoyl glycerol, was as good as the unseparated mixture of lipophilized product. Based on the ratio of a substrate to DPPH concentration, lipophilized ferulic acid was a much more efficient radical scavenger than lipophilized cinnamic acid.

  9. Lipase-Catalyzed Production of 6-O-cinnamoyl-sorbitol from D-sorbitol and Cinnamic Acid Esters.

    PubMed

    Kim, Jung-Ho; Bhatia, Shashi Kant; Yoo, Dongwon; Seo, Hyung Min; Yi, Da-Hye; Kim, Hyun Joong; Lee, Ju Hee; Choi, Kwon-Young; Kim, Kwang Jin; Lee, Yoo Kyung; Yang, Yung-Hun

    2015-05-01

    To overcome the poor properties of solubility and stability of cinnamic acid, cinnamate derivatives with sugar alcohols were produced using the immobilized Candida antarctica lipase with vinyl cinnamate and D-sorbitol as substrate at 45 °C. Immobilized C. antarctica lipase was found to synthesize 6-O-cinnamoyl-sorbitol and confirmed by HPLC and (1)H-NMR and had a preference for vinyl cinnamate over other esters such as allyl-, ethyl-, and isobutyl cinnamate as co-substrate with D-sorbitol. Contrary to D-sorbitol, vinyl cinnamate, and cinnamic acid, the final product 6-O-cinnamoyl-sorbitol was found to have radical scavenging activity. This would be the first report on the biosynthesis of 6-O-cinnamoyl-sorbitol with immobilized enzyme from C. antarctica.

  10. Inactivation of peptidylglycine α-hydroxylating monooxygenase by cinnamic acid analogs.

    PubMed

    McIntyre, Neil R; Lowe, Edward W; Battistini, Matthew R; Leahy, James W; Merkler, David J

    2016-08-01

    Peptidylglycine α-amidating monooxygenase (PAM) is a bifunctional enzyme that catalyzes the final reaction in the maturation of α-amidated peptide hormones. Peptidylglycine α-hydroxylating monooxygenase (PHM) is the PAM domain responsible for the copper-, ascorbate- and O2-dependent hydroxylation of a glycine-extended peptide. Peptidylamidoglycolate lyase is the PAM domain responsible for the Zn(II)-dependent dealkylation of the α-hydroxyglycine-containing precursor to the final α-amidated peptide. We report herein that cinnamic acid and cinnamic acid analogs are inhibitors or inactivators of PHM. The inactivation chemistry exhibited by the cinnamates exhibits all the attributes of a suicide-substrate. However, we find no evidence for the formation of an irreversible linkage between cinnamate and PHM in the inactivated enzyme. Our data support the reversible formation of a Michael adduct between an active site nucleophile and cinnamate that leads to inactive enzyme. Our data are of significance given that cinnamates are found in foods, perfumes, cosmetics and pharmaceuticals.

  11. Lewis acid catalysis of photochemical reactions. 4. Selective isomerization of cinnamic esters

    SciTech Connect

    Lewis, F.D.; Oxman, J.D.; Gibson, L.L.; Hampsch, H.L.; Quillen, S.L.

    1986-05-28

    The spectroscopic properties and photoisomerization reactions of several (E)- and (Z)-cinnamic esters, bis cinnamic esters, and model esters and lactones in the presence and absence of Lewis acids have been investigated. The use of Lewis acids such as BF/sub 3/ or EtAlCl/sub 2/ results in enhanced photoisomerization efficiency and a shift in the photoequilibrium toward the thermodynamically less stable Z isomer. Enhanced E ..-->.. Z photoisomerization results from selective excitation of ground-state ester-Lewis acid complexes. These complexes have been characterized by /sup 1/H NMR, ultraviolet, and fluorescence spectroscopies. The equilibrium constants for complexation are dependent upon both the electron donor strength of the ester and its conformational mobility. These factors also determine the magnitude of the red shifts in the electronic absorption spectra observed upon complexation. Enhanced E ..-->.. Z photoisomerization upon complex formation is a consequence of selective excitation of the E vs. Z complex, more efficient isomerization of the excited E vs. Z complex, and larger equilibrium constants for complexation of E vs. Z esters. The photoequilibria obtained for bis cinnamic esters are highly enriched in the Z,Z and Z,E isomers in accord with independent isomerization of the two cinnamate groups; however, in the case of 1,3-trimethylenebis(cinnamate), two-bond isomerization of the E,E to Z,Z isomer is observed at low conversions.

  12. Cinnamic Acid Derivatives as Inhibitors of Oncogenic Protein Kinases--Structure, Mechanisms and Biomedical Effects.

    PubMed

    Mielecki, Marcin; Lesyng, Bogdan

    2016-01-01

    Cinnamic acid belongs to phenolic-acid class of polyphenols, one of the most abundant plant secondary metabolites. These substances are widely studied because of plethora of their biological activities. In particular, their inhibition of protein kinases contributes to the pleiotropic effects in the cell. Protein kinases are essential in controlling cell signaling networks. Selective targeting of oncogenic protein kinases increases clinical anticancer efficacy. Cinnamic acid and related compounds have inspired researchers in the design of numerous synthetic and semisynthetic inhibitors of oncogenic protein kinases for the past three decades. Interest in cinnamoyl-scaffold-containing compounds revived in recent years, which was stimulated by modern drug design and discovery methodologies such as in vitro and in silico HTS. This review presents cinnamic acid derivatives and analogs for which direct inhibition of protein kinases was identified. We also summarize significance of the above protein kinase families - validated or promising targets for anticancer therapies. The inhibition mode may vary from ATP-competitive, through bisubstrate-competitive and mixedcompetitive, to non-competitive one. Kinase selectivity is often correlated with subtle chemical modifications, and may also be steered by an additional non-cinnamoyl fragment of the inhibitor. Specific cinnamic acid congeners may synergize their effects in the cell by a wider range of activities, like suppression of additional enzymes, e.g. deubiquitinases, influencing the same signaling pathways (e.g. JAK2/STAT). Cinnamic acid, due to its biological and physicochemical properties, provides nature-inspired ideas leading to novel inhibitors of oncogenic protein kinases and related enzymes, capable to target a variety of cancer cells.

  13. Enhanced pinocembrin production in Escherichia coli by regulating cinnamic acid metabolism

    NASA Astrophysics Data System (ADS)

    Cao, Weijia; Ma, Weichao; Wang, Xin; Zhang, Bowen; Cao, Xun; Chen, Kequan; Li, Yan; Ouyang, Pingkai

    2016-09-01

    Microbial biosynthesis of pinocembrin is of great interest in the area of drug research and human healthcare. Here we found that the accumulation of the pathway intermediate cinnamic acid adversely affected pinocembrin production. Hence, a stepwise metabolic engineering strategy was carried out aimed at eliminating this pathway bottleneck and increasing pinocembrin production. The screening of gene source and the optimization of gene expression was first employed to regulate the synthetic pathway of cinnamic acid, which showed a 3.53-fold increase in pinocembrin production (7.76 mg/L) occurred with the alleviation of cinnamic acid accumulation in the engineered E. coli. Then, the downstream pathway that consuming cinnamic acid was optimized by the site-directed mutagenesis of chalcone synthase and cofactor engineering. S165M mutant of chalcone synthase could efficiently improve the pinocembrin production, and allowed the product titer of pinocembrin increased to 40.05 mg/L coupled with the malonyl-CoA engineering. With a two-phase pH fermentation strategy, the cultivation of the optimized strain resulted in a final pinocembrin titer of 67.81 mg/L. The results and engineering strategies demonstrated here would hold promise for the titer improvement of other flavonoids.

  14. Key structural features of cis-cinnamic acid as an allelochemical.

    PubMed

    Abe, Masato; Nishikawa, Keisuke; Fukuda, Hiroshi; Nakanishi, Kazunari; Tazawa, Yuta; Taniguchi, Tomoya; Park, So-Young; Hiradate, Syuntaro; Fujii, Yoshiharu; Okuda, Katsuhiro; Shindo, Mitsuru

    2012-12-01

    1-O-cis-cinnamoyl-β-D-glucopyranose is one of the most potent allelochemicals isolated from Spiraea thunbergii Sieb. It is suggested that it derives its strong inhibitory activity from cis-cinnamic acid, which is crucial for phytotoxicity. It was synthesized to confirm its structure and bioactivity, and also a series of cis-cinnamic acid analogues were prepared to elucidate the key features of cis-cinnamic acid for lettuce root growth inhibition. The cis-cyclopropyl analogue showed potent inhibitory activity while the saturated and alkyne analogues proved to be inactive, demonstrating the importance of the cis-double bond. Moreover, the aromatic ring could not be replaced with a saturated ring. However, the 1,3-dienylcyclohexene analogue showed strong activity. These results suggest that the geometry of the C-C double bond between the carboxyl group and the aromatic ring is essential for potent inhibitory activity. In addition, using several light sources, the photostability of the cinnamic acid derivatives and the role of the C-C double bond were also investigated.

  15. Lewis acid catalysis of photochemical reactions. 7. Photodimerization and cross-cycloaddition of cinnamic esters

    SciTech Connect

    Lewis, F.D.; Quillen, S.L.; Hale, P.D.; Oxman, J.D.

    1988-02-17

    The effects of Lewis acid complexation upon the molecular structure, solid-state photodimerization, and solution dimerization and cross-cycloaddition of cinnamic esters have been investigated. Comparison of crystal structures for free and SnCl/sub 4/-complexed ethyl cinnamate indicates that the enone double bonds are lengthened, the single bonds are shortened, and the enone conformation changes from s-cis to s-trans upon complexation. These changes are consistent with calculated changes in ..pi.. bonding and net charges. Solid-state photodimerization of free and complexed cinnamic esters and related molecules yield syn head-to-tail (..cap alpha..-truxillate) dimers. In most cases the Lewis acid complexes dimerize more efficiently and stereoselectively than the free esters. Photodimerization and cross-cycloaddition of methyl cinnamate in dilute solution is also catalyzed by Lewis acids. The mechanism of these reactions involves electronic excitation of a ground-state ester (dimerization) or simple olefin (cross cycloaddition). The catalytic effect of Lewis acids is attributed to an increase in excited-state lifetime and reactivity.

  16. Enhanced pinocembrin production in Escherichia coli by regulating cinnamic acid metabolism.

    PubMed

    Cao, Weijia; Ma, Weichao; Wang, Xin; Zhang, Bowen; Cao, Xun; Chen, Kequan; Li, Yan; Ouyang, Pingkai

    2016-09-02

    Microbial biosynthesis of pinocembrin is of great interest in the area of drug research and human healthcare. Here we found that the accumulation of the pathway intermediate cinnamic acid adversely affected pinocembrin production. Hence, a stepwise metabolic engineering strategy was carried out aimed at eliminating this pathway bottleneck and increasing pinocembrin production. The screening of gene source and the optimization of gene expression was first employed to regulate the synthetic pathway of cinnamic acid, which showed a 3.53-fold increase in pinocembrin production (7.76 mg/L) occurred with the alleviation of cinnamic acid accumulation in the engineered E. coli. Then, the downstream pathway that consuming cinnamic acid was optimized by the site-directed mutagenesis of chalcone synthase and cofactor engineering. S165M mutant of chalcone synthase could efficiently improve the pinocembrin production, and allowed the product titer of pinocembrin increased to 40.05 mg/L coupled with the malonyl-CoA engineering. With a two-phase pH fermentation strategy, the cultivation of the optimized strain resulted in a final pinocembrin titer of 67.81 mg/L. The results and engineering strategies demonstrated here would hold promise for the titer improvement of other flavonoids.

  17. Enhanced pinocembrin production in Escherichia coli by regulating cinnamic acid metabolism

    PubMed Central

    Cao, Weijia; Ma, Weichao; Wang, Xin; Zhang, Bowen; Cao, Xun; Chen, Kequan; Li, Yan; Ouyang, Pingkai

    2016-01-01

    Microbial biosynthesis of pinocembrin is of great interest in the area of drug research and human healthcare. Here we found that the accumulation of the pathway intermediate cinnamic acid adversely affected pinocembrin production. Hence, a stepwise metabolic engineering strategy was carried out aimed at eliminating this pathway bottleneck and increasing pinocembrin production. The screening of gene source and the optimization of gene expression was first employed to regulate the synthetic pathway of cinnamic acid, which showed a 3.53-fold increase in pinocembrin production (7.76 mg/L) occurred with the alleviation of cinnamic acid accumulation in the engineered E. coli. Then, the downstream pathway that consuming cinnamic acid was optimized by the site-directed mutagenesis of chalcone synthase and cofactor engineering. S165M mutant of chalcone synthase could efficiently improve the pinocembrin production, and allowed the product titer of pinocembrin increased to 40.05 mg/L coupled with the malonyl-CoA engineering. With a two-phase pH fermentation strategy, the cultivation of the optimized strain resulted in a final pinocembrin titer of 67.81 mg/L. The results and engineering strategies demonstrated here would hold promise for the titer improvement of other flavonoids. PMID:27586788

  18. Enhanced pinocembrin production in Escherichia coli by regulating cinnamic acid metabolism.

    PubMed

    Cao, Weijia; Ma, Weichao; Wang, Xin; Zhang, Bowen; Cao, Xun; Chen, Kequan; Li, Yan; Ouyang, Pingkai

    2016-01-01

    Microbial biosynthesis of pinocembrin is of great interest in the area of drug research and human healthcare. Here we found that the accumulation of the pathway intermediate cinnamic acid adversely affected pinocembrin production. Hence, a stepwise metabolic engineering strategy was carried out aimed at eliminating this pathway bottleneck and increasing pinocembrin production. The screening of gene source and the optimization of gene expression was first employed to regulate the synthetic pathway of cinnamic acid, which showed a 3.53-fold increase in pinocembrin production (7.76 mg/L) occurred with the alleviation of cinnamic acid accumulation in the engineered E. coli. Then, the downstream pathway that consuming cinnamic acid was optimized by the site-directed mutagenesis of chalcone synthase and cofactor engineering. S165M mutant of chalcone synthase could efficiently improve the pinocembrin production, and allowed the product titer of pinocembrin increased to 40.05 mg/L coupled with the malonyl-CoA engineering. With a two-phase pH fermentation strategy, the cultivation of the optimized strain resulted in a final pinocembrin titer of 67.81 mg/L. The results and engineering strategies demonstrated here would hold promise for the titer improvement of other flavonoids. PMID:27586788

  19. Z-sinapinic acid: the change of the stereochemistry of cinnamic acids as rational synthesis of a new matrix for carbohydrate MALDI-MS analysis.

    PubMed

    Salum, María L; Itovich, Lucia M; Erra-Balsells, Rosa

    2013-11-01

    Successful application of matrix-assisted laser desorption/ionization (MALDI) MS started with the introduction of efficient matrices such as cinnamic acid derivatives (i.e. 3,5-dimethoxy-4-hydroxycinnamic acid, SA; α-cyano-4-hydroxycinnamic acid). Since the empirical founding of these matrices, other commercial available cinnamic acids with different nature and location of substituents at benzene ring were attempted. Rational design and synthesis of new cinnamic acids have been recently described too. Because the presence of a rigid double bond in its molecule structure, cinnamic acids can exist as two different geometric isomers, the E-form and Z-form. Commercial available cinnamic acids currently used as matrices are the geometric isomers trans or E (E-cinnamic and trans-cinnamic acids). As a new rational design of MALDI matrices, Z-cinnamic acids were synthesized, and their properties as matrices were studied. Their performance was compared with that of the corresponding E-isomer and classical crystalline matrices (3,5-dihydroxybenzoic acid; norharmane) in the analysis of neutral/sulfated carbohydrates. Herein, we demonstrate the outstanding performance for Z-SA. Sulfated oligosaccharides were detected in negative ion mode, and the dissociation of sulfate groups was almost suppressed. Additionally, to better understand the quite different performance of each geometric isomer as matrix, the physical and morphological properties as well as the photochemical stability in solid state were studied. The influence of the E/Z photoisomerization of the matrix during MALDI was evaluated. Finally, molecular modeling (density functional theory study) of the optimized geometry and stereochemistry of E-cinnamic and Z-cinnamic acids revealed some factors governing the analyte-matrix interaction.

  20. Additive-free decarboxylative coupling of cinnamic acid derivatives in water: synthesis of allyl amines.

    PubMed

    Park, Kyungho; Lee, Sunwoo

    2015-03-01

    The first example of an additive-free decarboxylative coupling of cinnamic acid derivatives with formaldehyde and amines to afford the corresponding allyl amines is reported. This reaction is highly environmentally friendly because it was conducted in H2O and without any additives, releasing only CO2 and H2O as byproducts. This reaction showed a broad substrate scope including cyclic and acyclic amines and high functional group tolerance. Moreover, phenyl dienoic acid participated in this type of decarboxylative coupling reaction.

  1. Simultaneous determination of cinnamaldehyde, cinnamic acid, and 2-methoxy cinnamic acid in rat whole blood after oral administration of volatile oil of Cinnamoni Ramulus by UHPLC-MS/MS: An application for a pharmacokinetic study.

    PubMed

    Ji, Bin; Zhao, Yunli; Zhang, Qili; Wang, Pei; Guan, Jiao; Rong, Rong; Yu, Zhiguo

    2015-09-15

    A simple and rapid ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed for the simultaneous determination of cinnamaldehyde, cinnamic acid, and 2-methoxy cinnamic acid in rat whole blood. It was the first time to study the pharmacokinetics of 2-methoxy cinnamic acid in rat whole blood. Samples were processed by a one-step protein precipitation with acetonitrile-37% formaldehyde (90:10, v:v). Chromatographic separation was performed on a Thermo Scientific C18 column (2.1mm×50mm, 1.9μm) at room temperature. The total run time was 4min. The detection was accomplished by using positive and negative ion electrospray ionization in multiple reaction monitoring mode. The method was linear for all of the analytes over 1000 times concentration range with correlation coefficients greater than 0.99. The lower limits of quantification (LLOQ) were 0.1ng/mL for cinnamaldehyde, 5.8ng/mL for cinnamic acid, and 10ng/mL for 2-methoxy cinnamic acid, respectively. To our knowledge, this was the first time that the LLOQ for cinnamaldehyde in validated methods for biological samples was as low as 0.1ng/mL. Intra- and inter-day precision and accuracy were within ±9% for all of the analytes during the assay validation. Assay recoveries were higher than 80% and the matrix effects were minimal. The half-life were 8.7±0.7h for cinnamaldehyde, 1.0±0.5h for cinnamic acid, and 1.4±0.4h for 2-methoxy cinnamic acid, respectively. The validated assay was firstly applied to the simultaneous quantification of cinnamaldehyde, cinnamic acid, and 2-methoxy cinnamic acid, especially for 2-methoxy cinnamic acid in rat whole blood after oral administration of 15mg/kg essential oil of Cinnamoni Ramulus. It was observed that the Cmax and AUC of 2-methoxy cinnamic acid (0.01% in essential oil of Cinnamoni Ramulus) were greater than those of cinnamaldehyde (83.49% in essential oil of Cinnamoni Ramulus), which implied that 2-methoxy cinnamic acid might

  2. Effects of piperine, cinnamic acid and gallic acid on rosuvastatin pharmacokinetics in rats.

    PubMed

    Basu, Sudipta; Jana, Snehasis; Patel, Vandana B; Patel, Hitesh

    2013-10-01

    The purpose of this study was to investigate the potential pharmacokinetic interactions with natural products (such as piperine (PIP), gallic acid (GA) and cinnamic acid (CA)) and rosuvastatin (RSV) (a specific breast cancer resistance protein, BCRP substrate) in rats. In Caco2 cells, the polarized transport of RSV was effectively inhibited by PIP, CA and GA at concentration of 50 μM. After per oral (p.o.) coadministration of PIP, CA and GA (10 mg/kg) significantly increased intravenous exposure (AUC(last)) of RSV (1 mg/kg) by 73.5%, 62.9% and 53.3% (p < 0.05), respectively than alone group (control). Compared with the control (alone) group, p.o. coadministration of PIP, CA and GA (10 mg/kg) significantly increased the oral exposure (AUC(last)) of RSV (5 mg/kg) by 2.0-fold, 1.83-fold (p < 0.05) and 2.34 -fold (p < 0.05), respectively. Moreover, the cumulative biliary excretion of RSV (5 mg/kg, p.o.) was significantly decreased by 53.3, 33.4 and 39.2% at the end of 8 h after p.o. co-administration of PIP, CA and GA (10 mg/kg), respectively. Taken together, these results indicate that the natural products such as PIP, CA and GA significantly inhibit RSV transport in to bile and increased the plasma exposure (AUC(last)) of RSV.

  3. E-cinnamic acid derivatives and phenolics from Chilean strawberry fruits, Fragaria chiloensis ssp. chiloensis.

    PubMed

    Cheel, José; Theoduloz, Cristina; Rodríguez, Jaime; Saud, Guillermo; Caligari, Peter D S; Schmeda-Hirschmann, Guillermo

    2005-11-01

    Three E-cinnamic acid glycosides, tryptophan, and cyanidin-3-O-beta-D-glucopyranoside were isolated from ripe fruits of the Chilean strawberry Fragaria chiloensis ssp. chiloensis. 1-O-E-Cinnamoyl-beta-D-xylopyranoside, 1-O-E-cinnamoyl-beta-D-rhamnopyranoside, and 1-O-E-cinnamoyl-alpha-xylofuranosyl-(1-->6)-beta-D-glucopyranose are reported for the first time. The cinnamic acid glycosides and aromatic compound patterns in F. chiloensis fruits were determined by high-performance liquid chromatography (HPLC). HPLC analyses of extracts showed that cyanidin-3-O-beta-D-glucopyranoside and free ellagic acid are present in achenes while the E-cinnamoyl derivatives and tryptophan were identified only in the thalamus. The free radical scavenging effect of the fruit extract can be associated with the anthocyanin content.

  4. E-cinnamic acid derivatives and phenolics from Chilean strawberry fruits, Fragaria chiloensis ssp. chiloensis.

    PubMed

    Cheel, José; Theoduloz, Cristina; Rodríguez, Jaime; Saud, Guillermo; Caligari, Peter D S; Schmeda-Hirschmann, Guillermo

    2005-11-01

    Three E-cinnamic acid glycosides, tryptophan, and cyanidin-3-O-beta-D-glucopyranoside were isolated from ripe fruits of the Chilean strawberry Fragaria chiloensis ssp. chiloensis. 1-O-E-Cinnamoyl-beta-D-xylopyranoside, 1-O-E-cinnamoyl-beta-D-rhamnopyranoside, and 1-O-E-cinnamoyl-alpha-xylofuranosyl-(1-->6)-beta-D-glucopyranose are reported for the first time. The cinnamic acid glycosides and aromatic compound patterns in F. chiloensis fruits were determined by high-performance liquid chromatography (HPLC). HPLC analyses of extracts showed that cyanidin-3-O-beta-D-glucopyranoside and free ellagic acid are present in achenes while the E-cinnamoyl derivatives and tryptophan were identified only in the thalamus. The free radical scavenging effect of the fruit extract can be associated with the anthocyanin content. PMID:16248546

  5. Enzymatic synthesis of enantiopure alpha- and beta-amino acids by phenylalanine aminomutase-catalysed amination of cinnamic acid derivatives.

    PubMed

    Wu, Bian; Szymanski, Wiktor; Wietzes, Piet; de Wildeman, Stefaan; Poelarends, Gerrit J; Feringa, Ben L; Janssen, Dick B

    2009-01-26

    The phenylalanine aminomutase (PAM) from Taxus chinensis catalyses the conversion of alpha-phenylalanine to beta-phenylalanine, an important step in the biosynthesis of the N-benzoyl phenylisoserinoyl side-chain of the anticancer drug taxol. Mechanistic studies on PAM have suggested that (E)-cinnamic acid is an intermediate in the mutase reaction and that it can be released from the enzyme's active site. Here we describe a novel synthetic strategy that is based on the finding that ring-substituted (E)-cinnamic acids can serve as a substrate in PAM-catalysed ammonia addition reactions for the biocatalytic production of several important beta-amino acids. The enzyme has a broad substrate range and a high enantioselectivity with cinnamic acid derivatives; this allows the synthesis of several non-natural aromatic alpha- and beta-amino acids in excellent enantiomeric excess (ee >99 %). The internal 5-methylene-3,5-dihydroimidazol-4-one (MIO) cofactor is essential for the PAM-catalysed amination reactions. The regioselectivity of amination reactions was influenced by the nature of the ring substituent.

  6. Free and bound cinnamic acid derivatives in corsica sweet blond oranges.

    PubMed

    Carrera, Eric; El Kebir, Mohamed Vall Ould; Jacquemond, Camille; Luro, François; Lozano, Yves; Gaydou, Emile M

    2010-03-01

    Total determination of cinnamic acids (CA), including hydroxycinnamic acid derivatives is generally not accurate since, during hydrolysis, a possible degradation of dihydroxy CA such as caffeic acid could occur. Evaluations of CA (ferulic, p-coumaric, sinapic, cinnamic and caffeic acids) before and after hydrolysis have been undertaken using standards and either with or without addition of ascorbic acid and EDTA. The method was then applied to the determination of free and bound CA in five blond cultivars (Navelina, Washington navel, Pera, Salustiana and Valencia late) of sweet oranges [Citrus sinensis (L.) Osb.]. Four parts of the fruits (peel juice, flavedo, albedo and juice) have been investigated. Results show that CA are mainly bound (86% up to 92%) in the four fruit parts. The mean of total CA contents was found to be higher in peel juice (1.5 g kg(-1)) in comparison with flavedo (0.7 g kg(-1)), albedo (0.1 g kg(-1)) and juice (0.6 g kg(-1)). Free and bound ferulic acid represented 55-70% of CA in juices, followed by p-coumaric acid (20%), sinapic acid (10%) and caffeic acid (9%). Total contents of each CA in the four fruit parts are discussed and show the potential interest in orange peel wastes. PMID:20420324

  7. The spectroscopic (FT-IR, FT-Raman and 1H, 13C NMR) and theoretical studies of cinnamic acid and alkali metal cinnamates

    NASA Astrophysics Data System (ADS)

    Kalinowska, Monika; Świsłocka, Renata; Lewandowski, Włodzimierz

    2007-05-01

    The effect of alkali metals (Li → Na → K → Rb → Cs) on the electronic structure of cinnamic acid (phenylacrylic acid) was studied. In this research many miscellaneous analytical methods, which complement one another, were used: infrared (FT-IR), Raman (FT-Raman), nuclear magnetic resonance ( 1H, 13C NMR) and quantum mechanical calculations. The spectroscopic studies lead to conclusions concerning the distribution of the electronic charge in molecule, the delocalization energy of π-electrons and the reactivity of metal complexes. The change of metal along with the series: Li → Na → K → Rb → Cs caused: (1) the change of electronic charge distribution in cinnamate anion what is seen via the occurrence of the systematic shifts of several bands in the experimental and theoretical IR and Raman spectra of cinnamates, (2) systematic chemical shifts for protons 1H and 13C nuclei.

  8. A crystallographic fragment screen identifies cinnamic acid derivatives as starting points for potent Pim-1 inhibitors.

    PubMed

    Schulz, Michèle N; Fanghänel, Jörg; Schäfer, Martina; Badock, Volker; Briem, Hans; Boemer, Ulf; Nguyen, Duy; Husemann, Manfred; Hillig, Roman C

    2011-03-01

    A crystallographic fragment screen was carried out to identify starting points for the development of inhibitors of protein kinase Pim-1, a potential target for tumour therapy. All fragment hits identified via soaking in this study turned out to bind to the unusually hydrophobic pocket at the hinge region. The most potent fragments, two cinnamic acid derivatives (with a best IC(50) of 130 µM), additionally form a well defined hydrogen bond. The balance between hydrophobic and polar interactions makes these molecules good starting points for further optimization. Pim-2 inhibitors from a recently reported high-throughput screening campaign also feature a cinnamic acid moiety. Two of these Pim-2 inhibitors were synthesized, their potencies against Pim-1 were determined and their cocrystal structures were elucidated in order to determine to what degree the binding modes identified by fragment screening are conserved in optimized inhibitors. The structures show that the cinnamic acid moieties indeed adopt the same binding mode. Fragment screening thus correctly identified binding modes which are maintained when fragments are grown into larger and higher affinity inhibitors. The high-throughput screening-derived compound (E)-3-{3-[6-(4-aminocyclohexylamino)-pyrazin-2-yl]phenyl}acrylic acid (compound 1) is the most potent inhibitor of the cinnamic acid series for which the three-dimensional binding mode is known (IC(50) = 17 nM, K(d) = 28 nM). The structure reveals the molecular basis for the large gain in potency between the initial fragment hit and this optimized inhibitor.

  9. Novel cinnamic acid derivatives as antioxidant and anticancer agents: design, synthesis and modeling studies.

    PubMed

    Pontiki, Eleni; Hadjipavlou-Litina, Dimitra; Litinas, Konstantinos; Geromichalos, George

    2014-07-07

    Cinnamic acids have been identified as interesting compounds with antioxidant, anti-inflammatory and cytotoxic properties. In the present study, simple cinnamic acids were synthesized by Knoevenagel condensation reactions and evaluated for the above biological activities. Compound 4ii proved to be the most potent LOX inhibitor. Phenyl- substituted acids showed better inhibitory activity against soybean LOX, and it must be noted that compounds 4i and 3i with higher lipophilicity values resulted less active than compounds 2i and 1i. The compounds have shown very good activity in different antioxidant assays. The antitumor properties of these derivatives have been assessed by their 1/IC50 inhibitory values in the proliferation of HT-29, A-549, OAW-42, MDA-MB-231, HeLa and MRC-5 normal cell lines. The compounds presented low antitumor activity considering the IC50 values attained for the cell lines, with the exception of compound 4ii. Molecular docking studies were carried out on cinnamic acid derivative 4ii and were found to be in accordance with our experimental biological results.

  10. In vitro effects of cinnamic acid derivatives on protein tyrosine phosphatase 1B.

    PubMed

    Adisakwattana, Sirichai; Pongsuwan, Jirawan; Wungcharoen, Chompunut; Yibchok-anun, Sirintorn

    2013-10-01

    Protein Tyrosine Phosphatase 1B (PTP1B) is a major negative regulator of insulin signaling pathways. Finding selective PTP1B inhibitors from natural sources has been widely recognized as a potential drug target for the treatment of diabetes mellitus and obesity. In the present study, we evaluated the inhibitory activity of cinnamic acid derivatives against PTP1B in vitro. Among 14 cinnamic acid derivatives and related compounds, the most potent inhibitor PTP1Bs were o-hydroxycinnamic acid and p-hydroxycinnamic acid, which had IC50 values of 137.67 ± 13.37 and 181.60 ± 9.34 µM, respectively. The kinetics analysis revealed that PTP1B was inhibited by o-hydroxycinnamic acid and p-hydroxycinnamic acid in a non-competitive manner. o-Hydroxycinnamic acid (25 μM) and p-hydroxycinnamic acid (25 μM), in combination with sodium orthovanadate (0.0125 μM), demonstrated a synergistic effect to inhibit PTP1B activity. In conclusion, the findings provide a new insight into naturally occurring PTP1B inhibitors that could be useful for treatment of diabetes and obesity.

  11. Anthelmintic efficacy of cinnamaldehyde and cinnamic acid from cortex cinnamon essential oil against Dactylogyrus intermedius.

    PubMed

    Ling, Fei; Jiang, Chao; Liu, Guanglu; Li, Mingshuang; Wang, Gaoxue

    2015-12-01

    Utilization of chemical pesticide to control monogenean diseases is often restricted in many countries due to the development of pesticide resistance and concerns of chemical residues and environmental contamination. Thus, the use of antiparasitic agents from plants has been explored as a possible way for controlling monogenean infections. Extracts from Cinnamomum cassia were investigated under in vivo conditions against Dactylogyrus intermedius in goldfish. The two bioactive compounds, cinnamaldehyde and cinnamic acid, were identified using nuclear magnetic resonance and electrospray ionization mass spectrometry. The 48 h median effective concentrations (EC(50)) for these compounds against D. intermedius were 0·57 and 6·32 mg L(-1), respectively. The LD(50) of cinnamaldehyde and cinnamic acid were 13·34 and 59·66 mg L(-1) to goldfish in 48 h acute toxicity tests, respectively. These data confirm that cinnamaldehyde is effective against D. intermedius, and the cinnamaldehyde exhibits potential for the development of a candidate antiparasitic agent.

  12. Combined experimental and computational investigation of the absorption spectra of E- and Z-cinnamic acids in solution: The peculiarity of Z-cinnamics.

    PubMed

    Salum, María L; Arroyo Mañez, Pau; Luque, F Javier; Erra-Balsells, Rosa

    2015-07-01

    Cinnamic acids are present in all kinds of plant tissues and hence in herbs and derived medicines, cosmetics and foods. The interest in their role in plants and their therapeutic applications has grown exponentially. Because of their molecular structure they can exist in E- and Z-forms, which are both found in plants. However, since only the E-forms are commercially available, very few in vitro and in vivo studies of the Z-form have been reported. In this work the physico-chemical properties of Z-cinnamic acids in solution have been examined by means of UV-absorption spectroscopy and high-level quantum mechanical computations. For each isomer similar absorption spectra were obtained in methanol and acetonitrile. However, distinct trends were found for Z- and E forms of cinnamic acids in water, where a higher hypsochromic shift of the Z-isomer relative to the E-form was observed. In general the wavelength of maximal absorption of the Z-form is dramatically blue shifted (-30 to -40 nm) to λ<280 nm, while a slightly blue shift of the absorption maxima for the corresponding E-form (+3 to -4 nm) was observed. This difference is associated with the non-planar, largely distorted, Z-structure and to the almost complete flat structure of the E-form. The results provide a basis for the study of functional and biotechnological roles of cinnamic acids and for the analysis of samples containing mixture of both geometric isomers.

  13. Anti-obesity and cardioprotective effects of cinnamic acid in high fat diet- induced obese rats.

    PubMed

    Mnafgui, Kais; Derbali, Amal; Sayadi, Sami; Gharsallah, Neji; Elfeki, Abdelfattah; Allouche, Noureddine

    2015-07-01

    Obesity is a chronic metabolic disorder that is associated with numerous diseases including hyperlipidemia, diabetes mellitus, hypertension, atherosclerosis, cardiovascular disease, and cancer. Cinnamic acid is a phytochemical compound having many biological effects and could be considered for the management of obesity. This study is aimed to assess the possible anti-obesity and cardioprotective properties of cinnamic acid (CA) in high fat diet-fed rats (HFD). Male Wistar rats were divided into 4 groups. They received normal diet, HFD diet, HFD supplemented with fluvastatin (2 mg/kg/day) or cinnamic acid (30 mg/kg/day) for 7 weeks. The results showed an increase in body weight of HFD rats by ~27 % as compared to control group. Moreover, serum lipase activity underwent a significant rise by 103 % which led to an increase in the levels of total cholesterol (T-Ch), triglycerides (TG), LDL-cholesterol in serum of untreated HFD-fed rats. Furthermore, the concentration of leptin and angiotensin-converting enzyme (ACE) activity exhibited remarkable increases in serum of HFD-fed rats as compared to controls. Whereas, the administration of CA to HFD-fed rats improved the body weight gain and serum lipid profile and reverted back near to normal the activities of lipase and ACE. In addition, the echocardiography evidenced that CA is able to protect the aorta and aortic arch and avoided vasoconstriction by increasing their diameters and improved liver steatosis and kidney indices of toxicity. Overall, these results suggest that cinnamic acid exerts anti-obesity and antihypertensive effects through inhibition of lipid digestive enzymes and ACE.

  14. Antimycobacterial activity generated by the amide coupling of (-)-fenchone derived aminoalcohol with cinnamic acids and analogues.

    PubMed

    Slavchev, Ivaylo; Dobrikov, Georgi M; Valcheva, Violeta; Ugrinova, Iva; Pasheva, Evdokia; Dimitrov, Vladimir

    2014-11-01

    Aminoethyl substituted 2-endo-fenchol prepared from (-)-fenchone was used as scaffold for the synthesis of series of 31 amide structures by N-acylation applying cinnamic acids and analogues. The evaluation of their in vitro activity against Mycobacterium tuberculosis H37Rv showed for some of them promising activity-up to 0.2 μg/ml, combined with relatively low cytotoxicity of the selected active compounds.

  15. Enzymatic modification of chitosan by cinnamic acids: Antibacterial activity against Ralstonia solanacearum.

    PubMed

    Yang, Caifeng; Zhou, Yu; Zheng, Yu; Li, Changlong; Sheng, Sheng; Wang, Jun; Wu, Fuan

    2016-06-01

    This study aimed to identify chitosan polymers that have antibacterial activity against the bacterial wilt pathogen. The chitosan polymers were enzymatically synthesized using chitosan and five cinnamic acids (CADs): caffeic acid (CA), ferulic acid (FA), cinnamic acid (CIA), p-coumaric acid (COA) and chlorogenic acid (CHA), using laccase from Pleurotus ostreatus as a catalyst. The reaction was performed in a phosphate buffered solution under heterogenous reaction conditions. The chitosan derivatives (CTS-g-CADs) were characterized by FT-IR, XRD, TGA and SEM. FT-IR demonstrated that the reaction products bound covalently to the free amino groups or hydroxyl groups of chitosan via band of amide I or ester band. XRD showed a reduced packing density for grafted chitosan comparing to original chitosan. TGA demonstrated that CTS-g-CADs have a higher thermostability than chitosan. Additionally, chitosan and its derivatives showed similar antibacterial activity. However, the IC50 value of the chitosan-caffeic acid derivative (CTS-g-CA) against the mulberry bacterial wilt pathogen RS-5 was 0.23mg/mL, which was two-fifths of the IC50 value of chitosan. Therefore, the enzymatically synthesized chitosan polymers can be used to control plant diseases in biotechnological domains. PMID:26993531

  16. Enzymatic modification of chitosan by cinnamic acids: Antibacterial activity against Ralstonia solanacearum.

    PubMed

    Yang, Caifeng; Zhou, Yu; Zheng, Yu; Li, Changlong; Sheng, Sheng; Wang, Jun; Wu, Fuan

    2016-06-01

    This study aimed to identify chitosan polymers that have antibacterial activity against the bacterial wilt pathogen. The chitosan polymers were enzymatically synthesized using chitosan and five cinnamic acids (CADs): caffeic acid (CA), ferulic acid (FA), cinnamic acid (CIA), p-coumaric acid (COA) and chlorogenic acid (CHA), using laccase from Pleurotus ostreatus as a catalyst. The reaction was performed in a phosphate buffered solution under heterogenous reaction conditions. The chitosan derivatives (CTS-g-CADs) were characterized by FT-IR, XRD, TGA and SEM. FT-IR demonstrated that the reaction products bound covalently to the free amino groups or hydroxyl groups of chitosan via band of amide I or ester band. XRD showed a reduced packing density for grafted chitosan comparing to original chitosan. TGA demonstrated that CTS-g-CADs have a higher thermostability than chitosan. Additionally, chitosan and its derivatives showed similar antibacterial activity. However, the IC50 value of the chitosan-caffeic acid derivative (CTS-g-CA) against the mulberry bacterial wilt pathogen RS-5 was 0.23mg/mL, which was two-fifths of the IC50 value of chitosan. Therefore, the enzymatically synthesized chitosan polymers can be used to control plant diseases in biotechnological domains.

  17. How polyamine synthesis inhibitors and cinnamic acid affect tropane alkaloid production.

    PubMed

    Marconi, Patricia L; Alvarez, María A; Pitta-Alvarez, Sandra I

    2007-01-01

    Hairy roots of Brugmansia candida produce the tropane alkaloids scopolamine and hyoscyamine. In an attempt to divert the carbon flux from competing pathways and thus enhance productivity, the polyamine biosynthesis inhibitors cyclohexylamine (CHA) and methylglyoxal-bis-guanylhydrazone (MGBG) and the phenylalanine-ammonia-lyase inhibitor cinnamic acid were used. CHA decreased the specific productivity of both alkaloids but increased significantly the release of scopolamine (approx 500%) when it was added in the mid-exponential phase. However, when CHA was added for only 48 h during the exponential phase, the specific productivity of both alkaloids increased (approx 200%), favoring scopolamine. Treatment with MGBG was detrimental to growth but promoted release into the medium of both alkaloids. However, when it was added for 48 h during the exponential phase, MGBG increased the specific productivity (approx 200%) and release (250- 1800%) of both alkaloids. Cinnamic acid alone also favored release but not specific productivity. When a combination of CHA or MGBG with cinnamic acid was used, the results obtained were approximately the same as with each polyamine biosynthesis inhibitor alone, although to a lesser extent. Regarding root morphology, CHA inhibited growth of primary roots and ramification. However, it had a positive effect on elongation of lateral roots. PMID:17416978

  18. Isolation of a new bioactive cinnamic acid derivative from the whole plant of Viola betonicifolia.

    PubMed

    Muhammad, Naveed; Saeed, Muhammad; Adhikari, Achyut; Khan, Khalid Muhammad; Khan, Haroon

    2013-10-01

    A new cinnamic acid derivative was isolated from the whole plant of Viola betonicifolia as off white needle. On the basis of various modern spectroscopic techniques including HREI-MS and 1D and 2D NMR, its structure was elucidated as 2,4-dihydroxy, 5-methoxy-cinnamic acid. It showed marked inhibition against DPPH (diphenyl-2-picryl hydrazyl) free radicals with IC50 = 124 ± 5.76 µM. The antioxidant property of the compound was compared with α-tocopherole and vitamin C having IC50 values 96 ± 0.46 and 90 ± 0.56 µM, respectively. In case of antiglycation assay, the compound exhibited moderate activity (IC50 = 355 ± 7.56 µM) similar to standard compound, rutin (IC50 = 294 ± 0.56 µM). However, it was non-toxic to PC-3 cell line. It is concluded that 2,4-dihydroxy, 5-methoxy-cinnamic acid has antiglycation potential which was further augmented by its antioxidant activity and thus offered an ideal natural therapeutic option for the effective management of diabetes.

  19. Membrane protein complexes catalyze both 4- and 3-hydroxylation of cinnamic acid derivatives in monolignol biosynthesis.

    PubMed

    Chen, Hsi-Chuan; Li, Quanzi; Shuford, Christopher M; Liu, Jie; Muddiman, David C; Sederoff, Ronald R; Chiang, Vincent L

    2011-12-27

    The hydroxylation of 4- and 3-ring carbons of cinnamic acid derivatives during monolignol biosynthesis are key steps that determine the structure and properties of lignin. Individual enzymes have been thought to catalyze these reactions. In stem differentiating xylem (SDX) of Populus trichocarpa, two cinnamic acid 4-hydroxylases (PtrC4H1 and PtrC4H2) and a p-coumaroyl ester 3-hydroxylase (PtrC3H3) are the enzymes involved in these reactions. Here we present evidence that these hydroxylases interact, forming heterodimeric (PtrC4H1/C4H2, PtrC4H1/C3H3, and PtrC4H2/C3H3) and heterotrimeric (PtrC4H1/C4H2/C3H3) membrane protein complexes. Enzyme kinetics using yeast recombinant proteins demonstrated that the enzymatic efficiency (V(max)/k(m)) for any of the complexes is 70-6,500 times greater than that of the individual proteins. The highest increase in efficiency was found for the PtrC4H1/C4H2/C3H3-mediated p-coumaroyl ester 3-hydroxylation. Affinity purification-quantitative mass spectrometry, bimolecular fluorescence complementation, chemical cross-linking, and reciprocal coimmunoprecipitation provide further evidence for these multiprotein complexes. The activities of the recombinant and SDX plant proteins demonstrate two protein-complex-mediated 3-hydroxylation paths in monolignol biosynthesis in P. trichocarpa SDX; one converts p-coumaric acid to caffeic acid and the other converts p-coumaroyl shikimic acid to caffeoyl shikimic acid. Cinnamic acid 4-hydroxylation is also mediated by the same protein complexes. These results provide direct evidence for functional involvement of membrane protein complexes in monolignol biosynthesis.

  20. [Effects of cinnamic acid on bacterial DNA polymorphism in rhizosphere soil of cucumber under NaCl stress].

    PubMed

    Liu, Jing; Wu, Feng-Zhi; Yang, Yang; Liu, Shou-Wei; Pan, Kai

    2010-03-01

    By using PCR-DGGE technique, this paper studied the effects of different concentration (0, 25, 50, 100, and 200 mg x kg(-1) soil) cinnamic acid on the bacterial DNA polymorphism in rhizosphere soil of cucumber seedlings under the stress of 292.5 and 585 mg NaCl x kg(-1) soil. At all growth stages of cucumber seedlings, treatment 50 mg x kg(-1) of cinnamic acid had the similar band numbers and band gray scales in DGGE profiles to treatment 0 mg x kg(-1) of cinnamic acid, but the diversity index, richness index, and evenness index were the highest; while in treatments 100 and 200 mg x kg(-1) soil of cinnamic acid, the band numbers and band gray scales decreased, and the diversity index, richness index, and evenness index were lower. Our results demonstrated that low concentration cinnamic acid relieved the salt stress on soil microbes, while high concentration cinnamic acid aggravated the stress. The cloning and sequencing results showed that the main bacterial groups affected by salt stress were uncultured bacterial species, alpha-Proteobacteria, beta-proteobacteria, and gamma-proteobacteria, and a few were Firmicutes, Acidobacteria, and Actinobacteria.

  1. Plant growth inhibition by cis-cinnamoyl glucosides and cis-cinnamic acid.

    PubMed

    Hiradate, Syuntaro; Morita, Sayaka; Furubayashi, Akihiro; Fujii, Yoshiharu; Harada, Jiro

    2005-03-01

    Spiraea thunbergii Sieb. contains 1-O-cis-cinnamoyl-beta-D-glucopyranose (CG) and 6-O-(4'-hydroxy-2'-methylene-butyroyl)-1-O-cis-cinnamoyl-beta-D-glucopyranose (BCG) as major plant growth inhibiting constituents. In the present study, we determined the inhibitory activity of CG and BCG on root elongation of germinated seedlings of lettuce (Lactuca sativa), pigweed (Amaranthus retroflexus), red clover (Trifolium pratense), timothy (Phleum pratense), and bok choy (Brassica rapa var chinensis) in comparison with that of two well-known growth inhibitors, 2,4-dichlorophenoxyacetic acid (2,4-D) and (+)-2-cis-4-trans-abscisic acid (cis-ABA), as well as two related chemicals of CG and BCG, cis-cinnamic acid (cis-CA) and trans-cinnamic acid (trans-CA). The EC50 values for CG and BCG on lettuce were roughly one-half to one-quarter of the value for cis-ABA. cis-Cinnamic acid, which is a component of CG and BCG, possessed almost the same inhibitory activity of CG and BCG, suggesting that the essential chemical structure responsible for the inhibitory activity of CG and BCG is cis-CA. The cis-stereochemistry of the methylene moiety is apparently needed for high inhibitory activity, as trans-CA had an EC50 value roughly 100 times that of CG, BCG, and cis-CA. Growth inhibition by CG, BCG, and cis-CA was influenced by the nature of the soil in the growing medium: alluvial soil preserved the bioactivity, whereas volcanic ash and calcareous soils inhibited bioactivity. These findings indicate a potential role of cis-CA and its glucosides as allelochemicals for use as plant growth regulators in agricultural fields.

  2. Plant growth inhibition by cis-cinnamoyl glucosides and cis-cinnamic acid.

    PubMed

    Hiradate, Syuntaro; Morita, Sayaka; Furubayashi, Akihiro; Fujii, Yoshiharu; Harada, Jiro

    2005-03-01

    Spiraea thunbergii Sieb. contains 1-O-cis-cinnamoyl-beta-D-glucopyranose (CG) and 6-O-(4'-hydroxy-2'-methylene-butyroyl)-1-O-cis-cinnamoyl-beta-D-glucopyranose (BCG) as major plant growth inhibiting constituents. In the present study, we determined the inhibitory activity of CG and BCG on root elongation of germinated seedlings of lettuce (Lactuca sativa), pigweed (Amaranthus retroflexus), red clover (Trifolium pratense), timothy (Phleum pratense), and bok choy (Brassica rapa var chinensis) in comparison with that of two well-known growth inhibitors, 2,4-dichlorophenoxyacetic acid (2,4-D) and (+)-2-cis-4-trans-abscisic acid (cis-ABA), as well as two related chemicals of CG and BCG, cis-cinnamic acid (cis-CA) and trans-cinnamic acid (trans-CA). The EC50 values for CG and BCG on lettuce were roughly one-half to one-quarter of the value for cis-ABA. cis-Cinnamic acid, which is a component of CG and BCG, possessed almost the same inhibitory activity of CG and BCG, suggesting that the essential chemical structure responsible for the inhibitory activity of CG and BCG is cis-CA. The cis-stereochemistry of the methylene moiety is apparently needed for high inhibitory activity, as trans-CA had an EC50 value roughly 100 times that of CG, BCG, and cis-CA. Growth inhibition by CG, BCG, and cis-CA was influenced by the nature of the soil in the growing medium: alluvial soil preserved the bioactivity, whereas volcanic ash and calcareous soils inhibited bioactivity. These findings indicate a potential role of cis-CA and its glucosides as allelochemicals for use as plant growth regulators in agricultural fields. PMID:15898503

  3. Synthesis of aliphatic esters of cinnamic acid as potential lipophilic antioxidants catalyzed by lipase B from Candida antarctica.

    PubMed

    Jakovetić, Sonja M; Jugović, Branimir Z; Gvozdenović, Milica M; Bezbradica, Dejan I; Antov, Mirjana G; Mijin, Dušan Z; Knežević-Jugović, Zorica D

    2013-08-01

    Immobilized lipase from Candida antarctica (Novozyme 435) was tested for the synthesis of various phenolic acid esters (ethyl and n-butyl cinnamate, ethyl p-coumarate and n-butyl p-methoxycinnamate). The second-order kinetic model was used to mathematically describe the reaction kinetics and to compare present processes quantitatively. It was found that the model agreed well with the experimental data. Further, the effect of alcohol type on the esterification of cinnamic acid was investigated. The immobilized lipase showed more ability to catalyze the synthesis of butyl cinnamate. Therefore, the process was optimized for the synthesis of butyl cinnamate as a function of solvent polarity (logP) and amount of biocatalyst. The highest ester yield of 60.7 % was obtained for the highest enzyme concentration tested (3 % w/w), but the productivity was for 34 % lower than the corresponding value obtained for the enzyme concentration of 1 % (w/w). The synthesized esters were purified, identified, and screened for antioxidant activities. Both DPPH assay and cyclic voltammetry measurement have shown that cinnamic acid esters have better antioxidant properties than cinnamic acid itself.

  4. A 13C NMR study of the structure of four cinnamic acids and their methyl esters

    NASA Astrophysics Data System (ADS)

    Silva, A. M. S.; Alkorta, I.; Elguero, J.; Silva, V. L. M.

    2001-09-01

    The 13C NMR spectra, both in DMSO solution and in the solid state of four cinnamic acids ( p-methoxy, p-hydroxy, p-methyl, p-chloro) and their corresponding methyl esters have been recorded. The two main results in the solid state are: (i) the only significant difference between acids and esters chemical shifts concerns the CO group which, on average, appears at 173 ppm in the acids and 168 ppm in the esters; (ii) the signals of the ortho and meta carbons both in the acids and the esters are splitted. The two 'anomalies' disappear in DMSO solution. These observations can be rationalized using simple GIAO/B3LYP/6-31G ∗ calculations.

  5. [Effects of cinnamic acid and vanillin on grafted eggplant root growth and physiological characteristics].

    PubMed

    Chen, Shao-Li; Zhou, Bao-Li; Lin, Shan-Shan; Li, Xia; Ye, Xue-Ling

    2010-06-01

    Choosing Solanum torvum as rootstock and cultivated Xi'anlü eggplant as scion, a pot culture experiment was conducted to study the effects of autotoxic substances (cinnamic acid and vanillin) on the root growth, antioxidase activity, and osmoregulation substances content of grafted eggplant, own-rooted eggplant, and rootstock eggplant. Cinnamic acid and vanillin had allelopathic effects on the root system of test eggplants, with low concentration promoting and higher concentration inhibiting the root growth and physiological metabolism. For own-rooted eggplant, the critical concentration of cinnamic acid and vanillin for promotion or inhibition was 0.1 mmol x kg(-1) and 0.5 mmol x kg(-1), respectively; whereas for grafted and rootstock eggplants, it was 0.5 mmol x kg(-1) and 1 mmol x kg(-1), respectively. The root resistance to autotoxic substances was in the order of root-stock eggplant > grafted eggplant > own-rooted eggplant. Higher concentration cinamic acid (0.5-4 mmol x kg(-1)) and vanillin (1-4 mmol x kg(-1)) enhanced the SOD enzyme activity and the proline and soluble sugar contents of grafted eggplant root by 8.50%-24.50%; 9.39%-27.64%, and 12.77%-81.81%, respectively, compared with own-rooted eggplant. The soluble protein content, fresh mass, dry mass, and root activity of grafted eggplant roots were significantly higher than those of own-rooted eggplant, suggesting that grafted eggplant had a strong resistance of rootstocks to autotoxic substances, which alleviated the negative effect of autotoxic substances on root growth.

  6. Production of Cinnamic and p-Hydroxycinnamic Acids in Engineered Microbes.

    PubMed

    Vargas-Tah, Alejandra; Gosset, Guillermo

    2015-01-01

    The aromatic compounds cinnamic and p-hydroxycinnamic acids (pHCAs) are phenylpropanoids having applications as precursors for the synthesis of thermoplastics, flavoring, cosmetic, and health products. These two aromatic acids can be obtained by chemical synthesis or extraction from plant tissues. However, both manufacturing processes have shortcomings, such as the generation of toxic subproducts or a low concentration in plant material. Alternative production methods are being developed to enable the biotechnological production of cinnamic and (pHCAs) by genetically engineering various microbial hosts, including Escherichia coli, Saccharomyces cerevisiae, Pseudomonas putida, and Streptomyces lividans. The natural capacity to synthesize these aromatic acids is not existent in these microbial species. Therefore, genetic modification have been performed that include the heterologous expression of genes encoding phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities, which catalyze the conversion of l-phenylalanine (l-Phe) and l-tyrosine (l-Tyr) to cinnamic acid and (pHCA), respectively. Additional host modifications include the metabolic engineering to increase carbon flow from central metabolism to the l-Phe or l-Tyr biosynthetic pathways. These strategies include the expression of feedback insensitive mutant versions of enzymes from the aromatic pathways, as well as genetic modifications to central carbon metabolism to increase biosynthetic availability of precursors phosphoenolpyruvate and erythrose-4-phosphate. These efforts have been complemented with strain optimization for the utilization of raw material, including various simple carbon sources, as well as sugar polymers and sugar mixtures derived from plant biomass. A systems biology approach to production strains characterization has been limited so far and should yield important data for future strain improvement.

  7. Production of Cinnamic and p-Hydroxycinnamic Acids in Engineered Microbes

    PubMed Central

    Vargas-Tah, Alejandra; Gosset, Guillermo

    2015-01-01

    The aromatic compounds cinnamic and p-hydroxycinnamic acids (pHCAs) are phenylpropanoids having applications as precursors for the synthesis of thermoplastics, flavoring, cosmetic, and health products. These two aromatic acids can be obtained by chemical synthesis or extraction from plant tissues. However, both manufacturing processes have shortcomings, such as the generation of toxic subproducts or a low concentration in plant material. Alternative production methods are being developed to enable the biotechnological production of cinnamic and (pHCAs) by genetically engineering various microbial hosts, including Escherichia coli, Saccharomyces cerevisiae, Pseudomonas putida, and Streptomyces lividans. The natural capacity to synthesize these aromatic acids is not existent in these microbial species. Therefore, genetic modification have been performed that include the heterologous expression of genes encoding phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities, which catalyze the conversion of l-phenylalanine (l-Phe) and l-tyrosine (l-Tyr) to cinnamic acid and (pHCA), respectively. Additional host modifications include the metabolic engineering to increase carbon flow from central metabolism to the l-Phe or l-Tyr biosynthetic pathways. These strategies include the expression of feedback insensitive mutant versions of enzymes from the aromatic pathways, as well as genetic modifications to central carbon metabolism to increase biosynthetic availability of precursors phosphoenolpyruvate and erythrose-4-phosphate. These efforts have been complemented with strain optimization for the utilization of raw material, including various simple carbon sources, as well as sugar polymers and sugar mixtures derived from plant biomass. A systems biology approach to production strains characterization has been limited so far and should yield important data for future strain improvement. PMID:26347861

  8. Novel cinnamic acid/4-aminoquinoline conjugates bearing non-proteinogenic amino acids: towards the development of potential dual action antimalarials.

    PubMed

    Pérez, Bianca C; Teixeira, Cátia; Figueiras, Marta; Gut, Jiri; Rosenthal, Philip J; Gomes, José R B; Gomes, Paula

    2012-08-01

    A series of cinnamic acid/4-aminoquinoline conjugates conceived to link, through a proper retro-enantio dipeptide, a heterocyclic core known to prevent hemozoin formation, to a trans-cinnamic acid motif capable of inhibiting enzyme catalytic Cys residues, were synthesized as potential dual-action antimalarials. The effect of amino acid configuration and the absence of the dipeptide spacer were also assessed. The replacement of the D-amino acids by their natural L counterparts led to a decrease in both anti-plasmodial and falcipain-inhibitory activity, suggesting that the former are preferable. Molecules with such spacer were active against blood-stage Plasmodium falciparum, in vitro, and hemozoin formation, implying that the dipeptide has a key role in mediating these two activities. In turn, compounds without spacer were better falcipain-2 inhibitors, likely because these compounds are smaller and have their vinyl bonds in closer vicinity to the catalytic Cys, as suggested by molecular modeling calculations. These novel conjugates constitute promising leads for the development of new antiplasmodials targeted at blood-stage malaria parasites.

  9. Radical scavenging activity of lipophilized products from transesterification of flaxseed oil with cinnamic acid or ferulic acid.

    PubMed

    Choo, Wee-Sim; Birch, Edward John; Stewart, Ian

    2009-09-01

    Lipase-catalyzed transesterification of flaxseed oil with cinnamic acid (CA) or ferulic acid (FA) using an immobilized lipase from Candida antarctica (E.C. 3.1.1.3) was conducted to evaluate whether the lipophilized products provided enhanced antioxidant activity in the oil. Lipase-catalyzed transesterification of flaxseed oil with CA or FA produced a variety of lipophilized products (identified using ESI-MS-MS) such as monocinnamoyl/feruloyl-diacylglycerol, dicinnamoyl-monoacylglycerol and monocinnamoyl-monoacylglycerol. The free radical scavenging activity of the lipophilized products of lipase-catalyzed transesterification of flaxseed oil with CA or FA toward 2,2-diphenyl-1-picrylhydrazyl radical (DPPH.) were both examined in ethanol and ethyl acetate. The polarity of the solvents proved important in determining the radical scavenging activity of the substrates. Unesterified FA showed the highest free radical scavenging activity among all substrates tested while CA had negligible activity. The esterification of CA or FA with flaxseed oil resulted in significant increase and decrease in the radical scavenging activity compared with the native phenolic acid, respectively. Based on the ratio of a substrate to DPPH. concentration, lipophilized FA was a much more efficient free radical scavenger compared to lipophilized CA and was able to provide enhanced antioxidant activity in the flaxseed oil. Lipophilized cinnamic acid did not provide enhanced radical scavenging activity in the flaxseed oil as the presence of natural hydrophilic antioxidants in the oil had much greater radical scavenging activity.

  10. Preparation of nanoscale Ni-B amorphous alloys and their application in the selective hydrogenation of cinnamic acid.

    PubMed

    Bai, Guoyi; Dong, Huixian; Zhao, Zhen; Wang, Yalong; Chen, Qingzhi; Qiu, Mande

    2013-07-01

    A series of metal modified nanoscale Ni-B amorphous alloys was prepared by chemical reduction and tested in the selective hydrogenation of cinnamic acid. A Co modified Ni-B amorphous alloy (Ni-Co-B) exhibited excellent catalytic performance in this reaction with both 100.0% conversion of cinnamic acid and 100.0% selectivity for hydrocinnamic acid under the optimized reaction conditions. X-ray diffraction (XRD) results indicated that the addition of Co had not changed the amorphous structure of Ni-B; whereas, its addition was believed not only to favor decreased agglomeration of the active Ni species, as proven by transmission electron microscopy (TEM), but also to contribute to adsorption of hydrogen itself. Thus, Ni-Co-B showed a larger BET surface area, smaller particle size, and greater number of active species resulting in optimum H2-chemisorption compared to Ni-B and accounting for its excellent catalytic performance in cinnamic acid hydrogenation.

  11. Interaction of cinnamic acid derivatives with commercial hypoglycemic drugs on 2-deoxyglucose uptake in 3T3-L1 adipocytes.

    PubMed

    Prabhakar, Pranav Kumar; Doble, Mukesh

    2011-09-28

    Hydroxycinnamic acid derivatives are naturally occurring substances found in fruits, vegetables, and flowers and are consumed as dietary phenolic compounds. The effect of cinnamic acid, ferulic acid, p-coumaric acid, eugenol, chlorogenic acid, and caffeic acid, alone and in combination with two commercial oral hypoglycemic drugs (OHD), namely, thiazolidinedione (THZ) and metformin, on the uptake of 2-deoxyglucose (2DG) by 3T3-L1 adipocytes is studied. All of the phytochemicals other than cinnamic acid show synergistic interaction in 2DG uptake with both of the OHDs. THZ (20 μM) in combination with ferulic acid (25 μM) or p-coumaric acid (25 μM) increases 2DG uptake by 7- or 6.34-fold, respectively, with respect to control, whereas metformin (20 μM), along with ferulic acid (25 μM) or cinnamic acid (25 μM), increases 2DG uptake by 6.45- or 5.87-fold, respectively, when compared to control. Chlorogenic and cinnamic acids increased the expression of PPARγ, whereas other hydroxycinnamic acids enhanced the expression of PI3K, indicating different mechanisms of action between these compounds. These phytochemicals were able to reduce the expressions of the fatty acid synthase and HMG CoA reductase genes, indicating that they may be able to reduce the secondary complications caused by the accumulation of lipids. These studies suggest that hydroxycinnamic acid derivatives may be beneficial for the treatment of diabetes mellitus. They may act as a supplement with commercial drugs and may reduce the secondary complications caused by OHDs.

  12. Interaction of cinnamic acid derivatives with β-cyclodextrin in water: experimental and molecular modeling studies.

    PubMed

    Liu, Benguo; Zeng, Jie; Chen, Chen; Liu, Yonglan; Ma, Hanjun; Mo, Haizhen; Liang, Guizhao

    2016-03-01

    Cyclodextrins (CDs) can be used to improve the solubility and stability of cinnamic acid derivatives (CAs). However, there was no detailed report about understanding the effects of the substituent groups in the benzene ring on the inclusion behavior between CAs and CDs in aqueous solution. Here, the interaction of β-CD with CAs, including caffeic acid, ferulic acid, and p-coumaric acid, in water was investigated by phase-solubility method, UV, fluorescence, and (1)H NMR spectroscopy, together with ONIOM (our Own N-layer Integrated Orbital molecular Mechanics)-based QM/MM (Quantum Mechanics/Molecular Mechanics) calculations. Experimental results demonstrated that CAs could form 1:1 stoichiometric inclusion complex with β-CD by non-covalent bonds, and that the maximum apparent stability constants were found in caffeic acid (176M(-1)) followed by p-coumaric acid (160M(-1)) and ferulic acid (133M(-1)). Moreover, our calculations reasonably illustrated the binding orientations of β-CD with CAs determined by experimental observations.

  13. Cinnamic acid hydrogen bonds to isoniazid and N'-(propan-2-ylidene)isonicotinohydrazide, an in situ reaction product of isoniazid and acetone.

    PubMed

    Sarcevica, Inese; Orola, Liana; Veidis, Mikelis V; Belyakov, Sergey

    2014-04-01

    A new polymorph of the cinnamic acid-isoniazid cocrystal has been prepared by slow evaporation, namely cinnamic acid-pyridine-4-carbohydrazide (1/1), C9H8O2·C6H7N3O. The crystal structure is characterized by a hydrogen-bonded tetrameric arrangement of two molecules of isoniazid and two of cinnamic acid. Possible modification of the hydrogen bonding was investigated by changing the hydrazide group of isoniazid via an in situ reaction with acetone and cocrystallization with cinnamic acid. In the structure of cinnamic acid-N'-(propan-2-ylidene)isonicotinohydrazide (1/1), C9H8O2·C9H11N3O, carboxylic acid-pyridine O-H···N and hydrazide-hydrazide N-H···O hydrogen bonds are formed.

  14. Formation of bowl-shaped nanoparticles by self-assembly of cinnamic acid-modified dextran.

    PubMed

    Zhang, Cuige; Yang, Suhan; Zhu, Ye; Zhang, Rongli; Liu, Xiaoya

    2015-11-20

    The self-assembly of amphiphilic copolymers has attracted much attention because of their various morphologies and potential applications. Bowl-shaped nanoparticles could apply in many aspects due to their interior cavity, specific concave structure and high surface area. In this study, dextran (Dex) was hydrophobic modified by cinnamic acid (CINN) via esterification reaction between the hydroxyl group of Dex and the carboxyl group of CINN. The modification degree of CINN could be achieved by changing the feed ratios between Dex, CINN and the coupling agent. The cinnamic acid-modified dextran (Dex-CINN) composed of Dex as hydrophilic segment and CINN as hydrophobic segment could self-assemble into bowl-shaped nanoparticles with a single dimple on the surface. Furthermore, the size of the dimples could be controlled by changing the modification degree of CINN, concentration of Dex-CINN and the rate of water addition. The morphologies of bowl-shaped nanoparticles were characterized by transmission electron microscopy (TEM) and scanning electron microscope (SEM).

  15. Synthesis and in vitro antitumor evaluation of dihydroartemisinin-cinnamic acid ester derivatives.

    PubMed

    Xu, Cang-Cang; Deng, Ting; Fan, Meng-Lin; Lv, Wen-Bo; Liu, Ji-Hua; Yu, Bo-Yang

    2016-01-01

    To explore novel high efficiency and low toxicity antitumor agents, a series of dihydroartemisinin-cinnamic acid ester derivatives modified on C-12 and/or C-9 position (s) were synthesized and the in vitro antitumor activities against PC-3, SGC-7901, A549 and MDA-MB-435s cancer cell lines were assessed. The hybrids (3-36) were prepared by esterification of 9α-hydroxyl-dihydroartemisinin (9α-OH DHA), the biotransformation product of dihydroartemisinin (DHA), and cinnamic acid derivatives. Compound 17 (IC50 = 0.20 μM) was the most potent anti-proliferative agent against the human lung carcinoma A549 cells, although it displayed low cytotoxicity on normal hepatic L-02 cells. The mechanism of action of compound 17 was further investigated by analysis of cell apoptosis and intracellular ROS generation. The results indicated that both ROS and ferrous ion contributed to the compound 17-induced cell death. Meanwhile, high intracellular ferrous ion and endogenous oxidative stress in A549 cells made them easier to suffer to compound 17-induced apoptosis. Our promising findings indicated the compound 17 could stand as drug candidate against lung cancer for further investigation.

  16. Cinnamic acid amides from Tribulus terrestris displaying uncompetitive α-glucosidase inhibition.

    PubMed

    Song, Yeong Hun; Kim, Dae Wook; Curtis-Long, Marcus J; Park, Chanin; Son, Minky; Kim, Jeong Yoon; Yuk, Heung Joo; Lee, Keun Woo; Park, Ki Hun

    2016-05-23

    The α-glucosidase inhibitory potential of Tribulus terrestris extracts has been reported but as yet the active ingredients are unknown. This study attempted to isolate the responsible metabolites and elucidate their inhibition mechanism of α-glucosidase. By fractionating T. terristris extracts, three cinnamic acid amide derivatives (1-3) were ascertained to be active components against α-glucosidase. The lead structure, N-trans-coumaroyltyramine 1, showed significant inhibition of α-glucosidase (IC50 = 0.42 μM). Moreover, all active compounds displayed uncompetitive inhibition mechanisms that have rarely been reported for α-glucosidase inhibitors. This kinetic behavior was fully demonstrated by showing a decrease of both Km and Vmax, and Kik/Kiv ratio ranging between 1.029 and 1.053. We progressed to study how chemical modifications to the lead structure 1 may impact inhibition. An α, β-unsaturation carbonyl group and hydroxyl group in A-ring of cinnamic acid amide emerged to be critical functionalities for α-glucosidase inhibition. The molecular modeling study revealed that the inhibitory activities are tightly related to π-π interaction as well as hydrogen bond interaction between enzyme and inhibitors.

  17. Liquid chromatograph/tandem mass spectrometry assay for the simultaneous determination of chlorogenic acid and cinnamic acid in plasma and its application to a pharmacokinetic study.

    PubMed

    Zhang, Jun; Chen, Min; Ju, Wenzheng; Liu, Shijia; Xu, Meijuan; Chu, Jihong; Wu, Ting

    2010-02-01

    A rapid and high sensitive liquid chromatography/tandem mass spectrometry (LC/MS/MS) method for simultaneous determination of chlorogenic acid and cinnamic acid in human plasma was developed. The analytes and internal standard (IS), tinidazole, were extracted from human plasma via liquid/liquid extraction with ether-ethyl acetate (1:1, v/v) and separated on an Agilent Zorbax SB C18 column within 5min. Quantitation was performed on a triple quadrupole mass spectrometer employing electrospray ionization technique, operating in multiple reaction monitoring (MRM) and negative ion mode. The precursor to product ion transitions monitored for chlorogenic acid, cinnamic acid and IS were m/z 352.9-->191.1, 146.8-->103.1, 245.6-->126.0, respectively. The assay was validated with linear range of 1.00-800.00ng/mL for chlorogenic acid and 0.50-400.00ng/mL for cinnamic acid. The intra- and inter-day precisions (RSD%) were within 9.05% for each analyte. The absolution recoveries were greater than 74.62% for chlorogenic acid and 76.21% for cinnamic acid. Each analyte was proved to be stable during all sample storage, preparation and analytic procedures. The method was successfully applied to a pharmacokinetic study of Mailuoning injection in 10 healthy volunteers.

  18. Decarboxylation of substituted cinnamic acids by lactic acid bacteria isolated during malt whisky fermentation.

    PubMed

    van Beek, S; Priest, F G

    2000-12-01

    Seven strains of Lactobacillus isolated from malt whisky fermentations and representing Lactobacillus brevis, L. crispatus, L. fermentum, L. hilgardii, L. paracasei, L. pentosus, and L. plantarum contained genes for hydroxycinnamic acid (p-coumaric acid) decarboxylase. With the exception of L. hilgardii, these bacteria decarboxylated p-coumaric acid and/or ferulic acid, with the production of 4-vinylphenol and/or 4-vinylguaiacol, respectively, although the relative activities on the two substrates varied between strains. The addition of p-coumaric acid or ferulic acid to cultures of L. pentosus in MRS broth induced hydroxycinnamic acid decarboxylase mRNA within 5 min, and the gene was also induced by the indigenous components of malt wort. In a simulated distillery fermentation, a mixed culture of L. crispatus and L. pentosus in the presence of Saccharomyces cerevisiae decarboxylated added p-coumaric acid more rapidly than the yeast alone but had little activity on added ferulic acid. Moreover, we were able to demonstrate the induction of hydroxycinnamic acid decarboxylase mRNA under these conditions. However, in fermentations with no additional hydroxycinnamic acid, the bacteria lowered the final concentration of 4-vinylphenol in the fermented wort compared to the level seen in a pure-yeast fermentation. It seems likely that the combined activities of bacteria and yeast decarboxylate p-coumaric acid and then reduce 4-vinylphenol to 4-ethylphenol more effectively than either microorganism alone in pure cultures. Although we have shown that lactobacilli participate in the metabolism of phenolic compounds during malt whisky fermentations, the net result is a reduction in the concentrations of 4-vinylphenol and 4-vinylguaiacol prior to distillation.

  19. Enhanced antiamyloidal activity of hydroxy cinnamic acids by enzymatic esterification with alkyl alcohols.

    PubMed

    Kondo, Hazuki; Sugiyama, Haruka; Katayama, Shigeru; Nakamura, Soichiro

    2014-01-01

    Lipophilic derivatives of hydroxyl cinnamic acids (HCAs) including caffeic acid (CA), ferulic acid, sinapic acid (SA), and chlorogenic acid were synthesized by esterification with butanol, octanol, or hexadecanol catalyzed by the lipase from Candida antarctica to investigate the effect of lipophilicity on their antiamyloidal activity assessed by the inhibitory activities toward fibrillization of amyloid β (Aβ) peptide. Among them, CA showed the highest activity at 50 μM, reducing the amyloid fibril formation of Aβ to 34.4 ± 6.8%. The antiamyloidal effects of HCAs were enhanced by esterification with alkyl alcohols, and the longer alkyl chain tended to be more effective except for SA. Aβ fibril formation was suppressed by the hexadecyl ester of CA, which was reduced to 8.8 ± 2.3%. In contrast, those of octyl and butyl esters were 19.3 ± 2.3% and 41.6 ± 6.1%, respectively. These results show that lipophilicity plays an important role in the antiamyloidal activities of esterified phenolic compounds.

  20. Using experimental studies and theoretical calculations to analyze the molecular mechanism of coumarin, p-hydroxybenzoic acid, and cinnamic acid

    NASA Astrophysics Data System (ADS)

    Hsieh, Tiane-Jye; Su, Chia-Ching; Chen, Chung-Yi; Liou, Chyong-Huey; Lu, Li-Hwa

    2005-05-01

    Three natural products, Coumarin ( 1), p-hydroxybenzoic acid ( 2), trans-cinnamic acid ( 3) were isolated from the natural plant of indigenous cinnamon and the structures including relative stereochemistry were elucidated on the basis of spectroscopic data and theoretical calculations. Their sterochemical structures were determined by NMR spectroscopy, mass spectroscopy, and X-ray crystallography. The p-hydroxybenzoic acid complex with water is reported to show the existence of two hydrogen bonds. The two hydrogen bonds are formed in the water molecule of two hydrogen-accepting oxygen of carbonyl group of the p-hydroxybenzoic acid. The intermolecular interaction two hydrogen bond of the model system of the water- p-hydroxybenzoic acid was investigated. An experimental study and a theoretical analysis using the B3LYP/6-31G* method in the GAUSSIAN-03 package program were conducted on the three natural products. The theoretical results are supplemented by experimental data. Optimal geometric structures of three compounds were also determined. The calculated molecular mechanics compared quite well with those obtained from the experimental data. The ionization potentials, highest occupied molecular orbital energy, lowest unoccupied molecular orbital energy, energy gaps, heat of formation, atomization energies, and vibration frequencies of the compounds were also calculated. The results of the calculations show that three natural products are stable molecules with high reactive and various other physical properties. The study also provided an explicit understanding of the sterochemical structure and thermodynamic properties of the three natural products.

  1. Peroxide promoted tunable decarboxylative alkylation of cinnamic acids to form alkenes or ketones under metal-free conditions.

    PubMed

    Ji, Jing; Liu, Ping; Sun, Peipei

    2015-05-01

    A tunable decarboxylative alkylation of cinnamic acids with alkanes was developed to form alkenes or ketones under transition metal-free conditions. In the presence of DTBP or DTBP/TBHP, the reaction gave alkenes and ketones respectively via a radical mechanism in moderate to good yields.

  2. Orthogonal selectivity with cinnamic acids in 3-substituted benzofuran synthesis through C-H olefination of phenols.

    PubMed

    Agasti, Soumitra; Sharma, Upendra; Naveen, Togati; Maiti, Debabrata

    2015-03-28

    A palladium catalyzed intermolecular annulation of cinnamic acids and phenols has been achieved for the selective synthesis of 3-substituted benzofurans. Isotope labeling, competition experiments, kinetic studies, and intermediate trapping have supported a sequence of C-C bond formation and decarboxylation followed by the C-O cyclization pathway.

  3. Rational discovery and development of a mitochondria-targeted antioxidant based on cinnamic acid scaffold.

    PubMed

    Teixeira, José; Soares, Pedro; Benfeito, Sofia; Gaspar, Alexandra; Garrido, Jorge; Murphy, Michael P; Borges, Fernanda

    2012-05-01

    A novel mitochondria-targeted antioxidant (TPP-OH) was synthesized by attaching the natural hydrophilic antioxidant caffeic acid to an aliphatic lipophilic carbon chain containing a triphenylphosphonium (TPP) cation. This compound has similar antioxidant activity to caffeic acid as demonstrated by measurement of DPPH/ABTS radical quenching and redox potentials, but is significantly more hydrophobic than its precursor as indicated by the relative partition coefficients. The antioxidant activity of both compounds was intrinsic related to the ortho-catechol system, as the methoxylation of the phenolic functions, namely in TPP-OCH(3) and dimethoxycinnamic acid, gave compounds with negligible antioxidant action. The incorporation of the lipophilic TPP cation to form TTP-OH and TPP-OCH(3) allowed the cinnamic derivatives to accumulate within mitochondria in a process driven by the membrane potential. However, only TPP-OH was an effective antioxidant: TPP-OH protected cells against H(2)O(2) and linoleic acid hydroperoxide-induced oxidative stress. As mitochondrial oxidative damage is associated with a number of clinical disorders, TPP-OH may be a useful lead that could be added to the family of mitochondria-targeted antioxidants that can decrease mitochondrial oxidative damage.

  4. Novel molecular hybrids of cinnamic acids and guanylhydrazones as potential antitubercular agents.

    PubMed

    Bairwa, Ranjeet; Kakwani, Manoj; Tawari, Nilesh R; Lalchandani, Jaya; Ray, M K; Rajan, M G R; Degani, Mariam S

    2010-03-01

    In an attempt to identify potential new agents active against tuberculosis, 20 novel phenylacrylamide derivatives incorporating cinnamic acids and guanylhydrazones were synthesized using microwave assisted synthesis. Activity of the synthesized compounds was evaluated using resazurin microtitre plate assay (REMA) against Mycobacterium tuberculosis H37Rv. Based on empirical structure-activity relationship data it was observed that both steric and electronic parameters play major role in the activity of this series of compounds. Compound 7s (2E)-N-((-2-(3,4-dimethoxybenzylidene) hydrazinyl) (imino) methyl)-3-(4-methoxyphenyl) acrylamide showed MIC of 6.49microM along with good safety profile of >50-fold in VERO cell line. Thus, this compound could act as a potential lead for further antitubercular studies.

  5. In vivo microdialysis for the evaluation of transfersomes as a novel transdermal delivery vehicle for cinnamic acid.

    PubMed

    Zhang, Yong-Tai; Xu, Yue-Ming; Zhang, Su-Juan; Zhao, Ji-Hui; Wang, Zhi; Xu, Ding-Qin; Feng, Nian-Ping

    2014-03-01

    In this study, cinnamic acid-loaded transfersomes were prepared and dermal microdialysis sampling was used in Sprague-Dawley rats to compare the amount of drug released into the skin using transfersomes as transdermal carriers with that released on using conventional liposomes. The formulation of cinnamic acid-loaded transfersomes was optimized by a uniform design through in vitro transdermal permeation studies. Hydration time was confirmed as a significant factor influencing the entrapment efficiency of transfersomes, further affecting their transdermal flux in vitro. The fluxes of cinnamic acid from transfersomes were all higher than those from conventional liposomes, and the flux from the optimal transfersome formulation was 3.01-fold higher than that from the conventional liposomes (p < 0.05). An in vivo microdialysis sampling method revealed that the dermal drug concentrations from transfersomes applied on various skin regions were much lower than those required with conventional liposomes. After the administration of drug-containing transfersomes and liposomes on abdominal skin regions of rats for a period of 10 h, the Cmax of cinnamic acid from the compared liposomes was 3.21 ± 0.25 μg/mL and that from the transfersomes was merely 0.59 ± 0.02 μg/mL. The results suggest that transfersomes can be used as carriers to enhance the transdermal delivery of cinnamic acid, and that these vehicles may penetrate the skin in the complete form, given their significant deformability.

  6. Radio-protective effect of cinnamic acid, a phenolic phytochemical, on genomic instability induced by X-rays in human blood lymphocytes in vitro.

    PubMed

    Cinkilic, Nilufer; Tüzün, Ece; Çetintaş, Sibel Kahraman; Vatan, Özgür; Yılmaz, Dilek; Çavaş, Tolga; Tunç, Sema; Özkan, Lütfi; Bilaloğlu, Rahmi

    2014-08-01

    The present study was designed to determine the protective activity of cinnamic acid against induction by X-rays of genomic instability in normal human blood lymphocytes. This radio-protective activity was assessed by use of the cytokinesis-block micronucleus test and the alkaline comet assay, with human blood lymphocytes isolated from two healthy donors. A Siemens Mevatron MD2 (Siemens AG, USA, 1994) linear accelerator was used for the irradiation with 1 or 2 Gy. Treatment of the lymphocytes with cinnamic acid prior to irradiation reduced the number of micronuclei when compared with that in control samples. Treatment with cinnamic acid without irradiation did not increase the number of micronuclei and did not show a cytostatic effect in the lymphocytes. The results of the alkaline comet assay revealed that cinnamic acid reduces the DNA damage induced by X-rays, showing a significant radio-protective effect. Cinnamic acid decreased the frequency of irradiation-induced micronuclei by 16-55% and reduced DNA breakage by 17-50%, as determined by the alkaline comet assay. Cinnamic acid may thus act as a radio-protective compound, and future studies may focus on elucidating the mechanism by which cinnamic acid offers radioprotection.

  7. Catalytic activity of the two-component flavin-dependent monooxygenase from Pseudomonas aeruginosa toward cinnamic acid derivatives.

    PubMed

    Furuya, Toshiki; Kino, Kuniki

    2014-02-01

    4-Hydroxyphenylacetate 3-hydroxylases (HPAHs) of the two-component flavin-dependent monooxygenase family are attractive enzymes that possess the catalytic potential to synthesize valuable ortho-diphenol compounds from simple monophenol compounds. In this study, we investigated the catalytic activity of HPAH from Pseudomonas aeruginosa strain PAO1 toward cinnamic acid derivatives. We prepared Escherichia coli cells expressing the hpaB gene encoding the monooxygenase component and the hpaC gene encoding the oxidoreductase component. E. coli cells expressing HpaBC exhibited no or very low oxidation activity toward cinnamic acid, o-coumaric acid, and m-coumaric acid, whereas they rapidly oxidized p-coumaric acid to caffeic acid. Interestingly, after p-coumaric acid was almost completely consumed, the resulting caffeic acid was further oxidized to 3,4,5-trihydroxycinnamic acid. In addition, HpaBC exhibited oxidation activity toward 3-(4-hydroxyphenyl)propanoic acid, ferulic acid, and coniferaldehyde to produce the corresponding ortho-diphenols. We also investigated a flask-scale production of caffeic acid from p-coumaric acid as the model reaction for HpaBC-catalyzed syntheses of hydroxycinnamic acids. Since the initial concentrations of the substrate p-coumaric acid higher than 40 mM markedly inhibited its HpaBC-catalyzed oxidation, the reaction was carried out by repeatedly adding 20 mM of this substrate to the reaction mixture. Furthermore, by using the HpaBC whole-cell catalyst in the presence of glycerol, our experimental setup achieved the high-yield production of caffeic acid, i.e., 56.6 mM (10.2 g/L) within 24 h. These catalytic activities of HpaBC will provide an easy and environment-friendly synthetic approach to hydroxycinnamic acids.

  8. Trans-cinnamic acid and coumarin-3-carboxylic acid: experimental charge-density studies to shed light on [2 + 2] cycloaddition reactions.

    PubMed

    Howard, Judith A K; Mahon, Mary F; Raithby, Paul R; Sparkes, Hazel A

    2009-04-01

    As part of an ongoing series of experimental charge-density investigations into the intra- and intermolecular interactions present in compounds which undergo solid-state [2 + 2] cycloaddition reactions, the charge-density analyses of trans-cinnamic acid and coumarin-3-carboxylic acid are reported. Thus, high-resolution single-crystal X-ray diffraction data were recorded at 100 K for trans-cinnamic acid (sin theta/lambda(max) = 1.03 A(-1)) and coumarin-3-carboxylic acid (sin theta/lambda(max) = 1.19 A(-1)). In addition to the anticipated O-H...O hydrogen bonds weak C-H...O interactions were identified in both structures along with very weak intermolecular interactions between pairs of molecules that undergo solid-state [2 + 2] cycloaddition reactions upon irradiation.

  9. Thermodynamic Solubility Profile of Carbamazepine-Cinnamic Acid Cocrystal at Different pH.

    PubMed

    Keramatnia, Fatemeh; Shayanfar, Ali; Jouyban, Abolghasem

    2015-08-01

    Pharmaceutical cocrystal formation is a direct way to dramatically influence physicochemical properties of drug substances, especially their solubility and dissolution rate. Because of their instability in the solution, thermodynamic solubility of cocrystals could not be determined in the common way like other compounds; therefore, the thermodynamic solubility is calculated through concentration of their components in the eutectic point. The objective of this study is to investigate the effect of an ionizable coformer in cocrystal with a nonionizable drug at different pH. Carbamazepine (CBZ), a nonionizable drug with cinnamic acid (CIN), which is an acidic coformer, was selected to prepare CBZ-CIN cocrystal and its thermodynamic solubility was studied in pH range 2-7. Instead of HPLC that is a costly and time-consuming method, a chemometric-based approach, net analyte signal standard addition method, was selected for simultaneous determination of CBZ and CIN in solution. The result showed that, as pH increases, CIN ionization leads to change in CBZ-CIN cocrystal solubility and stability in solution. In addition, the results of this study indicated that there is no significant difference between intrinsic solubility of CBZ and cocrystal despite the higher ideal solubility of cocrystal. This verifies that ideal solubility is not good parameter to predict cocrystal solubility.

  10. Substituent effects of cis-cinnamic acid analogues as plant growh inhibitors.

    PubMed

    Nishikawa, Keisuke; Fukuda, Hiroshi; Abe, Masato; Nakanishi, Kazunari; Taniguchi, Tomoya; Nomura, Takashi; Yamaguchi, Chihiro; Hiradate, Syuntaro; Fujii, Yoshiharu; Okuda, Katsuhiro; Shindo, Mitsuru

    2013-12-01

    1-O-cis-Cinnamoyl-β-D-glucopyranose is one of the most potent allelochemicals that has been isolated from Spiraea thunbergii Sieb by Hiradate et al. It derives its strong inhibitory activity from cis-cinnamic acid (cis-CA), which is crucial for phytotoxicity. By preparing and assaying a series of cis-CA analogues, it was previously found that the key features of cis-CA for lettuce root growth inhibition are a phenyl ring, cis-configuration of the alkene moiety, and carboxylic acid. On the basis of a structure-activity relationship study, the substituent effects on the aromatic ring of cis-CA were examined by systematic synthesis and the lettuce root growth inhibition assay of a series of cis-CA analogues having substituents on the aromatic ring. While ortho- and para-substituted analogues exhibited low potency in most cases, meta-substitution was not critical for potency, and analogues having a hydrophobic and sterically small substituent were more likely to be potent. Finally, several cis-CA analogues were found to be more potent root growth inhibitors than cis-CA.

  11. Photochemistry and proton transfer reaction chemistry of selected cinnamic acid derivatives in hydrogen bonded environments

    NASA Astrophysics Data System (ADS)

    Huang, Yong; Russell, David H.

    1998-05-01

    Proton transfer reactions between cinnamic acid derivatives (MH) and ammonia are studied using a time-of-flight mass spectrometer equipped with a supersonic nozzle to entrain neutral species formed by 337 nm laser desorption. The supersonic nozzle is used to form clusters of the type MH(NH3)n where n ranges to numbers greater than 20. Multimeric clusters of MH, e.g. MH2(NH3)n are not detected in this experiment or are of low abundance. Photoexcitation of MH(NH3)n clusters by using 355 nm photons yields ionic species that correspond to direct multiphoton ionization, e.g. MH+[middle dot](NH3)n, and proton transfer reactions, e.g. H+(NH3)n. Analogous product ions are formed by photoexcitation of the methylamine, MH(CH3NH2)n, and ammonia/methanol, MH(NH3)(CH3OH)n, clusters. Detailed analysis of energetics data suggests that proton transfer occurs through neutral excited stare species, and a mechanism analogous to one proposed previously is used to rationalize the data. The energetics of proton transfer via a radical cation form of the cinnarnic acid dimer is also consistent with the data. The relevance of this work to fundamental studies of matrix-assisted laser desorption ionization (MALDI) is discussed. In particular, the role of excited state proton transfer (ESPT) in MALDI is discussed.

  12. Efficient counter-current chromatographic isolation and structural identification of two new cinnamic acids from Echinacea purpurea.

    PubMed

    Lu, Ying; Li, JiaYin; Li, MiLu; Hu, Xia; Tan, Jun; Liu, Zhong Hua

    2012-10-01

    Two new cinnamic acids, 2-O-caffeoyl-3-O-isoferuloyltartaric (3), and 2, 3-di-O-isoferuloyltartaric acid (5), along with three known caffeic acids, cichoric acid (1), 2-O-caffeoyl-3-O-feruloyltartaric acid (2) and 2-O-caffeoyl-3-O-p-coumaroyltartaric acid (4), have been successfully isolated and purified from Echinacea purpurea. In this study, we investigated an efficient method for the preparative isolation and purification of cinnamic acids from E. purpurea by high-speed counter-current chromatography (HSCCC). The separation was performed using a two-phase solvent composed of n-hexane-ethyl-acetate-methanol-0.5% aqueous acetic acid (1:3:1:4, v/v). The upper phase was used as the stationary phase and the lower phase as the mobile phase, with a flow rate of 1.6 mL/min. From 250 mg of crude extracts, 65.1 mg of 1, 8.3 mg of 2, 4.0 mg of 3, 4.5 mg of 4, and 4.3 mg of 5 were isolated in one-step, with purities of 98.5%, 97.7%, 94.6%, 94.3%, and 98.6%, respectively, as evaluated by HPLC-DAD. The chemical structures were identified by electro spray ionization mass spectrometry (ESI-MS) and one- and two-dimensional NMR spectra. HSCCC was very efficient for the separation and purification of the cinnamic acids from

  13. Photophysical properties and photochemistry of substituted cinnamates and cinnamic acids for UVB blocking: effect of hydroxy, nitro, and fluoro substitutions at ortho, meta, and para positions.

    PubMed

    Promkatkaew, Malinee; Suramitr, Songwut; Karpkird, Thitinun; Wanichwecharungruang, Supason; Ehara, Masahiro; Hannongbua, Supa

    2014-03-01

    Photophysical properties and photochemistry of various substituted cinnamates and cinnamic acids for ultraviolet B blocking were investigated experimentally and theoretically. This series includes monohydroxy, -nitro, and -fluoro derivatives. The absorption spectra were satisfactorily reproduced by the direct SAC-CI method with respect to the peak position and intensity. The transition character of the low-lying two ππ* and σπ* states for these 18 derivatives was analyzed. The para derivatives have a different transition character of the ππ* transitions compared with those of the ortho and meta derivatives. To elucidate the relaxation mechanism, the emission spectra were observed with oxygen quenching and the photostability was examined experimentally. The calculated radiative lifetimes indicate that the ortho- and meta-substituted derivatives have longer lifetimes for emission than the para derivatives. The potential energy curves of the first and second singlet excited states of the hydroxy derivatives as well as the vertical singlet and triplet transitions were examined to investigate the relaxation qualitatively. The ortho and meta derivatives have an energy barrier or flat surface in S1 resulting in fluorescence, whereas the para derivatives show nonradiative decay without an energy barrier. The para-hydroxy derivative was found to be an excellent UV absorber based on its broad absorption in the UVB/UVA regions, less emission, and higher photostability.

  14. In vitro assessment of the antiviral potential of trans-cinnamic acid, quercetin and morin against equid herpesvirus 1.

    PubMed

    Gravina, H D; Tafuri, N F; Silva Júnior, A; Fietto, J L R; Oliveira, T T; Diaz, M A N; Almeida, M R

    2011-12-01

    The antiviral activity of quercetin, morin and trans-cinnamic acid was evaluated in vitro against equid herpesvirus 1 (EHV-1) by determining the virucidal activity and using the time of addition assay to test inhibition of the viral replication cycle. The cytotoxicity of each substance was assessed using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide]. Quercetin showed virucidal action and inhibition of the viral replication cycle at 0 and 1h. Morin showed potential virucidal and viral replication cycle inhibition at 0 h. Trans-cinnamic acid did not show virucidal activity but inhibited the viral replication cycle at -1 and 0 h. This study demonstrates the potential of these compounds as future antiviral candidates in relation to viruses of importance in veterinary medicine.

  15. Effects of structural differences on the NMR chemical shifts in cinnamic acid derivatives: Comparison of GIAO and GIPAW calculations

    NASA Astrophysics Data System (ADS)

    Szeleszczuk, Łukasz; Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika; Wawer, Iwona

    2016-06-01

    In this article we report the results of combined theoretical and experimental structural studies on cinnamic acid derivatives (CADs), one of the main groups of secondary metabolites present in various medicinal plant species and food products of plant origin. The effects of structural differences in CADs on their spectroscopic properties were studied in detail by both: solid-state NMR and GIAO/GIPAW calculations. Theoretical computations were used in order to perform signal assignment in 13C CP/MAS NMR spectra of the cinnamic, o-coumaric, m-coumaric, p-coumaric, caffeic, ferulic, sinapic and 3,4-dimethoxycinnamic acids, and to evaluate the accuracy of GIPAW and GIAO methodology.

  16. Graphene-sensitized microporous membrane/solvent microextraction for the preconcentration of cinnamic acid derivatives in Rhizoma Typhonii.

    PubMed

    Xing, Rongrong; Hu, Shuang; Chen, Xuan; Bai, Xiaohong

    2014-09-01

    A novel graphene-sensitized microporous membrane/solvent microextraction method named microporous membrane/graphene/solvent synergistic microextraction, coupled with high-performance liquid chromatography and UV detection, was developed and introduced for the extraction and determination of three cinnamic acid derivatives in Rhizoma Typhonii. Several factors affecting performance were investigated and optimized, including the types of graphene and extraction solvent, concentration of graphene dispersed in octanol, sample phase pH, ionic strength, stirring rate, extraction time, extraction temperature, and sample volume. Under optimized conditions, the enrichment factors of cinnamic acid derivatives ranged from 75 to 269. Good linearities were obtained from 0.01 to 10 μg/mL for all analytes with regression coefficients between 0.9927 and 0.9994. The limits of quantification were <1 ng/mL, and satisfactory recoveries (99-104%) and precision (1.1-10.8%) were also achieved. The synergistic microextraction mechanism based on graphene sensitization was analyzed and described. The experimental results showed that the method was simple, sensitive, practical, and effective for the preconcentration and determination of cinnamic acid derivatives in Rhizoma Typhonii.

  17. Bioprospecting the Curculigoside-Cinnamic Acid-Rich Fraction from Molineria latifolia Rhizome as a Potential Antioxidant Therapeutic Agent.

    PubMed

    Ooi, Der Jiun; Chan, Kim Wei; Sarega, Nadarajan; Alitheen, Noorjahan Banu; Ithnin, Hairuszah; Ismail, Maznah

    2016-06-17

    Increasing evidence from both experimental and clinical studies depicts the involvement of oxidative stress in the pathogenesis of various diseases. Specifically, disruption of homeostatic redox balance in accumulated body fat mass leads to obesity-associated metabolic syndrome. Strategies for the restoration of redox balance, potentially by exploring potent plant bioactives, have thus become the focus of therapeutic intervention. The present study aimed to bioprospect the potential use of the curculigoside-cinnamic acid-rich fraction from Molineria latifolia rhizome as an antioxidant therapeutic agent. The ethyl acetate fraction (EAF) isolated from M. latifolia rhizome methanolic extract (RME) contained the highest amount of phenolic compounds, particularly curculigoside and cinnamic acid. EAF demonstrated glycation inhibitory activities in both glucose- and fructose-mediated glycation models. In addition, in vitro chemical-based and cellular-based antioxidant assays showed that EAF exhibited high antioxidant activities and a protective effect against oxidative damage in 3T3-L1 preadipocytes. Although the efficacies of individual phenolics differed depending on the structure and concentration, a correlational study revealed strong correlations between total phenolic contents and antioxidant capacities. The results concluded that enriched phenolic contents in EAF (curculigoside-cinnamic acid-rich fraction) contributed to the overall better reactivity. Our data suggest that this bioactive-rich fraction warrants therapeutic potential against oxidative stress-related disorders.

  18. Bioprospecting the Curculigoside-Cinnamic Acid-Rich Fraction from Molineria latifolia Rhizome as a Potential Antioxidant Therapeutic Agent.

    PubMed

    Ooi, Der Jiun; Chan, Kim Wei; Sarega, Nadarajan; Alitheen, Noorjahan Banu; Ithnin, Hairuszah; Ismail, Maznah

    2016-01-01

    Increasing evidence from both experimental and clinical studies depicts the involvement of oxidative stress in the pathogenesis of various diseases. Specifically, disruption of homeostatic redox balance in accumulated body fat mass leads to obesity-associated metabolic syndrome. Strategies for the restoration of redox balance, potentially by exploring potent plant bioactives, have thus become the focus of therapeutic intervention. The present study aimed to bioprospect the potential use of the curculigoside-cinnamic acid-rich fraction from Molineria latifolia rhizome as an antioxidant therapeutic agent. The ethyl acetate fraction (EAF) isolated from M. latifolia rhizome methanolic extract (RME) contained the highest amount of phenolic compounds, particularly curculigoside and cinnamic acid. EAF demonstrated glycation inhibitory activities in both glucose- and fructose-mediated glycation models. In addition, in vitro chemical-based and cellular-based antioxidant assays showed that EAF exhibited high antioxidant activities and a protective effect against oxidative damage in 3T3-L1 preadipocytes. Although the efficacies of individual phenolics differed depending on the structure and concentration, a correlational study revealed strong correlations between total phenolic contents and antioxidant capacities. The results concluded that enriched phenolic contents in EAF (curculigoside-cinnamic acid-rich fraction) contributed to the overall better reactivity. Our data suggest that this bioactive-rich fraction warrants therapeutic potential against oxidative stress-related disorders. PMID:27322226

  19. An effective strategy to develop active cinnamic acid-directed antioxidants based on elongating the conjugated chains.

    PubMed

    Li, Yan; Dai, Fang; Jin, Xiao-Ling; Ma, Meng-Meng; Wang, Yi-Hua; Ren, Xiao-Rong; Zhou, Bo

    2014-09-01

    To optimize antioxidant activity and lipophilicity of cinnamic acid derivatives (CAs) including ferulic acid, sinapic acid, 3,4-dimethoxycinnamic acid, and p-hydroxycinnamic acid, four analogs bearing an additional double bond between their aromatic ring and propenoic acid moiety were designed and synthesized based on the conjugated chain elongation strategy. The antioxidant performance of the CAs were investigated by 2,2'-diphenyl-1-picrylhydrazyl (DPPH)-scavenging, ferric reducing/antioxidant power, cyclic voltammetry, DNA strand breakage-inhibiting and anti-haemolysis activity assays. It was found that CAs with elongation of conjugated chains display increased DPPH-scavenging, DNA strand breakage-inhibiting and anti-haemolysis activities as compared to their parent molecules, due to their improved hydrogen atom-donating ability and lipophilicity. Overall, this work highlights an effective strategy to develop potential CA-directed antioxidants by elongating their conjugated chain.

  20. Anti-biofilm activity of ultrashort cinnamic acid peptide derivatives against medical device-related pathogens.

    PubMed

    Laverty, Garry; McCloskey, Alice P; Gorman, Sean P; Gilmore, Brendan F

    2015-10-01

    The threat of antimicrobial resistance has placed increasing emphasis on the development of innovative approaches to eradicate multidrug-resistant pathogens. Biofilm-forming microorganisms, for example, Staphylococcus epidermidis and Staphylococcus aureus, are responsible for increased incidence of biomaterial infection, extended hospital stays and patient morbidity and mortality. This paper highlights the potential of ultrashort tetra-peptide conjugated to hydrophobic cinnamic acid derivatives. These peptidomimetic molecules demonstrate selective and highly potent activity against resistant biofilm forms of Gram-positive medical device-related pathogens. 3-(4-Hydroxyphenyl)propionic)-Orn-Orn-Trp-Trp-NH2 displays particular promise with minimum biofilm eradication concentration (MBEC) values of 125 µg/ml against methicillin sensitive (ATCC 29213) and resistant (ATCC 43300) S. aureus and activity shown against biofilm forms of Escherichia coli (MBEC: 1000 µg/ml). Kill kinetics confirms complete eradication of established 24-h biofilms at MBEC with 6-h exposure. Reduced cell cytotoxicity, relative to Gram-positive pathogens, was proven via tissue culture (HaCaT) and haemolysis assays (equine erythrocytes). Existing in nature as part of the immune response, antimicrobial peptides display great promise for exploitation by the pharmaceutical industry in order to increase the library of available therapeutic molecules. Ultrashort variants are particularly promising for translation as clinical therapeutics as they are more cost-effective, easier to synthesise and can be tailored to specific functional requirements based on the primary sequence allowing factors such as spectrum of activity to be varied.

  1. Synthesis, in vitro and in vivo antitumor activity of scopoletin-cinnamic acid hybrids.

    PubMed

    Li, Linhu; Zhao, Peng; Hu, Jinglin; Liu, Jinhong; Liu, Yan; Wang, Zhiqiang; Xia, Yufeng; Dai, Yue; Chen, Li

    2015-03-26

    A series of hybrids of scopoletin and substituted cinnamic acid were designed, synthesized and evaluated in vitro and in vivo against five human tumor cell lines [MCF-7, MDA-MB-231, A549, HCT-116, and HeLa] with doxorubicin as the positive control. Compounds 17a, 17b, 17c and 17g exhibited potent cytotoxic activity. Especially, compound 17b displayed broad spectrum activity with IC50 values ranging from 0.249 μM to 0.684 μM. Moreover, in a preliminary pharmacological study, 17b not only remarkably induced cellular apoptosis, but also clearly induced A549 cells cycle arrest at S phase. In vivo study showed that 17b significantly suppressed tumor growth in a dose-dependent manner without causing the loss of the mean body weight of mice, which was superior to doxorubicin. These preliminary results indicate that 17b is an optimal anti-cancer leading compound and merit further structural modification.

  2. Anti-biofilm activity of ultrashort cinnamic acid peptide derivatives against medical device-related pathogens.

    PubMed

    Laverty, Garry; McCloskey, Alice P; Gorman, Sean P; Gilmore, Brendan F

    2015-10-01

    The threat of antimicrobial resistance has placed increasing emphasis on the development of innovative approaches to eradicate multidrug-resistant pathogens. Biofilm-forming microorganisms, for example, Staphylococcus epidermidis and Staphylococcus aureus, are responsible for increased incidence of biomaterial infection, extended hospital stays and patient morbidity and mortality. This paper highlights the potential of ultrashort tetra-peptide conjugated to hydrophobic cinnamic acid derivatives. These peptidomimetic molecules demonstrate selective and highly potent activity against resistant biofilm forms of Gram-positive medical device-related pathogens. 3-(4-Hydroxyphenyl)propionic)-Orn-Orn-Trp-Trp-NH2 displays particular promise with minimum biofilm eradication concentration (MBEC) values of 125 µg/ml against methicillin sensitive (ATCC 29213) and resistant (ATCC 43300) S. aureus and activity shown against biofilm forms of Escherichia coli (MBEC: 1000 µg/ml). Kill kinetics confirms complete eradication of established 24-h biofilms at MBEC with 6-h exposure. Reduced cell cytotoxicity, relative to Gram-positive pathogens, was proven via tissue culture (HaCaT) and haemolysis assays (equine erythrocytes). Existing in nature as part of the immune response, antimicrobial peptides display great promise for exploitation by the pharmaceutical industry in order to increase the library of available therapeutic molecules. Ultrashort variants are particularly promising for translation as clinical therapeutics as they are more cost-effective, easier to synthesise and can be tailored to specific functional requirements based on the primary sequence allowing factors such as spectrum of activity to be varied. PMID:26310860

  3. Chemical Genetics Uncovers Novel Inhibitors of Lignification, Including p-Iodobenzoic Acid Targeting CINNAMATE-4-HYDROXYLASE.

    PubMed

    Van de Wouwer, Dorien; Vanholme, Ruben; Decou, Raphaël; Goeminne, Geert; Audenaert, Dominique; Nguyen, Long; Höfer, René; Pesquet, Edouard; Vanholme, Bartel; Boerjan, Wout

    2016-09-01

    Plant secondary-thickened cell walls are characterized by the presence of lignin, a recalcitrant and hydrophobic polymer that provides mechanical strength and ensures long-distance water transport. Exactly the recalcitrance and hydrophobicity of lignin put a burden on the industrial processing efficiency of lignocellulosic biomass. Both forward and reverse genetic strategies have been used intensively to unravel the molecular mechanism of lignin deposition. As an alternative strategy, we introduce here a forward chemical genetic approach to find candidate inhibitors of lignification. A high-throughput assay to assess lignification in Arabidopsis (Arabidopsis thaliana) seedlings was developed and used to screen a 10-k library of structurally diverse, synthetic molecules. Of the 73 compounds that reduced lignin deposition, 39 that had a major impact were retained and classified into five clusters based on the shift they induced in the phenolic profile of Arabidopsis seedlings. One representative compound of each cluster was selected for further lignin-specific assays, leading to the identification of an aromatic compound that is processed in the plant into two fragments, both having inhibitory activity against lignification. One fragment, p-iodobenzoic acid, was further characterized as a new inhibitor of CINNAMATE 4-HYDROXYLASE, a key enzyme of the phenylpropanoid pathway synthesizing the building blocks of the lignin polymer. As such, we provide proof of concept of this chemical biology approach to screen for inhibitors of lignification and present a broad array of putative inhibitors of lignin deposition for further characterization. PMID:27485881

  4. Analogs of cinnamic acid benzyl amide as nonclassical inhibitors of activated JAK2 kinase.

    PubMed

    Mielecki, Marcin; Milner-Krawczyk, Małgorzata; Grzelak, Krystyna; Mielecki, Damian; Krzysko, Krystiana A; Lesyng, Bogdan; Priebe, Waldemar

    2014-01-01

    Scaffold-based analogs of cinnamic acid benzyl amide (CABA) exhibit pleiotropic effects in cancer cells, and their exact molecular mechanism of action is under investigation. The present study is part of our systemic analysis of interactions of CABA analogs with their molecular targets. These compounds were shown to inhibit Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) and JAK2/signal transducer and activator of transcription 5 (STAT5) signaling and thus are attractive scaffolds for anticancer drug design. To identify the potential mechanisms of action of this class of compounds, direct interactions of the selected CABA analogs with JAK2 kinase were examined. Inhibition of JAK2 enzymatic activity was assessed, and molecular modeling studies of selected compounds-(E)-2-cyano-N-[(S)-1-phenylethyl]-3-(pyridin-2-yl)acrylamide (WP1065), (E)-2-cyano-N-[(S)-1-phenylbutyl]- 3-(3-bromopyridin-2-yl)acrylamide (WP1130), and (E)-2-cyano-N-[(S)-1,4-diphenylbutyl]-3-(3-bromopyridin-2-yl)acrylamide (WP1702)-in the JAK2 kinase domain were used to support interpretation of the experimental data. Our results indicated that the tested CABA analogs are nonclassical inhibitors of activated (phosphorylated) JAK2, although markedly weaker than clinically tested ATP-competitive JAK2 inhibitors. Relatively small structural changes in the studied compounds affected interactions with JAK2, and their mode of action ranged from allosteric-noncompetitive to bisubstratecompetitive. These results demonstrated that direct inhibition of JAK2 enzymatic activity by the WP1065 (half-maximal inhibitory concentration [IC₅₀] = 14.8 µM), WP1130 (IC₅₀ = 3.8 µM), and WP1702 (IC₅₀ = 2.9 µM) potentially contributes, albeit minimally, to suppression of the JAK2/STAT signaling pathways in cancer cells and that additional specific structural modifications may amplify JAK2-inhibitory effects.

  5. Transient states in [2 + 2] photodimerization of cinnamic acid: correlation of solid-state NMR and X-ray analysis.

    PubMed

    Khan, Mujeeb; Brunklaus, Gunther; Enkelmann, Volker; Spiess, Hans-Wolfgang

    2008-02-01

    13C-CPMAS and other solid-state NMR methods have been applied to monitor the solid-state reactions of trans-cinnamic acid derivatives, which are the pioneer and model compounds in the field of topochemistry previously studied by X-ray diffraction, AFM, and vibrational spectroscopy. Single-crystal X-ray analyses of photoirradiated alpha-trans-cinnamic acid where the monomers are arranged in a head-to-tail manner have revealed the formation of a centrosymmetric alpha-truxillic acid photodimer. For a centrosymmetric dimer, however, two cyclobutane carbon signals and one carbonyl carbon signal were expected apart from other aromatic carbon signals. Instead, four cyclobutane and two carbonyl carbon signals were observed suggesting the formation of a non-centrosymmetric photodimer. Removing hydrogen bonds from the system by esterfication of alpha-truxillic acid yield a centrosymmetric photodimer. Careful analysis of the obtained products via solid-state NMR clearly showed that the observed peak splittings in the 13C-CPMAS spectra did not originate from packing effects but rather result from asymmetric hydrogen bonds distorting the local symmetry. Further evidence of this rather dynamic hydrogen-bonding stems from high-temperature X-ray data revealing that only the joint approach of both X-ray analysis and solid-state NMR at similar temperatures allows for the successful characterization of dynamic processes occurring in topochemical reactions, thus, providing detailed insight into the reaction mechanism of organic solid-state transformations.

  6. Silver-catalyzed double-decarboxylative cross-coupling of α-keto acids with cinnamic acids in water: a strategy for the preparation of chalcones.

    PubMed

    Zhang, Ning; Yang, Daoshan; Wei, Wei; Yuan, Li; Nie, Fafa; Tian, Laijin; Wang, Hua

    2015-03-20

    A silver-catalyzed double-decarboxylative protocol has been proposed for the construction of chalcone derivatives via cascade coupling of substituted α-keto acids with cinnamic acids under the mild aqueous conditions. The developed method for constructing C-C bonds via double-decarboxylative reactions is efficient, practical, and environmentally benign by using the readily available starting materials. It should provide a promising synthesis candidate for the formation of diverse and useful chalcone derivatives in the fields of synthetic and pharmaceutical chemistry.

  7. Production of Streptoverticillium cinnamoneum transglutaminase and cinnamic acid by recombinant Streptomyces lividans cultured on biomass-derived carbon sources.

    PubMed

    Noda, Shuhei; Miyazaki, Takaya; Tanaka, Tsutomu; Ogino, Chiaki; Kondo, Akihiko

    2012-01-01

    Transglutaminase from Streptoverticillium cinnamoneum (StvcMTG) was produced using recombinant Streptomyces lividans. When grown on glycerol and xylose as sole carbon sources, S. lividans/StvcMTG produced 360 and 530 mg of StvcMTG per liter, respectively. With starch and xylan, the strain produced 230 and 400mg of StvcMTG per liter, respectively. Recombinant S. lividans/encP, which expresses phenylalanine ammonia lyase from Streptomyces maritimus, produced 160 mg/L of cinnamic acid from cellulose. These results show that S. lividans can assimilate various carbon sources and produce useful compounds in desirable quantities.

  8. Design and synthesis of conformationally constrained analogues of cis-cinnamic acid and evaluation of their plant growth inhibitory activity.

    PubMed

    Nishikawa, Keisuke; Fukuda, Hiroshi; Abe, Masato; Nakanishi, Kazunari; Tazawa, Yuta; Yamaguchi, Chihiro; Hiradate, Syuntaro; Fujii, Yoshiharu; Okuda, Katsuhiro; Shindo, Mitsuru

    2013-12-01

    1-O-cis-Cinnamoyl-β-D-glucopyranose is known to be one of the most potent allelochemical candidates and was isolated from Spiraea thunbergii Sieb by Hiradate et al. (2004), who suggested that it derived its strong inhibitory activity from cis-cinnamic acid, which is crucial for phytotoxicity. In this study, key structural features and substituent effects of cis-cinnamic acid (cis-CA) on lettuce root growth inhibition was investigated. These structure-activity relationship studies indicated the importance of the spatial relationship of the aromatic ring and carboxylic acid moieties. In this context, conformationally constrained cis-CA analogues, in which the aromatic ring and cis-olefin were connected by a carbon bridge, were designed, synthesized, and evaluated as plant growth inhibitors. The results of the present study demonstrated that the inhibitory activities of the five-membered and six-membered bridged compounds were enhanced, up to 0.27 μM, and were ten times higher than cis-CA, while the potency of the other compounds was reduced.

  9. Aryl-acetic and cinnamic acids as lipoxygenase inhibitors with antioxidant, anti-inflammatory, and anticancer activity.

    PubMed

    Hadjipavlou-Litina, Dimitra; Pontiki, Eleni

    2015-01-01

    Cinnamic acids have been identified as interesting compounds with cytotoxic, anti-inflammatory, and antioxidant properties. Lipoxygenase pathway, catalyzing the first two steps of the transformation of arachidonic acid into leukotrienes is implicated in several processes such as cell differentiation, inflammation and carcinogenesis. Development of drugs that interfere with the formation or effects of these metabolites would be important for the treatment of various diseases like asthma, psoriasis, ulcerative colitis, rheumatoid arthritis, atherosclerosis, cancer, and blood vessel disorders. Till now, asthma consists of the only pathological case in which improvement has been shown by lipoxygenase LO inhibitors. Thus, the research has been directed towards the development of drugs that interfere with the formation of leukotrienes. In order to explore the anti-inflammatory and cytotoxic effects of antioxidant acrylic/cinnamic acids a series of derivatives bearing the appropriate moieties have been synthesized via the Knoevenagel condensation and evaluated for their biological activities. The compounds have shown important antioxidant activity, anti-inflammatory activity and very good inhibition of soybean lipoxygenase while some of them were tested for their anticancer activity.

  10. Gastroprotective Effect of Ginger Rhizome (Zingiber officinale) Extract: Role of Gallic Acid and Cinnamic Acid in H+, K+-ATPase/H. pylori Inhibition and Anti-Oxidative Mechanism

    PubMed Central

    Nanjundaiah, Siddaraju M.; Annaiah, Harish Nayaka Mysore; Dharmesh, Shylaja M.

    2011-01-01

    Zinger officinale has been used as a traditional source against gastric disturbances from time immemorial. The ulcer-preventive properties of aqueous extract of ginger rhizome (GRAE) belonging to the family Zingiberaceae is reported in the present study. GRAE at 200 mg kg−1 b.w. protected up to 86% and 77% for the swim stress-/ethanol stress-induced ulcers with an ulcer index (UI) of 50 ± 4.0/46 ± 4.0, respectively, similar to that of lansoprazole (80%) at 30 mg kg−1 b.w. Increased H+, K+-ATPase activity and thiobarbituric acid reactive substances (TBARS) were observed in ulcer-induced rats, while GRAE fed rats showed normalized levels and GRAE also normalized depleted/amplified anti-oxidant enzymes in swim stress and ethanol stress-induced animals. Gastric mucin damage was recovered up to 77% and 74% in swim stress and ethanol stress, respectively after GRAE treatment. GRAE also inhibited the growth of H. pylori with MIC of 300 ± 38 μg and also possessed reducing power, free radical scavenging ability with an IC50 of 6.8 ± 0.4 μg mL−1 gallic acid equivalent (GAE). DNA protection up to 90% at 0.4 μg was also observed. Toxicity studies indicated no lethal effects in rats fed up to 5 g kg−1 b.w. Compositional analysis favored by determination of the efficacy of individual phenolic acids towards their potential ulcer-preventive ability revealed that between cinnamic (50%) and gallic (46%) phenolic acids, cinnamic acid appear to contribute to better H+, K+-ATPase and Helicobacter pylori inhibitory activity, while gallic acid contributes significantly to anti-oxidant activity. PMID:19570992

  11. Electron-transfer reaction of cinnamic acids and their methyl esters with the DPPH(*) radical in alcoholic solutions.

    PubMed

    Foti, Mario C; Daquino, Carmelo; Geraci, Corrada

    2004-04-01

    The kinetic behavior of cinnamic acids, their methyl esters, and two catechols 1-10 (ArOH) in the reaction with DPPH(*) in methanol and ethanol is not compatible with a reaction mechanism that involves hydrogen atom abstraction from the hydroxyl group of 1-10 by DPPH(*). The rate of this reaction at 25 degrees C is, in fact, comparatively fast despite that the phenolic OH group of ArOH is hydrogen bonded to solvent molecules. The observed rate constants (k(1)) relative to DPPH(*) + ArOH are 3-5 times larger for the methyl esters than for the corresponding free acids and, for the latter, decrease as their concentration is increased according to the relation k(1) = B/[ArOH](0)(m), where k(1) is given in units of M(-1) s(-1), m is ca. 0.5, and B ranges from 0.02 (p-coumaric acid) to ca. 3.48 (caffeic acid) in methanol and from 0.04 (p-coumaric acid) to ca. 13 (sinapic acid) in ethanol. Apparently, the reaction mechanism of DPPH(*) + ArOH involves a fast electron-transfer process from the phenoxide anion of 1-10 to DPPH(*). Kinetic analysis of the reaction sequence for the free acids leads to an expression for the observed rate constant, k(1), proportional to [ArOH](0)(-1/2) in excellent agreement with the experimental behavior of these phenols. The experimental results are also interpreted in terms of the influence that adventitious acids or bases present in the solvent may have. These impurities dramatically influence the ionization equilibrium of phenols and cause a reduction or an enhancement, respectively, of the measured rate constants. PMID:15049623

  12. Cinnamic acid 4-hydroxylase of sorghum [Sorghum biocolor (L.) Moench] gene SbC4H1 restricts lignin synthesis in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cinnamic acid 4-hydroxylase (C4H) is the first hydroxylase enzyme of the phenylpropanoid pathway, and its content and activity affects the lignin synthesis. In this study, we isolated a C4H gene SbC4H1 from the suppression subtractive hybridization library of brown midrib (bmr) mutants of Sorghum b...

  13. Molecular Characterization of a Recombinant Zea mays Phenylalanine Ammonia-Lyase (ZmPAL2) and Its Application in trans-Cinnamic Acid Production from L-Phenylalanine.

    PubMed

    Zang, Ying; Jiang, Ting; Cong, Ying; Zheng, Zhaojuan; Ouyang, Jia

    2015-06-01

    Phenylalanine ammonia-lyase (PAL) is one of the most extensively studied enzymes with its crucial role in secondary phenylpropanoid metabolism of plants. Recently, its demand has been increased for aromatic chemical production, but its applications in trans-cinnamic acid production were not much explored. In the present study, a putative PAL gene from Zea mays designated as ZmPAL2 was expressed and characterized in Escherichia coli BL21 (DE3). The recombinant ZmPAL2 exhibited a high PAL activity (7.14 U/mg) and a weak tyrosine ammonia-lyase activity. The optimal temperature of ZmPAL2 was 55 °C, and the thermal stability results showed that about 50 % of enzyme activity remained after a treatment at 60 °C for 6 h. The recombinant ZmPAL2 is a good candidate for the production of trans-cinnamic acid. The vitro conversion indicated that the recombinant ZmPAL2 could effectively catalyze the L-phenylalanine to trans-cinnamic acid, and the trans-cinnamic acid concentration can reach up to 5 g/l.

  14. Design, synthesis, and molecular hybrids of caudatin and cinnamic acids as novel anti-hepatitis B virus agents.

    PubMed

    Wang, Li-Jun; Geng, Chang-An; Ma, Yun-Bao; Luo, Jie; Huang, Xiao-Yan; Chen, Hao; Zhou, Ning-Jia; Zhang, Xue-Mei; Chen, Ji-Jun

    2012-08-01

    Forty-six conjugated derivatives of caudatin with substituted cinnamic acids were synthesized, and their anti-hepatitis B virus (HBV) activity was evaluated in HepG 2.2.15 cells. Most of the derivatives exhibited potent anti-HBV activity, especially inhibiting the HBV DNA replication with the IC(50) values from 2.44 to 22.89 μΜ. Compound 18 showed significant activity against the secretion of HBsAg, HBeAg, and HBV DNA replication with IC(50) values of 5.52, 5.52, 2.44 μΜ, respectively, and had good safety (LD(50) > 1250 mg/kg) according to the acute toxicity study. Preliminary mechanism investigation suggested that compound 18 exerted antivirus effects via interfering HBV X promoter and enhancer I to influence HBV transcriptions.

  15. Antimicrobial and demelanizing activity of Ganoderma lucidum extract, p-hydroxybenzoic and cinnamic acids and their synthetic acetylated glucuronide methyl esters.

    PubMed

    Heleno, Sandrina A; Ferreira, Isabel C F R; Esteves, Ana P; Ćirić, Ana; Glamočlija, Jasmina; Martins, Anabela; Soković, Marina; Queiroz, Maria João R P

    2013-08-01

    Mushroom extracts or isolated compounds may be useful in the search of new potent antimicrobial agents. Herein, it is described the synthesis of protected (acetylated) glucuronide derivatives of p-hydroxybenzoic and cinnamic acids, two compounds identified in the medicinal mushroom Ganoderma lucidum. Their antimicrobial and demelanizing activities were evaluated and compared to the parent acids and G. lucidum extract. p-Hydroxybenzoic and cinnamic acids, as also their protected glucuronide derivatives revealed high antimicrobial (antibacterial and antifungal) activity, even better than the one showed by commercial standards. Despite the variation in the order of parent acids and the protected glucuronide derivatives, their antimicrobial activity was always higher than the one revealed by the extract. Nevertheless, the extract was the only one with demelanizing activity against Aspergillus niger. The acetylated glucuronide derivatives could be deprotected to obtain glucuronide metabolites, which circulate in the human organism as products of the metabolism of the parent compounds.

  16. Effect of Cinnamic Acid for Controlling Gray Mold on Table Grape and Its Possible Mechanisms of Action.

    PubMed

    Zhang, Zhanquan; Qin, Guozheng; Li, Boqiang; Tian, Shiping

    2015-09-01

    Cinnamic acid (CA) is an organic acid and is widely used in food industry as a common food additive. Previous studies showed that CA has the antimicrobial activity in vitro, but little is known about the effect of CA on controlling the fruit decay in vivo. In present study, we showed that application of CA was significantly effective on controlling the gray mold of table grape caused by Botrytis cinerea. CA can directly inhibit the mycelial growth of B. cinerea on potato dextrose agar plates. The mechanisms by which CA inhibited fungal growth were assayed by staining the spores with fluorescent dyes propidium iodide and 7-dichlorodihydrofluorescein diacetate, respectively. The results indicated that CA can damage the integrity of plasma membrane and induce the intracellular reactive oxygen species level of B. cinerea which were responsible for the reduction of growth rate. Meanwhile, CA treatment significantly stimulated the activities of peroxidase and polyphenol oxidase which were closely related to the resistance of plant. Taken together, this study suggested that CA was effective on controlling the gray mold of table grape in postharvest period by inhibiting the growth of pathogen and inducing the resistance of host. PMID:26143055

  17. X-ray induced dimerization of cinnamic acid: Time-resolved inelastic X-ray scattering study

    PubMed Central

    Inkinen, Juho; Niskanen, Johannes; Talka, Tuomas; Sahle, Christoph J.; Müller, Harald; Khriachtchev, Leonid; Hashemi, Javad; Akbari, Ali; Hakala, Mikko; Huotari, Simo

    2015-01-01

    A classic example of solid-state topochemical reactions is the ultraviolet-light induced photodimerization of α-trans-cinnamic acid (CA). Here, we report the first observation of an X-ray-induced dimerization of CA and monitor it in situ using nonresonant inelastic X-ray scattering spectroscopy (NRIXS). The time-evolution of the carbon core-electron excitation spectra shows the effects of two X-ray induced reactions: dimerization on a short time-scale and disintegration on a long time-scale. We used spectrum simulations of CA and its dimerization product, α-truxillic acid (TA), to gain insight into the dimerization effects. From the time-resolved spectra, we extracted component spectra and time-dependent weights corresponding to CA and TA. The results suggest that the X-ray induced dimerization proceeds homogeneously in contrast to the dimerization induced by ultraviolet light. We also utilized the ability of NRIXS for direct tomography with chemical-bond contrast to image the spatial progress of the reactions in the sample crystal. Our work paves the way for other time-resolved studies on chemical reactions using inelastic X-ray scattering. PMID:26568420

  18. Identification of cinnamic acid derivatives as novel antagonists of the prokaryotic proton-gated ion channel GLIC.

    PubMed

    Prevost, Marie S; Delarue-Cochin, Sandrine; Marteaux, Justine; Colas, Claire; Van Renterghem, Catherine; Blondel, Arnaud; Malliavin, Thérèse; Corringer, Pierre-Jean; Joseph, Delphine

    2013-06-13

    Pentameric ligand gated ion channels (pLGICs) mediate signal transduction. The binding of an extracellular ligand is coupled to the transmembrane channel opening. So far, all known agonists bind at the interface between subunits in a topologically conserved "orthosteric site" whose amino acid composition defines the pharmacological specificity of pLGIC subtypes. A striking exception is the bacterial proton-activated GLIC protein, exhibiting an uncommon orthosteric binding site in terms of sequence and local architecture. Among a library of Gloeobacter violaceus metabolites, we identified a series of cinnamic acid derivatives, which antagonize the GLIC proton-elicited response. Structure-activity analysis shows a key contribution of the carboxylate moiety to GLIC inhibition. Molecular docking coupled to site-directed mutagenesis support that the binding pocket is located below the classical orthosteric site. These antagonists provide new tools to modulate conformation of GLIC, currently used as a prototypic pLGIC, and opens new avenues to study the signal transduction mechanism.

  19. X-ray induced dimerization of cinnamic acid: Time-resolved inelastic X-ray scattering study

    NASA Astrophysics Data System (ADS)

    Inkinen, Juho; Niskanen, Johannes; Talka, Tuomas; Sahle, Christoph J.; Müller, Harald; Khriachtchev, Leonid; Hashemi, Javad; Akbari, Ali; Hakala, Mikko; Huotari, Simo

    2015-11-01

    A classic example of solid-state topochemical reactions is the ultraviolet-light induced photodimerization of α-trans-cinnamic acid (CA). Here, we report the first observation of an X-ray-induced dimerization of CA and monitor it in situ using nonresonant inelastic X-ray scattering spectroscopy (NRIXS). The time-evolution of the carbon core-electron excitation spectra shows the effects of two X-ray induced reactions: dimerization on a short time-scale and disintegration on a long time-scale. We used spectrum simulations of CA and its dimerization product, α-truxillic acid (TA), to gain insight into the dimerization effects. From the time-resolved spectra, we extracted component spectra and time-dependent weights corresponding to CA and TA. The results suggest that the X-ray induced dimerization proceeds homogeneously in contrast to the dimerization induced by ultraviolet light. We also utilized the ability of NRIXS for direct tomography with chemical-bond contrast to image the spatial progress of the reactions in the sample crystal. Our work paves the way for other time-resolved studies on chemical reactions using inelastic X-ray scattering.

  20. Effect of Cinnamic Acid for Controlling Gray Mold on Table Grape and Its Possible Mechanisms of Action.

    PubMed

    Zhang, Zhanquan; Qin, Guozheng; Li, Boqiang; Tian, Shiping

    2015-09-01

    Cinnamic acid (CA) is an organic acid and is widely used in food industry as a common food additive. Previous studies showed that CA has the antimicrobial activity in vitro, but little is known about the effect of CA on controlling the fruit decay in vivo. In present study, we showed that application of CA was significantly effective on controlling the gray mold of table grape caused by Botrytis cinerea. CA can directly inhibit the mycelial growth of B. cinerea on potato dextrose agar plates. The mechanisms by which CA inhibited fungal growth were assayed by staining the spores with fluorescent dyes propidium iodide and 7-dichlorodihydrofluorescein diacetate, respectively. The results indicated that CA can damage the integrity of plasma membrane and induce the intracellular reactive oxygen species level of B. cinerea which were responsible for the reduction of growth rate. Meanwhile, CA treatment significantly stimulated the activities of peroxidase and polyphenol oxidase which were closely related to the resistance of plant. Taken together, this study suggested that CA was effective on controlling the gray mold of table grape in postharvest period by inhibiting the growth of pathogen and inducing the resistance of host.

  1. Assessment of the anti-invasion potential and mechanism of select cinnamic acid derivatives on human lung adenocarcinoma cells.

    PubMed

    Tsai, Chiung-Man; Yen, Gow-Chin; Sun, Fang-Ming; Yang, Shun-Fa; Weng, Chia-Jui

    2013-05-01

    Patients with lung adenocarcinoma are often diagnosed with metastasizing symptoms and die of early and distal metastasis. Metastasis is made up of a cascade of interrelated and sequential steps, including cell adhesion, extracellular matrix degradation, cell movement, and invasion. Hence, substances carrying the ability to stop one of the metastasis-associated steps could be a potential candidate for preventing tumor cells from metastasizing and prolonging the life of cancer patients. Cinnamic acid (CA) was demonstrated to be such a candidate for human lung adenocarcinoma cells. Nevertheless, the effectiveness of CA derivatives on invasion of lung cancer cells is still unclear. The aims of this study were to explore the mechanisms underlying several select CA derivatives against invasion of human lung adenocarcinoma A549 cells. The results revealed that caffeic acid (CAA), chlorogenic acid (CHA), and ferulic acid (FA) can inhibit phorbol-12-myristate-13-acetate (PMA)-stimulated invasion of A549 cells at a concentration of ≥100 μM. The MMP-9 activity was suppressed by these compounds through regulating urokinase-type plasminogen activator (uPA), tissue inhibitor of metalloproteinase (TIMP)-1, plasminogen activator inhibitor (PAI)-1, and PAI-2; the cell-matrix adhesion was decreased by CAA only. The proposed molecular mechanism involved not only decreasing the signaling of MAPK and PI3K/Akt but also inactivating NF-κB, AP-1, and STAT3. In the present study, we selected CAA, CHA, and FA as potential inhibitors for invasive behaviors of human lung adenocarcinoma cells and disclosed the possible mechanisms. The association between structural features and anti-invasive activity of these compounds cannot be determined here and needs to be further verified.

  2. Rapid and Stereoselective Conversion of a "trans"-Cinnamic Acid to a beta-Bromostyrene

    ERIC Educational Resources Information Center

    Evans, Thomas A.

    2006-01-01

    The stereoselective synthesis of an aryl vinyl bromide is accomplished in a rapid microscale reaction of "trans"-4-methoxycinnamic acid with N-bromosuccinimide in dichloromethane. The product is purified by dry column vacuum chromatography and its stereochemistry is determined by [superscript 1]H NMR. TLC, GC and GC-MSD can also be used. This…

  3. Zn(II), Cd(II) and Hg(I) complexes of cinnamic acid: FT-IR, FT-Raman, 1H and 13C NMR studies

    NASA Astrophysics Data System (ADS)

    Kalinowska, M.; Świsłocka, R.; Lewandowski, W.

    2011-05-01

    The effect of zinc, cadmium(II) and mercury(I) ions on the electronic structure of cinnamic acid (phenylacrylic acid) was studied. In this research many miscellaneous analytical methods, which complement one another, were used: infrared (FT-IR), Raman (FT-Raman), nuclear magnetic resonance ( 1H, 13C NMR) and quantum mechanical calculations. The spectroscopic studies provide some knowledge on the distribution of the electronic charge in molecule, the delocalization energy of π-electrons and the reactivity of metal complexes. In the series of Zn(II) → Cd(II) → Hg(I) cinnamates: (1) systematic shifts of several bands in the experimental and theoretical IR and Raman spectra and (2) regular chemical shifts for protons 1H and 13C nuclei were observed.

  4. Fluctuations of different endogenous phenolic compounds and cinnamic acid in the first days of the rooting process of cherry rootstock 'GiSelA 5' leafy cuttings.

    PubMed

    Trobec, Mateja; Stampar, Franci; Veberic, Robert; Osterc, Gregor

    2005-05-01

    The relationship between the phenol composition of rooting zones and rootability was studied in the first days after the establishment of cuttings. The trial included two different types of cuttings (basal and terminal). Additionally, the influence of exogenously applied auxin (IBA) was observed. The best rooting results (55.6%) were achieved with terminal IBA treated cuttings, while only 1.9% of basal cuttings formed roots. The auxin treatment increased the root formation in terminal, but not in basal cuttings. Low rooting rate of basal cuttings was probably due to higher lignification rate of the basal tissue which can represent a mechanical barrier for root emergence. When measuring phenolic compounds and cinnamic acid, terminal cuttings contained higher (rutin, vanillic acid, (-)-epicatechin, caffeic acid and sinapinic acid) or equal concentrations of detected phenols as basal cuttings, while applied auxin did not influence the level of any of discussed phenolics, neither of cinnamic acid. It is to assume that cuttings for starting of root induction phase should contain certain levels of several phenolic compounds, but higher influence on rooting success is to be ascribed to the impact of the auxin level. During the time of the experiment concentrations of monophenols sinapinic acid and vanillic acid rapidly decreased. This decrease was more pronounced in terminal cuttings, which might have a better mechanism of lowering those two compounds to which a negative influence on rooting is ascribed. Fluctuations and differences between treatments of other phenolics were not significant enough to influence the rooting process. PMID:15940876

  5. Fluctuations of different endogenous phenolic compounds and cinnamic acid in the first days of the rooting process of cherry rootstock 'GiSelA 5' leafy cuttings.

    PubMed

    Trobec, Mateja; Stampar, Franci; Veberic, Robert; Osterc, Gregor

    2005-05-01

    The relationship between the phenol composition of rooting zones and rootability was studied in the first days after the establishment of cuttings. The trial included two different types of cuttings (basal and terminal). Additionally, the influence of exogenously applied auxin (IBA) was observed. The best rooting results (55.6%) were achieved with terminal IBA treated cuttings, while only 1.9% of basal cuttings formed roots. The auxin treatment increased the root formation in terminal, but not in basal cuttings. Low rooting rate of basal cuttings was probably due to higher lignification rate of the basal tissue which can represent a mechanical barrier for root emergence. When measuring phenolic compounds and cinnamic acid, terminal cuttings contained higher (rutin, vanillic acid, (-)-epicatechin, caffeic acid and sinapinic acid) or equal concentrations of detected phenols as basal cuttings, while applied auxin did not influence the level of any of discussed phenolics, neither of cinnamic acid. It is to assume that cuttings for starting of root induction phase should contain certain levels of several phenolic compounds, but higher influence on rooting success is to be ascribed to the impact of the auxin level. During the time of the experiment concentrations of monophenols sinapinic acid and vanillic acid rapidly decreased. This decrease was more pronounced in terminal cuttings, which might have a better mechanism of lowering those two compounds to which a negative influence on rooting is ascribed. Fluctuations and differences between treatments of other phenolics were not significant enough to influence the rooting process.

  6. Chemical Genetics Uncovers Novel Inhibitors of Lignification, Including p-Iodobenzoic Acid Targeting CINNAMATE-4-HYDROXYLASE1[OPEN

    PubMed Central

    Van de Wouwer, Dorien; Decou, Raphaël; Audenaert, Dominique; Nguyen, Long

    2016-01-01

    Plant secondary-thickened cell walls are characterized by the presence of lignin, a recalcitrant and hydrophobic polymer that provides mechanical strength and ensures long-distance water transport. Exactly the recalcitrance and hydrophobicity of lignin put a burden on the industrial processing efficiency of lignocellulosic biomass. Both forward and reverse genetic strategies have been used intensively to unravel the molecular mechanism of lignin deposition. As an alternative strategy, we introduce here a forward chemical genetic approach to find candidate inhibitors of lignification. A high-throughput assay to assess lignification in Arabidopsis (Arabidopsis thaliana) seedlings was developed and used to screen a 10-k library of structurally diverse, synthetic molecules. Of the 73 compounds that reduced lignin deposition, 39 that had a major impact were retained and classified into five clusters based on the shift they induced in the phenolic profile of Arabidopsis seedlings. One representative compound of each cluster was selected for further lignin-specific assays, leading to the identification of an aromatic compound that is processed in the plant into two fragments, both having inhibitory activity against lignification. One fragment, p-iodobenzoic acid, was further characterized as a new inhibitor of CINNAMATE 4-HYDROXYLASE, a key enzyme of the phenylpropanoid pathway synthesizing the building blocks of the lignin polymer. As such, we provide proof of concept of this chemical biology approach to screen for inhibitors of lignification and present a broad array of putative inhibitors of lignin deposition for further characterization. PMID:27485881

  7. Comparative study of the possible protective effects of cinnamic acid and cinnamaldehyde on cisplatin-induced nephrotoxicity in rats.

    PubMed

    El-Sayed, El-Sayed M; Abd El-Raouf, Ola M; Fawzy, Hala M; Manie, Mohamed F

    2013-12-01

    This study aimed to assess the protective effect of cinnamic acid (CA) and cinnamaldehyde (CD) against cisplatin-induced nephrotoxicity. A single dose of cisplatin (5 mg/kg), injected intraperitoneally to male rats, caused significant increases in serum urea, creatinine levels, and lipid peroxides measured as the malondialdehyde content of kidney, with significant decreases in serum albumin, reduced glutathione, and the activity of antioxidant enzymes (catalase, superoxide dismutase, and glutathione peroxidase) of kidney as compared with the control group. On the other hand, administration of CA (50 mg/kg, p.o.) or CD (40 mg/kg, p.o.) for 7 days before cisplatin ameliorated the cisplatin-induced nephrotoxicity as indicated by the restoration of kidney function and oxidative stress parameters. Furthermore, they reduced the histopathological changes induced by cisplatin. In conclusion, CA and CD showed protective effects against cisplatin-induced nephrotoxicity where CD was more effective than CA; affects that might be attributed to their antioxidant activities.

  8. A new sunscreen of the cinnamate class: synthesis and enzymatic hydrolysis evaluation of glyceryl esters of p-methoxycinnamic acid.

    PubMed

    de Freitas, Zaida Maria Faria; dos Santos, Elisabete Pereira; da Rocha, João Ferreira; Dellamora-Ortiz, Gisela Maria; Gonçalves, José Carlos Saraiva

    2005-05-01

    Glyceryl esters of p-methoxycinnamic acid, 1,3-dipalmitoyl-2-p-methoxycinnamoyl-1,2,3-propanetriol and 1,3-dioctanoyl-2-p-methoxycinnamoyl-1,2,3-propanetriol were synthesised in an attempt to increase substantivity and decrease eventual undesirable effects of sunscreens of this class. To assess if the glyceryl esters could present a higher stability towards hydrolysis by lipases in the stratum corneum, hydrolysis rates were determined in vitro using a commercial fungal lipase from Rhizomucor miehei. Results presented herein show that the glyceryl esters have similar lambda(max) and epsilon values to sunscreens of the cinnamate class. The ester 1,3-dipalmitoyl-2-p-methoxycinnamoyl-1,2,3-propanetriol presented a 2.8 times lower hydrolysis rate by lipase, in vitro, than the commercial sunscreen 2-ethylhexyl-p-methoxycinnamate (alkyl ester). This finding suggests that this triacylglycerol can possibly have a longer retention time in the skin and consequently promote a more intense and effective antisolar action than the commercial sunscreen.

  9. Design and synthesis of an activity-based protein profiling probe derived from cinnamic hydroxamic acid.

    PubMed

    Ai, Teng; Qiu, Li; Xie, Jiashu; Geraghty, Robert J; Chen, Liqiang

    2016-02-15

    In our continued effort to discover new anti-hepatitis C virus (HCV) agents, we validated the anti-replicon activity of compound 1, a potent and selective anti-HCV hydroxamic acid recently reported by us. Generally favorable physicochemical and in vitro absorption, distribution, metabolism, and excretion (ADME) properties exhibited by 1 made it an ideal parent compound from which activity-based protein profiling (ABPP) probe 3 was designed and synthesized. Evaluation of probe 3 revealed that it possessed necessary anti-HCV activity and selectivity. Therefore, we have successfully obtained compound 3 as a suitable ABPP probe to identify potential molecular targets of compound 1. Probe 3 and its improved analogs are expected to join a growing list of ABPP probes that have made important contributions to not only the studies of biochemical and cellular functions but also discovery of selective inhibitors of protein targets.

  10. Oxidation of cinnamic acid derivatives: A pulse radiolysis and theoretical study

    NASA Astrophysics Data System (ADS)

    Yadav, Pooja; Mohan, Hari; Maity, Dilip Kumar; Suresh, Cherumuttathu H.; Rao, B. S. Madhav

    2008-07-01

    Second order rate constants in the range of ( k = 1.6-4.5) × 10 9 dm 3 mol -1 s -1 were obtained for the rad OH induced oxidation of nitro- and methoxycinnamic acid derivatives in neutral solutions using pulse radiolysis. The transient absorption spectra exhibited a broad peak around 360-410 nm in o-methoxy, o- and p-nitrocinnamates or two peaks around 310-330 and 370-410 nm in other isomers. Quantum chemical calculations revealed that addition of rad OH to olefinic moiety yielded considerably more stable structures than ring addition products and the para system among the latter is the most stable. Spin density analysis suggested that olefinic adducts retained the aromaticity in contrast to its loss in ring rad OH adducts. An excellent linear correlation between the relative stabilities of the rad OH adducts (after accounting for the aromatic stabilization in olefinic adducts) and the maximum Sd values is also obtained.

  11. Photoexcited triplet states of new UV absorbers, cinnamic acid 2-methylphenyl esters.

    PubMed

    Kikuchi, Azusa; Saito, Haruo; Mori, Masao; Yagi, Mikio

    2011-12-01

    Phosphorescence spectra of nonphosphorescent or very weakly phosphorescent new UV absorbers, 2-methylphenyl cinnamate (MePC), 2-methylphenyl 4-methoxycinnamate (MePMC) and 2-methylphenyl 4-ethoxycinnamate (MePEC) have been observed by using external heavy atom effects of ethyl iodide in ethanol at 77 K. The lowest excited triplet (T(1)) energies of these new UV absorbers are lower than those of a widely used UV-A absorber, 4-tert-butyl-4'-methoxydibenzoylmethane (BM-DBM), in both keto and enol forms. The intermolecular triplet-triplet energy transfer from photolabile BM-DBM to MePMC was observed by measuring the time-resolved phosphorescence spectra. Electron paramagnetic resonance spectra have been observed for the T(1) states of these new UV absorbers in ethanol at 77 K by using benzophenone as a triplet sensitizer. The observed T(1) lifetimes, zero-field splitting (ZFS) parameters and molecular orbital calculations of the ZFS parameters suggest that T(1) states of these new UV absorbers posses mainly (3)ππ* character. The deactivation processes of the lowest excited singlet (S(1)) states are predominantly fluorescence and internal conversion to the ground (G) states in MePMC and MePEC, while the main deactivation process of the S(1) state of MePC is internal conversion to the G state. The molar absorption coefficients of MePMC and MePEC in the UV-A and UV-B regions are larger than that of most widely used UV-B absorber, octyl methoxycinnamate. PMID:22002255

  12. Single crystal to single crystal topochemical photoreactions: measuring the degree of disorder in the [2+2] photodimerization of trans-cinnamic acid using single-crystal 13C NMR spectroscopy.

    PubMed

    Nieuwendaal, Ryan C; Mattler, Sarah J; Bertmer, Marko; Hayes, Sophia E

    2011-05-19

    A single crystal of α-trans-cinnamic acid was synthesized with a (13)C-label at the β-carbon position and photoreacted to yield the [2+2] cycloaddition product, α-truxillic acid. (13)C{(1)H} cross-polarization (CP) single-crystal NMR experiments were performed on the unreacted and sequentially photoreacted samples for different goniometer orientations, and the spectra were simulated using the SIMMOL and SIMPSON software packages. Atomic coordinates from single-crystal X-ray diffraction data were used as inputs in the simulations, which allowed the chemical shift tensor to be precisely measured and related to the unit cell (or molecular) reference frame of cinnamic acid. The line widths of the (13)C resonances observed at different goniometer rotations were utilized to estimate the orientational dispersion of the cinnamic acid species, which ultimately provides a measure of disorder in the single crystal. The photoreacted sample, a solid solution of cinnamic and truxillic acids, maintained its single-crystal nature, even up to 44% conversion to truxillic acid, keeping its P2(1)/n symmetry. Upon photoirradiation, however, a slight loss of order was observed in the cinnamic acid species as evidenced by an increase in the (13)C NMR line widths, demonstrating that NMR can be used to monitor subtle orientational imperfections in single crystal to single crystal photoreactions.

  13. Inhibition of histone deacetylases by trans-cinnamic acid and its antitumor effect against colon cancer xenografts in athymic mice

    PubMed Central

    ZHU, BINGYAN; SHANG, BOYANG; LI, YI; ZHEN, YONGSU

    2016-01-01

    Previous studies have shown that trans-cinnamic acid (tCA) has a broad spectrum of biological activities, and exhibits antioxidant, anti-inflammatory and anticancer properties. In addition, tCA and a variety of its analogs have been detected as gut microbe-derived metabolites exerting various biological effects in the colon. The aim of this study was to assess the antitumor activity of tCA in vitro and in vivo, in particular its therapeutic efficacy against colon cancer xenografts in athymic mice. Furthermore, it aimed to examine the effects of tCA on histone deacetylases (HDACs) and to identify the underlying molecular mechanisms. Using an MTT assay, tCA was observed to inhibit the proliferation of several cancer cell lines, and the half maximal inhibitory concentration (IC50) in HT29 colon carcinoma cells was ~1 mM. Western blot analysis demonstrated that tCA upregulated the expression of acetyl-H3 and acetyl-H4 proteins, which was consistent with the effects of the HDAC inhibitor, trichostatin A (TSA). Furthermore, expression of Bcl-2 (a marker of cell proliferation) was reduced, and apoptosis was induced. Apoptosis was shown by the activation of cleavage of poly ADP ribose polymerase and the increased expression of Bax. Apoptosis was also confirmed using APC Annexin V and SYTOX Green Nucleic Acid Stain. In addition, the tCA-induced inhibition of the expression of HDAC markers and activation of apoptosis in tumor tissues were further confirmed by immunohistochemistry. Intragastric administration of tCA at doses of 1.0 and 1.5 mmol/kg body weight suppressed the growth of HT29 human colon carcinoma xenografts in athymic mice at well-tolerated doses. No toxic changes were found in the heart, lung, liver, kidney, colon or bone marrow following histopathological examination. This study indicated that tCA is effective against colon cancer xenograft in nude mice. The antitumor mechanism of tCA was mediated, at least in part, by inhibition of HDACs in cancer cells. As

  14. Glutathione and cinnamic acid: natural dietary components used in preventing the process of browning by inhibition of Polyphenol Oxidase in apple juice.

    PubMed

    Gacche, R N; Warangkar, S C; Ghole, V S

    2004-04-01

    Consumer demands for 'freshness' in processed foods has been given increasing attention by food processing industries by searching for minimally processed products. Polyphenol Oxidase (PPO) mediated browning is a major cause of undesirable flavors and nutritional losses in fruit juices. Here the anti-browning efficiency of glutathione (GSH, reduced form) and cinnamic acid (CA) in apple juice is evaluated. It was observed that the rate of the browning reaction could be efficiently delayed using GSH and CA, which act as inhibitors of PPO. Kinetic studies confirm that GSH and CA are non-competitive and competitive inhibitors of PPO respectively.

  15. Design, synthesis and biological evaluation of di-substituted cinnamic hydroxamic acids bearing urea/thiourea unit as potent histone deacetylase inhibitors.

    PubMed

    Ning, Chengqing; Bi, Yanjing; He, Yujun; Huang, WenYuan; Liu, Lifei; Li, Yi; Zhang, Sihan; Liu, Xiaoyu; Yu, Niefang

    2013-12-01

    A novel class of di-substituted cinnamic hydroxamic acid derivatives containing urea or thiourea unit was designed, synthesized and evaluated as HDAC inhibitors. All tested compounds demonstrated significant HDAC inhibitory activities and anti-proliferative effects against diverse human tumor cell lines. Among them, 7l exhibited most potent pan-HDAC inhibitory activity, with an IC50 value of 130 nM. It also showed strong cellular inhibition against diverse cell lines including HCT-116, MCF-7, MDB-MB-435 and NCI-460, with GI50 values of 0.35, 0.22, 0.51 and 0.48 μM, respectively.

  16. TRPA1 is activated by direct addition of cysteine residues to the N-hydroxysuccinyl esters of acrylic and cinnamic acids.

    PubMed

    Sadofsky, Laura R; Boa, Andrew N; Maher, Sarah A; Birrell, Mark A; Belvisi, Maria G; Morice, Alyn H

    2011-01-01

    The nociceptor TRPA1 is thought to be activated through covalent modification of specific cysteine residues on the N terminal of the channel. The precise mechanism of covalent modification with unsaturated carbonyl-containing compounds is unclear, therefore by examining a range of compounds which can undergo both conjugate and/or direct addition reactions we sought to further elucidate the mechanism(s) whereby TRPA1 can be activated by covalent modification. Calcium signalling was used to determine the mechanism of activation of TRPA1 expressed in HEK293 cells with a series of related compounds which were capable of either direct and/or conjugate addition processes. These results were confirmed using physiological recordings with isolated vagus nerve preparations. We found negligible channel activation with chemicals which could only react with cysteine residues via conjugate addition such as acrylamide, acrylic acid, and cinnamic acid. Compounds able to react via either conjugate or direct addition, such as acrolein, methyl vinyl ketone, mesityl oxide, acrylic acid NHS ester, cinnamaldehyde and cinnamic acid NHS ester, activated TRPA1 in a concentration dependent manner as did compounds only capable of direct addition, namely propionic acid NHS ester and hydrocinnamic acid NHS ester. These compounds failed to activate TRPV1 expressed in HEK293 cells or mock transfected HEK293 cells. For molecules capable of direct or conjugate additions, the results suggest for the first time that TRPA1 may be activated preferentially by direct addition of the thiol group of TRPA1 cysteines to the agonist carbonyl carbon of α,β-unsaturated carbonyl-containing compounds.

  17. Cinnamic Acid Bornyl Ester Derivatives from Valeriana wallichii Exhibit Antileishmanial In Vivo Activity in Leishmania major-Infected BALB/c Mice

    PubMed Central

    Hazra, Sudipta; Glaser, Jan; Holzgrabe, Ulrike; Hazra, Banasri; Schurigt, Uta

    2015-01-01

    Human leishmaniasis covers a broad spectrum of clinical manifestations ranging from self-healing cutaneous leishmaniasis to severe and lethal visceral leishmaniasis caused among other species by Leishmania major or Leishmania donovani, respectively. Some drug candidates are in clinical trials to substitute current therapies, which are facing emerging drug-resistance accompanied with serious side effects. Here, two cinnamic acid bornyl ester derivatives (1 and 2) were assessed for their antileishmanial activity. Good selectivity and antileishmanial activity of bornyl 3-phenylpropanoate (2) in vitro prompted the antileishmanial assessment in vivo. For this purpose, BALB/c mice were infected with Leishmania major promastigotes and treated with three doses of 50 mg/kg/day of compound 2. The treatment prevented the characteristic swelling at the site of infection and correlated with reduced parasite burden. Transmitted light microscopy and transmission electron microscopy of Leishmania major promastigotes revealed that compounds 1 and 2 induce mitochondrial swelling. Subsequent studies on Leishmania major promastigotes showed the loss of mitochondrial transmembrane potential (ΔΨm) as a putative mode of action. As the cinnamic acid bornyl ester derivatives 1 and 2 had exhibited antileishmanial activity in vitro, and compound 2 in Leishmania major-infected BALB/c mice in vivo, they can be regarded as possible lead structures for the development of new antileishmanial therapeutic approaches. PMID:26554591

  18. Cinnamic Acid Bornyl Ester Derivatives from Valeriana wallichii Exhibit Antileishmanial In Vivo Activity in Leishmania major-Infected BALB/c Mice.

    PubMed

    Masic, Anita; Valencia Hernandez, Ana Maria; Hazra, Sudipta; Glaser, Jan; Holzgrabe, Ulrike; Hazra, Banasri; Schurigt, Uta

    2015-01-01

    Human leishmaniasis covers a broad spectrum of clinical manifestations ranging from self-healing cutaneous leishmaniasis to severe and lethal visceral leishmaniasis caused among other species by Leishmania major or Leishmania donovani, respectively. Some drug candidates are in clinical trials to substitute current therapies, which are facing emerging drug-resistance accompanied with serious side effects. Here, two cinnamic acid bornyl ester derivatives (1 and 2) were assessed for their antileishmanial activity. Good selectivity and antileishmanial activity of bornyl 3-phenylpropanoate (2) in vitro prompted the antileishmanial assessment in vivo. For this purpose, BALB/c mice were infected with Leishmania major promastigotes and treated with three doses of 50 mg/kg/day of compound 2. The treatment prevented the characteristic swelling at the site of infection and correlated with reduced parasite burden. Transmitted light microscopy and transmission electron microscopy of Leishmania major promastigotes revealed that compounds 1 and 2 induce mitochondrial swelling. Subsequent studies on Leishmania major promastigotes showed the loss of mitochondrial transmembrane potential (ΔΨm) as a putative mode of action. As the cinnamic acid bornyl ester derivatives 1 and 2 had exhibited antileishmanial activity in vitro, and compound 2 in Leishmania major-infected BALB/c mice in vivo, they can be regarded as possible lead structures for the development of new antileishmanial therapeutic approaches. PMID:26554591

  19. The combination of 4-anilinoquinazoline and cinnamic acid: a novel mode of binding to the epidermal growth factor receptor tyrosine kinase.

    PubMed

    Li, Dong-Dong; Lv, Peng-Cheng; Zhang, Hui; Zhang, Hong-Jia; Hou, Ya-Ping; Liu, Kai; Ye, Yong-Hao; Zhu, Hai-Liang

    2011-08-15

    A novel type of cinnamic acid quinazoline amide derivatives (20-42), which designed the combination between quinazoline as the backbone and various substituted cinnamic acid as the side chain, have been synthesized and their biological activities were evaluated within cytotoxicity assay firstly and then potent EGFR inhibitory activity. Compound 42 demonstrated the most potent inhibitory activity (IC(50)=0.94 μM for EGFR), which could be optimized as a potential EGFR inhibitor in the further study. Docking simulation was performed to position compound 42 into the EGFR active site to determine the probable binding model. Analysis of the binding conformation of 42 in active site displayed compound 42 was stabilized by hydrogen bonding interactions with Lys822, which was different from other derivatives. In the further study, Compounds 43 and 44 had been synthesized and their biological activities were also evaluated, which were the same as that we expected. Compound 43 has demonstrated significant EGFR (IC(50)=0.12 μM) and tumor growth inhibitory activity as a potential anticancer agent.

  20. Cinnamic Acid Bornyl Ester Derivatives from Valeriana wallichii Exhibit Antileishmanial In Vivo Activity in Leishmania major-Infected BALB/c Mice.

    PubMed

    Masic, Anita; Valencia Hernandez, Ana Maria; Hazra, Sudipta; Glaser, Jan; Holzgrabe, Ulrike; Hazra, Banasri; Schurigt, Uta

    2015-01-01

    Human leishmaniasis covers a broad spectrum of clinical manifestations ranging from self-healing cutaneous leishmaniasis to severe and lethal visceral leishmaniasis caused among other species by Leishmania major or Leishmania donovani, respectively. Some drug candidates are in clinical trials to substitute current therapies, which are facing emerging drug-resistance accompanied with serious side effects. Here, two cinnamic acid bornyl ester derivatives (1 and 2) were assessed for their antileishmanial activity. Good selectivity and antileishmanial activity of bornyl 3-phenylpropanoate (2) in vitro prompted the antileishmanial assessment in vivo. For this purpose, BALB/c mice were infected with Leishmania major promastigotes and treated with three doses of 50 mg/kg/day of compound 2. The treatment prevented the characteristic swelling at the site of infection and correlated with reduced parasite burden. Transmitted light microscopy and transmission electron microscopy of Leishmania major promastigotes revealed that compounds 1 and 2 induce mitochondrial swelling. Subsequent studies on Leishmania major promastigotes showed the loss of mitochondrial transmembrane potential (ΔΨm) as a putative mode of action. As the cinnamic acid bornyl ester derivatives 1 and 2 had exhibited antileishmanial activity in vitro, and compound 2 in Leishmania major-infected BALB/c mice in vivo, they can be regarded as possible lead structures for the development of new antileishmanial therapeutic approaches.

  1. Propolis cinnamic acid derivatives induce apoptosis through both extrinsic and intrinsic apoptosis signaling pathways and modulate of miRNA expression.

    PubMed

    Kumazaki, Minami; Shinohara, Haruka; Taniguchi, Kohei; Yamada, Nami; Ohta, Shozo; Ichihara, Kenji; Akao, Yukihiro

    2014-01-01

    Propolis cinnamic acid derivatives have a number of biological activities including anti-oxidant and anti-cancer ones. In this study, we aimed to elucidate the mechanism of the anti-cancer activity of 3 representative propolis cinnamic acid derivatives, i.e., Artepilin C, Baccharin and Drupanin in human colon cancer cell lines. Our study demonstrated that these compounds had a potent apoptosis-inductive effect even on drug-resistant colon cancer cells. Combination treatment of human colon cancer DLD-1 cells with 2 of these compounds, each at its IC20 concentration, induced apoptosis by stimulating both intrinsic and extrinsic apoptosis signaling pathways. Especially, Baccharin plus Drupanin exhibited a synergistic growth-inhibitory effect by strengthening both intrinsic and extrinsic apoptotic signaling transduction through TRAIL/DR4/5 and/or FasL/Fas death-signaling loops and by increasing the expression level of miR-143, resulting in decreased expression levels of the target gene MAPK/Erk5 and its downstream target c-Myc. These data suggest that the supplemental intake of these compounds found in propolis has enormous significance with respect to cancer prevention.

  2. Pulse radiolytic and product analysis studies of the reaction of hydroxyl radicals with cinnamic acid. The relative extent of addition to the ring and side chain

    SciTech Connect

    Bobrowski, K.; Raghavan, N.V.

    1982-10-28

    Using pulse radiolysis with optical detection and high-pressure liquid chromatography (HPCL), it has been shown that reaction of OH radicals with cinnamic acid (CA in aqueous solutions leads to addition to both the ring and the olefinic group. The relative extent of the above two pathways was estimated as 3:7, respectively. Benzyl- and hydroxycyclohexadienyl-type radicals were observed with absorption maxima at 320 (310) and 370 (365) nm depending on the pH of the solution. In the pH region 4.9 to 5.7 the absorption at 305 to 315 nm decays during the first 5 ..mu..s after the pulse. The dependence of the rate constants and absorption spectra on pH suggests that this decay is due to an equilibration process between acid-base forms of benzyl-type radicals formed through OH addition to te olefinic group.

  3. Studies on the syntheses, structural characterization, antimicrobial-, and DPPH radical scavenging activity of the cocrystals caffeine:cinnamic acid and caffeine:eosin dihydrate

    NASA Astrophysics Data System (ADS)

    Suresh Kumar, G. S.; Seethalakshmi, P. G.; Bhuvanesh, N.; Kumaresan, S.

    2013-10-01

    Two organic cocrystals namely, caffeine:cinnamic acid [(caf)(ca)] (1) and caffeine:eosin dihydrate [(caf)(eos)]·2H2O (2) were synthesized and studied by FT-IR, TGA/DTA, and single crystal XRD. The crystal system of cocrystal 1 is triclinic with space group P-1 and Z = 2 and that of cocrystal 2 is monoclinic with space group P21/C and Z = 4. An imidazole-carboxylic acid synthon is observed in the cocrystal 1. The intermolecular hydrogen bond, O-H⋯N and π-π interactions play a major role in stabilizing 1 whereas the intermolecular hydrogen bonds, O-H⋯O, O-H⋯N, and intramolecular hydrogen bond, O-H⋯Br; along with π-π interactions together play a vital role in stabilizing the structure of 2. The antimicrobial- and DPPH radical scavenging activities of both the cocrystals were studied.

  4. Quantitative Structure-Property Relationship (QSPR) Models for a Local Quantum Descriptor: Investigation of the 4- and 3-Substituted-Cinnamic Acid Esterification.

    PubMed

    Rodrigues-Santos, Cláudio E; Echevarria, Aurea; Sant'Anna, Carlos M R; Bitencourt, Thiago B; Nascimento, Maria G; Bauerfeldt, Glauco F

    2015-09-22

    In this work, the theoretical description of the 4- and 3-substituted-cinnamic acid esterification with different electron donating and electron withdrawing groups was performed at the B3LYP and M06-2X levels, as a two-step process: the O-protonation and the nucleophile attack by ethanol. In parallel, an experimental work devoted to the synthesis and characterization of the substituted-cinnamate esters has also been performed. In order to quantify the substituents effects, quantitative structure-property relationship (QSPR) models based on the atomic charges, Fukui functions and the Frontier Effective-for-Reaction Molecular Orbitals (FERMO) energies were investigated. In fact, the Fukui functions, ƒ⁺C and ƒ(-)O, indicated poor correlations for each individual step, and in contrast with the general literature, the O-protonation step is affected both by the FERMO energies and the O-charges of the carbonyl group. Since the process was shown to not be totally described by either charge- or frontier-orbitals, it is proposed to be frontier-charge-miscere controlled. Moreover, the observed trend for the experimental reaction yields suggests that the electron withdrawing groups favor the reaction and the same was observed for Step 2, which can thus be pointed out as the determining step.

  5. Cinnamic-derived acids significantly affect Fusarium graminearum growth and in vitro synthesis of type B trichothecenes.

    PubMed

    Ponts, Nadia; Pinson-Gadais, Laetitia; Boutigny, Anne-Laure; Barreau, Christian; Richard-Forget, Florence

    2011-08-01

    The impact of five phenolic acids (ferulic, coumaric, caffeic, syringic, and p-hydroxybenzoic acids) on fungal growth and type B trichothecene production by four strains of Fusarium graminearum was investigated. All five phenolic acids inhibited growth but the degree of inhibition varied between strains. Our results suggested that the more lipophilic phenolic acids are, the higher is the effect they have on growth. Toxin accumulation in phenolic acid-supplemented liquid glucose, yeast extract, and peptone cultures was enhanced in the presence of ferulic and coumaric acids but was reduced in the presence of p-hydroxybenzoic acid. This modulation was shown to correlate with a regulation of TRI5 transcription. In this study, addition of phenolic acids with greater antioxidant properties resulted in a higher toxin accumulation, indicating that the modulation of toxin accumulation may be linked to the antioxidant properties of the phenolic acids. These data suggest that, in planta, different compositions in phenolic acids of kernels from various cultivars may reflect different degrees of sensitivity to "mycotoxinogenesis."

  6. Cinnamic acid, coumarin and vanillin: Alternative phenolic compounds for efficient Agrobacterium-mediated transformation of the unicellular green alga, Nannochloropsis sp.

    PubMed

    Cha, Thye-San; Chen, Chin-Fong; Yee, Willy; Aziz, Ahmad; Loh, Saw-Hong

    2011-03-01

    The use of acetosyringone in Agrobacterium-mediated gene transfer into plant hosts has been favored for the past few decades. The influence of other phenolic compounds and their effectiveness in Agrobacterium-mediated plant transformation systems has been neglected. In this study, the efficacy of four phenolic compounds on Agrobacterium-mediated transformation of the unicellular green alga Nannochloropsis sp. (Strain UMT-M3) was assessed by using β-glucuronidase (GUS) assay. We found that cinnamic acid, vanillin and coumarin produced higher percentages of GUS positive cells as compared to acetosyringone. These results also show that the presence of methoxy group in the phenolic compounds may not be necessary for Agrobacterium vir gene induction and receptor binding as suggested by previous studies. These findings provide possible alternative Agrobacterium vir gene inducers that are more potent as compared to the commonly used acetosyringone in achieving high efficiency of Agrobacterium-mediated transformation in microalgae and possibly for other plants.

  7. Isolation and characterization of isochorismate synthase and cinnamate 4-hydroxylase during salinity stress, wounding, and salicylic acid treatment in Carthamus tinctorius

    PubMed Central

    Sadeghi, Mahnaz; Dehghan, Sara; Fischer, Rainer; Wenzel, Uwe; Vilcinskas, Andreas; Kavousi, Hamid Reza; Rahnamaeian, Mohammad

    2013-01-01

    Salicylic acid (SA) is a prominent signaling molecule during biotic and abiotic stresses in plants biosynthesized via cinnamate and isochorismate pathways. Cinnamate 4-hydroxylase (C4H) and isochorismate synthase (ICS) are the main enzymes in phenylpropanoid and isochorismate pathways, respectively. To investigate the actual roles of these genes in resistance mechanism to environmental stresses, here, the coding sequences of these enzymes in safflower (Carthamus tinctorius), as an oilseed industrial medicinal plant, were partially isolated and their expression profiles during salinity stress, wounding, and salicylic acid treatment were monitored. As a result, safflower ICS (CtICS) and C4H (CtC4H) were induced in early time points after wounding (3–6 h). Upon salinity stress, CtICS and CtC4H were highly expressed for the periods of 6–24 h and 3–6 h after treatment, respectively. It seems evident that ICS expression level is SA concentration dependent as if safflower treatment with 1 mM SA could induce ICS much stronger than that with 0.1 mM, while C4H is less likely to be so. Based on phylogenetic analysis, safflower ICS has maximum similarity to its ortholog in Vitis vinifera up to 69%, while C4H shows the highest similarity to its ortholog in Echinacea angustifolia up to 96%. Overall, the isolated genes of CtICS and CtC4H in safflower could be considered in plant breeding programs for salinity tolerance as well as for pathogen resistance. PMID:24309561

  8. Isolation and characterization of isochorismate synthase and cinnamate 4-hydroxylase during salinity stress, wounding, and salicylic acid treatment in Carthamus tinctorius.

    PubMed

    Sadeghi, Mahnaz; Dehghan, Sara; Fischer, Rainer; Wenzel, Uwe; Vilcinskas, Andreas; Kavousi, Hamid Reza; Rahnamaeian, Mohammad

    2013-11-01

    Salicylic acid (SA) is a prominent signaling molecule during biotic and abiotic stresses in plants biosynthesized via cinnamate and isochorismate pathways. Cinnamate 4-hydroxylase (C4H) and isochorismate synthase (ICS) are the main enzymes in phenylpropanoid and isochorismate pathways, respectively. To investigate the actual roles of these genes in resistance mechanism to environmental stresses, here, the coding sequences of these enzymes in safflower (Carthamus tinctorius), as an oilseed industrial medicinal plant, were partially isolated and their expression profiles during salinity stress, wounding, and salicylic acid treatment were monitored. As a result, safflower ICS (CtICS) and C4H (CtC4H) were induced in early time points after wounding (3-6 h). Upon salinity stress, CtICS and CtC4H were highly expressed for the periods of 6-24 h and 3-6 h after treatment, respectively. It seems evident that ICS expression level is SA concentration dependent as if safflower treatment with 1 mM SA could induce ICS much stronger than that with 0.1 mM, while C4H is less likely to be so. Based on phylogenetic analysis, safflower ICS has maximum similarity to its ortholog in Vitis vinifera up to 69%, while C4H shows the highest similarity to its ortholog in Echinacea angustifolia up to 96%. Overall, the isolated genes of CtICS and CtC4H in safflower could be considered in plant breeding programs for salinity tolerance as well as for pathogen resistance.

  9. Copper-catalyzed aerobic decarboxylative sulfonylation of cinnamic acids with sodium sulfinates: stereospecific synthesis of (E)-alkenyl sulfones.

    PubMed

    Jiang, Qing; Xu, Bin; Jia, Jing; Zhao, An; Zhao, Yu-Rou; Li, Ying-Ying; He, Na-Na; Guo, Can-Cheng

    2014-08-15

    A copper-catalyzed aerobic decarboxylative sulfonylation of alkenyl carboxylic acids with sodium sulfinates is developed. This study offers a new and expedient strategy for stereoselective synthesis of (E)-alkenyl sulfones that are widely present in biologically active natural products and therapeutic agents. Moreover, the transformation is proposed to proceed via a radical process and exhibits a broad substrate scope and good functional group tolerance.

  10. Fluorescent studies on the interaction of DNA and ternary lanthanide complexes with cinnamic acid-phenanthroline and antibacterial activities testing.

    PubMed

    Sun, Hui-Juan; Wang, Ai-Ling; Chu, Hai-Bin; Zhao, Yong-Liang

    2015-03-01

    Twelve lanthanide complexes with cinnamate (cin(-) ) and 1,10-phenanthroline (phen) were synthesized and characterized. Their compositions were assumed to be RE(cin)3 phen (RE(3+)  = La(3+) , Pr(3+) , Nd(3+) , Sm(3+) , Eu(3+) , Gd(3+) , Tb(3+) , Dy(3+) , Ho(3+) , Tm(3+) , Yb(3+) , Lu(3+) ). The interaction mode between the complexes and DNA was investigated by fluorescence quenching experiment. The results indicated the complexes could bind to DNA and the main binding mode is intercalative binding. The fluorescence quenching constants of the complexes increased from La(cin)3 phen to Lu(cin)3 phen. Additionally, the antibacterial activity testing showed that the complexes exhibited excellent antibacterial ability against Escherichia coli, and the changes of antibacterial ability are in agreement with that of the fluorescence quenching constants.

  11. Self-nanoemulsifying drug delivery system of trans-cinnamic acid: formulation development and pharmacodynamic evaluation in alloxan-induced type 2 diabetic rat model.

    PubMed

    Wang, Houyong; Li, Qiang; Deng, Wenwen; Omari-Siaw, E; Wang, Qilong; Wang, Shicheng; Wang, Shengli; Cao, Xia; Xu, Ximing; Yu, Jiangnan

    2015-03-01

    The objective of this study was to formulate a self-nanoemulsifying oral drug delivery system (SNEDDS) for the poorly water-soluble trans-Cinnamic acid (t-CA SNEDDS) that could be evaluated for its antihyperglycemic efficacy in comparison to the parent t-CA in an alloxan-induced diabetic rat model. A SNEDDS formulation consisting of 60% surfactant (Kolliphor EL), 10% co-surfactant (PEG 400) and 30% oil (isopropyl myristate) proved to be optimal. t-CA SNEDDS (80 mg/kg, p.o.), t-CA suspension (80 mg/kg, p.o.), and Metformin Hydrochloride Tablets (230 mg/kg, p.o.) were administer qdfor 30 days to diabetic rats. After treatment the body weight of diabetic rats was increased, blood glucose levels, total cholesterol, and triglyceride in the serum tended to be normalized, while the levels of alanine aminotransferase and aspartate aminotransferase were markedly decreased. The effects of t-CA SNEDDS were superior to that of the t-CA suspension. The present study demonstrated that t-CA was effective in attenuating the effects of alloxan treatment and that t-CA SNEDDS with a more favorable absorption and enhanced bioavailability is more effective than t-CA.

  12. Experimental FT-IR, Laser-Raman and DFT spectroscopic analysis of 2,3,4,5,6-Pentafluoro-trans-cinnamic acid

    NASA Astrophysics Data System (ADS)

    Sert, Yusuf; Doğan, Hatice; Navarrete, Angélica; Somanathan, Ratnasamy; Aguirre, Gerardo; Çırak, Çağrı

    2014-07-01

    In this study, the experimental and theoretical vibrational frequencies of a newly synthesized 2,3,4,5,6-Pentafluoro-trans-cinnamic acid have been investigated. The experimental FT-IR (4000-400 cm-1) and Laser-Raman spectra (4000-100 cm-1) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and bond angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and DFT/M06-2X (the highly parameterized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data, and with the results in the literature. In addition, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies and the other related molecular energy values have been calculated and depicted.

  13. Novel FTS-diamine/cinnamic acid hybrids inhibit tumor cell proliferation and migration and promote apoptosis via blocking Ras-related signaling in vitro.

    PubMed

    Ling, Yong; Zhao, Xinmei; Li, Xianghua; Wang, Xuemin; Yang, Yang; Wang, Zhiqiang; Wang, Xinyang; Zhang, Jie; Zhang, Yihua

    2015-02-01

    Novel FTS-diamine/cinnamic acid hybrids 7a-f were prepared, and their in vitro biological activities were evaluated. It was found that 7c showed the strongest anti-proliferation activities against cancer cells in vitro and significant growth inhibition of tumor in vivo, and more potential for inhibitory selectivity to tumor cells than intermediate 6 and FTS. Furthermore, the anti-proliferative effect of 7c in Lovo cell lines followed a similar pattern, which included a dose-dependent induction of cell apoptosis via the up-regulation of Bax as well as activated caspase-3 and down-regulation of Bcl-2, and the inhibition of cancer cells migration and invasion in a concentration-dependent way. More importantly, 7c could significantly block Ras-related signaling pathways, which may contribute to its pro-apoptotic induction of the cancer cell lines and its inhibition of carcinoma cell proliferation, migration, and invasion. Therefore, our novel findings may provide a new framework for the discovery of new FTS hybrids for the intervention of human carcinoma cells.

  14. Probing polymorphism and reactivity in the organic solid state using 13C NMR spectroscopy: Studies of p-Formyl- trans-cinnamic acid

    NASA Astrophysics Data System (ADS)

    Harris, Kenneth D. M.; Thomas, John M.

    1991-09-01

    p-Formyl- trans-cinnamic acid (p-FCA) is known to exist in two different crystal phases (denoted β and γ). When crystals of the β phase of p-FCA are exposed to UV radiation, a solid state dimerization reaction occurs to produce 4,4'-diformyl-β-truxinic acid. In contrast, crystals of the γ phase of p-FCA are photostable. It is shown in this paper that high resolution solid state 13C NMR spectroscopy is a sensitive technique for distinguishing the β and γ phases of p-FCA, and can be used to investigate, in detail, the chemical transformation that occurs upon UV irradiation of the β phase. Specifically, the 13C NMR spectra presented here were recorded using the TOSS (total suppression of sidebands) pulse sequence; this is based upon the standard 13C CPMAS (cross polarization/magic angle sample spinning/high power 1H decoupling) method, but has the additional feature that all orders of spinning sidebands are eliminated from the spectrum. The photoproduct obtained from UV irradiation of β-p-FCA contains a significant noncrystalline component (assessed via powder X-ray diffraction), and our NMR studies suggest that this noncrystalline component of the photoproduct contains some amount of the γ phase of the monomer p-FCA. A mechanism is proposed to explain the fact that UV irradiation of β-p-FCA can generate, in addition to the expected photodimer, an impurity amount of the γ phase of p-FCA.

  15. Upper critical solution temperature behavior of cinnamic acid and polyethyleneimine mixture and its effect on temperature-dependent release of liposome.

    PubMed

    Guo, Huangying; Kim, Jin-Chul

    2015-10-15

    The mixture of polyethyleneimine (PEI) and cinnamic acid (CA) in HEPES buffer (pH 7.0) exhibited an upper critical solution temperature in the temperature range of 20-50 °C. CA would be electrostatically conjugated with PEI and the PEI-CA conjugate is thought to act as a thermo-sensitive polymer. On the optical microscope image of PEI/CA mixture, microparticles were found at 25 °C, disappeared when heated to 50 °C, and formed again upon cooling to 25 °C. PEI-CA conjugate was immobilized on the surface of egg phosphatidylcholine (EPC) liposome by adding PEI to the suspension of liposome incorporating CA. The size and the zeta potential of the liposome markedly increased by cooling the liposomal suspension from 50 °C to 20 °C. This could be ascribed to the cooling-induced self-assembling property of PEI-CA conjugate. The release profile of Rhodamine B base from liposome incorporating CA with PEI was investigated while the liposome suspension of 50 °C was exposed to the release medium of 20 °C, 30 °C, 40 °C and 50 °C. The release degree was higher at a lower temperature. When exposed to a lower temperature (20 °C, 30 °C, 40 °C), PEI-CA could be self-assembled and change its configuration on the surface of liposome, promoting the release from the liposome.

  16. Upper critical solution temperature behavior of cinnamic acid and polyethyleneimine mixture and its effect on temperature-dependent release of liposome.

    PubMed

    Guo, Huangying; Kim, Jin-Chul

    2015-10-15

    The mixture of polyethyleneimine (PEI) and cinnamic acid (CA) in HEPES buffer (pH 7.0) exhibited an upper critical solution temperature in the temperature range of 20-50 °C. CA would be electrostatically conjugated with PEI and the PEI-CA conjugate is thought to act as a thermo-sensitive polymer. On the optical microscope image of PEI/CA mixture, microparticles were found at 25 °C, disappeared when heated to 50 °C, and formed again upon cooling to 25 °C. PEI-CA conjugate was immobilized on the surface of egg phosphatidylcholine (EPC) liposome by adding PEI to the suspension of liposome incorporating CA. The size and the zeta potential of the liposome markedly increased by cooling the liposomal suspension from 50 °C to 20 °C. This could be ascribed to the cooling-induced self-assembling property of PEI-CA conjugate. The release profile of Rhodamine B base from liposome incorporating CA with PEI was investigated while the liposome suspension of 50 °C was exposed to the release medium of 20 °C, 30 °C, 40 °C and 50 °C. The release degree was higher at a lower temperature. When exposed to a lower temperature (20 °C, 30 °C, 40 °C), PEI-CA could be self-assembled and change its configuration on the surface of liposome, promoting the release from the liposome. PMID:26283281

  17. Cinnamic acid 4-hydroxylase mechanism-based inactivation by psoralen derivatives: cloning and characterization of a C4H from a psoralen producing plant-Ruta graveolens-exhibiting low sensitivity to psoralen inactivation.

    PubMed

    Gravot, Antoine; Larbat, Romain; Hehn, Alain; Lièvre, Karine; Gontier, Eric; Goergen, Jean Louis; Bourgaud, Frédéric

    2004-02-01

    Cinnamate 4-hydroxylase (C4H, EC 1.14.13.11) complete cDNA was cloned from the leaves of Ruta graveolens, a psoralen producing plant. The recombinant enzyme (classified CYP73A32) was expressed in Saccharomyces cerevisiae. Mechanism-based inactivation was investigated using various psoralen derivatives. Only psoralen and 8-methoxypsoralen were found to inactivate C4H. The inactivation was dependent on the presence of NADPH, time of pre-incubation, and inhibitor concentration. Inactivation stoichiometry was 0.9 (+/-0.2) for CYP73A1 and 1.1 (+/-0.2) for CYP73A32. SDS-PAGE analysis demonstrated that [3H]psoralen was irreversibly bound to the C4H apoprotein. K(i) and k(inact) for psoralen and 8-methoxypsoralen inactivation on the two C4H revealed a lower sensitivity for CYP73A32 compared to CYP73A1. Inactivation kinetics were also determined for CYP73A10, a C4H from another furocoumarin-producing plant, Petroselinum crispum. This enzyme was found to behave like CYP73A32, with a weak sensitivity to psoralen and 8-MOP inactivation. Cinnamic acid hydroxylation is a key step in the biosynthesis of phenylpropanoid compounds, psoralen derivatives included. Our results suggest a possible evolution of R. graveolens and P. crispum C4H that might tolerate substantial levels of psoralen derivatives in the cytoplasmic compartment without a depletive effect on C4H and the general phenylpropanoid metabolism.

  18. New Umami Amides: Structure-Taste Relationship Studies of Cinnamic Acid Derived Amides and the Natural Occurrence of an Intense Umami Amide in Zanthoxylum piperitum.

    PubMed

    Frerot, Eric; Neirynck, Nathalie; Cayeux, Isabelle; Yuan, Yoyo Hui-Juan; Yuan, Yong-Ming

    2015-08-19

    A series of aromatic amides were synthesized from various acids and amines selected from naturally occurring structural frameworks. These synthetic amides were evaluated for umami taste in comparison with monosodium glutamate. The effect of the substitution pattern of both the acid and the amine parts on umami taste was investigated. The only intensely umami-tasting amides were those made from 3,4-dimethoxycinnamic acid. The amine part was more tolerant to structural changes. Amides bearing an alkyl- or alkoxy-substituted phenylethylamine residue displayed a clean umami taste as 20 ppm solutions in water. Ultraperformance liquid chromatography coupled with a high quadrupole-Orbitrap mass spectrometer (UPLC/MS) was subsequently used to show the natural occurrence of these amides. (E)-3-(3,4-Dimethoxyphenyl)-N-(4-methoxyphenethyl)acrylamide was shown to occur in the roots and stems of Zanthoxylum piperitum, a plant of the family Rutaceae growing in Korea, Japan, and China.

  19. A green ultrasonic-assisted liquid-liquid microextraction based on deep eutectic solvent for the HPLC-UV determination of ferulic, caffeic and cinnamic acid from olive, almond, sesame and cinnamon oil.

    PubMed

    Khezeli, Tahere; Daneshfar, Ali; Sahraei, Reza

    2016-04-01

    A simple, inexpensive and sensitive ultrasonic-assisted liquid-liquid microextraction method based on deep eutectic solvent (UALLME-DES) was used for the extraction of three phenolic acids (ferulic, caffeic and cinnamic) from vegetable oils. In a typical experiment, deep eutectic solvent as green extraction solvent was added to n-hexane (as a typical oil medium) containing target analytes. Subsequently, the extraction was accelerated by sonication. After the extraction, phase separation (DES rich phase/n-hexane phase) was performed by centrifugation. DES rich phase (lower phase) was withdrawn by a micro-syringe and submitted to isocratic reverse-phase HPLC with UV detection. Under optimum conditions obtained by response surface methodology (RSM) and desirability function (DF), the method has good linear calibration ranges (between 1.30 and 1000 µg L(-1)), coefficients of determination (r(2)>0.9949) and low limits of detection (between 0.39 and 0.63 µg L(-1)). This procedure was successfully applied to the determination of target analytes in olive, almond, sesame and cinnamon oil samples. The relative mean recoveries ranged from 94.7% to 104.6%. PMID:26838445

  20. Trans-Cinnamic Acid Increases Adiponectin and the Phosphorylation of AMP-Activated Protein Kinase through G-Protein-Coupled Receptor Signaling in 3T3-L1 Adipocytes

    PubMed Central

    Kopp, Christina; Singh, Shiva P.; Regenhard, Petra; Müller, Ute; Sauerwein, Helga; Mielenz, Manfred

    2014-01-01

    Adiponectin and intracellular 5′adenosine monophosphate-activated protein kinase (AMPK) are important modulators of glucose and fat metabolism. Cinnamon exerts beneficial effects by improving insulin sensitivity and blood lipids, e.g., through increasing adiponectin concentrations and AMPK activation. The underlying mechanism is unknown. The Gi/Go-protein-coupled receptor (GPR) 109A stimulates adiponectin secretion after binding its ligand niacin. Trans-cinnamic acid (tCA), a compound of cinnamon is another ligand. We hypothesize whether AMPK activation and adiponectin secretion by tCA is transmitted by GPR signaling. Differentiated 3T3-L1 cells were incubated with pertussis toxin (PTX), an inhibitor of Gi/Go-protein-coupling, and treated with different tCA concentrations. Treatment with tCA increased adiponectin and the pAMPK/AMPK ratio (p ≤ 0.001). PTX incubation abolished the increased pAMPK/AMPK ratio and adiponectin secretion. The latter remained increased compared to controls (p ≤ 0.002). tCA treatment stimulated adiponectin secretion and AMPK activation; the inhibitory effect of PTX suggests GPR is involved in tCA stimulated signaling. PMID:24557583

  1. RNAi down-regulation of cinnamate-4-hydroxylase increases artemisinin biosynthesis in Artemisia annua

    PubMed Central

    Kumar, Ritesh; Vashisth, Divya; Misra, Amita; Akhtar, Md Qussen; Jalil, Syed Uzma; Shanker, Karuna; Gupta, Madan Mohan; Rout, Prashant Kumar; Gupta, Anil Kumar; Shasany, Ajit Kumar

    2016-01-01

    Cinnamate-4-hydroxylase (C4H) converts trans-cinnamic acid (CA) to p-coumaric acid (COA) in the phenylpropanoid/lignin biosynthesis pathway. Earlier we reported increased expression of AaCYP71AV1 (an important gene of artemisinin biosynthesis pathway) caused by CA treatment in Artemisia annua. Hence, AaC4H gene was identified, cloned, characterized and silenced in A. annua with the assumption that the elevated internal CA due to knock down may increase the artemisinin yield. Accumulation of trans-cinnamic acid in the plant due to AaC4H knockdown was accompanied with the reduction of p-coumaric acid, total phenolics, anthocyanin, cinnamate-4-hydroxylase (C4H) and phenylalanine ammonia lyase (PAL) activities but increase in salicylic acid (SA) and artemisinin. Interestingly, feeding trans-cinnamic acid to the RNAi line increased the level of artemisinin along with benzoic (BA) and SA with no effect on the downstream metabolites p-coumaric acid, coniferylaldehyde and sinapaldehyde, whereas p-coumaric acid feeding increased the content of downstream coniferylaldehyde and sinapaldehyde with no effect on BA, SA, trans-cinnamic acid or artemisinin. SA is reported earlier to be inducing the artemisinin yield. This report demonstrates the link between the phenylpropanoid/lignin pathway with artemisinin pathway through SA, triggered by accumulation of trans-cinnamic acid because of the blockage at C4H. PMID:27220407

  2. RNAi down-regulation of cinnamate-4-hydroxylase increases artemisinin biosynthesis in Artemisia annua.

    PubMed

    Kumar, Ritesh; Vashisth, Divya; Misra, Amita; Akhtar, Md Qussen; Jalil, Syed Uzma; Shanker, Karuna; Gupta, Madan Mohan; Rout, Prashant Kumar; Gupta, Anil Kumar; Shasany, Ajit Kumar

    2016-01-01

    Cinnamate-4-hydroxylase (C4H) converts trans-cinnamic acid (CA) to p-coumaric acid (COA) in the phenylpropanoid/lignin biosynthesis pathway. Earlier we reported increased expression of AaCYP71AV1 (an important gene of artemisinin biosynthesis pathway) caused by CA treatment in Artemisia annua. Hence, AaC4H gene was identified, cloned, characterized and silenced in A. annua with the assumption that the elevated internal CA due to knock down may increase the artemisinin yield. Accumulation of trans-cinnamic acid in the plant due to AaC4H knockdown was accompanied with the reduction of p-coumaric acid, total phenolics, anthocyanin, cinnamate-4-hydroxylase (C4H) and phenylalanine ammonia lyase (PAL) activities but increase in salicylic acid (SA) and artemisinin. Interestingly, feeding trans-cinnamic acid to the RNAi line increased the level of artemisinin along with benzoic (BA) and SA with no effect on the downstream metabolites p-coumaric acid, coniferylaldehyde and sinapaldehyde, whereas p-coumaric acid feeding increased the content of downstream coniferylaldehyde and sinapaldehyde with no effect on BA, SA, trans-cinnamic acid or artemisinin. SA is reported earlier to be inducing the artemisinin yield. This report demonstrates the link between the phenylpropanoid/lignin pathway with artemisinin pathway through SA, triggered by accumulation of trans-cinnamic acid because of the blockage at C4H. PMID:27220407

  3. Folic Acid

    MedlinePlus

    Folic acid is a B vitamin. It helps the body make healthy new cells. Everyone needs folic acid. For women who may get pregnant, it is really important. Getting enough folic acid before and during pregnancy can prevent major birth ...

  4. Folic Acid

    MedlinePlus

    Folic acid is used to treat or prevent folic acid deficiency. It is a B-complex vitamin needed by ... Folic acid comes in tablets. It usually is taken once a day. Follow the directions on your prescription label ...

  5. Amino acids

    MedlinePlus

    ... amino acids are: histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan , and valine. Nonessential amino acids "Nonessential" means that our bodies produce an amino ...

  6. Acid Rain.

    ERIC Educational Resources Information Center

    Openshaw, Peter

    1987-01-01

    Provides some background information on acid deposition. Includes a historical perspective, describes some effects of acid precipitation, and discusses acid rain in the United Kingdom. Contains several experiments that deal with the effects of acid rain on water quality and soil. (TW)

  7. Acid rain

    SciTech Connect

    Not Available

    1985-01-01

    This report has four parts: they discuss acid rain in relation to acid soils, agriculture, forests, and aquatic ecosystems. Among findings: modern sources of acid deposition from the atmosphere for all the acid soils in the world, nor even chiefly responsible for those of northern U.S. Agriculture has its problems, but acid precipitation is probably not one of them. More research is needed to determine to what extent acid precipitation is responsible for forest declines and for smaller detrimental effects on forest growth where no damage to the foliage is evident. Many lakes and streams are extremely sensitive to added acids.

  8. Aminocaproic Acid

    MedlinePlus

    Aminocaproic acid is used to control bleeding that occurs when blood clots are broken down too quickly. This type ... the baby is ready to be born). Aminocaproic acid is also used to control bleeding in the ...

  9. Ethacrynic Acid

    MedlinePlus

    Ethacrynic acid, a 'water pill,' is used to treat swelling and fluid retention caused by various medical problems. It ... Ethacrynic acid comes as a tablet to take by mouth. It is usually taken once or twice a day ...

  10. Aristolochic Acids

    MedlinePlus

    ... Sciences NIH-HHS www.niehs.nih.gov Aristolochic Acids Key Points Report on Carcinogens Status Known to be human carcinogens Aristolochia Clematitis Aristolochic Acids n Known human carcinogens n Found in certain ...

  11. Obeticholic Acid

    MedlinePlus

    Obeticholic acid is used alone or in combination with ursodiol (Actigall, Urso) to treat primary biliary cholangitis (PBC; a ... were not treated successfully with ursodiol alone. Obeticholic acid is in a class of medications called farnesoid ...

  12. Acid mucopolysaccharides

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003368.htm Acid mucopolysaccharides To use the sharing features on this page, please enable JavaScript. Acid mucopolysaccharides is a test that measures the amount ...

  13. Fatty acids - trans fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The data supporting a negative effect of dietary trans fatty acids on cardiovascular disease risk is consistent. The primary dietary sources of trans fatty acids include partially hydrogenated fat and rudiment fat. The adverse effect of trans fatty acids on plasma lipoprotein profiles is consisten...

  14. Effects of microbial utilization of phenolic acids and their phenolic acid breakdown products on allelopathic interactions

    SciTech Connect

    Blum, U.

    1998-04-01

    Reversible sorption of phenolic acids by soils may provide some protection to phenolic acids from microbial degradation. In the absence of microbes, reversible sorption 35 days after addition of 0.5--3 {micro}mol/g of ferulic acid or p-coumaric acid was 8--14% in Cecil A{sub p} horizon and 31--38% in Cecil B{sub t} horizon soil materials. The reversibly sorbed/solution ratios (r/s) for ferulic acid or p-coumaric acid ranged from 0.12 to 0.25 in A{sub p} and 0.65 to 0.85 in B{sub t} horizon soil materials. When microbes were introduced, the r/s ratio for both the A{sub p} and B{sub t} horizon soil materials increased over time up to 5 and 2, respectively, thereby indicating a more rapid utilization of solution phenolic acids over reversibly sorbed phenolic acids. The increase in r/s ratio and the overall microbial utilization of ferulic acid and/or p-coumaric acid were much more rapid in A{sub p} than in B{sub t} horizon soil materials. Reversible sorption, however, provided protection of phenolic acids from microbial utilization for only very short periods of time. Differential soil fixation, microbial production of benzoic acids (e.g., vanillic acid and p-hydroxybenzoic acid) from cinnamic acids (e.g., ferulic acid and p-coumaric acid, respectively), and the subsequent differential utilization of cinnamic and benzoic acids by soil microbes indicated that these processes can substantially influence the magnitude and duration of the phytotoxicity of individual phenolic acids.

  15. Aspartic acid

    MedlinePlus

    ... Hormone production and release Normal nervous system function Plant sources of aspartic acid include: Legumes such as soybeans, garbanzo beans, and lentils Peanuts, almonds, walnuts, and flaxseeds Animal ...

  16. Usnic acid.

    PubMed

    Ingólfsdóttir, K

    2002-12-01

    Since its first isolation in 1844, usnic acid [2,6-diacetyl-7,9-dihydroxy-8,9b-dimethyl-1,3(2H,9bH)-dibenzo-furandione] has become the most extensively studied lichen metabolite and one of the few that is commercially available. Usnic acid is uniquely found in lichens, and is especially abundant in genera such as Alectoria, Cladonia, Usnea, Lecanora, Ramalina and Evernia. Many lichens and extracts containing usnic acid have been utilized for medicinal, perfumery, cosmetic as well as ecological applications. Usnic acid as a pure substance has been formulated in creams, toothpaste, mouthwash, deodorants and sunscreen products, in some cases as an active principle, in others as a preservative. In addition to antimicrobial activity against human and plant pathogens, usnic acid has been shown to exhibit antiviral, antiprotozoal, antiproliferative, anti-inflammatory and analgesic activity. Ecological effects, such as antigrowth, antiherbivore and anti-insect properties, have also been demonstrated. A difference in biological activity has in some cases been observed between the two enantiomeric forms of usnic acid. Recently health food supplements containing usnic acid have been promoted for use in weight reduction, with little scientific support. The emphasis of the current review is on the chemistry and biological activity of usnic acid and its derivatives in addition to rational and ecologically acceptable methods for provision of this natural compound on a large scale.

  17. Acid rain

    SciTech Connect

    Elsworth, S.

    1985-01-01

    This book was written in a concise and readable style for the lay public. It's purpose was to make the public aware of the damage caused by acid rain and to mobilize public opinion to favor the elimination of the causes of acid rain.

  18. Acid rain

    SciTech Connect

    White, J.C. )

    1988-01-01

    This book presents the proceedings of the third annual conference sponsored by the Acid Rain Information Clearinghouse (ARIC). Topics covered include: Legal aspects of the source-receptor relationship: an energy perspective; Scientific uncertainty, agency inaction, and the courts; and Acid rain: the emerging legal framework.

  19. How Acidic Is Carbonic Acid?

    PubMed

    Pines, Dina; Ditkovich, Julia; Mukra, Tzach; Miller, Yifat; Kiefer, Philip M; Daschakraborty, Snehasis; Hynes, James T; Pines, Ehud

    2016-03-10

    Carbonic, lactic, and pyruvic acids have been generated in aqueous solution by the transient protonation of their corresponding conjugate bases by a tailor-made photoacid, the 6-hydroxy-1-sulfonate pyrene sodium salt molecule. A particular goal is to establish the pK(a) of carbonic acid H2CO3. The on-contact proton transfer (PT) reaction rate from the optically excited photoacid to the carboxylic bases was derived, with unprecedented precision, from time-correlated single-photon-counting measurements of the fluorescence lifetime of the photoacid in the presence of the proton acceptors. The time-dependent diffusion-assisted PT rate was analyzed using the Szabo-Collins-Kimball equation with a radiation boundary condition. The on-contact PT rates were found to follow the acidity order of the carboxylic acids: the stronger was the acid, the slower was the PT reaction to its conjugate base. The pK(a) of carbonic acid was found to be 3.49 ± 0.05 using both the Marcus and Kiefer-Hynes free energy correlations. This establishes H2CO3 as being 0.37 pK(a) units stronger and about 1 pK(a) unit weaker, respectively, than the physiologically important lactic and pyruvic acids. The considerable acid strength of intact carbonic acid indicates that it is an important protonation agent under physiological conditions. PMID:26862781

  20. Acid rain

    SciTech Connect

    Sweet, W.

    1980-06-20

    Acid precipitation includes not only rain but also acidified snow, hail and frost, as well as sulfur and nitrogen dust. The principal source of acid precipitation is pollution emitted by power plants and smelters. Sulfur and nitrogen compounds contained in the emissions combine with moisture to form droplets with a high acid content - sometimes as acidic as vinegar. When sufficiently concentrated, these acids can kill fish and damage material structures. Under certain circumstances they may reduce crop and forest yields and cause or aggravate respiratory diseases in humans. During the summer, especially, pollutants tend to collect over the Great Lakes in high pressure systems. Since winds typically are westerly and rotate clockwise around high pressure systems, the pollutants gradually are dispersed throughout the eastern part of the continent.

  1. Asparagusic acid.

    PubMed

    Mitchell, Stephen C; Waring, Rosemary H

    2014-01-01

    Asparagusic acid (1,2-dithiolane-4-carboxylic acid) is a simple sulphur-containing 5-membered heterocyclic compound that appears unique to asparagus, though other dithiolane derivatives have been identified in non-food species. This molecule, apparently innocuous toxicologically to man, is the most probable culprit responsible for the curious excretion of odorous urine following asparagus ingestion. The presence of the two adjacent sulphur atoms leads to an enhanced chemical reactivity, endowing it with biological properties including the ability to substitute potentially for α-lipoic acid in α-keto-acid oxidation systems. This brief review collects the scattered data available in the literature concerning asparagusic acid and highlights its properties, intermediary metabolism and exploratory applications.

  2. Acid rain

    SciTech Connect

    Bess, F.D.

    1980-01-01

    The acid rain problem in the northeastern U.S. has been growing in severity and geographical areas affected. Acid rain has damaged, or will result in damage to visibility, physical structures and materials, aquatic life, timber, crops, and soils. The principal causes of acid rain in the northeastern U.S. are sulfur oxide and nitrogen oxide emissions from large power plants and smelters in the Ohio River Valley. Immediate corrective action and appropriate research are needed to reduce acid precipitation. Short-term programs that will define the rate of environmental deterioration, remaining environmental capacity to resist sudden deterioration, mechanisms of acid rain formation, and costs of various control options must be developed. (3 maps, 13 references, 1 table)

  3. Asparagusic acid.

    PubMed

    Mitchell, Stephen C; Waring, Rosemary H

    2014-01-01

    Asparagusic acid (1,2-dithiolane-4-carboxylic acid) is a simple sulphur-containing 5-membered heterocyclic compound that appears unique to asparagus, though other dithiolane derivatives have been identified in non-food species. This molecule, apparently innocuous toxicologically to man, is the most probable culprit responsible for the curious excretion of odorous urine following asparagus ingestion. The presence of the two adjacent sulphur atoms leads to an enhanced chemical reactivity, endowing it with biological properties including the ability to substitute potentially for α-lipoic acid in α-keto-acid oxidation systems. This brief review collects the scattered data available in the literature concerning asparagusic acid and highlights its properties, intermediary metabolism and exploratory applications. PMID:24099657

  4. Fragrance material review on 3-phenylpropyl cinnamate.

    PubMed

    Bhatia, S P; Cocchiara, J; Wellington, G A; Lalko, J; Letizia, C S; Api, A M

    2011-12-01

    A toxicologic and dermatologic review of 3-phenylpropyl cinnamate when used as a fragrance ingredient is presented. 3-Phenylpropyl cinnamate is a member of the fragrance structural group cinnamyl phenylpropyl compounds. The common characteristic structural element of cinnamyl phenylpropyl materials is an aryl substituted primary alcohol/aldehyde/ester. They are simple aromatic compounds with saturated propyl or unsaturated propenyl side chains containing a primary oxygenated functional group which has little toxic potential. 3-Phenyl-1-propyl derivatives participate in the same beta-oxidation pathways as do their parent cinnamic acid derivatives. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 3-phenylpropyl cinnamate was evaluated then summarized and includes physical properties, acute toxicity, skin irritation and skin sensitization. A safety assessment of all cinnamyl phenylpropyl compounds will be published simultaneously with this document. Please refer to Belsito et al. (2011) for an overall assessment of the safe use of this material and all the cinnamyl phenylpropyl materials in fragrances. Belsito, D., Bickers, D., Bruze, M., Dagli, M.L., Fryer, A., Greim, H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2011. A toxicologic and dermatologic assessment of cinnamyl phenylpropyl compounds when used as fragrance ingredients.

  5. Acid fog

    SciTech Connect

    Hileman, B.

    1983-03-01

    Fog in areas of southern California previously thought to be pollution-free has been shown to have a pH as low as 1.69. It has been found to be most acidic after smoggy days, suggesting that it forms on the aerosol associated with the previously exiting smog. Studies on Whiteface Mountain in the Adirondacks show that fog water is often 10 times as acidic as rainwater. As a result of their studies, California plans to spend $4 million on acid deposition research in the coming year. (JMT)

  6. Tranexamic Acid

    MedlinePlus

    ... is used to treat heavy bleeding during the menstrual cycle (monthly periods) in women. Tranexamic acid is in ... tablets for more than 5 days in a menstrual cycle or take more than 6 tablets in a ...

  7. Mefenamic Acid

    MedlinePlus

    ... as mefenamic acid may cause ulcers, bleeding, or holes in the stomach or intestine. These problems may ... like coffee grounds, blood in the stool, or black and tarry stools.Keep all appointments with your ...

  8. Acid Precipitation

    ERIC Educational Resources Information Center

    Likens, Gene E.

    1976-01-01

    Discusses the fact that the acidity of rain and snow falling on parts of the U.S. and Europe has been rising. The reasons are still not entirely clear and the consequences have yet to be well evaluated. (MLH)

  9. Acidic precipitation

    SciTech Connect

    Martin, H.C.

    1987-01-01

    At the International Symposium on Acidic Precipitation, over 400 papers were presented, and nearly 200 of them are included here. They provide an overview of the present state of the art of acid rain research. The Conference focused on atmospheric science (monitoring, source-receptor relationships), aquatic effects (marine eutrophication, lake acidification, impacts on plant and fish populations), and terrestrial effects (forest decline, soil acidification, etc.).

  10. Synthesis of (cinnamate-zinc layered hydroxide) intercalation compound for sunscreen application

    PubMed Central

    2013-01-01

    Background Zinc layered hydroxide (ZLH) intercalated with cinnamate, an anionic form of cinnamic acid (CA), an efficient UVA and UVB absorber, have been synthesized by direct method using zinc oxide (ZnO) and cinnamic acid as the precursor. Results The resulting obtained intercalation compound, ZCA, showed a basal spacing of 23.9 Å as a result of cinnamate intercalated in a bilayer arrangement between the interlayer spaces of ZLH with estimated percentage loading of cinnamate of about 40.4 % w/w. The UV–vis absorption spectrum of the intercalation compound showed excellent UVA and UVB absorption ability. Retention of cinnamate in ZLH interlayers was tested against media usually came across with sunscreen usage to show low release over an extended period of time. MTT assay of the intercalation compound on human dermal fibroblast (HDF) cells showed cytotoxicity of ZCA to be concentration dependent and is overall less toxic than its precursor, ZnO. Conclusions (Cinnamate-zinc layered hydroxide) intercalation compound is suitable to be used as a safe and effective sunscreen with long UV protection effect. PMID:23383738

  11. Reduction of polyester resin shrinkage by means of epoxy resin—I. Epoxy resin modified with acids

    NASA Astrophysics Data System (ADS)

    Pietrzak, M.; Brzostowski, A.

    An attempt was made to decrease the shrinkage of unsaturated polyester resin, taking place during radiation-induced curing, by the addition of epoxy resin. In order to combine chemically both resins, the epoxy component was modified with cinnamic and acrylic acids. A composition of 90 parts of polyesster resin, 10 parts of epoxy resin modified with cinnamic acid, and 150 parts of a silica filler showed a volume shrinkage of 1.2%.

  12. Biosynthesis and metabolism of salicylic acid

    SciTech Connect

    Lee, H.; Leon, J.; Raskin, I.

    1995-05-09

    Pathways of salicylic acid (SA) biosynthesis and metabolism in tobacco have been recently identified. SA, an endogenous regulator of disease resistance, is a product of phenylpropanoid metabolism formed via decarboxylation of trans-cinnamic acid to benzoic acid and its subsequent 2-hydroxylation to SA. In tobacco mosaic virus-inoculated tobacco leaves, newly synthesized SA is rapidly metabolized to SA O-{beta}-D-glucoside and methyl salicylate. Two key enzymes involved in SA biosynthesis and metabolism: benzoic acid 2-hydroxylase, which converts benzoic acid to SA, and UDPglucose:SA glucosyltransferase (EC 2.4.1.35), which catalyzes conversion of SA to SA glucoside have been partially purified and characterized. Progress in enzymology and molecular biology of SA biosynthesis and metabolism will provide a better understanding of signal transduction pathway involved in plant disease resistance. 62 refs., 1 fig.

  13. Salicylic acids

    PubMed Central

    Hayat, Shamsul; Irfan, Mohd; Wani, Arif; Nasser, Alyemeni; Ahmad, Aqil

    2012-01-01

    Salicylic acid is well known phytohormone, emerging recently as a new paradigm of an array of manifestations of growth regulators. The area unleashed yet encompassed the applied agriculture sector to find the roles to strengthen the crops against plethora of abiotic and biotic stresses. The skipped part of integrated picture, however, was the evolutionary insight of salicylic acid to either allow or discard the microbial invasion depending upon various internal factors of two interactants under the prevailing external conditions. The metabolic status that allows the host invasion either as pathogenesis or symbiosis with possible intermediary stages in close systems has been tried to underpin here. PMID:22301975

  14. Antioxidant and DNA damage protection potentials of selected phenolic acids.

    PubMed

    Sevgi, Kemal; Tepe, Bektas; Sarikurkcu, Cengiz

    2015-03-01

    In this study, ten different phenolic acids (caffeic, chlorogenic, cinnamic, ferulic, gallic, p-hydroxybenzoic, protocatechuic, rosmarinic, syringic, and vanillic acids) were evaluated for their antioxidant and DNA damage protection potentials. Antioxidant activity was evaluated by using four different test systems named as β-carotene bleaching, DPPH free radical scavenging, reducing power and chelating effect. In all test systems, rosmarinic acid showed the maximum activity potential, while protocatechuic acid was determined as the weakest antioxidant in β-carotene bleaching, DPPH free radical scavenging, and chelating effect assays. Phenolic acids were also screened for their protective effects on pBR322 plasmid DNA against the mutagenic and toxic effects of UV and H2O2. Ferulic acid was found as the most active phytochemical among the others. Even at the lowest concentration value (0.002 mg/ml), ferulic acid protected all of the bands in the presence of H2O2 and UV. It is followed by caffeic, rosmarinic, and vanillic acids. On the other hand, cinnamic acid (at 0.002 mg/ml), gallic acid (at 0.002 mg/ml), p-hydroxybenzoic acid (at 0.002 and 0.004 mg/ml), and protocatechuic acid (at 0.002 and 0.004 mg/ml) could not protect plasmid DNA. PMID:25542528

  15. Stearic Acid

    ERIC Educational Resources Information Center

    Young, Jay A.

    2004-01-01

    A chemical laboratory information profile (CLIP) is presented for the chemical, stearic acid. The profile lists the chemical's physical and harmful characteristics, exposure limits, and symptoms of major exposure, for the benefit of teachers and students, who use the chemical in the laboratory.

  16. Trichloroacetic acid

    Integrated Risk Information System (IRIS)

    Trichloroacetic acid ( TCA ) ; CASRN 76 - 03 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Nonca

  17. Acrylic acid

    Integrated Risk Information System (IRIS)

    Acrylic acid ( CASRN 79 - 10 - 7 ) Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  18. Selenious acid

    Integrated Risk Information System (IRIS)

    Selenious acid ; CASRN 7783 - 00 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  19. Dichloroacetic acid

    Integrated Risk Information System (IRIS)

    Dichloroacetic acid ; CASRN 79 - 43 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogeni

  20. Cacodylic acid

    Integrated Risk Information System (IRIS)

    Cacodylic acid ; CASRN 75 - 60 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  1. Phosphoric acid

    Integrated Risk Information System (IRIS)

    Phosphoric acid ; CASRN 7664 - 38 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  2. Benzoic acid

    Integrated Risk Information System (IRIS)

    Benzoic acid ; CASRN 65 - 85 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effec

  3. Formic acid

    Integrated Risk Information System (IRIS)

    Formic acid ; CASRN 64 - 18 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effect

  4. [Hyaluronic acid].

    PubMed

    Pomarede, N

    2008-01-01

    Hyaluronic Acid (HA) is now a leader product in esthetic procedures for the treatment of wrinkles and volumes. The structure of HA, its metabolism, its physiological function are foremost breaking down then its use in aesthetic dermatology: steps of injection, possible side effects, benefits and downsides of the use of HA in aesthetic dermatology.

  5. Hydroxycarboxylic acids and salts

    DOEpatents

    Kiely, Donald E; Hash, Kirk R; Kramer-Presta, Kylie; Smith, Tyler N

    2015-02-24

    Compositions which inhibit corrosion and alter the physical properties of concrete (admixtures) are prepared from salt mixtures of hydroxycarboxylic acids, carboxylic acids, and nitric acid. The salt mixtures are prepared by neutralizing acid product mixtures from the oxidation of polyols using nitric acid and oxygen as the oxidizing agents. Nitric acid is removed from the hydroxycarboxylic acids by evaporation and diffusion dialysis.

  6. KI-catalyzed α-acyloxylation of acetone with carboxylic acids.

    PubMed

    Wu, Ya-Dong; Huang, Bei; Zhang, Yue-Xin; Wang, Xiao-Xu; Dai, Jian-Jun; Xu, Jun; Xu, Hua-Jian

    2016-07-01

    The KI-catalyzed reaction of acetone with aromatic carboxylic acids is achieved, leading to α-acyloxycarbonyl compounds in good to excellent yields under mild reaction conditions. The present method exhibits good functional-group compatibility. Notably, this reaction system is even suitable for cinnamic acid, 3-phenylpropiolic acid and 4-phenylbutanoic acid. A kinetic isotope effect (KIE) study indicates that C-H cleavage of the acetone is the rate-limiting step in the catalytic cycle. PMID:27251323

  7. Isolation of fatty acids and aromatics from cell suspension cultures of Lavandula angustifolia.

    PubMed

    Topçu, Gülaçti; Herrmann, Gabriele; Kolak, Ufuk; Gören, C; Porzel, Andrea; Kutchan, Toni M

    2007-02-01

    Cell suspension cultures of Lavandula angustifolia Mill. ssp. angustifolia (syn.: L. officinalis Chaix.) afforded a fatty acid composition, cis and trans p-coumaric acids (=p-hydroxy cinnamic acids), and beta-sitosterol. The fatty acid composition was analyzed by GC-MS, and the structures of the isolated three compounds were determined by 1H- and 13C-NMR, and MS spectroscopic techniques.

  8. Decarboxylation of Sorbic Acid by Spoilage Yeasts Is Associated with the PAD1 Gene▿

    PubMed Central

    Stratford, Malcolm; Plumridge, Andrew; Archer, David B.

    2007-01-01

    The spoilage yeast Saccharomyces cerevisiae degraded the food preservative sorbic acid (2,4-hexadienoic acid) to a volatile hydrocarbon, identified by gas chromatography mass spectrometry as 1,3-pentadiene. The gene responsible was identified as PAD1, previously associated with the decarboxylation of the aromatic carboxylic acids cinnamic acid, ferulic acid, and coumaric acid to styrene, 4-vinylguaiacol, and 4-vinylphenol, respectively. The loss of PAD1 resulted in the simultaneous loss of decarboxylation activity against both sorbic and cinnamic acids. Pad1p is therefore an unusual decarboxylase capable of accepting both aromatic and aliphatic carboxylic acids as substrates. All members of the Saccharomyces genus (sensu stricto) were found to decarboxylate both sorbic and cinnamic acids. PAD1 homologues and decarboxylation activity were found also in Candida albicans, Candida dubliniensis, Debaryomyces hansenii, and Pichia anomala. The decarboxylation of sorbic acid was assessed as a possible mechanism of resistance in spoilage yeasts. The decarboxylation of either sorbic or cinnamic acid was not detected for Zygosaccharomyces, Kazachstania (Saccharomyces sensu lato), Zygotorulaspora, or Torulaspora, the genera containing the most notorious spoilage yeasts. Scatter plots showed no correlation between the extent of sorbic acid decarboxylation and resistance to sorbic acid in spoilage yeasts. Inhibitory concentrations of sorbic acid were almost identical for S. cerevisiae wild-type and Δpad1 strains. We concluded that Pad1p-mediated sorbic acid decarboxylation did not constitute a significant mechanism of resistance to weak-acid preservatives by spoilage yeasts, even if the decarboxylation contributed to spoilage through the generation of unpleasant odors. PMID:17766451

  9. Methylmalonic acid blood test

    MedlinePlus

    ... acid is a substance produced when proteins, called amino acids, in the body break down. The health care ... Cederbaum S, Berry GT. Inborn errors of carbohydrate, ammonia, amino acid, and organic acid metabolism. In: Gleason CA, Devaskar ...

  10. Folic Acid and Pregnancy

    MedlinePlus

    ... 5 Things to Know About Zika & Pregnancy Folic Acid and Pregnancy KidsHealth > For Parents > Folic Acid and ... before conception and during early pregnancy . About Folic Acid Folic acid, sometimes called folate, is a B ...

  11. Understanding Acid Rain

    ERIC Educational Resources Information Center

    Damonte, Kathleen

    2004-01-01

    The term acid rain describes rain, snow, or fog that is more acidic than normal precipitation. To understand what acid rain is, it is first necessary to know what an acid is. Acids can be defined as substances that produce hydrogen ions (H+), when dissolved in water. Scientists indicate how acidic a substance is by a set of numbers called the pH…

  12. Precipitation: its acidic nature.

    PubMed

    Frohliger, J O; Kane, R

    1975-08-01

    A comparison of the free hydrogen ion concentration and the total hydrogen ion concentration of rain samples shows that rain is a weak acid. The weak acid nature of rain casts doubt on the concepts that the acidity of rain is increasing and that these increases are due to strong acids such as sulfuric acid.

  13. Physiological responses to acid stress by Saccharomyces cerevisiae when applying high initial cell density

    PubMed Central

    Guo, Zhong-peng; Olsson, Lisbeth

    2016-01-01

    High initial cell density is used to increase volumetric productivity and shorten production time in lignocellulosic hydrolysate fermentation. Comparison of physiological parameters in high initial cell density cultivation of Saccharomyces cerevisiae in the presence of acetic, formic, levulinic and cinnamic acids demonstrated general and acid-specific responses of cells. All the acids studied impaired growth and inhibited glycolytic flux, and caused oxidative stress and accumulation of trehalose. However, trehalose may play a role other than protecting yeast cells from acid-induced oxidative stress. Unlike the other acids, cinnamic acid did not cause depletion of cellular ATP, but abolished the growth of yeast on ethanol. Compared with low initial cell density, increasing initial cell density reduced the lag phase and improved the bioconversion yield of cinnamic acid during acid adaptation. In addition, yeast cells were able to grow at elevated concentrations of acid, probable due to the increase in phenotypic cell-to-cell heterogeneity in large inoculum size. Furthermore, the specific growth rate and the specific rates of glucose consumption and metabolite production were significantly lower than at low initial cell density, which was a result of the accumulation of a large fraction of cells that persisted in a viable but non-proliferating state. PMID:27620460

  14. Amino Acid Metabolism Disorders

    MedlinePlus

    ... defects & other health conditions > Amino acid metabolism disorders Amino acid metabolism disorders E-mail to a friend Please ... baby’s newborn screening may include testing for certain amino acid metabolism disorders. These are rare health conditions that ...

  15. Carbolic acid poisoning

    MedlinePlus

    Phenol poisoning; Phenylic acid poisoning; Hydroxybenzene poisoning; Phenic acid poisoning; Benzenol poisoning ... Below are symptoms of carbolic acid poisoning in different parts of the ... urine Decreased urine output No urine output EYES, EARS, ...

  16. Azelaic Acid Topical

    MedlinePlus

    Azelaic acid gel is used to clear the bumps, lesions, and swelling caused by rosacea (a skin disease that ... redness, flushing, and pimples on the face). Azelaic acid cream is used to treat acne. Azelaic acid ...

  17. Uric acid test (image)

    MedlinePlus

    Uric acid urine test is performed to check for the amount of uric acid in urine. Urine is collected over a 24 ... testing. The most common reason for measuring uric acid levels is in the diagnosis or treatment of ...

  18. Facts about Folic Acid

    MedlinePlus

    ... Information For... Media Policy Makers Facts About Folic Acid Language: English Español (Spanish) Recommend on Facebook Tweet ... of the baby's brain and spine. About folic acid Folic acid is a B vitamin. Our bodies ...

  19. Acid Lipase Disease

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS NINDS Acid Lipase Disease Information Page Synonym(s): Cholesterol Ester Storage ... Trials Related NINDS Publications and Information What is Acid Lipase Disease ? Acid lipase disease or deficiency occurs ...

  20. Acid distribution in phosphoric acid fuel cells

    SciTech Connect

    Okae, I.; Seya, A.; Umemoto, M.

    1996-12-31

    Electrolyte acid distribution among each component of a cell is determined by capillary force when the cell is not in operation, but the distribution under the current load conditions had not been clear so far. Since the loss of electrolyte acid during operation is inevitable, it is necessary to store enough amount of acid in every cell. But it must be under the level of which the acid disturbs the diffusion of reactive gases. Accordingly to know the actual acid distribution during operation in a cell is very important. In this report, we carried out experiments to clarify the distribution using small single cells.

  1. A new approach to synthesis of benzyl cinnamate: Optimization by response surface methodology.

    PubMed

    Zhang, Dong-Hao; Zhang, Jiang-Yan; Che, Wen-Cai; Wang, Yun

    2016-09-01

    In this work, the new approach to synthesis of benzyl cinnamate by enzymatic esterification of cinnamic acid with benzyl alcohol is optimized by response surface methodology. The effects of various reaction conditions, including temperature, enzyme loading, substrate molar ratio of benzyl alcohol to cinnamic acid, and reaction time, are investigated. A 5-level-4-factor central composite design is employed to search for the optimal yield of benzyl cinnamate. A quadratic polynomial regression model is used to analyze the experimental data at a 95% confidence level (P<0.05). The coefficient of determination of this model is found to be 0.9851. Three sets of optimum reaction conditions are established, and the verified experimental trials are performed for validating the optimum points. Under the optimum conditions (40°C, 31mg/mL enzyme loading, 2.6:1 molar ratio, 27h), the yield reaches 97.7%, which provides an efficient processes for industrial production of benzyl cinnamate.

  2. Chlorogenic Acids Biosynthesis in Centella asiatica Cells Is not Stimulated by Salicylic Acid Manipulation.

    PubMed

    Ncube, E N; Steenkamp, P A; Madala, N E; Dubery, I A

    2016-07-01

    Exogenous application of synthetic and natural elicitors of plant defence has been shown to result in mass production of secondary metabolites with nutraceuticals properties in cultured cells. In particular, salicylic acid (SA) treatment has been reported to induce the production of phenylpropanoids, including cinnamic acid derivatives bound to quinic acid (chlorogenic acids). Centella asiatica is an important medicinal plant with several therapeutic properties owing to its wide spectrum of secondary metabolites. We investigated the effect of SA on C. asiatica cells by monitoring perturbation of chlorogenic acids in particular. Different concentrations of SA were used to treat C. asiatica cells, and extracts from both treated and untreated cells were analysed using an optimised UHPLC-QTOF-MS/MS method. Semi-targeted multivariate data analyses with the aid of principal component analysis (PCA) and orthogonal projection to latent structures-discriminant analysis (OPLS-DA) revealed a concentration-dependent metabolic response. Surprisingly, a range of chlorogenic acid derivatives were found to be downregulated as a consequence of SA treatment. Moreover, irbic acid (3,5-O-dicaffeoyl-4-O-malonilquinic acid) was found to be a dominant CGA in C. asiatica cells, although the SA treatment also had a negative effect on its concentration. Overall SA treatment was found to be an ineffective elicitor of CGA production in cultured C. asiatica cells.

  3. Analysis of Melamine, Cyanuric Acid, Ammelide, and Ammeline Using Matrix-Asssisted Laser Desorption Ionization/Time-of-Flight Mass Spectrometry (MALDI/TOFMS)

    SciTech Connect

    Campbell, James A.; Wunschel, David S.; Petersen, Catherine E.

    2007-12-01

    Melamine and cyanuric acid, two compounds connected to tainted pet food, have been analyzed using matrix-assisted laser desorption ionization/time-of-flight mass spectrometry. (M+H)+ ions were observed for melamine, ammelide, and ammeline under positive ion conditions with sinapinic acid as the matrix. With alpha-cyano-4-hydroxy-cinnamic acid as the matrix, a matrix-melamine complex was observed. (M-H)- was observed for cyanuric acid with sinapinic acid as the matrix.

  4. Breeding Vegetables with Increased Content in Bioactive Phenolic Acids.

    PubMed

    Kaushik, Prashant; Andújar, Isabel; Vilanova, Santiago; Plazas, Mariola; Gramazio, Pietro; Herraiz, Francisco Javier; Brar, Navjot Singh; Prohens, Jaime

    2015-01-01

    Vegetables represent a major source of phenolic acids, powerful antioxidants characterized by an organic carboxylic acid function and which present multiple properties beneficial for human health. In consequence, developing new varieties with enhanced content in phenolic acids is an increasingly important breeding objective. Major phenolic acids present in vegetables are derivatives of cinnamic acid and to a lesser extent of benzoic acid. A large diversity in phenolic acids content has been found among cultivars and wild relatives of many vegetable crops. Identification of sources of variation for phenolic acids content can be accomplished by screening germplasm collections, but also through morphological characteristics and origin, as well as by evaluating mutations in key genes. Gene action estimates together with relatively high values for heritability indicate that selection for enhanced phenolic acids content will be efficient. Modern genomics and biotechnological strategies, such as QTL detection, candidate genes approaches and genetic transformation, are powerful tools for identification of genomic regions and genes with a key role in accumulation of phenolic acids in vegetables. However, genetically increasing the content in phenolic acids may also affect other traits important for the success of a variety. We anticipate that the combination of conventional and modern strategies will facilitate the development of a new generation of vegetable varieties with enhanced content in phenolic acids.

  5. Acid tolerance in amphibians

    SciTech Connect

    Pierce, B.A.

    1985-04-01

    Studies of amphibian acid tolerance provide information about the potential effects of acid deposition on amphibian communities. Amphibians as a group appear to be relatively acid tolerant, with many species suffering increased mortality only below pH 4. However, amphibians exhibit much intraspecific variation in acid tolerance, and some species are sensitive to even low levels of acidity. Furthermore, nonlethal effects, including depression of growth rates and increases in developmental abnormalities, can occur at higher pH.

  6. Bioconversions of ferulic acid, an hydroxycinnamic acid.

    PubMed

    Mathew, Sindhu; Abraham, T Emilia

    2006-01-01

    Ferulic acid is the most abundant hydroxycinnamic acid in the plant world and is ester linked to arabinose, in various plant polysaccharides such as arabinoxylans and pectins. It is a precursor to vanillin, one of the most important aromatic flavor compound used in foods, beverages, pharmaceuticals, and perfumes. This article presents an overview of the various biocatalytic routes, focusing on the relevant biotransformations of ferulic acid using plant sources, microorganisms, and enzymes.

  7. Anti-Thrombosis Activity of Sinapic Acid Isolated from the Lees of Bokbunja Wine.

    PubMed

    Kim, Mi-Sun; Shin, Woo-Chang; Kang, Dong-Kyoon; Sohn, Ho-Yong

    2016-01-01

    From the lees of bokbunja wine (LBW) made from Rubus coreanus Miquel, we have identified six compounds (1: trans-4-hydroxycinnamic acid; 2: trans-4-hydroxy-3-methoxycinnamic acid; 3: 3,4-dihydroxycinnamic acid; 4: 4-hydroxy-3-methoxybenzoic acid; 5: 3,5-dimethoxy-4- hydroxybenzoic acid; and 6: 3,5-dimethoxy-4-hydroxycinnamic acid (sinapic acid)) through silica gel chromatography and UHPLC-MS. The compounds 1-6 showed strong anticoagulation and platelet aggregation inhibitory activities without hemolytic effect against human red blood cells. To date, this is the first report of the in vitro anti-thrombosis activity of sinapic acid. Our results suggest that different cinnamic and benzoic acid derivatives are closely linked to the anti-thrombosis activity of LBW, and sinapic acid could be developed as a promising anti-thrombosis agent. PMID:26387815

  8. Branched Arylalkenes from Cinnamates: Selectivity Inversion in Heck Reactions by Carboxylates as Deciduous Directing Groups.

    PubMed

    Tang, Jie; Hackenberger, Dagmar; Goossen, Lukas J

    2016-09-01

    A decarboxylative Mizoroki-Heck coupling of aryl halides with cinnamic acids has been developed in which the carboxylate group directs the arylation into its β-position before being tracelessly removed through protodecarboxylation. In the presence of a copper/palladium catalyst, both electron-rich and electron-deficient aryl bromides and chlorides bearing numerous functionalities were successfully coupled with broadly available cinnamates, with selective formation of 1,1-disubstituted alkenes. This reaction concept, in which the carboxylate acts as a deciduous directing group, ideally complements traditional 1,2-selective Heck reactions of styrenes. PMID:27485163

  9. Syntheses and biological activities of pyranyl-substituted cinnamates.

    PubMed

    Zhu, J; Majikina, M; Tawata, S

    2001-01-01

    Twenty-two kinds of pyranyl-substituted cinnamates were synthesized by the reaction of 4-hydroxy-6-(2-phenylethyl)-2H-pyran-2-one or 4-hydroxy-6-methyl-2H-pyran-2-one (HMP) with a variety of substituted cinnamic acids, and their antifungal and plant growth inhibitory activities were investigated. Among the compounds prepared, 6-methyl-2-oxo-2H-pyran-4-yl 3-(4-isopropylphenyl)propenoate (H5) showed the strongest antifungal activity against Rhizoctonia solani and Sclerotium dellfinii, and 6-methyl-2-oxo-2H-pyran-4-yl 3-(2-methylphenyl)propenoate (H2) had the highest plant growth inhibitory activity toward Brassica rapa.

  10. Novel enzymatic synthesis of 4-O-cinnamoyl quinic and shikimic acid derivatives.

    PubMed

    Armesto, Nuria; Ferrero, Miguel; Fernández, Susana; Gotor, Vicente

    2003-07-11

    The first direct synthesis of 4-O-cinnamoyl derivatives of quinic and shikimic acids were accomplished by regioselective esterification with Candida antarctica lipase A. For hydrocinnamic esters, enzymatic transesterification with vinyl esters gave excellent yields. However, more reactive acylating agents such as anhydrides were used to synthesize cinnamic derivatives of both acids. An inhibitory effect was observed with this lipase for p-methoxy, p-hydroxy, and p-acetoxy vinyl ester and anhydride derivatives (coumarate and ferulate derivatives).

  11. Water extract of propolis and its main constituents, caffeoylquinic acid derivatives, exert neuroprotective effects via antioxidant actions.

    PubMed

    Nakajima, Yoshimi; Shimazawa, Masamitsu; Mishima, Satoshi; Hara, Hideaki

    2007-01-01

    We investigated whether water extract of Brazilian green propolis (WEP) and its main constituents [caffeoylquinic acid derivatives (3,4-di-O-caffeoylquinic acid, 3,5-di-O-caffeoylquinic acid, chlorogenic acid) and cinnamic acid derivatives (p-coumaric acid, artepillin C, drupanin, baccharin)] exert neuroprotective effects against the retinal damage induced by oxidative stress. Additionally, their neuroprotective effects were compared with their antioxidant effects. WEP, 3,4-di-O-caffeoylquinic acid, 3,5-di-O-caffeoylquinic acid, chlorogenic acid, and p-coumaric acid (but not artepillin C, baccharin, or drupanin) concentration-dependently inhibited oxidative stress-induced neurotoxicity [achieved using L-buthionine-(S,R)-sulfoximine (BSO) to deplete glutathione in combination with glutamate to inhibit cystine uptake] in cultured retinal ganglion cells (RGC-5, a rat ganglion cell line transformed using E1A virus). At their effective concentrations against oxidative stress-induced retinal damage, WEP, 3,4-di-caffeoylquinic acid, 3,5-di-caffeoylquinic acid, and chlorogenic acid (but not cinnamic acid derivatives) inhibited lipid peroxidation (LPO) in mouse forebrain homogenates. Thus, the neuroprotective effects of WEP and caffeoylquinic acid derivatives paralleled those against LPO. These findings indicate that WEP and caffeoylquinic acid derivatives have neuroprotective effects against retinal damage in vitro, and that these effects may be partly mediated via antioxidant effects.

  12. Acid Thunder: Acid Rain and Ancient Mesoamerica

    ERIC Educational Resources Information Center

    Kahl, Jonathan D. W.; Berg, Craig A.

    2006-01-01

    Much of Mesoamerica's rich cultural heritage is slowly eroding because of acid rain. Just as water dissolves an Alka-Seltzer tablet, acid rain erodes the limestone surfaces of Mexican archaeological sites at a rate of about one-half millimeter per century (Bravo et al. 2003). A half-millimeter may not seem like much, but at this pace, a few…

  13. Quantity of acid in acid fog

    SciTech Connect

    Deal, W.J.

    1983-07-01

    This communication notes the actual magnitude of the acidity in acidic fog particles and suggests a possible line of inquiry into the health effects of such fog so that it can be determined whether a typical fog is detrimental or beneficial relative to dry air.

  14. Fermentation products of solvent tolerant marine bacterium Moraxella spp. MB1 and its biotechnological applications in salicylic acid bioconversion.

    PubMed

    Wahidullah, Solimabi; Naik, Deepak N; Devi, Prabha

    2013-01-01

    As part of a proactive approach to environmental protection, emerging issues with potential impact on the environment is the subject of ongoing investigation. One emerging area of environmental research concerns pharmaceuticals like salicylic acid, which is the main metabolite of various analgesics including aspirin. It is a common component of sewage effluent and also an intermediate in the degradation pathway of various aromatic compounds which are introduced in the marine environment as pollutants. In this study, biotransformation products of salicylic acid by seaweed, Bryopsis plumosa, associated marine bacterium, Moraxella spp. MB1, have been investigated. Phenol, conjugates of phenol and hydroxy cinnamic acid derivatives (coumaroyl, caffeoyl, feruloyl and trihydroxy cinnamyl) with salicylic acid (3-8) were identified as the bioconversion products by electrospray ionization mass spectrometry. These results show that the microorganism do not degrade phenolic acid but catalyses oxygen dependent transformations without ring cleavage. The degradation of salicylic acid is known to proceed either via gentisic acid pathway or catechol pathway but this is the first report of biotransformation of salicylic acid into cinnamates, without ring cleavage. Besides cinnamic acid derivatives (9-12), metabolites produced by the bacterium include antimicrobial indole (13) and β-carbolines, norharman (14), harman (15) and methyl derivative (16), which are beneficial to the host and the environment. PMID:24391802

  15. Fermentation products of solvent tolerant marine bacterium Moraxella spp. MB1 and its biotechnological applications in salicylic acid bioconversion.

    PubMed

    Wahidullah, Solimabi; Naik, Deepak N; Devi, Prabha

    2013-01-01

    As part of a proactive approach to environmental protection, emerging issues with potential impact on the environment is the subject of ongoing investigation. One emerging area of environmental research concerns pharmaceuticals like salicylic acid, which is the main metabolite of various analgesics including aspirin. It is a common component of sewage effluent and also an intermediate in the degradation pathway of various aromatic compounds which are introduced in the marine environment as pollutants. In this study, biotransformation products of salicylic acid by seaweed, Bryopsis plumosa, associated marine bacterium, Moraxella spp. MB1, have been investigated. Phenol, conjugates of phenol and hydroxy cinnamic acid derivatives (coumaroyl, caffeoyl, feruloyl and trihydroxy cinnamyl) with salicylic acid (3-8) were identified as the bioconversion products by electrospray ionization mass spectrometry. These results show that the microorganism do not degrade phenolic acid but catalyses oxygen dependent transformations without ring cleavage. The degradation of salicylic acid is known to proceed either via gentisic acid pathway or catechol pathway but this is the first report of biotransformation of salicylic acid into cinnamates, without ring cleavage. Besides cinnamic acid derivatives (9-12), metabolites produced by the bacterium include antimicrobial indole (13) and β-carbolines, norharman (14), harman (15) and methyl derivative (16), which are beneficial to the host and the environment.

  16. Fermentation Products of Solvent Tolerant Marine Bacterium Moraxella spp. MB1 and Its Biotechnological Applications in Salicylic Acid Bioconversion

    PubMed Central

    Wahidullah, Solimabi; Naik, Deepak N.; Devi, Prabha

    2013-01-01

    As part of a proactive approach to environmental protection, emerging issues with potential impact on the environment is the subject of ongoing investigation. One emerging area of environmental research concerns pharmaceuticals like salicylic acid, which is the main metabolite of various analgesics including aspirin. It is a common component of sewage effluent and also an intermediate in the degradation pathway of various aromatic compounds which are introduced in the marine environment as pollutants. In this study, biotransformation products of salicylic acid by seaweed, Bryopsis plumosa, associated marine bacterium, Moraxella spp. MB1, have been investigated. Phenol, conjugates of phenol and hydroxy cinnamic acid derivatives (coumaroyl, caffeoyl, feruloyl and trihydroxy cinnamyl) with salicylic acid (3–8) were identified as the bioconversion products by electrospray ionization mass spectrometry. These results show that the microorganism do not degrade phenolic acid but catalyses oxygen dependent transformations without ring cleavage. The degradation of salicylic acid is known to proceed either via gentisic acid pathway or catechol pathway but this is the first report of biotransformation of salicylic acid into cinnamates, without ring cleavage. Besides cinnamic acid derivatives (9–12), metabolites produced by the bacterium include antimicrobial indole (13) and β-carbolines, norharman (14), harman (15) and methyl derivative (16), which are beneficial to the host and the environment. PMID:24391802

  17. Lactic acid test

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003507.htm Lactic acid test To use the sharing features on this page, please enable JavaScript. Lactic acid is mainly produced in muscle cells and red ...

  18. Omega-6 Fatty Acids

    MedlinePlus

    ... types of fats. Some types are found in vegetable oils, including corn, evening primrose seed, safflower, and soybean ... from studying specific omega-6 fatty acids or plant oils containing omega-6 fatty acids. See the separate ...

  19. Fatty acid analogs

    DOEpatents

    Elmaleh, David R.; Livni, Eli

    1985-01-01

    In one aspect, a radioactively labeled analog of a fatty acid which is capable of being taken up by mammalian tissue and which exhibits an in vivo beta-oxidation rate below that with a corresponding radioactively labeled fatty acid.

  20. Deoxycholic Acid Injection

    MedlinePlus

    Deoxycholic acid injection is used to improve the appearance and profile of moderate to severe submental fat ('double chin'; fatty tissue located under the chin). Deoxycholic acid injection is in a class of medications called ...

  1. Aminocaproic Acid Injection

    MedlinePlus

    Aminocaproic acid injection is used to control bleeding that occurs when blood clots are broken down too quickly. This ... the baby is ready to be born). Aminocaproic acid injection is also used to control bleeding in ...

  2. Zoledronic Acid Injection

    MedlinePlus

    ... acid (Reclast) is used to prevent or treat osteoporosis (condition in which the bones become thin and ... Zoledronic acid (Reclast) is also used to treat osteoporosis in men, and to prevent or treat osteoporosis ...

  3. Uric Acid Test

    MedlinePlus

    ... limited. Home Visit Global Sites Search Help? Uric Acid Share this page: Was this page helpful? Also known as: Serum Urate; UA Formal name: Uric Acid Related tests: Synovial Fluid Analysis , Kidney Stone Analysis , ...

  4. Methylmalonic Acid Test

    MedlinePlus

    ... limited. Home Visit Global Sites Search Help? Methylmalonic Acid Share this page: Was this page helpful? Also known as: MMA Formal name: Methylmalonic Acid Related tests: Vitamin B12 and Folate , Homocysteine , Intrinsic ...

  5. Hydrochloric acid poisoning

    MedlinePlus

    Hydrochloric acid is a clear, poisonous liquid. It is highly corrosive, which means it immediately causes severe ... discusses poisoning due to swallowing or breathing in hydrochloric acid. This article is for information only. Do ...

  6. Mixed Acid Oxidation

    SciTech Connect

    Pierce, R.A.

    1999-10-26

    Several non-thermal processes have been developed to destroy organic waste compounds using chemicals with high oxidation potentials. These efforts have focused on developing technologies that work at low temperatures, relative to incineration, to overcome many of the regulatory issues associated with obtaining permits for waste incinerators. One such technique with great flexibility is mixed acid oxidation. Mixed acid oxidation, developed at the Savannah River Site, uses a mixture of an oxidant (nitric acid) and a carrier acid (phosphoric acid). The carrier acid acts as a non-volatile holding medium for the somewhat volatile oxidant. The combination of acids allows appreciable amounts of the concentrated oxidant to remain in the carrier acid well above the oxidant''s normal boiling point.

  7. Plant fatty acid hydroxylases

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank

    2001-01-01

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  8. PRODUCTION OF TRIFLUOROACETIC ACID

    DOEpatents

    Haworth, W.N.; Stacey, M.

    1949-07-19

    A method is given for the production of improved yields of trifluoroacetic acid. The compound is prepared by oxidizing m-aminobenzotrifluoride with an alkali metal or alkaline earth metal permanganate at a temperature in the range of 80 deg C to 100 deg C while dissolved ln a mixture of water with glacial acetic acid and/or trifluoroacetic acid. Preferably a mixture of water and trifluoroacetic acid ls used as the solvent.

  9. Possible evidence of amide bond formation between sinapinic acid and lysine-containing bacterial proteins by matrix-assisted laser desorption/ionization (MALDI) at 355 nm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We previously reported the apparent formation of matrix adducts of 3,5-dimethoxy-4-hydroxy-cinnamic acid (sinapinic acid or SA) via covalent attachment to disulfide bond-containing proteins (HdeA, HdeB and YbgS) from bacterial cell lysates ionized by matrix-assisted laser desorption/ionization (MALD...

  10. Quantity of acid in acid fog

    SciTech Connect

    Deal, W.J.

    1983-07-01

    The chemical composition of fog particles has become of considerable interest, because of both the possibility of interpreting atmospheric- chemistry processes in fog particles in terms of the principles of aqueous chemistry and the potential health effects of species present in fog particles. The acidity of fog particles has received wide attention. This communication noted the actual magnitude of the excess acidity in acidic fog particles and suggested a possible line of inquiry into the health effects of such fog so that it can be determined whether a typical fog is detrimental or beneficial relative to dry air. (DP)

  11. Acid Rain Study Guide.

    ERIC Educational Resources Information Center

    Hunger, Carolyn; And Others

    Acid rain is a complex, worldwide environmental problem. This study guide is intended to aid teachers of grades 4-12 to help their students understand what acid rain is, why it is a problem, and what possible solutions exist. The document contains specific sections on: (1) the various terms used in conjunction with acid rain (such as acid…

  12. The Acid Rain Reader.

    ERIC Educational Resources Information Center

    Stubbs, Harriett S.; And Others

    A topic which is often not sufficiently dealt with in elementary school textbooks is acid rain. This student text is designed to supplement classroom materials on the topic. Discussed are: (1) "Rain"; (2) "Water Cycle"; (3) "Fossil Fuels"; (4) "Air Pollution"; (5) "Superstacks"; (6) "Acid/Neutral/Bases"; (7) "pH Scale"; (8) "Acid Rain"; (9)…

  13. What Is Acid Rain?

    ERIC Educational Resources Information Center

    Likens, Gene E.

    2004-01-01

    Acid rain is the collective term for any type of acidified precipitation: rain, snow, sleet, and hail, as well as the presence of acidifying gases, particles, cloud water, and fog in the atmosphere. The increased acidity, primarily from sulfuric and nitric acids, is generated as a by-product of the combustion of fossil fuels such as coal and oil.…

  14. [alpha]-Oxocarboxylic Acids

    ERIC Educational Resources Information Center

    Kerber, Robert C.; Fernando, Marian S.

    2010-01-01

    Several [alpha]-oxocarboxylic acids play key roles in metabolism in plants and animals. However, there are inconsistencies between the structures as commonly portrayed and the reported acid ionization constants, which result because the acids are predominantly hydrated in aqueous solution; that is, the predominant form is RC(OH)[subscript 2]COOH…

  15. Intermediates of Salicylic Acid Biosynthesis in Tobacco1

    PubMed Central

    Ribnicky, David M.; Shulaev, Vladimir; Raskin, Ilya

    1998-01-01

    Salicylic acid (SA) is an important component of systemic-acquired resistance in plants. It is synthesized from benzoic acid (BA) as part of the phenylpropanoid pathway. Benzaldehyde (BD), a potential intermediate of this pathway, was found in healthy and tobacco mosaic virus (TMV)-inoculated tobacco (Nicotiana tabacum L. cv Xanthi-nc) leaf tissue at 100 ng/g fresh weight concentrations as measured by gas chromatography-mass spectrometry. BD was also emitted as a volatile organic compound from tobacco tissues. Application of gaseous BD to plants enclosed in jars caused a 13-fold increase in SA concentration, induced the accumulation of the pathogenesis-related transcript PR-1, and increased the resistance of tobacco to TMV inoculation. [13C6]BD and [2H5]benzyl alcohol were converted to BA and SA. Labeling experiments using [13C1]Phe in temperature-shifted plants inoculated with the TMV showed high enrichment of cinnamic acids (72%), BA (34%), and SA (55%). The endogenous BD, however, contained nondetectable enrichment, suggesting that BD was not the intermediate between cinnamic acid and BA. These results show that BD and benzyl alcohol promote SA accumulation and expression of defense responses in tobacco, and provide insight into the early steps of SA biosynthesis. PMID:9765542

  16. Nucleic acid detection compositions

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann; Dahlberg, James L.

    2008-08-05

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  17. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.

    2000-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  18. Nucleic acid detection assays

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann; Dahlberg, James E.

    2005-04-05

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  19. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor L.; Brow, Mary Ann D.; Dahlberg, James E.

    2007-12-11

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  20. Cleavage of nucleic acids

    SciTech Connect

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow; Mary Ann D.; Dahlberg, James E.

    2010-11-09

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  1. Editorial: Acid precipitation

    SciTech Connect

    1995-09-01

    This editorial focuses on acid rain and the history of public and governmental response to acid rain. Comments on a book by Gwineth Howell `Acid Rain and Acid Waters` are included. The editor feels that Howells has provide a service to the environmental scientific community, with a textbook useful to a range of people, as well as a call for decision makers to learn from the acid rain issue and use it as a model for more sweeping global environmental issues. A balance is needed among several parameters such as level of evidence, probability that the evidence will lead to a specific direction and the cost to the global community. 1 tab.

  2. [Safety of folic acid].

    PubMed

    Ströhle, Alexander; Wolters, Maike; Hahn, Andreas

    2015-08-01

    Improving dietary folate intake is a central public health goal. However, critical voices have become louder warning of too high intake of folic acid. Safety concerns of a high folic acid exposure are usually limited to synthetic folic acid contained in drugs and food supplements. Against this background, the present article focuses on two matters: (a) How do the absorption and metabolism of synthetic folic acid differ from that of other folates? (b) How has the longterm safety of folic acid to be judged, especially regarding the risk of colorectal cancer, autism, asthma, impaired immune defence, masking vitamin B12 deficiency and interactions with the methotrexate metabolism?

  3. Amino acid analysis

    NASA Technical Reports Server (NTRS)

    Winitz, M.; Graff, J. (Inventor)

    1974-01-01

    The process and apparatus for qualitative and quantitative analysis of the amino acid content of a biological sample are presented. The sample is deposited on a cation exchange resin and then is washed with suitable solvents. The amino acids and various cations and organic material with a basic function remain on the resin. The resin is eluted with an acid eluant, and the eluate containing the amino acids is transferred to a reaction vessel where the eluant is removed. Final analysis of the purified acylated amino acid esters is accomplished by gas-liquid chromatographic techniques.

  4. Acidic Ionic Liquids.

    PubMed

    Amarasekara, Ananda S

    2016-05-25

    Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition.

  5. Nucleic acid detection kits

    DOEpatents

    Hall, Jeff G.; Lyamichev, Victor I.; Mast, Andrea L.; Brow, Mary Ann; Kwiatkowski, Robert W.; Vavra, Stephanie H.

    2005-03-29

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based on charge. The present invention also provides methods for the detection of non-target cleavage products via the formation of a complete and activated protein binding region. The invention further provides sensitive and specific methods for the detection of nucleic acid from various viruses in a sample.

  6. Acidic Ionic Liquids.

    PubMed

    Amarasekara, Ananda S

    2016-05-25

    Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition. PMID:27175515

  7. Boric acid and boronic acids inhibition of pigeonpea urease.

    PubMed

    Reddy, K Ravi Charan; Kayastha, Arvind M

    2006-08-01

    Urease from the seeds of pigeonpea was competitively inhibited by boric acid, butylboronic acid, phenylboronic acid, and 4-bromophenylboronic acid; 4-bromophenylboronic acid being the strongest inhibitor, followed by boric acid > butylboronic acid > phenylboronic acid, respectively. Urease inhibition by boric acid is maximal at acidic pH (5.0) and minimal at alkaline pH (10.0), i.e., the trigonal planar B(OH)3 form is a more effective inhibitor than the tetrahedral B(OH)4 -anionic form. Similarly, the anionic form of phenylboronic acid was least inhibiting in nature.

  8. Process for the preparation of lactic acid and glyceric acid

    DOEpatents

    Jackson, James E [Haslett, MI; Miller, Dennis J [Okemos, MI; Marincean, Simona [Dewitt, MI

    2008-12-02

    Hexose and pentose monosaccharides are degraded to lactic acid and glyceric acid in an aqueous solution in the presence of an excess of a strongly anionic exchange resin, such as AMBERLITE IRN78 and AMBERLITE IRA400. The glyceric acid and lactic acid can be separated from the aqueous solution. Lactic acid and glyceric acid are staple articles of commerce.

  9. Well acidizing compositions and methods

    SciTech Connect

    Swanson, B. L.

    1980-12-23

    Gelled acidic compositions suitable for matrix acidizing or fracture acidizing of subterranean formations are provided comprising water, a water-dispersible polymeric viscosifier such as a polymer of acrylamide, an acid, and a polyphenolic material such as lignite.

  10. Bile acids but not acidic acids induce Barrett's esophagus.

    PubMed

    Sun, Dongfeng; Wang, Xiao; Gai, Zhibo; Song, Xiaoming; Jia, Xinyong; Tian, Hui

    2015-01-01

    Barrett's esophagus (BE) is associated with the development of esophageal adenocarcinoma (EAC). Bile acids (BAs) refluxing into the esophagus contribute to esophageal injury, which results in BE and subsequent EAC. We developed two animal models to test the role of BAs in the pathogenesis of BE. We surgically generated BA reflux, with or without gastric acid, in rats. In a second experiment, we fed animals separately with BAs and gastric acid. Pathologic changes were examined and the expression of Muc2 and Cdx2 in BE tissue was tested by immunostaining. Inflammatory factors in the plasma, as well as differentiation genes in BE were examined through highly sensitive ELISA and semi-quantitative RT-PCR techniques. We found that BAs are sufficient for the induction of esophagitis and Barrett's-like metaplasia in the esophagus. Overexpression of inflammatory cells, IL-6, and TNF-α was observed both in animals fed with BAs and surgically generated BA reflux. Furthermore, elevated levels of Cdx2, Muc2, Bmp4, Kit19, and Tff2 (differentiation genes in BE) were found in BA-treated rats. In conclusion, BAs, but not gastric acid, are a major causative factor for BE. We confirmed that BAs contribute to the development of BE by inducing the inflammatory response in the esophagus. Inhibiting BAs may be a promising therapy for BE.

  11. Microorganisms for producing organic acids

    DOEpatents

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-09-30

    Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

  12. Acid-Base Homeostasis.

    PubMed

    Hamm, L Lee; Nakhoul, Nazih; Hering-Smith, Kathleen S

    2015-12-01

    Acid-base homeostasis and pH regulation are critical for both normal physiology and cell metabolism and function. The importance of this regulation is evidenced by a variety of physiologic derangements that occur when plasma pH is either high or low. The kidneys have the predominant role in regulating the systemic bicarbonate concentration and hence, the metabolic component of acid-base balance. This function of the kidneys has two components: reabsorption of virtually all of the filtered HCO3(-) and production of new bicarbonate to replace that consumed by normal or pathologic acids. This production or generation of new HCO3(-) is done by net acid excretion. Under normal conditions, approximately one-third to one-half of net acid excretion by the kidneys is in the form of titratable acid. The other one-half to two-thirds is the excretion of ammonium. The capacity to excrete ammonium under conditions of acid loads is quantitatively much greater than the capacity to increase titratable acid. Multiple, often redundant pathways and processes exist to regulate these renal functions. Derangements in acid-base homeostasis, however, are common in clinical medicine and can often be related to the systems involved in acid-base transport in the kidneys.

  13. In vitro inhibition of canine distemper virus by flavonoids and phenolic acids: implications of structural differences for antiviral design.

    PubMed

    Carvalho, O V; Botelho, C V; Ferreira, C G T; Ferreira, H C C; Santos, M R; Diaz, M A N; Oliveira, T T; Soares-Martins, J A P; Almeida, M R; Silva, A

    2013-10-01

    Infection caused by canine distemper virus (CDV) is a highly contagious disease with high incidence and lethality in the canine population. Antiviral activity of flavonoids quercetin, morin, rutin and hesperidin, and phenolic cinnamic, trans-cinnamic and ferulic acids were evaluated in vitro against the CDV using the time of addition assay to determine which step of the viral replicative cycle was affected. All flavonoids displayed great viral inhibition when they were added at the times 0 (adsorption) and 1h (penetration) of the viral replicative cycle. Both quercetin and hesperidin presented antiviral activity at the time 2h (intracellular). In the other hand, cinnamic acid showed antiviral activity at the times 0 and 2h while trans-cinnamic acid showed antiviral effect at the times -1h (pre-treatment) and 0 h. Ferulic acid inhibited CDV replicative cycle at the times 0 and 1h. Our study revealed promising candidates to be considered in the treatment of CDV. Structural differences among compounds and correlation to their antiviral activity were also explored. Our analysis suggest that these compounds could be useful in order to design new antiviral drugs against CDV as well as other viruses of great meaning in veterinary medicine.

  14. The metabolic pathway of salicylic acid rather than of chlorogenic acid is involved in the stress-induced flowering of Pharbitis nil.

    PubMed

    Hatayama, Tomomi; Takeno, Kiyotoshi

    2003-05-01

    We examined the involvement of chlorogenic acid (CGA) and salicylic acid (SA) in the stress-induced flowering of Pharbitis nil (synonym Ipomoea nil). The incorporation efficiency of exogenously applied CGA and the deactivation rate of incorporated CGA were determined in cotyledons by high-performance liquid chromatography. The assay plants could not incorporate a sufficient amount of CGA via roots. The perfusion technique by which the assay solution was forced into the plant from the cut end of the hypocotyl improved the efficiency of CGA incorporation. However, no flower-inducing activity was detected, indicating that CGA was not involved in flowering. It was concluded that the close correlation between CGA content and flowering response is merely coincidence or a parallelism. Flowering under long-day conditions induced by low-temperature stress was completely inhibited by aminooxyacetic acid (AOA), an inhibitor of phenylalanine ammonialyase. The flower-inhibiting effect of AOA was nullified by co-applied t-cinnamic acid and by benzoic acid. This indicates that the metabolic pathway from t-cinnamic acid to SA via benzoic acid is involved in the stress-induced flowering. The results indicate that the metabolic pathway of SA is involved in the stress-induced flowering of P. nil not the metabolic pathway of CGA.

  15. Citric Acid Alternative to Nitric Acid Passivation

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie L. (Compiler)

    2013-01-01

    The Ground Systems Development and Operations GSDO) Program at NASA John F. Kennedy Space Center (KSC) has the primary objective of modernizing and transforming the launch and range complex at KSC to benefit current and future NASA programs along with other emerging users. Described as the launch support and infrastructure modernization program in the NASA Authorization Act of 2010, the GSDO Program will develop and implement shared infrastructure and process improvements to provide more flexible, affordable, and responsive capabilities to a multi-user community. In support of the GSDO Program, the purpose of this project is to demonstratevalidate citric acid as a passivation agent for stainless steel. Successful completion of this project will result in citric acid being qualified for use as an environmentally preferable alternative to nitric acid for passivation of stainless steel alloys in NASA and DoD applications.

  16. Enzymatic gallic acid esterification.

    PubMed

    Weetal, H H

    1985-02-01

    Gallic acid esters of n-propyl and amyl alcohols have been produced by enzymatic synthesis in organic solvents using immobilized tannase. Studies indicate that maximum esterification of gallic acid occurs with amyl alcohol. The enzyme shows broad alcohol specificity. However, the enzyme exhibits absolute specificity for the acid portion of the ester. Studies were carried out on K(m), V(max), pH, and temperature optima.

  17. Amino acids and proteins.

    PubMed

    van Goudoever, Johannes B; Vlaardingerbroek, Hester; van den Akker, Chris H; de Groof, Femke; van der Schoor, Sophie R D

    2014-01-01

    Amino acids and protein are key factors for growth. The neonatal period requires the highest intake in life to meet the demands. Those demands include amino acids for growth, but proteins and amino acids also function as signalling molecules and function as neurotransmitters. Often the nutritional requirements are not met, resulting in a postnatal growth restriction. However, current knowledge on adequate levels of both amino acid as well as protein intake can avoid under nutrition in the direct postnatal phase, avoid the need for subsequent catch-up growth and improve later outcome.

  18. USGS Tracks Acid Rain

    USGS Publications Warehouse

    Gordon, John D.; Nilles, Mark A.; Schroder, LeRoy J.

    1995-01-01

    The U.S. Geological Survey (USGS) has been actively studying acid rain for the past 15 years. When scientists learned that acid rain could harm fish, fear of damage to our natural environment from acid rain concerned the American public. Research by USGS scientists and other groups began to show that the processes resulting in acid rain are very complex. Scientists were puzzled by the fact that in some cases it was difficult to demonstrate that the pollution from automobiles and factories was causing streams or lakes to become more acidic. Further experiments showed how the natural ability of many soils to neutralize acids would reduce the effects of acid rain in some locations--at least as long as the neutralizing ability lasted (Young, 1991). The USGS has played a key role in establishing and maintaining the only nationwide network of acid rain monitoring stations. This program is called the National Atmospheric Deposition Program/National Trends Network (NADP/NTN). Each week, at approximately 220 NADP/NTN sites across the country, rain and snow samples are collected for analysis. NADP/NTN site in Montana. The USGS supports about 72 of these sites. The information gained from monitoring the chemistry of our nation's rain and snow is important for testing the results of pollution control laws on acid rain.

  19. Recovery of organic acids

    DOEpatents

    Verser, Dan W.; Eggeman, Timothy J.

    2011-11-01

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  20. Recovery of organic acids

    DOEpatents

    Verser, Dan W.; Eggeman, Timothy J.

    2009-10-13

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  1. Mutant fatty acid desaturase

    DOEpatents

    Shanklin, John; Cahoon, Edgar B.

    2004-02-03

    The present invention relates to a method for producing mutants of a fatty acid desaturase having a substantially increased activity towards fatty acid substrates with chains containing fewer than 18 carbons relative to an unmutagenized precursor desaturase having an 18 carbon atom chain length substrate specificity. The method involves inducing one or more mutations in the nucleic acid sequence encoding the precursor desaturase, transforming the mutated sequence into an unsaturated fatty acid auxotroph cell such as MH13 E. coli, culturing the cells in the absence of supplemental unsaturated fatty acids, thereby selecting for recipient cells which have received and which express a mutant fatty acid desaturase with an elevated specificity for fatty acid substrates having chain lengths of less than 18 carbon atoms. A variety of mutants having 16 or fewer carbon atom chain length substrate specificities are produced by this method. Mutant desaturases produced by this method can be introduced via expression vectors into prokaryotic and eukaryotic cells and can also be used in the production of transgenic plants which may be used to produce specific fatty acid products.

  2. Amino Acid Crossword Puzzle

    ERIC Educational Resources Information Center

    Sims, Paul A.

    2011-01-01

    Learning the 20 standard amino acids is an essential component of an introductory course in biochemistry. Later in the course, the students study metabolism and learn about various catabolic and anabolic pathways involving amino acids. Learning new material or concepts often is easier if one can connect the new material to what one already knows;…

  3. Toxicology of Perfluoroalkyl acids

    EPA Science Inventory

    The Perfluoroalkyl acids(PFAAs) area a family of organic chemicals consisting of a perflurinated carbon backbone (4-12in length) and a acidic functional moiety (Carboxylate or sulfonate). These compounds have excellent surface-tension reducing properties and have numerous industr...

  4. Uric acid - blood

    MedlinePlus

    ... High levels of uric acid can sometimes cause gout or kidney disease. You may have this test if you have had or are about to have certain types of chemotherapy. Rapid weight loss, which may occur with such treatments, can increase the amount of uric acid in ...

  5. Bile acid transporters

    PubMed Central

    Dawson, Paul A.; Lan, Tian; Rao, Anuradha

    2009-01-01

    In liver and intestine, transporters play a critical role in maintaining the enterohepatic circulation and bile acid homeostasis. Over the past two decades, there has been significant progress toward identifying the individual membrane transporters and unraveling their complex regulation. In the liver, bile acids are efficiently transported across the sinusoidal membrane by the Na+ taurocholate cotransporting polypeptide with assistance by members of the organic anion transporting polypeptide family. The bile acids are then secreted in an ATP-dependent fashion across the canalicular membrane by the bile salt export pump. Following their movement with bile into the lumen of the small intestine, bile acids are almost quantitatively reclaimed in the ileum by the apical sodium-dependent bile acid transporter. The bile acids are shuttled across the enterocyte to the basolateral membrane and effluxed into the portal circulation by the recently indentified heteromeric organic solute transporter, OSTα-OSTβ. In addition to the hepatocyte and enterocyte, subgroups of these bile acid transporters are expressed by the biliary, renal, and colonic epithelium where they contribute to maintaining bile acid homeostasis and play important cytoprotective roles. This article will review our current understanding of the physiological role and regulation of these important carriers. PMID:19498215

  6. Analysis of Organic Acids.

    ERIC Educational Resources Information Center

    Griswold, John R.; Rauner, Richard A.

    1990-01-01

    Presented are the procedures and a discussion of the results for an experiment in which students select unknown carboxylic acids, determine their melting points, and investigate their solubility behavior in water and ethanol. A table of selected carboxylic acids is included. (CW)

  7. Omega-3 Fatty Acids

    MedlinePlus

    Omega-3 fatty acids are used together with lifestyle changes (diet, weight-loss, exercise) to reduce the amount of triglycerides (a fat-like ... people with very high triglycerides. Omega-3 fatty acids are in a class of medications called antilipemic ...

  8. Toxicology of Perfluoroalkyl Acids*

    EPA Science Inventory

    The perfluoroalkyl acids (PFAAs) are a family of organic chemicals consisting of a perfluorinated carbon backbone (4-12 in length) and an acidic functional moiety (carboxylate or sulfonate). These compounds are chemically stable, have excellent surface-tension reducing properties...

  9. Salicylic Acid Topical

    MedlinePlus

    ... skin blemishes in people who have acne. Topical salicylic acid is also used to treat skin conditions that involve scaling or overgrowth of skin ... water for 15 minutes.Do not apply topical salicylic acid to skin that is broken, red, swollen, irritated, or infected. ...

  10. Uric acid and hypertension.

    PubMed

    Feig, Daniel I

    2011-09-01

    A link between serum uric acid and the development of hypertension was first hypothesized in the 1870s. Although numerous epidemiologic studies in the 1980s and 1990s suggested an association, relatively little attention was paid to it until recently. Animal models have suggested a two-step pathogenesis by which uric acid initially activates the renin angiotensin system and suppresses nitric oxide, leading to uric acid-dependent increase in systemic vascular resistance, followed by a uric acid-mediated vasculopathy, involving renal afferent arterioles, resulting in a late sodium-sensitive hypertension. Initial clinical trials in young patients have supported these mechanisms in young patients but do not yet support pharmacologic reduction of serum uric acid as first-line therapy for hypertension.

  11. Biosynthesis of pulcherriminic acid

    PubMed Central

    MacDonald, J. C.

    1965-01-01

    1. Candida pulcherrima was grown on a complex medium to which various compounds had been added to determine their effect on the biosynthesis of pulcherriminic acid. Most of the pulcherriminic acid synthesized by C. pulcherrima PRL2019 was derived from the l-[1-14C]leucine added to the medium. 2. The cyclic dipeptide of l-leucine (cyclo-l-leucyl-l-leucyl) was shown, by trapping experiments involving cycloleucyl-leucyl isomers, to be synthesized by strain PRL2019. Cyclo-l-leucyl-l-leucyl was derived from l-leucine and was converted into pulcherriminic acid. Cyclo-l-leucyl-l-leucyl was a precursor of pulcherriminic acid in strain PRL2007 also. 3. The results supported the hypothesis that pulcherriminic acid is derived from l-leucine and that cyclo-l-leucyl-l-leucyl is an intermediate in the biosynthesis. PMID:5837792

  12. Total syntheses of cis-cyclopropane fatty acids: dihydromalvalic acid, dihydrosterculic acid, lactobacillic acid, and 9,10-methylenehexadecanoic acid.

    PubMed

    Shah, Sayali; White, Jonathan M; Williams, Spencer J

    2014-12-14

    cis-Cyclopropane fatty acids (cis-CFAs) are widespread constituents of the seed oils of subtropical plants, membrane components of bacteria and protozoa, and the fats and phospholipids of animals. We describe a systematic approach to the synthesis of enantiomeric pairs of four cis-CFAs: cis-9,10-methylenehexadecanoic acid, lactobacillic acid, dihydromalvalic acid, and dihydrosterculic acid. The approach commences with Rh2(OAc)4-catalyzed cyclopropenation of 1-octyne and 1-decyne, and hinges on the preparative scale chromatographic resolution of racemic 2-alkylcycloprop-2-ene-1-carboxylic acids using a homochiral Evan's auxiliary. Saturation of the individual diastereomeric N-cycloprop-2-ene-1-carbonylacyloxazolidines, followed by elaboration to alkylcyclopropylmethylsulfones, allowed Julia-Kocienski olefination with various ω-aldehyde-esters. Finally, saponification and diimide reduction afforded the individual cis-CFA enantiomers. PMID:25321346

  13. Gluconic acid production.

    PubMed

    Anastassiadis, Savas; Morgunov, Igor G

    2007-01-01

    Gluconic acid, the oxidation product of glucose, is a mild neither caustic nor corrosive, non toxic and readily biodegradable organic acid of great interest for many applications. As a multifunctional carbonic acid belonging to the bulk chemicals and due to its physiological and chemical characteristics, gluconic acid itself, its salts (e.g. alkali metal salts, in especially sodium gluconate) and the gluconolactone form have found extensively versatile uses in the chemical, pharmaceutical, food, construction and other industries. Present review article presents the comprehensive information of patent bibliography for the production of gluconic acid and compares the advantages and disadvantages of known processes. Numerous manufacturing processes are described in the international bibliography and patent literature of the last 100 years for the production of gluconic acid from glucose, including chemical and electrochemical catalysis, enzymatic biocatalysis by free or immobilized enzymes in specialized enzyme bioreactors as well as discontinuous and continuous fermentation processes using free growing or immobilized cells of various microorganisms, including bacteria, yeast-like fungi and fungi. Alternatively, new superior fermentation processes have been developed and extensively described for the continuous and discontinuous production of gluconic acid by isolated strains of yeast-like mold Aureobasidium pullulans, offering numerous advantages over the traditional discontinuous fungi processes.

  14. Trans Fatty Acids

    NASA Astrophysics Data System (ADS)

    Doyle, Ellin

    1997-09-01

    Fats and their various fatty acid components seem to be a perennial concern of nutritionists and persons concerned with healthful diets. Advice on the consumption of saturated, polyunsaturated, monounsaturated, and total fat bombards us from magazines and newspapers. One of the newer players in this field is the group of trans fatty acids found predominantly in partially hydrogenated fats such as margarines and cooking fats. The controversy concerning dietary trans fatty acids was recently addressed in an American Heart Association (AHA) science advisory (1) and in a position paper from the American Society of Clinical Nutrition/American Institute of Nutrition (ASCN/AIN) (2). Both reports emphasize that the best preventive strategy for reducing risk for cardiovascular disease and some types of cancer is a reduction in total and saturated fats in the diet, but a reduction in the intake of trans fatty acids was also recommended. Although the actual health effects of trans fatty acids remain uncertain, experimental evidence indicates that consumption of trans fatty acids adversely affects serum lipid levels. Since elevated levels of serum cholesterol and triacylglycerols are associated with increased risk of cardiovascular disease, it follows that intake of trans fatty acids should be minimized.

  15. Sulfuric Acid on Europa

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Frozen sulfuric acid on Jupiter's moon Europa is depicted in this image produced from data gathered by NASA's Galileo spacecraft. The brightest areas, where the yellow is most intense, represent regions of high frozen sulfuric acid concentration. Sulfuric acid is found in battery acid and in Earth's acid rain.

    This image is based on data gathered by Galileo's near infrared mapping spectrometer.

    Europa's leading hemisphere is toward the bottom right, and there are enhanced concentrations of sulfuric acid in the trailing side of Europa (the upper left side of the image). This is the face of Europa that is struck by sulfur ions coming from Jupiter's innermost moon, Io. The long, narrow features that crisscross Europa also show sulfuric acid that may be from sulfurous material extruded in cracks.

    Galileo, launched in 1989, has been orbiting Jupiter and its moons since December 1995. JPL manages the Galileo mission for NASA's Office of Space Science, Washington DC. JPL is a division of the California Institute of Technology, Pasadena, CA.

  16. Strongly Acidic Auxin Indole-3-Methanesulfonic Acid

    PubMed Central

    Cohen, Jerry D.; Baldi, Bruce G.; Bialek, Krystyna

    1985-01-01

    A radiochemical synthesis is described for [14C]indole-3-methanesulfonic acid (IMS), a strongly acidic auxin analog. Techniques were developed for fractionation and purification of IMS using normal and reverse phase chromatography. In addition, the utility of both Fourier transform infrared spectrometry and fast atom bombardment mass spectrometry for analysis of IMS has been demonstrated. IMS was shown to be an active auxin, stimulating soybean hypocotyl elongation, bean first internode curvature, and ethylene production. IMS uptake by thin sections of soybean hypocotyl was essentially independent of solution pH and, when applied at a 100 micromolar concentration, IMS exhibited a basipetal polarity in its transport in both corn coleoptile and soybean hypocotyl sections. [14C]IMS should, therefore, be a useful compound to study fundamental processes related to the movement of auxins in plant tissues and organelles. PMID:16664007

  17. Evolution in Caffeoylquinic Acid Content and Histolocalization During Coffea canephora Leaf Development

    PubMed Central

    MONDOLOT, LAURENCE; LA FISCA, PHILIPPE; BUATOIS, BRUNO; TALANSIER, EMELINE; DE KOCHKO, ALEXANDRE; CAMPA, CLAUDINE

    2006-01-01

    • Background and Aims Caffeoylquinic acids are cinnamate conjugates derived from the phenylpropanoid pathway. They are generally involved in plant responses to biotic and abiotic stress and one of them, chlorogenic acid (5-O-caffeoylquinic acid, 5-CQA), is an intermediate in the lignin biosynthesis pathway. Caffeoylquinic acids, and particularly 5-CQA, are accumulated in coffee beans, where they can form vacuolar complexes with caffeine. Coffea canephora beans are known to have high caffeoylquinic acid content, but little is known about the content and diversity of these compounds in other plant parts. To gain new insights into the caffeoylquinic acid metabolism of C. canephora, caffeoylquinic acid content and in situ localization were assessed in leaves at different growth stages. • Methods HPLC analyses of caffeoylquinic acid content of leaves was conducted in conjunction with detailed histochemical and microspectrofluorometrical analysis. • Key Results and Conclusions HPLC analyses revealed that caffeoylquinic acid content was 10-fold lower in adult than in juvenile leaves. The most abundant cinnamate conjugate was 5-CQA, but dicaffeoylquinic acids (particularly in juvenile leaves) and feruloylquinic acids were also present. Using specific reagents, histochemical and microspectrofluorometrical analysis showed that caffeoylquinic acids (mono- and di-esters) were closely associated with chloroplasts in very young leaves. During leaf ageing, they were found to first accumulate intensively in specific chlorenchymatous bundle sheath cells and then in phloem sclerenchyma cells. The association with chloroplasts suggests that caffeoylquinic acids have a protective role against light damage. In older tissues, their presence in the leaf vascular system indicates that they are transported via phloem and confirms their involvement in lignification processes. In accordance with the hypothesis of a complex formation with caffeine, similar tissue distribution was

  18. Pathway of salicylic acid biosynthesis in healthy and virus-inoculated tobacco

    SciTech Connect

    Yalpani, N.; Leon, J.; Lawton, M.A.; Raskin, I. )

    1993-10-01

    Salicylic acid (SA) is a likely endogenous regulator of localized and systemic disease resistance in plants. During the hypersensitive response of Nicotiana tabacum L. cv Xanthi-nc to tobacco mosaic virus (TMV), SA levels rise dramatically. We studied Sa biosynthesis in healthy and TMV-inoculated tobacco by monitoring the levels of SA and its likely precursors in extracts of leaves and cell suspensions. In TMV-inoculated leaves, stimulation of Sa accumulation is accompanied by a corresponding increase in the levels of benzoic acid. [sup 14]C-Tracer studies with cell suspensions and mock- or TMV-inoculated leaves indicate that the label moves from trans-cinnamic acid to SA via benzoic acid. In healthy and TMV-inoculated tobacco leaves, benzoic acid induced SA accumulation. o-Coumaric acid, which was previously reported as a possible precursor of SA in other species, did not increase SA levels in tobacco. In healthy tobacco tissue, the specific activity of newly formed SA was equal to that of the supplied [[sup 14]C] benzoic acid, whereas in TMV-inoculated leaves some isotope dilution was observed, presumably because of the increase in the pool of endogenous benzoic acid. We observed accumulation of pathogenesis-related-1 proteins and increased resistance to TMV in benzoic acid but no in 0-coumaric acid-treated tobacco leaves. This is consistent with benzoic acid being the immediate precursor of SA. We conclude that in healthy and virus-inoculated tobacco, SA is formed from cinnamic acid via benzoic acid. 27 refs., 7 figs., 1 tab.

  19. Effect of ethyl esterification of phenolic acids on low-density lipoprotein oxidation.

    PubMed

    Chalas, J; Claise, C; Edeas, M; Messaoudi, C; Vergnes, L; Abella, A; Lindenbaum, A

    2001-02-01

    Inhibition of copper-induced low-density lipoprotein (LDL) oxidation by phenolic acids and their ethyl esters was investigated. LDL oxidation was evaluated by the hydroperoxide concentration and the chromatographic pattern of apoprotein fractions after fast protein liquid chromatography (FPLC). Antiradical properties against 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical and 2,2'-azobis(2-amidinopropane)dihydrochloride (AAPH) were also investigated, and lipophilicity determined by thin-layer chromatography. Caffeic acid at 5 microM and sinapic acid at 10 microM protected LDL against oxidation, inhibiting both hydroperoxide formation and the increase of apoprotein negative charge. Ferulic, gallic and p-hydroxy cinnamic acids were ineffective. Ethyl esterification increased the lipophilicity of the five acids, and enhanced the antioxidant properties of caffeic, sinapic and ferulic acids. Ethyl caffeate was protective at 1 microM. In contrast, gallic and p-hydroxy cinnamic ethyl esters were ineffective. Our results indicate that ethyl esterification of phenolic acids increases lipophilicity of their ethyl esters and may enable a better incorporation into the lipid layer of the LDL particle and the exertion of their antioxidant effect in the true site of lipoperoxidation. However, increasing lipophilicity is not the only mechanism able to potentiate preexisting antioxidant properties of molecules, and probably other mechanisms are implicated.

  20. Understanding acid rain

    SciTech Connect

    Budiansky, S.

    1981-06-01

    The complexities of the phenomenon of acid rain are described. Many factors, including meteorology, geology, chemistry, and biology, all play parts. Varying weather, varying soils, the presence of other pollutants and species differences all act to blur the connections between industrial emissions, acid rain, and environmental damage. Some experts believe that the greatest pH shock to lakes occurs during snow melt and runoff in the spring; others believe that much of the plant damage ascribed to acid rain is actually due to the effects of ozone. Much work needs to be done in the area of sampling. Historical data are lacking and sampling methods are not sufficiently accurate. (JMT)

  1. Understanding Acid Base Disorders.

    PubMed

    Gomez, Hernando; Kellum, John A

    2015-10-01

    The concentration of hydrogen ions is regulated in biologic solutions. There are currently 3 recognized approaches to assess changes in acid base status. First is the traditional Henderson-Hasselbalch approach, also called the physiologic approach, which uses the relationship between HCO3(-) and Pco2; the second is the standard base excess approach based on the Van Slyke equation. The third approach is the quantitative or Stewart approach, which uses the strong ion difference and the total weak acids. This article explores the origins of the current concepts framing the existing methods to analyze acid base balance.

  2. Acid rain and soil.

    PubMed

    vanLoon, G W

    1984-08-01

    A summary of important chemical properties of soil is given and the way in which acid rain may affect these properties is discussed. Acid rain may suppress microbiological decomposition and nitrification processes, thus influencing the nutrient status of soils. It has also been found that soil organic matter is less soluble in more acid solutions. Changed nutrient availability patterns are predicted in a low pH environment and enhanced leaching of essential elements from the soil exchange complex has been observed. Increased solubility of potentially toxic elements such as aluminium may also occur from soils which have been exposed to acidified rainfall.

  3. Catabolism of phenylpropionic acid and its 3-hydroxy derivative by Escherichia coli.

    PubMed Central

    Burlingame, R; Chapman, P J

    1983-01-01

    A number of laboratory strains and clinical isolates of Escherichia coli utilized several aromatic acids as sole sources of carbon for growth. E. coli K-12 used separate reactions to convert 3-phenylpropionic and 3-(3-hydroxyphenyl)propionic acids into 3-(2,3-dihydroxyphenyl)propionic acid which, after meta-fission of the benzene nucleus, gave succinate, pyruvate, and acetaldehyde as products. Enzyme assays and respirometry showed that all enzymes of this branched pathway were inducible and that syntheses of enzymes required to convert the two initial growth substrates into 3-(2,3-dihydroxyphenyl)propionate are under separate control. E. coli K-12 also grew with 3-hydroxycinnamic acid as sole source of carbon; the ability of cells to oxidize cinnamic and 3-phenylpropionic acids, and hydroxylated derivatives, was investigated. The lactone of 4-hydroxy-2-ketovaleric acid was isolated from enzymatic reaction mixtures and its properties, including optical activity, were recorded. PMID:6345502

  4. Disorders of Amino Acid Metabolism

    MedlinePlus

    ... Aspiration Syndrome Additional Content Medical News Disorders of Amino Acid Metabolism By Lee M. Sanders, MD, MPH NOTE: ... Metabolic Disorders Disorders of Carbohydrate Metabolism Disorders of Amino Acid Metabolism Disorders of Lipid Metabolism Amino acids are ...

  5. Pantothenic acid and biotin

    MedlinePlus

    ... well as other nutrients, are provided in the Dietary Reference Intakes (DRIs) developed by the Food and Nutrition Board ... level that is thought to ensure enough nutrition. Dietary Reference Intakes for pantothenic acid: Age 0 to 6 months: ...

  6. Amino Acid Metabolism Disorders

    MedlinePlus

    Metabolism is the process your body uses to make energy from the food you eat. Food is ... One group of these disorders is amino acid metabolism disorders. They include phenylketonuria (PKU) and maple syrup ...

  7. [Hydrofluoric acid burns].

    PubMed

    Holla, Robin; Gorter, Ramon R; Tenhagen, Mark; Vloemans, A F P M Jos; Breederveld, Roelf S

    2016-01-01

    Hydrofluoric acid is increasingly used as a rust remover and detergent. Dermal contact with hydrofluoric acid results in a chemical burn characterized by severe pain and deep tissue necrosis. It may cause electrolyte imbalances with lethal consequences. It is important to identify high-risk patients. 'High risk' is defined as a total affected body area > 3% or exposure to hydrofluoric acid in a concentration > 50%. We present the cases of three male patients (26, 31, and 39 years old) with hydrofluoric acid burns of varying severity and describe the subsequent treatments. The application of calcium gluconate 2.5% gel to the skin is the cornerstone of the treatment, reducing pain as well as improving wound healing. Nails should be thoroughly inspected and possibly removed if the nail is involved, to ensure proper healing. In high-risk patients, plasma calcium levels should be evaluated and cardiac monitoring is indicated.

  8. Folic acid - test

    MedlinePlus

    ... folic acid before and during pregnancy helps prevent neural tube defects, such as spina bifida. Women who ... take more if they have a history of neural tube defects in earlier pregnancies. Ask your provider ...

  9. Nitric acid poisoning

    MedlinePlus

    Symptoms from swallowing nitric acid may include: Abdominal pain - severe Burns to skin or mouth Drooling Fever Mouth pain - severe Rapid drop in blood pressure (shock) Throat swelling, which leads to breathing difficulty ...

  10. [Hydrofluoric acid burns].

    PubMed

    Holla, Robin; Gorter, Ramon R; Tenhagen, Mark; Vloemans, A F P M Jos; Breederveld, Roelf S

    2016-01-01

    Hydrofluoric acid is increasingly used as a rust remover and detergent. Dermal contact with hydrofluoric acid results in a chemical burn characterized by severe pain and deep tissue necrosis. It may cause electrolyte imbalances with lethal consequences. It is important to identify high-risk patients. 'High risk' is defined as a total affected body area > 3% or exposure to hydrofluoric acid in a concentration > 50%. We present the cases of three male patients (26, 31, and 39 years old) with hydrofluoric acid burns of varying severity and describe the subsequent treatments. The application of calcium gluconate 2.5% gel to the skin is the cornerstone of the treatment, reducing pain as well as improving wound healing. Nails should be thoroughly inspected and possibly removed if the nail is involved, to ensure proper healing. In high-risk patients, plasma calcium levels should be evaluated and cardiac monitoring is indicated. PMID:27189091

  11. Difficult Decisions: Acid Rain.

    ERIC Educational Resources Information Center

    Miller, John A.; Slesnick, Irwin L.

    1989-01-01

    Discusses some of the contributing factors and chemical reactions involved in the production of acid rain, its effects, and political issues pertaining to who should pay for the clean up. Supplies questions for consideration and discussion. (RT)

  12. Hyaluronic acid fillers.

    PubMed

    Monheit, Gary D; Coleman, Kyle M

    2006-01-01

    Although hyaluronic acids are a relatively new treatment for facial lines and wrinkles, they have provided numerous advances in the area of cosmetic surgery. This article discusses the inherent properties of hyaluronic acid fillers that make them ideal for treatment of facial lines. It encompasses a review of the current literature on U.S. Food and Drug Administration-approved hyaluronic acid fillers and the role that each of these fillers currently has in facial cosmetics. This article also discusses the potential pitfalls and adverse effects that can be associated with using hyaluronic acids for filling facial lines. Finally, it serves as an overview of current techniques for clinical assessment of patients as well as administration and treatment of facial lines and wrinkles.

  13. Boric acid poisoning

    MedlinePlus

    Borax poisoning ... The main symptoms of boric acid poisoning are blue-green vomit, diarrhea, and a bright red rash on the skin. Other symptoms may include: Blisters Collapse Coma Convulsions Drowsiness ...

  14. Stomach acid test

    MedlinePlus

    Gastric acid secretion test ... The test is done after you have not eaten for a while so fluid is all that remains in ... injected into your body. This is done to test the ability of the cells in the stomach ...

  15. Aminolevulinic Acid Topical

    MedlinePlus

    ... under the skin that result from exposure to sunlight and can develop into skin cancer) of the ... acid will make your skin very sensitive to sunlight (likely to get sunburn). Avoid exposure of treated ...

  16. Amino Acids and Chirality

    NASA Technical Reports Server (NTRS)

    Cook, Jamie E.

    2012-01-01

    Amino acids are among the most heavily studied organic compound class in carbonaceous chondrites. The abundance, distributions, enantiomeric compositions, and stable isotopic ratios of amino acids have been determined in carbonaceous chondrites fi'om a range of classes and petrographic types, with interesting correlations observed between these properties and the class and typc of the chondritcs. In particular, isomeric distributions appear to correlate with parent bodies (chondrite class). In addition, certain chiral amino acids are found in enantiomeric excess in some chondrites. The delivery of these enantiomeric excesses to the early Earth may have contributed to the origin of the homochirality that is central to life on Earth today. This talk will explore the amino acids in carbonaceous chondritcs and their relevance to the origin of life.

  17. (Acid rain workshop)

    SciTech Connect

    Turner, R.S.

    1990-12-05

    The traveler presented a paper entitled Susceptibility of Asian Ecosystems to Soil-Mediated Acid Rain Damage'' at the Second Workshop on Acid Rain in Asia. The workshop was organized by the Asian Institute of Technology (Bangkok, Thailand), Argonne National Laboratory (Argonne, Illinois), and Resource Management Associates (Madison, Wisconsin) and was sponsored by the US Department of Energy, the United Nations Environment Program, the United Nations Economic and Social Commission for Asia and the Pacific, and the World Bank. Papers presented on the first day discussed how the experience gained with acid rain in North America and Europe might be applied to the Asian situation. Papers describing energy use projections, sulfur emissions, and effects of acid rain in several Asian countries were presented on the second day. The remaining time was allotted to discussion, planning, and writing plans for a future research program.

  18. Folic acid in diet

    MedlinePlus

    ... a regular supply of the vitamin in the foods you eat. ... vitamins have been added to the food. Many foods are now fortified with folic acid. Some of these are enriched breads, cereals, flours, ...

  19. Valproic Acid and Pregnancy

    MedlinePlus

    ... in the treatment of epilepsy, and to treat bipolar disorder and migraines. I have been taking valproic acid ... that women with seizure disorders and women with bipolar disorder might have menstrual problems and difficulty getting pregnant. ...

  20. Citric acid urine test

    MedlinePlus

    ... The test is used to diagnose renal tubular acidosis and evaluate kidney stone disease. Normal Results The ... level of citric acid may mean renal tubular acidosis and a tendency to form calcium kidney stones. ...

  1. Folic Acid Quiz

    MedlinePlus

    ... more easily than natural food folate. Close × Answer: D CORRECT: Folic acid reduces the risk for spina ... g., orange juice and green vegetables). Close × Answer: D CORRECT: Spina bifida and anencephaly are neural tube ...

  2. Hydrofluoric acid poisoning

    MedlinePlus

    ... your skin or eyes, you may have: Blisters Burns Pain Vision loss Hydrofluoric acid poisoning can have ... urine tests Camera down the throat to see burns in the esophagus and the stomach (endoscopy) Fluids ...

  3. Portable nucleic acid thermocyclers.

    PubMed

    Almassian, David R; Cockrell, Lisa M; Nelson, William M

    2013-11-21

    A nucleic acid thermal cycler is considered to be portable if it is under ten pounds, easily carried by one individual, and battery powered. Nucleic acid amplification includes both polymerase chain reaction (e.g. PCR, RT-PCR) and isothermal amplification (e.g. RPA, HDA, LAMP, NASBA, RCA, ICAN, SMART, SDA). There are valuable applications for portable nucleic acid thermocyclers in fields that include clinical diagnostics, biothreat detection, and veterinary testing. A system that is portable allows for the distributed detection of targets at the point of care and a reduction of the time from sample to answer. The designer of a portable nucleic acid thermocycler must carefully consider both thermal control and the detection of amplification. In addition to thermal control and detection, the designer may consider the integration of a sample preparation subsystem with the nucleic acid thermocycler. There are a variety of technologies that can achieve accurate thermal control and the detection of nucleic acid amplification. Important evaluation criteria for each technology include maturity, power requirements, cost, sensitivity, speed, and manufacturability. Ultimately the needs of a particular market will lead to user requirements that drive the decision between available technologies.

  4. Neutron Nucleic Acid Crystallography.

    PubMed

    Chatake, Toshiyuki

    2016-01-01

    The hydration shells surrounding nucleic acids and hydrogen-bonding networks involving water molecules and nucleic acids are essential interactions for the structural stability and function of nucleic acids. Water molecules in the hydration shells influence various conformations of DNA and RNA by specific hydrogen-bonding networks, which often contribute to the chemical reactivity and molecular recognition of nucleic acids. However, X-ray crystallography could not provide a complete description of structural information with respect to hydrogen bonds. Indeed, X-ray crystallography is a powerful tool for determining the locations of water molecules, i.e., the location of the oxygen atom of H2O; however, it is very difficult to determine the orientation of the water molecules, i.e., the orientation of the two hydrogen atoms of H2O, because X-ray scattering from the hydrogen atom is very small.Neutron crystallography is a specialized tool for determining the positions of hydrogen atoms. Neutrons are not diffracted by electrons, but are diffracted by atomic nuclei; accordingly, neutron scattering lengths of hydrogen and its isotopes are comparable to those of non-hydrogen atoms. Therefore, neutron crystallography can determine both of the locations and orientations of water molecules. This chapter describes the current status of neutron nucleic acid crystallographic research as well as the basic principles of neutron diffraction experiments performed on nucleic acid crystals: materials, crystallization, diffraction experiments, and structure determination. PMID:26227050

  5. Neutron Nucleic Acid Crystallography.

    PubMed

    Chatake, Toshiyuki

    2016-01-01

    The hydration shells surrounding nucleic acids and hydrogen-bonding networks involving water molecules and nucleic acids are essential interactions for the structural stability and function of nucleic acids. Water molecules in the hydration shells influence various conformations of DNA and RNA by specific hydrogen-bonding networks, which often contribute to the chemical reactivity and molecular recognition of nucleic acids. However, X-ray crystallography could not provide a complete description of structural information with respect to hydrogen bonds. Indeed, X-ray crystallography is a powerful tool for determining the locations of water molecules, i.e., the location of the oxygen atom of H2O; however, it is very difficult to determine the orientation of the water molecules, i.e., the orientation of the two hydrogen atoms of H2O, because X-ray scattering from the hydrogen atom is very small.Neutron crystallography is a specialized tool for determining the positions of hydrogen atoms. Neutrons are not diffracted by electrons, but are diffracted by atomic nuclei; accordingly, neutron scattering lengths of hydrogen and its isotopes are comparable to those of non-hydrogen atoms. Therefore, neutron crystallography can determine both of the locations and orientations of water molecules. This chapter describes the current status of neutron nucleic acid crystallographic research as well as the basic principles of neutron diffraction experiments performed on nucleic acid crystals: materials, crystallization, diffraction experiments, and structure determination.

  6. Utilization of acid tars

    SciTech Connect

    Frolov, A.F.; Denisova, T.L.; Aminov, A.N.

    1987-01-01

    Freshly produced acid tar (FPAT), obtained as refinery waste in treating petroleum oils with sulfuric acid and oleum, contains 80% or more sulfuric acid. Of such tars, pond acid tars, which contain up to 80% neutral petroleum products and sulfonated resins, are more stable, and have found applications in the production of binders for paving materials. In this article the authors are presenting results obtained in a study of the composition and reactivity of FPAT and its stability in storage in blends with asphalts obtained in deasphalting operations, and the possibility of using the FPAT in road construction has been examined. In this work, wastes were used which were obtained in treating the oils T-750, KhF-12, I-8A, and MS-14. Data on the change in group chemical composition of FPAT are shown, and the acidity, viscosity, needle penetration, and softening point of acid tars obtained from different grades of oils are plotted as functions of the storage time. It is also shown that the fresh and hardened FPATs differ in their solubilities in various solvents.

  7. Method for isolating nucleic acids

    SciTech Connect

    Hurt, Jr., Richard Ashley; Elias, Dwayne A.

    2015-09-29

    The current disclosure provides methods and kits for isolating nucleic acid from an environmental sample. The current methods and compositions further provide methods for isolating nucleic acids by reducing adsorption of nucleic acids by charged ions and particles within an environmental sample. The methods of the current disclosure provide methods for isolating nucleic acids by releasing adsorbed nucleic acids from charged particles during the nucleic acid isolation process. The current disclosure facilitates the isolation of nucleic acids of sufficient quality and quantity to enable one of ordinary skill in the art to utilize or analyze the isolated nucleic acids for a wide variety of applications including, sequencing or species population analysis.

  8. Acidification and Acid Rain

    NASA Astrophysics Data System (ADS)

    Norton, S. A.; Veselã½, J.

    2003-12-01

    Air pollution by acids has been known as a problem for centuries (Ducros, 1845; Smith, 1872; Camuffo, 1992; Brimblecombe, 1992). Only in the mid-1900s did it become clear that it was a problem for more than just industrially developed areas, and that precipitation quality can affect aquatic resources ( Gorham, 1955). The last three decades of the twentieth century saw tremendous progress in the documentation of the chemistry of the atmosphere, precipitation, and the systems impacted by acid atmospheric deposition. Chronic acidification of ecosystems results in chemical changes to soil and to surface waters and groundwater as a result of reduction of base cation supply or an increase in acid (H+) supply, or both. The most fundamental changes during chronic acidification are an increase in exchangeable H+ or Al3+ (aluminum) in soils, an increase in H+ activity (˜concentration) in water in contact with soil, and a decrease in alkalinity in waters draining watersheds. Water draining from the soil is acidified and has a lower pH (=-log [H+]). As systems acidify, their biotic community changes.Acidic surface waters occur in many parts of the world as a consequence of natural processes and also due to atmospheric deposition of strong acid (e.g., Canada, Jeffries et al. (1986); the United Kingdom, Evans and Monteith (2001); Sweden, Swedish Environmental Protection Board (1986); Finland, Forsius et al. (1990); Norway, Henriksen et al. (1988a); and the United States (USA), Brakke et al. (1988)). Concern over acidification in the temperate regions of the northern hemisphere has been driven by the potential for accelerating natural acidification by pollution of the atmosphere with acidic or acidifying compounds. Atmospheric pollution ( Figure 1) has resulted in an increased flux of acid to and through ecosystems. Depending on the ability of an ecosystem to neutralize the increased flux of acidity, acidification may increase only imperceptibly or be accelerated at a rate that

  9. An inelastic neutron scattering study of dietary phenolic acids.

    PubMed

    Marques, M Paula M; Batista de Carvalho, Luís A E; Valero, Rosendo; Machado, Nelson F L; Parker, Stewart F

    2014-04-28

    The conformational preferences and hydrogen-bonding motifs of several potential chemopreventive hydroxycinnamic derivatives were determined by inelastic neutron scattering spectroscopy. The aim is to understand their recognized beneficial activity and establish reliable structure-activity relationships for these types of dietary phytochemicals. A series of phenolic acids with different hydroxyl/methoxyl ring substitution patterns were studied: trans-cinnamic, p-coumaric, m-coumaric, trans-caffeic and ferulic acids. Their INS spectra were completely assigned by theoretical calculations performed at the Density Functional Theory level, for the isolated molecule, dimeric centrosymmetric species and the solid (using plane-wave expansion approaches). Access to the low energy vibrational region of the spectra enabled the identification of particular modes associated with intermolecular hydrogen-bonding interactions, which are the determinants of the main conformational preferences and antioxidant capacity of these systems.

  10. Discovery of essential fatty acids

    PubMed Central

    Spector, Arthur A.; Kim, Hee-Yong

    2015-01-01

    Dietary fat was recognized as a good source of energy and fat-soluble vitamins by the first part of the 20th century, but fatty acids were not considered to be essential nutrients because they could be synthesized from dietary carbohydrate. This well-established view was challenged in 1929 by George and Mildred Burr who reported that dietary fatty acid was required to prevent a deficiency disease that occurred in rats fed a fat-free diet. They concluded that fatty acids were essential nutrients and showed that linoleic acid prevented the disease and is an essential fatty acid. The Burrs surmised that other unsaturated fatty acids were essential and subsequently demonstrated that linolenic acid, the omega-3 fatty acid analog of linoleic acid, is also an essential fatty acid. The discovery of essential fatty acids was a paradigm-changing finding, and it is now considered to be one of the landmark discoveries in lipid research. PMID:25339684

  11. Spectroscopic studies on the antioxidant activity of p-coumaric acid

    NASA Astrophysics Data System (ADS)

    Kiliç, Ismail; Yeşiloğlu, Yeşim

    2013-11-01

    p-coumaric acid (4-hydroxycinnamic acid), a phenolic acid, is a hydroxyl derivative of cinnamic acid. It decreases low density lipoprotein (LDL) peroxidation and reduces the risk of stomach cancer. In vitro radical scavenging and antioxidant capacity of p-coumaric acid were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2‧-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe2+) chelating activity and ferric ions (Fe3+) reducing ability. p-Coumaric acid inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45 μg/mL concentration. On the other hand, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), α-tocopherol and ascorbic acid displayed 66.8%, 69.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, p-coumaric acid had an effective DPPHrad scavenging, ABTSrad + scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power and ferrous ions (Fe2+) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that p-coumaric acid can be used in the pharmacological and food industry because of these properties.

  12. Boric acid catalyzed chemoselective esterification of alpha-hydroxycarboxylic acids.

    PubMed

    Houston, Todd A; Wilkinson, Brendan L; Blanchfield, Joanne T

    2004-03-01

    Boric acid catalyzes the selective esterification of alpha-hydroxycarboxylic acids without causing significant esterification to occur with other carboxylic acids. The procedure is simple, high-yielding, and applicable to the esterification of alpha-hydroxy carboxylates in the presence of other carboxylic acids including beta-hydroxyacids within the same molecule. [reaction: see text

  13. Acid Rain, pH & Acidity: A Common Misinterpretation.

    ERIC Educational Resources Information Center

    Clark, David B.; Thompson, Ronald E.

    1989-01-01

    Illustrates the basis for misleading statements about the relationship between pH and acid content in acid rain. Explains why pH cannot be used as a measure of acidity for rain or any other solution. Suggests that teachers present acidity and pH as two separate and distinct concepts. (RT)

  14. Amino-acid contamination of aqueous hydrochloric acid.

    NASA Technical Reports Server (NTRS)

    Wolman, Y.; Miller, S. L.

    1971-01-01

    Considerable amino-acid contamination in commercially available analytical grade hydrochloric acid (37% HCl) was found. One bottle contained 8,300 nmol of amino-acids per liter. A bottle from another supplier contained 6,700 nmol per liter. The contaminants were mostly protein amino-acids and several unknowns. Data on the volatility of the amino-acids during HCl distillation were also obtained.

  15. Analysis of Bile Acids

    NASA Astrophysics Data System (ADS)

    Sjövall, Jan; Griffiths, William J.; Setchell, Kenneth D. R.; Mano, Nariyasu; Goto, Junichi

    Bile acids constitute a large family of steroids in vertebrates, normally formed from cholesterol and carrying a carboxyl group in a side-chain of variable length. Bile alcohols, also formed from cholesterol, have similar structures as bile acids, except for the absence of a carboxyl group in the steroid skeleton. The conversion of cholesterol to bile acids and/or bile alcohols is of major importance for maintenance of cholesterol homeostasis, both from quantitative and regulatory points of view (Chiang, 2004; Kalaany and Mangelsdorf, 2006; Moore, Kato, Xie, et al., 2006; Scotti, Gilardi, Godio, et al., 2007). Appropriately conjugated bile acids and bile alcohols (also referred to as bile salts) are secreted in bile and serve vital functions in the absorption of lipids and lipid-soluble compounds (Hofmann, 2007). Reliable analytical methods are required for studies of the functions and pathophysiological importance of the variety of bile acids and bile alcohols present in living organisms. When combined with genetic and proteomic studies, analysis of these small molecules (in today's terminology: metabolomics, steroidomics, sterolomics, cholanoidomics, etc.) will lead to a deeper understanding of the integrated metabolic processes in lipid metabolism.

  16. Optical high acidity sensor

    DOEpatents

    Jorgensen, B.S.; Nekimken, H.L.; Carey, W.P.; O`Rourke, P.E.

    1997-07-22

    An apparatus and method for determining acid concentrations in solutions having acid concentrations of from about 0.1 Molar to about 16 Molar is disclosed. The apparatus includes a chamber for interrogation of the sample solution, a fiber optic light source for passing light transversely through the chamber, a fiber optic collector for receiving the collimated light after transmission through the chamber, a coating of an acid resistant polymeric composition upon at least one fiber end or lens, the polymeric composition in contact with the sample solution within the chamber and having a detectable response to acid concentrations within the range of from about 0.1 Molar to about 16 Molar, a measurer for the response of the polymeric composition in contact with the sample solution, and a comparer of the measured response to predetermined standards whereby the acid molarity of the sample solution within the chamber can be determined. Preferably, a first lens is attached to the end of the fiber optic light source, the first lens adapted to collimate light from the fiber optic light source, and a second lens is attached to the end of the fiber optic collector for focusing the collimated light after transmission through the chamber. 10 figs.

  17. Optical high acidity sensor

    DOEpatents

    Jorgensen, Betty S.; Nekimken, Howard L.; Carey, W. Patrick; O'Rourke, Patrick E.

    1997-01-01

    An apparatus and method for determining acid concentrations in solutions having acid concentrations of from about 0.1 Molar to about 16 Molar is disclosed. The apparatus includes a chamber for interrogation of the sample solution, a fiber optic light source for passing light transversely through the chamber, a fiber optic collector for receiving the collimated light after transmission through the chamber, a coating of an acid resistant polymeric composition upon at least one fiber end or lens, the polymeric composition in contact with the sample solution within the chamber and having a detectable response to acid concentrations within the range of from about 0.1 Molar to about 16 Molar, a measurer for the response of the polymeric composition in contact with the sample solution, and, a comparer of the measured response to predetermined standards whereby the acid molarity of the sample solution within the chamber can be determined. Preferably, a first lens is attached to the end of the fiber optic light source, the first lens adapted to collimate light from the fiber optic light source, and a second lens is attached to the end of the fiber optic collector for focusing the collimated light after transmission through the chamber.

  18. Acid sludge utilization

    SciTech Connect

    Suarez, M.

    1980-09-01

    The Peak Oil Company of Tampa, Florida, in cooperation with the United States Department of Energy, has completed an initial study for the incorporation of acid-sludge derived from the rerefining of used lubricating oil into a useful and salable building material. Both bricks and paving materials have been produced using a formulation developed by Peak. Equipment has been designed and constructed for the specific purpose of preparing emulsions containing the acid-sludge, which is a vital ingredient in the final formulation. Testing of products obtained from these initial efforts shows that the acid in the sludge has been effectively neutralized and that heavy metals are not leached from the bricks or paving material in normal testing. While some properties of the building materials that incorporate the acid-sludge by-product are below standards for clay and shale brick, uses are defined for the product as is, and there is some promise of eventual production of building materials that meet all specifications for competitive materials. Initial cost estimations are encouraging, indicating that a profit can be derived by converting a hazardous and noxious by-product of rerefining to a construction material. Acid-sludge has presented a complex and costly disposal problem to the industry resulting in a serious depletion in the capacity for rerefining used lubricating oil.

  19. Domoic acid epileptic disease.

    PubMed

    Ramsdell, John S; Gulland, Frances M

    2014-03-01

    Domoic acid epileptic disease is characterized by spontaneous recurrent seizures weeks to months after domoic acid exposure. The potential for this disease was first recognized in a human case study of temporal lobe epilepsy after the 1987 amnesic shellfish-poisoning event in Quebec, and was characterized as a chronic epileptic syndrome in California sea lions through investigation of a series of domoic acid poisoning cases between 1998 and 2006. The sea lion study provided a breadth of insight into clinical presentations, unusual behaviors, brain pathology, and epidemiology. A rat model that replicates key observations of the chronic epileptic syndrome in sea lions has been applied to identify the progression of the epileptic disease state, its relationship to behavioral manifestations, and to define the neural systems involved in these behavioral disorders. Here, we present the concept of domoic acid epileptic disease as a delayed manifestation of domoic acid poisoning and review the state of knowledge for this disease state in affected humans and sea lions. We discuss causative mechanisms and neural underpinnings of disease maturation revealed by the rat model to present the concept for olfactory origin of an epileptic disease; triggered in dendodendritic synapases of the olfactory bulb and maturing in the olfactory cortex. We conclude with updated information on populations at risk, medical diagnosis, treatment, and prognosis. PMID:24663110

  20. Domoic Acid Epileptic Disease

    PubMed Central

    Ramsdell, John S.; Gulland, Frances M.

    2014-01-01

    Domoic acid epileptic disease is characterized by spontaneous recurrent seizures weeks to months after domoic acid exposure. The potential for this disease was first recognized in a human case study of temporal lobe epilepsy after the 1987 amnesic shellfish-poisoning event in Quebec, and was characterized as a chronic epileptic syndrome in California sea lions through investigation of a series of domoic acid poisoning cases between 1998 and 2006. The sea lion study provided a breadth of insight into clinical presentations, unusual behaviors, brain pathology, and epidemiology. A rat model that replicates key observations of the chronic epileptic syndrome in sea lions has been applied to identify the progression of the epileptic disease state, its relationship to behavioral manifestations, and to define the neural systems involved in these behavioral disorders. Here, we present the concept of domoic acid epileptic disease as a delayed manifestation of domoic acid poisoning and review the state of knowledge for this disease state in affected humans and sea lions. We discuss causative mechanisms and neural underpinnings of disease maturation revealed by the rat model to present the concept for olfactory origin of an epileptic disease; triggered in dendodendritic synapases of the olfactory bulb and maturing in the olfactory cortex. We conclude with updated information on populations at risk, medical diagnosis, treatment, and prognosis. PMID:24663110

  1. A Demonstration of Acid Rain

    ERIC Educational Resources Information Center

    Fong, Man Wai

    2004-01-01

    A demonstration showing acid rain formation is described. Oxides of sulfur and nitrogen that result from the burning of fossil fuels are the major pollutants of acid rain. In this demonstration, SO[subscript 2] gas is produced by the burning of matches. An acid-base indicator will show that the dissolved gas turns an aqueous solution acidic.

  2. DOCOSAHEXAENOIC ACID AND ARACHIDONIC ACID PREVENT ESSENTIAL FATTY ACID DEFICIENCY AND HEPATIC STEATOSIS

    PubMed Central

    Le, Hau D.; Meisel, Jonathan A.; de Meijer, Vincent E.; Fallon, Erica M.; Gura, Kathleen M.; Nose, Vania; Bistrian, Bruce R.; Puder, Mark

    2012-01-01

    Objectives Essential fatty acids are important for growth, development, and physiologic function. Alpha-linolenic acid and linoleic acid are the precursors of docosahexaenoic and arachidonic acid, respectively, and have traditionally been considered the essential fatty acids. However, we hypothesized that docosahexaenoic acid and arachidonic acid can function as the essential fatty acids. Methods Using a murine model of essential fatty acid deficiency and consequent hepatic steatosis, we provided mice with varying amounts of docosahexaenoic and arachidonic acids to determine whether exclusive supplementation of docosahexaenoic and arachidonic acids could prevent essential fatty acid deficiency and inhibit or attenuate hepatic steatosis. Results Mice supplemented with docosahexaenoic and arachidonic acids at 2.1% or 4.2% of their calories for 19 days had normal liver histology and no biochemical evidence of essential fatty acid deficiency, which persisted when observed after 9 weeks. Conclusion Supplementation of sufficient amounts of docosahexaenoic and arachidonic acids alone without alpha-linolenic and linoleic acids meets essential fatty acid requirements and prevents hepatic steatosis in a murine model. PMID:22038210

  3. Substituent efects on the carbon-13 chemical shifts in α-phenylpyridylacrylic acids

    NASA Astrophysics Data System (ADS)

    Jovanović, B. Ž.; Mis̆ić-Vukovic, M.; Vajs, V. E.; Čanadi, J. J.

    1992-03-01

    The 13C N.M.R. spectra of some substituted α-phenylpyridylacrylic acids, α-phenyl, α-(3-pyrydyl) and α-(3-pyrydyl-N-oxide) cinnamic acids were determined in deuterated dimethyl sulfoxide (d 6-DMSO). It has been shown that the subsitutent chemical shifts (SCS) for C βatom ethylenic bond of the examined compounds correlated linearely with the summ of the corresponding substituent constants in the both rings (σ x + σ Y). This correlation was interpreted as evidence that the electronic effects of both substituents are involved in conjugated aromatic system.

  4. Biodegradation of cyanuric acid.

    PubMed

    Saldick, J

    1974-12-01

    Cyanuric acid biodegrades readily under a wide variety of natural conditions, and particularly well in systems of either low or zero dissolved-oxygen level, such as anaerobic activated sludge and sewage, soils, muds, and muddy streams and river waters, as well as ordinary aerated activated sludge systems with typically low (1 to 3 ppm) dissolved-oxygen levels. Degradation also proceeds in 3.5% sodium chloride solution. Consequently, there are degradation pathways widely available for breaking down cyanuric acid discharged in domestic effluents. The overall degradation reaction is merely a hydrolysis; CO(2) and ammonia are the initial hydrolytic breakdown products. Since no net oxidation occurs during this breakdown, biodegradation of cyanuric acid exerts no primary biological oxygen demand. However, eventual nitrification of the ammonia released will exert its usual biological oxygen demand.

  5. Exposures to acidic aerosols.

    PubMed

    Spengler, J D; Keeler, G J; Koutrakis, P; Ryan, P B; Raizenne, M; Franklin, C A

    1989-02-01

    Ambient monitoring of acid aerosols in four U.S. cities and in a rural region of southern Ontario clearly show distinct periods of strong acidity. Measurements made in Kingston, TN, and Steubenville, OH, resulted in 24-hr H+ ion concentrations exceeding 100 nmole/m3 more than 10 times during summer months. Periods of elevated acidic aerosols occur less frequently in winter months. The H+ determined during episodic conditions in southern Ontario indicates that respiratory tract deposition can exceed the effects level reported in clinical studies. Observed 12-hr H+ concentrations exceeded 550 nmole/m3 (approximately 27 micrograms/m3 H2SO4). The maximum estimated 1-hr concentration exceeded 1500 nmole/m3 for H+ ions. At these concentrations, an active child might receive more than 2000 nmole of H+ ion in 12 hr and in excess of 900 nmole during the hour when H2SO4 exceeded 50 micrograms/m3.

  6. Biodegradation of Cyanuric Acid

    PubMed Central

    Saldick, Jerome

    1974-01-01

    Cyanuric acid biodegrades readily under a wide variety of natural conditions, and particularly well in systems of either low or zero dissolved-oxygen level, such as anaerobic activated sludge and sewage, soils, muds, and muddy streams and river waters, as well as ordinary aerated activated sludge systems with typically low (1 to 3 ppm) dissolved-oxygen levels. Degradation also proceeds in 3.5% sodium chloride solution. Consequently, there are degradation pathways widely available for breaking down cyanuric acid discharged in domestic effluents. The overall degradation reaction is merely a hydrolysis; CO2 and ammonia are the initial hydrolytic breakdown products. Since no net oxidation occurs during this breakdown, biodegradation of cyanuric acid exerts no primary biological oxygen demand. However, eventual nitrification of the ammonia released will exert its usual biological oxygen demand. PMID:4451360

  7. Calorimetry of Nucleic Acids.

    PubMed

    Rozners, Eriks; Pilch, Daniel S; Egli, Martin

    2015-12-01

    This unit describes the application of calorimetry to characterize the thermodynamics of nucleic acids, specifically, the two major calorimetric methodologies that are currently employed: differential scanning (DSC) and isothermal titration calorimetry (ITC). DSC is used to study thermally induced order-disorder transitions in nucleic acids. A DSC instrument measures, as a function of temperature (T), the excess heat capacity (C(p)(ex)) of a nucleic acid solution relative to the same amount of buffer solution. From a single curve of C(p)(ex) versus T, one can derive the following information: the transition enthalpy (ΔH), entropy (ΔS), free energy (ΔG), and heat capacity (ΔCp); the state of the transition (two-state versus multistate); and the average size of the molecule that melts as a single thermodynamic entity (e.g., the duplex). ITC is used to study the hybridization of nucleic acid molecules at constant temperature. In an ITC experiment, small aliquots of a titrant nucleic acid solution (strand 1) are added to an analyte nucleic acid solution (strand 2), and the released heat is monitored. ITC yields the stoichiometry of the association reaction (n), the enthalpy of association (ΔH), the equilibrium association constant (K), and thus the free energy of association (ΔG). Once ΔH and ΔG are known, ΔS can also be derived. Repetition of the ITC experiment at a number of different temperatures yields the ΔCp for the association reaction from the temperature dependence of ΔH.

  8. Acid rain in Asia

    NASA Astrophysics Data System (ADS)

    Bhatti, Neeloo; Streets, David G.; Foell, Wesley K.

    1992-07-01

    Acid rain has been an issue of great concern in North America and Europe during the past several decades. However, due to the passage of a number of recent regulations, most notably the Clean Air Act in the United States in 1990, there is an emerging perception that the problem in these Western nations is nearing solution. The situation in the developing world, particularly in Asia, is much bleaker. Given the policies of many Asian nations to achieve levels of development comparable with the industrialized world—which necessitate a significant expansion of energy consumption (most derived from indigenous coal reserves)—the potential for the formation of, and damage from, acid deposition in these developing countries is very high. This article delineates and assesses the emissions patterns, meteorology, physical geology, and biological and cultural resources present in various Asian nations. Based on this analysis and the risk factors to acidification, it is concluded that a number of areas in Asia are currently vulnerable to acid rain. These regions include Japan, North and South Korea, southern China, and the mountainous portions of Southeast Asia and southwestern India. Furthermore, with accelerated development (and its attendant increase in energy use and production of emissions of acid deposition precursors) in many nations of Asia, it is likely that other regions will also be affected by acidification in the near future. Based on the results of this overview, it is clear that acid deposition has significant potential to impact the Asian region. However, empirical evidence is urgently needed to confirm this and to provide early warning of increases in the magnitude and spread of acid deposition and its effects throughout this part of the world.

  9. Acid Precipitation; (USA)

    SciTech Connect

    Rushing, J.W.; Hicks, S.C.

    1991-01-01

    This publication, Acid Precipitation (APC) announces on a monthly basis the current worldwide information on acid precipitation and closely related subjects, including wet and dry deposition, long-range transport, environmental effects, modeling, and socioeconomic factors. Information on the following subjects is included within the scope of this publication, but all subjects may not appear in each issue: Pollution sources and pollution control technology; atmospheric transport and chemistry; terrestrial transport and chemistry; aquatic transport and chemistry; biological effects; corrosive effects; and socioeconomics, policy, and legislation.

  10. Whither acid rain?

    PubMed

    Brimblecombe, P

    2001-04-01

    Acid rain, the environmental cause célèbre of the 1980s seems to have vanished from popular conscience. By contrast, scientific research, despite funding difficulties, has continued to produce hundreds of research papers each year. Studies of acid rain taught much about precipitation chemistry, the behaviour of snow packs, long-range transport of pollutants and new issues in the biology of fish and forested ecosystems. There is now evidence of a shift away from research in precipitation and sulfur chemistry, but an impressive theoretical base remains as a legacy.

  11. NITRIC ACID PICKLING PROCESS

    DOEpatents

    Boller, E.R.; Eubank, L.D.

    1958-08-19

    An improved process is described for the treatment of metallic uranium surfaces preparatory to being given hot dip coatings. The process consists in first pickling the uraniunn surInce with aqueous 50% to 70% nitric acid, at 60 to 70 deg C, for about 5 minutes, rinsing the acid solution from the uranium article, promptly drying and then passing it through a molten alkali-metal halide flux consisting of 42% LiCl, 53% KCla and 5% NaCl into a molten metal bath consisting of 85 parts by weight of zinc and 15 parts by weight of aluminum

  12. Fatty acids of Thiobacillus thiooxidans.

    PubMed

    Levin, R A

    1971-12-01

    Fatty acid spectra were made on Thiobacillus thiooxidans cultures both in the presence and absence of organic compounds. Small additions of glucose or acetate had no significant effect either on growth or fatty acid content. The addition of biotin had no stimulatory effect but did result in slight quantitative changes in the fatty acid spectrum. The predominant fatty acid was a C(19) cyclopropane acid.

  13. Fatty Acids of Thiobacillus thiooxidans

    PubMed Central

    Levin, Richard A.

    1971-01-01

    Fatty acid spectra were made on Thiobacillus thiooxidans cultures both in the presence and absence of organic compounds. Small additions of glucose or acetate had no significant effect either on growth or fatty acid content. The addition of biotin had no stimulatory effect but did result in slight quantitative changes in the fatty acid spectrum. The predominant fatty acid was a C19 cyclopropane acid. PMID:4945206

  14. The Acid-Base Titration of a Very Weak Acid: Boric Acid

    ERIC Educational Resources Information Center

    Celeste, M.; Azevedo, C.; Cavaleiro, Ana M. V.

    2012-01-01

    A laboratory experiment based on the titration of boric acid with strong base in the presence of d-mannitol is described. Boric acid is a very weak acid and direct titration with NaOH is not possible. An auxiliary reagent that contributes to the release of protons in a known stoichiometry facilitates the acid-base titration. Students obtain the…

  15. Lactic acid bacterial cell factories for gamma-aminobutyric acid.

    PubMed

    Li, Haixing; Cao, Yusheng

    2010-11-01

    Gamma-aminobutyric acid is a non-protein amino acid that is widely present in organisms. Several important physiological functions of gamma-aminobutyric acid have been characterized, such as neurotransmission, induction of hypotension, diuretic effects, and tranquilizer effects. Many microorganisms can produce gamma-aminobutyric acid including bacteria, fungi and yeasts. Among them, gamma-aminobutyric acid-producing lactic acid bacteria have been a focus of research in recent years, because lactic acid bacteria possess special physiological activities and are generally regarded as safe. They have been extensively used in food industry. The production of lactic acid bacterial gamma-aminobutyric acid is safe and eco-friendly, and this provides the possibility of production of new naturally fermented health-oriented products enriched in gamma-aminobutyric acid. The gamma-aminobutyric acid-producing species of lactic acid bacteria and their isolation sources, the methods for screening of the strains and increasing their production, the enzymatic properties of glutamate decarboxylases and the relative fundamental research are reviewed in this article. And the potential applications of gamma-aminobutyric acid-producing lactic acid bacteria were also referred to.

  16. Comparison of Buffer Effect of Different Acids During Sandstone Acidizing

    NASA Astrophysics Data System (ADS)

    Umer Shafiq, Mian; Khaled Ben Mahmud, Hisham; Hamid, Mohamed Ali

    2015-04-01

    The most important concern of sandstone matrix acidizing is to increase the formation permeability by removing the silica particles. To accomplish this, the mud acid (HF: HCl) has been utilized successfully for many years to stimulate the sandstone formations, but still it has many complexities. This paper presents the results of laboratory investigations of different acid combinations (HF: HCl, HF: H3PO4 and HF: HCOOH). Hydrofluoric acid and fluoboric acid are used to dissolve clays and feldspar. Phosphoric and formic acids are added as a buffer to maintain the pH of the solution; also it allows the maximum penetration of acid into the core sample. Different tests have been performed on the core samples before and after the acidizing to do the comparative study on the buffer effect of these acids. The analysis consists of permeability, porosity, color change and pH value tests. There is more increase in permeability and porosity while less change in pH when phosphoric and formic acids were used compared to mud acid. From these results it has been found that the buffer effect of phosphoric acid and formic acid is better than hydrochloric acid.

  17. Properties of a Maize Glutathione S-Transferase That Conjugates Coumaric Acid and Other Phenylpropanoids.

    PubMed Central

    Dean, J. V.; Devarenne, T. P.; Lee, I. S.; Orlofsky, L. E.

    1995-01-01

    A glutathione S-transferase (GST) enzyme from corn (Zea mays L. Pioneer hybrid 3906) that is active with p-coumaric acid and other unsaturated phenylpropanoids was purified approximately 97-fold and characterized. The native enzyme appeared to be a monomer with a molecular mass of approximately 30 kD and an apparent isoelectric point at pH 5.2. The enzyme had a pH optimum between 7.5 and 8.0 and apparent Km values of 4.4 and 1.9 mM for reduced glutathione (GSH) and p-coumaric acid, respectively. In addition to p-coumaric acid, the enzyme was also active with o-coumaric acid, m-coumaric acid, trans-cinnamic acid, ferulic acid, and coniferyl alcohol. In addition to GSH, the enzyme could also utilize cysteine as a sulfhydryl source. The enzyme activity measured when GSH and trans-cinnamic acid were used as substrates was enhanced 2.6- and 5.2-fold by the addition of 50 [mu]M p-coumaric acid and 7-hydroxycoumarin, respectively. 1H- and 13C-nuclear magnetic resonance spectroscopic analysis of the conjugate revealed that the enzyme catalyzed the addition of GSH to the olefinic double bond of p-coumaric acid. Based on the high activity and the substrate specificity of this enzyme, it is possible that this enzyme may be involved in the in vivo conjugation of a number of unsaturated phenylpropanoids. PMID:12228522

  18. [Studies on interaction of acid-treated nanotube titanic acid and amino acids].

    PubMed

    Zhang, Huqin; Chen, Xuemei; Jin, Zhensheng; Liao, Guangxi; Wu, Xiaoming; Du, Jianqiang; Cao, Xiang

    2010-06-01

    Nanotube titanic acid (NTA) has distinct optical and electrical character, and has photocatalysis character. In accordance with these qualities, NTA was treated with acid so as to enhance its surface activity. Surface structures and surface groups of acid-treated NTA were characterized and analyzed by Transmission Electron Microscope (TEM) and Fourier Transform Infrared Spectrometry (FT-IR). The interaction between acid-treated NTA and amino acids was investigated. Analysis results showed that the lengths of acid-treated NTA became obviously shorter. The diameters of nanotube bundles did not change obviously with acid-treating. Meanwhile, the surface of acid-treated NTA was cross-linked with carboxyl or esterfunction. In addition, acid-treated NTA can catch amino acid residues easily, and then form close combination.

  19. Docosahexaenoic acid and lactation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Docosahexaenoic acid (DHA) is an important component of membrane phospholipids in the retina, and brain, and accumulates rapidly in these tissues during early infancy. DHA is present in human milk, but the amount varies considerably and is largely dependent on maternal diet. This article reviews dat...

  20. Orphenadrinium picrate picric acid

    PubMed Central

    Fun, Hoong-Kun; Hemamalini, Madhukar; Siddaraju, B. P.; Yathirajan, H. S.; Narayana, B.

    2010-01-01

    The asymmetric unit of the title compound N,N-dimethyl-2-[(2-methyl­phen­yl)phenyl­meth­oxy]ethanaminium picrate picric acid, C18H24NO+·C6H2N3O7 −·C6H3N3O7, contains one orphenadrinium cation, one picrate anion and one picric acid mol­ecule. In the orphenadrine cation, the two aromatic rings form a dihedral angle of 70.30 (7)°. There is an intra­molecular O—H⋯O hydrogen bond in the picric acid mol­ecule, which generates an S(6) ring motif. In the crystal structure, the orphenadrine cations, picrate anions and picric acid mol­ecules are connected by strong inter­molecular N—H⋯O hydrogen bonds, π⋯π inter­actions between the benzene rings of cations and anions [centroid–centroid distance = 3.5603 (9) Å] and weak C—H⋯O hydrogen bonds, forming a three-dimensional network. PMID:21580426

  1. Acid Rain Investigations.

    ERIC Educational Resources Information Center

    Hugo, John C.

    1992-01-01

    Presents an activity in which students investigate the formation of solid ammonium chloride aerosol particles to help students better understand the concept of acid rain. Provides activity objectives, procedures, sample data, clean-up instructions, and questions and answers to help interpret the data. (MDH)

  2. The Acid Rain Debate.

    ERIC Educational Resources Information Center

    Oates-Bockenstedt, Catherine

    1997-01-01

    Details an activity designed to motivate students by incorporating science-related issues into a classroom debate. Includes "The Acid Rain Bill" and "Position Guides" for student roles as committee members, consumers, governors, industry owners, tourism professionals, senators, and debate directors. (DKM)

  3. Acid rain bibliography

    SciTech Connect

    Sayers, C.S.

    1983-09-01

    This bibliography identifies 900 citations on various aspects of Acid Rain, covering published bibliographies, books, reports, conference and symposium proceedings, audio visual materials, pamphlets and newsletters. It includes five sections: citations index (complete record of author, title, source, order number); KWIC index; title index; author index; and source index. 900 references.

  4. Acid Rain Classroom Projects.

    ERIC Educational Resources Information Center

    Demchik, Michael J.

    2000-01-01

    Describes a curriculum plan in which students learn about acid rain through instructional media, research and class presentations, lab activities, simulations, design, and design implementation. Describes the simulation activity in detail and includes materials, procedures, instructions, examples, results, and discussion sections. (SAH)

  5. The Acid Rain Debate.

    ERIC Educational Resources Information Center

    Bybee, Rodger; And Others

    1984-01-01

    Describes an activity which provides opportunities for role-playing as industrialists, ecologists, and government officials. The activity involves forming an international commission on acid rain, taking testimony, and, based on the testimony, making recommendations to governments on specific ways to solve the problem. Includes suggestions for…

  6. The Acid Rain Game.

    ERIC Educational Resources Information Center

    Rakow, Steven J.; Glenn, Allen

    1982-01-01

    Provides rationale for and description of an acid rain game (designed for two players), a problem-solving model for elementary students. Although complete instructions are provided, including a copy of the game board, the game is also available for Apple II microcomputers. Information for the computer program is available from the author.…

  7. Targeting tumor acidity

    NASA Astrophysics Data System (ADS)

    Reshetnyak, Yana K.; Engelman, Donald M.; Andreev, Oleg A.

    2012-02-01

    One of the main features of solid tumors is extracellular acidity, which correlates with tumor aggressiveness and metastatic potential. We introduced novel approach in targeting of acidic tumors, and translocation of cell-impermeable cargo molecules across cellular membrane. Our approach is based on main principle of insertion and folding of a polypeptide in lipid bilayer of membrane. We have identified family of pH Low Insertion Peptides (pHLIPs), which are capable spontaneous insertion and folding in membrane at mild acidic conditions. The affinity of peptides of pHLIP family to membrane at low pH is several times higher than at neutral pH. The process of peptides folding occurs within milliseconds. The energy released in a result of folding (about 2 kcal/mol) could be used to move polar cargo across a membrane, which is a novel concept in drug delivery. pHLIP peptides could be considered as a pH-sensitive single peptide molecular transporters and conjugated with imaging probes for fluorescence, MR, PET and SPECT imaging, they represent a novel in vivo marker of acidity. The work is supported by NIH grants CA133890 and GM073857 to OAA, DME, YRK.

  8. Spermatotoxicity of dichloroacetic acid

    EPA Science Inventory

    The testicular toxicity of dichloroacetic acid (DCA), a disinfection byproduct of drinking water, was evaluated in adult male rats given both single and multiple (up to 14 d) oral doses. Delayed spermiation and altered resorption of residual bodies were observed in rats given sin...

  9. Plant fatty acid hydroxylase

    DOEpatents

    Somerville, Chris; van de Loo, Frank

    2000-01-01

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds.

  10. Alkyl phosphonic acids and sulfonic acids in the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Cooper, George W.; Onwo, Wilfred M.; Cronin, John R.

    1992-01-01

    Homologous series of alkyl phosphonic acids and alkyl sulfonic acids, along with inorganic orthophosphate and sulfate, are identified in water extracts of the Murchison meteorite after conversion to their t-butyl dimethylsilyl derivatives. The methyl, ethyl, propyl, and butyl compounds are observed in both series. Five of the eight possible alkyl phosphonic acids and seven of the eight possible alkyl sulfonic acids through C4 are identified. Abundances decrease with increasing carbon number as observed of other homologous series indigenous to Murchison. Concentrations range downward from approximately 380 nmol/gram in the alkyl sulfonic acid series, and from 9 nmol/gram in the alkyl phosphonic acid series.

  11. A Direct, Biomass-Based Synthesis of Benzoic Acid: Formic Acid-Mediated Deoxygenation of the Glucose-Derived Materials Quinic Acid and Shikimic Acid

    SciTech Connect

    Arceo, Elena; Ellman, Jonathan; Bergman, Robert

    2010-05-03

    An alternative biomass-based route to benzoic acid from the renewable starting materials quinic acid and shikimic acid is described. Benzoic acid is obtained selectively using a highly efficient, one-step formic acid-mediated deoxygenation method.

  12. 49 CFR 173.158 - Nitric acid.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... material. (b) Nitric acid in any concentration which does not contain sulfuric acid or hydrochloric acid as... sulfuric acid or hydrochloric acid as impurities, when offered for transportation or transported by...

  13. 49 CFR 173.158 - Nitric acid.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... material. (b) Nitric acid in any concentration which does not contain sulfuric acid or hydrochloric acid as... sulfuric acid or hydrochloric acid as impurities, when offered for transportation or transported by...

  14. 49 CFR 173.158 - Nitric acid.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... material. (b) Nitric acid in any concentration which does not contain sulfuric acid or hydrochloric acid as... sulfuric acid or hydrochloric acid as impurities, when offered for transportation or transported by...

  15. Synthesis of acid addition salt of delta-aminolevulinic acid from 5-bromo levulinic acid esters

    DOEpatents

    Moens, Luc

    2003-06-24

    A process of preparing an acid addition salt of delta-aminolevulinc acid comprising: a) dissolving a lower alkyl 5-bromolevulinate and hexamethylenetetramine in a solvent selected from the group consisting of water, ethyl acetate, chloroform, acetone, ethanol, tetrahydrofuran and acetonitrile, to form a quaternary ammonium salt of the lower alkyl 5-bromolevulinate; and b) hydrolyzing the quaternary ammonium salt with an inorganic acid to form an acid addition salt of delta-aminolevulinic acid.

  16. Photostabilization of ascorbic acid with citric acid, tartaric acid and boric acid in cream formulations.

    PubMed

    Ahmad, I; Ali Sheraz, M; Ahmed, S; Shad, Z; Vaid, F H M

    2012-06-01

    This study involves the evaluation of the effect of certain stabilizers, that is, citric acid (CT), tartaric acid (TA) and boric acid (BA) on the degradation of ascorbic acid (AH(2) ) in oil-in-water cream formulations exposed to the UV light and stored in the dark. The apparent first-order rate constants (0.34-0.95 × 10(-3) min(-1) in light, 0.38-1.24 × 10(-2) day(-1) in dark) for the degradation reactions in the presence of the stabilizers have been determined. These rate constants have been used to derive the second-order rate constants (0.26-1.45 × 10(-2) M(-1) min(-1) in light, 3.75-8.50 × 10(-3) M(-1) day(-1) in dark) for the interaction of AH(2) and the individual stabilizers. These stabilizers are effective in causing the inhibition of the rate of degradation of AH(2) both in the light and in the dark. The inhibitory effect of the stabilizers is in the order of CT > TA > BA. The rate of degradation of AH(2) in the presence of these stabilizers in the light is about 120 times higher than that in the dark. This could be explained on the basis of the deactivation of AH(2) -excited triplet state by CT and TA and by the inhibition of AH(2) degradation through complex formation with BA. AH(2) leads to the formation of dehydroascorbic acid (A) by chemical and photooxidation in cream formulations.

  17. 4-Coumaroyl and caffeoyl shikimic acids inhibit 4-coumaric acid:coenzyme A ligases and modulate metabolic flux for 3-hydroxylation in monolignol biosynthesis of Populus trichocarpa.

    PubMed

    Lin, Chien-Yuan; Wang, Jack P; Li, Quanzi; Chen, Hsi-Chuan; Liu, Jie; Loziuk, Philip; Song, Jina; Williams, Cranos; Muddiman, David C; Sederoff, Ronald R; Chiang, Vincent L

    2015-01-01

    Downregulation of 4-coumaric acid:coenzyme A ligase (4CL) can reduce lignin content in a number of plant species. In lignin precursor (monolignol) biosynthesis during stem wood formation in Populus trichocarpa, two enzymes, Ptr4CL3 and Ptr4CL5, catalyze the coenzyme A (CoA) ligation of 4-coumaric acid to 4-coumaroyl-CoA and caffeic acid to caffeoyl-CoA. CoA ligation of 4-coumaric acid is essential for the 3-hydroxylation of 4-coumaroyl shikimic acid. This hydroxylation results from sequential reactions of 4-hydroxycinnamoyl-CoA:shikimic acid hydroxycinnamoyl transferases (PtrHCT1 and PtrHCT6) and 4-coumaric acid 3-hydroxylase 3 (PtrC3H3). Alternatively, 3-hydroxylation of 4-coumaric acid to caffeic acid may occur through an enzyme complex of cinnamic acid 4-hydroxylase 1 and 2 (PtrC4H1 and PtrC4H2) and PtrC3H3. We found that 4-coumaroyl and caffeoyl shikimic acids are inhibitors of Ptr4CL3 and Ptr4CL5. 4-Coumaroyl shikimic acid strongly inhibits the formation of 4-coumaroyl-CoA and caffeoyl-CoA. Caffeoyl shikimic acid inhibits only the formation of 4-coumaroyl-CoA. 4-Coumaroyl and caffeoyl shikimic acids both act as competitive and uncompetitive inhibitors. Metabolic flux in wild-type and PtrC3H3 downregulated P. trichocarpa transgenics has been estimated by absolute protein and metabolite quantification based on liquid chromatography-tandem mass spectrometry, mass action kinetics, and inhibition equations. Inhibition by 4-coumaroyl and caffeoyl shikimic acids may play significant regulatory roles when these inhibitors accumulate.

  18. Fatty acid-producing hosts

    DOEpatents

    Pfleger, Brian F; Lennen, Rebecca M

    2013-12-31

    Described are hosts for overproducing a fatty acid product such as a fatty acid. The hosts include an exogenous nucleic acid encoding a thioesterase and, optionally, an exogenous nucleic acid encoding an acetyl-CoA carboxylase, wherein an acyl-CoA synthetase in the hosts are functionally delected. The hosts prefereably include the nucleic acid encoding the thioesterase at an intermediate copy number. The hosts are preferably recominantly stable and growth-competent at 37.degree. C. Methods of producing a fatty acid product comprising culturing such hosts at 37.degree. C. are also described.

  19. Acid diffusion through polyaniline membranes

    SciTech Connect

    Su, T.M.; Huang, S.C.; Conklin, J.A.

    1995-12-01

    Polyaniline membranes in the undoped (base) and doped (acid) forms are studied for their utility as pervaporation membranes. The separation of water from mixtures of propionic acid, acetic acid and formic acid have been demonstrated from various feed compositions. Doped polyaniline displays an enhanced selectivity of water over these organic acids as compared with undoped polyaniline. For as-cast polyaniline membranes a diffusion coefficient (D) on the order of 10{sup -9} cm{sup 2}/sec has been determined for the flux of protons through the membranes using hydrochloric acid.

  20. Treatment of Bile Acid Amidation Defects with Glycocholic Acid

    PubMed Central

    Heubi, James E.; Setchell, Kenneth D.R.; Jha, Pinky; Buckley, Donna; Zhang, Wujuan; Rosenthal, Philip; Potter, Carol; Horslen, Simon; Suskind, David

    2014-01-01

    Bile acid amidation defects were predicted to present with fat/fat soluble vitamin malabsorption with minimal cholestasis. We identified and treated 5 patients (1 male/4 females) from 4 families with defective bile acid amidation due to a genetically confirmed deficiency in bile acid CoA:amino acid N-acyl transferase (BAAT) with the conjugated bile acid, glycocholic acid (GCA). Fast atom bombardment-mass spectrometry analysis of urine and bile at baseline revealed predominantly unconjugated cholic acid and absence of the usual glycine and taurine conjugated primary bile acids. Treatment with 15 mg/kg GCA resulted in total duodenal bile acid concentrations of 23.3 ± 19.1 mmol/L (mean ± SD) and 63.5 ± 4.0% of the bile acids were secreted in bile in the conjugated form of which GCA represented 59.6 ± 9.3% of the total biliary bile acids. Unconjugated cholic acid continued to be present in high concentrations in bile because of partial intestinal deconjugation of orally administered GCA. Serum total bile acid concentrations did not significantly differ between pretreatment and post-treatment samples and serum contained predominantly unconjugated cholic acid. These findings confirmed efficient intestinal absorption, hepatic extraction and biliary secretion of the administered GCA. Oral tolerance tests for vitamin D2 (1000 IU vitamin D2/kg) and tocopherol (100 IU/kg tocopherol acetate) demonstrated improvement in fat-soluble vitamin absorption after GCA treatment. Growth improved in 3/3 growth-delayed prepubertal patients. Conclusions: Oral glycocholic acid therapy is safe and effective in improving growth and fat-soluble vitamin absorption in children and adolescents with inborn errors of bile acid metabolism due to amidation defects. PMID:25163551

  1. [Lipid synthesis by an acidic acid tolerant Rhodotorula glutinis].

    PubMed

    Lin, Zhangnan; Liu, Hongjuan; Zhang, Jian'an; Wang, Gehua

    2016-03-01

    Acetic acid, as a main by-product generated in the pretreatment process of lignocellulose hydrolysis, significantly affects cell growth and lipid synthesis of oleaginous microorganisms. Therefore, we studied the tolerance of Rhodotorula glutinis to acetic acid and its lipid synthesis from substrate containing acetic acid. In the mixed sugar medium containing 6 g/L glucose and 44 g/L xylose, and supplemented with acetic acid, the cell growth was not:inhibited when the acetic acid concentration was below 10 g/L. Compared with the control, the biomass, lipid concentration and lipid content of R. glutinis increased 21.5%, 171% and 122% respectively when acetic acid concentration was 10 g/L. Furthermore, R. glutinis could accumulate lipid with acetate as the sole carbon source. Lipid concentration and lipid yield reached 3.20 g/L and 13% respectively with the initial acetic acid concentration of 25 g/L. The lipid composition was analyzed by gas chromatograph. The main composition of lipid produced with acetic acid was palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid, including 40.9% saturated fatty acids and 59.1% unsaturated fatty acids. The lipid composition was similar to that of plant oil, indicating that lipid from oleaginous yeast R. glutinis had potential as the feedstock of biodiesel production. These results demonstrated that a certain concentration of acetic acid need not to be removed in the detoxification process when using lignocelluloses hydrolysate to produce microbial lipid by R. glutinis. PMID:27349116

  2. Reactions of nitroxides 15. Cinnamates bearing a nitroxyl moiety synthesized using a Mizoroki–Heck cross-coupling reaction

    PubMed Central

    Huras, Bogumiła

    2015-01-01

    Summary Cinnamic acid derivatives bearing a nitroxyl moiety (2,2,6,6-tetramethyl-1-oxyl-4-piperidyl 3-E-aryl acrylates) were synthesized in 30–100% yield using a Mizoroki–Heck cross-coupling reaction between 4-acryloyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl and iodobenzene derivatives in the presence of palladium(II) acetate coordinated with a tri(o-tolyl)phosphine ligand immobilized in a polyurea matrix. PMID:26199672

  3. NAPAP (National Acid Precipitation Assessment Program) results on acid rain

    SciTech Connect

    Not Available

    1990-06-01

    The National Acid Precipitation Assessment Program (NAPAP) was mandated by Congress in 1980 to study the effects of acid rain. The results of 10 years of research on the effect of acid deposition and ozone on forests, particularly high elevation spruce and fir, southern pines, eastern hardwoods and western conifers, will be published this year.

  4. Acid Earth--The Global Threat of Acid Pollution.

    ERIC Educational Resources Information Center

    McCormick, John

    Acid pollution is a major international problem, but the debate it has elicited has often clouded the distinction between myth and facts. This publication attempts to concerning the acid pollution situation. This publication attempts to identify available facts. It is the first global review of the problem of acid pollution and the first to…

  5. Usnic acid controls the acidity tolerance of lichens.

    PubMed

    Hauck, Markus; Jürgens, Sascha-René

    2008-11-01

    The hypotheses were tested that, firstly, lichens producing the dibenzofuran usnic acid colonize substrates characterized by specific pH ranges, secondly, this preferred pH is in a range where soluble usnic acid and its corresponding anion occur in similar concentrations, and thirdly, usnic acid makes lichens vulnerable to acidity. Lichens with usnic acid prefer an ambient pH range between 3.5 and 5.5 with an optimum between 4.0 and 4.5. This optimum is close to the pK(a1) value of usnic acid of 4.4. Below this optimum pH, dissolved SO(2) reduces the chlorophyll fluorescence yield more in lichens with than without their natural content of usnic acid. This suggests that usnic acid influences the acidity tolerance of lichens. The putative mechanism of the limited acidity tolerance of usnic acid-containing lichens is the acidification of the cytosol by molecules of protonated usnic acid shuttling protons through the plasma membrane at an apoplastic pH

  6. College Chemistry Students' Mental Models of Acids and Acid Strength

    ERIC Educational Resources Information Center

    McClary, LaKeisha; Talanquer, Vicente

    2011-01-01

    The central goal of this study was to characterize the mental models of acids and acid strength expressed by advanced college chemistry students when engaged in prediction, explanation, and justification tasks that asked them to rank chemical compounds based on their relative acid strength. For that purpose we completed a qualitative research…

  7. Acid hydrolysis of cellulose

    SciTech Connect

    Salazar, H.

    1980-12-01

    One of the alternatives to increase world production of etha nol is by the hydrolysis of cellulose content of agricultural residues. Studies have been made on the types of hydrolysis: enzimatic and acid. Data obtained from the sulphuric acid hydrolysis of cellulose showed that this process proceed in two steps, with a yield of approximately 95% glucose. Because of increases in cost of alternatives resources, the high demand of the product and the more economic production of ethanol from cellulose materials, it is certain that this technology will be implemented in the future. At the same time further studies on the disposal and reuse of the by-products of this production must be undertaken.

  8. [Progress in glucaric acid].

    PubMed

    Qiu, Yuying; Fang, Fang; Du, Guocheng; Chen, Jian

    2015-04-01

    Glucaric acid (GA) is derived from glucose and commonly used in chemical industry. It is also considered as one of the "Top value-added chemicals from biomass" as carbohydrate monomers to produce various synthetic polymers and bioenergy. The demand for GA in food manufacture is increasing. GA has also attracted public attentions due to its therapeutic uses such as regulating hormones, increasing the immune function and reducing the risks of cancers. Currently GA is produced by chemical oxidation. Research on production of GA via microbial synthesis is still at preliminary stage. We reviewed the advances of glucaric acid applications, preparation and quantification methods. The prospects on production of GA by microbial fermentation were also discussed. PMID:26380405

  9. Eucomic acid methanol monosolvate

    PubMed Central

    Li, Guo-Qiang; Li, Yao-Lan; Wang, Guo-Cai; Liang, Zhi-Hong; Jiang, Ren-Wang

    2011-01-01

    In the crystal structure of the title compound [systematic name: 2-hy­droxy-2-(4-hy­droxy­benz­yl)butane­dioic acid methanol monosolvate], C11H12O6·CH3OH, the dihedral angles between the planes of the carboxyl groups and the benzene ring are 51.23 (9) and 87.97 (9)°. Inter­molecular O—H⋯O hydrogen-bonding inter­actions involving the hy­droxy and carb­oxy­lic acid groups and the methanol solvent mol­ecule give a three-dimensional structure. PMID:22091200

  10. Industrial ecotoxicology "acid rain".

    PubMed

    Astolfi, E; Gotelli, C; Higa, J

    1986-01-01

    The acid rain phenomenon was studied in the province of Cordoba, Argentina. This study, based on a previously outlined framework, determined the anthropogenic origin of the low pH due to the presence of industrial hydrochloric acid wastage. This industrial ecotoxicological phenomenon seriously affected the forest wealth, causing a great defoliation of trees and shrubs, with a lower effect on crops. A survey on its effects on human beings has not been carried out, but considering the corrosion caused to different metals and its denouncing biocide effect on plants and animals, we should expect to find some kind of harm to the health of the workers involved or others engaged in farming, and even to those who are far away from the polluting agent. PMID:3758667

  11. Industrial ecotoxicology "acid rain".

    PubMed

    Astolfi, E; Gotelli, C; Higa, J

    1986-01-01

    The acid rain phenomenon was studied in the province of Cordoba, Argentina. This study, based on a previously outlined framework, determined the anthropogenic origin of the low pH due to the presence of industrial hydrochloric acid wastage. This industrial ecotoxicological phenomenon seriously affected the forest wealth, causing a great defoliation of trees and shrubs, with a lower effect on crops. A survey on its effects on human beings has not been carried out, but considering the corrosion caused to different metals and its denouncing biocide effect on plants and animals, we should expect to find some kind of harm to the health of the workers involved or others engaged in farming, and even to those who are far away from the polluting agent.

  12. (Radioiodinated free fatty acids)

    SciTech Connect

    Knapp, Jr., F. F.

    1987-12-11

    The traveler participated in the Second International Workshop on Radioiodinated Free Fatty Acids in Amsterdam, The Netherlands where he presented an invited paper describing the pioneering work at the Oak Ridge National Laboratory (ORNL) involving the design, development and testing of new radioiodinated methyl-branched fatty acids for evaluation of heart disease. He also chaired a technical session on the testing of new agents in various in vitro and in vivo systems. He also visited the Institute for Clinical and Experimental Nuclear Medicine in Bonn, West Germany, to review, discuss, plan and coordinate collaborative investigations with that institution. In addition, he visited the Cyclotron Research Center in Liege, Belgium, to discuss continuing collaborative studies with the Osmium-191/Iridium-191m radionuclide generator system, and to complete manuscripts and plan future studies.

  13. Immunomodulatory spherical nucleic acids.

    PubMed

    Radovic-Moreno, Aleksandar F; Chernyak, Natalia; Mader, Christopher C; Nallagatla, Subbarao; Kang, Richard S; Hao, Liangliang; Walker, David A; Halo, Tiffany L; Merkel, Timothy J; Rische, Clayton H; Anantatmula, Sagar; Burkhart, Merideth; Mirkin, Chad A; Gryaznov, Sergei M

    2015-03-31

    Immunomodulatory nucleic acids have extraordinary promise for treating disease, yet clinical progress has been limited by a lack of tools to safely increase activity in patients. Immunomodulatory nucleic acids act by agonizing or antagonizing endosomal toll-like receptors (TLR3, TLR7/8, and TLR9), proteins involved in innate immune signaling. Immunomodulatory spherical nucleic acids (SNAs) that stimulate (immunostimulatory, IS-SNA) or regulate (immunoregulatory, IR-SNA) immunity by engaging TLRs have been designed, synthesized, and characterized. Compared with free oligonucleotides, IS-SNAs exhibit up to 80-fold increases in potency, 700-fold higher antibody titers, 400-fold higher cellular responses to a model antigen, and improved treatment of mice with lymphomas. IR-SNAs exhibit up to eightfold increases in potency and 30% greater reduction in fibrosis score in mice with nonalcoholic steatohepatitis (NASH). Given the clinical potential of SNAs due to their potency, defined chemical nature, and good tolerability, SNAs are attractive new modalities for developing immunotherapies.

  14. Acid rain in Asia

    SciTech Connect

    Bhatti, N.; Streets, D.G. ); Foell, W.K. )

    1991-01-01

    Acid rain has been an issue of widespread concern in North America and Europe for more than fifteen years. However, there is an emerging feeling that the problem in Europe and North America is nearing solution, largely as a result of existing and newly enacted legislation, decreased energy use due to conservation and efficiency improvements, and/or trends in energy policy away from fossil fuels. The situation in Asia appears much bleaker. Fossil fuels are already used in large quantities, such that local air pollution is becoming a serious problem and high deposition levels are being measured. Emission regulations in most countries (with the notable exception of Japan) are not very stringent. Energy plans in many countries (particularly PRC, India, Thailand, and South Korea) call for very large increases in coal combustion in the future. Finally, there is not presently a strong scientific or public constituency for action to mitigate the potential effects of acid deposition. These factors imply potentially serious problems in the future for long-range transport and deposition of sulfur and nitrogen species and consequent damage to ecosystems and materials. The political ramifications of transboundary environmental pollution in this region are also potentially serious. The purpose of this paper is to provide background information on the acid deposition situation in Asia, with the intention of laying the foundation for the development of a possible research program for this region. 36 refs., 8 figs., 8 tabs.

  15. Immunomodulatory spherical nucleic acids

    PubMed Central

    Radovic-Moreno, Aleksandar F.; Chernyak, Natalia; Mader, Christopher C.; Nallagatla, Subbarao; Kang, Richard S.; Hao, Liangliang; Walker, David A.; Halo, Tiffany L.; Merkel, Timothy J.; Rische, Clayton H.; Anantatmula, Sagar; Burkhart, Merideth; Mirkin, Chad A.; Gryaznov, Sergei M.

    2015-01-01

    Immunomodulatory nucleic acids have extraordinary promise for treating disease, yet clinical progress has been limited by a lack of tools to safely increase activity in patients. Immunomodulatory nucleic acids act by agonizing or antagonizing endosomal toll-like receptors (TLR3, TLR7/8, and TLR9), proteins involved in innate immune signaling. Immunomodulatory spherical nucleic acids (SNAs) that stimulate (immunostimulatory, IS-SNA) or regulate (immunoregulatory, IR-SNA) immunity by engaging TLRs have been designed, synthesized, and characterized. Compared with free oligonucleotides, IS-SNAs exhibit up to 80-fold increases in potency, 700-fold higher antibody titers, 400-fold higher cellular responses to a model antigen, and improved treatment of mice with lymphomas. IR-SNAs exhibit up to eightfold increases in potency and 30% greater reduction in fibrosis score in mice with nonalcoholic steatohepatitis (NASH). Given the clinical potential of SNAs due to their potency, defined chemical nature, and good tolerability, SNAs are attractive new modalities for developing immunotherapies. PMID:25775582

  16. Perfluorooctanoic acid and environmental risks

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA) is a member of the perfluoroalkyl acids (PFAA) family of chemicals, which consist of a carbon backbone typically four to fourteen carbons in length and a charged functional moiety.

  17. Folic Acid Questions and Answers

    MedlinePlus

    ... swallow large pills. How can I take a vitamin with folic acid? A : These days, multivitamins with folic acid come in chewable chocolate or fruit flavors, liquids, and large oval or smaller round ...

  18. Omega-3 fatty acids (image)

    MedlinePlus

    Omega-3 fatty acids are a form of polyunsaturated fat that the body derives from food. Omega-3s (and omega-6s) are known as essential fatty acids (EFAs) because they are important for good health. ...

  19. Acid rain: Reign of controversy

    SciTech Connect

    Kahan, A.M.

    1986-01-01

    Acid Rain is a primer on the science and politics of acid rain. Several introductory chapters describe in simple terms the relevant principles of water chemistry, soil chemistry, and plant physiology and discuss the demonstrated or postulated effects of acid rain on fresh waters and forests as well as on statuary and other exposed objects. There follow discussions on the economic and social implications of acid rain (for example, possible health effects) and on the sources, transport, and distribution of air pollutants.

  20. Sedimentation of sulfuric acid in acid tars from current production

    SciTech Connect

    Denisova, T.L.; Frolov, A.F.; Aminov, A.N.; Novosel'tsev, S.P.

    1987-09-01

    Acid tars obtained in treating T-750, KhF-12, and I-8A oils were investigated for purposes of recovering sulfuric acid and asphalt binders from the compositions and of determining the effects of storage time on the recovery. The consumption and sedimentation levels of sulfuric acid during storage for different periods and at different temperatures were assessed. The characteristics of an asphalt binder obtained by neutralizing acid tar with a paste consisting of asphalts from deasphalting operations and slaked lime, followed by oxidation of the mixture with atmospheric air, were determined. The sulfuric acid recovered in the settling process could be burned in order to purify it of organic contaminants.

  1. Sequential injection redox or acid-base titration for determination of ascorbic acid or acetic acid.

    PubMed

    Lenghor, Narong; Jakmunee, Jaroon; Vilen, Michael; Sara, Rolf; Christian, Gary D; Grudpan, Kate

    2002-12-01

    Two sequential injection titration systems with spectrophotometric detection have been developed. The first system for determination of ascorbic acid was based on redox reaction between ascorbic acid and permanganate in an acidic medium and lead to a decrease in color intensity of permanganate, monitored at 525 nm. A linear dependence of peak area obtained with ascorbic acid concentration up to 1200 mg l(-1) was achieved. The relative standard deviation for 11 replicate determinations of 400 mg l(-1) ascorbic acid was 2.9%. The second system, for acetic acid determination, was based on acid-base titration of acetic acid with sodium hydroxide using phenolphthalein as an indicator. The decrease in color intensity of the indicator was proportional to the acid content. A linear calibration graph in the range of 2-8% w v(-1) of acetic acid with a relative standard deviation of 4.8% (5.0% w v(-1) acetic acid, n=11) was obtained. Sample throughputs of 60 h(-1) were achieved for both systems. The systems were successfully applied for the assays of ascorbic acid in vitamin C tablets and acetic acid content in vinegars, respectively.

  2. Determination of phenolic acids in plant extracts using CZE with on-line transient isotachophoretic preconcentration.

    PubMed

    Honegr, Jan; Pospíšilová, Marie

    2013-02-01

    A novel transient ITP-CZE for preconcentration and determination of seven phenolic acids (caffeic acid, cinnamic acid, p-coumaric acid, ferulic acid, protocatechuic acid, syringic acid, and vanilic acid) was developed and validated. Effects of several factors such as control of EOF, pH and buffer concentration, addition of organic solvents and CDs, and conditions for sample injection were investigated. Sample self-stacking was applied by means of induction of transient ITP, which was realized by adding sodium chloride into the sample. The CZE was realized in 200 mM borate buffer ((w)(s)pH 9.2) containing 37.5% methanol, 0.001% hexadimethrine bromide, and 15 mM 2-hydroxypropyl-β-CD. Under the optimal conditions for analysis, analytes were separated within 20 min. Linearity was tested for each compound in the concentration range of 0.1-10 μg/mL (R = 0.9906-0.9968) and the detection limits (S/N = 3) ranged from 11 ng/mL (protocatechuic acid) to 31 μg/mL (syringic acid). The validated method was applied to the ethanolic extract of Epilobium parviflorum, Onagraceae. The method of SPE was used for the precleaning of the sample. PMID:23401390

  3. Nervonic acid and demyelinating disease.

    PubMed

    Sargent, J R; Coupland, K; Wilson, R

    1994-04-01

    Demyelination in adrenoleukodystrophy (ALD) is associated with an accumulation of very long chain saturated fatty acids such as 26:0 stemming from a genetic defect in the peroxisomal beta oxidation system responsible for the chain shortening of these fatty acids. Long chain monoenoic acids such as erucic acid, 22:1(n-9), can normalise elevated serum levels of 26:0 in ALD by depressing their biosynthesis from shorter chain saturated fatty acids. Sphingolipids from post mortem ALD brain have decreased levels of nervonic acid, 24:1(n-9), and increased levels of stearic acid, 18:0. Increased levels of 26:0 are accompanied by decreased nervonic acid biosynthesis in skin fibroblasts from ALD patients. Sphingolipids from post mortem MS brain have the same decreased 24:1(n-9) and increased 18:0 seen in post mortem ALD brain. The 24:1(n-9) content of sphingomyelin is depressed in erythrocytes from multiple sclerosis (MS) patients. Defects in the microsomal biosynthesis of very long chain fatty acids including 24:1(n-9) in 'jumpy' and 'quaking' mice are accompanied by impaired myelination. An impairment in the provision of nervonic acid in demyelinating diseases is indicated, suggesting that dietary therapy with oils rich in very long chain monenoic acid fatty acids may be beneficial in such conditions.

  4. Pantothenic acid biosynthesis in zymomonas

    SciTech Connect

    Tao, Luan; Tomb, Jean-Francois; Viitanen, Paul V.

    2014-07-01

    Zymomonas is unable to synthesize pantothenic acid and requires this essential vitamin in growth medium. Zymomonas strains transformed with an operon for expression of 2-dehydropantoate reductase and aspartate 1-decarboxylase were able to grow in medium lacking pantothenic acid. These strains may be used for ethanol production without pantothenic acid supplementation in seed culture and fermentation media.

  5. An Umbrella for Acid Rain.

    ERIC Educational Resources Information Center

    Randal, Judith

    1979-01-01

    The Environmental Protection Agency has awarded several grants to study effects of and possible solutions to the problem of "acid rain"; pollution from atmospheric nitric and sulfuric acids. The research program is administered through North Carolina State University at Raleigh and will focus on biological effects of acid rain. (JMF)

  6. Carboxylic acid sorption regeneration process

    DOEpatents

    King, C.J.; Poole, L.J.

    1995-05-02

    Carboxylic acids are sorbed from aqueous feedstocks into an organic liquid phase or onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with aqueous alkylamine thus forming an alkylammonium carboxylate which is dewatered and decomposed to the desired carboxylic acid and the alkylamine. 10 figs.

  7. Carboxylic acid sorption regeneration process

    DOEpatents

    King, C. Judson; Poole, Loree J.

    1995-01-01

    Carboxylic acids are sorbed from aqueous feedstocks into an organic liquid phase or onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with aqueous alkylamine thus forming an alkylammonium carboxylate which is dewatered and decomposed to the desired carboxylic acid and the alkylamine.

  8. Inhibition of fungal spore adhesion by zosteric Acid as the basis for a novel, nontoxic crop protection technology.

    PubMed

    Stanley, Michele S; Callow, Maureen E; Perry, Ruth; Alberte, Randall S; Smith, Robert; Callow, James A

    2002-04-01

    ABSTRACT To explore the potential for nontoxic crop protection technologies based on the inhibition of fungal spore adhesion, we have tested the effect of synthetic zosteric acid (p-(sulfo-oxy) cinnamic acid), a naturally occurring phenolic acid in eelgrass (Zostera marina L.) plants, on spore adhesion and infection in two pathosystems: rice blast caused by Magnaporthe grisea and bean anthracnose caused by Colletotrichum lindemuthianum. We have shown that zosteric acid inhibits spore adhesion to model and host leaf surfaces and that any attached spores fail to develop appressoria, and consequently do not infect leaf cells. Low concentrations of zosteric acid that are effective in inhibiting adhesion are not toxic to either fungus or to the host. The inhibition of spore adhesion in the rice blast pathogen is fully reversible. On plants, zosteric acid reduced (rice) or delayed (bean) lesion development. These results suggest that there is potential for novel and environmentally benign crop protection technologies based on manipulating adhesion.

  9. Heterogeneous uptake of amines by citric acid and humic acid.

    PubMed

    Liu, Yongchun; Ma, Qingxin; He, Hong

    2012-10-16

    Heterogeneous uptake of methylamine (MA), dimethylamine (DMA), and trimethylamine (TMA) onto citric acid and humic acid was investigated using a Knudsen cell reactor coupled to a quadrupole mass spectrometer at 298 K. Acid-base reactions between amines and carboxylic acids were confirmed. The observed uptake coefficients of MA, DMA, and TMA on citric acid at 298 K were measured to be 7.31 ± 1.13 × 10(-3), 6.65 ± 0.49 × 10(-3), and 5.82 ± 0.68 × 10(-3), respectively, and showed independence of sample mass. The observed uptake coefficients of MA, DMA, and TMA on humic acid at 298 K increased linearly with sample mass, and the true uptake coefficients of MA, DMA, and TMA were measured to be 1.26 ± 0.07 × 10(-5), 7.33 ± 0.40 × 10(-6), and 4.75 ± 0.15 × 10(-6), respectively. Citric acid, having stronger acidity, showed a higher reactivity than humic acid for a given amine; while the steric effect of amines was found to govern the reactivity between amines and citric acid or humic acid.

  10. Composition for nucleic acid sequencing

    SciTech Connect

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2008-08-26

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  11. Evolution of rosmarinic acid biosynthesis.

    PubMed

    Petersen, Maike; Abdullah, Yana; Benner, Johannes; Eberle, David; Gehlen, Katja; Hücherig, Stephanie; Janiak, Verena; Kim, Kyung Hee; Sander, Marion; Weitzel, Corinna; Wolters, Stefan

    2009-01-01

    Rosmarinic acid and chlorogenic acid are caffeic acid esters widely found in the plant kingdom and presumably accumulated as defense compounds. In a survey, more than 240 plant species have been screened for the presence of rosmarinic and chlorogenic acids. Several rosmarinic acid-containing species have been detected. The rosmarinic acid accumulation in species of the Marantaceae has not been known before. Rosmarinic acid is found in hornworts, in the fern family Blechnaceae and in species of several orders of mono- and dicotyledonous angiosperms. The biosyntheses of caffeoylshikimate, chlorogenic acid and rosmarinic acid use 4-coumaroyl-CoA from the general phenylpropanoid pathway as hydroxycinnamoyl donor. The hydroxycinnamoyl acceptor substrate comes from the shikimate pathway: shikimic acid, quinic acid and hydroxyphenyllactic acid derived from l-tyrosine. Similar steps are involved in the biosyntheses of rosmarinic, chlorogenic and caffeoylshikimic acids: the transfer of the 4-coumaroyl moiety to an acceptor molecule by a hydroxycinnamoyltransferase from the BAHD acyltransferase family and the meta-hydroxylation of the 4-coumaroyl moiety in the ester by a cytochrome P450 monooxygenase from the CYP98A family. The hydroxycinnamoyltransferases as well as the meta-hydroxylases show high sequence similarities and thus seem to be closely related. The hydroxycinnamoyltransferase and CYP98A14 from Coleus blumei (Lamiaceae) are nevertheless specific for substrates involved in RA biosynthesis showing an evolutionary diversification in phenolic ester metabolism. Our current view is that only a few enzymes had to be "invented" for rosmarinic acid biosynthesis probably on the basis of genes needed for the formation of chlorogenic and caffeoylshikimic acid while further biosynthetic steps might have been recruited from phenylpropanoid metabolism, tocopherol/plastoquinone biosynthesis and photorespiration. PMID:19560175

  12. Evolution of rosmarinic acid biosynthesis.

    PubMed

    Petersen, Maike; Abdullah, Yana; Benner, Johannes; Eberle, David; Gehlen, Katja; Hücherig, Stephanie; Janiak, Verena; Kim, Kyung Hee; Sander, Marion; Weitzel, Corinna; Wolters, Stefan

    2009-01-01

    Rosmarinic acid and chlorogenic acid are caffeic acid esters widely found in the plant kingdom and presumably accumulated as defense compounds. In a survey, more than 240 plant species have been screened for the presence of rosmarinic and chlorogenic acids. Several rosmarinic acid-containing species have been detected. The rosmarinic acid accumulation in species of the Marantaceae has not been known before. Rosmarinic acid is found in hornworts, in the fern family Blechnaceae and in species of several orders of mono- and dicotyledonous angiosperms. The biosyntheses of caffeoylshikimate, chlorogenic acid and rosmarinic acid use 4-coumaroyl-CoA from the general phenylpropanoid pathway as hydroxycinnamoyl donor. The hydroxycinnamoyl acceptor substrate comes from the shikimate pathway: shikimic acid, quinic acid and hydroxyphenyllactic acid derived from l-tyrosine. Similar steps are involved in the biosyntheses of rosmarinic, chlorogenic and caffeoylshikimic acids: the transfer of the 4-coumaroyl moiety to an acceptor molecule by a hydroxycinnamoyltransferase from the BAHD acyltransferase family and the meta-hydroxylation of the 4-coumaroyl moiety in the ester by a cytochrome P450 monooxygenase from the CYP98A family. The hydroxycinnamoyltransferases as well as the meta-hydroxylases show high sequence similarities and thus seem to be closely related. The hydroxycinnamoyltransferase and CYP98A14 from Coleus blumei (Lamiaceae) are nevertheless specific for substrates involved in RA biosynthesis showing an evolutionary diversification in phenolic ester metabolism. Our current view is that only a few enzymes had to be "invented" for rosmarinic acid biosynthesis probably on the basis of genes needed for the formation of chlorogenic and caffeoylshikimic acid while further biosynthetic steps might have been recruited from phenylpropanoid metabolism, tocopherol/plastoquinone biosynthesis and photorespiration.

  13. Microbial transformations of isocupressic acid.

    PubMed

    Lin, S J; Rosazza, J P

    1998-07-01

    Microbial transformations of the labdane-diterpene isocupressic acid (1) with different microorganisms yielded several oxygenated metabolites that were isolated and characterized by MS and NMR spectroscopic analyses. Nocardia aurantia (ATCC 12674) catalyzed the cleavage of the 13,14-double bond to yield a new nor-labdane metabolite, 2. Cunninghamella elegans (-) (NRRL 1393) gave 7beta-hydroxyisocupressic acid (3) and labda-7,13(E)-diene-6beta,15, 17-triol-19-oic acid (4), and Mucor mucedo (ATCC 20094) gave 2alpha-hydroxyisocupressic acid (5) and labda-8(17),14-diene-2alpha, 13-diol-19-oic acid (6).

  14. Invasive cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.

    2002-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  15. Invasive cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.

    1999-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  16. The politics of acid rain

    SciTech Connect

    Wilcher, M.E. )

    1989-01-01

    This work examines and compares the acid rain policies through the different political systems of Canada, Great Britain and the United States. Because the flow of acid rain can transcend national boundaries, acid rain has become a crucial international problem. According to the author, because of differences in governmental institutions and structure, the extent of governmental intervention in the industrial economy, the degree of reliance on coal for power generation, and the extent of acid rain damage, national responses to the acid rain problem have varied.

  17. [A catalogue of fatty acids].

    PubMed

    Canalejo, E; Martín Peña, G; Gómez Molero, L; Ruiz Galiana, J

    1996-01-01

    Fatty acids structure and function is an area of renewed interest because of its effects on plasma lipids, biosynthesis of prostaglandins, leucotrienes and thromboxanes, and the obligatory demands of some fatty acids, especially for the newborn. Fatty acids are identified in three different ways: by the classical nomenclature, by its trivial name, and by the new methods also known as the omega system. These three different methods have created some confusion. The aim of this article is to revise fatty acids chemical structure and to compile a list of nutritional important fatty acids with the three different terminologies.

  18. Tested Demonstrations: Color Oscillations in the Formic Acid-Nitric Acid-Sulfuric Acid System.

    ERIC Educational Resources Information Center

    Raw, C. J. G.; And Others

    1983-01-01

    Presented are procedures for demonstrating the production of color oscillations when nitric acid is added to a formic acid/concentrated sulfuric acid mixture. Because of safety considerations, "Super-8" home movie of the color changes was found to be satisfactory for demonstration purposes. (JN)

  19. Twinning of dodecanedicarboxylic acid

    NASA Technical Reports Server (NTRS)

    Sen, R.; Wilcox, W. R.

    1986-01-01

    Twinning of 1,10-dodecanedicarboxyl acid (DDA) was observed in 0.1 mm thick films with a polarizing microscope. Twins originated from polycrystalline regions which tended to nucleate on twin faces, and terminated by intersection gone another. Twinning increased dramatically with addition of organic compounds with a similar molecular size and shape. Increasing the freezing rate, increasing the temperature gradient, and addition of silica particles increased twinning. It is proposed that twins nucleate with polycrystals and sometimes anneal out before they become observable. The impurities may enhance twinning either by lowering the twin energy or by adsorbing on growing faces.

  20. Mycophenolic Acid in Silage

    PubMed Central

    Schneweis, Isabell; Meyer, Karsten; Hörmansdorfer, Stefan; Bauer, Johann

    2000-01-01

    We examined 233 silage samples and found that molds were present in 206 samples with counts between 1 × 103 and 8.9 × 107 (mean, 4.7 × 106) CFU/g. Mycophenolic acid, a metabolite of Penicillium roqueforti, was detected by liquid chromatography-mass spectrometry in 74 (32%) of these samples at levels ranging from 20 to 35,000 (mean, 1,400) μg/kg. This compound has well-known immunosuppressive properties, so feeding with contaminated silage may promote the development of infectious diseases in livestock. PMID:10919834

  1. Synthesis of amino acids

    DOEpatents

    Davis, J.W. Jr.

    1979-09-21

    A method is described for synthesizing amino acids preceding through novel intermediates of the formulas: R/sub 1/R/sub 2/C(OSOC1)CN, R/sub 1/R/sub 2/C(C1)CN and (R/sub 1/R/sub 2/C(CN)O)/sub 2/SO wherein R/sub 1/ and R/sub 2/ are each selected from hydrogen and monovalent hydrocarbon radicals of 1 to 10 carbon atoms. The use of these intermediates allows the synthesis steps to be exothermic and results in an overall synthesis method which is faster than the synthesis methods of the prior art.

  2. Beyond acid rain

    SciTech Connect

    Gaffney, J.S.; Streit, G.E.; Spall, W.D.; Hall, J.H.

    1987-06-01

    This paper discussed the effects of the interactions of soluble oxidants and organic toxins with sulfur dioxide and nitrogen dioxide. It suggested that these chemical reactions in the atmosphere produced a more potent acid rain which was harmful not only because it had a low pH but because it contained oxidants and organic toxins which were harmful to surface vegetation and the organisms found in surface waters. It was stressed that air pollution is a global problem and that is is necessary to develop a better fundamental understanding of how air pollution is causing damage to the streams and forests of the world. 50 references.

  3. Interstellar isothiocyanic acid

    NASA Technical Reports Server (NTRS)

    Frerking, M. A.; Linke, R. A.; Thaddeus, P.

    1979-01-01

    Isothiocyanic acid (HNCS) has been identified in Sgr B2 from millimeter-wave spectral line observations. We have definitely detected three rotational lines, and have probably detected two others. The rotational temperature of HNCS in Sgr B2 is 14 plus or minus 5 K, its column density is 2.5 plus or minus 1.0 x 10 to the 13th per sq cm, and its abundance relative to HNCO is consistent with the cosmic S/O ratio, 1/42.

  4. 20-hydroxyeicosatetraenoic acid and epoxyeicosatrienoic acids and blood pressure.

    PubMed

    McGiff, J C; Quilley, J

    2001-03-01

    The properties of 20-hydroxyeicosatetraenoic acid and epoxyeicosatrienoic acids, vasoactivity and modulation of ion transport and mediation/modulation of the effects of vasoactive hormones, such as angiotensin II and endothelin, underscore their importance to renal vascular mechanisms and electrolyte excretion. 20-Hydroxyeicosatetraenoic acid is an integral component of renal autoregulation and tubuloglomerular feedback as well as cerebral autoregulation, eliciting vasoconstriction by the inhibition of potassium channels. Nitric oxide inhibits 20-hydroxyeicosatetraenoic acid formation, the removal of which contributes to the vasodilator effect of nitric oxide. In contrast, epoxyeicosatrienoic acids are generally vasodilatory by activating potassium channels and have been proposed as endothelium-derived hyperpolarizing factors. 20-Hydroxyeicosatetraenoic acid modulates ion transport in key nephron segments by influencing the activities of sodium--potassium-ATPase and the sodium--potassium--chloride co-transporter; however, the primacy of the various arachidonate oxygenases that generate products affecting these activities changes with age. The range and diversity of activity of 20-hydroxyeicosatetraenoic acid is influenced by its metabolism by cyclooxygenase to products affecting vasomotion and salt/water excretion. 20-Hydroxyeicosatetraenoic acid is the principal renal eicosanoid that interacts with several hormonal systems that are central to blood pressure regulation. This article reviews the most recent studies that address 20-hydroxyeicosatetraenoic acid and epoxyeicosatrienoic acids in vascular and renal tubular function and hypertension.

  5. Mapping the structural requirements of inducers and substrates for decarboxylation of weak acid preservatives by the food spoilage mould Aspergillus niger.

    PubMed

    Stratford, Malcolm; Plumridge, Andrew; Pleasants, Mike W; Novodvorska, Michaela; Baker-Glenn, Charles A G; Pattenden, Gerald; Archer, David B

    2012-07-16

    Moulds are able to cause spoilage in preserved foods through degradation of the preservatives using the Pad-decarboxylation system. This causes, for example, decarboxylation of the preservative sorbic acid to 1,3-pentadiene, a volatile compound with a kerosene-like odour. Neither the natural role of this system nor the range of potential substrates has yet been reported. The Pad-decarboxylation system, encoded by a gene cluster in germinating spores of the mould Aspergillus niger, involves activity by two decarboxylases, PadA1 and OhbA1, and a regulator, SdrA, acting pleiotropically on sorbic acid and cinnamic acid. The structural features of compounds important for the induction of Pad-decarboxylation at both transcriptional and functionality levels were investigated by rtPCR and GCMS. Sorbic and cinnamic acids served as transcriptional inducers but ferulic, coumaric and hexanoic acids did not. 2,3,4,5,6-Pentafluorocinnamic acid was a substrate for the enzyme but had no inducer function; it was used to distinguish induction and competence for decarboxylation in combination with the analogue chemicals. The structural requirements for the substrates of the Pad-decarboxylation system were probed using a variety of sorbic and cinnamic acid analogues. High decarboxylation activity, ~100% conversion of 1mM substrates, required a mono-carboxylic acid with an alkenyl double bond in the trans (E)-configuration at position C2, further unsaturation at C4, and an overall molecular length between 6.5Å and 9Å. Polar groups on the phenyl ring of cinnamic acid abolished activity (no conversion). Furthermore, several compounds were shown to block Pad-decarboxylation. These compounds, primarily aldehyde analogues of active substrates, may serve to reduce food spoilage by moulds such as A. niger. The possible ecological role of Pad-decarboxylation of spore self-inhibitors is unlikely and the most probable role for Pad-decarboxylation is to remove cinnamic acid-type inhibitors from

  6. Antioxidant activity of phenolic compounds added to a functional emulsion containing omega-3 fatty acids and plant sterol esters.

    PubMed

    Espinosa, Raquel Rainho; Inchingolo, Raffaella; Alencar, Severino Matias; Rodriguez-Estrada, Maria Teresa; Castro, Inar Alves

    2015-09-01

    The effect of eleven compounds extracted from red propolis on the oxidative stability of a functional emulsion was evaluated. Emulsions prepared with Echium oil as omega 3 (ω-3 FA) source, containing 1.63 g/100mL of α-linolenic acid (ALA), 0.73 g/100 mL of stearidonic acid (SDA) and 0.65 g/100mL of plant sterol esters (PSE) were prepared without or with phenolic compounds (vanillic acid, caffeic acid, trans-cinnamic acid, 2,4-dihydroxycinnamic acid, p-coumaric acid, quercetin, trans-ferulic acid, trans,trans-farnesol, rutin, gallic acid or sinapic acid). tert-Butylhydroquinone and a mixture containing ascorbic acid and FeSO4 were applied as negative and positive controls of the oxidation. Hydroperoxide, thiobarbituric acid reactive substances (TBARS), malondialdehyde and phytosterol oxidation products (POPs) were evaluated as oxidative markers. Based on hydroperoxide and TBARS analysis, sinapic acid and rutin (200 ppm) showed the same antioxidant activity than TBHQ, representing a potential alternative as natural antioxidant to be applied in a functional emulsion containing ω-3 FA and PSE.

  7. Chemical oxidation of phenolic acids by soil iron and manganese oxides

    SciTech Connect

    Lehmann, R.G.

    1986-01-01

    The oxidation of six phenolic acids by soil Fe and Mn oxides was demonstrated by changes in phenolic acid extractability from soil with time, by production of Fe(II) and soluble Mn from the oxidation reaction, by quantitative recoveries of added phenolic acids from soil pretreated with dithionite-citrate to remove Fe and Mn oxides, and by the reactivity of phenolic acids in the presence of pure Mn and Fe oxides. The reactivities of phenolic acids were associated with the structures of the chemicals. Increasing methoxy substitution on the aromatic ring increased reactivity, and cinnamic acid derivatives were more reactive than benzoic acid derivatives. Oxidation products of /sup 14/C labeled ferulic acid were sorbed to MnO/sub 2/ within minutes and were unextractable by organic solvents unless the mineral was pretreated with 6 M HCl or 0.5 M NaOH. The oxidation rate of ferulic acid by MnO/sub 2/ approached zero after four days even with a surplus of reactants.

  8. Vibrational structure of the polyunsaturated fatty acids eicosapentaenoic acid and arachidonic acid studied by infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Kiefer, Johannes; Noack, Kristina; Bartelmess, Juergen; Walter, Christian; Dörnenburg, Heike; Leipertz, Alfred

    2010-02-01

    The spectroscopic discrimination of the two structurally similar polyunsaturated C 20 fatty acids (PUFAs) 5,8,11,14,17-eicosapentaenoic acid and 5,8,11,14-eicosatetraenoic acid (arachidonic acid) is shown. For this purpose their vibrational structures are studied by means of attenuated total reflection (ATR) Fourier-transform infrared (FT-IR) spectroscopy. The fingerprint regions of the recorded spectra are found to be almost identical, while the C-H stretching mode regions around 3000 cm -1 show such significant differences as results of electronic and molecular structure alterations based on the different degree of saturation that both fatty acids can be clearly distinguished from each other.

  9. Nucleic acid detection methods

    DOEpatents

    Smith, C.L.; Yaar, R.; Szafranski, P.; Cantor, C.R.

    1998-05-19

    The invention relates to methods for rapidly determining the sequence and/or length a target sequence. The target sequence may be a series of known or unknown repeat sequences which are hybridized to an array of probes. The hybridized array is digested with a single-strand nuclease and free 3{prime}-hydroxyl groups extended with a nucleic acid polymerase. Nuclease cleaved heteroduplexes can be easily distinguish from nuclease uncleaved heteroduplexes by differential labeling. Probes and target can be differentially labeled with detectable labels. Matched target can be detected by cleaving resulting loops from the hybridized target and creating free 3-hydroxyl groups. These groups are recognized and extended by polymerases added into the reaction system which also adds or releases one label into solution. Analysis of the resulting products using either solid phase or solution. These methods can be used to detect characteristic nucleic acid sequences, to determine target sequence and to screen for genetic defects and disorders. Assays can be conducted on solid surfaces allowing for multiple reactions to be conducted in parallel and, if desired, automated. 18 figs.

  10. Nucleic Acid Detection Methods

    DOEpatents

    Smith, Cassandra L.; Yaar, Ron; Szafranski, Przemyslaw; Cantor, Charles R.

    1998-05-19

    The invention relates to methods for rapidly determining the sequence and/or length a target sequence. The target sequence may be a series of known or unknown repeat sequences which are hybridized to an array of probes. The hybridized array is digested with a single-strand nuclease and free 3'-hydroxyl groups extended with a nucleic acid polymerase. Nuclease cleaved heteroduplexes can be easily distinguish from nuclease uncleaved heteroduplexes by differential labeling. Probes and target can be differentially labeled with detectable labels. Matched target can be detected by cleaving resulting loops from the hybridized target and creating free 3-hydroxyl groups. These groups are recognized and extended by polymerases added into the reaction system which also adds or releases one label into solution. Analysis of the resulting products using either solid phase or solution. These methods can be used to detect characteristic nucleic acid sequences, to determine target sequence and to screen for genetic defects and disorders. Assays can be conducted on solid surfaces allowing for multiple reactions to be conducted in parallel and, if desired, automated.

  11. Cryoprotection from lipoteichoic acid

    NASA Astrophysics Data System (ADS)

    Rice, Charles V.; Middaugh, Amy; Wickham, Jason R.; Friedline, Anthony; Thomas, Kieth J.; Johnson, Karen; Zachariah, Malcolm; Garimella, Ravindranth

    2012-10-01

    Numerous chemical additives lower the freezing point of water, but life at sub-zero temperatures is sustained by a limited number of biological cryoprotectants. Antifreeze proteins in fish, plants, and insects provide protection to a few degrees below freezing. Microbes have been found to survive at even lower temperatures, and with a few exceptions, antifreeze proteins are missing. Survival has been attributed to external factors, such as the high salt concentration of brine veins and adhesion to particulates or ice crystal defects. We have discovered an endogenous cryoprotectant in the cell wall of bacteria, lipoteichoic acid biopolymers. Adding 1% LTA to bacteria cultures immediately prior to freezing provides 50% survival rate, similar to the results obtained with 1% glycerol. In the absence of an additive, bacterial survival is negligible as measured with the resazurin cell viability assay. The mode of action for LTA cryoprotection is unknown. With a molecular weight of 3-5 kDa, it is unlikely to enter the cell cytoplasm. Our observations suggest that teichoic acids could provide a shell of liquid water around biofilms and planktonic bacteria, removing the need for brine veins to prevent bacterial freezing.

  12. Bicyclic glutamic acid derivatives.

    PubMed

    Meyer, Udo; Bisel, Philippe; Weckert, Edgar; Frahm, August Wilhelm

    2006-05-15

    For the second-generation asymmetric synthesis of the trans-tris(homoglutamic) acids via Strecker reaction of chiral ketimines, the cyanide addition as the key stereodifferentiating step produces mixtures of diastereomeric alpha-amino nitrile esters the composition of which is independent of the reaction temperature and the type of the solvent, respectively. The subsequent hydrolysis is exclusively achieved with concentrated H(2)SO(4) yielding diastereomeric mixtures of three secondary alpha-amino alpha-carbamoyl-gamma-esters and two diastereomeric cis-fused angular alpha-carbamoyl gamma-lactams as bicyclic glutamic acid derivatives, gained from in situ stereomer differentiating cyclisation of the secondary cis-alpha-amino alpha-carbamoyl-gamma-esters. Separation was achieved by CC. The pure secondary trans-alpha-amino alpha-carbamoyl-gamma-esters cyclise on heating and treatment with concentrated H(2)SO(4), respectively, to diastereomeric cis-fused angular secondary alpha-amino imides. Their hydrogenolysis led to the enantiomeric cis-fused angular primary alpha-amino imides. The configuration of all compounds was completely established by NMR methods, CD-spectra, and by X-ray analyses of the (alphaR,1R,5R)-1-carbamoyl-2-(1-phenylethyl)-2-azabicyclo[3.3.0]octan-3-one and of the trans-alphaS,1S,2R-2-ethoxycarbonylmethyl-1-(1-phenylethylamino)cyclopentanecarboxamide. PMID:16596563

  13. Ribonucleic acid purification.

    PubMed

    Martins, R; Queiroz, J A; Sousa, F

    2014-08-15

    Research on RNA has led to many important biological discoveries and improvement of therapeutic technologies. From basic to applied research, many procedures employ pure and intact RNA molecules; however their isolation and purification are critical steps because of the easy degradability of RNA, which can impair chemical stability and biological functionality. The current techniques to isolate and purify RNA molecules still have several limitations and the requirement for new methods able to improve RNA quality to meet regulatory demands is growing. In fact, as basic research improves the understanding of biological roles of RNAs, the biopharmaceutical industry starts to focus on them as a biotherapeutic tools. Chromatographic bioseparation is a high selective unit operation and is the major option in the purification of biological compounds, requiring high purity degree. In addition, its application in biopharmaceutical manufacturing is well established. This paper discusses the importance and the progress of RNA isolation and purification, considering RNA applicability both in research and clinical fields. In particular and in view of the high specificity, affinity chromatography has been recently applied to RNA purification processes. Accordingly, recent chromatographic investigations based on biorecognition phenomena occurring between RNA and amino acids are focused. Histidine and arginine have been used as amino acid ligands, and their ability to isolate different RNA species demonstrated a multipurpose applicability in molecular biology analysis and RNA therapeutics preparation, highlighting the potential contribution of these methods to overcome the challenges of RNA purification. PMID:24951289

  14. Ammonia lyases and aminomutases as biocatalysts for the synthesis of α-amino and β-amino acids.

    PubMed

    Turner, Nicholas J

    2011-04-01

    Ammonia lyases catalyse the reversible addition of ammonia to cinnamic acid (1: R=H) and p-hydroxycinnamic (1: R=OH) to generate L-phenylalanine (2: R=H) and L-tyrosine (2: R=OH) respectively (Figure 1a). Both phenylalanine ammonia lyase (PAL) and tyrosine ammonia lyase (TAL) are widely distributed in plants, fungi and prokaryotes. Recently there has been interest in the use of these enzymes for the synthesis of a broader range of L-arylalanines. Aminomutases catalyse a related reaction, namely the interconversion of α-amino acids to β-amino acids (Figure 1b). In the case of L-phenylalanine, this reaction is catalysed by phenylalanine aminomutase (PAM) and proceeds stereospecifically via the intermediate cinnamic acid to generate β-Phe 3. Ammonia lyases and aminomutases are related in sequence and structure and share the same active site cofactor 4-methylideneimidazole-5-one (MIO). There is currently interest in the possibility of using these biocatalysts to prepare a wide range of enantiomerically pure l-configured α-amino and β-amino acids. Recent reviews have focused on the mechanism of these MIO containing enzymes. The aim of this review is to review recent progress in the application of ammonia lyase and aminomutase enzymes to prepare enantiomerically pure α-amino and β-amino acids.

  15. Titration of phosphonic acid derivatives in mixtures.

    PubMed

    Wittmann, Z

    1980-01-01

    An analytical procedure is described for the determination of the weak acids phosphonomethyliminodiacetic acid and phosphonomethyliminoacetic acid in their mixtures, and the dissociation constants of phosphonomethyliminoacetic acid are reported.

  16. Growth of nitric acid hydrates on thin sulfuric acid films

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Middlebrook, Ann M.; Wilson, Margaret A.; Tolbert, Margaret A.

    1994-01-01

    Type I polar stratospheric clouds (PSCs) are thought to nucleate and grow on stratospheric sulfate aerosols (SSAs). To model this system, thin sulfuric acid films were exposed to water and nitric acid vapors (1-3 x 10(exp -4) Torr H2O and 1-2.5 x 10(exp -6) Torr HNO3) and subjected to cooling and heating cycles. Fourier Transform Infrared (FTIR) spectroscopy was used to probe the phase of the sulfuric acid and to identify the HNO3/H2O films that condensed. Nitric acid trihydrate (NAT) was observed to grow on crystalline sulfuric acid tetrahydrate (SAT) films. NAT also condensed in/on supercooled H2SO4 films without causing crystallization of the sulfuric acid. This growth is consistent with NAT nucleation from ternary solutions as the first step in PSC formation.

  17. Determination of benzoic acid, chlorobenzoic acids and chlorendic acid in water

    SciTech Connect

    Dietz, E.A.; Cortellucci, N.J.; Singley, K.F. )

    1993-01-01

    To characterize and conduct treatment studies of a landfill leachate an analysis procedure was required to determine concentrations of benzoic acid, the three isomers of chlorobenzoic acid and chlorendic acid. The title compounds were isolated from acidified (pH 1) water by extraction with methyl t-butyl ether. Analytes were concentrated by back-extracting the ether with 0.1 N sodium hydroxide which was separated and acidified. This solution was analyzed by C[sub 18] reversed-phase HPLC with water/acetonitrile/acetic acid eluent and UV detection at 222 nm. The method has detection limits of 200 [mu]g/L for chlorendic acid and 100 [mu]g/L for benzoic acid and each isomer of chlorobenzoic acid. Validation studies with water which was fortified with the analytes at concentrations ranging from one to ten times detection limits resulted in average recoveries of >95%.

  18. Acid rain: Rhetoric and reality

    SciTech Connect

    Park, C.C.

    1987-01-01

    Acid rain is now one of the most serious environmental problems in developed countries. Emissions and fallout were previously extremely localized, but since the introduction of tall stacks policies in both Britain and the US - pardoxically to disperse particulate pollutants and hence reduce local damage - emissions are now lifted into the upper air currents and carried long distances downwind. The acid rain debate now embraces many western countries - including Canada, the US, England, Scotland, Wales, Sweden, Norway, Denmark, West Germany, the Netherlands, Austria, Switzerland - and a growing number of eastern countries - including the Soviet Union, Poland, East Germany, and Czechoslovakia. The problem of acid rain arises, strictly speaking, not so much from the rainfall itself as from its effects on the environment. Runoff affects surface water and groundwater, as well as soils and vegetation. Consequently changes in rainfall acidity can trigger off a range of impacts on the chemistry and ecology of lakes and rivers, soil chemistry and processes, the health and productivity of plants, and building materials, and metallic structures. The most suitable solutions to the problems of acid rain require prevention rather than cure, and there is broad agreement in both the political scientific communities on the need to reduce emissions of sulfur and nitrogen oxides to the atmosphere. Book divisions discuss: the problem of acid rain, the science of acid rain, the technology of acid rain, and the politics of acid rain, in an effort to evaluate this growing global problem of acid rain.

  19. Therapeutic targeting of bile acids

    PubMed Central

    Gores, Gregory J.

    2015-01-01

    The first objectives of this article are to review the structure, chemistry, and physiology of bile acids and the types of bile acid malabsorption observed in clinical practice. The second major theme addresses the classical or known properties of bile acids, such as the role of bile acid sequestration in the treatment of hyperlipidemia; the use of ursodeoxycholic acid in therapeutics, from traditional oriental medicine to being, until recently, the drug of choice in cholestatic liver diseases; and the potential for normalizing diverse bowel dysfunctions in irritable bowel syndrome, either by sequestering intraluminal bile acids for diarrhea or by delivering more bile acids to the colon to relieve constipation. The final objective addresses novel concepts and therapeutic opportunities such as the interaction of bile acids and the microbiome to control colonic infections, as in Clostridium difficile-associated colitis, and bile acid targeting of the farnesoid X receptor and G protein-coupled bile acid receptor 1 with consequent effects on energy expenditure, fat metabolism, and glycemic control. PMID:26138466

  20. Bile Acid Metabolism and Signaling

    PubMed Central

    Chiang, John Y. L.

    2015-01-01

    Bile acids are important physiological agents for intestinal nutrient absorption and biliary secretion of lipids, toxic metabolites, and xenobiotics. Bile acids also are signaling molecules and metabolic regulators that activate nuclear receptors and G protein-coupled receptor (GPCR) signaling to regulate hepatic lipid, glucose, and energy homeostasis and maintain metabolic homeostasis. Conversion of cholesterol to bile acids is critical for maintaining cholesterol homeostasis and preventing accumulation of cholesterol, triglycerides, and toxic metabolites, and injury in the liver and other organs. Enterohepatic circulation of bile acids from the liver to intestine and back to the liver plays a central role in nutrient absorption and distribution, and metabolic regulation and homeostasis. This physiological process is regulated by a complex membrane transport system in the liver and intestine regulated by nuclear receptors. Toxic bile acids may cause inflammation, apoptosis, and cell death. On the other hand, bile acid-activated nuclear and GPCR signaling protects against inflammation in liver, intestine, and macrophages. Disorders in bile acid metabolism cause cholestatic liver diseases, dyslipidemia, fatty liver diseases, cardiovascular diseases, and diabetes. Bile acids, bile acid derivatives, and bile acid sequestrants are therapeutic agents for treating chronic liver diseases, obesity, and diabetes in humans. PMID:23897684

  1. Bile acid interactions with cholangiocytes.

    PubMed

    Xia, Xuefeng; Francis, Heather; Glaser, Shannon; Alpini, Gianfranco; LeSage, Gene

    2006-06-14

    Cholangiocytes are exposed to high concentrations of bile acids at their apical membrane. A selective transporter for bile acids, the Apical Sodium Bile Acid Cotransporter (ASBT) (also referred to as Ibat; gene name Slc10a2) is localized on the cholangiocyte apical membrane. On the basolateral membrane, four transport systems have been identified (t-ASBT, multidrug resistance (MDR)3, an unidentified anion exchanger system and organic solute transporter (Ost) heteromeric transporter, Ostalpha-Ostbeta. Together, these transporters unidirectionally move bile acids from ductal bile to the circulation. Bile acids absorbed by cholangiocytes recycle via the peribiliary plexus back to hepatocytes for re-secretion into bile. This recycling of bile acids between hepatocytes and cholangiocytes is referred to as the cholehepatic shunt pathway. Recent studies suggest that the cholehepatic shunt pathway may contribute in overall hepatobiliary transport of bile acids and to the adaptation to chronic cholestasis due to extrahepatic obstruction. ASBT is acutely regulated by an adenosine 3', 5'-monophosphate (cAMP)-dependent translocation to the apical membrane and by phosphorylation-dependent ubiquitination and proteasome degradation. ASBT is chronically regulated by changes in gene expression in response to biliary bile acid concentration and inflammatory cytokines. Another potential function of cholangiocyte ASBT is to allow cholangiocytes to sample biliary bile acids in order to activate intracellular signaling pathways. Bile acids trigger changes in intracellular calcium, protein kinase C (PKC), phosphoinositide 3-kinase (PI3K), mitogen-activated protein (MAP) kinase and extracellular signal-regulated protein kinase (ERK) intracellular signals. Bile acids significantly alter cholangiocyte secretion, proliferation and survival. Different bile acids have differential effects on cholangiocyte intracellular signals, and in some instances trigger opposing effects on cholangiocyte

  2. Citric acid production patent review.

    PubMed

    Anastassiadis, Savas; Morgunov, Igor G; Kamzolova, Svetlana V; Finogenova, Tatiana V

    2008-01-01

    Current Review article summarizes the developments in citric acid production technologies in East and West last 100 years. Citric acid is commercially produced by large scale fermentation mostly using selected fungal or yeast strains in aerobe bioreactors and still remains one of the runners in industrial production of biotechnological bulk metabolites obtained by microbial fermentation since about 100 years, reflecting the historical development of modern biotechnology and fermentation process technology in East and West. Citric acid fermentation was first found as a fungal product in cultures of Penicillium glaucum on sugar medium by Wehmer in 1893. Citric acid is an important multifunctional organic acid with a broad range of versatile uses in household and industrial applications that has been produced industrially since the beginning of 20(th) century. There is a great worldwide demand for citric acid consumption due to its low toxicity, mainly being used as acidulant in pharmaceutical and food industries. Global citric acid production has reached 1.4 million tones, increasing annually at 3.5-4.0% in demand and consumption. Citric acid production by fungal submerged fermentation is still dominating, however new perspectives like solid-state processes or continuous yeast processes can be attractive for producers to stand in today's strong competition in industry. Further perspectives aiming in the improvement of citric acid production are the improvement of citric acid producing strains by classical and modern mutagenesis and selection as well as downstream processes. Many inexpensive by-products and residues of the agro-industry (e.g. molasses, glycerin etc.) can be economically utilized as substrates in the production of citric acid, especially in solid-state fermentation, enormously reducing production costs and minimizing environmental problems. Alternatively, continuous processes utilizing yeasts which reach 200-250 g/l citric acid can stand in today

  3. Bile acid interactions with cholangiocytes

    PubMed Central

    Xia, Xuefeng; Francis, Heather; Glaser, Shannon; Alpini, Gianfranco; LeSage, Gene

    2006-01-01

    Cholangiocytes are exposed to high concentrations of bile acids at their apical membrane. A selective transporter for bile acids, the Apical Sodium Bile Acid Cotransporter (ASBT) (also referred to as Ibat; gene name Slc10a2) is localized on the cholangiocyte apical membrane. On the basolateral membrane, four transport systems have been identified (t-ASBT, multidrug resistance (MDR)3, an unidentified anion exchanger system and organic solute transporter (Ost) heteromeric transporter, Ostα-Ostβ. Together, these transporters unidirectionally move bile acids from ductal bile to the circulation. Bile acids absorbed by cholangiocytes recycle via the peribiliary plexus back to hepatocytes for re-secretion into bile. This recycling of bile acids between hepatocytes and cholangiocytes is referred to as the cholehepatic shunt pathway. Recent studies suggest that the cholehepatic shunt pathway may contribute in overall hepatobiliary transport of bile acids and to the adaptation to chronic cholestasis due to extrahepatic obstruction. ASBT is acutely regulated by an adenosine 3', 5’-monophosphate (cAMP)-dependent translocation to the apical membrane and by phosphorylation-dependent ubiquitination and proteasome degradation. ASBT is chronically regulated by changes in gene expression in response to biliary bile acid concentration and inflammatory cytokines. Another potential function of cholangiocyte ASBT is to allow cholangiocytes to sample biliary bile acids in order to activate intracellular signaling pathways. Bile acids trigger changes in intracellular calcium, protein kinase C (PKC), phosphoinositide 3-kinase (PI3K), mitogen-activated protein (MAP) kinase and extracellular signal-regulated protein kinase (ERK) intracellular signals. Bile acids significantly alter cholangiocyte secretion, proliferation and survival. Different bile acids have differential effects on cholangiocyte intracellular signals, and in some instances trigger opposing effects on cholangiocyte

  4. Interactions of amino acids, carboxylic acids, and mineral acids with different quinoline derivatives

    NASA Astrophysics Data System (ADS)

    Kalita, Dipjyoti; Deka, Himangshu; Samanta, Shyam Sundar; Guchait, Subrata; Baruah, Jubaraj B.

    2011-03-01

    A series of quinoline containing receptors having amide and ester bonds are synthesized and characterised. The relative binding abilities of these receptors with various amino acids, carboxylic acids and mineral acids are determined by monitoring the changes in fluorescence intensity. Among the receptors bis(2-(quinolin-8-yloxy)ethyl) isophthalate shows fluorescence enhancement on addition of amino acids whereas the other receptors shows fluorescence quenching on addition of amino acids. The receptor N-(quinolin-8-yl)-2-(quinolin-8-yloxy) propanamide has higher binding affinity for amino acids. However, the receptor N-(quinolin-8-yl)-2-(quinolin-8-yloxy)acetamide having similar structure do not bind to amino acids. This is attributed to the concave structure of the former which is favoured due to the presence of methyl substituent. The receptor bis(2-(quinolin-8-yloxy)ethyl) isophthalate do not bind to hydroxy carboxylic acids, but is a good receptor for dicarboxylic acids. The crystal structure of bromide and perchlorate salts of receptor 2-bromo-N-(quinolin-8-yl)-propanamide are determined. In both the cases the amide groups are not in the plane of quinoline ring. The structure of N-(quinolin-8-yl)-2-(quinolin-8-yloxy)acetamide, N-(2-methoxyphenethyl)-2-(quinolin-8-yloxy)acetamide and their salts with maleic acid as well as fumaric acid are determined. It is observed that the solid state structures are governed by the double bond geometry of these two acid. Maleic acid forms salt in both the cases, whereas fumaric acid forms either salt or co-crystals.

  5. Acidity of Strong Acids in Water and Dimethyl Sulfoxide.

    PubMed

    Trummal, Aleksander; Lipping, Lauri; Kaljurand, Ivari; Koppel, Ilmar A; Leito, Ivo

    2016-05-26

    Careful analysis and comparison of the available acidity data of HCl, HBr, HI, HClO4, and CF3SO3H in water, dimethyl sulfoxide (DMSO), and gas-phase has been carried out. The data include experimental and computational pKa and gas-phase acidity data from the literature, as well as high-level computations using different approaches (including the W1 theory) carried out in this work. As a result of the analysis, for every acid in every medium, a recommended acidity value is presented. In some cases, the currently accepted pKa values were revised by more than 10 orders of magnitude. PMID:27115918

  6. Esterification by the Plasma Acidic Water: Novel Application of Plasma Acid

    NASA Astrophysics Data System (ADS)

    Gu, Ling

    2014-03-01

    This work explores the possibility of plasma acid as acid catalyst in organic reactions. Plasma acidic water was prepared by dielectric barrier discharge and used to catalyze esterification of n-heptanioc acid with ethanol. It is found that the plasma acidic water has a stable and better performance than sulfuric acid, meaning that it is an excellent acid catalyst. The plasma acidic water would be a promising alternative for classic mineral acid as a more environment friendly acid.

  7. Oxidative carbonylation of styrene to methyl cinnamate

    SciTech Connect

    Hsu, C.Y.

    1987-04-01

    Oxidative carbonylation technology is used for making methyl cinnamate from styrene as an alternative to Claisen condensation of benzaldehyde with methyl acetate. Using this approach, the optimum yield of cinnamate is greater than 90%, with CO{sub 2}, acetophenone, and phenylsuccinate as the major by-products. The conversion of styrene and the selectivity to cinnamate depend upon the types of catalysts and reaction conditions used. A plausible reaction mechanism is proposed to account for the selective formation of cinnamate.

  8. 49 CFR 173.158 - Nitric acid.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Nitric acid. 173.158 Section 173.158... Nitric acid. (a) Nitric acid exceeding 40 percent concentration may not be packaged with any other material. (b) Nitric acid in any concentration which does not contain sulfuric acid or hydrochloric acid...

  9. Acid rain degradation of nylon

    SciTech Connect

    Kyllo, K.E.

    1984-01-01

    Acid rain, precipitation with a pH less than 5.6, is known to damage lakes, vegetation and buildings. Degradation of outdoor textiles by acid rain is strongly suspected but not well documented. This study reports the effects of sunlight, aqueous acid, heat and humidity (acid rain conditions) on spun delustered nylon 6,6 fabric. Untreated nylon and nylon treated with sulfuric acid of pH 2.0, 3.0, and 4.4 were exposed to light in an Atlas Xenon-arc fadeometer at 63/sup 0/C and 65% R.H. for up to 640 AATCC Fading Units. The untreated and acid treated nylon fabrics were also exposed to similar temperature and humidity condition without light. Nylon degradation was determined by changes in breaking strength, elongation, molecular weight, color, amino end group concentration (NH/sub 2/) and /sup 13/C NMR spectra. Physical damage was assessed using SEM.

  10. A Simpler Nucleic Acid

    NASA Technical Reports Server (NTRS)

    Orgel, Leslie

    2000-01-01

    It has been supposed that for a nucleic acid analog to pair with RNA it must, like RNA, have a backbone with at least a sixatom repeat; a shorter backbone presumably would not stretch far enough to bind RNA properly. The Eschenmoser group has shown, however, that this first impression is incorrect.As they report in their new paper, Eschenmoser and co-workers ( I ) have now synthesized a substantial number of these polymers, which are called (L)-a-threofuranosyl oligonucleotides or TNAs. They are composed of bases linked to a threose sugar-phosphate backbone, with phosphodiester bonds connecting the nucleotides. The investigators discovered that pairs of complementary TNAs do indeed form stable Watson-Crick double helices and, perhaps more importantly, that TNAs form stable double helices with complementary RNAs and DNAs.

  11. Unravelling the Structural and Molecular Basis Responsible for the Anti-Biofilm Activity of Zosteric Acid.

    PubMed

    Cattò, Cristina; Dell'Orto, Silvia; Villa, Federica; Villa, Stefania; Gelain, Arianna; Vitali, Alberto; Marzano, Valeria; Baroni, Sara; Forlani, Fabio; Cappitelli, Francesca

    2015-01-01

    The natural compound zosteric acid, or p-(sulfoxy)cinnamic acid (ZA), is proposed as an alternative biocide-free agent suitable for preventive or integrative anti-biofilm approaches. Despite its potential, the lack of information concerning the structural and molecular mechanism of action involved in its anti-biofilm activity has limited efforts to generate more potent anti-biofilm strategies. In this study a 43-member library of small molecules based on ZA scaffold diversity was designed and screened against Escherichia coli to understand the structural requirements necessary for biofilm inhibition at sub-lethal concentrations. Considerations concerning the relationship between structure and anti-biofilm activity revealed that i) the para-sulfoxy ester group is not needed to exploit the anti-biofilm activity of the molecule, it is the cinnamic acid scaffold that is responsible for anti-biofilm performance; ii) the anti-biofilm activity of ZA derivatives depends on the presence of a carboxylate anion and, consequently, on its hydrogen-donating ability; iii) the conjugated aromatic system is instrumental to the anti-biofilm activities of ZA and its analogues. Using a protein pull-down approach, combined with mass spectrometry, the herein-defined active structure of ZA was matrix-immobilized, and was proved to interact with the E. coli NADH:quinone reductase, WrbA, suggesting a possible role of this protein in the biofilm formation process. PMID:26132116

  12. Unravelling the Structural and Molecular Basis Responsible for the Anti-Biofilm Activity of Zosteric Acid

    PubMed Central

    Cattò, Cristina; Dell’Orto, Silvia; Villa, Federica; Villa, Stefania; Gelain, Arianna; Vitali, Alberto; Marzano, Valeria; Baroni, Sara; Forlani, Fabio; Cappitelli, Francesca

    2015-01-01

    The natural compound zosteric acid, or p-(sulfoxy)cinnamic acid (ZA), is proposed as an alternative biocide-free agent suitable for preventive or integrative anti-biofilm approaches. Despite its potential, the lack of information concerning the structural and molecular mechanism of action involved in its anti-biofilm activity has limited efforts to generate more potent anti-biofilm strategies. In this study a 43-member library of small molecules based on ZA scaffold diversity was designed and screened against Escherichia coli to understand the structural requirements necessary for biofilm inhibition at sub-lethal concentrations. Considerations concerning the relationship between structure and anti-biofilm activity revealed that i) the para-sulfoxy ester group is not needed to exploit the anti-biofilm activity of the molecule, it is the cinnamic acid scaffold that is responsible for anti-biofilm performance; ii) the anti-biofilm activity of ZA derivatives depends on the presence of a carboxylate anion and, consequently, on its hydrogen-donating ability; iii) the conjugated aromatic system is instrumental to the anti-biofilm activities of ZA and its analogues. Using a protein pull-down approach, combined with mass spectrometry, the herein-defined active structure of ZA was matrix-immobilized, and was proved to interact with the E. coli NADH:quinone reductase, WrbA, suggesting a possible role of this protein in the biofilm formation process. PMID:26132116

  13. Phenylalanine ammonia lyase catalyzed synthesis of amino acids by an MIO-cofactor independent pathway.

    PubMed

    Lovelock, Sarah L; Lloyd, Richard C; Turner, Nicholas J

    2014-04-25

    Phenylalanine ammonia lyases (PALs) belong to a family of 4-methylideneimidazole-5-one (MIO) cofactor dependent enzymes which are responsible for the conversion of L-phenylalanine into trans-cinnamic acid in eukaryotic and prokaryotic organisms. Under conditions of high ammonia concentration, this deamination reaction is reversible and hence there is considerable interest in the development of PALs as biocatalysts for the enantioselective synthesis of non-natural amino acids. Herein the discovery of a previously unobserved competing MIO-independent reaction pathway, which proceeds in a non-stereoselective manner and results in the generation of both L- and D-phenylalanine derivatives, is described. The mechanism of the MIO-independent pathway is explored through isotopic-labeling studies and mutagenesis of key active-site residues. The results obtained are consistent with amino acid deamination occurring by a stepwise E1 cB elimination mechanism.

  14. [Hydrofluoric acid poisoning: case report].

    PubMed

    Cortina, Tatiana Judith; Ferrero, Hilario Andrés

    2013-01-01

    Hydrofluoric acid is a highly dangerous substance with industrial and domestically appliances. Clinical manifestations of poisoning depend on exposure mechanism, acid concentration and exposed tissue penetrability. Gastrointestinal tract symptoms do not correlate with injury severity. Patients with history of hydrofluoric acid ingestion should undergo an endoscopy of the upper gastrointestinal tract. Intoxication requires immediate intervention because systemic toxicity can take place. We present a 5 year old girl who accidentally swallowed 5 ml of 20% hydrofluoric acid. We performed gastrointestinal tract endoscopy post ingestion, which revealed erythematous esophagus and stomach with erosive lesions. Two months later, same study was performed and revealed esophagus and stomach normal mucous membrane.

  15. Preparation and characterization Al3+-bentonite Turen Malang for esterification fatty acid (palmitic acid, oleic acid and linoleic acid)

    NASA Astrophysics Data System (ADS)

    Abdulloh, Abdulloh; Aminah, Nanik Siti; Triyono, Mudasir, Trisunaryanti, Wega

    2016-03-01

    Catalyst preparation and characterization of Al3+-bentonite for esterification of palmitic acid, oleic acid and linoleic acid has been done. Al3+-bentonite catalyst was prepared from natural bentonite of Turen Malang through cation exchange reaction using AlCl3 solution. The catalysts obtained were characterized by XRD, XRF, pyridine-FTIR and surface area analyser using the BET method. Catalyst activity test of Al3+-bentonite for esterification reaction was done at 65°C using molar ratio of metanol-fatty acid of 30:1 and 0.25 g of Al3+-bentonite catalyst for the period of ½, 1, 2, 3, 4 and 5 hours. Based on the characterization results, the Al3+-bentonite Turen Malang catalyst has a d-spacing of 15.63 Ǻ, acid sites of Brönsted and Lewis respectively of 230.79 µmol/g and 99.39 µmol/g, surface area of 507.3 m2/g and the average of radius pore of 20.09 Å. GC-MS analysis results of the oil phase after esterification reaction showed the formation of biodiesel (FAME: Fatty acid methyl ester), namely methyl palmitate, methyl oleate and methyl linoleate. The number of conversions resulted in esterification reaction using Al3+-bentonite Turen Malang catalyst was 74.61%, 37.75%, and 20, 93% for the esterification of palmitic acid, oleic acid and linoleic acid respectively.

  16. Acidic gas capture by diamines

    SciTech Connect

    Rochelle, Gary; Hilliard, Marcus

    2011-05-10

    Compositions and methods related to the removal of acidic gas. In particular, the present disclosure relates to a composition and method for the removal of acidic gas from a gas mixture using a solvent comprising a diamine (e.g., piperazine) and carbon dioxide. One example of a method may involve a method for removing acidic gas comprising contacting a gas mixture having an acidic gas with a solvent, wherein the solvent comprises piperazine in an amount of from about 4 to about 20 moles/kg of water, and carbon dioxide in an amount of from about 0.3 to about 0.9 moles per mole of piperazine.

  17. Molecular structural studies of lichen substances II: atranorin, gyrophoric acid, fumarprotocetraric acid, rhizocarpic acid, calycin, pulvinic dilactone and usnic acid

    NASA Astrophysics Data System (ADS)

    Edwards, Howell G. M.; Newton, Emma M.; Wynn-Williams, David D.

    2003-06-01

    The FT-Raman and infrared vibrational spectra of some important lichen compounds from two metabolic pathways are characterised. Key biomolecular marker bands have been suggested for the spectroscopic identification of atranorin, gyrophoric acid, fumarprotocetraric acid rhizocarpic acid, calycin, pulvinic dilactone and usnic acid. A spectroscopic protocol has been defined for the detection of these molecules in organisms subjected to environmental stresses such as UV-radiation exposure, desiccation and low temperatures. Use of the protocol will be made for the assessment of survival strategies used by stress-tolerant lichens in Antarctic cold deserts.

  18. Cryoprotection from bacterial teichoic acid

    NASA Astrophysics Data System (ADS)

    Rice, Charles V.; Harrison, William; Kirkpatrick, Karl; Brown, Eric D.

    2009-08-01

    Recent studies from our lab demonstrated that teichoic acid is surrounded by liquid water at -40 °C. The size and shape of the liquid water pockets has been visualized with fluorescence microscopy images of aqueous Rhodamine- B solutions. The long, thin channels surround ice crystals with a size of 5-20 microns. Subsequent studies show that B. subtilis Gram-positive bacteria are sequestered into large pockets without added teichoic acid. Here, the ice crystals are orders of manitude larger. When bacteria are mixed with teichoic acid solutions, the distribution of bacteria changes dramatically. The smaller ice crystals allow the bacteria to align in the thin channels of liquid water seen with teichoic acid only. The role of teichoic acid in the freeze tolerance was examined with live/dead fluorescence assays of bacteria mixed with teichoic acid. These quantitative assays were used to determine if teichoic acid acts in a synergetic fashion to enhance the survivability of E. coli, a gram-negative species which lacks teichoic acid. Additionally, we have obtained B. subtilis mutants lacking wall-associated teichoic acids to evaluate cryoprotection compared to the wild-type strain.

  19. Isofunctional enzymes PAD1 and UbiX catalyze formation of a novel cofactor required by ferulic acid decarboxylase and 4-hydroxy-3-polyprenylbenzoic acid decarboxylase.

    PubMed

    Lin, Fengming; Ferguson, Kyle L; Boyer, David R; Lin, Xiaoxia Nina; Marsh, E Neil G

    2015-04-17

    The decarboxylation of antimicrobial aromatic acids such as phenylacrylic acid (cinnamic acid) and ferulic acid by yeast requires two enzymes described as phenylacrylic acid decarboxylase (PAD1) and ferulic acid decarboxylase (FDC). These enzymes are of interest for various biotechnological applications, such as the production of chemical feedstocks from lignin under mild conditions. However, the specific role of each protein in catalyzing the decarboxylation reaction remains unknown. To examine this, we have overexpressed and purified both PAD1 and FDC from E. coli. We demonstrate that PAD1 is a flavin mononucleotide (FMN)-containing protein. However, it does not function as a decarboxylase. Rather, PAD1 catalyzes the formation of a novel, diffusible cofactor required by FDC for decarboxylase activity. Coexpression of FDC and PAD1 results in the production of FDC with high levels cofactor bound. Holo-FDC catalyzes the decarboxylation of phenylacrylic acid, coumaric acid and ferulic acid with apparent kcat ranging from 1.4-4.6 s(-1). The UV-visible and mass spectra of the cofactor indicate that it appears to be a novel, modified form of reduced FMN; however, its instability precluded determination of its structure. The E. coli enzymes UbiX and UbiD are related by sequence to PAD1 and FDC respectively and are involved in the decarboxylation of 4-hydroxy-3-octaprenylbenzoic acid, an intermediate in ubiquinone biosynthesis. We found that endogenous UbiX can also activate FDC. This implies that the same cofactor is required for decarboxylation of 4-hydroxy-3-polyprenylbenzoic acid by UbiD and suggests a wider role for this cofactor in metabolism.

  20. Comparative Transcriptome Analysis Reveals the Influence of Abscisic Acid on the Metabolism of Pigments, Ascorbic Acid and Folic Acid during Strawberry Fruit Ripening.

    PubMed

    Li, Dongdong; Li, Li; Luo, Zisheng; Mou, Wangshu; Mao, Linchun; Ying, Tiejin

    2015-01-01

    A comprehensive investigation of abscisic acid (ABA) biosynthesis and its influence on other important phytochemicals is critical for understanding the versatile roles that ABA plays during strawberry fruit ripening. Using RNA-seq technology, we sampled strawberry fruit in response to ABA or nordihydroguaiaretic acid (NDGA; an ABA biosynthesis blocker) treatment during ripening and assessed the expression changes of genes involved in the metabolism of pigments, ascorbic acid (AsA) and folic acid in the receptacles. The transcriptome analysis identified a lot of genes differentially expressed in response to ABA or NDGA treatment. In particular, genes in the anthocyanin biosynthesis pathway were actively regulated by ABA, with the exception of the gene encoding cinnamate 4-hydroxylase. Chlorophyll degradation was accelerated by ABA mainly owing to the higher expression of gene encoding pheide a oxygenase. The decrease of β-carotene content was accelerated by ABA treatment and delayed by NDGA. A high negative correlation rate was found between ABA and β-carotene content, indicating the importance of the requirement for ABA synthesis during fruit ripening. In addition, evaluation on the folate biosynthetic pathway indicate that ABA might have minor function in this nutrient's biosynthesis process, however, it might be involved in its homeostasis. Surprisingly, though AsA content accumulated during fruit ripening, expressions of genes involved in its biosynthesis in the receptacles were significantly lower in ABA-treated fruits. This transcriptome analysis expands our understanding of ABA's role in phytochemical metabolism during strawberry fruit ripening and the regulatory mechanisms of ABA on these pathways were discussed. Our study provides a wealth of genetic information in the metabolism pathways and may be helpful for molecular manipulation in the future.

  1. Comparative Transcriptome Analysis Reveals the Influence of Abscisic Acid on the Metabolism of Pigments, Ascorbic Acid and Folic Acid during Strawberry Fruit Ripening

    PubMed Central

    Luo, Zisheng; Mou, Wangshu; Mao, Linchun; Ying, Tiejin

    2015-01-01

    A comprehensive investigation of abscisic acid (ABA) biosynthesis and its influence on other important phytochemicals is critical for understanding the versatile roles that ABA plays during strawberry fruit ripening. Using RNA-seq technology, we sampled strawberry fruit in response to ABA or nordihydroguaiaretic acid (NDGA; an ABA biosynthesis blocker) treatment during ripening and assessed the expression changes of genes involved in the metabolism of pigments, ascorbic acid (AsA) and folic acid in the receptacles. The transcriptome analysis identified a lot of genes differentially expressed in response to ABA or NDGA treatment. In particular, genes in the anthocyanin biosynthesis pathway were actively regulated by ABA, with the exception of the gene encoding cinnamate 4-hydroxylase. Chlorophyll degradation was accelerated by ABA mainly owing to the higher expression of gene encoding pheide a oxygenase. The decrease of β-carotene content was accelerated by ABA treatment and delayed by NDGA. A high negative correlation rate was found between ABA and β-carotene content, indicating the importance of the requirement for ABA synthesis during fruit ripening. In addition, evaluation on the folate biosynthetic pathway indicate that ABA might have minor function in this nutrient’s biosynthesis process, however, it might be involved in its homeostasis. Surprisingly, though AsA content accumulated during fruit ripening, expressions of genes involved in its biosynthesis in the receptacles were significantly lower in ABA-treated fruits. This transcriptome analysis expands our understanding of ABA’s role in phytochemical metabolism during strawberry fruit ripening and the regulatory mechanisms of ABA on these pathways were discussed. Our study provides a wealth of genetic information in the metabolism pathways and may be helpful for molecular manipulation in the future. PMID:26053069

  2. Exploring nature profits: development of novel and potent lipophilic antioxidants based on galloyl-cinnamic hybrids.

    PubMed

    Teixeira, José; Silva, Tiago; Benfeito, Sofia; Gaspar, Alexandra; Garrido, E Manuela; Garrido, Jorge; Borges, Fernanda

    2013-04-01

    Phenolic acids are ubiquitous antioxidants accounting for approximately one third of the phenolic compounds in our diet. Their importance was supported by epidemiological studies that suggest an inverse relationship between dietary intake of phenolic antioxidants and the occurrence of diseases, such as cancer and neurodegenerative disorders. However, until now, most of natural antioxidants have limited therapeutic success a fact that could be related with their limited distribution throughout the body and with the inherent difficulties to attain the target sites. The development of phenolic antioxidants based on a hybrid concept and structurally based on natural hydroxybenzoic (gallic acid) and hydroxycinnamic (caffeic acid) scaffolds seems to be a suitable solution to surpass the mentioned drawbacks. Galloyl-cinnamic hybrids were synthesized and their antioxidant activity as well as partition coefficients and redox potentials evaluated. The structure-property-activity relationship (SPAR) study revealed the existence of a correlation between the redox potentials and antioxidant activity. The galloyl-cinnamic acid hybrid stands out as the best antioxidant supplementing the effect of a blend of gallic acid plus caffeic acid endorsing the hypothesis that the whole is greater than the sum of the parts. In addition, some hybrid compounds possess an appropriate lipophilicity allowing their application as chain-breaking antioxidant in biomembranes or other type of lipidic systems. Their predicted ADME properties are also in accordance with the general requirements for drug-like compounds. Accordingly, these phenolic hybrids can be seen as potential antioxidants for tackling the oxidative status linked to the neurodegenerative, inflammatory or cancer processes.

  3. Formation of β-glucogallin, the precursor of ellagic acid in strawberry and raspberry.

    PubMed

    Schulenburg, Katja; Feller, Antje; Hoffmann, Thomas; Schecker, Johannes H; Martens, Stefan; Schwab, Wilfried

    2016-04-01

    Ellagic acid/ellagitannins are plant polyphenolic antioxidants that are synthesized from gallic acid and have been associated with a reduced risk of cancer and cardiovascular diseases. Here, we report the identification and characterization of five glycosyltransferases (GTs) from two genera of the Rosaceae family (Fragaria and Rubus; F. × ananassa FaGT2*, FaGT2, FaGT5, F. vesca FvGT2, and R. idaeus RiGT2) that catalyze the formation of 1-O-galloyl-β-D-glucopyranose (β-glucogallin) the precursor of ellagitannin biosynthesis. The enzymes showed substrate promiscuity as they formed glucose esters of a variety of (hydroxyl)benzoic and (hydroxyl)cinnamic acids. Determination of kinetic values and site-directed mutagenesis revealed amino acids that affected substrate preference and catalytic activity. Green immature strawberry fruits were identified as the main source of gallic acid, β-glucogallin, and ellagic acid in accordance with the highest GT2 gene expression levels. Injection of isotopically labeled gallic acid into green fruits of stable transgenic antisense FaGT2 strawberry plants clearly confirmed the in planta function. Our results indicate that GT2 enzymes might contribute to the production of ellagic acid/ellagitannins in strawberry and raspberry, and are useful to develop strawberry fruit with additional health benefits and for the biotechnological production of bioactive polyphenols. PMID:26884604

  4. Formation of β-glucogallin, the precursor of ellagic acid in strawberry and raspberry

    PubMed Central

    Schulenburg, Katja; Feller, Antje; Hoffmann, Thomas; Schecker, Johannes H.; Martens, Stefan; Schwab, Wilfried

    2016-01-01

    Ellagic acid/ellagitannins are plant polyphenolic antioxidants that are synthesized from gallic acid and have been associated with a reduced risk of cancer and cardiovascular diseases. Here, we report the identification and characterization of five glycosyltransferases (GTs) from two genera of the Rosaceae family (Fragaria and Rubus; F.×ananassa FaGT2*, FaGT2, FaGT5, F. vesca FvGT2, and R. idaeus RiGT2) that catalyze the formation of 1-O-galloyl-β-d-glucopyranose (β-glucogallin) the precursor of ellagitannin biosynthesis. The enzymes showed substrate promiscuity as they formed glucose esters of a variety of (hydroxyl)benzoic and (hydroxyl)cinnamic acids. Determination of kinetic values and site-directed mutagenesis revealed amino acids that affected substrate preference and catalytic activity. Green immature strawberry fruits were identified as the main source of gallic acid, β-glucogallin, and ellagic acid in accordance with the highest GT2 gene expression levels. Injection of isotopically labeled gallic acid into green fruits of stable transgenic antisense FaGT2 strawberry plants clearly confirmed the in planta function. Our results indicate that GT2 enzymes might contribute to the production of ellagic acid/ellagitannins in strawberry and raspberry, and are useful to develop strawberry fruit with additional health benefits and for the biotechnological production of bioactive polyphenols. PMID:26884604

  5. Aromatic and volatile acid intermediates observed during anaerobic metabolism of lignin-derived oligomers

    SciTech Connect

    Colberg, P.J.; Young, L.Y.

    1985-02-01

    Anaerobic enrichment cultures acclimated for 2 years to use a /sup 14/C-labeled, lignin-derived substrate with a molecular weight of 600 as a sole source of carbon were characterized by capillary and packed column gas chromatography. After acclimation, several of the active methanogenic organisms were inhibited with 2-bromoethanesulfonic acid, which suppressed methane formation and enhanced accumulation of a series of metabolic intermediates. Volatile fatty acids levels in 2-bromoethansulfonic acid-amended cultures were 10 times greater than those in the uninhibited, methane-forming organisms with acetate as the predominant component. Furthermore, in the 2-bromoethanesulfonic acid-amended organisms, almost half of the original substrate carbon was metabolized to 10 monaromatic compounds, with the most appreciable quantities accumulated as cinnamic, benzoic, caffeic, vanillic, and ferulic acids. 2-Bromoethanesulfonic acid seemed to effectively block CH/sub 4/ formation in the anaerobic food chain, resulting in the observed buildup of volatile fatty acids and monoaromatic intermediates. Neither fatty acids nor aromatic compounds were detected in the oligolignol substrate before its metabolism, suggesting that these anaerobic organisms have the ability to mediate the cleavage of the ..beta..-aryl-ether bond, the most common intermonomeric linkage in lignin, with the subsequent release of the observed constituent aromatic monomers.

  6. Aromatic and Volatile Acid Intermediates Observed during Anaerobic Metabolism of Lignin-Derived Oligomers

    PubMed Central

    Colberg, P. J.; Young, L. Y.

    1985-01-01

    Anaerobic enrichment cultures acclimated for 2 years to use a 14C-labeled, lignin-derived substrate with a molecular weight of 600 as a sole source of carbon were characterized by capillary and packed column gas chromatography. After acclimation, several of the active methanogenic consortia were inhibited with 2-bromoethanesulfonic acid, which suppressed methane formation and enhanced accumulation of a series of metabolic intermediates. Volatile fatty acids levels in 2-bromoethanesulfonic acid-amended cultures were 10 times greater than those in the uninhibited, methane-forming consortia with acetate as the predominant component. Furthermore, in the 2-bromoethanesulfonic acid-amended consortia, almost half of the original substrate carbon was metabolized to 10 monoaromatic compounds, with the most appreciable quantities accumulated as cinnamic, benzoic, caffeic, vanillic, and ferulic acids. 2-Bromoethanesulfonic acid seemed to effectively block CH4 formation in the anaerobic food chain, resulting in the observed buildup of volatile fatty acids and monoaromatic intermediates. Neither fatty acids nor aromatic compounds were detected in the oligolignol substrate before its metabolism, suggesting that these anaerobic consortia have the ability to mediate the cleavage of the β-aryl-ether bond, the most common intermonomeric linkage in lignin, with the subsequent release of the observed constituent aromatic monomers. PMID:16346722

  7. Sulfuric acid as autocatalyst in the formation of sulfuric acid.

    PubMed

    Torrent-Sucarrat, Miquel; Francisco, Joseph S; Anglada, Josep M

    2012-12-26

    Sulfuric acid can act as a catalyst of its own formation. We have carried out a computational investigation on the gas-phase formation of H(2)SO(4) by hydrolysis of SO(3) involving one and two water molecules, and also in the presence of sulfuric acid and its complexes with one and two water molecules. The hydrolysis of SO(3) requires the concurrence of two water molecules, one of them acting as a catalyzer, and our results predict an important catalytic effect, ranging between 3 and 11 kcal·mol(-1) when the catalytic water molecule is substituted by a sulfuric acid molecule or one of its hydrates. In these cases, the reaction products are either bare sulfuric acid dimer or sulfuric acid dimer complexed with a water molecule. There are broad implications from these new findings. The results of the present investigation show that the catalytic effect of sulfuric acid in the SO(3) hydrolysis can be important in the Earth's stratosphere, in the heterogeneous formation of sulfuric acid and in the formation of aerosols, in H(2)SO(4) formation by aircraft engines, and also in understanding the formation of sulfuric acid in the atmosphere of Venus.

  8. Hydrazides of carboxylic acids as inhibitors of steel acidic corrosion

    SciTech Connect

    Aitov, R.G.; Shein, A.B.; Lesnov, A.E.

    1994-09-01

    Hydrazides of carboxylic acids (HCA) inhibit the corrosion of ferrous materials in acids and netral solutions such as stratum and waste waters of oil deposits. In this work, the authors try to explain the above-mentioned difference and to consider HCA as inhibitors of steel hydrogenation.

  9. Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances

    PubMed Central

    Lee, Je Min; Lee, Hyungjae; Kang, SeokBeom; Park, Woo Jung

    2016-01-01

    Polyunsaturated fatty acids (PUFAs) are considered to be critical nutrients to regulate human health and development, and numerous fatty acid desaturases play key roles in synthesizing PUFAs. Given the lack of delta-12 and -15 desaturases and the low levels of conversion to PUFAs, humans must consume some omega-3 and omega-6 fatty acids in their diet. Many studies on fatty acid desaturases as well as PUFAs have shown that fatty acid desaturase genes are closely related to different human physiological conditions. Since the first front-end desaturases from cyanobacteria were cloned, numerous desaturase genes have been identified and animals and plants have been genetically engineered to produce PUFAs such as eicosapentaenoic acid and docosahexaenoic acid. Recently, a biotechnological approach has been used to develop clinical treatments for human physiological conditions, including cancers and neurogenetic disorders. Thus, understanding the functions and regulation of PUFAs associated with human health and development by using biotechnology may facilitate the engineering of more advanced PUFA production and provide new insights into the complexity of fatty acid metabolism. PMID:26742061

  10. Induction of benzoic acid 2-hydroxylase in virus-inoculated tobacco

    SciTech Connect

    Leon, J.; Yalpani, N.; Raskin, I.; Lawton, M.A. )

    1993-10-01

    Salicylic acid (SA) plays an important role in the induction of plant resistance to pathogens. An accompanying article shows that SA is synthesized via the decarboxylation of cinnamic acid to benzoic acid (BA), which is, in turn, hydroxylated to SA. Leaf extracts of tobacco catalyze the 2-hydroxylation of Ba to SA. The monooxygenase catalyzing this reaction, benzoic acid 2-hydroxylase (BA2H), required NAD(P)H or reduced methyl viologen as an electron donor. BA2H activity was detected in healthy tobacco leaf extracts (1-2 nmol h[sup [minus]1] g[sup [minus]1] fresh weight) and was significantly increased upon inoculation with tobacco mosaic virus (TMV). This increase paralleled the levels of free SA in the leaves. Induction of BA2H activity was restricted to tissue expressing a hypersensitive response at 24[degrees]C. TMV induction of BA2H activity and Sa accumulation were inhibited when inoculated tobacco plants were incubated for 4 d at 32[degrees]C and then transferred to 24[degrees]C, they showed a 15-fold increase in BA2H activity and a 65-fold increase in free SA content compared with healthy plants incubated at 24[degrees]C. Treatment of leaf tissue with the protein synthesis inhibitor cycloheximide blocked the induction of BA2H activity by TMV. The effect of TMV inoculation on BA2H could be duplicated by infiltrating leaf discs of healthy plants with BA. This response was observed even when applied levels of BA were much lower than the levels observed in vivo after virus inoculation. Feeding tobacco leaves with phenylalanine, cinnamic acid, or o-coumaric acid (putative precursors of SA) failed to trigger the induction of BA2H activity. BA2H appears to be a pathogen-inducible protein with an important regulatory role in SA accumulation during the development of induced resistance to TMV in tobacco. 33 refs., 6 figs., 3 tabs.

  11. A comparison of chromic acid and sulfuric acid anodizing

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1992-01-01

    Because of federal and state mandates restricting the use of hexavalent chromium, it was deemed worthwhile to compare the corrosion protection afforded 2219-T87 aluminum alloy by both Type I chromic acid and Type II sulfuric acid anodizing per MIL-A-8625. Corrosion measurements were made on large, flat 2219-T87 aluminum alloy sheet material with an area of 1 cm(exp 2) exposed to a corrosive medium of 3.5-percent sodium chloride at pH 5.5. Both ac electrochemical impedance spectroscopy and the dc polarization resistance techniques were employed. The results clearly indicate that the corrosion protection obtained by Type II sulfuric acid anodizing is superior, and no problems should result by substituting Type II sulfuric acid anodizing for Type I chromic acid anodizing.

  12. Acid rain on Acid soil: a new perspective.

    PubMed

    Krug, E C; Frink, C R

    1983-08-01

    Acid rain is widely believed to be responsible for acidifying soil and water in areas of North America and northern Europe. However, factors commonly considered to make landscapes susceptible to acidification by acid rain are the same factors long known to strongly acidify soils through the natural processes of soil formation. Recovery from extreme and widespread careless land use has also occurred in regions undergoing acidification. There is evidence that acidification by acid rain is superimposed on long-term acidification induced by changes in land use and consequent vegetative succession. Thus, the interactions of acid rain, acid soil, and vegetation need to be carefully examined on a watershed basis in assessing benefits expected from proposed reductions in emissions of oxides of sulfur and nitrogen.

  13. Carbonic Acid Retreatment of Biomass

    SciTech Connect

    Baylor university

    2003-06-01

    This project sought to address six objectives, outlined below. The objectives were met through the completion of ten tasks. (1) Solidify the theoretical understanding of the binary CO{sub 2}/H{sub 2}O system at reaction temperatures and pressures. The thermodynamics of pH prediction have been improved to include a more rigorous treatment of non-ideal gas phases. However it was found that experimental attempts to confirm theoretical pH predictions were still off by a factor of about 1.8 pH units. Arrhenius experiments were carried out and the activation energy for carbonic acid appears to be substantially similar to sulfuric acid. Titration experiments have not yet confirmed or quantified the buffering or acid suppression effects of carbonic acid on biomass. (2) Modify the carbonic acid pretreatment severity function to include the effect of endogenous acid formation and carbonate buffering, if necessary. It was found that the existing severity functions serve adequately to account for endogenous acid production and carbonate effects. (3) Quantify the production of soluble carbohydrates at different reaction conditions and severity. Results show that carbonic acid has little effect on increasing soluble carbohydrate concentrations for pretreated aspen wood, compared to pretreatment with water alone. This appears to be connected to the release of endogenous acids by the substrate. A less acidic substrate such as corn stover would derive benefit from the use of carbonic acid. (4) Quantify the production of microbial inhibitors at selected reaction conditions and severity. It was found that the release of inhibitors was correlated to reaction severity and that carbonic acid did not appear to increase or decrease inhibition compared to pretreatment with water alone. (5) Assess the reactivity to enzymatic hydrolysis of material pretreated at selected reaction conditions and severity. Enzymatic hydrolysis rates increased with severity, but no advantage was detected for

  14. Carbonic Acid Pretreatment of Biomass

    SciTech Connect

    G. Peter van Walsum; Kemantha Jayawardhana; Damon Yourchisin; Robert McWilliams; Vanessa Castleberry

    2003-05-31

    This project sought to address six objectives, outlined below. The objectives were met through the completion of ten tasks. 1) Solidify the theoretical understanding of the binary CO2/H2O system at reaction temperatures and pressures. The thermodynamics of pH prediction have been improved to include a more rigorous treatment of non-ideal gas phases. However it was found that experimental attempts to confirm theoretical pH predictions were still off by a factor of about 1.8 pH units. Arrhenius experiments were carried out and the activation energy for carbonic acid appears to be substantially similar to sulfuric acid. Titration experiments have not yet confirmed or quantified the buffering or acid suppression effects of carbonic acid on biomass. 2) Modify the carbonic acid pretreatment severity function to include the effect of endogenous acid formation and carbonate buffering, if necessary. It was found that the existing severity functions serve adequately to account for endogenous acid production and carbonate effects. 3) Quantify the production of soluble carbohydrates at different reaction conditions and severity. Results show that carbonic acid has little effect on increasing soluble carbohydrate concentrations for pretreated aspen wood, compared to pretreatment with water alone. This appears to be connected to the release of endogenous acids by the substrate. A less acidic substrate such as corn stover would derive benefit from the use of carbonic acid. 4) Quantify the production of microbial inhibitors at selected reaction conditions and severity. It was found that the release of inhibitors was correlated to reaction severity and that carbonic acid did not appear to increase or decrease inhibition compared to pretreatment with water alone. 5) Assess the reactivity to enzymatic hydrolysis of material pretreated at selected reaction conditions and severity. Enzymatic hydrolysis rates increased with severity, but no advantage was detected for the use of carbonic

  15. Anacardic Acid, Salicylic Acid, and Oleic Acid Differentially Alter Cellular Bioenergetic Function in Breast Cancer Cells.

    PubMed

    Radde, Brandie N; Alizadeh-Rad, Negin; Price, Stephanie M; Schultz, David J; Klinge, Carolyn M

    2016-11-01

    Anacardic acid is a dietary and medicinal phytochemical that inhibits breast cancer cell proliferation and uncouples oxidative phosphorylation (OXPHOS) in isolated rat liver mitochondria. Since mitochondrial-targeted anticancer therapy (mitocans) may be useful in breast cancer, we examined the effect of anacardic acid on cellular bioenergetics and OXPHOS pathway proteins in breast cancer cells modeling progression to endocrine-independence: MCF-7 estrogen receptor α (ERα)+ endocrine-sensitive; LCC9 and LY2 ERα+, endocrine-resistant, and MDA-MB-231 triple negative breast cancer (TNBC) cells. At concentrations similar to cell proliferation IC50 s, anacardic acid reduced ATP-linked oxygen consumption rate (OCR), mitochondrial reserve capacity, and coupling efficiency while increasing proton leak, reflecting mitochondrial toxicity which was greater in MCF-7 compared to endocrine-resistant and TNBC cells. These results suggest tolerance in endocrine-resistant and TNBC cells to mitochondrial stress induced by anacardic acid. Since anacardic acid is an alkylated 2-hydroxybenzoic acid, the effects of salicylic acid (SA, 2-hydroxybenzoic acid moiety) and oleic acid (OA, monounsaturated alkyl moiety) were tested. SA inhibited whereas OA stimulated cell viability. In contrast to stimulation of basal OCR by anacardic acid (uncoupling effect), neither SA nor OA altered basal OCR- except OA inhibited basal and ATP-linked OCR, and increased ECAR, in MDA-MB-231 cells. Changes in OXPHOS proteins correlated with changes in OCR. Overall, neither the 2-hydroxybenzoic acid moiety nor the monounsaturated alky moiety of anacardic acid is solely responsible for the observed mitochondria-targeted anticancer activity in breast cancer cells and hence both moieties are required in the same molecule for the observed effects. J. Cell. Biochem. 117: 2521-2532, 2016. © 2016 Wiley Periodicals, Inc. PMID:26990649

  16. Production of Succinic Acid from Citric Acid and Related Acids by Lactobacillus Strains

    PubMed Central

    Kaneuchi, Choji; Seki, Masako; Komagata, Kazuo

    1988-01-01

    A number of Lactobacillus strains produced succinic acid in de Man-Rogosa-Sharpe broth to various extents. Among 86 fresh isolates from fermented cane molasses in Thailand, 30 strains (35%) produced succinic acid; namely, 23 of 39 Lactobacillus reuteri strains, 6 of 18 L. cellobiosus strains, and 1 of 6 unidentified strains. All of 10 L. casei subsp. casei strains, 5 L. casei subsp. rhamnosus strains, 6 L. mali strains, and 2 L. buchneri strains did not produce succinic acid. Among 58 known strains including 48 type strains of different Lactobacillus species, the strains of L. acidophilus, L. crispatus, L. jensenii, and L. parvus produced succinic acid to the same extent as the most active fresh isolates, and those of L. alimentarius, L. collinoides, L. farciminis, L. fructivorans (1 of 2 strains tested), L. malefermentans, and L. reuteri were also positive, to lesser extents. Diammonium citrate in de Man-Rogosa-Sharpe broth was determined as a precursor of the succinic acid produced. Production rates were about 70% on a molar basis with two fresh strains tested. Succinic acid was also produced from fumaric and malic acids but not from dl-isocitric, α-ketoglutaric, and pyruvic acids. The present study is considered to provide the first evidence on the production of succinic acid, an important flavoring substance in dairy products and fermented beverages, from citrate by lactobacilli. PMID:16347795

  17. DNA Photolithography with Cinnamate Crosslinkers

    NASA Technical Reports Server (NTRS)

    Feng, Lang (Inventor); Chaikin, Paul Michael (Inventor)

    2016-01-01

    The present invention relates generally to cinnamate crosslinkers. Specifically, the present invention relates to gels, biochips, and functionalized surfaces useful as probes, in assays, in gels, and for drug delivery, and methods of making the same using a newly-discovered crosslinking configuration.

  18. Acid rain: a background report

    SciTech Connect

    Glustrom, L.; Stolzenberg, J.

    1982-07-08

    This Staff Brief was prepared for the Wisconsin Legislative Council's Special Committee on Acid Rain to provide an introduction to the issue of acid rain. It is divided into four parts. Part I provides an overview on the controversies surrounding the measurement, formation and effects of acid rain. As described in Part I, the term acid rain is used to describe the deposition of acidic components through both wet deposition (e.g., rain or snow) and dry deposition (e.g., direct contact between atmospheric constituents and the land, water or vegetation of the earth). Part II presents background information on state agency activities relating to acid rain in Wisconsin, describes what is known about the occurrence of, susceptibility to and effects of acid rain in Wisconsin, and provides information related to man-made sources of sulfur and nitrogen oxides in Wisconsin. Part III describes major policies and regulations relating to acid rain which have been or are being developed jointly by the United States and Canadian governments, by the United States government and by the State of Wisconsin. Part IV briefly discusses possible areas for Committee action.

  19. Acid Rain: An Educational Opportunity?

    ERIC Educational Resources Information Center

    Marion, James I.

    1984-01-01

    Deals with how educators can handle the subject of acid rain; illustrates suggestions with experiences of grade nine students visiting Frost Valley Environmental Education Center (Oliverea, New York) to learn scientific concepts through observation of outdoor phenomena, including a stream; and discusses acid rain, pH levels, and pollution control…

  20. Acid rain & electric utilities II

    SciTech Connect

    1997-12-31

    This document presents reports which were presented at the Acid Rain and Electric Utilities Conference. Topics include environmental issues and electric utilities; acid rain program overview; global climate change and carbon dioxide; emissions data management; compliance; emissions control; allowance and trading; nitrogen oxides; and assessment. Individual reports have been processed separately for the United States Department of Energy databases.