Science.gov

Sample records for acid cleaning process

  1. Novel acid-free cleaning process for mask blanks

    NASA Astrophysics Data System (ADS)

    Koster, Harald; Branz, Karsten; Dietze, Uwe; Dress, Peter; Hess, Guenter

    2005-06-01

    Knowledge of particle removal during the mask cleaning was transferred to the blank cleaning and vice versa. The experiments are focusing on a variety of blank substrates (glass substrates, chrome on glass blanks and phase shift mask blanks substrates). The principal equipment concept and the process optimization strategies for cleaning of those different kinds of blank substrates are presented. With a fixed process flow, including UV-treatment, Fulljet and MegaSonic treatment, Rinse and Dry, process parameters are varied to define the optimum process conditions. Criteria for an optimum process are particle removal efficiency in general and optical integrity for phase shift mask blanks in particular. The particle removal efficiency for all investigated blank types is within a range of 96-100%. Especially for Ta/SiO2 phase shift mask blanks we demonstrate that during the cleaning process the optical properties only change by 0.07° phase loss and 0.01% transmission loss per cleaning cycle, respectively.

  2. Building Successful Cleaning Processes.

    ERIC Educational Resources Information Center

    Walker, John P.

    2002-01-01

    Discusses how to build a successful cleaning process in order to most effectively maintain school facilities, explaining that the cleaning processes used plays a critical role in productivity. Focuses on: developing a standardized system; making sure that employees have the right tools for the work they perform; training employees; tracking and…

  3. DEVELOPING AN OPTIMIZED PROCESS STRATEGY FOR ACID CLEANING OF THE SAVANNAH RIVERSITE HLW TANKS

    SciTech Connect

    Ketusky, E

    2006-12-04

    At the Savannah River Site (SRS), there remains approximately 35 million gallons of High Level Waste (HLW) that was mostly created from Purex and SRS H-Area Modified (HM) nuclear fuel cycles. The waste is contained in approximately forty-nine tanks fabricated from commercially available carbon steel. In order to minimize general corrosion, the waste is maintained as very-alkaline solution. The very-alkaline chemistry has caused hydrated metal oxides to precipitate and form a sludge heel. Over the years, the sludge waste has aged, with some forming a hardened crust. To aid in the removal of the sludge heels from select tanks for closure the use of oxalic acid to dissolve the sludge is being investigated. Developing an optimized process strategy based on laboratory analyses would be prohibitively costly. This research, therefore, demonstrates that a chemical equilibrium based software program can be used to develop an optimized process strategy for oxalic acid cleaning of the HLW tanks based on estimating resultant chemistries, minimizing resultant oxalates sent to the evaporator, and minimizing resultant solids sent to the Defense Waste Processing Facility (DWPF).

  4. Clean, Agile Processing Technology.

    DTIC Science & Technology

    1997-12-01

    Research ltr dtd 10 Jun 98 THIS PAGE IS UNCLASSIFIED FINAL REPORT CLEAN, AGILE PROCESSING TECHNOLOGY Contract # N00014-96-C-0139 PI: S. W . Sinton...Agile Processing Technology . T UNCLAS I N Sinton, S. W.IN S REQUIRED FOR (Explain needin detaiO E C This document is requested by the Canadian Department

  5. Cleaning Processes across NASA Centers

    NASA Technical Reports Server (NTRS)

    Hammond, John M.

    2010-01-01

    All significant surfaces of the hardware must be pre-cleaned to remove dirt, grit, scale, corrosion, grease, oil and other foreign matter prior to any final precision cleaning process. Metallic parts shall be surface treated (cleaned, passivated, pickled and/or coated) as necessary to prevent latent corrosion and contamination.

  6. PLUTONIUM CLEANING PROCESS

    DOEpatents

    Kolodney, M.

    1959-12-01

    A method is described for rapidly removing iron, nickel, and zinc coatings from plutonium objects while simultaneously rendering the plutonium object passive. The method consists of immersing the coated plutonium object in an aqueous acid solution containing a substantial concentration of nitrate ions, such as fuming nitric acid.

  7. Coal cleaning process

    SciTech Connect

    Kindig, J.K.

    1994-01-11

    Fine particle coal is beneficiated in specially designed dense medium cyclones to improve particle acceleration and enhance separation efficiency. Raw coal feed is first sized to remove fine coal particles. The coarse fraction is then separated into clean coal, middlings, and refuse. Middlings are comminuted for beneficiation with the fine fraction. The fine fraction is deslimed in a countercurrent cyclone circuit and then separated as multiple fractions of different size specifications in dense medium cyclones. The dense medium contains ultra-fine magnetite particles of a narrow size distribution which aid separation and improves magnetite recovery. Magnetite is recovered from each separated fraction independently, with non-magnetic effluent water from one fraction diluting feed to a smaller-size fraction, and improving both overall coal and magnetite recovery. Magnetite recovery is in specially designed recovery units, based on particle size, with final separation in a rougher-cleaner-scavenger circuit of magnetic drum separators incorporating a high strength rare earth magnet. 12 figs.

  8. Precipitation of jarosite-type double salts from spent acid solutions from a chemical coal cleaning process

    SciTech Connect

    Norton, G.

    1990-09-21

    The precipitation of jarosite compounds to remove Na, K, Fe, and SO{sub 4}{sup 2{minus}} impurities from spent acid solutions from a chemical coal cleaning process was studied. Simple heating of model solutions containing Fe{sub 2}(SO{sub 4}){sub 3}, Na{sub 2}SO{sub 4}, and K{sub 2}SO{sub 4} caused jarosite (KFe{sub 3}(SO{sub 4}){sub 2}(OH){sub 6}) to form preferentially to natrojarosite (NaFe{sub 3}(SO{sub 4}){sub 2}(OH){sub 6}). Virtually all of the K, about 90% of the Fe, and about 30% of the SO{sub 4}{sup 2{minus}} could be precipitated from those solutions at 95{degree}C, while little or no Na was removed. However, simple heating of model solutions containing only Fe{sub 2}(SO{sub 4}){sub 3} and Na{sub 2}SO{sub 4} up to 95{degree}C for {le}12 hours produced low yields of jarosite compounds, and the Fe concentration in the solution had to be increased to avoid the formation of undesirable Fe compounds. Precipitate yields could be increased dramatically in model solutions of Na{sub 2}SO{sub 4}/Fe{sub 2}(SO{sub 4}){sub 3} containing excess Fe by using either CaCO{sub 3}, Ca(OH){sub 2}, or ZnO to neutralize H{sub 2}SO{sub 4} released during hydrolysis of the Fe{sub 2}(SO{sub 4}){sub 3} and during the precipitation reactions. Results obtained from the studies with model solutions were applied to spent acids produced during laboratory countercurrent washing of coal which had been leached with a molten NaOH/KOH mixture. Results indicated that jarosite compounds can be precipitated effectively from spent acid solutions by heating for 6 hours at 80{degree}C while maintaining a pH of about 1.5 using CaCO{sub 3}.

  9. Clean Fossil Energy Conversion Processes

    NASA Astrophysics Data System (ADS)

    Fan, L.-S.

    2007-03-01

    Absolute and per-capita energy consumption is bound to increase globally, leading to a projected increase in energy requirements of 50% by 2020. The primary source for providing a majority of the energy will continue to be fossil fuels. However, an array of enabling technologies needs to be proven for the realization of a zero emission power, fuel or chemical plants in the near future. Opportunities to develop new processes, driven by the regulatory requirements for the reduction or elimination of gaseous and particulate pollutant abound. This presentation describes the chemistry, reaction mechanisms, reactor design, system engineering, economics, and regulations that surround the utilization of clean coal energy. The presentation will cover the salient features of the fundamental and process aspects of the clean coal technologies in practice as well as in development. These technologies include those for the cleaning of SO2, H2S, NOx, and heavy metals, and separation of CO2 from the flue gas or the syngas. Further, new combustion and gasification processes based on the chemical looping concepts will be illustrated in the context of the looping particle design, process heat integration, energy conversion efficiency, and economics.

  10. Process for cleaning fine coal

    SciTech Connect

    Ennis, R.E.

    1981-08-04

    A process for the wet concentration and cleaning of fine coal is provided which comprises the steps of desliming and thickening a dilute slurry of fine coal and contaminant particles having a size of less than about 10 mm by introducing the same to a hydrocyclone separator to retain a slurry of particles having a size greater than about 0.1 mm, wet concentrating the last-named slurry and removing the heavier contaminant particles by introducing it to an autogenous dense medium separation vessel having a manifold for injecting water at an intermediate level and controlling the underflow of heavier than coal particles to maintain a fluidized bed of heavier particles and causing a slurry of the lighter coal particles to overflow, and concentrating and dewatering the overflow by means of a static or vibratory sizing screen.

  11. ENHANCED CHEMICAL CLEANING: A NEW PROCESS FOR CHEMICALLY CLEANING SAVANNAH RIVER WASTE TANKS

    SciTech Connect

    Ketusky, E; Neil Davis, N; Renee Spires, R

    2008-01-17

    The Savannah River Site (SRS) has 49 high level waste (HLW) tanks that must be emptied, cleaned, and closed as required by the Federal Facilities Agreement. The current method of chemical cleaning uses several hundred thousand gallons per tank of 8 weight percent (wt%) oxalic acid to partially dissolve and suspend residual waste and corrosion products such that the waste can be pumped out of the tank. This adds a significant quantity of sodium oxalate to the tanks and, if multiple tanks are cleaned, renders the waste incompatible with the downstream processing. Tank space is also insufficient to store this stream given the large number of tanks to be cleaned. Therefore, a search for a new cleaning process was initiated utilizing the TRIZ literature search approach, and Chemical Oxidation Reduction Decontamination--Ultraviolet (CORD-UV), a mature technology currently used for decontamination and cleaning of commercial nuclear reactor primary cooling water loops, was identified. CORD-UV utilizes oxalic acid for sludge dissolution, but then decomposes the oxalic acid to carbon dioxide and water by UV treatment outside the system being treated. This allows reprecipitation and subsequent deposition of the sludge into a selected container without adding significant volume to that container, and without adding any new chemicals that would impact downstream treatment processes. Bench top and demonstration loop measurements on SRS tank sludge stimulant demonstrated the feasibility of applying CORD-UV for enhanced chemical cleaning of SRS HLW tanks.

  12. COMPARISON OF OXALIC ACID CLEANING RESULTS AT SRS AND HANFORD AND THE IMPACT ON ENHANCED CHEMICAL CLEANING DEPLOYMENT

    SciTech Connect

    Spires, R.; Ketusky, E.

    2010-01-05

    Waste tanks must be rendered clean enough to satisfy very rigorous tank closure requirements. During bulk waste removal, most of the radioactive sludge and salt waste is removed from the waste tank. The waste residue on the tank walls and interior components and the waste heel at the bottom of the tank must be removed prior to tank closure to render the tank clean enough to meet the regulatory requirement for tank closure. Oxalic acid has been used within the DOE complex to clean residual materials from carbon steel tanks with varying degrees of success. Oxalic acid cleaning will be implemented at both the Savannah River Site and Hanford to clean tanks and serves as the core cleaning technology in the process known as Enhanced Chemical Cleaning. Enhanced Chemical Cleaning also employs a process that decomposes the spent oxalic acid solutions. The oxalic acid cleaning campaigns that have been performed at the two sites dating back to the 1980's are compared. The differences in the waste characteristics, oxalic acid concentrations, flushing, available infrastructure and execution of the campaigns are discussed along with the impact on the effectiveness of the process. The lessons learned from these campaigns that are being incorporated into the project for Enhanced Chemical Cleaning are also explored.

  13. H2S and volatile fatty acids elimination by biofiltration: clean-up process for biogas potential use.

    PubMed

    Ramírez-Sáenz, D; Zarate-Segura, P B; Guerrero-Barajas, C; García-Peña, E I

    2009-04-30

    In the present work, the main objective was to evaluate a biofiltration system for removing hydrogen sulfide (H(2)S) and volatile fatty acids (VFAs) contained in a gaseous stream from an anaerobic digestor (AD). The elimination of these compounds allowed the potential use of biogas while maintaining the methane (CH(4)) content throughout the process. The biodegradation of H(2)S was determined in the lava rock biofilter under two different empty bed residence times (EBRT). Inlet loadings lower than 200 g/m(3)h at an EBRT of 81 s yielded a complete removal, attaining an elimination capacity (EC) of 142 g/m(3)h, whereas at an EBRT of 31 s, a critical EC of 200 g/m(3)h was reached and the EC obtained exhibited a maximum value of 232 g/m(3)h. For 1500 ppmv of H(2)S, 99% removal was maintained during 90 days and complete biodegradation of VFAs was observed. A recovery of 60% as sulfate was obtained due to the constant excess of O(2) concentration in the system. Acetic and propionic acids as a sole source of carbon were also evaluated in the bioreactor at different inlet loadings (0-120 g/m(3)h) obtaining a complete removal (99%) for both. Microcosms biodegradation experiments conducted with VFAs demonstrated that acetic acid provided the highest biodegradation rate.

  14. Cleaning process for contaminated superalloy powders

    NASA Technical Reports Server (NTRS)

    Anglin, A. E.

    1978-01-01

    A cleaning process for removing interstitial contaminants from superalloy powders after wet grinding is described. Typical analyses of oxygen, carbon, nitrogen, and hydrogen in ball-milled WAZ-20 superalloy samples after hydrogen plus vacuum cleaning are presented. The hydrogen cleaning step involves heating retorts containing superalloy powder twice under flowing hydrogen with a 24-hour hold at each temperature. The vacuum step involves heating cold-pressed billets two hours at an elevated temperature at a pressure of 10 microPa. It is suggested that the hydrogen plus vacuum cleaning procedure can be applied to superalloys contaminated by other substances in other industrial processes.

  15. Cleaning process for EUV optical substrates

    DOEpatents

    Weber, Frank J.; Spiller, Eberhard A.

    1999-01-01

    A cleaning process for surfaces with very demanding cleanliness requirements, such as extreme-ultraviolet (EUV) optical substrates. Proper cleaning of optical substrates prior to applying reflective coatings thereon is very critical in the fabrication of the reflective optics used in EUV lithographic systems, for example. The cleaning process involves ultrasonic cleaning in acetone, methanol, and a pH neutral soap, such as FL-70, followed by rinsing in de-ionized water and drying with dry filtered nitrogen in conjunction with a spin-rinse.

  16. Cleaning process for EUV optical substrates

    SciTech Connect

    Weber, F.J.; Spiller, E.A.

    1999-09-28

    A cleaning process is disclosed for surfaces with very demanding cleanliness requirements, such as extreme-ultraviolet (EUV) optical substrates. Proper cleaning of optical substrates prior to applying reflective coatings thereon is very critical in the fabrication of the reflective optics used in EUV lithographic systems, for example. The cleaning process involves ultrasonic cleaning in acetone, methanol, and a pH neutral soap, such as FL-70, followed by rinsing in de-ionized water and drying with dry filtered nitrogen in conjunction with a spin-rinse.

  17. ASRM process development in aqueous cleaning

    NASA Astrophysics Data System (ADS)

    Swisher, Bill

    1992-12-01

    Viewgraphs are included on process development in aqueous cleaning which is taking place at the Aerojet Advanced Solid Rocket Motor (ASRM) Division under a NASA Marshall Space and Flight Center contract for design, development, test, and evaluation of the ASRM including new production facilities. The ASRM will utilize aqueous cleaning in several manufacturing process steps to clean case segments, nozzle metal components, and igniter closures. ASRM manufacturing process development is underway, including agent selection, agent characterization, subscale process optimization, bonding verification, and scale-up validation. Process parameters are currently being tested for optimization utilizing a Taguci Matrix, including agent concentration, cleaning solution temperature, agitation and immersion time, rinse water amount and temperature, and use/non-use of drying air. Based on results of process development testing to date, several observations are offered: aqueous cleaning appears effective for steels and SermeTel-coated metals in ASRM processing; aqueous cleaning agents may stain and/or attack bare aluminum metals to various extents; aqueous cleaning appears unsuitable for thermal sprayed aluminum-coated steel; aqueous cleaning appears to adequately remove a wide range of contaminants from flat metal surfaces, but supplementary assistance may be needed to remove clumps of tenacious contaminants embedded in holes, etc.; and hot rinse water appears to be beneficial to aid in drying of bare steel and retarding oxidation rate.

  18. ASRM process development in aqueous cleaning

    NASA Technical Reports Server (NTRS)

    Swisher, Bill

    1992-01-01

    Viewgraphs are included on process development in aqueous cleaning which is taking place at the Aerojet Advanced Solid Rocket Motor (ASRM) Division under a NASA Marshall Space and Flight Center contract for design, development, test, and evaluation of the ASRM including new production facilities. The ASRM will utilize aqueous cleaning in several manufacturing process steps to clean case segments, nozzle metal components, and igniter closures. ASRM manufacturing process development is underway, including agent selection, agent characterization, subscale process optimization, bonding verification, and scale-up validation. Process parameters are currently being tested for optimization utilizing a Taguci Matrix, including agent concentration, cleaning solution temperature, agitation and immersion time, rinse water amount and temperature, and use/non-use of drying air. Based on results of process development testing to date, several observations are offered: aqueous cleaning appears effective for steels and SermeTel-coated metals in ASRM processing; aqueous cleaning agents may stain and/or attack bare aluminum metals to various extents; aqueous cleaning appears unsuitable for thermal sprayed aluminum-coated steel; aqueous cleaning appears to adequately remove a wide range of contaminants from flat metal surfaces, but supplementary assistance may be needed to remove clumps of tenacious contaminants embedded in holes, etc.; and hot rinse water appears to be beneficial to aid in drying of bare steel and retarding oxidation rate.

  19. Exhaust gas clean up process

    DOEpatents

    Walker, R.J.

    1988-06-16

    A method of cleaning an exhaust gas containing particulates, SO/sub 2/ and NO/sub x/ is described. The method involves prescrubbing with water to remove HCl and most of the particulates, scrubbing with an aqueous absorbent containing a metal chelate and dissolved sulfite salt to remove NO/sub x/ and SO/sub 2/, and regenerating the absorbent solution by controlled heating, electrodialysis and carbonate salt addition. The NO/sub x/ is removed as N/sub 2/ gas or nitrogen sulfonate ions and the oxides of sulfur are removed as a valuable sulfate salt. 4 figs.

  20. Exhaust gas clean up process

    DOEpatents

    Walker, Richard J.

    1989-01-01

    A method of cleaning an exhaust gas containing particulates, SO.sub.2 and NO.sub.x includes prescrubbing with water to remove HCl and most of the particulates, scrubbing with an aqueous absorbent containing a metal chelate and dissolved sulfite salt to remove NO.sub.x and SO.sub.2, and regenerating the absorbent solution by controlled heating, electrodialysis and carbonate salt addition. The NO.sub.x is removed as N.sub.2 or nitrogen-sulfonate ions and the oxides of sulfur are removed as a vaulable sulfate salt.

  1. Enhanced Chemical Cleaning: A New Process for Chemically Cleaning Savannah River Waste Tanks

    SciTech Connect

    Ketusky, Edward; Spires, Renee; Davis, Neil

    2009-02-11

    At the Savannah River Site (SRS) there are 49 High Level Waste (HLW) tanks that eventually must be emptied, cleaned, and closed. The current method of chemically cleaning SRS HLW tanks, commonly referred to as Bulk Oxalic Acid Cleaning (BOAC), requires about a half million liters (130,000 gallons) of 8 weight percent (wt%) oxalic acid to clean a single tank. During the cleaning, the oxalic acid acts as the solvent to digest sludge solids and insoluble salt solids, such that they can be suspended and pumped out of the tank. Because of the volume and concentration of acid used, a significant quantity of oxalate is added to the HLW process. This added oxalate significantly impacts downstream processing. In addition to the oxalate, the volume of liquid added competes for the limited available tank space. A search, therefore, was initiated for a new cleaning process. Using TRIZ (Teoriya Resheniya Izobretatelskikh Zadatch or roughly translated as the Theory of Inventive Problem Solving), Chemical Oxidation Reduction Decontamination with Ultraviolet Light (CORD-UV{reg_sign}), a mature technology used in the commercial nuclear power industry was identified as an alternate technology. Similar to BOAC, CORD-UV{reg_sign} also uses oxalic acid as the solvent to dissolve the metal (hydr)oxide solids. CORD-UV{reg_sign} is different, however, since it uses photo-oxidation (via peroxide/UV or ozone/UV to form hydroxyl radicals) to decompose the spent oxalate into carbon dioxide and water. Since the oxalate is decomposed and off-gassed, CORD-UV{reg_sign} would not have the negative downstream oxalate process impacts of BOAC. With the oxalate destruction occurring physically outside the HLW tank, re-precipitation and transfer of the solids, as well as regeneration of the cleaning solution can be performed without adding additional solids, or a significant volume of liquid to the process. With a draft of the pre-conceptual Enhanced Chemical Cleaning (ECC) flowsheet, taking full

  2. Is peracetic acid suitable for the cleaning step of reprocessing flexible endoscopes?

    PubMed

    Kampf, Günter; Fliss, Patricia M; Martiny, Heike

    2014-09-16

    The bioburden (blood, protein, pathogens and biofilm) on flexible endoscopes after use is often high and its removal is essential to allow effective disinfection, especially in the case of peracetic acid-based disinfectants, which are easily inactivated by organic material. Cleaning processes using conventional cleaners remove a variable but often sufficient amount of the bioburden. Some formulations based on peracetic acid are recommended by manufacturers for the cleaning step. We performed a systematic literature search and reviewed the available evidence to clarify the suitability of peracetic acid-based formulations for cleaning flexible endoscopes. A total of 243 studies were evaluated. No studies have yet demonstrated that peracetic acid-based cleaners are as effective as conventional cleaners. Some peracetic acid-based formulations have demonstrated some biofilm-cleaning effects and no biofilm-fixation potential, while others have a limited cleaning effect and a clear biofilm-fixation potential. All published data demonstrated a limited blood cleaning effect and a substantial blood and nerve tissue fixation potential of peracetic acid. No evidence-based guidelines on reprocessing flexible endoscopes currently recommend using cleaners containing peracetic acid, but some guidelines clearly recommend not using them because of their fixation potential. Evidence from some outbreaks, especially those involving highly multidrug-resistant gram-negative pathogens, indicated that disinfection using peracetic acid may be insufficient if the preceding cleaning step is not performed adequately. Based on this review we conclude that peracetic acid-based formulations should not be used for cleaning flexible endoscopes.

  3. Enhanced membrane bioreactor process without chemical cleaning.

    PubMed

    Krause, S; Zimmermann, B; Meyer-Blumenroth, U; Lamparter, W; Siembida, B; Cornel, P

    2010-01-01

    In membrane bioreactors (MBR) for wastewater treatment, the separation of activated sludge and treated water takes place by membrane filtration. Due to the small footprint and superior effluent quality, the number of membrane bioreactors used in wastewater treatment is rapidly increasing. A major challenge in this process is the fouling of the membranes which results in permeability decrease and the demand of chemical cleaning procedures. With the objective of a chemical-free process, the removal of the fouling layer by continuous physical abrasion was investigated. Therefore, particles (granules) were added to the activated sludge in order to realise a continuous abrasion of the fouling layer. During operation for more than 8 months, the membranes showed no decrease in permeability. Fluxes up to 40 L/(m(2) h) were achieved. An online turbidity measurement was installed for the effluent control and showed no change during this test period. For comparison, a reference (standard MBR process without granules) was operated which demonstrated permeability loss at lower fluxes and required chemical cleaning. Altogether with this process an operation at higher fluxes and no use of cleaning chemicals will increase the cost efficiency of the MBR-process.

  4. Tank 12H Acidic Chemical Cleaning Sample Analysis And Material Balance

    SciTech Connect

    Martino, C. J.; Reboul, S. H.; Wiersma, B. J.; Coleman, C. J.

    2013-11-08

    A process of Bulk Oxalic Acid (BOA) chemical cleaning was performed for Tank 12H during June and July of 2013 to remove all or a portion of the approximately 4400 gallon sludge heel. Three strikes of oxalic acid (nominally 4 wt% or 2 wt%) were used at 55°C and tank volumes of 96- to 140-thousand gallons. This report details the sample analysis of a scrape sample taken prior to BOA cleaning and dip samples taken during BOA cleaning. It also documents a rudimentary material balance for the Tank 12H cleaning results.

  5. Integrated coal cleaning, liquefaction, and gasification process

    DOEpatents

    Chervenak, Michael C.

    1980-01-01

    Coal is finely ground and cleaned so as to preferentially remove denser ash-containing particles along with some coal. The resulting cleaned coal portion having reduced ash content is then fed to a coal hydrogenation system for the production of desirable hydrocarbon gases and liquid products. The remaining ash-enriched coal portion is gasified to produce a synthesis gas, the ash is removed from the gasifier usually as slag, and the synthesis gas is shift converted with steam and purified to produce the high purity hydrogen needed in the coal hydrogenation system. This overall process increases the utilization of as-mined coal, reduces the problems associated with ash in the liquefaction-hydrogenation system, and permits a desirable simplification of a liquids-solids separation step otherwise required in the coal hydrogenation system.

  6. Aqueous cleaning and verification processes for precision cleaning of small parts

    NASA Technical Reports Server (NTRS)

    Allen, Gale J.; Fishell, Kenneth A.

    1995-01-01

    The NASA Kennedy Space Center (KSC) Materials Science Laboratory (MSL) has developed a totally aqueous process for precision cleaning and verification of small components. In 1990 the Precision Cleaning Facility at KSC used approximately 228,000 kg (500,000 lbs) of chlorofluorocarbon (CFC) 113 in the cleaning operations. It is estimated that current CFC 113 usage has been reduced by 75 percent and it is projected that a 90 percent reduction will be achieved by the end of calendar year 1994. The cleaning process developed utilizes aqueous degreasers, aqueous surfactants, and ultrasonics in the cleaning operation and an aqueous surfactant, ultrasonics, and Total Organic Carbon Analyzer (TOCA) in the nonvolatile residue (NVR) and particulate analysis for verification of cleanliness. The cleaning and verification process is presented in its entirety, with comparison to the CFC 113 cleaning and verification process, including economic and labor costs/savings.

  7. Evaluation Of Sludge Heel Dissolution Efficiency With Oxalic Acid Cleaning At Savannah River Site

    SciTech Connect

    Sudduth, Christie; Vitali, Jason; Keefer, Mark

    2014-01-08

    The chemical cleaning process baseline strategy at the Savannah River Site was revised to improve efficiency during future execution of the process based on lessons learned during previous bulk oxalic acid cleaning activities and to account for operational constraints imposed by safety basis requirements. These improvements were also intended to transcend the difficulties that arise from waste removal in higher rheological yield stress sludge tanks. Tank 12 implemented this improved strategy and the bulk oxalic acid cleaning efforts concluded in July 2013. The Tank 12 radiological removal results were similar to previous bulk oxalic acid cleaning campaigns despite the fact that Tank 12 contained higher rheological yield stress sludge that would make removal more difficult than the sludge treated in previous cleaning campaigns. No appreciable oxalate precipitation occurred during the cleaning process in Tank 12 compared to previous campaigns, which aided in the net volume reduction of 75-80%. Overall, the controls established for Tank 12 provide a template for an improved cleaning process.

  8. Effect of two cleaning processes for bone allografts on gentamicin impregnation and in vitro antibiotic release.

    PubMed

    Coraça-Huber, D C; Hausdorfer, J; Fille, M; Steidl, M; Nogler, M

    2013-06-01

    Bone allografts are a useful and sometimes indispensable tool for the surgeon to repair bone defects. Microbial contamination is a major reason for discarding allografts from bone banks. To improve the number of safe allografts, we suggest chemical cleaning of the grafts followed by antibiotic impregnation. Comparison of two chemical cleaning processes for bone allografts aiming for antibiotic impregnation and consequently delivery rates in vitro. Bone chips of 5-10 mm were prepared from human femoral heads. Two cleaning methods (cleaning A and cleaning B) based on solutions containing hydrogen peroxide, paracetic acid, ethanol and biological detergent were carried out and compared. After the cleaning processes, the bone chips were impregnated with gentamicin. Bacillus subtilis bioassay was used to determine the gentamicin release after intervals of 1-7 days. Differences were compared with non-parametric Mann-Whitney U tests. The zones of inhibition obtained from the bone grafts cleaned with both cleaning processes were similar between the groups. The concentration of the released antibiotic was decreasing gradually over time, following a similar pattern for both groups. The cleaning procedure A as well as the cleaning procedure B for bone allografts allowed the impregnation with gentamicin powder in the same concentrations in both groups. The delivery of gentamicin was similar for both groups. Both cleaning procedures were easy to be carried out, making them suitable for routine use at the bone banks.

  9. Is peracetic acid suitable for the cleaning step of reprocessing flexible endoscopes?

    PubMed Central

    Kampf, Günter; Fliss, Patricia M; Martiny, Heike

    2014-01-01

    The bioburden (blood, protein, pathogens and biofilm) on flexible endoscopes after use is often high and its removal is essential to allow effective disinfection, especially in the case of peracetic acid-based disinfectants, which are easily inactivated by organic material. Cleaning processes using conventional cleaners remove a variable but often sufficient amount of the bioburden. Some formulations based on peracetic acid are recommended by manufacturers for the cleaning step. We performed a systematic literature search and reviewed the available evidence to clarify the suitability of peracetic acid-based formulations for cleaning flexible endoscopes. A total of 243 studies were evaluated. No studies have yet demonstrated that peracetic acid-based cleaners are as effective as conventional cleaners. Some peracetic acid-based formulations have demonstrated some biofilm-cleaning effects and no biofilm-fixation potential, while others have a limited cleaning effect and a clear biofilm-fixation potential. All published data demonstrated a limited blood cleaning effect and a substantial blood and nerve tissue fixation potential of peracetic acid. No evidence-based guidelines on reprocessing flexible endoscopes currently recommend using cleaners containing peracetic acid, but some guidelines clearly recommend not using them because of their fixation potential. Evidence from some outbreaks, especially those involving highly multidrug-resistant gram-negative pathogens, indicated that disinfection using peracetic acid may be insufficient if the preceding cleaning step is not performed adequately. Based on this review we conclude that peracetic acid-based formulations should not be used for cleaning flexible endoscopes. PMID:25228941

  10. Development of the LICADO coal cleaning process

    SciTech Connect

    Not Available

    1990-07-31

    Development of the liquid carbon dioxide process for the cleaning of coal was performed in batch, variable volume (semi-continuous), and continuous tests. Continuous operation at feed rates up to 4.5 kg/hr (10-lb/hr) was achieved with the Continuous System. Coals tested included Upper Freeport, Pittsburgh, Illinois No. 6, and Middle Kittanning seams. Results showed that the ash and pyrite rejections agreed closely with washability data for each coal at the particle size tested (-200 mesh). A 0.91 metric ton (1-ton) per hour Proof-of-Concept Plant was conceptually designed. A 181 metric ton (200 ton) per hour and a 45 metric ton (50 ton) per hour plant were sized sufficiently to estimate costs for economic analyses. The processing costs for the 181 metric ton (200 ton) per hour and 45 metric ton (50 ton) per hour were estimated to be $18.96 per metric ton ($17.20 per ton) and $11.47 per metric ton ($10.40 per ton), respectively for these size plants. The costs for the 45 metric ton per hour plant are lower because it is assumed to be a fines recovery plant which does not require a grinding circuit of complex waste handling system.

  11. Cleaning Process Development for Metallic Additively Manufactured Parts

    NASA Technical Reports Server (NTRS)

    Tramel, Terri L.; Welker, Roger; Lowery, Niki; Mitchell, Mark

    2014-01-01

    Additive Manufacturing of metallic components for aerospace applications offers many advantages over traditional manufacturing techniques. As a new technology, many aspects of its widespread utilization remain open to investigation. Among these are the cleaning processes that can be used for post finishing of parts and measurements to verify effectiveness of the cleaning processes. Many cleaning and drying processes and measurement methods that have been used for parts manufactured using conventional techniques are candidates that may be considered for cleaning and verification of additively manufactured parts. Among these are vapor degreasing, ultrasonic immersion and spray cleaning, followed by hot air drying, vacuum baking and solvent displacement drying. Differences in porosity, density, and surface finish of additively manufactured versus conventionally manufactured parts may introduce new considerations in the selection of cleaning and drying processes or the method used to verify their effectiveness. This presentation will review the relative strengths and weaknesses of different candidate cleaning and drying processes as they may apply to additively manufactured metal parts for aerospace applications. An ultrasonic cleaning technique for exploring the cleanability of parts will be presented along with an example using additively manufactured Inconel 718 test specimens to illustrate its use. The data analysis shows that this ultrasonic cleaning approach results in a well-behaved ultrasonic cleaning/extraction behavior. That is, it does not show signs of accelerated cavitation erosion of the base material, which was later confirmed by neutron imaging. In addition, the analysis indicated that complete cleaning would be achieved by ultrasonic immersion cleaning at approximately 5 minutes, which was verified by subsequent cleaning of additional parts.

  12. Conceptual design of clean processes: Tools and methods

    SciTech Connect

    Hurme, M.

    1996-12-31

    Design tools available for implementing clean design into practice are discussed. The application areas together with the methods of comparison of clean process alternatives are presented. Environmental principles are becoming increasingly important in the whole life cycle of products from design, manufacturing and marketing to disposal. The hinder of implementing clean technology in design has been the necessity to apply it in all phases of design starting from the beginning, since it deals with the major selections made in the conceptual process design. Therefore both a modified design approach and new tools are needed for process design to make the application of clean technology practical. The first item; extended process design methodologies has been presented by Hurme, Douglas, Rossiter and Klee, Hilaly and Sikdar. The aim of this paper is to discuss the latter topic; the process design tools which assist in implementing clean principles into process design. 22 refs., 2 tabs.

  13. New processes target methanol production, off-gas cleaning

    SciTech Connect

    Haggin, J. )

    1994-03-28

    Catalysis plays a key role in two technological developments aimed at addressing environmental-related matters. One, a process that converts carbon dioxide to methanol, is seen as a means of reducing the amount of carbon dioxide dumped into the atmosphere without an economic penalty. The other, unsteady-state operation, is a chemical processing innovation that is finding its way into the cleaning of plant exhaust gases. Particulars on the developments were presented in separate forums at the American Chemical Society's national meeting in San Diego. The methanol process, developed by Lurgi Oel-Gas-Chemie, Frankfurt, was outlined for the Catalysis and Surface Science Secretariat. Lurgi is ready to commercialized a variation of its methanol process, which converts carbon dioxide to ethanol in two stages. Underlying the process is development of a catalyst that is suitable for operation in two temperature regimes. The paper describes the development of the process. A catalytic reverse processing system is being used to decontaminate gas streams containing volatile organic compounds (VOCs). These VOCs may be unacceptable in the environment or undesirable in subsequent processing units. Other applications include nitrogen oxides reduction, ammonia and methanol synthesis, and oxidation of SO[sub 2] to SO[sub 3] in the manufacture of sulfuric acid. Among the materials that have been removed as VOCs are C[sub 4] to C[sub 8] alcohols, phenol, formaldehyde, cyanic acid, and a variety of organic solvents. The advantages over conventional methods are discussed.

  14. Development of the chemical and electrochemical coal cleaning (CECC) process

    SciTech Connect

    Yoon, Roe-Hoan; Basilio, C.I.

    1992-05-01

    The Chemical and Electrochemical Coal Cleaning (CECC) process developed at Virginia Polytechnic Institute and State University was studied further in this project. This process offers a new method of physically cleaning both low- and high-rank coals without requiring fine grinding. The CECC process is based on liberating mineral matter from coal by osmotic pressure. The majority of the work was conducted on Middle Wyodak, Pittsburgh No. 8 and Elkhorn No. 3 coals. The coal samples were characterized for a variety of physical and chemical properties. Parametric studies were then conducted to identify the important operating parameters and to establish the optimum conditions. In addition, fundamental mechanisms of the process were studied, including mineral matter liberation, kinetics of mineral matter and pyrite dissolution, ferric ion regeneration schemes and alternative methods of separating the cleaned coal from the liberated mineral matter. The information gathered from the parametric and fundamental studies was used in the design, construction and testing of a bench-scale continuous CECC unit. Using this unit, the ash content of a Middle Wyodak coal was reduced from 6.96 to 1.61% at a 2 lbs/hr throughput. With an Elkhorn No. 3 sample, the ash content was reduced from 9.43 to 1.8%, while the sulfur content was reduced from 1.57 to 0.9%. The mass balance and liberation studies showed that liberation played a more dominant role than the chemical dissolution in removing mineral matter and inorganic sulfur from the different bituminous coals tested. However, the opposite was found to be the case for the Wyodak coal since this coal contained a significant amount of acid-soluble minerals.

  15. EUV mask surface cleaning effects on lithography process performance

    SciTech Connect

    George, Simi; Baclea-an, Lorie Mae; Naulleau, Patrick; Chen, Robert J.; Liang, Ted

    2010-06-18

    The reflective, multilayer based, mask architectures for extreme ultraviolet (EUV) lithography are highly susceptible to surface oxidation and contamination. As a result, EUV masks are expected to undergo cleaning processes in order to maintain the lifetimes necessary for high volume manufacturing. For this study, the impact of repetitive cleaning of EUV masks on imaging performance was evaluated. Two, high quality industry standard, EUV masks are used for this study with one of the masks undergoing repeated cleaning and the other one kept as a reference. Lithographic performance, in terms of process window analysis and line edge roughness, was monitored after every two cleans and compared to the reference mask performance. After 8x clean, minimal degradation is observed. The cleaning cycles will be continued until significant loss imaging fidelity is found.

  16. Mechanisms of actions of sodium hypochlorite in cleaning and disinfection processes.

    PubMed

    Fukuzaki, Satoshi

    2006-12-01

    Sodium hypochlorite (NaOCl) is the most widely used disinfectant in the food industry despite the increasing availability of other disinfectants. Sodium hypochlorite fulfills many requirements as the ideal disinfectant and furthermore it has an excellent cleaning action. The effectiveness of sodium hypochlorite in the cleaning and disinfection processes depends on the concentration of available chlorine and the pH of the solution. Hypochlorous acid (HOCl) is a weak acid and dissociates to the hypochlorite ion (-OCl) and proton (H+) depending on the solution pH. It is generally believed that HOCl is the active species in the germicidal action, whereas the concentration of -OCl is a key factor determining the cleaning efficiency. This implies that the optimal pH region of the germicidal activity of sodium hypochlorite differs from that of its cleaning activity. This paper describes the theory and practice of the cleaning and disinfecting operations based on the use of sodium hypochlorite solution.

  17. Preliminary Results of Cleaning Process for Lubricant Contamination

    SciTech Connect

    Eisenmann, D.; Brasche, L.; Lopez, R.

    2006-03-06

    Fluorescent penetrant inspection (FPI) is widely used for aviation and other components for surface-breaking crack detection. As with all inspection methods, adherence to the process parameters is critical to the successful detection of defects. Prior to FPI, components are cleaned using a variety of cleaning methods which are selected based on the alloy and the soil types which must be removed. It is also important that the cleaning process not adversely affect the FPI process. There are a variety of lubricants and surface coatings used in the aviation industry which must be removed prior to FPI. To assess the effectiveness of typical cleaning processes on removal of these contaminants, a study was initiated at an airline overhaul facility. Initial results of the cleaning study for lubricant contamination in nickel, titanium and aluminum alloys will be presented.

  18. RESULTS OF THE 2H EVAPORATOR ACID CLEANING AND IN-POT NEUTRALIZATION

    SciTech Connect

    Wilmarth, B; Phillip Norris, P; Terry Allen, T

    2007-05-29

    The estimated 200 gallons of sodium aluminosilicate scale (NAS) present in the 242-16H Evaporator pot prior to chemical cleaning was subjected to four batches of 1.5 M (9 wt%) nitric acid. Each batch was neutralized with 19 M (50 wt %) sodium hydroxide (caustic) before transfer to Tank 38. The chemical cleaning process began on November 20, 2006, and was terminated on December 10, 2006. An inspection of the pot's interior was performed and based on data gathered during that inspection; the current volume of scale in the pot is conservatively estimated to be 36.3 gallons, which is well below the 200 gallon limit specified in the Technical Safety Requirements. In addition, the performance during all aspects of cleaning agreed well with the flowsheet developed at the bench and pilot scale. There were some lessons learned during the cleaning outage and are detailed in appendices of this report.

  19. Integration of extrusion and clean fractionation processes as a pre-treatment technology for prairie cordgrass.

    PubMed

    Brudecki, Grzegorz; Cybulska, Iwona; Rosentrater, Kurt

    2013-05-01

    Prairie cordgrass (PCG) was pretreated by sequential extrusion and clean fractionation (CF) processing. Following CF, PCG was fractionated into cellulose, hemicellulose and lignin-rich fractions. Cellulose pulp was then enzymatically hydrolyzed, producing glucose. The main purpose of this study was to produce the highest glucose yield as possible. The effects of time, temperature, catalyst concentration and solvent mixture composition on the fractionation were tested. Different proportions of methyl isobutyl ketone (MIBK), ethanol and water with sulfuric acid as a catalyst were evaluated. Optimal conditions for sequential extrusion and clean fractionation (39 min, 129 °C, 0.69% catalyst, and 28% MIBK) resulted in higher glucose yield (92%), and more lignin (87%) and xylan (95%) removal than for clean fractionation alone. Pairwise comparison of raw PCG with extruded PCG clean fractionation revealed no difference in glucose yields, but xylan and AIL removal were higher in the case of clean fractionation of the pre-extruded PCG.

  20. A Hybrid Gas Cleaning Process for Production of Ultraclean Syngas

    SciTech Connect

    Merkel, T.C.; Turk, B.S.; Gupta, R.P.; Cicero, D.C.; Jain, S.C.

    2002-09-20

    The overall objective of this project is to develop technologies for cleaning/conditioning IGCC generated syngas to meet contaminant tolerance limits for fuel cell and chemical production applications. The specific goals are to develop processes for (1) removal of reduced sulfur species to sub-ppm levels using a hybrid process consisting of a polymer membrane and a regenerable ZnO-coated monolith or a mixed metal oxide sorbent; (2) removal of hydrogen chloride vapors to sub-ppm levels using an inexpensive, high-surface-area material; and (3) removal of NH3 with acidic adsorbents followed by conversion of this NH3 into nitrogen and water. Existing gasification technologies can effectively and efficiently convert a wide variety of carbonaceous feedstocks (coal, petcoke, resids, biomass, etc.) into syngas, which predominantly contains carbon monoxide and hydrogen. Unfortunately, the impurities present in these carbonaceous feedstocks are converted to gaseous contaminants such as H2S, COS, HCl, NH3, alkali macromolecules and heavy metal compounds (such as Hg) during the gasification process. Removal of these contaminants using conventional processes is thermally inefficient and capital intensive. This research and development effort is focused on investigation of modular processes for removal of sulfur, chlorine, nitrogen and mercury compounds from syngas at elevated temperature and pressures at significantly lower costs than conventional technologies.

  1. Analysis of chemical coal cleaning processes. Final report

    SciTech Connect

    Not Available

    1980-06-01

    Six chemical coal cleaning processes were examined. Conceptual designs and costs were prepared for these processes and coal preparation facilities, including physical cleaning and size reduction. Transportation of fine coal in agglomerated and unagglomerated forms was also discussed. Chemical cleaning processes were: Pittsburgh Energy Technology Center, Ledgemont, Ames Laboratory, Jet Propulsion Laboratory (two versions), and Guth Process (KVB). Three of the chemical cleaning processes are similar in concept: PETC, Ledgemont, and Ames. Each of these is based on the reaction of sulfur with pressurized oxygen, with the controlling factor being the partial pressure of oxygen in the reactor. All of the processes appear technically feasible. Economic feasibility is less certain. The recovery of process chemicals is vital to the JPL and Guth processes. All of the processes consume significant amounts of energy in the form of electric power and coal. Energy recovery and increased efficiency are potential areas for study in future more detailed designs. The Guth process (formally designed KVB) appears to be the simplest of the systems evaluated. All of the processes require future engineering to better determine methods for scaling laboratory designs/results to commercial-scale operations. A major area for future engineering is to resolve problems related to handling, feeding, and flow control of the fine and often hot coal.

  2. Alternative, Green Processes for the Precision Cleaning of Aerospace Hardware

    NASA Technical Reports Server (NTRS)

    Maloney, Phillip R.; Grandelli, Heather Eilenfield; Devor, Robert; Hintze, Paul E.; Loftin, Kathleen B.; Tomlin, Douglas J.

    2014-01-01

    Precision cleaning is necessary to ensure the proper functioning of aerospace hardware, particularly those systems that come in contact with liquid oxygen or hypergolic fuels. Components that have not been cleaned to the appropriate levels may experience problems ranging from impaired performance to catastrophic failure. Traditionally, this has been achieved using various halogenated solvents. However, as information on the toxicological and/or environmental impacts of each came to light, they were subsequently regulated out of use. The solvent currently used in Kennedy Space Center (KSC) precision cleaning operations is Vertrel MCA. Environmental sampling at KSC indicates that continued use of this or similar solvents may lead to high remediation costs that must be borne by the Program for years to come. In response to this problem, the Green Solvents Project seeks to develop state-of-the-art, green technologies designed to meet KSCs precision cleaning needs.Initially, 23 solvents were identified as potential replacements for the current Vertrel MCA-based process. Highly halogenated solvents were deliberately omitted since historical precedents indicate that as the long-term consequences of these solvents become known, they will eventually be regulated out of practical use, often with significant financial burdens for the user. Three solvent-less cleaning processes (plasma, supercritical carbon dioxide, and carbon dioxide snow) were also chosen since they produce essentially no waste stream. Next, experimental and analytical procedures were developed to compare the relative effectiveness of these solvents and technologies to the current KSC standard of Vertrel MCA. Individually numbered Swagelok fittings were used to represent the hardware in the cleaning process. First, the fittings were cleaned using Vertrel MCA in order to determine their true cleaned mass. Next, the fittings were dipped into stock solutions of five commonly encountered contaminants and were

  3. Effect of processing rate on seed cotton cleaning equipment performance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The processing rate per unit width of seed cotton cleaning equipment– cylinder cleaners and stick machines– recommended by manufacturers is 4.8-8.2 bales hr-1 m-1 (1.5-2.5 bales hr-1 ft-1). Survey data has indicated that many gins exceed this processing rate. Previous research with picker-harvested ...

  4. Contamination detection NDE for cleaning process inspection

    NASA Technical Reports Server (NTRS)

    Marinelli, W. J.; Dicristina, V.; Sonnenfroh, D.; Blair, D.

    1995-01-01

    In the joining of multilayer materials, and in welding, the cleanliness of the joining surface may play a large role in the quality of the resulting bond. No non-intrusive techniques are currently available for the rapid measurement of contamination on large or irregularly shaped structures prior to the joining process. An innovative technique for the measurement of contaminant levels in these structures using laser based imaging is presented. The approach uses an ultraviolet excimer laser to illuminate large and/or irregular surface areas. The UV light induces fluorescence and is scattered from the contaminants. The illuminated area is viewed by an image-intensified CCD (charge coupled device) camera interfaced to a PC-based computer. The camera measures the fluorescence and/or scattering from the contaminants for comparison with established standards. Single shot measurements of contamination levels are possible. Hence, the technique may be used for on-line NDE testing during manufacturing processes.

  5. Photomask cleaning process improvement to minimize ArF haze

    NASA Astrophysics Data System (ADS)

    Graham, Michael; McDonald, Andrew

    2008-04-01

    Growth of "haze" defects on photomasks exposed in ArF lithography is recognized as a serious problem. Haze defects that have grown to detectable sizes can be analysed in situ by techniques such as EDX or Raman, but to analyze at the photomask manufacturing stage requires extraction of residues by solution in DI water. The effect of extraction conditions, including surface area and material, water volume, time, and temperature, has been studied. A standard method to compare residual ion levels is proposed. Various methods for reducing residual ion levels from the photomask cleaning process have been published. These include SPM reduction, oxygen plasma, SC1 dilution, Megasonic agitation, hot rinse, UV exposure, thermal bake, ozone water, ozone gas, and hydrogenated water. Critical parameters for the cleaning process, besides residual ion levels and contamination removal efficiency, include CD shift, AR/chrome damage, scatter bar damage, and on phase shift masks, the change in phase and transmission. An optimized process combining conventional and novel techniques is described. Data is presented to show the importance of controlling all resist strip and clean processes, not just the final clean. It has achieved sulphate levels of 0.2ng/cm2 (well below the critical level for haze growth), as well as improved results for the other critical parameters. This process has been demonstrated to allow ArF exposure of large numbers of wafers without the appearance of haze defects.

  6. TREATMENT TANK CORROSION STUDIES FOR THE ENHANCED CHEMICAL CLEANING PROCESS

    SciTech Connect

    Wiersma, B.

    2011-08-24

    Radioactive waste is stored in high level waste tanks on the Savannah River Site (SRS). Savannah River Remediation (SRR) is aggressively seeking to close the non-compliant Type I and II waste tanks. The removal of sludge (i.e., metal oxide) heels from the tank is the final stage in the waste removal process. The Enhanced Chemical Cleaning (ECC) process is being developed and investigated by SRR to aid in Savannah River Site (SRS) High-Level Waste (HLW) as an option for sludge heel removal. Corrosion rate data for carbon steel exposed to the ECC treatment tank environment was obtained to evaluate the degree of corrosion that occurs. These tests were also designed to determine the effect of various environmental variables such as temperature, agitation and sludge slurry type on the corrosion behavior of carbon steel. Coupon tests were performed to estimate the corrosion rate during the ECC process, as well as determine any susceptibility to localized corrosion. Electrochemical studies were performed to develop a better understanding of the corrosion mechanism. The tests were performed in 1 wt.% and 2.5 wt.% oxalic acid with HM and PUREX sludge simulants. The following results and conclusions were made based on this testing: (1) In 1 wt.% oxalic acid with a sludge simulant, carbon steel corroded at a rate of less than 25 mpy within the temperature and agitation levels of the test. No susceptibility to localized corrosion was observed. (2) In 2.5 wt.% oxalic acid with a sludge simulant, the carbon steel corrosion rates ranged between 15 and 88 mpy. The most severe corrosion was observed at 75 C in the HM/2.5 wt.% oxalic acid simulant. Pitting and general corrosion increased with the agitation level at this condition. No pitting and lower general corrosion rates were observed with the PUREX/2.5 wt.% oxalic acid simulant. The electrochemical and coupon tests both indicated that carbon steel is more susceptible to localized corrosion in the HM/oxalic acid environment than

  7. NATO/CCMS PILOT STUDY - CLEAN PRODUCTS AND PROCESSES

    EPA Science Inventory

    The proposed objective of the NATO/CCMS Pilot on clean products and processes is to facilitate further gains in pollution prevention, waste minimization, and design for the environment. It is anticipated that the free exchange of knowledge, experience, data, and models will fost...

  8. Innovative technologies on fuel assemblies cleaning for sodium fast reactors: First considerations on cleaning process

    SciTech Connect

    Simon, N.; Lorcet, H.; Beauchamp, F.; Guigues, E.; Lovera, P.; Fleche, J. L.; Lacroix, M.; Carra, O.; Prele, G.

    2012-07-01

    Within the framework of Sodium Fast Reactor development, innovative fuel assembly cleaning operations are investigated to meet the GEN IV goals of safety and of process development. One of the challenges is to mitigate the Sodium Water Reaction currently used in these processes. The potential applications of aqueous solutions of mineral salts (including the possibility of using redox chemical reactions) to mitigate the Sodium Water Reaction are considered in a first part and a new experimental bench, dedicated to this study, is described. Anhydrous alternative options based on Na/CO{sub 2} interaction are also presented. Then, in a second part, a functional study conducted on the cleaning pit is proposed. Based on experimental feedback, some calculations are carried out to estimate the sodium inventory on the fuel elements, and physical methods like hot inert gas sweeping to reduce this inventory are also presented. Finally, the implementation of these innovative solutions in cleaning pits is studied in regard to the expected performances. (authors)

  9. Reducing the emission of ozone depleting chemicals through use of a self-cleaning soldering process

    SciTech Connect

    Lichtenberg, L.; Martin, G.; Van Buren, P.; Iman, R.; Paffett, M.T.

    1991-12-31

    Motorola has jointed with Sandia and Los Alamos National Laboratories to perform work under a Cooperative Research and Development Agreement (CRADA) to reduce the use of CFC`s and other ozone depleting printing wiring board (PWB) cleaning solvents. This study evaluated the use of a new soldering process that uses dilute adipic acid in lieu of rosin flux. The process consumes the adipic acid in lieu of rosin flux. The process consumes the adipic acid during the soldering process and precludes the need for subsequent cleaning with ozone depleting solvents. This paper presents results from a series of designed experiments that evaluated PWB cleanliness as a function of various levels of machine control parameters. The study included a comprehensive hardware reliability evaluation, which included environmental conditioning, cleanliness testing, surface chemical analysis, surface insulation resistance testing, along with electrical, mechanical and long term storage testing. The results of this study that the new process produces quality, reliable hardware over a wide range of processing parameters. Adoption of this process, which eliminates the need for supplemental cleaning, will have a positive impact on many environmental problems, including depletion of the ozone layer.

  10. Reducing the emission of ozone depleting chemicals through use of a self-cleaning soldering process

    SciTech Connect

    Lichtenberg, L.; Martin, G.; Van Buren, P. . Government Electronics Group); Iman, R. ); Paffett, M.T. )

    1991-01-01

    Motorola has jointed with Sandia and Los Alamos National Laboratories to perform work under a Cooperative Research and Development Agreement (CRADA) to reduce the use of CFC's and other ozone depleting printing wiring board (PWB) cleaning solvents. This study evaluated the use of a new soldering process that uses dilute adipic acid in lieu of rosin flux. The process consumes the adipic acid in lieu of rosin flux. The process consumes the adipic acid during the soldering process and precludes the need for subsequent cleaning with ozone depleting solvents. This paper presents results from a series of designed experiments that evaluated PWB cleanliness as a function of various levels of machine control parameters. The study included a comprehensive hardware reliability evaluation, which included environmental conditioning, cleanliness testing, surface chemical analysis, surface insulation resistance testing, along with electrical, mechanical and long term storage testing. The results of this study that the new process produces quality, reliable hardware over a wide range of processing parameters. Adoption of this process, which eliminates the need for supplemental cleaning, will have a positive impact on many environmental problems, including depletion of the ozone layer.

  11. Northwestern University Facility for Clean Catalytic Process Research

    SciTech Connect

    Marks, Tobin Jay

    2013-05-08

    Northwestern University with DOE support created a Facility for Clean Catalytic Process Research. This facility is designed to further strengthen our already strong catalysis research capabilities and thus to address these National challenges. Thus, state-of-the art instrumentation and experimentation facility was commissioned to add far greater breadth, depth, and throughput to our ability to invent, test, and understand catalysts and catalytic processes, hence to improve them via knowledge-based design and evaluation approaches.

  12. Enhancing the performance of multilayer-dielectric diffraction gratings through cleaning process modifications and defect mitigation

    NASA Astrophysics Data System (ADS)

    Liddell, Heather P. H.

    2014-05-01

    The laser-damage resistance of multilayer-dielectric (MLD) pulse compressor gratings currently limits the energy performance of the petawatt-class OMEGA EP laser system at University of Rochester's Laboratory for Laser Energetics. The cleanliness of these components is of paramount importance; contaminants can act as absorbers during laser irradiation, initiating intense local heating and catastrophic laser-induced damage. Unfortunately, some of the most effective cleaning methods for MLD gratings - usually involving high temperatures and strong acids or bases - can themselves induce chemical degradation and thermal stresses, leading to coating delamination and defects. This work explores ways to improve the laser-damage resistance of MLD gratings through modifications to the final cleaning phase of the manufacturing process. Processes of defect formation are investigated through a combination of chemical cleaning experiments, microscopy, and modeling. We use a fracture-mechanics approach to formulate a mechanism for the initiation of micrometer-scale delamination defects that are commonly observed after chemical cleaning. The stress responses of MLD coatings to elevated-temperature chemical cleaning are estimated using a thermomechanical model, enabling us to study the effects of substrate thickness, solution temperature, and heating rates on coating stresses (and thus the risk of stress-induced failure). Finally, a low-temperature chemical cleaning approach is developed to improve laser-damage resistance while avoiding defect formation and mitigating coating stresses. We find that grating coupons cleaned using the optimized method consistently meet OMEGA EP requirements on diffraction efficiency and 1054-nm laser-damage resistance at 10 ps.

  13. Advanced hot gas cleaning system for coal gasification processes

    NASA Astrophysics Data System (ADS)

    Newby, R. A.; Bannister, R. L.

    1994-04-01

    The United States electric industry is entering a period where growth and the aging of existing plants will mandate a decision on whether to repower, add capacity, or do both. The power generation cycle of choice, today, is the combined cycle that utilizes the Brayton and Rankine cycles. The combustion turbine in a combined cycle can be used in a repowering mode or in a greenfield plant installation. Today's fuel of choice for new combined cycle power generation is natural gas. However, due to a 300-year supply of coal within the United States, the fuel of the future will include coal. Westinghouse has supported the development of coal-fueled gas turbine technology over the past thirty years. Working with the U.S. Department of Energy and other organizations, Westinghouse is actively pursuing the development and commercialization of several coal-fueled processes. To protect the combustion turbine and environment from emissions generated during coal conversion (gasification/combustion) a gas cleanup system must be used. This paper reports on the status of fuel gas cleaning technology and describes the Westinghouse approach to developing an advanced hot gas cleaning system that contains component systems that remove particulate, sulfur, and alkali vapors. The basic process uses ceramic barrier filters for multiple cleaning functions.

  14. The politics of markets: The acid rain control policy in the 1990 Clean Air Act amendments

    SciTech Connect

    Kete, N.

    1993-01-01

    This thesis is a review and critique of the development of the acid rain control policy codified as Title IV of the Clean Air Act. The amendments include provisions to address acid rain-air pollution that has been transformed and transported over long distances. Title IV also embodies the first large scale adoption of market principles and economic incentives in the cause of environmental protection. The acid rain control amendments are being hailed as a break with past environmental protection practice and are being offered as a model for further regulatory reform. The thesis looks at the roots of the acid rain policy and considers the set of legal, social, and economic relations embedded in the policy which define the nature of its legal controls over pollution and its inverse, environmental quality. It explores whether the creation of the emissions allowance trading system changes the social relationships that prevailed under the pre-amended Clean Air Act. It responds to and rebuts the concerns of some critics that the policy represents an alienation of the public's right to clean air. A review of the acid rain policymaking process provides a recent and concrete example of the two central concerns inherent in public policy: the making of decisions that establish institutional arrangements, or structures, that both constrain and liberate individual action at the operational level; and the search for the boundary between autonomous behavior and collective decision making. The policy responds to regulatory reform recommendations concerned with improving the effectiveness, accountability, and cost-effectiveness of environmental protection. As a model for future policymaking, the policy goes beyond and encompasses more than the welfare economics ideal of static economic efficiency and the [open quotes]free market environmentalism[close quotes] emphasis on private property and common law.

  15. Copper post-CMP cleaning process on a dry-in/dry-out tool

    NASA Astrophysics Data System (ADS)

    Basak, Sanjay; Grief, Malcolm; Gupta, Anand; Murella, Krishna; VanDevender, Barrie

    1998-09-01

    Metal Chemical Mechanical Planarization (CMP) and post CMP cleaning have continued to increase in importance in semiconductor manufacturing. The introduction of copper metallization into semiconductor manufacturing processes has created a need for integrating CMP and cleaning tools, as well as a demand for the development of novel cleaning solutions. One system designed for integrated CMP processing and cleaning, commonly referred to as dry-in/dry-out CMP, is the SpeedFam Auriga C. The Auriga C integrates a widely used polishing tool together with a proven cleaning technique. The key to the operation of the Auriga C cleaning process is the effective operation of the PVA brush cleaners, water track transport, final jet rinse and high-speed spinner dryer. The effective operation of the cleaning mechanism for copper post- CMP cleaning requires the use of new chemical solutions. Typical solutions used for post process cleaning of more mature CMP processes are either ineffective for cleaning or chemically incompatible with the copper process. This paper discusses the cleaning mechanism used in an integrated dry- in/dry-out tool and demonstrates an effective and novel cleaning solution for use with this type of post-CMP cleaning process.

  16. CORRELATED STRONTIUM AND BARIUM ISOTOPIC COMPOSITIONS OF ACID-CLEANED SINGLE MAINSTREAM SILICON CARBIDES FROM MURCHISON

    SciTech Connect

    Liu, Nan; Davis, Andrew M.; Dauphas, Nicolas; Pellin, Michael J.; Savina, Michael R.; Gallino, Roberto; Bisterzo, Sara; Gyngard, Frank; Käppeler, Franz; Cristallo, Sergio; Dillmann, Iris

    2015-04-10

    We present strontium, barium, carbon, and silicon isotopic compositions of 61 acid-cleaned presolar SiC grains from Murchison. Comparison with previous data shows that acid washing is highly effective in removing both strontium and barium contamination. For the first time, by using correlated {sup 88}Sr/{sup 86}Sr and {sup 138}Ba/{sup 136}Ba ratios in mainstream SiC grains, we are able to resolve the effect of {sup 13}C concentration from that of {sup 13}C-pocket mass on s-process nucleosynthesis, which points toward the existence of large {sup 13}C pockets with low {sup 13}C concentrations in asymptotic giant branch stars. The presence of such large {sup 13}C pockets with a variety of relatively low {sup 13}C concentrations seems to require multiple mixing processes in parent asymptotic giant branch stars of mainstream SiC grains.

  17. Two-Step Plasma Process for Cleaning Indium Bonding Bumps

    NASA Technical Reports Server (NTRS)

    Greer, Harold F.; Vasquez, Richard P.; Jones, Todd J.; Hoenk, Michael E.; Dickie, Matthew R.; Nikzad, Shouleh

    2009-01-01

    A two-step plasma process has been developed as a means of removing surface oxide layers from indium bumps used in flip-chip hybridization (bump bonding) of integrated circuits. The two-step plasma process makes it possible to remove surface indium oxide, without incurring the adverse effects of the acid etching process.

  18. Studies on the production of ultra-clean coal by alkali-acid leaching of low-grade coals

    SciTech Connect

    Nabeel, A.; Khan, T.A.; Sharma, D.K.

    2009-07-01

    The use of low-grade coal in thermal power stations is leading to environmental pollution due to the generation of large amounts of fly ash, bottom ash, and CO{sub 2} besides other pollutants. It is therefore important to clean the coal before using it in thermal power stations, steel plants, or cement industries etc. Physical beneficiation of coal results in only limited cleaning of coal. The increasing environmental pollution problems from the use of coal have led to the development of clean coal technologies. In fact, the clean use of coal requires the cleaning of coal to ultra low ash contents, keeping environmental norms and problems in view and the ever-growing need to increase the efficiency of coal-based power generation. Therefore this requires the adaptation of chemical cleaning techniques for cleaning the coal to obtain ultra clean coal having ultra low ash contents. Presently the reaction conditions for chemical demineralization of low-grade coal using 20% aq NaOH treatment followed by 10% H{sub 2}SO{sub 4} leaching under reflux conditions have been optimized. In order to reduce the concentration of alkali and acid used in this process of chemical demineralization of low-grade coals, stepwise, i.e., three step process of chemical demineralization of coal using 1% or 5% aq NaOH treatment followed by 1% or 5% H{sub 2}SO{sub 4} leaching has been developed, which has shown good results in demineralization of low-grade coals. In order to conserve energy, the alkali-acid leaching of coal was also carried out at room temperature, which gave good results.

  19. Principles of an enhanced MBR-process with mechanical cleaning.

    PubMed

    Rosenberger, S; Helmus, F P; Krause, S; Bareth, A; Meyer-Blumenroth, U

    2011-01-01

    Up to date, different physical and chemical cleaning protocols are necessary to limit membrane fouling in membrane bioreactors. This paper deals with a mechanical cleaning process, which aims at the avoidance of hypochlorite and other critical chemicals in MBR with submerged flat sheet modules. The process basically consists of the addition of plastic particles into the loop circulation within submerged membrane modules. Investigations of two pilot plants are presented: Pilot plant 1 is equipped with a 10 m(2) membrane module and operated with a translucent model suspension; pilot plant 2 is equipped with four 50 m(2) membrane modules and operated with pretreated sewage. Results of pilot plant 1 show that the establishment of a fluidised bed with regular particle distribution is possible for a variety of particles. Particles with maximum densities of 1.05 g/cm(3) and between 3 and 5 mm diameter form a stable fluidised bed almost regardless of activated sludge concentration, viscosity and reactor geometry. Particles with densities between 1.05 g/cm(3) and 1.2 g/cm(3) form a stable fluidised bed, if the velocity at the reactor bottom is sufficiently high. Activities within pilot plant 2 focused on plant optimisation and the development of an adequate particle retention system.

  20. CORROSION TESTING OF CARBON STEEL IN OXALIC ACID CHEMICAL CLEANING SOLUTIONS

    SciTech Connect

    Wiersma, B.; Mickalonis, J.; Subramanian, K.; Ketusky, E.

    2011-10-14

    Radioactive liquid waste has been stored in underground carbon steel tanks for nearly 60 years at the Savannah River Site. The site is currently in the process of removing the waste from these tanks in order to place it into vitrified, stable state for longer term storage. The last stage in the removal sequence is a chemical cleaning step that breaks up and dissolves metal oxide solids that cannot be easily pumped out of the tank. Oxalic acid has been selected for this purpose because it is an effective chelating agent for the solids and is not as corrosive as other acids. Electrochemical and immersion studies were conducted to investigate the corrosion behavior of carbon steel in simulated chemical cleaning environments. The effects of temperature, agitation, and the presence of sludge solids in the oxalic acid on the corrosion rate and the likelihood of hydrogen evolution were determined. The testing showed that the corrosion rates decreased significantly in the presence of the sludge solids. Corrosion rates increased with agitation, however, the changes were less noticeable.

  1. IN-SITU MONITORING OF CORROSION DURING A LABORATORY SIMULATION OF OXALIC ACID CHEMICAL CLEANING

    SciTech Connect

    Wiersma, B; John Mickalonis, J; Michael Poirier, M; John Pareizs, J; David Herman, D; David Beam, D; Samuel Fink, S; Fernando Fondeur, F

    2007-10-08

    The Savannah River Site (SRS) will disperse or dissolve precipitated metal oxides as part of radioactive waste tank closure operations. Previously SRS used oxalic acid to accomplish this task. To better understand the conditions of oxalic acid cleaning of the carbon steel waste tanks, laboratory simulations of the process were conducted to determine the corrosion rate of carbon steel and the generation of gases such as hydrogen and carbon dioxide. Open circuit potential measurements, linear polarization measurements, and coupon immersion tests were performed in-situ to determine the corrosion behavior of carbon steel during the demonstration. Vapor samples were analyzed continuously to determine the constituents of the phase. The combined results from these measurements indicated that in aerated environments, such as the tank, that the corrosion rates are manageable for short contact times and will facilitate prediction and control of the hydrogen generation rate during operations.

  2. Determination of fusaric acid in maize using molecularly imprinted SPE clean-up

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new liquid chromatography method to detect fusaric acid in maize is reported based on molecularly imprinted polymer solid phase extraction clean-up (MISPE) using mimic-templated molecularly-imprinted polymers. Picolinic acid was used as a toxin analog for imprinting polymers during a thermolytic s...

  3. Implications of the Clean Air Act acid rain title on industrial boilers

    SciTech Connect

    Maibodi, M. )

    1991-11-01

    This paper discusses the impacts of the 1990 Clean Air Act Amendments related to acid rain controls, as they apply to industrial boilers. Emphasis is placed on explaining the Title IV provisions of the Amendments that permit nonutility sources to participate in the SO{sub 2} allowance system. The allowance system, as it pertains to industrial boiler operators, is described, and the opportunities for operators to trade and/or sell SO{sub 2} emission credits is discussed. The paper also reviews flue gas desulfurization system technologies available for industrial boiler operators who may choose to participate in the system. Furnace sorbent injection, advanced silicate process, lime spray drying, dry sorbent injection, and limestone scrubbing are described, including statements of their SO{sub 2} removing capability, commercial status, and costs. Capital costs, levelized costs and cost-effectiveness are presented for these technologies.

  4. Development of a replacement for trichloroethylene in the two-stage cleaning process

    SciTech Connect

    Harding, W.B.

    1992-12-01

    A solvent was sought to replace trichloroethylene in the two-stage cleaning process that is used in the Allied-Signal Inc., Kansas City Division (KCD) Miniature Electro-Mechanical Assembly Department. The process is an ultrasonic cleaning process in which product is first cleaned in trichloroethylene and then in isopropyl alcohol. After a general review of the properties of available solvents, isopropyl alcohol, d-limonene, and a synthetic mineral spirits, were chosen to be evaluated as trichloroethylene replacements. Stainless steel test panels were cleaned and then soiled with several different organic materials. Certain of the panels were cleaned by the two-stage process. The others were cleaned by the two-stage process using one or another of the solvents under evaluation in the place of the trichloroethylene. The cleanliness of the panels was determined by Auger and photoelectron spectroscopy. The panels cleaned with any of the three solvents under evaluation were found to be as clean as those cleaned by the standard two-stage process. Because of simplicity and minimization of inventory, it is recommended that the two-stage process be changed to use isopropyl alcohol in both stages.

  5. Sulfate-free photomask cleaning technology

    NASA Astrophysics Data System (ADS)

    Anzai, Shingo; Takagi, Noriaki; Kamiyama, Tomoaki; Kawaguchi, Naotoshi; Ishijima, Mikio; Watanabe, Toshimitsu; Morimoto, Hiroaki; Kuwajima, Tsuneaki; Nakatsu, Makito; Hasegawa, Shin-ichi

    2006-05-01

    To eliminate ammonium sulfate haze caused from sulfuric acid residue on the mask surface, we have been working for resist stripping and cleaning without the use of sulfuric acid process. This paper describes sulfate-free photomask cleaning technology by improving ozone cleaning process.

  6. Evaluation of no-clean solder process designed to eliminate the use of ozone-depleting chemicals

    SciTech Connect

    Paffett, M.T.; Farr, J.D.; Rogers, Y.C.; Hutchinson, W.B.

    1993-10-01

    This paper summarizes the LANL contributions to a joint Motorola/SNLA/LANL cooperative research and development agreement study on the reliability of an alternative solder process that is intended to reduce or eliminate the use of ozone-depleting chemicals in the manufacture of printed wire boards (PWBs). This process is termed self-cleaning because of the nature of the thermal chemistry associated with the adipic and formic acid components used in place of traditional solder rosin fluxes. Traditional rosin fluxes used in military electronic hardware applications are cleaned (by requirement) using chlorofluorohydrocarbons. The LANL contribution centers around analytical determination of PWB cleanliness after soldering using the self-cleaning method. Results of these analytical determinations involving primarily surface analysis of boards following temperature, temperature and humidity, and long-term storage testing are described with representative data. It is concluded that the self-cleaning process leaves behind levels of solid residue that are visually and analytically observable using most of these surface analysis techniques. The materials compatibility of electronic components soldered using the self-cleaning soldering process is more fully described in the project report issued by SNLA that encompasses the complete project with statistical lifetime and accelerated aging studies. Analytical surface specificity and suggestions for further work are also given.

  7. SAVANNAH RIVER SITE TANK CLEANING: CORROSION RATE FOR ONE VERSUS EIGHT PERCENT OXALIC ACID SOLUTION

    SciTech Connect

    Ketusky, E.; Subramanian, K.

    2011-01-20

    Until recently, the use of oxalic acid for chemically cleaning the Savannah River Site (SRS) radioactive waste tanks focused on using concentrated 4 and 8-wt% solutions. Recent testing and research on applicable dissolution mechanisms have concluded that under appropriate conditions, dilute solutions of oxalic acid (i.e., 1-wt%) may be more effective. Based on the need to maximize cleaning effectiveness, coupled with the need to minimize downstream impacts, SRS is now developing plans for using a 1-wt% oxalic acid solution. A technology gap associated with using a 1-wt% oxalic acid solution was a dearth of suitable corrosion data. Assuming oxalic acid's passivation of carbon steel was proportional to the free oxalate concentration, the general corrosion rate (CR) from a 1-wt% solution may not be bound by those from 8-wt%. Therefore, after developing the test strategy and plan, the corrosion testing was performed. Starting with the envisioned process specific baseline solvent, a 1-wt% oxalic acid solution, with sludge (limited to Purex type sludge-simulant for this initial effort) at 75 C and agitated, the corrosion rate (CR) was determined from the measured weight loss of the exposed coupon. Environmental variations tested were: (a) Inclusion of sludge in the test vessel or assuming a pure oxalic acid solution; (b) acid solution temperature maintained at 75 or 45 C; and (c) agitation of the acid solution or stagnant. Application of select electrochemical testing (EC) explored the impact of each variation on the passivation mechanisms and confirmed the CR. The 1-wt% results were then compared to those from the 8-wt%. The immersion coupons showed that the maximum time averaged CR for a 1-wt% solution with sludge was less than 25-mils/yr for all conditions. For an agitated 8-wt% solution with sludge, the maximum time averaged CR was about 30-mils/yr at 50 C, and 86-mils/yr at 75 C. Both the 1-wt% and the 8-wt% testing demonstrated that if the sludge was removed from

  8. Computational modeling of process induced damage during plasma clean

    NASA Astrophysics Data System (ADS)

    Rauf, S.; Haggag, A.; Moosa, M.; Ventzek, P. L. G.

    2006-07-01

    When partially completed circuits come in contact with plasmas during integrated circuit fabrication, current from the plasma can potentially damage active devices on the wafer. A suite of computational models is used in this article to investigate damage to ultrathin (1.0-5.5nm) transistor gate dielectric (SiO2) during Ar /O2 based plasma cleaning in a capacitively coupled plasma reactor. This modeling infrastructure includes a two-dimensional plasma equipment model for relating process control parameters to ion and electron currents, a three-dimensional model for flux density calculation within a circular via, an electrostatic model for computing potential across the gate dielectric, and a percolation model to investigate dielectric damage characteristics. Computational results show that when the plasma current comes in contact with the gate dielectric, the gate dielectric rapidly charges up and the potential difference across the dielectric saturates at the level necessary to support the plasma induced current. The steady-state voltage across the dielectric determines the propensity of irreversible damage that can occur under this electrical stress. Gate dielectric damage was found to be most sensitively linked to dielectric thickness. As thin dielectrics (<2.0nm) are leaky, direct tunneling current flow ensures that the potential drop across the gate dielectric remains small. As a consequence, the dielectric is able to withstand the plasma current and the probability of damage is small. However, for thicker dielectrics where Fowler-Nordheim tunneling is dominant, a large voltage builds up across the gate dielectric due to the plasma induced current. The probability of thicker dielectrics getting damaged during the plasma process is therefore high. For given plasma conditions and gate dielectric thickness, current collection area (i.e., antenna size) determines the voltage buildup across the gate dielectric. Damage probability increases with the size of the

  9. Development of the chemical and electrochemical coal cleaning (CECC) process. Final report

    SciTech Connect

    Yoon, Roe-Hoan; Basilio, C.I.

    1992-05-01

    The Chemical and Electrochemical Coal Cleaning (CECC) process developed at Virginia Polytechnic Institute and State University was studied further in this project. This process offers a new method of physically cleaning both low- and high-rank coals without requiring fine grinding. The CECC process is based on liberating mineral matter from coal by osmotic pressure. The majority of the work was conducted on Middle Wyodak, Pittsburgh No. 8 and Elkhorn No. 3 coals. The coal samples were characterized for a variety of physical and chemical properties. Parametric studies were then conducted to identify the important operating parameters and to establish the optimum conditions. In addition, fundamental mechanisms of the process were studied, including mineral matter liberation, kinetics of mineral matter and pyrite dissolution, ferric ion regeneration schemes and alternative methods of separating the cleaned coal from the liberated mineral matter. The information gathered from the parametric and fundamental studies was used in the design, construction and testing of a bench-scale continuous CECC unit. Using this unit, the ash content of a Middle Wyodak coal was reduced from 6.96 to 1.61% at a 2 lbs/hr throughput. With an Elkhorn No. 3 sample, the ash content was reduced from 9.43 to 1.8%, while the sulfur content was reduced from 1.57 to 0.9%. The mass balance and liberation studies showed that liberation played a more dominant role than the chemical dissolution in removing mineral matter and inorganic sulfur from the different bituminous coals tested. However, the opposite was found to be the case for the Wyodak coal since this coal contained a significant amount of acid-soluble minerals.

  10. Development of a cleaning process for uranium chips machined with a glycol-water-borax coolant

    SciTech Connect

    Taylor, P.A.

    1984-12-01

    A chip-cleaning process has been developed to remove the new glycol-water-borax coolant from oralloy chips. The process involves storing the freshly cut chips in Freon-TDF until they are cleaned, washing with water, and displacing the water with Freon-TDF. The wash water can be reused many times and still yield clean chips and then be added to the coolant to make up for evaporative losses. The Freon-TDF will be cycled by evaporation. The cleaning facility is currently being designed and should be operational by April 1985.

  11. Efficacy of 10 different cleaning processes in a washer-disinfector for flexible endoscopes.

    PubMed

    Zühlsdorf, B; Floss, H; Martiny, H

    2004-04-01

    Successful cleaning of medical devices, such as flexible endocopes, has been recognized to be of major importance for effective processing. Washer-disinfectors (WD) are considered to be an important step in this direction. The cleaning process in WD, however, has only been partially assessed regarding its effectiveness, and therefore to study this in more detail, tests were carried out, according prEN ISO 15883, using transparent teflon tubes as test pieces (length 2 m). For each experiment three test pieces were contaminated with the 'German test soil' containing Enterococcus faecium in blood, two for the test and one as a control (no automatic cleaning). Automatic cleaning was performed with a Wassenburg WD 440. Ten cleaning agents were used. In addition the process was carried out with water alone. After automated cleaning, test pieces were assessed visually (four categories, range: very poor to excellent visible cleanliness) and microbiologically [log(10) reduction factor (RF)]. Each experiment was repeated three times. Using the WD water gave excellent visible cleanliness with a mean RF of 1.1+/-0.6. The same excellent visible cleanliness was obtained with seven cleaning processes: deconex 23 Neutrazym, Helimatic Cleaner enzymatic, Korsolex-Endo-Cleaner, Labomat E, neodisher mediclean, Thermosept ER, and Thermoton NR. Worse visible cleanliness was found with three cleaning processes: Olympus ETD Cleaner and neodisher FE led to adequate visible cleanliness, and the cleaning process with neodisher medizym led to poor visible cleanliness. Six cleaning processes reduced the test organism by RF>or=3, i.e. the reduction was significantly higher than after cleaning with water alone. No significant difference between use of water alone and the cleaning process was found with three cleaning processes: Olympus ETD Cleaner, neodisher mediclean, and Thermosept ER (range RF: 0.8-1.8; P > 0.05). The cleaning process with neodisher medizym yielded a significantly lower mean

  12. Process of cleaning oil spills and the like

    SciTech Connect

    Breisford, J.A.

    1993-06-01

    A process of cleaning spills of toxic or hazardous materials such as oil, antifreeze, gasoline, and the like from bodies of water, garage floors, roadways and the like, comprising spraying unbonded shredded fiberglass blowing wool composition particles onto the spill, absorbing the spill into the shredded fiberglass blowing wool composition particles, and removing the soaked shredded fiberglass blowing wool composition particles and the spill absorbed therein. An absorbent composition for absorbing spills of toxic or hazardous materials such as oil, antifreeze, gasoline, and like, comprising shredded fiberglass blowing wool particles, and means for absorbing the spill and for stiffening the co-position so that the composition fights against being compressed so that less of the absorbed spill escapes from the composition when it is being removed from the spill, said means including cork particles dispersed in with the fiberglass blowing wool particles. An absorbent sock for absorbing or containing a spill of toxic or hazardous materials such as oil, antifreeze, gasoline, and the like, comprising a hollow tube, said tube being permeable to the toxic or hazardous materials and being made of nylon or polypropylene, and unbonded, shredded fiberglass blowing wool composition particles enclosed in the tube. Apparatus for controlling an oil slick on the surface of water, comprising a craft for traversing the slick, a supply of fiberglass blowing wool composition particles stored on the craft in position for being dispersed, shredding means on the craft for shredding the fiberglass blowing wool particles to form unbonded, shredded fiberglass blowing wool particles, and dispensing means on the craft for dispensing the unbonded, shredded fiberglass blowing wool particles onto the slick.

  13. Oxalic acid adsorption states on the clean Cu(110) surface

    NASA Astrophysics Data System (ADS)

    Fortuna, Sara

    2016-11-01

    Carboxylic acids are known to assume a variety of configurations on metallic surfaces. In particular oxalic acid on the Cu(110) surface has been proposed to assume a number of upright configurations. Here we explore with DFT calculations the possible structures that oxalic acid can form on copper 110 at different protonation states, with particular attention at the possibility of forming structures composed of vertically standing molecules. In its fully protonated form it is capable of anchoring itself on the surface thanks to one of its hydrogen-free oxygens. We show the monodeprotonated upright molecule with two oxygens anchoring it on the surface to be the lowest energy conformation of a single oxalic molecules on the Cu(110) surface. We further show that it is possible for this configuration to form dense hexagonally arranged patterns in the unlikely scenario in which adatoms are not involved.

  14. Development of environmentally conscious cleaning process for leadless chip carrier assemblies. Final report

    SciTech Connect

    Adams, B.E.

    1995-04-01

    A cross-functional team of process, product, quality, material, and design lab engineers was assembled to develop an environmentally friendly cleaning process for leadless chip carrier assemblies (LCCAs). Using flush and filter testing, Auger surface analysis, GC-Mass spectrophotometry, production yield results, and electrical testing results over an extended testing period, the team developed an aqueous cleaning process for LCCAs. The aqueous process replaced the Freon vapor degreasing/ultrasonic rinse process.

  15. Precision Cleaning and Verification Processes Used at Marshall Space Flight Center for Critical Hardware Applications

    NASA Technical Reports Server (NTRS)

    Caruso, Salvadore V.

    1999-01-01

    Marshall Space Flight Center (MSFC) of the National Aeronautics and Space Administration (NASA) performs many research and development programs that require hardware and assemblies to be cleaned to levels that are compatible with fuels and oxidizers (liquid oxygen, solid propellants, etc.). Also, the Center is responsible for developing large telescope satellites which requires a variety of optical systems to be cleaned. A precision cleaning shop is operated with-in MSFC by the Fabrication Services Division of the Materials & Processes Division. Verification of cleanliness is performed for all precision cleaned articles in the Analytical Chemistry Branch. Since the Montreal Protocol was instituted, MSFC had to find substitutes for many materials that has been in use for many years, including cleaning agents and organic solvents. As MSFC is a research Center, there is a great variety of hardware that is processed in the Precision Cleaning Shop. This entails the use of many different chemicals and solvents, depending on the nature and configuration of the hardware and softgoods being cleaned. A review of the manufacturing cleaning and verification processes, cleaning materials and solvents used at MSFC and changes that resulted from the Montreal Protocol will be presented.

  16. Precision Cleaning and Verification Processes Used at Marshall Space Flight Center for Critical Hardware Applications

    NASA Technical Reports Server (NTRS)

    Caruso, Salvadore V.; Cox, Jack A.; McGee, Kathleen A.

    1998-01-01

    Marshall Space Flight Center (MSFC) of the National Aeronautics and Space Administration performs many research and development programs that require hardware and assemblies to be cleaned to levels that are compatible with fuels and oxidizers (liquid oxygen, solid propellants, etc.). Also, MSFC is responsible for developing large telescope satellites which require a variety of optical systems to be cleaned. A precision cleaning shop is operated within MSFC by the Fabrication Services Division of the Materials & Processes Laboratory. Verification of cleanliness is performed for all precision cleaned articles in the Environmental and Analytical Chemistry Branch. Since the Montreal Protocol was instituted, MSFC had to find substitutes for many materials that have been in use for many years, including cleaning agents and organic solvents. As MSFC is a research center, there is a great variety of hardware that is processed in the Precision Cleaning Shop. This entails the use of many different chemicals and solvents, depending on the nature and configuration of the hardware and softgoods being cleaned. A review of the manufacturing cleaning and verification processes, cleaning materials and solvents used at MSFC and changes that resulted from the Montreal Protocol will be presented.

  17. Towards a better hydraulic cleaning strategy for ultrafiltration membrane fouling by humic acid: Effect of backwash water composition.

    PubMed

    Chang, Haiqing; Liang, Heng; Qu, Fangshu; Ma, Jun; Ren, Nanqi; Li, Guibai

    2016-05-01

    As a routine measurement to alleviate membrane fouling, hydraulic cleaning is of great significance for the steady operation of ultrafiltration (UF) systems in water treatment processes. In this work, a comparative study was performed to investigate the effects of the composition of backwash water on the hydraulic cleaning performance of UF membranes fouled by humic acid (HA). Various types of backwash water, including UF permeate, Milli-Q water, NaCl solution, CaCl2 solution and HA solution, were compared in terms of hydraulically irreversible fouling index, total surface tension and residual HA. The results indicated that Milli-Q water backwash was superior to UF permeate backwash in cleaning HA-fouled membranes, and the backwash water containing Na(+) or HA outperformed Milli-Q water in alleviating HA fouling. On the contrary, the presence of Ca(2+) in backwash water significantly decreased the backwash efficiency. Moreover, Ca(2+) played an important role in foulant removal, and the residual HA content closely related to the residual Ca(2+) content. Mechanism analysis suggested that the backwash process may involve fouling layer swelling, ion exchange, electric double layer release and competitive complexation. Ion exchange and competitive complexation played significant roles in the efficient hydraulic cleaning associated with Na(+) and HA, respectively.

  18. WATER AS A REACTION MEDIUM FOR CLEAN CHEMICAL PROCESSES.

    EPA Science Inventory

    Green chemistry is a rapid developing new field that provides us a pro-active avenue for the sustainable development of future science and technologies. When designed properly, clean chemical technology can be developed in water as a reaction media. The technologies generated f...

  19. NATO CCMS PILOT STUDY: CLEAN PRODUCTS AND PROCESSES - PHASE I: AN ASSESSMENT

    EPA Science Inventory

    Clean Products and Processes - promote cooperation for improving the common pollution landscape by stimulating cross-national dialogues and collaboration. Share knowledge on the methods, tools, and technologies for making cleaner products and processes possible.

  20. 22X mask cleaning effects on EUV lithography process and lifetime

    SciTech Connect

    George, Simi A.; Chen, Robert J.; Baclea-an, Lorie Mae; Naulleau, Patrick P.

    2011-03-11

    For this paper, we evaluated the impact of repetitive cleans on a photomask that was fabricated and patterned for extreme ultraviolet lithography exposure. The lithographic performance of the cleaned mask, in terms of process window and line edge roughness, was monitored with the SEMATECH Berkeley micro-exposure tool (MET). Each process measurement of the cleaned mask was compared to a reference mask with the same mask architecture. Both masks were imaged on the same day in order to eliminate any process-related measurement uncertainties. The cleaned mask was periodically monitored with atomic force microscopy (AFM) measurements and pattern widths were monitored using scanning electron microscopy (SEM). In addition, reflectivity changes were also tracked with the aid of witness plate measurements. At the conclusion of this study, the mask under evaluation was cleaned 22 times; with none of the evaluation techniques showing any significant degradation in performance.

  1. 7 CFR 201.33 - Seed in bulk or large quantities; seed for cleaning or processing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Seed in bulk or large quantities; seed for cleaning or... (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling in General § 201.33 Seed in bulk or large quantities; seed for cleaning or processing. (a) In the case of seed in bulk, the information required...

  2. Evaluation of a no-clean soldering process designed to eliminate the use of ozone depleting chemicals

    SciTech Connect

    Iman, R.L.; Armendariz, M.E.; Anderson, D.J. |; Lichtenberg, L.; Van Buren, P.; Paffett, M.T.

    1992-11-01

    The destruction of the Earth`s protective ozone layer is one of today`s largest environmental concerns. Solvent emissions released during the cleaning of printed wiring boards (PWBs) have been identified as a primary contributor to ozone destruction. No-clean soldering (sometimes referred to as self-cleaning) processes represent an ideal solution since they eliminate the need for cleaning after soldering. Elimination of solvent cleaning operations significantly reduces the emissions of ozone depleting chemicals (ODCs), reduces energy consumption, and reduces product costs. Several no-clean soldering processes have been developed over the past few years. The program`s purpose was to evaluate the no-clean soldering process and to determine if hardware produced by the process is acceptable for military applications. That is, determine if the no-clean process produces hardware that is as reliable as that soldered with the existing rosin-based flux solvent cleaning process.

  3. DEPOSITION TANK CORROSION TESTING FOR ENHANCED CHEMICAL CLEANING POST OXALIC ACID DESTRUCTION

    SciTech Connect

    Mickalonis, J.

    2011-08-29

    An Enhanced Chemical Cleaning (ECC) process is being developed to aid in the high level waste tank closure at the Savannah River Site. The ECC process uses an advanced oxidation process (AOP) to destroy the oxalic acid that is used to remove residual sludge from a waste tank prior to closure. The AOP process treats the dissolved sludge with ozone to decompose the oxalic acid through reactions with hydroxyl radicals. The effluent from this oxalic acid decomposition is to be sent to a Type III waste tank and may be corrosive to these tanks. As part of the hazardous simulant testing that was conducted at the ECC vendor location, corrosion testing was conducted to determine the general corrosion rate for the deposition tank and to assess the susceptibility to localized corrosion, especially pitting. Both of these factors impact the calculation of hydrogen gas generation and the structural integrity of the tanks, which are considered safety class functions. The testing consisted of immersion and electrochemical testing of A537 carbon steel, the material of construction of Type III tanks, and 304L stainless steel, the material of construction for transfer piping. Tests were conducted in solutions removed from the destruction loop of the prototype ECC set up. Hazardous simulants, which were manufactured at SRNL, were used as representative sludges for F-area and H-area waste tanks. Oxalic acid concentrations of 1 and 2.5% were used to dissolve the sludge as a feed to the ECC process. Test solutions included the uninhibited effluent, as well as the effluent treated for corrosion control. The corrosion control options included mixing with an inhibited supernate and the addition of hydroxide. Evaporation of the uninhibited effluent was also tested since it may have a positive impact on reducing corrosion. All corrosion testing was conducted at 50 C. The uninhibited effluent was found to increase the corrosion rate by an order of magnitude from less than 1 mil per year (mpy

  4. Type 304L stainless steel surface microstructure: Performance in hydride storage and acid cleaning

    SciTech Connect

    Clark, E.A.

    1994-07-01

    The performance of stainless steel as the container in hydride storage bed systems has been evaluated, primarily using scanning electron microscopy. No adverse reaction between Type 304L stainless steel and either LaNi{sub 5{minus}x},Al{sub x}, or palladium supported on Kieselguhr granules (silica) during exposure in hydrogen was found in examination of retired prototype storage bed containers and special compatibility test samples. Intergranular surface ditching, observed on many of the stainless steel surfaces examined, was shown to result from air annealing and acid cleaning of stainless steel during normal fabrication. The ditched air annealed and acid cleaned stainless steel samples were more resistant to subsequent acid attack than vacuum annealed or polished samples without ditches.

  5. Development of CFC-Free Cleaning Processes at the NASA White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Beeson, Harold; Kirsch, Mike; Hornung, Steven; Biesinger, Paul

    1995-01-01

    The NASA White Sands Test Facility (WSTF) is developing cleaning and verification processes to replace currently used chlorofluorocarbon-113- (CFC-113-) based processes. The processes being evaluated include both aqueous- and solvent-based techniques. The presentation will include the findings of investigations of aqueous cleaning and verification processes that are based on a draft of a proposed NASA Kennedy Space Center (KSC) cleaning procedure. Verification testing with known contaminants, such as hydraulic fluid and commonly used oils, established correlations between nonvolatile residue and CFC-113. Recoveries ranged from 35 to 60 percent of theoretical. WSTF is also investigating enhancements to aqueous sampling for organics and particulates. Although aqueous alternatives have been identified for several processes, a need still exists for nonaqueous solvent cleaning, such as the cleaning and cleanliness verification of gauges used for oxygen service. The cleaning effectiveness of tetrachloroethylene (PCE), trichloroethylene (TCE), ethanol, hydrochlorofluorocarbon-225 (HCFC-225), tert-butylmethylether, and n-Hexane was evaluated using aerospace gauges and precision instruments and then compared to the cleaning effectiveness of CFC-113. Solvents considered for use in oxygen systems were also tested for oxygen compatibility using high-pressure oxygen autoignition and liquid oxygen mechanical impact testing.

  6. Bubble size distribution analysis and control in high frequency ultrasonic cleaning processes

    NASA Astrophysics Data System (ADS)

    Hauptmann, M.; Struyf, H.; Mertens, P.; Heyns, M.; De Gendt, S.; Glorieux, C.; Brems, S.

    2012-12-01

    In the semiconductor industry, the ongoing down-scaling of nanoelectronic elements has lead to an increasing complexity of their fabrication. Hence, the individual fabrication processes become increasingly difficult to handle. To minimize cross-contamination, intermediate surface cleaning and preparation steps are inevitable parts of the semiconductor process chain. Here, one major challenge is the removal of residual nano-particulate contamination resulting from abrasive processes such as polishing and etching. In the past, physical cleaning techniques such as megasonic cleaning have been proposed as suitable solutions. However, the soaring fragility of the smallest structures is constraining the forces of the involved physical removal mechanisms. In the case of "megasonic" cleaning -cleaning with ultrasound in the MHz-domain - the main cleaning action arises from strongly oscillating microbubbles which emerge from the periodically changing tensile strain in the cleaning liquid during sonication. These bubbles grow, oscillate and collapse due to a complex interplay of rectified diffusion, bubble coalescence, non-linear pulsation and the onset of shape instabilities. Hence, the resulting bubble size distribution does not remain static but alternates continuously. Only microbubbles in this distribution that show a high oscillatory response are responsible for the cleaning action. Therefore, the cleaning process efficiency can be improved by keeping the majority of bubbles around their resonance size. In this paper, we propose a method to control and characterize the bubble size distribution by means of "pulsed" sonication and measurements of acoustic cavitation spectra, respectively. We show that the so-obtained bubble size distributions can be related to theoretical predictions of the oscillatory responses of and the onset of shape instabilities for the respective bubbles. We also propose a mechanism to explain the enhancement of both acoustic and cleaning activity

  7. New geothermal heat extraction process to deliver clean power generation

    ScienceCinema

    Pete McGrail

    2016-07-12

    A new method for capturing significantly more heat from low-temperature geothermal resources holds promise for generating virtually pollution-free electrical energy. Scientists at the Department of Energys Pacific Northwest National Laboratory will determine if their innovative approach can safely and economically extract and convert heat from vast untapped geothermal resources. The goal is to enable power generation from low-temperature geothermal resources at an economical cost. In addition to being a clean energy source without any greenhouse gas emissions, geothermal is also a steady and dependable source of power.

  8. Occupational deaths and injuries by the types of street cleaning process.

    PubMed

    Jeong, Byung Yong

    2017-03-01

    This study aims to obtain an overall picture of occupational injuries by the types of street cleaning process. Three hundred and fifty-four injured persons were analyzed in terms of the company size and details of the injured persons and accidents. Results show that 'roadway cleaning' was the most common type of cleaning process for injuries, followed by 'sidewalk cleaning,' 'going/returning to work by bike' and 'lifting/carrying.' The findings also show that most accidents which occur when 'going/returning to work by bike' are in the form of traffic accidents, while in other processes they happen most often in the form of slips. Most of the accidents related to 'lifting/carrying' affected workers in their 50s or younger while other processes had a large portion of injured persons in their 50s or older. The findings of this study can be used as baseline data for preventative policies.

  9. Development of the chemical and electrochemical coal cleaning process

    NASA Astrophysics Data System (ADS)

    Basilio, C. I.; Yoon, Roe-Hoan

    The continuous testing of the Chemical and Electrochemical Coal Cleaning (CECC) was completed successfully using Middle Wyodak and Elkhorn No. 3 coal samples. The CECC unit was run under the optimum conditions established for these coal samples. For the Middle Wyodak coal, the ash content was reduced from 6.96 percent to as low 1.61 percent, corresponding to an ash rejection (by weight) of about 83 percent. The ash and sulfur contents of the Elkhorn No. 3 coal were reduced to as low as 1.8 percent and 0.9 percent. The average ash and sulfur rejections were calculated to be around 84 percent and 47 percent. The CECC continuous unit was used to treat -325 mesh Elkhorn No. 3 coal samples and gave ash and sulfur rejection values of as high as 77 percent and 66 percent. In these test, the clean -325 mesh coal particles were separated from the liberated mineral matter through microbubble column flotation, instead of wet-screening.

  10. Sulfur cement production using by products of the perchloroethylene coal cleaning process and the FC4-1 cleaned soil

    SciTech Connect

    Bassam Masri, K.L.; Fullerton, S.L.

    1995-12-31

    An introductory set of experiments to show the feasibility of making sulfur cement were carried out at the University of Akron according to Parrett and Currett`s patent which requires the use of sulfur, a filler, a plasticizer, and a vulcanization accelerator. Small blocks of cement were made using byproducts of the perchloroethylene coal cleaning process. Extracted elemental and organic sulfur, ash and mineral matters from the float sink portion of the PCE process, and FC4-1 cleaned soil were used as substitutes for sulfur and filler needed for the production of sulfur cement. Leaching tests in different solutions and under different conditions were conducted on the sulfur blocks. Other tests such as strength, durability, resistance to high or low temperatures will be conducted in the future. Sulfur cement can be used as a sealing agent at a joint, roofing purposes, forming ornamental figures, and coating of exposed surfaces of iron or steel. When mixed with an aggregate, sulfur concrete is formed. This concrete can be used for structural members, curbings, guthers, slabs, and can be precast or cast at the job site. An advantage of sulfur cement over Portland cement is that it reaches its design strength in two to three hours after processing and it can be remelted and recast.

  11. A test for cleaning and disinfection processes in a washer-disinfector.

    PubMed

    Ransjö, U; Engström, L; Håkansson, P; Ledel, T; Lindgren, L; Lindqvist, A L; Marcusson, E; Rudbäck, K

    2001-04-01

    Disinfection processes such as heat, aldehydes or alcohols kill vegetative microorganisms but do not necessarily remove other organic contamination. Organic residues impair the result of low-temperature sterilisation processes. Heat-stable organic residues may give rise to clinical symptoms in the patient. Standards are available in Britain and in Sweden for the examination of cleaning processes in washer-disinfectors. The test substances are artificial soil or blood. These standards are based on visual inspection of instruments or equipment. They cannot be used for examination of tubular instruments, nor can they be quantified. For validation of cleaning procedures a simple quantifiable method, which can be performed in an infection control laboratory is needed. We have used suspensions in horse blood of Enterococcus faecalis bacteria and Bacillus subtilis spores to test disinfection and cleaning in a washer-disinfector. Instruments used for laparoscopic surgery were contaminated with a blood bacteria suspension containing 10(7) organisms/ml and then dried and processed in a washer-disinfector using a regular process. Remaining microbial contamination was cultured quantitatively. Nineteen objects were investigated in 10 experiments each. Cleaning, measured as log reduction >5-6 of B. subtilis, was achieved on surfaces that were adequately in contact with the water flow in the machine. Disinfection (and cleaning) measured as log reduction >5-6 of E. faecalis was successful at all points examined. The test method is simple and quantifiable, and can be used to evaluate and to improve cleaning and disinfection processes.

  12. Nucleic acid isolation process

    DOEpatents

    Longmire, Jonathan L.; Lewis, Annette K.; Hildebrand, Carl E.

    1990-01-01

    A method is provided for isolating DNA from eukaryotic cell and flow sorted chromosomes. When DNA is removed from chromosome and cell structure, detergent and proteolytic digestion products remain with the DNA. These products can be removed with organic extraction, but the process steps associated with organic extraction reduce the size of DNA fragments available for experimental use. The present process removes the waste products by dialyzing a solution containing the DNA against a solution containing polyethylene glycol (PEG). The waste products dialyze into the PEG leaving isolated DNA. The remaining DNA has been prepared with fragments containing more than 160 kb. The isolated DNA has been used in conventional protocols without affect on the protocol.

  13. Fine coal cleaning via the micro-mag process

    DOEpatents

    Klima, Mark S.; Maronde, Carl P.; Killmeyer, Richard P.

    1991-01-01

    A method of cleaning particulate coal which is fed with a dense medium slurry as an inlet feed to a cyclone separator. The coal particle size distribution is in the range of from about 37 microns to about 600 microns. The dense medium comprises water and ferromagnetic particles that have a relative density in the range of from about 4.0 to about 7.0. The ferromagnetic particles of the dense medium have particle sizes of less than about 15 microns and at least a majority of the particle sizes are less than about 5 microns. In the cyclone, the particulate coal and dense-medium slurry is separated into a low gravity product stream and a high gravity produce stream wherein the differential in relative density between the two streams is not greater than about 0.2. The low gravity and high gravity streams are treated to recover the ferromagnetic particles therefrom.

  14. Characterization of an oxygen plasma process for cleaning packaged semiconductor devices. Final report

    SciTech Connect

    Adams, B.E.

    1996-11-01

    The purpose of this research was to experimentally determine the operating {open_quotes}window{close_quotes} for an oxygen plasma cleaning process to be used on microelectronics components just prior to wire bonding. The process was being developed to replace one that used vapor degreasing with trichlorotrifluoroethane, an ozone-depleting substance. A Box-Behnken experimental design was used to generate data from which the oxygen plasma cleaning process could be characterized. Auger electron spectrophotometry was used to measure the contamination thickness on the dice after cleaning. An empirical equation correlating the contamination thickness on the die surface with the operating parameters of the plasma system was developed from the collected Auger data, and optimum settings for cleaning semiconductor devices were determined. Devices were also tested for undesirable changes in electrical parameters resulting from cleaning in the plasma system. An increase in leakage current occurred for bipolar transistors and diodes after exposure to the oxygen plasma. Although an increase in leakage current occurred, each device`s parameter remained well below the acceptable specification limit. Based upon the experimental results, the optimum settings for the plasma cleaning process were determined to be 200 watts of power applied for five minutes in an enclosure maintained at 0.7 torr. At these settings, all measurable contamination was removed without compromising the reliability of the devices.

  15. Development of the Ultra-Clean Dry Cleanup Process for Coal-Based Syngases

    SciTech Connect

    Newby, R.A.; Slimane, R.B.; Lau, F.S.; Jain, S.C.

    2002-09-20

    The Siemens Westinghouse Power Corporation (SWPC) has proposed a novel scheme for polishing sulfur species, halides, and particulate from syngas to meet stringent cleaning requirements, the ''Ultra-Clean syngas polishing process.'' The overall development objective for this syngas polishing process is to economically achieve the most stringent cleanup requirements for sulfur species, halide species and particulate expected for chemical and fuel synthesis applications (total sulfur species < 60 ppbv, halides < 10 ppbv, and particulate < 0.1 ppmw). A Base Program was conducted to produce ground-work, laboratory test data and process evaluations for a conceptual feasibility assessment of this novel syngas cleaning process. Laboratory testing focused on the identification of suitable sulfur and halide sorbents and operating temperatures for the process. This small-scale laboratory testing was also performed to provide evidence of the capability of the process to reach its stringent syngas cleaning goals. Process evaluations were performed in the Base Program to identify process alternatives, to devise process flow schemes, and to estimate process material & energy balances, process performance, and process costs. While the work has focused on sulfur, halide, and particulate control, considerations of ammonia, and mercury control have also been included.

  16. Influence of microbubble in physical cleaning of MF membrane process for wastewater reuse.

    PubMed

    Lee, Eui-Jong; Kim, Young-Hoon; Kim, Hyung-Soo; Jang, Am

    2015-06-01

    Currently, there is a growing emphasis on wastewater reclamation and reuse all over the world due to restricted water resources. Among a variety of wastewater reuse technologies, the use of microfiltration membranes (MF) is one of the popular processes because it has the ability to successfully eliminate particulates and colloidal matters. However, successful fouling control is not easy because effluents from the activated sludge process still contain small particulates and colloidal matters such as extracellular polymeric substance (EPS) and soluble microbial products (SMP). On the other hand, microbubbles have advantageous properties compared to common bubbles, but there hasn't been reporting of the use of microbubbles in physical cleaning instead of aeration. Encouraging results were obtained herein through the application of microbubbles for physical cleaning. In evaluation of the cleaning efficiency, the efficiency of microbubbles was observed to be twice as high as that of aeration, except during the course of the initial 30 min. Total organic carbon (TOC) concentration of the membrane tank after treatment with microbubbles was more than twice as high as that after aeration for physical cleaning. The membrane cleaned with microbubbles also had the smoothest surface, with a roughness of 42.5 nm. In addition, microbubbles were found to effectively remove EPS and make the structure of the gel layer loose. In particular, the microbubbles had the ability to remove proteins through the effect of pyrolytic decomposition. Therefore, in FT-IR spectra of the membrane surfaces taken before and after physical cleaning, while each treatment showed similar peak positions, the peak values of the membrane treated with microbubbles were the lowest. Through various analyses, it was confirmed that microbubbles can remove foulants on the gel layer in spite of their very low shear force. This means that microbubble cleaning has full potential for use as a physical cleaning

  17. MSO spent salt clean-up recovery process

    SciTech Connect

    Adamson, M G; Brummond, W A; Hipple, D L; Hsu, P C; Summers, L J; Von Holtz, E H; Wang, F T

    1997-02-01

    An effective process has been developed to separate metals, mineral residues, and radionuclides from spent salt, a secondary waste generated by Molten Salt Oxidation (MSO). This process includes salt dissolution, pH adjustment, chemical reduction and/or sulfiding, filtration, ion exchange, and drying. The process uses dithionite to reduce soluble chromate and/or sulfiding agent to suppress solubilities of metal compounds in water. This process is capable of reducing the secondary waste to less than 5% of its original weight. It is a low temperature, aqueous process and has been demonstrated in the laboratory [1].

  18. Effect of Dissolved Oxygen on Cu Corrosion in Single Wafer Cleaning Process

    NASA Astrophysics Data System (ADS)

    Imai, Masayoshi; Yamashita, Yukinari; Futatsuki, Takashi; Shiohara, Morio; Kondo, Seiichi; Saito, Shuichi

    2009-04-01

    We investigated Cu corrosion at the via bottom of multi-layered Cu interconnects that occurred after post-etching wet cleaning and caused via open failures. We found that oxygen was dissolved into de-ionized water (DIW) on the wafer edge from the air atmosphere during the rinse step after chemical cleaning and that Cu was oxidized due to the high oxidation-reduction potential (ORP) of the rinse DIW. To prevent Cu interconnects from being corroded, control of the dissolved oxygen and the ORP of the rinse DIW by decreasing the oxygen concentration of the atmosphere in the cleaning machine as well as by using H2 water is required. This will become indispensable in the cleaning process of the next generation Cu interconnects.

  19. Study of Sn removal processes for in-situ collector cleaning

    NASA Astrophysics Data System (ADS)

    Elg, Daniel T.; Panici, Gianluca A.; Srivastava, Shailendra N.; Ruzic, D. N.

    2016-03-01

    An in-situ hydrogen plasma cleaning technique to clean Sn off of EUV collector optics is studied in detail. The cleaning process uses hydrogen radicals (formed in the hydrogen plasma) to interact with Sn-coated surfaces, forming SnH4 and being pumped away. This technique has been used to clean a 300mm-diameter stainless steel dummy collector optic, and EUV reflectivity of multilayer mirror samples was restored after cleaning Sn from them, validating the potential of this technology. This method has the potential to significantly reduce downtime and increase source availability. However, net Sn removal is limited by decomposition of the SnH4 molecule upon impact with the collector and the resulting redeposition of Sn. This is true in all cleaning systems that make use of hydrogen radicals. Thus, to guide the design of effective cleaning systems, the transport of Sn in the chamber, and the fundamental processes affecting it, must be understood. Accordingly, an investigation into these processes Sn removal is being performed. These processes include the advection of gas through the chamber, the creation of hydrogen radicals, the etching of Sn by radicals, and the surface decomposition of SnH4. In this paper, experiments to determine the radical density are presented, along with a theoretical plasma chemistry model that explains the processes behind radical creation and validates the radical density measurements. Additionally, experiments are shown that provide an insight into the etching of Sn by hydrogen radicals, yielding calculations of etching probability as well as showing that Sn etching is very sensitive to oxygen contamination and surface morphology.

  20. Report of clean out and flushing of UO{sub 3} Plant processing equipment: Revision 1

    SciTech Connect

    Gonsalves, E.

    1994-12-02

    The UO{sub 3} Plant went through a clean out leading to the deactivation of the facility. This clean out consisted of three phases. Phase 1 consisted of the removal of residual process material and the deactivation of most process equipment and instrumentation. Phase 2 consisted of the fixing or removal of contamination so storm water processing would be no longer required. Phase 3 consisted of the remaining activities that had to be completed before the facility was turned over to the Surplus Facility Program. Since the activities of Phase 2 and 3 were closely related, these two phases were worked simultaneously. The first part of this document summarizes the Phase 1 clean out procedures and their results. Phase 1 was completed on February 28, 1994. The second part summarizes the Phase 2/3 clean out procedures and their results. Phase 2/3 was completed before December 31, 1994. Because tanks and equipment were flushed simultaneously or in a specific sequence, the clean out processes are discussed per workplan.

  1. Clean Air Act Standards and Guidelines for Mineral Processing

    EPA Pesticide Factsheets

    This page contains the stationary sources of air pollution for the mineral processing industries, and their corresponding air pollution regulations. To learn more about the regulations for each industry, just click on the links below.

  2. Evaluation of seed cotton cleaning equipment performance at various processing rates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The processing rate per unit width of seed cotton cleaning equipment– cylinder cleaners and stick machines– recommended by manufacturers is 4.9-8.2 bales hr-1 m-1 (1.5-2.5 bales hr-1 ft-1). Survey data has indicated that many gins exceed this processing rate. Little research has been conducted wit...

  3. Effect of dirty-hold time on cleaning process of pharmaceutical equipment.

    PubMed

    Patera, Jan; Stípková, Gabriela; Zámostný, Petr; Bělohlav, Zdeněk; Vltavský, Zdeněk

    2013-02-01

    The work was aimed at the evaluation of a cleanliness of pharmaceutical equipments after the end of the production and subsequent cleaning process. The influence of a dirty-hold time, a time interval between the end of the production period and the beginning of the cleaning process on its efficiency and the cleanliness of the equipment has been studied. The evaluation was performed for commercial tablet antihypertensive formulation with API losartan potassium. Sampling was carried out by a wet-swabbing method from the equipments and consequently obtained samples were analytically evaluated using HPLC. In the production of the concerned pharmaceutical, it has been found that the cleaning process is properly designed and validated. Despite the concentration of losartan in swabs from the equipment was in all cases within the limits of acceptance criteria, the effect of the dirty-hold time was proved. In the equipments with long hold-time period, the monitored substance was found in substantially higher concentrations.

  4. Process for forming sulfuric acid

    DOEpatents

    Lu, Wen-Tong P.

    1981-01-01

    An improved electrode is disclosed for the anode in a sulfur cycle hydrogen generation process where sulfur dioxie is oxidized to form sulfuric acid at the anode. The active compound in the electrode is palladium, palladium oxide, an alloy of palladium, or a mixture thereof. The active compound may be deposited on a porous, stable, conductive substrate.

  5. Arsenic-Dominated Chemistry in the Acid Cleaning of InGaAs and InAlAs Surfaces

    SciTech Connect

    Sun, Y.; Pianetta, P.; Chen, P.-T.; Kobayashi, M.; Nishi, Y.; Goel, N.; Garner, M.; Tsai, W.

    2008-10-31

    The surface cleaning of InGaAs and InAlAs is studied using Synchrotron Radiation Photoelectron Spectroscopy. Thermal annealing at 400 C can not completely remove the native oxides from those surfaces. Elemental arsenic build-up is observed on both surfaces after acid treatment using HCl, HF or H{sub 2}SO{sub 4} solutions, which is similar to acid-cleaned GaAs surface. Cleaned InGaAs surface is oxide free but small amount of aluminum oxide remains on cleaned InAlAs surface. The common chemical reactions between III-As semiconductors and acid solutions are identified and are found to be dominated by arsenic chemistry.

  6. Biofilms of Enterococcus faecalis and Enterococcus faecium isolated from the processing of ricotta and the control of these pathogens through cleaning and sanitization procedures.

    PubMed

    da Silva Fernandes, Meg; Kabuki, Dirce Yorika; Kuaye, Arnaldo Yoshiteru

    2015-05-04

    The biofilm formation of Enterococcus faecalis and Enterococcus faecium isolated from the processing of ricotta on stainless steel coupons was evaluated, and the effect of cleaning and sanitization procedures in the control of these biofilms was determined. The formation of biofilms was observed while varying the incubation temperature (7, 25 and 39°C) and time (0, 1, 2, 4, 6 and 8 days). At 7°C, the counts of E. faecalis and E. faecium were below 2 log10 CFU/cm(2). For the temperatures of 25 and 39°C, after 1 day, the counts of E. faecalis and E. faecium were 5.75 and 6.07 log10 CFU/cm(2), respectively, which is characteristic of biofilm formation. The tested sanitation procedures a) acid-anionic tensioactive cleaning, b) anionic tensioactive cleaning+sanitizer and c) acid-anionic tensioactive cleaning+sanitizer were effective in removing the biofilms, reducing the counts to levels below 0.4 log10 CFU/cm(2). The sanitizer biguanide was the least effective, and peracetic acid was the most effective. These studies revealed the ability of enterococci to form biofilms and the importance of the cleaning step and the type of sanitizer used in sanitation processes for the effective removal of biofilms.

  7. Development of Statistical Process Control Methodology for an Environmentally Compliant Surface Cleaning Process in a Bonding Laboratory

    NASA Technical Reports Server (NTRS)

    Hutchens, Dale E.; Doan, Patrick A.; Boothe, Richard E.

    1997-01-01

    Bonding labs at both MSFC and the northern Utah production plant prepare bond test specimens which simulate or witness the production of NASA's Reusable Solid Rocket Motor (RSRM). The current process for preparing the bonding surfaces employs 1,1,1-trichloroethane vapor degreasing, which simulates the current RSRM process. Government regulations (e.g., the 1990 Amendments to the Clean Air Act) have mandated a production phase-out of a number of ozone depleting compounds (ODC) including 1,1,1-trichloroethane. In order to comply with these regulations, the RSRM Program is qualifying a spray-in-air (SIA) precision cleaning process using Brulin 1990, an aqueous blend of surfactants. Accordingly, surface preparation prior to bonding process simulation test specimens must reflect the new production cleaning process. The Bonding Lab Statistical Process Control (SPC) program monitors the progress of the lab and its capabilities, as well as certifies the bonding technicians, by periodically preparing D6AC steel tensile adhesion panels with EA-91 3NA epoxy adhesive using a standardized process. SPC methods are then used to ensure the process is statistically in control, thus producing reliable data for bonding studies, and identify any problems which might develop. Since the specimen cleaning process is being changed, new SPC limits must be established. This report summarizes side-by-side testing of D6AC steel tensile adhesion witness panels and tapered double cantilevered beams (TDCBs) using both the current baseline vapor degreasing process and a lab-scale spray-in-air process. A Proceco 26 inches Typhoon dishwasher cleaned both tensile adhesion witness panels and TDCBs in a process which simulates the new production process. The tests were performed six times during 1995, subsequent statistical analysis of the data established new upper control limits (UCL) and lower control limits (LCL). The data also demonstrated that the new process was equivalent to the vapor

  8. Processes For Cleaning a Cathode Tube and Assemblies In A Hollow Cathode Assembly

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J. (Inventor); Verhey, Timothy R. R. (Inventor); Soulas, George C. (Inventor)

    2001-01-01

    The present invention is a process for cleaning a cathode tube and other subassemblies in a hollow cathode assembly. In the disclosed process, hand covering elastomer gloves are used for handling all cathode assembly parts. The cathode tube and other subassemblies are cleaned with a lint-free cloth damped with acetone, then wiped with alcohol, immersed in ethyl alcohol or acetone, and ultrasonic agitation is applied, heating to 60 C. for ethyl alcohol or 56 C. for acetone. The cathode tube and other subassemblies are dried by blowing with nitrogen gas.

  9. Investigation of the impact of cleaning on the adhesive bond and the process implications

    SciTech Connect

    EMERSON,JOHN A.; GUESS,TOMMY R.; ADKINS,CAROL L. JONES; CURRO,JOHN G.; REEDY JR.,EARL DAVID; LOPEZ,EDWIN P.; LEMKE,PAUL A.

    2000-05-01

    While surface cleaning is the most common process step in DOE manufacturing operations, the link between a successful adhesive bond and the surface clean performed before adhesion is not well understood. An innovative approach that combines computer modeling expertise, fracture mechanics understanding, and cleaning experience to address how to achieve a good adhesive bond is discussed here to develop a capability that would result in reduced cleaning development time and testing, improved bonds, improved manufacturability, and even an understanding that leads to improved aging. A simulation modeling technique, polymer reference interaction site model applied near wall (Wall PRISM), provided the capability to include contaminants on the surface. Calculations determined an approximately 8% reduction in the work of adhesion for 1% by weight of ethanol contamination on the structure of a silicone adhesive near a surface. The demonstration of repeatable coatings and quantitative analysis of the surface for deposition of controlled amounts of contamination (hexadecane and mineral oil) was based on three deposition methods. The effect of the cleaning process used on interfacial toughness was determined. The measured interfacial toughness of samples with a Brulin cleaned sandblasted aluminum surface was found to be {approximately} 15% greater than that with a TCE cleaned aluminum surface. The sensitivity of measured fracture toughness to various test conditions determined that both interfacial toughness and interface corner toughness depended strongly on surface roughness. The work of adhesion value for silicone/silicone interface was determined by a contact mechanics technique known as the JKR method. Correlation with fracture data has allowed a better understanding between interfacial fracture parameters and surface energy.

  10. Clean burning process which converts pollutants into value added product

    SciTech Connect

    Zhu Xuefang

    1999-07-01

    By adding a multiple composite admixture in coal-fired boilers, the new technology turns ash and the sulfur in coal into cement clinker materials, deepens and stabilizes combustion process, decreases mechanical and chemical instabilities during combustion, and eliminates the production of NO{sub x}. While generating heat and power, the technology produces cement clinkers, and gets rid of the soot type of air pollution caused by cement kilns, thus effects a radical cure for the two pollution sources in coal-fired power plants and cement kilns. The new technology makes use of coal ashes as renewable resources, saves energy resources and the land needed to discard the ashes. Therefore, it benefits for ecological balance and economics.

  11. Controlling template erosion with advanced cleaning methods

    NASA Astrophysics Data System (ADS)

    Singh, SherJang; Yu, Zhaoning; Wähler, Tobias; Kurataka, Nobuo; Gauzner, Gene; Wang, Hongying; Yang, Henry; Hsu, Yautzong; Lee, Kim; Kuo, David; Dress, Peter

    2012-03-01

    We studied the erosion and feature stability of fused silica patterns under different template cleaning conditions. The conventional SPM cleaning is compared with an advanced non-acid process. Spectroscopic ellipsometry optical critical dimension (SE-OCD) measurements were used to characterize the changes in pattern profile with good sensitivity. This study confirmed the erosion of the silica patterns in the traditional acid-based SPM cleaning mixture (H2SO4+H2O2) at a rate of ~0.1nm per cleaning cycle. The advanced non-acid clean process however only showed CD shift of ~0.01nm per clean. Contamination removal & pattern integrity of sensitive 20nm features under MegaSonic assisted cleaning is also demonstrated.

  12. NATO/CCMS PILOT STUDY - CLEAN PRODUCTS AND PROCESSES (PHASE I) 2000 ANNUAL REPORT, NUMBER 242

    EPA Science Inventory

    This annual report presents the proceedings of the Third Annual NATO/CCMS pilot study meeting in Copenhagen, Denmark. Guest speakers focused on efforts in the area of research of clean products and processes, life cycle analysis, computer tools and pollution prevention.

  13. DEMONSTRATION OF A LIQUID CARBON DIOXIDE PROCESS FOR CLEANING METAL PARTS

    EPA Science Inventory

    The report gives results of a demonstration of liquid carbon dioxide (LCO2) as an alternative to chlorinated solvents for cleaning metal parts. It describes the LCO2 process, the parts tested, the contaminants removed, and results from preliminary laboratory testing and on-site d...

  14. NATO/CCMS PILOT STUDY CLEAN PRODUCTS AND PROCESSES (PHASE II) 2003 ANNUAL REPORT

    EPA Science Inventory

    The 6th annual meeting of the NATO CCMS Pilot Study, Clean Products and Processes, was held in Cetraro, Italy, from May 11 to 15, 2003. This was also the first meeting of its Phase II study. 24 country representatives attended this meeting. This meeting was very ably run by th...

  15. NATO CCMS PILOT STUDY ON CLEAN PRODUCTS AND PROCESSES -(PHASE I) - 2002 ANNUAL REPORT

    EPA Science Inventory

    The annual report summarizes the activities of the NATO CCMS Pilot Study on clean products and processes for 2002, including the proceedings of the 2002 annual meeting held in Vilnius, Lithuania. The report presents a wealth of information on cleaner production activities in ove...

  16. Selection of a Non-ODC Solvent for Rubber Processing Equipment Cleaning

    NASA Technical Reports Server (NTRS)

    Morgan, R. E.; Thornton, T. N.; Semmel, L.; Selvidge, S. A.; Cash, Steve (Technical Monitor)

    2002-01-01

    NASA/MSFC has recently acquired new equipment for the manufacture and processing of rubber and rubber containing items that are used in the RSRM (Reusable Solid Rocket Motor) system. Work with a previous generation of rubber equipment at MSFC (Marshall Space Flight Center) in the 1970's had involved the use of ODC's such as 1,1,1-Trichloroethane or VOC's such as Toluene as the solvents of choice in cleaning the equipment. Neither of these options is practical today. This paper addresses the selection and screening of candidate cleaning solvents that are not only effective, but also meet the new environmental standards.

  17. Selection of a Non-ODC Solvent for Rubber Processing Equipment Cleaning

    NASA Technical Reports Server (NTRS)

    Morgan, R. E.; Thornton, T. N.; Semmel, L.; Selvidge, S. A.

    2003-01-01

    NASA/MSFC has recently acquired new equipment for the manufacture and processing of rubber and rubber containing items that are used in the Redesigned Solid Rocket Motor (RSRM) system. Work with a previous generation of rubber equipment at MSFC in the 1970's had involved the use of Oxygen Deficient Center (ODC's) such as 1,1,1-Trichloroethane or VOC's such as Toluene as the solvents of choice in cleaning the equipment. Neither of these options is practical today. This paper addresses the selection and screening of candidate cleaning solvents that are not only effective, but also meet the new environmental standards.

  18. Investigation of the effect of contaminations and cleaning processes on the surface properties of brazing surfaces

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.; Wiesner, S.

    2017-03-01

    The quality of brazed joints is determined by different factors such as the atmosphere and the parameters during brazing as well as the condition of the brazing surfaces. Residues of lubricants used during machining of the components and the subsequent cleaning processes can contaminate the faying surfaces and can hence influence the flow ability of the molten filler metals. Besides their influence on the filler metal flow, the residues can result in the formation of carbonic phases in the joint leading to a possible reduction of the corrosion resistance and the mechanical properties. The first step of the current study with the aim of avoiding these defects is to identify the influence of critical contaminations and cleaning methods on the quality of the brazed joints. In a first step, contaminations on AISI304 and Inconel alloy 625 due to different cooling lubricants and the effect of several cleaning methods, in particular plasma cleaning, have been investigated. Information about the surface energy of contaminated and cleaned surfaces was gained by measuring contact angle of testing fluids. Additionally, the lubricants and the resulting contamination products have been analyzed considering the influence of a heat treatment.

  19. ToF-SIMS Investigation of the Effectiveness of Acid-Cleaning procedures for Genesis Solar Wind Collectors

    NASA Technical Reports Server (NTRS)

    Goreva, Y. S.; Humanyun, M.; Burnett, D. S.; Jurewicz, A. J.; Gonzalez, C. P.

    2014-01-01

    ToF-SIMS images of Genesis sample surfaces contain an incredible amount of important information, but they also show that the crash-derived surface contamination has many components, presenting a challenge to cleaning. Within the variability, we have shown that there are some samples which appear to be clean to begin with, e.g. 60471, and some are more contaminated. Samples 60493 and 60500 are a part of a focused study of the effectiveness of aqua regia and/or sulfuric acid cleaning of small flight Si implanted with Li-6 using ToF-SIMS.

  20. EXPLORING ENGINEERING CONTROL THROUGH PROCESS MANIPULATION OF RADIOACTIVE LIQUID WASTE TANK CHEMICAL CLEANING

    SciTech Connect

    Brown, A.

    2014-04-27

    One method of remediating legacy liquid radioactive waste produced during the cold war, is aggressive in-tank chemical cleaning. Chemical cleaning has successfully reduced the curie content of residual waste heels in large underground storage tanks; however this process generates significant chemical hazards. Mercury is often the bounding hazard due to its extensive use in the separations process that produced the waste. This paper explores how variations in controllable process factors, tank level and temperature, may be manipulated to reduce the hazard potential related to mercury vapor generation. When compared using a multivariate regression analysis, findings indicated that there was a significant relationship between both tank level (p value of 1.65x10{sup -23}) and temperature (p value of 6.39x10{sup -6}) to the mercury vapor concentration in the tank ventilation system. Tank temperature showed the most promise as a controllable parameter for future tank cleaning endeavors. Despite statistically significant relationships, there may not be confidence in the ability to control accident scenarios to below mercury’s IDLH or PAC-III levels for future cleaning initiatives.

  1. Precision Cleaning Titanium Components

    SciTech Connect

    Hand, T.E.; Bohnert, G.W.

    2000-02-02

    Clean bond surfaces are critical to the operation of diffusion bonded titanium engine components. These components can be contaminated with machining coolant, shop dirt, and fingerprints during normal processing and handling. These contaminants must be removed to achieve acceptable bond quality. As environmental concerns become more important in manufacturing, elimination of the use of hazardous materials is desired. For this reason, another process (not using nitric-hydrofluoric acid solution) to clean titanium parts before bonding was sought. Initial cleaning trials were conducted at Honeywell to screen potential cleaning techniques and chemistries. During the initial cleaning process screening phase, Pratt and Whitney provided Honeywell with machined 3 inch x 3 inch x 1 inch titanium test blocks. These test blocks were machined with a water-based machining coolant and exposed to a normal shop environment and handling. (Honeywell sectioned one of these blocks into smaller samples to be used for additional cleanliness verification analyses.) The sample test blocks were ultrasonically cleaned in alkaline solutions and AUGER analysis was used by Honeywell FM and T to validate their cleanliness. This information enabled selection of final cleaning techniques and solutions to be used for the bonding trials. To validate Honeywell's AUGER data and to verify the cleaning processes in actual situations, additional sample blocks were cleaned (using the chosen processes) and then bonded. The bond quality of the test blocks was analyzed according to Pratt and Whitney's requirements. The Charpy impact testing was performed according to ASTM procedure {number_sign}E-23. Bond quality was determined by examining metallographic samples of the bonded test blocks for porosity along the bondline.

  2. Potential effects of clean coal technologies on acid precipitation, greenhouse gases, and solid waste disposal

    SciTech Connect

    Blasing, T.J.; Miller, R.L.; McCold, L.N.

    1993-11-01

    The US Department of Energy`s (DOE`s) Clean Coal Technology Demonstration Program (CCTDP) was initially funded by Congress to demonstrate more efficient, economically feasible, and environmentally acceptable coal technologies. Although the environmental focus at first was on sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) because their relationship to acid precipitation, the CCTDP may also lead to reductions in carbon dioxide (CO{sub 2}) emissions and in the volume of solid waste produced, compared with conventional technologies. The environmental effects of clean coal technologies (CCTs) depend upon which (if any) specific technologies eventually achieve high acceptance in the marketplace. In general, the repowering technologies and a small group of retrofit technologies show the most promise for reducing C0{sub 2} emissions and solid waste. These technologies also compare favorably with other CCTs in terms of SO{sub 2} and NO{sub x} reductions. The upper bound for CO{sup 2} reductions in the year 2010 is only enough to reduce global ``greenhouse`` warming potential by about 1%. However, CO{sub 2} emissions come from such variety of sources around the globe that no single technological innovation or national policy change could realistically be expected to reduce these emissions by more than a few percent. Particular CCTs can lead to either increases or decreases in the amount of solid waste produced. However, even if decreases are not achieved, much of the solid waste from clean coal technologies would be dry and therefore easier to dispose of than scrubber sludge.

  3. Evaluation, modelling and optimization of the cleaning process of contaminated plastic food refillables.

    PubMed

    Devlieghere, F; De Meulenaer, B; Sekitoleko, P; Estrella Garcia, A A; Huyghebaert, A

    1997-01-01

    In this study several types of bottle materials (glass, PET (polyethylene terephthalate), PC (polycarbonate), HDPE (high density polyethylene), PP (polypropylene) and PVC (polyvinyl chloride)) were evaluated in order to be used as food refillables, comparing the residual chemical contamination after classical caustic washing. Bottles were contaminated with model chemicals (chloroxylenol and d-limonene) and caustic washed with varied process parameters using a simulated laboratory-scale washing procedure. After washing, the chemical-contaminated bottles were filled with water and stored for 28 days at 37 degrees C. The concentrations of the model chemicals in the water after storage were taken as a measure of chemical contamination. The influence of the cleaning parameters (temperature, caustic and commercial additive concentration) was studied using response surface methodology. Washing temperature showed a significant influence on the removal of absorbed chemicals from surfaces compared with the effect of the caustic and especially the additive concentration. Optimization of caustic cleaning for the cleaning process in question led to better cleaning effectiveness, although none of the different washing conditions were able to remove all absorbed chemicals out of the polymeric resins. Commercially available plastic refillables (PET and PC) showed the best chemical rinsability. Glass bottles, however, had in every case the best rinsing characteristics.

  4. Use of synthetic single-stranded oligonucleotides as artificial test soiling for validation of surgical instrument cleaning processes.

    PubMed

    Wilhelm, Nadja; Perle, Nadja; Simmoteit, Robert; Schlensak, Christian; Wendel, Hans P; Avci-Adali, Meltem

    2014-01-01

    Surgical instruments are often strongly contaminated with patients' blood and tissues, possibly containing pathogens. The reuse of contaminated instruments without adequate cleaning and sterilization can cause postoperative inflammation and the transmission of infectious diseases from one patient to another. Thus, based on the stringent sterility requirements, the development of highly efficient, validated cleaning processes is necessary. Here, we use for the first time synthetic single-stranded DNA (ssDNA_ODN), which does not appear in nature, as a test soiling to evaluate the cleaning efficiency of routine washing processes. Stainless steel test objects were coated with a certain amount of ssDNA_ODN. After cleaning, the amount of residual ssDNA_ODN on the test objects was determined using quantitative real-time PCR. The established method is highly specific and sensitive, with a detection limit of 20 fg, and enables the determination of the cleaning efficiency of medical cleaning processes under different conditions to obtain optimal settings for the effective cleaning and sterilization of instruments. The use of this highly sensitive method for the validation of cleaning processes can prevent, to a significant extent, the insufficient cleaning of surgical instruments and thus the transmission of pathogens to patients.

  5. Salt clean-up procedure for the determination of domoic acid by HPLC.

    PubMed

    Hatfield, C L; Wekell, J C; Gauglitz, E J; Barnett, H J

    1994-01-01

    Domoic acid (DA) was first reported in mussels from Prince Edward Island, Canada, in 1987. It reappeared in anchovies and pelicans from Monterey Bay, California, in 1991. Later that year, domoic acid was found in razor clams and Dungeness crabs along the Washington and Oregon coasts. Since the initial outbreak, a variety of analytical methods for the detection of this neurotoxin have been developed. Here, we describe a modification to the solid phase extraction (SPE) clean-up step in Quilliam's HPLC-UV method (1991: NRCC No. 33001). The standard 10% acetonitrile (MeCN) wash and 0.5M ammonium citrate buffer (ACB) in 10% MeCN (pH = 4.5) eluting solution have been replaced with a 0.1M sodium chloride (NaCl) in 10% MeCN wash and a 0.5M NaCl in 10% MeCN eluting solution. This modification allows the analysis to work equally well on both clam and crab viscera and meat. Chromatograms of visceral samples no longer contain interfering or late eluting peaks; and all chromatograms are free of the large solvent peak tailing associated with the ACB eluent. The newly modified method allows for an improved and more versatile domoic acid analysis.

  6. Investigation of an automated cleaning system for LMJ coating sol-gel process

    NASA Astrophysics Data System (ADS)

    Lavastre, E.; Fontaine, S.; Bergez, R.; Wender, P.; Cormont, P.; Pellegrini, C.; Beaurain, L.; Belleville, P.

    2008-09-01

    The French Commission for Atomic Energy is currently involved in a project which consists in the construction of a 2MJ/500TW (351nm) laser, so called LMJ (Megajoule-class laser) devoted to Inertial Confinement Fusion (ICF) research in France[1]. For this high power lasers, the sol-gel process[2] has been selected for 95% of laser optical coated area because of room temperature and atmospheric pressure conditions with guarantee for high optical and laser induced damage threshold (LIDT) performances at a low cost compared to conventional vacuum deposition processes. The production rate of sol-gel coatings for the LMJ optical components will require an automated cleaning surface step during sol-gel process. We are investigating a spraying system and wash cycles compatible with the two sol-gel deposition methods: dip and laminar-flow coating. The challenge is to achieve the same cleaned optical surfaces as manual process without using organic solvents. Therefore the main specifications of the cleaning quality are the following ones: a high surface energy over all optical sides (up to 400×400 mm2 area) and no degradation of polished sides (surface defects and LIDT). We present the metrologies carried out and the first results obtained from different wash cycles. These one mainly consist in measurement of contact angles, defects inspections under specific lighting conditions and LIDT tests. Several parameters of wash cycles have been investigated such as washing and rinsing temperatures, water quality, type and concentration of detergents, wettability effects...

  7. The Cleaning of Aluminum Frame Assembly Units

    SciTech Connect

    Shen, T H

    2001-05-16

    The Brulin immersion and the precision cleaning experiments have shown that neither the Brulin solution nor the precision cleaning in AstroPak causes the smut formation on aluminum surfaces. The acid-bath cleaning in GTC is the primary source of the smut formation. The current GTC acid formulation etches the aluminum matrix quite aggressively, but does not appear to appreciably attack the Si particles. Therefore, this acid-bath cleaning will leave the cast-aluminum part surfaces with many protruded Si particles, which could potentially cause smut problems in the cleaning process down-stream. To ensure the removal of all loose Si particles from the cast-aluminum parts, it is necessary to physically hand-wipe and vigorously wash the acid-bath cleaned surfaces. Furthermore, the casting porosity in alloy A356 could be another source in causing high swipe readings in the FAU parts.

  8. ACTUAL-WASTE TESTS OF ENHANCED CHEMICAL CLEANING FOR RETRIEVAL OF SRS HLW SLUDGE TANK HEELS AND DECOMPOSITION OF OXALIC ACID

    SciTech Connect

    Martino, C.; King, W.; Ketusky, E.

    2012-01-12

    Savannah River National Laboratory conducted a series of tests on the Enhanced Chemical Cleaning (ECC) process using actual Savannah River Site waste material from Tanks 5F and 12H. Testing involved sludge dissolution with 2 wt% oxalic acid, the decomposition of the oxalates by ozonolysis (with and without the aid of ultraviolet light), the evaporation of water from the product, and tracking the concentrations of key components throughout the process. During ECC actual waste testing, the process was successful in decomposing oxalate to below the target levels without causing substantial physical or chemical changes in the product sludge.

  9. Effectiveness of bone cleaning process using chemical and entomology approaches: time and cost.

    PubMed

    Lai, Poh Soon; Khoo, Lay See; Mohd Hilmi, Saidin; Ahmad Hafizam, Hasmi; Mohd Shah, Mahmood; Nurliza, Abdullah; Nazni, Wasi Ahmad

    2015-08-01

    Skeletal examination is an important aspect of forensic pathology practice, requiring effective bone cleaning with minimal artefact. This study was conducted to compare between chemical and entomology methods of bone cleaning. Ten subjects between 20 and 40 years old who underwent uncomplicated medico-legal autopsies at the Institute of Forensic Medicine Malaysia were randomly chosen for this descriptive cross sectional study. The sternum bone was divided into 4 parts, each part subjected to a different cleaning method, being two chemical approaches i.e. laundry detergent and a combination of 6% hydrogen peroxide and powder sodium bicarbonate and two entomology approaches using 2nd instar maggots of Chrysomyia rufifacies and Ophyra spinigera. A scoring system for grading the outcome of cleaning was used. The effectiveness of the methods was evaluated based on average weight reduction per day and median number of days to achieve the average score of less than 1.5 within 12 days of the bone cleaning process. Using maggots was the most time-effective and costeffective method, achieving an average weight reduction of 1.4 gm per day, a median of 11.3 days to achieve the desired score and an average cost of MYR 4.10 per case to reach the desired score within 12 days. This conclusion was supported by blind validation by forensic specialists achieving a 77.8% preference for maggots. Emission scanning electron microscopy evaluation also revealed that maggots especially Chrysomyia rufifacies preserved the original condition of the bones better allowing improved elucidation of bone injuries in future real cases.

  10. Cleaning and sanitation of Salmonella-contaminated peanut butter processing equipment.

    PubMed

    Grasso, Elizabeth M; Grove, Stephen F; Halik, Lindsay A; Arritt, Fletcher; Keller, Susanne E

    2015-04-01

    Microbial contamination of peanut butter by Salmonella poses a significant health risk as Salmonella may remain viable throughout the product shelf life. Effective cleaning and sanitation of processing lines are essential for preventing cross-contamination. The objective of this study was to evaluate the efficacy of a cleaning and sanitation procedure involving hot oil and 60% isopropanol, ± quaternary ammonium compounds, to decontaminate pilot-scale processing equipment harboring Salmonella. Peanut butter inoculated with a cocktail of four Salmonella serovars (∼ 7 log CFU/g) was used to contaminate the equipment (∼ 75 L). The system was then emptied of peanut butter and treated with hot oil (90 °C) for 2 h followed by sanitizer for 1 h. Microbial analysis of food-contact surfaces (7 locations), peanut butter, and oil were conducted. Oil contained ∼ 3.2 log CFU/mL on both trypticase soy agar with yeast extract (TSAYE) and xylose lysine deoxycholate (XLD), indicating hot oil alone was not sufficient to inactivate Salmonella. Environmental sampling found 0.25-1.12 log CFU/cm(2) remaining on processing equipment. After the isopropanol sanitation (± quaternary ammonium compounds), no Salmonella was detected in environmental samples on XLD (<0.16 log CFU/cm(2)). These data suggest that a two-step hot oil clean and isopropanol sanitization treatment may eliminate pathogenic Salmonella from contaminated equipment.

  11. An alternative process for cleaning knives used on meat slaughter floors.

    PubMed

    Eustace, Ian; Midgley, Jocelyn; Giarrusso, Charles; Laurent, Chris; Jenson, Ian; Sumner, John

    2007-01-01

    Traditionally on slaughter floors operator knives are cleaned by rinsing in hand wash water at 20-40 degrees C followed by brief immersion in baths termed "sterilisers" which contain water no cooler than 82 degrees C. Under Australian legislation, both domestic and export, it is possible for a meat processing establishment to apply to the Controlling Authority for permission to implement an alternative procedure providing that it is at least the equivalent of that legislated. No firm evidence appears to exist for the 82 degrees C requirement and the possibility of replacing this element of the knife cleaning procedure with an alternative procedure using 60 degrees C water and a longer immersion time was investigated at an abattoir slaughtering cattle and sheep. Knives were tested at a range of work stations located along beef and mutton slaughter floors for Aerobic Plate Counts (APCs) and E. coli. For knives used on the beef chain the mean log APC/cm(2) was 2.18 by the current knife cleaning process and 1.78 by the alternate procedure (P<0.001). Using the current system E. coli was isolated from cleaned knives on 20/230 (8.7%) occasions compared with 21/230 (9.1%) occasions using the alternative system. The mean log E. coli of positive knives was 0.43/cm(2) and 0.61/cm(2) from the current and alternative systems, respectively. On the mutton chain the mean log APC/cm(2) was 1.95 using the current knife cleaning process and 1.69 by the alternative procedure (P=0.014). Using the current system E. coli was isolated from cleaned knives on 24/130 (18.5%) occasions compared with 29/130 (22.3%) occasions using the alternative system. The mean log E. coli of positive knives was 0.90/cm(2) and 0.76/cm(2) from the current and alternative systems, respectively. It is concluded that using two knives alternatively, rinsing them in hand wash water, then immersing them between uses in 60 degrees C water provides a microbiological outcome equivalent to rinsing them and momentary

  12. Extensive separations (CLEAN) processing strategy compared to TRUEX strategy and sludge wash ion exchange

    SciTech Connect

    Knutson, B.J.; Jansen, G.; Zimmerman, B.D.; Seeman, S.E.; Lauerhass, L.; Hoza, M.

    1994-08-01

    Numerous pretreatment flowsheets have been proposed for processing the radioactive wastes in Hanford`s 177 underground storage tanks. The CLEAN Option is examined along with two other flowsheet alternatives to quantify the trade-off of greater capital equipment and operating costs for aggressive separations with the reduced waste disposal costs and decreased environmental/health risks. The effect on the volume of HLW glass product and radiotoxicity of the LLW glass or grout product is predicted with current assumptions about waste characteristics and separations processes using a mass balance model. The prediction is made on three principal processing options: washing of tank wastes with removal of cesium and technetium from the supernatant, with washed solids routed directly to the glass (referred to as the Sludge Wash C processing strategy); the previous steps plus dissolution of the solids and removal of transuranic (TRU) elements, uranium, and strontium using solvent extraction processes (referred to as the Transuranic Extraction Option C (TRUEX-C) processing strategy); and an aggressive yet feasible processing strategy for separating the waste components to meet several main goals or objectives (referred to as the CLEAN Option processing strategy), such as the LLW is required to meet the US Nuclear Regulatory Commission Class A limits; concentrations of technetium, iodine, and uranium are reduced as low as reasonably achievable; and HLW will be contained within 1,000 borosilicate glass canisters that meet current Hanford Waste Vitrification Plant glass specifications.

  13. NATO/CCMS PILOT STUDY CLEAN PRODUCTS AND PROCESSES (PHASE 1) 1998 ANNUAL REPORT (EPA/600/R-98/065)

    EPA Science Inventory

    This annual report presents the proceedings of the first annual NATO/CCMS pilot study meeting in Cincinnati in March 1998. Guest speakers focused on efforts in the research arena of clean products, clean processes, life cycle analysis, ecolabeling, and pollution prevention tools.

  14. Carboxylic acid sorption regeneration process

    DOEpatents

    King, C. Judson; Poole, Loree J.

    1995-01-01

    Carboxylic acids are sorbed from aqueous feedstocks into an organic liquid phase or onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with aqueous alkylamine thus forming an alkylammonium carboxylate which is dewatered and decomposed to the desired carboxylic acid and the alkylamine.

  15. Carboxylic acid sorption regeneration process

    DOEpatents

    King, C.J.; Poole, L.J.

    1995-05-02

    Carboxylic acids are sorbed from aqueous feedstocks into an organic liquid phase or onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with aqueous alkylamine thus forming an alkylammonium carboxylate which is dewatered and decomposed to the desired carboxylic acid and the alkylamine. 10 figs.

  16. Analysis of fusaric acid in maize using molecularly imprinted solid phase extraction (MISPE) clean-up and ion-pair LC with diode array UV detection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusaric acid is a phytotoxin and mycotoxin occasionally found in maize contaminated with Fusarium fungi. A selective sample clean-up procedure was developed to detect fusaric acid in maize using molecularly imprinted solid phase extraction (MISPE) clean-up coupled with ion-pair liquid chromatography...

  17. Application of non-invasive optical monitoring methodologies to follow and record painting cleaning processes

    NASA Astrophysics Data System (ADS)

    Fontana, R.; Dal Fovo, A.; Striova, J.; Pezzati, L.; Pampaloni, E.; Raffaelli, M.; Barucci, M.

    2015-11-01

    The cleaning of painted artworks, i.e. the critical operation whereby materials are selectively removed from a painted surface by partial thinning or complete elimination of varnish, is one of the most debated conservation operations, being an irreversible process, which may result in chromatic and morphological variations in the painted surface. Due to ageing, the upper layer is subject to darkening and yellowing because of blanching and fading from ultraviolet exposure, dust deposition, and overpainted layers due, for instance, to restoration interventions. This degradation can either alter the original appearance of painting polychromy or cause mechanical failure of the finishes. To address these adverse conditions, a process of examination and analysis is critical to the definition and interpretation of the varnish layer. When investigating the ageing process of old paintings, it is of great importance to obtain insight into the painting technique as practiced in the past, and the first step in gaining this knowledge is, to a large extent, based on the study of the varnish film. An effective control of the process and objective evaluation of its outcome requires therefore instrumental/analytical support. The present study illustrates the successful application of non-invasive optical techniques—such as colorimetry, multispectral reflectography, laser scanning micro-profilometry, and optical coherence tomography—to the monitoring of an Italian fourteenth-century painting cleaning process. Results presented here confirm that optical techniques play a pivotal role in artwork diagnostics, especially with regard to conservation operations, while also indicating their validity when applied to the monitoring of the cleaning process.

  18. Cleaning conveyor belts in the chicken-cutting area of a poultry processing plant with 45°c water.

    PubMed

    Soares, V M; Pereira, J G; Zanette, C M; Nero, L A; Pinto, J P A N; Barcellos, V C; Bersot, L S

    2014-03-01

    Conveyor belts are widely used in food handling areas, especially in poultry processing plants. Because they are in direct contact with food and it is a requirement of the Brazilian health authority, conveyor belts are required to be continuously cleaned with hot water under pressure. The use of water in this procedure has been questioned based on the hypothesis that water may further disseminate microorganisms but not effectively reduce the organic material on the surface. Moreover, reducing the use of water in processing may contribute to a reduction in costs and emission of effluents. However, no consistent evidence in support of removing water during conveyor belt cleaning has been reported. Therefore, the objective of the present study was to compare the bacterial counts on conveyor belts that were or were not continuously cleaned with hot water under pressure. Superficial samples from conveyor belts (cleaned or not cleaned) were collected at three different times during operation (T1, after the preoperational cleaning [5 a.m.]; T2, after the first work shift [4 p.m.]; and T3, after the second work shift [1:30 a.m.]) in a poultry meat processing facility, and the samples were subjected to mesophilic and enterobacterial counts. For Enterobacteriaceae, no significant differences were observed between the conveyor belts, independent of the time of sampling or the cleaning process. No significant differences were observed between the counts of mesophilic bacteria at the distinct times of sampling on the conveyor belt that had not been subjected to continuous cleaning with water at 45°C. When comparing similar periods of sampling, no significant differences were observed between the mesophilic counts obtained from the conveyor belts that were or were not subjected to continuous cleaning with water at 45°C. Continuous cleaning with water did not significantly reduce microorganism counts, suggesting the possibility of discarding this procedure in chicken processing.

  19. Fouling of a spiral-wound reverse osmosis membrane processing swine wastewater: effect of cleaning procedure on fouling resistance.

    PubMed

    Camilleri-Rumbau, M S; Masse, L; Dubreuil, J; Mondor, M; Christensen, K V; Norddahl, B

    2016-01-01

    Swine manure is a valuable source of nitrogen, phosphorus and potassium. After solid-liquid separation, the resulting swine wastewater can be concentrated by reverse osmosis (RO) to produce a nitrogen-potassium rich fertilizer. However, swine wastewater has a high fouling potential and an efficient cleaning strategy is required. In this study, a semi-commercial farm scale RO spiral-wound membrane unit was fouled while processing larger volumes of swine wastewater during realistic cyclic operations over a 9-week period. Membrane cleaning was performed daily. Three different cleaning solutions, containing SDS, SDS+EDTA and NaOH were compared. About 99% of the fouling resistance could be removed by rinsing the membrane with water. Flux recoveries (FRs) above 98% were achieved for all the three cleaning solutions after cleaning. No significant differences in FR were found between the cleaning solutions. The NaOH solution thus is a good economical option for cleaning RO spiral-wound membranes fouled with swine wastewater. Soaking the membrane for 3 days in permeate water at the end of each week further improved the FR. Furthermore, a fouling resistance model for predicting the fouling rate, permeate flux decay and cleaning cycle periods based on processing time and swine wastewater conductivity was developed.

  20. Effect of a new regeneration process by adsorption-coagulation and flocculation on the physicochemical properties and the detergent efficiency of regenerated cleaning solutions.

    PubMed

    Blel, Walid; Dif, Mehdi; Sire, Olivier

    2015-05-15

    Reprocessing soiled cleaning-in-place (CIP) solutions has large economic and environmental costs, and it would be cheaper and greener to recycle them. In food industries, recycling of CIP solutions requires a suitable green process engineered to take into account the extreme physicochemical conditions of cleaning while not altering the process efficiency. To this end, an innovative treatment process combining adsorption-coagulation with flocculation was tested on multiple recycling of acid and basic cleaning solutions. In-depth analysis of time-course evolutions was carried out in the physicochemical properties (concentration, surface tension, viscosity, COD, total nitrogen) of these solutions over the course of successive regenerations. Cleaning and disinfection efficiencies were assessed based on both microbiological analyses and organic matter detachment and solubilization from fouled stainless steel surfaces. Microbiological analyses using a resistant bacterial strain (Bacillus subtilis spores) highlighted that solutions regenerated up to 20 times maintained the same bactericidal efficiency as de novo NaOH solutions. The cleanability of stainless steel surfaces showed that regenerated solutions allow better surface wettability, which goes to explain the improved detachment and solubilization found on different types of organic and inorganic fouling.

  1. Gas-Liquid Supersonic Cleaning and Cleaning Verification Spray System

    NASA Technical Reports Server (NTRS)

    Parrish, Lewis M.

    2009-01-01

    NASA Kennedy Space Center (KSC) recently entered into a nonexclusive license agreement with Applied Cryogenic Solutions (ACS), Inc. (Galveston, TX) to commercialize its Gas-Liquid Supersonic Cleaning and Cleaning Verification Spray System technology. This technology, developed by KSC, is a critical component of processes being developed and commercialized by ACS to replace current mechanical and chemical cleaning and descaling methods used by numerous industries. Pilot trials on heat exchanger tubing components have shown that the ACS technology provides for: Superior cleaning in a much shorter period of time. Lower energy and labor requirements for cleaning and de-scaling uper.ninih. Significant reductions in waste volumes by not using water, acidic or basic solutions, organic solvents, or nonvolatile solid abrasives as components in the cleaning process. Improved energy efficiency in post-cleaning heat exchanger operations. The ACS process consists of a spray head containing supersonic converging/diverging nozzles, a source of liquid gas; a novel, proprietary pumping system that permits pumping liquid nitrogen, liquid air, or supercritical carbon dioxide to pressures in the range of 20,000 to 60,000 psi; and various hoses, fittings, valves, and gauges. The size and number of nozzles can be varied so the system can be built in configurations ranging from small hand-held spray heads to large multinozzle cleaners. The system also can be used to verify if a part has been adequately cleaned.

  2. Characterization of flue gas cleaning residues from European solid waste incinerators: assessment of various Ca-based sorbent processes.

    PubMed

    Bodénan, F; Deniard, Ph

    2003-05-01

    For the first time, a set of samples of European flue gas cleaning residues, mainly from the incineration of municipal solid waste (MSW), has undergone a mineralogical study. The residues are the result of the neutralization of acid flue gases by lime, the predominant method adopted in Europe, using dry and semi-dry washing processes. The study protocol combines physico-chemical analytical techniques (XRD, FTIR, DSC/TGA) and global chemical analysis enabling identification of the chemical composition of the main constituents, particularly chlorinated Ca-based phases, as well as establishment of modal distributions of the represented phases, both crystalline and amorphous. The samples are slightly hydrated and values vary for trapped Cl, S and even CO(2). The main crystalline phases are NaCl, KCl, CaSO(4), CaCO(3), Ca(OH)(2) and calcium hydroxychloride CaOHCl. CaOHCl is the main chlorine phase, regardless of the treatment process, filtration mode, and specific surface of the Ca-based sorbent. This phase develops during neutralization of HCl by excess lime present according to the reaction Ca(OH)(2)+HCl-->CaOHCl+H(2)O, to the detriment of a complete yield involving the two lime OH groups with formation of CaCl(2).2H(2)O. In addition, it seems that gas temperatures above 150 degrees C increase competition between lime-based neutralization of HCl, SO(2) acid flue gases and CO(2) trapping, thus reducing washing efficiency.

  3. ``Clean'' processing of polymers and smoothing of ceramics by pulsed laser melting

    NASA Astrophysics Data System (ADS)

    Tokarev, V. N.; Marine, W.; Prat, C.; Sentis, M.

    1995-05-01

    Surface stability during laser pulsed melting of polymers and ceramics is studied theoretically. Irradiation conditions and material parameters are found giving rise to the suppression of surface wavy relief of a nonresonant type (with period Λ≫λ, where λ is the radiation wavelength) and thus to the smooth flat irradiation spots. For example, for the polymers considered this process takes place for wavelengths where the absorption coefficient is sufficiently high: α(λ)≳105 cm-1. Thus, it is shown that the formation of such spots, previously referred to as ``clean ablation,'' can be explained using only a thermal mechanism without reference to the concept of ``photodecomposition.'' Moreover, laser smoothing and polishing of a surface, if it had roughness before irradiation, can be achieved by appropriate matching of the characteristic size of this roughness along the surface with the values of α(λ) and laser fluence. Methods are proposed to decrease the parasitic influence of droplets on the deposition of thin films by laser ablation of massive ceramic pellets. The results of theoretical modeling are shown to be in good agreement with experiments on smoothing of rough alumina ceramics and ``clean'' processing of polymers by excimer laser radiation.

  4. Prospects for cleaning ash in the acidic effluent from bioleaching of sulfidic concentrates.

    PubMed

    Paul, M; Sandström, A; Paul, J

    2004-01-02

    Leaching of ashes in sulfuric acid (pH 1.0, liquid-to-solid (L/S) ratio 10:1, 25 degrees C) has been characterized with respect to the neutralizing capacity and the dissolution of dominant ions and trace elements. The conditions mimic the oxidation stage of a biohydrometallurgical process for base metal production from sulfidic mineral concentrates. Direct acid leaching of ash, integrated with this metallurgical process, offers a feasible route to the sustainable handling of metal-rich ashes. The treated ash will be deposited together with the inert mineral residue. Cd, Co, Cu, Ni and Zn are effectively leached and can be recovered utilizing existing hydrometallurgical technology, but the recovery of other readily dissolved metals, notably Mn, U and V, requires that additional steps are implemented. We make two recommendations for industrial processes. The first is to replace limestone with ash from biofuels, except peat, for pH control in biohydrometallurgical processing. This requires a modest increase of fresh alkali compared with limestone. The second is to implement sulfuric acid leaching of fly ash from the combustion of solid waste and other metal-rich fuels (used wood, tires), thereby avoiding costly ash-deposits. There is a significant economic incentive for these changes, since no costly ash-deposits and less limestone will be needed.

  5. Instrumentation With Ultrasonic Scalers Facilitates Cleaning of the Sandblasted and Acid-Etched Titanium Implants.

    PubMed

    Park, Jun-Beom; Lee, Sung-Hoon; Kim, NamRyang; Park, Seojin; Jin, Seong-Ho; Choi, Bong-Kyu; Kim, Kack-Kyun; Ko, Youngkyung

    2015-08-01

    Mechanical instrumentation is widely used to debride dental implants, but this may alter the surface properties of titanium, which in turn may influence bacterial adhesion and make it more difficult to remove the biofilm. This in vitro study was performed (1) to assess the amount of biofilm formation on a sand-blasted and acid-etched titanium fixture treated with ultrasonic scalers with metal, plastic, and carbon tips and (2) to evaluate how this treatment of titanium surfaces affects implant cleaning by brushing with dentifrice. The titanium fixtures were treated with various ultrasonic scaler tips, and surface roughness parameters were measured by confocal microscopy. Biofilm was formed on the treated fixtures by using pooled saliva from 10 subjects, and the quantity of the adherent bacteria was compared with crystal violet assay. The fixture surfaces with biofilm were brushed for total of 30 seconds with a toothbrush with dentifrice. The bacteria remaining on the brushed fixture surfaces were quantified by scanning electron microscopy. Surface changes were evident, and the changes of the surfaces were more discernible when metal tips were used. A statistically significant decrease in roughness value (arithmetic mean height of the surface) was seen in the 2 metal-tip groups and the single plastic-tip group. After brushing with dentifrice, the treated surfaces in all the treatment groups showed significantly fewer bacteria compared with the untreated surfaces in the control group, and the parts of the surfaces left untreated in the test groups. Within the limits of this study, treatment of titanium fixture surfaces with ultrasonic metal, plastic, or carbon tips significantly enhanced the bacterial removal efficacy of brushing. Thorough instrumentation that smooths the whole exposed surface may facilitate maintenance of the implants.

  6. ELECTROCHEMICAL STUDIES ON THE CORROSION OF CARBON STEEL IN OXALIC ACID CLEANING SOLUTIONS

    SciTech Connect

    Wiersma, B; John Mickalonis, J

    2007-10-08

    The Savannah River Site (SRS) will disperse or dissolve precipitated metal oxides as part of radioactive waste tank closure operations. Previously SRS has utilized oxalic acid to accomplish this task. Since the waste tanks are constructed of carbon steel, a significant amount of corrosion may occur. Although the total amount of corrosion may be insignificant for a short contact time, a significant amount of hydrogen may be generated due to the corrosion reaction. Linear polarization resistance and anodic/cathodic polarization tests were performed to investigate the corrosion behavior during the process. The effect of process variables such as temperature, agitation, aeration, sample orientation, light as well as surface finish on the corrosion behavior were evaluated. The results of the tests provided insight into the corrosion mechanism for the iron-oxalic acid system.

  7. Processing of wastes from lead/acid battery production

    NASA Astrophysics Data System (ADS)

    Polivianny, I. R.; Rusin, A. I.; Lata, V. A.; Khegay, L. D.; Nourjigitov, S. T.

    Experience in the recovery of scrap and wastes from lead/acid battery production suggests that an electrothermal method has good prospects. This process is characterized by a high degree of lead and antimony (approx 98%) extraction, by effective gas cleaning and dust collection, and by full dust returning to the furnace. The electrothermal method is also distinguished by the high reliability of electric furnaces, the useability of any type of secondary lead battery scrap and wastes, and the possibility of process mechanization and control. In this paper, a description is given of the main technical and economical factors of soda-reduction smelting in an electric furnace, a technological scheme for wastes recovery, and the charge composition and features of the process.

  8. Solar production of industrial process steam at the Home Cleaning and Laundry Co. Final technical report

    SciTech Connect

    Not Available

    1984-06-01

    This report presents the results of the operation and performance evaluation period at the Home Laundry Solar Industrial Process Heat Project at Pasadena, California. The installation comprises 6496 ft/sup 2/ (603.5 m/sup 2/) of linear parabolic trough concentrating collectors supplying solar thermal energy for use in laundry and dry cleaning processes. The design phase began in September 1977, and an acceptance test was conducted during the week of April 12, 1982. The plant has been in operation since May 1982, with the 12-month Phase III (operational) period starting in October 1982. The objective of the operational evaluation experiment was to maximize energy delivery to the industrial participant while characterizing system performance. Data were acquired for monthly documentation of system performance, maintenance requirements, and operating costs.

  9. SEMICONDUCTOR TECHNOLOGY A new cleaning process for the metallic contaminants on a post-CMP wafer's surface

    NASA Astrophysics Data System (ADS)

    Baohong, Gao; Yuling, Liu; Chenwei, Wang; Yadong, Zhu; Shengli, Wang; Qiang, Zhou; Baimei, Tan

    2010-10-01

    This paper presents a new cleaning process using boron-doped diamond (BDD) film anode electrochemical oxidation for metallic contaminants on polished silicon wafer surfaces. The BDD film anode electrochemical oxidation can efficiently prepare pyrophosphate peroxide, pyrophosphate peroxide can oxidize organic contaminants, and pyrophosphate peroxide is deoxidized into pyrophosphate. Pyrophosphate, a good complexing agent, can form a metal complex, which is a structure consisting of a copper ion, bonded to a surrounding array of two pyrophosphate anions. Three polished wafers were immersed in the 0.01 mol/L CuSO4 solution for 2 h in order to make comparative experiments. The first one was cleaned by pyrophosphate peroxide, the second by RCA (Radio Corporation of America) cleaning, and the third by deionized (DI) water. The XPS measurement result shows that the metallic contaminants on wafers cleaned by the RCA method and by pyrophosphate peroxide is less than the XPS detection limits of 1 ppm. And the wafer's surface cleaned by pyrophosphate peroxide is more efficient in removing organic carbon residues than RCA cleaning. Therefore, BDD film anode electrochemical oxidation can be used for microelectronics cleaning, and it can effectively remove organic contaminants and metallic contaminants in one step. It also achieves energy saving and environmental protection.

  10. Development of a Replacement for Trichloroethylene in the Two-Stage Cleaning Process

    DTIC Science & Technology

    1992-12-01

    turned on and Activity allowed to run for ten minutes to drive dissolved gases, principally air, from the water and the solvents. Selection of...tested for theirThe process is used at Allied-Signal Inc., abilities to dissolve a group of organic Kansas City Division (KCD), in two soils. Solubility...stearic acids. Lanolin, Anhydrous’ Esters and polyesters of 33 high molecular weight alcohols and 36 fatty acids. Beeswax Esters of straight chain

  11. The development of ultraviolet-ozone cleaning as a production process in the packaging of integrated circuits

    SciTech Connect

    Garrett, S.E.

    1990-03-01

    Ultraviolet-ozone (UV-ozone) cleaning was implemented as a production process to improve the cleanliness of metallized ceramic parts before a hermetic solder-sealing operation. The UV-ozone cleaning was developed as an in-situ process that maintained a low moisture content in the sealed package. Sealing yields were improved by as much as 30% with this procedure. Seal quality and therefore, reliability, were also increased. Possible detrimental effects caused by UV-ozone cleaning were investigated. In particular, the possibility for silver from the silver-filled epoxy to electromigrate was studied. UV-ozone cleaning was not found to be a factor in this phenomena. Qualification lots were given Electrical, Group B, Group D, and Life Tests to determine if the UV-ozone cleaning had any detrimental effects on the parts' reliability. No detrimental effects were found on standard complementary metal oxide semiconductor technology integrated circuits. Some evidence has shown, however, that the memory retention of both large-scale integrated and discrete silicon nitride oxide semiconductor structures degrade(s) after UV-ozone cleaning. 6 refs., 8 figs., 2 tabs.

  12. The development of ultraviolet-ozone cleaning as a production process in the packaging of integrated circuits

    NASA Astrophysics Data System (ADS)

    Garrett, S. E.

    1990-03-01

    Ultraviolet-ozone (UV-ozone) cleaning was implemented as a production process to improve the cleanliness of metallized ceramic parts before a hermetic solder-sealing operation. The UV-ozone cleaning was developed as an in situ process that maintained a low moisture content in the sealed package. Sealing yields were improved by as much as 30 pct with this procedure. Seal quality and therefore, reliability, were also increased. Possible detrimental effects caused by UV-ozone cleaning were investigated. In particular, the possibility for silver from the silver-filled epoxy to electromigrate was studied. UV-ozone cleaning was not found to be a factor in this phenomena. Qualification lots were given Electrical, Group B, Group D, and Life Tests to determine if the UV-ozone cleaning had any detrimental effects on the parts' reliability. No detrimental effects were found on standard complementary metal oxide semiconductor technology integrated circuits. Some evidence has shown, however, that the memory retention of both large-scale integrated and discrete silicon nitride oxide semiconductor structures degrade(s) after UV-ozone cleaning.

  13. Cleaning and other control and validation strategies to prevent allergen cross-contact in food-processing operations.

    PubMed

    Jackson, Lauren S; Al-Taher, Fadwa M; Moorman, Mark; DeVries, Jonathan W; Tippett, Roger; Swanson, Katherine M J; Fu, Tong-Jen; Salter, Robert; Dunaif, George; Estes, Susan; Albillos, Silvia; Gendel, Steven M

    2008-02-01

    Food allergies affect an estimated 10 to 12 million people in the United States. Some of these individuals can develop life-threatening allergic reactions when exposed to allergenic proteins. At present, the only successful method to manage food allergies is to avoid foods containing allergens. Consumers with food allergies rely on food labels to disclose the presence of allergenic ingredients. However, undeclared allergens can be inadvertently introduced into a food via cross-contact during manufacturing. Although allergen removal through cleaning of shared equipment or processing lines has been identified as one of the critical points for effective allergen control, there is little published information on the effectiveness of cleaning procedures for removing allergenic materials from processing equipment. There also is no consensus on how to validate or verify the efficacy of cleaning procedures. The objectives of this review were (i) to study the incidence and cause of allergen cross-contact, (ii) to assess the science upon which the cleaning of food contact surfaces is based, (iii) to identify best practices for cleaning allergenic foods from food contact surfaces in wet and dry manufacturing environments, and (iv) to present best practices for validating and verifying the efficacy of allergen cleaning protocols.

  14. Investigation of the Timesaver process for de-burring and cleaning the plate for the Atlas Tilecalorimeter

    SciTech Connect

    Guarino, V.; Kocenko, L.; Wood, K.

    1997-11-25

    The Timesaver belt grinding machine has been selected by the Atlas collaboration for deburring the master and spacer plates after die stamping and laser cutting, respectively. However, the question has been raised as to whether or not the plates are sufficiently clean after going through the Timesaver machine to immediately be glued into a submodule assembly. This would greatly enhance the production of submodules because the task of cleaning individual master and spacer plates is labor intensive and time consuming as well as raises environmental issues with the detergent that is used. In order to investigate the possibility of using the Timesaver process to clean the plates as well as debur them, several plates were run through the machine and their cleanliness inspected before and after. In addition, several glue samples were subjected to the same process, glued, and then pulled apart in an attempt to gauge the cleanliness of the plates. From this series of tests it can be concluded that the wet Timesaver machine can adequately prepare the surface of the master and spacer plates as well as clean the plates for gluing. The machine was able to adequately remove all of the oil and grime from the test plates. Also, from the single test on the dry machine it appears that significant cleaning will be required to adequately clean the plates before gluing in order to remove the remaining grit.

  15. Active biopolymers in green non-conventional media: a sustainable tool for developing clean chemical processes.

    PubMed

    Lozano, Pedro; Bernal, Juana M; Nieto, Susana; Gomez, Celia; Garcia-Verdugo, Eduardo; Luis, Santiago V

    2015-12-21

    The greenness of chemical processes turns around two main axes: the selectivity of catalytic transformations, and the separation of pure products. The transfer of the exquisite catalytic efficiency shown by enzymes in nature to chemical processes is an important challenge. By using appropriate reaction systems, the combination of biopolymers with supercritical carbon dioxide (scCO2) and ionic liquids (ILs) resulted in synergetic and outstanding platforms for developing (multi)catalytic green chemical processes, even under flow conditions. The stabilization of biocatalysts, together with the design of straightforward approaches for separation of pure products including the full recovery and reuse of enzymes/ILs systems, are essential elements for developing clean chemical processes. By understanding structure-function relationships of biopolymers in ILs, as well as for ILs themselves (e.g. sponge-like ionic liquids, SLILs; supported ionic liquids-like phases, SILLPs, etc.), several integral green chemical processes of (bio)catalytic transformation and pure product separation are pointed out (e.g. the biocatalytic production of biodiesel in SLILs, etc.). Other developments based on DNA/ILs systems, as pathfinder studies for further technological applications in the near future, are also considered.

  16. Bench-scale testing of a micronized magnetite, fine-coal cleaning process

    SciTech Connect

    Suardini, P.J.

    1995-11-01

    Custom Coals, International has installed and is presently testing a 500 lb/hr. micronized-magnetite, fine-coal cleaning circuit at PETC`s Process Research Facility (PRF). The cost-shared project was awarded as part of the Coal Preparation Program`s, High Efficiency Preparation Subprogram. The project includes design, construction, testing, and decommissioning of a fully-integrated, bench-scale circuit, complete with feed coal classification to remove the minus 30 micron slimes, dense medium cycloning of the 300 by 30 micron feed coal using a nominal minus 10 micron size magnetite medium, and medium recovery using drain and rinse screens and various stages and types of magnetic separators. This paper describes the project circuit and goals, including a description of the current project status and the sources of coal and magnetite which are being tested.

  17. Monte Carlo simulations of the clean and disordered contact process in three dimensions.

    PubMed

    Vojta, Thomas

    2012-11-01

    The absorbing-state transition in the three-dimensional contact process with and without quenched randomness is investigated by means of Monte Carlo simulations. In the clean case, a reweighting technique is combined with a careful extrapolation of the data to infinite time to determine with high accuracy the critical behavior in the three-dimensional directed percolation universality class. In the presence of quenched spatial disorder, our data demonstrate that the absorbing-state transition is governed by an unconventional infinite-randomness critical point featuring activated dynamical scaling. The critical behavior of this transition does not depend on the disorder strength, i.e., it is universal. Close to the disordered critical point, the dynamics is characterized by the nonuniversal power laws typical of a Griffiths phase. We compare our findings to the results of other numerical methods, and we relate them to a general classification of phase transitions in disordered systems based on the rare region dimensionality.

  18. Clean coal technology and acid rain compliance: An examination of alternative incentive proposals

    SciTech Connect

    McDermott, K.A. ); South, D.W. )

    1991-01-01

    The Clean Air Act Amendments (CAAA) of 1990 rely primarily on the use of market incentives to stimulate least-cost compliance choices by electric utilities. Because of the potential risks associated with selecting Clean Coal Technologies (CCTs) and the public-good nature of technology commercialization, electric utilities may be reluctant to adopt CCTs as part of their compliance strategies. This paper examines the nature of the risks and perceived impediments to adopting CCTs as a compliance option. It also discusses the incentives that regulatory policy makers could adopt to mitigate these barriers to CCT adoption. (VC)

  19. Clean coal technology and acid rain compliance: An examination of alternative incentive proposals

    SciTech Connect

    McDermott, K.A.; South, D.W.

    1991-12-31

    The Clean Air Act Amendments (CAAA) of 1990 rely primarily on the use of market incentives to stimulate least-cost compliance choices by electric utilities. Because of the potential risks associated with selecting Clean Coal Technologies (CCTs) and the public-good nature of technology commercialization, electric utilities may be reluctant to adopt CCTs as part of their compliance strategies. This paper examines the nature of the risks and perceived impediments to adopting CCTs as a compliance option. It also discusses the incentives that regulatory policy makers could adopt to mitigate these barriers to CCT adoption. (VC)

  20. Process, optimized acidizing reduce production facility upsets

    SciTech Connect

    Ali, S.A.; Hill, D.G.; McConnell, S.B.; Johnson, M.R.

    1997-02-10

    The filtration/absorption process, coupled with optimum treatments, prevent facility upsets that increase the time and resources required for bringing a well back on-line following an acid stimulation. Surface active agents, required in acidizing to improve well productivity, can form oil/water emulsions and cause unacceptable oil and grease levels during acid flowback. But recent offshore experiences after acidizing show that operators can achieve oil and grease discharge limits without facility upsets. To minimize oil and grease, the additives need to be optimized by adding a mutual breakout solvent (MBS). MBS has the dual function of being a mutual solvent and a sludge and emulsion control additive. The paper discusses acidizing problems, acid additives, handling options, and a case history of the Main Pass A field.

  1. Process for recovering acidic gases

    SciTech Connect

    Riggs, O.L. Jr.

    1989-09-26

    This patent describes an improvement in a continuous process for recovering carbon dioxide from a carbon dioxide-rich gas stream. The gas stream is contacted with an aqueous alknolamine solution in an absorption section contained in an absorption zone to produce a carbon dioxide-lean gaseous overhead stream and a carbon dioxide-rich liquid effluent stream. The carbon dioxide-rich effluent stream is heated in a regeneration zone to produce a carbon dioxide-rich gaseous overhead stream and a carbon dioxide-lean liquid effluent stream. The carbon dioxide-lean liquid effluent stream comprising a regenerated aqueous alkanolamine solution. The regenerated aqueous alkanolamine solution is returned to and introduced into the absorption zone.

  2. Cathodic ARC surface cleaning prior to brazing

    SciTech Connect

    Dave, V. R.; Hollis, K. J.; Castro, R. G.; Smith, F. M.; Javernick, D. A.

    2002-01-01

    Surface cleanliness is one the critical process variables in vacuum furnace brazing operations. For a large number of metallic components, cleaning is usually accomplished either by water-based alkali cleaning, but may also involve acid etching or solvent cleaning / rinsing. Nickel plating may also be necessary to ensure proper wetting. All of these cleaning or plating technologies have associated waste disposal issues, and this article explores an alternative cleaning process that generates minimal waste. Cathodic arc, or reserve polarity, is well known for welding of materials with tenacious oxide layers such as aluminum alloys. In this work the reverse polarity effect is used to clean austenitic stainless steel substrates prior to brazing with Ag-28%Cu. This cleaning process is compared to acid pickling and is shown to produce similar wetting behavior as measured by dynamic contact angle experiments. Additionally, dynamic contact angle measurements with water drops are conducted to show that cathodic arc cleaning can remove organic contaminants as well. The process does have its limitations however, and alloys with high titanium and aluminum content such as nickel-based superalloys may still require plating to ensure adequate wetting.

  3. Thermal acidization and recovery process for recovering viscous petroleum

    DOEpatents

    Poston, Robert S.

    1984-01-01

    A thermal acidization and recovery process for increasing production of heavy viscous petroleum crude oil and synthetic fuels from subterranean hydrocarbon formations containing clay particles creating adverse permeability effects is described. The method comprises injecting a thermal vapor stream through a well bore penetrating such formations to clean the formation face of hydrocarbonaceous materials which restrict the flow of fluids into the petroleum-bearing formation. Vaporized hydrogen chloride is then injected simultaneously to react with calcium and magnesium salts in the formation surrounding the bore hole to form water soluble chloride salts. Vaporized hydrogen fluoride is then injected simultaneously with its thermal vapor to dissolve water-sensitive clay particles thus increasing permeability. Thereafter, the thermal vapors are injected until the formation is sufficiently heated to permit increased recovery rates of the petroleum.

  4. Development of the LICADO coal cleaning process. Final report, October 1, 1987--April 2, 1990

    SciTech Connect

    Not Available

    1990-07-31

    Development of the liquid carbon dioxide process for the cleaning of coal was performed in batch, variable volume (semi-continuous), and continuous tests. Continuous operation at feed rates up to 4.5 kg/hr (10-lb/hr) was achieved with the Continuous System. Coals tested included Upper Freeport, Pittsburgh, Illinois No. 6, and Middle Kittanning seams. Results showed that the ash and pyrite rejections agreed closely with washability data for each coal at the particle size tested (-200 mesh). A 0.91 metric ton (1-ton) per hour Proof-of-Concept Plant was conceptually designed. A 181 metric ton (200 ton) per hour and a 45 metric ton (50 ton) per hour plant were sized sufficiently to estimate costs for economic analyses. The processing costs for the 181 metric ton (200 ton) per hour and 45 metric ton (50 ton) per hour were estimated to be $18.96 per metric ton ($17.20 per ton) and $11.47 per metric ton ($10.40 per ton), respectively for these size plants. The costs for the 45 metric ton per hour plant are lower because it is assumed to be a fines recovery plant which does not require a grinding circuit of complex waste handling system.

  5. State-of-the-Art Evaluation of Ultra-Clean ULSI Processes^*

    NASA Astrophysics Data System (ADS)

    Fischer-Colbrie, Alice M.

    1996-03-01

    Ultra-clean Si wafer surfaces are critical to the fabrication of ULSI-quality gate oxides. At present, the best methods for removing surface metal impurities exceeds our ability to measure them using traditional methods. New methods are being actively developed to fill this gap. One approach has been to extend the capability of a technique widely used throughout the semiconductor industry, total reflection x-ray fluorescence (TXRF), by using synchrotron radiation. To date, synchrotron radiation total reflection x-ray fluorescence (SR TXRF) has a state-of-the-art transition metal sensitivity of ~ 3 × 10^8/cm^2 (<10 fg) as determined from Fe, Ni, and Zn dip-contaminated standards. This sensitivity is over an order of magnitude better than for an in-house x-ray source. These results have been obtained through the specific development of beam-line optics, detectors and wafer handling protocols. At this time, SR TXRF has been used by Sematech member companies to measure the cleanliness of full wafers (up to 150mm) at various steps in the integrated circuit fabrication process. In addition, SR TXRF results from clean wafers have been compared to conventional TXRF results from wafers which have been prepared by chemically concentrating the impurities. These data show that the higher sensitivity made possible by the synchrotron radiation source is in a useful regime. With the completion of on-going hardware improvements and improved availability of beamtime, this method could be integrated into ULSI process development. ^*Work done in collaboration with: S.S. Laderman, Hewlett-Packard Labs; S. Brennan, A. Waldhauer, N. Takaura, P. Pianetta, Stanford Synchrotron Radiation Laboratory; A. Shimazaki, K. Miyazaki, Toshiba Corp.; I. Cornelissen, M. Meuris, IMEC; D.C. Wherry, S. Barkan, Kevex, Inc; E. Adem, AMD; D. Werho, Motorola, Inc.; M. Zaitz, IBM; J. Rose, DEC; L. Files, Texas Instruments; K. Gupta, Intel; Synchrotron radiation experiments were performed at the Stanford

  6. Aircraft Materials, Processes, Cleaning and Corrosion Control (Course Outline), Aviation Mechanics 1 (Power and Frame): 9073.01.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to familiarize the beginning student with the basic concepts common to aircraft materials and processes, together with the requirements of proper cleaning and corrosion control as outlined by the Federal Aviation Agency. The aviation airframe and powerplant maintenance technician is…

  7. Final Report of NATO/SPS Pilot Study on Clean Products and Processes (Phase I and II)

    EPA Science Inventory

    Early in 1998 the NATO Committee for Challenges to Modern Society (SPS) (Science for Peace and Security) approved the Pilot Study on Clean Products and Processes for an initial period of five years. The pilot was to provide a forum for member country representatives to discuss t...

  8. Impact of different cleaning processes on the laser damage threshold of antireflection coatings for Z-Backlighter optics at Sandia National Laboratories

    DOE PAGES

    Field, Ella; Bellum, John; Kletecka, Damon

    2014-11-06

    We have examined how different cleaning processes affect the laser-induced damage threshold of antireflection coatings for large dimension, Z-Backlighter laser optics at Sandia National Laboratories. Laser damage thresholds were measured after the coatings were created, and again 4 months later to determine which cleaning processes were most effective. There is a nearly twofold increase in laser-induced damage threshold between the antireflection coatings that were cleaned and those that were not cleaned. Aging of the coatings after 4 months resulted in even higher laser-induced damage thresholds. Also, the laser-induced damage threshold results revealed that every antireflection coating had a high defectmore » density, despite the cleaning process used, which indicates that improvements to either the cleaning or deposition processes should provide even higher laser-induced damage thresholds.« less

  9. Impact of different cleaning processes on the laser damage threshold of antireflection coatings for Z-Backlighter optics at Sandia National Laboratories

    SciTech Connect

    Field, Ella; Bellum, John; Kletecka, Damon

    2014-11-06

    We have examined how different cleaning processes affect the laser-induced damage threshold of antireflection coatings for large dimension, Z-Backlighter laser optics at Sandia National Laboratories. Laser damage thresholds were measured after the coatings were created, and again 4 months later to determine which cleaning processes were most effective. There is a nearly twofold increase in laser-induced damage threshold between the antireflection coatings that were cleaned and those that were not cleaned. Aging of the coatings after 4 months resulted in even higher laser-induced damage thresholds. Also, the laser-induced damage threshold results revealed that every antireflection coating had a high defect density, despite the cleaning process used, which indicates that improvements to either the cleaning or deposition processes should provide even higher laser-induced damage thresholds.

  10. Well-ordered polymer nano-fibers with self-cleaning property by disturbing crystallization process

    NASA Astrophysics Data System (ADS)

    Yang, Qin; Luo, Zhuangzhu; Tan, Sheng; Luo, Yimin; Wang, Yunjiao; Zhang, Zhaozhu; Liu, Weimin

    2014-07-01

    Bionic self-cleaning surfaces with well-ordered polymer nano-fibers are firstly fabricated by disturbing crystallization during one-step coating-curing process. Orderly thin (100 nm) and long (5-10 μm) polymer nano-fibers with a certain direction are fabricated by external macroscopic force ( F blow) interference introduced by H2 gas flow, leading to superior superhydrophobicity with a water contact angle (WCA) of 170° and a water sliding angle (WSA) of 0-1°. In contrast, nano-wires and nano-bridges (1-8 μm in length/10-80 nm in width) are generated by "spinning/stretching" under internal microscopic force ( F T) interference due to significant temperature difference in the non-uniform cooling medium. The findings provide a novel theoretical basis for controllable polymer "bionic lotus" surface and will further promote practical application in many engineering fields such as drag-reduction and anti-icing.

  11. Well-ordered polymer nano-fibers with self-cleaning property by disturbing crystallization process

    PubMed Central

    2014-01-01

    Bionic self-cleaning surfaces with well-ordered polymer nano-fibers are firstly fabricated by disturbing crystallization during one-step coating-curing process. Orderly thin (100 nm) and long (5–10 μm) polymer nano-fibers with a certain direction are fabricated by external macroscopic force (Fblow) interference introduced by H2 gas flow, leading to superior superhydrophobicity with a water contact angle (WCA) of 170° and a water sliding angle (WSA) of 0-1°. In contrast, nano-wires and nano-bridges (1–8 μm in length/10-80 nm in width) are generated by “spinning/stretching” under internal microscopic force (FT) interference due to significant temperature difference in the non-uniform cooling medium. The findings provide a novel theoretical basis for controllable polymer “bionic lotus” surface and will further promote practical application in many engineering fields such as drag-reduction and anti-icing. PMID:25114644

  12. Acid deposition in Maryland. Summary of research and monitoring results compiled through 1991 and a discussion of the 1990 Clean Air Act Amendments. Report for 1991-1992

    SciTech Connect

    Price, R.; Mountain, D.

    1992-10-01

    This is the sixth annual report submitted under Maryland legislative requirements. The report focuses on more than a decade of acid deposition research conducted in Maryland. In addition, the report discusses Title IV - Acid Deposition Control of the 1990 Clean Air Act Amendments (CAAA) and its potential impacts on Maryland.

  13. Use of formulations based on choline chloride-malonic acid deep eutectic solvent for back end of line cleaning in integrated circuit fabrication

    NASA Astrophysics Data System (ADS)

    Taubert, Jenny

    Interconnection layers fabricated during back end of line processing in semiconductor manufacturing involve dry etching of a low-k material and deposition of copper and metal barriers to create copper/dielectric stacks. After plasma etching steps used to form the trenches and vias in the dielectric, post etch residues (PER) that consist of organic polymer, metal oxides and fluorides, form on top of copper and low-k dielectric sidewalls. Currently, most semiconductor companies use semi aqueous fluoride (SAF) based formulations containing organic solvent(s) for PER removal. Unfortunately, these formulations adversely impact the environmental health and safety (EHS) requirements of the semiconductor industry. Environmentally friendly "green" formulations, free of organic solvents, are preferred as alternatives to remove PER. In this work, a novel low temperature molten salt system, referred as deep eutectic solvent (DES) has been explored as a back end of line cleaning (BEOL) formulation. Specifically, the DES system comprised of two benign chemicals, malonic acid (MA) and choline chloride (CC), is a liquid at room temperature. In certain cases, the formulation was modified by the addition of glacial acetic acid (HAc). Using these formulations, selective removal of three types of PER generated by timed CF4/O2 etching of DUV PR films on Cu was achieved. Type I PER was mostly organic in character (fluorocarbon polymer type) and had a measured thickness of 160 nm. Type II PER was much thinner (25 nm) and consisted of a mixture of organic and inorganic compounds (copper fluorides). Further etching generated 17 nm thick Type III PER composed of copper fluorides and oxides. Experiments were also conducted on patterned structures. Cleaning was performed by immersing samples in a temperature controlled (30 or 40° C) double jacketed vessel for a time between 1 and 5 minutes. Effectiveness of cleaning was characterized using SEM, XPS and single frequency impedance measurements

  14. Recycled fatty acid crude petroleum recovery process

    SciTech Connect

    Herter, G. L.; Herter, C.

    1984-11-06

    A method of recovering crude oil for subsequent processing. The method contemplates the step of exposing the source of crude oil such as a subterranean petroleum reservoir or a vessel or container of tar sands, kerogen or the like to aliphatic or carboxylic acid, preferably oleic acid, to produce a solvated crude oil mixture of reduced viscosity. This mixture is saponifyed by reacting it with a nucleophilic base, preferably a hydroxide of potassium or sodium, under pressure whereby to separate the solvated mixture into petroleum crude and an acid soap which migrates to an aqueous phase. The petroleum crude is separated from the aqueous soap through conventional techniques. Afterwards, a desaponification step contemplates recovery of the aliphatic or carboxylic acid for subsequent recycling in the previously mentioned exposing step. Reuse is facilitated by desaponifying aqueous soap within a high pressure containment vessel reacted with an acid suitable for donating a hydrated proton to the aqueous phase of the soap. This reconstituted acid is recycled for injection into the inputting step. Preferably carbonic acid is generated for the desaponifying step by injecting high pressure carbon dioxide within the containment vessel. By-products of the chemical reaction are separated and/or filtered as necessary to effectuate necessary purification sub-steps.

  15. Fluidized-Bed Cleaning of Silicon Particles

    NASA Technical Reports Server (NTRS)

    Rohatgi, Naresh K.; Hsu, George C.

    1987-01-01

    Fluidized-bed chemical cleaning process developed to remove metallic impurities from small silicon particles. Particles (250 micrometer in size) utilized as seed material in silane pyrolysis process for production of 1-mm-size silicon. Product silicon (1 mm in size) used as raw material for fabrication of solar cells and other semiconductor devices. Principal cleaning step is wash in mixture of hydrochloric and nitric acids, leaching out metals and carrying them away as soluble chlorides. Particles fluidized by cleaning solution to assure good mixing and uniform wetting.

  16. Adsorption and thermal chemistry of formic acid on clean and oxygen-predosed Cu(110) single-crystal surfaces revisited

    NASA Astrophysics Data System (ADS)

    Yao, Yunxi; Zaera, Francisco

    2016-04-01

    The thermal chemistry of formic acid on clean and oxygen-predosed Cu(110) single-crystal surfaces was studied under ultrahigh-vacuum (UHV) conditions by temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). Key results reported in the past were confirmed, including the partial switchover from H2 to H2O desorption upon oxygen addition on the surface and the development of a second decomposition regime at 420 K, in addition to the one observed at 460 K on the clean substrate. In addition, new observations were added, including the previously missed desorption of H2 at 420 K and the existence of a normal kinetic isotope effect in both TPD peaks. Peak fitting of the XPS data afforded the identification of an asymmetric geometry for the formate intermediate, which was established to form by 200 K, and the presence of coadsorbed molecular formic acid up to the temperatures of decomposition, probably in a second layer and held by hydrogen bonding. Quantitative analysis of the TPD data indicated a one-to-one correspondence between the increase in oxygen coverage beyond θO = 0.5 ML and a decrease in formic acid uptake that mainly manifests itself in a decrease in the decomposition seen in the 460 K TPD peak. All these observations were interpreted in terms of a simple decomposition mechanism involving hydrogen abstraction from adsorbed formate species, possibly aided by coadsorbed oxygen, and a change in reaction activation energy as a function of the structure of the oxygen overlayer, which reverts from a O-c(6 × 2) structure at high oxygen coverages to the O-(2 × 1) order seen at θO = 0.5 ML.

  17. Chemical dynamics of acidity and heavy metals in a mine water-polluted soil during decontamination using clean water.

    PubMed

    Chen, A; Lin, C; Lu, W; Ma, Y; Bai, Y; Chen, H; Li, J

    2010-03-15

    A column leaching experiment was conducted to investigate the chemical dynamics of the percolating water and washed soil during decontamination of an acidic mine water-polluted soil. The results show that leaching of the contaminated soil with clean water rapidly reduced soluble acidity and ion concentrations in the soils. However, only <20% of the total actual acidity in the soil column was eliminated after 30 leaching cycles. It is likely that the stored acidity continues to be released to the percolating water over a long period of time. During the column leaching, dissolved Cu and Pb were rapidly leached out, followed by mobilization of colloidal Cu and Pb from the exchangeable and the oxide-bound fractions as a result of reduced ionic strength in the soil solution. The soluble Fe contained in the soil was rare, probably because the soil pH was not sufficiently low; marked mobility of colloidal Fe took place after the ionic strength of the percolating water was weakened and the mobilized Fe was mainly derived from iron oxides. In contrast with Cu, Pb and Fe, the concentration of leachate Zn and Mn showed a continuously decreasing trend during the entire period of the experiment.

  18. Rapid formation of phase-clean 110 K (Bi-2223) powders derived via freeze-drying process

    DOEpatents

    Balachandran, U.

    1996-06-04

    A process for the preparation of amorphous precursor powders for Pb-doped Bi{sub 2}Sr{sub 2} Ca{sub 2}Cu{sub 3}O{sub x} (2223) includes a freeze-drying process incorporating a splat-freezing step. The process generally includes splat freezing a nitrate solution of Bi, Pb, Sr, Ca, and Cu to form flakes of the solution without any phase separation; grinding the frozen flakes to form a powder; freeze-drying the frozen powder; heating the dried powder to form a dry green precursor powders; denitrating the green-powders; heating the denitrated powders to form phase-clean Bi-2223 powders. The grain boundaries of the 2223 grains appear to be clean, leading to good intergrain contact between 2223 grains. 11 figs.

  19. Rapid formation of phase-clean 110 K (Bi-2223) powders derived via freeze-drying process

    DOEpatents

    Balachandran, Uthamalingam

    1996-01-01

    A process for the preparation of amorphous precursor powders for Pb-doped Bi.sub.2 Sr.sub.2 Ca.sub.2 Cu.sub.3 O.sub.x (2223) includes a freeze-drying process incorporating a splat-freezing step. The process generally includes splat freezing a nitrate solution of Bi, Pb, Sr, Ca, and Cu to form flakes of the solution without any phase separation; grinding the frozen flakes to form a powder; freeze-drying the frozen powder; heating the dried powder to form a dry green precursor powders; denitrating the green-powders; heating the denitrated powders to form phase-clean Bi-2223 powders. The grain boundaries of the 2223 grains appear to be clean, leading to good intergrain contact between 2223 grains.

  20. PROCESS FOR PRODUCING ALKYL ORTHOPHOSPHORIC ACID EXTRACTANTS

    DOEpatents

    Grinstead, R.R.

    1962-01-23

    A process is given for producing superior alkyl orthophosphoric acid extractants for use in solvent extraction methods to recover and purify various metals such as uranium and vanadium. The process comprises slurrying P/sub 2/O/ sub 5/ in a solvent diluent such as kerosene, benzene, isopropyl ether, and the like. An alipbatic alcohol having from nine to seventeen carbon atoms, and w- hcrein ihc OH group is situated inward of the terminal carbon atoms, is added to the slurry while the reaction temperature is mainiained below 60 deg C. The alcohol is added in the mole ratio of about 2 to l, alcohol to P/sub 2/O/sub 5/. A pyrophosphate reaotion product is formed in the slurry-alcohol mixture. Subsequently, the pyrophosphate reaction product is hydrolyzed with dilute mineral acid to produce the desired alkyl orthophosphoric aeid extractant. The extraetant may then be separated and utilized in metal-recovery, solvent- extraction processes. (AEC)

  1. Morphological stability of the atomically clean surface of silicon (100) crystals after microwave plasma-chemical processing

    SciTech Connect

    Yafarov, R. K. Shanygin, V. Ya.

    2016-01-15

    The morphological stability of atomically clean silicon (100) surface after low-energy microwave plasma-chemical etching in various plasma-forming media is studied. It is found that relaxation changes in the surface density and atomic bump heights after plasma processing in inert and chemically active media are multidirectional in character. After processing in a freon-14 medium, the free energy is minimized due to a decrease in the surface density of microbumps and an increase in their height. After argon-plasma processing, an insignificant increase in the bump density with a simultaneous decrease in bump heights is observed. The physicochemical processes causing these changes are considered.

  2. Effect of dicarboxylic acid chain length on the self-cleaning property of Nano-TiO2-coated cotton fabrics.

    PubMed

    Khajavi, Ramin; Berendjchi, Amirhosein

    2014-11-12

    In this study, the effect of dicarboxylic acid chain length on the amount of TiO2 nanoparticles (TiO2NPs) adsorption-produced self-cleaning property and washing durability on cotton fabrics were investigated. First, cotton fabric samples were treated with three kinds of dicarboxylic acids--oxalic, succinic, and adipic acids--and then dipped in TiO2NP solution with a certain concentration. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) was used to investigate bonds formation between dicarboxylic acid groups and hydroxyl groups of cellulose, and a scanning electron microscope (SEM) was applied for the analysis of surface morphology in specimens. Drop absorbency time was determined for samples using the AATCC TM 79:2000. Washing stability and the amount absorption of TiO2NPs were determined by weighing and absorption spectrophotometry procedures, and the stain removal evaluation was conducted to assess the self-cleaning property. Results showed that all of the dicarboxylic acids used in this experiment improved the amount of TiO2NPs absorbed onto cotton samples and their durability to washing. In addition, color variation of samples treated with oxalic acid after 180 min of UV irradiation and drop absorbency time for samples treated with succinic acid were significantly increased by about 126 and 600%, respectively. The best durability was obtained from adipic acid, while a better self-cleaning property was obtained from oxalic acid.

  3. Digital processing of SEM images for the assessment of evaluation indexes of cleaning interventions on Pentelic marble surfaces

    SciTech Connect

    Moropoulou, A. Delegou, E.T.; Vlahakis, V.; Karaviti, E.

    2007-11-15

    In this work, digital processing of scanning-electron-microscopy images utilized to assess cleaning interventions applied on the Pentelic marble surfaces of the National Archaeological Museum and National Library in Athens, Greece. Beside mineralogical and chemical characterization that took place by scanning-electron-microscopy with Energy Dispersive X-ray Spectroscopy, the image-analysis program EDGE was applied for estimating three evaluation indexes of the marble micro-structure. The EDGE program was developed by the U.S. Geological Survey for the evaluation of cleaning interventions applied on Philadelphia City Hall. This computer program analyzes scanning-electron-microscopy images of stone specimens cut in cross-section for measuring the fractal dimension of the exposed surfaces, the stone near-surface fracture density, the shape factor (a surface roughness factor) and the friability index which represents the physico-chemical and physico-mechanical stability of the stone surface. The results indicated that the evaluation of the marble surface micro-structure before and after cleaning is achieved by the suggested indexes, while the performance of cleaning interventions on the marble surfaces can be assessed.

  4. Design Fuels Corporation (DFC)-Apache, Inc. coal reclamation system for the plant of the future for processing clean coal

    SciTech Connect

    Hoppe, J.; Karsnak, G.

    1998-12-31

    The mechanical washing processing and drying portion of the DFC process offers an efficient method for cleaning of pyritic sulfur bearing compounds which represents 25% sulfur reduction from original run-of-mine coal quality. This reduction can be augmented with the use of calcium and sodium based compounds to reduce the sulfur in many coals to produce compliance quality coal. The use of mechanical/physical methods for the removal of the pyritic material found in coal is used by the DFC process as a first step to the final application of a complete coal refuse clean-up technology based on site specific conditions of the parent coal. The paper discusses the use of the DFC process to remediate slurry ponds and tailings piles and to improve coal cleaning by gravity separation methods, flotation, hydrocyclones and spiral separators, dense media separation, water only cyclones, and oil/solvent agglomeration. A typical DFC Project is the Rosa Coal Reclamation Project which involves the development of a bituminous coal waste impoundment reclamation and washery system. The plant would be located adjacent to a coal fines pond or tailings pond and refuse pile or gob pile at a former coal strip mine in Oneonta, Alabama. Design Fuels would provide a development program by which coal waste at the Rosa Mine could be reclaimed, cleaned and sold profitably. This feedstock could be furnished from recovered coal for direct use in blast furnaces, or as feedstock for coke ovens at 250,000 tons per year at an attractive price on a 10-year contract basis. The site has an old coal washing facility on the property that will be dismantled. Some equipment salvage has been considered; and removal of the existing plant would be the responsibility of Design Fuels. The paper briefly discusses the market potential of the process.

  5. IMPROVED PROCESSES TO REMOVE NAPHTHENIC ACIDS

    SciTech Connect

    Aihua Zhang; Qisheng Ma; William A. Goddard; Yongchun Tang

    2004-04-28

    In the first year of this project, we have established our experimental and theoretical methodologies for studies of the catalytic decarboxylation process. We have developed both glass and stainless steel micro batch type reactors for the fast screening of various catalysts with reaction substrates of model carboxylic acid compounds and crude oil samples. We also developed novel product analysis methods such as GC analyses for organic acids and gaseous products; and TAN measurements for crude oil. Our research revealed the effectiveness of several solid catalysts such as NA-Cat-1 and NA-Cat-2 for the catalytic decarboxylation of model compounds; and NA-Cat-5{approx}NA-Cat-9 for the acid removal from crude oil. Our theoretical calculations propose a three-step concerted oxidative decarboxylation mechanism for the NA-Cat-1 catalyst.

  6. Computational study of a self-cleaning process on superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Farokhirad, Samaneh

    All substances around us are bounded by interfaces. In general, interface between different phases of materials are categorized as fluid-fluid, solid-fluid, and solid-solid. Fluid-fluid interfaces exhibit a distinct behavior by adapting their shape in response to external stimulus. For example, a liquid droplet on a substrate can undergo different wetting morphologies depending on topography and chemical composition of the surface. Fundamentally, interfacial phenomena arise at the limit between two immiscible phases, namely interface. The interface dynamic governs, to a great extent, physical processes such as impact and spreading of two immiscible media, and stabilization of foams and emulsions from break-up and coalescence. One of the recent challenging problems in the interface-driven fluid dynamics is the self-propulsion mechanism of droplets by means of different types of external forces such as electrical potential, or thermal Marangoni effect. Rapid removal of self-propelled droplet from the surface is an essential factor in terms of expense and efficiency for many applications including self-cleaning and enhanced heat and mass transfer to save energy and natural resources. A recent study on superhydrophobic nature of micro- and nanostructures of cicada wings offers a unique way for the self-propulsion process with no external force, namely coalescence-induced self-propelled jumping of droplet which can act effectively at any orientation. The biological importance of this new mechanism is associated with protecting such surfaces from long term exposure to colloidal particles such as microbial colloids and virus particles. Different interfacial phenomena can occur after out-of-plane jumping of droplet. If the departed droplet is landed back by gravity, it may impact and spread on the surface or coalesce with another droplet and again self-peopled itself to jump away from the surface. The complete removal of the propelled droplet to a sufficient distance

  7. Process for the preparation of lactic acid and glyceric acid

    DOEpatents

    Jackson, James E [Haslett, MI; Miller, Dennis J [Okemos, MI; Marincean, Simona [Dewitt, MI

    2008-12-02

    Hexose and pentose monosaccharides are degraded to lactic acid and glyceric acid in an aqueous solution in the presence of an excess of a strongly anionic exchange resin, such as AMBERLITE IRN78 and AMBERLITE IRA400. The glyceric acid and lactic acid can be separated from the aqueous solution. Lactic acid and glyceric acid are staple articles of commerce.

  8. [Effects of rice cleaning and cooking process on the residues of flutolanil, fenobucarb, silafluofen and buprofezin in rice].

    PubMed

    Satoh, Motoaki; Sakaguchi, Masayuki; Kobata, Masakazu; Sakaguchi, Yoko; Tanizawa, Haruna; Miura, Yuri; Sasano, Ryoichi; Nakanishi, Yutaka

    2003-02-01

    We studied the effect of cleaning and cooking on the residues of flutolanil, fenobucarb, silafluofen and buprofezin in rice. The rice had been sprayed in a paddy field in Wakayama city, with 3 kinds of pesticide application protocols: spraying once at the usual concentration of pesticides, repeated spraying (3 times) with the usual concentration of pesticides and spraying once with 3 times the usual concentration of pesticides. The residue levels of pesticide decreased during the rice cleaning process. Silafluofen, which has a higher log Pow value, remained in the hull of the rice. Fenobucarb, which has a lower log Pow value, penetrated inside the rice. The residue concentration of pesticide in polished rice was higher than that in pre-washed rice processed ready for cooking. During the cooking procedure, the reduction of pesticides in polished rice was higher than that in brown rice.

  9. Cleaning method of the oil field wastewater treatment by UF process.

    PubMed

    Wang, J R; Xu, C

    2001-07-01

    This article introduces experiments and researches of polysulphone ultrafiltration membrane's effect on oil field polluted water and approaches renewing oil field polluted water and approaches renewing of membrane's flux by different detergents and cleaning method. Good result has been achieved by doing experiments and the renewal rate of membrane is over 90%.

  10. Improved Processes to Remove Naphthenic Acids

    SciTech Connect

    Aihua Zhang; Qisheng Ma; Kangshi Wang; Yongchun Tang; William A. Goddard

    2005-12-09

    In the past three years, we followed the work plan as we suggested in the proposal and made every efforts to fulfill the project objectives. Based on our large amount of creative and productive work, including both of experimental and theoretic aspects, we received important technical breakthrough on naphthenic acid removal process and obtained deep insight on catalytic decarboxylation chemistry. In detail, we established an integrated methodology to serve for all of the experimental and theoretical work. Our experimental investigation results in discovery of four type effective catalysts to the reaction of decarboxylation of model carboxylic acid compounds. The adsorption experiment revealed the effectiveness of several solid materials to naphthenic acid adsorption and acidity reduction of crude oil, which can be either natural minerals or synthesized materials. The test with crude oil also received promising results, which can be potentially developed into a practical process for oil industry. The theoretical work predicted several possible catalytic decarboxylation mechanisms that would govern the decarboxylation pathways depending on the type of catalysts being used. The calculation for reaction activation energy was in good agreement with our experimental measurements.

  11. Oxalic acid mineralization by electrochemical oxidation processes.

    PubMed

    Huang, Yao-Hui; Shih, Yu-Jen; Liu, Cheng-Hong

    2011-04-15

    In this study, two electrochemical oxidation processes were utilized to mineralize oxalic acid which was a major intermediate compound in the oxidation of phenols and other aromatic compounds. The anode rod and cathode net were made of a titanium coated with RuO(2)/IrO(2) (Ti-DSA) and stainless steel (S.S. net, SUS304), respectively. First, the Fered-Fenton process, which used H(2)O(2) and Fe(2+) as additive reagents, achieved 85% of TOC removal. It proceeded with ligand-to-metal charge-transfer (LMCT), which was evidenced by the accumulation of metallic foil on the selected cathode. However, in the absence of H(2)O(2)/Fe(2+), it showed a higher TOC removal efficiency while using Cl(-) only as an additive reagent due to the formation of hypochlorite on the anode. It was also found that the mineralization of oxalic acid by electrolysis generated hypochlorite better than the dosage of commercial hypochlorite without electricity. Also, pH value was a major factor that affected the mineralization efficiency of the oxalic acid due to the chlorine chemistry. 99% TOC removal could be obtained by Cl(-) electrolysis in an acidic environment.

  12. Brooktrout Lake case study: biotic recovery from acid deposition 20 years after the 1990 Clean Air Act Amendments.

    PubMed

    Sutherland, James W; Acker, Frank W; Bloomfield, Jay A; Boylen, Charles W; Charles, Donald F; Daniels, Robert A; Eichler, Lawrence W; Farrell, Jeremy L; Feranec, Robert S; Hare, Matthew P; Kanfoush, Sharon L; Preall, Richard J; Quinn, Scott O; Rowell, H Chandler; Schoch, William F; Shaw, William H; Siegfried, Clifford A; Sullivan, Timothy J; Winkler, David A; Nierzwicki-Bauer, Sandra A

    2015-03-03

    The Adirondack Mountain region is an extensive geographic area (26,305 km(2)) in upstate New York where acid deposition has negatively affected water resources for decades and caused the extirpation of local fish populations. The water quality decline and loss of an established brook trout (Salvelinus fontinalis [Mitchill]) population in Brooktrout Lake were reconstructed from historical information dating back to the late 1880s. Water quality and biotic recovery were documented in Brooktrout Lake in response to reductions of S deposition during the 1980s, 1990s, and 2000s and provided a unique scientific opportunity to re-introduce fish in 2005 and examine their critical role in the recovery of food webs affected by acid deposition. Using C and N isotope analysis of fish collagen and state hatchery feed as well as Bayesian assignment tests of microsatellite genotypes, we document in situ brook trout reproduction, which is the initial phase in the restoration of a preacidification food web structure in Brooktrout Lake. Combined with sulfur dioxide emissions reductions promulgated by the 1990 Clean Air Act Amendments, our results suggest that other acid-affected Adirondack waters could benefit from careful fish re-introduction protocols to initiate the ecosystem reconstruction of important components of food web dimensionality and functionality.

  13. Impact of different cleaning processes on the laser damage threshold of antireflection coatings for Z-Backlighter optics at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Field, Ella; Bellum, John; Kletecka, Damon

    2014-12-01

    We have examined how three different cleaning processes affect the laser-induced damage threshold (LIDT) of antireflection coatings for large dimension, Z-Backlighter laser optics at Sandia National Laboratories. Laser damage thresholds were measured after the coatings were created, and again 4 months later to determine which cleaning processes were most effective. Coatings that received cleaning exhibited the highest LIDTs compared to coatings that were not cleaned. In some cases, there is nearly a twofold increase in the LIDT between the cleaned and uncleaned coatings (19.4 J/cm2 compared to 39.1 J/cm2). Higher LIDTs were realized after 4 months of aging. The most effective cleaning process involved washing the coated surface with mild detergent, and then soaking the optic in a mixture of ethyl alcohol and deionized water. Also, the laser damage results indicate that the presence of nonpropagating (NP) damage sites dominates the LIDTs of almost every optic, despite the cleaning process used. NP damage sites can be attributed to defects such as nodules in the coating or surface contamination, which suggests that pursuing further improvements to the deposition or cleaning processes are worthwhile to achieve even higher LIDTs.

  14. Plasma Cleaning

    NASA Technical Reports Server (NTRS)

    Hintze, Paul E.

    2016-01-01

    NASA's Kennedy Space Center has developed two solvent-free precision cleaning techniques: plasma cleaning and supercritical carbon dioxide (SCCO2), that has equal performance, cost parity, and no environmental liability, as compared to existing solvent cleaning methods.

  15. Knack for reticle cleaning

    NASA Astrophysics Data System (ADS)

    Takahashi, Masumi; Handa, Hitoshi; Shirai, Hisatsugu

    2000-07-01

    Cleaning is one of the most important processes in mask making, because it decides final quality. In cleaning process, it is necessary for reticle cleanliness to not only remove particles from reticle but also prevent adsorption and re-deposition onto reticle. There is the knack for reticle cleaning, and we introduce three keys in this paper. The first key is the rinse after chemical treatment. By the rinse sequence modification, the cleaner was refined and the particle removal ability was improved. The second key is quality control to grasp the situation of cleaner. By the daily check, cleaner's abnormal condition is found at an early stage, quick action is taken, and then stable cleaning quality is kept every day. And the third key is proper choice of cleaners. We have adopted pre-cleaning process and selected the adequate cleaner for each cleaning level and improved cleaning yield and quality.

  16. Sulfur Dioxide Emissions and Market Effects under the Clean Air Act Acid Rain Program.

    PubMed

    Zipper, Carl E; Gilroy, Leonard

    1998-09-01

    The Clean Air Act Amendments of 1990 (CAAA90) established a national program to control sulfur dioxide (SO2) emissions from electricity generation. CAAA90's market-based approach includes trading and banking of Soumissions allowances. We analyzed data describing electric utility SO2 emissions in 1995, the first year of the program's Phase I, and market effects over the 1990-1995 period. Fuel switching and flue-gas desulfurization were the dominant means used in 1995 by targeted generators to reduce emissions to 51% of 1990 levels. Flue-gas desulfur-ization costs, emissions allowance prices, low-sulfur coal prices, and average sulfur contents of coals shipped to electric utilities declined over the 1990-1995 period. Projections indicate that 13-15 million allowances will have been banked during the program's Phase I, which ends in 1999, a quantity expected to last through the first decade of the program's stricter Phase II controls. In 1995, both allowance prices and SO2 emissions were below pre-CAAA90 expectations. The reduction of SO2 emissions beyond pre-CAAA90 expectations, combined with lower-than-expected allowance prices and declining compliance costs, can be viewed as a success for market-based environmental controls.

  17. Uranium recovery from wet process phosphoric acid

    SciTech Connect

    Carrington, O.F.; Pyrih, R.Z.; Rickard, R.S.

    1981-03-24

    Improvement in the process for recovering uranium from wetprocess phosphoric acid solution derived from the acidulation of uraniferous phosphate ores by the use of two ion exchange liquidliquid solvent extraction circuits in which in the first circuit (A) the uranium is reduced to the uranous form; (B) the uranous uranium is recovered by liquid-liquid solvent extraction using a mixture of mono- and di-(Alkyl-phenyl) esters of orthophosphoric acid as the ion exchange agent; and (C) the uranium oxidatively stripped from the agent with phosphoric acid containing an oxidizing agent to convert uranous to uranyl ions, and in the second circuit (D) recovering the uranyl uranium from the strip solution by liquid-liquid solvent extraction using di(2ethylhexyl)phosphoric acid in the presence of trioctylphosphine oxide as a synergist; (E) scrubbing the uranium loaded agent with water; (F) stripping the loaded agent with ammonium carbonate, and (G) calcining the formed ammonium uranyl carbonate to uranium oxide, the improvement comprising: (1) removing the organics from the raffinate of step (B) before recycling the raffinate to the wet-process plant, and returning the recovered organics to the circuit to substantially maintain the required balance between the mono and disubstituted esters; (2) using hydogren peroxide as the oxidizing agent in step (C); (3) using an alkali metal carbonate as the stripping agent in step (F) following by acidification of the strip solution with sulfuric acid; (4) using some of the acidified strip solution as the scrubbing agent in step (E) to remove phosphorus and other impurities; and (5) regenerating the alkali metal loaded agent from step (F) before recycling it to the second circuit.

  18. The Cleaning of OAB Universal Covers - An Origin of Smut in Aluminum Alloys

    SciTech Connect

    Shen, T

    2002-05-14

    The smut that appeared on the universal covers after the OAB cleaning process consists of sub-micron size aluminum particles originating from the machining of these parts prior to cleaning. The rigorous gross and precision cleanings with Brulin in the OAB cleaning process could not completely wash these fine particles away from the surfaces. However, applying a phosphoric acid etch before the cleaning helped to remove these fine aluminum particles. Experimental results again showed that an acid etching before cleaning is essential in preventing the occurrence of smut in aluminum alloy after gross/precision cleaning. A mechanism, based on the electrostatic {zeta}-potential, is proposed to explain the occurrence of smut that is often encountered during the cleaning of aluminum alloys.

  19. Electrolytic Plasma Processing for Sequential Cleaning and Coating Deposition for Cadmium Plating Replacement

    DTIC Science & Technology

    2008-08-01

    in some cases still showing reasonable rankings at 2,688 hrs (16 weeks). Selected specimens are shown during the B117 test in Figure 21. One...experiments with an accelerating voltage and filament current of 40 kV and 30 mA, respectively. Also, the chemical state of the various elements in selected ...the surface. Cross sectional observations on selected cleaned and coated specimens were made using the focused ion beam (FIB) technique. In this

  20. Electric Utility Phase I Acid Rain Compliance Strategies for the Clean Air Act Amendments of 1990

    EIA Publications

    1994-01-01

    The Acid Rain Program is divided into two time periods; Phase I, from 1995 through 1999, and Phase II, starting in 2000. Phase I mostly affects power plants that are the largest sources of SO2 and NOx . Phase II affects virtually all electric power producers, including utilities and nonutilities. This report is a study of the effects of compliance with Phase I regulations on the costs and operations of electric utilities, but does not address any Phase II impacts.

  1. Recovery of gallic acid from gallic acid processing wastewater.

    PubMed

    Wu, Yundong; Zhou, Kanggen; Dong, Shuyu; Yu, Wei; Zhang, Huiqing

    2015-01-01

    In this paper, an extraction technology has been investigated to recover gallic acid (GA) from GA processing wastewater. The effects of phase ratio and pH on the extraction behaviour of tributyl phosphate (TBP)/kerosene were investigated using TBP as the extractant and kerosene as the diluent. Our results showed that using 30% TBP, equilibrium was reached in 1 min. Extraction yields could be improved by increasing the phase ratio (organic phase:aqueous phase). The optimum pH values for the extraction and stripping processes were 3 and 6-9, respectively. The different GA concentrations had no noticeable effects on the distribution ratio between the organic phase and the aqueous phase during the extraction and stripping processes. The extraction yield that resulted from using the six-stage concentrating extraction was greater than 93%, with a phase ratio of 1:1 and an initial pH of 0.6. The GA concentration in the four-stage stripping liquor was greater than 100 g L(-1). Overall, the results indicated that the recovery of GA from GA processing wastewater is feasible using the methods described in this paper.

  2. Lignor process for acidic rock drainage treatment.

    PubMed

    Zhuang, J M; Walsh, T

    2004-09-01

    The process using lignosulfonates for acidic rock drainage (ARD) treatment is referred to as the Lignor process. Lignosulfonates are waste by-products produced in the sulfite pulping process. The present study has shown lignosulfonates are able to protect lime from developing an external surface coating, and hence to favor its dissociation. Further, the addition of lignosulfonates to ARD solutions increased the dotting and settling rate of the formed sludge. The capability of lignosulfonates to form stable metal-lignin complexes makes them very useful in retaining metal ions and thus improving the long-term stability of the sludge against leaching. The Lignor process involves metal sorption with lignosulfonates, ARD neutralization by lime to about pH 7, pH adjustment with caustic soda to 9.4 - 9.6, air oxidation to lower the pH to a desired level, and addition of a minimum amount of FeCl3 for further removal of dissolved metals. The Lignor process removes all concerned metals (especially Al and Mn) from the ARD of the Britannia Mine (located at Britannia Beach, British Columbia, Canada) to a level lower than the limits of the B.C. Regulations. Compared with the high-density sludge (HDS) process, the Lignor process has many advantages, such as considerable savings in lime consumption, greatly reduced sludge volume, and improved sludge stability.

  3. Clean surface processing of rubrene single crystal immersed in ionic liquid by using frequency modulation atomic force microscopy

    SciTech Connect

    Yokota, Yasuyuki; Hara, Hisaya; Morino, Yusuke; Bando, Ken-ichi; Imanishi, Akihito; Fukui, Ken-ichi; Uemura, Takafumi; Takeya, Jun

    2014-06-30

    Surface processing of a rubrene single crystal immersed in ionic liquids is valuable for further development of low voltage transistors operated by an electric double layer. We performed a precise and clean surface processing based on the tip-induced dissolution of rubrene molecules at the ionic liquid/rubrene single crystal interfaces by using frequency modulation atomic force microscopy. Molecular resolution imaging revealed that the tip-induced dissolution proceeded via metastable low density states derived from the anisotropic intermolecular interactions within the crystal structure.

  4. Use of dilute hydrofluoric acid and deep eutectic solvent systems for back end of line cleaning in integrated circuit fabrication

    NASA Astrophysics Data System (ADS)

    Padmanabhan Ramalekshmi Thanu, Dinesh

    Fabrication of current generation integrated circuits involves the creation of multilevel copper/low-k dielectric structures during the back end of line processing. This is done by plasma etching of low-k dielectric layers to form vias and trenches, and this process typically leaves behind polymer-like post etch residues (PER) containing copper oxides, copper fluorides and fluoro carbons, on underlying copper and sidewalls of low-k dielectrics. Effective removal of PER is crucial for achieving good adhesion and low contact resistance in the interconnect structure, and this is accomplished using wet cleaning and rinsing steps. Currently, the removal of PER is carried out using semi-aqueous fluoride based formulations. To reduce the environmental burden and meet the semiconductor industry's environmental health and safety requirements, there is a desire to completely eliminate solvents in the cleaning formulations and explore the use of organic solvent-free formulations. The main objective of this work is to investigate the selective removal of PER over copper and low-k (Coral and Black DiamondRTM) dielectrics using all-aqueous dilute HF (DHF) solutions and choline chloride (CC) -- urea (U) based deep eutectic solvent (DES) system. Initial investigations were performed on plasma oxidized copper films. Copper oxide and copper fluoride based PER films representative of etch products were prepared by ashing g-line and deep UV photoresist films coated on copper in CF4/O2 plasma. PER removal process was characterized using scanning electron microscopy and X-ray photoelectron spectroscopy and verified using electrochemical impedance spectroscopy measurements. A PER removal rate of ~60 A/min was obtained using a 0.2 vol% HF (pH 2.8). Deaeration of DHF solutions improved the selectivity of PER over Cu mainly due to reduced Cu removal rate. A PER/Cu selectivity of ~20:1 was observed in a 0.05 vol% deaerated HF (pH 3). DES systems containing 2:1 U/CC removed PER at a rate of

  5. Bonding effectiveness of self-adhesive and conventional-type adhesive resin cements to CAD/CAM resin blocks. Part 2: Effect of ultrasonic and acid cleaning.

    PubMed

    Kawaguchi, Asuka; Matsumoto, Mariko; Higashi, Mami; Miura, Jiro; Minamino, Takuya; Kabetani, Tomoshige; Takeshige, Fumio; Mine, Atsushi; Yatani, Hirofumi

    2016-01-01

    The present study assessed the effect of ultrasonic and acid cleaning on resin cement bonding to CAD/CAM resin blocks. One of two resin cements, PANAVIA V5 (PV5) or PANAVIA SA CEMENT HANDMIX (PSA), were bonded to one of 24 CAD/CAM blocks (KATANA AVENCIA BLOCK). Each cement group was divided into four subgroups: no cleaning (Ctl), ultrasonic cleaning (Uc), acid cleaning (Ac) and Uc+Ac. Micro-tensile bond strengths (µTBSs) were measured immediately and 1, 3, and 6 months after water storage. Block surfaces after each treatment were analyzed by scanning electron microscopy. Analysis of variance revealed a statistically significant effect for the parameters 'surface treatment' (p<0.001, F=40), 'resin cement' (p<0.001, F=696) and 'water aging' (p<0.001, F=71). The PV5 group exhibited higher µTBS values than the PSA group. Although cleaning after sandblasting was effective in removing residual alumina particles, it did not affect the long-term bonding durability with non-contaminated CAD/CAM resin blocks.

  6. H.R. 474: A Bill to repeal provisions of the Clean Air Act dealing with acid rain. Introduced in the House of Representatives, One Hundred Fourth Congress, First session

    SciTech Connect

    1995-12-31

    The text of this proposed legislation reads as follows: `Section 1. Repeal of Clean Air Act provisions relating to Acid Rain. Title IV of the Clean Air Act (42 U.S.C. 7401 and following), relating to acid deposition control, is hereby repealed.`

  7. [Cleaning and disinfection in nursing homes. Data on quality of structure, process and outcome in nursing homes in Frankfurt am Main, Germany, 2011].

    PubMed

    Heudorf, U; Gasteyer, S; Samoiski, Y; Voigt, K

    2012-08-01

    Due to the Infectious Disease Prevention Act, public health services in Germany are obliged to check the infection prevention in hospitals and other medical facilities as well as in nursing homes. In Frankfurt/Main, Germany, standardized control visits have been performed for many years. In 2011 focus was laid on cleaning and disinfection of surfaces. All 41 nursing homes were checked according to a standardized checklist covering quality of structure (i.e. staffing, hygiene concept), quality of process (observation of the cleaning processes in the homes) and quality of output, which was monitored by checking the cleaning of fluorescent marks which had been applied some days before and should have been removed via cleaning in the following days before the final check. In more than two thirds of the homes, cleaning personnel were salaried, in one third external personnel were hired. Of the homes 85% provided service clothing and all of them offered protective clothing. All homes had established hygiene and cleaning concepts, however, in 15% of the homes concepts for the handling of Norovirus and in 30% concepts for the handling of Clostridium difficile were missing. Regarding process quality only half of the processes observed, i.e. cleaning of hand contact surfaces, such as handrails, washing areas and bins, were correct. Only 44% of the cleaning controls were correct with enormous differences between the homes (0-100%). The correlation between quality of process and quality of output was significant. There was good quality of structure in the homes but regarding quality of process and outcome there was great need for improvement. This was especially due to faults in communication and coordination between cleaning personnel and nursing personnel. Quality outcome was neither associated with the number of the places for residents nor with staffing. Thus, not only quality of structure but also quality of process and outcome should be checked by the public health

  8. Cleaning Up.

    ERIC Educational Resources Information Center

    Walker, John

    2002-01-01

    Offers strategies to make schools' cleaning operations run more smoothly. Discusses how to estimate the amount of space that needs cleaning and how long it should take, the benefits of team cleaning versus zone cleaning, and the importance of monitoring complaints and overtime to ensure staff is performing efficiently. (EV)

  9. Effect of mechanical cleaning with granular material on the permeability of submerged membranes in the MBR process.

    PubMed

    Siembida, B; Cornel, P; Krause, S; Zimmermann, B

    2010-07-01

    The research on fouling reduction and permeability loss in membrane bioreactors (MBRs) was carried out at two MBR pilot plants with synthetic and real wastewater. On the one hand, the effect of mechanical cleaning with an abrasive granular material on the performance of a submerged MBR process was tested. Additionally, scanning electron microscopy (SEM) measurements and integrity tests were conducted to check whether the membrane material was damaged by the granulate.The results indicate that the fouling layer formation was significantly reduced by abrasion using the granular material. This technique allowed a long-term operation of more than 600 days at a flux up to 40 L/(m2 h) without chemical cleaning of the membranes. Moreover, it was demonstrated that the membrane bioreactor (MBR) with granulate could be operated with more than 20% higher flux compared to a conventional MBR operation. SEM images and integrity tests showed that in consequence of abrasive cleaning, the granular material left brush marks on the membrane surface, however, the membrane function was not affected.In a parallel experimental set up, the impact of the operationally defined "truly soluble fraction" <0.04 microm from wastewater and activated sludge on the ultrafiltration membrane fouling characteristics was investigated. It was shown that the permeability loss was caused predominantly by the colloidal fraction >0.04 microm rather than by the dissolved fraction of wastewater and activated sludge.

  10. Steam gasification of acid-hydrolysis biomass CAHR for clean syngas production.

    PubMed

    Chen, Guanyi; Yao, Jingang; Yang, Huijun; Yan, Beibei; Chen, Hong

    2015-03-01

    Main characteristics of gaseous product from steam gasification of acid-hydrolysis biomass CAHR have been investigated experimentally. The comparison in terms of evolution of syngas flow rate, syngas quality and apparent thermal efficiency was made between steam gasification and pyrolysis in the lab-scale apparatus. The aim of this study was to determine the effects of temperature and steam to CAHR ratio on gas quality, syngas yield and energy conversion. The results showed that syngas and energy yield were better with gasification compared to pyrolysis under identical thermal conditions. Both high gasification temperature and introduction of proper steam led to higher gas quality, higher syngas yield and higher energy conversion efficiency. However, excessive steam reduced hydrogen yield and energy conversion efficiency. The optimal value of S/B was found to be 3.3. The maximum value of energy ratio was 0.855 at 800°C with the optimal S/B value.

  11. Advanced Acid Gas Separation Technology for Clean Power and Syngas Applications

    SciTech Connect

    Amy, Fabrice; Hufton, Jeffrey; Bhadra, Shubhra; Weist, Edward; Lau, Garret; Jonas, Gordon

    2015-06-30

    Air Products has developed an acid gas removal technology based on adsorption (Sour PSA) that favorably compares with incumbent AGR technologies. During this DOE-sponsored study, Air Products has been able to increase the Sour PSA technology readiness level by successfully operating a two-bed test system on coal-derived sour syngas at the NCCC, validating the lifetime and performance of the adsorbent material. Both proprietary simulation and data obtained during the testing at NCCC were used to further refine the estimate of the performance of the Sour PSA technology when expanded to a commercial scale. In-house experiments on sweet syngas combined with simulation work allowed Air Products to develop new PSA cycles that allowed for further reduction in capital expenditure. Finally our techno economic analysis of the use the Sour PSA technology for both IGCC and coal-to-methanol applications suggests significant improvement of the unit cost of electricity and methanol compared to incumbent AGR technologies.

  12. Evaluation of Mechanical Properties and Structural Changes of Ceramic Filter Materials for Hot Gas Cleaning under Simulated Process Conditions

    SciTech Connect

    Westerheide, R.; von der Wehd, C.; Adler, J.; Rehak, P.

    2002-09-19

    The objective of this study is to evaluate changes in structure and mechanical properties of ceramic filter materials under simulated corrosive process conditions. Due to an analysis of the mechanisms of degradation firstly an optimization of materials shall be enabled and secondly a material selection for specific applications shall be relieved. This publication describes the investigations made on many ceramic support materials based on oxides and carbides. Both commercially available and newly developed support materials have been evaluated for specific applications in hot gas cleaning.

  13. Acid sorption regeneration process using carbon dioxide

    DOEpatents

    King, C. Judson; Husson, Scott M.

    2001-01-01

    Carboxylic acids are sorbed from aqueous feedstocks onto a solid adsorbent in the presence of carbon dioxide under pressure. The acids are freed from the sorbent phase by a suitable regeneration method, one of which is treating them with an organic alkylamine solution thus forming an alkylamine-carboxylic acid complex which thermally decomposes to the desired carboxylic acid and the alkylamine.

  14. Steam generators secondary side chemical cleaning at Point Lepreau using the Siemens high temperature process

    SciTech Connect

    Verma, K.; MacNeil, C.; Odar, S.; Kuhnke, K.

    1997-02-01

    This paper describes the chemical cleaning of the four steam generators at the Point Lepreau facility, which was accomplished as a part of a normal service outage. The steam generators had been in service for twelve years. Sludge samples showed the main elements were Fe, P and Na, with minor amounts of Ca, Mg, Mn, Cr, Zn, Cl, Cu, Ni, Ti, Si, and Pb, 90% in the form of Magnetite, substantial phosphate, and trace amounts of silicates. The steam generators were experiencing partial blockage of broached holes in the TSPs, and corrosion on tube ODs in the form of pitting and wastage. In addition heat transfer was clearly deteriorating. More than 1000 kg of magnetite and 124 kg of salts were removed from the four steam generators.

  15. Model development for naphthenic acids ozonation process.

    PubMed

    Al Jibouri, Ali Kamel H; Wu, Jiangning

    2015-02-01

    Naphthenic acids (NAs) are toxic constituents of oil sands process-affected water (OSPW) which is generated during the extraction of bitumen from oil sands. NAs consist mainly of carboxylic acids which are generally biorefractory. For the treatment of OSPW, ozonation is a very beneficial method. It can significantly reduce the concentration of NAs and it can also convert NAs from biorefractory to biodegradable. In this study, a factorial design (2(4)) was used for the ozonation of OSPW to study the influences of the operating parameters (ozone concentration, oxygen/ozone flow rate, pH, and mixing) on the removal of a model NAs in a semi-batch reactor. It was found that ozone concentration had the most significant effect on the NAs concentration compared to other parameters. An empirical model was developed to correlate the concentration of NAs with ozone concentration, oxygen/ozone flow rate, and pH. In addition, a theoretical analysis was conducted to gain the insight into the relationship between the removal of NAs and the operating parameters.

  16. Actual-Waste Tests of Enhanced Chemical Cleaning for Retrieval of SRS HLW Sludge Tank Heels and Decomposition of Oxalic Acid - 12256

    SciTech Connect

    Martino, Christopher J.; King, William D.; Ketusky, Edward T.

    2012-07-01

    Savannah River National Laboratory conducted a series of tests on the Enhanced Chemical Cleaning (ECC) process using actual Savannah River Site waste material from Tanks 5F and 12H. Testing involved sludge dissolution with 2 wt% oxalic acid, the decomposition of the oxalates by ozonolysis (with and without the aid of ultraviolet light), the evaporation of water from the product, and tracking the concentrations of key components throughout the process. During ECC actual waste testing, the process was successful in decomposing oxalate to below the target levels without causing substantial physical or chemical changes in the product sludge. During ECC actual waste testing, the introduction of ozone was successful in decomposing oxalate to below the target levels. This testing did not identify physical or chemical changes in the ECC product sludge that would impact downstream processing. The results from these tests confirm observations made by AREVA NP during larger scale testing with waste simulants. This testing, however, had a decreased utilization of ozone, requiring approximately 5 moles of ozone per mole of oxalate decomposed. Decomposition of oxalates in sludge dissolved in 2 wt% OA to levels near 100 ppm oxalate using ECC process conditions required 8 to 12.5 hours without the aid of UV light and 4.5 to 8 hours with the aid of UV light. The pH and ORP were tracked during decomposition testing. Sludge components were tracked during OA decomposition, showing that most components have the highest soluble levels in the initial dissolved sludge and early decomposition samples and exhibit lower soluble levels as OA decomposition progresses. The Deposition Tank storage conditions that included pH adjustment to approximately 1 M free hydroxide tended to bring the soluble concentrations in the ECC product to nearly the same level for each test regardless of storage time, storage temperature, and contact with other tank sludge material. (authors)

  17. Adipic acid enhanced limestone flue gas desulfurization process - an assessment

    SciTech Connect

    Mobley, J.D.; Chang, J.C.S.

    1981-12-01

    Adipic acid, when used as an additive in a limestone FGD system, greatly increases both SO/sub 2/ removal and limestone utilization. Most existing limestone scrubbers would benefit from adipic acid addition without major process changes. No significant operating problems or adverse environmental impacts have been identified. The adipic acid enhanced system is economically attractive. Waste dibasic acids and glycolic acid appear to provide benefits similar to adipic acid at a lower cost.

  18. Micro-shear bond strength and surface micromorphology of a feldspathic ceramic treated with different cleaning methods after hydrofluoric acid etching

    PubMed Central

    STEINHAUSER, Henrique Caballero; TURSSI, Cecília Pedroso; FRANÇA, Fabiana Mantovani Gomes; do AMARAL, Flávia Lucisano Botelho; BASTING, Roberta Tarkany

    2014-01-01

    Objective The aim of this study was to evaluate the effect of feldspathic ceramic surface cleaning on micro-shear bond strength and ceramic surface morphology. Material and Methods Forty discs of feldspathic ceramic were prepared and etched with 10% hydrofluoric acid for 2 minutes. The discs were randomly distributed into five groups (n=8): C: no treatment, S: water spray + air drying for 1 minute, US: immersion in ultrasonic bath for 5 minutes, F: etching with 37% phosphoric acid for 1 minute, followed by 1-minute rinse, F+US: etching with 37% phosphoric acid for 1 minute, 1-minute rinse and ultrasonic bath for 5 minutes. Composite cylinders were bonded to the discs following application of silane and hydrophobic adhesive for micro-shear bond strength testing in a universal testing machine at 0.5 mm/min crosshead speed until failure. Stereomicroscopy was used to classify failure type. Surface micromorphology of each treatment type was evaluated by scanning electron microscopy at 500 and 2,500 times magnification. Results One-way ANOVA test showed no significant difference between treatments (p=0.3197) and the most common failure types were cohesive resin cohesion followed by adhesive failure. Micro-shear bond strength of the feldspathic ceramic substrate to the adhesive system was not influenced by the different surface cleaning techniques. Absence of or less residue was observed after etching with hydrofluoric acid for the groups US and F+US. Conclusions Combining ceramic cleaning techniques with hydrofluoric acid etching did not affect ceramic bond strength, whereas, when cleaning was associated with ultrasound, less residue was observed. PMID:24676577

  19. Parallel-plate wet denuder coupled ion chromatograph for near-real-time detection of trace acidic gases in clean room air.

    PubMed

    Takeuchi, Masaki; Tsunoda, Hiromichi; Tanaka, Hideji; Shiramizu, Yoshimi

    2011-01-01

    This paper describes the performance of our automated acidic (CH(3)COOH, HCOOH, HCl, HNO(2), SO(2), and HNO(3)) gases monitor utilizing a parallel-plate wet denuder (PPWD). The PPWD quantitatively collects gaseous contaminants at a high sample flow rate (∼8 dm(3) min(-1)) compared to the conventional methods used in a clean room. Rapid response to any variability in the sample concentration enables near-real-time monitoring. In the developed monitor, the analyte collected with the PPWD is pumped into one of two preconcentration columns for 15 min, and determined by means of ion chromatography. While one preconcentration column is used for chromatographic separation, the other is used for loading the sample solution. The system allows continuous monitoring of the common acidic gases in an advanced semiconductor manufacturing clean room.

  20. Technology Insertion (TI)/Industrial Process Improvement (IP) Task Order Number 14. Contract Summary Report/Quick Fix Plan for SA-ALC/MAEPNC (Cleaning). Volume 5. SA-ALC

    DTIC Science & Technology

    1990-11-16

    DISASSEMBLE ITEM SORT PER PICTURE BOOK If[PLACE IN BASKET OR O PALLET I TAG FOR PROCESS iA AUTOMATED CLEANING j.YES - CLEANUREQUIED NO HAND CLEANING...requiring cleaning are sorted by cleaning process and placed in stainless steel wire baskets or onto plastic pallets . A stainless steel tag is attached to...engine parts can be stored/hung while they await assembly. With this arrangement (rather than the current system of storing these parts in the stacker

  1. Automated cleaning of electronic components

    SciTech Connect

    Drotning, W.; Meirans, L.; Wapman, W.; Hwang, Y.; Koenig, L.; Petterson, B.

    1994-07-01

    Environmental and operator safety concerns are leading to the elimination of trichloroethylene and chlorofluorocarbon solvents in cleaning processes that remove rosin flux, organic and inorganic contamination, and particulates from electronic components. Present processes depend heavily on these solvents for manual spray cleaning of small components and subassemblies. Use of alternative solvent systems can lead to longer processing times and reduced quality. Automated spray cleaning can improve the quality of the cleaning process, thus enabling the productive use of environmentally conscious materials, while minimizing personnel exposure to hazardous materials. We describe the development of a prototype robotic system for cleaning electronic components in a spray cleaning workcell. An important feature of the prototype system is the capability to generate the robot paths and motions automatically from the CAD models of the part to be cleaned, and to embed cleaning process knowledge into the automatically programmed operations.

  2. Rare regions and Griffiths singularities at a clean critical point: the five-dimensional disordered contact process.

    PubMed

    Vojta, Thomas; Igo, John; Hoyos, José A

    2014-07-01

    We investigate the nonequilibrium phase transition of the disordered contact process in five space dimensions by means of optimal fluctuation theory and Monte Carlo simulations. We find that the critical behavior is of mean-field type, i.e., identical to that of the clean five-dimensional contact process. It is accompanied by off-critical power-law Griffiths singularities whose dynamical exponent z' saturates at a finite value as the transition is approached. These findings resolve the apparent contradiction between the Harris criterion, which implies that weak disorder is renormalization-group irrelevant, and the rare-region classification, which predicts unconventional behavior. We confirm and illustrate our theory by large-scale Monte Carlo simulations of systems with up to 70(5) sites. We also relate our results to a recently established general relation between the Harris criterion and Griffiths singularities [Phys. Rev. Lett. 112, 075702 (2014)], and we discuss implications for other phase transitions.

  3. Process for the extraction of strontium from acidic solutions

    DOEpatents

    Horwitz, E.P.; Dietz, M.L.

    1993-01-01

    The invention is a process for selectively extracting strontium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant solution is a macrocyclic polyether in an aliphatic hydrocarbon diluent containing a phase modifier. The process will selectively extract strontium values from nitric acid solutions which are up to 6 molar in nitric acid.

  4. Process for the extraction of strontium from acidic solutions

    DOEpatents

    Horwitz, E.P.; Dietz, M.L.

    1994-09-06

    The invention is a process for selectively extracting strontium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant solution is a macrocyclic polyether in an aliphatic hydrocarbon diluent containing a phase modifier. The process will selectively extract strontium values from nitric acid solutions which are up to 6 molar in nitric acid. 4 figs.

  5. Process for the extraction of strontium from acidic solutions

    DOEpatents

    Horwitz, E. Philip; Dietz, Mark L.

    1994-01-01

    The invention is a process for selectively extracting strontium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant solution is a macrocyclic polyether in an aliphatic hydrocarbon diluent containing a phase modifier. The process will selectively extract strontium values from nitric acid solutions which are up to 6 molar in nitric acid.

  6. Clean Air Act Section 112(d)(6) Technology Review for Pulping and Papermaking Processes Memorandum

    EPA Pesticide Factsheets

    The purpose of this November 2011 document is to present the results of a review of available information on developments in practices, processes, and control technologies that apply to pulping and papermaking processes.

  7. How Clean is the Processing Environment and Can We Fix It?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research from our laboratories has shown that shell egg processing facilities should enhance processing plant sanitation practices. A survey of shell egg processing facilities located in the southeastern US found no differences in aerobic bacteria and Enterobacteriaceae levels on plant surfaces bef...

  8. ENVIRONMENTAL TECHNOLOGY INITIATIVE: CHEMICAL-FREE CLEANING OF SEMICONDUCTORS BY THE RADIANCE PROCESS

    EPA Science Inventory

    The Radiance Process is a patented dry process for removing contaminants from surfaces. It uses light, usually from a pulsed laser and a gas inert to the surface, to entrain released contaminants. The focus of this effort is to assess the applicability of the Radiance Process t...

  9. DFC coal reclamation system for the plant of the future for processing clean coal

    SciTech Connect

    Karsnak, G.; Hoppe, J.

    1993-12-31

    The coal resources of the United States are vast and provide a sound uninterruptable source of energy for both domestic use and international export which will continue to be available for hundreds of years in the future. It has been estimated that the vast U.S. Coal resources can be used as an economic way of producing power for another 300-400 years as predicted by both federal and industrial energy analysis sources. The {open_quotes}proven coal reserves{close_quotes} of the country or demonstrated reserve base (DRB) was estimated to be 467 billion short tons in 1987 based on DOE/EIA estimates of the coal that can be economically removed from the ground by state-of-the-art coal mining technology currently used by industry. These estimates are based on {open_quotes}state level{close_quotes} data that were collected by the DOE/EIA in recent studies attempting to quantify the economically usable coal reserves of the U.S. and provide estimates of the total available reserve base. The estimation of the U.S. coal resource base often leads to a misunderstanding of the actual coal reserves available as a carbon based fuel. Coal resources are defined as the amount of coal in the ground which may be made available for end-use in energy production while the quantifying of coal reserves is based on the amount of recoverable coal which can be economically extracted from the ground through conventional mining methods. What is customarily ignored in these estimates is the coal waste generated during coal beneficiation and which accumulates as a result of coal cleaning plants associated with most coal utilization applications.

  10. A benchmark investigation on cleaning photomasks using wafer cleaning technologies

    NASA Astrophysics Data System (ADS)

    Kindt, Louis; Burnham, Jay; Marmillion, Pat

    2004-12-01

    As new technologies are developed for smaller linewidths, the specifications for mask cleanliness become much stricter. Not only must the particle removal efficiency increase, but the largest allowable particle size decreases. Specifications for film thickness and surface roughness are becoming tighter and consequently the integrity of these films must be maintained in order to preserve the functionality of the masks. Residual contamination remaining on the surface of the mask after cleaning processes can lead to subpellicle defect growth once the mask is exposed in a stepper environment. Only during the last several years, has an increased focus been put on improving mask cleaning. Over the years, considerably more effort has been put into developing advanced wafer cleaning technologies. However, because of the small market involved with mask cleaning, wafer cleaning equipment vendors have been reluctant to invest time and effort into developing cleaning processes and adapting their toolset to accommodate masks. With the advent of 300 mm processing, wafer cleaning tools are now more easily adapted to processing masks. These wafer cleaning technologies may offer a solution to the difficulties of mask cleaning and need to be investigated to determine whether or not they warrant continued investigation. This paper focuses on benchmarking advanced wafer cleaning technologies applied to mask cleaning. Ozonated water, hydrogenated water, super critical fluids, and cryogenic cleaning have been investigated with regards to stripping resist and cleaning particles from masks. Results that include film thickness changes, surface contamination, and particle removal efficiency will be discussed.

  11. Microstructure and giant magnetoresistance of Co-Cu granular films fabricated under the extremely clean sputtering process

    NASA Astrophysics Data System (ADS)

    Tsunoda, Masakiyo; Okuyama, Kentaro; Ooba, Makoto; Takahashi, Migaku

    1998-06-01

    In order to clarify the influence of the impurities in the sputtering atmosphere on the microstructure and the giant magnetoresistance (GMR) properties of nanogranular thin films, Co-Cu alloy films were prepared on quartz substrates at room temperature under the different purity of the sputtering atmosphere by changing the base pressure, 10-11 Torr extremely clean process (XC) and 10-7 Torr lower grade process (LG). The correlation between the microstructure and the GMR of films after an annealing procedure is discussed. As results, we found that; (1) A Co-rich phase combined with oxygen was formed at grain boundary in the films as deposited under the LG process; (2) the gradual progress of the grain growth of precipitates with increasing annealing temperature was observed in the XC-processed films, while the coarse grain growth of the matrix phase, resulting in the abrupt change of magnetoresistance occurred in the LG-processed films. We conclude that regulated impurity concentration in the films is an essential parameter to control the precipitation process from the supersaturated solid solution and to realize the desirable microstructure of the nanogranular GMR thin films.

  12. Comparison of dicarboxylic acids and related compounds in aerosol samples collected in Xi'an, China during haze and clean periods

    NASA Astrophysics Data System (ADS)

    Cheng, Chunlei; Wang, Gehui; Zhou, Bianhong; Meng, Jingjing; Li, Jianjun; Cao, Junji; Xiao, Shun

    2013-12-01

    PM10 aerosols from Xi'an, a mega city of China in winter and summer, 2009 were measured for secondary organic aerosols (SOA) (i.e., dicarboxylic acids (DCA), keto-carboxylic acids, and α-dicarbonyls), water-soluble organic (WSOC) and inorganic carbon (WSIC), elemental carbon (EC) and organic carbon (OC). Molecular compositions of SOA on haze and clean days in both seasons were compared to investigate their sources and formation mechanisms. DCA in the samples were 1843 ± 810 ng m-3 in winter and 1259 ± 781 ng m-3 in summer, respectively, which is similar and even higher than those measured in 2003. Oxalic acid (C2, 1162 ± 570 ng m-3 in winter and 1907 ± 707 ng m-3 in summer) is the predominant species of DCA, followed by t-phthalic (tPh) in winter and phthalic (Ph) in summer. Such a molecular composition is different from those in other Asian cities where succinic acid (C4) or malonic acid (C3) is the second highest species, which is mostly due to significant emissions from household combustion of coal and open burning of waste material in Xi'an. Mass ratios of C2/diacids, diacids/WSOC, WSOC/OC and individual diacid-C/WSOC are higher on the haze days than on the clean days in both seasons, suggesting an enhanced SOA production under the haze condition. We also found that the haze samples are acidic while the clean samples are almost neutral. Such a difference in particle acidity is consistent with the enhanced SOA production, because acid-catalysis is an important aqueous-phase formation pathway of SOA. Gly/mGly mass ratio showed higher values on haze days than on clean day in both seasons. We comprehensively investigated the ratio in literature and found a consistent pattern. Based on our observation results and those documented data we proposed for the first time that concentration ratio of Gly/mGly can be taken as an indicator of aerosol ageing.

  13. Cleaning agents and asthma.

    PubMed

    Quirce, S; Barranco, P

    2010-01-01

    Although cleaners represent a significant part of the working population worldwide, they remain a relatively understudied occupational group. Epidemiological studies have shown an association between cleaning work and asthma, but the risk factors are uncertain. Cleaning workers are exposed to a large variety of cleaning products containing both irritants and sensitizers, as well as to common indoor allergens and pollutants. Thus, the onset or aggravation of asthma in this group could be related to an irritant-induced mechanism or to specific sensitization. The main sensitizers contained in cleaning products are disinfectants, quaternary ammonium compounds (such as benzalkonium chloride), amine compounds, and fragrances.The strongest airway irritants in cleaning products are bleach (sodium hypochlorite), hydrochloric acid, and alkaline agents (ammonia and sodium hydroxide), which are commonly mixed together. Exposure to the ingredients of cleaning products may give rise to both new-onset asthma, with or without a latency period, and work-exacerbated asthma. High-level exposure to irritants may induce reactive airways dysfunction syndrome. Cleaning workers may also have a greater relative risk of developing asthma due to prolonged low-to-moderate exposure to respiratory irritants. In addition, asthma-like symptoms without confirmed asthma are also common after exposure to cleaning agents. In many cleaners, airway symptoms induced by chemicals and odors cannot be explained by allergic or asthmatic reactions. These patients may have increased sensitivity to inhaled capsaicin, which is known to reflect sensory reactivity, and this condition is termed airway sensory hyperreactivity.

  14. Process for clean-burning fuel from low-rank coal

    DOEpatents

    Merriam, Norman W.; Sethi, Vijay; Brecher, Lee E.

    1994-01-01

    A process for upgrading and stabilizing low-rank coal involving the sequential processing of the coal through three fluidized beds; first a dryer, then a pyrolyzer, and finally a cooler. The fluidizing gas for the cooler is the exit gas from the pyrolyzer with the addition of water for cooling. Overhead gas from pyrolyzing is likely burned to furnish the energy for the process. The product coal exits with a tar-like pitch sealant to enhance its safety during storage.

  15. Municipal Wastewater Processes. Instructor Guide. Working for Clean Water: An Information Program for Advisory Groups.

    ERIC Educational Resources Information Center

    Stoltzfus, Lorna

    Described is a one-hour overview of the unit processes which comprise a municipal wastewater treatment system. Topics covered in this instructor's guide include types of pollutants encountered, treatment methods, and procedures by which wastewater treatment processes are selected. A slide-tape program is available to supplement this component of…

  16. Investigation into environmentally friendly alternative cleaning processes for hybrid microcircuits to replace vapor degreasing with 1,1,1-trichloroethane. Final report

    SciTech Connect

    Adams, B.E.

    1997-02-01

    Two cleaning processes, one aqueous and one nonaqueous, were investigated as potential replacements for the vapor degreasing process using 1,1,1 trichloroethane (TCA) for hybrid microcircuit assemblies. The aqueous process was based upon saponification chemistry. A 10% solution of either Kester 5768 or Armakleen 2001, heated to 140 F, was sprayed on the hybrid at 450 psig and a flow rate of 5 gpm through a specially designed nozzle which created microdroplets. The nonaqueous process was based upon dissolution chemistry and used d-limonene as the solvent in an immersion and spray process. The d-limonene solvent was followed by an isopropyl alcohol spray rinse to remove the excess d-limonene. The aqueous microdroplet process was found to be successful only for solder reflow profiles that did not exceed 210 C. Furthermore, removal of component marking was a problem and the spray pressure had to be reduced to 130 psig to eliminate damage to capacitor end caps. The d-limonene cleaning was found to be successful for solder reflow temperature up to 250 C when using a four-step cleaning process. The four steps included refluxing the hybrid at 80 C, followed by soaking the hybrid in d-limonene which is heated to 80 C, followed by spray cleaning at 80 psig with room temperature d-limonene, followed by spray cleaning at 80 psig with room temperature IPA was developed to remove residual flux from the hybrid microcircuits. This process was the most robust and most closely matched the cleaning ability of TCA.

  17. Clean process to destroy arsenic-containing organic compounds with recovery of arsenic

    DOEpatents

    Upadhye, Ravindra S.; Wang, Francis T.

    1996-01-01

    A reduction method is provided for the treatment of arsenic-containing organic compounds with simultaneous recovery of pure arsenic. Arsenic-containing organic compounds include pesticides, herbicides, and chemical warfare agents such as Lewisite. The arsenic-containing compound is decomposed using a reducing agent. Arsine gas may be formed directly by using a hydrogen-rich reducing agent, or a metal arsenide may be formed using a pure metal reducing agent. In the latter case, the arsenide is reacted with an acid to form arsine gas. In either case, the arsine gas is then reduced to elemental arsenic.

  18. Clean process to destroy arsenic-containing organic compounds with recovery of arsenic

    DOEpatents

    Upadhye, R.S.; Wang, F.T.

    1996-08-13

    A reduction method is provided for the treatment of arsenic-containing organic compounds with simultaneous recovery of pure arsenic. Arsenic-containing organic compounds include pesticides, herbicides, and chemical warfare agents such as Lewisite. The arsenic-containing compound is decomposed using a reducing agent. Arsine gas may be formed directly by using a hydrogen-rich reducing agent, or a metal arsenide may be formed using a pure metal reducing agent. In the latter case, the arsenide is reacted with an acid to form arsine gas. In either case, the arsine gas is then reduced to elemental arsenic. 1 fig.

  19. Process for clean-burning fuel from low-rank coal

    DOEpatents

    Merriam, N.W.; Sethi, V.; Brecher, L.E.

    1994-06-21

    A process is described for upgrading and stabilizing low-rank coal involving the sequential processing of the coal through three fluidized beds; first a dryer, then a pyrolyzer, and finally a cooler. The fluidizing gas for the cooler is the exit gas from the pyrolyzer with the addition of water for cooling. Overhead gas from pyrolyzing is likely burned to furnish the energy for the process. The product coal exits with a tar-like pitch sealant to enhance its safety during storage. 1 fig.

  20. NATO COMMITTEE ON THE CHALLENGES TO MODERN SOCIETY PILOT STUDY: CLEAN PRODUCTS AND PROCESSES

    EPA Science Inventory

    Promote cooperation for improving the common pollution landscape by stimulating cross-national dialogues and collaboration. Share knowledge on the methods, tools, and technologies for making cleaner products and processes possible.

  1. THE CHEMICAL AND RADIATION RESISTANCE OF POLYPHENYLENE SULFIDE AS ENCOUNTERED IN THE NUCLEAR WASTE CLEANING PROCESSES

    SciTech Connect

    Fondeur, F.

    2011-10-20

    Polyphenylene sulfide (PPS) is extremely resistant to gamma irradiation, caustic solution, and dilute nitric acid. PPS is the material of construction for the coalescers used in the Modular Caustic-Side Solvent Extraction Unit (MCU). After applying the equivalent of 16 years of gamma irradiation and several months of exposures to caustic solution, no dimensional changes nor chemical changes were detected in PPS whether the PPS was in fiber form or in a composite with E-glass fibers. However, PPS acts as a media for heterogeneous nucleation. In particular, PPS appears to favor aluminosilicate formation in saturated solutions of aluminum and silicon in caustic environments. Parallel testing, in progress, is examining the stability of PPS when exposed to the new solvent formulation under development for MCU. Preliminary data, after two months of exposure, PPS is remarkably stable to the new solvent.

  2. Food safety and amino acid balance in processed cassava "Cossettes".

    PubMed

    Diasolua Ngudi, Delphin; Kuo, Yu Haey; Lambein, Fernand

    2002-05-08

    Processed cassava (Manihot esculenta Crantz) roots provide more than 60% of the daily energy intake for the population of the Democratic Republic of Congo. Insufficiently processed cassava roots in a diet deficient in sulfur amino acid have been reported to cause the irreversible paralytic disease konzo, afflicting thousands of women and children in the remote rural areas of Bandundu Province. "Cossettes" (processed cassava roots) purchased in several markets of Kinshasa were analyzed for their content of cyanogens, free amino acids, and total protein amino acids. Residual cyanogen levels were below the safe limit recommended by the codex FAO/WHO for cassava flour (10 mg kg(-1)). The amino acid score was evaluated. Lysine and leucine were the limiting amino acids. Methionine content was very low and contributed about 13% of the total sulfur amino acids. Dietary requirements for sulfur amino acids need to be adjusted for the loss caused by cyanogen detoxification.

  3. Clean coal

    SciTech Connect

    Liang-Shih Fan; Fanxing Li

    2006-07-15

    The article describes the physics-based techniques that are helping in clean coal conversion processes. The major challenge is to find a cost- effective way to remove carbon dioxide from the flue gas of power plants. One industrially proven method is to dissolve CO{sub 2} in the solvent monoethanolamine (MEA) at a temperature of 38{sup o}C and then release it from the solvent in another unit when heated to 150{sup o}C. This produces CO{sub 2} ready for sequestration. Research is in progress with alternative solvents that require less energy. Another technique is to use enriched oxygen in place of air in the combustion process which produces CO{sub 2} ready for sequestration. A process that is more attractive from an energy management viewpoint is to gasify coal so that it is partially oxidized, producing a fuel while consuming significantly less oxygen. Several IGCC schemes are in operation which produce syngas for use as a feedstock, in addition to electricity and hydrogen. These schemes are costly as they require an air separation unit. Novel approaches to coal gasification based on 'membrane separation' or chemical looping could reduce the costs significantly while effectively capturing carbon dioxide. 1 ref., 2 figs., 1 photo.

  4. Development of a microwave coal cleaning process. Technical progress report, December 1984-February 1985

    SciTech Connect

    Not Available

    1985-03-01

    The objective of the program is to conduct bench scale studies to evaluate a process using microwave irradiation of caustic treated coal to remove sulfur and ash from coal. The program is organized into three tasks: equipment design and installation, shakedown testing, and process testing. This report covers and results from the design activities during the report period and includes the results from design reviews conducted by the DOE TPO and by a TRW review committee, a description of the microwave reactor, identification of the major pieces of equipment selected for pretreatment and post-treatment of the coal, and results from the performance test of candidate equipment for metering and feeding the coal/caustic mixtures to the microwave reactor. 3 tabs.

  5. Charge generation associated with liquid spraying in tank cleaning and comparable processes - preliminary experiments

    NASA Astrophysics Data System (ADS)

    Blum, Carsten; Losert, Oswald F. J.

    2015-10-01

    The BG RCI has initiated investigations in order to improve the data basis for assessing the ignition hazard by electrostatic charging processes associated with the spraying of liquids. On the base of preliminary experiments, we established procedures for measurements of electric field strength and charging current in the presence of aerosol particles. Results obtained with three different nozzle types, variation of pressure and with built-in deflecting plate are presented.

  6. Cleaning of Free Machining Brass

    SciTech Connect

    Shen, T

    2005-12-29

    We have investigated four brightening treatments proposed by two cleaning vendors for cleaning free machining brass. The experimental results showed that none of the proposed brightening treatments passed the swipe test. Thus, we maintain the recommendation of not using the brightening process in the cleaning of free machining brass for NIF application.

  7. Test rig and particulate deposit and cleaning evaluation processes using the same

    DOEpatents

    Schroder, Mark Stewart; Woodmansee, Donald Ernest; Beadie, Douglas Frank

    2002-01-01

    A rig and test program for determining the amount, if any, of contamination that will collect in the passages of a fluid flow system, such as a power plant fluid delivery system to equipment assemblies or sub-assemblies, and for establishing methods and processes for removing contamination therefrom. In the presently proposed embodiment, the rig and test programs are adapted in particular to utilize a high-pressure, high-volume water flush to remove contamination from substantially the entire fluid delivery system, both the quantity of contamination and as disposed or deposited within the system.

  8. Process for the recovery of strontium from acid solutions

    DOEpatents

    Horwitz, E. Philip; Dietz, Mark L.

    1992-01-01

    The invention is a process for selectively extracting strontium and technetium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant is a macrocyclic polyether in a diluent which is insoluble in water, but which will itself dissolve a small amount of water. The process will extract strontium and technetium values from nitric acid solutions which are up to 6 molar in nitric acid.

  9. Process for the recovery of strontium from acid solutions

    DOEpatents

    Horwitz, E.P.; Dietz, M.L.

    1992-03-31

    The invention is a process for selectively extracting strontium and technetium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant is a macrocyclic polyether in a diluent which is insoluble in water, but which will itself dissolve a small amount of water. The process will extract strontium and technetium values from nitric acid solutions which are up to 6 molar in nitric acid. 5 figs.

  10. Laser surface cleaning

    SciTech Connect

    Freiwald, J.G.; Freiwald, D.A.

    1994-12-31

    The objective of this work is a laboratory demonstration that red-lead primer and two-part epoxy paints can be stripped from concrete and metal surfaces using surface cleaning systems based on pulsed-repetition CO{sub 2} lasers. The three goals are to: (1) demonstrate coatings removal, including surface pore cleaning; (2) demonstrate that there is negligible release of ablated contaminants to the environment; and (3) demonstrate that the process will generate negligible amounts of additional waste compared to competing technologies. Phase 1 involved site visits to RMI and Fernald to assess the cleaning issues for buildings and parts. In addition, Phase 1 included detailed designs of a more powerful system for industrial cleaning rates, including laser, articulating optics, ablated-material capture suction nozzle attached to a horizontal raster scanner for floor cleaning, and filtration system. Some concept development is also being done for using robots, and for parts cleaning. In Phase 2 a transportable 6 kW system will be built and tested, with a horizontal surface scanner for cleaning paint from floors. The laboratory tests will again be instrumented. Some concept development will continue for using robots, and for parts cleaning. This report describes Phase 1 results.

  11. Method for cleaning and passivating a metal surface

    NASA Technical Reports Server (NTRS)

    Alexander, George B. (Inventor); Carpenter, Norman F. (Inventor)

    1976-01-01

    A cleaning solvent useful in the cleaning of metal surfaces, e.g. nickle-iron alloys, contains sulfamic acid, citric acid, a solvent for hydrocarbon residues, and a surfactant. Metal surfaces are cleaned by contacting the surface with the cleaning solvent and then passivated by contact with aqueous solutions of citric acid or sodium nitrite or a combination of the two.

  12. Clean coal demonstration program: Advanced flue gas desulfurization process. Volume 1 - public design report

    SciTech Connect

    1990-03-01

    The single 100 percent absorber is a co-current grid packed tower with an integrated reaction tank at the bottom. It is designed to accomplish several process steps (quenching, absorption of SO{sub 2}, reaction with limestone, oxidation to gypsum) in a single vessel, resulting in a simple configuration of the plant. The co-current absorber is designed for higher flue gas velocities than conventional countercurrent towers, which results in a compact absorber size. The flue gas enters the top of the absorber where it contacts recirculating slurry. Quenching and absorption of SO{sub 2} occur simultaneously. This {open_quotes}wet/dry{close_quotes} interface is washed intermittently with fresh water to prevent the formation and growth of any deposits.

  13. OXALATE MASS BALANCE DURING CHEMICAL CLEANING IN TANK 6F

    SciTech Connect

    Poirier, M.; Fink, S.

    2011-07-22

    The Savannah River Remediation (SRR) is preparing Tank 6F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning to determine whether the tank is ready for closure. SRR personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of the chemical cleaning process. Analysis of the anions showed the measured oxalate removed from Tank 6F to be approximately 50% of the amount added in the oxalic acid. To close the oxalate mass balance, the author collected solid samples, leached them with nitric acid, and measured the concentration of cations and anions in the leachate. Some conclusions from this work are: (1) Approximately 65% of the oxalate added as oxalic acid was removed with the decanted liquid. (2) Approximately 1% of the oxalate (added to the tank as oxalic acid) formed precipitates with compounds such as nickel, manganese, sodium, and iron (II), and was dissolved with nitric acid. (3) As much as 30% of the oxalate may have decomposed forming carbon dioxide. The balance does not fully account for all the oxalate added. The offset represents the combined uncertainty in the analyses and sampling.

  14. In-house validation of an improved sample extraction and clean-up method for GC determination of isomers of nervonic acid in meat products.

    PubMed

    Agazzi, Marie-Elisabeth; Bau, Andrea; Barcarolo, Robertino; Luecker, Ernst; Barrero-Moreno, Josefa; Anklam, Elke

    2003-06-01

    An improved extraction and clean-up method for determination of brain-specific fatty acids, in particular lignoceric acid (C24:0) and the cis/ trans isomers of nervonic acid (15 c-t C24:1), in meat products has been developed. The method is based on isolation of the polar lipids of interest from the bulk lipids by solid-phase extraction. The fatty acids, derivatised to their fatty acid methyl esters, are quantified by GC in a DB5 column. Fresh meat samples were extracted by using a mixture of n-butanol:hexane (1:9) as solvent. The extract was loaded in a silica gel cartridge column previously equilibrated with hexane. The first fraction containing the major part of the fat was eluted with hexane while acetone and methanol allowed the elution of fatty acids bound to polar moieties such as nervonic and lignoceric acids. This second fraction containing the analyte was methylated and injected into the GC for quantification after addition octacosane (C(28)) as internal standard.

  15. Processes to remove acid forming gases from exhaust gases

    DOEpatents

    Chang, S.G.

    1994-09-20

    The present invention relates to a process for reducing the concentration of NO in a gas, which process comprises: (A) contacting a gas sample containing NO with a gaseous oxidizing agent to oxidize the NO to NO[sub 2]; (B) contacting the gas sample of step (A) comprising NO[sub 2] with an aqueous reagent of bisulfite/sulfite and a compound selected from urea, sulfamic acid, hydrazinium ion, hydrazoic acid, nitroaniline, sulfanilamide, sulfanilic acid, mercaptopropanoic acid, mercaptosuccinic acid, cysteine or combinations thereof at between about 0 and 100 C at a pH of between about 1 and 7 for between about 0.01 and 60 sec; and (C) optionally contacting the reaction product of step (A) with conventional chemical reagents to reduce the concentrations of the organic products of the reaction in step (B) to environmentally acceptable levels. Urea or sulfamic acid are preferred, especially sulfamic acid, and step (C) is not necessary or performed. 16 figs.

  16. Minimizing sulfur contamination and rinse water volume required following a sulfuric acid/hydrogen peroxide clean by performing a chemically basic rinse

    SciTech Connect

    Clews, P.J.; Nelson, G.C.; Resnick, P.J.; Matlock, C.A.; Adkins, C.L.J.

    1997-08-01

    Sulfuric acid hydrogen peroxide mixtures (SPM) are commonly used in the semiconductor industry to remove organic contaminants from wafer surfaces. This viscous solution is very difficult to rinse off wafer surfaces. Various rinsing conditions were tested and the resulting residual contamination on the wafer surface was measured. The addition of small amounts of a chemical base such as ammonium hydroxide to the rinse water has been found to be effective in reducing the surface concentration of sulfur and also mitigates the particle growth that occurs on SPM cleaned wafers. The volume of room temperature water required to rinse these wafers is also significantly reduced.

  17. THE CLEANING OF 303 STAINLESS STEEL

    SciTech Connect

    Shen, T H

    2004-04-20

    The sulfur found on the surfaces of stainless steel 303 (SS303) after nitric acid passivation originated from the MnS inclusions in the steel. The nitric acid attacked and dissolved these MnS inclusions, and redeposited micron-sized elemental sulfur particles back to the surface. To develop an alternative passivation procedure for SS303, citric and phosphoric acids have been evaluated. The experimental results show neither acid causes a significant amount of sulfur deposit. Thus, these two acids can be used as alternatives to nitric acid passivation for NIF applications. For SS303 previously passivated by nitric acid, NaOH soak can be used as a remedial cleaning process to effectively remove the sulfur deposits.

  18. Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells

    SciTech Connect

    E.T. Robinson; James P. Meagher; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Siv Aasland; Charles Besecker; Jack Chen Bart A. van Hassel; Olga Polevaya; Rafey Khan; Piyush Pilaniwalla

    2002-12-31

    This topical report summarizes work accomplished for the Program from November 1, 2001 to December 31, 2002 in the following task areas: Task 1: Materials Development; Task 2: Composite Development; Task 4: Reactor Design and Process Optimization; Task 8: Fuels and Engine Testing; 8.1 International Diesel Engine Program; 8.2 Nuvera Fuel Cell Program; and Task 10: Program Management. Major progress has been made towards developing high temperature, high performance, robust, oxygen transport elements. In addition, a novel reactor design has been proposed that co-produces hydrogen, lowers cost and improves system operability. Fuel and engine testing is progressing well, but was delayed somewhat due to the hiatus in program funding in 2002. The Nuvera fuel cell portion of the program was completed on schedule and delivered promising results regarding low emission fuels for transportation fuel cells. The evaluation of ultra-clean diesel fuels continues in single cylinder (SCTE) and multiple cylinder (MCTE) test rigs at International Truck and Engine. FT diesel and a BP oxygenate showed significant emissions reductions in comparison to baseline petroleum diesel fuels. Overall through the end of 2002 the program remains under budget, but behind schedule in some areas.

  19. Electron-beam-induced deposition and post-treatment processes to locally generate clean titanium oxide nanostructures on Si(100).

    PubMed

    Schirmer, M; Walz, M-M; Vollnhals, F; Lukasczyk, T; Sandmann, A; Chen, C; Steinrück, H-P; Marbach, H

    2011-02-25

    We have investigated the lithographic generation of TiO(x) nanostructures on Si(100) via electron-beam-induced deposition (EBID) of titanium tetraisopropoxide (TTIP) in ultra-high vacuum (UHV) by scanning electron microscopy (SEM) and local Auger electron spectroscopy (AES). In addition, the fabricated nanostructures were also characterized ex situ via atomic force microscopy (AFM) under ambient conditions. In EBID, a highly focused electron beam is used to locally decompose precursor molecules and thereby to generate a deposit. A drawback of this nanofabrication technique is the unintended deposition of material in the vicinity of the impact position of the primary electron beam due to so-called proximity effects. Herein, we present a post-treatment procedure to deplete the unintended deposits by moderate sputtering after the deposition process. Moreover, we were able to observe the formation of pure titanium oxide nanocrystals (<100 nm) in situ upon heating the sample in a well-defined oxygen atmosphere. While the nanocrystal growth for the as-deposited structures also occurs in the surroundings of the irradiated area due to proximity effects, it is limited to the pre-defined regions, if the sample was sputtered before heating the sample under oxygen atmosphere. The described two-step post-treatment procedure after EBID presents a new pathway for the fabrication of clean localized nanostructures.

  20. Electron-beam-induced deposition and post-treatment processes to locally generate clean titanium oxide nanostructures on Si(100)

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Walz, M.-M.; Vollnhals, F.; Lukasczyk, T.; Sandmann, A.; Chen, C.; Steinrück, H.-P.; Marbach, H.

    2011-02-01

    We have investigated the lithographic generation of TiOx nanostructures on Si(100) via electron-beam-induced deposition (EBID) of titanium tetraisopropoxide (TTIP) in ultra-high vacuum (UHV) by scanning electron microscopy (SEM) and local Auger electron spectroscopy (AES). In addition, the fabricated nanostructures were also characterized ex situ via atomic force microscopy (AFM) under ambient conditions. In EBID, a highly focused electron beam is used to locally decompose precursor molecules and thereby to generate a deposit. A drawback of this nanofabrication technique is the unintended deposition of material in the vicinity of the impact position of the primary electron beam due to so-called proximity effects. Herein, we present a post-treatment procedure to deplete the unintended deposits by moderate sputtering after the deposition process. Moreover, we were able to observe the formation of pure titanium oxide nanocrystals (<100 nm) in situ upon heating the sample in a well-defined oxygen atmosphere. While the nanocrystal growth for the as-deposited structures also occurs in the surroundings of the irradiated area due to proximity effects, it is limited to the pre-defined regions, if the sample was sputtered before heating the sample under oxygen atmosphere. The described two-step post-treatment procedure after EBID presents a new pathway for the fabrication of clean localized nanostructures.

  1. Clean Diesel

    EPA Pesticide Factsheets

    The Clean Diesel Program offers DERA funding in the form of grants and rebates as well as other support for projects that protect human health and improve air quality by reducing harmful emissions from diesel engines.

  2. Supercritical fluids cleaning

    SciTech Connect

    Butner, S.; Hjeresen, D.; Silva, L.; Spall, D.; Stephenson, R.

    1991-01-01

    This paper discusses a proposed multi-party research and development program which seeks to develop supercritical fluid cleaning technology as an alternative to existing solvent cleaning applications. While SCF extraction technology has been in commercial use for several years, the use of these fluids as cleaning agents poses several new technical challenges. Problems inherent in the commercialization of SCF technology include: the cleaning efficacy and compatibility of supercritical working fluids with the parts to be cleaned must be assessed for a variety of materials and components; process parameters and equipment design Have been optimized for extractive applications and must be reconsidered for application to cleaning; and co-solvents and entrainers must be identified to facilitate the removal of polar inorganic and organic contaminants, which are often not well solvated in supercritical systems. The proposed research and development program would address these issues and lead to the development and commercialization of viable SCF-based technology for precision cleaning applications. This paper provides the technical background, program scope, and delineates the responsibilities of each principal participant in the program.

  3. Effect of acetic acid on citric acid fermentation in an integrated citric acid-methane fermentation process.

    PubMed

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2014-09-01

    An integrated citric acid-methane fermentation process was proposed to solve the problem of extraction wastewater in citric acid fermentation process. Extraction wastewater was treated by anaerobic digestion and then recycled for the next batch of citric acid fermentation to eliminate wastewater discharge and reduce water resource consumption. Acetic acid as an intermediate product of methane fermentation was present in anaerobic digestion effluent. In this study, the effect of acetic acid on citric acid fermentation was investigated and results showed that lower concentration of acetic acid could promote Aspergillus niger growth and citric acid production. 5-Cyano-2,3-ditolyl tetrazolium chloride (CTC) staining was used to quantify the activity of A. niger cells, and the results suggested that when acetic acid concentration was above 8 mM at initial pH 4.5, the morphology of A. niger became uneven and the part of the cells' activity was significantly reduced, thereby resulting in deceasing of citric acid production. Effects of acetic acid on citric acid fermentation, as influenced by initial pH and cell number in inocula, were also examined. The result indicated that inhibition by acetic acid increased as initial pH declined and was rarely influenced by cell number in inocula.

  4. ALTERNATIVE AND ENHANCED CHEMICAL CLEANING: CORROSION STUDIES RESULTS: FY2010

    SciTech Connect

    Wiersma, B.

    2010-09-29

    Due to the need to close High Level Waste storage tanks, chemical cleaning methods are needed for the removal of sludge heel materials remaining at the completion of mechanical tank cleaning efforts. Oxalic acid is considered the preferred cleaning reagent for heel dissolution of iron-based sludge. However, the large quantity of chemical reagents added to the tank farm from oxalic acid based cleaning has significant downstream impacts. Optimization of the oxalic acid cleaning process can potentially reduce the downstream impacts from chemical cleaning. To optimize oxalic acid usage, a detailed understanding of the chemistry of oxalic acid based sludge dissolution is required. Additionally, other acidic systems may be required for specific waste components that have low solubility in oxalic acid, and as a means to reduce oxalic acid usage in general. Electrochemical corrosion studies were conducted with 1 wt. % oxalic acid at mineral acid concentrations above and below the optimal conditions for this oxalic acid concentration. Testing environments included pure reagents, pure iron and aluminum phases, and sludge simulants. Mineral acid concentrations greater than 0.2 M and temperatures greater than 50 C result in unacceptably high corrosion rates. Results showed that manageable corrosion rates of carbon steel can be achieved at dilute mineral acid concentrations (i.e. less than 0.2 M) and low temperatures based on the contact times involved. Therefore, it is recommended that future dissolution and corrosion testing be performed with a dilute mineral acid and a less concentrated oxalic acid (e.g., 0.5 wt.%) that still promotes optimal dissolution. This recommendation requires the processing of greater water volumes than those for the baseline process during heel dissolution, but allows for minimization of oxalic acid additions. The following conclusions can be drawn from the test results: (1) In both nitric and sulfuric acid based reagents, the low temperature and

  5. Recovery of high purity sulfuric acid from the waste acid in toluene nitration process by rectification.

    PubMed

    Song, Kai; Meng, Qingqiang; Shu, Fan; Ye, Zhengfang

    2013-01-01

    Waste sulfuric acid is a byproduct generated from numerous industrial chemical processes. It is essential to remove the impurities and recover the sulfuric acid from the waste acid. In this study the rectification method was introduced to recover high purity sulfuric acid from the waste acid generated in toluene nitration process by using rectification column. The waste acid quality before and after rectification were evaluated using UV-Vis spectroscopy, GC/MS, HPLC and other physical and chemical analysis. It was shown that five nitro aromatic compounds in the waste acid were substantially removed and high purity sulfuric acid was also recovered in the rectification process at the same time. The COD was removed by 94% and the chrominance was reduced from 1000° to 1°. The recovered sulfuric acid with the concentration reaching 98.2 wt% had a comparable quality with commercial sulfuric acid and could be recycled back into the toluene nitration process, which could avoid waste of resources and reduce the environmental impact and pollution.

  6. Process for producing peracids from aliphatic hydroxy carboxylic acids

    DOEpatents

    Chum, H.L.; Palasz, P.D.; Ratcliff, M.A.

    1984-12-20

    A process is described for producing peracids from lactic acid-containing solutions derived from biomass processing systems. It consists of adjusting the pH of the solution to about 8 to 9 and removing alkaline residue fractions therefrom to form a solution comprised substantially of lower aliphatic hydroxy acids. The solution is oxidized to produce volatile lower aliphatic aldehydes. The aldehydes are removed as they are generated and converted to peracids.

  7. Process for producing peracids from aliphatic hydroxy carboxylic acids

    DOEpatents

    Chum, Helena L.; Ratcliff, Matthew A.; Palasz, Peter D.

    1986-01-01

    A process for producing peracids from lactic acid-containing solutions derived from biomass processing systems comprising: adjusting the pH of the solution to about 8-9 and removing alkaline residue fractions therefrom to form a solution comprised substantially of lower aliphatic hydroxy acids; oxidizing the solution to produce volatile lower aliphatic aldehydes; removing said aldehydes as they are generated; and converting said aldehydes to peracids.

  8. Modeling the continuous lactic acid production process from wheat flour.

    PubMed

    Gonzalez, Karen; Tebbani, Sihem; Lopes, Filipa; Thorigné, Aurore; Givry, Sébastien; Dumur, Didier; Pareau, Dominique

    2016-01-01

    A kinetic model of the simultaneous saccharification, protein hydrolysis, and fermentation (SSPHF) process for lactic acid production from wheat flour has been developed. The model describes the bacterial growth, substrate consumption, lactic acid production, and maltose hydrolysis. The model was fitted and validated with data from SSPHF experiments obtained under different dilution rates. The results of the model are in good agreement with the experimental data. Steady state concentrations of biomass, lactic acid, glucose, and maltose as function of the dilution rate were predicted by the model. This steady state analysis is further useful to determine the operating conditions that maximize lactic acid productivity.

  9. Cleaning devices

    NASA Technical Reports Server (NTRS)

    Schneider, Horst W. (Inventor)

    1981-01-01

    Cleaning devices are described which include a vacuum cleaner nozzle with a sharp rim for directing incoming air down against the floor; a vacuum cleaner wherein electrostatically charged brushes that brush dirt off a floor, are electrically grounded to remove charges that could tend to hold dirt to the brushes; a vacuum cleaner head having slots that form a pair of counter-rotating vortices, and that includes an outlet that blows a stream of air at the floor region which lies between the vortices; a cleaning device that sweeps a group of brushes against the ground along a first direction, and then sweeps them along the same ground area but in a second direction angled from the first by an amount such as 90.degree., to sweep up particles lying in crevices extending along any direction; a device that gently cleans a surface to remove bacteria for analysis, including an inclined wall along which cleaning fluid flows onto the surface, a vacuum chamber for drawing in the cleaning fluid, and a dividing wall spaced slightly from the surface to separate the fluid source from the vacuum cleaner chamber; and a device for providing pulses of pressured air including a chamber to which pressured air is supplied, a ball that circulates around the chamber to repeatedly close an outlet, and an air source that directs air circumferentially to move the ball around the chamber.

  10. Ultrasonic cleaning: Fundamental theory and application

    NASA Technical Reports Server (NTRS)

    Fuchs, F. John

    1995-01-01

    This presentation describes: the theory of ultrasonics, cavitation and implosion; the importance and application of ultrasonics in precision cleaning; explanations of ultrasonic cleaning equipment options and their application; process parameters for ultrasonic cleaning; and proper operation of ultrasonic cleaning equipment to achieve maximum results.

  11. Taguchi versus Full Factorial Design to Determine the Influence of Process Parameters on the Impact Forces Produced by Water Jets Used in Sewer Cleaning

    NASA Astrophysics Data System (ADS)

    Medan, N.; Banica, M.

    2016-11-01

    The regular cleaning of the materials deposed in sewer networks is realized, especially with equipment that uses high pressure water jets. The functioning of this equipment is dependent on certain process parameters that can vary, causing variations of the impact forces. The impact force directly affects the cleaning of sewer systems. In order to determine the influence of the process parameters on the impact forces produced by water jets the method of research used is the experiment. The research methods used is that Taguchi design and full factorial design. For the experimental determination of the impact forces a stand for generating water jets and a device for measuring the forces of impact are used. The processing of data is carried out using the Software Minitab 17.

  12. Process for obtaining silicon from fluosilicic acid

    DOEpatents

    Sanjurjo, Angel

    1984-04-10

    Process for producing low cost, high purity solar grade Si wherein a reduction reaction, preferably the reduction of SiF.sub.4, by an alkali metal (Na preferred) is carried out by jetting a spray of reactants into a reaction chamber at a rate and temperature which causes the reaction to take place far enough away from the entry region to avoid plugging of reactants at the entry region and wherein separation in the melt is carried out continuously from the reaction and the Si can be cast directly from the melt.

  13. Application of advanced oxidation processes for cleaning of industrial water generated in wet dedusting of shaft furnace gases.

    PubMed

    Czaplicka, Marianna; Kurowski, Ryszard; Jaworek, Katarzyna; Bratek, Łukasz

    2013-01-01

    The paper presents results of studies into advanced oxidation processes in 03 and 03/UV systems. An advanced oxidation process (AOP) was conducted to reduce the load of impurities in circulating waters from wet de-dusting of shaft furnace gases. Besides inorganic impurities, i.e. mainly arsenic compounds (16 g As L(-1) on average), lead, zinc, chlorides and sulphates, the waters also contain some organic material. The organic material is composed of a complex mixture that contains, amongst others, aliphatic compounds, phenol and its derivatives, pyridine bases, including pyridine, and its derivatives. The test results show degradation of organic and inorganic compounds during ozonation and photo-oxidation processes. Analysis of the solutions from the processes demonstrated that the complex organic material in the industrial water was oxidized in ozonation and in photo-oxidation, which resulted in formation of aldehydes and carboxylic acids. Kinetic degradation of selected pollutants is presented. Obtained results indicated that the O3/UV process is more effective in degradation of organic matter than ozonation. Depending on the process type, precipitation of the solid phase was observed. The efficiency of solid-phase formation was higher in photo-oxidation with ozone. It was found that the precipitated solid phase is composed mainly of arsenic, iron and oxygen.

  14. Recent advances in lactic acid production by microbial fermentation processes.

    PubMed

    Abdel-Rahman, Mohamed Ali; Tashiro, Yukihiro; Sonomoto, Kenji

    2013-11-01

    Fermentative production of optically pure lactic acid has roused interest among researchers in recent years due to its high potential for applications in a wide range of fields. More specifically, the sharp increase in manufacturing of biodegradable polylactic acid (PLA) materials, green alternatives to petroleum-derived plastics, has significantly increased the global interest in lactic acid production. However, higher production costs have hindered the large-scale application of PLA because of the high price of lactic acid. Therefore, reduction of lactic acid production cost through utilization of inexpensive substrates and improvement of lactic acid production and productivity has become an important goal. Various methods have been employed for enhanced lactic acid production, including several bioprocess techniques facilitated by wild-type and/or engineered microbes. In this review, we will discuss lactic acid producers with relation to their fermentation characteristics and metabolism. Inexpensive fermentative substrates, such as dairy products, food and agro-industrial wastes, glycerol, and algal biomass alternatives to costly pure sugars and food crops are introduced. The operational modes and fermentation methods that have been recently reported to improve lactic acid production in terms of concentrations, yields, and productivities are summarized and compared. High cell density fermentation through immobilization and cell-recycling techniques are also addressed. Finally, advances in recovery processes and concluding remarks on the future outlook of lactic acid production are presented.

  15. METHOD OF CLEANING METAL SURFACES

    DOEpatents

    Winkler, H.W.; Morfitt, J.W.; Little, T.H.

    1959-05-19

    Cleaning fluids for removing deposits from metal surfaces are described. The cleaning agents of the invention consist of aqueous nitric acid and an amhydrous nitrate salt of a metal which is lower in the electromotive series than the element of the deposit to be removed. In general, the salt content of thc cleaning agents ranged from 10 to 90%, preferably from 10 to 40% by weight; and the balance of the composition comprises nitric acid of any strength from extremely dilute up to concentrated strength.

  16. Automated cleaning of electronic components

    SciTech Connect

    Drotning, W.

    1994-03-01

    Environmental and operator safety concerns are leading to the elimination of trichloroethylene (TCE) and chlorofluorocarbon (CFC) solvents in electronic component cleaning processes that remove rosin flux, organic and inorganic contamination, and particulates. Present processes depend heavily on these solvents for manual spray cleaning of small components and subassemblies. Use of alternative solvent systems can lead to longer processing times and reduced quality. Automated spray cleaning can improve the quality of the cleaning process, thus enabling the productive use of environmentally conscious materials, while minimizing personnel exposure to hazardous materials. In addition, the use of robotic and automated systems can reduce the manual handling of parts that necessitates additional cleaning. We describe the development of a prototype robotic system for cleaning electronic components in a spray cleaning workcell. An important feature of the prototype system is the capability to generate the robot paths and motions automatically from the CAD models of the part to be cleaned, and to embed cleaning process knowledge into the automatically programmed operations.

  17. Analysis of the Clean Air Act Amendments of 1990: A forecast of the electric utility industry response to Title IV, Acid Deposition Control

    SciTech Connect

    Molburg, J.C.; Fox, J.A.; Pandola, G.; Cilek, C.M.

    1991-10-01

    The Clean Air Act Amendments of 1990 incorporate, for the first time, provisions aimed specifically at the control of acid rain. These provisions restrict emissions of sulfur dioxide (SO[sub 2]) and oxides of nitrogen (NO[sub x]) from electric power generating stations. The restrictions on SO[sub 2] take the form of an overall cap on the aggregate emissions from major generating plants, allowing substantial flexibility in the industry's response to those restrictions. This report discusses one response scenario through the year 2030 that was examined through a simulation of the utility industry based on assumptions consistent with characterizations used in the National Energy Strategy reference case. It also makes projections of emissions that would result from the use of existing and new capacity and of the associated additional costs of meeting demand subject to the emission limitations imposed by the Clean Air Act. Fuel-use effects, including coal-market shifts, consistent with the response scenario are also described. These results, while dependent on specific assumptions for this scenario, provide insight into the general character of the likely utility industry response to Title IV.

  18. Analysis of the Clean Air Act Amendments of 1990: A forecast of the electric utility industry response to Title IV, Acid Deposition Control

    SciTech Connect

    Molburg, J.C.; Fox, J.A.; Pandola, G.; Cilek, C.M.

    1991-10-01

    The Clean Air Act Amendments of 1990 incorporate, for the first time, provisions aimed specifically at the control of acid rain. These provisions restrict emissions of sulfur dioxide (SO{sub 2}) and oxides of nitrogen (NO{sub x}) from electric power generating stations. The restrictions on SO{sub 2} take the form of an overall cap on the aggregate emissions from major generating plants, allowing substantial flexibility in the industry`s response to those restrictions. This report discusses one response scenario through the year 2030 that was examined through a simulation of the utility industry based on assumptions consistent with characterizations used in the National Energy Strategy reference case. It also makes projections of emissions that would result from the use of existing and new capacity and of the associated additional costs of meeting demand subject to the emission limitations imposed by the Clean Air Act. Fuel-use effects, including coal-market shifts, consistent with the response scenario are also described. These results, while dependent on specific assumptions for this scenario, provide insight into the general character of the likely utility industry response to Title IV.

  19. Kinetic study of formic acid degradation by Fe3+ doped TiO2 self-cleaning nanostructure surfaces prepared by cold spray

    NASA Astrophysics Data System (ADS)

    Sayyar, Zahra; Akbar Babaluo, Ali; Shahrouzi, Javad Rahbar

    2015-04-01

    A self-cleaning solution was introduced in this paper based on sol-gel and was applied for preparing self-cleaning TiO2. Fe3+ ions have been doped into the TiO2 crystal lattice. XRD analysis indicated that the obtained TiO2 powder contains mainly the anatase phase and TiO2 powder has a crystallite size distribution of 10-12 nm. SEM micrographs have also confirmed nanometric distribution of the obtained powder. A series of uniform and transparent TiO2 and Fe/TiO2 films were prepared by cold spray technique which may result in high uniformity in the final coated surfaces. Photocatalytic activity of the thin films was investigated through degradation of aqueous formic acid under UV-visible light. The Langmuir-Hinshelwood kinetic model was used to interpret quantitatively the observed kinetic experimental result. Comparative study of the obtained coated surfaces with those of uncoated surfaces, demonstrated a remarkable performance. The Fe/TiO2 films and their calcination at 650 °C demonstrated the highest photocatalytic activity.

  20. Recovery of uranium from wet-process phosphoric acid

    SciTech Connect

    Berry, W.W.; Henrickson, A.V.

    1981-11-24

    Uranium values are recovered as uranyl peroxide from wet process phosphoric acid by a solvent extraction-precipitation process. The preferred form of this process comprises a first solvent extraction with depa-topo followed by reductive stripping of the extractant with fe++ - containing phosphoric acid. After reoxidation, the uranium-containing aqueous stripping solution is extracted again with depa-topo and the pregnant organic is then stripped with a dilute ammonium carbonate solution. The resulting ammonium uranyl tricarbonate solution is then acidified, with special kerosene treatment to prevent wax formation, and the acidified solution is reacted with H/sub 2/O/sub 2/ to precipitate a uranyl peroxide compound.

  1. Chemical processes induced by OH attack on nucleic acids

    NASA Astrophysics Data System (ADS)

    Kuwabara, Mikinori

    Recent studies concerning the chemical processes in nucleic acids starting with OH attack to produce free radicals and ending with the formation of stable products were reviewed. Using nucleosides, nucleotides and homopolynucleotides as model compounds, and DNA itself, free radicals produced by OH attack on nucleic acids have been mainly studied by a method combining ESR, spin trapping and high-performance liquid chromatography. For identification of final products in both base and sugar moieties of nucleic acids, mass and NMR spectroscopies combined with gas chromatography or high-performance liquid chromatography are usually employed. Kinetic measurements of structural alterations in the polynucleotides and DNA after OH attack have been made by a method combining electron-pulse irradiation and laser-light scattering. From these studies, the chemical reaction processes from the generation of free radicals in nucleic acids by OH attack, through the formation of unstable intermediates, to the formation of final products can be described.

  2. Sustainable commercial nanocrystalline cellulose manufacturing process with acid recycling.

    PubMed

    Sarma, Saurabh Jyoti; Ayadi, Mariem; Brar, Satinder Kaur; Berry, Richard

    2017-01-20

    Nanocrystalline cellulose (NCC) is a biomaterial having potential applications in a wide range of industries. It is industrially produced by concentrated acid hydrolysis of cellulosic materials. In this process, the sulfuric acid rich liquor can be concentrated and reused. However, removal of sugar monomers and oligomers is necessary for such recycling. Membrane and ion exchange technology can be employed to remove sugars; however, such technologies are not efficient in meeting the quality required to recycle the acid solution. As a part of the present study, activated carbon (AC) has been evaluated as an adsorbent for sugar removal from the acidic solution generated during commercial nanocrystalline cellulose manufacturing process. Almost complete removal of sugar can be achieved by this approach. The maximum sugar removal observed during this study was 3.4g/g of AC. Based on this finding, a sustainable method has been proposed for commercial nanocrystalline cellulose manufacturing.

  3. ANALYSIS OF SAMPLES FROM TANK 5F CHEMICAL CLEANING

    SciTech Connect

    Poirier, M.; Fink, S.

    2011-03-07

    The Savannah River Site (SRS) is preparing Tank 5F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning. SRS personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of the chemical cleaning process. The conclusions from this work are: (1) With the exception of iron, the dissolution of sludge components from Tank 5F agreed with results from the actual waste demonstration performed in 2007. The fraction of iron removed from Tank 5F by chemical cleaning was significantly less than the fraction removed in the SRNL demonstrations. The likely cause of this difference is the high pH following the first oxalic acid strike. (2) Most of the sludge mass remaining in the tank is iron and nickel. (3) The remaining sludge contains approximately 26 kg of barium, 37 kg of chromium, and 37 kg of mercury. (4) Most of the radioactivity remaining in the residual material is beta emitters and {sup 90}Sr. (5) The chemical cleaning removed more than {approx} 90% of the uranium isotopes and {sup 137}Cs. (6) The chemical cleaning removed {approx} 70% of the neptunium, {approx} 83% of the {sup 90}Sr, and {approx} 21% of the {sup 60}Co. (7) The chemical cleaning removed less than 10% of the plutonium, americium, and curium isotopes. (8) The chemical cleaning removed more than 90% of the aluminium, calcium, and sodium from the tank. (9) The cleaning operations removed 61% of lithium, 88% of non-radioactive strontium, and 65% of zirconium. The {sup 90}Sr and non-radioactive strontium were measured

  4. Trends in visibility, PM{sub 2.5}, and deposition expected from the Acid Rain Provisions of the 1990 Clean Air Act Amendments

    SciTech Connect

    Shannon, J.D.; Hanson, D.A.

    1997-08-01

    The Acid Rain Provisions (Title IV) of the 1990 Clean Air Act Amendments (CAAA) are designed to reduce the deposition of SO{sub 2} and sulfate and, to a lesser extent, the deposition of NO{sub x} and nitrate through reduction of SO{sub 2} and NO{sub x} emissions. However, other important benefits are anticipated from the emission control strategies, including improvement of regional visibility and reductions in concentrations of fine particles (PM2.5). In this study, the authors coupled utility emissions forecasts with the Advanced Statistical Trajectory Regional Air Pollution (ASTRAP) model and the Visibility Assessment Scoping Model (VASM) to calculate and compare the relative improvements by 2010 in visual impairment, PM2.5 concentrations, and sulfate wet deposition at selected sites in the eastern United States.

  5. Diaromatic sulphur-containing 'naphthenic' acids in process waters.

    PubMed

    West, Charles E; Scarlett, Alan G; Tonkin, Andrew; O'Carroll-Fitzpatrick, Devon; Pureveen, Jos; Tegelaar, Erik; Gieleciak, Rafal; Hager, Darcy; Petersen, Karina; Tollefsen, Knut-Erik; Rowland, Steven J

    2014-03-15

    Polar organic compounds found in industrial process waters, particularly those originating from biodegraded petroleum residues, include 'naphthenic acids' (NA). Some NA have been shown to have acute toxicity to fish and also to produce sub-lethal effects. Whilst some of these toxic effects are produced by identifiable carboxylic acids, acids such as sulphur-containing acids, which have been detected, but not yet identified, may produce others. Therefore, in the present study, the sulphur-containing acids in oil sands process water were studied. A fraction (ca 12% by weight of the total NA containing ca 1.5% weight sulphur) was obtained by elution of methylated NA through an argentation solid phase extraction column with diethyl ether. This was examined by multidimensional comprehensive gas chromatography-mass spectrometry (GCxGC-MS) in both nominal and high resolution mass accuracy modes and by GCxGC-sulphur chemiluminescence detection (GCxGC-SCD). Interpretation of the mass spectra and retention behaviour of methyl esters of several synthesised sulphur acids and the unknowns allowed delimitation of the structures, but not complete identification. Diaromatic sulphur-containing alkanoic acids were suggested. Computer modelling of the toxicities of some of the possible acids suggested they would have similar toxicities to one another and to dehydroabietic acid. However, the sulphur-rich fraction was not toxic or estrogenic to trout hepatocytes, suggesting the concentrations of sulphur acids in this sample were too low to produce any such effects in vitro. Further samples should probably be examined for these compounds.

  6. Processes to remove acid forming gases from exhaust gases

    DOEpatents

    Chang, Shih-Ger

    1994-01-01

    The present invention relates to a process for reducing the concentration of NO in a gas, which process comprises: (A) contacting a gas sample containing NO with a gaseous oxidizing agent to oxidize the NO to NO.sub.2 ; (B) contacting the gas sample of step (A) comprising NO.sub.2 with an aqueous reagent of bisulfite/sulfite and a compound selected from urea, sulfamic acid, hydrazinium ion, hydrazoic acid, nitroaniline, sulfanilamide, sulfanilic acid, mercaptopropanoic acid, mercaptosuccinic acid, cysteine or combinations thereof at between about 0.degree. and 100.degree. C. at a pH of between about 1 and 7 for between about 0.01 and 60 sec; and (C) optionally contacting the reaction product of step (A) with conventional chemical reagents to reduce the concentrations of the organic products of the reaction in step (B) to environ-mentally acceptable levels. Urea or sulfamic acid are preferred, especially sulfamic acid, and step (C) is not necessary or performed.

  7. Downstream process development in biotechnological itaconic acid manufacturing.

    PubMed

    Magalhães, Antonio Irineudo; de Carvalho, Júlio Cesar; Medina, Jesus David Coral; Soccol, Carlos Ricardo

    2017-01-01

    Itaconic acid is a promising chemical that has a wide range of applications and can be obtained in large scale using fermentation processes. One of the most important uses of this biomonomer is the environmentally sustainable production of biopolymers. Separation of itaconic acid from the fermented broth has a considerable impact in the total production cost. Therefore, optimization and high efficiency downstream processes are technological challenges to make biorefineries sustainable and economically viable. This review describes the current state of the art in recovery and purification for itaconic acid production via bioprocesses. Previous studies on the separation of itaconic acid relying on operations such as crystallization, precipitation, extraction, electrodialysis, diafiltration, pertraction, and adsorption. Although crystallization is a typical method of itaconic acid separation from fermented broth, other methods such as membrane separation and reactive extraction are promising as a recovery steps coupled to the fermentation, potentially enhancing the overall process yield. Another approach is adsorption in fixed bed columns, which efficiently separates itaconic acid. Despite recent advances in separation and recovery methods, there is still space for improvement in IA recovery and purification.

  8. The impact of different cleaning processes on the laser damage threshold of antireflection coatings for Z-Backlighter optics at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Field, Ella; Bellum, John; Kletecka, Damon

    2014-09-01

    The Z-Backlighter lasers at Sandia National Laboratories are kilojoule class, pulsed systems operating with ns pulse lengths at 527 nm and ns and sub-ps pulse lengths at 1054 nm (www.z-beamlet.sandia.gov), and are linked to the most powerful and energetic x-ray source in the world, the Z-Accelerator (http://www.sandia.gov/z-machine/). An important Z-Backlighter optic is a flat, fused silica optic measuring 32.5 cm × 32.5 cm × 1 cm with an antireflection (AR) coating on both sides. It is used as a debris shield to protect other Z-Backlighter laser optics from high-velocity particles released by the experiments conducted in the Z-Accelerator. Each experiment conducted in the Z-Accelerator releases enough debris to cloud the surface of a debris shield, which means that a debris shield cannot be used for more than one experiment. Every year, the large optics coating facility [1] at Sandia provides AR coatings for approximately 50 debris shields, in addition to AR coatings for numerous other meter-class Z-Backlighter lenses and windows. As with all Z-Backlighter optical coatings, these AR coatings must have a high laser-induced damage threshold (LIDT) in order to withstand the powerful Z-Backlighter laser fluences. Achieving a good LIDT depends not only on the coating deposition processes but also on the polishing and cleaning processes used to prepare the coated and uncoated surfaces [2]. We spend a lot of time, both before and after the coatings have been deposited, manually cleaning the optics, including the debris shields, even though they are an expendable type of optic. Therefore, in this study we have tested new cleaning methods in addition to our current method to determine their impact on the LIDT of AR coatings, and conclude whether a shorter-duration or less labor-intensive cleaning process would suffice.

  9. Processes for converting lignocellulosics to reduced acid pyrolysis oil

    DOEpatents

    Kocal, Joseph Anthony; Brandvold, Timothy A

    2015-01-06

    Processes for producing reduced acid lignocellulosic-derived pyrolysis oil are provided. In a process, lignocellulosic material is fed to a heating zone. A basic solid catalyst is delivered to the heating zone. The lignocellulosic material is pyrolyzed in the presence of the basic solid catalyst in the heating zone to create pyrolysis gases. The oxygen in the pyrolysis gases is catalytically converted to separable species in the heating zone. The pyrolysis gases are removed from the heating zone and are liquefied to form the reduced acid lignocellulosic-derived pyrolysis oil.

  10. Chemical cleaning of porous stainless steel cross-flow filter elements for nuclear waste applications

    SciTech Connect

    Billing, Justin M.; Daniel, Richard C.; Hallen, Richard T.; Schonewill, Philip P.; Shimskey, Rick W.; Peterson, Reid A.

    2011-05-10

    The Waste Treatment and Immobilization Plant (WTP) currently under construction for treatment of High-Level Waste (HLW) at the Hanford Site will rely on cross-flow ultrafiltration to provide solids-liquid separation as a core part of the treatment process. To optimize process throughput, periodic chemical cleaning of the porous stainless steel filter elements has been incorporated into the design of the plant. It is currently specified that chemical cleaning with nitric acid will occur after significant irreversible membrane fouling is observed. Irreversible fouling is defined as fouling that cannot be removed by backpulsing the filter. PNNL has investigated chemical cleaning processes as part of integrated tests with HLW simulants and with actual Hanford tank wastes. To quantify the effectiveness of chemical cleaning, the residual membrane resistance after cleaning was compared against the initial membrane resistance for each test in a series of long-term fouling tests. The impact of the small amount of residual resistance in these tests could not be separated from other parameters and the historical benchmark of >1 GPM/ft2 for clean water flux was determined to be an adequate metric for chemical cleaning. Using the results from these tests, a process optimization strategy is presented suggesting that for the simulant material under test, the value of chemical cleaning may be suspect. The period of enhanced filtration may not be enough to offset the down time required for chemical cleaning, without respect to the other associated costs.

  11. High quality and uniformity GaN grown on 150 mm Si substrate using in-situ NH3 pulse flow cleaning process

    NASA Astrophysics Data System (ADS)

    Ji, Panfeng; Yang, Xuelin; Feng, Yuxia; Cheng, Jianpeng; Zhang, Jie; Hu, Anqi; Song, Chunyan; Wu, Shan; Shen, Jianfei; Tang, Jun; Tao, Chun; Pan, Yaobo; Wang, Xinqiang; Shen, Bo

    2017-04-01

    By using in-situ NH3 pulse flow cleaning method, we have achieved the repeated growth of high quality and uniformity GaN and AlGaN/GaN high electron mobility transistors (HEMTs) on 150 mm Si substrate. The two dimensional electron gas (2DEG) mobility is 2200 cm2/Vs with an electron density of 7.3 × 1012 cm-2. The sheet resistance is 305 ± 4 Ω/□ with ±1.3% variation. The achievement is attributed to the fact that this method can significantly remove the Al, Ga, etc. metal droplets coating on the post growth flow flange and reactor wall which are difficult to clean by normal bake process under H2 ambient.

  12. Oxalate Mass Balance During Chemical Cleaning in Tank 5F

    SciTech Connect

    Poirier, M.; Fink, S.

    2011-07-08

    The Savannah River Site (SRS) is preparing Tank 5F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning to determine whether the tank is ready for closure. SRS personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of the chemical cleaning process. Analysis of the anions showed the measured oxalate removed from Tank 5F to be approximately 50% of the amount added in the oxalic acid. To close the oxalate mass balance, the author collected solid samples, leached them with nitric acid, and measured the concentration of cations and anions in the leachate.

  13. Strategies for automated sample preparation, nucleic acid purification, and concentration of low-target-number nucleic acids in environmental and food processing samples

    NASA Astrophysics Data System (ADS)

    Bruckner-Lea, Cynthia J.; Holman, David A.; Schuck, Beatrice L.; Brockman, Fred J.; Chandler, Darrell P.

    1999-01-01

    The purpose of this work is to develop a rapid, automated system for nucleic acid purification and concentration from environmental and food processing samples. Our current approach involves off-line filtration and cell lysis (ballistic disintegration) functions in appropriate buffers followed by automated nucleic acid capture and purification on renewable affinity matrix microcolumns. Physical cell lysis and renewable affinity microcolumns eliminate the need for toxic organic solvents, enzyme digestions or other time- consuming sample manipulations. Within the renewable affinity microcolumn, we have examined nucleic acid capture and purification efficiency with various microbead matrices (glass, polymer, paramagnetic), surface derivitization (sequence-specific capture oligonucleotides or peptide nucleic acids), and DNA target size and concentration under variable solution conditions and temperatures. Results will be presented comparing automated system performance relative to benchtop procedures for both clean (pure DNA from a laboratory culture) and environmental (soil extract) samples, including results which demonstrate 8 minute purification and elution of low-copy nucleic acid targets from a crude soil extract in a form suitable for PCR or microarray-based detectors. Future research will involve the development of improved affinity reagents and complete system integration, including upstream cell concentration and cell lysis functions and downstream, gene-based detectors. Results of this research will ultimately lead to improved processes and instrumentation for on-line, automated monitors for pathogenic micro-organisms in food, water, air, and soil samples.

  14. SIMPLE SAMPLE CLEAN UP PROCEDURE AND HIGH PERFORMANCE LIQUID CHROMATOGRAPHIC METHOD FOR THE ANALYSIS OF CYANURIC ACID IN HUMAN URINE

    EPA Science Inventory

    Cyanuric acide (CA) is widely used as a chlorine stabilizer in outdoor pools. No simple method exists for CA measurement in the urine of exposed swimmers. The high hydrophilicity of CA makes usage of solid phase sorbents to extract it from urine nearly impossible because of samp...

  15. [Study on preparation process of artesunate polylactic acid microspheres].

    PubMed

    Pan, Xu-Wang; Wang, Wei; Fang, Hong-Ying; Wang, Fu-Gen; Cai, Zhao-Bin

    2013-12-01

    This study aims to investigate the preparation process and in vitro release behavior of artesunate polylactic acid microspheres, in order to prepare an artesunate polylactic acid (PLA) administration method suitable for hepatic arterial embolization. With PLA as the material and polyvinyl alcohol (PVA) as the emulsifier, O/W emulsion/solvent evaporation method was adopted to prepare artesunate polylactic acid microspheres, and optimize the preparation process. With drug loading capacity, encapsulation efficiency and particle size as indexes, a single factor analysis was made on PLA concentration, PVA concentration, drug loading ratio and stirring velocity. Through an orthogonal experiment, the optimal processing conditions were determined as follows: PLA concentration was 9. 0% , PVA concentration was 0. 9% , drug loading ratio was 1:2 and stirring velocity was 1 000 r x min(-1). According to the verification of the optimal process, microsphere size, drug loading and entrapment rate of artesunate polylactic acid microspheres were (101.7 +/- 0.37) microm, (30.8 +/- 0.84)%, (53.6 +/- 0.62)%, respectively. The results showed that the optimal process was so reasonable and stable that it could lay foundation for further studies.

  16. AMERICIUM SEPARATIONS FROM NITRIC ACID PROCESS EFFLUENT STREAMS

    SciTech Connect

    M. BARR; G. JARVINEN; ET AL

    2000-08-01

    The aging of the US nuclear stockpile presents a number of challenges, including the ever-increasing radioactivity of plutonium residues from {sup 241}Am. Minimization of this weak gamma-emitter in process and waste solutions is desirable to reduce both worker exposure and the effects of radiolysis on the final waste product. Removal of americium from plutonium nitric acid processing effluents, however, is complicated by the presence of large.quantities of competing metals, particularly Fe and Al, and-strongly oxidizing acidic solutions. The reprocessing operation offers several points at which americium removal maybe attempted, and we are evaluating two classes of materials targeted at different steps in the process. Extraction chromatography resin materials loaded with three different alkylcarbamoyl phosphinates and phosphine oxides were accessed for Am removal efficiency and Am/Fe selectivity from 1-7 molar nitric acid solutions. Commercial and experimental mono- and bifunctional anion-exchange resins were evaluated for total alpha-activity removal from post-evaporator solutions whose composition, relative to the original nitric acid effluent, is reduced in acid and greatly increased in total salt content. With both classes of materials, americium/total alpha emission removal is sufficient to meet regulatory requirements even under sub-optimal conditions. Batch distribution coefficients, column performance data, and the effects of Fe-masking agents will be presented.

  17. Effects of ultrasonic fields in the phosphoric acid process

    NASA Technical Reports Server (NTRS)

    Kowalska, E.; Mizera, J.; Jakobiec, H.

    1974-01-01

    A process of apatite decomposition with sulfuric acid was studied under the influence of ultrasound in the phosphoric acid production process. The studies were carried out with and without ultrasonic fields in the reaction mixture, which resembled the mixing ratio used in technical production processes. Ultrasound with a frequency of 20 kHz and an intensity of 1 W/sq cm was used in the studies. A very favorable ultrasonic effect upon the degree of apatite decomposition was observed. The ultrasonic field affects the shape of byproduct gypsum crystals. In the H3PO4 production process without ultrasound, the byproduct gypsum crystallizes as long, thin needles which cause problems in filtration. In the trials involving the application of wound, gypsum crystallized in the form of small platelets possessing a favorable ratio of length to width.

  18. Clean catch urine sample

    MedlinePlus

    ... specimen; Urine collection - clean catch; UTI - clean catch; Urinary tract infection - clean catch; Cystitis - clean catch ... LE, Norrby SR. Approach to the patient with urinary tract infection. In: Goldman L, Schafer AI, eds. Goldman-Cecil ...

  19. Lessons learned from a rigorous peer-review process for building the Climate Literacy and Energy Awareness (CLEAN) collection of high-quality digital teaching materials

    NASA Astrophysics Data System (ADS)

    Gold, A. U.; Ledley, T. S.; McCaffrey, M. S.; Buhr, S. M.; Manduca, C. A.; Niepold, F.; Fox, S.; Howell, C. D.; Lynds, S. E.

    2010-12-01

    The topic of climate change permeates all aspects of our society: the news, household debates, scientific conferences, etc. To provide students with accurate information about climate science and energy awareness, educators require scientifically and pedagogically robust teaching materials. To address this need, the NSF-funded Climate Literacy & Energy Awareness Network (CLEAN) Pathway has assembled a new peer-reviewed digital collection as part of the National Science Digital Library (NSDL) featuring teaching materials centered on climate and energy science for grades 6 through 16. The scope and framework of the collection is defined by the Essential Principles of Climate Science (CCSP 2009) and a set of energy awareness principles developed in the project. The collection provides trustworthy teaching materials on these socially relevant topics and prepares students to become responsible decision-makers. While a peer-review process is desirable for curriculum developer as well as collection builder to ensure quality, its implementation is non-trivial. We have designed a rigorous and transparent peer-review process for the CLEAN collection, and our experiences provide general guidelines that can be used to judge the quality of digital teaching materials across disciplines. Our multi-stage review process ensures that only resources with teaching goals relevant to developing climate literacy and energy awareness are considered. Each relevant resource is reviewed by two individuals to assess the i) scientific accuracy, ii) pedagogic effectiveness, and iii) usability/technical quality. A science review by an expert ensures the scientific quality and accuracy. Resources that pass all review steps are forwarded to a review panel of educators and scientists who make a final decision regarding inclusion of the materials in the CLEAN collection. Results from the first panel review show that about 20% (~100) of the resources that were initially considered for inclusion

  20. Aqueous cleaning design presentation

    NASA Technical Reports Server (NTRS)

    Maltby, Peter F.

    1995-01-01

    The phase-out of CFC's and other ozone depleting chemicals has prompted industries to re-evaluate their present methods of cleaning. It has become necessary to find effective substitutes for their processes as well as to meet the new cleaning challenges of improved levels of cleanliness and to satisfy concerns about environmental impact of any alternative selected. One of the most popular alternatives being selected is aqueous cleaning. This method offers an alternative for removal of flux, grease/oil, buffing compound, particulates and other soils while minimizing environmental impact. What I will show are methods that can be employed in an aqueous cleaning system that will make it environmentally friendly, relatively simple to maintain and capable of yielding an even higher quality of cleanliness than previously obtained. I will also explore several drying techniques available for these systems and other alternatives along with recent improvements made in this technology. When considering any type of cleaning system, a number of variables should be determined before selecting the basic configuration. Some of these variables are: (1) Soil or contaminants being removed from your parts; (2) The level of cleanliness required; (3) The environmental considerations of your area; (4) Maintenance requirements; and (5) Operating costs.

  1. X-ray photoelectron spectroscopy analysis of cleaning procedures for synchrotron radiation beamline materials at the Advanced Photon Source

    SciTech Connect

    Li, Y.; Ryding, D.; Liu, C.; Kuzay, T.M.; McDowell, M.W.; Rosenberg, R.A.

    1994-12-31

    TZM (a high temperature molybdenum alloy), machinable tungsten, and 304 stainless steel were cleaned using environmentally safe, commercially available cleaning detergents. The surface cleanliness was evaluated by x-ray photoelectron spectroscopy (XPS). It was found that a simple alkaline detergent is very effective at removal of organic and inorganic surface contaminants or foreign particle residue from machining processes. The detergent can be used with ultrasonic agitation at 140 F to clean the TZM molybdenum, machinable tungsten, and 304 stainless steel. A citric-acid-based detergent was also found to be effective at cleaning metal oxides, such as iron oxide, molybdenum oxide, as well as tungsten oxides at mild temperatures with ultrasonic agitation, and it can be used to replace strong inorganic acids to improve cleaning safety and minimize waste disposal and other environmental problems. The efficiency of removing the metal oxides depends on both cleaning temperature and time.

  2. Silvering substrates after CO2 snow cleaning

    NASA Astrophysics Data System (ADS)

    Zito, Richard R.

    2005-09-01

    There have been some questions in the astronomical community concerning the quality of silver coatings deposited on substrates that have been cleaned with carbon dioxide snow. These questions center around the possible existence of carbonate ions left behind on the substrate by CO2. Such carbonate ions could react with deposited silver to produce insoluble silver carbonate, thereby reducing film adhesion and reflectivity. Carbonate ions could be produced from CO2 via the following mechanism. First, during CO2 snow cleaning, a small amount of moisture can condense on a surface. This is especially true if the jet of CO2 is allowed to dwell on one spot. CO2 gas can dissolve in this moisture, producing carbonic acid, which can undergo two acid dissociations to form carbonate ions. In reality, it is highly unlikely that charged carbonate ions will remain stable on a substrate for very long. As condensed water evaporates, Le Chatelier's principle will shift the equilibrium of the chain of reactions that produced carbonate back to CO2 gas. Furthermore, the hydration of CO2 reaction of CO2 with H20) is an extremely slow process, and the total dehydrogenation of carbonic acid is not favored. Living tissues that must carry out the equilibration of carbonic acid and CO2 use the enzyme carbonic anhydrase to speed up the reaction by a factor of one million. But no such enzymatic action is present on a clean mirror substrate. In short, the worst case analysis presented below shows that the ratio of silver atoms to carbonate radicals must be at least 500 million to one. The results of chemical tests presented here support this view. Furthermore, film lift-off tests, also presented in this report, show that silver film adhesion to fused silica substrates is actually enhanced by CO2 snow cleaning.

  3. Aging of clean foams

    NASA Astrophysics Data System (ADS)

    Weon, Byung Mook; Stewart, Peter S.

    2014-11-01

    Aging is an inevitable process in living systems. Here we show how clean foams age with time through sequential coalescence events: in particular, foam aging resembles biological aging. We measure population dynamics of bubbles in clean foams through numerical simulations with a bubble network model. We demonstrate that death rates of individual bubbles increase exponentially with time, independent on initial conditions, which is consistent with the Gompertz mortality law as usually found in biological aging. This consistency suggests that clean foams as far-from-equilibrium dissipative systems are useful to explore biological aging. This work (NRF-2013R1A22A04008115) was supported by Mid-career Researcher Program through NRF grant funded by the MEST.

  4. Solder Flux Residues and Humidity-Related Failures in Electronics: Relative Effects of Weak Organic Acids Used in No-Clean Flux Systems

    NASA Astrophysics Data System (ADS)

    Verdingovas, Vadimas; Jellesen, Morten Stendahl; Ambat, Rajan

    2015-04-01

    This paper presents the results of humidity testing of weak organic acids (WOAs), namely adipic, succinic, glutaric, dl-malic, and palmitic acids, which are commonly used as activators in no-clean solder fluxes. The study was performed under humidity conditions varying from 60% relative humidity (RH) to ˜99%RH at 25°C. The following parameters were used for characterization of WOAs: mass gain due to water adsorption and deliquescence of the WOA (by quartz crystal microbalance), resistivity of the water layer formed on the printed circuit board (by impedance spectroscopy), and leakage current measured using the surface insulation resistance pattern in the potential range from 0 V to 10 V. The combined results indicate the importance of the WOA chemical structure for the water adsorption and therefore conductive water layer formation on the printed circuit board assembly (PCBA). A substantial increase of leakage currents and probability of electrochemical migration was observed at humidity levels above the RH corresponding to the deliquescence point of WOAs present as contaminants on the printed circuit boards. The results suggest that use of solder fluxes with WOAs having higher deliquescence point could improve the reliability of electronics operating under circumstances in which exposure to high humidity is likely to occur.

  5. HPLC-based method using sample pre-column clean-up for the determination of methanethiol and ethanethiol in parenteral amino acid solutions.

    PubMed

    do Nascimento, P C; Bohrer, D; Rohlfes, A L; de Carvalho, L M; Ramirez, A

    2001-05-01

    A method has been developed for the chromatographic determination of methanethiol (MT) and ethanethiol (ET) as contaminants in amino acid parenteral nutrition (PN) solutions. The clean-up of the samples before chromatographic analysis was investigated by solid-phase extraction (SPE) on pre-columns filled with polyethylene powder (PE), aluminium oxide (AlOx), silica (SiOx), or polyurethane foam (PUF) as adsorbents. The thiols were more efficiently separated from the matrices by SPE on PUF pre-columns. Simultaneous derivatization and elution with DTNB (5,5'-dithiobis(2-nitrobenzoic acid)) enabled further discrimination between MT and ET by reversed-phase HPLC with spectrophotometric detection. The retention times for the derivatized MT and ET species were 12.5 and 23.0 min, respectively. Recoveries from spiked PN samples were calculated to be approximately 90%, and the MT and ET content of commercial PN solutions was determined using the methodology described. Detection limits of 15 and 10 microg L(-1) were calculated for MT and ET, respectively.

  6. STATUS OF CHEMICAL CLEANING OF WASTE TANKS AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT - 9114

    SciTech Connect

    Thaxton, D; Geoff Clendenen, G; Willie Gordon, W; Samuel Fink, S; Michael Poirier, M

    2008-12-31

    Chemical Cleaning is currently in progress for Tanks 5 and 6 at the Savannah River Site. The Chemical Cleaning process is being utilized to remove the residual waste heel remaining after completion of Mechanical Sludge Removal. This work is required to prepare the tanks for closure. Tanks 5 and 6 are 1950s vintage carbon steel waste tanks that do not meet current containment standards. These tanks are 22.9 meters (75 feet) in diameter, 7.5 meters (24.5 feet) in height, and have a capacity of 2.84E+6 liters (750,000 gallons). Chemical Cleaning adds 8 wt % oxalic acid to the carbon steel tank to dissolve the remaining sludge heel. The resulting acidic waste solution is transferred to Tank 7 where it is pH adjusted to minimize corrosion of the carbon steel tank. The Chemical Cleaning flowsheet includes multiple strikes of acid in each tank. Acid is delivered by tanker truck and is added to the tanks through a hose assembly connected to a pipe penetration through the tank top. The flowsheet also includes spray washing with acid and water. This paper includes an overview of the configuration required for Chemical Cleaning, the planned flowsheet, and an overview of technical concerns associated with the process. In addition, the current status of the Chemical Cleaning process in Tanks 5 and 6, lessons learned from the execution of the process, and the path forward for completion of cleaning in Tanks 5 and 6 will also be discussed.

  7. System and process for capture of acid gasses at elevated pressure from gaseous process streams

    SciTech Connect

    Heldebrant, David J.; Koech, Phillip K.; Linehan, John C.; Rainbolt, James E.; Bearden, Mark D.; Zheng, Feng

    2016-09-06

    A system, method, and material that enables the pressure-activated reversible chemical capture of acid gasses such as CO.sub.2 from gas volumes such as streams, flows or any other volume. Once the acid gas is chemically captured, the resulting product typically a zwitterionic salt, can be subjected to a reduced pressure whereupon the resulting product will release the captures acid gas and the capture material will be regenerated. The invention includes this process as well as the materials and systems for carrying out and enabling this process.

  8. New Tools for Cost-Effective Restroom Cleaning.

    ERIC Educational Resources Information Center

    Bigger, Alan; Bigger, Linda

    2002-01-01

    Reviews labor-saving innovations and processes in restroom cleaning, including cleaning kits, vapor cleaning technology, and pressure washer/squeegee/vacuuming systems. Also includes a sidebar on choosing better mop equipment. (EV)

  9. Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells

    SciTech Connect

    E.T. Robinson; John Sirman; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Dan Corgard; John Hemmings

    2005-05-01

    This final report summarizes work accomplished in the Program from January 1, 2001 through December 31, 2004. Most of the key technical objectives for this program were achieved. A breakthrough material system has lead to the development of an OTM (oxygen transport membrane) compact planar reactor design capable of producing either syngas or hydrogen. The planar reactor shows significant advantages in thermal efficiency and a step change reduction in costs compared to either autothermal reforming or steam methane reforming with CO{sub 2} recovery. Syngas derived ultra-clean transportation fuels were tested in the Nuvera fuel cell modular pressurized reactor and in International Truck and Engine single cylinder test engines. The studies compared emission and engine performance of conventional base fuels to various formulations of ultra-clean gasoline or diesel fuels. A proprietary BP oxygenate showed significant advantage in both applications for reducing emissions with minimal impact on performance. In addition, a study to evaluate new fuel formulations for an HCCI engine was completed.

  10. A Development of Ceramics Cylinder Type Sulfuric Acid Decomposer for Thermo-Chemical Iodine-Sulfur Process Pilot Plant

    SciTech Connect

    Hiroshi Fukui; Isao Minatsuki; Kazuo Ishino

    2006-07-01

    The hydrogen production method applying thermo-chemical Iodine-Sulfur process (IS process) which uses a nuclear high temperature gas cooled reactor is world widely greatly concerned from the view point of a combination as a clean method, free carbon dioxide in essence. In this process, it is essential a using ceramic material, especially SiC because a operation condition of this process is very corrosive due to a sulfuric acid atmosphere with high temperature and high pressure. In the IS process, a sulfuric acid decomposer is the key component which performs evaporating of sulfuric acid from liquid to gas and disassembling to SO{sub 2} gas. SiC was selected as ceramic material to apply for the sulfuric acid decomposer and a new type of binding material was also developed for SiC junction. This technology is expected to wide application not only for a sulfuric acid decomposer but also for various type components in this process. Process parameters were provided as design condition for the decomposer. The configuration of the sulfuric acid decomposer was studied, and a cylindrical tubes assembling type was selected. The advantage of this type is applicable for various type of components in the IS process due to manufacturing with using only simple shape part. A sulfuric acid decomposer was divided into two regions of the liquid and the gaseous phase of sulfuric acid. The thermal structural integrity analysis was studied for the liquid phase part. From the result of this analysis, it was investigated that the stress was below the strength of the breakdown probability 1/100,000 at any position, base material or junction part. The prototype model was manufactured, which was a ceramic portion in the liquid phase part, comparatively complicated configuration, of a sulfuric acid decomposer. The size of model was about 1.9 m in height, 1.0 m in width. Thirty-six cylinders including inlet and outlet nozzles were combined and each part article was joined using the new binder

  11. A Development of Ceramics Cylinder Type Sulfuric Acid Decomposer for Thermo-Chemical Iodine-Sulfur Process Pilot Plant

    NASA Astrophysics Data System (ADS)

    Minatsuki, Isao; Fukui, Hiroshi; Ishino, Kazuo

    The hydrogen production method applying thermo-chemical Iodine-Sulfur process (IS process) which uses a nuclear high temperature gas cooled reactor is world widely greatly concerned from the view point of a combination as a clean method, free carbon dioxide in essence. In this process, it is essential a using ceramic material, especially SiC because a operation condition of this process is very corrosive due to a sulfuric acid atmosphere with high temperature and high pressure. In the IS process, a sulfuric acid decomposer is the key component which performs evaporating of sulfuric acid from liquid to gas and disassembling to SO2 gas. SiC was selected as ceramic material to apply for the sulfuric acid decomposer and a new type of binding material was also developed for SiC junction. This technology is expected to wide application not only for a sulfuric acid decomposer but also for various type components in this process. Process parameters were provided as design condition for the decomposer. The configuration of the sulfuric acid decomposer was studied, and a cylindrical tubes assembling type was selected. The advantage of this type is applicable for various type of components in the IS process due to manufacturing with using only simple shape part. A sulfuric acid decomposer was divided into two regions of the liquid and the gaseous phase of sulfuric acid. The thermal structural integrity analysis was studied for the liquid phase part. From the result of this analysis, it was investigated that the stress was below the strength of the breakdown probability 1/100,000 at any position, base material or junction part. The prototype model was manufactured, which was a ceramic portion in the liquid phase part, comparatively complicated configuration, of a sulfuric acid decomposer. The size of model was about 1.9m in height, 1.0m in width. Thirty-six cylinders including inlet and outlet nozzles were combined and each part article was joined using the new binder (slurry

  12. Alternate cleaning methods for LCCAs. Final report

    SciTech Connect

    Adams, B.E.

    1993-04-01

    The purpose of this project was to evaluate DI water followed by isopropyl alcohol (IPA) cleaning and no cleaning of leadless chip carriers (LCCs). Both environmentally safe methods were to be tested against the current chlorofluorocarbon (CFC) material cleaning baseline. Several experiments were run to compare production and electrical yields of LCCs cleaned by all three methods. The critical process steps most affected by cleaning were wire bonding, sealing, particle induced noise detection (PIND), moisture content, and electrical. Yields for the experimental lots cleaned by CFC, DI water plus IPA, and no cleaning were 56%, 72%, and 75%, respectively. The overall results indicated that vapor degreasing/ultrasonic cleaning in CFCs could be replaced by the aqueous method. No cleaning could also be considered if an effective dry method of particle removal could be developed.

  13. Modeling of carbonic acid pretreatment process using ASPEN-Plus.

    PubMed

    Jayawardhana, Kemantha; Van Walsum, G Peter

    2004-01-01

    ASPEN-Plus process modeling software is used to model carbonic acid pretreatment of biomass. ASPEN-Plus was used because of the thorough treatment of thermodynamic interactions and its status as a widely accepted process simulator. Because most of the physical property data for many of the key components used in the simulation of pretreatment processes are not available in the standard ASPEN-Plus property databases, values from an in-house database (INHSPCD) developed by the National Renewable Energy Laboratory were used. The standard non-random-two-liquid (NRTL) or renon route was used as the main property method because of the need to distill ethanol and to handle dissolved gases. The pretreatment reactor was modeled as a "black box" stoichiometric reactor owing to the unavailability of reaction kinetics. The ASPEN-Plus model was used to calculate the process equipment costs, power requirements, and heating and cooling loads. Equipment costs were derived from published modeling studies. Wall thickness calculations were used to predict construction costs for the high-pressure pretreatment reactor. Published laboratory data were used to determine a suitable severity range for the operation of the carbonic acid reactor. The results indicate that combined capital and operating costs of the carbonic acid system are slightly higher than an H2SO4-based system and highly sensitive to reactor pressure and solids concentration.

  14. Demonstration of Innovative Applications of Technology for the CT-121 FGD Process. Project Performance Summary, Clean Coal Technology Demonstration Project

    SciTech Connect

    None, None

    2002-08-01

    This project is part of the U.S. Department of Energy's (DOE) Clean Coal Technology Demonstration Program (CCTDP) established to address energy and environmental concerns related to coal use. DOE sought cost-shared partnerships with industry through five nationally competed solicitations to accelerate commercialization of the most promising advanced coal-based power generation and pollution control technologies. The CCTDP, valued at over five billion dollars, has significantly leveraged federal funding by forging effective partnerships founded on sound principles. For every federal dollar invested, CCTDP participants have invested two dollars. These participants include utilities, technology developers, state governments, and research organizations. The project presented here was one of sixteen selected from 55 proposals submitted in 1988 and 1989 in response to the CCTDP second solicitation.

  15. Research of laser cleaning technology for steam generator tubing

    NASA Astrophysics Data System (ADS)

    Hou, Suixa; Luo, Jijun; Xu, Jun; Yuan, Bo

    2010-10-01

    Surface cleaning based on the laser-induced breakdown of gas and subsequent shock wave generation can remove small particles from solid surfaces. Accordingly, several studies in steam generator tubes of nuclear power plants were performed to expand the cleaning capability of the process. In this work, experimental apparatus of laser cleaning was designed in order to clean heat tubes in steam generator. The laser cleaning process is monitored by analyzing acoustic emission signal experimentally. Experiments demonstrate that laser cleaning can remove smaller particles from the surface of steam generator tubes better than other cleaning process. It has advantages in saving on much manpower and material resource, and it is a good cleaning method for heat tubes, which can be real-time monitoring in laser cleaning process of heat tubes by AE signal. As a green cleaning process, laser cleaning technology in equipment maintenance will be a good prospect.

  16. Conjugated linoleic acid in processed cheeses during the manufacturing stages.

    PubMed

    Luna, Pilar; de la Fuente, Miguel Angel; Juárez, Manuela

    2005-04-06

    Conjugated linoleic acid (CLA) is a naturally occurring micronutrient in milk fat and dairy products consisting of a group of geometric and positional isomers. The purpose of this study was to assess the level and type of CLA isomers found in two commercial processed cheeses (portions and slices) as well as to monitor their evolution during the different manufacturing stages. Total CLA concentrations ranged from 7.5 to 7.9 mg/g of fat, and rumenic acid (cis-9,trans-11 C18:2), the isomer responsible for the biological functions, represented >80% of total CLA. trans-11,cis-13 and trans-11,trans-13 were, with approximately 4% each, the second main CLA isomers. trans-trans isomers accounted for <10% of total CLA. The processing parameters used in this research had negligible effects on the CLA content of processed cheese and did not modify the isomer profile in these dairy products, thereby confirming the stability of rumenic acid during manufacturing.

  17. Machine Cleans And Degreases Without Toxic Solvents

    NASA Technical Reports Server (NTRS)

    Gurguis, Kamal S.; Higginson, Gregory A.

    1993-01-01

    Appliance uses hot water and biodegradable chemicals to degrease and clean hardware. Spray chamber essentially industrial-scale dishwasher. Front door tilts open, and hardware to be cleaned placed on basket-like tray. During cleaning process, basket-like tray rotates as high-pressure "V" jets deliver steam, hot water, detergent solution, and rust inhibitor as required.

  18. Influence of different acid and alkaline cleaning agents on the effects of irrigation of synthetic dairy factory effluent on soil quality, ryegrass growth and nutrient uptake.

    PubMed

    Liu, Y-Y; Haynes, R J

    2013-01-01

    The aim of this study was to examine the effects of replacement of phosphoric acid with nitric or acetic acid, and replacement of NaOH with KOH, as cleaning agents in dairy factories, on the effects that irrigation of dairy factory effluent (DFE) has on the soil-plant system. A 16-week greenhouse study was carried out in which the effects of addition of synthetic dairy factory effluent containing (a) milk residues alone or milk residues plus (b) H(3)PO(4)/NaOH, (c) H(3)PO(4)/HNO(3)/NaOH or (d) CH(3)COOH/KOH, on soil's chemical, physical and microbial properties and perennial ryegrass growth and nutrient uptake were investigated. The cumulative effect of DFE addition was to increase exchangeable Na, K, Ca, Mg, exchangeable sodium percentage, microbial biomass C and N and basal respiration in the soil. Dry matter yields of ryegrass were increased by additions of DFE other than that containing CH(3)COOH. Plant uptake of P, Ca and Mg was in the same order as their inputs in DFE but for Na; inputs were an order of magnitude greater than plant uptake. Replacement of NaOH by KOH resulted in increased accumulation of exchangeable K. The effects of added NaOH and KOH on promoting breakdown of soil aggregates during wet sieving (and formation of a < 0.25 mm size class) were similar. Replacement of H(2)PO(4) by HNO(3) is a viable but CH(3)COOH appears to have detrimental effects on plant growth. Replacement of NaOH by KOH lowers the likelihood of phytotoxic effects of Na, but K and Na have similar effects on disaggregation.

  19. Clean coal technology: The new coal era

    SciTech Connect

    Not Available

    1994-01-01

    The Clean Coal Technology Program is a government and industry cofunded effort to demonstrate a new generation of innovative coal processes in a series of full-scale showcase`` facilities built across the country. Begun in 1986 and expanded in 1987, the program is expected to finance more than $6.8 billion of projects. Nearly two-thirds of the funding will come from the private sector, well above the 50 percent industry co-funding expected when the program began. The original recommendation for a multi-billion dollar clean coal demonstration program came from the US and Canadian Special Envoys on Acid Rain. In January 1986, Special Envoys Lewis and Davis presented their recommendations. Included was the call for a 5-year, $5-billion program in the US to demonstrate, at commercial scale, innovative clean coal technologies that were beginning to emerge from research programs both in the US and elsewhere in the world. As the Envoys said: if the menu of control options was expanded, and if the new options were significantly cheaper, yet highly efficient, it would be easier to formulate an acid rain control plan that would have broader public appeal.

  20. Anti-reflection coatings applied by acid leaching process

    NASA Technical Reports Server (NTRS)

    Pastirik, E.

    1980-01-01

    The Magicote C process developed by S.M. Thompsen was evaluated for use in applying an antireflective coating to the cover plates of solar panels. The process uses a fluosilicic acid solution supersaturated with silica at elevated temperature to selectively attack the surface of soda-lime glass cover plates and alter the physical and chemical composition of a thin layer of glass. The altered glass layer constitutes an antireflective coating. The process produces coatings of excellent optical quality which possess outstanding resistance to soiling and staining. The coatings produced are not resistant to mechanical abrasion and are attacked to some extent by glass cleansers. Control of the filming process was found to be difficult.

  1. [Determination of alpha-cellulose content of natural cellulose pulp in a new clean pulping process using near infrared diffuse reflectance spectroscopy].

    PubMed

    Huang, Jun; Yuan, Hong-Fu; Song, Chun-Feng; Li, Xiao-Yu; Xie, Jin-Chun; Du, Jun-Qi

    2013-01-01

    A new near infrared diffuse reflectance spectroscopy method is proposed to rapidly detect alpha-cellulose content of natural cellulose (plant fiber: cotton, wood) pulp in a new clean pulping process. One hundred forty two samples were collected and their alpha-cellulose content data were determined by standard method GB/T 9107-1999. The samples were homogenized by grinding pretreatment to improve spectroscopy measurement accuracy. Effective classification models were built by SIMCA, with the total correct identification. Using partial least squares (PLS) quantitative calibration, alpha-cellulose of the whole and separate cotton and wood pulp was established, with the correlation coefficients of 0.954, 0.911, 0.839, SEP, 0.024, 0.012 and 0.016, respectively. The repeatability results obtained by the new method are in agreement with the results from GB/T 9107-1999. The new method is feasible for determining alpha-cellulose content of natural cellulose (plant fiber: cotton, wood) in clean pulping process.

  2. Precision Cleaning - Path to Premier

    NASA Technical Reports Server (NTRS)

    Mackler, Scott E.

    2008-01-01

    ITT Space Systems Division s new Precision Cleaning facility provides critical cleaning and packaging of aerospace flight hardware and optical payloads to meet customer performance requirements. The Precision Cleaning Path to Premier Project was a 2007 capital project and is a key element in the approved Premier Resource Management - Integrated Supply Chain Footprint Optimization Project. Formerly precision cleaning was located offsite in a leased building. A new facility equipped with modern precision cleaning equipment including advanced process analytical technology and improved capabilities was designed and built after outsourcing solutions were investigated and found lacking in ability to meet quality specifications and schedule needs. SSD cleans parts that can range in size from a single threaded fastener all the way up to large composite structures. Materials that can be processed include optics, composites, metals and various high performance coatings. We are required to provide verification to our customers that we have met their particulate and molecular cleanliness requirements and we have that analytical capability in this new facility. The new facility footprint is approximately half the size of the former leased operation and provides double the amount of throughput. Process improvements and new cleaning equipment are projected to increase 1st pass yield from 78% to 98% avoiding $300K+/yr in rework costs. Cost avoidance of $350K/yr will result from elimination of rent, IT services, transportation, and decreased utility costs. Savings due to reduced staff expected to net $4-500K/yr.

  3. Processing of Ambient Aerosols During Fog Events: Role of Acidity

    NASA Astrophysics Data System (ADS)

    Chakraborty, A.; Gupta, T.; Tripathi, S. N.; Bhattu, D.

    2013-12-01

    indication of secondary processing. Aerosol acidity which is calculated from ratio of stoichiometric neutralization of ammonium to sulphate, nitrate and chloride, is playing a major role in aerosol processing. Highly oxidized aerosols (O:C> 0.6) in both periods were always either less acidic or completely neutralized, whereas less oxidized aerosols (O:C < 0.35) were either highly or mildly acidic in nature.Van Krevelen diagram of H/C vs O/C also showed different slopes for acidic and neutralized aerosols.Both these findings indicate that different processing mechanisms are operating under acidic and neutralized conditions.Organic hygroscopicity showed a linear relationship with oxidation level of organics or O:C ratio, which in turn depends on acidity,indicate neutralized aerosol to be most likely more CCN active than acidic aerosol.

  4. Self-cleaning Metal Organic Framework (MOF) based ultra filtration membranes - A solution to bio-fouling in membrane separation processes

    NASA Astrophysics Data System (ADS)

    Prince, J. A.; Bhuvana, S.; Anbharasi, V.; Ayyanar, N.; Boodhoo, K. V. K.; Singh, G.

    2014-10-01

    Bio-fouling is a serious problem in many membrane-based separation processes for water and wastewater treatment. Current state of the art methods to overcome this are to modify the membranes with either hydrophilic additives or with an antibacterial compound. In this study, we propose and practise a novel concept to prevent bio-fouling by developing a killing and self-cleaning membrane surface incorporating antibacterial silver nanoparticles and highly hydrophilic negatively charged carboxylic and amine functional groups. The innovative surface chemistry helps to reduce the contact angle of the novel membrane by at least a 48% and increase the pure water flux by 39.4% compared to the control membrane. The flux drop for the novel membrane is also lower (16.3% of the initial flux) than the control membrane (55.3% of the initial flux) during the long term experiments with protein solution. Moreover, the novel membrane continues to exhibit inhibition to microbes even after 1320 min of protein filtration. Synthesis of self-cleaning ultrafiltration membrane with long lasting properties opens up a viable solution for bio-fouling in ultrafiltration application for wastewater purification.

  5. Self-cleaning Metal Organic Framework (MOF) based ultra filtration membranes - A solution to bio-fouling in membrane separation processes

    PubMed Central

    Prince, J. A.; Bhuvana, S.; Anbharasi, V.; Ayyanar, N.; Boodhoo, K. V. K.; Singh, G.

    2014-01-01

    Bio-fouling is a serious problem in many membrane-based separation processes for water and wastewater treatment. Current state of the art methods to overcome this are to modify the membranes with either hydrophilic additives or with an antibacterial compound. In this study, we propose and practise a novel concept to prevent bio-fouling by developing a killing and self-cleaning membrane surface incorporating antibacterial silver nanoparticles and highly hydrophilic negatively charged carboxylic and amine functional groups. The innovative surface chemistry helps to reduce the contact angle of the novel membrane by at least a 48% and increase the pure water flux by 39.4% compared to the control membrane. The flux drop for the novel membrane is also lower (16.3% of the initial flux) than the control membrane (55.3% of the initial flux) during the long term experiments with protein solution. Moreover, the novel membrane continues to exhibit inhibition to microbes even after 1320 min of protein filtration. Synthesis of self-cleaning ultrafiltration membrane with long lasting properties opens up a viable solution for bio-fouling in ultrafiltration application for wastewater purification. PMID:25296745

  6. Self-cleaning Metal Organic Framework (MOF) based ultra filtration membranes--a solution to bio-fouling in membrane separation processes.

    PubMed

    Prince, J A; Bhuvana, S; Anbharasi, V; Ayyanar, N; Boodhoo, K V K; Singh, G

    2014-10-09

    Bio-fouling is a serious problem in many membrane-based separation processes for water and wastewater treatment. Current state of the art methods to overcome this are to modify the membranes with either hydrophilic additives or with an antibacterial compound. In this study, we propose and practise a novel concept to prevent bio-fouling by developing a killing and self-cleaning membrane surface incorporating antibacterial silver nanoparticles and highly hydrophilic negatively charged carboxylic and amine functional groups. The innovative surface chemistry helps to reduce the contact angle of the novel membrane by at least a 48% and increase the pure water flux by 39.4% compared to the control membrane. The flux drop for the novel membrane is also lower (16.3% of the initial flux) than the control membrane (55.3% of the initial flux) during the long term experiments with protein solution. Moreover, the novel membrane continues to exhibit inhibition to microbes even after 1320 min of protein filtration. Synthesis of self-cleaning ultrafiltration membrane with long lasting properties opens up a viable solution for bio-fouling in ultrafiltration application for wastewater purification.

  7. DEVELOPMENT OF HAZARDOUS SLUDGE SIMULANTS FOR ENHANCED CHEMICAL CLEANING TESTS

    SciTech Connect

    Eibling, R.

    2010-04-12

    An Enhanced Chemical Cleaning (ECC) process is being developed by Savannah River Remediation (SRR) to aid in Savannah River Site (SRS) High-Level Waste (HLW) tank closure. After bulk waste removal, the ECC process can be used to dissolve and remove much of the remaining sludge from HLW tanks. The ECC process uses dilute oxalic acid (1 wt %) with in-line pH monitoring and control. The resulting oxalate is decomposed through hydroxylation using an Advanced Oxidation Process (AOP). Minimizing the amount of oxalic acid used for dissolution and the subsequent oxidative destruction of oxalic acid will minimize the potential for downstream impacts. Initial efficacy tests by AREVA demonstrated that previous tank heel simulants could be dissolved using dilute oxalic acid. The oxalate could be decomposed by an AOP that utilized ozone and ultraviolet (UV) light, and the resultant metal oxides and hydroxides could be separated out of the process.

  8. Integrated process for preparing a carboxylic acid from an alkane

    SciTech Connect

    Benderly, Abraham; Chadda, Nitin; Sevon, Douglass

    2011-12-20

    The present invention relates to an integrated process for producing unsaturated carboxylic acids from the corresponding C.sub.2-C.sub.4 alkane. The process begins with performance of thermally integrated dehydrogenation reactions which convert a C.sub.2-C.sub.4 alkane to its corresponding C.sub.2-C.sub.4 alkene, and which involve exothermically converting a portion of an alkane to its corresponding alkene by oxidative dehydrogenation in an exothermic reaction zone, in the presence of oxygen and a suitable catalyst, and then feeding the products of the exothermic reaction zone to an endothermic reaction zone wherein at least a portion of the remaining unconverted alkane is endothermically dehydrogenated to form an additional quantity of the same corresponding alkene, in the presence of carbon dioxide and an other suitable catalyst. The alkene products of the thermally integrated dehydrogenation reactions are then provided to a catalytic vapor phase partial oxidation process for conversion of the alkene to the corresponding unsaturated carboxylic acid or nitrile. Unreacted alkene and carbon dioxide are recovered from the oxidation product stream and recycled back to the thermally integrated dehydrogenation reactions.

  9. Value of furfural/ethanol coproduction from acid hydrolysis processes

    SciTech Connect

    Parker, S.; Calnon, M.; Feinberg, D.; Power, A.; Weiss, L.

    1983-08-01

    The benefits of two modifications in the acid hydrolysis of cellulosic feedstocks for the production of ethanol fuels were investigated: marketing of the by-product furfural and xylose fermentation. Preliminary analysis indicate that the furfural by-product furfural and xylose fermentation. Perliminary analyses indicate that the furfural by-product credit is more beneficial at a minimum net profit of $0.08/lb of furfural. For this credit to have a major impact on ethanol production costs, new markets for large quantities of furfural must be identified. Furfural can be an alternative feedstock for hydrocarbon-based commodity chemicals. The costs and profitabilities of producing five chemicals from furfurals as opposed to conventional hydrocarbon-based feedstocks were studied. The furfural processes for production of styrene and butadiene were found to be marginally competitive or not competitive. The furfural processes for adipic acid, maleic anhydride, and butanol could be competitive. Results of analysis by a computer model of the petrochemical industry indicate that with furfural markets additional to these three furfural processes, over 2.5 x 10/sup 9/ gal of ethanol could be marketed at about $1.00/gal. Converting the xylose stream to ethanol has about the same effect on the selling price of ethanol as the furfural credit. The greatest ethanol production will result from xylose fermentation, but the furfural credit offers large near-term profits and has a more diversified impact on reducing petroleum product demand. 6 figures, 17 tables.

  10. Clean Cities Fact Sheet

    SciTech Connect

    Not Available

    2004-01-01

    This fact sheet explains the Clean Cities Program and provides contact information for all coalitions and regional offices. It answers key questions such as: What is the Clean Cities Program? What are alternative fuels? How does the Clean Cities Program work? What sort of assistance does Clean Cities offer? What has Clean Cities accomplished? What is Clean Cities International? and Where can I find more information?

  11. Clean Water Act assessment processes in relation to changing U.S. Environmental Protection Agency management strategies.

    PubMed

    Cooter, William S

    2004-10-15

    During the 1970s the U.S. Environmental Protection Agency (EPA) devised a multiscale system of basin planning and regional implementation that encouraged a balanced mixture of monitoring and modeling-based assessments. By the 1980s, this goal had not been achieved. Modeling and monitoring assessment approaches became largely decoupled. To a significant degree, modeling was viewed as too inaccurate to handle issues such as setting permit limits involving toxics. During the 1980s, EPA also encouraged the idea that monitoring approaches were adequate to document water quality problems, guide the development of management plans, and demonstrate the achievement of management goals. By the late 1990s, large numbers of waters listed under the Clean Water Act's Total Maximum Daily Load (TMDL) provisions showed the widespread nature of pollutant concerns, but the uneven nature of the listing information also revealed fundamental problems in the ability of state monitoring programs to achieve credible and comprehensive assessments. Statistics are presented from the 1998 and the most current publicly available 2000 baseline periods showing the limitations in the scope of state assessments. There are significant opportunities for the increased use of relatively simple modeling systems that can be flexibly implemented over a variety of spatial scales. In addition to conventional modeling frameworks, the value of bioassessment monitoring techniques is stressed. Bioassessment indicators can often be combined with landscape modeling methods, as well as analyses from conventional modeling outputs, to help target small area monitoring by use of tiered approaches. These findings underscore the value of integrated monitoring and modeling approaches to build properly balanced assessment systems.

  12. Lead/acid battery recycling and the new Isasmelt process

    NASA Astrophysics Data System (ADS)

    Ramus, K.; Hawkins, P.

    The recovery of lead/acid batteries has long been practised for economic reasons. More recently, battery recovery has also been influenced by environmental concerns, both in the general community and within the recycling plants. These influences will probably increase in the future. With these factors in mind, Britannia Refined Metals Ltd. introduced new technology for battery recycling at its Northfleet, UK operations in 1991. A process description of the Britannia Refined Metals Secondary Lead Operation, the reasons for selecting an Engitec CX battery breaking plant in combination with an Isasmelt Paste Smelting Furnace, and commissioning and current operation of the plant are discussed.

  13. Processivity of nucleic acid unwinding and translocation by helicases.

    PubMed

    Xie, Ping

    2016-11-01

    Helicases are a class of enzymes that use the chemical energy of NTP hydrolysis to drive mechanical processes such as translocation and nucleic acid (NA) strand separation. Besides the NA unwinding speed, another important factor for the helicase activity is the NA unwinding processivity. Here, we study the NA unwinding processivity with an analytical model that captures the phenomenology of the NA unwinding process. First, we study the processivity of the non-hexameric helicase that can unwind NA efficiently in the form of a monomer and the processivity of the hexameric helicase that can unwind DNA effectively, providing quantitative explanations of the available single-molecule experimental data. Then, we study the processivity of the non-hexameric helicases, in particular UvrD, in the form of a dimer and compare with that in the form of a monomer. The available single-molecule and some biochemical data showing that while UvrD monomer is a highly processive single-stranded DNA translocase it is inactive in DNA unwinding, whereas other biochemical data showing that UvrD is active in both single-stranded DNA translocation and DNA unwinding in the form of a monomer can be explained quantitatively and consistently. In addition, the recent single-molecule data are also explained quantitatively showing that constraining the 2B subdomain in closed conformation by intramolecular cross-linking can convert Rep monomer with a very poor DNA unwinding activity into a superhelicase that can unwind more than thousands of DNA base pairs processively, even against a large opposing force. Proteins 2016; 84:1590-1605. © 2016 Wiley Periodicals, Inc.

  14. Citric acid application for denitrification process support in biofilm reactor.

    PubMed

    Mielcarek, Artur; Rodziewicz, Joanna; Janczukowicz, Wojciech; Dabrowska, Dorota; Ciesielski, Slawomir; Thornton, Arthur; Struk-Sokołowska, Joanna

    2017-03-01

    The study demonstrated that citric acid, as an organic carbon source, can improve denitrification in Anaerobic Sequencing Batch Biofilm Reactor (AnSBBR). The consumption rate of the organic substrate and the denitrification rate were lower during the period of the reactor's acclimatization (cycles 1-60; 71.5 mgCOD L(-1) h(-1) and 17.81 mgN L(-1) h(-1), respectively) than under the steady state conditions (cycles 61-180; 143.8 mgCOD L(-1) h(-1) and 24.38 mgN L(-1) h(-1)). The biomass yield coefficient reached 0.04 ± 0.02 mgTSS· mgCODre(-1) (0.22 ± 0.09 mgTSS mgNre(-1)). Observations revealed the diversified microbiological ecology of the denitrifying bacteria. Citric acid was used mainly by bacteria representing the Trichoccocus genus, which represented above 40% of the sample during the first phase of the process (cycles 1-60). In the second phase (cycles 61-180) the microorganisms the genera that consumed the acetate and formate, as the result of citric acid decomposition were Propionibacterium (5.74%), Agrobacterium (5.23%), Flavobacterium (1.32%), Sphaerotilus (1.35%), Erysipelothrix (1.08%).

  15. Development of molecularly imprinted poly(methacrylic acid)/silica for clean-up and selective extraction of cholesterol in milk prior to analysis by HPLC-UV.

    PubMed

    Clausen, D N; Visentainer, J V; Tarley, C R T

    2014-10-07

    In the present paper the assessment of a novel molecularly imprinted polymer, poly(methacrylic acid)/silica, for clean-up and selective extraction of cholesterol in milk samples is described. The relative selectivity coefficient (k) values for cholesterol/5-α-cholestane and cholesterol/7-dehydrocholesterol systems were found to be 5.08 and 6.08, respectively, thus attesting the selectivity of the MIP for cholesterol under competitive adsorption with structurally analogous steroid compounds. The milk analysis was initially based on saponification followed by liquid-liquid extraction with n-hexane. Then, the protocol of molecularly imprinted solid phase extraction (MISPE) was carried out by loading the milk hexanic extract through 200 mg of MIP or NIP (non-imprinted polymer) packed into SPE cartridges at a flow rate of 0.6 mL min(-1). The washing step was performed by using n-hexane followed by further elution with ethanol and HPLC-UV analysis at 208 nm. From the breakthrough curve the maximum adsorption capacity of the MIP towards cholesterol was found to be 29.51 mg g(-1). The precision of the MISPE protocol was assessed as intra- and inter-days yielding RSD (relative standard deviations) lower than 4.10%. Cleaner HPLC chromatograms were obtained for milk samples submitted to the MISPE protocol in comparison to the solid phase extraction using the NIP or modified octadecyl silica (C18). Recoveries varying from 96.6 up to 102.2% for milk samples spiked with cholesterol were achieved, thus ensuring the accuracy of the proposed method.

  16. Qualification of local advanced cryogenic cleaning technology for 14nm photomask fabrication

    NASA Astrophysics Data System (ADS)

    Taumer, Ralf; Krome, Thorsten; Bowers, Chuck; Varghese, Ivin; Hopkins, Tyler; White, Roy; Brunner, Martin; Yi, Daniel

    2014-10-01

    The march toward tighter design rules, and thus smaller defects, implies stronger surface adhesion between defects and the photomask surface compared to past generations, thereby resulting in increased difficulty in photomask cleaning. Current state-of-the-art wet clean technologies utilize functional water and various energies in an attempt to produce similar yield to the acid cleans of previous generations, but without some of the negative side effects. Still, wet cleans have continued to be plagued with issues such as persistent particles and contaminations, SRAF and feature damages, leaving contaminants behind that accelerate photo-induced defect growth, and others. This paper details work done through a design of experiments (DOE) utilized to qualify an improved cryogenic cleaning technology for production in the Advanced Mask Technology Center (AMTC) advanced production lines for 20 and 14 nm processing. All work was conducted at the AMTC facility in Dresden, Germany utilizing technology developed by Eco-Snow Systems and RAVE LLC for their cryogenic local cleaning VC1200F platform. This system uses a newly designed nozzle, improved gaseous CO2 delivery, extensive filtration to remove hydrocarbons and minimize particle adders, and other process improvements to overcome the limitations of the previous generation local cleaning tool. AMTC has successfully qualified this cryogenic cleaning technology and is currently using it regularly to enhance production yields even at the most challenging technology nodes.

  17. Reversible and irreversible processing of biogenic olefins on acidic aerosols

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Li, S.-M.

    2008-04-01

    Recent evidence has suggested that heterogeneous chemistry of oxygenated hydrocarbons, primarily carbonyls, plays a role in the formation of secondary organic aerosol (SOA); however, evidence is emerging that direct uptake of alkenes on acidic aerosols does occur and can contribute to SOA formation. In the present study, significant uptake of monoterpenes, oxygenated monoterpenes and sesquiterpenes to acidic sulfate aerosols is found under various conditions in a reaction chamber. Proton transfer mass spectrometry is used to quantify the organic gases, while an aerosol mass spectrometer is used to quantify the organic mass uptake and obtain structural information for heterogeneous products. Aerosol mass spectra are consistent with several mechanisms including acid catalyzed olefin hydration, cationic polymerization and organic ether formation, while measurable decreases in the sulfate mass on a per particle basis suggest that the formation of organosulfate compounds is also likely. A portion of the heterogeneous reactions appears to be reversible, consistent with reversible olefin hydration reactions. A slow increase in the organic mass after a fast initial uptake is attributed to irreversible reactions, consistent with polymerization and organosulfate formation. Uptake coefficients (γ) were estimated for a fast initial uptake governed by the mass accommodation coefficient (α) and ranged from 1×10-6-2.5×10-2. Uptake coefficients for a subsequent slower reactive uptake ranged from 1×10-7-1×10-4. These processes may potentially lead to a considerable amount of SOA from the various biogenic hydrocarbons under acidic conditions, which can be highly significant for freshly nucleated aerosols, particularly given the large array of atmospheric olefins.

  18. Description and identification of difficulties arising from the application of a cleaning process in operating conditions for the treatment of components used on liquid metal fast reactors (LMFR). A technical designed approach to avoid these situations.

    PubMed

    Rodriguez, G; Karpov, A V; Nalimov, Y P

    2001-01-01

    The cleaning process is one of the major maintenance operation for liquid metal fast reactors (LMFRs), both in operation and in their decommissioning stage. Russian and French cleaning processes are briefly described, including problems which have arisen during the processes. It appears that the cause of these problems is always connected to bad draining of the component, resulting in a vigorous reaction between vapour or liquid water and the bulk of sodium. From this discussion, the paper makes major recommendations for the efficient and safe cleaning of sodium wetted components, and proposes several processes which should be developed in order to deal with difficult situations, for example the removal of large amounts of undrainable sodium.

  19. Advanced cleaning by mass finishing

    NASA Astrophysics Data System (ADS)

    McCoy, M. W.

    1983-10-01

    The effectiveness of vibratory finishing for removing a variety of radioactively contaminated soils was investigated by measuring the radiation levels of the test material, the lining of the vibratory finishing tub, and the media. Many soils including corrosion products, scale, oil, grease and paint were removed from steels, aluminum, polyvinyl chloride, plexiglass, glass and flexible materials such as rubber. Zinc, copper, and lead were not cleaned. Results indicate that vibratory finishing should be an effective cleaning process or a variety of manufacturing operations.

  20. Hard and soft acids and bases: structure and process.

    PubMed

    Reed, James L

    2012-07-05

    Under investigation is the structure and process that gives rise to hard-soft behavior in simple anionic atomic bases. That for simple atomic bases the chemical hardness is expected to be the only extrinsic component of acid-base strength, has been substantiated in the current study. A thermochemically based operational scale of chemical hardness was used to identify the structure within anionic atomic bases that is responsible for chemical hardness. The base's responding electrons have been identified as the structure, and the relaxation that occurs during charge transfer has been identified as the process giving rise to hard-soft behavior. This is in contrast the commonly accepted explanations that attribute hard-soft behavior to varying degrees of electrostatic and covalent contributions to the acid-base interaction. The ability of the atomic ion's responding electrons to cause hard-soft behavior has been assessed by examining the correlation of the estimated relaxation energies of the responding electrons with the operational chemical hardness. It has been demonstrated that the responding electrons are able to give rise to hard-soft behavior in simple anionic bases.

  1. The use of polymers for on-line cleaning of building water systems

    SciTech Connect

    Selby, K.A.; Hess, R.T.

    1996-10-01

    The cooling or heating piping systems in commercial or institutional buildings are frequently fouled by the accumulation of deposits containing organic material, silt and/or iron oxide. A conventional off-line chemical cleaning with an acid or other strong solvent is a very complex and expensive process in these facilities. They are not designed for such cleaning procedures, are typically occupied most of the time and the piping is enclosed within walls. A slow on-line cleaning over a long period of time has been found to be effective in several applications. Such a cleaning uses high molecular weight anionic polymers to slowly soften and disperse the fouling agent. This paper presents information on this process and some case histories where the process has been used.

  2. The new Clean Air Act

    SciTech Connect

    Padmanabha, A.P. ); Olem, H. )

    1991-05-01

    This article is a title by title review of the new Clean Air Act and how it affects water quality and wastewater treatment. The bill provides for restoring and protecting lakes and rivers by reducing acid-rain-causing emissions and toxics from nonpoint-source runoff. Topics covered include urban smog, mobile sources, air toxics, acid rain, permits, ozone-depleting chemicals, enforcement, and the law's socio-economic impacts.

  3. A novel clean and effective syngas production system based on partial oxidation of methane assisted solid oxide co-electrolysis process

    NASA Astrophysics Data System (ADS)

    Wang, Yao; Liu, Tong; Fang, Shumin; Xiao, Guoliang; Wang, Huanting; Chen, Fanglin

    2015-03-01

    Development of the syngas production from solid oxide H2O/CO2 co-electrolysis is limited by the intensive energy input and low efficiency. Here, we present a new concept to efficiently generate syngas in both sides of the solid oxide electrolyzer by synergistically combining co-electrolysis with partial oxidation of methane (POM). Thermodynamic calculation and electrochemical measurements for the POM assisted solid oxide co-electrolysis processes on the SFM-SDC/LSGM/SFM-SDC cells exhibited an reduced electric input, increased energy conversion efficiency and decreased cathodic co-electrolysis polarization resistance in comparison with the conventional co-electrolysis. This method will be crucial to establish a clean and effective energy conversion system to meet global sustainable energy needs.

  4. Automated carbon dioxide cleaning system

    NASA Technical Reports Server (NTRS)

    Hoppe, David T.

    1991-01-01

    Solidified CO2 pellets are an effective blast media for the cleaning of a variety of materials. CO2 is obtained from the waste gas streams generated from other manufacturing processes and therefore does not contribute to the greenhouse effect, depletion of the ozone layer, or the environmental burden of hazardous waste disposal. The system is capable of removing as much as 90 percent of the contamination from a surface in one pass or to a high cleanliness level after multiple passes. Although the system is packaged and designed for manual hand held cleaning processes, the nozzle can easily be attached to the end effector of a robot for automated cleaning of predefined and known geometries. Specific tailoring of cleaning parameters are required to optimize the process for each individual geometry. Using optimum cleaning parameters the CO2 systems were shown to be capable of cleaning to molecular levels below 0.7 mg/sq ft. The systems were effective for removing a variety of contaminants such as lubricating oils, cutting oils, grease, alcohol residue, biological films, and silicone. The system was effective on steel, aluminum, and carbon phenolic substrates.

  5. 76 FR 81363 - Temperature-Indicating Devices; Thermally Processed Low-Acid Foods Packaged in Hermetically...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-28

    ... Devices; Thermally Processed Low-Acid Foods Packaged in Hermetically Sealed Containers; Correction AGENCY... (76 FR 11892). The final rule amended FDA's regulations for thermally processed low-acid...

  6. Downscaled anodic oxidation process for aluminium in oxalic acid

    NASA Astrophysics Data System (ADS)

    Sieber, M.; Morgenstern, R.; Kuhn, D.; Hackert-Oschätzchen, M.; Schubert, A.; Lampke, T.

    2017-03-01

    The increasing multi-functionality of parts and assemblies in several fields of engineering demands, amongst others, highly functionalised surfaces. For the different applications, on the one hand, there is a need to scale up surface modification processes originating in the nano- and micro-scale. On the other hand, conventional macro-scale surface refinement methods offer a huge potential for application in the said nano- and micro-scale. The anodic oxidation process, which is established especially for aluminium and its alloys, allows the formation of oxide ceramic layers on the surface. The build-up of an oxide ceramic coating comes along with altered chemical, tribological and electrical surface properties. As a basis for further investigations regarding the use of the anodic oxidation process for micro-scale-manufacturing, the scale effects of oxalic acid anodising on commercially pure aluminium as well as on the AlZn5.5MgCu alloy are addressed in the present work. The focus is on the amount of oxide formed during a potentiostatic process in relation to the exchanged amount of charge. Further, the hardness of the coating as an integral measure to assess the porous oxide structure is approached by nano-indentation technique.

  7. Saltstone Clean Cap Formulation

    SciTech Connect

    Langton, C

    2005-04-22

    The current operation strategy for using Saltstone Vault 4 to receive 0.2 Ci/gallon salt solution waste involves pouring a clean grout layer over the radioactive grout prior to initiating pour into another cell. This will minimize the radiating surface area and reduce the dose rate at the vault and surrounding area. The Clean Cap will be used to shield about four feet of Saltstone poured into a Z-Area vault cell prior to moving to another cell. The minimum thickness of the Clean Cap layer will be determined by the cesium concentration and resulting dose levels and it is expected to be about one foot thick based on current calculations for 0.1 Ci Saltstone that is produced in the Saltstone process by stabilization of 0.2 Ci salt solution. This report documents experiments performed to identify a formulation for the Clean Cap. Thermal transient calculations, adiabatic temperature rise measurements, pour height, time between pour calculations and shielding calculations were beyond the scope and time limitations of this study. However, data required for shielding calculations (composition and specific gravity) are provided for shielding calculations. The approach used to design a Clean Cap formulation was to produce a slurry from the reference premix (10/45/45 weight percent cement/slag/fly ash) and domestic water that resembled as closely as possible the properties of the Saltstone slurry. In addition, options were investigated that may offer advantages such as less bleed water and less heat generation. The options with less bleed water required addition of dispersants. The options with lower heat contained more fly ash and less slag. A mix containing 10/45/45 weight percent cement/slag/fly ash with a water to premix ratio of 0.60 is recommended for the Clean Cap. Although this mix may generate more than 3 volume percent standing water (bleed water), it has rheological, mixing and flow properties that are similar to previously processed Saltstone. The recommended

  8. Novel Biomass Conversion Process Results in Commercial Joint Venture; The Spectrum of Clean Energy Innovation (Fact Sheet)

    SciTech Connect

    Not Available

    2010-06-01

    Fact sheet describing DuPont/NREL cooperative research and development agreement that resulted in biomass-to-ethanol conversion process used as a basis for DuPont Danisco Cellulosic Ethanol, LLC and cellulosic ethanol demonstration plant.

  9. "Solvent-free" ultrasound-assisted extraction of lipids from fresh microalgae cells: a green, clean and scalable process.

    PubMed

    Adam, Fanny; Abert-Vian, Maryline; Peltier, Gilles; Chemat, Farid

    2012-06-01

    In order to comply with criteria of green chemistry concepts and sustainability, a new procedure has been performed for solvent-free ultrasound-assisted extraction (UAE) to extract lipids from fresh Nannochloropsis oculata biomass. Through response surface methodology (RSM) parameters affecting the oil recovery were optimized. Optimum conditions for oil extraction were estimated as follows: (i) 1000 W ultrasonic power, (ii) 30 min extraction time and (iii) biomass dry weight content at 5%. Yields were calculated by the total fatty acids methyl esters amounts analyzed by GC-FID-MS. The maximum oil recovery was around 0.21%. This value was compared with the one obtained with the conventional extraction method (Bligh and Dyer). Furthermore, effect of temperature on the yield was also investigated. The overall results show an innovative and effective extraction method adapted for microalgae oil recovery, without using solvent and with an enable scaling up.

  10. SULFURIC ACID REMOVAL PROCESS EVALUATION: SHORT-TERM RESULTS

    SciTech Connect

    Gary M. Blythe; Richard McMillan

    2002-03-04

    The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. Sulfuric acid controls are becoming of increasing interest to utilities with coal-fired units for a number of reasons. Sulfuric acid is a Toxic Release Inventory species, a precursor to acid aerosol/condensable emissions, and can cause a variety of plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of SCR for NOX control on some coal-fired plants, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project is testing the effectiveness of furnace injection of four different calcium- and/or magnesium-based alkaline sorbents on full-scale utility boilers. These reagents have been tested during four one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant units. One of the sorbents tested was a magnesium hydroxide slurry produced from a wet flue gas desulfurization system waste stream, from a system that employs a Thiosorbic{reg_sign} Lime scrubbing process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercial magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners, while the other three reagents were injected as slurries through air-atomizing nozzles into the front wall of upper furnace, either across from the nose of the furnace or across from the pendant superheater tubes. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests. The longer-term tests are being conducted to confirm the effectiveness of the sorbents tested over extended operation and to determine balance-of-plant impacts. This reports presents the

  11. SULFURIC ACID REMOVAL PROCESS EVALUATION: SHORT-TERM RESULTS

    SciTech Connect

    Gary M. Blythe; Richard McMillan

    2002-02-04

    The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. Sulfuric acid controls are becoming of increasing interest to utilities with coal-fired units for a number of reasons. Sulfuric acid is a Toxic Release Inventory species, a precursor to acid aerosol/condensable emissions, and can cause a variety of plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of SCR for NO{sub x} control on some coal-fired plants, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project is testing the effectiveness of furnace injection of four different calcium- and/or magnesium-based alkaline sorbents on full-scale utility boilers. These reagents have been tested during four one- to two-week tests conducted on two First Energy Bruce Mansfield Plant units. One of the sorbents tested was a magnesium hydroxide slurry produced from a wet flue gas desulfurization system waste stream, from a system that employs a Thiosorbic{reg_sign} Lime scrubbing process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercial magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners, while the other three reagents were injected as slurries through air-atomizing nozzles into the front wall of upper furnace, either across from the nose of the furnace or across from the pendant superheater tubes. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests. The longer-term tests are being conducted to confirm the effectiveness of the sorbents tested over extended operation and to determine balance-of-plant impacts. This reports presents

  12. Reversible and irreversible processing of biogenic olefins on acidic aerosols

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Li, S.-M.

    2007-08-01

    Recent evidence has suggested that heterogeneous chemistry of oxygenated hydrocarbons, primarily carbonyls, plays a role in the formation of secondary organic aerosol (SOA); however, evidence is emerging that direct uptake of alkenes on acidic aerosols does occur and can contribute to SOA formation. In the present study, significant uptake of monoterpenes, oxygenated monoterpenes and sesquiterpenes to acidic sulfate aerosols is found under various conditions in a reaction chamber. Proton transfer mass spectrometry is used to quantify the organic gases, while an aerosol mass spectrometer is used to quantify the organic mass uptake and obtain structural information for heterogeneous products. Aerosol mass spectra are consistent with several mechanisms including acid catalyzed olefin hydration, cationic polymerization and organic ester formation, while measurable decreases in the sulfate mass on a per particle basis suggest that the formation of organosulfate compounds is also likely. A portion of the heterogeneous reactions appears to be reversible, consistent with reversible olefin hydration reactions. A slow increase in the organic mass after a fast initial uptake is attributed to irreversible reactions, consistent with polymerization and organosulfate formation. Uptake coefficients (γ) were estimated for a fast initial uptake governed by the mass accommodation coefficient (α) and ranged from 1×10-6-2.5×10-2. Uptake coefficients for a subsequent slower reactive uptake ranged from 1×10-7-1×10-4. These processes are estimated to potentially produce greater than 2.5 μg m-3 of SOA from the various biogenic hydrocarbons under atmospheric conditions, which can be highly significant given the large array of atmospheric olefins.

  13. 1990 Clean Air Act Amendment Summary

    EPA Pesticide Factsheets

    In 1989, President George W. Bush proposed revisions to the Clean Air Act designed to curb acid rain, urban air pollution, and toxic air emissions. The proposal also called for establishing a national permits program.

  14. Clean Air Markets - Monitoring Surface Water Chemistry

    EPA Pesticide Factsheets

    Learn about how EPA uses Long Term Monitoring (LTM) and Temporily Integrated Monitoring of Ecosystems (TIME) to track the effect of the Clean Air Act Amendments on acidity of surface waters in the eastern U.S.

  15. Simulation of a waste incineration process with flue-gas cleaning and heat recovery sections using Aspen Plus.

    PubMed

    Cimini, Silvano; Prisciandaro, Marina; Barba, Diego

    2005-01-01

    In the present paper, the modeling of a dual-purpose plant for the production of electrical and thermal energy from the heat treatment of solid wastes is presented. Particularly, the process has been modeled by using the Aspen Plus Shell, with the aim of performing a study about the applicability of this software in the simulation of a solid waste incineration process, which involves complex gas-solid reactions where the solids are referred to as "non-conventional". The model is developed to analyze and quantify the expected benefits associated with refuse derived fuel (RDF) thermal utilization; thus attention is focused on the performance of the energy recovery section.

  16. Towards expanding megasonic cleaning capability

    NASA Astrophysics Data System (ADS)

    Han, Zhenxing; Ferstl, Berthold; Oetter, Günter; Dietze, Uwe; Samayoa, Martin; Dattilo, Davide

    2016-10-01

    Megasonic cleaning remains the industry's workhorse technology for particle removal on advanced 193i and extreme ultraviolet (EUV) photomasks. Several megasonic cleaning technologies and chemistries have been proposed and implemented over the years in diverse production environments. The operational range of these process technologies, over a wide array of applications, is ultimately defined by measurable capability limits. As geometries continue to scale-down and new materials are introduced, existing cleaning technologies will naturally fade out of range and new capability is ultimately required. This paper presents a novel fundamental approach for expanding cleaning capability by use of high-frequency megasonics and tenside-based additives (BASF SELECTIPUR C-series). To this end, a sonoluminescence-based experimental test bench was configured to characterize and study the effects of various process parameters on cleaning performance, with a particular emphasis on cavitation-induced damage and enhancement of particle removal capabilities. The results from the fundamental studies provide a path forward towards delivering new cleaning capability by enabling high-frequency megasonic systems and tenside-based additives.

  17. Clean Break

    ERIC Educational Resources Information Center

    Peterson, Erin

    2011-01-01

    An interim president has to perform a particularly difficult balancing act. He or she shoulders the burdens from--or legacy of--the previous president and must also provide a foundation of stability for the new president. Throughout the process, effective communication--both internally and externally--is critical to ensuring a smooth transition.…

  18. Steaming Clean

    ERIC Educational Resources Information Center

    Hoverson, Rick

    2006-01-01

    Schools can provide a cleaner, more healthful school environment by simply combining heat and water. Steam vapor systems use only tap water with no chemicals added. Low-pressure (12 psi to 65 psi) steam vapor sanitizes and deodorizes. This process can then be used safely in many situations, but is especially suited for restrooms and food-service…

  19. Alternative Enhanced Chemical Cleaning Basic Studies Results FY09

    SciTech Connect

    Hay, M.; King, W.

    2010-05-05

    Due to the need to close waste storage tanks, chemical cleaning methods are needed for the effective removal of the heels. Oxalic acid is the preferred cleaning reagent for sludge heel dissolution, particularly for iron-based sludge, due to the strong complexing strength of the oxalate. However, the large quantity of oxalate added to the tank farm from oxalic acid based chemical cleaning has significant downstream impacts. Optimization of the oxalic acid cleaning process can potentially reduce the downstream impacts from chemical cleaning. To optimize oxalic acid usage, a detailed understanding of the chemistry of oxalic acid based sludge dissolution is required. Additionally, other acid systems may be required for specific waste components with low solubility in oxalic acid and as a means to reduce oxalic acid usage in general. Solubility tests were conducted using non-radioactive, pure metal phases known to be the primary phases present in High Level Waste sludge. The metal phases studied included the aluminum phases gibbsite and boehmite and the iron phases magnetite and hematite. Hematite and boehmite are expected to be the most difficult iron and aluminum phases to dissolve. These mineral phases have been identified in both SRS and Hanford High Level Waste sludge. Acids evaluated for dissolution included oxalic, nitric, and sulfuric acids. The results of the solubility tests indicate that oxalic and sulfuric acids are more effective for the dissolution of the primary sludge phases. For boehmite, elevated temperature will be required to promote effective phase dissolution in the acids studied. Literature reviews, thermodynamic modeling, and experimental results have all confirmed that pH control using a supplemental proton source (additional acid) is critical for minimization of oxalic acid usage during the dissolution of hematite. These results emphasize the importance of pH control in optimizing hematite dissolution in oxalic acid and may explain the somewhat

  20. Technical support for the Ohio Clean Coal Technology Program. Volume 2, Baseline of knowledge concerning process modification opportunities, research needs, by-product market potential, and regulatory requirements: Final report

    SciTech Connect

    Olfenbuttel, R.; Clark, S.; Helper, E.; Hinchee, R.; Kuntz, C.; Means, J.; Oxley, J.; Paisley, M.; Rogers, C.; Sheppard, W.; Smolak, L.

    1989-08-28

    This report was prepared for the Ohio Coal Development Office (OCDO) under Grant Agreement No. CDO/R-88-LR1 and comprises two volumes. Volume 1 presents data on the chemical, physical, and leaching characteristics of by-products from a wide variety of clean coal combustion processes. Volume 2 consists of a discussion of (a) process modification waste minimization opportunities and stabilization considerations; (b) research and development needs and issues relating to clean coal combustion technologies and by-products; (c) the market potential for reusing or recycling by-product materials; and (d) regulatory considerations relating to by-product disposal or reuse.

  1. A novel cleaning process for industrial production of xylose in pilot scale from corncob by using screw-steam-explosive extruder.

    PubMed

    Zhang, Hong-Jia; Fan, Xiao-Guang; Qiu, Xue-Liang; Zhang, Qiu-Xiang; Wang, Wen-Ya; Li, Shuang-Xi; Deng, Li-Hong; Koffas, Mattheos A G; Wei, Dong-Sheng; Yuan, Qi-Peng

    2014-12-01

    Steam explosion is the most promising technology to replace conventional acid hydrolysis of lignocellulose for biomass pretreatment. In this paper, a new screw-steam-explosive extruder was designed and explored for xylose production and lignocellulose biorefinery at the pilot scale. We investigated the effect of different chemicals on xylose yield in the screw-steam-explosive extrusion process, and the xylose production process was optimized as followings: After pre-impregnation with sulfuric acid at 80 °C for 3 h, corncob was treated at 1.55 MPa with 9 mg sulfuric acid/g dry corncob (DC) for 5.5 min, followed by countercurrent extraction (3 recycles), decoloration (activated carbon dosage 0.07 g/g sugar, 75 °C for 40 min), and ion exchange (2 batches). Using this process, 3.575 kg of crystal xylose was produced from 22 kg corncob, almost 90 % of hemicellulose was released as monomeric sugar, and only a small amount of by-products was released (formic acid, acetic acid, fural, 5-hydroxymethylfurfural, and phenolic compounds were 0.17, 1.14, 0.53, 0.19, and 1.75 g/100 g DC, respectively). All results indicated that the screw-steam-explosive extrusion provides a more effective way to convert hemicellulose into xylose and could be an alternative method to traditional sulfuric acid hydrolysis process for lignocellulose biorefinery.

  2. Reductive stripping process for the recovery of uranium from wet-process phosphoric acid

    DOEpatents

    Hurst, Fred J.; Crouse, David J.

    1984-01-01

    A reductive stripping flow sheet for recovery of uranium from wet-process phosphoric acid is described. Uranium is stripped from a uranium-loaded organic phase by a redox reaction converting the uranyl to uranous ion. The uranous ion is reoxidized to the uranyl oxidation state to form an aqueous feed solution highly concentrated in uranium. Processing of this feed through a second solvent extraction cycle requires far less stripping reagent as compared to a flow sheet which does not include the reductive stripping reaction.

  3. Methods for detecting residues of cleaning agents during cleaning validation.

    PubMed

    Westman, L; Karlsson, G

    2000-01-01

    Cleaning validation procedures are carried out in order to assure that residues of cleaning agents are within acceptable limits after the cleaning process. Cleaning agents often consist of a mixture of various surfactants which are in a highly diluted state after the water rinsing procedure has been completed. This makes it difficult to find appropriate analytical methods that are sensitive enough to detect the cleaning agents. In addition, it is advantageous for the analytical methods to be simple to perform and to give results quickly. In this study, four different analytical methods are compared: visual detection of foam, pH, conductivity measurements, and analysis of total organic carbon (TOC). TOC was used as a reference method when evaluating the other three potential methods. The analyses were performed on different dilutions of the cleaning agents Vips Neutral, RBS-25, Debisan and Perform. The results demonstrated that the most sensitive method for analysis of Vips Neutral, Debisan and Perform is visual detection of foam, by which it is possible to detect concentrations of cleaning agents down to 10 micrograms/mL. RBS-25 was not detected below 200 micrograms/mL, probably because it is formulated with low-foaming surfactants. TOC analysis is less sensitive but has the advantage of being a quantitative analysis, while visual detection of foam is a semi-quantitative method. Visual detection of foam is easy to perform, gives a quick result, and requires no expensive instrumentation. The sensitivity of each method was found to be dependent upon the type of cleaning agent that was analyzed.

  4. Combined wet and dry cleaning of SiGe(001)

    SciTech Connect

    Park, Sang Wook; Kaufman-Osborn, Tobin; Kim, Hyonwoong; Siddiqui, Shariq; Sahu, Bhagawan; Yoshida, Naomi; Brandt, Adam; Kummel, Andrew C.

    2015-07-15

    Combined wet and dry cleaning via hydrofluoric acid (HF) and atomic hydrogen on Si{sub 0.6}Ge{sub 0.4}(001) surface was studied at the atomic level using ultrahigh vacuum scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and x-ray photoelectron spectroscopy to understand the chemical transformations of the surface. Aqueous HF removes native oxide, but residual carbon and oxygen are still observed on Si{sub 0.6}Ge{sub 0.4}(001) due to hydrocarbon contamination from post HF exposure to ambient. The oxygen contamination can be eliminated by shielding the sample from ambient via covering the sample in the HF cleaning solution until the sample is introduced to the vacuum chamber or by transferring the sample in an inert environment; however, both processes still leave carbon contaminant. Dry in-situ atomic hydrogen cleaning above 330 °C removes the carbon contamination on the surface consistent with a thermally activated atomic hydrogen reaction with surface hydrocarbon. A postdeposition anneal at 550 °C induces formation of an atomically flat and ordered SiGe surface observed by STM. STS verifies that the wet and dry cleaned surface has an unpinned Fermi level with no states between the conduction and valence band edge comparable to sputter cleaned SiGe surfaces.

  5. Cleaning up

    SciTech Connect

    Perry, T.S.

    1993-02-01

    This article reports on the electronics manufacturer's response to findings that chemicals used in manufacturing integrated circuits induced miscarriages in plant workers and other environmental problems such as ozone depletion and the use of heavy metals and toxic gases in manufacturing. The topics of the article include the finding that a photoresist is at fault, the phase-out of ethylene glycol ethers, alternatives to ethylene glycol ethers, ozone-eating CFCs, use of citrus derived substitutes for CFCs, alternative manufacturing processes, substitutes for other ozone depleting chemicals, and the use of heavy metals in electronics manufacturing.

  6. Clean fuels from biomass

    NASA Technical Reports Server (NTRS)

    Hsu, Y.-Y.

    1976-01-01

    The paper discusses the U.S. resources to provide fuels from agricultural products, the present status of conversion technology of clean fuels from biomass, and a system study directed to determine the energy budget, and environmental and socioeconomic impacts. Conversion processes are discussed relative to pyrolysis and anaerobic fermentation. Pyrolysis breaks the cellulose molecules to smaller molecules under high temperature in the absence of oxygen, wheras anaerobic fermentation is used to convert biomass to methane by means of bacteria. Cost optimization and energy utilization are also discussed.

  7. Clean thermal decomposition of tertiary-alkyl metal thiolates to metal sulfides: environmentally-benign, non-polar inks for solution-processed chalcopyrite solar cells

    PubMed Central

    Heo, Jungwoo; Kim, Gi-Hwan; Jeong, Jaeki; Yoon, Yung Jin; Seo, Jung Hwa; Walker, Bright; Kim, Jin Young

    2016-01-01

    We report the preparation of Cu2S, In2S3, CuInS2 and Cu(In,Ga)S2 semiconducting films via the spin coating and annealing of soluble tertiary-alkyl thiolate complexes. The thiolate compounds are readily prepared via the reaction of metal bases and tertiary-alkyl thiols. The thiolate complexes are soluble in common organic solvents and can be solution processed by spin coating to yield thin films. Upon thermal annealing in the range of 200–400 °C, the tertiary-alkyl thiolates decompose cleanly to yield volatile dialkyl sulfides and metal sulfide films which are free of organic residue. Analysis of the reaction byproducts strongly suggests that the decomposition proceeds via an SN1 mechanism. The composition of the films can be controlled by adjusting the amount of each metal thiolate used in the precursor solution yielding bandgaps in the range of 1.2 to 3.3 eV. The films form functioning p-n junctions when deposited in contact with CdS films prepared by the same method. Functioning solar cells are observed when such p-n junctions are prepared on transparent conducting substrates and finished by depositing electrodes with appropriate work functions. This method enables the fabrication of metal chalcogenide films on a large scale via a simple and chemically clear process. PMID:27827402

  8. Clean thermal decomposition of tertiary-alkyl metal thiolates to metal sulfides: environmentally-benign, non-polar inks for solution-processed chalcopyrite solar cells

    NASA Astrophysics Data System (ADS)

    Heo, Jungwoo; Kim, Gi-Hwan; Jeong, Jaeki; Yoon, Yung Jin; Seo, Jung Hwa; Walker, Bright; Kim, Jin Young

    2016-11-01

    We report the preparation of Cu2S, In2S3, CuInS2 and Cu(In,Ga)S2 semiconducting films via the spin coating and annealing of soluble tertiary-alkyl thiolate complexes. The thiolate compounds are readily prepared via the reaction of metal bases and tertiary-alkyl thiols. The thiolate complexes are soluble in common organic solvents and can be solution processed by spin coating to yield thin films. Upon thermal annealing in the range of 200–400 °C, the tertiary-alkyl thiolates decompose cleanly to yield volatile dialkyl sulfides and metal sulfide films which are free of organic residue. Analysis of the reaction byproducts strongly suggests that the decomposition proceeds via an SN1 mechanism. The composition of the films can be controlled by adjusting the amount of each metal thiolate used in the precursor solution yielding bandgaps in the range of 1.2 to 3.3 eV. The films form functioning p-n junctions when deposited in contact with CdS films prepared by the same method. Functioning solar cells are observed when such p-n junctions are prepared on transparent conducting substrates and finished by depositing electrodes with appropriate work functions. This method enables the fabrication of metal chalcogenide films on a large scale via a simple and chemically clear process.

  9. Clean thermal decomposition of tertiary-alkyl metal thiolates to metal sulfides: environmentally-benign, non-polar inks for solution-processed chalcopyrite solar cells.

    PubMed

    Heo, Jungwoo; Kim, Gi-Hwan; Jeong, Jaeki; Yoon, Yung Jin; Seo, Jung Hwa; Walker, Bright; Kim, Jin Young

    2016-11-09

    We report the preparation of Cu2S, In2S3, CuInS2 and Cu(In,Ga)S2 semiconducting films via the spin coating and annealing of soluble tertiary-alkyl thiolate complexes. The thiolate compounds are readily prepared via the reaction of metal bases and tertiary-alkyl thiols. The thiolate complexes are soluble in common organic solvents and can be solution processed by spin coating to yield thin films. Upon thermal annealing in the range of 200-400 °C, the tertiary-alkyl thiolates decompose cleanly to yield volatile dialkyl sulfides and metal sulfide films which are free of organic residue. Analysis of the reaction byproducts strongly suggests that the decomposition proceeds via an SN1 mechanism. The composition of the films can be controlled by adjusting the amount of each metal thiolate used in the precursor solution yielding bandgaps in the range of 1.2 to 3.3 eV. The films form functioning p-n junctions when deposited in contact with CdS films prepared by the same method. Functioning solar cells are observed when such p-n junctions are prepared on transparent conducting substrates and finished by depositing electrodes with appropriate work functions. This method enables the fabrication of metal chalcogenide films on a large scale via a simple and chemically clear process.

  10. Green Solvents for Precision Cleaning

    NASA Technical Reports Server (NTRS)

    Grandelli, Heather; Maloney, Phillip; DeVor, Robert; Surma, Jan; Hintze, Paul

    2013-01-01

    Aerospace machinery used in liquid oxygen (LOX) fuel systems must be precision cleaned to achieve a very low level of non-volatile residue (< 1 mg0.1 m2), especially flammable residue. Traditionally chlorofluorocarbons (CFCs) have been used in the precision cleaning of LOX systems, specifically CFC 113 (C2Cl3F3). CFCs have been known to cause the depletion of ozone and in 1987, were banned by the Montreal Protocol due to health, safety and environmental concerns. This has now led to the development of new processes in the precision cleaning of aerospace components. An ideal solvent-replacement is non-flammable, environmentally benign, non-corrosive, inexpensive, effective and evaporates completely, leaving no residue. Highlighted is a green precision cleaning process, which is contaminant removal using supercritical carbon dioxide as the environmentally benign solvent. In this process, the contaminant is dissolved in carbon dioxide, and the parts are recovered at the end of the cleaning process completely dry and ready for use. Typical contaminants of aerospace components include hydrocarbon greases, hydraulic fluids, silicone fluids and greases, fluorocarbon fluids and greases and fingerprint oil. Metallic aerospace components range from small nuts and bolts to much larger parts, such as butterfly valves 18 in diameter. A fluorinated grease, Krytox, is investigated as a model contaminant in these preliminary studies, and aluminum coupons are employed as a model aerospace component. Preliminary studies are presented in which the experimental parameters are optimized for removal of Krytox from aluminum coupons in a stirred-batch process. The experimental conditions investigated are temperature, pressure, exposure time and impeller speed. Temperatures of 308 - 423 K, pressures in the range of 8.3 - 41.4 MPa, exposure times between 5 - 60 min and impeller speeds of 0 - 1000 rpm were investigated. Preliminary results showed up to 86 cleaning efficiency with the

  11. 21 CFR 500.23 - Thermally processed low-acid foods packaged in hermetically sealed containers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Thermally processed low-acid foods packaged in... Administrative Rulings and Decisions § 500.23 Thermally processed low-acid foods packaged in hermetically sealed... of low-acid foods in hermetically sealed containers, and intended for use as food for animals....

  12. Effect of SPM-based cleaning POR on EUV mask performance

    NASA Astrophysics Data System (ADS)

    Choi, Jaehyuck; Lee, Han-shin; Yoon, Jinsang; Shimomura, Takeya; Friz, Alex; Montgomery, Cecilia; Ma, Andy; Goodwin, Frank; Kang, Daehyuk; Chung, Paul; Shin, Inkyun; Cho, H.

    2011-11-01

    EUV masks include many different layers of various materials rarely used in optical masks, and each layer of material has a particular role in enhancing the performance of EUV lithography. Therefore, it is crucial to understand how the mask quality and patterning performance can change during mask fabrication, EUV exposure, maintenance cleaning, shipping, or storage. The fact that a pellicle is not used to protect the mask surface in EUV lithography suggests that EUV masks may have to undergo more cleaning cycles during their lifetime. More frequent cleaning, combined with the adoption of new materials for EUV masks, necessitates that mask manufacturers closely examine the performance change of EUV masks during cleaning process. We have investigated EUV mask quality and patterning performance during 30 cycles of Samsung's EUV mask SPM-based cleaning and 20 cycles of SEMATECH ADT exposure. We have observed that the quality and patterning performance of EUV masks does not significantly change during these processes except mask pattern CD change. To resolve this issue, we have developed an acid-free cleaning POR and substantially improved EUV mask film loss compared to the SPM-based cleaning POR.

  13. Role of acid catalysis in dimethyl ether conversion processes

    SciTech Connect

    Tartamella, T.L.; Lee, S.

    1996-12-31

    Acidity plays an important role in the conversion of methanol and dimethyl ether (DME) to hydrocarbons and oxygenates. In the conversion to hydrocarbons over zeolite catalyst, Broensted acidity is the main contributor to the first hydrocarbon formed. Here, acidity is also an important factor in determining olefin, paraffin, and aromatic content in the final product distribution. Catalyst life has also been found to be related to acidity content in zeolites. DME conversion to oxygenates is especially dependent on high acidity catalysts. Superacids like BF{sub 3}, HF-BF{sub 3}, and CF{sub 3}COOH have been used in the past for conversion of DME in carbonylation reactions to form methyl acetate and acetic acid at high pressures. Recently, heteropoly acids and their corresponding metal substituted salts have been used to convert DME to industrially important petrochemicals resulting in shorter reaction times and without the use of harsh operating conditions.

  14. Megasonic cleaning: effect of dissolved gas properties on cleaning

    NASA Astrophysics Data System (ADS)

    Shende, Hrishi; Singh, Sherjang; Baugh, James; Dietze, Uwe; Dress, Peter

    2013-06-01

    Current and future lithography techniques require complex imaging improvement strategies. These imaging improvement strategies require printing of sub-resolution assist-features (SRAF) on photomasks. The size of SRAF's has proven to be the main limiting factor in using high power Megasonic cleaning process on photomasks. These features, due to high aspect ratio are more prone to damage at low Megasonic frequencies and at high Megasonic powers. Additionally the non-uniformity of energy dissipated during Megasonic cleaning is a concern for exceeding the damage threshold of the SRAFs. If the cavitation events during Megasonic cleaning are controlled in way to dissipate uniform energy, better process control can be achieved to clean without damage. The amount and type of gas dissolved in the cleaning liquid defines the cavitation behavior. Some of the gases possess favourable solubility and adiabatic properties for stable and controlled cavitation behaviour. This paper particularly discusses the effects of dissolved Ar gas on Megasonic characteristics. The effect of Ar Gas is characterized by measuring acoustic energy and Sonoluminscense. The phenomenon is further verified with pattern damage studies.

  15. Replacement of hydrogen peroxide cleaning with oxygen plasma

    NASA Astrophysics Data System (ADS)

    Adams, B. E.

    1992-03-01

    Comparison between the standard peroxide cleaning method and an oxygen plasma modified version was run on thin film bond monitors. The plasma modified version substituted oxygen plasma for the peroxide cleaning step in the process and reduced the DI rinse water temperature from 75 C to 25 C. A direct surface cleanliness comparison was made between the two cleaning methods using Auger spectroscopy. A beam lead and ribbon bonding experiment was also run on plasma-cleaned networks. Results of both experiments indicate that plasma cleaning is superior to peroxide cleaning and that reliable bonding can be done on plasma-cleaned thin film networks.

  16. Clean Salt integrated flowsheet

    SciTech Connect

    Lunsford, T.R.

    1994-09-27

    The Clean Salt Process (CSP) is a novel waste management scheme that removes sodium nitrate and aluminum nitrate nonahydrate as decontaminated (low specific activity) salts from Hanford`s high-level waste (HLW). The full scale process will separate the bulk of the waste that exists as sodium salts from the small portion of the waste that is by definition radioactive and dangerous. This report presents initial conceptual CSP flowsheets and demonstrates the benefit of integrating the process into the Tank Waste Remediation Systems (TWRS) Reference Flowsheet. Total HLW and low-level (LLW) volumes are reported for two different CSP integration options and are compared to the TWRS Reference Flowsheet values. The results for a single glass option eliminating LLW disposal are also reported.

  17. Assessment of the potential suitability of selected commercially available enzymes for cleaning-in-place (CIP) in the dairy industry.

    PubMed

    Boyce, Angela; Piterina, Anna V; Walsh, Gary

    2010-10-01

    The potential suitability of 10 commercial protease and lipase products for cleaning-in-place (CIP) application in the dairy industry was investigated on a laboratory scale. Assessment was based primarily on the ability of the enzymes to remove an experimentally generated milk fouling deposit from stainless steel (SS) panels. Three protease products were identified as being most suitable for this application on the basis of their cleaning performance at 40 °C, which was comparable to that of the commonly used cleaning agent, 1% NaOH at 60 °C. This was judged by quantification of residual organic matter and protein on the SS surface after cleaning and analysis by laser scanning confocal microscopy (LSCM). Enzyme activity was removed/inactivated under conditions simulating those normally undertaken after cleaning (rinsing with water, acid circulation, sanitation). Preliminary process-scale studies strongly suggest that enzyme-based CIP achieves satisfactory cleaning at an industrial scale. Cost analysis indicates that replacing caustic-based cleaning procedures with biodegradable enzymes operating at lower temperatures would be economically viable. Additional potential benefits include decreased energy and water consumption, improved safety, reduced waste generation, greater compatibility with wastewater treatment processes and a reduction in the environmental impact of the cleaning process.

  18. Cleaning Animals' Cages With Little Water

    NASA Technical Reports Server (NTRS)

    Harman, Benjamin J.

    1989-01-01

    Proposed freeze/thaw method for cleaning animals' cages requires little extra weight and consumes little power and water. Cleaning concept developed for maintaining experimental rat cages on extended space missions. Adaptable as well to similar use on Earth. Reduces cleaning time. Makes use of already available facilities such as refrigerator, glove box, and autoclave. Rat waste adheres to steel-wire-mesh floor of cage. Feces removed by loosening action of freezing-and-thawing process, followed by blast of air.

  19. Clean Watersheds Needs Survey

    EPA Pesticide Factsheets

    The Clean Watershed Needs Survey is a national assessment of the future capital cost for publicly owned wastewater collection and treatment facilities to meet the Clean Water Act's water quality goals.

  20. California Clean Tech

    EPA Pesticide Factsheets

    The CA Clean Air Technology Initiative is an EPA/state partnership to develop clean air technologies for the San Joaquin Valley and South Coast Air Basins through collaborative projects in technology research, development, demonstration, and deployment.

  1. What Is Clean Cities?

    SciTech Connect

    Not Available

    2007-08-01

    This Clean Cities Program fact sheet describes the purpose and scope of this DOE program. Clean Cities facilitates the use of alternative and advanced fuels and vehicles to displace petroleum in the transportation sector.

  2. Cleaning supplies and equipment

    MedlinePlus

    ... gov/ency/patientinstructions/000443.htm Cleaning supplies and equipment To use the sharing features on this page, ... to clean supplies and equipment. Disinfecting Supplies and Equipment Start by wearing the right personal protective equipment ( ...

  3. Setting the Cleaning Standard.

    ERIC Educational Resources Information Center

    Milshtein, Amy

    1998-01-01

    Explains how well-defined cleaning and maintenance standards helped a community school system resolve problems with custodial staff apportionments. Cleaning time, frequency, and cleanliness levels are combined to create a formula that helps economize custodial care. (GR)

  4. Development of Acetic Acid Removal Technology for the UREX+Process

    SciTech Connect

    Robert M. Counce; Jack S. Watson

    2009-06-30

    It is imperative that acetic acid is removed from a waste stream in the UREX+process so that nitric acid can be recycled and possible interference with downstreatm steps can be avoidec. Acetic acid arises from acetohydrozamic acid (AHA), and is used to suppress plutonium in the first step of the UREX+process. Later, it is hydrolyzed into hydroxyl amine nitrate and acetic acid. Many common separation technologies were examined, and solvent extraction was determined to be the best choice under process conditions. Solvents already used in the UREX+ process were then tested to determine if they would be sufficient for the removal of acetic acid. The tributyl phosphage (TBP)-dodecane diluent, used in both UREX and NPEX, was determined to be a solvent system that gave sufficient distribution coefficients for acetic acid in addition to a high separation factor from nitric acid.

  5. Guideline implementation: surgical instrument cleaning.

    PubMed

    Cowperthwaite, Liz; Holm, Rebecca L

    2015-05-01

    Cleaning, decontaminating, and handling instructions for instruments vary widely based on the type of instrument and the manufacturer. Processing instruments in accordance with the manufacturer's instructions can help prevent damage and keep devices in good working order. Most importantly, proper cleaning and disinfection may prevent transmission of pathogenic organisms from a contaminated device to a patient or health care worker. The updated AORN "Guideline for cleaning and care of surgical instruments" provides guidance on cleaning, decontaminating, transporting, inspecting, and storing instruments. This article focuses on key points of the guideline to help perioperative personnel implement appropriate instrument care protocols in their practice settings. The key points address timely cleaning and decontamination of instruments after use; appropriate heating, ventilation, and air conditioning parameters for the decontamination area; processing of ophthalmic instruments and laryngoscopes; and precautions to take with instruments used in cases of suspected prion disease. Perioperative RNs should review the complete guideline for additional information and for guidance when writing and updating policies and procedures.

  6. Byron Unit 1 high temperature chemical cleaning

    SciTech Connect

    Scheffler, W.A.; Kerr, S.R.; Dow, R.P.; Jevec, J.M.

    1995-12-31

    The secondary side of the Byron Nuclear Station, Unit 1 steam generators were successfully chemically cleaned in September 1994, using the BWNT/Framatome high-temperature chemical cleaning process. This cleaning was the first North American application that used plant heat for process temperature control. The primary purpose of the cleaning was to remove bulk deposits and deposits from the drilled tube-to-tube support plate crevices of the Westinghouse D4 steam generators. Crevice deposit removal was targeted to mitigate initiation of new corrosion defects and the propagation of existing defects. The process application scenario and plant interface equipment were designed to maximize effectiveness while minimizing corrosion, waste volumes, and critical path time. A total of over 15,383 pounds (6,992 kilograms) of material was removed from the four steam generators during the chemical cleaning. Post-cleaning visual inspections showed the steam generators to be very clean. Some quantity (30% to 60%) of deposits remained in crevice areas. One indication of successful crevice magnetite removal was very clean and crisp eddy-current signals in the tube support plate region. Corrosion to steam generator materials resulting from the cleaning was less than 2.5 mils (63.5 {micro}m) and consumed less than 20% of the available corrosion allowance.

  7. Clean room wiping liquids

    SciTech Connect

    Harding, W.B.

    1991-12-01

    A water-based liquid containing isopropyl alcohol, ammonium hydroxide, and surfactants was developed to replace 1,1,2-trichlorotrifluoroethane for the dampening of clean room wiping cloths used to wipe clean benches, clean room equipment, and latex finger cots and gloves.

  8. A Green Clean

    ERIC Educational Resources Information Center

    Kravitz, Robert

    2006-01-01

    In the professional cleaning industry, green cleaning has been much discussed in the past few years. Usually, the information pertains to the many reasons why a green cleaning program should be started, the steps involved to get the program off the ground, and the potential benefits. However, although many facility managers and school…

  9. Battery Technology Stores Clean Energy

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Headquartered in Fremont, California, Deeya Energy Inc. is now bringing its flow batteries to commercial customers around the world after working with former Marshall Space Flight Center scientist, Lawrence Thaller. Deeya's liquid-cell batteries have higher power capability than Thaller's original design, are less expensive than lead-acid batteries, are a clean energy alternative, and are 10 to 20 times less expensive than nickel-metal hydride batteries, lithium-ion batteries, and fuel cell options.

  10. Plasma cleaning techniques and future applications in environmentally conscious manufacturing

    SciTech Connect

    Ward, P.P.

    1995-07-01

    Plasmas have frequently been used in industry as a last step surface preparation technique in an otherwise predominantly wet-etch process. The limiting factor in the usefulness of plasma cleaning techniques has been the rate at which organic materials are removed. Recent research in the field of plasma chemistry has provided some understanding of plasma processes. By controlling plasma conditions and gas mixtures, ultra-fast plasma cleaning and etching is possible. With enhanced organic removal rates, plasma processes become more desirable as an environmentally sound alternative to traditional solvent or acid dominated process, not only as a cleaning tool, but also as a patterning and machining tool. In this paper, innovations in plasma processes are discussed including enhanced plasma etch rates via plasma environment control and aggressive gas mixtures. Applications that have not been possible with the limited usefulness of past plasma processes are now approaching the realm of possibility. Some of these possible applications will be discussed along with their impact to environmentally conscious manufacturing.

  11. Formulating poultry processing sanitizers from alkaline salts of fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Though some poultry processing operations remove microorganisms from carcasses; other processing operations cause cross-contamination that spreads microorganisms between carcasses, processing water, and processing equipment. One method used by commercial poultry processors to reduce microbial contam...

  12. Processes of recovering fatty acids and sterols from tall oil pitch

    SciTech Connect

    Hughes, R. E.

    1985-06-18

    An improved process of enhancing the recovery of fatty acids from tall oil pitch is disclosed. The process includes a hydrolysis step for increasing the free fatty acid available for recovery from tall oil pitch during the distillation process. The hydrolysis step also enables the recovery of sterols where the tall oil pitch is of the type which is rich in sterol esters.

  13. Water-enhanced solubility of carboxylic acids in organic solvents and its applications to extraction processes

    SciTech Connect

    Starr, J.N.; King, C.J.

    1991-11-01

    The solubilities of carboxylic acids in certain organic solvents increase remarkably with an increasing amount of water in the organic phase. This phenomenon leads to a novel extract regeneration process in which the co-extracted water is selectively removed from an extract, and the carboxylic acid precipitates. This approach is potentially advantageous compared to other regeneration processes because it removes a minor component of the extract in order to achieve a large recovery of acid from the extract. Carboxylic acids of interest include adipic acid, fumaric acid, and succinic acid because of their low to moderate solubilities in organic solvents. Solvents were screened for an increase in acid solubility with increased water concentration in the organic phase. Most Lewis-base solvents were found to exhibit this increased solubility phenomena. Solvents that have a carbonyl functional group showed a very large increase in acid solubility. 71 refs., 52 figs., 38 tabs.

  14. New fermentation processes for producing itaconic acid and citric acid for industrial uses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Itaconic acid is an important industrial chemical that we have produced by fermentation of simple sugars using the yeast Pseudozyma antarctica. Itaconic acid is priced at ~$4 per kg and has an annual market volume of about 15,000 metric tons. Itaconic acid is used in the polymer industry and for m...

  15. Deriving site-specific soil clean-up values for metals and metalloids: rationale for including protection of soil microbial processes.

    PubMed

    Kuperman, Roman G; Siciliano, Steven D; Römbke, Jörg; Oorts, Koen

    2014-07-01

    Although it is widely recognized that microorganisms are essential for sustaining soil fertility, structure, nutrient cycling, groundwater purification, and other soil functions, soil microbial toxicity data were excluded from the derivation of Ecological Soil Screening Levels (Eco-SSL) in the United States. Among the reasons for such exclusion were claims that microbial toxicity tests were too difficult to interpret because of the high variability of microbial responses, uncertainty regarding the relevance of the various endpoints, and functional redundancy. Since the release of the first draft of the Eco-SSL Guidance document by the US Environmental Protection Agency in 2003, soil microbial toxicity testing and its use in ecological risk assessments have substantially improved. A wide range of standardized and nonstandardized methods became available for testing chemical toxicity to microbial functions in soil. Regulatory frameworks in the European Union and Australia have successfully incorporated microbial toxicity data into the derivation of soil threshold concentrations for ecological risk assessments. This article provides the 3-part rationale for including soil microbial processes in the development of soil clean-up values (SCVs): 1) presenting a brief overview of relevant test methods for assessing microbial functions in soil, 2) examining data sets for Cu, Ni, Zn, and Mo that incorporated soil microbial toxicity data into regulatory frameworks, and 3) offering recommendations on how to integrate the best available science into the method development for deriving site-specific SCVs that account for bioavailability of metals and metalloids in soil. Although the primary focus of this article is on the development of the approach for deriving SCVs for metals and metalloids in the United States, the recommendations provided in this article may also be applicable in other jurisdictions that aim at developing ecological soil threshold values for protection of

  16. Deriving site-specific soil clean-up values for metals and metalloids: Rationale for including protection of soil microbial processes

    PubMed Central

    Kuperman, Roman G; Siciliano, Steven D; Römbke, Jörg; Oorts, Koen

    2014-01-01

    Although it is widely recognized that microorganisms are essential for sustaining soil fertility, structure, nutrient cycling, groundwater purification, and other soil functions, soil microbial toxicity data were excluded from the derivation of Ecological Soil Screening Levels (Eco-SSL) in the United States. Among the reasons for such exclusion were claims that microbial toxicity tests were too difficult to interpret because of the high variability of microbial responses, uncertainty regarding the relevance of the various endpoints, and functional redundancy. Since the release of the first draft of the Eco-SSL Guidance document by the US Environmental Protection Agency in 2003, soil microbial toxicity testing and its use in ecological risk assessments have substantially improved. A wide range of standardized and nonstandardized methods became available for testing chemical toxicity to microbial functions in soil. Regulatory frameworks in the European Union and Australia have successfully incorporated microbial toxicity data into the derivation of soil threshold concentrations for ecological risk assessments. This article provides the 3-part rationale for including soil microbial processes in the development of soil clean-up values (SCVs): 1) presenting a brief overview of relevant test methods for assessing microbial functions in soil, 2) examining data sets for Cu, Ni, Zn, and Mo that incorporated soil microbial toxicity data into regulatory frameworks, and 3) offering recommendations on how to integrate the best available science into the method development for deriving site-specific SCVs that account for bioavailability of metals and metalloids in soil. Although the primary focus of this article is on the development of the approach for deriving SCVs for metals and metalloids in the United States, the recommendations provided in this article may also be applicable in other jurisdictions that aim at developing ecological soil threshold values for protection of

  17. Stable carbon isotopic compositions of low-molecular-weight dicarboxylic acids, oxocarboxylic acids, α-dicarbonyls, and fatty acids: implications for atmospheric processing of organic aerosols

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Kawamura, K.; Cao, F.; Lee, M.

    2015-12-01

    Stable carbon isotopic compositions (δ13C) were measured for 23 individual organic species including 9 dicarboxylic acids, 7 oxocarboxylic acids, 1 tricarboxylic acid, 2 α-dicarbonyls and 4 fatty acids in the aerosols from Gosan background site in East Asia. δ13C of particle-phase glyoxal and methylglyoxal are significantly higher than those previously reported for isoprene and other precursors, associated with isotope fractionation during atmospheric oxidation. 13C is consistently more enriched for oxalic acid (C2), glyoxylic acid, pyruvic acid, glyoxal and methylglyoxal compared to other organic compounds identified, which can be explained by the kinetic isotope effects during aqueous-phase processing and the subsequent gas-particle partitioning after clouds or wet aerosols evaporation δ13C of C2 is positively correlated with C2 and organic carbon ratio, indicating that a photochemical production of C2 is more pronounced than its degradation process during long-range transport. The 13C results also suggest that aqueous-phase oxidation of glyoxal and methylglyoxal is major formation process of oxalic acid production via the major intermediates glyoxylic acid and pyruvic acid. This study provides evidence that organic aerosols are intensively photo-chemically aged in this region.

  18. SODIUM ALUMINOSILICATE FOULING AND CLEANING OF DECONTAMINATED SALT SOLUTION COALESCERS

    SciTech Connect

    Poirier, M; Thomas Peters, T; Fernando Fondeur, F; Samuel Fink, S

    2008-10-28

    During initial non-radioactive operations at the Modular Caustic Side Solvent Extraction Unit (MCU), the pressure drop across the decontaminated salt solution coalescer reached {approx}10 psi while processing {approx}1250 gallons of salt solution, indicating possible fouling or plugging of the coalescer. An analysis of the feed solution and the 'plugged coalescer' concluded that the plugging was due to sodium aluminosilicate solids. MCU personnel requested Savannah River National Laboratory (SRNL) to investigate the formation of the sodium aluminosilicate solids (NAS) and the impact of the solids on the decontaminated salt solution coalescer. Researchers performed developmental testing of the cleaning protocols with a bench-scale coalescer container 1-inch long segments of a new coalescer element fouled using simulant solution. In addition, the authors obtained a 'plugged' Decontaminated Salt Solution coalescer from non-radioactive testing in the MCU and cleaned it according to the proposed cleaning procedure. Conclusions from this testing include the following: (1) Testing with the bench-scale coalescer showed an increase in pressure drop from solid particles, but the increase was not as large as observed at MCU. (2) Cleaning the bench-scale coalescer with nitric acid reduced the pressure drop and removed a large amount of solid particles (11 g of bayerite if all aluminum is present in that form or 23 g of sodium aluminosilicate if all silicon is present in that form). (3) Based on analysis of the cleaning solutions from bench-scale test, the 'dirt capacity' of a 40 inch coalescer for the NAS solids tested is calculated as 450-950 grams. (4) Cleaning the full-scale coalescer with nitric acid reduced the pressure drop and removed a large amount of solid particles (60 g of aluminum and 5 g of silicon). (5) Piping holdup in the full-scale coalescer system caused the pH to differ from the target value. Comparable hold-up in the facility could lead to less effective

  19. Clean Watersheds for a Clean Bay Project

    EPA Pesticide Factsheets

    Information about the SFBWQPClean Watersheds for a Clean Bay Project: Implementing the PCB TMDL, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  20. fsclean: Faraday Synthesis CLEAN imager

    NASA Astrophysics Data System (ADS)

    Bell, M. R.; Ensslin, T. A.

    2015-06-01

    Fsclean produces 3D Faraday spectra using the Faraday synthesis method, transforming directly from multi-frequency visibility data to the Faraday depth-sky plane space. Deconvolution is accomplished using the CLEAN algorithm, and the package includes Clark and Högbom style CLEAN algorithms. Fsclean reads in MeasurementSet visibility data and produces HDF5 formatted images; it handles images and data of arbitrary size, using scratch HDF5 files as buffers for data that is not being immediately processed, and is limited only by available disk space.

  1. Airing 'clean air' in Clean India Mission.

    PubMed

    Banerjee, T; Kumar, M; Mall, R K; Singh, R S

    2016-12-30

    The submission explores the possibility of a policy revision for considering clean air quality in recently launched nationwide campaign, Clean India Mission (CIM). Despite of several efforts for improving availability of clean household energy and sanitation facilities, situation remain still depressing as almost half of global population lacks access to clean energy and proper sanitation. Globally, at least 2.5 billion people do not have access to basic sanitation facilities. There are also evidences of 7 million premature deaths by air pollution in year 2012. The situation is even more disastrous for India especially in rural areas. Although, India has reasonably progressed in developing sanitary facilities and disseminating clean fuel to its urban households, the situation in rural areas is still miserable and needs to be reviewed. Several policy interventions and campaigns were made to improve the scenario but outcomes were remarkably poor. Indian census revealed a mere 31% sanitation coverage (in 2011) compared to 22% in 2001 while 60% of population (700 million) still use solid biofuels and traditional cook stoves for household cooking. Further, last decade (2001-2011) witnessed the progress decelerating down with rural households without sanitation facilities increased by 8.3 million while minimum progress has been made in conversion of conventional to modern fuels. To revamp the sanitation coverage, an overambitious nationwide campaign CIM was initiated in 2014 and present submission explores the possibility of including 'clean air' considerations within it. The article draws evidence from literatures on scenarios of rural sanitation, energy practises, pollution induced mortality and climatic impacts of air pollution. This subsequently hypothesised with possible modification in available technologies, dissemination modes, financing and implementation for integration of CIM with 'clean air' so that access to both sanitation and clean household energy may be

  2. An integrated bioconversion process for the production of L-lactic acid from starchy feedstocks

    SciTech Connect

    Tsai, S.P.; Moon, S.H.

    1997-07-01

    The potential market for lactic acid as the feedstock for biodegradable polymers, oxygenated chemicals, and specialty chemicals is significant. L-lactic acid is often the desired enantiomer for such applications. However, stereospecific lactobacilli do not metabolize starch efficiently. In this work, Argonne researchers have developed a process to convert starchy feedstocks into L-lactic acid. The processing steps include starch recovery, continuous liquefaction, and simultaneous saccharification and fermentation. Over 100 g/L of lactic acid was produced in less than 48 h. The optical purity of the product was greater than 95%. This process has potential economical advantages over the conventional process.

  3. Optimization of Ultrasonic Fabric Cleaning

    SciTech Connect

    Hand, T.E.

    1998-05-13

    The fundamental purpose of this project was to research and develop a process that would reduce the cost and improve the environmental efficiency of the present dry-cleaning industry. This second phase of research (see report KCP-94-1006 for information gathered during the first phase) was intended to allow the optimal integration of all factors of ultrasonic fabric cleaning. For this phase, Garment Care performed an extensive literature search and gathered data from other researchers worldwide. The Garment Care-AlliedSignal team developed the requirements for a prototype cleaning tank for studies and acquired that tank and the additional equipment required to use it properly. Garment Care and AlliedSignal acquired the transducers and generators from Surftran Martin-Walter in Sterling Heights, Michigan. Amway's Kelly Haley developed the test protocol, supplied hundreds of test swatches, gathered the data on the swatches before and after the tests, assisted with the cleaning tests, and prepared the final analysis of the results. AlliedSignal personnel, in conjunction with Amway and Garment Care staff, performed all the tests. Additional planning is under way for future testing by outside research facilities. The final results indicated repeatable performance and good results for single layered fabric swatches. Swatches that were cleaned as a ''sandwich,'' that is, three or more layers.

  4. Iron dissolution of dust source materials during simulated acidic processing: the effect of sulfuric, acetic, and oxalic acids.

    PubMed

    Chen, Haihan; Grassian, Vicki H

    2013-09-17

    Atmospheric organic acids potentially display different capacities in iron (Fe) mobilization from atmospheric dust compared with inorganic acids, but few measurements have been made on this comparison. We report here a laboratory investigation of Fe mobilization of coal fly ash, a representative Fe-containing anthropogenic aerosol, and Arizona test dust, a reference source material for mineral dust, in pH 2 sulfuric acid, acetic acid, and oxalic acid, respectively. The effects of pH and solar radiation on Fe dissolution have also been explored. The relative capacities of these three acids in Fe dissolution are in the order of oxalic acid > sulfuric acid > acetic acid. Oxalate forms mononuclear bidentate ligand with surface Fe and promotes Fe dissolution to the greatest extent. Photolysis of Fe-oxalate complexes further enhances Fe dissolution with the concomitant degradation of oxalate. These results suggest that ligand-promoted dissolution of Fe may play a more significant role in mobilizing Fe from atmospheric dust compared with proton-assisted processing. The role of atmospheric organic acids should be taken into account in global-biogeochemical modeling to better access dissolved atmospheric Fe deposition flux at the ocean surface.

  5. A Clean School Is a Healthy School.

    ERIC Educational Resources Information Center

    Shideler, Larry

    2001-01-01

    Discusses the benefits that schools and universities can derive when they emphasize health and safety in their cleaning practices. Use of the Cleaning for Health and Safety program to reduce or eliminate potentially harmful products and processes and lower absenteeism, illness, and injury is discussed.(GR)

  6. Guidelines for qualifying cleaning and verification materials

    NASA Technical Reports Server (NTRS)

    Webb, D.

    1995-01-01

    This document is intended to provide guidance in identifying technical issues which must be addressed in a comprehensive qualification plan for materials used in cleaning and cleanliness verification processes. Information presented herein is intended to facilitate development of a definitive checklist that should address all pertinent materials issues when down selecting a cleaning/verification media.

  7. Clean-room robot implementation

    SciTech Connect

    Comeau, J.L.

    1982-07-14

    A robot has been incorporated in a clean room operation in which vacuum tube parts are cleaned just prior to final assembly with a 60 lb/in/sup 2/ blast of argon gas. The robot is programmed to pick up the parts, manipulate/rotate them as necessary in the jet pattern and deposit them in a tray precleaned by the robot. A carefully studied implementation plan was followed in the procurement, installation, modification and programming of the robot facility. An unusual configuration of one tube part required a unique gripper design. A study indicated that the tube parts processed by the robot are 12% cleaner than those manually cleaned by an experienced operator.

  8. Clean Coal Diesel Demonstration Project

    SciTech Connect

    Robert Wilson

    2006-10-31

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  9. Valuation of OSA process and folic acid addition as excess sludge minimization alternatives applied in the activated sludge process.

    PubMed

    Martins, C L; Velho, V F; Ramos, S R A; Pires, A S C D; Duarte, E C N F A; Costa, R H R

    2016-01-01

    The aim of this study was to investigate the ability of the oxic-settling-anaerobic (OSA)-process and the folic acid addition applied in the activated sludge process to reduce the excess sludge production. The study was monitored during two distinct periods: activated sludge system with OSA-process, and activated sludge system with folic acid addition. The observed sludge yields (Yobs) were 0.30 and 0.08 kgTSS kg(-1) chemical oxygen demand (COD), control phase and OSA-process (period 1); 0.33 and 0.18 kgTSS kg(-1) COD, control phase and folic acid addition (period 2). The Yobs decreased by 73 and 45% in phases with the OSA-process and folic acid addition, respectively, compared with the control phases. The sludge minimization alternatives result in a decrease in excess sludge production, without negatively affecting the performance of the effluent treatment.

  10. Process and apparatus for electrolysis of hydrochloric acid

    SciTech Connect

    Minz, F.; Wiechers, H.

    1980-12-02

    In the production of chlorine and hydrogen from hydrochloric acid by electrolysis in an electrolysis cell comprising a plurality of vertically arranged bipolar electrodes, a diaphragm arranged between each two electrodes to divide the electrolysis chambers formed between them into an anolyte chamber and a catholyte chamber, and outlet and inlet devices for the electrolyte, the improvement which comprises electrolyzing the hydrochloric acid in at least two successive stages, and degassing the hydrochloric acid. Advantageously the hydrochloric acid moves from bottom to top, first through an upper stage and then through a lower stage. As a result less electrode surface is needed, a higher current density and/or voltage is possible so existing apparatus can be modified to connect more bipolar electrodes in series.

  11. Fermentation and recovery process for lactic acid production

    DOEpatents

    Tsai, S.P.; Moon, S.H.; Coleman, R.

    1995-11-07

    A method is described for converting starch to glucose and fermenting glucose to lactic acid, including simultaneous saccharification and fermentation through use of a novel consortium of bacterial strains. 2 figs.

  12. REVIEW OF ALTERNATIVE ENHANCED CHEMICAL CLEANING OPTIONS FOR SRS WASTE TANKS

    SciTech Connect

    Hay, M.; Koopman, D.

    2009-08-01

    A literature review was conducted to support the Task Technical and Quality Assurance Plan for Alternative Enhanced Chemical Cleaning (AECC) for sludge heel removal funded as part of the EM-21 Engineering and Technology program. The goal was to identify potential technologies or enhancements to the baseline oxalic acid cleaning process for chemically dissolving or mobilizing Savannah River Site (SRS) sludge heels. The issues with the potentially large volume of oxalate solids generated from the baseline process have driven an effort to find an improved or enhanced chemical cleaning technology for the tank heels. This literature review builds on a previous review conducted in 2003. A team was charged with evaluating the information in these reviews and developing recommendations of alternative technologies to pursue. The new information in this report supports the conclusion of the previous review that oxalic acid remains the chemical cleaning agent of choice for dissolving the metal oxides and hydroxides found in sludge heels in carbon steel tanks. The potential negative impact of large volumes of sodium oxalate on downstream processes indicates that the amount of oxalic acid used for chemical cleaning needs to be minimized as much as possible or the oxalic acid must be destroyed prior to pH adjustment in the receipt tank. The most straightforward way of minimizing the volume of oxalic acid needed for chemical cleaning is through more effective mechanical cleaning. Using a mineral acid to adjust the pH of the sludge prior to adding oxalic acid may also help to minimize the volume of oxalic acid used in chemical cleaning. If minimization of oxalic acid proves insufficient in reducing the volume of oxalate salts, several methods were found that could be used for oxalic acid destruction. For some waste tank heels, another acid or even caustic treatment (or pretreatment) might be more appropriate than the baseline oxalic acid cleaning process. Caustic treatment of high

  13. Carbon dioxide cleaning pilot project

    SciTech Connect

    Knight, L.; Blackman, T.E.

    1994-01-21

    In 1989, radioactive-contaminated metal at the Rocky Flats Plant (RFP) was cleaned using a solvent paint stripper (Methylene chloride). One-third of the radioactive material was able to be recycled; two-thirds went to the scrap pile as low-level mixed waste. In addition, waste solvent solutions also required disposal. Not only was this an inefficient process, it was later prohibited by the Resource Conservation and Recovery Act (RCRA), 40 CFR 268. A better way of doing business was needed. In the search for a solution to this situation, it was decided to study the advantages of using a new technology - pelletized carbon dioxide cleaning. A proof of principle demonstration occurred in December 1990 to test whether such a system could clean radioactive-contaminated metal. The proof of principle demonstration was expanded in June 1992 with a pilot project. The purpose of the pilot project was three fold: (1) to clean metal so that it can satisfy free release criteria for residual radioactive contamination at the Rocky Flats Plant (RFP); (2) to compare two different carbon dioxide cleaning systems; and (3) to determine the cost-effectiveness of decontamination process in a production situation and compare the cost of shipping the metal off site for waste disposal. The pilot project was completed in August 1993. The results of the pilot project were: (1) 90% of those items which were decontaminated, successfully met the free release criteria , (2) the Alpheus Model 250 was selected to be used on plantsite and (3) the break even cost of decontaminating the metal vs shipping the contaminated material offsite for disposal was a cleaning rate of 90 pounds per hour, which was easily achieved.

  14. Process for chemical reaction of amino acids and amides yielding selective conversion products

    DOEpatents

    Holladay, Jonathan E.

    2006-05-23

    The invention relates to processes for converting amino acids and amides to desirable conversion products including pyrrolidines, pyrrolidinones, and other N-substituted products. L-glutamic acid and L-pyroglutamic acid provide general reaction pathways to numerous and valuable selective conversion products with varied potential industrial uses.

  15. [Analysis of aliphatic carboxylic acids in anaerobic digestion process waters by ion-exclusion chromatography].

    PubMed

    Ito, Kazuaki; Sakamoto, Jun; Nagaoka, Kazuya; Takayama, Yohichi; Kanahori, Takashi; Sunahara, Hiroshi; Hayashi, Tsuneo; Sato, Shinji; Hirokawa, Takeshi; Tanaka, Kazuhiko

    2012-04-01

    The analysis of seven aliphatic carboxylic acids (formic, acetic, propionic, iso-butyric, n-butyric, iso-valeric and n-valeric acid) in anaerobic digestion process waters for biogas production was examined by ion-exclusion chromatography with dilute acidic eluents (benzoic acid, perfluorobutyric acid (PFBA) and sulfuric acid) and non-suppressed conductivity/ultraviolet (UV) detection. The columns used were a styrene/divinylbenzene-based strongly acidic cation-exchange resin column (TSKgel SCX) and a polymethacrylate-based weakly acidic cation-exchange resin column (TSKgel Super IC-A/C). Good separation was performed on the TSKgel SCX in shorter retention times. For the TSKgel Super IC-A/C, peak shape of the acids was sharp and symmetrical in spite of longer retention times. In addition, the mutual separation of the acids was good except for iso- and n-butyric acids. The better separation and good detection was achieved by using the two columns (TSKgel SCX and TSKgel Super IC-A/C connected in series), lower concentrations of PFBA and sulfuric acid as eluents, non-suppressed conductivity detection and UV detection at 210 nm. This analysis was applied to anaerobic digestion process waters. The chromatograms with conductivity detection were relatively simpler compared with those of UV detection. The use of two columns with different selectivities for the aliphatic carboxylic acids and the two detection modes was effective for the determination and identification of the analytes in anaerobic digestion process waters containing complex matrices.

  16. Acid tolerance response (ATR) of microbial communities during the enhanced biohydrogen process via cascade acid stress.

    PubMed

    Lin, Xiaoqin; Xia, Yan; Yan, Qun; Shen, Wei; Zhao, Mingxing

    2014-03-01

    Enhanced biohydrogen production via cascade acid stress on microbial communities, structure patterns of the microbial communities revealed by PLFAs, and the succession of biohydrogen related species against cascade acid stress were all investigated. It was found that hydrogen production could be improved from 48.7 to 79.4mL/gVS after cascade acid stress. In addition, the Gram negative (G(-)) bacteria were found to be more tolerant to organic acids than those of the Gram positive (G(+)) bacteria, regardless of the dominance of G(+) bacteria within the microbial communities. Moreover, Clostridium butyricum, Clostridium aciditolerans and Azospira oryzae, were proved to be enriched, and then might play indispensable roles for the enhanced biohydrogen production after cascade acid stress, as which were responsible for the biohydrogen accumulation, acid tolerance and nitrogen removal, respectively.

  17. UV/ozone cleaning of surfaces

    NASA Astrophysics Data System (ADS)

    Vig, J. R.

    1986-05-01

    The UV/ozone methods, which is reviewed in this report, is an effective method of removing a variety of contaminants from surfaces. It is a simple-to-use dry process which is inexpensive to set up and operate. It can rapidly produce clean surfaces, in air or in a vacuum system, at ambient temperatures. Placing properly precleaned surface within a few millimeters of an ozone-producing UV source can produce clean surfaces in less than one minute. The technique can produce clean surfaces in less than one minute. The technique can produce near-atomically clean surfaces, as evidenced by Auger electron spectrosocpy (AES), electron spectroscopy for chemical analysis (ESCA), and ion scattering spectroscopy/secondary ion mass spectroscopy (ISS/SIMS) studies. Topics discussed include the variables of the process, the types for surfaces which have been cleaned successfully, the contaminants that can be removed, the construction of a UV ozone cleaning facility, the mechanism of the process, UV/ozone cleaning in vacuum systems, rate-enhancement techniques, safety consideration, effects of UV/ozone other than cleaning, and applications.

  18. Chemical cleaning re-invented: clean, lean and green.

    PubMed

    Hanson, Margaret; Vangeel, Michel

    2014-01-01

    A project undertaken in the Central Cleaning Department of Janssen, a Johnson and Johnson pharmaceutical company, demonstrates how ergonomics, environmental and industrial hygiene risks and quality concerns can be tackled simultaneously. The way equipment was cleaned was re-designed by an in-house cross-functional team to ensure a 'clean, lean and green' process. Initiatives included a new layout of the area, and new work processes and equipment to facilitate cleaning and handling items. This resulted in significant improvements: all ergonomics high risk tasks were reduced to moderate or low risk; hearing protection was no longer required; respirator requirement reduced by 67%; solvent use reduced by 73%; productivity improved, with 55% fewer operator hours required; and quality improved 40-fold. The return on investment was estimated at 3.125 years based on an investment of over €1.5 million (2008 prices). This win-win intervention allowed ergonomics, environmental, industrial hygiene, productivity and quality concerns all to be addressed.

  19. A solvent extraction approach to recover acetic acid from mixed waste acids produced during semiconductor wafer process.

    PubMed

    Shin, Chang-Hoon; Kim, Ju-Yup; Kim, Jun-Young; Kim, Hyun-Sang; Lee, Hyang-Sook; Mohapatra, Debasish; Ahn, Jae-Woo; Ahn, Jong-Gwan; Bae, Wookeun

    2009-03-15

    Recovery of acetic acid (HAc) from the waste etching solution discharged from silicon wafer manufacturing process has been attempted by using solvent extraction process. For this purpose 2-ethylhexyl alcohol (EHA) was used as organic solvent. In the pre-treatment stage >99% silicon and hydrofluoric acid was removed from the solution by precipitation. The synthesized product, Na(2)SiF(6) having 98.2% purity was considered of commercial grade having good market value. The waste solution containing 279 g/L acetic acid, 513 g/L nitric acid, 0.9 g/L hydrofluoric acid and 0.030 g/L silicon was used for solvent extraction study. From the batch test results equilibrium conditions for HAc recovery were optimized and found to be 4 stages of extraction at an organic:aqueous (O:A) ratio of 3, 4 stages of scrubbing and 4 stages of stripping at an O:A ratio of 1. Deionized water (DW) was used as stripping agent to elute HAc from organic phase. In the whole batch process 96.3% acetic acid recovery was achieved. Continuous operations were successfully conducted for 100 h using a mixer-settler to examine the feasibility of the extraction system for its possible commercial application. Finally, a complete process flowsheet with material balance for the separation and recovery of HAc has been proposed.

  20. Effect of extrusion processing on the soluble and insoluble fiber, and phytic acid contents of cereal brans.

    PubMed

    Gualberto, D G; Bergman, C J; Kazemzadeh, M; Weber, C W

    1997-01-01

    The health benefits associated with dietary fiber have resulted in it now being used in virtually all food product categories, including many products which are manufactured using extrusion processing. The objective of the present study was to determine if extrusion processing affected phytic acid, and soluble and insoluble fiber contents. The effect of screw speeds of 50, 70, and 100% of maximum rotations per minute (% MRPM) on these components was investigated. A BI-EX Model DNDG-62/20D co-rotating intermeshing self-cleaning twin-screw extruder, manufactured by Bühlerag, CH-9240, Uzwil, Switzerland, was used to process wheat, oat and rice brans. It was found that extrusion did not affect the insoluble fiber content of wheat bran; however, a decrease in this component was observed in rice and oat brans. The effect on rice bran insoluble fiber was greatest at screw speeds of 50 and 70% MRPM. This occurred in oat bran at 50% MRPM. Soluble fiber content increased in all brans after extrusion, except ER100. For oat and rice bran soluble fibers, the greatest increase occurred at 50 and 70% MRPM, while for wheat bran this occurred at 70 and 100% MRPM. Extrusion did not affect the phytate content of the cereal brans.

  1. Stable carbon isotopic compositions of low-molecular-weight dicarboxylic acids, oxocarboxylic acids, α-dicarbonyls, and fatty acids: Implications for atmospheric processing of organic aerosols

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Lin; Kawamura, Kimitaka; Cao, Fang; Lee, Meehye

    2016-04-01

    Stable carbon isotopic compositions (δ13C) were measured for 23 individual organic species including 9 dicarboxylic acids, 7 oxocarboxylic acids, 1 tricarboxylic acid, 2 α-dicarbonyls, and 4 fatty acids in the aerosols from Gosan background site in East Asia. δ13C values of particle phase glyoxal and methylglyoxal are significantly larger than those previously reported for isoprene and other precursors. The values are consistently less negative in oxalic acid (C2, average -14.1‰), glyoxylic acid (-13.8‰), pyruvic acid (-19.4‰), glyoxal (-13.5‰), and methylglyoxal (-18.6‰) compared to other organic species (e.g., palmitic acid, -26.3‰), which can be explained by the kinetic isotope effects during atmospheric oxidation of pre-aged precursors (e.g., isoprene) and the subsequent gas-particle partitioning after the evaporation of clouds or wet aerosols. The δ13C values of C2 is positively correlated with C2 to organic carbon ratio, indicating that photochemical production of C2 is more pronounced than its degradation during long-range atmospheric transport. The isotopic results also suggest that aqueous phase oxidation of glyoxal and methylglyoxal is a major formation process of oxalic acid via the intermediates such as glyoxylic acid and pyruvic acid. This study provides evidence that organic aerosols are intensively photochemically aged in the western North Pacific rim.

  2. Process for the obtainment of boric acid from colemanite and/or howlite minerals

    SciTech Connect

    Polendo-Loredo, J.

    1988-07-12

    A process for obtaining boric acid from colemanite minerals, howlite minerals, or mixtures thereof is described comprising: treating the mineral with sulfuric acid to dissolve boron compounds; separating the solution thus formed from the insoluble solids in suspension; reacting the solution with hydrogen sulfide to precipitate arsenic and iron impurities; separating the impurities precipitated from the remaining solution; cooling the remaining solution to precipitate boric acid; and separating the boric acid from the remaining solution.

  3. Automated spray cleaning using flammable solvents in a glovebox

    SciTech Connect

    Garcia, P.; Meirans, L.

    1998-05-01

    The phase-out of the ozone-depleting solvents has forced industry to look to solvents such as alcohol, terpenes and other flammable solvents to perform the critical cleaning processes. These solvents are not as efficient as the ozone-depleting solvents in terms of soil loading, cleaning time and drying when used in standard cleaning processes such as manual sprays or ultrasonic baths. They also require special equipment designs to meet part cleaning specifications and operator safety requirements. This paper describes a cleaning system that incorporates the automated spraying of flammable solvents to effectively perform precision cleaning processes. Key to the project`s success was the development of software that controls the robotic system and automatically generates robotic cleaning paths from three dimensional CAD models of the items to be cleaned.

  4. Waterless Clothes-Cleaning Machine

    NASA Technical Reports Server (NTRS)

    Johnson, Glenn; Ganske, Shane

    2013-01-01

    A waterless clothes-cleaning machine has been developed that removes loose particulates and deodorizes dirty laundry with regenerative chemical processes to make the clothes more comfortable to wear and have a fresher smell. This system was initially developed for use in zero-g, but could be altered for 1-g environments where water or other re sources are scarce. Some of these processes include, but are not limited to, airflow, filtration, ozone generation, heat, ultraviolet light, and photocatalytic titanium oxide.

  5. Process for the preparation of 3,4-dihydroxybutanoic acid and salts thereof

    DOEpatents

    Hollingsworth, Rawle I.

    1994-01-01

    A process for the preparation of 3,4-dihydroxybutanoic acid (1) and salts thereof from a glucose source containing 1,4-linked glucose as a substituent is described. The process uses an alkali metal hdyroxide and hydrogen peroxide to convert the glucose source to (1). The compound (1) is useful as a chemical intermediate to naturally occurring fatty acids and is used to prepare 3,4-dihydroxybutanoic acid-gamma-lactone (2) and furanone (3), particularly stereoisomers of these compounds.

  6. Process For The Preparation Of 3,4-Dihyd Roxybutanoic Acid And Salts Thereof

    DOEpatents

    Hollingsworth, Rawle I.

    1994-06-07

    A process for the preparation of 3,4-dihydroxybutanoic acid (1) and salts thereof from a glucose source containing 1,4-linked glucose as a substituent is described. The process uses an alkali metal hdyroxide and hydrogen peroxide to convert the glucose source to (1). The compound (1) is useful as a chemical intermediate to naturally occurring fatty acids and is used to prepare 3,4-dihydroxybutanoic acid-gamma-lactone (2) and furanone (3), particularly stereoisomers of these compounds.

  7. Alternate cleaning methods for LCCAs. [LCC (Leadless Chip Carriers)

    SciTech Connect

    Adams, B.E.

    1993-04-01

    The purpose of this project was to evaluate DI water followed by isopropyl alcohol (IPA) cleaning and no cleaning of leadless chip carriers (LCCs). Both environmentally safe methods were to be tested against the current chlorofluorocarbon (CFC) material cleaning baseline. Several experiments were run to compare production and electrical yields of LCCs cleaned by all three methods. The critical process steps most affected by cleaning were wire bonding, sealing, particle induced noise detection (PIND), moisture content, and electrical. Yields for the experimental lots cleaned by CFC, DI water plus IPA, and no cleaning were 56%, 72%, and 75%, respectively. The overall results indicated that vapor degreasing/ultrasonic cleaning in CFCs could be replaced by the aqueous method. No cleaning could also be considered if an effective dry method of particle removal could be developed.

  8. Rudimentary Cleaning Compared to Level 300A

    NASA Technical Reports Server (NTRS)

    Arpin, Christina Y. Pina; Stoltzfus, Joel

    2012-01-01

    A study was done to characterize the cleanliness level achievable when using a rudimentary cleaning process, and results were compared to JPR 5322.1G Level 300A. While it is not ideal to clean in a shop environment, some situations (e.g., field combat operations) require oxygen system hardware to be maintained and cleaned to prevent a fire hazard, even though it cannot be sent back to a precision cleaning facility. This study measured the effectiveness of basic shop cleaning. Initially, three items representing parts of an oxygen system were contaminated: a metal plate, valve body, and metal oxygen bottle. The contaminants chosen were those most likely to be introduced to the system during normal use: oil, lubricant, metal shavings/powder, sand, fingerprints, tape, lip balm, and hand lotion. The cleaning process used hot water, soap, various brushes, gaseous nitrogen, water nozzle, plastic trays, scouring pads, and a controlled shop environment. Test subjects were classified into three groups: technical professionals having an appreciation for oxygen hazards; professional precision cleaners; and a group with no previous professional knowledge of oxygen or precision cleaning. Three test subjects were in each group, and each was provided with standard cleaning equipment, a cleaning procedure, and one of each of the three test items to clean. The results indicated that the achievable cleanliness level was independent of the technical knowledge or proficiency of the personnel cleaning the items. Results also showed that achieving a Level 300 particle count was more difficult than achieving a Level A nonvolatile residue amount.

  9. Mechanical cleaning of graphene

    NASA Astrophysics Data System (ADS)

    Goossens, A. M.; Calado, V. E.; Barreiro, A.; Watanabe, K.; Taniguchi, T.; Vandersypen, L. M. K.

    2012-02-01

    Contamination of graphene due to residues from nanofabrication often introduces background doping and reduces electron mobility. For samples of high electronic quality, post-lithography cleaning treatments are therefore needed. We report that mechanical cleaning based on contact mode atomic force microscopy removes residues and significantly improves the electronic properties. A mechanically cleaned dual-gated bilayer graphene transistor with hexagonal boron nitride dielectrics exhibited a mobility of ˜36 000 cm2/Vs at low temperature.

  10. Clean Metal Casting

    SciTech Connect

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.

  11. Process for immobilizing radioactive boric acid liquid wastes

    SciTech Connect

    Greenhalgh, Wilbur O.

    1986-01-01

    A method of immobilizing boric acid liquid wastes containing radionuclides by neutralizing the solution and evaporating the resulting precipitate to near dryness. The dry residue is then fused into a reduced volume, insoluble, inert, solid form containing substantially all the radionuclides.

  12. Clean Air Excellence Awards

    EPA Pesticide Factsheets

    These non-monetary awards honor sustainable efforts toward pollutant emissions reduction from innovators in clean air technology, community action and outreach, policy development, and transportation efficiency.

  13. Cleaning Products Pilot Project

    EPA Pesticide Factsheets

    This 1997 case study documents a three-year effort to identify and compare environmentally preferable commercial cleaning products and to implement the Environmentally Preferable Purchasing Program (EPP).

  14. Annual report, spring 2015. Alternative chemical cleaning methods for high level waste tanks-corrosion test results

    SciTech Connect

    Wyrwas, R. B.

    2015-07-06

    The testing presented in this report is in support of the investigation of the Alternative Chemical Cleaning program to aid in developing strategies and technologies to chemically clean radioactive High Level Waste tanks prior to tank closure. The data and conclusions presented here were the examination of the corrosion rates of A285 carbon steel and 304L stainless steel when interacted with the chemical cleaning solution composed of 0.18 M nitric acid and 0.5 wt. % oxalic acid. This solution has been proposed as a dissolution solution that would be used to remove the remaining hard heel portion of the sludge in the waste tanks. This solution was combined with the HM and PUREX simulated sludge with dilution ratios that represent the bulk oxalic cleaning process (20:1 ratio, acid solution to simulant) and the cumulative volume associated with multiple acid strikes (50:1 ratio). The testing was conducted over 28 days at 50°C and deployed two methods to invest the corrosion conditions; passive weight loss coupon and an active electrochemical probe were used to collect data on the corrosion rate and material performance. In addition to investigating the chemical cleaning solutions, electrochemical corrosion testing was performed on acidic and basic solutions containing sodium permanganate at room temperature to explore the corrosion impacts if these solutions were to be implemented to retrieve remaining actinides that are currently in the sludge of the tank.

  15. Simple Process for the Reduction in the Nucleic Acid Content in Yeast

    PubMed Central

    Zee, J. A.; Simard, R. E.

    1975-01-01

    A simple one-step process for the nucleic acid reduction in Rhodotorula glutinis is described. The process consists of submitting the yeast cells to a heat treatment in an acidic (pH 2) spent medium. The optimal temperature for pH 2 medium is 90 C and the final nucleic acid content in treated yeasts was 1.2%. Heat treatment at acidic pH is preferred to that at alkaline pH because it offers a better protection for amino acids and crude protein, while being more efficient in lowering the nucleic acid level. The new process is economic and rapid and could be easily used for industrial application. PMID:234157

  16. Using banana to generate lactic acid through batch process fermentation.

    PubMed

    Chan-Blanco, Y; Bonilla-Leiva, A R; Velázquez, A C

    2003-12-01

    We evaluated the usefulness of waste banana for generating lactic acid through batch fermentation, using Lactobacillus casei under three treatments. Two treatments consisted of substrates of diluted banana purée, one of which was enriched with salts and amino acids. The control treatment comprised a substrate suitable for L. casei growth. When fermentation was evaluated over time, significant differences (P<0.05) were found in the three treatments for each of five variables analyzed (generation and productivity of lactic acid, and consumption of glucose, fructose, and sucrose). Maximum productivity was (in g l(-1) h(-1)) 0.13 for the regular banana treatment, 1.49 for the enriched banana, and 1.48 for the control, with no significant differences found between the latter two treatments. Glucose consumption curves showed that L. casei made greater use of the substrate in the enriched banana and control treatments than in the regular banana treatment. For fructose intake, the enriched banana treatment showed significantly better (P<0.05) results than the regular one. Sucrose consumption was insignificant (P<0.05), probably because fermentation time was too short. Even when enriched, diluted banana purée is an ineffective substrate for L. casei, probably because it lacks nutrients.

  17. Indium phosphide negative electron affinity photocathodes: Surface cleaning and activation

    NASA Astrophysics Data System (ADS)

    Sun, Yun

    InP(100) is a very important semi-conductor for many applications. When activated by Cs and oxygen, the InP surface achieves the state of Negative Electron Affinity (NEA) making the Cs+O/InP system a very efficient electron source. Despite many years of study, the chemical cleaning and activation of InP are still not well understood. In our work, we have established an understanding of the basic physics and chemistry for the chemical cleaning and activation of the InP(100) surface. Synchrotron Radiation Photoelectron Spectroscopy is the main technique used in this study because of its high surface sensitivity and ability to identify chemical species present on the surface at each stage of our process. A clean, stoichiometric InP(100) surface is crucial for obtaining high performance of NEA photocathodes. Therefore, the first part of our study focused on the chemical cleaning of InP(100). We found that hydrogen peroxide based solutions alone, originally developed to clean GaAs(100) surfaces and widely used for InP(100), do not result in clean InP(I00) surfaces because oxide is left on the surface. A second cleaning step, which uses acid solutions like HCl or H2SO4, can remove all the oxide and leave a 0.4 ML protective layer of elemental phosphorous on the surface. The elemental phosphorous can be removed by annealing at 330°C and a clean InP(100) surface can be obtained. Cs deposition on InP(100) surface shows clear charge transfer from the Cs ad-atoms to the substrate. When the Cs/InP(100) surface is dosed with oxygen, the charge transfer from the Cs to substrate is reduced and substrate is oxidized. The activation of InP as a NEA photocathode is carried out by an alternating series of steps consisting of Cs deposition and Cs+O co-deposition. Two types of oxygen are found after activation. The first is dissociated oxygen and the other is a di-oxygen species (peroxide or superoxide). The decay of quantum-yield with time and with annealing is studied and changes in

  18. Cleaning of aluminum after machining with coolants

    SciTech Connect

    Roop, B.

    1995-07-01

    An x-ray photoemission spectroscopic study was undertaken to compare the cleaning of the Advanced Photon Source (APS) aluminum extrusion storage ring vacuum chambers after machining with and without water soluble coolants. While there was significant contamination left by the coolants, the cleaning process was capable of removing the residue. The variation of the surface and near surface composition of samples machined either dry or with coolants was negligible after cleaning. The use of such coolants in the machining process is therefore recommended.

  19. Development of megasonic cleaning for silicon wafers

    NASA Technical Reports Server (NTRS)

    Mayer, A.

    1980-01-01

    A cleaning and drying system for processing at least 2500 three in. diameter wafers per hour was developed with a reduction in process cost. The system consists of an ammonia hydrogen peroxide bath in which both surfaces of 3/32 in. spaced, ion implanted wafers are cleaned in quartz carriers moved on a belt past two pairs of megasonic transducers. The wafers are dried in the novel room temperature, high velocity air dryer in the same carriers used for annealing. A new laser scanner was used effectively to monitor the cleaning ability on a sampling basis.

  20. 21 CFR 211.182 - Equipment cleaning and use log.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Equipment cleaning and use log. 211.182 Section... Reports § 211.182 Equipment cleaning and use log. A written record of major equipment cleaning... individual equipment logs that show the date, time, product, and lot number of each batch processed....

  1. 21 CFR 211.182 - Equipment cleaning and use log.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Equipment cleaning and use log. 211.182 Section... Reports § 211.182 Equipment cleaning and use log. A written record of major equipment cleaning... individual equipment logs that show the date, time, product, and lot number of each batch processed....

  2. 21 CFR 211.182 - Equipment cleaning and use log.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Equipment cleaning and use log. 211.182 Section... Reports § 211.182 Equipment cleaning and use log. A written record of major equipment cleaning... individual equipment logs that show the date, time, product, and lot number of each batch processed....

  3. 21 CFR 211.182 - Equipment cleaning and use log.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Equipment cleaning and use log. 211.182 Section... Reports § 211.182 Equipment cleaning and use log. A written record of major equipment cleaning... individual equipment logs that show the date, time, product, and lot number of each batch processed....

  4. 21 CFR 211.182 - Equipment cleaning and use log.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Equipment cleaning and use log. 211.182 Section... Reports § 211.182 Equipment cleaning and use log. A written record of major equipment cleaning... individual equipment logs that show the date, time, product, and lot number of each batch processed....

  5. Raman Scattering Sensor for Control of the Acid Alkylation Process in Gasoline Production

    SciTech Connect

    Uibel, Rory, H.; Smith, Lee M.; Benner, Robert, E.

    2006-04-19

    Gasoline refineries utilize a process called acid alkylation to increase the octane rating of blended gasoline, and this is the single most expensive process in the refinery. For process efficiency and safety reasons, the sulfuric acid can only be used while it is in the concentration range of 98 to 86 %. The conventional technique to monitor the acid concentration is time consuming and is typically conducted only a few times per day. This results in running higher acid concentrations than they would like to ensure that the process proceeds uninterrupted. Maintaining an excessively high acid concentration costs the refineries millions of dollars each year. Using SBIR funding, Process Instruments Inc. has developed an inline sensor for real time monitoring of acid concentrations in gasoline refinery alkylation units. Real time data was then collected over time from the instrument and its responses were matched up with the laboratory analysis. A model was then developed to correlate the laboratory acid values to the Raman signal that is transmitted back to the instrument from the process stream. The instrument was then used to demonstrate that it could create real-time predictions of the acid concentrations. The results from this test showed that the instrument could accurately predict the acid concentrations to within ~0.15% acid strength, and this level of prediction proved to be similar or better then the laboratory analysis. By utilizing a sensor for process monitoring the most economic acid concentrations can be maintained. A single smaller refinery (50,000 barrels/day) estimates that they should save over $120,000/year, with larger refineries saving considerably more.

  6. Degreasing of Solid Surfaces by Microbubble Cleaning

    NASA Astrophysics Data System (ADS)

    Miyamoto, Makoto; Ueyama, Satoshi; Hinomoto, Nobuhide; Saitoh, Tadashi; Maekawa, Shigeki; Hirotsuji, Junji

    2007-03-01

    It is increasingly required to reduce the environmental impact and cost in the field of industrial cleaning. As a substitute for conventional degreasing technology using organic solvents, acids, and alkalis, the authors have developed a new cleaning technology that uses microbubbles having an average diameter of about 70 μm. Grease being adsorbed onto a bubble’s surface and grease being separated from a solid surface by its buoyancy were captured using a high-speed microscopic video camera to demonstrate the degreasing capability of bubbles. High-density microbubbles were generated by adding a trace amount of a specific chemical (0.1% weight or less). The cleaning performance using microbubbles was found to be highly improved compared with that using normal bubbles. It was also revealed that the grease removal efficiency was strongly dependent on the viscosity of the grease. Raising the temperature of the cleaning solution is an effective method of improving cleaning performance by reducing the viscosity. Finally, the degreasing of about 150 machining metal parts at the same time was demonstrated to exceed the common target cleaning level (5-20 μg/cm2) in only 2 min because of their large surface area. Furthermore, the high degreasing performance was maintained even after repeated use of the cleaning solution because of the separation of grease due to buoyancy.

  7. Green Cleaning Label Power

    ERIC Educational Resources Information Center

    Balek, Bill

    2012-01-01

    Green cleaning plays a significant and supportive role in helping education institutions meet their sustainability goals. However, identifying cleaning products, supplies and equipment that truly are environmentally preferable can be daunting. The marketplace is inundated with products and services purporting to be "green" or environmentally…

  8. Cleaning Physical Education Areas.

    ERIC Educational Resources Information Center

    Griffin, William R.

    1999-01-01

    Discusses techniques to help create clean and inviting school locker rooms. Daily, weekly or monthly, biannual, and annual cleaning strategies for locker room showers are highlighted as are the specialized maintenance needs for aerobic and dance areas, running tracks, and weight training areas. (GR)

  9. Clean Energy Manufacturing Initiative

    SciTech Connect

    2013-04-01

    The initiative will strategically focus and rally EERE’s clean energy technology offices and Advanced Manufacturing Office around the urgent competitive opportunity for the United States to be the leader in the clean energy manufacturing industries and jobs of today and tomorrow.

  10. Clean Air Act Text

    EPA Pesticide Factsheets

    The Clean Air Act is the law that defines EPA's responsibilities for protecting and improving the nation's air quality and the stratospheric ozone layer. The last major change in the law, the Clean Air Act Amendments of 1990, enacted in 1990 by Congress.

  11. REPLACING SOLVENT CLEANING WITH AQUEOUS CLEANING

    EPA Science Inventory

    The report documents actions taken by Robert Bosch Corp., Charleston, SC, in replacing the cleaning solvents 1, 1, 2- trichloro-1, 2, 2-trifluoroethane (CFC-113) and trichloroethylene (TCE) with aqueous solutions. Bosch has succeeded in eliminating all their CFC-113 use and so f...

  12. Recovery Processes of Organic Acids from Fermentation Broths in the Biomass-Based Industry.

    PubMed

    Li, Qian-Zhu; Jiang, Xing-Lin; Feng, Xin-Jun; Wang, Ji-Ming; Sun, Chao; Zhang, Hai-Bo; Xian, Mo; Liu, Hui-Zhou

    2016-01-01

    The new movement towards green chemistry and renewable feedstocks makes microbial production of chemicals more competitive. Among the numerous chemicals, organic acids are more attractive targets for process development efforts in the renewable-based biorefinery industry. However, most of the production costs in microbial processes are higher than that in chemical processes, among which over 60% are generated by separation processes. Therefore, the research of separation and purification processes is important for a promising biorefinery industry. This review highlights the progress of recovery processes in the separation and purification of organic acids, including their advantages and disadvantages, current situation, and future prospects in terms of recovery yields and industrial application.

  13. Production of organic acids by electrodialysis/pervaporation process.

    SciTech Connect

    Tsai, S. P.; Datta, R.; Henry, M.; Halpern, Y.; Frank, J. R.; Energy Systems

    1999-05-01

    Lactate esters produced from carbohydrates have potential markets as nontoxic replacements for halogenated and toxic solvents and as feedstocks for large-volume chemicals and polymers. Argonne National Laboratory has developed a novel process for the production of high-purity lactate esters from carbohydrates. The process uses advanced electrodialysis and pervaporation technologies to overcome major technical barriers in product separation; more specifically, the process involves cation elimination without the generation of salt waste and efficient esterification for final purification. This patented process requires little energy input, is highly efficient and selective, avoids the large volumes of salt waste produced by conventional processes, and significantly reduces manufacturing costs. The enabling membrane separation technologies make it technically and commercially feasible for lactate esters to penetrate the potential markets.

  14. SULFURIC ACID REMOVAL PROCESS EVALUATION: LONG-TERM RESULTS

    SciTech Connect

    Gary M. Blythe; Richard McMillan

    2002-07-03

    The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project is being co-funded by the U.S. DOE National Energy Technology Laboratory, under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corp., the Tennessee Valley Authority, and Dravo Lime, Inc. Sulfuric acid controls are becoming of increasing interest to power generators with coal-fired units for a number of reasons. Sulfuric acid is a Toxic Release Inventory species and can cause a variety of plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NO{sub x} control on many coal-fired plants, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project previously tested the effectiveness of furnace injection of four different calcium-and/or magnesium-based alkaline sorbents on full-scale utility boilers. These reagents were tested during four one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide byproduct slurry produced from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization system. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercial magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners, while the other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace, either across from the nose of the furnace or across from the pendant superheater tubes. After completing the four one- to two-week tests, the most promising sorbents were selected for

  15. Laser Cleaning of Gildings

    NASA Astrophysics Data System (ADS)

    Panzner, M.; Wiedemann, G.; Meier, M.; Conrad, W.; Kempe, A.; Hutsch, T.

    Results of laser cleaning experiments on different gilding types like leaf gilding and fire gilding are presented in this contribution by means of three tested art objects. The reflectivity of gold is advantageously high for the typical laser cleaning wavelength of 1,064 nm. Additionally, to avoid damage like gold loss, the transfer of the absorbed laser pulse energy into the art object by thermal conduction is considered. Fire gilded surfaces are most easily cleaned because of the good heat transfer conditions which imply a high threshold intensity with respect to damage. This is different for leaf gilded surfaces but suitable laser cleaning parameters have also been found for this case. The results of laser cleaning experiments are presented by photography, microscopy, SEM and EDX analysis.

  16. Process waste assessment: Area 143C trichloroethylene vapor degreaser

    SciTech Connect

    Not Available

    1994-04-01

    A process waste assessment (PWA) is a systematic, planned procedure with the overall objective of identifying opportunities and methods to reduce and eliminate waste. This specific PWA examines waste minimization and emission information for the trichloroethylene vapor degreaser in area 143, Chem Clean. Area 143 Chem Clean is involved in the solvent cleaning and acid cleaning (etching) of various metal and ceramic parts in preparation for further processing (e.g., electroplating, brazing, final assembly). A standard set of worksheets for a level three PWA is included.

  17. Innovative Clean Coal Technology (ICCT): Demonstration of innovative applications of technology for cost reductions to the CT-121 FGD process. Quarterly report No. 6, July--September 1991

    SciTech Connect

    Not Available

    1991-11-15

    The project`s objective is to demonstrate innovative applications of technology for cost reduction for the Chiyoda Thoroughbred-121 (CT-121) process. The CT-121 process is a wet FGD process that removes SO{sub 2}, can achieve simultaneous particulate control, and can produce a salable by-product gypsum thereby reducing or even eliminating solid waste disposal problems. Figure 1 shows a flow schematic of the process. CT-121 removes SO{sub 2} and particulate matter in a unique limestone-based scrubber called the Jet Bubbling Reactor (JBR). IN the JBR, flue gas bubbles beneath the slurry, SO{sub 2} is absorbed, and particulate matter is removed from the gas. The agitator circulates limestone slurry to ensure that fresh reactant is always available in the bubbling or froth zone sot that SO{sub 2} removal can proceed at a rapid rate. Air is introduced into the bottom of the JBR to oxidize the absorbed SO{sub 2} to sulfate, and limestone is added continuously to neutralize the acid slurry and form gypsum. The JBR is designed to allow ample time for complete oxidation of the SO{sub 2}, for complete reaction of the limestone, and for growth of large gypsum crystals. The gypsum slurry is continuously withdrawn from the JBR and is to be dewatered in a gypsum stack. The stacking technique involves filing a diked area with gypsum slurry, allowing the gypsum solids to settle, and removing clear liquid from the top of the stack for recycle back to the process.

  18. Correlating Cleaning Thoroughness with Effectiveness and Briefly Intervening to Affect Cleaning Outcomes: How Clean Is Cleaned?

    PubMed Central

    Hosford, Eve; Ong, Ana; Richesson, Douglas; Fraser, Susan; Kwak, Yoon; Miller, Sonia; Julius, Michael; McGann, Patrick; Lesho, Emil

    2016-01-01

    Objectives The most efficient approach to monitoring and improving cleaning outcomes remains unresolved. We sought to extend the findings of a previous study by determining whether cleaning thoroughness (dye removal) correlates with cleaning efficacy (absence of molecular or cultivable biomaterial) and whether one brief educational intervention improves cleaning outcomes. Design Before-after trial. Setting Newly built community hospital. Intervention 90 minute training refresher with surface-specific performance results. Methods Dye removal, measured by fluorescence, and biomaterial removal and acquisition, measured with culture and culture-independent PCR-based assays, were clandestinely assessed for eight consecutive months. At this midpoint, results were presented to the cleaning staff (intervention) and assessments continued for another eight consecutive months. Results 1273 surfaces were sampled before and after terminal room cleaning. In the short-term, dye removal increased from 40.3% to 50.0% (not significant). For the entire study period, dye removal also improved but not significantly. After the intervention, the number of rooms testing positive for specific pathogenic species by culturing decreased from 55.6% to 36.6% (not significant), and those testing positive by PCR fell from 80.6% to 53.7% (P = 0.016). For nonspecific biomaterial on surfaces: a) removal of cultivable Gram-negatives (GN) trended toward improvement (P = 0.056); b) removal of any cultivable growth was unchanged but acquisition (detection of biomaterial on post-cleaned surfaces that were contaminant-free before cleaning) worsened (P = 0.017); c) removal of PCR-based detection of bacterial DNA improved (P = 0.046), but acquisition worsened (P = 0.003); d) cleaning thoroughness and efficacy were not correlated. Conclusion At this facility, a minor intervention or minimally more aggressive cleaning may reduce pathogen-specific contamination, but not without unintended consequences. PMID

  19. Chemical-free cleaning using excimer lasers

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd E.; O'Keeffe, Terence R.

    1996-04-01

    A critical requirement in many industrial processes is the cleaning of oils and grease, oxides, solvent residues, particles, thin films and other contaminants from surfaces. There is a particularly acute need in the electronics industry for cleaning semiconductor wafers and computer chips and in the metals industry for removing oxides and other contaminants. Cleaning traditionally is done by various wet chemical processes, almost all consuming large amounts of water and producing large amounts of hazardous wastes. To further complicate this, some of these cleaning agents and vast water consumption are undergoing stringent restrictions. The Radiance ProcessSM is a novel, patented Excimer Laser approach to dry surface cleaning. The process has removed particles from 80 microns to submicron sizes, paints, inks, oxides, fingerprints, hazes, parts of molecules and metallic ions in fingerprints. The process does not ablate, melt or damage the underlying surface. Micro-roughening on some Silicon and Gallium Arsenide is on the order of 1A or less. This paper will discuss the various applications with this process and the latest results from a beta wafer cleaning prototype test bed system that is being built under an EPA grant and joint partnership between Radiance Services Company, Neuman Micro Technologies, Inc. and the Microelectronics Research Laboratory.

  20. Solid-acid alkylation process development is at a crucial stage

    SciTech Connect

    Rao, P.; Vatcha, S.R.

    1996-09-09

    The refining industry is seeking more environmentally acceptable and economical methods of producing reformulated gasoline (RFG). Alkylate, the cleanest gasoline-blending stream produced in a refinery, is a prime blend stock for RFG production. Alkylation with solid acid catalysts has potential environmental and safety advantages over conventional liquid-acid alkylation. This is especially true for the HF alkylation process. Difficult technical challenges must be overcome in the next few years to achieve a commercially successful solid-acid alylation process. Substantial innovations in catalysts, catalyst regeneration, reactor design, and product separation will be required for solid catalyst processes to replace the incumbent processes, which are being improved continually. The paper discusses background, HF alkylation, H{sub 2}SO{sub 4} alkylation, solid-acid catalysts, reaction mechanism, activity and selectivity, feedstock effects, catalyst life, resistance to poisons, reactors and processes, business issues, and R and D guidelines.

  1. Bifunctional phenyl monophosphonic/sulfonic acid ion exchange resin and process for using the same

    DOEpatents

    Alexandratos, Spiro; Shelley, Christopher A.; Horwitz, E. Philip; Chiarizia, Renato

    2001-01-01

    A cross-linked water-insoluble ion exchange resin comprised of polymerized monomers having a phenyl ring is disclosed. A contemplated resin contains (i) polymerized phenyl ring-containing monomers having a phosphonic acid ligand linked to the phenyl ring, (ii) about 2 to about 5 millimoles per gram (mmol/g) of phosphorus as phosphonic acid ligands, and (iii) a sufficient amount of a sulfonic acid ligand such that the ratio of mmol/g of phosphonic acid to mmol/g sulfonic acid is up to 3:1. A process for removing polyvalent metal cations from aqueous solution, and a process for removing iron(III) cations from acidic copper(II) cation-containing solutions that utilize the contemplated resin or other resins are disclosed.

  2. Bifunctional phenyl monophosphonic/sulfonic acid ion exchange resin and process for using the same

    DOEpatents

    Alexandratos, Spiro; Shelley, Christopher A.; Horwitz, E. Philip; Chiarizia, Renato; Gula, Michael J.; Xue, Sui; Harvey, James T.

    2002-01-01

    A cross-linked water-insoluble ion exchange resin comprised of polymerized monomers having a phenyl ring is disclosed. A contemplated resin contains (i) polymerized phenyl ring-containing monomers having a phosphonic acid ligand linked to the phenyl ring, (ii) about 2 to about 5 millimoles per gram (mmol/g) of phosphorus as phosphonic acid ligands, and (iii) a sufficient amount of a sulfonic acid ligand such that the ratio of mmol/g of phosphonic acid to mmol/g sulfonic acid is up to 3:1. A process for removing polyvalent metal cations from aqueous solution, and a process for removing iron(III) cations from acidic copper(II) cation-containing solutions that utilize the contemplated resin or other resins are disclosed.

  3. CNG process, a new approach to physical-absorption acid-gas removal

    SciTech Connect

    Hise, R.E.; Massey, L.G.; Adler, R.J.; Brosilow, C.B.; Gardner, N.C.; Brown, W.R.; Cook, W.J.; Petrik, M.

    1982-01-01

    The CNG acid gas removal process embodies three novel features: (1) scrubbing with liquid carbon dioxide to remove all sulfurous molecules and other trace contaminants; (2) triple-point crystallization of carbon dioxide to concentrate sulfurous molecules and produce pure carbon dioxide; and (3) absorption of carbon dioxide with a slurry of solid carbon dioxide in organic carrier liquid. The CNG process is discussed and contrasted with existing acid gas removal technology as represented by the Benfield, Rectisol, and Selexol acid gas removal processes.

  4. Method of recovering uranium from wet process phosphoric acid with enhanced content of uranium

    SciTech Connect

    Yoshikawa, S.; Nakamura, R.

    1984-01-24

    In preparing wet process phosphoric acid by decomposing a phosphate rock containing uranium with sulfuric acid and phosphoric acid on condition that hemihydrate gypsum is formed in an acid solution either at the stage of decomposing the phosphate rock or subsequently, uranium contained in the phosphate rock can almost entirely be retained in the obtained phosphoric acid solution by forming the hemihydrate gypsum in the presence of an oxidizing agent, such as a soluble chlorate, hydrogen peroxide or oxygen gas, in the acid solution in a quantity sufficient to render the entire uranium dissolved in the acid solution hexavalent because hemihydrate gypsum adsorbs almost exclusively tetravalent ions of uranium. The uranium is then recovered.

  5. FY13 GLYCOLIC-NITRIC ACID FLOWSHEET DEMONSTRATIONS OF THE DWPF CHEMICAL PROCESS CELL WITH SIMULANTS

    SciTech Connect

    Lambert, D.; Zamecnik, J.; Best, D.

    2014-03-13

    Savannah River Remediation is evaluating changes to its current Defense Waste Processing Facility flowsheet to replace formic acid with glycolic acid in order to improve processing cycle times and decrease by approximately 100x the production of hydrogen, a potentially flammable gas. Higher throughput is needed in the Chemical Processing Cell since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the safety significant gas chromatographs and the potential for production of flammable quantities of hydrogen, eliminating the use of formic acid is highly desirable. Previous testing at the Savannah River National Laboratory has shown that replacing formic acid with glycolic acid allows the reduction and removal of mercury without significant catalytic hydrogen generation. Five back-to-back Sludge Receipt and Adjustment Tank (SRAT) cycles and four back-to-back Slurry Mix Evaporator (SME) cycles were successful in demonstrating the viability of the nitric/glycolic acid flowsheet. The testing was completed in FY13 to determine the impact of process heels (approximately 25% of the material is left behind after transfers). In addition, back-to-back experiments might identify longer-term processing problems. The testing was designed to be prototypic by including sludge simulant, Actinide Removal Product simulant, nitric acid, glycolic acid, and Strip Effluent simulant containing Next Generation Solvent in the SRAT processing and SRAT product simulant, decontamination frit slurry, and process frit slurry in the SME processing. A heel was produced in the first cycle and each subsequent cycle utilized the remaining heel from the previous cycle. Lower SRAT purges were utilized due to the low hydrogen generation. Design basis addition rates and boilup rates were used so the processing time was shorter than current processing rates.

  6. Limiting amino acids in raw and processed amaranth grain protein from biological tests.

    PubMed

    Bressani, R; Elias, L G; Garcia-Soto, A

    1989-09-01

    Amino acid supplementation studies with young rats were carried out using raw and processed amaranth grain (A. cruentus) of dark- and cream- or light-colored seeds. The results of various studies repeatedly indicated that threonine is the most limiting amino acid in raw and processed, dark and cream-colored grain. Protein quality as measured either as NPR or PER was improved by threonine addition alone or with other amino acids and decreased liver fat to values similar to those measured with casein. This finding contradicts the reports that state that leucine, determined by chemical score, is the most limiting amino acid. Leucine addition alone or with other amino acids did not improve protein quality. The study confirmed cream-colored grain to be nutritionally superior to dark grain and that properly processed grain, light- or dark-colored, has higher protein quality than raw grain.

  7. Laser cleaning of metal surfaces

    NASA Astrophysics Data System (ADS)

    Walters, Craig T.; Campbell, Bernard E.; Hull, Robert J.

    1998-09-01

    There is a critical need to replace ozone-depleting substances and hazardous chemicals that, in the past, have been used routinely in aerospace maintenance operations such as precision cleaning of metal surfaces. Lasers now offer the potential for removal of many organic materials from metals without the use of any solvent or aqueous cleaning agents. This paper presents quantitative results of laser-cleaning process-development research with a pulsed Nd:YAG laser and several common metals and organic contaminants. Metal coupons of Stainless Steel 304, Aluminum 5052, and Titanium were contaminated with known amounts of organic oils and greases at contamination levels in the 5 to 200 (mu) g/cm2 range. A fiber-optic-delivered 1064-nm pulsed laser beam (20-Hz repetition rate) was scanned over the coupons with different overlap and pulse fluence conditions. Measurements of mass loss revealed that all levels of initial contamination could be removed to final cleanliness levels less than 3 (mu) g/cm2, at which point the mass loss measurements became uncertain. Pulse fluence thresholds for initial cleaning effects and practical cleaning rates for several metal and contaminant combinations are reported. From the totality of the results, an overall picture of the contaminant removal mechanism is emerging. For semi-transparent films, it is conjectured that a thermo-mechanical effect occurs wherein the laser energy is absorbed predominantly in the metal substrate which expands on the nanosecond time scale. This rapid expansion, in combination with some material evaporation at the film/metal interface, is believed to eject the contaminant film directly into aerosol droplets/particles which can be swept away and collected for recycle or cost- effective disposal in a compact form. Evidence for this mechanism will be presented.

  8. Wood-Beaver modification improves fatty acid process for tar sands

    SciTech Connect

    Not Available

    1987-03-01

    The original Herter process uses fatty acids as a solvent to recover bitumen from a tar sand. An improvement to the original process, known as the Beaver-Herter process, utilizes short-chain alcohols as a cosolvent to enhance the phase separation steps and to improve the saponification and desaponification reactions. The latest modification, known as the Wood-Beaver process, judiciously utilizes phase behavior to further improve the recovery of the fatty acids from the solvated mixture at greatly reduced chemical costs. This paper describes the latest modified process, discusses a conceptual design for a demonstration plant, and summarizes the equipment costs. 3 figures, 3 tables.

  9. Developing clean fuels: Novel techniques for desulfurization

    NASA Astrophysics Data System (ADS)

    Nehlsen, James P.

    The removal of sulfur compounds from petroleum is crucial to producing clean burning fuels. Sulfur compounds poison emission control catalysts and are the source of acid rain. New federal regulations require the removal of sulfur in both gasoline and diesel to very low levels, forcing existing technologies to be pushed into inefficient operating regimes. New technology is required to efficiently produce low sulfur fuels. Two processes for the removal of sulfur compounds from petroleum have been developed: the removal of alkanethiols by heterogeneous reaction with metal oxides; and oxidative desulfurization of sulfides and thiophene by reaction with sulfuric acid. Alkanethiols, common in hydrotreated gasoline, can be selectively removed and recovered from a hydrocarbon stream by heterogeneous reaction with oxides of Pb, Hg(II), and Ba. The choice of reactive metal oxides may be predicted from simple thermodynamic considerations. The reaction is found to be autocatalytic, first order in water, and zero order in thiol in the presence of excess oxide. The thiols are recovered by reactive extraction with dilute oxidizing acid. The potential for using polymer membrane hydrogenation reactors (PEMHRs) to perform hydrogenation reactions such as hydrodesulfurization is explored by hydrogenating ketones and olefins over Pt and Au group metals. The dependence of reaction rate on current density suggests that the first hydrogen addition to the olefin is the rate limiting step, rather than the adsorption of hydrogen, for all of the metals tested. PEMHRs proved unsuccessful in hydrogenating sulfur compounds to perform HDS. For the removal of sulfides, a two-phase reactor is used in which concentrated sulfuric acid oxidizes aromatic and aliphatic sulfides present in a hydrocarbon solvent, generating sulfoxides and other sulfonated species. The polar oxidized species are extracted into the acid phase, effectively desulfurizing the hydrocarbon. A reaction scheme is proposed for this

  10. Process and apparatus for obtaining silicon from fluosilicic acid

    DOEpatents

    Nanis, Leonard; Sanjurjo, Angel

    1988-05-31

    Process for producing low cost, high purity solar grade Si wherein a reduction reaction, preferably the reduction of SiF.sub.4, by an alkali metal (Na preferred) is carried out inside a reaction chamber. The chamber wall and bottom surfaces are configured so as to facilitate the continuous separation of the products of reaction (Si and NaF) and removal of the molten salt by discharging the salt through one or more ports at the bottom of the reaction chamber. Such process is especially useful where it is desirable to discharge the reaction salt products from the reactor and retain silicon within the chamber for later removal.

  11. New cleaning technologies advance coal

    SciTech Connect

    Onursal, B.

    1984-05-01

    Alternative options are discussed for reducing sulfur dioxide emissions from coal burning utility and industrial sources. Test results indicate that it may be most advantageous to use the AED Process after coal preparation or on coals that do not need much ash removal. However, the developer claims that research efforts after 1981 have led to process improvements for producing clean coals containing 1.5% to 3% ash. This paper describes the test facility where a full-scale test of the AED Process is underway.

  12. Activators of Biochemical and Physiological Processes in Plants Based on Fine Humic Acids

    NASA Astrophysics Data System (ADS)

    Churilov, G.; Polishuk, S.; Kutskir, M.; Churilov, D.; Borychev, S.

    2015-11-01

    This article describes the application of ultrafine humic acids as growth promoters and development of crops, for example corn. During the study we determined the optimal concentration of humic acids in ultrafine state for presowing treatment of seeds of maize. An analysis of laboratory and field tests was presented. We showed the relationship between physiological changes and biochemical processes.

  13. 21 CFR 173.280 - Solvent extraction process for citric acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... conventional Aspergillus niger fermentation liquor may be safely used to produce food-grade citric acid in... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Solvent extraction process for citric acid. 173.280 Section 173.280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  14. 21 CFR 173.280 - Solvent extraction process for citric acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... conventional Aspergillus niger fermentation liquor may be safely used to produce food-grade citric acid in... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Solvent extraction process for citric acid. 173.280 Section 173.280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  15. 21 CFR 173.280 - Solvent extraction process for citric acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... conventional Aspergillus niger fermentation liquor may be safely used to produce food-grade citric acid in... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Solvent extraction process for citric acid. 173.280 Section 173.280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  16. 21 CFR 173.280 - Solvent extraction process for citric acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... conventional Aspergillus niger fermentation liquor may be safely used to produce food-grade citric acid in... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Solvent extraction process for citric acid. 173.280 Section 173.280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  17. Aqueous cleaning of flux residue from solder joints. Final report

    SciTech Connect

    Krska, C.M.

    1992-08-01

    Solder joints have traditionally been cleaned using chlorinated or fluorinated solvents. This study addressed alternate processing. One process involved using a saponifier/water solution to remove rosin flux residues; the other process involved using a water-soluble flux and water to remove the residues. Although both processes were satisfactory, the water-soluble flux with water cleaning proved to be the best.

  18. Aqueous cleaning of flux residue from solder joints

    SciTech Connect

    Krska, C.M.

    1992-08-01

    Solder joints have traditionally been cleaned using chlorinated or fluorinated solvents. This study addressed alternate processing. One process involved using a saponifier/water solution to remove rosin flux residues; the other process involved using a water-soluble flux and water to remove the residues. Although both processes were satisfactory, the water-soluble flux with water cleaning proved to be the best.

  19. Active cleaning technique device

    NASA Technical Reports Server (NTRS)

    Shannon, R. L.; Gillette, R. B.

    1973-01-01

    The objective of this program was to develop a laboratory demonstration model of an active cleaning technique (ACT) device. The principle of this device is based primarily on the technique for removing contaminants from optical surfaces. This active cleaning technique involves exposing contaminated surfaces to a plasma containing atomic oxygen or combinations of other reactive gases. The ACT device laboratory demonstration model incorporates, in addition to plasma cleaning, the means to operate the device as an ion source for sputtering experiments. The overall ACT device includes a plasma generation tube, an ion accelerator, a gas supply system, a RF power supply and a high voltage dc power supply.

  20. Cleaning method and apparatus

    DOEpatents

    Jackson, D.D.; Hollen, R.M.

    1981-02-27

    A method of very thoroughly and quikcly cleaning a guaze electrode used in chemical analyses is given, as well as an automobile cleaning apparatus which makes use of the method. The method generates very little waste solution, and this is very important in analyzing radioactive materials, especially in aqueous solutions. The cleaning apparatus can be used in a larger, fully automated controlled potential coulometric apparatus. About 99.98% of a 5 mg plutonium sample was removed in less than 3 minutes, using only about 60 ml of rinse solution and two main rinse steps.

  1. Keeping condensers clean

    SciTech Connect

    Wicker, K.

    2006-04-15

    The humble condenser is among the biggest contributors to a steam power plant's efficiency. But although a clean condenser can provide great economic benefit, a dirty one can raise plant heat rate, resulting in large losses of generation revenue and/or unnecessarily high fuel bills. Conventional methods for cleaning fouled tubes range form chemicals to scrapers to brushes and hydro-blasters. This article compares the available options and describes how one power station, Omaha Public Power District's 600 MW North Omaha coal-fired power station, cleaned up its act. The makeup and cooling water of all its five units comes from the Missouri River. 6 figs.

  2. Hydrodynamic design of an underwater hull cleaning robot and its evaluation

    NASA Astrophysics Data System (ADS)

    Lee, Man Hyung; Park, Yu Dark; Park, Hyung Gyu; Park, Won Chul; Hong, Sinpyo; Lee, Kil Soo; Chun, Ho Hwan

    2012-12-01

    An underwater hull cleaning robot can be a desirable choice for the cleaning of large ships. It can make the cleaning process safe and economical. This paper presents a hydrodynamic design of an underwater cleaning robot and its evaluation for an underwater ship hull cleaning robot. The hydrodynamic design process of the robot body is described in detail. Optimal body design process with compromises among conflicting design requirements is given. Experimental results on the hydrodynamic performance of the robot are given.

  3. Shear stress cleaning for surface departiculation

    NASA Technical Reports Server (NTRS)

    Musselman, R. P.; Yarbrough, T. W.

    1986-01-01

    A cleaning technique widely used by the nuclear utility industry for removal of radioactive surface contamination has proven effective at removing non-hazardous contaminant particles as small as 0.1 micrometer. The process employs a controlled high velocity liquid spray inside a vapor containment enclosure to remove particles from a surface. The viscous drag force generated by the cleaning fluid applies a shear stress greater than the adhesion force that holds small particles to a substrate. Fluid mechanics and field tests indicate general cleaning parameters.

  4. Process for the removal of radium from acidic solutions containing same

    DOEpatents

    Scheitlin, F.M.

    The invention is a process for the removal of radium from acidic aqueous solutions. In one aspect, the invention is a process for removing radium from an inorganic-acid solution. The process comprises contacting the solution with coal fly ash to effect adsorption of the radium on the ash. The radium-containing ash then is separated from the solution. The process is simple, comparatively inexpensive, and efficient. High radium-distribution coefficients are obtained even at room temperature. Coal fly ash is an inexpensive, acid-resistant, high-surface-area material which is available in large quantities throughout the United States. The invention is applicable, for example, to the recovery of /sup 226/Ra from nitric acid solutions which have been used to leach radium from uranium-mill tailings.

  5. High-yield production of biosugars from Gracilaria verrucosa by acid and enzymatic hydrolysis processes.

    PubMed

    Kim, Se Won; Hong, Chae-Hwan; Jeon, Sung-Wan; Shin, Hyun-Jae

    2015-11-01

    Gracilaria verrucosa, the red alga, is a suitable feedstock for biosugar production. This study analyzes biosugar production by the hydrolysis of G. verrucosa conducted under various conditions (i.e., various acid concentrations, substrate concentrations, reaction times, and enzyme dosages). The acid hydrolysates of G. verrucosa yielded a total of 7.47g/L (37.4%) and 10.63g/L (21.26%) of reducing sugars under optimal small (30mL) and large laboratory-scale (1L) hydrolysis processes, respectively. Reducing sugar obtained from acid and enzymatic hydrolysates were 10% higher, with minimum by-products, than those reported in other studies. The mass balance for the small laboratory-scale process showed that the acid and enzymatic hydrolysates had a carbohydrate conversion of 57.2%. The mass balance approach to the entire hydrolysis process of red seaweed for biosugar production can be applied to other saccharification processes.

  6. Removal of oxalic acid, oxamic acid and aniline by a combined photolysis and ozonation process.

    PubMed

    Orge, C A; Faria, J L; Pereira, M F R

    2015-01-01

    Aniline (ANL), an aromatic amine, oxalic acid (OXA) and oxamic acid (OMA), short-chain carboxylic acids, were chosen as model organic pollutants for testing the combined effect of neat photolysis and ozonation in the treatment of aqueous effluents. In order to better understand the results, single ozonation and neat photolysis were also carried out. OXA has a high refractory character relatively to single ozonation and neat photolysis only accounted for 26% conversion of OXA after 2 h of reaction. On the other hand, OXA complete degradation was observed in less than an hour when ozone and light were used simultaneously. Despite OMA, a compound never studied before by a combined ozonation and photolysis treatment, being highly refractory to oxidation, more than 50% was removed by photo-ozonation after 3 h of reaction. In the case of ANL, both single ozonation and photo-ozonation resulted in 100% removal in a short reaction period due to the high reactivity of ozone to attack this type of molecules; however, only the combined method leads to efficient mineralization (89%) after 3 h of reaction. A significant synergetic effect was observed in the degradation of the selected contaminants by the simultaneous use of ozone and light, since the mineralization rate of combined method is higher than the sum of the mineralization rates of the individual treatments. The promising results observed in the degradation of the selected contaminants are paving the way to the application of photo-ozonation in the treatment of wastewater containing this type of pollutants.

  7. Process and apparatus for obtaining silicon from fluosilicic acid

    DOEpatents

    Sancier, Kenneth M.

    1985-07-16

    Process for producing low cost, high purity solar grade Si wherein a reduction reaction, preferably the reduction of SiF.sub.4, by an alkali metal (liquid Na preferred) is carried out essentialy continuously by injecting of reactants in substantially stoichiometric proportions into a reaction chamber having a controlled temperature thereby to form a mist or dispersion of reactants. The reactants being supplied at such a rate and temperature that the reaction takes place far enough away from the entry region to avoid plugging of reactants at the entry region, the reaction is completed and whereby essentially all reaction product solidifies and forms a free flowing powder before reaction product hits a reaction chamber wall. Thus, the reaction product does not adhere to the reaction chamber wall or pick up impurities therefrom. Separation of reaction products is easily carried out by either a leach or melt separation process.

  8. Efficient preparation of (R)-2-chloromandelic acid via a recycle process of resolution.

    PubMed

    Hu, Yu; Wu, Chang; Wu, Xue-Ying; Li, Shao-Lei; Sun, Xiao-Xia; Tang, Ze-Biao

    2015-03-01

    Efficient preparation of (R)-2-chloromandelic acid based on a recycle process of resolution is described. In the process, the desired was obtained by coordination-mediated resolution with D-O,O'-di-(p-toluoyl)-tartaric acid in the presence of Ca(2+) . Meanwhile, the undesired could be racemized in the presence of sodium hydroxide and the product was suitable for further resolution. A carbanion mechanism for the racemization of is proposed.

  9. Hydrogen ion (H+) in waste acid as a driver for environmentally sustainable processes: opportunities and challenges.

    PubMed

    German, Michael; SenGupta, Arup K; Greenleaf, John

    2013-03-05

    Acid-base neutralization reaction in the aqueous phase is thermodynamically favorable and kinetically fast. Waste acid neutralization is also the most common waste management practice globally. However, waste acid neutralization is yet to be used for any work/energy generation because of the low concentrations of the waste acid and the high heat capacity of aqueous solutions. In this paper, we address potential processes that can effectively take advantage of the high energy inherent in neutralization reactions, in accordance with the goal of sustainable development.

  10. Effect of calcinations temperature on microstructures, photocatalytic activity and self-cleaning property of TiO2 and SnO2/TiO2 thin films prepared by sol-gel dip coating process

    NASA Astrophysics Data System (ADS)

    Sangchay, Weerachai

    2014-06-01

    The purpose of this research was to study the effect of calcinations temperature on phase transformation, crystallite size, morphology, photocatalytic activity and self-cleaning properties of TiO2 and SnO2/TiO2 thin films. The thin films were preparation by sol-gel dip coating process and calcinations at the temperature of 500 °C, 600 °C and 700 °C for 2 h with the heating rate of 10 °C/mim. The microstructures of the fabricated thin films were characterized by XRD and SEM techniques. The photocatalytic activity of the thin films was also tested via the degradation of methylene blue solution under UV irradiation. Finally, self-cleaning properties of thin films were evaluated by measuring the contact angle of water droplet on the thin films with and without UV irradiation. It was found that SnO2/TiO2 thin films calcinations at the temperature of 500 °C shows the highest of photocatalytic activity and self-cleaning properties.

  11. Characterization of Laser Cleaning of Artworks

    PubMed Central

    Marczak, Jan; Koss, Andrzej; Targowski, Piotr; Góra, Michalina; Strzelec, Marek; Sarzyński, Antoni; Skrzeczanowski, Wojciech; Ostrowski, Roman; Rycyk, Antoni

    2008-01-01

    The main tasks of conservators of artworks and monuments are the estimation and analysis of damages (present condition), object conservation (cleaning process), and the protection of an object against further degradation. One of the physical methods that is becoming more and more popular for dirt removal is the laser cleaning method. This method is non-contact, selective, local, controlled, self-limiting, gives immediate feedback and preserves even the gentlest of relief - the trace of a paintbrush. Paper presents application of different, selected physical sensing methods to characterize condition of works of art as well as laser cleaning process itself. It includes, tested in our laboratories, optical surface measurements (e.g. colorimetry, scatterometry, interferometry), infrared thermography, optical coherent tomography and acoustic measurements for “on-line” evaluation of cleaning progress. Results of laser spectrometry analyses (LIBS, Raman) will illustrate identification and dating of objects superficial layers. PMID:27873884

  12. Clean Technology Evaluation & Workforce Development Program

    SciTech Connect

    Patricia Glaza

    2012-12-01

    The overall objective of the Clean Technology Evaluation portion of the award was to design a process to speed up the identification of new clean energy technologies and match organizations to testing and early adoption partners. The project was successful in identifying new technologies targeted to utilities and utility technology integrators, in developing a process to review and rank the new technologies, and in facilitating new partnerships for technology testing and adoption. The purpose of the Workforce Development portion of the award was to create an education outreach program for middle & high-school students focused on clean technology science and engineering. While originally targeting San Diego, California and Cambridge, Massachusetts, the scope of the program was expanded to include a major clean technology speaking series and expo as part of the USA Science & Engineering Festival on the National Mall in Washington, D.C.

  13. Clean Fleet Final Report

    DOE Alternative Fuels and Advanced Vehicles Data Center

    ... and parts and to account for certain types of missing data. ... time that a vehicle is available for use, whether or not ... &23; Adjust the idle speed &23; Clean the throttle body &23; Replace ...

  14. Clean Cookstove Research

    EPA Pesticide Factsheets

    EPA is an international leader in clean cookstove research and provides independent scientific data on cookstove emissions and energy efficiency to support the development of cleaner sustainable cooking technologies.

  15. Learn About Clean Diesel

    EPA Pesticide Factsheets

    The clean diesel program is designed to aggressively reduce the pollution emitted from diesel engines across the country through the implementation of varied control strategies and the aggressive involvement of national, state, and local partners.

  16. Clean Energy Financing Programs

    EPA Pesticide Factsheets

    This page introduces resources that state and local governments can use to develop Clean Energy Finance Programs and reduce the financial barriers to implementing energy efficiency and renewable energy in their communities.

  17. Effective Cleaning Radius Studies

    SciTech Connect

    Churnetski, B.V.

    2001-10-15

    This report discusses results of testing done in the Savannah River Laboratory half tank and full tank mockup facilities using kaolin clay slurries and the relationship between cleaning radius and pump and slurry characteristics.

  18. Gasification: redefining clean energy

    SciTech Connect

    2008-05-15

    This booklet gives a comprehensive overview of how gasification is redefining clean energy, now and in the future. It informs the general public about gasification in a straight-forward, non-technical manner.

  19. Cleaning up Floor Care.

    ERIC Educational Resources Information Center

    Carr, Richard; McLean, Doug

    1995-01-01

    Discusses how educational-facility maintenance departments can cut costs in floor cleaning through careful evaluation of floor equipment and products. Tips for choosing carpet detergents are highlighted. (GR)

  20. Clean Power Plan Toolbox

    EPA Pesticide Factsheets

    These are resources to help states as they develop state implementation plans under section 111(d) of the Clean Air Act to meet EPA's carbon pollution standards for existing power plants. Supplements www2.epa.gov/carbon-pollution-standards.