Science.gov

Sample records for acid composition lipid

  1. Changes in lipid composition, fatty acid profile and lipid oxidative stability during Cantonese sausage processing.

    PubMed

    Qiu, Chaoying; Zhao, Mouming; Sun, Weizheng; Zhou, Feibai; Cui, Chun

    2013-03-01

    Lipid composition, fatty acid profile and lipid oxidative stability were evaluated during Cantonese sausage processing. Free fatty acids increased with concomitant decrease of phospholipids. Total content of free fatty acids at 72 h in muscle and adipose tissue was 7.341 mg/g and 3.067 mg/g, respectively. Total amount of saturated, monounsaturated and polyunsaturated fatty acids (SFA, MUFA, and PUFA) in neutral lipid exhibited a little change during processing, while the proportion of PUFA significantly decreased in the PL fraction. The main triacylglycerols were POO+SLO+OOO, PSO (P = palmitic acid, O = oleic acid, L = linoleic acid, S = stearic acid), and a preferential hydrolysis of palmitic, oleic and linoleic acid was observed. Phosphatidylcholines (PC) and phosphatidylethanolamines (PE) were the main components of phospholipids and PE exhibited the most significant degradation during processing. Thiobarbituric acid values (TBARS) increased while peroxide values and hexanal contents varied during processing. PMID:23273460

  2. A comparative study of the fatty acid composition of prochloron lipids

    NASA Technical Reports Server (NTRS)

    Kenrick, J. R.; Deane, E. M.; Bishop, D. G.

    1983-01-01

    The chemical analysis of lipids of Prochloron isolated from several hosts is discussed. The object was to determine whether differences in lipid composition could be used to characterize organisms from different sources. Major lipid components are given. An analysis of fatty acid composition of individual lipids slowed a distinctive disstribution of fatty acids. While present results do not justify the use of fatty acid content in the taxonomy of Prochlon, the variations found in the lipids of cells from the same host harvested from different areas, or at different times in the same area, suggest that a study of the effects of temperature and light intensity on lipid composition would be rewarding.

  3. Polyunsaturated fatty acid saturation by gut lactic acid bacteria affecting host lipid composition

    PubMed Central

    Kishino, Shigenobu; Takeuchi, Michiki; Park, Si-Bum; Hirata, Akiko; Kitamura, Nahoko; Kunisawa, Jun; Kiyono, Hiroshi; Iwamoto, Ryo; Isobe, Yosuke; Arita, Makoto; Arai, Hiroyuki; Ueda, Kazumitsu; Shima, Jun; Takahashi, Satomi; Yokozeki, Kenzo; Shimizu, Sakayu; Ogawa, Jun

    2013-01-01

    In the representative gut bacterium Lactobacillus plantarum, we identified genes encoding the enzymes involved in a saturation metabolism of polyunsaturated fatty acids and revealed in detail the metabolic pathway that generates hydroxy fatty acids, oxo fatty acids, conjugated fatty acids, and partially saturated trans-fatty acids as intermediates. Furthermore, we observed these intermediates, especially hydroxy fatty acids, in host organs. Levels of hydroxy fatty acids were much higher in specific pathogen-free mice than in germ-free mice, indicating that these fatty acids are generated through polyunsaturated fatty acids metabolism of gastrointestinal microorganisms. These findings suggested that lipid metabolism by gastrointestinal microbes affects the health of the host by modifying fatty acid composition. PMID:24127592

  4. Lipid and fatty acid compositions of cod ( Gadus morhua), haddock ( Melanogrammus aeglefinus) and halibut ( Hippoglossus hippoglossus)

    NASA Astrophysics Data System (ADS)

    Zeng, Duan; Mai, Kangsen; Ai, Qinghui; Milley, Joyce E.; Lall, Santosh P.

    2010-12-01

    This study was conducted to compare lipid and fatty acid composition of cod, haddock and halibut. Three groups of cod (276 g ± 61 g), haddock (538 g ± 83 g) and halibut (3704 g ± 221 g) were maintained with commercial feeds mainly based on fish meal and marine fish oil for 12 weeks prior to sampling. The fatty acid compositions of muscle and liver were determined by GC/FID after derivatization of extracted lipids into fatty acid methyl esters (FAME). Lipids were also fractionated into neutral and polar lipids using Waters silica Sep-Pak?. The phospholipid fraction was further separated by high-performance thin-layer chromatography (HPTLC) and the FAME profile was obtained. Results of the present study showed that cod and haddock were lean fish and their total muscle lipid contents were 0.8% and 0.7%, respectively, with phospholipid constituting 83.6% and 87.5% of the total muscle lipid, respectively. Halibut was a medium-fat fish and its muscle lipid content was 8%, with 84% of the total muscle lipid being neutral lipid. Total liver lipid contents of cod, haddock and halibut were 36.9%, 67.2% and 30.7%, respectively, of which the neutral lipids accounted for the major fraction (88.1%-97.1%). Polyunsaturated fatty acids were the most abundant in cod and haddock muscle neutral lipid. Monounsaturated fatty acid level was the highest in halibut muscle neutral lipid. Fatty acid compositions of phospholipid were relatively constant. In summary, the liver of cod and haddock as lean fish was the main lipid reserve organ, and structural phospholipid is the major lipid form in flesh. However, as a medium-fat fish, halibut stored lipid in both their liver and muscle.

  5. Characterization of lipid and fatty acids composition of Chlorella zofingiensis in response to nitrogen starvation.

    PubMed

    Zhu, Shunni; Wang, Yajie; Shang, Changhua; Wang, Zhongming; Xu, Jingliang; Yuan, Zhenhong

    2015-08-01

    Cellular biochemical composition of the microalga Chlorella zofingiensis was studied under favorable and nitrogen starvation conditions, with special emphasis on lipid classes and fatty acids distribution. When algal cells were grown in nitrogen-free medium (N stress), the increase in the contents of lipid and carbohydrate while a decrease in protein content was detected. Glycolipids were the major lipid fraction (50.7% of total lipids) under control condition, while neutral lipids increased to be predominant (86.7% of total lipids) under N stress condition. Triacylglycerol (TAG) content in N stressed cells was 27.3% dw, which was over three times higher than that obtained under control condition. Within neutral lipids fraction, monounsaturated fatty acids (MUFA) were the main group (40.6%) upon N stress, in which oleic acid was the most representative fatty acids (34.5%). Contrarily, glycolipids and phospholipids showed a higher percentage of polyunsaturated fatty acids (PUFA). Lipid quality assessment indicated the potential of this alga as a biodiesel feedstock when its neutral lipids were a principal lipid fraction. The results demonstrate that the neutral lipids content is key to determine the suitability of the microalga for biodiesel, and the stress cultivation is essential for lipid quality. PMID:25782619

  6. Effect of Growth on Fatty Acid Composition of Total Intramuscular Lipid and Phospholipids in Ira Rabbits

    PubMed Central

    Lu, Jingzhi; Li, Hongjun

    2015-01-01

    The changes in fatty acid composition of total intramuscular lipid and phospholipids were investigated in the longissimus dorsi, left-hind leg muscle, and abdominal muscle of male Ira rabbits. Changes were monitored at 35, 45, 60, 75, and 90 d. Analysis using gas chromatography identified 21 types of fatty acids. Results showed that the intramuscular lipid increased and the intramuscular phospholipids (total intramuscular lipid %) decreased in all muscles with increasing age (p<0.05). An abundant amount of unsaturated fatty acids, especially polyunsaturated fatty acids, was distributed in male Ira rabbits at different ages and muscles. Palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2), and arachidonic acid (C20:4) were the major fatty acids, which account to the dynamic changes of the n-6/n-3 value in Ira rabbit meat. PMID:26761795

  7. Effect of 3-hydroxy-3-methylglutaric acid administration on bile lipid composition in humans.

    PubMed

    Di Padova, C; Di Padova, F; Buzzetti, M; Tritapepe, R

    1984-09-01

    The effects of the lipid-lowering agent 3-hydroxy-3-methylglutaric acid (HMGA) on serum lipids and on biliary lipid composition were evaluated in a double-blind, placebo-controlled study in normolipidemic volunteers. After 4 weeks of HMGA administration (1 g three times a day orally) serum total cholesterol showed a significant decrease with regard to both pretreatment values and corresponding values of controls. The bile lipid molar percentage composition and the cholesterol saturation index showed no modification after HMGA and did not differ from the values obtained in the placebo group. These findings indicate that HMGA exerts no adverse effects on bile lipid composition in humans, differing from other hypolipidemic drugs currently in clinical use, which increase the bile cholesterol saturation index. PMID:6083597

  8. Biomass, lipid productivities and fatty acids composition of marine Nannochloropsis gaditana cultured in desalination concentrate.

    PubMed

    Matos, Ângelo Paggi; Feller, Rafael; Moecke, Elisa Helena Siegel; Sant'Anna, Ernani Sebastião

    2015-12-01

    In this study the feasibility of growing marine Nannochloropsis gaditana in desalination concentrate (DC) was explored and the influence of the DC concentration on the biomass growth, lipid productivities and fatty acids composition was assessed. The reuse of the medium with the optimum DC concentration in successive algal cultivation cycles and the additional of a carbon source to the optimized medium were also evaluated. On varying the DC concentration, the maximum biomass concentration (0.96gL(-1)) and lipid content (12.6%) were obtained for N. gaditana in the medium with the optimum DC concentration (75%). Over the course of the reuse of the optimum DC medium, three cultivation cycles were performed, observing that the biomass productivity is directly correlated to lipid productivity. Palmitic acid was the major fatty acid found in N. gaditana cells. The saturated fatty acids content of the algae enhanced significantly on increasing the DC concentration. PMID:26318921

  9. The Role of Tetraether Lipid Composition in the Adaptation of Thermophilic Archaea to Acidity

    PubMed Central

    Boyd, Eric S.; Hamilton, Trinity L.; Wang, Jinxiang; He, Liu; Zhang, Chuanlun L.

    2013-01-01

    Diether and tetraether lipids are fundamental components of the archaeal cell membrane. Archaea adjust the degree of tetraether lipid cyclization in order to maintain functional membranes and cellular homeostasis when confronted with pH and/or thermal stress. Thus, the ability to adjust tetraether lipid composition likely represents a critical phenotypic trait that enabled archaeal diversification into environments characterized by extremes in pH and/or temperature. Here we assess the relationship between geochemical variation, core- and polar-isoprenoid glycerol dibiphytanyl glycerol tetraether (C-iGDGT and P-iGDGT, respectively) lipid composition, and archaeal 16S rRNA gene diversity and abundance in 27 geothermal springs in Yellowstone National Park, Wyoming. The composition and abundance of C-iGDGT and P-iGDGT lipids recovered from geothermal ecosystems were distinct from surrounding soils, indicating that they are synthesized endogenously. With the exception of GDGT-0 (no cyclopentyl rings), the abundances of individual C-iGDGT and P-iGDGT lipids were significantly correlated. The abundance of a number of individual tetraether lipids varied positively with the relative abundance of individual 16S rRNA gene sequences, most notably crenarchaeol in both the core and polar GDGT fraction and sequences closely affiliated with Candidatus Nitrosocaldus yellowstonii. This finding supports the proposal that crenarchaeol is a biomarker for nitrifying archaea. Variation in the degree of cyclization of C- and P-iGDGT lipids recovered from geothermal mats and sediments could best be explained by variation in spring pH, with lipids from acidic environments tending to have, on average, more internal cyclic rings than those from higher pH ecosystems. Likewise, variation in the phylogenetic composition of archaeal 16S rRNA genes could best be explained by spring pH. In turn, the phylogenetic similarity of archaeal 16S rRNA genes was significantly correlated with the similarity

  10. The role of tetraether lipid composition in the adaptation of thermophilic archaea to acidity.

    PubMed

    Boyd, Eric S; Hamilton, Trinity L; Wang, Jinxiang; He, Liu; Zhang, Chuanlun L

    2013-01-01

    Diether and tetraether lipids are fundamental components of the archaeal cell membrane. Archaea adjust the degree of tetraether lipid cyclization in order to maintain functional membranes and cellular homeostasis when confronted with pH and/or thermal stress. Thus, the ability to adjust tetraether lipid composition likely represents a critical phenotypic trait that enabled archaeal diversification into environments characterized by extremes in pH and/or temperature. Here we assess the relationship between geochemical variation, core- and polar-isoprenoid glycerol dibiphytanyl glycerol tetraether (C-iGDGT and P-iGDGT, respectively) lipid composition, and archaeal 16S rRNA gene diversity and abundance in 27 geothermal springs in Yellowstone National Park, Wyoming. The composition and abundance of C-iGDGT and P-iGDGT lipids recovered from geothermal ecosystems were distinct from surrounding soils, indicating that they are synthesized endogenously. With the exception of GDGT-0 (no cyclopentyl rings), the abundances of individual C-iGDGT and P-iGDGT lipids were significantly correlated. The abundance of a number of individual tetraether lipids varied positively with the relative abundance of individual 16S rRNA gene sequences, most notably crenarchaeol in both the core and polar GDGT fraction and sequences closely affiliated with Candidatus Nitrosocaldus yellowstonii. This finding supports the proposal that crenarchaeol is a biomarker for nitrifying archaea. Variation in the degree of cyclization of C- and P-iGDGT lipids recovered from geothermal mats and sediments could best be explained by variation in spring pH, with lipids from acidic environments tending to have, on average, more internal cyclic rings than those from higher pH ecosystems. Likewise, variation in the phylogenetic composition of archaeal 16S rRNA genes could best be explained by spring pH. In turn, the phylogenetic similarity of archaeal 16S rRNA genes was significantly correlated with the similarity

  11. Ontogenetic change in the lipid and fatty acid composition of scleractinian coral larvae

    NASA Astrophysics Data System (ADS)

    Figueiredo, J.; Baird, A. H.; Cohen, M. F.; Flot, J.-F.; Kamiki, T.; Meziane, T.; Tsuchiya, M.; Yamasaki, H.

    2012-06-01

    Some scleractinian coral larvae have an extraordinary capacity to delay metamorphosis, and this is reflected in the large geographic range of many species. Coral eggs typically contain a high proportion of wax esters, which have been hypothesized to provide a source of energy for long-distance dispersal. To better understand the role of lipids in the dispersal of broadcast spawning coral larvae, ontogenetic changes in the lipid and fatty acid composition of Goniastrea retiformis were measured from the eggs until larvae were 30 days old. Egg biomass was 78.8 ± 0.5% lipids, 86.3 ± 0.2% of which were wax esters, 9.3 ± 0.0% polar lipids, 4.1 ± 0.2% sterols, and 0.3 ± 0.1% triacylglycerols. The biomass of wax esters declined significantly through time, while polar lipids, sterols and triacylglycerols remained relatively constant, suggesting that wax esters are the prime source of energy for development. The most prevalent fatty acid in the eggs was palmitic acid, a marker of the dinoflagellate Symbiodinium, highlighting the importance of symbiosis in coral reproductive ecology. The proportion of polyunsaturated fatty acids declined through time, suggesting that they are essential for larval development. Interestingly, triacylglycerols are only abundant in the propagules that contain Symbiodinium, suggesting important differences in the energetic of dispersal among species with vertical and horizontal transmission of symbionts.

  12. Effects of sewage discharges on lipid and fatty acid composition of the Patagonian bivalve Diplodon chilensis.

    PubMed

    Rocchetta, Iara; Pasquevich, María Y; Heras, Horacio; Ríos de Molina, María del Carmen; Luquet, Carlos M

    2014-02-15

    Lipid and fatty acid (FA) composition and selected oxidative stress parameters of freshwater clams (Dipolodon chilensis), from a sewage-polluted (SMA) and a clean site, were compared. Trophic markers FA were analyzed in clams and sediment. Saturated FA (SAFA), and bacteria and sewage markers were abundant in SMA sediments, while diatom markers were 50% lower. Proportions of SAFA, branched FA, 20:5n-3 (EPA) and 22:6n-3 (DHA) were higher in SMA clams. Chronic exposure of D. chilensis to increasing eutrophication affected its lipid and FA composition. The increase in EPA and DHA proportions could be an adaptive response, which increases stress resistance but could also lead to higher susceptibility to lipid peroxidation TBARS, lipofuscins (20-fold) and GSH concentrations were higher in SMA clams. FA markers indicated terrestrial plant detritus and bacteria are important items in D. chilensis diet. Anthropogenic input in their food could be traced using specific FA as trophic markers. PMID:24373665

  13. Fatty acid composition of lipids in pot marigold (Calendula officinalis L.) seed genotypes

    PubMed Central

    2013-01-01

    Background Calendula officinalis L. (pot marigold) is an annual aromatic herb with yellow or golden-orange flowers, native to the Mediterranean climate areas. Their seeds contain significant amounts of oil (around 20%), of which about 60% is calendic acid. For these reasons, in Europe concentrated research efforts have been directed towards the development of pot marigold as an oilseed crop for industrial purposes. Results The oil content and fatty acid composition of major lipid fractions in seeds from eleven genotypes of pot marigold (Calendula officinalis L.) were determined. The lipid content of seeds varied between 13.6 and 21.7 g oil/100 g seeds. The calendic and linoleic acids were the two dominant fatty acids in total lipid (51.4 to 57.6% and 28.5 to 31.9%) and triacylglycerol (45.7 to 54.7% and 22.6 to 29.2%) fractions. Polar lipids were also characterised by higher unsaturation ratios (with the PUFAs content between 60.4 and 66.4%), while saturates (consisted mainly of palmitic and very long-chain saturated fatty acids) were found in higher amounts in sterol esters (ranging between 49.3 and 55.7% of total fatty acids). Conclusions All the pot marigold seed oils investigated contain high levels of calendic acid (more than 50% of total fatty acids), making them favorable for industrial use. The compositional differences between the genotypes should be considered when breeding and exploiting the pot marigold seeds for nutraceutical and pharmacological purposes. PMID:23327299

  14. Lipid content and fatty acid composition of 11 species of Queensland (Australia) fish.

    PubMed

    Belling, G B; Abbey, M; Campbell, J H; Campbell, G R

    1997-06-01

    The fatty acid composition of 11 species of fish caught of the northeast coast of Australia was determined. No fatty acid profiles have been previously published for fish from this area nor for nine of these species. Although the percentage of polyunsaturated fatty acid (PUFA) was the same as the calculated average for Australian fish (42.3%), the percentage of n-3 fatty acids was lower (24.4 +/- 5.4% vs. 30.7 +/- 10.1%) and the n-6 fatty acids higher (16.5 +/- 4.5% vs. 11.2 +/- 5.9%), P < 0.001 in each case. The major n-3 PUFA were docosahexaenoic (15.6 +/- 6.3%) and eicosapentaenoic acid (4.3 +/- 1.1%) while the major n-6 PUFA were arachidonic (8.3 +/- 3.2%) and n-6 docosatetraenoic acid (3.1 +/- 1.3%). The second-most abundant class of fatty acid was the saturates (31.6 +/- 3.5%) while the monounsaturates accounted for 17.4 +/- 4.3% of the total fatty acids. The monounsaturate with the highest concentration was octadecenoic acid (11.8 +/- 2.6%). There was a positive correlation between the total lipid content and saturated and monounsaturated fatty acids (r = 0.675 and 0.567, respectively) and a negative correlation between the total lipid content and PUFA (r = 0.774). PMID:9208391

  15. Fatty acid composition of plasma lipids and erythrocyte membranes during simulated extravehicular activity

    NASA Astrophysics Data System (ADS)

    Skedina, M. A.; Katuntsev, V. P.; Buravkova, L. B.; Naidina, V. P.

    Ten subjects (from 27 to 41 years) have been participated in 32 experiments. They were decompressed from ground level to 40-35 kPa in altitude chamber when breathed 100% oxygen by mask and performed repeated cycles of exercises (3.0 Kcal/min). The intervals between decompressions were 3-5 days. Plasma lipid and erythrocyte membrane fatty acid composition was evaluated in the fasting venous blood before and immediately after hypobaric exposure. There were 7 cases decompression sickness (DCS). Venous gas bubbles (GB) were detected in 27 cases (84.4%). Any significant changes in the fatty acid composition of erythrocyte membranes and plasma didn't practically induce after the first decompression. However, by the beginning of the second decompression the total lipid level in erythrocyte membranes decreased from 54.6 mg% to 40.4 mg% in group with DCS symptoms and from 51.2 mg% to 35.2 mg% (p < 0.05) without DCS symptoms. In group with DCS symptoms a tendency to increased level of saturated fatty acids in erythrocyte membranes (16:0, 18:0), the level of the polyunsaturated linoleic fatty acid (18:2) and arachidonic acid (20:4) tended to be decreased by the beginning of the second decompression. Insignificant changes in blood plasma fatty acid composition was observed in both groups. The obtained biochemical data that indicated the simulated extravehicular activity (EVA) condition is accompanied by the certain changes in the blood lipid metabolism, structural and functional state of erythrocyte membranes, which are reversible. The most pronounced changes are found in subjects with DCS symptoms.

  16. Impact of dietary fatty acids on muscle composition, liver lipids, milt composition and sperm performance in European eel.

    PubMed

    Butts, Ian Anthony Ernest; Baeza, Rosa; Støttrup, Josianne Gatt; Krüger-Johnsen, Maria; Jacobsen, Charlotte; Pérez, Luz; Asturiano, Juan F; Tomkiewicz, Jonna

    2015-05-01

    In order for European eel aquaculture to be sustainable, the life cycle should be completed in captivity. Development of broodstock diets may improve the species' reproductive success in captivity, through the production of high-quality gametes. Here, our aim was to evaluate the influence of dietary regime on muscle composition, and liver lipids prior to induced maturation, and the resulting sperm composition and performance. To accomplish this fish were reared on three "enhanced" diets and one commercial diet, each with different levels of fatty acids, arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Neutral lipids from the muscle and liver incorporated the majority of the fatty acid profile, while phospholipids incorporated only certain fatty acids. Diet had an effect on the majority of sperm fatty acids, on the total volume of extractable milt, and on the percentage of motile sperm. Here, our results suggest that the total volume of extractable milt is a DHA-dependent process, as we found the diets with the highest DHA levels induced the most milt while the diet with the lowest DHA level induced the least amount of milt. The diet with the highest level of ARA induced medium milt volumes but had the highest sperm motility. EPA also seems important for sperm quality parameters since diets with higher EPA percentages had a higher volume of milt and higher sperm motility. In conclusion, dietary fatty acids had an influence on fatty acids in the tissues of male eel and this impacted sperm performance. PMID:25638567

  17. A J-Like Protein Influences Fatty Acid Composition of Chloroplast Lipids in Arabidopsis

    PubMed Central

    Ajjawi, Imad; Coku, Ardian; Froehlich, John E.; Yang, Yue; Osteryoung, Katherine W.; Benning, Christoph; Last, Robert L.

    2011-01-01

    A comprehensive understanding of the lipid and fatty acid metabolic machinery is needed for optimizing production of oils and fatty acids for fuel, industrial feedstocks and nutritional improvement in plants. T-DNA mutants in the poorly annotated Arabidopsis thaliana gene At1g08640 were identified as containing moderately high levels (50–100%) of 16∶1Δ7 and 18∶1Δ9 leaf fatty acids and subtle decreases (5–30%) of 16∶3 and 18∶3 (http://www.plastid.msu.edu/). TLC separation of fatty acids in the leaf polar lipids revealed that the chloroplastic galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) were the main lipid types affected by this mutation. Analysis of the inferred amino acid sequence of At1g08640 predicted the presence of a transit peptide, three transmembrane domains and an N-terminal J-like domain, and the gene was named CJD1 for Chloroplast J-like Domain 1. GFP reporter experiments and in vitro chloroplast import assays demonstrated CJD1 is a chloroplast membrane protein. Screening of an Arabidopsis cDNA library by yeast-2-hybrid (Y2H) using the J-like domain of CJD1 as bait identified a plastidial inner envelope protein (Accumulation and Replication of Chloroplasts 6, ARC6) as the primary interacting partner in the Y2H assay. ARC6 plays a central role in chloroplast division and binds CJD1 via its own J-like domain along with an adjacent conserved region whose function is not fully known. These results provide a starting point for future investigations of how mutations in CJD1 affect lipid composition. PMID:22028775

  18. Fatty acid composition of lipids present in selected lichenized fungi: a chemotyping study.

    PubMed

    Sassaki, G L; Cruz, L M; Gorin, P A; Lacomini, M

    2001-02-01

    The total-lipid composition of 21 lichens of the ascomycetous genera Cladonia (11) and Cladina (1) of the family Cladoniacea, Cladia (1), Parmotrema (3), Ramalina (2), Leptogium (1), Cetraria (1), and the basidiomycetous genus Dictyonema (1) was determined. Analyses of those of Dictyonema glabratum were carried out with a total extract and those obtained after successive extractions with various solvents. Each extract was partitioned between n-heptane/isopropanol and 1 M sulfuric acid, giving triglycerides (TG) in the upper phase. Extracts were methanolyzed and the resulting methyl esters were analyzed by gas chromatography-mass spectrometry. Methanolyzates of TG unexpectedly contained esters of 9-oxodecanoic, 9-methyl-tetradecanoic, 6-methyl-tetradecanoic, 3-hydroxy-decanoic, nonanedioic, and decanedioic acids, as well as common fatty acids. Fatty acid methyl ester profiles from the lichens were submitted to cluster analysis, and the resulting dendogram showed a cluster consistent with Cladonia spp., suggesting an efficient aid to lichen taxonomy. The total carbohydrate content of each lipid extract was determined by a modified phenol-sulfuric acid method, which compensated for the presence of pigments. PMID:11269697

  19. Fatty Acid Desaturase 1 (FADS1) Gene Polymorphisms Control Human Hepatic Lipid Composition

    PubMed Central

    Wang, Libo; Athinarayanan, Shaminie; Jiang, Guanglong; Chalasani, Naga; Zhang, Min; Liu, Wanqing

    2014-01-01

    Fatty Acid Desaturase (FADS) genes and their variants have been associated with multiple metabolic phenotypes including liver enzymes and hepatic fat accumulation but the detailed mechanism remains unclear. We aimed to delineate the role of FADSs in modulating lipid composition in human liver. We performed a targeted lipidomic analysis of a variety of phospholipids, sphingolipids and ceramides among 154 human liver tissue samples. The associations between previously Genome-wide Association Studies (GWAS)-identified six FADS single nucleotide polymorphisms (SNPs) and these lipid levels as well as total hepatic fat content (HFC) were tested. The potential function of these SNPs in regulating transcription of 3 FADS genes (FADS1, FADS2 and FADS3) in the locus was also investigated. We found that while these SNPs were in high linkage disequilibrium (r2 >0.8), the rare alleles of these SNPs were consistently and significantly associated with the accumulation of multiple very-long-chain fatty acids (VLCFAs), with C47H85O13P (C36:4), a phosphatidylinositol (PI) and C43H80O8PN (C38:3), a phosphatidylethanolamine (PE) reached the Bonferroni corrected significance (p<3×10−4). Meanwhile, these SNPs were significantly associated with increased ratios between the more saturated and relatively less saturated forms of VLCFAs, especially between PEs, PIs and phosphatidylcholines (PCs) (p≤3.5×10−6). These alleles were also associated with increased total HFC (p<0.05). Further analyses revealed that these alleles were associated with decreased hepatic expression of FADS1 (p=0.0018 for rs174556), but not FADS2 or FADS3 (p>0.05). Conclusion Our findings revealed critical insight into the mechanism underlying FADS1 and its polymorphisms in modulating hepatic lipid deposition by altering gene transcription and controlling lipid composition in human livers. PMID:25123259

  20. Parenteral lipid fatty acid composition directly determines the fatty acid composition of red blood cell and brain lipids in preterm pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies in enterally-fed infants have shown a positive effect of n-3 long-chain polyunsaturated fatty acid (LCPUFA) supplementatin on neurodevelopment. The effect of n-3 LCPUFA in fish oil-based parenteral (PN) lipid emulsions on neuronal tissues of PN-fed preterm infants is unknown. The objective ...

  1. Lipid content and fatty acid composition of green algae Scenedesmus obliquus grown in a constant cell density apparatus

    NASA Technical Reports Server (NTRS)

    Choi, K. J.; Nakhost, Z.; Barzana, E.; Karel, M.

    1987-01-01

    The lipids of alga Scenedesmus obliquus grown under controlled conditions were separated and fractionated by column and thin-layer chromatography, and fatty acid composition of each lipid component was studied by gas-liquid chromatography (GLC). Total lipids were 11.17%, and neutral lipid, glycolipid and phospholipid fractions were 7.24%, 2.45% and 1.48% on a dry weight basis, respectively. The major neutral lipids were diglycerides, triglycerides, free sterols, hydrocarbons and sterol esters. The glycolipids were: monogalactosyl diglyceride, digalactosyl diglyceride, esterified sterol glycoside, and sterol glycoside. The phospholipids included: phosphatidyl choline, phosphatidyl glycerol and phosphatidyl ethanolamine. Fourteen fatty acids were identified in the four lipid fractions by GLC. The main fatty acids were C18:2, C16:0, C18:3(alpha), C18:1, C16:3, C16:1, and C16:4. Total unsaturated fatty acid and essential fatty acid compositions of the total algal lipids were 80% and 38%, respectively.

  2. The role of lipid components of the diet in the regulation of the fatty acid composition of the rat liver endoplasmic reticulum and lipid peroxidation.

    PubMed

    Hammer, C T; Wills, E D

    1978-08-15

    The fatty acid compositions of the lipids and the lipid peroxide concentrations and rates of lipid peroxidation were determined in suspensions of liver endoplasmic reticulum isolated from rats fed on synthetic diets in which the fatty acid composition had been varied but the remaining constituents (protein, carbohydrate, vitamins and minerals) kept constant. Stock diet and synthetic diets containing no fat, 10% corn oil, herring oil, coconut oil or lard were used. The fatty acid composition of the liver endoplasmic reticulum lipid was markedly dependent on the fatty acid composition of the dietary lipid. Feeding a herring-oil diet caused incorporation of 8.7% eicosapentaenoic acid (C(20:5)) and 17% docosahexaenoic acid (C(22:6)), but only 5.1% linoleic acid (C(18:2)) and 6.4% arachidonic acid (C(20:4)), feeding a corn-oil diet caused incorporation of 25.1% C(18:2), 17.8% C(20:4) and 2.5% C(22:6) fatty acids, and feeding a lard diet caused incorporation of 10.3% C(18:2), 13.5% C(20:4) and 4.3% C(22:6) fatty acids into the liver endoplasmic-reticulum lipids. Phenobarbitone injection (100mg/kg) decreased the incorporation of C(20:4) and C(22:6) fatty acids into the liver endoplasmic reticulum of rats fed on a lard, corn-oil or herring-oil diet. Microsomal lipid peroxide concentrations and rates of peroxidation in the presence of ascorbate depended on the nature and quantity of the polyunsaturated fatty acids in the diet. The lipid peroxide content was 1.82+/-0.30nmol of malonaldehyde/mg of protein and the rate of peroxidation was 0.60+/-0.08nmol of malonaldehyde/min per mg of protein after feeding a fat-free diet, and the values were increased to 20.80nmol of malonaldehyde/mg of protein and 3.73nmol of malonaldehyde/min per mg of protein after feeding a 10% herring-oil diet in which polyunsaturated fatty acids formed 24% of the total fatty acids. Addition of alpha-tocopherol to the diets (120mg/kg of diet) caused a very large decrease in the lipid peroxide

  3. Fatty acid composition of spruce needle lipids after exposure to air pollutants

    SciTech Connect

    Wolfenden, J.; Wellburn, A.R. )

    1990-05-01

    Alterations in the fatty acid composition of membrane lipids have been observed in long-term experiments using realistic exposures of air pollutants. Monogalactosyl diglyceride (MGDG), from red spruce, showed a 12% reduction in linolenic acid (18:3) compared with controls, after a 21 week winter fumigation with SO{sub 2} NO{sub 2} (20 ppb each). The composition of phosphatidyl choline from the same trees was unaffected. In Norway spruce exposed to 70 ppb O{sub 3} for 3 consecutive summers there was no treatment effect on 18:3 content of MGDG, which ranged from 70 to 80%, with highest values in November. The percentage of octadecatetranoic acid (18:4) also varied seasonally. Compared with controls, polluted plants had proportionally less 18:4 during autumn, perhaps indicating some effect of O{sub 3} on the winter hardening process. Our observations emphasize the need for long-term experiments to investigate subtle disturbances to seasonal metabolic cycles.

  4. Dynamics of lipid and fatty acid composition of shallow-water corals under thermal stress: an experimental approach

    NASA Astrophysics Data System (ADS)

    Imbs, A. B.; Yakovleva, I. M.

    2012-03-01

    Coral bleaching induces changes in lipid and fatty acid composition that result in low lipid content, reducing the likelihood of coral survival. Species-specific differences in the metabolism of lipid reserves may contribute to the differential resistance of corals under acute heat exposures. Here, we examined the dynamics of lipids and fatty acid abundance in corals subjected to short-term heat stress. The stony corals Acropora intermedia, Montipora digitata, and the soft coral Sinularia capitalis all showed a 60-75% decline in both storage and structural lipids. However, S. capitalis and M. digitata exhibited no significant change in the percentages of structural lipids (i.e., polar lipids and sterols) until they had lost 90-95% of their endosymbionts, whereas A. intermedia showed a rapid decline in structural lipids after a 50% loss of symbionts. After a 90-95% loss of symbionts under heat stress, all three corals showed a relative depletion of polyunsaturated fatty acids that had symbiont biomarkers, suggesting that polyunsaturated fatty acids were translocated from the symbiont to the coral host tissue.

  5. Effect of lipid composition and amino acid sequence upon transmembrane peptide-accelerated lipid transleaflet diffusion (flip-flop).

    PubMed

    LeBarron, Jamie; London, Erwin

    2016-08-01

    We examined how hydrophobic peptide-accelerated transleaflet lipid movement (flip-flop) was affected by peptide sequence and vesicle composition and properties. A peptide with a completely hydrophobic sequence had little if any effect upon flip-flop. While peptides with a somewhat less hydrophobic sequence accelerated flip-flop, the half-time remained slow (hours) with substantial (0.5mol%) peptide in the membranes. It appears that peptide-accelerated lipid flip-flop involves a rare event that may reflect a rare state of the peptide or lipid bilayer. There was no simple relationship between peptide overall hydrophobicity and flip-flop. In addition, flip-flop was not closely linked to whether the peptides were in a transmembrane or non-transmembrane (interfacial) inserted state. Flip-flop was also not associated with peptide-induced pore formation. We found that peptide-accelerated flip-flop is initially faster in small (highly curved) unilamellar vesicles relative to that in large unilamellar vesicles. Peptide-accelerated flip-flop was also affected by lipid composition, being slowed in vesicles with thick bilayers or those containing 30% cholesterol. Interestingly, these factors also slow spontaneous lipid flip-flop in the absence of peptide. Combined with previous studies, the results are most consistent with acceleration of lipid flip-flop by peptide-induced thinning of bilayer width. PMID:27131444

  6. Ambient temperature and nutritional stress influence fatty acid composition of structural and fuel lipids in Japanese quail (Coturnix japonica) tissues.

    PubMed

    Ben-Hamo, Miriam; McCue, Marshall D; Khozin-Goldberg, Inna; McWilliams, Scott R; Pinshow, Berry

    2013-10-01

    In birds, fatty acids (FA) serve as the primary metabolic fuel during exercise and fasting, and their composition affects metabolic rate and thus energy requirements. To ascertain the relationship between FAs and metabolic rate, a distinction should be made between structural and fuel lipids. Indeed, increased unsaturation of structural lipid FAs brings about increased cell metabolism, and changes in the FA composition of fuel lipids affects metabolic rate through selective mobilization and increasing availability of specific FAs. We examined the effects of acclimation to a low ambient temperature (Ta: 12.7±3.0°C) and nutritional status (fed or unfed) on the FA composition of four tissues in Japanese quail, Coturnix japonica. Differentiating between neutral (triglycerides) and polar (phospholipids) lipids, we tested the hypothesis that both acclimation to low Ta and nutritional status modify FA composition of triglycerides and phospholipids. We found that both factors affect FA composition of triglycerides, but not the composition of phospholipids. We also found changes in liver triacylglyceride FA composition in the low-Ta acclimated quail, namely, the two FAs that differed, oleic acid (18:1) and arachidonic acid (20:4), were associated with thermoregulation. In addition, the FAs that changed with nutritional status were all reported to be involved in regulation of glucose metabolism, and thus we suggest that they also play a role in the response to fasting. PMID:23796822

  7. Influence of a subinhibitory dose of antifungal fatty acids from Sporothrix flocculosa on cellular lipid composition in fungi.

    PubMed

    Benyagoub, M; Willemot, C; Bélanger, R R

    1996-10-01

    Antifungal fatty acids produced by the biocontrol fungus Sporothrix flocculosa were studied on the basis of their effect on growth and cellular lipid composition of three fungi, Cladosporium cucumerinum, Fusarium oxysporum, and S. flocculosa, whose growth was decreased by 51, 33, and 5%, respectively, when exposed to 0.4 mg fatty acid per ml. The sensitivity to fatty acid antibiotics from S. flocculosa was related to a high degree of unsaturation of phospholipid fatty acids and a low proportion of sterols. The major responses of sensitive fungi to sublethal doses of antifungal fatty acids from liquid culture of S. flocculosa were: (i) a decrease in total lipid; (ii) an increase in the degree of fatty acid unsaturation (18:1 > 18:2 > 18:3); (iii) an increase in free fatty acids and phosphatidic acid and a decrease in total phospholipids; and (iv) an increase in sterol/phospholipid ratio. These modifications in lipid composition led to an increase in membrane fluidity in sensitive fungi as demonstrated by assessment of fluoresence anisotropy using liposomes and 1,6-diphenyl-1,3,5-hexatriene probe. This alteration in the physical state of lipids appears to be responsible for the previously demonstrated alteration of membrane structure and function in fungi confronted to S. flocculosa. PMID:8898307

  8. Lipidomic profiling of Saccharomyces cerevisiae and Zygosaccharomyces bailii reveals critical changes in lipid composition in response to acetic acid stress.

    PubMed

    Lindberg, Lina; Santos, Aline Xs; Riezman, Howard; Olsson, Lisbeth; Bettiga, Maurizio

    2013-01-01

    When using microorganisms as cell factories in the production of bio-based fuels or chemicals from lignocellulosic hydrolysate, inhibitory concentrations of acetic acid, released from the biomass, reduce the production rate. The undissociated form of acetic acid enters the cell by passive diffusion across the lipid bilayer, mediating toxic effects inside the cell. In order to elucidate a possible link between lipid composition and acetic acid stress, the present study presents detailed lipidomic profiling of the major lipid species found in the plasma membrane, including glycerophospholipids, sphingolipids and sterols, in Saccharomyces cerevisiae (CEN.PK 113_7D) and Zygosaccharomyces bailii (CBS7555) cultured with acetic acid. Detailed physiological characterization of the response of the two yeasts to acetic acid has also been performed in aerobic batch cultivations using bioreactors. Physiological characterization revealed, as expected, that Z. bailii is more tolerant to acetic acid than S. cerevisiae. Z. bailii grew at acetic acid concentrations above 24 g L(-1), while limited growth of S. cerevisiae was observed after 11 h when cultured with only 12 g L(-1) acetic acid. Detailed lipidomic profiling using electrospray ionization, multiple-reaction-monitoring mass spectrometry (ESI-MRM-MS) showed remarkable changes in the glycerophospholipid composition of Z. bailii, including an increase in saturated glycerophospholipids and considerable increases in complex sphingolipids in both S. cerevisiae (IPC 6.2×, MIPC 9.1×, M(IP)2C 2.2×) and Z. bailii (IPC 4.9×, MIPC 2.7×, M(IP)2C 2.7×), when cultured with acetic acid. In addition, the basal level of complex sphingolipids was significantly higher in Z. bailii than in S. cerevisiae, further emphasizing the proposed link between lipid saturation, high sphingolipid levels and acetic acid tolerance. The results also suggest that acetic acid tolerance is associated with the ability of a given strain to generate large

  9. Comparison of lipid content and fatty acid composition and their distribution within seeds of 5 small grain species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley, oats, rice, sorghum, and wheat, each with two genotypes, were sequentially abraded by an electric seed scarifier. The pearling fines (PF) and pearled kernels (PK) at each cycle were analyzed for lipid (mostly nonpolar) content and fatty acid (FA)composition. The oil content in whole or deh...

  10. BIOCHEMISTRY OF DINOFLAGELLATE LIPIDS, WITH PARTICULAR REFERENCE TO THE FATTY ACID AND STEROL COMPOSITION OF A KARENIA BREVIS BLOOM

    EPA Science Inventory

    Leblond, Jeffrey D., Terence J. Evens and Peter J. Chapman. 2003. Biochemistry of Dinoflagellate Lipids, with Particular Reference to the Fatty Acid and Sterol Composition of a Karenia brevis Bloom. Phycologia. 42(4):324-331. (ERL,GB 1160).

    The harmful marine dinoflagella...

  11. Lipid and fatty acid composition of mesocarp and seed of avocado fruits harvested at northern range in Japan.

    PubMed

    Takenaga, Fumio; Matsuyama, Kaori; Abe, Shin; Torii, Yasuyoshi; Itoh, Shingo

    2008-01-01

    The lipid and fatty acid composition of the mesocarp and seed of avocado fruit grown and harvested in Japan, which is located at the northern range of the avacado, was investigated and compared to an imported avocado purchased commercially. The potential of the avocado mesocarp as an agricultural product in Japan was also explored. Total lipids (TL) accounted for approximately 20% of the mesocarp. Further analysis showed that the neutral lipid (NL) fraction accounted for at least 95% of the TL, and almost 90% of NL was triacylglycerol. Monoenoic acids accounted for at least 65% of the total fatty acids, and oleic acid, which is regarded as an especially important functional component of avacado accounted for approximately 50% of the monounsaturated fatty acids. A comparison of the Japanese avocado cultivars and an imported avocado cultivar in the present study revealed no significant differences in the lipid and fatty acid compositions. Therefore, production of avocado fruit, which is rich in various nutritional components, is expected to be increased on a larger number of farms in Japan in the future. It is believed to be necessary to carry out further verification, such as the establishment of a cultivation technique adoptable to Japan, examination of optimal soil and land features, and cultivar selection. PMID:18838831

  12. Lipid Composition of the Human Eye: Are Red Blood Cells a Good Mirror of Retinal and Optic Nerve Fatty Acids?

    PubMed Central

    Acar, Niyazi; Berdeaux, Olivier; Grégoire, Stéphane; Cabaret, Stéphanie; Martine, Lucy; Gain, Philippe; Thuret, Gilles; Creuzot-Garcher, Catherine P.; Bron, Alain M.; Bretillon, Lionel

    2012-01-01

    Background The assessment of blood lipids is very frequent in clinical research as it is assumed to reflect the lipid composition of peripheral tissues. Even well accepted such relationships have never been clearly established. This is particularly true in ophthalmology where the use of blood lipids has become very common following recent data linking lipid intake to ocular health and disease. In the present study, we wanted to determine in humans whether a lipidomic approach based on red blood cells could reveal associations between circulating and tissue lipid profiles. To check if the analytical sensitivity may be of importance in such analyses, we have used a double approach for lipidomics. Methodology and Principal Findings Red blood cells, retinas and optic nerves were collected from 9 human donors. The lipidomic analyses on tissues consisted in gas chromatography and liquid chromatography coupled to an electrospray ionization source-mass spectrometer (LC-ESI-MS). Gas chromatography did not reveal any relevant association between circulating and ocular fatty acids except for arachidonic acid whose circulating amounts were positively associated with its levels in the retina and in the optic nerve. In contrast, several significant associations emerged from LC-ESI-MS analyses. Particularly, lipid entities in red blood cells were positively or negatively associated with representative pools of retinal docosahexaenoic acid (DHA), retinal very-long chain polyunsaturated fatty acids (VLC-PUFA) or optic nerve plasmalogens. Conclusions and Significance LC-ESI-MS is more appropriate than gas chromatography for lipidomics on red blood cells, and further extrapolation to ocular lipids. The several individual lipid species we have identified are good candidates to represent circulating biomarkers of ocular lipids. However, further investigation is needed before considering them as indexes of disease risk and before using them in clinical studies on optic nerve

  13. Comparative Analysis of Lipid Content and Fatty Acid Composition of Commercially Important Fish and Shellfish from Sri Lanka and Japan.

    PubMed

    Devadason, Chandravathany; Jayasinghe, Chamila; Sivakanesan, Ramiah; Senarath, Samanthika; Beppu, Fumiaki; Gotoh, Naohiro

    2016-01-01

    Sri Lanka is surrounded by the Indian Ocean, allowing plenty of fishes to be caught. Moreover, these fishes represent one of the undocumented fish resources in the world and their detailed lipid profiles have not been previously examined. In this study, the lipid content and fatty acid composition of 50 commercially important fishes from the Indian Ocean (Sri Lanka) and the Pacific Ocean (Japan) were compared. The total lipid content and fatty acid composition, including eicosapentaenoic acid (C20:5n-3, EPA) and docosahexaenoic acid (C22:6n-3, DHA), differed significantly among species. Fish from the Pacific Ocean had higher proportions of fatty acids, including EPA and DHA. Herrings and mackerels from both oceanic areas demonstrated high levels of EPA and DHA, and n-3/n-6 ratio. Brackish and freshwater fishes from both groups showed low levels of PUFAs. Fish from the Indian Ocean were high in n-6 fatty acids. Monounsaturated fatty acid levels were high in omnivorous fish from the Pacific Ocean, and saturated fatty acid levels were high in fish from the Indian Ocean. The results of this study will be of value in determining the dietary usefulness of fish caught in Sri Lanka. PMID:27373421

  14. Lipid Composition of Cyanidium1

    PubMed Central

    Allen, C. Freeman; Good, Pearl; Holton, Raymond W.

    1970-01-01

    The major lipids in Cyanidium caldarium Geitler are monogalactosyl diglyceride, digalactosyl diglyceride, plant sulfolipid, lecithin, phosphatidyl glycerol, phosphatidyl inositol, and phosphatidyl ethanolamine. Fatty acid composition varies appreciably among the lipids, but the major ones are palmitic acid, oleic acid, linoleic acid, and moderate amounts of stearic acid. Trace amounts of other acids in the C14 to C20 range were also present. Moderate amounts of linolenic acid were found in two strains, but not in a third. The proportion of saturated acid is relatively high in all lipids ranging from about a third in monogalactosyl diglyceride to three-fourths in sulfolipid. This may be a result of the high growth temperature. Lipases forming lysosulfolipid, and lysophosphatidyl glycerol are active in ruptured cells; galactolipid is degraded with loss of both acyl residues. Thus the lipid and fatty acid composition of Cyanidium more closely resembles that of green algae than that of the blue-green algae, although there are differences of possible phylogenetic interest. Images PMID:16657541

  15. Lipid Classes, Fatty Acid Composition, and Glycerolipid Molecular Species of the Red Alga Gracilaria vermiculophylla, a Prostaglandin-Producing Seaweed.

    PubMed

    Honda, Masaki; Ishimaru, Takashi; Itabashi, Yutaka

    2016-01-01

    The red alga Gracilaria vermiculophylla is a well-known producer of prostaglandins, such as PGE2 and PGF2α. In this study, the characteristics of glycerolipids as substrates of prostaglandin production were clarified, and the lipid classes, fatty acid composition, and glycerolipid molecular species were investigated in detail. The major lipid classes were monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and sulfoquinovosyldiacylglycerol (SQDG), as well as phosphatidylcholine (PC), which accounted for 43.0% of the total lipid profile. Arachidonic acid (20:4n-6), a prostaglandin precursor, and palmitic acid (16:0) were the predominant fatty acids in the total lipid profile. The 20:4n-6 content was significantly high in MGDG and PC (more than 60%), and the 16:0 content was significantly high in DGDG and SQDG (more than 50%). Chiral-phase high-performance liquid chromatography determined that fatty acids were esterified at the sn-1 and sn-2 positions of those lipids. The main glycerolipid molecular species were 20:4n-6/20:4n-6 (sn-1/sn-2) for MGDG (56.5%) and PC (40.0%), and 20:4n-6/16:0 for DGDG (75.4%) and SQDG (58.4%). Thus, it was considered that the glycerolipid molecular species containing one or two 20:4n-6 were the major substrates for prostaglandin production in G. vermiculophylla. PMID:27581490

  16. Chlorogenic acid from honeysuckle improves hepatic lipid dysregulation and modulates hepatic fatty acid composition in rats with chronic endotoxin infusion

    PubMed Central

    Zhou, Yan; Ruan, Zheng; Wen, Yanmei; Yang, Yuhui; Mi, Shumei; Zhou, Lili; Wu, Xin; Ding, Sheng; Deng, Zeyuan; Wu, Guoyao; Yin, Yulong

    2016-01-01

    Chlorogenic acid as a natural hydroxycinnamic acid has protective effect for liver. Endotoxin induced metabolic disorder, such as lipid dysregulation and hyperlipidemia. In this study, we investigated the effect of chlorogenic acid in rats with chronic endotoxin infusion. The Sprague-Dawley rats with lipid metabolic disorder (LD group) were intraperitoneally injected endotoxin. And the rats of chlorogenic acid-LD group were daily received chlorogenic acid by intragastric administration. In chlorogenic acid-LD group, the area of visceral adipocyte was decreased and liver injury was ameliorated, as compared to LD group. In chlorogenic acid-LD group, serum triglycerides, free fatty acids, hepatic triglycerides and cholesterol were decreased, the proportion of C20:1, C24:1 and C18:3n-6, Δ9-18 and Δ6-desaturase activity index in the liver were decreased, and the proportion of C18:3n-3 acid was increased, compared to the LD group. Moreover, levels of phosphorylated AMP-activated protein kinase, carnitine palmitoyltransferase-I, and fatty acid β-oxidation were increased in chlorogenic acid-LD group compared to LD rats, whereas levels of fatty acid synthase and acetyl-CoA carboxylase were decreased. These findings demonstrate that chlorogenic acid effectively improves hepatic lipid dysregulation in rats by regulating fatty acid metabolism enzymes, stimulating AMP-activated protein kinase activation, and modulating levels of hepatic fatty acids. PMID:27013782

  17. Characteristic of lipids and fatty acid compositions of the neon flying squid, Ommastrephes bartramii.

    PubMed

    Saito, Hiroaki; Ishikawa, Satoru

    2012-01-01

    The lipids and fatty acids of the neon flying squid (Ommastrephes bartramii) were an-alyzed to clarify its lipid physiology and health benefit as marine food. Triacylglycerols were the only major component in the digestive gland (liver). In all other organs (mantle, arm, integument, and ovary), sterols and phospholipids were the major components with noticeable levels of ceramide aminoethyl phosphonate and sphingomyelin. The significant levels of sphingolipids suggest the O. bartramii lipids is a useful source for cosmetics. Although the lipid content between the liver and all other tissues markedly differed from each other, the same nine dominant fatty acids in the triacylglycerols were found in all organs; 14:0, 16:0, 18:0, 18:1n-9, 20:1n-9, 20:1n-11, 22:1n-11, 20:5n-3 (icosapentaenoic acid, EPA), and 22:6n-3 (docosahexaenoic acid, DHA). Unusually high 20:1n-11 levels in the O. bartramii triacylglycerols were probably characteristic for western Pacific animal depot lipids, compared with non-detectable levels of 20:1n-11 reported in other marine animals. O. bartramii concurrently has high levels of DHA in their triacylglycerols. The major fatty acids in the phospholipids were 16:0, 18:0, 20:1n-9, EPA, and DHA without 20:1n-11. Markedly high levels of both EPA and DHA were observed in phosphatidylethanolamine, while only DHA was found as the major one in phosphatidylcholine. In particular, high levels of DHA were found both in its depot triacylglycerols and tissue phospholipids in all organs of O. bartramii, similar to that in highly migratory fishes. The high DHA levels in all its organs suggest that O. bartramii lipids is a healthy marine source for DHA supplements. PMID:23018852

  18. Fatty Acid Composition and Lipid Profile of Diospyros mespiliformis, Albizia lebbeck, and Caesalpinia pulcherrima Seed Oils from Nigeria

    PubMed Central

    Oderinde, Rotimi Ayodele

    2014-01-01

    The screening of lesser-known underutilized seeds as source of food has been a way of finding solution to food insecurity in developing nations. In this regard, oil as a class of food was extracted from the seeds of Diospyros mespiliformis  (4.72 ± 0.2%), Albizia lebbeck  (6.40 ± 0.60%), and Caesalpinia pulcherrima  (7.2 ± 0.30%). The oils were finally analyzed for their fatty acid composition, lipid classes, fatty acid distribution in the lipid fractions, and molecular speciation of the triacylglycerols, glycolipids, and phospholipids. The fatty acid composition of the oils varied with C18:2 fatty acid being the most dominant in the oils. Neutral lipids were the most abundant lipid class found in the oils while molecular species of the triacylglycerol with equivalent carbon chain number C40 was majorly present in the oils of Diospyros mespiliformis and Caesalpinia pulcherrima. The present study presents lesser-known underutilized seeds as possible sources of food. PMID:26904625

  19. Rare Branched Fatty Acids Characterize the Lipid Composition of the Intra-Aerobic Methane Oxidizer “Candidatus Methylomirabilis oxyfera”

    PubMed Central

    Zhu, Baoli; Rijpstra, W. Irene C.; Jetten, Mike S. M.; Ettwig, Katharina F.; Sinninghe Damsté, Jaap S.

    2012-01-01

    The recently described bacterium “Candidatus Methylomirabilis oxyfera” couples the oxidation of the important greenhouse gas methane to the reduction of nitrite. The ecological significance of “Ca. Methylomirabilis oxyfera” is still underexplored, as our ability to identify the presence of this bacterium is thus far limited to DNA-based techniques. Here, we investigated the lipid composition of “Ca. Methylomirabilis oxyfera” to identify new, gene-independent biomarkers for the environmental detection of this bacterium. Multiple “Ca. Methylomirabilis oxyfera” enrichment cultures were investigated. In all cultures, the lipid profile was dominated up to 46% by the fatty acid (FA) 10-methylhexadecanoic acid (10MeC16:0). Furthermore, a unique FA was identified that has not been reported elsewhere: the monounsaturated 10-methylhexadecenoic acid with a double bond at the Δ7 position (10MeC16:1Δ7), which comprised up to 10% of the total FA profile. We propose that the typical branched fatty acids 10MeC16:0 and 10MeC16:1Δ7 are key and characteristic components of the lipid profile of “Ca. Methylomirabilis oxyfera.” The successful detection of these fatty acids in a peatland from which one of the enrichment cultures originated supports the potential of these unique lipids as biomarkers for the process of nitrite-dependent methane oxidation in the environment. PMID:23042164

  20. Effects of different dietary lipid sources on growth performance and tissue fatty acid composition of juvenile swimming crab Portunus trituberculatus

    NASA Astrophysics Data System (ADS)

    Han, Tao; Wang, Jiteng; Hu, Shuixin; Li, Xinyu; Jiang, Yudong; Wang, Chunlin

    2015-07-01

    This study was conducted to evaluate the effects of dietary lipid sources on the growth performance and fatty acid composition of the swimming crab, Portunus trituberculatus. Four isonitrogenous and isoenergetic experimental diets were formulated to contain four separate lipid sources, including fish, soybean, rapeseed, and linseed oils (FO, SO, RO, and LO, respectively). With three replicates of 18 crabs each for each diet, crabs (initial body weight, 17.00±0.09 g) were fed twice daily for 8 weeks. There were no significant differences among these groups in terms of weight gain, specific growth rate, and hepatosomatic index. However, the RO groups' survival rate was significantly lower than FO groups. The feed conversion and protein efficiency ratios of RO groups were poorer than other groups. The proximate compositions of whole body and hepatopancreas were significantly affected by these dietary treatments. Tissue fatty acid composition mainly reflected dietary fatty acid compositions. Crabs fed FO diets exhibited significantly higher arachidonic, eicosapentaenoic, and docosahexaenoic acid contents in muscle and hepatopancreas compared with VO crabs. Linoleic, oleic, and linolenic acids in muscle and hepatopancreas were the highest in the SO, RO, and LO groups, respectively. The present study suggested that SO and LO could substitute for FO in fishmeal-based diets for swimming crabs, without affecting growth performance and survival.

  1. [Dynamics of fatty acid composition of total lipids during embryonic development of Atlantic salmon Salmo salar L].

    PubMed

    Murzina, S A; Nefedova, Z A; Ripatti, P O; Nemova, N N; Markova, L V

    2012-01-01

    Dynamics of fatty acid composition of total lipids was studied for freshwater salmon Salmo salar L. during its embryonic development from blastula (3 hours) up to hatching (108 days) as well as in unfertilized eggs. Stable amount of total and some saturated, monounsaturated and polyunsaturated fatty acids (PUFA) of total lipids was observed during embryonic development. Considerable changes in fatty acid composition were observed at the stage of prelarvae hatching, i.e., significant decrease of (n-6) PUFA (18:2(n-6) and 20:4(n-6)) and (n-3) PUFA and increase of total and some saturated and monounsaturated fatty acids was registered. Change in saturation ratio of membrane lipids justifies the presence of the biochemical mechanism forwarded on regulation of cell membrane enzymes in accordance with the changes of internal physiological processes taking place in the organism and fluctuations of external environmental conditions or the preparation period (as reproduction). Data on peculiarities of transformation and utilization of fatty acids during salmon embryonic development may be used for understanding of their functional role in the developing organism as well as for assessing the quality of the caviar. PMID:22650081

  2. The effects of season on fatty acid composition and ω3/ω6 ratios of northern pike ( Esox lucius L., 1758) muscle lipids

    NASA Astrophysics Data System (ADS)

    Mert, Ramazan; Bulut, Sait; Konuk, Muhsin

    2015-01-01

    In the present study, the effects of season on fatty acid composition, total lipids, and ω3/ω6 ratios of northern pike muscle lipids in Kizilirmak River (Kirikkale, Turkey) were investigated. A total of 35 different fatty acids were determined in gas chromatography. Among these, palmitic, oleic, and palmitoleic acids had the highest proportion. The main polyunsaturated fatty acids (PUFAs) were found to be docosahexaenoic acid, eicosapentaenoic acid, and arachidonic acid. There were more PUFAs than monounsaturated fatty acids (MUFA) in all seasons. Similarly, the percentages of ω3 fatty acids were higher than those of total ω6 fatty acids in the fatty acid composition. ω3/ω6 ratios were calculated as 1.53, 1.32, 1.97, and 1.71 in spring, summer, autumn and winter, respectively. Overall, we found that the fatty acid composition and ω3/ω6 fatty acid ratio in the muscle of northern pike were significantly influenced by season.

  3. Lipids and Composition of Fatty Acids of Saccharina latissima Cultivated Year-Round in Integrated Multi-Trophic Aquaculture.

    PubMed

    Marinho, Gonçalo S; Holdt, Susan L; Jacobsen, Charlotte; Angelidaki, Irini

    2015-07-01

    This study is evaluating the seasonal lipid and fatty acid composition of the brown seaweed Saccharina latissima. Biomass was sampled throughout the year (bi-monthly) at the commercial cultivation site near a fish farm in an integrated multi-trophic aquaculture (IMTA) and at a reference site in Denmark (2013-2014). Generally, there was no difference in the biomass composition between sites; however, significant seasonal changes were found. The lipid concentration varied from 0.62%-0.88% dry weight (DW) in July to 3.33%-3.35% DW in November (p < 0.05) in both sites. The fatty acid composition in January was significantly different from all the other sampling months. The dissimilarities were mainly explained by changes in the relative abundance of 20:5n-3 (13.12%-33.35%), 14:0 (11.07%-29.37%) and 18:1n-9 (10.15%-16.94%). Polyunsaturated fatty acids (PUFA's) made up more than half of the fatty acids with a maximum in July (52.3%-54.0% fatty acid methyl esters; FAME). This including the most appreciated health beneficial PUFA's, eicosapentaenoic (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), but also arachidonic (ARA) and stearidonic acid (SDA), which are not found in land vegetables such as cabbage and lettuce. Compared to fat (salmon) and lean fish (cod) this seaweed species contains higher proportions of ARA and SDA, but lower EPA (only cod) and DHA. Conclusively, the season of harvest is important for the choice of lipid quantity and quality, but the marine vegetables provide better sources of EPA, DHA and long-chain (LC)-PUFA's in general compared to traditional vegetables. PMID:26184241

  4. Lipids and Composition of Fatty Acids of Saccharina latissima Cultivated Year-Round in Integrated Multi-Trophic Aquaculture

    PubMed Central

    Marinho, Gonçalo S.; Holdt, Susan L.; Jacobsen, Charlotte; Angelidaki, Irini

    2015-01-01

    This study is evaluating the seasonal lipid and fatty acid composition of the brown seaweed Saccharina latissima. Biomass was sampled throughout the year (bi-monthly) at the commercial cultivation site near a fish farm in an integrated multi-trophic aquaculture (IMTA) and at a reference site in Denmark (2013–2014). Generally, there was no difference in the biomass composition between sites; however, significant seasonal changes were found. The lipid concentration varied from 0.62%–0.88% dry weight (DW) in July to 3.33%–3.35% DW in November (p < 0.05) in both sites. The fatty acid composition in January was significantly different from all the other sampling months. The dissimilarities were mainly explained by changes in the relative abundance of 20:5n-3 (13.12%–33.35%), 14:0 (11.07%–29.37%) and 18:1n-9 (10.15%–16.94%). Polyunsaturated fatty acids (PUFA’s) made up more than half of the fatty acids with a maximum in July (52.3%–54.0% fatty acid methyl esters; FAME). This including the most appreciated health beneficial PUFA’s, eicosapentaenoic (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), but also arachidonic (ARA) and stearidonic acid (SDA), which are not found in land vegetables such as cabbage and lettuce. Compared to fat (salmon) and lean fish (cod) this seaweed species contains higher proportions of ARA and SDA, but lower EPA (only cod) and DHA. Conclusively, the season of harvest is important for the choice of lipid quantity and quality, but the marine vegetables provide better sources of EPA, DHA and long-chain (LC)-PUFA’s in general compared to traditional vegetables. PMID:26184241

  5. A Biochemical GC-MS Application for the Organic Chemistry Laboratory: Determination of Fatty Acid Composition of Arabidopsis thaliana Lipids

    NASA Astrophysics Data System (ADS)

    Bender, Jared D.; Catino, Arthur J., III.; Hess, Kenneth R.; Lassman, Michael E.; Leber, Phyllis A.; Reinard, Michael D.; Strotman, Neil A.; Pike, Carl S.

    2000-11-01

    A biochemical application of GC-MS in which students determine the qualitative and quantitative lipid composition of plant leaf samples is described. There are four facets of this project: (i) synthesis and characterization of individual fatty acid methyl esters (FAMEs) as standards for GC-MS analysis, (ii) isolation of the fatty acids of Arabidopsis thaliana leaves, both wild type and mutants, as FAMEs, (iii) GC-MS analysis of the Arabidopsis leaf extracts for fatty acid composition, and (iv) comparison of the class results with the literature data for both wild type and the four mutants and with a biochemical model of two pathways for lipid synthesis in Arabidopsis leaves. Because this experimental paradigm links organic synthesis and spectral characterization by IR and NMR, both 1H and 13C, with separation and identification via GC-MS analysis, all of the key areas of laboratory procedure are encompassed in this single project. The experimental design permits a myriad of hypothesis-testing variations. Plants can be grown at different temperatures and for different lengths of time to determine if and how fatty acid composition varies. Different types of plant leaves can be examined to ascertain if each has a unique fatty acid fingerprint.

  6. Food availability and reproduction affects lipid and fatty acid composition of the brown mussel, Perna perna, raised in suspension culture.

    PubMed

    Narváez, Mirle; Freites, L; Guevara, M; Mendoza, J; Guderley, H; Lodeiros, C J; Salazar, G

    2008-02-01

    We examined the influence of the reproductive cycle and environmental factors on variations of the condition index (CI), tissue dry mass, shell size, total lipid content, and relative percent of fatty acids in the mussel, Perna perna. Spat or juveniles were reared to commercial size (70 mm) in suspension culture in the Golfo de Cariaco, Venezuela between May and October 2004. The dry mass of soft tissues and shell, a visual assessment of gonadal status and the organism lipid profile were established every fortnight. In parallel, we measured the environmental conditions, following chlorophyll a, salinity, temperature and seston levels. After an initial decrease, the CI rose and remained high until August after which it decreased continuously until October. Total lipid values also decreased initially, after which they showed two periods of rapid recuperation and depletion, the first between May and August and the second between August and October. Similar tendencies were noted in the fatty acids, C18:3n-3, C18:4n-3 and C22:6n-3. Correlation analysis found no significant relationships between environmental parameters and the variations in total lipids. However, significant correlations were noted between fatty acids and specific environmental parameters. In particular, temperature was inversely correlated with C14:0, C16:1n-7, C18:0, C18:1n-9 and 20:5n-3. Chlorophyll a was positively correlated with C14:0, C16:1n-7, C18:1n-7, C18:4n-3 and 20:4n-6. On the other hand, gametogenesis had an effect on C14:0, C16:1n-7, C18:1n-9 and C18:1n-7, while spawned and gonadal regression states had an effect on fatty acid 20:4n-6. Temperature and chlorophyll a levels strongly influenced the proportion of mussels spawning, suggesting that their influence upon lipid composition may be secondary to their impact upon reproduction. Despite the thermal stability of this tropical system, the lipid composition of mussels changed markedly during the study, reflecting the central role of diet

  7. Effect of the amino acid composition of cyclic peptides on their self-assembly in lipid bilayers.

    PubMed

    Danial, Maarten; Perrier, Sébastien; Jolliffe, Katrina A

    2015-02-28

    The effect of amino acid composition on the formation of transmembrane channels in lipid bilayers upon self-assembly of alt-(L,D)-α-cyclic octapeptides has been investigated. Cyclic peptides comprising D-leucine, alternating with different combinations of L-azidolysine, L-lysine(Alloc), L-lysine and L-tryptophan were synthesized and the size of pores formed via self-assembly of these molecules in lipid bilayers was elucidated using large unilamellar vesicle fluorescence assays and dynamic light scattering. Pore formation was examined in large unilamellar vesicles made up of egg yolk phosphatidylcholine or Escherichia coli total lipid extract. From these analyses, we have established that cyclic peptides with charged side chains form large pores while those with neutral side chains form unimeric pores. Furthermore, the cyclic peptides that consist of non-symmetric amino acid configurations possess a higher membrane activity than the cyclic peptides with a symmetric amino acid configuration. In addition, we have found that peptide amphiphilicity plays a vital role in selective partitioning between bilayers that consist of egg yolk phosphatidylcholine and those comprised of E. coli total lipid extract. These results suggest that selective transbilayer channel formation via self-assembly may be a viable alternative for many applications that currently use more expensive, multistep synthesis methods. PMID:25566760

  8. Lipid content and fatty acid composition of the monogenean Neobenedenia girellae and comparison between the parasite and host fish species.

    PubMed

    Sato, S; Hirayama, T; Hirazawa, N

    2008-07-01

    Neobenedenia girellae, a capsalid monogenean, is a destructive fish parasite. We studied the lipid content and fatty acid composition of N. girellae and the skin and cutaneous mucus of a host fish, the amberjack Seriola dumerili (Carangidae). The lipid content of adult N. girellae was less than one-fourth that of both the skin and cutaneous mucus of its host. Adult N. girellae, S. dumerili skin and mucus had a relatively high weight-percentage of C16:0, C18:1(n-9), C18:0 and C22:6(n-3) fatty acids. When S. dumerili were fed a diet supplemented with [13C] fatty acids, [13C] fatty acids were detected in S. dumerili skin and adult N. girellae on S. dumerili, but no [13C] fatty acids were detected in the S. dumerili cutaneous mucus. In addition, the epidermis of S. dumerili, attached with N. girellae, was markedly thin. These results suggest that N. girellae feeds primarily on host epithelial cells. We then infected 2 host fishes, S. dumerili and the spotted halibut Verasper variegatus (Pleuronectidae; a host less susceptible to N. girellae infection), and compared the fatty acid composition of N. girellae with that of the skin and cutaneous mucus of the hosts. The fatty acid profiles from all samples were qualitatively and quantitatively similar. Thus, the fatty acid composition of the host may not contribute to the difference in susceptibility between S. dumerili and V. variegatus. These results may serve to develop new strategies for the control of N. girellae infections. PMID:18598577

  9. Relation of fatty acid composition in lead-exposed mallards to fat mobilization, lipid peroxidation and alkaline phosphatase activity

    USGS Publications Warehouse

    Mateo, R.; Beyer, W.N.; Spann, J.W.; Hoffman, D.J.

    2003-01-01

    The increase of n-6 polyunsaturated fatty acids (PUFA) in animal tissues has been proposed as a mechanism of Pb poisoning through lipid peroxidation or altered eicosanoids metabolism. We have studied fatty acid (FA) composition in liver and brain of mallards (Anas platyrhynchos) feeding for three weeks on diets containing combinations of low or high levels of vitamin E (20 or 200 UI/kg) and Pb (0 or 2 g/kg). Saturated FA, n-6 PUFA and total concentrations of FA were higher in livers of Pb-exposed mallards, but not in their brains. The percentage of n-6 PUFA in liver and brain was slightly higher in Pb-exposed mallards. The increase of n-6 PUFA in liver was associated with increased triglycerides and cholesterol in plasma, thus could be in part attributed to feed refusal and fat mobilization. The hepatic ratios between adrenic acid (22:4 n-6) and arachidonic acid (20:4 n-6) or between adrenic acid and linoleic acid (18:2 n-6) were higher in Pb exposed birds, supporting the existing hypothesis of increased fatty acid elongation by Pb. Among the possible consequences of increased n-6 PUFA concentration in tissues, we found increased lipid peroxidation in liver without important histopathological changes, and decreased plasma alkaline phosphatase activity that may reflect altered bone metabolism in birds.

  10. Effect of culture conditions on growth, lipid content, and fatty acid composition of Aurantiochytrium mangrovei strain BL10

    PubMed Central

    2012-01-01

    This study explored the influence of various culture conditions on the biomass, lipid content, production of docosahexaenoic acid (DHA), and fatty acid composition of Aurantiochytrium mangrovei strain BL10. The variables examined in this study include the species and concentration of salt, the concentrations of the two substrates glucose and yeast extract, the level of dissolved oxygen, the cerulenin treatment, and the stages of BL10 growth. Our results demonstrate that BL10 culture produces maximum biomass when salinity levels are between 0.2 and 3.0%. Decreasing salinity to 0.1% resulted in a considerable decrease in the biomass, lipid content, DHA production, and DHA to palmitic acid (PA) (DHA/PA) ratio, signifying deterioration in the quality of the oil produced. The addition of 0.9% sodium sulfate to replenish salinity from 0.1% to 1.0% successfully recovered biomass, lipid content and DHA production levels; however, this also led to a decrease in DHA/PA ratio. An increase in oxygen and cerulenin levels resulted in a concomitant decrease in the DHA to docosapentaenoic acid (DPA) (DHA/DPA) ratio in BL10 oil. Furthermore, the DHA/DPA and DHA/PA ratios varied considerably before and after the termination of cell division, which occurred around the 24 hour mark. These results could serve as a foundation for elucidating the biochemistry underlying the accumulation of lipids, and a definition of the extrinsic (environmental or nutritional) and intrinsic (cell growth stage) factors that influence lipid quality and the production of DHA by BL10. PMID:22883641

  11. Impact of dietary lipids on sow milk composition and balance of essential fatty acids during lactation in prolific sows.

    PubMed

    Rosero, D S; Odle, J; Mendoza, S M; Boyd, R D; Fellner, V; van Heugten, E

    2015-06-01

    Two studies were designed to determine the effects of supplementing diets with lipid sources of EFA (linoleic and α-linolenic acid) on sow milk composition to estimate the balance of EFA for sows nursing large litters. In Exp. 1, 30 sows, equally balanced by parity (1 and 3 to 5) and nursing 12 pigs, were fed diets supplemented with 6% animal-vegetable blend (A-V), 6% choice white grease (CWG), or a control diet without added lipid. Diets were corn-soybean meal based with 8% corn distiller dried grains with solubles and 6% wheat middlings and contained 3.25 g standardized ileal digestible Lys/Mcal ME. Sows fed lipid-supplemented diets secreted greater amounts of fat (P = 0.082; 499 and 559 g/d for control and lipid-added diets, respectively) than sows fed the control diet. The balance of EFA was computed as apparent ileal digestible intake of EFA minus the outflow of EFA in milk. For sows fed the control diet, the amount of linoleic acid secreted in milk was greater than the amount consumed, throughout lactation. This resulted in a pronounced negative balance of linoleic acid (-22.4, -38.0, and -14.1 g/d for d 3, 10, and 17 of lactation, respectively). In Exp. 2, 50 sows, equally balanced by parity and nursing 12 pigs, were randomly assigned to a 2 × 2 factorial arrangement of diets plus a control diet without added lipids. Factors included linoleic acid (2.1% and 3.3%) and α-linolenic acid (0.15% and 0.45%). The different concentrations of EFA were obtained by adding 4% of different mixtures of canola, corn, and flaxseed oils to diets. The n-6 to n-3 fatty acid ratios in the diets ranged from 5 to 22. Increasing supplemental EFA increased (P < 0.001) milk concentrations of linoleic (16.7% and 20.8%, for 2.1% and 3.3% linoleic acid, respectively) and α-linolenic acid (P < 0.001; 1.1 and 1.9% for 0.15 and 0.45% α-linolenic acid, respectively). Increasing supplemental EFA increased the estimated balance of α-linolenic acid (P < 0.001; -0.2 and 5.3 g/d for 0

  12. Effect of exercise training on the fatty acid composition of lipid classes in rat liver, skeletal muscle, and adipose tissue.

    PubMed

    Petridou, Anatoli; Nikolaidis, Michalis G; Matsakas, Antonis; Schulz, Thorsten; Michna, Horst; Mougios, Vassilis

    2005-05-01

    The aim of the present study was to examine the effects of 8 weeks of exercise training on the fatty acid composition of phospholipids (PL) and triacylglycerols (TG) in rat liver, skeletal muscle (gastrocnemius medialis), and adipose tissue (epididymal and subcutaneous fat). For this purpose, the relevant tissues of 11 trained rats were compared to those of 14 untrained ones. Training caused several significant differences of large effect size in the concentrations and percentages of individual fatty acids in the aforementioned lipid classes. The fatty acid composition of liver PL, in terms of both concentrations and percentages, changed with training. The TG content of muscle and subcutaneous adipose tissue decreased significantly with training. In contrast to the liver, where no significant differences in the fatty acid profile of TG were found, muscle underwent more significant differences in TG than PL, and adipose tissue only in TG. Most differences were in the same direction in muscle and adipose tissue TG, suggesting a common underlying mechanism. Estimated fatty acid elongase activity was significantly higher, whereas Delta(9)-desaturase activity was significantly lower in muscle and adipose tissue of the trained rats. In conclusion, exercise training modified the fatty acid composition of liver PL, muscle PL and TG, as well as adipose tissue TG. These findings may aid in delineating the effects of exercise on biological functions such as membrane properties, cell signaling, and gene expression. PMID:15682327

  13. The influence of different combinations of gamma-linolenic, stearidonic and eicosapentaenoic acids on the fatty acid composition of blood lipids and mononuclear cells in human volunteers.

    PubMed

    Miles, Elizabeth A; Banerjee, Tapati; Calder, Philip C

    2004-06-01

    This study set out to identify whether stearidonic acid (18:4n-3; STA) can be used to increase the eicosapentaenoic acid (20:5n-3; EPA) content of plasma lipids and cells in humans and to understand more about the effects of increased consumption of gamma-linolenic acid (18:3n-3; GLA), STA and EPA in humans. Healthy young males were randomised to consume one of seven oil blends for a period of 12 weeks (9g oil/day) (n = 8-12 subjects/group). Palm oil, sunflower oil, an EPA-rich oil, borage oil (rich in GLA), and Echium oil (rich in STA) were blended in various combinations to generate a placebo oil and oils providing approximately 2g GLA + STA + EPA per day, but in different combinations. Blood was collected at 0, 4, 8 and 12 weeks and the fatty acid compositions of plasma triacylglycerols, cholesteryl esters and phospholipids and of peripheral blood mononuclear cells (PBMCs) determined. Significant effects were observed with each lipid fraction. Neither STA nor its derivative 20:4n-3 appeared in any of the lipid fractions studied when STA (up to 1g/day) was consumed. However, STA (1g/day), in combination with GLA (0.9 g/day), increased the proportion of EPA in some lipid fractions, suggesting that STA-rich plant oils may offer a novel means of increasing EPA status. Furthermore, this combination tended to increase the dihomo-gamma-linolenic acid (20:3n-6; DGLA) content of PBMCs, without an increase in arachidonic acid (AA) (20:4n-6) content. EPA consumption increased the EPA content of all lipid fractions studied. Consumption of GLA (2g/day), in the absence of STA or EPA, increased DGLA content with a tendency to increase AA content in some fractions. This effect was prevented by inclusion of EPA in combination with GLA. Thus, this study indicates that STA may be used as a precursor to increase the EPA content of human lipids and that combinations of GLA, STA and EPA can be used to manipulate the fatty acid compositions of lipid pools in subtle ways. Such effects

  14. [Lipid synthesis by an acidic acid tolerant Rhodotorula glutinis].

    PubMed

    Lin, Zhangnan; Liu, Hongjuan; Zhang, Jian'an; Wang, Gehua

    2016-03-01

    Acetic acid, as a main by-product generated in the pretreatment process of lignocellulose hydrolysis, significantly affects cell growth and lipid synthesis of oleaginous microorganisms. Therefore, we studied the tolerance of Rhodotorula glutinis to acetic acid and its lipid synthesis from substrate containing acetic acid. In the mixed sugar medium containing 6 g/L glucose and 44 g/L xylose, and supplemented with acetic acid, the cell growth was not:inhibited when the acetic acid concentration was below 10 g/L. Compared with the control, the biomass, lipid concentration and lipid content of R. glutinis increased 21.5%, 171% and 122% respectively when acetic acid concentration was 10 g/L. Furthermore, R. glutinis could accumulate lipid with acetate as the sole carbon source. Lipid concentration and lipid yield reached 3.20 g/L and 13% respectively with the initial acetic acid concentration of 25 g/L. The lipid composition was analyzed by gas chromatograph. The main composition of lipid produced with acetic acid was palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid, including 40.9% saturated fatty acids and 59.1% unsaturated fatty acids. The lipid composition was similar to that of plant oil, indicating that lipid from oleaginous yeast R. glutinis had potential as the feedstock of biodiesel production. These results demonstrated that a certain concentration of acetic acid need not to be removed in the detoxification process when using lignocelluloses hydrolysate to produce microbial lipid by R. glutinis. PMID:27349116

  15. [Fatty acid composition of phospholipids of erythrocytes of lamprey, frog, rat, and absorption spectra of their lipid extracts].

    PubMed

    Zabelinskii, S A; Chebotareva, M A; Shukolyukova, E P; Krivchenko, A I

    2014-01-01

    The work deals with study of content and fatty acid composition of phospholipids as well as of absorption spectra of lipid extracts of blood erythrocytes poikilothermal and homoiothermal animals of different evolutionary levels. Objects of study were poikilothermal lamprey (Lampetra fluviatilis) consuming oxygen from water and the common frog (Rana temporatia) consuming it both from water and from air. Homoiothermal animals were white rats (Rattus rattus) inhabiting in the air medium. The animals were studied at the winter-spring periods. There was established the twofold predominance of the phospholipid content in the lamprey plasma as compared with erythrocytes. In frog and rat the reverse ratio was observed. Based on study of the fatty acid composition of erythrocyte phospholipids it is suggested the higher density of membranes of lamprey as compared with frog membranes. As to fatty acides of the rat blood erythrocytic fraction, they turned out to be less diverse, with almost twofold predominance of saturated over unsaturated acids and not containing the long-chained (C22) Ω3 acids. All this leads to the low unsaturation index and, accordingly, to a dense packing of fatty acids in membrane structures of rat erythrocytes. Mechanism of reversible binding of O2 molecules by hemoglobin in erythrocytes is discussed. The mechanism of interaction of O2 molecules with water molecules is likely to interfere with exchange interaction electrons of hemoglobin iron atoms and oxygen molecule. This confirms our obtained absorption spectra showing that in the lipid extract practically not containing water the heme isolated from erythrocytes is converted to hemin. PMID:25775862

  16. Lipid nutritional value of legumes: Evaluation of different extraction methods and determination of fatty acid composition.

    PubMed

    Caprioli, Giovanni; Giusti, Federica; Ballini, Roberto; Sagratini, Gianni; Vila-Donat, Pilar; Vittori, Sauro; Fiorini, Dennis

    2016-02-01

    This study sought to contribute to the assessment of the nutritional properties of legumes by determining the fatty acid (FA) composition of 29 legume samples after the evaluation of nine extraction methods. The Folch method and liquid-solid extraction with hexane/isopropanol or with hexane/acetone were investigated, as was the effect of previous hydration of samples. Soxhlet extractions were also evaluated with different solvent mixtures. Results on FA composition using the hexane/isopropanol extraction method were the same in terms of FA composition of the Folch method, but the extraction yield was only around 20-40% of that of the Folch method preceded by hydration. Some types of legumes showed particularly interesting values for the ratio of polyunsaturated fatty acids (PUFAs) n-6/n-3, such as lentils, with the value of 4.0, and Azuki beans, at 3.2. In lentils, the PUFAs% ranged from 42.0% to 57.4%, while in Azuki beans it was 57.5%. PMID:26304436

  17. Effect of alpha-linolenic acid-rich Camelina sativa oil on serum fatty acid composition and serum lipids in hypercholesterolemic subjects.

    PubMed

    Karvonen, Henna M; Aro, Antti; Tapola, Niina S; Salminen, Irma; Uusitupa, Matti I j; Sarkkinen, Essi S

    2002-10-01

    Camelina sativa-derived oil (camelina oil) is a good source of alpha-linolenic acid. The proportion of alpha-linolenic acid in serum fatty acids is associated with the risk of cardiovascular diseases. We studied the effects of camelina oil on serum lipids and on the fatty acid composition of total lipids in comparison to rapeseed and olive oils in a parallel, double-blind setting. Sixty-eight hypercholesterolemic subjects aged 28 to 65 years were randomly assigned after a 2-week pretrial period to 1 of 3 oil groups: camelina oil, olive oil, and rapeseed oil. Subjects consumed daily 30 g (actual intake, approximately 33 mL) of test oils for 6 weeks. In the camelina group, the proportion of alpha-linolenic acid in fatty acids of serum lipids was significantly higher (P <.001) compared to the 2 other oil groups at the end of the study: 2.5 times higher compared to the rapeseed oil group and 4 times higher compared to the olive oil group. Respectively the proportions of 2 metabolites of alpha-linolenic acid (eicosapentaenoic and docosapentaenoic acids) increased and differed significantly in the camelina group from those in other groups. During the intervention, the serum low-density lipoprotein (LDL) cholesterol concentration decreased significantly by 12.2% in the camelina oil group, 5.4% in the rapeseed oil group, and 7.7% in the olive oil group. In conclusion, camelina oil significantly elevated the proportions of alpha-linolenic acid and its metabolites in serum of mildly or moderately hypercholesterolemic subjects. Camelina oil's serum cholesterol-lowering effect was comparable to that of rapeseed and olive oils. PMID:12370843

  18. Fatty acid composition of muscle fat and enzymes of storage lipid synthesis in whole muscle from beef cattle.

    PubMed

    Kazala, E Chris; Lozeman, Fred J; Mir, Priya S; Aalhus, Jennifer L; Schmutz, Sheila M; Weselake, Randall J

    2006-11-01

    Enhanced intramuscular fat content (i.e., marbling) in beef is a desirable trait, which can result in increased product value. This study was undertaken with the aim of revealing biochemical factors associated with the marbling trait in beef cattle. Samples of longissimus lumborum (LL) and pars costalis diaphragmatis (PCD) were taken from a group of intact crossbred males and females at slaughter, lipids extracted, and the resulting FAME examined for relationships with marbling fat deposition. For LL, significant associations were found between degree of marbling and myristic (14:0, r = 0.55, P < 0.01), palmitic (16:0, r = 0.80, P < 0.001), stearic (18:0, r = -0.58, P < 0.01), and oleic (18:1c-9, r = 0.79, P < 0.001) acids. For PCD, significant relationships were found between marbling and palmitic (r = 0.71, P < 0.001) and oleic (r = 0.74, P < 0.001) acids. Microsomal fractions prepared from PCD muscle were assayed for diacylglycerol acyltransferase (DGAT), lysophosphatidic acid acyltransferase (LPAAT), and phosphatidic acid phosphatase-1 (PAP-1) activity, and the results examined for relationships with degree of intramuscular fat deposition. None of the enzyme activities from PCD displayed an association with marbling fat content, but DGAT specific activity showed significant positive associations with LPAAT (r = 0.54, P < 0.01), total PAP (r = 0.66, P < 0.001), and PAP-1 (r = 0.63, P < 0.01) specific activities. The results on FA compositions of whole muscle tissues provide insight into possible enzyme action associated with the production of specific FA. The increased proportion of oleic acid associated with enhanced lipid content of whole muscle is noteworthy given the known health benefits of this FA. PMID:17263304

  19. Effect of exercise on the content of lipids, cholesterol and on the composition of fatty acids in the adrenals of rats receiving rapeseed oil in diet.

    PubMed

    Kucharczyk, B; Ziemlański, S

    1981-01-01

    The effect of different levels of high-erucic acid rapeseed oil in diet and exposure to graded exercise on the contents of total lipids and total cholesterol, and the composition of fatty acids, in total lipids and cholesterol ester fractions in the adrenals of Wistar rats was investigated. Presence of erucic acid in the diet produced greater changes in the characteristic composition of fatty acids in the fraction of cholesterol esters than in the total lipids in the adrenals. The intensity of changes in the composition of fatty acids was greater with higher amounts of rapeseed oil in the diet and longer administration of the diet. Exercise decreased the changes in fatty acid composition in the fraction of cholesterol esters in rats receiving 50% of calories from rapeseed oil. In the group receiving 30% of calories from rapeseed oil the trained rats accumulated more rapidly cholesterol in the adrenals than the untrained rats. Exercise load had no effect on the total lipid level in the adrenals. PMID:7304197

  20. Reproductive cycle and seasonal variations in lipid content and fatty acid composition in gonad of the cockle Fulvia mutica in relation to temperature and food

    NASA Astrophysics Data System (ADS)

    Liu, Wenguang; Li, Qi; Kong, Lingfeng

    2013-09-01

    From March 2004 to February 2005, seasonal variations in lipid content and fatty acid composition of gonad of the cockle Fulvia mutica (Reeve) were studied on the eastern coast of China in relation to the reproductive cycle and environment conditions ( e.g., temperature and food availability). Histological analysis as well as lipid and fatty acid analyses were performed on neutral and polar lipids of the gonad. Results showed that gametogenesis occurred in winter and spring at the expense of lipids previously accumulated in summer and autumn, whereas spawning occurred in summer (20.4-24.6°C). The seasonal variation in lipid content was similar to that of the mean oocyte diameter. In both neutral and polar lipids, the 20:5n-3 and 22:6n-3 levels were relatively higher than saturated fatty acids, and polyunsaturated fatty acids were abundant, with series n-3 as the predominant component. Seasonal variations in the 20:5n-3 and 22:6n-3 levels and the principal n-3 fatty acids were clearly related to the reproductive cycle. The Σ(n-3) and Σ(n-6) values were relatively high during January-May, and the associated unsaturation index was significantly higher than that in other months. The results suggest that fatty acids play an important role in the gametogenesis of F. mutica.

  1. Conjugated linoleic acid versus high-oleic acid sunflower oil: effects on energy metabolism, glucose tolerance, blood lipids, appetite and body composition in regularly exercising individuals.

    PubMed

    Lambert, Estelle V; Goedecke, Julia H; Bluett, Kerry; Heggie, Kerry; Claassen, Amanda; Rae, Dale E; West, Sacha; Dugas, Jonathan; Dugas, Lara; Meltzeri, Shelly; Charlton, Karen; Mohede, Inge

    2007-05-01

    The aim of this study was to measure the effects of 12 weeks of conjugated linoleic acid (CLA) supplementation on body composition, RER, RMR, blood lipid profiles, insulin sensitivity and appetite in exercising, normal-weight persons. In this double-blind, randomised, controlled trial, sixty-two non-obese subjects (twenty-five men, thirty-seven women) received either 3.9 g/d CLA or 3.9 g high-oleic acid sunflower oil for 12 weeks. Prior to and after 12 weeks of supplementation, oral glucose tolerance, blood lipid concentrations, body composition (dual-energy X-ray absorptiometry and computerised tomography scans), RMR, resting and exercising RER and appetite were measured. There were no significant effects of CLA on body composition or distribution, RMR, RER or appetite. During the oral glucose tolerance tests, mean plasma insulin concentrations (0, 30, 120 min) were significantly lower (P= 0.04) in women who supplemented with CLA (24.3 (SD 9.7) to 20.4 (SD 8.5) microU/ml) compared to high-oleic acid sunflower oil control (23.7 (SD 9.8) to 26.0 (SD 8.8) microU/ml). Serum NEFA levels in response to oral glucose were attenuated in both men and women in the CLA (P=0.001) compared to control group. However, serum total cholesterol and LDL-cholesterol concentrations decreased in both groups and HDL-cholesterol concentrations decreased in women over 12 weeks (P=0.001, P=0.02, P=0.02, respectively). In conclusion, mixed-isomer CLA supplementation had a favourable effect on serum insulin and NEFA response to oral glucose in non-obese, regularly exercising women, but there were no CLA-specific effects on body composition, energy expenditure or appetite. PMID:17381964

  2. Lanolin-derived lipid mixtures mimic closely the lipid composition and organization of vernix caseosa lipids.

    PubMed

    Rissmann, Robert; Oudshoorn, Marion H M; Kocks, Elise; Hennink, Wim E; Ponec, Maria; Bouwstra, Joke A

    2008-10-01

    The aim of the present study was to use semi-synthetic lipid mixtures to mimic the complex lipid composition, organization and thermotropic behaviour of vernix caseosa (VC) lipids. As VC shows multiple protecting and barrier supporting properties before and after birth, it is suggested that a VC substitute could be an innovative barrier cream for barrier deficient skin. Lanolin was selected as the source of the branched chain sterol esters and wax esters--the main lipid classes of VC. Different lipid fractions were isolated from lanolin and subsequently mixed with squalene, triglycerides, cholesterol, ceramides and fatty acids to generate semi-synthetic lipid mixtures that mimic the lipid composition of VC, as established by high-performance thin-layer chromatography. Differential scanning calorimetry and Fourier transform infrared spectroscopy investigations revealed that triglycerides play an important role in the (lateral) lipid organization and thermotropic behaviour of the synthetic lipid mixtures. Excellent resemblance of VC lipids was obtained when adding unsaturated triglycerides. Moreover, these lipid mixtures showed similar long range ordering as VC. The optimal lipid mixture was evaluated on tape-stripped hairless mouse skin in vivo. The rate of barrier recovery was increased and comparable to VC lipid treatment. PMID:18655769

  3. Influence of dietary partially hydrogenated fat high in trans fatty acids on lipid composition and function of intestinal brush border membrane in rats.

    PubMed

    Ghafoorunissa, S A.I.

    2001-02-01

    The effect of dietary hydrogenated fat (Indian vanaspati) high in trans fatty acids (6 en%) on lipid composition, fluidity and function of rat intestinal brush border membrane was studied at 2 and 8 en% of linoleic acid. Three groups of weanling rats were fed rice-pulse based diet containing 10% fat over a ten week period: Group I (groundnut oil), Group II (vanaspati), Group III (vanaspati + safflower oil). The functionality of the brush border membrane was assessed by the activity of membrane bound enzymes and transport of D-glucose and L-leucine. The levels of total cholesterol and phospholipids were similar in all groups. The data on fatty acid composition of membrane phospholipids showed that, at 2 en% of linoleic acid in the diet, trans fatty acids lowered arachidonic acid and increased linoleic acid contents indicating altered polyunsaturated fatty acid metabolism. Alkaline phosphatase activity was increased while the activities of sucrase, gamma-glutamyl transpeptidase and transport of D-glucose and L-leucine were not altered by dietary trans fatty acids. However at higher intake of linoleic acid in the diet, trans fatty acids have no effect on polyunsaturated fatty acid composition and alkaline phosphatase activity of intestinal brush border membrane. These data suggest that feeding dietary fat high in trans fatty acids is associated with alteration in intestinal brush border membrane polyunsaturated fatty acid composition and alkaline phosphatase activity only when the dietary linoleic acid is low. PMID:11182555

  4. VARIATION IN GROWTH, LIPID CLASS AND FATTY ACID COMPOSITION OF THE MUD CRAB, RHITHROPANOPEUS HARRISII (GOULD) DURING LARVAL DEVELOPMENT FOLLOWING EXPOSURE TO AN INSECT JUVENILE HORMONE ANALOG (FENOXYCARB)

    EPA Science Inventory

    This study examines the effects of fenoxycarb?, an insect juvenile hormone analog, on larval growth, and lipid class and fatty acid composition in first crabs of the mud crab Rhithropanopeus harrisii reared through total larval development in nominal water concentrations from 1 ...

  5. Role of plasma membrane lipid composition on cellular homeostasis: learning from cell line models expressing fatty acid desaturases

    PubMed Central

    Jaureguiberry, María S.; Tricerri, M. Alejandra; Sanchez, Susana A.; Finarelli, Gabriela S.; Montanaro, Mauro A.; Prieto, Eduardo D.; Rimoldi, Omar J.

    2014-01-01

    Experimental evidence has suggested that plasma membrane (PM)-associated signaling and hence cell metabolism and viability depend on lipid composition and organization. The aim of the present work is to develop a cell model to study the endogenous polyunsaturated fatty acids (PUFAs) effect on PM properties and analyze its influence on cholesterol (Chol) homeostasis. We have previously shown that by using a cell line over-expressing stearoyl-CoA-desaturase, membrane composition and organization coordinate cellular pathways involved in Chol efflux and cell viability by different mechanisms. Now, we expanded our studies to a cell model over-expressing both Δ5 and Δ6 desaturases, which resulted in a permanently higher PUFA content in PM. Furthermore, this cell line showed increased PM fluidity, Chol storage, and mitochondrial activity. In addition, human apolipoprotein A-I-mediated Chol removal was less efficient in these cells than in the corresponding control. Taken together, our results suggested that the cell functionality is preserved by regulating PM organization and Chol exportation and homeostasis. PMID:24473084

  6. Succinic acid monoethyl ester, a novel insulinotropic agent: effect on lipid composition and lipid peroxidation in streptozotocin-nicotin-amide induced type 2 diabetic rats.

    PubMed

    Saravanan, Ramalingam; Pari, Leelavinothan

    2007-02-01

    Succinic acid monoethyl ester (EMS) is recently proposed as an insulinotropic agent for the treatment of non-insulin dependent diabetes mellitus. Oxidative stress has been suggested to be a contributory factor in the development and complications of diabetes. In the present study the effect of EMS and Metformin on plasma glucose, insulin, serum and tissue lipid profile, lipoproteins and lipid peroxidation in streptozotocin-nicotinamide induced type 2 diabetic model was investigated. The carboxylic nutrient EMS was administered intraperitonially (8 micromol/g body weight) to streptozotocin diabetic rats for 30 days. The levels of thiobarbituric acid reactive substances (TBARS) and hydroperoxides in liver and kidney and serum and tissue lipids [cholesterol, triglycerides, phospholipids and free fatty acids] and very low density lipoprotein-cholesterol (VLDL-C) and low density lipoprotein-cholesterol (LDL-C), were significantly increased in diabetic rats, whereas the levels of high-density lipoprotein-cholesterol (HDL-C) and antiatherogenic index (AAI) (ratio of HDL to total cholesterol) were significantly decreased. The effect of EMS was compared with metformin, a reference drug. Treatment with EMS and metformin resulted in a significant reduction of plasma glucose with increase plasma insulin in diabetic rats. EMS also resulted in a significant decrease in serum and tissue lipids and lipid peroxidation products. These biochemical observations were supplemented by histopathological examination of liver and kidney section. Our results suggest the possible antihyperlipidemic and antiperoxidative effect of EMS apart from its antidiabetic effect. PMID:17006620

  7. Lipids of Sarcina lutea III. Composition of the Complex Lipids

    PubMed Central

    Huston, Charles K.; Albro, Phillip W.; Grindey, Gerald B.

    1965-01-01

    Huston, Charles K. (Fort Detrick, Frederick, Md.), Phillip W. Albro, and Gerald B. Grindey. Lipids of Sarcina lutea. III. Composition of the complex lipids. J. Bacteriol. 89:768–775. 1965.—The complex lipids from a strain of Sarcina lutea were isolated and separated into fractions on diethylaminoethyl cellulose acetate and silicic acid columns. These fractions were monitored in several thin-layer chromatography systems. The various lipid types were characterized by their behavior in thin-layer systems and by an analysis of their hydrolysis products. The fatty acid composition of the column fractions was determined by gas-liquid chromatography. A number of components (13) were separated by thin-layer chromatography and characterized. The major components were polyglycerol phosphatide (17.0%), lipoamino acids (15.1%), phosphatidyl glycerol (13.8%), and an incompletely characterized substance (15.0%). Minor constituents included phosphatidyl inositol (5.5%), phosphatidic acid (4.2%), phosphatidyl serine (2.0%), and phosphatidyl choline (1.0%). No phosphatidyl ethanolamine was observed. PMID:14273659

  8. Lipid and fatty acid/alcohol compositions of the subarctic copepods Neocalanus cristatus and Eucalanus bungii from various depths in the Oyashio region, western North Pacific.

    PubMed

    Yamada, Yuichiro; Nishida, Shuhei; Graeve, Martin; Kattner, Gerhard

    2016-08-01

    Lipids of Neocalanus cristatus and Eucalanus bungii (C3 to adults), collected in March, May, and December from various depths (0-2000m) were studied in the Oyashio region, western North Pacific. Total lipid and wax ester contents of younger N. cristatus stages increased during the development, being higher in May than in March and December. Major fatty acids of younger N. cristatus were 16:0, 20:5(n-3), and 22:6(n-3) and the dominant alcohols were 16:0, 16:1(n-7), 20:1(n-9)/(n-11) and 22:1(n-11). The energy-rich 20:1 and 22:1 moieties increased from the younger to the adult stages showing the importance of lipid biosynthesis which may be advantageous for successful overwintering and reproduction at depth. The 16:4(n-1) fatty acid, characteristic of a diatom diet increased in May, particularly in the younger stages. Our results suggest that the diatom-dominated feeding mode of younger N. cristatus during the spring bloom is important for an effective accumulation of wax esters. In contrast to N. cristatus, E. bungii accumulated substantial amounts of triacylglycerols. The total lipid and triacylglycerol content increased slightly toward the older developmental stages. The major fatty acids were 16:0, 16:1(n-7), 18:1(n-9) and (n-7), and 20:5(n-3). There was no evidence of developmental or seasonal changes in the fatty acid composition. The differences in the lipid storage modes of both copepods via wax esters or triacylglycerols are species-specific but their fatty acid compositions varied according to diet and developmental stage, especially in N. cristatus. These lipid characteristics are discussed in relation to reproduction, feeding modes, diapause and overwintering strategies. PMID:27087549

  9. Effect of pravastatin on biliary lipid composition and bile acid synthesis in familial hypercholesterolaemia.

    PubMed

    Hoogerbrugge-vd Linden, N; de Rooy, F W; Jansen, H; van Blankenstein, M

    1990-03-01

    Nine patients with heterozygous familial hypercholesterolaemia were treated for eight weeks with either 40 mg pravastatin or placebo under double blind conditions. Six patients received pravastatin, a competitive inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase. Treatment with pravastatin resulted in a significant decrease in plasma cholesterol caused by a decrease in low density lipoprotein cholesterol (LDL-c) of 30% (p less than 0.005). We determined the effect of this medication on the lithogenicity of bile. Cholesterol saturation index of fasting gall bladder bile decreased with 23% (p less than 0.01) from 1.06 to 0.75 during treatment with pravastatin. A reduction of 24% (p less than 0.01) in molar percentage of biliary cholesterol was seen. After treatment the total bile acid excretion in faeces and the molar percentage of biliary bile acids were not significantly changed, suggesting that pravastatin does not influence bile acid biosynthesis to a significant extent. These findings indicate that treatment with pravastatin can decrease the incidence and complications of cholesterol gall stones. PMID:2108908

  10. Analysis of lipid and fatty acid composition of three species of scorpions with relation to different organs.

    PubMed

    Laino, Aldana; Mattoni, Camilo; Ojanguren-Affilastro, Andrés; Cunningham, Mónica; Fernando Garcia, C

    2015-12-01

    Within arthropods most of the information related to the type of mobilization and storage of lipids is found in insects and crustaceans. Literature is scarce with relation to scorpions. This order is a remarkably important model of the biochemistry, since it is characterized as an animal with very primitive traits which have varied minimally through time. In the present study we characterize and compare lipids and fatty acids present in three species of scorpion: Timogenes elegans, Timogenes dorbignyi, and Brachistosternus ferrugineus, focusing the study on the main organs/tissues involved in the dynamics of lipids. As found in the fat body of insects, hepatopancreas of crustaceans and midgut diverticula of spiders, the hepatopancreas of the three species studied here turned out to be the organ of lipid storage (great quantity of triacylglycerides). With relation to the hemolymph and muscles, a great quantity of phospholipids was observed, which is possibly involved in membrane formation. It is important to highlight that unlike what happens in insects, in scorpions the main circulating energetic lipid is the triacylglyceride. This lipid is found in greater proportion in the hepatopancreas of females, surely for reproduction. The fatty acid of the different organs/tissues analyzed remained constant in the three species studied with certain characteristic patterns, thus observing saturated and unsaturated most abundant fatty acids of C16 and C18. Finally, it could be observed that in T. elegans, T. dorbignyi and B. ferrugineus scorpions, there is a lack of 20:4 that generates a special condition within fatty acids of arthropods. PMID:26303276

  11. Lipid and fatty acid composition, and persistent organic pollutant levels in tissues of migrating Atlantic bluefin tuna (Thunnus thynnus, L.) broodstock.

    PubMed

    Sprague, M; Dick, J R; Medina, A; Tocher, D R; Bell, J G; Mourente, G

    2012-12-01

    Lipid class, fatty acid and POP levels were measured in migrating Atlantic bluefin tuna (ABT) tissues caught off the Barbate coast, Spain. Tissue lipids were largely characterized by triacylglycerol, reflecting large energy reserves accumulated prior to reproductive migration. Fatty acid compositions of muscle, liver and adipose exhibited similar profiles, whereas gonads showed a higher affinity for docosahexaenoic acid. Tissue POP concentrations correlated positively with percentage triacylglycerol and negatively with polar lipids. Highest POP concentrations were in adipose and lowest in gonads, reflecting lipid content. DL-PCBs contributed most to total PCDD/F + DL-PCB levels, with mono-ortho concentrations higher in tissues, whereas non-ortho PCBs contributed greater WHO-TEQs due to differences in TEFs. PBDE47 was the most prominent BDE congener in tissues, probably through biotransformation of BDE99 and other higher brominated congeners. The perceived POP risk from ABT consumption should be balanced by the well-established beneficial effects on human health of omega-3 fatty acids. PMID:22885218

  12. Effects of different media and nitrogen sources and levels on growth and lipid of green microalga Botryococcus braunii KMITL and its biodiesel properties based on fatty acid composition.

    PubMed

    Ruangsomboon, Suneerat

    2015-09-01

    This work aimed to find an optimum culture medium for green microalga Botryococcus braunii KMITL and investigate its biodiesel properties based on fatty acid composition. Four different media were tested. Chlorella medium was the best medium for lipid yield. Among four nitrogen sources tested, KNO3 produced the highest lipid yield. When varied the nitrogen concentrations, this strain gave the highest lipid yield at the highest nitrogen level. When cultivated in the best medium and nitrogen source and level for 30 days, and then cultivated further for 14 days in the medium with no nitrogen, the highest lipid content and yield were 49.94±0.82% and 2.71±0.02 g L(-1), respectively. C16:0 fatty acid was the major fatty acid found. Fatty acid profiles of B. braunii KMITL cultivated in Chlorella medium with 1.25 g L(-1) KNO3 gave the best biodiesel properties with the lowest iodine value, maximum cetane number, and lowest degree of unsaturation. PMID:25677535

  13. Enzymatic hydrolysis of cuttlefish (Sepia officinalis) and sardine (Sardina pilchardus) viscera using commercial proteases: effects on lipid distribution and amino acid composition.

    PubMed

    Kechaou, Emna Soufi; Dumay, Justine; Donnay-Moreno, Claire; Jaouen, Pascal; Gouygou, Jean-Paul; Bergé, Jean-Pascal; Amar, Raja Ben

    2009-02-01

    Total lipid and phospholipid recovery as well as amino acid quality and composition from cuttlefish (Sepia officinalis) and sardine (Sardina pilchardus) were compared. Enzymatic hydrolyses were performed using the three proteases Protamex, Alcalase, and Flavourzyme by the pH-stat method (24 h, pH 8, 50 degrees C). Three fractions were generated: an insoluble sludge, a soluble aqueous phase, and an oily phase. For each fraction, lipids, phospholipids, and proteins were quantified. Quantitative and qualitative analyses of the raw material and hydrolysates were performed. The degree of hydrolysis (DH) for cuttlefish viscera was 3.2% using Protamex, 6.8% using Flavourzyme, and 7% using Alcalase. DH for sardine viscera was 1.9% (using Flavourzyme), 3.1% (using Protamex) and 3.3% (using Alcalase). Dry matter yields of all hydrolysis reactions increased in the aqueous phases. Protein recovery following hydrolysis ranged from 57.2% to 64.3% for cuttlefish and 57.4% to 61.2% for sardine. Tissue disruption following protease treatment increased lipid extractability, leading to higher total lipid content after hydrolysis. At least 80% of the lipids quantified in the raw material were distributed in the liquid phases for both substrates. The hydrolysed lipids were richer in phospholipids than in the lipids extracted by classical chemical extraction, especially after Flavourzyme hydrolysis for cuttlefish and Alcalase hydrolysis for sardine. The total amino acid content differed according to the substrate and the enzyme used. However, regardless of the raw material or the protease used, hydrolysis increased the level of essential amino acids in the hydrolysates, thereby increasing their potential nutritional value for feed products. PMID:19217554

  14. Formation of lipid bodies and changes in fatty acid composition upon pre-akinete formation in Arctic and Antarctic Zygnema (Zygnematophyceae, Streptophyta) strains

    PubMed Central

    Pichrtová, Martina; Arc, Erwann; Stöggl, Wolfgang; Kranner, Ilse; Hájek, Tomáš; Hackl, Hubert; Holzinger, Andreas

    2016-01-01

    Filamentous green algae of the genus Zygnema (Zygnematophyceae, Streptophyta) are key components of polar hydro-terrestrial mats where they face various stressors including UV irradiation, freezing, desiccation and osmotic stress. Their vegetative cells can develop into pre-akinetes, i.e. reserve-rich, mature cells. We investigated lipid accumulation and fatty acid (FA) composition upon pre-akinete formation in an Arctic and an Antarctic Zygnema strain using transmission electron microscopy and gas chromatography coupled with mass spectrometry. Pre-akinetes formed after 9 weeks of cultivation in nitrogen-free medium, which was accompanied by massive accumulation of lipid bodies. The composition of FAs was similar in both strains, and α-linolenic acid (C18:3) dominated in young vegetative cells. Pre-akinete formation coincided with a significant change in FA composition. Oleic (C18:1) and linoleic (C18:2) acid increased the most (up to 17- and 8-fold, respectively). Small amounts of long-chain polyunsaturated FAs were also detected, e.g. arachidonic (C20:4) and eicosapentaenoic (C20:5) acid. Pre-akinetes exposed to desiccation at 86% relative humidity were able to recover maximum quantum yield of photosystem II, but desiccation had no major effect on FA composition. The results are discussed with regard to the capability of Zygnema spp. to thrive in extreme conditions. PMID:27170362

  15. Formation of lipid bodies and changes in fatty acid composition upon pre-akinete formation in Arctic and Antarctic Zygnema (Zygnematophyceae, Streptophyta) strains

    PubMed Central

    Pichrtová, Martina; Arc, Erwann; Stöggl, Wolfgang; Kranner, Ilse; Hájek, Tomáš; Hackl, Hubert; Holzinger, Andreas

    2016-01-01

    Filamentous green algae of the genus Zygnema (Zygnematophyceae, Streptophyta) are key components of polar hydro-terrestrial mats where they face various stressors including UV irradiation, freezing, desiccation and osmotic stress. Their vegetative cells can develop into pre-akinetes, i.e. reserve-rich, mature cells. We investigated lipid accumulation and fatty acid (FA) composition upon pre-akinete formation in an Arctic and an Antarctic Zygnema strain using transmission electron microscopy and gas chromatography coupled with mass spectrometry. Pre-akinetes formed after 9 weeks of cultivation in nitrogen-free medium, which was accompanied by massive accumulation of lipid bodies. The composition of FAs was similar in both strains, and α-linolenic acid (C18:3) dominated in young vegetative cells. Pre-akinete formation coincided with a significant change in FA composition. Oleic (C18:1) and linoleic (C18:2) acid increased the most (up to 17- and 8-fold, respectively). Small amounts of long-chain polyunsaturated FAs were also detected, e.g. arachidonic (C20:4) and eicosapentaenoic (C20:5) acid. Pre-akinetes exposed to desiccation at 86% relative humidity were able to recover maximum quantum yield of photosystem II, but desiccation had no major effect on FA composition. The results are discussed with regard to the capability of Zygnema spp. to thrive in extreme conditions.

  16. Formation of lipid bodies and changes in fatty acid composition upon pre-akinete formation in Arctic and Antarctic Zygnema (Zygnematophyceae, Streptophyta) strains.

    PubMed

    Pichrtová, Martina; Arc, Erwann; Stöggl, Wolfgang; Kranner, Ilse; Hájek, Tomáš; Hackl, Hubert; Holzinger, Andreas

    2016-07-01

    Filamentous green algae of the genus Zygnema (Zygnematophyceae, Streptophyta) are key components of polar hydro-terrestrial mats where they face various stressors including UV irradiation, freezing, desiccation and osmotic stress. Their vegetative cells can develop into pre-akinetes, i.e. reserve-rich, mature cells. We investigated lipid accumulation and fatty acid (FA) composition upon pre-akinete formation in an Arctic and an Antarctic Zygnema strain using transmission electron microscopy and gas chromatography coupled with mass spectrometry. Pre-akinetes formed after 9 weeks of cultivation in nitrogen-free medium, which was accompanied by massive accumulation of lipid bodies. The composition of FAs was similar in both strains, and α-linolenic acid (C18:3) dominated in young vegetative cells. Pre-akinete formation coincided with a significant change in FA composition. Oleic (C18:1) and linoleic (C18:2) acid increased the most (up to 17- and 8-fold, respectively). Small amounts of long-chain polyunsaturated FAs were also detected, e.g. arachidonic (C20:4) and eicosapentaenoic (C20:5) acid. Pre-akinetes exposed to desiccation at 86% relative humidity were able to recover maximum quantum yield of photosystem II, but desiccation had no major effect on FA composition. The results are discussed with regard to the capability of Zygnema spp. to thrive in extreme conditions. PMID:27170362

  17. LA and ALA prevent glucose intolerance in obese male rats without reducing reactive lipid content, but cause tissue-specific changes in fatty acid composition.

    PubMed

    Matravadia, Sarthak; Zabielski, Piotr; Chabowski, Adrian; Mutch, David M; Holloway, Graham P

    2016-04-01

    While the cause of Type 2 diabetes remains poorly defined, the accumulation of reactive lipids within white adipose tissue, skeletal muscle, and liver have been repeatedly implicated as underlying mechanisms. The ability of polyunsaturated fatty acids (PUFAs) to prevent the development of insulin resistance has gained considerable interest in recent years; however, the mechanisms-of-action remain poorly described. Therefore, we determined the efficacy of diets supplemented with either linoleic acid (LA) or α-linolenic acid (ALA) in preventing insulin resistance and reactive lipid accumulation in key metabolic tissues of the obese Zucker rat. Obese Zucker rats displayed impaired glucose homeostasis and reduced n-3 and n-6 PUFA content in the liver and epididymal white adipose tissue (EWAT). After the 12-wk feeding intervention, both LA- and ALA-supplemented diets prevented whole body glucose and insulin intolerance; however, ALA had a more pronounced effect. These changes occurred in association with n-3 and n-6 accumulation in all tissues studied, albeit to different extents (EWAT > liver > muscle). Triacylglycerol (TAG), diacylglycerol (DAG), ceramide, and sphingolipid accumulation were not attenuated in obese animals supplemented with either LA or ALA, suggesting that preservation of glucose homeostasis occurred independent of changes in reactive lipid content. However, PUFA-supplemented diets differentially altered the fatty acid composition of TAGs, DAGs, and PLs in a tissue-specific manner, suggesting essential fatty acid metabolism differs between tissues. Together, our results indicate that remodeling of the fatty acid composition of various lipid fractions may contribute to the improved glucose tolerance observed in obese rats fed PUFA-supplemented diets. PMID:26764053

  18. Lactation Affects Isolated Mitochondria and Its Fatty Acid Composition but Has No Effect on Tissue Protein Oxidation, Lipid Peroxidation or DNA-Damage in Laboratory Mice

    PubMed Central

    Valencak, Teresa G.; Raith, Johannes; Staniek, Katrin; Gille, Lars; Strasser, Alois

    2016-01-01

    Linking peak energy metabolism to lifespan and aging remains a major question especially when focusing on lactation in females. We studied, if and how lactation affects in vitro mitochondrial oxygen consumption and mitochondrial fatty acid composition. In addition, we assessed DNA damage, lipid peroxidation and protein carbonyls to extrapolate on oxidative stress in mothers. As model system we used C57BL/6NCrl mice and exposed lactating females to two ambient temperatures (15 °C and 22 °C) while they nursed their offspring until weaning. We found that state II and state IV respiration rates of liver mitochondria were significantly higher in the lactating animals than in non-lactating mice. Fatty acid composition of isolated liver and heart mitochondria differed between lactating and non-lactating mice with higher n-6, and lower n-3 polyunsaturated fatty acids in the lactating females. Surprisingly, lactation did not affect protein carbonyls, lipid peroxidation and DNA damage, nor did moderate cold exposure of 15 °C. We conclude that lactation increases rates of mitochondrial uncoupling and alters mitochondrial fatty acid composition thus supporting the “uncoupling to survive” hypothesis. Regarding oxidative stress, we found no impact of lactation and lower ambient temperature and contribute to growing evidence that there is no linear relationship between oxidative damage and lactation. PMID:26805895

  19. Influence of the intake and composition of elemental diets on bile acid metabolism and hepatic lipids in the rat.

    PubMed

    Nelson, L M; Russell, R I

    1986-01-01

    The effects of the elemental diets Vivonex (V) and Flexical (F) on bile acid metabolism and hepatic lipids in the rat has been investigated both with ad libitum feeding and when calorie intake was limited to that of control rats (C) fed a standard diet (Oxoid 41B). Ad libitum feeding of V and F for 9 weeks resulted in a weight gain in excess of that for the control diet. After 9 weeks of isocaloric feeding the V-fed rats were significantly lighter than those fed F and C. Fecal bile acid excretion (FBA) and the fractional turnover rates for cholic acid (CA) and chenodeoxycholic acid (CDC) were measured. The elemental diets significantly reduced FBA when fed both ad libitum and isocalorically compared with the control diet, the reduction with V being significantly greater than for F. In the isocaloric feeding study both elemental diets significantly increased the half life of CA and CDC. The increase for CA was significantly greater for V than F but for CDC the effect of the two diets was the same. Thus the percentage of CDC-derived 6 substituted bile acids was greater with V than F feeding. There was a strong negative correlation between bile acid half-life and fecal excretion of metabolites for the three dietary groups indicating that bile acid pool size was unchanged by the elemental diets. A gross increase in liver lipid both histologically and chemically was found for the ad libitum fed V rats with a marked but lesser increase for F.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3755773

  20. The effects of dietary lipid and strain difference on polyunsaturated fatty acid composition and conversion in anadromous and landlocked salmon (Salmo salar L.) parr.

    PubMed

    Rollin, Xavier; Peng, Jinglan; Pham, Diep; Ackman, Robert G; Larondelle, Yvan

    2003-02-01

    Five experimental diets containing different proportions of olive, sunflower and linseed oils were used in a 55-day feeding trial on both anadromous and landlocked parr of Atlantic salmon (Salmo salar) of the same age, in order to study the effects of diet and strain on growth and fatty acid composition and absolute gains in fish whole body triacylglycerols (TAG) and phospholipids (PL). Growth rate was higher in landlocked than in anadromous parr, but not between the different diets. By contrast, the effect of diet on whole body fatty acid composition was much more pronounced than that of strain difference. The fatty acids deposition results establish significant (P<0.05) positive correlations and linear relationships between the percentage of several fatty acids (18:1n-9, 18:2n-6, 18:3n-3) in dietary lipids and their absolute gains in whole body TAG and PL of both stocks. They also indicate the selective deposition of 18:1n-9 compared with linoleic acid (LLA) and linolenic acid (LNA). Finally, the results suggest the occurrence of the conversion of LLA and LNA to long-chain polyunsaturated fatty acids, its stimulation by increased substrate availability, a significantly higher n-3 and n-6 polyunsaturated fatty acids conversion capacity in landlocked than in anadromous parr and a strong genetic influence on docosahexaenoic acid content in salmon parr PL. PMID:12568812

  1. Effects of Polyunsaturated Fatty Acids in Growth Medium on Lipid Composition and on Physicochemical Surface Properties of Lactobacilli

    PubMed Central

    Kankaanpää, P.; Yang, B.; Kallio, H.; Isolauri, E.; Salminen, S.

    2004-01-01

    Most probiotic lactobacilli adhere to intestinal surfaces, a phenomenon influenced by free polyunsaturated fatty acids (PUFA). The present study investigated whether free linoleic acid, γ-linolenic acid, arachidonic acid, α-linolenic acid, or docosahexaenoic acid in the growth medium alters the fatty acid composition of lactobacilli and their physical characteristics. The most abundant bacterial fatty acids identified were oleic, vaccenic, and dihydrosterculic acids. PUFA, especially conjugated linoleic acid (CLA) isomers and γ-linolenic, eicosapentaenoic, docosahexaenoic, and α-linolenic acids, also were identified in lactobacilli. When lactobacilli were cultured in MRS broth supplemented with various free PUFA, the incorporation of a given PUFA into bacterial fatty acids was clearly observed. Moreover, PUFA supplementation also resulted in PUFA-dependent changes in the proportions of other fatty acids; major interconversions were seen in octadecanoic acids (18:1), their methylenated derivatives (19:cyc), and CLA. Intermittent changes in eicosapentaenoic acid proportions also were noted. These results were paralleled by minor changes in the hydrophilic or hydrophobic characteristics of lactobacilli, suggesting that PUFA interfere with microbial adhesion to intestinal surfaces through other mechanisms. In conclusion, we have demonstrated that free PUFA in the growth medium induce changes in bacterial fatty acids in relation to the regulation of the degree of fatty acid unsaturation, cyclization, and proportions of CLA and PUFA containing 20 to 22 carbons. The potential role of lactobacilli as regulators of PUFA absorption may represent another means by which probiotics could redirect the delicate balance of inflammatory mediators derived from PUFA within the inflamed intestine. PMID:14711634

  2. Correlation of serum triglyceride and its reduction by omega-3 fatty acids with lipid transfer activity and the neutral lipid compositions of high-density and low-density lipoproteins.

    PubMed

    Pownall, H J; Brauchi, D; Kilinç, C; Osmundsen, K; Pao, Q; Payton-Ross, C; Gotto, A M; Ballantyne, C M

    1999-04-01

    Serum triglyceride (TG) and high-density lipoprotein cholesterol (HDL-C) concentrations are inversely correlated and mechanistically linked by means of lipid transfer activities. Phospholipid transfer activity (PLTA) moves phospholipids among serum lipoproteins; cholesteryl ester transfer activity (CETA), which exchanges cholesteryl esters (CE) and TG among lipoproteins, is stimulated by nonesterified fatty acids (NEFA). The aims of this study were (a) to develop a quantitative model that correlates the neutral lipid (NL = CE + TG) compositions of HDL and LDL with serum TG concentration; (b) identify the serum lipid determinants of CETA and PLTA, and; (c) identify the effects of serum TG reductions on the neutral lipid compositions of HDL and LDL, serum NEFA concentrations, and on PLTA and CETA. These aims were addressed in 40 hypertriglyceridemic subjects before and after treatment with an 85% concentrate of omega-3 fatty acids (Omacor) and in 16 untreated normolipidemic subjects. In vivo, the NL compositions of LDL and HDL were described by a mathematical model having the form of adsorption isotherms: HDL - (TG/NL) = (0.90 +/- 0.07) serum TG/(7.0 +/- 1.2 mmol/l + serum TG) and LDL - (TG/NL) = (0.65 +/- 0.08) serum TG/(4.9 +/- 1.5 mmol/l + serum TG). Reduction of serum TG was associated with reductions in HDL - (TG/NL), serum NEFA concentration, and serum CETA but not PLTA. These data suggest that both hypertriglyceridemia and the attendant elevated serum CETA but not PLTA are determinants of HDL and LDL composition and structure and that serum TG concentrations are good predictors of the NL compositions of HDL and LDL. PMID:10217357

  3. Fatty acid, lipid class, and phospholipid molecular species composition of the soft coral Xenia sp. (Nha Trang Bay, the South China Sea, Vietnam).

    PubMed

    Imbs, Andrey B; Dang, Ly P T; Rybin, Viacheslav G; Svetashev, Vasily I

    2015-06-01

    The soft corals of the genus Xenia are common for Indo-Pacific reef ecosystems. Lipid class, fatty acid (FA), phospho- and phosphonolipid molecular species compositions were identified for the first time in the soft coral Xenia sp. from Vietnam. Total lipids consisted predominantly of waxes, monoalkyl diacylglycerols, triacylglycerols, sterols, and polar lipids (21.4, 7.7, 14.2, 10.5, and 36.7 %, respectively). Sesquiterpene alcohol, valerenenol, was found. Acids 16:0, 18:3n-6, 20:4n-6, and 20:5n-3 dominated in total FA. The markers of zooxanthellae (18:4n-3 and 18:5n-3) and octocorals (24:5n-6 and 24:6n-3) were detected. Acids 18:5n-3, 20:4n-6, 22:4n-6, and 24:5n-6 concentrated in FA of polar lipids, whereas 14:0, 16:0, 16:1n-7, 18:2n-6, and 18:3n-6 were the major FA of neutral lipids. ChoGpl, EtnGpl, SerGpl, CAEP, PtdIns, and lyso ChoGpl constituted 39.5, 20.8, 20.5, 9.7, 4.3, and 5.3 %, respectively, of the sum of phospho- and phosphonolipids. Thirty-two molecular species of phospholipids and ceramide aminoethylphosphonate (CAEP) were determined by high resolution tandem mass spectrometry. Lyso 18:0e PakCho (4.1 %), 18:0e/20:4 PakCho (20.5 %), 18:1e/20:4 PlsEtn (18.0 %), 18:0e/24:5 PakSer (14.0 %), and 16:0 CAEP (9.6 %) were the major molecular species. EtnGpl and PtdIns mainly consisted of alkenyl acyl and diacyl forms, respectively. Alkyl acyl forms predominated in ChoGpl and SerGpl. Acid 24:5n-6 was a principal FA in SerGpl, whereas 20:4n-6 was more abundant in ChoGpl and EtnGpl. PtdIns contained various C20-24 PUFA. In the context of chemotaxonomy of corals, Xenia sp. has the lipid composition typical for soft corals and the FA profile similar to that of alcyonarians with the high level of 18:3n-6. PMID:25916238

  4. Fusidic acid betamethasone lipid cream.

    PubMed

    Girolomoni, G; Mattina, R; Manfredini, S; Vertuani, S; Fabrizi, G

    2016-05-01

    Bacterial infections of the skin and soft tissues are frequent disorders. They can be primitive infections (e.g. impetigo, folliculitis) or secondary infections complicating other diseases, particularly atopic dermatitis. The most common aetiologic agent is Staphylococcus aureus. Topical antibiotic therapy may be sufficient in many instances to control these infections. Fusidic acid is an antibiotic used topically on the skin which is very active against S. aureus, including methicillin-resistant strains, and other Gram-positive bacteria. Resistance rates to fusidic acid are stably low. A fusidic acid and betamethasone formulation in a lipid-enriched cream (lipid cream) has been recently developed in order to provide effective antibacterial and anti-inflammatory activities in conjunction with a powerful emollient and moisturising effect. This preparation may be especially useful in patients with atopic-infected eczema. PMID:27121235

  5. Compositional shift in lipid fractions during lipid accumulation and turnover in Schizochytrium sp.

    PubMed

    Ren, Lu-Jing; Sun, Guan-Nan; Ji, Xiao-Jun; Hu, Xue-Chao; Huang, He

    2014-04-01

    Single cell oils (SCOs), a complex lipid system, contains neutral lipids (NLs), polar lipids (PLs) and unsaponifiable matters (UMs). To investigate the dynamic changes and the metabolic competition mechanism of different components of SCOs, changes in lipid composition of Schizochytrium sp. were monitored in lipid accumulation and turnover stages. Lipid content could reach 69.98% in biomass during the lipid accumulation stage, while, after the exhaustion of glucose, the content decreased to 45.51% and 20.6g/L non-oil biomass was synthesis. Polyunsaturated fatty acids (PUFAs) were easier to bind with PLs. NLs were preferentially converted to PLs during lipid turnover stage, accompanied by the degradation of saturated fatty acids and the increase of UMs. Meanwhile, a positive correlation between the synthesis of PUFAs and unsaponifiable matters exited in Schizochytrium sp., and increasing the content of UMs from 45 to 100mg/L could increase the PUFA percentage from 64% to 74% effectively. PMID:24534791

  6. Effects of USDA beef quality grade and cooking on fatty acid composition of neutral and polar lipid fractions.

    PubMed

    Legako, J F; Dinh, T T N; Miller, M F; Brooks, J C

    2015-02-01

    The effects of USDA beef quality grade (QG; Prime, Low Choice, and Standard; n=8) and cooking (RC) on fatty acid (FA) concentrations (mg/g dry matter) and percentages of neutral and polar lipid fractions (NL and PL, respectively)from strip steaks were explored. An increase in QG led to an accumulation of most FA, especially in the NL fraction (P < 0.001). Common effects on FA percentages were two-way interactions of either QG or RC with LF (P ≤ 0.019). Fatty acids were affected differently by QG and RC depending on their originating LF. Monounsaturated fatty acid (MUFA) and polyunsaturated fatty acid (PUFA) percentages of the PL were dependent on QG (P ≤ 0.014). Cooking and QG had minimal impact on FA percentages of the NL, however, greatly influenced PL MUFA and PUFA percentages (P b 0.001). There was evidence indicating that dry heat cookery affected not only PUFA, as generally thought, but also the MUFA of PL fraction. PMID:25460133

  7. Lipid and fatty acid analysis of the Plodia interpunctella granulosis virus (PiGV) envelope

    NASA Technical Reports Server (NTRS)

    Shastri-Bhalla, K.; Funk, C. J.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Virus envelope was isolated from Plodia interpunctella granulosis virus, produced in early fourth-instar larvae. Both polar and neutral lipids were analyzed by two-dimensional thin-layer chromatography. Fatty acid composition of various individual neutral and polar lipids was determined by gas-liquid chromatography. The major components of envelope neutral lipid were diacylglycerols. Palmitic acid and stearic acid were the major saturated fatty acids in both polar and neutral lipids. Whereas palmitoleic acid was the major unsaturated fatty acids in neutral lipids, oleic acid was the major unsaturated fatty acid in the polar lipids.

  8. Dietary levels of chia: influence on yolk cholesterol, lipid content and fatty acid composition for two strains of hens.

    PubMed

    Ayerza, R; Coates, W

    2000-05-01

    Four hundred fifty H&N laying hens, half white and half brown, were fed for 90 d to compare a control diet to diets containing 7, 14, 21, and 28% chia (Salvia hispanica L.) seed. Cholesterol content, total fat content, and fatty acid composition of the yolks were determined 30, 43, 58, 72, and 90 d from the start of the trial. Significantly less cholesterol was found in the egg yolks produced by the hens fed the diets with 14, 21, and 28% chia compared with the control, except at Day 90. Palmitic fatty acid content and total saturated fatty acid content decreased as chia percentage increased and as the trial progressed. Total omega-3 fatty acid content was significantly greater (P < 0.05) for both strains for all chia diets compared with the control diet. Total polyunsaturated fatty acid (PUFA) content of the yolks from the chia diets was significantly greater (P < 0.05) than from the control diet. Generally, total PUFA content tended to be highest in the yolks of the white hens. PMID:10824962

  9. Nutritional Evaluation and Optimisation in Neonates: a randomized, double-blind controlled trial of amino acid regimen and intravenous lipid composition in preterm parenteral nutrition12

    PubMed Central

    Liu, Xinxue; Babalis, Daphne; Doré, Caroline J; Warwick, Jane; Bell, Jimmy; Thomas, Louise; Ashby, Deborah; Durighel, Giuliana; Ederies, Ash; Yanez-Lopez, Monica; Modi, Neena

    2016-01-01

    Background: Parenteral nutrition is central to the care of very immature infants. Current international recommendations favor higher amino acid intakes and fish oil–containing lipid emulsions. Objective: The aim of this trial was to compare 1) the effects of high [immediate recommended daily intake (Imm-RDI)] and low [incremental introduction of amino acids (Inc-AAs)] parenteral amino acid delivery within 24 h of birth on body composition and 2) the effect of a multicomponent lipid emulsion containing 30% soybean oil, 30% medium-chain triglycerides, 25% olive oil, and 15% fish oil (SMOF) with that of soybean oil (SO)-based lipid emulsion on intrahepatocellular lipid (IHCL) content. Design: We conducted a 2-by-2 factorial, double-blind, multicenter randomized controlled trial. Results: We randomly assigned 168 infants born at <31 wk of gestation. We evaluated outcomes at term in 133 infants. There were no significant differences between Imm-RDI and Inc-AA groups for nonadipose mass [adjusted mean difference: 1.0 g (95% CI: −108, 111 g; P = 0.98)] or between SMOF and SO groups for IHCL [adjusted mean SMOF:SO ratio: 1.1 (95% CI: 0.8, 1.6; P = 0.58]. SMOF does not affect IHCL content. There was a significant interaction (P = 0.05) between the 2 interventions for nonadipose mass. There were no significant interactions between group differences for either primary outcome measure after adjusting for additional confounders. Imm-RDI infants were more likely than Inc-AA infants to have blood urea nitrogen concentrations >7 mmol/L or >10 mmol/L, respectively (75% compared with 49%, P < 0.01; 49% compared with 18%, P < 0.01). Head circumference at term was smaller in the Imm-RDI group [mean difference: −0.8 cm (95% CI: −1.5, −0.1 cm; P = 0.02)]. There were no significant differences in any prespecified secondary outcomes, including adiposity, liver function tests, incidence of conjugated hyperbilirubinemia, weight, length, mortality, and brain volumes. Conclusion

  10. Evaluation of food grade solvents for lipid extraction and impact of storage temperature on fatty acid composition of edible seaweeds Laminaria digitata (Phaeophyceae) and Palmaria palmata (Rhodophyta).

    PubMed

    Schmid, Matthias; Guihéneuf, Freddy; Stengel, Dagmar B

    2016-10-01

    This study evaluated the impact of different food- and non-food grade extraction solvents on yield and fatty acid composition of the lipid extracts of two seaweed species (Palmaria palmata and Laminaria digitata). The application of chloroform/methanol and three different food grade solvents (ethanol, hexane, ethanol/hexane) revealed significant differences in both, extraction yield and fatty acid composition. The extraction efficiency, in terms of yields of total fatty acids (TFA), was in the order: chloroform/methanol>ethanol>hexane>ethanol/hexane for both species. Highest levels of polyunsaturated fatty acids (PUFA) were achieved by the extraction with ethanol. Additionally the effect of storage temperature on the stability of PUFA in ground and freeze-dried seaweed biomass was investigated. Seaweed samples were stored for a total duration of 22months at three different temperatures (-20°C, 4°C and 20°C). Levels of TFA and PUFA were only stable after storage at -20°C for the two seaweed species. PMID:27132836

  11. Omega-3 enriched egg production: the effect of α -linolenic ω -3 fatty acid sources on laying hen performance and yolk lipid content and fatty acid composition.

    PubMed

    Antruejo, A; Azcona, J O; Garcia, P T; Gallinger, C; Rosmini, M; Ayerza, R; Coates, W; Perez, C D

    2011-12-01

    1. Diets high in total lipids, saturated fatty acids, trans fatty acids, and having high ω-6:ω-3 fatty acid ratios, have been shown to be related to increased instances of coronary heart disease, while diets high in ω-3 fatty acids have been shown to decrease the risk. 2. Feeding ω-3 fatty acid diets to laying hens has been shown to improve the quality of eggs produced in terms of saturation and ω-3 content. 3. A study was undertaken to determine if the ω-3 fatty acid source, when fed to hens, influences the amount transferred to eggs. 4. Flaxseed and flaxseed oil, along with chia seed and chia seed oil, were the two main sources of ω-3 fatty acid examined during the 84 d trial. 5. All α-linolenic enriched treatments yielded significantly higher ω-3 fatty acid contents per g of yolk and per yolk, than the non-α-linolenic enriched diets. Chia oil and chia seed yielded 54·5 and 63·5% more mg of ω-3 fatty acid per g of yolk for the 56 d test period, and 13·4 and 66·2% more for the 84 d test period, than flaxseed oil and flaxseed, respectively. 6. The differences in omega-3 content were significant, except for the chia oil compared with the flax oil, at the end of the trial. 7. This trial has shown that differences in conversion exist among ω-3 fatty acid sources, at least when fed to hens, and indicates that chia may hold a significant potential as a source of ω-3 fatty acid for enriching foods, thereby making these foods a healthier choice for consumers. PMID:22221241

  12. A study on lipid content and fatty acid of breast milk and its association with mother’s diet composition

    PubMed Central

    Kelishadi, Roya; Hadi, Bagher; Iranpour, Ramin; Khosravi-Darani, Kianoush; Mirmoghtadaee, Parisa; Farajian, Sanam; Poursafa, Parinaz

    2012-01-01

    Introduction: The aim of our study was to determine the content of fat and fatty acid composition of breast milk, and its association with the mother’s diet. Materials and Methods: This cross-sectional study was conducted among pregnant mothers who came to health care centers for last prenatal care in Isfahan, Iran. Eight to 72 hours after delivery, 2 to 5 ml of colostrum was collected by hand into tubes. They were kept in an ice box and sent within half an hour to the collaborating health centre for freezing at -20°C until analysis, which was performed at the laboratory of NNFTRI in Tehran. The milk samples were homogenized by Vortex (Heidolph Vortex Shaker REAX 1. 220 V. 30 W Germany) at 2400 rpm for 30 sec. Results: The data of 86 out of 91 samples were complete. The mean maternal age and gestational age was 28.37 ± 5.55 years old and 38.7 ± 1.2 weeks, respectively. The content of fat was 2.17 ± 1.22 g/100 ml breast milk. Arachidonic acid (AA, 20:4n-6) and docosohexaanoic acid DHA (22:6n-3) made 0.8 ± 0.4% and 0.3 ± 0.2% of total fatty acids. Although the AA/DHA ratio in our study is suitable, but the content of DHA is nearly low. Conclusion: Dietary habits of women in reproductive age group should be improved, with special emphasis on the fatty acid content of breast milk. This may have long-term impact on health promotion and disease prevention. PMID:23826007

  13. Digital Cushion Fatty Acid Composition and Lipid Metabolism Gene Network Expression in Holstein Dairy Cows Fed a High-Energy Diet.

    PubMed

    Iqbal, Zeeshan Muhammad; Akbar, Haji; Hosseini, Afshin; Bichi Ruspoli Forteguerri, Elena; Osorio, Johan S; Loor, Juan J

    2016-01-01

    The hoof digital cushion is a complex structure composed of adipose tissue beneath the distal phalanx, i.e. axial, middle and abaxial fat pad. The major role of these fat depots is dampening compression of the corium underneath the cushion. The study aimed to determine expression of target genes and fatty acid profiles in the hoof of non-pregnant dry Holstein cows fed low (CON) or high-energy (OVE) diets. The middle fat pad of the hoof digital cushion was collected soon after slaughter. Despite the lack of effect on expression of the transcription regulators SREBF1 and PPARG, the expression of the lipogenic enzymes ACACA, FASN, SCD, and DGAT2 was upregulated with OVE. Along with the upregulation of G6PD and IDH1, important for NADPH synthesis during lipogenesis, and the basal glucose transporter SLC2A1, these data indicated a pro-lipogenic response in the digital cushion with OVE. The expression of the lipid droplet-associated protein PLIN2 was upregulated while expression of lipolytic enzymes (ATGL, ABDH5, and LIPE) only tended to be upregulated with OVE. Therefore, OVE induced lipogenesis, lipid droplet formation, and lipolysis, albeit to different extents. Although concentration of monounsaturated fatty acids (MUFA) did not differ, among the polyunsaturated fatty acids (PUFA), the concentration of 20:5n3 was lower with OVE. Among the saturated fatty acids, 20:0 concentration was greater with OVE. Although data indicated that the hoof digital cushion metabolic transcriptome is responsive to higher-energy diets, this did not translate into marked differences in the fatty acid composition. The decrease in concentration of PUFA, which could contribute to synthesis of inflammatory molecules, in OVE-fed cows indicated that feeding higher-energy diets might be detrimental for the mediation of inflammation in digital cushion. This effect could be further exacerbated by physiologic and endocrine changes during the peripartal period that favor inflammation. PMID:27441691

  14. Digital Cushion Fatty Acid Composition and Lipid Metabolism Gene Network Expression in Holstein Dairy Cows Fed a High-Energy Diet

    PubMed Central

    Iqbal, Zeeshan Muhammad; Akbar, Haji; Hosseini, Afshin; Bichi Ruspoli Forteguerri, Elena; Osorio, Johan S.

    2016-01-01

    The hoof digital cushion is a complex structure composed of adipose tissue beneath the distal phalanx, i.e. axial, middle and abaxial fat pad. The major role of these fat depots is dampening compression of the corium underneath the cushion. The study aimed to determine expression of target genes and fatty acid profiles in the hoof of non-pregnant dry Holstein cows fed low (CON) or high-energy (OVE) diets. The middle fat pad of the hoof digital cushion was collected soon after slaughter. Despite the lack of effect on expression of the transcription regulators SREBF1 and PPARG, the expression of the lipogenic enzymes ACACA, FASN, SCD, and DGAT2 was upregulated with OVE. Along with the upregulation of G6PD and IDH1, important for NADPH synthesis during lipogenesis, and the basal glucose transporter SLC2A1, these data indicated a pro-lipogenic response in the digital cushion with OVE. The expression of the lipid droplet-associated protein PLIN2 was upregulated while expression of lipolytic enzymes (ATGL, ABDH5, and LIPE) only tended to be upregulated with OVE. Therefore, OVE induced lipogenesis, lipid droplet formation, and lipolysis, albeit to different extents. Although concentration of monounsaturated fatty acids (MUFA) did not differ, among the polyunsaturated fatty acids (PUFA), the concentration of 20:5n3 was lower with OVE. Among the saturated fatty acids, 20:0 concentration was greater with OVE. Although data indicated that the hoof digital cushion metabolic transcriptome is responsive to higher-energy diets, this did not translate into marked differences in the fatty acid composition. The decrease in concentration of PUFA, which could contribute to synthesis of inflammatory molecules, in OVE-fed cows indicated that feeding higher-energy diets might be detrimental for the mediation of inflammation in digital cushion. This effect could be further exacerbated by physiologic and endocrine changes during the peripartal period that favor inflammation. PMID:27441691

  15. Effects of various dietary lipid additives on lamb performance, carcass characteristics, adipose tissue fatty acid composition, and wool characteristics.

    PubMed

    Meale, S J; Chaves, A V; He, M L; Guan, L L; McAllister, T A

    2015-06-01

    Tasco (Ascophyllum nodosum; TA) was compared to canola (CO), flax (FO), and safflower oils (SO) for effects on performance, carcass characteristics, and fatty acid profiles of adipose tissue in skirt muscle (SM), subcutaneous and perirenal adipose tissues, and wool production and quality characteristics of Canadian Arcott lambs. Fifty-six lambs were randomly assigned to dietary treatments (n = 14 per treatment). Diets consisted of a pelleted, barley-based finishing diet containing either TA, CO, FO, or SO (2% of dietary DM). Feed deliveries and orts were recorded daily. Lambs were weighed weekly and slaughtered once they reached ≥ 45 kg BW. Carcass characteristics, rumen pH, and liver weights were determined at slaughter. Wool yield was determined on mid-side patches of 100 cm2 shorn at d 0 and on the day before slaughter (d 105 or 140). Dye-bands were used to determine wool growth, micrometer and staple length. Adipose tissues and SM samples were taken at slaughter and analyzed for FA profiles. No effects were observed on intake, growth, or carcass characteristics. A greater (P = 0.02) staple strength of lambs fed CO was the only effect observed in wool. Flax oil increased total n-3 and decreased the n-6/n-3 ratio in tissue FA profiles (P < 0.001) in comparison to other diets. Tasco increased (P ≤ 0.001) SFA/PUFA in all tissues, whereas concentrations of CLA c-9, t-11 were greatest with SO in all tissues (P ≤ 0.02), compared to other diets. These results suggest Tasco supplementation did not improve the n-3/n-6 or SFA/PUFA ratios of lamb adipose tissues compared to other dietary lipid additives. PMID:26115297

  16. Effect of ration size on fillet fatty acid composition, phospholipid allostasis and mRNA expression patterns of lipid regulatory genes in gilthead sea bream (Sparus aurata).

    PubMed

    Benedito-Palos, Laura; Calduch-Giner, Josep A; Ballester-Lozano, Gabriel F; Pérez-Sánchez, Jaume

    2013-04-14

    The effect of ration size on muscle fatty acid (FA) composition and mRNA expression levels of key regulatory enzymes of lipid and lipoprotein metabolism have been addressed in juveniles of gilthead sea bream fed a practical diet over the course of an 11-week trial. The experimental setup included three feeding levels: (i) full ration until visual satiety, (ii) 70 % of satiation and (iii) 70 % of satiation with the last 2 weeks at the maintenance ration. Feed restriction reduced lipid content of whole body by 30 % and that of fillet by 50 %. In this scenario, the FA composition of fillet TAG was not altered by ration size, whereas that of phospholipids was largely modified with a higher retention of arachidonic acid and DHA. The mRNA transcript levels of lysophosphatidylcholine acyltransferases, phosphatidylethanolamine N-methyltransferase and FA desaturase 2 were not regulated by ration size in the present experimental model. In contrast, mRNA levels of stearoyl-CoA desaturases were markedly down-regulated by feed restriction. An opposite trend was found for a muscle-specific lipoprotein lipase, which is exclusive of fish lineage. Several upstream regulatory transcriptions were also assessed, although nutritionally mediated changes in mRNA transcripts were almost reduced to PPARα and β, which might act in a counter-regulatory way on lipolysis and lipogenic pathways. This gene expression pattern contributes to the construction of a panel of biomarkers to direct marine fish production towards muscle lean phenotypes with increased retentions of long-chain PUFA. PMID:22856503

  17. Effect of Glucose on the Fatty Acid Composition of Cupriavidus necator JMP134 during 2,4-Dichlorophenoxyacetic Acid Degradation: Implications for Lipid-Based Stable Isotope Probing Methods▿†

    PubMed Central

    Lerch, Thomas Z.; Dignac, Marie-France; Barriuso, Enrique; Mariotti, André

    2011-01-01

    Combining lipid biomarker profiling with stable isotope probing (SIP) is a powerful technique for studying specific microbial populations responsible for the degradation of organic pollutants in various natural environments. However, the presence of other easily degradable substrates may induce significant physiological changes by altering both the rate of incorporation of the target compound into the biomass and the microbial lipid profiles. In order to test this hypothesis, Cupriavidus necator JMP134, a 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacterium, was incubated with [13C]2,4-D, [13C]glucose, or mixtures of both substrates alternatively labeled with 13C. C. necator JMP134 exhibited a preferential use of 2,4-D over glucose. The isotopic analysis showed that glucose had only a small effect on the incorporation of the acetic chain of 2,4-D into the biomass (at days 2 and 3) and no effect on that of the benzenic ring. The addition of glucose did change the fatty acid methyl ester (FAME) composition. However, the overall FAME isotopic signature reflected that of the entire biomass. Compound-specific individual isotopic analyses of FAME composition showed that the 13C-enriched FAME profiles were slightly or not affected when tracing the 2,4-D acetic chain or 2,4-D benzenic ring, respectively. This batch study is a necessary step for validating the use of lipid-based SIP methods in complex environments. PMID:21856833

  18. Lipid composition and metabolism in embryos of Brassica napus

    SciTech Connect

    Sparace, S.A. ); Pomroy, M.K. )

    1990-05-01

    Seven and 14-day old microspore-derived developing embryos of the low-erucate Brassica napus L. (cv. Topas) were analyzed for their acyl lipid composition and capacity to incorporate ({sup 14}C)acetate into lipid. The most significant changes in the lipid compositions of these ages of embryos are (1) increased total lipid from 2 to 5% of fresh weight; (2) increased proportion of TAG from 31 to 74%, and shifts in the fatty acid composition of TAG from 25 to 50% 18:1; 28 to 23% 18:2; and 24 to 13% 18:3. Lipids of 7-day embryos also consist of primarily 8% DAG, 2% MG, 12% FFA, 10% DGDG, 15% PA and approximately 5% each of PC, PE and PG. The levels of these lipids generally decrease as the embryos mature and accumulate TAG. ({sup 14}C)Acetate is incorporated into all lipids and fatty acids except 18:2 or 18:3. As much as 39, 59 and 34% of the fatty acid radioactivity of Mg was recovered in 20:0, 22:0 and 24:0, respectively.

  19. Long-Term Effect of Docosahexaenoic Acid Feeding on Lipid Composition and Brain Fatty Acid-Binding Protein Expression in Rats

    PubMed Central

    Elsherbiny, Marwa E.; Goruk, Susan; Monckton, Elizabeth A.; Richard, Caroline; Brun, Miranda; Emara, Marwan; Field, Catherine J.; Godbout, Roseline

    2015-01-01

    Arachidonic (AA) and docosahexaenoic acid (DHA) brain accretion is essential for brain development. The impact of DHA-rich maternal diets on offspring brain fatty acid composition has previously been studied up to the weanling stage; however, there has been no follow-up at later stages. Here, we examine the impact of DHA-rich maternal and weaning diets on brain fatty acid composition at weaning and three weeks post-weaning. We report that DHA supplementation during lactation maintains high DHA levels in the brains of pups even when they are fed a DHA-deficient diet for three weeks after weaning. We show that boosting dietary DHA levels for three weeks after weaning compensates for a maternal DHA-deficient diet during lactation. Finally, our data indicate that brain fatty acid binding protein (FABP7), a marker of neural stem cells, is down-regulated in the brains of six-week pups with a high DHA:AA ratio. We propose that elevated levels of DHA in developing brain accelerate brain maturation relative to DHA-deficient brains. PMID:26506385

  20. VARIATION IN GROWTH, LIPID CLASS AND FATTY ACID COMPOSITION OF THE MUD CRAB, RHITHROPANOPEUS HARRISII (GOULD) DURING LARVAL DEVELOPMENT FOLLOWING EXPOSURE TO AN INSECT JUVENILE HORMONE ANALOG (FENOXYCARB(R))

    EPA Science Inventory

    This study examines the effects of fenoxycarb?, an insect juvenile hormone (JH) analog, on larval growth, and lipid class and fatty acid composition in first crabs of the mud crab Rhithropanopeus harrisii reared through total larval development in nominal water concentrations fr...

  1. Effects of Dietary Coconut Oil as a Medium-chain Fatty Acid Source on Performance, Carcass Composition and Serum Lipids in Male Broilers

    PubMed Central

    Wang, Jianhong; Wang, Xiaoxiao; Li, Juntao; Chen, Yiqiang; Yang, Wenjun; Zhang, Liying

    2015-01-01

    This study was conducted to investigate the effects of dietary coconut oil as a medium-chain fatty acid (MCFA) source on performance, carcass composition and serum lipids in male broilers. A total of 540, one-day-old, male Arbor Acres broilers were randomly allotted to 1 of 5 treatments with each treatment being applied to 6 replicates of 18 chicks. The basal diet (i.e., R0) was based on corn and soybean meal and was supplemented with 1.5% soybean oil during the starter phase (d 0 to 21) and 3.0% soybean oil during the grower phase (d 22 to 42). Four experimental diets were formulated by replacing 25%, 50%, 75%, or 100% of the soybean oil with coconut oil (i.e., R25, R50, R75, and R100). Soybean oil and coconut oil were used as sources of long-chain fatty acid and MCFA, respectively. The feeding trial showed that dietary coconut oil had no effect on weight gain, feed intake or feed conversion. On d 42, serum levels of total cholesterol, low-density lipoprotein cholesterol, and low-density lipoprotein/high-density lipoprotein cholesterol were linearly decreased as the coconut oil level increased (p<0.01). Lipoprotein lipase, hepatic lipase, and total lipase activities were linearly increased as the coconut oil level increased (p<0.01). Abdominal fat weight/eviscerated weight (p = 0.05), intermuscular fat width (p<0.01) and subcutaneous fat thickness (p<0.01) showed a significant quadratic relationship, with the lowest value at R75. These results indicated that replacement of 75% of the soybean oil in diets with coconut oil is the optimum level to reduce fat deposition and favorably affect lipid profiles without impairing performance in broilers. PMID:25557818

  2. Lipid composition of positively buoyant eggs of reef building corals

    NASA Astrophysics Data System (ADS)

    Arai, Iakayuki; Kato, Misako; Heyward, Andrew; Ikeda, Yutaka; Iizuka, Tokio; Maruyama, Tadashi

    1993-07-01

    Lipid composition of the eggs of three reef building corals, Acropora millepora, A. tenuis and Montipora digitata, were determined. Sixty to 70% of the egg dry weight was lipid, which consisted of wax esters (69.5 81.8%), triacylglycerols (1.1 8.4%) and polar lipids c/mainly phospholipids (11.9 13.2%). Montipora digitata also contained some polar lipids typical of the thylakoid membrane in chloroplasts, probably due to the presence of symbiotic zooxanthellae in the eggs. The wax esters appeared to be the major contributor to positive buoyancy of the eggs, and specific gravity of wax esters in A. millepora was estimated to be 0.92. Among the fatty acids of the wax esters, 34.9 51.3% was hexadecanoic acid (16:0) while the major fatty acids in polar lipids were octadecenoic acid (18:1), hexadecanoic acid (16:0), eicosapentaenoic acid (20:5) and eicosatetraenoic acid (20:4). The wax ester appears to be the main component of the 4.5 6.0 μm diameter lipid droplets which fill most of the central mass of the coral eggs.

  3. Lipids, fatty acids, and more

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Energy is the most expensive component in livestock diets. Lipids are concentrated energy sources and are known to affect growth, feed efficiency, feed dust, and diet palatability. A large majority of research evaluating lipids in livestock has utilized lipids of high quality, dealt mainly with anim...

  4. Polar lipid composition of a new halobacterium

    NASA Technical Reports Server (NTRS)

    Tindall, B. J.; Tomlinson, G. A.; Hochstein, L. I.

    1987-01-01

    Investigations of the polar lipid composition of a new aerobic, extremely halophilic aracheabacterium capable of nitrate reduction have shown that this organism contains two previously unknown phospholycolipids derived from diphytanyl glycerol diethers. Comparison of the lipid pattern from this new isolate with other known strains indicate that this organism is novel. On the basis of the unique polar lipid pattern it can be concluded that this organism represents a new taxon, at least at the species level.

  5. Pasting characteristics of starch-lipid composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch-lipid composites (SLC) have been used as fat replacers and stabilizers in beef patties, dairy products, and baked goods. The SLC are produced by mixing aqueous starch slurry with a lipid source, and steam jet-cooking. The SLC may be dried using a drum drier and then milled in a Retch mill. ...

  6. Effect of replacement of fish oil with camelina (Camelina sativa) oil on growth, lipid class and fatty acid composition of farmed juvenile Atlantic cod (Gadus morhua).

    PubMed

    Hixson, Stefanie M; Parrish, Christopher C; Anderson, Derek M

    2013-12-01

    Camelina (Camelina sativa) oil was tested as a replacement for fish oil in diets for farmed Atlantic cod (Gadus morhua). Camelina differs from other plant oilseeds previously used in aquaculture with high lipid (40 %), α-linolenic acid (40 %), antioxidants and low proportions of saturated fats. Dietary treatments were fed to cod (19 g fish⁻¹ initial weight) for 9 weeks and included a fish oil control (FO), 40 % (CO40) and 80 % (CO80) replacement of fish oil with camelina oil. There was no effect of replacing fish oil with camelina oil included at levels up to 80 % on the growth performance. Cod fed CO80 stored more lipid in the liver (p < 0.01), including more neutral lipid (p < 0.05) and triacylglycerol (p < 0.05). Cod fed CO80 decreased in total polyunsaturated fatty acids (PUFAs) in muscle compared to CO40 and FO (p < 0.05), increased in monounsaturated fatty acids (p < 0.01), decreased in total ω3 fatty acids (FO > CO40 > CO80; p < 0.01) and increased in total ω6 fatty acids (FO < CO40 < CO80; p < 0.01). In the liver, long-chain (LC) PUFA such as 20:4ω6, 20:5ω3, 22:5ω3 and 22:6ω3 decreased when fish oil was removed from the diet (p < 0.05), and increased in 18-carbon fatty acids (p < 0.01). Camelina oil can reduce the amount of fish oil needed to meet lipid requirements, although replacing 80 % of fish oil reduced LC PUFAs in both tissues. A comparison of BF₃ and H₂SO₄ as catalysts to transmethylate cod liver and muscle lipids revealed small but significant differences in some fatty acid proportions. PMID:23584924

  7. Lipid composition of mangrove and its relevance to salt tolerance.

    PubMed

    Oku, Hirosuke; Baba, Shigeyuki; Koga, Hiroya; Takara, Kensaku; Iwasaki, Hironori

    2003-02-01

    Lipid compositions of mangrove trees were studied in relation to the salt-tolerance mechanism. Leaves and roots were obtained from seven mature mangrove trees on Iriomote Island, Okinawa: Bruguiera gymnorrhiza, Rhizophora stylosa, Kandelia candel, Lumnitzera racemosa, Avicennia marina, Pemphis acidula and Sonneratia alba. Lipids of mangrove leaves mainly consisted of 11 lipid classes: polar lipids, unknown (UK) 1-6, sterols, triacyl glycerols, wax ester and sterol ester (UK 3 and 4 were found to be tri-terpenoid alcohol in this study). Of these lipid classes, sterol ester was the main lipid in all species comprising 17.6-33.7% of total lipids. Analysis of the chemical structure found that the sterol esters mainly consisted of fatty acid esters of tri-terpenoid alcohols. One major tri-terpenoid alcohol was identified to be lupeol by interpretation of infrared resonance, nuclear magnetic resonance and mass spectrometry. Because of the unique anatomy of the mangrove root, lipid analyses were made separately for epidermis, cortex and innermost stele, respectively. The concentration of free tri-terpenoid alcohols showed a higher tendency in the outside part than in the inside portion of the roots, suggesting their protective roles. Relevance of lipid composition to salt tolerance was studied with propagules of K. candel and B. gymnorrhiza planted with varied salt concentrations. The proportions of free tri-terpenoids increased with salinity in both leaves and roots of K. candel, and only in roots of B. gymnorrhiza. No salt-dependent changes were noted in the phospholipid and fatty acid compositions in both species. These findings suggested that salt stress specifically modulated the terpenoid concentrations in mangroves. PMID:12605298

  8. Effect of dietary lipid on the growth, fatty acid composition and Δ5 Fads expression of abalone ( Haliotis discus hannai Ino) hepatopancreas

    NASA Astrophysics Data System (ADS)

    Li, Mingzhu; Mai, Kangsen; Ai, Qinghui; He, Gen; Xu, Wei; Zhang, Wenbing; Zhang, Yanjiao; Zhou, Huihui; Liufu, Zhiguo

    2015-04-01

    This study investigated the effect of dietary lipid on the growth, fatty acid composition and Δ5 fatty acyl desaturase genes ( Fads) expression of juvenile abalone ( Haliotis discus hannai Ino) hepatopancreas. Six purified diets were formulated to contain tripalmitin (TP), olive oil (OO, 72.87% 18:1n-9), grape seed oil (GO, 68.67% 18:2n-6), linseed oil (LO, 70.48% 18:3n-3), ARA oil (AO, 41.81% ARA) or EPA oil (EO, 44.09% EPA and 23.67% DAH). No significant difference in survival rate was observed among abalone fed with different diets. Weight gain rate ( WGR) and daily growth rate of shell length ( DGR SL) were significantly increased in abalone fed with diets containing OO, AO and EO, but decreased in abalone fed with LO diet ( P < 0.05) in comparison with those fed with TP. High level of dietary 18:2n-6 resulted in higher content of n-6 polyunsaturated fatty acids (PUFAs) in abalone fed with GO than those fed with TP, OO, LO and EO ( P < 0.05). n-3 PUFAs in abalone fed with LO was significantly higher than those in abalone fed with TP, OO, GO and AO ( P < 0.05). The highest contents of 20:1n-9 and 22:1n-9 were observed in abalone fed with OO. The expression of Δ5 Fads in hepatopancreas of abalone was enhanced by high concentration of 18:3n-3 and suppressed by dietary LC-PUFAs; however it was not affected by dietary high concentration of 18:1n-9 or 18:2n-6. These results provided valuable information for understanding the synthesis of LC-PUFAs and nutritional regulation of Δ5 Fads expression in abalone.

  9. Effect of essential oil of Hyssopus officinalis on the lipid composition of Aspergillus fumigatus.

    PubMed

    Ghfir, B; Fonvieille, J L; Koulali, Y; Ecalle, R; Dargent, R

    1994-06-01

    Addition of the essential oil of Hyssopus officinalis to the culture medium of Aspergillus fumigatus induced alterations in both growth and lipid composition of this mould. Total lipids and sterols were reduced, whereas total phospholipids were increased. There were alterations in the proportions of fatty acids, neutral lipid and phospholipid fractions. PMID:7935731

  10. Respiration and ecological niche influence bacterial membrane lipid compositions.

    PubMed

    Bay, Denice C; Booth, Sean C; Turner, Raymond J

    2015-05-01

    Bacterial membrane compositions vary widely between phyla and within related species. The types of lipids within membranes are as diverse as the selective pressures that influence bacterial lifestyles such as their mode of respiration and habitat. This study has examined the extent that respiration and habitat affect bacterial fatty acid (FA) and polar lipid (PL) compositions. To accomplish this, over 300 FA and PL profiles from 380 previously characterized species were assembled and subjected to multivariate statistical analyses in order to determine lipid to habitat/respiration associations. It was revealed that PL profiles showed a slight advantage over FA profiles for discriminating taxonomic relationships between species. FA profiles showed greater correlation with respiration and habitat than PL. This study identified that respiration did not consistently favour uniform FA or PL changes when lipid profiles were compared between examined phyla. This suggests that although phyla may adopt similar respiration methods, it does not result in consistent lipid attributes within one respiration state. Examination of FA and PL compositions were useful to identify taxonomic relationships between related species and provides insight into lipid variations influenced by the niche of its host. PMID:25297716

  11. Fatty Acids and Bioactive Lipids of Potato Cultivars: An Overview.

    PubMed

    Ramadan, Mohamed Fawzy; Oraby, Hesahm Farouk

    2016-01-01

    Potato tuber is a highly nutritious, wherein genotype and environmental differences are known to exist in the shape, size and nutritional value of potatoes. Owing to its high consumption, potato could be an ideal carrier of health-promoting phytochemicals. Potato cultivars contain many bioactive lipidic compounds such as fatty acids, glycolipids, phospholipids, sterols, tocols and carotenoids, which are highly desirable in diet because of their health-promoting effects. In the scientific literature, information on the content and profile of bioactive lipidic compounds in potato cultivars are few. The concentration and stability of bioactive lipids are affected by many factors such as genotype, agronomic factors, postharvest storage, cooking and processing conditions. In this review levels and composition of bioactive lipids in terms of lipid classes, fatty acids, phytosterols, tocopherols, and caroteinoids distribution in different potato cultivars including genetically modified potato (GMP) were highlighted and discussed. In addition, factors affecting bioactive lipids levels, stability and health benefits are reviewed. In consideration of potential nutritional value, detailed knowledge on lipids of potato cultivars is of major importance. PMID:27250559

  12. Composite S-layer lipid structures.

    PubMed

    Schuster, Bernhard; Sleytr, Uwe B

    2009-10-01

    Designing and utilization of biomimetic membrane systems generated by bottom-up processes is a rapidly growing scientific and engineering field. Elucidation of the supramolecular construction principle of archaeal cell envelopes composed of S-layer stabilized lipid membranes led to new strategies for generating highly stable functional lipid membranes at meso- and macroscopic scale. In this review, we provide a state of the art survey how S-layer proteins, lipids, and polysaccharides may be used as basic building blocks for the assembly of S-layer supported lipid membranes. These biomimetic membrane systems are distinguished by a nanopatterned fluidity, enhanced stability and longevity and thus, provide a dedicated reconstitution matrix for membrane-active peptides and transmembrane proteins. Exciting areas for application of composite S-layer membrane systems concern sensor systems involving specific membrane functions. PMID:19303933

  13. Composite S-layer lipid structures

    PubMed Central

    Schuster, Bernhard; Sleytr, Uwe B.

    2010-01-01

    Designing and utilization of biomimetic membrane systems generated by bottom-up processes is a rapidly growing scientific and engineering field. Elucidation of the supramolecular construction principle of archaeal cell envelopes composed of S-layer stabilized lipid membranes led to new strategies for generating highly stable functional lipid membranes at meso- and macroscopic scale. In this review, we provide a state of the art survey how S-layer proteins, lipids, and polysaccharides may be used as basic building blocks for the assembly of S-layer supported lipid membranes. These biomimetic membrane systems are distinguished by a nanopatterned fluidity, enhanced stability and longevity and thus, provide a dedicated reconstitution matrix for membrane-active peptides and transmembrane proteins. Exciting areas for application of composite S-layer membrane systems concern sensor systems involving specific membrane functions. PMID:19303933

  14. Lipid Composition, Fatty Acids and Sterols in the Seaweeds Ulva armoricana, and Solieria chordalis from Brittany (France): An Analysis from Nutritional, Chemotaxonomic, and Antiproliferative Activity Perspectives

    PubMed Central

    Kendel, Melha; Wielgosz-Collin, Gaëtane; Bertrand, Samuel; Roussakis, Christos; Bourgougnon, Nathalie; Bedoux, Gilles

    2015-01-01

    Lipids from the proliferative macroalgae Ulva armoricana (Chlorophyta) and Solieria chordalis (Rhodophyta) from Brittany, France, were investigated. The total content of lipids was 2.6% and 3.0% dry weight for U. armoricana and S. chordalis, respectively. The main fractions of S. chordalis were neutral lipids (37%) and glycolipids (38%), whereas U. armoricana contained mostly neutral lipids (55%). Polyunsaturated fatty acids (PUFA) represented 29% and 15% of the total lipids in U. armoricana and S. chordalis, respectively. In both studied algae, the phospholipids were composed of PUFA for 18%. In addition, PUFA were shown to represent 9% and 4.5% of glycolipids in U. armoricana and S. chordalis, respectively. The essential PUFA were 16:4n-3, 18:4n-3, 18:2n-3, 18:2n-6, and 22:6n-3 in U. armoricana, and 20:4n-6 and 20:5n-3 in S. chordalis. It is important to notice that six 2-hydroxy-, three 3-hydroxy-, and two monounsaturated hydroxy fatty acids were also identified and may provide a chemotaxonomic basis for algae. These seaweeds contained interesting compounds such as squalene, α-tocopherol, cholest-4-en-3-one and phytosterols. The antiproliferative effect was evaluated in vitro on human non-small-cell bronchopulmonary carcinoma line (NSCLC-N6) with an IC50 of 23 μg/mL for monogalactosyldiacylglycerols isolated from S. chordalis and 24 μg/mL for digalactosyldiacylglycerols from U. armoricana. These results confirm the potentialities of valorization of these two species in the fields of health, nutrition and chemotaxonomy. PMID:26404323

  15. Lipid Composition, Fatty Acids and Sterols in the Seaweeds Ulva armoricana, and Solieria chordalis from Brittany (France): An Analysis from Nutritional, Chemotaxonomic, and Antiproliferative Activity Perspectives.

    PubMed

    Kendel, Melha; Wielgosz-Collin, Gaëtane; Bertrand, Samuel; Roussakis, Christos; Bourgougnon, Nathalie; Bedoux, Gilles

    2015-09-01

    Lipids from the proliferative macroalgae Ulva armoricana (Chlorophyta) and Solieria chordalis (Rhodophyta) from Brittany, France, were investigated. The total content of lipids was 2.6% and 3.0% dry weight for U. armoricana and S. chordalis, respectively. The main fractions of S. chordalis were neutral lipids (37%) and glycolipids (38%), whereas U. armoricana contained mostly neutral lipids (55%). Polyunsaturated fatty acids (PUFA) represented 29% and 15% of the total lipids in U. armoricana and S. chordalis, respectively. In both studied algae, the phospholipids were composed of PUFA for 18%. In addition, PUFA were shown to represent 9% and 4.5% of glycolipids in U. armoricana and S. chordalis, respectively. The essential PUFA were 16:4n-3, 18:4n-3, 18:2n-3, 18:2n-6, and 22:6n-3 in U. armoricana, and 20:4n-6 and 20:5n-3 in S. chordalis. It is important to notice that six 2-hydroxy-, three 3-hydroxy-, and two monounsaturated hydroxy fatty acids were also identified and may provide a chemotaxonomic basis for algae. These seaweeds contained interesting compounds such as squalene, α-tocopherol, cholest-4-en-3-one and phytosterols. The antiproliferative effect was evaluated in vitro on human non-small-cell bronchopulmonary carcinoma line (NSCLC-N6) with an IC50 of 23 μg/mL for monogalactosyldiacylglycerols isolated from S. chordalis and 24 μg/mL for digalactosyldiacylglycerols from U. armoricana. These results confirm the potentialities of valorization of these two species in the fields of health, nutrition and chemotaxonomy. PMID:26404323

  16. Starch-lipid composites containing cimmamaldehyde

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The formulation of a starch-lipid composite containing cinnamaldehyde as antimicrobial agent has been studied. Cinnamaldehyde was incorporated as an emulsion using Acetem 90-50K as a carrier and Tween 60 as the emulsifier. Oil in water emulsions were prepared by direct emulsification using a high sh...

  17. TRANS ACIDS IN SPECIALTY LIPIDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The role of trans acids in human health and nutrition is highly controversial and a search of the Internet reveals the interest in the subject. Trans acids are perceived as "killer fats" at one end of the spectrum to having no adverse effects at the other. In addition, saturated fats are perceived...

  18. Effect of inulin supplementation and dietary fat source on performance, blood serum metabolites, liver lipids, abdominal fat deposition, and tissue fatty acid composition in broiler chickens.

    PubMed

    Velasco, S; Ortiz, L T; Alzueta, C; Rebolé, A; Treviño, J; Rodríguez, M L

    2010-08-01

    A study was conducted to evaluate the effect of adding inulin to diets containing 2 different types of fat as energy sources on performance, blood serum metabolites, liver lipids, and fatty acids of abdominal adipose tissue and breast and thigh meat. A total of 240 one-day-old female broiler chicks were randomly allocated into 1 of 6 treatments with 8 replicates per treatment and 5 chicks per pen. The experiment consisted of a 3 x 2 factorial arrangement of treatments including 3 concentrations of inulin (0, 5, and 10 g/kg of diet) and 2 types of fat [palm oil (PO) and sunflower oil (SO)] at an inclusion rate of 90 g/kg of diet. The experimental period lasted from 1 to 34 d. Dietary fat type did not affect BW gain but impaired feed conversion (P < 0.001) in birds fed the PO diets compared with birds fed the SO diets. The diets containing PO increased abdominal fat deposition and serum lipid and glucose concentrations. Triacylglycerol contents in liver were higher in the birds fed PO diets. Dietary fat type also modified fatty acids of abdominal and i.m. fat, resulting in a higher concentration of C16:0 and C18:1n-9 and a lower concentration of C18:2n-6 in the birds fed PO diets. The addition of inulin to diets modified (P = 0.017) BW gain quadratically without affecting feed conversion. Dietary inulin decreased the total lipid concentration in liver (P = 0.003) and that of triacylglycerols and very low density lipoprotein cholesterol (up to 31%) in blood serum compared with the control groups. The polyunsaturated fatty acid:saturated fatty acid ratio increased in abdominal and i.m. fat when inulin was included in the SO-containing diets. The results from the current study suggest that the addition of inulin to broiler diets has a beneficial effect on blood serum lipids by decreasing triacylglyceride concentrations The results also support the use of inulin to increase the capacity of SO for enhancing polyunsaturated fatty acid:saturated fatty acid ratio of i.m. fat

  19. Effect of Dietary Marine Microalgae (Schizochytrium) Powder on Egg Production, Blood Lipid Profiles, Egg Quality, and Fatty Acid Composition of Egg Yolk in Layers

    PubMed Central

    Park, J. H.; Upadhaya, S. D.; Kim, I. H.

    2015-01-01

    Two hundred and sixteen Institut de Sélection Animale (ISA) brown layers (40 wks of age) were studied for 6 wks to examine the effect of microalgae powder (MAP) on egg production, egg quality, blood lipid profile, and fatty acid concentration of egg yolk. Dietary treatments were as follows: i) CON (basal diet), ii) 0.5% MAP (CON+0.5% Schizochytrium powder), and iii) 1.0% MAP (CON+1.0% Schizochytrium powder). From 44 to 46 wks, egg production was higher in 1.0% MAP treatment than in control treatment (linear, p = 0.034); however, there was no difference on the egg production from 40 to 43 wks (p>0.05). Serum triglyceride and total cholesterol were significantly reduced in the groups fed with MAP, compared to those in groups fed with control diets (Quadratic, p = 0.034 and p = 0.039, respectively). Inclusion of 0.5% MAP in the diet of layers improved egg yolk color, compared with hens fed with basal diet at 46 wks (quadratic, p = 0.044). Eggshell thickness was linearly increased in MAP-fed treatments at 46th wk (p<0.05). Concentration of yolk docosahexaenoic acid (DHA; C22:6n-3) was increased in treatment groups fed with MAP (linear, p<0.05). The n-6 fatty acids, n-6/n-3 fatty acid, and unsaturated fatty acid/saturated fatty acid were decreased in treatment groups fed with MAP (linear, p<0.05). These results suggest that MAP improved the egg production and egg quality, and may affect serum lipid metabolites in the layers. In addition, MAP increases yolk DHA levels, and deceases n-6/n-3 fatty acid ratio. PMID:25656210

  20. Cationic Lipid-Based Nucleic Acid Vectors.

    PubMed

    Jubeli, Emile; Goldring, William P D; Pungente, Michael D

    2016-01-01

    The delivery of nucleic acids into cells remains an important laboratory cell culture technique and potential clinical therapy, based upon the initial cellular uptake, then translation into protein (in the case of DNA), or gene deletion by RNA interference (RNAi). Although viral delivery vectors are more efficient, the high production costs, limited cargo capacity, and the potential for clinical adverse events make nonviral strategies attractive. Cationic lipids are the most widely applied and studied nonviral vectors; however, much remains to be solved to overcome limitations of these systems. Advances in the field of cationic lipid-based nucleic acid (lipoplex) delivery rely upon the development of robust and reproducible lipoplex formulations, together with the use of cell culture assays. This chapter provides detailed protocols towards the formulation, delivery, and assessment of in vitro cationic lipid-based delivery of DNA. PMID:27436310

  1. Lipid encapsulated docosahexaenoic acid methyl ester

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Encapsulation of structurally sensitive compounds within a solid lipid matrix provides a barrier to prooxidant compounds and effectively limits the extent of oxidative degradation. Encapsulated docosahexaenoic acid (DHA) methyl ester was examined as a model compound for functional foods and feeds. S...

  2. Stability of lipid encapsulated ferulic acid particles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Encapsulation of bioactive compounds by a solid lipid matrix provides stability and a mechanism for controlled release in formulated products. Phenolic compounds exhibit antioxidant and antimicrobial activities and have applications as functional food and feed additives. Ferulic acid, a common pheno...

  3. Lipid and Fatty Acid Requirements of Tilapia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary lipids are an important source of highly digestible energy and are the only source of essential fatty acids required for normal growth and development. They are also carriers and assist in the absorption of fat-soluble nutrients, such as sterols and fat-soluble vitamins, serve as a source of...

  4. Phytic Acid Inhibits Lipid Peroxidation In Vitro

    PubMed Central

    Węglarz, Ludmiła; Dzierżewicz, Zofia

    2013-01-01

    Phytic acid (PA) has been recognized as a potent antioxidant and inhibitor of iron-catalyzed hydroxyl radical formation under in vitro and in vivo conditions. Therefore, the aim of the present study was to investigate, with the use of HPLC/MS/MS, whether PA is capable of inhibiting linoleic acid autoxidation and Fe(II)/ascorbate-induced peroxidation, as well as Fe(II)/ascorbate-induced lipid peroxidation in human colonic epithelial cells. PA at 100 μM and 500 μM effectively inhibited the decay of linoleic acid, both in the absence and presence of Fe(II)/ascorbate. The observed inhibitory effect of PA on Fe(II)/ascorbate-induced lipid peroxidation was lower (10–20%) compared to that of autoxidation. PA did not change linoleic acid hydroperoxides concentration levels after 24 hours of Fe(II)/ascorbate-induced peroxidation. In the absence of Fe(II)/ascorbate, PA at 100 μM and 500 μM significantly suppressed decomposition of linoleic acid hydroperoxides. Moreover, PA at the tested nontoxic concentrations (100 μM and 500 μM) significantly decreased 4-hydroxyalkenal levels in Caco-2 cells which structurally and functionally resemble the small intestinal epithelium. It is concluded that PA inhibits linoleic acid oxidation and reduces the formation of 4-hydroxyalkenals. Acting as an antioxidant it may help to prevent intestinal diseases induced by oxygen radicals and lipid peroxidation products. PMID:24260736

  5. Lipid production on free fatty acids by oleaginous yeasts under non-growth conditions.

    PubMed

    Yang, Xiaobing; Jin, Guojie; Wang, Yandan; Shen, Hongwei; Zhao, Zongbao K

    2015-10-01

    Microbial lipids produced by oleaginous yeasts serve as promising alternatives to traditional oils and fats for the production of biodiesel and oleochemicals. To improve its techno-economics, it is pivotal to use wastes and produce high quality lipids of special fatty acid composition. In the present study, four oleaginous yeasts were tested to use free fatty acids for lipid production under non-growth conditions. Microbial lipids of exceptionally high fatty acid relative contents, e.g. those contained over 70% myristic acid or 80% oleic acid, were produced that may be otherwise inaccessible by growing cells on various carbon sources. It was found that Cryptococcus curvatus is a robust strain that can efficiently use oleic acid as well as even-numbered saturated fatty acids with carbon atoms ranging from 10 to 20. Our results provided new opportunity for the production of functional lipids and for the exploitation of organic wastes rich in free fatty acids. PMID:26159379

  6. What makes the bioactive lipids phosphatidic acid and lysophosphatidic acid so special?

    PubMed

    Kooijman, Edgar E; Carter, Karen M; van Laar, Emma G; Chupin, Vladimir; Burger, Koert N J; de Kruijff, Ben

    2005-12-27

    Phosphatidic acid and lysophosphatidic acid are minor but important anionic bioactive lipids involved in a number of key cellular processes, yet these molecules have a simple phosphate headgroup. To find out what is so special about these lipids, we determined the ionization behavior of phosphatidic acid (PA) and lysophosphatidic acid (LPA) in extended (flat) mixed lipid bilayers using magic angle spinning 31P NMR. Our data show two surprising results. First, despite identical phosphomonoester headgroups, LPA carries more negative charge than PA when present in a phosphatidylcholine bilayer. Dehydroxy-LPA [1-oleoyl-3-(phosphoryl)propanediol] behaves in a manner identical to that of PA, indicating that the difference in negative charge between LPA and PA is caused by the hydroxyl on the glycerol backbone of LPA and its interaction with the phosphomonoester headgroup. Second, deprotonation of phosphatidic acid and lysophosphatidic acid was found to be strongly stimulated by the inclusion of phosphatidylethanolamine in the bilayer, indicating that lipid headgroup charge depends on local lipid composition and will vary between the different subcellular locations of (L)PA. Our findings can be understood in terms of a hydrogen bond formed within the phosphomonoester headgroup of (L)PA and its destabilization by competing intra- or intermolecular hydrogen bonds. We propose that this hydrogen bonding property of (L)PA is involved in the various cellular functions of these lipids. PMID:16363814

  7. Lipid interaction of Pseudomonas aeruginosa exotoxin A. Acid-triggered permeabilization and aggregation of lipid vesicles.

    PubMed Central

    Menestrina, G; Pederzolli, C; Forti, S; Gambale, F

    1991-01-01

    We have investigated the interaction of Pseudomonas exotoxin A with small unilamellar vesicles comprised of different phospholipids as a function of pH, toxin, and lipid concentration. We have found that this toxin induces vesicle permeabilization, as measured by the release of a fluorescent dye. Permeabilization is due to the formation of ion-conductive channels which we have directly observed in planar lipid bilayers. The toxin also produces vesicle aggregation, as indicated by an increase of the turbidity. Aggregation and permeabilization have completely different time course and extent upon toxin dose and lipid composition, thus suggesting that they are two independent events. Both time constants decrease by lowering the pH of the bulk phase or by introducing a negative lipid into the vesicles. Our results indicate that at least three steps are involved in the interaction of Pseudomonas exotoxin A with lipid vesicles. After protonation of one charged group the toxin becomes competent to bind to the surface of the vesicles. Binding is probably initiated by an electrostatic interaction because it is absolutely dependent on the presence of acidic phospholipids. Binding is a prerequisite for the subsequent insertion of the toxin into the lipid bilayer, with a special preference for phosphatidylglycerol-containing membranes, to form ionic channels. At high toxin and vesicle concentrations, bound toxin may also induce aggregation of the vesicles, particularly when phosphatidic acid is present in the lipid mixture. A quenching of the intrinsic tryptophan fluorescence of the protein, which is induced by lowering the pH of the solution, becomes more drastic in the presence of lipid vesicles. However, this further quenching takes so long that it cannot be a prerequisite to either vesicle permeabilization or aggregation. Pseudomonas exotoxin A shares many of these properties with other bacterial toxins like diphtheria and tetanus toxin. Images FIGURE 7 FIGURE 8 FIGURE 12

  8. Changes in tissue lipid and fatty acid composition of farmed rainbow trout in response to dietary camelina oil as a replacement of fish oil.

    PubMed

    Hixson, Stefanie M; Parrish, Christopher C; Anderson, Derek M

    2014-01-01

    Camelina oil (CO) replaced 50 and 100 % of fish oil (FO) in diets for farmed rainbow trout (initial weight 44 ± 3 g fish(-1)). The oilseed is particularly unique due to its high lipid content (40 %) and high amount of 18:3n-3 (α-linolenic acid, ALA) (30 %). Replacing 100 % of fish oil with camelina oil did not negatively affect growth of rainbow trout after a 12-week feeding trial (FO = 168 ± 32 g fish(-1); CO = 184 ± 35 g fish(-1)). Lipid and fatty acid profiles of muscle, viscera and skin were significantly affected by the addition of CO after 12 weeks of feeding. However, final 22:6n-3 [docosahexaenoic acid (DHA)] and 20:5n-3 [eicosapentaenoic acid (EPA)] amounts (563 mg) in a 75 g fillet (1 serving) were enough to satisfy daily DHA and EPA requirements (250 mg) set by the World Health Organization. Other health benefits include lower SFA and higher MUFA in filets fed CO versus FO. Compound-specific stable isotope analysis (CSIA) confirmed that the δ(13)C isotopic signature of DHA in CO fed trout shifted significantly compared to DHA in FO fed trout. The shift in DHA δ(13)C indicates mixing of a terrestrial isotopic signature compared to the isotopic signature of DHA in fish oil-fed tissue. These results suggest that ~27 % of DHA was synthesized from the terrestrial and isotopically lighter ALA in the CO diet rather than incorporation of DHA from fish meal in the CO diet. This was the first study to use CSIA in a feeding experiment to demonstrate synthesis of DHA in fish. PMID:24264359

  9. Intake of a Western diet containing cod instead of pork alters fatty acid composition in tissue phospholipids and attenuates obesity and hepatic lipid accumulation in mice.

    PubMed

    Liisberg, Ulrike; Fauske, Kristin Røen; Kuda, Ondrej; Fjære, Even; Myrmel, Lene Secher; Norberg, Nina; Frøyland, Livar; Graff, Ingvild Eide; Liaset, Bjørn; Kristiansen, Karsten; Kopecky, Jan; Madsen, Lise

    2016-07-01

    The content of the marine n-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is far lower in lean than in fatty seafood. Cod filets contain less than 2g fat per kg, whereof approximately 50% is EPA and DHA. However, a large fraction of these n-3 PUFAs is present in the phospholipid (PL) fraction and may have high bioavailability and capacity to change the endocannabinoid profile. Here we investigated whether exchanging meat from a lean terrestrial animal with cod in a background Western diet would alter the endocannabinoid tone in mice and thereby attenuate obesity development and hepatic lipid accumulation. Accordingly, we prepared iso-caloric diets with 15.1 energy (e) % protein, 39.1 e% fat and 45.8 e% carbohydrates using freeze-dried meat from cod filets or pork sirloins, and using a combination of soybean oil, corn oil, margarine, milk fat, and lard as the fat source. Compared with mice receiving diets containing pork, mice fed cod gained less adipose tissue mass and had a lower content of hepatic lipids. This was accompanied by a lower n-6 to n-3 ratio in liver PLs and in red blood cells (RBCs) in the mice. Furthermore, mice receiving the cod-containing diet had lower circulating levels of the two major endocannabinoids, N-arachidonoylethanolamine and 2-arachidonoylglycerol. Together, our data demonstrate that despite the relatively low content of n-3 PUFAs in cod fillets, the cod-containing diet could exert beneficial metabolic effects. PMID:27155918

  10. In vitro performance of lipid-PLGA hybrid nanoparticles as an antigen delivery system: lipid composition matters

    PubMed Central

    2014-01-01

    Due to the many beneficial properties combined from both poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) and liposomes, lipid-PLGA hybrid NPs have been intensively studied as cancer drug delivery systems, bio-imaging agent carriers, as well as antigen delivery vehicles. However, the impact of lipid composition on the performance of lipid-PLGA hybrid NPs as a delivery system has not been well investigated. In this study, the influence of lipid composition on the stability of the hybrid NPs and in vitro antigen release from NPs under different conditions was examined. The uptake of hybrid NPs with various surface charges by dendritic cells (DCs) was carefully studied. The results showed that PLGA NPs enveloped by a lipid shell with more positive surface charges could improve the stability of the hybrid NPs, enable better controlled release of antigens encapsulated in PLGA NPs, as well as enhance uptake of NPs by DC. PMID:25232295

  11. In vitro performance of lipid-PLGA hybrid nanoparticles as an antigen delivery system: lipid composition matters

    NASA Astrophysics Data System (ADS)

    Hu, Yun; Ehrich, Marion; Fuhrman, Kristel; Zhang, Chenming

    2014-08-01

    Due to the many beneficial properties combined from both poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) and liposomes, lipid-PLGA hybrid NPs have been intensively studied as cancer drug delivery systems, bio-imaging agent carriers, as well as antigen delivery vehicles. However, the impact of lipid composition on the performance of lipid-PLGA hybrid NPs as a delivery system has not been well investigated. In this study, the influence of lipid composition on the stability of the hybrid NPs and in vitro antigen release from NPs under different conditions was examined. The uptake of hybrid NPs with various surface charges by dendritic cells (DCs) was carefully studied. The results showed that PLGA NPs enveloped by a lipid shell with more positive surface charges could improve the stability of the hybrid NPs, enable better controlled release of antigens encapsulated in PLGA NPs, as well as enhance uptake of NPs by DC.

  12. Modification of fillet composition and evidence of differential fatty acid turnover in sunshine bass Morone chrysops x M. saxatilis following change in dietary lipid source.

    PubMed

    Lane, Ryan L; Trushenski, Jesse T; Kohler, Christopher C

    2006-11-01

    Marine oil-based finishing diets have been used to restore fillet FA profile in several "medium-fat" fleshed aquaculture species, and a simple dilution model describing FA turnover has been established to predict and tailor final fillet composition. We evaluated finishing diet efficacy and suitability of the dilution model to describe patterns of FA change in a lean-fleshed model, sunshine bass. Two practical diets (45% crude protein, 15% crude lipid) were formulated, respectively containing corn oil (CO) or menhaden oil (MO) as the primary lipid sources. Sunshine bass (age 1 [approximately 14 mo], 347 +/- 8.6 g, mean individual weight +/- SEM) were stocked in a recirculating system and fed the diets according to different feeding regimens during the final 28 wk of the production cycle. Control groups were fed the CO or the MO feeds exclusively; whereas, the remaining treatment groups were transitioned from the CO diet to the MO diet at 4-, 8-, or 12-wk intervals. Upon completion of the feeding trial, fish were harvested, and production performance and fillet composition were assessed. Replacing MO with CO as the primary lipid source in sunshine bass diets yielded fillets with distinctly different FA profiles; however, finishing with a MO-based diet offered significant compensation for CO-associated reductions in fillet long-chain highly unsaturated FA (LC-HUFA). Although complete restoration was not observed, we achieved significant augmentation of endogenous n-3 FA within 4 wk of feeding the MO diet, and observed a significant increase in LC-HUFA and a beneficial shift in n-3:n-6 FA ratio after 8 weeks. Simple dilution accurately predicted tissue composition for most FA; however, deviations from the model were noted, suggesting selective retention of n-3, PUFA, and LC-HUFA and preferential catabolism of saturates. We conclude marine oil-based finishing diets can rapidly augment beneficial FA levels in sunshine bass fillets; however, simple dilution models do not

  13. Nucleic-Acid Delivery Using Lipid Nanocapsules.

    PubMed

    Lagarce, Frederic; Passirani, Catherine

    2016-01-01

    Lipid nanocapsules (LNCs) were designed more than 15 years ago to deliver lipophilic drugs to cells with non toxic excipients by mimicking lipoproteins. During the last 5 years these promising nanocarriers were re-designed to deliver nucleic acids to cancer cells. This short review sums up the features of LNCs and describes how DNAs or RNAs can be associated or encapsulated in these lipid carriers. The results of transfection effects on cells in vitro or in vivo are also presented. These new therapeutic strategies have been mainly proposed for glioma and melanoma treatment because these cancers are characterized by multiple acquired resistances, which can be reversed by DNA transfection or siRNA interference as it is discussed in this paper. In conclusion, LNCs are very good candidates to deliver nucleic acids to cells in the course of anti-cancer therapies. PMID:27033510

  14. DIRECT DETERMINATION OF THE LIPID CONTENT IN STARCH-LIPID COMPOSITES BY TIME-DOMAIN NMR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch-lipid composites, prepared by excess steam jet-cooking aqueous mixtures of starch and lipid, are used in various applications for which their performance can depend upon accurate quantitation of lipid contained within these composites. A rapid and non-destructive method based on time-domain ...

  15. Impact of UV-B on drought- or cadmium-induced changes in the fatty acid composition of membrane lipid fractions in wheat.

    PubMed

    Gondor, Orsolya Kinga; Szalai, Gabriella; Kovács, Viktória; Janda, Tibor; Pál, Magda

    2014-10-01

    UV-B radiation may have either a positive or negative impact under the same conditions in wheat, depending on the type of secondary abiotic stressor: Cd or drought. Supplemental UV-B prevented the wilting and leaf rolling induced by PEG treatment. In contrast, combined UV-B and Cd treatment resulted in pronounced oxidative stress. The opposite effect of UV-B radiation in the case of drought or cadmium stress may be related to the alteration induced in the fatty acid composition. UV-B caused changes in the unsaturation of leaf phosphatidylglycerol fractions, and the accumulation of flavonoid in the leaves may prevent the stress induced by subsequent drought treatment. However it resulted in pronounced injury despite the increased flavonoid content in roots exposed to Cd. This was manifested in a drastic decrease in the unsaturation of the leaf monogalactosyldiacylglycerol and the root phosphatidylglycerol and digalactosyldiacylglycerol fractions. Data on the flavonoid content and fatty acid composition showed that oxidative stress was induced by drought in the leaves, by Cd in the roots, and interestingly, by UV-B radiation in both the leaves and roots. The additive effect of the combined stresses was also detected in the roots. The results presented here suggest a relationship between the capacity of the plant to remodel the fatty acid composition and its resistance to various stress factors. PMID:25062444

  16. Intercellular skin barrier lipid composition and organization in Netherton syndrome patients.

    PubMed

    van Smeden, Jeroen; Janssens, Michelle; Boiten, Walter A; van Drongelen, Vincent; Furio, Laetitia; Vreeken, Rob J; Hovnanian, Alain; Bouwstra, Joke A

    2014-05-01

    Netherton syndrome (NTS) is a rare genetic skin disease caused by mutations in the serine protease inhibitor Kazal-type 5 gene, which encodes the lympho-epithelial Kazal-type-related inhibitor. NTS patients have profoundly impaired skin barrier function. As stratum corneum (SC) lipids have a crucial role in the skin barrier function, we investigated the SC lipid composition and organization in NTS patients. We studied the SC lipid composition by means of mass spectrometry, and the lipid organization was examined by infrared spectroscopy and X-ray diffraction. Decreased free fatty acid (FFA) chain length and increased levels of monounsaturated FFAs were observed in the SC of NTS patients compared with controls. Furthermore, the level of short-chain ceramides (CERs) was enhanced in NTS patients and a strong reduction in long-chain CER levels was seen in several patients. The changes in lipid composition modified the lipid organization leading to an increased disordering of the lipids compared with the controls. In addition, in a subgroup of patients the organization of the lipid layers changed dramatically. The altered FFA and CER profiles in NTS patients corresponded to changes in the expression of enzymes involved in SC lipid processing. The observed changes in lipid composition, lipid organization, and enzyme expression are likely to contribute to the barrier dysfunction in NTS. PMID:24292773

  17. Isolation and Compositional Analysis of Plant Cuticle Lipid Polyester Monomers

    PubMed Central

    Jenkin, Seamus; Molina, Isabel

    2015-01-01

    Terrestrial plants produce extracellular aliphatic biopolyesters that modify cell walls of specific tissues. Epidermal cells synthesize cutin, a polyester of glycerol and modified fatty acids that constitutes the framework of the cuticle that covers aerial plant surfaces. Suberin is a related lipid polyester that is deposited on the cell walls of certain tissues, including the root endodermis and the periderm of tubers, tree bark and roots. These lipid polymers are highly variable in composition among plant species, and often differ among tissues within a single species. Here, we describe a detailed protocol to study the monomer composition of cutin in Arabidopsis thaliana leaves by sodium methoxide (NaOMe)-catalyzed depolymerisation, derivatization, and subsequent gas chromatography-mass spectrometry (GC/MS) analysis. This method can be used to investigate the monomers of insoluble polyesters isolated from whole delipidated plant tissues bearing either cutin or suberin. The method can by applied not only to characterize the composition of lipid polymers in species not previously analyzed, but also as an analytical tool in forward and reverse genetic approaches to assess candidate gene function. PMID:26650846

  18. Analysis of fatty acid content and composition in microalgae.

    PubMed

    Breuer, Guido; Evers, Wendy A C; de Vree, Jeroen H; Kleinegris, Dorinde M M; Martens, Dirk E; Wijffels, René H; Lamers, Packo P

    2013-01-01

    A method to determine the content and composition of total fatty acids present in microalgae is described. Fatty acids are a major constituent of microalgal biomass. These fatty acids can be present in different acyl-lipid classes. Especially the fatty acids present in triacylglycerol (TAG) are of commercial interest, because they can be used for production of transportation fuels, bulk chemicals, nutraceuticals (ω-3 fatty acids), and food commodities. To develop commercial applications, reliable analytical methods for quantification of fatty acid content and composition are needed. Microalgae are single cells surrounded by a rigid cell wall. A fatty acid analysis method should provide sufficient cell disruption to liberate all acyl lipids and the extraction procedure used should be able to extract all acyl lipid classes. With the method presented here all fatty acids present in microalgae can be accurately and reproducibly identified and quantified using small amounts of sample (5 mg) independent of their chain length, degree of unsaturation, or the lipid class they are part of. This method does not provide information about the relative abundance of different lipid classes, but can be extended to separate lipid classes from each other. The method is based on a sequence of mechanical cell disruption, solvent based lipid extraction, transesterification of fatty acids to fatty acid methyl esters (FAMEs), and quantification and identification of FAMEs using gas chromatography (GC-FID). A TAG internal standard (tripentadecanoin) is added prior to the analytical procedure to correct for losses during extraction and incomplete transesterification. PMID:24121679

  19. Analysis of Fatty Acid Content and Composition in Microalgae

    PubMed Central

    Breuer, Guido; Evers, Wendy A. C.; de Vree, Jeroen H.; Kleinegris, Dorinde M. M.; Martens, Dirk E.; Wijffels, René H.; Lamers, Packo P.

    2013-01-01

    A method to determine the content and composition of total fatty acids present in microalgae is described. Fatty acids are a major constituent of microalgal biomass. These fatty acids can be present in different acyl-lipid classes. Especially the fatty acids present in triacylglycerol (TAG) are of commercial interest, because they can be used for production of transportation fuels, bulk chemicals, nutraceuticals (ω-3 fatty acids), and food commodities. To develop commercial applications, reliable analytical methods for quantification of fatty acid content and composition are needed. Microalgae are single cells surrounded by a rigid cell wall. A fatty acid analysis method should provide sufficient cell disruption to liberate all acyl lipids and the extraction procedure used should be able to extract all acyl lipid classes. With the method presented here all fatty acids present in microalgae can be accurately and reproducibly identified and quantified using small amounts of sample (5 mg) independent of their chain length, degree of unsaturation, or the lipid class they are part of. This method does not provide information about the relative abundance of different lipid classes, but can be extended to separate lipid classes from each other. The method is based on a sequence of mechanical cell disruption, solvent based lipid extraction, transesterification of fatty acids to fatty acid methyl esters (FAMEs), and quantification and identification of FAMEs using gas chromatography (GC-FID). A TAG internal standard (tripentadecanoin) is added prior to the analytical procedure to correct for losses during extraction and incomplete transesterification. PMID:24121679

  20. Lipid compositional changes during low-temperature pre-conditioning against SO sub 2 in coleus

    SciTech Connect

    Norman, H.A.; Krizek, D.T.; Mirecki, R.M. )

    1989-04-01

    Short periods of temperature preconditioning at 13{degrees}C. were found to provide protection against SO{sub 2} injury in coleus. The present study was conducted to determine whether changes in lipid metabolism and membrane fluidity might contribute to this phytoprotection. After 5 days of hardening at 13{degrees}C, there were significant differences in polar lipid composition and free fatty acid (FA) levels between SO{sub 2}-sensitive cultivar Buckley Supreme and SO{sub 2}-insensitive Marty. Molecular species of chloroplast lipids in Marty contained increased levels of linolenic acid. Differences were also found in total FA pools. At 20{degrees}C, palmitic acid and stearic acid were the major components. After temperature hardening at 13{degrees}C, total FA levels decreased in Marty but increased in Buckley Supreme. These modifications in lipid composition suggest a possible mechanism for cultivar differences in response in SO{sub 2}.

  1. Lipid composition of circulating multiple-modified low density lipoprotein.

    PubMed

    Zakiev, E R; Sukhorukov, V N; Melnichenko, A A; Sobenin, I A; Ivanova, E A; Orekhov, A N

    2016-01-01

    Atherogenic modified low- density lipoprotein (LDL) induces pronounced accumulation of cholesterol and lipids in the arterial wall, while native LDL seems to lack such capability. Therefore, modified LDL appears to be a major causative agent in the pathogenesis of atherosclerosis. Possible modifications of LDL particles include changes in size and density, desialylation, oxidation and acquisition of negative charge. Total LDL isolated from pooled plasma of patients with coronary atherosclerosis, as well as from healthy subjects contains two distinct subfractions: normally sialylated LDL and desialylated LDL, which can be isolated by binding to a lectin affinity column. We called the desialylated LDL subfraction circulating modified LDL (cmLDL). In this study, we focused on lipid composition of LDL particles, analysing the total LDL preparation and two LDL subfractions: cmLDL and native LDL. The composition of LDL was studied using thin-layer chromatography. We found that cmLDL subfraction had decreased levels of free and esterified cholesterol, triglycerides, phospholipids (except for lysophosphatidylcholine) and sphingomyelin in comparison to native LDL. On the other hand, levels of mono-, and diglycerides, lysophosphatidylcholine and free fatty acids were higher in cmLDL than in native LDL. Our study demonstrated that lipid composition of cmLDL from atherosclerotic patients was altered in comparison to healthy subjects. In particular, phospholipid content was decreased, and free fatty acids levels were increased in cmLDL. This strengthens the hypothesis of multiple modification of LDL particles in the bloodstream and underscores the clinical importance of desialylated LDL as a possible marker of atherosclerosis progression. PMID:27558696

  2. Effect of Conidiobolus coronatus on the Cuticular and Internal Lipid Composition of Tettigonia viridissima Males.

    PubMed

    Gołębiowski, Marek; Cerkowniak, Magdalena; Ostachowska, Aleksandra; Naczk, Aleksandra M; Boguś, Mieczysława I; Stepnowski, Piotr

    2016-08-01

    Conidiobolus coronatus is an entomopathogenic fungus which has a potential as a biological control agent of insects. The cuticular and internal lipid composition of infected and noninfected Tettigonia viridissima males were analyzed by GC/MS. A total of 49 compounds were identified in the infected and noninfected males, including fatty acids, fatty acid methyl esters (FAMEs), n-alkanes, alcohols, sterols, and other organic compounds. The most abundant components of the cuticular and internal lipids of the insects were fatty acids. After exposure to C. coronatus, the cuticular lipids of the T. viridissima males contained 17 free fatty acids from C(8) to C(22), while the cuticular lipids of the noninfected insects contained only 15 fatty acids from C(12) to C(24). The cuticular and internal lipids of both the infected and the noninfected males also contained five FAMEs from C(15) to C(19), seven n-alkanes from C(25) to C(34), five alcohols from C(16) to C(25), five sterols, and the following six other organic compounds: azelaic acid, phenylacetic acid, glutaric acid, benzoic acid, sebacic acid, and glycerol. The compounds which were present only in the cuticular lipids of the infected males could be due to fungal infection. PMID:27483450

  3. Dividing Cells Regulate Their Lipid Composition and Localization

    PubMed Central

    Atilla-Gokcumen, G. Ekin; Muro, Eleonora; Relat-Goberna, Josep; Sasse, Sofia; Bedigian, Anne; Coughlin, Margaret L.; Garcia-Manyes, Sergi; Eggert, Ulrike S.

    2014-01-01

    Summary Although massive membrane rearrangements occur during cell division, little is known about specific roles that lipids might play in this process. We report that the lipidome changes with the cell cycle. LC-MS-based lipid profiling shows that 11 lipids with specific chemical structures accumulate in dividing cells. Using AFM, we demonstrate differences in the mechanical properties of live dividing cells and their isolated lipids relative to nondividing cells. In parallel, systematic RNAi knockdown of lipid biosynthetic enzymes identified enzymes required for division, which highly correlated with lipids accumulated in dividing cells. We show that cells specifically regulate the localization of lipids to midbodies, membrane-based structures where cleavage occurs. We conclude that cells actively regulate and modulate their lipid composition and localization during division, with both signaling and structural roles likely. This work has broader implications for the active and sustained participation of lipids in basic biology. PMID:24462247

  4. STARCH-LIPID COMPOSITES IN PLAIN SET YOGURT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch-lipid composites (0.5, 1, 2, 3, and 4%) were used to replace milk solids (5, 10, 20, 30, 40%) in yogurt mixes. The effects of the starch-lipid composites on the yogurt fermentations and rheology were studied. The rate of fermentation was evaluated by the change of pH every two minutes durin...

  5. Bioconversion of volatile fatty acids into lipids by the oleaginous yeast Yarrowia lipolytica.

    PubMed

    Fontanille, Pierre; Kumar, Vinod; Christophe, Gwendoline; Nouaille, Régis; Larroche, Christian

    2012-06-01

    The valorization of volatile fatty acids into microbial lipids by the oleaginous yeast Yarrowia lipolytica was investigated. Therefore, a two-stage fed-batch strategy was designed: the yeast was initially grown on glucose or glycerol as carbon source, then sequential additions of acetic acid under nitrogen limiting conditions were performed after glucose or glycerol exhaustion. The typical values obtained with an initial 40 g/L concentration of glucose were close to 31 g/L biomass, a lipid concentration of 12.4 g/L, which correspond to a lipid content of the biomass close to 40%. This cultivation strategy was also efficient with other volatile fatty acids (butyric and propionic acids) or with a mixture of these three VFAs. The lipids composition was found quite similar to that of vegetable oils. The study demonstrated the feasibility of simultaneous biovalorization of volatile fatty acids and glycerol, two cheap industrial by-products. PMID:22464419

  6. Tailoring plant lipid composition: designer oilseeds come of age.

    PubMed

    Napier, Johnathan A; Graham, Ian A

    2010-06-01

    Plant neutral lipids such as seed oil triacylglycerols play a key role in many aspects of human life, ranging from providing essential nutrition to acting as biolubricants. There is also growing interest in using plant oils as a replacement for petrochemicals, either for fuel or as a chemical feedstock. Considerable effort has been focused on modifying the fatty acid composition of seed oils and/or increasing the levels of storage triacylglycerol. Certainly, it is now possible to successfully modify the profile of plant oils via transgenic metabolic engineering to generate something approaching a 'designer oil'. This is specifically true for the accumulation of omega-3 long chain polyunsaturated fatty acids that now stand at levels equivalent to those found in native marine organisms. However, it is equally clear that a holistic understanding of plant lipid metabolism is still lacking, mainly owing to the continually emerging complexity and interplay between pathways, recently exemplified by the identification of the ROD1 phosphatidylcholine:diacylglycerol cholinephosphotransferase involved in the channelling of unsaturated fatty acids into storage oil. The new approaches and outcomes described here will inform new paradigms and hasten the arrival of truly predictive biology in this vital field. PMID:20185359

  7. Lipid Classes and Fatty Acids in Ophryotrocha cyclops, a Dorvilleid from Newfoundland Aquaculture Sites

    PubMed Central

    Salvo, Flora; Dufour, Suzanne C.; Hamoutene, Dounia; Parrish, Christopher C.

    2015-01-01

    A new opportunistic annelid (Ophryotrocha cyclops) discovered on benthic substrates underneath finfish aquaculture sites in Newfoundland (NL) may be involved in the remediation of organic wastes. At those aquaculture sites, bacterial mats and O. cyclops often coexist and are used as indicators of organic enrichment. Little is known on the trophic strategies used by these annelids, including whether they might consume bacteria or other aquaculture-derived wastes. We studied the lipid and fatty acid composition of the annelids and their potential food sources (degraded flocculent organic matter, fresh fish pellets and bacterial mats) to investigate feeding relationships in these habitats and compared the lipid and fatty acid composition of annelids before and after starvation. Fish pellets were rich in lipids, mainly terrestrially derived C18 fatty acids (18:1ω9, 18:2ω6, 18:3ω3), while bacterial samples were mainly composed of ω7 fatty acids, and flocculent matter appeared to be a mixture of fresh and degrading fish pellets, feces and bacteria. Ophryotrocha cyclops did not appear to store excessive amounts of lipids (13%) but showed a high concentration of ω3 and ω6 fatty acids, as well as a high proportion of the main fatty acids contained in fresh fish pellets and bacterial mats. The dorvilleids and all potential food sources differed significantly in their lipid and fatty acid composition. Interestingly, while all food sources contained low proportions of 20:5ω3 and 20:2ω6, the annelids showed high concentrations of these two fatty acids, along with 20:4ω6. A starvation period of 13 days did not result in a major decrease in total lipid content; however, microscopic observations revealed that very few visible lipid droplets remained in the gut epithelium after three months of starvation. Ophryotrocha cyclops appears well adapted to extreme environments and may rely on lipid-rich organic matter for survival and dispersal in cold environments. PMID:26308719

  8. High-throughput formation of lipid bilayer membrane arrays with an asymmetric lipid composition

    PubMed Central

    Watanabe, Rikiya; Soga, Naoki; Yamanaka, Tomoko; Noji, Hiroyuki

    2014-01-01

    We present a micro-device in which more than 10,000 asymmetric lipid bilayer membranes are formed at a time on micro-chamber arrays. The arrayed asymmetric lipid bilayers, where lipid compositions are different between the inner and outer leaflets, are formed with high efficiency of over 97% by injecting several types of liquids into a micro-device that has hydrophilic-in-hydrophobic surfaces. The lipid compositional asymmetry is an intrinsic property of bio-membranes, and therefore, this micro-device extends the versatility of artificial lipid-bilayer systems, which were previously limited to symmetric bilayer formation, and could contribute to the understanding of the role of lipid compositional asymmetry in cell physiology and also to further analytical and pharmacological applications. PMID:25399694

  9. Abiotic factors influence plant storage lipid accumulation and composition.

    PubMed

    Singer, Stacy D; Zou, Jitao; Weselake, Randall J

    2016-02-01

    The demand for plant-derived oils has increased substantially over the last decade, and is sure to keep growing. While there has been a surge in research efforts to produce plants with improved oil content and quality, in most cases the enhancements have been small. To add further complexity to this situation, substantial differences in seed oil traits among years and field locations have indicated that plant lipid biosynthesis is also influenced to a large extent by multiple environmental factors such as temperature, drought, light availability and soil nutrients. On the molecular and biochemical levels, the expression and/or activities of fatty acid desaturases, as well as diacylglycerol acyltransferase 1, have been found to be affected by abiotic factors, suggesting that they play a role in the lipid content and compositional changes seen under abiotic stress conditions. Unfortunately, while only a very small number of strategies have been developed as of yet to minimize these environmental effects on the production of storage lipids, it is clear that this feat will be of the utmost importance for developing superior oil crops with the capability to perform in a consistent manner in field conditions in the future. PMID:26795146

  10. Fatty acid profile of 25 alternative lipid feedstocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study reports the fatty acid profiles of 25 alternative lipid feedstocks for the production of bio-based fuels and chemicals. Lipids were extracted using hexane from oil-bearing seeds using a standard Soxhlet apparatus. Fatty acid profiles were measured using gas chromatography-flame ionization...

  11. Newborn Boys and Girls Differ in the Lipid Composition of Vernix Caseosa

    PubMed Central

    Míková, Radka; Vrkoslav, Vladimír; Hanus, Robert; Háková, Eva; Hábová, Zuzana; Doležal, Antonín; Plavka, Richard; Coufal, Pavel; Cvačka, Josef

    2014-01-01

    Vernix caseosa protects the skin of a human fetus during the last trimester of pregnancy and of a newborn after the delivery. Besides its cellular and proteinaceous components, an important constituent and functional agent is a complex lipid fraction, implicated in a multitude of salubrious effects of vernix caseosa. Little is known about how the chemical composition of vernix caseosa lipids is affected by various biological characteristics of the baby, such as the gestational age, birth weight, and, last but not least, the gender of the newborn. This study reports on the chemical variability of lipids contained in the vernix caseosa of twenty newborn girls and boys and shows that the quantitative patterns of the lipids are sex-specific. The specificity of lipids was investigated at the level of fatty acids in the total lipid extracts and intact lipids of several neutral lipid classes. Hydrocarbons, wax esters, cholesteryl esters, diol diesters and triacylglycerols were isolated using optimized semipreparative thin-layer chromatography, and the molecular species within each class were characterized using matrix-assisted laser desorption/ionization mass spectrometry. Statistical evaluation revealed significant quantitative sex-related differences in the lipid composition of vernix caseosa among the newborns, pronounced in the two lipid classes associated with the activity of sebaceous glands. Higher proportions of wax esters and triacylglycerols with longer hydrocarbon chains were observed in newborn girls. PMID:24911066

  12. [EFFECT OF MYCOPLASMA INFECTION TO FATTY ACID COMPOSITION OF CALLUS CULTURE SUGAR BEET].

    PubMed

    Panchenko, L P; Korobkova, K S; Ostapchuk, A N

    2015-01-01

    It was studied the effect of Acholeplasma laidlawii var. granulum str. 118 to fatty acid composition of sugar beet calluses. It was established that acting of acholeplasma results to changes in the quantitative content of the individual fatty acids and in the qualitative composition of fatty acids in the lipids of calluses. The changing of the fatty acid composition of calluses lipids of sugar beet infected by A. laidlawii vargranulum str. 118 is observed as nonspecific response to biotic stress. PMID:26829840

  13. Amino acid-containing membrane lipids in bacteria.

    PubMed

    Geiger, Otto; González-Silva, Napoleón; López-Lara, Isabel M; Sohlenkamp, Christian

    2010-01-01

    In the bacterial model organism Escherichia coli only the three major membrane lipids phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin occur, all of which belong to the glycerophospholipids. The amino acid-containing phosphatidylserine is a major lipid in eukaryotic membranes but in most bacteria it occurs only as a minor biosynthetic intermediate. In some bacteria, the anionic glycerophospholipids phosphatidylglycerol and cardiolipin can be decorated with aminoacyl residues. For example, phosphatidylglycerol can be decorated with lysine, alanine, or arginine whereas in the case of cardiolipin, lysine or d-alanine modifications are known. In few bacteria, diacylglycerol-derived lipids can be substituted with lysine or homoserine. Acyl-oxyacyl lipids in which the lipidic part is amide-linked to the alpha-amino group of an amino acid are widely distributed among bacteria and ornithine-containing lipids are the most common version of this lipid type. Only few bacterial groups form glycine-containing lipids, serineglycine-containing lipids, sphingolipids, or sulfonolipids. Although many of these amino acid-containing bacterial membrane lipids are produced in response to certain stress conditions, little is known about the specific molecular functions of these lipids. PMID:19703488

  14. Genes involved in muscle lipid composition in 15 European Bos taurus breeds.

    PubMed

    Dunner, S; Sevane, N; Garcia, D; Levéziel, H; Williams, J L; Mangin, B; Valentini, A

    2013-08-01

    Consumers demand healthy and palatable meat, both factors being affected by fat composition. However, red meat has relatively high concentration of saturated fatty acids and low concentration of the beneficial polyunsaturated fatty acids. To select animals prone to produce particular fat types, it is necessary to identify the genes influencing muscle lipid composition. This paper describes an association study in which a large panel of candidate genes involved in adipogenesis, lipid metabolism and energy homoeostasis was tested for effects on fat composition in 15 European cattle breeds. Sixteen genes were found to have significant effects on different lipid traits, and among these, CFL1 and MYOZ1 were found to have large effects on the ratio of 18:2/18:3, CRI1 on the amount of neutral adrenic acid (22:4 n-6), MMP1 on docosahexaenoic acid (22:6 n-3) and conjugated linoleic acid, PLTP on the ratio of n-6:n-3 and IGF2R on flavour. Several genes - ALDH2, CHRNE, CRHR2, DGAT1, IGFBP3, NEB, SOCS2, SUSP1, TCF12 and FOXO1 - also were found to be associated with both lipid and organoleptic traits although with smaller effect. The results presented here help in understanding the genetic and biochemical background underlying variations in fatty acid composition and flavour in beef. PMID:23611291

  15. Polyunsaturated Fatty Acids in Lipid Bilayers and Tubules

    NASA Astrophysics Data System (ADS)

    Hirst, Linda S.; Yuan, Jing; Pramudya, Yohannes; Nguyen, Lam T.

    2007-03-01

    Omega-3 polyunsaturated fatty acids (PUFAs) are found in a variety of biological membranes and have been implicated with lipid raft formation and possible function, typical molecules include DHA (Docosahexanoic Acid) and AA (Alphalinoleic Acid) which have been the focus of considerable attention in recent years. We are interested in the phase behavior of these molecules in the lipid bilayer. The addition of lipid molecules with polyunsaturated chains has a clear effect on the fluidity and curvature of the membrane and we investigate the effects the addition of polyunsaturated lipids on bilayer structure and tubule formation. Self-assembled cylindrical lipid tubules have attracted considerable attention because of their interesting structures and potential technological applications. Using x-ray diffraction techniques, Atomic Force Microscopy and confocal fluorescence imaging, both symmetric and mixed chain lipids were incorporated into model membranes and the effects on bilayer structure and tubule formation investigated.

  16. [Effect of organic composition of humic acids on Enterobacteria multiplication].

    PubMed

    Buzoleva, L S; Sidorenko, M L

    2001-01-01

    Enterobacteria have been found to be capable of active multiplication in humic acids isolated from bentonite clays containing carbohydrates, lipids and proteins. Humic acids fractions have been found to be heterogeneous by their molecular weight and organic composition; consequently, they have been found to produce different influence in the multiplication of bacteria. PMID:11548272

  17. PARTICLE SIZE CHARACTERIZATION OF STARCH-LIPID COMPOSITES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch-lipid composites (SLCs) have been used as fat replacers and stabilizers in beef patties, dairy products, and baked goods and the technology has been patented under the trademark FanteskTM. The SLCs are produced by mixing aqueous starch slurry with a lipid source, and steam jet-cooking. The ...

  18. Lipid and fatty acid analysis of uninfected and granulosis virus-infected Plodia interpunctella larvae

    NASA Technical Reports Server (NTRS)

    Shastri-Bhalla, K.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    A comparative study on the lipid and fatty acid composition of the uninfected and GV-infected Plodia interpunctella larvae was performed. Higher levels of free fatty acids were found in GV-infected larvae compared to those of the uninfected larvae, while the latter had more triacylglycerol compared to the former. The known identified phospholipids were fewer in the GV-infected larvae compared to those in the uninfected larvae. However, an unidentified phospholipid was found to be approximately two times higher in GV-infected larvae. The total lipid of both larvae had palmitic, oleic, and linoleic as the major fatty acids. The fatty acid composition of the GV-infected larval phospholipid differed considerably compared to that of the uninfected larvae, in that the ratio of unsaturated fatty acid to saturated fatty acid was 3.5 times less in the GV-infected larvae.

  19. Australian Acid Brine Lake as a Mars Analog: An Analysis of Preserved Lipids in Shore and Lake Sediments

    NASA Astrophysics Data System (ADS)

    Graham, H. V.; Stern, J. C.; Baldridge, A. M.; Thomsen, B. J.

    2016-05-01

    This study investigates organic molecules preserved in sediment cores from an acid brine lake. We explore the distribution and stable isotopic composition of lipids in order to understand preservation potential in similar martian environments.

  20. Changes in fatty acid composition of Chlorella vulgaris by hypochlorous acid.

    PubMed

    Park, Ji-Yeon; Choi, Sun-A; Jeong, Min-Ji; Nam, Bora; Oh, You-Kwan; Lee, Jin-Suk

    2014-06-01

    Hypochlorous acid treatment of a microalga, Chlorella vulgaris, was investigated to improve the quality of microalgal lipid and to obtain high biodiesel-conversion yield. Because chlorophyll deactivates the catalyst for biodiesel conversion, its removal in the lipid-extraction step enhances biodiesel productivity. When microalgae contacted the hypochlorous acid, chlorophyll was removed, and resultant changes in fatty acid composition of microalgal lipid were observed. The lipid-extraction yield after activated clay treatment was 32.7 mg lipid/g cell; after NaClO treatment at 0.8% available chlorine concentration, it was 95.2 mg lipid/g cell; and after NaCl electrolysis treatment at the 1 g/L cell concentration, it was 102.4 mg lipid/g cell. While the contents of all of the unsaturated fatty acids except oleic acid, in the microalgal lipid, decreased as the result of NaClO treatment, the contents of all of the unsaturated fatty acids including oleic acid decreased as the result of NaCl electrolysis treatment. PMID:24785789

  1. Lipids and Fatty Acids of Nudibranch Mollusks: Potential Sources of Bioactive Compounds

    PubMed Central

    Zhukova, Natalia V.

    2014-01-01

    The molecular diversity of chemical compounds found in marine animals offers a good chance for the discovery of novel bioactive compounds of unique structures and diverse biological activities. Nudibranch mollusks, which are not protected by a shell and produce chemicals for various ecological uses, including defense against predators, have attracted great interest for their lipid composition. Lipid analysis of eight nudibranch species revealed dominant phospholipids, sterols and monoalkyldiacylglycerols. Among polar lipids, 1-alkenyl-2-acyl glycerophospholipids (plasmalogens) and ceramide-aminoethyl phosphonates were found in the mollusks. The fatty acid compositions of the nudibranchs differed greatly from those of other marine gastropods and exhibited a wide diversity: very long chain fatty acids known as demospongic acids, a series of non-methylene-interrupted fatty acids, including unusual 21:2∆7,13, and an abundance of various odd and branched fatty acids typical of bacteria. Symbiotic bacteria revealed in some species of nudibranchs participate presumably in the production of some compounds serving as a chemical defense for the mollusks. The unique fatty acid composition of the nudibranchs is determined by food supply, inherent biosynthetic activities and intracellular symbiotic microorganisms. The potential of nudibranchs as a source of biologically active lipids and fatty acids is also discussed. PMID:25196731

  2. Alterations of the lipid content and fatty acid profile of Chlorella protothecoides under different light intensities.

    PubMed

    Krzemińska, Izabela; Piasecka, Agata; Nosalewicz, Artur; Simionato, Diana; Wawrzykowski, Jacek

    2015-11-01

    Chlorella protothecoides is a valuable source of lipids that may be used for biodiesel production. The present work shows analysis of the potential of photoheterotrophic cultivation of C. protothecoides under various light intensities aiming to identify the conditions with maximal biomass and lipid content. An increase in light intensity was associated with an increased specific growth rate and a shortened doubling time. Also, the relative total lipid content increased from 24.8% to 37.5% with increase of light intensity. The composition of fatty acid methyl esters was affected by light intensity with the C16-18 fatty acids increased from 76.97% to 90.24% of total fatty acids. However, the content of linolenic acids decreased with the increase of the culture irradiance. These studies indicate that cultures irradiated with high light intensities achieve the minimal specifications for biodiesel quality on linolenic acids and thus are suitable for biodiesel production. PMID:26231126

  3. Nucleic acid detection compositions

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann; Dahlberg, James L.

    2008-08-05

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  4. Performance of structured lipids incorporating selected phenolic and ascorbic acids.

    PubMed

    Gruczynska, Eliza; Przybylski, Roman; Aladedunye, Felix

    2015-04-15

    Conditions applied during frying require antioxidant which is stable at these conditions and provides protection for frying oil and fried food. Novel structured lipids containing nutraceuticals and antioxidants were formed by enzymatic transesterification, exploring canola oil and naturally occurring antioxidants such as ascorbic and selected phenolic acids as substrates. Lipozyme RM IM lipase from Rhizomucor miehei was used as biocatalyst. Frying performance and oxidative stability of the final transesterification products were evaluated. The novel lipids showed significantly improved frying performance compared to canola oil. Oxidative stability assessment of the structured lipids showed significant improvement in resistance to oxidative deterioration compared to original canola oil. Interestingly, the presence of ascorbic acid in an acylglycerol structure protected α-tocopherol against thermal degradation, which was not observed for the phenolic acids. Developed structured lipids containing nutraceuticals and antioxidants may directly affect nutritional properties of lipids also offering nutraceutical ingredients for food formulation. PMID:25466089

  5. Nitrogen-deprivation elevates lipid levels in Symbiodinium spp. by lipid droplet accumulation: morphological and compositional analyses.

    PubMed

    Jiang, Pei-Luen; Pasaribu, Buntora; Chen, Chii-Shiarng

    2014-01-01

    Stable cnidarian-dinoflagellate (genus Symbiodinium) endosymbioses depend on the regulation of nutrient transport between Symbiodinium populations and their hosts. It has been previously shown that the host cytosol is a nitrogen-deficient environment for the intracellular Symbiodinium and may act to limit growth rates of symbionts during the symbiotic association. This study aimed to investigate the cell proliferation, as well as ultrastructural and lipid compositional changes, in free-living Symbiodinium spp. (clade B) upon nitrogen (N)-deprivation. The cell proliferation of the N-deprived cells decreased significantly. Furthermore, staining with a fluorescent probe, boron dipyrromethane 493/503 (BODIPY 493/503), indicated that lipid contents progressively accumulated in the N-deprived cells. Lipid analyses further showed that both triacylglycerol (TAG) and cholesterol ester (CE) were drastically enriched, with polyunsaturated fatty acids (PUFA; i.e., docosahexaenoic acid, heneicosapentaenoic acid, and oleic acid) became more abundant. Ultrastructural examinations showed that the increase in concentration of these lipid species was due to the accumulation of lipid droplets (LDs), a cellular feature that have previously shown to be pivotal in the maintenance of intact endosymbioses. Integrity of these stable LDs was maintained via electronegative repulsion and steric hindrance possibly provided by their surface proteins. Proteomic analyses of these LDs identified proteins putatively involved in lipid metabolism, signaling, stress response and energy metabolism. These results suggest that LDs production may be an adaptive response that enables Symbiodinium to maintain sufficient cellular energy stores for survival under the N-deprived conditions in the host cytoplasm. PMID:24475285

  6. Effect of lipid and fatty acid composition of phospholipid vesicles on long-term stability and their response to Staphylococcus aureus and Pseudomonas aeruginosa supernatants.

    PubMed

    Marshall, Serena E; Hong, Sung-Ha; Thet, N T; Jenkins, A Toby A

    2013-06-11

    Phospholipid vesicles have been the focus of attention as potential vehicles for drug delivery, as they are biomimetic, easy to produce, and contain an aqueous compartment which can be used to carry hydrophilic material, such as drugs or dyes. Lipid vesicles used for this purpose present a particular challenge, as they are not especially stable and can rapidly break down and release their contents away from the target area, especially at physiological temperatures/environments. This study aims to investigate optimum methods for vesicle stabilization where the vesicles are employed as part of a system or technology that signals the presence of pathogenic bacteria via the effect of secreted cytolytic virulence factors on a sensor interface. A number of approaches have been investigated and are presented here as a systematic study of the long-term (14 day) stability at 37 °C, and at various pHs. The response of vesicles, both in suspension and within hydrogels, to Staphylococcus aureus (RN 4282) and Pseudomonas aeruginosa (PAO1) whole bacteria, and supernatants from overnight cultures of both (containing secreted proteins but free of cells), was measured via a sensitive encapsulated carboxyfluorescein release assay. The results showed that lipid chain length, cholesterol concentration, and stabilization via photopolymer stable components were critical in achieving stability. Finally, dispersion of the optimum vesicle formulation in hydrogel matrixes was investigated, culminating in the in vivo demonstration of a simple prototype wound dressing. PMID:23668367

  7. Effect of dietary alpha-linolenic fatty acid derived from chia when fed as ground seed, whole seed and oil on lipid content and fatty acid composition of rat plasma.

    PubMed

    Ayerza, Ricardo; Coates, Wayne

    2007-01-01

    Coronary heart disease (CHD) is the most common cause of death in the Western world. In both the USA and the EU it accounts for over 600,000 deaths yearly. Early data showing the benefits n-3 fatty acids provide in preventing CHD disease were obtained using 20:5n-3 and 22:6n-3 fatty acids derived from fish. Recently, however, it has been shown that reduced risks of CHD and other cardiovascular diseases are found with 18:3n-3 fatty acid as well. To determine if 18:3n-3 fatty acids positively influence plasma composition, 32 male Wistar rats were fed ad libitum four isocaloric diets with the energy derived from corn oil (T(1)), whole chia seed (T(2)), ground chia seed (T(3)), or chia oil (T(4)) for 30 days. At the end of the feeding period the rats were sacrificed, and blood samples were analyzed to determine serum CHOL, HDL, LDL, TG content, hemogram, and fatty acid composition. Chia decreased serum TG content and increased HDL content. Only with the T(2) diet was TG significantly (p < 0.05) lower, and only with the T(3) diet was HDL significantly (p < 0.05) higher, than the control diet. Chia significantly (p < 0.05) increased the 18:3n-3, 20:5n-3 and 22:6n-3 plasma contents compared to the control diet, with no significant (p < 0.05) difference among chia diets detected. Significant (p < 0.05) improvement in n-6/n-3 fatty acid ratio was observed for all chia diets when compared to the control. PMID:17356263

  8. Lipid composition in particulate and dissolved organic matter in the Delaware Estuary: Sources and diagenetic patterns

    SciTech Connect

    Mannino, A.; Harvey, H.R.

    1999-08-01

    Dissolved organic matter (DOM) was isolated from surface waters of Delaware Bay along a transect from freshwater to the coastal ocean and fractionated by tangential flow ultrafiltration into high (1--30 kDa; HDOM) and very high (30 kDa--0.2 {micro}m; VHDOM) nominal molecular mass fractions. Carbon content, stable carbon isotopes, and lipid composition were measured for each DOM fraction, and particles collected in parallel. Lipids, excluding hydrocarbons, comprised up to 0.33% of HDOM organic carbon, 1.6% of VHDOM carbon, and 10% of POC, the majority of which were fatty acids. Although lipids comprised a small fraction of HDOM, fatty acids and sterols provided valuable information on the origins of DOM. Molecular composition of particulate and dissolved lipids and bulk stable carbon isotopes demonstrated differences in organic sources along the estuarine gradient with distinct terrestrial signals in the river and turbid middle estuary and an algal signal in the lower estuary and coastal ocean. Both particulate organic matter and VHDOM samples were enriched in lipids on a carbon basis compared to the HDOM fraction, which suggests that the HDOM fraction was less labile than particulate organic matter or VHDOM. Selective degradation of labile lipids by the microbial community can account for the depletions of unsaturated fatty acids, sterols, and phytol within HDOM relative to particles.

  9. Cationic lipid-mediated nucleic acid delivery: beyond being cationic.

    PubMed

    Rao, N Madhusudhana

    2010-03-01

    Realization of the potential of nucleic acids as drugs is intricately linked to their in vivo delivery. Cationic lipids demonstrated tremendous potential as safe, efficient and scalable in vitro carriers of nucleic acids. For in vivo delivery of nucleic acids, the extant two component liposomal preparations consisting of cationic lipids and nucleic acids have been largely found to be insufficient. Being a soft matter, liposomes readily respond to many physiological variables leading to complex component and morphological changes, thus confounding the efforts in a priori identification of a "competent" formulation. In the recent past many chemical moieties that provide advantage in facing the challenges of barriers in vivo, were incorporated into cationic lipids to improve the transfection efficiency. The cationic lipids, essential for DNA condensation and protection, definitely require additional components to be efficient in vivo. In addition, formulations of cationic lipid carriers with non-lipidic components, mainly peptides, have demonstrated success in in vivo transfection. The present review describes some recent successes of in vivo nucleic acid delivery by cationic lipids. PMID:20060819

  10. Milk Fat Content and DGAT1 Genotype Determine Lipid Composition of the Milk Fat Globule Membrane

    PubMed Central

    Argov-Argaman, Nurit; Mida, Kfir; Cohen, Bat-Chen; Visker, Marleen; Hettinga, Kasper

    2013-01-01

    During secretion of milk fat globules, triacylglycerol (TAG) droplets are enveloped by a phospholipid (PL) trilayer. Globule size has been found to be related to polar lipid composition and fat content, and milk fat content and fatty acid composition have been associated with the diacylglycerol acyltransferase 1 (DGAT1) K232A polymorphism; however, the association between the DGAT1 polymorphism and fat globule size and polar lipid composition has not been studied. The ratio between polar and neutral lipids as well as the composition of the polar lipids in milk has industrial as well as nutritional and health implications. Understanding phenotypic and genotypic factors influencing these parameters could contribute to improving milk lipid composition for dairy products. The focus of the present study was to determine the effect of both fat content and DGAT1 polymorphism on PL/TAG ratio, as a marker for milk fat globule size, and detailed PL composition. Milk samples were selected from 200 cows such that there were equal numbers of samples for the different fat contents as well as per DGAT1 genotype. Samples were analyzed for neutral and polar lipid concentration and composition. PL/TAG ratio was significantly associated with both fat content and DGAT1 genotype. Phosphatidylinositol and phosphatidylserine concentrations were associated with fat content*DGAT1 genotype with a stronger association for the AA than the KK genotype. Sphingomyelin concentration tended to interact with fat content*DGAT1 genotype. Phosphatidylethanolamine (PE) concentration showed a biphasic response to fat content, suggesting that multiple biological processes influence its concentration. These results provide a new direction for controlling polar lipid concentration and composition in milk through selective breeding of cows. PMID:23874734

  11. The high content of monoene fatty acids in the lipids of some midwater fishes: family Myctophidae.

    PubMed

    Saito, H; Murata, M

    1996-07-01

    The total lipids of eleven species of Myctophids caught at depths between 20 and 700 m in the northern Pacific Ocean were analyzed using silicic acid column chromatography (lipid classes) and capillary gas chromatography (fatty acid and fatty alcohol composition). The major components in the lipid classes were triacylglycerols or wax esters; triacylglycerols were the dominant acyl neutral lipids (68.1-96.1%) in eight species, and wax esters were found as the dominant lipid (85.5-87.9%) in three species. The major fatty acids and alcohols contained in the wax esters of the three fishes were 18:1n-9, 20:1n-9, 20:1n-11, and 22:1n-11 for fatty acids, and 16:0, 18:1, 20:1 and 22:1 for fatty alcohols. Fatty acids in the triacylglycerols ranging from C14 to C22 were predominantly of even chain length. The major components were 16:0, 16:1n-7, 18:1n-9, 20:1n-11, 22:1n-11, 20:5n-3 (icosapentaenoic acid), and 22:6n-3 (docosahexaenoic acid). In both the triacylglycerols and the wax esters, the major fatty components were monoenoic acids and alcohols. It is suggested from the lipid chemistry of the Myctophids that they may prey on the same organisms as the certain pelagic fishes such as saury and herring, because the large quantities of monoenoic fatty acids are similar to those of saury, herring, and sprats whose lipids originate from their prey organisms such as zooplanktons which are rich in monoenoic wax esters. PMID:8827699

  12. Effect of lipid composition and packing on the adsorption of apolipoproteins to lipid monolayers

    SciTech Connect

    Ibdah, J.A.; Lund-Katz, S.; Phillips, M.C.

    1987-05-01

    The monolayer system has been used to study the effects of lipoprotein surface lipid composition and packing on the affinities of apolipoproteins for the surfaces of lipoprotein particles. The adsorption of apolipoproteins injected beneath lipid monolayers prepared with pure lipids or lipoprotein surface lipids is evaluated by monitoring the surface pressure of the film and the surface concentration (Gamma) of /sup 14/C-labelled apolipoprotein. At a given initial film pressure (..pi../sub i/) there is a higher adsorption of human apo A-I to unsaturated phosphatidylcholine (PC) monolayers compared to saturated PC monolayers (e.g., at ..pi../sub i/ = 10 mN/m, Gamma = 0.35 and 0.06 mg/m/sup 2/ for egg PC and distearoyl PC, respectively, with 3 x 10/sup -4/ mg/ml apo A-I in the subphase). In addition, adsorption of apo A-I is less to an egg sphingomyelin monolayer than to an egg PC monolayer. The adsorption of apo A-I to PC monolayers is decreased by addition of cholesterol. Generally, apo A-I adsorption diminishes as the lipid molecular area decreases. Apo A-I adsorbs more to monolayers prepared with HDL/sub 3/ surface lipids than with LDL surface lipids. These studies suggest that lipoprotein surface lipid composition and packing are crucial factors influencing the transfer and exchange of apolipoproteins among various lipoprotein classes during metabolism of lipoprotein particles.

  13. Lipid peroxidation during n-3 fatty acid and vitamin E supplementation in humans.

    PubMed

    Allard, J P; Kurian, R; Aghdassi, E; Muggli, R; Royall, D

    1997-05-01

    The purpose of this study was to investigate in healthy humans the effect of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) intake, alone or in combination with dL-alpha-tocopherol acetate (vitamin E) supplements on lipid peroxidation. Eighty men were randomly assigned in a double-blind fashion to take daily for 6 wk either menhaden oil (6.26 g, n-3 fatty acids) or olive oil supplements with either vitamin E (900 IU) or its placebo. Antioxidant vitamins, phospholipid composition, malondialdehyde (MDA), and lipid peroxides were measured in the plasma at baseline and week 6. At the same time, breath alkane output was measured. Plasma alpha-tocopherol concentration increased in those receiving vitamin E (P < 0.0001). In those supplemented with n-3 fatty acids, EPA and DHA increased in plasma phospholipids (P < 0.0001) and plasma MDA and lipid peroxides increased (P < 0.001 and P < 0.05, respectively). Breath alkane output did not change significantly and vitamin E intake did not prevent the increase in lipid peroxidation during menhaden oil supplementation. The results demonstrate that supplementing the diet with n-3 fatty acids resulted in an increase in lipid peroxidation, as measured by plasma MDA release and lipid peroxide products, which was not suppressed by vitamin E supplementation. PMID:9168460

  14. GROWTH AND VARIATIONS IN LIPID CLASS AND FATTY ACID COMPOSITION DURING LARVAL DEVELOPMENT OF THE STONE CRAB, MENIPPE ADINA WILLIAMS AND FELDER, 1986

    EPA Science Inventory

    Larval development in decapod crustaceans is marked by variable growth patterns and changes in weight and biochemical composition. Larvae of the stone crab, Menippe adina, were mass-reared under laboratory conditions (28|C; 20o/ooS) from hatching to the megalopal stage. Growth in...

  15. GROWTH AND VARIATIONS IN LIPID CLASS AND FATTY ACID COMPOSITION DURING LARVAL DEVELOPMENT OF THE STONE CRAB, MENIPPE ADINA WILLIAMS AND FELDER, 1986.

    EPA Science Inventory

    Larval development in decapod crustaceans is marked by variable growth patterns and changes in weight and biochemical composition. Larvae of the stone crab, Menippe adina, were mass-reared under laboratory conditions (28?C; 20o/ooS) from hatching to the megalopa stage. Growth in...

  16. Fatty acid methyl ester profiles of bat wing surface lipids.

    PubMed

    Pannkuk, Evan L; Fuller, Nathan W; Moore, Patrick R; Gilmore, David F; Savary, Brett J; Risch, Thomas S

    2014-11-01

    Sebocytes are specialized epithelial cells that rupture to secrete sebaceous lipids (sebum) across the mammalian integument. Sebum protects the integument from UV radiation, and maintains host microbial communities among other functions. Native glandular sebum is composed primarily of triacylglycerides (TAG) and wax esters (WE). Upon secretion (mature sebum), these lipids combine with minor cellular membrane components comprising total surface lipids. TAG and WE are further cleaved to smaller molecules through oxidation or host enzymatic digestion, resulting in a complex mixture of glycerolipids (e.g., TAG), sterols, unesterified fatty acids (FFA), WE, cholesteryl esters, and squalene comprising surface lipid. We are interested if fatty acid methyl ester (FAME) profiling of bat surface lipid could predict species specificity to the cutaneous fungal disease, white nose syndrome (WNS). We collected sebaceous secretions from 13 bat spp. using Sebutape(®) and converted them to FAME with an acid catalyzed transesterification. We found that Sebutape(®) adhesive patches removed ~6× more total lipid than Sebutape(®) indicator strips. Juvenile eastern red bats (Lasiurus borealis) had significantly higher 18:1 than adults, but 14:0, 16:1, and 20:0 were higher in adults. FAME profiles among several bat species were similar. We concluded that bat surface lipid FAME profiling does not provide a robust model predicting species susceptibility to WNS. However, these results provide baseline data that can be used for lipid roles in future ecological studies, such as life history, diet, or migration. PMID:25227993

  17. Effect of exposure to chlorpyrifos on the cuticular and internal lipid composition of Blattella germanica males.

    PubMed

    Paszkiewicz, Monika; Sikora, Agata; Boguś, Mieczysława I; Włóka, Emilia; Stepnowski, Piotr; Gołębiowski, Marek

    2016-02-01

    The results of our research on the cuticular and internal lipids of Blattella germanica males provide new information on variation in the composition of the cuticular and internal lipids of B. germanica males after exposure to the presence of the insecticide. gas chromatography and gas chromatography-mass spectrometry analyses were used to identify and quantify the cuticular and internal lipid composition in males and males exposed to insecticide. There were significantly more acids having an even number of carbon atoms in the molecule, and these were also generally in higher concentrations. The following acids were in a higher concentration: C16:0 and C18:1, C18:2, C18:0. In both males and males exposed to insecticide, 24 fatty acids ranging from C6 to C22 were determined. However, there was a significantly higher content of fatty acids in the surface lipids of B. germanica males after exposure to insecticide. Our results indicate a higher content of n-alkanes, sterols, particularly cholesterol, fatty acids, and fatty acid methyl esters in the B. germanica surface after exposure to chlorpyrifos than in males that were not exposed. PMID:25641824

  18. Long-chain n-3 fatty acids enhance neonatal insulin-regulated protein metabolism in piglets by differentially altering muscle lipid composition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the role of long-chain n-3 polyunsaturated fatty acids (LCn-3PUFAs) of muscle phospholipids in the regulation of neonatal metabolism. Twenty-eight piglets were weaned at 2 days of age and raised on one of two milk formulas that consisted of either a control formula supplying ...

  19. Effects of γ-irradiation on the lipid composition of inner sprout of garlic

    NASA Astrophysics Data System (ADS)

    Perez, M. B.; Curzio, O. A.; Aveldaño, M. I.; Croci, C. A.

    1998-06-01

    The aim of this work was to evaluate the effects of a dose of 60.0 Gy of 60Co γ-rays on the concentration and composition of lipids from the inner sprout of garlic cloves. 210 days after treatment, the levels of phospholipids, triacylglycerols and glycolipids were significantly reduced as a result of radiation. Levels of polyunsaturated fatty acids from these lipid fractions such as linoleic acids showed a similar trend of decrease. Irradiation also brought about an increase in diacylglycerols. Results are correlated with sprouting inhibition induced by γ-irradiation in garlic.

  20. Long-chain n-3 fatty acids enhance neonatal insulin-regulated protein metabolism in piglets by differentially altering muscle lipid composition.

    PubMed

    Bergeron, Karen; Julien, Pierre; Davis, Teresa A; Myre, Alexandre; Thivierge, M Carole

    2007-11-01

    This study investigated the role of long-chain n-3 polyunsaturated fatty acids (LCn-3PUFAs) of muscle phospholipids in the regulation of neonatal metabolism. Twenty-eight piglets were weaned at 2 days of age and raised on one of two milk formulas that consisted of either a control formula supplying 0% or a formula containing 3.5% LCn-3PUFAs until 10 or 28 days of age. There was a developmental decline in the insulin sensitivity of amino acid disposal in control pigs during the first month of life, with a slope of -2.24 micromol.kg(-1).h(-1) (P = 0.01) per unit of insulin increment, as assessed using hyperinsulinemic-euglycemic-euaminoacidemic clamps. LCn-3PUFA feeding blunted this developmental decline, resulting in differing insulin sensitivities (P < 0.001). When protein metabolism was assessed under parenteral feeding-induced hyperinsulinemia, LCn-3PUFAs reduced by 16% whole body oxidative losses of amino acids (from 238 to 231 micromol.kg(-1).h(-1); P = 0.06), allowing 41% more amino acids to accrete into body proteins (from 90 to 127 micromol.kg(-1).h(-1); P = 0.06). The fractional synthetic rate of muscle mixed proteins remained unaltered by the LCn-3PUFA feeding. However, LCn-3PUFAs retarded a developmental increase in the essential-to-nonessential amino acid ratio of the muscle intracellular free pool (P = 0.05). Overall, alterations in metabolism were concomitant with a preferential incorporation of LCn-3PUFAs into muscle total membrane phospholipids (P < 0.001), in contrast to intramuscular triglycerides. These results underscore the potential role of LCn-3PUFAs as regulators of different aspects of protein metabolism in the neonate. PMID:17673528

  1. Long-chain n-3 fatty acids enhance neonatal insulin-regulated protein metabolism in piglets by differentially altering muscle lipid composition

    PubMed Central

    Bergeron, Karen; Julien, Pierre; Davis, Teresa A.; Myre, Alexandre; Thivierge, M. Carole

    2009-01-01

    This study investigated the role of long-chain n-3 polyunsaturated fatty acids (LCn-3PUFAs) of muscle phospholipids in the regulation of neonatal metabolism. Twenty-eight piglets were weaned at 2 days of age and raised on one of two milk formulas that consisted of either a control formula supplying 0% or a formula containing 3.5% LCn-3PUFAs until 10 or 28 days of age. There was a developmental decline in the insulin sensitivity of amino acid disposal in control pigs during the first month of life, with a slope of −2.24 μmol·kg−1·h−1 (P = 0.01) per unit of insulin increment, as assessed using hyperinsulinemic-euglycemic-euaminoacidemic clamps. LCn-3PUFA feeding blunted this developmental decline, resulting in differing insulin sensitivities (P < 0.001). When protein metabolism was assessed under parenteral feeding-induced hyperinsulinemia, LCn-3PUFAs reduced by 16% whole body oxidative losses of amino acids (from 238 to 231 μmol·kg−1·h−1; P = 0.06), allowing 41% more amino acids to accrete into body proteins (from 90 to 127 μmol·kg−1·h−1; P = 0.06). The fractional synthetic rate of muscle mixed proteins remained unaltered by the LCn-3PUFA feeding. However, LCn-3PUFAs retarded a developmental increase in the essential-to-nonessential amino acid ratio of the muscle intracellular free pool (P = 0.05). Overall, alterations in metabolism were concomitant with a preferential incorporation of LCn-3PUFAs into muscle total membrane phospholipids (P < 0.001), in contrast to intramuscular triglycerides. These results underscore the potential role of LCn-3PUFAs as regulators of different aspects of protein metabolism in the neonate. PMID:17673528

  2. Microalgal lipid droplets: composition, diversity, biogenesis and functions.

    PubMed

    Goold, Hugh; Beisson, Fred; Peltier, Gilles; Li-Beisson, Yonghua

    2015-04-01

    Lipid droplet is the major site of neutral lipid storage in eukaryotic cells, and increasing evidence show its involvement in numerous cellular processes such as lipid homeostasis, signaling, trafficking and inter-organelle communications. Although the biogenesis, structure, and functions of lipid droplets have been well documented for seeds of vascular plants, mammalian adipose tissues, insects and yeasts, relative little is known about lipid droplets in microalgae. Over the past 5 years, the growing interest of microalgae as a platform for biofuel, green chemicals or value-added polyunsaturated fatty acid production has brought algal lipid droplets into spotlight. Studies conducted on the green microalga Chlamydomonas reinhardtii and other model microalgae such as Haematococcus and Nannochloropsis species have led to the identification of proteins associated with lipid droplets, which include putative structural proteins different from plant oleosins and animal perilipins, as well as candidate proteins for lipid biosynthesis, mobilization, trafficking and homeostasis. Biochemical and microscopy studies have also started to shed light on the role of chloroplasts in the biogenesis of lipid droplets in Chlamydomonas. PMID:25433857

  3. [Fatty acid and lipid peroxidation in human atherosclerosis].

    PubMed

    Loeper, J; Goy, J; Emerit, J; Rozensztajn, L; Jeny, C; Bedu, O

    1983-06-01

    Plasma fatty acids and lipid peroxidation were studied in human atherosclerosis. Analysis of fatty acids in 16 controls and 32 hyperlipidemic patients showed, in the latter, a decrease in saturated fatty acids, especially palmitic and stearic acids, and an increase in unsaturated fatty acids, especially arachidonic acid. Compared to hyperlipidemic patients without arterial injury, patients with arterial injury exhibit a significant increase in malonaldehyde (MDA). In the former, MDA concentrations are significantly increased compared to controls. Therefore, peroxidation of unsaturated fatty acids may have a deleterious effect on arteries in atheroma, through the release of toxic endoperoxydes and the metabolization of arachidonic acid into thromboxane, which is a platelet aggregator. Lipid peroxidation can also be demonstrated in other diseases: we found very high MDA concentration in 11 alcoholic patients (alcoholic hepatitis, cirrhosis) and 6 patients with inflammatory conditions such as Crohn disease. PMID:6308785

  4. Solvent-exposed lipid tail protrusions depend on lipid membrane composition and curvature.

    PubMed

    Tahir, Mukarram A; Van Lehn, Reid C; Choi, S H; Alexander-Katz, Alfredo

    2016-06-01

    The stochastic protrusion of hydrophobic lipid tails into solution, a subclass of hydrophobic membrane defects, has recently been shown to be a critical step in a number of biological processes like membrane fusion. Understanding the factors that govern the appearance of lipid tail protrusions is critical for identifying membrane features that affect the rate of fusion or other processes that depend on contact with solvent-exposed lipid tails. In this work, we utilize atomistic molecular dynamics simulations to characterize the likelihood of tail protrusions in phosphotidylcholine lipid bilayers of varying composition, curvature, and hydration. We distinguish two protrusion modes corresponding to atoms near the end of the lipid tail or near the glycerol group. Through potential of mean force calculations, we demonstrate that the thermodynamic cost for inducing a protrusion depends on tail saturation but is insensitive to other bilayer structural properties or hydration above a threshold value. Similarly, highly curved vesicles or micelles increase both the overall frequency of lipid tail protrusions as well as the preference for splay protrusions, both of which play an important role in driving membrane fusion. In multi-component bilayers, however, the incidence of protrusion events does not clearly depend on the mismatch between tail length or tail saturation of the constituent lipids. Together, these results provide significant physical insight into how system components might affect the appearance of protrusions in biological membranes, and help explain the roles of composition or curvature-modifying proteins in membrane fusion. PMID:26828121

  5. The protein and lipid composition of the membrane of milk fat globules depends on their size.

    PubMed

    Lu, Jing; Argov-Argaman, Nurit; Anggrek, Jeni; Boeren, Sjef; van Hooijdonk, Toon; Vervoort, Jacques; Hettinga, Kasper Arthur

    2016-06-01

    In bovine milk, fat globules (MFG) have a heterogeneous size distribution with diameters ranging from 0.1 to 15 µm. Although efforts have been made to explain differences in lipid composition, little is known about the protein composition of MFG membranes (MFGM) in different sizes of MFG. In this study, protein and lipid analyses were combined to study MFG formation and secretion. Two different sized MFG fractions (7.6±0.9 µm and 3.3±1.2 µm) were obtained by centrifugation. The protein composition of MFGM in the large and small MFG fractions was compared using mass-spectrometry-based proteomics techniques. The lipid composition and fatty acid composition of MFG was determined using HPLC-evaporative light-scattering detector and gas chromatography, respectively. Two frequently studied proteins in lipid droplet biogenesis, perilipin-2 and TIP47, were increased in the large and small MFG fractions, respectively. In the large MFG fraction, besides perilipin-2, cytoplasmic vesicle proteins (heat shock proteins, 14-3-3 proteins, and Rabs), microfilaments and intermediate filament-related proteins (actin and vimentin), host defense proteins (cathelicidins), and phosphatidylinositol were higher in concentration. On the other hand, cholesterol synthesis enzymes [lanosterol synthase and sterol-4-α-carboxylate 3-dehydrogenase (decarboxylating)], cholesterol, unsaturated fatty acids, and phosphatidylethanolamine were, besides TIP47, higher in concentration in the small MFG fraction. These results suggest that vesicle proteins, microfilaments and intermediate filaments, cholesterol, and specific phospholipids play an important role in lipid droplet growth, secretion, or both. The observations from this study clearly demonstrated the difference in protein and lipid composition between small and large MFG fractions. Studying the role of these components in more detail in future experiments may lead to a better understanding of fat globule formation and secretion. PMID

  6. Influence of membrane phospholipid composition and structural organization on spontaneous lipid transfer between membranes.

    PubMed

    Pankov, R; Markovska, T; Antonov, P; Ivanova, L; Momchilova, A

    2006-09-01

    Investigations were carried out on the influence of phospholipid composition of model membranes on the processes of spontaneous lipid transfer between membranes. Acceptor vesicles were prepared from phospholipids extracted from plasma membranes of control and ras-transformed fibroblasts. Acceptor model membranes with manipulated levels of phosphatidylethanolamine (PE), sphingomyelin and phosphatidic acid were also used in the studies. Donor vesicles were prepared of phosphatidylcholine (PC) and contained two fluorescent lipid analogues, NBD-PC and N-Rh-PE, at a self-quenching concentration. Lipid transfer rate was assessed by measuring the increase of fluorescence in acceptor membranes due to transfer of fluorescent lipid analogues from quenched donor to unquenched acceptor vesicles. The results showed that spontaneous NBD-PC transfer increased upon fluidization of acceptor vesicles. In addition, elevation of PE concentration in model membranes was also accompanied by an increase of lipid transfer to all series of acceptor vesicles. The results are discussed with respect to the role of lipid composition and structural order of cellular plasma membranes in the processes of spontaneous lipid exchange between membrane bilayers. PMID:17197729

  7. Molecular and isotopic composition of lipids in modern and fossil bivalve shells: Records of paleoenvironmental change?

    SciTech Connect

    CoBabe, E.A.

    1995-12-31

    Suites of lipids residing in situ in modern and fossil bivalve shells offer new possibilities for the study of paleoecology and paleoclimatology. Distributions of carbon isotopic compositions of modem shell lipids suggests that many of these compounds, including alkanes, sterols, fatty acids, ketones and phytadienes, are derived from the bivalves and not directly from the surrounding environment. The occurrence of fatty acids in modem and fossil shell material opens up the possibility that saturation levels of these compounds may be used as paleothermometers. To date, the utility of fatty acids in paleoclimate studies has been limited because of the swift breakdown of these compounds in sediment. However, initial results indicate that fatty acids in bivalve shells retain their original structure for at least several million years. Comparison of modem bivalve shell fatty acids from tropical, temperate and polar nearshore marine systems will be presented, along with analogous fossil data.

  8. Changes in Membrane Lipid Composition during Saline Growth of the Fresh Water Cyanobacterium Synechococcus 6311 1

    PubMed Central

    Huflejt, Margaret E.; Tremolieres, Antoine; Pineau, Bernard; Lang, Johanna K.; Hatheway, John; Packer, Lester

    1990-01-01

    Growth of Synechococcus 6311 in the presence of 0.5 molar NaCl is accompanied by significant changes in membrane lipid composition. Upon transfer of the cells from a `low salt' (0.015 molar NaCl) to `high salt' (0.5 molar NaCl) growth medium at different stages of growth, a rapid decrease in palmitoleic acid (C16:1Δ9) content was accompanied by a concomitant increase in the amount of the two C18:1 acids (C18:1Δ9, C18:1Δ11), with the higher increase in oleic acid C18:1Δ9 content. These changes began to occur within the first hour after the sudden elevation of NaCl and progressed for about 72 hours. The percentage of palmitic acid (C16:0) and stearic acid (C18:0) remained almost unchanged in the same conditions. High salt-dependent changes within ratios of polar lipid classes also occurred within the first 72 hours of growth. The amount of monogalactosyl diacylglycerol (bilayer-destabilizing lipid) decreased and that of the digalactosyl diacylglycerol (bilayer-stabilizing lipid) increased. Consequently, in the three day old cells, the ratio of monogalactosyl diacylglycerol to digalactosyl diacylglycerol in the membranes of high salt-grown cells was about half of that in the membranes of low salt-grown cells. The total content of anionic lipids (phosphatidylglycerol and sulfoquinovosyl diacylglycerol) was always higher in the isolated membranes and the whole cells from high salt-grown cultures compared to that in the cells and membranes from low salt-grown cultures. All the observed rearrangements in the lipid environment occurred in both thylakoid and cytoplasmic membranes. Similar lipid composition changes, however, to a much lesser extent, were also observed in the aging, low salt-grown cultures. The observed changes in membrane fatty acids and lipids composition correlate with the alterations in electron and ion transport activities, and it is concluded that the rearrangement of the membrane lipid environment is an essential part of the process by which cells

  9. Changes in membrane lipid composition during saline growth of the fresh water cyanobacterium Synechococcus 6311

    NASA Technical Reports Server (NTRS)

    Huflejt, M. E.; Tremolieres, A.; Pineau, B.; Lang, J. K.; Hatheway, J.; Packer, L.

    1990-01-01

    Growth of Synechococcus 6311 in the presence of 0.5 molar NaCl is accompanied by significant changes in membrane lipid composition. Upon transfer of the cells from a low salt' (0.015 molar NaCl) to high salt' (0.5 molar NaCl) growth medium at different stages of growth, a rapid decrease in palmitoleic acid (C16:1 delta 9) content was accompanied by a concomitant increase in the amount of the two C18:1 acids (C18:1 delta 9, C18:1 delta 11), with the higher increase in oleic acid C18:1 delta 9 content. These changes began to occur within the first hour after the sudden elevation of NaCl and progressed for about 72 hours. The percentage of palmitic acid (C16:0) and stearic acid (C18:0) remained almost unchanged in the same conditions. High salt-dependent changes within ratios of polar lipid classes also occurred within the first 72 hours of growth. The amount of monogalactosyl diacylglycerol (bilayer-destabilizing lipid) decreased and that of the digalactosyl diacylglycerol (bilayer-stabilizing lipid) increased. Consequently, in the three day old cells, the ratio of monogalactosyl diacylglycerol to digalactosyl diacylglycerol in the membranes of high salt-grown cells was about half of that in the membranes of low salt-grown cells. The total content of anionic lipids (phosphatidylglycerol and sulfoquinovosyl diacylglycerol) was always higher in the isolated membranes and the whole cells from high salt-grown cultures compared to that in the cells and membranes from low salt-grown cultures. All the observed rearrangements in the lipid environment occurred in both thylakoid and cytoplasmic membranes. Similar lipid composition changes, however, to a much lesser extent, were also observed in the aging, low salt-grown cultures. The observed changes in membrane fatty acids and lipids composition correlate with the alterations in electron and ion transport activities, and it is concluded that the rearrangement of the membrane lipid environment is an essential part of the

  10. Lipid composition of the Antarctic fish Pleuragramma antarcticum. Influence of age class

    NASA Astrophysics Data System (ADS)

    Mayzaud, P.; Chevallier, J.; Tavernier, E.; Moteki, M.; Koubbi, P.

    2011-08-01

    Larvae and juvenile stages of Pleuragramma antarcticum have been collected in the Dumont D’Urville Sea (East Antarctica) during summer 2008 on board the TRV Umitaka Maru during the CEAMARC survey. Detailed analyses of their lipid class and fatty acid compositions were carried out. P. antarcticum showed a pronounced ontogenic lipid accumulation with increasing size. Larvae displayed a dominance of polar lipids (83% of total lipids) and low percentage of triglycerides (7%). Conversely juveniles showed an increasing accumulation of triglycerides (up to 72.4%). The fatty acid composition of polar lipids remained rather stable between stages with 22:6n-3 and 20:5n-3 as dominant contributors. The relatively minor ontogenic changes, e.g. increase of monounsaturated and decrease of C18 polyunsaturated fatty acids, may reflect the influence of differences in diet. Triglycerides showed that all three age classes are well segregated in term of fatty acid composition. Larvae triglycerides are characterized by significant percentages of 16:0, 20:5n-3, 20:6n-3 and to a minor extent 18:4n-3, which suggest a prymnesiophyte based diet. Juveniles are characterized by larger percentages of C20:1 and C22:1 acids, considered as markers of Calanus type copepods. The increasing contribution of 18:1n-9 in the triglycerides of the older juveniles suggests a gradual and increasing shift from a copepod dominant diet to an euphausiid dominant diet. Fatty acid trophic markers pattern suggests a shift from a phytophagous and omnivorous diet for larvae to a carnivorous diet for juveniles.

  11. Effects of dietary n-3 fatty acids and vitamin C on semen characteristics, lipid composition of sperm and blood metabolites in fat-tailed Moghani rams.

    PubMed

    Jafaroghli, M; Abdi-Benemar, H; Zamiri, M J; Khalili, B; Farshad, A; Shadparvar, A A

    2014-06-10

    Sixteen fertile rams were randomly allotted to four groups and fed either of the four diets for 14 weeks: (1) control diet (COD) without fish oil (FO) and vitamin C (VC), (2) diet containing 2.5% FO (FOD), (3) diet containing 300 mg/kg DM VC (VCD), and (4) diet containing 2.5% FO and 300 mg/kg DM VC (FCD). Semen was collected at 14-d intervals from 1 April to 10 July (out of the physiologic breeding season in Iran). Semen volume and percentages of motile and progressively motile sperm were increased by FO and VC feeding. A significant interaction was also found between FOD and VCD on motility and progressive motility percentage (P<0.05). HOS-test and percentage of sperm with normal acrosome improved significantly by FO and VC. Rams fed FCD had better HOS-test and higher proportion of sperm with normal acrosome than rams in other groups (82.4 and 93.6%, respectively). Diets containing FO and FO and VC increased the proportion of docosahexaenoic acid in sperm (P<0.05). The activity of lactate dehydrogenase in the seminal fluid was significantly affected by VC and the interaction between FO and VC (P<0.05). Blood metabolites, except glucose, were affected positively by FO. The results showed that dietary supplementation with FO and VC improved seminal quality and may have beneficial effects on fertility in Moghani rams. PMID:24745668

  12. Fatty Acid and Lipid Transport in Plant Cells.

    PubMed

    Li, Nannan; Xu, Changcheng; Li-Beisson, Yonghua; Philippar, Katrin

    2016-02-01

    Fatty acids (FAs) and lipids are essential - not only as membrane constituents but also for growth and development. In plants and algae, FAs are synthesized in plastids and to a large extent transported to the endoplasmic reticulum for modification and lipid assembly. Subsequently, lipophilic compounds are distributed within the cell, and thus are transported across most membrane systems. Membrane-intrinsic transporters and proteins for cellular FA/lipid transfer therefore represent key components for delivery and dissemination. In addition to highlighting their role in lipid homeostasis and plant performance, different transport mechanisms for land plants and green algae - in the model systems Arabidopsis thaliana, Chlamydomonas reinhardtii - are compared, thereby providing a current perspective on protein-mediated FA and lipid trafficking in photosynthetic cells. PMID:26616197

  13. Lipid and polymeric carrier-mediated nucleic acid delivery

    PubMed Central

    Zhu, Lin; Mahato, Ram I

    2010-01-01

    Importance of the field Nucleic acids such as plasmid DNA, antisense oligonucleotide, and RNA interference (RNAi) molecules, have a great potential to be used as therapeutics for the treatment of various genetic and acquired diseases. To design a successful nucleic acid delivery system, the pharmacological effect of nucleic acids, the physiological condition of the subjects or sites, and the physicochemical properties of nucleic acid and carriers have to be thoroughly examined. Areas covered in this review The commonly used lipids, polymers and corresponding delivery systems are reviewed in terms of their characteristics, applications, advantages and limitations. What the reader will gain This article aims to provide an overview of biological barriers and strategies to overcome these barriers by properly designing effective synthetic carriers for nucleic acid delivery. Take home message A thorough understanding of biological barriers and the structure–activity relationship of lipid and polymeric carriers is the key for effective nucleic acid therapy. PMID:20836625

  14. A mutant of Arabidopsis deficient in desaturation of palmitic acid in leaf lipids

    SciTech Connect

    Kunst, L.; Somerville, C. ); Browse, J. )

    1989-07-01

    The overall fatty acid composition of leaf lipids in a mutant of Arabidopsis thaliana was characterized by elevated amounts of palmitic acid and a decreased amount of unsaturated 16-carbon fatty acids as a consequence of a single nuclear mutation. Quantitative analysis of the fatty acid composition of individual lipids suggested that the mutant is deficient in the activity of a chloroplast {omega}9 fatty acid desaturase which normally introduces a double bond in 16-carbon acyl chains esterified to monogalactosyldiacylglycerol (MGD). The mutant exhibited an increased ratio of 18- to 16-carbon fatty acids in MGD due to a change in the relative contribution of the prokaryotic and eukaryotic pathways of lipid biosynthesis. This appears to be a regulated response to the loss of chloroplast {omega}9 desaturase and presumably reflects a requirement for polyunsaturated fatty acids for the normal assembly of chloroplast membranes. The reduction in mass of prokaryotic MGD species involved both a reduction in synthesis of MGD by the prokaryotic pathway and increased turnover of MGD molecular species which contain 16:0.

  15. Fatty acid composition of the edible sea cucumber Athyonidium chilensis.

    PubMed

    Careaga, Valeria P; Muniain, Claudia; Maier, Martas S

    2013-04-01

    The edible sea cucumber Athyonidium chilensis is a fishery resource of high commercial value in Chile, but no information on its lipid and fatty acid composition has been previously reported. Phospholipids were the major lipid contents of the ethanolic extracts of tubules, internal organs and body wall of A. chilensis. Saturated fatty acids predominated in tubule phospholipids (40.69%), while in internal organs and body wall phospholipids, the monounsaturated fatty acids were in higher amounts (41.99% and 37.94%, respectively). The main polyunsaturated fatty acids in phospholipids were C20 : 2ω-6, arachidonic (C20 : 4ω-6) and eicosapentaenoic (C20 : 5ω-3) acids. These results demonstrate for the first time that A. chilensis is a valuable food for human consumption in terms of fatty acids. PMID:22583008

  16. Dependence of norfloxacin diffusion across bilayers on lipid composition.

    PubMed

    Purushothaman, Sowmya; Cama, Jehangir; Keyser, Ulrich F

    2016-02-21

    Antibiotic resistance is a growing concern in medicine and raises the need to develop and design new drug molecules that can efficiently inhibit bacterial replication. Spurring the passive uptake of the drug molecules is an obvious solution. However our limited understanding of drug-membrane interactions due to the presence of an overwhelming variety of lipids constituting cellular membranes and the lack of facile tools to probe the bio-physical interactions between drugs and lipids imposes a major challenge towards developing new drug molecules that can enter the cell via passive diffusion. Here, we used a label-free micro-fluidic platform combined with giant unilamellar lipid vesicles to investigate the permeability of membranes containing mixtures of DOPE and DOPG in DOPC, leading to a label-free measurement of passive membrane-permeability of autofluorescent antibiotics. A fluoroquinolone drug, norfloxacin was used as a case study. Our results indicate that the diffusion of norfloxacin is strongly dependent on the lipid composition which is not expected from the traditional octanol-lipid partition co-efficient assay. The anionic lipid, DOPG, slows the diffusion process whereas the diffusion across liposomes containing DOPE increases with higher DOPE concentration. Our findings emphasise the need to investigate drug-membrane interactions with focus on the specificity of drugs to lipids for efficient drug delivery, drug encapsulation and targeted drug-delivery. PMID:26768751

  17. Stabilization of composition fluctuations in mixed membranes by hybrid lipids

    NASA Astrophysics Data System (ADS)

    Safran, Samuel; Palmieri, Benoit

    2013-03-01

    A ternary mixture model is proposed to describe composition fluctuations in mixed membranes composed of saturated, unsaturated and hybrid lipids. The asymmetric hybrid lipid has one saturated and one unsaturated hydrocarbon chain and it can reduce the packing incompatibility between saturated and unsaturated lipids. A methodology to recast the free-energy of the lattice in terms of a continuous isotropic field theory is proposed and used to analyze composition fluctuations above the critical temperature. The effect of hybrid lipids on fluctuations domains rich in saturated/unsaturated lipids is predicted. The correlation length of such fluctuations decreases significantly with increasing amounts of hybrids even if the temperature is maintained close to the critical temperature. This provides an upper bound for the domain sizes expected in rafts stabilized by hybrids, above the critical temperature. When the hybrid composition of the membrane is increased further, a crossover value is found above which ``stripe-like'' fluctuations are observed. The wavelength of these fluctuations decreases with increasing hybrid fraction and tends toward a molecular size in a membrane that contains only hybrids.

  18. Linoleic acid stimulates neutral lipid accumulation in lipid droplets of maturing bovine oocytes.

    PubMed

    Carro, M; Buschiazzo, J; Ríos, G L; Oresti, G M; Alberio, R H

    2013-03-01

    Linoleic acid (LA) is a polyunsaturated fatty acid present in high concentrations in bovine follicular fluid; when added to maturation culture media, it affects oocyte competence (depending on the type and concentration of LA used). To date, little is known about the effective level of incorporation of LA and there is apparently no information regarding its esterification into various lipid fractions of the oocyte and its effect on neutral lipid storage. Therefore, the objective was to assess the uptake and subcellular lipid distribution of LA by analyzing incorporation of radiolabeled LA into oocyte polar and neutral lipid classes. The effects of various concentrations of LA on the nuclear status and cytoplasmic lipid content of bovine oocytes matured in vitro was also analyzed, with particular emphasis on intermediate concentrations of LA. Neutral lipids stored in lipid droplets were quantified with a fluorescence approach. Linoleic acid at 9 and 43 μM did not affect the nuclear status of oocytes matured in vitro, and 100 μM LA inhibited germinal vesicle breakdown, resulting in a higher percentage of oocytes arrested at the germinal state (43.5 vs. 3.0 in controls; P < 0.05). Bovine oocytes actively incorporated LA from the maturation medium (83.4 pmol LA per 100 oocytes at 22 hours of incubation; P < 0.05) and metabolized it mainly into major lipid classes, e.g., triacylglycerols and phospholipids (61.1% and 29.3%, respectively). Supplementation of the maturation medium with LA increased triacylglycerol accumulation in cytoplasmic lipid droplets at all concentrations assayed (P < 0.05). In conclusion, LA added to a defined maturation medium at concentrations that did not alter the nuclear status of bovine oocytes matured in vitro (9 and 43 μM) improved their quality by increasing the content of neutral lipids stored in lipid droplets. By directing the free fatty acid (LA) to triacylglycerol synthesis pathways and increasing the degree of unsaturation of

  19. Effect of salinity on moisture content, pigment system, and lipid composition in Ephedra alata Decne.

    PubMed

    Alqarawi, A A; Hashem, Abeer; Abd Allah, E F; Alshahrani, T S; Huqail, Asma A

    2014-03-01

    The present work was carried out to uncover the effect of salinity stress on shoot moisture percentage, pigment content and lipid composition of Ephedra alata Decne. The results suggested that salinity caused significant decrease in plant moisture content. The chl. a, b and carotenoids showed significant decrease with increasing concentration of salt. Total pigment content also showed decline at all salt stress levels. Salt stress caused significant decrease in total lipids (TL), triacylglycerol (TG) and sterol (S) accompanied with an increase in diacylglycerol (DG), sterol ester (SE), and non-esterified fatty acids (FAA) of E. alata. Moreover, saline stress caused significant decrease in all phospholipid fractions except phosphatidic acid which increases during salt stress. Salinity stress resulted in increase of saturated fatty acids and decreases the percentage of un-saturated fatty acids in E. alalta. PMID:24561895

  20. Dietary lipids from marine unicellular algae enhance the amount of liver and blood omega-3 fatty acids in rats.

    PubMed

    Sukenik, A; Takahashi, H; Mokady, S

    1994-01-01

    The nutritional effect of omega-3 (omega 3) polyenoic fatty acids, originating from marine unicellular algae or from fish oil, on the liver and blood lipids was studied in weanling rats fed for 2 weeks on control or experimental diets. Isolipid experimental diets containing either 10% marine microalgae or algal lipids or fish (capelin) oil substituting part (40%) or all of the soybean oil of the control diet. The algae employed were Nannochloropsis sp. or Isochrysis galbana, which are rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), respectively. Cell disruption improved the digestibility of the Nannochloropsis biomass. Diets containing algal meal significantly reduced the relative abundance of arachidonic acid (AA) in the blood and liver lipids and caused a significant increase in the percentage of the omega 3 polyunsaturated fatty acids (PUFA). Feeding Nannochloropsis lipids resulted in a similar effect on the plasma and liver fatty acid pattern as that of a diet containing disrupted cells of Nannochloropsis biomass. In comparison, the response of the plasma and liver lipids to capelin oil was characterized by a further reduction in the abundance of AA and a significant elevation in the percentage of EPA and DHA. These differences are probably due to the variations in the fatty acid composition and not to the fact that omega 3 fatty acids are associated with different lipid classes in these lipid sources. Based on the present study, it is postulated that certain marine unicellular algae can be used as a nutritional source for omega 3 PUFA. PMID:8067689

  1. Stability of lipid encapsulated phenolic acid particles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenolic compounds such as ferulic acid and p-coumaric acids are potential bioactive additives for use in animal feeds to replace current antioxidants and antimicrobial compounds. These compounds are ubiquitous in plants and may be obtained from commodity grain crops and waste biomass. Encapsulation...

  2. Yogurt Fermentation in the Presence of Starch-Lipid Composite

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effect of Starch-lipid composites (SLC) on the fermentation of set-style yogurt was investigated by incorporating 0.5, 1.0, 1.5, 2.0, and 2.5% of SLC into the yogurt mix. The fermentation was performed at 40 deg C and its process was monitored with an optical microscope. It was found that SLC acce...

  3. Diet and body lipid composition: lessons from animal and human experiments.

    PubMed

    Dutra-de-Oliveira, J E

    1992-06-01

    It is accepted that atherosclerosis begins early in life and will develop over several years. The type of diet fed to young rats and other mammals plays a role in the regulation of adult lipid homeostasis. Foods vary in fatty acid content. The importance of diet on lipid profile has been demonstrated in several animal studies and in different human population groups. Bridging the effect of early diet and later adult cardiovascular disease deserves decisive collaboration among different specialists, as well as preventive dietary intervention based on recent advances from food composition and dietotherapy. PMID:1619202

  4. Lipid composition and sensitivity of Prototheca wickerhamii to membrane-active antimicrobial agents.

    PubMed Central

    Sud, I J; Feingold, D S

    1979-01-01

    The lipid composition of Prototheca wickerhamii ATCC 16529 is presented and discussed in relation to the unique susceptibility of the organism to drugs of three membrane-active antimicrobial classes: the polyenes, the polymyxins, and the imidazoles. The presence of ergosterol in the neutral lipid fraction of the membrane is likely responsible for the exquisite susceptibility to amphotericin B. The presence of a large quantity of free fatty acids in the membrane appears responsible for imidazole susceptibility. The membrane determinants of polymyxin B susceptibility are less well defined. PMID:518077

  5. Polar Lipid Composition of a Plastid Ribosome-Deficient Barley Mutant 1

    PubMed Central

    Dorne, Albert-Jean; Carde, Jean-Pierre; Joyard, Jacques; Börner, Thomas; Douce, Roland

    1982-01-01

    Green and white leaves of the barley mutant line `albostrians' were compared for their polar lipid content and fatty acid composition. The mutant plastids of the white leaves have a double-layered envelope, but in contrast with the normal chloroplasts, lack 70 S ribosomes and thylakoids. In the green leaves, the amount of monogalactosyldiacylglycerol (MGDG) consistently exceeds the amount of digalactosyldiacylglycerol (DGDG) and the amount of galactolipids exceeds the amount of phospholipids. In contrast, in white leaves the amount of DGDG exceeds the amount of MGDG and the amount of phospholipids exceeds the amount of galactolipids. In white leaves, the galactolipid composition reflects the plastid envelope composition which is rich in DGDG, whereas in green leaves the galactolipid composition reflects the thylakoid composition which is rich in MGDG. These results demonstrate the likelihood that all the enzymes involved in galactolipid, sulfolipid and fatty acid synthesis are coded by the nuclear genome. Images PMID:16662423

  6. Light-Induced Changes in Fatty Acid Profiles of Specific Lipid Classes in Several Freshwater Phytoplankton Species

    PubMed Central

    Wacker, Alexander; Piepho, Maike; Harwood, John L.; Guschina, Irina A.; Arts, Michael T.

    2016-01-01

    We tested the influence of two light intensities [40 and 300 μmol PAR / (m2s)] on the fatty acid composition of three distinct lipid classes in four freshwater phytoplankton species. We chose species of different taxonomic classes in order to detect potentially similar reaction characteristics that might also be present in natural phytoplankton communities. From samples of the bacillariophyte Asterionella formosa, the chrysophyte Chromulina sp., the cryptophyte Cryptomonas ovata and the zygnematophyte Cosmarium botrytis we first separated glycolipids (monogalactosyldiacylglycerol, digalactosyldiacylglycerol, and sulfoquinovosyldiacylglycerol), phospholipids (phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, and phosphatidylserine) as well as non-polar lipids (triacylglycerols), before analyzing the fatty acid composition of each lipid class. High variation in the fatty acid composition existed among different species. Individual fatty acid compositions differed in their reaction to changing light intensities in the four species. Although no generalizations could be made for species across taxonomic classes, individual species showed clear but small responses in their ecologically-relevant omega-3 and omega-6 polyunsaturated fatty acids (PUFA) in terms of proportions and of per tissue carbon quotas. Knowledge on how lipids like fatty acids change with environmental or culture conditions is of great interest in ecological food web studies, aquaculture, and biotechnology, since algal lipids are the most important sources of omega-3 long-chain PUFA for aquatic and terrestrial consumers, including humans. PMID:27014290

  7. Amino Acid Degradations Produced by Lipid Oxidation Products.

    PubMed

    Hidalgo, Francisco J; Zamora, Rosario

    2016-06-10

    Differently to amino acid degradations produced by carbohydrate-derived reactive carbonyls, amino acid degradations produced by lipid oxidation products are lesser known in spite of being lipid oxidation a major source of reactive carbonyls in food. This article analyzes the conversion of amino acids into Strecker aldehydes, α-keto acids, and amines produced by lipid-derived free radicals and carbonyl compounds, as well as the role of lipid oxidation products on the reactions suffered by these compounds: the formation of Strecker aldehydes and other aldehydes from α-keto acids; the formation of Strecker aldehydes and olefins from amines; the formation of shorter aldehydes from Strecker aldehydes; and the addition reactions suffered by the olefins produced from the amines. The relationships among all these reactions and the effect of reaction conditions on them are discussed. This knowledge should contribute to better control food processing in order to favor the formation of desirable beneficial compounds and to inhibit the production of compounds with deleterious properties. PMID:25748518

  8. Lipid oxidation stability of omega-3- and conjugated linoleic acid-enriched sous vide chicken meat.

    PubMed

    Narciso-Gaytán, C; Shin, D; Sams, A R; Keeton, J T; Miller, R K; Smith, S B; Sánchez-Plata, M X

    2011-02-01

    Lipid oxidation is known to occur rather rapidly in cooked chicken meat containing relatively high amounts of polyunsaturated fatty acids. To assess the lipid oxidation stability of sous vide chicken meat enriched with n-3 and conjugated linoleic acid (CLA) fatty acids, 624 Cobb × Ross broilers were raised during a 6-wk feeding period. The birds were fed diets containing CLA (50% cis-9, trans-11 and 50% trans-10, cis-12 isomers), flaxseed oil (FSO), or menhaden fish oil (MFO), each supplemented with 42 or 200 mg/kg of vitamin E (dl-α-tocopheryl acetate). Breast or thigh meat was vacuum-packed, cooked (74°C), cooled in ice water, and stored at 4.4°C for 0, 5, 10, 15, and 30 d. The lipid oxidation development of the meat was estimated by quantification of malonaldehyde (MDA) values, using the 2-thiobarbituric acid reactive substances analysis. Fatty acid, nonheme iron, moisture, and fat analyses were performed as well. Results showed that dietary CLA induced deposition of cis-9, trans-11 and trans-10, cis-12 CLA isomers, increased the proportion of saturated fatty acids, and decreased the proportions of monounsaturated and polyunsaturated fatty acids. Flaxseed oil induced higher deposition of C18:1, C18:2, C18:3, and C20:4 fatty acids, whereas MFO induced higher deposition of n-3 fatty acids, eicosapentaenoic acid (C20:5), and docosahexaenoic acid (C22:6; P < 0.05). Meat lipid oxidation stability was affected by the interaction of either dietary oil or vitamin E with storage day. Lower (P < 0.05) MDA values were found in the CLA treatment than in the MFO and FSO treatments. Lower (P < 0.05) MDA values were detected in meat samples from the 200 mg/kg of vitamin E than in meat samples from the 42 mg/kg of vitamin E. Nonheme iron values did not affect (P > 0.05) lipid oxidation development. In conclusion, dietary CLA, FSO, and MFO influenced the fatty acid composition of chicken muscle and the lipid oxidation stability of meat over the storage time. Supranutritional

  9. The fusogenic lipid phosphatidic acid promotes the biogenesis of mitochondrial outer membrane protein Ugo1

    PubMed Central

    Keller, Michael; Taskin, Asli A.; Horvath, Susanne E.; Guan, Xue Li; Prinz, Claudia; Opalińska, Magdalena; Zorzin, Carina; van der Laan, Martin; Wenk, Markus R.; Schubert, Rolf; Wiedemann, Nils; Holzer, Martin

    2015-01-01

    Import and assembly of mitochondrial proteins depend on a complex interplay of proteinaceous translocation machineries. The role of lipids in this process has been studied only marginally and so far no direct role for a specific lipid in mitochondrial protein biogenesis has been shown. Here we analyzed a potential role of phosphatidic acid (PA) in biogenesis of mitochondrial proteins in Saccharomyces cerevisiae. In vivo remodeling of the mitochondrial lipid composition by lithocholic acid treatment or by ablation of the lipid transport protein Ups1, both leading to an increase of mitochondrial PA levels, specifically stimulated the biogenesis of the outer membrane protein Ugo1, a component of the mitochondrial fusion machinery. We reconstituted the import and assembly pathway of Ugo1 in protein-free liposomes, mimicking the outer membrane phospholipid composition, and found a direct dependency of Ugo1 biogenesis on PA. Thus, PA represents the first lipid that is directly involved in the biogenesis pathway of a mitochondrial membrane protein. PMID:26347140

  10. Lysophosphatidic acid as a lipid mediator with multiple biological actions.

    PubMed

    Aikawa, Shizu; Hashimoto, Takafumi; Kano, Kuniyuki; Aoki, Junken

    2015-02-01

    Lysophosphatidic acid (LPA) is one of the simplest glycerophospholipids with one fatty acid chain and a phosphate group as a polar head. Although LPA had been viewed just as a metabolic intermediate in de novo lipid synthetic pathways, it has recently been paid much attention as a lipid mediator. LPA exerts many kinds of cellular processes, such as cell proliferation and smooth muscle contraction, through cognate G protein-coupled receptors. Because lipids are not coded by the genome directly, it is difficult to know their patho- and physiological roles. However, recent studies have identified several key factors mediating the biological roles of LPA, such as receptors and producing enzymes. In addition, studies of transgenic and gene knockout animals for these LPA-related genes, have revealed the biological significance of LPA. In this review we will summarize recent advances in the studies of LPA production and its roles in both physiological and pathological conditions. PMID:25500504

  11. Lipid and fatty acid requirements of tilapias

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tilapia have been shown to have a dietary requirement for linoleic (n-6) series fatty acids (18:2n-6 or 20:4n-6). The optimum dietary levels of n-6 reported were 0.5 and 1% for redbelly tilapia (Tilapia zillii) and Nile tilapia (Oreochromis niloticus), respectively. Tilapia have been suggested to al...

  12. Effect of Temperature and Salinity Stress on Growth and Lipid Composition of Shewanella gelidimarina

    PubMed Central

    Nichols, David S.; Olley, June; Garda, Horacio; Brenner, Rodolfo R.; McMeekin, Tom A.

    2000-01-01

    The maximum growth temperature, the optimal growth temperature, and the estimated normal physiological range for growth of Shewanella gelidimarina are functions of water activity (aw), which can be manipulated by changing the concentration of sodium chloride. The growth temperatures at the boundaries of the normal physiological range for growth were characterized by increased variability in fatty acid composition. Under hyper- and hypoosmotic stress conditions at an aw of 0.993 (1.0% [wt/vol] NaCl) and at an aw of 0.977 (4.0% [wt/vol] NaCl) the proportion of certain fatty acids (monounsaturated and branched-chain fatty acids) was highly regulated and was inversely related to the growth rate over the entire temperature range. The physical states of lipids extracted from samples grown at stressful aw values at the boundaries of the normal physiological range exhibited no abrupt gel-liquid phase transitions when the lipids were analyzed as liposomes. Lipid packing and adaptational fatty acid composition responses are clearly influenced by differences in the temperature-salinity regime, which are reflected in overall cell function characteristics, such as the growth rate and the normal physiological range for growth. PMID:10831420

  13. Docosahexaenoic acid and eicosapentaenoic acid induce changes in the physical properties of a lipid bilayer model membrane.

    PubMed

    Onuki, Yoshinori; Morishita, Mariko; Chiba, Yoshiyuki; Tokiwa, Shinji; Takayama, Kozo

    2006-01-01

    We investigated the effect of fatty acids such as stearic acid (SA, 18:0), oleic acid (OA, 18:1), eicosapentaenoic acid (EPA, 20:5), and docosahexaenoic acid (DHA, 22:6) on a dipalmitoylphosphatidylcholine (DPPC) bilayer by determining the phase transition temperature, fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH), and detergent insolubility. Treatment with unsaturated fatty acid broadened and shifted the phase transitions of the DPPC bilayer to a lower temperature. The phase transition temperature and the value of fluorescence anisotropy of DPH at 37 degrees C decreased progressively with increasing treatment amounts of unsaturated fatty acid. A large amount of the DPPC bilayer treated with unsaturated fatty acid was dissolved in Triton X-100, obtaining a low level of detergent insolubility. These modifications of the bilayer physical properties were most pronounced with DHA and EPA treatment. These data show that unsaturated fatty acids, particularly DHA and EPA, induce a marked change in the lipid bilayer structure. The composition of fatty acids in the DPPC bilayer was similar after treatment with various unsaturated fatty acids, suggesting that the different actions of unsaturated fatty acids are attributed to change in the molecular structure (e.g., kinked conformation by double bonds). We further explored the change in physical properties induced by fatty acids dispersed in a water-in-oil-in-water multiple emulsion and found that unsaturated fatty acids acted efficiently on the DPPC bilayer, even when incorporated in emulsion form. PMID:16394552

  14. Free fatty acids chain length distribution affects the permeability of skin lipid model membranes.

    PubMed

    Uchiyama, Masayuki; Oguri, Masashi; Mojumdar, Enamul H; Gooris, Gert S; Bouwstra, Joke A

    2016-09-01

    The lipid matrix in the stratum corneum (SC) plays an important role in the barrier function of the skin. The main lipid classes in this lipid matrix are ceramides (CERs), cholesterol (CHOL) and free fatty acids (FFAs). The aim of this study was to determine whether a variation in CER subclass composition and chain length distribution of FFAs affect the permeability of this matrix. To examine this, we make use of lipid model membranes, referred to as stratum corneum substitute (SCS). We prepared SCS containing i) single CER subclass with either a single FFA or a mixture of FFAs and CHOL, or ii) a mixture of various CER subclasses with either a single FFA or a mixture of FFAs and CHOL. In vitro permeation studies were performed using ethyl-p-aminobenzoic acid (E-PABA) as a model drug. The flux of E-PABA across the SCS containing the mixture of FFAs was higher than that across the SCS containing a single FA with a chain length of 24 C atoms (FA C24), while the E-PABA flux was not effected by the CER composition. To select the underlying factors for the changes in permeability, the SCSs were examined by Fourier transform infrared spectroscopy (FTIR) and Small angle X-ray scattering (SAXS). All lipid models demonstrated a similar phase behavior. However, when focusing on the conformational ordering of the individual FFA chains, the shorter chain FFA (with a chain length of 16, 18 or 20 C atoms forming only 11m/m% of the total FFA level) had a higher conformational disordering, while the conformational ordering of the chains of the CER and FA C24 and FA C22 hardly did not change irrespective of the composition of the SCS. In conclusion, the conformational mobility of the short chain FFAs present only at low levels in the model SC lipid membranes has a great impact on the permeability of E-PABA. PMID:27287726

  15. Micropatterned composite membranes of polymerized and fluid lipid bilayers.

    PubMed

    Morigaki, Kenichi; Kiyosue, Kazuyuki; Taguchi, Takahisa

    2004-08-31

    Micropatterned composite membranes of polymerized and fluid lipid bilayers were constructed on solid substrates. Lithographic photopolymerization of a diacetylene-containing phospholipid, 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DiynePC), and subsequent removal of nonreacted monomers by a detergent solution (0.1 M sodium dodecyl sulfate (SDS)) yielded a patterned polymeric bilayer matrix on the substrate. Fluid lipid bilayers of phosphatidylcholine from egg yolk (egg-PC) were incorporated into the lipid-free wells surrounded by the polymeric bilayers through the process of fusion and reorganization of suspended small unilamellar vesicles. Spatial distribution of the fluid bilayers in the patterned bilayer depended on the degree of photopolymerization that in turn could be modulated by varying the applied UV irradiation dose. The polymeric bilayer domains blocked lateral diffusion of the fluid lipid bilayers and confined them in the defined areas (corrals), if the polymerization was conducted with a sufficiently large UV dose. On the other hand, lipid molecules of the fluid bilayers penetrated into the polymeric bilayer domains, if the UV dose was relatively small. A direct correlation was observed between the applied UV dose and the lateral diffusion coefficient of fluorescent marker molecules in the fluid bilayers embedded within the polymeric bilayer domains. Artificial control of lateral diffusion by polymeric bilayers may lead to the creation of complex and versatile biomimetic model membrane arrays. PMID:15323525

  16. Rapid lipid enrichment in omega3 fatty acids: plasma data.

    PubMed

    Carpentier, Yvon A; Peltier, Sebastien; Portois, Laurence; Sener, Abdullah; Malaisse, Willy J

    2008-03-01

    The bolus intravenous injection of a novel medium-chain triglyceride:fish oil emulsion to normal subjects was recently reported to enrich within 60 min the phospholipid content of leucocytes and platelets in long-chain polyunsaturated omega3 fatty acids. The present study, conducted in second generation omega3-depleted rats, aimed at investigating whether such a procedure may also increase within 60 min the phospholipid content of omega3 fatty acids in cells located outwards the bloodstream, in this case liver cells, and whether this coincides with correction of the perturbation in the liver triglyceride fatty acid content and profile otherwise prevailing in these rats. This first report deals mainly with the fatty acid pattern of plasma lipids in male omega3-depleted rats that were non-injected or injected with either the omega3-rich emulsion or a control medium-chain triglyceride:olive oil emulsion. The results provide information on the fate of the exogenous lipids present in the lipid emulsions and injected intravenously 60 min before sacrifice. Moreover, in the uninjected omega3-depleted rats the comparison between individual plasma and liver measurements indicated positive correlations in the fatty acid profile of phospholipids and triglycerides. PMID:18288383

  17. Control of baculovirus gp64-induced syncytium formation by membrane lipid composition.

    PubMed Central

    Chernomordik, L; Leikina, E; Cho, M S; Zimmerberg, J

    1995-01-01

    We have investigated the effects of membrane lipid composition on biological membrane fusion triggered by low pH and mediated by the baculovirus envelope glycoprotein gp64. Lysolipids, either added exogenously or produced in situ by phospholipase A2 treatment of cell membranes, reversibly inhibited syncytium formation. Lysolipids also decreased the baculovirus infection rate. In contrast, oleic and arachidonic acids and monoolein promoted cell-cell fusion. Membrane lipid composition affected pH-independent processes which followed the low-pH-induced change in fusion protein conformation. Inhibition and promotion of membrane fusion by a number of lipids could not be explained by mere binding or incorporation into membranes, but rather was correlated with the effective molecular shape of exogenous lipids. Our data are consistent with the hypothesis that membrane fusion proceeds through highly bent membrane intermediates (stalks) having a net negative curvature. Consequently, inverted cone-shaped lysolipids inhibit and cone-shaped cis-unsaturated fatty acids promote stalk formation and, ultimately, membrane fusion. PMID:7707532

  18. Quantitative lipid composition of cell envelopes of Corynebacterium glutamicum elucidated through reverse micelle extraction

    PubMed Central

    Bansal-Mutalik, Ritu; Nikaido, Hiroshi

    2011-01-01

    Cells of the Corynebacterium-Nocardia-Mycobacterium group of bacteria are surrounded by an outer membrane (OM) containing mycolic acids that are covalently linked to the underlying arabinogalactan-peptidoglycan complex. This OM presumably acts as a permeability barrier that imparts high levels of intrinsic drug resistance to some members of this group, such as Mycobacterium tuberculosis, and its component lipids have been studied intensively in a qualitative manner over the years. However, the quantitative lipid composition of this membrane has remained obscure, mainly because of difficulties in isolating it without contamination from the inner cytoplasmic membrane. Here we use the extraction, with reverse surfactant micelles, of intact cells of Corynebacterium glutamicum and show that this method extracts the free OM lipids quantitatively with no contamination from lipids of the cytoplasmic membrane, such as phosphatidylglycerol. Although only small amounts of corynomycolate were esterified to arabinogalactan, a large amount of cardiolipin was present in a nonextractable form, tightly associated, possibly covalently, with the peptidoglycan-arabinogalactan complex. Furthermore, we show that the OM contains just enough lipid hydrocarbons to produce a bilayer covering the cell surface, with its inner leaflet composed mainly of the aforementioned nonextractable cardiolipin and its outer leaflet composed of trehalose dimycolates, phosphatidylinositol mannosides, and highly apolar lipids, similar to the Minnikin model of 1982. The reverse micelle extraction method is also useful for extracting proteins associated with the OM, such as porins. PMID:21876124

  19. Alteration of erythrocyte lipid composition following total parenteral nutrition in the rat.

    PubMed

    Innis, S M

    1989-01-01

    Rats were infused continuously for 7 days with a complete total parenteral nutrition (TPN) solution in which 27.5% total calories were given as a parenteral lipid emulsion containing soybean oil (Liposyn) or safflower oil (Intralipid) emulsified with egg phospholipid (PL). Compared to sham-operated rats fed chow, the erythrocyte membranes from rats given TPN with lipid emulsion had increased cholesterol and PL but normal molar cholesterol:PL ratios. The fatty acid changes in sphingomyelin and phosphatidylcholine, in particular, suggested replacement of endogenous PL with the exogenous egg PL infused with the emulsion. The changes in membrane lipid composition were accompanied by greater resistance of the cells from rats given TPN to osmotic lysis in vitro. PMID:2494367

  20. Amino acid decarboxylations produced by lipid-derived reactive carbonyls in amino acid mixtures.

    PubMed

    Hidalgo, Francisco J; León, M Mercedes; Zamora, Rosario

    2016-10-15

    The formation of 2-phenylethylamine and phenylacetaldehyde in mixtures of phenylalanine, a lipid oxidation product, and a second amino acid was studied to determine the role of the second amino acid in the degradation of phenylalanine produced by lipid-derived reactive carbonyls. The presence of the second amino acid usually increased the formation of the amine and reduced the formation of the Strecker aldehyde. The reasons for this behaviour seem to be related to the α-amino group and the other functional groups (mainly amino or similar groups) present in the side-chain of the amino acid. These groups are suggested to modify the lipid-derived reactive carbonyl but not the reaction mechanism because the Ea of formation of both 2-phenylethylamine and phenylacetaldehyde remained unchanged in all studied systems. All these results suggest that the amine/aldehyde ratio obtained by amino acid degradation can be modified by adding free amino acids during food formulation. PMID:27173560

  1. Changes in Lipid Composition During Manganese-Induced Apoptosis in PC12 Cells.

    PubMed

    Corsetto, P A; Ferrara, G; Buratta, S; Urbanelli, L; Montorfano, G; Gambelunghe, A; Chiaradia, E; Magini, A; Roderi, P; Colombo, I; Rizzo, A M; Emiliani, C

    2016-02-01

    Lipid composition of membranes is fundamental to modulate signaling pathways relying on lipid metabolites and/or membrane proteins, thus resulting in the regulation of important cell processes such as apoptosis. In this case, membrane remodeling is an early event important for the activation of signaling leading to cell death and removal of apoptotic cells. In the present study, we analyzed phospholipid, cholesterol and fatty acid content during apoptosis induced by manganese in PC12 cells. Lipid analysis of whole cells and detergent-resistant membranes was carried out by HPLC/GC. Results showed that apoptosis is associated with changes in lipid composition detectable in whole cell extracts, namely cholesterol, phosphatidylserine and phosphatidylethanolamine decreases. Noteworthy, phosphatidylserine level reduction was detectable before to the detection of apoptosis, in correlation with our previous study carried out by radioactive labelling. By contrast, phosphatidylserine and phosphatidylethanolamine changes were not detected in detergent resistant membranes, which instead showed an altered composition in phosphatidylinositol, phosphatidylcholine and sphingomyelin in apoptotic cells. PMID:26671766

  2. Influence of chemical reactivities of lipids bound in different pools on their isotopic compositions during degradation in marine sediments

    NASA Astrophysics Data System (ADS)

    Sun, M.; Pan, H.; Culp, R.

    2013-05-01

    Lipid biomarkers and associated compound specific stable carbon isotope compositions have been widely applied to study biogeochemical cycling of organic matter in natural environments. This experimental study was specifically designed to examine the influence of chemical reactivities of lipid compounds bound in different pools on their isotopic composition during microbial degradation in marine sediments. 13C-labeled (labeling at different carbon positions of fatty acid chains) and unlabeled tripalmitins were spiked and incubated in natural oxic (top 1 cm) and anoxic (> 10 cm) marine sediments. In anoxic sediments, neither naturally-occurred fatty acids nor tripalmitin-derived 16:0 fatty acid were apparently degraded within two months and hence no significant variation in stable carbon isotopic composition of 16:0 fatty acid was observed. However, in oxic sediments, both naturally-occurred fatty acids and spiked tripalmitin-derived 16:0 fatty acid were degraded by 26% - 95% during incubation. For natural fatty acids such as 14:0, 16:1, 18:1, 20:5/20:4, and >C20:0, degradation rates varied according to the following order: polyunsaturated > monounsaturated > short chain saturated > long chain saturated fatty acids, which reflects variable reactivities of natural lipid compounds from different sources. Tripalmitin-derived 16:0 fatty acid degraded at an at least 2-3× faster rate compared to naturally-occurred 16:0 in sediments. Meanwhile, isotopic compositions of 16:0 fatty acid in the oxic sediments shifted negatively during incubation. It appears that the isotopic shifts are dependent on the amount of 13C-labeled compound spiked into the sediments but not related to the labeling position of 13C in the molecular structure. The results from this study provide direct evidence that the relative reactivities of lipid compounds from different sources (or different pools) can cause alterations in molecular isotopic composition during microbial degradation in natural

  3. Effect of ethanol intake on human erythrocyte membrane fluidity and lipid composition.

    PubMed

    Hrelia, S; Lercker, G; Biagi, P L; Bordoni, A; Stefanini, F; Zunarelli, P; Rossi, C A

    1986-05-01

    Erythrocyte membrane fluidity was evaluated in chronic alcoholic patients without any liver alteration, assuming different daily ethanol amounts, and in normal subjects and related to ghost fatty acid and total lipid composition obtained by high resolution gas chromatography. Erythrocyte membrane fluidity was significantly increased in a dose dependent manner in chronic alcoholic patients respect to normal subjects. This real fluidizing effect of ethanol "in vivo" was attributed mainly to a significant increase in the polyunsaturated fatty acids amount in patient ghosts in comparison with control subjects. On the other hand the cholesterol/phospholipid ratio was not significantly affected by chronic ethanol assumption. PMID:3729966

  4. Amino acid-based cationic lipids with α-tocopherol hydrophobic tail for efficient gene delivery.

    PubMed

    Yi, Wen-Jing; Zheng, Li-Ting; Su, Rong-Chuan; Liu, Qiang; Zhao, Zhi-Gang

    2015-11-01

    In this work, three amino acid-based cationic lipids L1-L3 bearing the same α-tocopherol moiety and biodegradable ester bond linkage, but differing in the polar head-group, were prepared and applied as non-viral gene delivery vectors. The physicochemical properties such as size, zeta-potential, stability, and cellular uptake of the lipoplexes formed from lipids L1-L3 as well as the transfection efficacy (TE) were investigated. The results showed that the chemical composition of the cationic head-group clearly affects the physicochemical parameters of the amino acid-based lipids, especially the TE. Besides their low cytotoxicity, these lipoplexes also showed comparable TE to commercially available lipofectamine 2000. In particular, dipeptide lipid L3 gave excellent TE, which was 1.8 times higher than bPEI 25k in the presence of 10% serum in Hela cells. These results demonstrate the promising use of novel dipeptide lipids for safe and efficient gene delivery. PMID:25973654

  5. The Lipid domain Phase diagram in a Dipalmitoyl-PC/Docosahaexnoic Acid-PE/Cholesterol System

    NASA Astrophysics Data System (ADS)

    Lor, Chai; Hirst, Linda

    2011-03-01

    Lipid domains in bilayer membrane and polyunsaturated fatty acids (PUFAs) are thought to play an important role in cellular activities. In particular, lipids containing docosahaexnoic acid are an interesting class of PUFAs due to their health benefits. In this project, we perform oxidation measurements of DHA-PE to determine the rate of oxidation in combination with antioxidants. A ternary diagram of DPPC/DHA-PE/cholesterol is mapped out to identify phase separation phenomena using atomic force microscope (AFM). Fluorescence microscopy is also used to image lipid domains in a flat bilayer with fluorescent labels. As expected, we observe the phase, shape, and size of lipid domains changes with varying composition. Moreover, we find that the roughness of the domains changes possibly due to overpacking of cholesterol in domains. This model study provides further understanding of the role of cholesterol in the bilayer membrane leading towards a better understanding of cell membranes. NSF award # DMR 0852791, ``CAREER: Self-Assembly of Polyunsaturated Lipids and Cholesterol In The Cell Membrane.''

  6. Microbial conversion of synthetic and food waste-derived volatile fatty acids to lipids.

    PubMed

    Vajpeyi, Shashwat; Chandran, Kartik

    2015-01-01

    Lipid accumulation in the oleaginous yeast Cryptococcus albidus was evaluated using mixtures of volatile fatty acids (VFA) as substrates. In general, batch growth under nitrogen limitation led to higher lipid accumulation using synthetic VFA. During batch growth, an initial COD:N ratio of 25:1mg COD:mg N led to maximum intracellular lipid accumulation (28.3 ± 0.7% g/g dry cell weight), which is the maximum reported for C. albidus using VFA as the carbon source, without compromising growth kinetics. At this feed COD:N ratio, chemostat cultures fed with synthetic VFA yielded statistically similar intracellular lipid content as batch cultures (29.9 ± 1.9%, g/g). However, batch cultures fed with VFA produced from the fermentation of food waste, yielded a lower lipid content (14.9 ± 0.1%, g/g). The lipid composition obtained with synthetic and food-waste-derived VFA was similar to commercial biodiesel feedstock. We therefore demonstrate the feasibility of linking biochemical waste treatment and biofuel production using VFA as key intermediates. PMID:25697838

  7. Mitochondrial modulators improve lipid composition and attenuate memory deficits in experimental model of Huntington's disease.

    PubMed

    Mehrotra, Arpit; Sood, Abhilasha; Sandhir, Rajat

    2015-12-01

    3-Nitropropionic acid (3-NP) is an irreversible inhibitor of succinate dehydrogenase and induces neuropathological changes similar to those observed in Huntington's disease (HD). The objective of the present study was to investigate neuroprotective effect of mitochondrial modulators; alpha-lipoic acid (ALA) and acetyl-L-carnitine (ALCAR) on 3-NP-induced alterations in mitochondrial lipid composition, mitochondrial structure and memory functions. Experimental model of HD was developed by administering 3-NP at sub-chronic doses, twice daily for 17 days. The levels of conjugated dienes, cholesterol and glycolipids were significantly increased, whereas the levels of phospholipids (phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine) including cardiolipin were significantly decreased in the mitochondria isolated from the striatum of 3-NP-treated animals. In addition, the difference in molecular composition of each phospholipid class was also evaluated using mass spectrometry. Mitochondria lipid from 3-NP-treated animals showed increased cholesterol to phospholipid ratio, suggesting decreased mitochondrial membrane fluidity. 3-NP administration also resulted in ultra-structural changes in mitochondria, accompanied by swelling as assessed by transmission electron microscopy. The 3-NP administered animals had impaired spatial memory evaluated using elevated plus maze test. However, combined supplementation with ALA + ALCAR for 21 days normalized mitochondrial lipid composition, improved mitochondrial structure and ameliorated memory impairments in 3-NP-treated animals, suggesting an imperative role of these two modulators in combination in the management of HD. PMID:26374445

  8. The effect of N-stearoylethanolamine on plasma lipid composition in rats with experimental insulin resistance.

    PubMed

    Onopchenko, O V; Kosiakova, G V; Klimashevsky, V M; Hula, N M

    2015-01-01

    A model of insulin resistance (IR), induced by prolonged high fat diet with high content of saturated fats was used to investigate the effect of N-stearoylethanolamine (NSE) on the composition of free fatty acids (FFA), plasma lipoprotein spectrum and content of proinflammatory cytokine TNFα in rats. The results of this work showed a rise in the content of monounsaturated fatty acids (18:1 n-9) and a reduction in the level of polyunsaturated fatty acids (20:4 n-6) in plasma of rats with experimental IR. These findings are accompanied by the increased TNFα production and significant changes in plasma lipoprotein profile of rats with the fat overload. Particularly, a decreased high-density lipoprotein (HDL) cholesterol level and increased low-density (LDL) and very low-density lipoprotein (VLDL) cholesterol level were detected. The NSE administration to obese rats with IR restored the content of mono- and polyunsaturated FFA, increased HDL cholesterol content and reduced LDL cholesterol level. In addition, the IR rats treated with NSE showed normalization in the serum TNFα level. Our results showed the restoration of plasma lipid profile under NSE administration in rats with obesity-induced IR. Considering the fact that plasma lipid composition displays the lipid metabolism in general, the NSE actions may play a significant role in the prevention of IR-associated complications. PMID:26036130

  9. Lipid oxidation by hypochlorous acid: chlorinated lipids in atherosclerosis and myocardial ischemia.

    PubMed

    Ford, David A

    2010-12-01

    Leukocytes, containing myeloperoxidase (MPO), produce the reactive chlorinating species, HOCl, and they have important roles in the pathophysiology of cardiovascular disease. Leukocyte-derived HOCl can target primary amines, alkenes and vinyl ethers of lipids, resulting in chlorinated products. Plasmalogens are vinyl ether-containing phospholipids that are abundant in tissues of the cardiovascular system. The HOCl oxidation products derived from plasmalogens are α-chlorofatty aldehyde and unsaturated molecular species of lysophosphatidylcholine. α-chlorofatty aldehyde is the precursor of both α-chlorofatty alcohol and α-chlorofatty acid. Both α-chlorofatty aldehyde and α-chlorofatty acid accumulate in activated neutrophils and have disparate chemotactic properties. In addition, α-chlorofatty aldehyde increases in activated monocytes, human atherosclerotic lesions and rat infarcted myocardium. This article addresses the pathways for the synthesis of these lipids and their biological targets. PMID:21339854

  10. Well acidizing compositions and method

    SciTech Connect

    Gardener, T.R.; Dill, W.R.; Ford, W.G.F.; King, K.L.

    1991-07-23

    This patent describes a concentrate which forms an acid internal microemulsion well treatment composition when added to an acid treatment fluid. It comprises in the range of from about 20% to about 98% by weight of a hydrocarbon carrier fluid; in the range of from about 1% to about 50% by weight of an alkyl alcohol having in the range of from about 4 to 18 carbon atoms; and in the range of from about 1% to about 50% by weight of an emulsifying agent comprising at least one compound selected from the group consisting of amine salts having ester or amide linkages and propoxylated alcohols, each of the components being different compounds or different mixtures of compounds.

  11. Omega-3 fatty acids, lipid rafts, and T cell signaling.

    PubMed

    Hou, Tim Y; McMurray, David N; Chapkin, Robert S

    2016-08-15

    n-3 polyunsaturated fatty acids (PUFA) have been shown in many clinical studies to attenuate inflammatory responses. Although inflammatory responses are orchestrated by a wide spectrum of cells, CD4(+) T cells play an important role in the etiology of many chronic inflammatory diseases such as inflammatory bowel disease and obesity. In light of recent concerns over the safety profiles of non-steroidal anti-inflammatory drugs (NSAIDs), alternatives such as bioactive nutraceuticals are becoming more attractive. In order for these agents to be accepted into mainstream medicine, however, the mechanisms by which nutraceuticals such as n-3 PUFA exert their anti-inflammatory effects must be fully elucidated. Lipid rafts are nanoscale, dynamic domains in the plasma membrane that are formed through favorable lipid-lipid (cholesterol, sphingolipids, and saturated fatty acids) and lipid-protein (membrane-actin cytoskeleton) interactions. These domains optimize the clustering of signaling proteins at the membrane to facilitate efficient cell signaling which is required for CD4(+) T cell activation and differentiation. This review summarizes novel emerging data documenting the ability of n-3 PUFA to perturb membrane-cytoskeletal structure and function in CD4(+) T cells. An understanding of these underlying mechanisms will provide a rationale for the use of n-3 PUFA in the treatment of chronic inflammation. PMID:26001374

  12. Dietary phenolic acids and ascorbic acid: Influence on acid-catalyzed nitrosative chemistry in the presence and absence of lipids.

    PubMed

    Combet, Emilie; El Mesmari, Aziza; Preston, Tom; Crozier, Alan; McColl, Kenneth E L

    2010-03-15

    Acid-catalyzed nitrosation and production of potentially carcinogenic nitrosative species is focused at the gastroesophageal junction, where salivary nitrite, derived from dietary nitrate, encounters the gastric juice. Ascorbic acid provides protection by converting nitrosative species to nitric oxide (NO). However, NO may diffuse into adjacent lipid, where it reacts with O(2) to re-form nitrosative species and N-nitrosocompounds (NOC). In this way, ascorbic acid promotes acid nitrosation. Using a novel benchtop model representing the gastroesophageal junction, this study aimed to clarify the action of a range of water-soluble antioxidants on the nitrosative mechanisms in the presence or absence of lipids. Caffeic, ferulic, gallic, or chlorogenic and ascorbic acids were added individually to simulated gastric juice containing secondary amines, with or without lipid. NO and O(2) levels were monitored by electrochemical detection. NOC were measured in both aqueous and lipid phases by gas chromatography-tandem mass spectrometry. In the absence of lipids, all antioxidants tested inhibited nitrosation, ranging from 35.9 + or - 7.4% with gallic acid to 93 + or - 0.6% with ferulic acid. In the presence of lipids, the impact of each antioxidant on nitrosation was inversely correlated with the levels of NO they generated (R(2) = 0.95, p<0.01): gallic, chlorogenic, and ascorbic acid promoted nitrosation, whereas ferulic and caffeic acids markedly inhibited nitrosation. PMID:20026204

  13. Lipid and PCB compositions in water-striders from contaminated streams

    SciTech Connect

    Napolitano, G.E.; Richmond, J.E.; Klasson, K.T.; Hill, W.R.

    1995-12-31

    In a study of hydrophobic substances in stream surface-waters, the authors investigated lipids and polychlorinated biphenyls (PCBs) of water-striders (Gerris remiges). Lipid class, fatty acid, and PCB congener compositions were analyzed in insects from four streams located downstream of the Department of Energy`s facilities near the city of Oak Ridge, Tennessee. Total lipid contents of water-striders varied seasonally, showing maximum concentrations in summer and fall ({approximately} 9.0% of wet weight), and minimum concentrations in winter and spring. Total PCB concentrations of water-striders varied between streams and appeared to parallel PCB concentrations reported for the aquatic fauna of each site. Fatty acids were used as chemical markers to detect differences in the food resources of water-striders. The triacylglycerol fatty acid composition was remarkably similar in all the streams and reflected to a large extent, that of a terrestrial insect. The PCB congener composition of water-striders varied significantly between streams, showing a relative enrichment of the less chlorinated congeners in the less contaminated samples. There was also a positive correlation between PCB burden and average molecular weights. Differences between the chlorine content of the dominant congeners suggest distinct sources of PCBs for the different streams. The apparent similarities in the food resources of the water-striders, as inferred from fatty acid markers, and their distinct PCB congener composition, suggest absorption or ingestion from the surface micro-layer, rather than diet, as a more likely route of uptake of lipophilic contaminants by water-striders.

  14. Effects of different biomass drying and lipid extraction methods on algal lipid yield, fatty acid profile, and biodiesel quality.

    PubMed

    Hussain, Javid; Liu, Yan; Lopes, Wilson A; Druzian, Janice I; Souza, Carolina O; Carvalho, Gilson C; Nascimento, Iracema A; Liao, Wei

    2015-03-01

    Three lipid extraction methods of hexane Soxhlet (Sox-Hex), Halim (HIP), and Bligh and Dyer (BD) were applied on freeze-dried (FD) and oven-dried (OD) Chlorella vulgaris biomass to evaluate their effects on lipid yield, fatty acid profile, and algal biodiesel quality. Among these three methods, HIP was the preferred one for C. vulgaris lipid recovery considering both extraction efficiency and solvent toxicity. It had the highest lipid yields of 20.0 and 22.0% on FD and OD biomass, respectively, with corresponding neutral lipid yields of 14.8 and 12.7%. The lipid profiling analysis showed that palmitic, oleic, linoleic, and α-linolenic acids were the major fatty acids in the algal lipids, and there were no significant differences on the amount of these acids between different drying and extraction methods. Correlative models applied to the fatty acid profiles concluded that high contents of palmitic and oleic acids in algal lipids contributed to balancing the ratio of saturated and unsaturated fatty acids and led to a high-quality algal biodiesel. PMID:25588528

  15. Composition and occurrence of lipid droplets in the cyanobacterium Nostoc punctiforme.

    PubMed

    Peramuna, Anantha; Summers, Michael L

    2014-12-01

    Inclusions of neutral lipids termed lipid droplets (LDs) located throughout the cell were identified in the cyanobacterium Nostoc punctiforme by staining with lipophylic fluorescent dyes. LDs increased in number upon entry into stationary phase and addition of exogenous fructose indicating a role for carbon storage, whereas high-light stress did not increase LD numbers. LD accumulation increased when nitrate was used as the nitrogen source during exponential growth as compared to added ammonia or nitrogen-fixing conditions. Analysis of isolated LDs revealed enrichment of triacylglycerol (TAG), α-tocopherol, and C17 alkanes. LD TAG from exponential phase growth contained mainly saturated C16 and C18 fatty acids, whereas stationary phase LD TAG had additional unsaturated fatty acids characteristic of whole cells. This is the first characterization of cyanobacterial LD composition and conditions leading to their production. Based upon their abnormally large size and atypical location, these structures represent a novel sub-organelle in cyanobacteria. PMID:25135835

  16. Composition and occurrence of lipid droplets in the cyanobacterium Nostoc punctiforme

    PubMed Central

    Peramuna, Anantha; Summers, Michael L.

    2014-01-01

    Inclusions of neutral lipids termed lipid droplets (LDs) located throughout the cell were identified in the cyanobacterium Nostoc punctiforme by staining with lipophyllic fluorescent dyes. LDs increased in number upon entry into stationary phase and addition of exogenous fructose indicating a role for carbon storage, whereas high-light stress did not increase LD numbers. LD accumulation increased when nitrate was used as the nitrogen source during exponential growth as compared to added ammonia or nitrogen–fixing conditions. Analysis of isolated LDs revealed enrichment of triacylglycerol (TAG), - tochopherol, and C17 alkanes. LD TAG from exponential phase growth contained mainly saturated C16 and C18 fatty acids whereas stationary phase LD TAG had additional unsaturated fatty acids characteristic of whole cells. This is the first characterization of cyanobacterial LD composition and conditions leading to their production. Based upon their abnormally large size and atypical location these structures represent a novel sub-organelle in cyanobacteria. PMID:25135835

  17. High saturated fat diet alters the lipid composition of triacylglycerol and polar lipids in the femur of dam and offspring rats.

    PubMed

    Miotto, Paula M; Castelli, Laura M; Amoye, Foyinsola; Ward, Wendy E; LeBlanc, Paul J

    2015-06-01

    Previous work has shown that dietary lipids alter femur lipid composition. Specifically, we have shown that exposure to high saturated fatty acid (SFA) diets in utero, during suckling, or post-weaning alters femur total lipid composition, resulting in higher percent bone mass in males and females and bone mineral density (BMD) in female offspring with no effect on bone mineral outcomes in dams. Comparatively, high n-3 polyunsaturated fatty acid (PUFA) diets increase femur polar (PL) lipid n-3 content, which has been associated with increased bone mineral content and strength. However, the extent that PL or triacylglycerol (TAG) lipids change with high SFA diets is unknown. The current investigation examined the influence of a high SFA diet (20 % lard by weight) on femur PL and TAG lipid composition in 5-month old female Wistar rats (fed high SFA diet from age 28 days onwards; dams) and their 19-day old offspring (exposed to high SFA in utero and during suckling; pups). High SFA exposure resulted in increased monounsaturates and decreased n-3 and n-6 PUFA in the TAG fraction in both dams and pups, and higher SFA and n-6:n-3 ratio in dams only. The PL fraction showed decreased n-6 PUFA in both dams and pups. The magnitude of the diet-mediated responses, specifically TAG 18:1 and PL n-6 PUFA, may have contributed to the previously reported altered BMD, which was supported with correlation analysis. Future research should investigate the relationship of diet-induced changes in bone lipids on bone structure, as quantified through micro-computed tomography. PMID:25920746

  18. Effect of the long-term feeding of dietary lipids on the learning ability, fatty acid composition of brain stem phospholipids and synaptic membrane fluidity in adult mice: a comparison of sardine oil diet with palm oil diet.

    PubMed

    Suzuki, H; Park, S J; Tamura, M; Ando, S

    1998-03-16

    The effect of 12 month feeding of 5% palm oil or sardine oil diet on the maze-learning ability, fatty acid composition of brain stem phospholipids and synaptic membrane fluidity in mice was studied. The time required to reach the maze exit and the number of times that a mouse strayed into blind alleys in the maze were measured three times every 4 days. The time and number of mice fed on the sardine oil diet were less than those of animals fed on the palm oil diet in the first and second trials. The results of fatty acid composition analysis of brain stem phosphatidylethanolamine showed that the percentage of docosahexaenoic acid (22:6, n-3; DHA) was higher, but the arachidonic acid (20:4, n-6; AA) and docosatetraenoic acid (22:4, n-6; DTA) were lower in the sardine oil diet fed-mice than in the palm oil diet fed-animals. Moreover, the microviscosity of the synaptic plasma membrane in the sardine oil diet group was lower than that in the palm oil diet group. These results suggest that the adult mice fed on the sardine oil diet for a long period maintain higher levels of docosahe xaenoic acid in brain phospholipids, synaptic membrane fluidity and maze-learning ability than animals fed on the palm oil diet. PMID:9593318

  19. Developmental plasticity of cutaneous water loss and lipid composition in stratum corneum of desert and mesic nestling house sparrows

    PubMed Central

    Muñoz-Garcia, Agustí; Williams, Joseph B.

    2008-01-01

    Intercellular lipids of the stratum corneum (SC), the outer layer of the epidermis, form a barrier to water vapor diffusion through the skin. Previously, we measured cutaneous water loss (CWL) and lipid composition of the SC of adult house sparrows from two populations, one living in the deserts of Saudi Arabia and another living in mesic Ohio. Adult desert house sparrows had a lower CWL, a lower proportion of free fatty acids, and a higher proportion of ceramides and cerebrosides in the SC compared with mesic sparrows. In this study, we investigated developmental plasticity of CWL and lipid composition of the SC in desert and mesic nestling house sparrows reared in low and high humidity and compared our results with previous work on adults. We measured CWL of nestlings and analyzed the lipid composition of the SC using thin-layer chromatography. We showed that nestling house sparrows from both localities had higher CWL than adults in their natural environment, a result of major modifications of the lipid composition of the SC. The expression of plasticity in CWL seems to be a response to opposed selection pressures, thermoregulation and water conservation, at different life stages, on which regulation of CWL plays a crucial role. Desert nestlings showed a greater degree of plasticity in CWL and lipid composition of the SC than did mesic nestlings, a finding consistent with the idea that organisms exposed to more environmental stress ought to be more plastic than individuals living in more benign environments. PMID:18838693

  20. Temperature and pH controls on glycerol dibiphytanyl glycerol tetraether lipid composition in the hyperthermophilic crenarchaeon Acidilobus sulfurireducens.

    PubMed

    Boyd, Eric S; Pearson, Ann; Pi, Yundan; Li, Wen-Jun; Zhang, Yi Ge; He, Liu; Zhang, Chuanlun L; Geesey, Gill G

    2011-01-01

    Cyclization in glycerol dibiphytanyl glycerol tetraethers (GDGTs) results in internal cyclopentane moieties which are believed to confer thermal stability to crenarchaeal membranes. While the average number of rings per GDGT lipid (ring index) is positively correlated with temperature in many temperate environments, poor correlations are often observed in geothermal environments, suggesting that additional parameters may influence GDGT core lipid composition in these systems. However, the physical and chemical parameters likely to influence GDGT cyclization which are often difficult to decouple in geothermal systems, making it challenging to assess their influence on lipid composition. In the present study, the influence of temperature (range 65-81°C), pH (range 3.0-5.0), and ionic strength (range 10.1-55.7 mM) on GDGT core lipid composition was examined in the hyperthermoacidophile Acidilobus sulfurireducens, a crenarchaeon originally isolated from a geothermal spring in Yellowstone National Park, Wyoming. When cultivated under defined laboratory conditions, the composition of individual and total GDGTs varied significantly with temperature and to a lesser extent with the pH of the growth medium. Ionic strength over the range of values tested did not influence GDGT composition. The GDGT core lipid ring index was positively correlated with temperature and negatively correlated with pH, suggesting that A. sulfurireducens responds to increasing temperature and acidity by increasing the number of cyclopentyl rings in GDGT core membrane lipids. PMID:21125411

  1. Oral mucosal lipids are antibacterial against Porphyromonas gingivalis, induce ultrastructural damage, and alter bacterial lipid and protein compositions

    PubMed Central

    Fischer, Carol L; Walters, Katherine S; Drake, David R; Dawson, Deborah V; Blanchette, Derek R; Brogden, Kim A; Wertz, Philip W

    2013-01-01

    Oral mucosal and salivary lipids exhibit potent antimicrobial activity for a variety of Gram-positive and Gram-negative bacteria; however, little is known about their spectrum of antimicrobial activity or mechanisms of action against oral bacteria. In this study, we examine the activity of two fatty acids and three sphingoid bases against Porphyromonas gingivalis, an important colonizer of the oral cavity implicated in periodontitis. Minimal inhibitory concentrations, minimal bactericidal concentrations, and kill kinetics revealed variable, but potent, activity of oral mucosal and salivary lipids against P. gingivalis, indicating that lipid structure may be an important determinant in lipid mechanisms of activity against bacteria, although specific components of bacterial membranes are also likely important. Electron micrographs showed ultrastructural damage induced by sapienic acid and phytosphingosine and confirmed disruption of the bacterial plasma membrane. This information, coupled with the association of treatment lipids with P. gingivalis lipids revealed via thin layer chromatography, suggests that the plasma membrane is a likely target of lipid antibacterial activity. Utilizing a combination of two-dimensional in-gel electrophoresis and Western blot followed by mass spectroscopy and N-terminus degradation sequencing we also show that treatment with sapienic acid induces upregulation of a set of proteins comprising a unique P. gingivalis stress response, including proteins important in fatty acid biosynthesis, metabolism and energy production, protein processing, cell adhesion and virulence. Prophylactic or therapeutic lipid treatments may be beneficial for intervention of infection by supplementing the natural immune function of endogenous lipids on mucosal surfaces. PMID:23867843

  2. Gelled acidic well treating composition and process

    SciTech Connect

    Swanson, B.L.

    1981-01-13

    Gelled acidic compositions suitable for either matrix-acidizing or fracture-acidizing of subterranean formations comprising water , a water-dispersible polymer selected from cellulose ethers and polymers of acrylamides, an acid, an aldehyde, and a phenolic compound capable of causing gelation of an aqueous dispersion of the polymer, acid, aldehyde, and phenolic compound are provided. In another embodiment, guar gum, polyvinylpyrrolidone and biopolysaccharides can also be used as the polymeric component in said compositions.

  3. Major lipid classes and their fatty acids in a parasitic nematode, Ascaridia galli.

    PubMed

    Ghosh, Amit; Kar, Kumkum; Ghosh, D; Dey, C; Misra, K K

    2010-04-01

    The paper presents major lipid classes and their fatty acids investigated from Ascaridia galli, a nematode parasite of country fowl. Thin layer chromatography (TLC) reveals that the percent of total lipid, neutral lipid, phospholipids, and glycolipids are 1.94, 54.39, 26.95 and 18.66, respectively. Gas-liquid chromatography (GLC) analysis shows that the saturated fatty acids are the major components in all the lipid fractions followed by monoenes and dienes. Polyunsaturated fatty acids (PUFA) were present in low amount. Stearic acids (C(18)) were the chief components among all the fatty acids in all the lipid fractions. PMID:21526035

  4. Manipulation of culture conditions alters lipid content and fatty acid profiles of a wide variety of known and new oleaginous yeasts species

    PubMed Central

    Sitepu, Irnayuli R.; Sestric, Ryan; Ignatia, Laura; Levin, David; German, J. Bruce; Gillies, Laura A.; Almada, Luis A.G.; Boundy-Mills, Kyria L.

    2013-01-01

    Oleaginous yeasts have been studied for oleochemical production for over 80 years. Only a few species have been studied intensely. To expand the diversity of oleaginous yeasts available for lipid research, we surveyed a broad diversity of yeasts with indicators of oleaginicity including known oleaginous clades, and buoyancy. Sixty-nine strains representing 17 genera and 50 species were screened for lipid production. Yeasts belonged to Ascomycota families, Basidiomycota orders, and the yeast-like algal genus Prototheca. Total intracellular lipids and fatty acid composition were determined under different incubation times and nitrogen availability. Thirteen new oleaginous yeast species were discovered, representing multiple ascomycete and basidiomycete clades. Nitrogen starvation generally increased intracellular lipid content. The fatty acid profiles varied with the growth conditions regardless of taxonomic affiliation. The dominant fatty acids were oleic acid, palmitic acid, linoleic acid, and stearic acid. Yeasts and culture conditions that produced fatty acids appropriate for biodiesel were identified. PMID:23891835

  5. Specific Membrane Lipid Composition Is Important for Plasmodesmata Function in Arabidopsis

    PubMed Central

    Grison, Magali S.; Brocard, Lysiane; Fouillen, Laetitia; Nicolas, William; Wewer, Vera; Dörmann, Peter; Nacir, Houda; Benitez-Alfonso, Yoselin; Claverol, Stéphane; Germain, Véronique; Boutté, Yohann; Mongrand, Sébastien; Bayer, Emmanuelle M.

    2015-01-01

    Plasmodesmata (PD) are nano-sized membrane-lined channels controlling intercellular communication in plants. Although progress has been made in identifying PD proteins, the role played by major membrane constituents, such as the lipids, in defining specialized membrane domains in PD remains unknown. Through a rigorous isolation of “native” PD membrane fractions and comparative mass spectrometry-based analysis, we demonstrate that lipids are laterally segregated along the plasma membrane (PM) at the PD cell-to-cell junction in Arabidopsis thaliana. Remarkably, our results show that PD membranes display enrichment in sterols and sphingolipids with very long chain saturated fatty acids when compared with the bulk of the PM. Intriguingly, this lipid profile is reminiscent of detergent-insoluble membrane microdomains, although our approach is valuably detergent-free. Modulation of the overall sterol composition of young dividing cells reversibly impaired the PD localization of the glycosylphosphatidylinositol-anchored proteins Plasmodesmata Callose Binding 1 and the β-1,3-glucanase PdBG2 and altered callose-mediated PD permeability. Altogether, this study not only provides a comprehensive analysis of the lipid constituents of PD but also identifies a role for sterols in modulating cell-to-cell connectivity, possibly by establishing and maintaining the positional specificity of callose-modifying glycosylphosphatidylinositol proteins at PD. Our work emphasizes the importance of lipids in defining PD membranes. PMID:25818623

  6. Significance of Lipid Composition in a Blood Brain Barrier-Mimetic PAMPA Assay

    PubMed Central

    Campbell, Scott D.; Regina, Karen J.; Kharasch, Evan D.

    2014-01-01

    Endothelial cells forming the blood-brain barrier limit drug access into the brain, due to tight junctions, membrane drug transporters, and unique lipid composition. Passive permeability, thought to mediate drug access, is typically tested using porcine whole brain lipid. However human endothelial cell lipid composition differs. This investigation evaluated the influence of lipid composition on passive permeability across artificial membranes. Permeability of CNS-active drugs across an immobilized lipid membrane was determined using three lipid models: crude extract from whole pig brain, human brain microvessel lipid, and microvessel lipid plus cholesterol. Lipids were immobilized on polyvinylidene difluoride, forming donor and receiver chambers, in which drug concentration were measured after 2 hr. The log of effective permeability was then calculated using the measured concentrations. Permeability of small, neutral compounds was unaffected by lipid composition. Several structurally diverse drugs were highly permeable in porcine whole brain lipid but 1–2 orders of magnitude less permeable across human brain endothelial cell lipid. Inclusion of cholesterol had the greatest influence on bulky amphipathic compounds such as glucuronide conjugates. Lipid composition markedly influences passive permeability. This was most apparent for charged or bulky compounds. These results demonstrate the importance of using species-specific lipid models in passive permeability assays. PMID:23945876

  7. Clinorotation Effect on Coupling Level and Lipid Composition of Barley Thylakoid Membranes

    NASA Astrophysics Data System (ADS)

    Mykhaylenko, N.; Podorvano, V.; Zolotareva, O.

    Microgravity can induce structural perturbation of plant photosynthetic apparatus. It was shown that space flight conditions caused both pigment content and chloroplast ultrastructure changes in a number of various plant species. The transformations of photosynthetic membrane lipid composition were observed in wheat plants under microgravity as well as in chloroplasts of pea under clinorotation. The photosynthetic apparatus is located in thylakoid membranes of chloroplast and provides plant cell by macroerg compounds (ATP and NADPH) necessary for inorganic carbon fixation and metabolism. ATP is formed in the process of photophosphorylation, the rate of which is determined by a coupling level of thylakoid membranes. The aim of the work was to study the coupling level and lipid composition of thylakoid membranes isolated from barley plants grown under clinorotation. Plants of barley (Hordeum vulgare L.) were grown for 7 days at 22-24°C, at low illumination (143 μ mol m-2 s-1) with a light period of 16 h, on a horizontal clinostat (2 rpm) and in vertical control. Photochemical activity of isolated chloroplasts (class II) was estimated by the following reactions: cyclic and non-cyclic photophosphorylation, coupled and uncoupled electron transfer from water to K3Fe(CN)6. Total lipids were extracted from isolated chloroplasts and individual lipid classes were separated by thin-layer chromatography. Phospholipids were determined in the form of inorganic phosphate after mineralization with perchloric acid. Glycolipids were assayed by monosaccharide content after acidic hydrolysis. Gas chromatography was applied to analyse the fatty acid composition of membrane glycerolipids. The rates of both cyclic and non-cyclic photophosphorylation in chloroplasts isolated from clinorotated plants were lower than those in control samples. At the same time the rate of electron transfer in thylakoid membranes from clinorotated plants was higher. In the presence of protonophoric channel

  8. Intravenous lipid and amino acids briskly increase plasma glucose concentrations in small premature infants.

    PubMed

    Savich, R D; Finley, S L; Ogata, E S

    1988-07-01

    We determined the glycemic response to intravenous lipid infusion alone, lipid with amino acids, or amino acids alone in 15 very small premature infants receiving constant glucose infusion during early life. Infants who received lipid or lipid and amino acids demonstrated significant increases in glucose compared with infants who received amino acids. The combination of lipid and amino acids resulted in an earlier increase than lipid alone. Although plasma insulin did not change in all three groups, infants who received amino acids alone demonstrated an appropriate increase in glucagon. These data suggest that lipid infusion, a commonly used means of providing nutrition to premature infants, may cause significant disturbances in glucoregulation, particularly when administered with amino acids. PMID:3132930

  9. Reversal of carbon tetrachloride induced changes in microviscosity and lipid composition of liver plasma membrane by colchicine in rats.

    PubMed Central

    Solis-Herruzo, J A; De Gando, M; Ferrer, M P; Hernandez Muñoz, I; Fernandez-Boya, B; De la Torre, M P; Muñoz-Yague, M T

    1993-01-01

    Colchicine is beneficial in the treatment of cirrhotic patients, it prevents changes in plasma membrane bound enzymes induced by CCl4 intoxication. In this study, lipid composition and microviscosity were measured in liver plasma membranes isolated from rats given CCl4. Microviscosity values increased in rats given CCl4 for six weeks but fell considerably in those given CCl4 for 10 weeks. Both these changes were absent when colchicine was given with CCl4. The cholesterol/phospholipid molar ratios and lipid peroxide values increased but plasma membrane phospholipids, the length of fatty acyl chains, and the unsaturation index fell significantly after CCl4 intoxication. Colchicine treatment also prevented these changes. Changes in the lipid composition of liver plasma membranes were significantly correlated with lipid peroxidation. Colchicine prevents changes in the physicochemical properties of liver plasma membranes induced by longterm CCl4 treatment, probably by blocking peroxidation of unsaturated fatty acids. PMID:8244117

  10. Evidence that oleic acid exists in a separate phase within stratum corneum lipids

    SciTech Connect

    Ongpipattanakul, B.; Burnette, R.R.; Potts, R.O.; Francoeur, M.L. )

    1991-03-01

    Oleic acid is known to be a penetration enhancer for polar to moderately polar molecules. A mechanism related to lipid phase separation has been previously proposed by this laboratory to explain the increases in skin transport. In the studies presented here, Fourier transform infrared spectroscopy (FT-IR) was utilized to investigate whether or not oleic acid exists in a separate phase within stratum corneum (SC) lipids. Per-deuterated oleic acid was employed allowing the conformational phase behavior of the exogenously added fatty acid and the endogenous SC lipids to be monitored independently of each other. The results indicated that oleic acid exerts a significant effect on the SC lipids, lowering the lipid transition temperature (Tm) in addition to increasing the conformational freedom or flexibility of the endogenous lipid alkyl chains above their Tm. At temperatures lower than Tm, however, oleic acid did not significantly change the chain disorder of the SC lipids. Similar results were obtained with lipids isolated from the SC by chloroform:methanol extraction. Oleic acid, itself, was almost fully disordered at temperatures both above and below the endogenous lipid Tm in the intact SC and extracted lipid samples. This finding suggested that oleic acid does exist as a liquid within the SC lipids. The coexistence of fluid oleic acid and ordered SC lipids, at physiological temperatures, is consistent with the previously proposed phase-separation transport mechanism for enhanced diffusion.

  11. Factors Controlling the Stable Nitrogen Isotopic Composition (δ15N) of Lipids in Marine Animals.

    PubMed

    Svensson, Elisabeth; Schouten, Stefan; Hopmans, Ellen C; Middelburg, Jack J; Sinninghe Damsté, Jaap S

    2016-01-01

    Lipid extraction of biomass prior to stable isotope analysis is known to cause variable changes in the stable nitrogen isotopic composition (δ15N) of residual biomass. However, the underlying factors causing these changes are not yet clear. Here we address this issue by comparing the δ15N of bulk and residual biomass of several marine animal tissues (fish, crab, cockle, oyster, and polychaete), as well as the δ15N of the extracted lipids. As observed previously, lipid extraction led to a variable offset in δ15N of biomass (differences ranging from -2.3 to +1.8 ‰). Importantly, the total lipid extract (TLE) was highly depleted in 15N compared to bulk biomass, and also highly variable (differences ranging from -14 to +0.7 ‰). The TLE consisted mainly of phosphatidylcholines, a group of lipids with one nitrogen atom in the headgroup. To elucidate the cause for the 15N-depletion in the TLE, the δ15N of amino acids was determined, including serine because it is one of the main sources of nitrogen to N-containing lipids. Serine δ15N values differed by -7 to +2 ‰ from bulk biomass δ15N, and correlated well with the 15N depletion in TLEs. On average, serine was less depleted (-3‰) than the TLE (-7 ‰), possibly due to fractionation during biosynthesis of N-containing headgroups, or that other nitrogen-containing compounds, such as urea and choline, or recycled nitrogen contribute to the nitrogen isotopic composition of the TLE. The depletion in 15N of the TLE relative to biomass increased with the trophic level of the organisms. PMID:26731720

  12. Factors Controlling the Stable Nitrogen Isotopic Composition (δ15N) of Lipids in Marine Animals

    PubMed Central

    Svensson, Elisabeth; Schouten, Stefan; Hopmans, Ellen C.; Middelburg, Jack J.; Sinninghe Damsté, Jaap S.

    2016-01-01

    Lipid extraction of biomass prior to stable isotope analysis is known to cause variable changes in the stable nitrogen isotopic composition (δ15N) of residual biomass. However, the underlying factors causing these changes are not yet clear. Here we address this issue by comparing the δ15N of bulk and residual biomass of several marine animal tissues (fish, crab, cockle, oyster, and polychaete), as well as the δ15N of the extracted lipids. As observed previously, lipid extraction led to a variable offset in δ15N of biomass (differences ranging from -2.3 to +1.8 ‰). Importantly, the total lipid extract (TLE) was highly depleted in 15N compared to bulk biomass, and also highly variable (differences ranging from -14 to +0.7 ‰). The TLE consisted mainly of phosphatidylcholines, a group of lipids with one nitrogen atom in the headgroup. To elucidate the cause for the 15N-depletion in the TLE, the δ15N of amino acids was determined, including serine because it is one of the main sources of nitrogen to N-containing lipids. Serine δ15N values differed by -7 to +2 ‰ from bulk biomass δ15N, and correlated well with the 15N depletion in TLEs. On average, serine was less depleted (-3‰) than the TLE (-7 ‰), possibly due to fractionation during biosynthesis of N-containing headgroups, or that other nitrogen-containing compounds, such as urea and choline, or recycled nitrogen contribute to the nitrogen isotopic composition of the TLE. The depletion in 15N of the TLE relative to biomass increased with the trophic level of the organisms. PMID:26731720

  13. Physiological lipid composition is vital for homotypic ER membrane fusion mediated by the dynamin-related GTPase Sey1p

    PubMed Central

    Sugiura, Shintaro; Mima, Joji

    2016-01-01

    Homotypic fusion of the endoplasmic reticulum (ER) is required for generating and maintaining the characteristic reticular ER membrane structures. This organelle membrane fusion process depends on the ER-bound dynamin-related GTPases, such as atlastins in animals and Sey1p in yeast. Here, to investigate whether specific lipid molecules facilitate GTPase-dependent ER membrane fusion directly, we comprehensively evaluated membrane docking and lipid mixing of reconstituted proteoliposomes bearing purified Sey1p and a set of ER-mimicking lipids, including phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, phosphatidic acid, and ergosterol. Remarkably, we revealed that each specific lipid species contributed little to membrane docking mediated by Sey1p. Nevertheless, Sey1p-dependent lipid mixing was strongly reduced by omitting three major acidic lipids from the ER-mimicking set and, moreover, was entirely abolished by omitting either phosphatidylethanolamine or ergosterol. Our reconstitution studies thus established that physiological lipid composition is vital for lipid bilayer rearrangements in GTPase-mediated homotypic ER membrane fusion. PMID:26838333

  14. The dependence of the lipid bilayer membrane: buffer partition coefficient of pentobarbitone on pH and lipid composition.

    PubMed Central

    Miller, K W; Yu, S C

    1977-01-01

    1 The membrane/buffer partition coefficient of [14C]-pentobarbitone has been determined as a function of the lipid composition of bilayer membranes. 2 A new technique based on ultrafiltration gave comparable results to conventional techniques but required less time for equilbration. 3 The membrane/buffer coefficient was independent of pentobarbitone concentration in the range studies. 4 The apparent partition coefficient varied with pH and was a linear function of the degree of dissociation of pentobarbition. 5 Both the charged and uncharged forms of pentobarbitone partitioned into the membrane, the latter to a much greater extent than the former. 6 At low pH the highest partition coefficient observed was in egg phosphatidylcholine bilayer membranes. 7 Incorporation of cholesterol or phosphatidic acid into phosphatidylcholine membranes greatly reduced the partition coefficient. 8 High pressures do not greatly change these partition coefficients. PMID:21013

  15. β2-Microglobulin Amyloid Fibril-Induced Membrane Disruption Is Enhanced by Endosomal Lipids and Acidic pH

    PubMed Central

    Goodchild, Sophia C.; Sheynis, Tania; Thompson, Rebecca; Tipping, Kevin W.; Xue, Wei-Feng; Ranson, Neil A.; Beales, Paul A.; Hewitt, Eric W.; Radford, Sheena E.

    2014-01-01

    Although the molecular mechanisms underlying the pathology of amyloidoses are not well understood, the interaction between amyloid proteins and cell membranes is thought to play a role in several amyloid diseases. Amyloid fibrils of β2-microglobulin (β2m), associated with dialysis-related amyloidosis (DRA), have been shown to cause disruption of anionic lipid bilayers in vitro. However, the effect of lipid composition and the chemical environment in which β2m-lipid interactions occur have not been investigated previously. Here we examine membrane damage resulting from the interaction of β2m monomers and fibrils with lipid bilayers. Using dye release, tryptophan fluorescence quenching and fluorescence confocal microscopy assays we investigate the effect of anionic lipid composition and pH on the susceptibility of liposomes to fibril-induced membrane damage. We show that β2m fibril-induced membrane disruption is modulated by anionic lipid composition and is enhanced by acidic pH. Most strikingly, the greatest degree of membrane disruption is observed for liposomes containing bis(monoacylglycero)phosphate (BMP) at acidic pH, conditions likely to reflect those encountered in the endocytic pathway. The results suggest that the interaction between β2m fibrils and membranes of endosomal origin may play a role in the molecular mechanism of β2m amyloid-associated osteoarticular tissue destruction in DRA. PMID:25100247

  16. Ether- and Ester-Bound iso-Diabolic Acid and Other Lipids in Members of Acidobacteria Subdivision 4

    PubMed Central

    Rijpstra, W. Irene C.; Hopmans, Ellen C.; Foesel, Bärbel U.; Wüst, Pia K.; Overmann, Jörg; Tank, Marcus; Bryant, Donald A.; Dunfield, Peter F.; Houghton, Karen; Stott, Matthew B.

    2014-01-01

    Recently, iso-diabolic acid (13,16-dimethyl octacosanedioic acid) has been identified as a major membrane-spanning lipid of subdivisions 1 and 3 of the Acidobacteria, a highly diverse phylum within the Bacteria. This finding pointed to the Acidobacteria as a potential source for the bacterial glycerol dialkyl glycerol tetraethers that occur ubiquitously in peat, soil, lakes, and hot springs. Here, we examined the lipid composition of seven phylogenetically divergent strains of subdivision 4 of the Acidobacteria, a bacterial group that is commonly encountered in soil. Acid hydrolysis of total cell material released iso-diabolic acid derivatives in substantial quantities (11 to 48% of all fatty acids). In contrast to subdivisions 1 and 3 of the Acidobacteria, 6 out of the 7 species of subdivision 4 (excepting “Candidatus Chloracidobacterium thermophilum”) contained iso-diabolic acid ether bound to a glycerol in larger fractional abundance than iso-diabolic acid itself. This is in agreement with the analysis of intact polar lipids (IPLs) by high-performance liquid chromatography-mass spectrometry (HPLC-MS), which showed the dominance of mixed ether-ester glycerides. iso-Diabolic acid-containing IPLs were not identified, because these IPLs are not released with a Bligh-Dyer extraction, as observed before when studying lipid compositions of subdivisions 1 and 3 of the Acidobacteria. The presence of ether bonds in the membrane lipids does not seem to be an adaptation to temperature, because the five mesophilic isolates contained a larger amount of ether lipids than the thermophile “Ca. Chloracidobacterium thermophilum.” Furthermore, experiments with Pyrinomonas methylaliphatogenes did not reveal a major influence of growth temperature over the 50 to 69°C range. PMID:24928878

  17. Growth, fatty acid profile in major lipid classes and lipid fluidity of Aurantiochytrium mangroveiSK-02 As a function of growth temperature

    PubMed Central

    Chodchoey, Kanokwan; Verduyn, Cornelis

    2012-01-01

    Aurantiochytrium mangrovei Sk-02 was grown in a medium containing glucose (40 g/l), yeast extract (10 g/L) and sea salts (15 g/L) at temperatures ranging from 12 to 35°C. The fastest growth (µmax= 0.15 h-1) and highest fatty acid content of 415 mg/g-dry cell weight were found in the cells grown at 30°C. However, the cells grown at 12°C showed the highest percentage of polyunsaturated fatty acid (PUFA) (48.6% of total fatty acid). The percentage of docosahexaenoic acid (DHA) and pentadecanoic acid (C15:0) decreased with an increase in the growth temperature, whereas, palmitic acid (C16:0), stearic acid (C18:0) and DPA (C22:5n6) increased with an increase in the growth temperature. The composition of the major lipid class (%w/w) was slightly affected by the growth temperature. The fluidity of the organelle membrane or intracellular lipid (by DPH measurement) decreased with an increase in the growth temperatures, while the plasma membrane fluidity (by TMA-DPH measurement) could still maintain its fluidity in a wide range of temperatures (15 - 37°C). Furthermore, the distribution of DHA was found to be higher (36 – 54%) in phospholipid (PL) as compared to neutral lipid (NL) (20 - 41%). PMID:24031817

  18. Permeability of lipid bilayers to amino acids and phosphate

    NASA Technical Reports Server (NTRS)

    Chakrabarti, A. C.; Deamer, D. W.

    1992-01-01

    Permeability coefficients for amino acid classes, including neutral, polar, hydrophobic, and charged species, were measured and compared with values for other ionic solutes such as phosphate. The rates of efflux of glycine, lysine, phenylalanine, serine and tryptophan were determined after they were passively entrapped in large unilamellar vesicles (LUVs) composed of egg phosphatidylcholine (EPC) or dimyristoylphosphatidylcholine (DMPC). The following permeability coefficients were obtained for: glycine, 5.7 x 10(-12) cm s-1 (EPC), 2.0 x 10(-11) cm s-1 (DMPC); serine, 5.5 x 10(-12) cm s-1 (EPC), 1.6 x 10(-11) cm s-1 (DMPC); lysine, 5.1 x 10(-12) cm s-1 (EPC), 1.9 x 10(-11) cm s-1 (DMPC); tryptophan, 4.1 x 10(-10) cm s-1 (EPC); and phenylalanine, 2.5 x 10(-10) cm s-1 (EPC). Decreasing lipid chain length increased permeability slightly, while variations in pH had only minor effects on the permeability coefficients of the amino acids tested. Phosphate permeability was in the range of 10(-12)-10(-13) cm s-1 depending on the pH of the medium. The values for the polar and charged amino acids were surprisingly similar to those previously measured for monovalent cations such as sodium and potassium, which are in the range of 10(-12)-10(-13) cm s-1, depending on conditions and the lipid species used. This observation suggests that the permeation rates for the neutral, polar and charged amino acids are controlled by bilayer fluctuations and transient defects, rather than partition coefficients and Born energy barriers. The results are relevant to the permeation of certain peptides into lipid bilayers during protein translocation and membrane biogenesis.

  19. Altered lipid composition and enhanced lipid production in green microalga by introduction of brassica diacylglycerol acyltransferase 2.

    PubMed

    Ahmad, Irshad; Sharma, Anil K; Daniell, Henry; Kumar, Shashi

    2015-05-01

    Higher lipid biosynthesis and accumulation are important to achieve economic viability of biofuel production via microalgae. To enhance lipid content, Chlamydomonas reinhardtii was genetically engineered with a key enzyme diacylglycerol acyltransferase (BnDGAT2) from Brassica napus, responsible for neutral lipid biosynthesis. The transformed colonies harbouring aph7 gene, screened on hygromycin-supplemented medium, achieved transformation frequency of ~120 ± 10 colonies/1 × 10(6) cells. Transgene integration and expression were confirmed by PCR, Southern blots, staining lipid droplets, proteins and spectro-fluorometric analysis of Nile red-stained cells. The neutral lipid is a major class (over 80% of total lipids) and most significant requirement for biodiesel production; this was remarkably higher in the transformed alga than the untransformed control. The levels of saturated fatty acids in the transformed alga decreased to about 7% while unsaturated fatty acids increased proportionately when compared to wild type cells. Polyunsaturated fatty acids, especially α-linolenic acid, an essential omega-3 fatty acid, were enhanced up to 12% in the transformed line. Nile red staining confirmed formation of a large number of lipid globules in the transformed alga. Evaluation of long-term stability and vitality of the transgenic alga revealed that cryopreservation produced significantly higher quantity of lipid than those maintained continuously over 128 generations on solid medium. The overexpression of BnDGAT2 significantly altered the fatty acids profile in the transformed alga. Results of this study offer a valuable strategy of genetic manipulation for enhancing polyunsaturated fatty acids and neutral lipids for biofuel production in algae. PMID:25403771

  20. Altered lipid composition and enhanced lipid production in green microalga by introduction of brassica diacylglycerol acyltransferase 2

    PubMed Central

    Ahmad, Irshad; Sharma, Anil K.; Daniell, Henry; Kumar, Shashi

    2015-01-01

    Summary Higher lipid biosynthesis and accumulation are important to achieve economic viability of biofuel production via microalgae. To enhance lipid content, Chlamydomonas reinhardtii was genetically engineered with a key enzyme diacylglycerol acyltransferase (BnDGAT2) from Brassica napus, responsible for neutral lipid biosynthesis. The transformed colonies harbouring aph7 gene, screened on hygromycin-supplemented medium, achieved transformation frequency of ~120 ± 10 colonies/1 × 106 cells. Transgene integration and expression were confirmed by PCR, Southern blots, staining lipid droplets, proteins and spectro-fluorometric analysis of Nile red-stained cells. The neutral lipid is a major class (over 80% of total lipids) and most significant requirement for biodiesel production; this was remarkably higher in the transformed alga than the untransformed control. The levels of saturated fatty acids in the transformed alga decreased to about 7% while unsaturated fatty acids increased proportionately when compared to wild type cells. Polyunsaturated fatty acids, especially α-linolenic acid, an essential omega-3 fatty acid, were enhanced up to 12% in the transformed line. Nile red staining confirmed formation of a large number of lipid globules in the transformed alga. Evaluation of long-term stability and vitality of the transgenic alga revealed that cryopreservation produced significantly higher quantity of lipid than those maintained continuously over 128 generations on solid medium. The overexpression of BnDGAT2 significantly altered the fatty acids profile in the transformed alga. Results of this study offer a valuable strategy of genetic manipulation for enhancing polyunsaturated fatty acids and neutral lipids for biofuel production in algae. PMID:25403771

  1. Uric acid as a modulator of glucose and lipid metabolism.

    PubMed

    Lima, William Gustavo; Martins-Santos, Maria Emília Soares; Chaves, Valéria Ernestânia

    2015-09-01

    In humans, uric acid is the final oxidation product of purine catabolism. The serum uric acid level is based on the balance between the absorption, production and excretion of purine. Uric acid is similarly produced in the liver, adipose tissue and muscle and is primarily excreted through the urinary tract. Several factors, including a high-fructose diet and the use of xenobiotics and alcohol, contribute to hyperuricaemia. Hyperuricaemia belongs to a cluster of metabolic and haemodynamic abnormalities, called metabolic syndrome, characterised by abdominal obesity, glucose intolerance, insulin resistance, dyslipidaemia and hypertension. Hyperuricaemia reduction in the Pound mouse or fructose-fed rats, as well as hyperuricaemia induction by uricase inhibition in rodents and studies using cell culture have suggested that uric acid plays an important role in the development of metabolic syndrome. These studies have shown that high uric acid levels regulate the oxidative stress, inflammation and enzymes associated with glucose and lipid metabolism, suggesting a mechanism for the impairment of metabolic homeostasis. Humans lacking uricase, the enzyme responsible for uric acid degradation, are susceptible to these effects. In this review, we summarise the current knowledge of the effects of uric acid on the regulation of metabolism, primarily focusing on liver, adipose tissue and skeletal muscle. PMID:26133655

  2. Skeletal Muscle Lipid Deposition and Insulin Resistance: Impact of Dietary Fatty Acids and Exercise

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evidence has mounted indicating that elevated intramuscular triacylglycerol levels are associated with diminished insulin sensitivity in skeletal muscle. This lipid accumulation is most likely due to enhanced fatty acid uptake into the muscle coupled with diminished mitochondrial lipid oxidation. Th...

  3. Compositions and transport of lipid biomarkers through the water column and surficial sediments of the equatorial Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Wakeham, Stuart G.; Hedges, John I.; Lee, Cindy; Peterson, Michael L.; Hernes, Peter J.

    A systematic investigation of fluxes and compositions of lipids through the water column and into sediments was conducted along the U.S. JGOFS EgPac transect from l2°N to l5°S at 140°W. Fluxes of lipids out of the euphotic zone varied spatially and temporally, ranging from ≈0.20 - 0.6 mmol lipid-C m -2 day -1. Lipid fluxes were greatly attenuated with increasing water column depth, dropping to 0.002-0.06 mmol lipid-C m -2 day -1 in deep-water sediment traps. Sediment accumulation rates for lipids were ≈ 0.0002 - 0.00003 mmol lipid-C m -2 day -1. Lipids comprised ≈ 11-23% of C org in net-plankton, 10-30% in particles exiting the euphotic zone, 2-4% particles in the deep EgPac, and 0.1-1 % in sediments. Lipids were, in general, selectively lost due to their greater reactivity relative to bulk organic matter toward biogeochemical degradation in the water column and sediment. Qualitative changes in lipid compositions through the water column and into sediments are consistent with the reactive nature of lipids. Fatty acids were the most labile compounds, with polyunsaturated fatty acids (PUFAs) being quickly lost from particles. Branchedchain C 15 and C 17 fatty acids increased in relative abundance as particulate matter sank and was incorporated into the sediment, indicating inputs of organic matter from bacteria. Long-chain C 39 alkenones of marine origin and long-chain C 20-C 30 fatty acids, alcohols and hydrocarbons derived from land plants were selectively preserved in sediments. Compositional changes over time and space demonstrate the dynamic range of reactivities among individual biomarker compounds, and hence of organic matter as a whole. A thorough understanding of biogeochemical reprocessing of organic matter in the oceanic water column and sediments is, thus, essential for using the sediment record for reconstructing past oceanic environments.

  4. Serum lipids and acyl group composition of alcoholic patients.

    PubMed

    Sun, G Y; Rush, A; Chin, P C; Gorka, C; Lahiri, S; Wood, W G

    1988-01-01

    The lipid content and acyl group composition of serum from a group of alcoholic patients at a VA Medical Center were compared to control subjects sampled either from University of Missouri personnel or from subjects who were undergoing a preemployment physical examination at the same VA Medical Center. Plasma of alcoholic patients indicated an elevated triacylglycerol level (24-35%) as compared to both control groups. In addition, the acyl groups of triacylglycerols of alcoholic patients showed a markedly lower proportion of 18:2 and a higher proportion of 18:0 and 18:1 as compared to the control groups. The level of phosphatidylcholines in the plasma of alcoholic patients was not different from controls. However, acyl group composition of phosphatidylcholines from alcoholics indicated a lower proportion of 22:6 (n-3) as compared to controls. Although the cholesteryl ester level in serum was higher in alcoholics than in controls, the difference did not reach a level of significance. There was a similar decrease in 18:2 and an increase in 18:0 in cholesteryl esters of alcoholics as compared to controls. Results indicate that alcoholics in the United States show a similar change in certain serum lipids as reported for the Swedish alcoholics. This study also shows the complexities involved in selecting appropriate control groups to be compared with alcoholic patients. PMID:3395462

  5. The influence of dietary lipid composition on skeletal muscle mitochondria from mice following eight months of calorie restriction.

    PubMed

    Chen, Y; Hagopian, K; Bibus, D; Villalba, J M; López-Lluch, G; Navas, P; Kim, K; Ramsey, J J

    2014-01-01

    Calorie restriction (CR) has been shown to decrease reactive oxygen species (ROS) production and retard aging in a variety of species. It has been proposed that alterations in membrane saturation are central to these actions of CR. As a step towards testing this theory, mice were assigned to 4 dietary groups (control and 3 CR groups) and fed AIN-93G diets at 95 % (control) or 60 % (CR) of ad libitum for 8 months. To manipulate membrane composition, the primary dietary fats for the CR groups were soybean oil (also used in the control diet), fish oil or lard. Skeletal muscle mitochondrial lipid composition, proton leak, and H(2)O(2) production were measured. Phospholipid fatty acid composition in CR mice was altered in a manner that reflected the n-3 and n-6 fatty acid profiles of their respective dietary lipid sources. Dietary lipid composition did not alter proton leak kinetics between the CR groups. However, the capacity of mitochondrial complex III to produce ROS was decreased in the CR lard compared to the other CR groups. The results of this study indicate that dietary lipid composition can influence ROS production in muscle mitochondria of CR mice. It remains to be determined if lard or other dietary oils can maximize the CR-induced decreases in ROS production. PMID:24182343

  6. Solid Lipid Nanoparticles Loaded with Retinoic Acid and Lauric Acid as an Alternative for Topical Treatment of Acne Vulgaris.

    PubMed

    Silva, Elton Luiz; Carneiro, Guilherme; De Araújo, Lidiane Advíncula; Trindade, Mariana de Jesus Vaz; Yoshida, Maria Irene; Oréfice, Rodrigo Lambert; Farias, Luis de Macêdo; De Carvalho, Maria Auxiliadora Roque; Dos Santos, Simone Gonçalves; Goulart, Gisele Assis Castro; Alves, Ricardo José; Ferreira, Lucas Antônio Miranda

    2015-01-01

    Topical therapy is the first choice for the treatment of mild to moderate acne and all-trans retinoic acid is one of the most used drugs. The combination of retinoids and antimicrobials is an innovative approach for acne therapy. Recently, lauric acid, a saturated fatty acid, has shown strong antimicrobial activity against Propionibacterium acnes. However, topical application of retinoic acid is followed by high incidence of side-effects, including erythema and irritation. Solid lipid nanoparticles represent an alternative to overcome these side-effects. This work aims to develop solid lipid nanoparticles loaded with retinoic acid and lauric acid and evaluate their antibacterial activity. The influence of lipophilic stearylamine on the characteristics of solid lipid nanoparticles was investigated. Solid lipid nanoparticles were characterized for size, zeta potential, encapsulation efficiency, differential scanning calorimetry and X-ray diffraction. The in vitro inhibitory activity of retinoic acid-lauric acid-loaded solid lipid nanoparticles was evaluated against Propionibacterium acnes, Staphylococcus aureus and Staphylococcus epidermidis. High encapsulation efficiency was obtained at initial time (94 ± 7% and 100 ± 4% for retinoic acid and lauric acid, respectively) and it was demonstrated that lauric acid-loaded-solid lipid nanoparticles provided the incorporation of retinoic acid. However, the presence of stearylamine is necessary to ensure stability of encapsulation. Moreover, retinoic acid-lauric acid-loaded solid lipid nanoparticles showed growth inhibitory activity against Staphylococcus epidermidis, Propionibacterium acnes and Staphylococcus aureus, representing an interesting alternative for the topical therapy of acne vulgaris. PMID:26328443

  7. Dihydrolipoic acid inhibits 15-lipoxygenase-dependent lipid peroxidation.

    PubMed

    Lapenna, Domenico; Ciofani, Giuliano; Pierdomenico, Sante Donato; Giamberardino, Maria Adele; Cuccurullo, Franco

    2003-11-15

    The potential antioxidant effects of the hydrophobic therapeutic agent lipoic acid (LA) and of its reduced form dihydrolipoic acid (DHLA) on the peroxidation of either linoleic acid or human non-HDL fraction catalyzed by soybean 15-lipoxygenase (SLO) and rabbit reticulocyte 15-lipoxygenase (RR15-LOX) were investigated. DHLA, but not LA, did inhibit SLO-dependent lipid peroxidation, showing an IC(50) of 15 microM with linoleic acid and 5 microM with the non-HDL fraction. In specific experiments performed with linoleic acid, inhibition of SLO activity by DHLA was irreversible and of a complete, noncompetitive type. In comparison with DHLA, the well-known lipoxygenase inhibitor nordihydroguaiaretic acid and the nonspecific iron reductant sodium dithionite inhibited SLO-dependent linoleic acid peroxidation with an IC(50) of 4 and 100 microM, respectively, while the hydrophilic thiol N-acetylcysteine, albeit possessing iron-reducing and radical-scavenging properties, was ineffective. Remarkably, DHLA, but not LA, was also able to inhibit the peroxidation of linoleic acid and of the non-HDL fraction catalyzed by RR15-LOX with an IC(50) of, respectively, 10 and 5 microM. Finally, DHLA, but once again not LA, could readily reduce simple ferric ions and scavenge efficiently the stable free radical 1,1-diphenyl-2-pycrylhydrazyl in ethanol; DHLA was considerably less effective against 2,2'-azobis(2-amidinopropane) dihydrochloride-mediated, peroxyl radical-induced non-HDL peroxidation, showing an IC(50) of 850 microM. Thus, DHLA, at therapeutically relevant concentrations, can counteract 15-lipoxygenase-dependent lipid peroxidation; this antioxidant effect may stem primarily from reduction of the active ferric 15-lipoxygenase form to the inactive ferrous state after DHLA-enzyme hydrophobic interaction and, possibly, from scavenging of fatty acid peroxyl radicals formed during lipoperoxidative processes. Inhibition of 15-lipoxygenase oxidative activity by DHLA could occur in

  8. The effect of nitrogen limitation on lipid productivity and cell composition in Chlorella vulgaris.

    PubMed

    Griffiths, Melinda J; van Hille, Robert P; Harrison, Susan T L

    2014-03-01

    Chlorella vulgaris accumulates lipid under nitrogen limitation, but at the expense of biomass productivity. Due to this tradeoff, improved lipid productivity may be compromised, despite higher lipid content. To determine the optimal degree of nitrogen limitation for lipid productivity, batch cultures of C. vulgaris were grown at different nitrate concentrations. The growth rate, lipid content, lipid productivity and biochemical and elemental composition of the cultures were monitored for 20 days. A starting nitrate concentration of 170 mg L(-1) provided the optimal tradeoff between biomass and lipid production under the experimental conditions. Volumetric lipid yield (in milligram lipid per liter algal culture) was more than double that under nitrogen-replete conditions. Interpolation of the data indicated that the highest volumetric lipid concentration and lipid productivity would occur at nitrate concentrations of 305 and 241 mg L(-1), respectively. There was a strong correlation between the nitrogen content of the cells and the pigment, protein and lipid content, as well as biomass and lipid productivity. Knowledge of the relationships between cell nitrogen content, growth, and cell composition assists in the prediction of the nitrogen regime required for optimal productivity in batch or continuous culture. In addition to enhancing lipid productivity, nitrogen limitation improves the lipid profile for biodiesel production and reduces the requirement for nitrogen fertilizers, resulting in cost and energy savings and a reduction in the environmental burden of the process. PMID:24413971

  9. The effect of hydroxylated fatty acid-containing phospholipids in the remodeling of lipid membranes.

    PubMed

    Piotto, Stefano; Trapani, Alfonso; Bianchino, Erminia; Ibarguren, Maitane; López, David J; Busquets, Xavier; Concilio, Simona

    2014-06-01

    The synthetic fatty acid 2-hydroxyoleic acid (2OHOA) is an antitumor drug that regulates membrane lipid composition and structure. An important effect of this drug is the restoration of sphingomyelin (SM) levels in cancer cell membranes, where the SM concentration is lower than in non-tumor cells. It is well known that free fatty acid concentration in cell membranes is lower than 5%, and that fatty acid excess is rapidly incorporated into phospholipids. In a recent work, we have considered the effect of free 2OHOA in model membranes in liquid ordered (Lo) and liquid disordered (Ld) phases, by using all-atom molecular dynamics. This study concerns membranes that are modified upon incorporation of 2OHOA into different phospholipids. 2OHOA-containing phospholipids have a permanent effect on lipid membranes, making a Ld membrane surface more compact and less hydrated, whereas the opposite effect is observed in Lo domains. Moreover, the hydroxyl group of fatty acid chains increases the propensity of Ld model membranes to form hexagonal or other non-lamellar structures. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy. PMID:24463068

  10. Effects of Fatty Acids on the Interfacial and Solution Behavior of Mixed Lipidic Aggregates Called Solid Lipid Nanoparticles.

    PubMed

    Karmakar, Gourab; Nahak, Prasant; Guha, Pritam; Roy, Biplab; Chettri, Priyam; Sapkota, Manish; Koirala, Suraj; Misono, Takeshi; Torigoe, Kanjiro; Ghosh, Shilpi; Panda, Amiya Kumar

    2016-01-01

    Mutual miscibility of soylecithin, tristearin, fatty acids (FAs), and curcumin was assessed by means of surface pressure-area isotherms at the air-solution interface in order to formulate modified solid lipid nanoparticles (SLN). Appearance of minima in the excess area (Aex) and changes in free energy of mixing (∆G(0)ex) were recorded for systems with 20 mole% FAs. Modified SLNs, promising as topical drug delivery systems, were formulated using the lipids in combination with curcumin, stabilized by an aqueous Tween 60 solution. Optimal formulations were assessed by judiciously varying the FA chain length and composition. Physicochemical properties of SLNs were studied such as the size, zeta potential (by dynamic light scattering), morphology (by freeze fracture transmission electron microscopy), and thermal behavior (by differential scanning calorimetry). The size and zeta potential of the formulations were in the range 300-500 nm and -10 to -20 mV, respectively. Absorption and emission spectroscopic analyses supported the dynamic light scattering and differential scanning calorimetry data and confirmed localization of curcumin to the palisade layer of SLNs. These nanoparticles showed a sustained release of incorporated curcumin. Curcumin-loaded SLNs were effective against a gram-positive bacterial species, Bacillus amyloliquefaciens. Our results on the physicochemical properties of curcumin-loaded SLNs, the sustained release, and on antibacterial activity suggest that SLNs are promising delivery agents for topical drugs. PMID:27150334

  11. Role of Lipid Composition on the Interaction between a Tryptophan-Rich Protein and Model Bacterial Membranes.

    PubMed

    Sanders, Michael R; Clifton, Luke A; Frazier, Richard A; Green, Rebecca J

    2016-03-01

    The interaction between tryptophan-rich puroindoline proteins and model bacterial membranes at the air-liquid interface has been investigated by FTIR spectroscopy, surface pressure measurements, and Brewster angle microscopy. The role of different lipid constituents on the interactions between lipid membrane and protein was studied using wild type (Pin-b) and mutant (Trp44 to Arg44 mutant, Pin-bs) puroindoline proteins. The results show differences in the lipid selectivity of the two proteins in terms of preferential binding to specific lipid head groups in mixed lipid systems. Pin-b wild type was able to penetrate mixed layers of phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) head groups more deeply compared to the mutant Pin-bs. Increasing saturation of the lipid tails increased penetration and adsorption of Pin-b wild type, but again the response of the mutant form differed. The results provide insight as to the role of membrane architecture, lipid composition, and fluidity on antimicrobial activity of proteins. Data show distinct differences in the lipid binding behavior of Pin-b as a result of a single residue mutation, highlighting the importance of hydrophobic and charged amino acids in antimicrobial protein and peptide activity. PMID:26813886

  12. Cerebroside C Increases Tolerance to Chilling Injury and Alters Lipid Composition in Wheat Roots

    PubMed Central

    Li, Hong-Xia; Xiao, Yu; Cao, Ling-Ling; Yan, Xu; Li, Cong; Shi, Hai-Yan; Wang, Jian-Wen; Ye, Yong-Hao

    2013-01-01

    Chilling tolerance was increased in seed germination and root growth of wheat seedlings grown in media containing 20 µg/mL cerebroside C (CC), isolated from the endophytic Phyllosticta sp. TG78. Seeds treated with 20 µg/mL CC at 4°C expressed the higher germination rate (77.78%), potential (23.46%), index (3.44) and the shorter germination time (6.19 d); root growth was also significantly improved by 13.76% in length, 13.44% in fresh weight and 6.88% in dry mass compared to controls. During the cultivation process at 4°C for three days and the followed 24 h at 25°C, lipid peroxidation, expressed by malondialdehyde (MDA) content and relative membrane permeability (RMP) was significantly reduced in CC-treated roots; activities of lipoxygenase (LOX), phospholipid C (PLC) and phospholipid D (PLD) were inhibited by 13.62–62.26%, 13.54–63.93% and 13.90–61.17%, respectively; unsaturation degree of fatty acids was enhanced through detecting the contents of CC-induced linoleic acid, linolenic acid, palmitic acid and stearic acid using GC-MS; capacities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) were individually increased by 7.69–46.06%, 3.37–37.96%, and −7.00–178.07%. These results suggest that increased chilling tolerance may be due, in part, to the reduction of lipid peroxidation and alternation of lipid composition of roots in the presence of CC. PMID:24058471

  13. Composition and quantitation of microalgal lipids by ERETIC ¹H NMR method.

    PubMed

    Nuzzo, Genoveffa; Gallo, Carmela; d'Ippolito, Giuliana; Cutignano, Adele; Sardo, Angela; Fontana, Angelo

    2013-10-01

    Accurate characterization of biomass constituents is a crucial aspect of research in the biotechnological application of natural products. Here we report an efficient, fast and reproducible method for the identification and quantitation of fatty acids and complex lipids (triacylglycerols, glycolipids, phospholipids) in microalgae under investigation for the development of functional health products (probiotics, food ingredients, drugs, etc.) or third generation biofuels. The procedure consists of extraction of the biological matrix by modified Folch method and direct analysis of the resulting material by proton nuclear magnetic resonance (¹H NMR). The protocol uses a reference electronic signal as external standard (ERETIC method) and allows assessment of total lipid content, saturation degree and class distribution in both high throughput screening of algal collection and metabolic analysis during genetic or culturing studies. As proof of concept, the methodology was applied to the analysis of three microalgal species (Thalassiosira weissflogii, Cyclotella cryptica and Nannochloropsis salina) which drastically differ for the qualitative and quantitative composition of their fatty acid-based lipids. PMID:24084790

  14. Octopus lipid and vitamin E composition: interspecies, interorigin, and nutritional variability.

    PubMed

    Torrinha, Alvaro; Cruz, Rebeca; Gomes, Filipa; Mendes, Eulália; Casal, Susana; Morais, Simone

    2014-08-20

    Octopus vulgaris, Octopus maya, and Eledone cirrhosa from distinct marine environments [Northeast Atlantic (NEA), Northwest Atlantic (NWA), Eastern Central Atlantic, Western Central Atlantic (WCA), Pacific Ocean, and Mediterranean Sea] were characterized regarding their lipid and vitamin E composition. These species are those commercially more relevant worldwide. Significant interspecies and interorigin differences were observed. Unsaturated fatty acids account for more than 65% of total fatty acids, mostly ω-3 PUFA due to docosahexaenoic (18.4-29.3%) and eicosapentanoic acid (11.4-23.9%) contributions. The highest ω-3 PUFA amounts and ω-3/ω-6 ratios were quantified in the heaviest specimens, O. vulgaris from NWA, with high market price, and simultaneously in the lowest graded samples, E. cirrhosa from NEA, of reduced dimensions. Although having the highest cholesterol contents, E. cirrhosa from NEA and O. maya from WCA have also higher protective fatty acid indexes. Chemometric discrimination allowed clustering the selected species and several origins based on lipid and vitamin E profiles. PMID:25087929

  15. Thermally induced changes in lipid composition of raft and non-raft regions of hepatocyte plasma membranes of rainbow trout.

    PubMed

    Zehmer, John K; Hazel, Jeffrey R

    2005-11-01

    In poikilotherms, increases in plasma membrane (PM) cholesterol and an increase in the degree of lipid acyl chain saturation commonly accompany an increase in growth temperature. This has typically been interpreted in terms of membrane fluidity/order homeostasis, but these changes would also be expected to stabilize the structure of PM rafts against thermal perturbation. Rafts are microdomains that organize the molecules of many signaling cascades and are formed as a result of interactions between lipids with saturated acyl chains and cholesterol. No study to date has examined the thermally induced compositional changes of raft and non-raft regions of the PM separately. In this study we have measured the phospholipid class composition and fatty acid composition of raft-enriched (raft) and raft-depleted PM (RDPM) of hepatocytes from trout Oncorhynchus mykiss acclimated to 5 degrees C and 20 degrees C. In the raft, warm acclimation was associated with a reduction in the proportion of phosphatidylcholine from 56% to 30% while phosphatidylserine and phosphatidylinositol each increased from 8% to approximately 20% of the total phospholipid. Additionally, there were significantly fewer unsaturated fatty acids in the raft lipids from warm-acclimated (61%) than from the cold-acclimated trout (68%). In contrast, there were no significant changes in phospholipid class or acyl chain unsaturation in the RDPM. These data suggest that changes in raft lipid composition, rather than the PM as a whole, are particularly important during thermal acclimation. PMID:16272251

  16. Changes in the lipid composition of ripening banana fruits and evidence for an associated increase in cell membrane permeability.

    PubMed

    Wade, N L; Bishop, D G

    1978-06-23

    The content of total lipid in banana fruit pulp tissue remained constant during the climacteric rise induced by applied ethylene. The relative proportions of neutral lipid, glycolipid and phospholipid did not change. However, the fatty acid composition of the lipid did change during ripening. This change was confined largely to the phospholipid fraction, in which there was an increase in the proportion of linolenic acid and a decrease in the proportion of linoleic acid. The net result was an increase in total unsaturation of the fatty acids in the phospholipid fraction. Measurements of spin label motion in liposomes prepared from banana phospholipids showed that the motion and fluidity of bilayer lipids increased during ripening of the fruit from which the liposomes were prepared, probably as a result of increased lipid unsaturation during ripening. Since increases in membrane fluidity are accompanied by increases in the passive permeability to small molecules in a number of membrane systems, it is suggested that the increased leakage which has been previously demonstrated in ripening banana fruit tissue is due to increases in the permeability of at least some cell membranes. PMID:667087

  17. The Effects of Boron Derivatives on Lipid Absorption from the Intestine and on Bile Lipids and Bile Acids of Sprague Dawley Rats

    PubMed Central

    Hall, Iris H.; Reynolds, David J.; Wong, O. T.; Sood, A.; Spielvogel, B. F.

    1995-01-01

    N,N-dimethyl-n-octadecylamine borane 1 at 8 mg/kg/day, tetrakis-u-(trimethylamine boranecarboxylato)-bis(trimethyl-carboxyborane)-dicopper(II) 2 at 2.5 mg/kg/day and trimethylamine-carboxyborane 3 at 8 mg/kg/day were evaluated for their effects on bile lipids, bile acids, small intestinal absorption of cholesterol and cholic acid and liver and small intestinal enzyme activities involved in lipid metabolism. The agent administered orally elevated rat bile excretion of lipids, e.g. cholesterol and phospholipids, and compounds 2 and 3 increased the bile flow rate. These agents altered the composition of the bile acids, but there was no significant increase in lithocholic acid which is most lithogenic agent in rats. The three agents did decrease cholesterol absorption from isolated in situ intestinal duodenum loops in the presence of drug. Hepatic and small intestinal mucosa enzyme activities, e.g. ATP-dependent citrate lyase, acyl CoA cholesterol acyl transferase, cholsterol-7-α -hydroxylase, sn glycerol-3-phosphate acyl transferase, phosphatidylate phosphohydrolase, and lipoprotein lipase, were reduced. However, the boron derivatives 1 and 3 decreased hepatic HMG-CoA reductase activity, the regulatory enzyme for cholesterol synthesis, but the compounds had no effects on small intestinal mucosa HMG-CoA reductase activity. There was no evidence of hepatic cell damage afforded by the drugs based on clinical chemistry values which would induce alterations in bile acid concentrations after treatment of the rat. PMID:18472747

  18. Variation in Fatty Acid Distribution of Different Acyl Lipids in Rice (Oryza sativa L.) Brans

    PubMed Central

    Yoshida, Hiromi; Tanigawa, Takaaki; Kuriyama, Isoko; Yoshida, Naoko; Tomiyama, Yuka; Mizushina, Yoshiyuki

    2011-01-01

    The lipids extracted from rice brans were classified by thin-layer chromatography into eight fractions, and their fatty acid (FA) compositions were investigated among five different Japanese cultivars. The lipids of these rice brans comprised mainly triacylglycerols (TAG; 84.9-86.0 wt%), free FA (4.2-4.6 wt%), and phospholipids (PL; 6.5-6.7 wt%), whilst other components were also detected in minor proportions (0.2-2.1 wt%). The PL components included phosphatidyl choline (43.3-46.8 wt%) phosphatidyl ethanolamine (25.0-27.3 wt%) and phosphatidyl inositol (20.2-23.2 wt%). Comparison of the different cultivars showed, with a few exceptions, no substantial difference (P > 0.05) in FA distribution. FA distribution of TAG among the five cultivars was characterized as: unsaturated FA predominantly concentrated at the sn-2 position and saturated FA primarily occupying the sn-1 or sn-3 position in these lipids. These results suggest that the rice bran lipids may be well incorporated into our daily diet to improve nutritional value of the Japanese diet. PMID:22254108

  19. Postnatal changes in fatty acids composition of brown adipose tissue

    NASA Astrophysics Data System (ADS)

    Ohno, T.; Ogawa, K.; Kuroshima, A.

    1992-03-01

    It has been demonstrated that thermogenic activity of brown adipose tissue (BAT) is higher during the early postnatal period, decreasing towards a low adult level. The present study examined postnatal changes in the lipid composition of BAT. BAT from pre-weaning rats at 4 and 14 days old showed the following differences in lipid composition compared to that from adults of 12 weeks old. (i) Relative weight of interscapular BAT to body weight was markedly greater. (ii) BAT-triglyceride (TG) level was lower, while BAT-phospholipid (PL)level was higher. (iii) In TG fatty acids (FA) polyunsaturated fatty acids (PU; mol %), arachidonate index (AI), unsaturation index (UI) and PU/saturated FA (SA) were higher; rare FA such as eicosadienoate, bishomo- γ-linolenic acid and lignoceric acid in mol % were also higher. (iv) In PL-FA monounsaturated FA (MU) in mol % was lower; PU mol %, AI and UI were higher. These features in BAT of pre-weaning rats resembled those in the cold-acclimated adults, suggesting a close relationship of the PL-FA profile to high activity of BAT.

  20. Monthly changes of glycogen, lipid and free amino acid of oyster

    NASA Astrophysics Data System (ADS)

    Zhicui, Zhang; Changhu, Xue; Xin, Gao; Zhaojie, Li; Qi, Wang

    2006-07-01

    Monthly difference of the chemical composition of oyster cultured along the eastern coast of Shandong Province was analyzed. The components analyzed included glycogen, fatty acid and free amino acid (FAA). The content of glycogen was high in January and March (2.89 and 2.82 g(100g)-1 on average, respectively) and low in October (2.07 g(100g)-1 on avarage). The low content of neutral lipids in October reflected a relatively poor nutritional value of oyster (1.42 g(100 g)-1 on average). The main fatty acids of oyster were palmitic acid (16:0), oleic acid (18:1), eicosapentaenoic acid (EPA, 20: 5ω-3) and docosahexaenoic acid (DHA, 22:6ω-3). The major FAAs of oyster were Taurine, Glutamicacid, Glycin, Alanine, Arginine and Proline. Taurine was the most abundant FAA with its content ranging from 603 mg (100g)-1 to 1139 mg(100g)-1. The high contents of glycogen, polyunsaturated fatty acid and FAA showed that oyster cultured along the eastern coast of Shandong Province was nutritionally good in January and March.

  1. The lipid composition and its alteration during the growth stage in pathogenic fungus, epidermophyton floccosum

    NASA Technical Reports Server (NTRS)

    Yamada, T.; Watanabe, R.; Nozawa, Y.; Ito, Y.

    1984-01-01

    Qualitative and quantitative changes of lipid components during the growth stages were studied in E. floccosum. The acyl group components of total lipids of Trichophyton rubrum and Microsporum cookei were also examined. The lipids of E. floccosum amounted to approximately 4% of the dry cell weight. Neutral lipids mainly consisted of triglycerides and sterols, and major polar lipids were phosphatidylcholine, phosphatidylethanolamine, and an unknown lipid X. The fatty acids in tryglycerides and phospholipids were palmitic, palmitoleic, stearic, oleic, and linoleic acids. The unknown polar lipid X which appeared between phosphatidylethanolamine and cardiolipin on thin layer chromatography plates contained no phosphorus. There was no significant change in the fatty acid components of E. floccosum and T. rubrum during the cell growth, whereas profound changes occurred in M. cookei. The sterol components of E. floccosum showed striking changes depending on the growth stage.

  2. Nutrients and neurodevelopment: lipids.

    PubMed

    González, Horacio F; Visentin, Silvana

    2016-10-01

    Nutrients, lipids in particular, make up the central nervous system structure and play major functional roles: they stimulate development, migration, and nerve cell differentiation. They are part of gray matter, white matter, nerve nuclei, and synaptogenesis. Breast milk contains lipids which are crucial for infant brain development. The lipid profile of breast milk was used as a guideline for the development of breast milk substitutes. However, to date, no substitute has matched it. Complementary feeding should include docosahexaenoic acid, arachidonic acid, other polyunsaturated fatty acids, saturated fatty acids, and complex lipids found in milk fat. The lipid composition of breast milk depends on maternal intake and nutritional status during pregnancy and breast-feeding. It has a great impact on development. Our goal is to review scientific literature regarding the role of lipids on infant brain development and the importance of breast milk lipid composition, maternal diet, and complementary feeding. PMID:27606648

  3. Polyunsaturated Fatty Acid-Derived Lipid Mediators and T Cell Function

    PubMed Central

    Nicolaou, Anna; Mauro, Claudio; Urquhart, Paula; Marelli-Berg, Federica

    2014-01-01

    Fatty acids are involved in T cell biology both as nutrients important for energy production as well as signaling molecules. In particular, polyunsaturated fatty acids are known to exhibit a range of immunomodulatory properties that progress through T cell mediated events, although the molecular mechanisms of these actions have not yet been fully elucidated. Some of these immune activities are linked to polyunsaturated fatty acid-induced alteration of the composition of cellular membranes and the consequent changes in signaling pathways linked to membrane raft-associated proteins. However, significant aspects of the polyunsaturated fatty acid bioactivities are mediated through their transformation to specific lipid mediators, products of cyclooxygenase, lipoxygenase, or cytochrome P450 enzymatic reactions. Resulting bioactive metabolites including prostaglandins, leukotrienes, and endocannabinoids are produced by and/or act upon T leukocytes through cell surface receptors and have been shown to alter T cell activation and differentiation, proliferation, cytokine production, motility, and homing events. Detailed appreciation of the mode of action of these lipids presents opportunities for the design and development of therapeutic strategies aimed at regulating T cell function. PMID:24611066

  4. Lysosomal acid lipase deficiency in rats: Lipid analyses and lipase activities in liver and spleen

    SciTech Connect

    Kuriyama, M.; Yoshida, H.; Suzuki, M.; Fujiyama, J.; Igata, A. )

    1990-09-01

    We report the biological characterization of an animal model of a genetic lipid storage disease analogous to human Wolman's disease. Affected rats accumulated cholesteryl esters (13.3-fold), free cholesterol (2.8-fold), and triglycerides (5.4-fold) in the liver, as well as cholesteryl esters (2.5-fold) and free cholesterol (1.33-fold) in the spleen. Triglycerides did not accumulate, and the levels actually decreased in the spleen. Analysis of the fatty acid composition of the cholesteryl esters and triglycerides showed high percentages of linoleic acid (18:2) and arachidonic acid (20:4) in both organs, especially in the liver. No accumulation of phospholipids, neutral glycosphingolipids, or gangliosides was found in the affected rats. Acid lipase activity for (14C)triolein, (14C)cholesteryl oleate, and 4-methyl-umbelliferyl oleate was deficient in both the liver and spleen of affected rats. Lipase activity at neutral pH was normal in both liver and spleen. Heterozygous rats showed intermediate utilization of these substrates in both organs at levels between those for affected rats and those for normal controls, although they did not accumulate any lipids. These data suggest that these rats represent an animal counterpart of Wolman's disease in humans.

  5. Effects of Lipid Composition and Solution Conditions on the Mechanical Properties of Membrane Vesicles

    PubMed Central

    Kato, Nobuhiko; Ishijima, Akihiko; Inaba, Takehiko; Nomura, Fumimasa; Takeda, Shuichi; Takiguchi, Kingo

    2015-01-01

    The mechanical properties of cell-sized giant unilamellar liposomes were studied by manipulating polystyrene beads encapsulated within the liposomes using double-beam laser tweezers. Mechanical forces were applied to the liposomes from within by moving the beads away from each other, which caused the liposomes to elongate. Subsequently, a tubular membrane projection was generated in the tip at either end of the liposome, or the bead moved out from the laser trap. The force required for liposome transformation reached maximum strength just before formation of the projection or the moving out of the bead. By employing this manipulation system, we investigated the effects of membrane lipid compositions and environment solutions on the mechanical properties. With increasing content of acidic phospholipids, such as phosphatidylglycerol or phosphatidic acid, a larger strength of force was required for the liposome transformation. Liposomes prepared with a synthetic dimyristoylphosphatidylcholine, which has uniform hydrocarbon chains, were transformed easily compared with liposomes prepared using natural phosphatidylcholine. Surprisingly, bovine serum albumin or fetuin (soluble proteins that do not bind to membranes) decreased liposomal membrane rigidity, whereas the same concentration of sucrose showed no particular effect. These results show that the mechanical properties of liposomes depend on their lipid composition and environment. PMID:25611306

  6. Composition for nucleic acid sequencing

    DOEpatents

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2008-08-26

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  7. Impact of lipid oxidation-derived aldehydes and ascorbic acid on the antioxidant activity of model melanoidins.

    PubMed

    Kitrytė, Vaida; Adams, An; Venskutonis, Petras Rimantas; De Kimpe, Norbert

    2012-12-01

    As the heat-induced formation of antioxidants throughout the Maillard reaction is known, this study was undertaken to evaluate the impact of lipid oxidation-derived aldehydes and ascorbic acid in Maillard model systems on the resulting antioxidant activity. For this purpose, various fractions of melanoidin-like polycondensation products were obtained from mixtures of amino acids (glycine, lysine, arginine) and lipid oxidation-derived aldehydes (hexanal, (E)-2-hexenal), in the presence or absence of glucose or ascorbic acid. All fractions showed a significant radical scavenging capacity (DPPH assay) and ferric reducing power (FRAP assay). The activity varied according to the composition of the model system tested, although some similar trends were discovered in both assays applied. The presence of lipid oxidation products in the browning products augmented the antioxidant activity in specific cases. For instance, the combined presence of arginine, hexanal and glucose in heated model systems resulted in a significantly higher antioxidant capacity. With an exception of ascorbic acid-containing model systems, melanoidin-like polycondensation products possessed significantly stronger antioxidant activities than the corresponding unheated initial reactant mixtures. Water-soluble high molecular weight (>12kDa) and nonsoluble fractions comprised the major part of the antioxidants derived from amino acid/lipid oxidation product model systems, with or without glucose or ascorbic acid. PMID:22953854

  8. Trans isomeric octadecenoic acids are related inversely to arachidonic acid and DHA and positively related to mead acid in umbilical vessel wall lipids.

    PubMed

    Decsi, Tamás; Boehm, Günther; Tjoonk, H M Ria; Molnár, Szilárd; Dijck-Brouwer, D A Janneke; Hadders-Algra, Mijna; Martini, Ingrid A; Muskiet, Frits A J; Boersma, E Rudy

    2002-10-01

    Long-chain PUFA play an important role in early human neurodevelopment. Significant inverse correlations were reported between values of trans isomeric and long-chain PUFA in plasma lipids of preterm infants and children aged 1-15 yr as well as in venous cord blood lipids of full-term infants. Here we report FA compositional data of cord blood vessel wall lipids in 308 healthy, full-term infants (gestational age: 39.7 +/- 1.2 wk, birth weight: 3528 +/- 429 g, mean +/- SD). The median (interquartile range) of the sum of 18-carbon trans FA was 0.22 (0.13) % w/w in umbilical artery and 0.16 (0.10) % w/w in umbilical vein lipids. Nonparametric correlation analysis showed significant inverse correlations between the sum of 18-carbon trans FA and both arachidonic acid and DHA in artery (r = -0.38, P < 0.01, and r = -0.20, P < 0.01) and vein (r = -0.36, P < 0.01, and -0.17, P < 0.01) wall lipids. In addition, the sum of 18-carbon trans FA was significantly positively correlated to Mead acid, a general indicator of EFA deficiency, in both artery (r = +0.35, P < 0.01) and vein (r = +0.31, P< 0.01) wall lipids. The present results obtained in a large group of full-term infants suggest that maternal trans FA intake is inversely associated with long-chain PUFA status of the infant at birth. PMID:12530555

  9. Micellar lipid composition affects micelle interaction with class B scavenger receptor extracellular loops.

    PubMed

    Goncalves, Aurélie; Gontero, Brigitte; Nowicki, Marion; Margier, Marielle; Masset, Gabriel; Amiot, Marie-Josèphe; Reboul, Emmanuelle

    2015-06-01

    Scavenger receptors (SRs) like cluster determinant 36 (CD36) and SR class B type I (SR-BI) play a debated role in lipid transport across the intestinal brush border membrane. We used surface plasmon resonance to analyze real-time interactions between the extracellular protein loops and various ligands ranging from single lipid molecules to mixed micelles. Micelles mimicking physiological structures were necessary for optimal binding to both the extracellular loop of CD36 (lCD36) and the extracellular loop of SR-BI (lSR-BI). Cholesterol, phospholipid, and fatty acid micellar content significantly modulated micelle binding to and dissociation from the transporters. In particular, high phospholipid micellar concentrations inhibited micelle binding to both receptors (-53.8 and -74.4% binding at 0.32 mM compared with 0.04 mM for lCD36 and lSR-BI, respectively, P < 0.05). The presence of fatty acids was crucial for micelle interactions with both proteins (94.4 and 81.3% binding with oleic acid for lCD36 and lSR-BI, respectively, P < 0.05) and fatty acid type substitution within the micelles was the component that most impacted micelle binding to the transporters. These effects were partly due to subsequent modifications in micellar size and surface electric charge, and could be correlated to micellar vitamin D uptake by Caco-2 cells. Our findings show for the first time that micellar lipid composition and micellar properties are key factors governing micelle interactions with SRs. PMID:25833688

  10. Improved Experimental Techniques for Analyzing Nucleic Acid Transport Through Protein Nanopores in Planar Lipid Bilayers

    NASA Astrophysics Data System (ADS)

    Costa, Justin A.

    The translocation of nucleic acid polymers across cell membranes is a fundamental requirement for complex life and has greatly contributed to genomic molecular evolution. The diversity of pathways that have evolved to transport DNA and RNA across membranes include protein receptors, active and passive transporters, endocytic and pinocytic processes, and various types of nucleic acid conducting channels known as nanopores. We have developed a series of experimental techniques, collectively known as "Wicking", that greatly improves the biophysical analysis of nucleic acid transport through protein nanopores in planar lipid bilayers. We have verified the Wicking method using numerous types of classical ion channels including the well-studied chloride selective channel, CLIC1. We used the Wicking technique to reconstitute α-hemolysin and found that DNA translocation events of types A and B could be routinely observed using this method. Furthermore, measurable differences were observed in the duration of blockade events as DNA length and composition was varied, consistent with previous reports. Finally, we tested the ability of the Wicking technology to reconstitute the dsRNA transporter Sid-1. Exposure to dsRNAs of increasing length and complexity showed measurable differences in the current transitions suggesting that the charge carrier was dsRNA. However, the translocation events occurred so infrequently that a meaningful electrophysiological analysis was not possible. Alterations in the lipid composition of the bilayer had a minor effect on the frequency of translocation events but not to such a degree as to permit rigorous statistical analysis. We conclude that in many instances the Wicking method is a significant improvement to the lipid bilayer technique, but is not an optimal method for analyzing transport through Sid-1. Further refinements to the Wicking method might have future applications in high throughput DNA sequencing, DNA computation, and

  11. Measurement of the incorporation of orally administered arachidonic acid into tissue lipids

    SciTech Connect

    Kulmacz, R.J.; Sivarajan, M.; Lands, W.E.

    1986-01-01

    The applicability of a stable isotope method to monitor the mixing of dietary arachidonic acid with endogenous arachidonic acid in tissue lipids was evaluated. Rats were fed octadeuterated arachidonic acid during a 20-day period, and the entry of the dietary acid into lipid esters of various tissues was examined by gas chromatography-mass spectrometric (GC-MS) analysis of their fatty acids. The rats were maintained on a fat-free diet from weaning until 63 days old to enhance the ratio of the dietary acid to endogenous arachidonate. Three separate forms of eicosatetraenoic acid in the tissue lipids could be distinguished by GC-MS: octadeuterated arachidonic acid (recent dietary origin), unlabeled arachidonic acid (maternal origin) and unlabeled 4,7,10,13-eicosatetraenoic acid (originating from palmitoleic acid). The total eicosatetraenoic acid in the tissue lipids contained about 90% arachidonate from recent dietary origin in lung, kidney, heart and fat, 70% in muscle and liver and 27% in brain. The n-7 isomer of eicosatetraenoic acid was estimated to make up 6% or less of the total eicosatetraenoic acid in lung, kidney, brain, muscle and heart tissue lipids, but it comprised around 15% of the total eicosatetraenoic acid in liver. The unlabeled arachidonic acid of maternal origin thus comprised only about 10% of the eicosatetraenoic acid in all tissues examined except muscle and brain, where it was 24% and 70% of the eicosatetraenoic acid, respectively.

  12. Optimization of bicelle lipid composition and temperature for EPR spectroscopy of aligned membranes

    NASA Astrophysics Data System (ADS)

    McCaffrey, Jesse E.; James, Zachary M.; Thomas, David D.

    2015-01-01

    We have optimized the magnetic alignment of phospholipid bilayered micelles (bicelles) for EPR spectroscopy, by varying lipid composition and temperature. Bicelles have been extensively used in NMR spectroscopy for several decades, in order to obtain aligned samples in a near-native membrane environment and take advantage of the intrinsic sensitivity of magnetic resonance to molecular orientation. Recently, bicelles have also seen increasing use in EPR, which offers superior sensitivity and orientational resolution. However, the low magnetic field strength (less than 1 T) of most conventional EPR spectrometers results in homogeneously oriented bicelles only at a temperature well above physiological. To optimize bicelle composition for magnetic alignment at reduced temperature, we prepared bicelles containing varying ratios of saturated (DMPC) and unsaturated (POPC) phospholipids, using EPR spectra of a spin-labeled fatty acid to assess alignment as a function of lipid composition and temperature. Spectral analysis showed that bicelles containing an equimolar mixture of DMPC and POPC homogeneously align at 298 K, 20 K lower than conventional DMPC-only bicelles. It is now possible to perform EPR studies of membrane protein structure and dynamics in well-aligned bicelles at physiological temperatures and below.

  13. Carnosic Acid Inhibits Lipid Accumulation in 3T3-L1 Adipocytes Through Attenuation of Fatty Acid Desaturation

    PubMed Central

    Park, Mi-Young; Sung, Mi-Kyung

    2015-01-01

    Background: Excess body fat accumulation contributes to the development of metabolic disorders that can cause adverse health effects. Carnosic acid (CA), a major bioactive component of rosemary (Rosemarinus officinalis), has been suggested to possess anti-adipogenic properties. The present study was conducted to elucidate the mechanism underlying the anti-adipogenic effects of CA. Methods: 3T3-L1 pre-adipocytes were treated with CA (0.1, 1, and 10 μM) from day 0 to day 8 of differentiation. On day 8, biochemical markers of lipid accumulation and the degree of fatty acid desaturation were measured. Results: Oil Red O staining results, triglyceride (TG) accumulation, and glycerol 3-phosphate dehydrogenase activity suggested that CA significantly inhibited lipid accumulation in 3T3-L1 adipocytes. CA significantly decreased mRNA expression of peroxisome proliferator-activated receptor-γ, sterol regulatory element-binding protein 1, and CCAAT/enhancer binding protein-α in a dose-dependent manner. Moreover, it decreased the ratio of both C16:1/C16:0 and C18:1/C18:0, with reduced expression of stearoyl CoA desaturase 1 mRNA and protein. Conclusions: These results suggest that CA efficiently suppressed adipogenesis in 3T3-L1 adipocytes and its action, at least in part, is associated with the downregulation of adipogenesis-related genes and the fatty acid composition of TG accumulated in adipocytes. PMID:25853102

  14. Evaluation of Fatty Acid and Amino Acid Compositions in Okra (Abelmoschus esculentus) Grown in Different Geographical Locations

    PubMed Central

    Sami, Rokayya; Lianzhou, Jiang; Yang, Li; Ma, Ying; Jing, Jing

    2013-01-01

    Okra has different uses as a food and a remedy in traditional medicine. Since it produces many seeds, distribution of the plant is also quite easy. Although seed oil yield is low (4.7%), since the linoleic acid composition of the seed oil is quiet high (67.5%), it can still be used as a source of (UNSAT) unsaturated fatty acids. In this study, samples of okra grown in four different locations were analyzed to measure fatty acid and amino acid compositions. The content of the lipid extraction ranged from 4.34% to 4.52% on a dry weight basis. Quantitatively, the main okra fatty acids were palmitic acid (29.18–43.26%), linoleic acid (32.22–43.07%), linolenic acid (6.79–12.34%), stearic acid (6.36–7.73%), oleic acid (4.31–6.98%), arachidic acid (ND–3.48%), margaric acid (1.44–2.16%), pentadecylic acid (0.63–0.92%), and myristic acid (0.21–0.49%). Aspartic acid, proline, and glutamic acids were the main amino acids in okra pods, while cysteine and tyrosine were the minor amino acids. Statistical methods revealed how the fatty acid and amino acid contents in okra may be affected by the sampling location. PMID:24171167

  15. Evaluation of fatty acid and amino acid compositions in okra (Abelmoschus esculentus) grown in different geographical locations.

    PubMed

    Sami, Rokayya; Lianzhou, Jiang; Yang, Li; Ma, Ying; Jing, Jing

    2013-01-01

    Okra has different uses as a food and a remedy in traditional medicine. Since it produces many seeds, distribution of the plant is also quite easy. Although seed oil yield is low (4.7%), since the linoleic acid composition of the seed oil is quiet high (67.5%), it can still be used as a source of (UNSAT) unsaturated fatty acids. In this study, samples of okra grown in four different locations were analyzed to measure fatty acid and amino acid compositions. The content of the lipid extraction ranged from 4.34% to 4.52% on a dry weight basis. Quantitatively, the main okra fatty acids were palmitic acid (29.18-43.26%), linoleic acid (32.22-43.07%), linolenic acid (6.79-12.34%), stearic acid (6.36-7.73%), oleic acid (4.31-6.98%), arachidic acid (ND-3.48%), margaric acid (1.44-2.16%), pentadecylic acid (0.63-0.92%), and myristic acid (0.21-0.49%). Aspartic acid, proline, and glutamic acids were the main amino acids in okra pods, while cysteine and tyrosine were the minor amino acids. Statistical methods revealed how the fatty acid and amino acid contents in okra may be affected by the sampling location. PMID:24171167

  16. Imaging heterogeneity of membrane and storage lipids in transgenic Camelina sativa seeds with altered fatty acid profiles.

    PubMed

    Horn, Patrick J; Silva, Jillian E; Anderson, Danielle; Fuchs, Johannes; Borisjuk, Ljudmilla; Nazarenus, Tara J; Shulaev, Vladimir; Cahoon, Edgar B; Chapman, Kent D

    2013-10-01

    Engineering compositional changes in oilseeds is typically accomplished by introducing new enzymatic step(s) and/or by blocking or enhancing an existing enzymatic step(s) in a seed-specific manner. However, in practice, the amounts of lipid species that accumulate in seeds are often different from what one would predict from enzyme expression levels, and these incongruences may be rooted in an incomplete understanding of the regulation of seed lipid metabolism at the cellular/tissue level. Here we show by mass spectrometry imaging approaches that triacylglycerols and their phospholipid precursors are distributed differently within cotyledons and the hypocotyl/radicle axis in embryos of the oilseed crop Camelina sativa, indicating tissue-specific heterogeneity in triacylglycerol metabolism. Phosphatidylcholines and triacylglycerols enriched in linoleic acid (C18:2) were preferentially localized to the axis tissues, whereas lipid classes enriched in gadoleic acid (C20:1) were preferentially localized to the cotyledons. Manipulation of seed lipid compositions by heterologous over-expression of an acyl-acyl carrier protein thioesterase, or by suppression of fatty acid desaturases and elongases, resulted in new overall seed storage lipid compositions with altered patterns of distribution of phospholipid and triacylglycerol in transgenic embryos. Our results reveal previously unknown differences in acyl lipid distribution in Camelina embryos, and suggest that this spatial heterogeneity may or may not be able to be changed effectively in transgenic seeds depending upon the targeted enzyme(s)/pathway(s). Further, these studies point to the importance of resolving the location of metabolites in addition to their quantities within plant tissues. PMID:23808562

  17. Fatty acid composition of Swedish bakery products, with emphasis on trans-fatty acids.

    PubMed

    Trattner, Sofia; Becker, Wulf; Wretling, Sören; Öhrvik, Veronica; Mattisson, Irene

    2015-05-15

    Trans-fatty acids (TFA) have been associated with increased risk of coronary heart disease, by affecting blood lipids and inflammation factors. Current nutrition recommendations emphasise a limitation of dietary TFA intake. The aim of this study was to investigate fatty acid composition in sweet bakery products, with emphasis on TFA, on the Swedish market and compare fatty acid composition over time. Products were sampled in 2001, 2006 and 2007 and analysed for fatty acid composition by using GC. Mean TFA levels were 0.7% in 2007 and 5.9% in 2001 of total fatty acids. In 1995-97, mean TFA level was 14.3%. In 2007, 3 of 41 products had TFA levels above 2% of total fatty acids. TFA content had decreased in this product category, while the proportion of saturated (SFA) and polyunsaturated (PUFA) fatty acids had increased, mostly through increased levels of 16:0 and 18:2 n-6, respectively. The total fat content remained largely unchanged. PMID:25577101

  18. The stereoisomeric composition of phytanyl chains in lipids of Dead Sea sediments

    USGS Publications Warehouse

    Anderson, R.; Kates, M.; Baedecker, M.J.; Kaplan, I.R.; Ackman, R.G.

    1977-01-01

    Lipid extracts from five recent Dead Sea sediments were analyzed for isoprenoid compounds and the following were isolated: free and phospholipid-bound di-O-phytanylglycerol, free phytanol and free and esterifled phytanic acid. The phytanyl groups of the diether and the free phytanol were oxidized to the corresponding phytanic acid; the stereoisomeric composition of the derived phytanic acids as well as of the ester-bound phytanic acid was determined by open-tubular gas-liquid chromatography of the corresponding methyl esters on butanediolsuccinate polyester. Only the 3R,7R,11R-isomer of phytanic acid was detected in each of the phytanate samples, indicating that these phytanyl chains in the Dead Sea sediments are most likely derived from extremely halophilic bacteria rather than from phytol of chlorophyll origin. These findings also provide further evidence that the mixtures of RRR and SRR-phytanic acids previously isolated from organic-rich shales were most likely derived from the phytyl chain in chlorophyll. ?? 1977.

  19. Modifying the lipid content and composition of plant seeds: engineering the production of LC-PUFA.

    PubMed

    Ruiz-Lopez, Noemi; Usher, Sarah; Sayanova, Olga V; Napier, Johnathan A; Haslam, Richard P

    2015-01-01

    Omega-3 fatty acids are characterized by a double bond at the third carbon atom from the end of the carbon chain. Latterly, long chain polyunsaturated omega-3 fatty acids such as eicosapentaenoic acid (EPA; 20:5Δ5,8,11,14,17) and docosahexanoic acid (DHA; 22:6 Δ4,7,10,13,16,19), which typically only enter the human diet via the consumption of oily fish, have attracted much attention. The health benefits of the omega-3 LC-PUFAs EPA and DHA are now well established. Given the desire for a sustainable supply of omega-LC-PUFA, efforts have focused on enhancing the composition of vegetable oils to include these important fatty acids. Specifically, EPA and DHA have been the focus of much study, with the ultimate goal of producing a terrestrial plant-based source of these so-called fish oils. Over the last decade, many genes encoding the primary LC-PUFA biosynthetic activities have been identified and characterized. This has allowed the reconstitution of the LC-PUFA biosynthetic pathway in oilseed crops, producing transgenic plants engineered to accumulate omega-3 LC-PUFA to levels similar to that found in fish oil. In this review, we will describe the most recent developments in this field and the challenges of overwriting endogenous seed lipid metabolism to maximize the accumulation of these important fatty acids. PMID:25417743

  20. The stereoisomeric composition of phytanyl chains in lipids of Dead Sea sediments

    NASA Technical Reports Server (NTRS)

    Anderson, R.; Kates, M.; Baedecker, M. J.; Kaplan, I. R.; Ackman, R. G.

    1977-01-01

    Lipid extracts from five recent Dead Sea sediments were analyzed for isoprenoid compounds and the following were isolated: free and phospholipid-bound di-O-phytanylglycerol, free phytanol and free and esterified phytanic acid. The phytanyl groups of the diether and the free phytanol were oxidized to the corresponding phytanic acid; the stereoisomeric composition of the derived phytanic acids as well as of the ester-bound phytanic acid was determined by open-tubular gas-liquid chromatography of the corresponding methyl esters on butanediolsuccinate polyester. Only the 3R, 7R, 11R-isomer of phytanic acid was detected in each of the phytanate samples, indicating that these phytanyl chains in the Dead Sea sediments are most likely derived from extremely halophilic bacteria rather than from phytol of chlorophyll origin. These findings also provide further evidence that the mixtures of RRR and SRR-phytanic acids previously isolated from organic-rich shales were most likely derived from the phytyl chain in chlorophyll.

  1. Low temperature alters plasma membrane lipid composition and ATPase activity of pineapple fruit during blackheart development.

    PubMed

    Zhou, Yuchan; Pan, Xiaoping; Qu, Hongxia; Underhill, Steven J R

    2014-02-01

    Plasma membrane (PM) plays central role in triggering primary responses to chilling injury and sustaining cellular homeostasis. Characterising response of membrane lipids to low temperature can provide important information for identifying early causal factors contributing to chilling injury. To this end, PM lipid composition and ATPase activity were assessed in pineapple fruit (Ananas comosus) in relation to the effect of low temperature on the development of blackheart, a form of chilling injury. Chilling temperature at 10 °C induced blackheart development in concurrence with increase in electrolyte leakage. PM ATPase activity was decreased after 1 week at low temperature, followed by a further decrease after 2 weeks. The enzyme activity was not changed during 25 °C storage. Loss of total PM phospholipids was found during postharvest senescence, but more reduction was shown from storage at 10 °C. Phosphatidylcholine and phosphatidylethanolamine were the predominant PM phospholipid species. Low temperature increased the level of phosphatidic acid but decreased the level of phosphatidylinositol. Both phospholipid species were not changed during storage at 25 °C. Postharvest storage at both temperatures decreased the levels of C18:3 and C16:1, and increased level of C18:1. Low temperature decreased the level of C18:2 and increased the level of C14:0. Exogenous application of phosphatidic acid was found to inhibit the PM ATPase activity of pineapple fruit in vitro. Modification of membrane lipid composition and its effect on the functional property of plasma membrane at low temperature were discussed in correlation with their roles in blackheart development of pineapple fruit. PMID:24390546

  2. The influence of dietary palm olein, fish oil and lard on the egg yolk and plasma lipid composition, and performances of laying hens.

    PubMed

    Hodzic, A; Hamamdzic, M; Gagic, A; Mihaljevic, M; Vegara, M; Krnic, J; Pasic Juhas, E

    2008-01-01

    The influence of dietary palm olein, in comparison to fish oil and lard, on lipid levels in egg yolk and blood plasma, the fatty acid composition of egg yolk, and various production parameters were studied. Brown Lohman laying hens (n=45) were randomly assigned into three groups of 15 birds, and treated with experimental diets with either 3% palm olein (PO), fish oil (FO) or lard (L) for 6 weeks. At the end of the experiment, feed consumption was significantly lower for hens fed the PO diet, except week 6 of the experiment. The concentration of plasma triglycerides was increased by all experimental diets, whereas there were no significant increases of plasma total lipid and total cholesterol concentrations only in the PO group. For yolk lipids a decrease in triglycerides in the FO and L groups was observed, while total cholesterol and total lipid were significantly decreased in the PO group. Feeding with the PO diet resulted in the lowest concentrations of palmitic, stearic and linoleic acid, as well as in the highest concentration of monounsaturated oleic acid in the yolk total lipid. It was concluded that the composition of yolk lipids did not closely match the concentrations of lipids observed in experimental diets or plasma. Based on the current work it seems that the PO diet modulates egg yolk lipid content best. PMID:18540201

  3. Comparison of the lipid composition of oat root and coleoptile plasma membranes. [Avena sativa L

    SciTech Connect

    Sandstrom, R.P. ); Cleland, R.E. )

    1989-07-01

    The total lipid composition of plasma membranes (PM), isolated by the phase partitioning method from two different oat (Avena sativa L.) tissues, the root and coleoptile, was compared. In general, the PM lipid composition was not conserved between these two organs of the oat seedling. Oat roots contained 50 mole % phospholipid, 25 mole % glycolipid, and 25 mole % free sterol, whereas comparable amounts in the coleoptile were 42, 39, and 19 mole %, respectively. Individual lipid components within each lipid class also showed large variations between the two tissues. Maximum specific ATPase activity in the root PM was more than double the activity in the coleoptile. Treatment of coleoptile with auxin for 1 hour resulted in no detectable changes in PM lipids or extractable ATPase activity. Differences in the PM lipid composition between the two tissues that may define the limits of ATPase activity are discussed.

  4. Lipid Composition and Protein Dynamics in Thylakoids of Two Wheat Cultivars Differently Sensitive to Drought.

    PubMed Central

    Quartacci, M. F.; Pinzino, C.; Sgherri, CLM.; Navari-Izzo, F.

    1995-01-01

    Two wheat (Triticum durum Desf.) cultivars with different sensitivities to drought were either grown under regular irrigation or subjected to water deficit by withholding water for 14 d. Water-stressed plants of both cultivars underwent similar decreases in leaf water potential, but the drought-tolerant cultivar showed higher relative water content and turgor. Neither osmotic nor elastic adjustment mechanisms appeared to be active under the conditions described here. Thylakoids isolated from the stressed, drought-tolerant wheat showed an increase in lipid-to-protein ratio, in comparison with the control, whereas this ratio remained unchanged in the sensitive wheat. In both cultivars, water deficit determined different rearrangements in the composition of the thylakoid individual polar lipids, but their unsaturation level remained unaffected with the exception of monogalactosyldiacylglycerol. In the drought-sensitive cultivar, an accumulation of free fatty acids together with a reduction in polar lipid amount was observed. Electron paramagnetic resonance measurements of spin-labeled proteins of stressed plants from the sensitive cv Adamello showed a higher spin label rotational correlation time together with lower sulphydryl group and mobile proteic portion levels, in comparison with the control. In the tolerant cv Ofanto, the first two parameters changed to a lesser extent following water depletion, and the mobile proteic portion was not altered. PMID:12228463

  5. Process strategies to maximize lipid accumulations of novel yeast in acid and base treated hydrolyzates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oleaginous yeasts can accumulate up to 70% of cell biomass as lipids, predominantly as triacylglycerols. Yeast lipid fatty acid profiles have been reported to be similar to that of vegetable oils and consist primarily of oleic, palmitic, stearic, and linoleic acids. This capability provides the oppo...

  6. The effect of dietary fat and omega-3 fatty acids on whole body lipid oxidation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipid peroxidation of polyunsaturated fatty acids yields several electrophilic, reactive carbonyl metabolites. We hypothesized that an increased intake of omega-3 fatty acids (n-3) would lead to increased lipid peroxidation metabolites compared to a diet low in n-3. As part of a randomized crossov...

  7. THP-1 macrophage lipid accumulation unaffected by fatty acid double bond geometric or positional configuration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary fatty acid type alters atherosclerotic lesion progression and macrophage lipid accumulation. Incompletely elucidated are the mechanisms by which fatty acids differing in double-bond geometric or positional configuration alter arterial lipid accumulation. The objective of this study was to ev...

  8. LIPID CLASS DISTRIBUTION OF HIGHLY UNSATURATED LONG CHAIN FATTY ACIDS IN MARINE DINOFLAGELLATES.

    EPA Science Inventory

    The very long chain highly unsaturated C28 fatty acids, octacosaheptaenoic [28:7(n-6)] and octacosaoctaenoic acid [28:8(n-3)], were found to be associated with phospholipids, obtained by fractionation of total lipid extracts into distinct lipid classes, in 4 and 6, respectively, ...

  9. Identification of albumin-bound fatty acids as the major factor in serum-induced lipid accumulation by cultured cells.

    PubMed

    Mackenzie, C G; Mackenzie, J B; Reiss, O K; Wisneski, J A

    1970-11-01

    Factors responsible for the high lipogenic activity of rabbit serum were investigated using an assay procedure based on the gravimetric determination of the 24 hr increase in cell lipid. Cellular synthesis of fatty acids was inhibited by the presence of serum in the assay medium. Approximately 90% of the increase in cell lipid produced by serum fractions was due to triglyceride accumulation. Fractionation of rabbit serum by precipitation with ammonium sulfate or by ultracentrifugation in high density medium, both indicated that three-quarters of its lipogenic activity was associated with albumin. The lipoproteins prepared by ultracentrifugation also exhibited about one-half the activity of whole serum. The lipogenic activity of albumin was confirmed by the high potency of the albumin isolated in a nearly pure form from proteins of d>1.21 by precipitation with trichloroacetic acid and extraction with ethanol. As judged from chemical and isotopic analysis, neither the lipid content nor the lipid composition of the albumin was appreciably altered during its isolation. Of the albumin-bound lipids, only the free fatty acids, as determined by DEAE column chromatography, were present in an amount sufficient to account for the observed increase in cell triglycerides. In control experiments with horse serum of low lipogenic activity, the proteins of d>1.21 also possessed low activity in conjunction with a low content of free fatty acid. However, the albumin isolated from the latter preparation exhibited the high lipogenic activity of rabbit serum albumin. Chemical and isotopic analysis of the recovered horse serum albumin revealed that its free fatty acid content was the same as that of rabbit serum albumin. These results indicated that the isolation of horse serum albumin was attended by a substantial increase in its free fatty acid content. When the rabbit serum and horse serum content of media were adjusted to provide equivalent concentrations of albumin-bound fatty

  10. Dietary n-3 polyunsaturated fatty acids modify fatty acid composition in hepatic and abdominal adipose tissue of sucrose-induced obese rats.

    PubMed

    Alexander-Aguilera, Alfonso; Berruezo, Silvia; Hernández-Diaz, Guillermo; Angulo, Ofelia; Oliart-Ros, Rosamaria

    2011-12-01

    The fatty acid profile of hepatocytes and adipocytes is determined by the composition of the dietary lipids. It remains unclear which fatty acid components contribute to the development or reduction of insulin resistance. The present work examined the fatty acid composition of both tissues in sucrose-induced obese rats receiving fish oil to determine whether the effect of dietary (n-3) polyunsaturated fatty acids (PUFAs) on the reversion of metabolic syndrome in these rats is associated to changes in the fatty acid composition of hepatocyte and adipocyte membrane lipids. Animals with metabolic syndrome were divided into a corn-canola oil diet group and a fish oil diet group, and tissues fatty acids composition were analyzed after 6 weeks of dietary treatment. Fatty acid profiles of the total membrane lipids were modified by the fatty acid composition of the diets fed to rats. N-3 PUFAs levels in animals receiving the fish oil diet plus sucrose in drinking water were significantly higher than in animals under corn-canola oil diets. It is concluded that in sucrose-induced obese rats, consumption of dietary fish oil had beneficial effects on the metabolic syndrome and that such effects would be conditioned by the changes in the n-3 PUFAs composition in hepatic and adipose tissues because they alter membrane properties and modify the type of substrates available for the production of active lipid metabolites acting on insulin resistance and obesity. PMID:21695545

  11. Influence of abscisic acid on growth, biomass and lipid yield of Scenedesmus quadricauda under nitrogen starved condition.

    PubMed

    Sulochana, Sujitha Balakrishnan; Arumugam, Muthu

    2016-08-01

    Scenedesmus quadricauda, accumulated more lipid but with a drastic reduction in biomass yield during nitrogen starvation. Abscisic acid (ABA) being a stress responsible hormone, its effect on growth and biomass with sustainable lipid yield during nitrogen depletion was studied. The result revealed that the ABA level shoots up at 24h (27.21pmol/L) during the onset of nitrogen starvation followed by a sharp decline. The external supplemented ABA showed a positive effect on growth pattern (38×10(6)cells/ml) at a lower concentration. The dry biomass yield is also increasing up to 2.1 fold compared to nitrogen deficient S. quadricauda. The lipid content sustains in 1 and 2μM concentration of ABA under nitrogen-deficient condition. The fatty acid composition of ABA treated S. quadricauda cultures with respect to nitrogen-starved cells showed 11.17% increment in saturated fatty acid content, the desired lipid composition for biofuel application. PMID:26949054

  12. Chemical composition of acid fog

    SciTech Connect

    Waldman, J.M.; Munger, J.W.; Jacob, D.J.; Flagan, R.C.; Morgan, J.J.; Hoffmann, M.R.

    1982-11-12

    Fog water collected at three sites in Los Angeles and Bakersfield, California, was found to have higher acidity and higher concentrations of sulfate, nitrate, and ammonium than previously observed in atmospheric water droplets. The pH of the fog water was in the range of 2.2 to 4.0. the dominant processes controlling the fog water chemistry appear to be the condensation and evaporation of water vapor on preexisting aerosol and the scavenging of gas-phase nitric acid.

  13. Subcellular distributions of lipids in cultured BHK cells: evidence for the enrichment of lysobisphosphatidic acid and neutral lipids in lysosomes.

    PubMed

    Brotherus, J; Renkonen, O

    1977-03-01

    Homogenates of cultured hamster fibroblasts (BHK 21 cells) were fractionated by differential centrifugation into six main fractions: nuclear, mitochondrial, light mitochondrial, microsomal, soluble, and floating. The contents of several lipids and some marker enzymes were measured. According to the enzyme distributions, lysosomes were enriched both in the floating fraction and in the light mitochondrial fraction. Lysobisphosphatidic acid was enriched in the floating fraction more than tenfold relative to phospholipid. Cholesteryl esters and triglycerides were the main constituents of the fraction (70% of total lipids). Lysobisphosphatidic acid, triglycerides, and cholesteryl esters were enriched also in the light mitochondrial fraction. Their distribution patterns were different from those of the other lipids. Electron microscopy showed that the floating fraction contained numerous lipofuscin-like particles with darkly stained peripheries and with core regions staining like droplets of neutral lipids. Similar particles, frequently containing prominent multilamellar formations, were also common in intact cells. They contained cytochemically identified acid phosphatase. We conclude that lysobisphosphatidic acid was enriched in the lysosomes of the BHK cells and that the lysosomes also contained variable amounts of neutral lipids in the form of intralysosomal droplets. PMID:845501

  14. Lipid Content and Composition during the Oocyte Development of Two Gorgonian Coral Species in Relation to Low Temperature Preservation

    PubMed Central

    Lin, Chiahsin; Wang, Li-Hsueh; Fan, Tung-Yung; Kuo, Fu-Wen

    2012-01-01

    Our previous studies have suggested that chilling sensitivity of coral oocytes may relate to their relatively high lipid intracellular content and lipid composition. The distribution of lipids during the oocyte development was determined here for the first time in two gorgonian species (Junceella juncea and Junceella fragilis). The main lipid classes in the two gorgonian oocytes were total lipid, wax ester, triacylglycerol, total fatty acid, phosphatidylethanolamine and phosphatidylcholine. The results indicated that early stage oocytes of J. juncea and J. fragilis were found to have increased lipid content than late stage oocytes. The content of wax ester was significantly higher in the early stage oocytes of two gorgonian corals (51.0±2.5 and 41.7±2.9 µg/mm3/oocyte) than those of late stage oocytes (24.0±1.4 and 30.4±1.2 µg/mm3/oocyte, respectively). A substantial amount of phosphatidylethanolamine and total fatty acid was detected at each stage of oocyte development in two gorgonian ranges from 107 to 42 µg/mm3/oocyte and 106 to 48 µg/mm3/oocyte, whilst low levels of phosphatidylcholine were found in two gorgonian oocytes. The levels of total lipid in the late stage oocytes of J. juncea were significantly higher than those of J. fragilis. The observed differences may partially be related to different habitat preferences as higher lipid levels in J. juncea, a deeper-water coral species exposed to lower temperature seawater, might relate to adjustments of cell membranes in order to increase membrane fluidity. PMID:22848343

  15. Effect of sex and gonadal hormones on rat plasma lipids during the development of an essential fatty acid deficiency

    PubMed Central

    Lyman, R. L.; Ostwald, Rosemarie; Bouchard, Pauline; Shannon, Angela

    1966-01-01

    1. Male, female and castrated rats treated with oestradiol (30μg./week) or testosterone (2mg./week) were given an essential fatty acid-deficient diet containing 10% of hydrogenated coconut oil for 9 weeks. The concentrations and fatty acid composition of plasma phospholipids, cholesteryl esters and triglycerides were determined. 2. Between the second and third weeks of the deficiency, concentrations of plasma cholesteryl esters, phospholipids and triglycerides decreased, then remained relatively constant. There were no significant differences between males and females, but oestradiol caused a significant rise in plasma phospholipids and triglycerides as compared with testosterone-treated animals. 3. During the first 2 weeks of the deficiency, linoleic acid in the plasma lipids of all groups decreased to low concentrations and changed very little thereafter. 4. Female rats maintained higher percentages and concentrations of arachidonic acid and stearic acid in plasma phospholipids and arachidonic acid in cholesteryl esters than did males. Males had higher proportions of eicosatrienoic acid and oleic acid. There was no sex difference in the fatty acid composition of plasma triglycerides. 5. Oestradiol-treated rats had concentrations of cholesteryl and phospholipid arachidonate comparable with those of female rats and higher than the testosterone-treated group. Eicosatrienoic acid in the oestradiol–treated rats was high and resembled that of the male rats, apparently because of the higher concentration of plasma phospho lipids in this group. 6. Supplementation of the essential fatty acid-deficient rats with linoleate restored plasma cholesteryl and phospholipid linoleate and arachidonate nearly to normal concentrations in a single day. The increase in arachidonic acid in these fractions was accompanied by a similar quantitative decrease in eicosatrienoic acid. 7. These sex differences appear to be related to the smaller size of the female rat and to a more direct

  16. Influence of a hyperlipidic diet on the composition of the non-membrane lipid pool of red blood cells of male and female rats

    PubMed Central

    Remesar, Xavier; Antelo, Arantxa; Llivina, Clàudia; Albà, Emma; Berdié, Lourdes; Agnelli, Silvia; Arriarán, Sofía; Fernández-López, José Antonio

    2015-01-01

    Background and objectives. Red blood cells (RBC) are continuously exposed to oxidative agents, affecting their membrane lipid function. However, the amount of lipid in RBCs is higher than the lipids of the cell membrane, and includes triacylglycerols, which are no membrane components. We assumed that the extra lipids originated from lipoproteins attached to the cell surface, and we intended to analyse whether the size and composition of this lipid pool were affected by sex or diet. Experimental design. Adult male and female Wistar rats were fed control or cafeteria diets. Packed blood cells and plasma lipids were extracted and analysed for fatty acids by methylation and GC-MS, taking care of not extracting membrane lipids. Results. The absence of ω3-PUFA in RBC extracts (but not in plasma) suggest that the lipids extracted were essentially those in the postulated lipid surface pool and not those in cell membrane. In cells’ extracts, there was a marked depletion of PUFA (and, in general, of insaturation). Fatty acid patterns were similar for all groups studied, with limited effects of sex and no effects of diet in RBC (but not in plasma) fatty acids. Presence of trans fatty acids was small but higher in RBC lipids, and could not be justified by dietary sources. Conclusions. The presence of a small layer of lipid on the RBC surface may limit oxidative damage to the cell outer structures, and help explain its role in the transport of lipophilic compounds. However, there may be other, so far uncovered, additional functions for this lipid pool. PMID:26213652

  17. Influence of a hyperlipidic diet on the composition of the non-membrane lipid pool of red blood cells of male and female rats.

    PubMed

    Remesar, Xavier; Antelo, Arantxa; Llivina, Clàudia; Albà, Emma; Berdié, Lourdes; Agnelli, Silvia; Arriarán, Sofía; Fernández-López, José Antonio; Alemany, Marià

    2015-01-01

    Background and objectives. Red blood cells (RBC) are continuously exposed to oxidative agents, affecting their membrane lipid function. However, the amount of lipid in RBCs is higher than the lipids of the cell membrane, and includes triacylglycerols, which are no membrane components. We assumed that the extra lipids originated from lipoproteins attached to the cell surface, and we intended to analyse whether the size and composition of this lipid pool were affected by sex or diet. Experimental design. Adult male and female Wistar rats were fed control or cafeteria diets. Packed blood cells and plasma lipids were extracted and analysed for fatty acids by methylation and GC-MS, taking care of not extracting membrane lipids. Results. The absence of ω3-PUFA in RBC extracts (but not in plasma) suggest that the lipids extracted were essentially those in the postulated lipid surface pool and not those in cell membrane. In cells' extracts, there was a marked depletion of PUFA (and, in general, of insaturation). Fatty acid patterns were similar for all groups studied, with limited effects of sex and no effects of diet in RBC (but not in plasma) fatty acids. Presence of trans fatty acids was small but higher in RBC lipids, and could not be justified by dietary sources. Conclusions. The presence of a small layer of lipid on the RBC surface may limit oxidative damage to the cell outer structures, and help explain its role in the transport of lipophilic compounds. However, there may be other, so far uncovered, additional functions for this lipid pool. PMID:26213652

  18. Non-acidic activation of pain-related Acid-Sensing Ion Channel 3 by lipids.

    PubMed

    Marra, Sébastien; Ferru-Clément, Romain; Breuil, Véronique; Delaunay, Anne; Christin, Marine; Friend, Valérie; Sebille, Stéphane; Cognard, Christian; Ferreira, Thierry; Roux, Christian; Euller-Ziegler, Liana; Noel, Jacques; Lingueglia, Eric; Deval, Emmanuel

    2016-02-15

    Extracellular pH variations are seen as the principal endogenous signal that triggers activation of Acid-Sensing Ion Channels (ASICs), which are basically considered as proton sensors, and are involved in various processes associated with tissue acidification. Here, we show that human painful inflammatory exudates, displaying non-acidic pH, induce a slow constitutive activation of human ASIC3 channels. This effect is largely driven by lipids, and we identify lysophosphatidylcholine (LPC) and arachidonic acid (AA) as endogenous activators of ASIC3 in the absence of any extracellular acidification. The combination of LPC and AA evokes robust depolarizing current in DRG neurons at physiological pH 7.4, increases nociceptive C-fiber firing, and induces pain behavior in rats, effects that are all prevented by ASIC3 blockers. Lipid-induced pain is also significantly reduced in ASIC3 knockout mice. These findings open new perspectives on the roles of ASIC3 in the absence of tissue pH variation, as well as on the contribution of those channels to lipid-mediated signaling. PMID:26772186

  19. Acid-Catalyzed Algal Biomass Pretreatment for Integrated Lipid and Carbohydrate-Based Biofuels Production

    SciTech Connect

    Laurens, L. M. L.; Nagle, N.; Davis, R.; Sweeney, N.; Van Wychen, S.; Lowell, A.; Pienkos, P. T.

    2014-11-12

    One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We demonstrate the effectiveness of a novel, integrated technology based on moderate temperatures and low pH to convert the carbohydrates in wet algal biomass to soluble sugars for fermentation, while making lipids more accessible for downstream extraction and leaving a protein-enriched fraction behind. We studied the effect of harvest timing on the conversion yields, using two algal strains; Chlorella and Scenedesmus, generating biomass with distinctive compositional ratios of protein, carbohydrate, and lipids. We found that the late harvest Scenedesmus biomass had the maximum theoretical biofuel potential at 143 gasoline gallon equivalent (GGE) combined fuel yield per dry ton biomass, followed by late harvest Chlorella at 128 GGE per ton. Our experimental data show a clear difference between the two strains, as Scenedesmus was more successfully converted in this process with a demonstrated 97 GGE per ton. Our measurements indicated a release of >90% of the available glucose in the hydrolysate liquors and an extraction and recovery of up to 97% of the fatty acids from wet biomass. Techno-economic analysis for the combined product yields indicates that this process exhibits the potential to improve per-gallon fuel costs by up to 33% compared to a lipids-only process for one strain, Scenedesmus, grown to the mid-point harvest condition.

  20. Milk lipid composition is modified by perinatal exposure to bisphenol A.

    PubMed

    Altamirano, Gabriela A; Muñoz-de-Toro, Mónica; Luque, Enrique H; Gómez, Ayelén L; Delconte, Melisa B; Kass, Laura

    2015-08-15

    To evaluate whether bisphenol A (BPA) modifies the synthesis, composition and/or profile of fatty acids (FAs) in the mammary glands of perinatally exposed animals, pregnant rats were orally exposed to 0, 0.6 or 52 µg BPA/kg/day from gestation day (GD) 9 until weaning. F1 females were bred, and on GD21, lactation day 2 (LD2) and LD10, mammary glands were obtained. On LD10, milk samples were collected, and FA profiles and lipid compositions were established. On GD21 and LD2, BPA exposure delayed mammary alveolar maturation and modified the synthesis of milk fat globules. On LD10, mammary gland histo-architecture was restored; however, the milk of BPA-exposed F1 dams had a FA profile and lipid concentration different from those of the control milk. Furthermore, the body weight gain of BPA52 F2 pups was increased compared with control animals. Thus, perinatal exposure to BPA modifies milk quality, compromising the normal growth of offspring. PMID:25976663

  1. [Lipids composition and speed of energy metabolism in gastropods].

    PubMed

    Arakelova, E S

    2008-01-01

    Lipid composition of digestive gland and pedal muscle of two northern freshwater pulmonate snails Lymnaea stagnalis and Lymnaea ovata and three marine prosobranch gastropods Littorina obtusata, Littorina littorea, Buccinum undatum from the White Sea was studied. The species differ in ecology, particularly in trophic nabits and motor activity. The content of triacilglycerides both in digestive gland and pedal was higher in littoral dwellers Littorina the activity of which depends on the tide level. The phospholipids content in digestive gland does not differ in quantity in all cases and does not relate to type of feeding or resource quality. In a pedal muscle of marine species the quantity of common phospholipids is higher in comparison with the freshwater ones. The amount of total phospholipids in pedal muscle correlates with mass of metabolic inert formation which constitutes a part of whole mass of snails. The presence of massive shell enhances demands in energy needed for supporting movement and activity. Because the intensity of energy metabolism is related to quantity of total phospholipids, mitochondria and activity of their oxidizing ferments, the presence of thick shell in marine snails together with motor activity costs more in terms of energy than in freshwater snails with thin shell. This hypothesis is supported by the higher specific rate of oxygen consumption in marine snails than in freshwaters. PMID:19140337

  2. Impact of endothelial lipase on cellular lipid composition.

    PubMed

    Riederer, Monika; Köfeler, Harald; Lechleitner, Margarete; Tritscher, Michaela; Frank, Saša

    2012-07-01

    Using mass spectrometry (MS), we examined the impact of endothelial lipase (EL) overexpression on the cellular phospholipid (PL) and triglyceride (TG) content of human aortic endothelial cells (HAEC) and of mouse plasma and liver tissue. In HAEC incubated with the major EL substrate, HDL, adenovirus (Ad)-mediated EL overexpression resulted in the generation of various lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE) species in cell culture supernatants. While the cellular phosphatidylethanolamine (PE) content remained unaltered, cellular phosphatidylcholine (PC)-, LPC- and TG-contents were significantly increased upon EL overexpression. Importantly, cellular lipid composition was not altered when EL was overexpressed in the absence of HDL. [(14)C]-LPC accumulated in EL overexpressing, but not LacZ-control cells, incubated with [(14)C]-PC labeled HDL, indicating EL-mediated LPC supply. Exogenously added [(14)C]-LPC accumulated in HAEC as well. Its conversion to [(14)C]-PC was sensitive to a lysophospholipid acyltransferase (LPLAT) inhibitor, thimerosal. Incorporation of [(3)H]-Choline into cellular PC was 56% lower in EL compared with LacZ cells, indicating decreased endogenous PC synthesis. In mice, adenovirus mediated EL overexpression decreased plasma PC, PE and LPC and increased liver LPC, LPE and TG content. Based on our results, we conclude that EL not only supplies cells with FFA as found previously, but also with HDL-derived LPC and LPE species resulting in increased cellular TG and PC content as well as decreased endogenous PC synthesis. PMID:23075452

  3. Higher endogenous methionine in transgenic Arabidopsis seeds affects the composition of storage proteins and lipids.

    PubMed

    Cohen, Hagai; Pajak, Agnieszka; Pandurangan, Sudhakar; Amir, Rachel; Marsolais, Frédéric

    2016-06-01

    Previous in vitro studies demonstrate that exogenous application of the sulfur-containing amino acid methionine into cultured soybean cotyledons and seedlings reduces the level of methionine-poor storage proteins and elevates those that are methionine-rich. However, the effect of higher endogenous methionine in seeds on the composition of storage products in vivo is not studied yet. We have recently produced transgenic Arabidopsis seeds having significantly higher levels of methionine. In the present work we used these seeds as a model system and profiled them for changes in the abundances of 12S-globulins and 2S-albumins, the two major groups of storage proteins, using 2D-gels and MALDI-MS detection. The findings suggest that higher methionine affects from a certain threshold the accumulation of several subunits of 12S-globulins and 2S-albumins, regardless of their methionine contents, resulting in higher total protein contents. The mRNA abundances of most of the genes encoding these proteins were either correlated or not correlated with the abundances of these proteins, implying that methionine may regulate storage proteins at both transcriptional and post-transcriptional levels. The elevations in total protein contents resulted in reduction of total lipids and altered the fatty acid composition. Altogether, the data provide new insights into the regulatory roles of elevated methionine levels on seed composition. PMID:26888094

  4. Lipid content and composition of coffee brews prepared by different methods.

    PubMed

    Ratnayake, W M; Hollywood, R; O'Grady, E; Stavric, B

    1993-04-01

    The lipid content and composition of boiled, filtered, dripped, Turkish and espresso coffees prepared from roasted beans of Coffea arabica and Coffea robusta, and of coffees prepared from different brands of instant coffee were examined. The lipid content varied with the method of preparation. While coffee brews filtered through filter paper contained less than 7 mg lipids, those prepared by boiling without filtering and espresso coffee reached 60-160 mg lipids/150-ml cup. Coffee brew filtered through a metal screener contained 50 mg lipids/150-ml cup. Although the lipid content varied, the method of preparation of the brew and filtration had no important influence on the lipid composition. During paper filtration lipids remained mainly in spent coffee grounds, and the brew and filter paper retained only 0.4 and 9.4%, respectively, of the total lipids recovered. However, the lipids in the brew, filter paper and spent coffee grounds had the same profile, indicating that there was no preferential retention of a particular lipid component in filter paper. Triglycerides and diterpene alcohol esters were the major lipid classes in coffee brewed from ground coffee beans, and ranged from 86.6 to 92.9 and 6.5 to 12.5% of total lipids, respectively. For coffee brews made from instant coffee, the levels of these two lipid classes were 96.4-98.5 and 1.6-3.6%, respectively. The lipid contents of both regular and decaffeinated instant coffees varied slightly from one brand to the other, and ranged from 1.8 to 6.6 mg/150-ml cup. PMID:8477916

  5. Seasonal dynamic of morpho-physiological properties and the lipid composition of Plantago media (Plantaginaceae) in the Middle Volga region.

    PubMed

    Rozentsvet, Olga; Grebenkina, Tatyana; Nesterov, Viktor; Bogdanova, Elena

    2016-07-01

    The changes in morpho-physiological properties and lipid composition have been studied in the leaves of the plant Plantago media collected from two different places in the Middle Volga region during the summer of 2010. The plants gathered from the first plot (P1 plants) grew on plain ground in the midst of typical meadow-steppe perennial plants. The plants of the second group (P2 plants) grew on a flat slope of the South-West exposition, in the grass community. The leaves of the plants Р1 had lower specific area densities but larger areas and masses; they accumulated more levels lipid peroxide products. The changes in lipid compositions depended on the growth phase and habitats. Correlations between morpho-physiological parameters and certain lipids have been established. The amounts of galactolipids (GL) have been shown to correlate with the leaf areas. When the leaf areas were reduced, a ratio between phosphatidylcholines (PC) and phosphatidylethanolamines (PE) decreased. The result of our study showed that gradual changes of morphometrical parameters were accompanied by the alterations in biomass structure and modifications in lipids and fatty acids (FA). PMID:27017435

  6. Composition and biophysical properties of myelin lipid define the neurological defects in galactocerebroside- and sulfatide-deficient mice.

    PubMed

    Bosio, A; Binczek, E; Haupt, W F; Stoffel, W

    1998-01-01

    Oligodendrocytes and Schwann cell-specific proteins are assembled with a highly ordered membrane lipid bilayer to the myelin sheath of axons, which functions as an insulator and allows rapid saltatory conduction. We approached the question of the function of the CNS and PNS myelin-specific galactospingolipids cerebrosides and sulfatides by generating a ceramide galactosyltransferase null allelic mouse line (cgt-/-). Galactocerebroside- and sulfatide-deficient myelin loses its insulating properties and causes a severe dysmyelinosis that is incompatible with life. Here, we describe the biochemical and biophysical analysis of the myelin lipid bilayer of cgt-/- mice. The lipid composition of CNS and PNS myelin of cgt-/- mice is seriously perturbed and the sphingolipid biosynthetic pathway altered. Nonhydroxy and hydroxy fatty acid-substituted glycosylceramides (GlcC) are synthesized by oligodendrocytes and sulfated GlcC in addition in Schwann cells. The monogalactosyldiglyceride fraction is missing in the cgt-/- mouse. This new lipid composition can be correlated with the biophysical properties of the myelin sheath. The deficiency of galactocerebrosides and sulfatides leads to an increased fluidity, permeability, and impaired packing of the myelin lipid bilayer of the internodal membrane system. The loss of the two glycosphingolipid classes causes the breakdown of saltatory conductance of myelinated axons in the cgt-/- mouse. PMID:9422376

  7. Australian Acid Playa Lake as a Mars Analog: Results from Sediment Lipid Analysis

    NASA Astrophysics Data System (ADS)

    Graham, H.; Baldridge, A. M.; Stern, J. C.

    2015-12-01

    The ephemeral saline acidic lakes on the Yilgarn Craton of Western Australia have been suggested as geochemical analogues to martian terrains. Both are characterized by interbedded phyllosilicates and hydrated sulfates. On Mars, these areas indicate shifting environmental conditions, from the neutral/alkaline and wet conditions that dominated during the Noachian era to the more familiar dry, acidic conditions that began in the Hesperian. The habitability of such a dynamic environment can be informed by investigation of the Yilgarn Lake system. Previous work has found phospholipid fatty acids (PLFA) evidence of microbial communities in sections of sediment cores taken from Lake Gilmore. These communities include both Gram-positive and -negative bacteria, Actinomycetes, and even methanotrophs. Given recurring detection of methane on the martian surface, evidence of a methane cycling community in an analogous environment is of particular interest. In this study we analyze the carbon isotope composition of bulk organic material as well as extracted lipids from the Lake Gilmore sediment cores at both a near-shore and mid-lake location. These analyses reveal very low accumulations of organic carbon, concentrated primarily in the gypsum-rich near-shore core. The near-shore sediments show a down-core decrease in abundance of organic carbon as well as depletion in the carbon isotope composition (δ13C) with depth. Bulk carbon did not exhibit the unique, highly depleted, diagnostic signature associated with methanotrophic biomass. Compound-specific isotope analysis (CSIA) of carbon in extracted methanotroph PFLAs can confirm the presence of a methane cycling metabolism at depth. Also, additional extractions have isolated lipids associated with lake-edge grasses. These analyses consider both the chain-length distribution and carbon CSIA of these lipids in order to understand the effect of terrestrial detritus on any preserved methanotroph carbon signal, given the very low

  8. Factors affecting Archaeal Lipid Compositions of the Sulfolobus Species

    NASA Astrophysics Data System (ADS)

    He, L.; Han, J.; Wei, Y.; Lin, L.; Wei, Y.; Zhang, C.

    2010-12-01

    Temperature is the best known variable affecting the distribution of the archaeal glycerol dibiphytanyl glycerol tetraethers (GDGTs) in marine and freshwater systems. Other variables such as pH, ionic strength, or bicarbonate concentration may also affect archaeal GDGTs in terrestrial systems. Studies of pure cultures can help us pinpoint the specific effects these variables may have on archaeal lipid distribution in natural environments. In this study, three Sulfolobus species (HG4, HB5-2, HB9-6) isolated from Tengchong hot springs (pH 2-3, temperature 73-90°C) in China were used to investigate the effects of temperature, pH, substrate, and type of strain on the composition of GDGTs. Results showed that increase in temperature had negative effects on the relative contents of GDGT-0 (no cyclopentyl rings), GDGT-1 (one cyclopentyl ring), GDGT-2 and GDGT-3 but positive effects on GDGT-4, GDGT-4', GDGT-5 and GDGT-5'. Increase in pH, on the other hand, had negative effects on GDGT-0, GDGT-1, GDGT-4', GDGT-5 and GDGT-5', and positive effects on GDGT-3 and GDGT-4. GDGT-2 remained relatively constant with changing pH. When the HG4 was grown on different substrates, GDGT-5 was five time more abundant in sucrose-grown cultures than in yeast extract- or sulfur- grown cultures, suggesting that carbohydrates may stimulate the production of GDGT-5. For all three species, the ring index (average number of rings) of GDGTs correlated positively with incubation temperature. In HG4, ring index was much lower at optimal pH (3.5) than at other pH values. Ring index of HB5-2 or HB9-6 is higher than that of HG4, suggesting that speciation may affect the degree of cyclization of GDGT of the Sulfolobus. These results indicate that individual archaeal lipids respond differently to changes in environmental variables, which may be also species specific.

  9. Radiation-induced lipid peroxidation in whole grain of rye, wheat and rice: Effects on linoleic and linolenic acid

    NASA Astrophysics Data System (ADS)

    Vaca, C. E.; Harms-Ringdahl, M.

    Changes in the fatty acid composition in lipids after γ-irradation of whole grain of wheat, rye and rice were examined. The radiosensitivity of linoleic acid (18:2) and linolenic acid (18:3) was studied up to a dose of 63 kGy in seeds with different water content and after a post-irradiation storage time of 2 months. At doses in the range recommended for grain desinfestation, i.e. 0.1-1.0 kGy, no detectable degradation of 18:2 and 18:3 was found, but at the highest dose applied, 63 kGy, a degradation in the range from a few percent up to 40% was observed. Under extreme conditions, i.e. pre- and post-irradation treatment with oxygen, or when the flour prepared from the seeds was mixed with water and heated before the extraction of the lipids, a more pronounced degradation of the unsaturated fatty acids was noticed. Lipid peroxidation induced by γ-irradation was estimated using the thiobarbituric acid (TBA) method. High yields of the TBA-reactive material were formed in the three types of grain investigated corresponding to G-values in the range of 12-18. The influence on peroxidation yields of the water content of the seeds was studied in wheat. The origin of the TBA-reactive material formed in the seeds is not yet known, but could only to a minor extent be due to fatty acid peroxidation.

  10. Lysine and novel hydroxylysine lipids in soil bacteria: amino acid membrane lipid response to temperature and pH in Pseudopedobacter saltans

    PubMed Central

    Moore, Eli K.; Hopmans, Ellen C.; Rijpstra, W. Irene C.; Sánchez-Andrea, Irene; Villanueva, Laura; Wienk, Hans; Schoutsen, Frans; Stams, Alfons J. M.; Sinninghe Damsté, Jaap S.

    2015-01-01

    Microbial decomposition of organic matter is an essential process in the global carbon cycle. The soil bacteria Pseudopedobacter saltans and Flavobacterium johnsoniae are both able to degrade complex organic molecules, but it is not fully known how their membrane structures are adapted to their environmental niche. The membrane lipids of these species were extracted and analyzed using high performance liquid chromatography-electrospray ionization/ion trap/mass spectrometry (HPLC-ESI/IT/MS) and high resolution accurate mass/mass spectrometry (HRAM/MS). Abundant unknown intact polar lipids (IPLs) from P. saltans were isolated and further characterized using amino acid analysis and two dimensional nuclear magnetic resonance (NMR) spectroscopy. Ornithine IPLs (OLs) with variable (hydroxy) fatty acid composition were observed in both bacterial species. Lysine-containing IPLs (LLs) were also detected in both species and were characterized here for the first time using HPLC-MS. Novel LLs containing hydroxy fatty acids and novel hydroxylysine lipids with variable (hydroxy) fatty acid composition were identified in P. saltans. The confirmation of OL and LL formation in F. johnsoniae and P. saltans and the presence of OlsF putative homologs in P. saltans suggest the OlsF gene coding protein is possibly involved in OL and LL biosynthesis in both species, however, potential pathways of OL and LL hydroxylation in P. saltans are still undetermined. Triplicate cultures of P. saltans were grown at three temperature/pH combinations: 30°C/pH 7, 15°C/pH 7, and 15°C/pH 9. The fractional abundance of total amino acid containing IPLs containing hydroxylated fatty acids was significantly higher at higher temperature, and the fractional abundance of lysine-containing IPLs was significantly higher at lower temperature and higher pH. These results suggest that these amino acid-containing IPLs, including the novel hydroxylysine lipids, could be involved in temperature and pH stress

  11. Increased fatty acid synthesis inhibits nitrogen starvation-induced autophagy in lipid droplet-deficient yeast.

    PubMed

    Régnacq, Matthieu; Voisin, Pierre; Sere, Yves Y; Wan, Bin; Soeroso, Venty M S; Bernard, Marianne; Camougrand, Nadine; Bernard, François-Xavier; Barrault, Christine; Bergès, Thierry

    2016-08-12

    Macroautophagy is a degradative pathway whereby cells encapsulate and degrade cytoplasmic material within endogenously-built membranes. Previous studies have suggested that autophagosome membranes originate from lipid droplets. However, it was recently shown that rapamycin could induce autophagy in cells lacking these organelles. Here we show that lipid droplet-deprived cells are unable to perform autophagy in response to nitrogen-starvation because of an accelerated lipid synthesis that is not observed with rapamycin. Using cerulenin, a potent inhibitor of fatty acid synthase, and exogenous addition of palmitic acid we could restore nitrogen-starvation induced autophagy in the absence of lipid droplets. PMID:27270031

  12. Impact of Association Colloids on Lipid Oxidation in Triacylglycerols and Fatty Acid Ethyl Esters.

    PubMed

    Homma, Rika; Suzuki, Karin; Cui, Leqi; McClements, David Julian; Decker, Eric A

    2015-11-25

    The impact of association colloids on lipid oxidation in triacylglycerols and fatty acid ethyl esters was investigated. Association colloids did not affect lipid oxidation of high oleic safflower and high linoleic safflower triacylglycerols, but were prooxidative in fish triacylglycerols. Association colloids retarded aldehyde formation in stripped ethyl oleate, linoleate, and fish oil ethyl esters. Interfacial tension revealed that lipid hydroperoxides were surface active in the presence of the surfactants found in association colloids. The lipid hydroperoxides from ethyl esters were less surface active than triacylglycerol hydroperoxides. Stripping decreased iron and copper concentrations in all oils, but more so in fatty acid ethyl esters. The combination of lower hydroperoxide surface activity and low metal concentrations could explain why association colloids inhibited lipid oxidation in fatty acid ethyl esters. This research suggests that association colloids could be used as an antioxidant technology in fatty acid ethyl esters. PMID:26506263

  13. Improved Butanol-Methanol (BUME) Method by Replacing Acetic Acid for Lipid Extraction of Biological Samples.

    PubMed

    Cruz, Mutya; Wang, Miao; Frisch-Daiello, Jessica; Han, Xianlin

    2016-07-01

    Extraction of lipids from biological samples is a critical step in lipidomics, especially for shotgun lipidomics where lipid extracts are directly infused into a mass spectrometer. The butanol-methanol (BUME) extraction method was originally developed to extract lipids from plasma samples with 1 % acetic acid. Considering some lipids are sensitive to acidic environments, we modified this protocol by replacing acetic acid with lithium chloride solution and extended the modified extraction to tissue samples. Although no significant reduction of plasmalogen levels in the acidic BUME extracts of rat heart samples was found, the modified method was established to extract various tissue samples, including rat liver, heart, and plasma. Essentially identical profiles of the majority of lipid classes were obtained from the extracts of the modified BUME and traditional Bligh-Dyer methods. However, it was found that neither the original, nor the modified BUME method was suitable for 4-hydroxyalkenal species measurement in biological samples. PMID:27245345

  14. Lipid binding protein response to a bile acid library: a combined NMR and statistical approach.

    PubMed

    Tomaselli, Simona; Pagano, Katiuscia; Boulton, Stephen; Zanzoni, Serena; Melacini, Giuseppe; Molinari, Henriette; Ragona, Laura

    2015-11-01

    Primary bile acids, differing in hydroxylation pattern, are synthesized from cholesterol in the liver and, once formed, can undergo extensive enzyme-catalysed glycine/taurine conjugation, giving rise to a complex mixture, the bile acid pool. Composition and concentration of the bile acid pool may be altered in diseases, posing a general question on the response of the carrier (bile acid binding protein) to the binding of ligands with different hydrophobic and steric profiles. A collection of NMR experiments (H/D exchange, HET-SOFAST, ePHOGSY NOESY/ROESY and (15) N relaxation measurements) was thus performed on apo and five different holo proteins, to monitor the binding pocket accessibility and dynamics. The ensemble of obtained data could be rationalized by a statistical approach, based on chemical shift covariance analysis, in terms of residue-specific correlations and collective protein response to ligand binding. The results indicate that the same residues are influenced by diverse chemical stresses: ligand binding always induces silencing of motions at the protein portal with a concomitant conformational rearrangement of a network of residues, located at the protein anti-portal region. This network of amino acids, which do not belong to the binding site, forms a contiguous surface, sensing the presence of the bound lipids, with a signalling role in switching protein-membrane interactions on and off. PMID:26260520

  15. Study of polytopic membrane protein topological organization as a function of membrane lipid composition.

    PubMed

    Bogdanov, Mikhail; Heacock, Philip N; Dowhan, William

    2010-01-01

    A protocol is described using lipid mutants and thiol-specific chemical reagents to study lipid-dependent and host-specific membrane protein topogenesis by the substituted-cysteine accessibility method as applied to transmembrane domains (SCAM). SCAM is adapted to follow changes in membrane protein topology as a function of changes in membrane lipid composition. The strategy described can be adapted to any membrane system. PMID:20419405

  16. Dietary Fatty Acid Metabolism is Affected More by Lipid Level than Source in Senegalese Sole Juveniles: Interactions for Optimal Dietary Formulation.

    PubMed

    Bonacic, Kruno; Estévez, Alicia; Bellot, Olga; Conde-Sieira, Marta; Gisbert, Enric; Morais, Sofia

    2016-01-01

    This study analyses the effects of dietary lipid level and source on lipid absorption and metabolism in Senegalese sole (Solea senegalensis). Juvenile fish were fed 4 experimental diets containing either 100 % fish oil (FO) or 25 % FO and 75 % vegetable oil (VO; rapeseed, linseed and soybean oils) at two lipid levels (~8 or ~18 %). Effects were assessed on fish performance, body proximate composition and lipid accumulation, activity of hepatic lipogenic and fatty acid oxidative enzymes and, finally, on the expression of genes related to lipid metabolism in liver and intestine, and to intestinal absorption, both pre- and postprandially. Increased dietary lipid level had no major effects on growth and feeding performance (FCR), although fish fed FO had marginally better growth. Nevertheless, diets induced significant changes in lipid accumulation and metabolism. Hepatic lipid deposits were higher in fish fed VO, associated to increased hepatic ATP citrate lyase activity and up-regulated carnitine palmitoyltransferase 1 (cpt1) mRNA levels post-prandially. However, lipid level had a larger effect on gene expression of metabolic (lipogenesis and β-oxidation) genes than lipid source, mostly at fasting. High dietary lipid level down-regulated fatty acid synthase expression in liver and intestine, and increased cpt1 mRNA in liver. Large lipid accumulations were observed in the enterocytes of fish fed high lipid diets. This was possibly a result of a poor capacity to adapt to high dietary lipid level, as most genes involved in intestinal absorption were not regulated in response to the diet. PMID:26563870

  17. EFFECT OF VITAMIN C ADDITION TO GROUND BEEF FROM GRASS-FED OR GRAIN-FED SOURCES ON COLOR AND LIPID STABILITY, AND PREDICTION OF FATTY ACID COMPOSITION BY NEAR INFRARED REFLECTANCE ANALYSIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research was conducted to determine the effect of postmortem vitamin C addition (VITC) versus no VITC (CONTROL) to ground beef from grass-fed (GRASS) or grain-fed (GRAIN) sources on color and lipid stability during 8 d of illuminated display at 4°C. The use of near infrared reflectance (NIR) spectro...

  18. Lipid composition of slash pine tissue cultures grown with lunar and earth soils

    NASA Technical Reports Server (NTRS)

    Laseter, J. L.; Weete, J. D.; Baur, P. S.; Walkinshaw, C. H.

    1973-01-01

    Lipid analyses were conducted on slash pine tissues grown in culture in the presence of lunar (Apollo 15) and earth soils. Significant reductions in the total lipids, fatty acids, and sterol components were found in the tissues grown in contact with each of the soils employed when compared to the control. Tissues grown with lunar soil showed the greatest reductions. These results are discussed with respect to previous ultrastructural studies on similarly treated slash pine tissues and lipid analyses on tobacco tissue cultures.

  19. High-Throughput Screening of Saturated Fatty Acid Influence on Nanostructure of Lyotropic Liquid Crystalline Lipid Nanoparticles.

    PubMed

    Tran, Nhiem; Hawley, Adrian M; Zhai, Jiali; Muir, Benjamin W; Fong, Celesta; Drummond, Calum J; Mulet, Xavier

    2016-05-10

    Self-assembled lyotropic liquid crystalline lipid nanoparticles have been developed for a wide range of biomedical applications with an emerging focus for use as delivery vehicles for drugs, genes, and in vivo imaging agents. In this study, we report the generation of lipid nanoparticle libraries with information regarding mesophase and lattice parameter, which can aid the selection of formulation for a particular end-use application. In this study we elucidate the phase composition parameters that influence the internal structure of lipid nanoparticles produced from monoolein, monopalmitolein and phytantriol incorporating a variety of saturated fatty acids (FA) with different chain lengths at varying concentrations and temperatures. The material libraries were established using high throughput formulation and screening techniques, including synchrotron small-angle X-ray scattering. The results demonstrate the rich polymorphism of lipid nanoparticles with nonlamellar mesophases in the presence of saturated FAs. The inclusion of saturated FAs within the lipid nanoparticles promotes a gradual phase transition at all temperatures studied toward structures with higher negative surface curvatures (e.g., from inverse bicontinuous cubic phase to hexagonal phase and then emulsified microemulsion). The three partial phase diagrams produced are discussed in terms of the influence of FA chain length and concentration on nanoparticle internal mesophase structure and lattice parameters. The study also highlights a compositionally dependent coexistence of multiple mesophases, which may indicate the presence of multicompartment nanoparticles containing cubic/cubic and cubic/hexagonal mesophases. PMID:27023315

  20. Hydrothermal nitric acid treatment for effectual lipid extraction from wet microalgae biomass.

    PubMed

    Lee, Ilgyu; Park, Ji-Yeon; Choi, Sun-A; Oh, You-Kwan; Han, Jong-In

    2014-11-01

    Hydrothermal acid (combined with autoclaving and nitric acid) pretreatment was applied to Nannochloropsis salina as a cost-effective yet efficient way of lipid extraction from wet biomass. The optimal conditions for this pretreatment were determined using a statistical approach, and the roles of nitric acid were also determined. The maximum lipid yield (predicted: 24.6%; experimental: 24.4%) was obtained using 0.57% nitric acid at 120°C for 30min through response surface methodology. A relatively lower lipid yield (18.4%) was obtained using 2% nitric acid; however, chlorophyll and unsaturated fatty acids, both of which adversely affect the refinery and oxidative stability of biodiesel, were found to be not co-extracted. Considering its comparable extractability even from wet biomass and ability to reduce chlorophyll and unsaturated fatty acids, the hydrothermal nitric acid pretreatment can serve as one direct and promising route of extracting microalgae oil. PMID:25255190

  1. Changes in lipid composition of Escherichia coli resulting from growth with organic solvents and with food additives.

    PubMed Central

    Ingram, L O

    1977-01-01

    Cells of Escherichia coli contain an altered fatty acid and phospholipid composition when grown in the presence of sublethal concentrations of a variety of organic solvents and food additives. The diversity of compounds examined which caused these changes indicates that no single catabolic pathway is involved. Many of the observed changes are consistent with the hypothesis that cells adapt their membrane lipids to compensate for the presence of these compounds in the environment. Both sodium benzoate and calcium propionate caused the synthesis of unusual fatty acids. PMID:327934

  2. Role of lipid composition and lipid peroxidation in the sensitivity of fungal plant pathogens to aluminum chloride and sodium metabisulfite.

    PubMed

    Avis, Tyler J; Michaud, Mélanie; Tweddell, Russell J

    2007-05-01

    Aluminum chloride and sodium metabisulfite have shown high efficacy at low doses in controlling postharvest pathogens on potato tubers. Direct effects of these two salts included the loss of cell membrane integrity in exposed pathogens. In this work, four fungal potato pathogens were studied in order to elucidate the role of membrane lipids and lipid peroxidation in the relative sensitivity of microorganisms exposed to these salts. Inhibition of mycelial growth in these fungi varied considerably and revealed sensitivity groups within the tested fungi. Analysis of fatty acids in these fungi demonstrated that sensitivity was related to high intrinsic fatty acid unsaturation. When exposed to the antifungal salts, sensitive fungi demonstrated a loss of fatty acid unsaturation, which was accompanied by an elevation in malondialdehyde content (a biochemical marker of lipid peroxidation). Our data suggest that aluminum chloride and sodium metabisulfite could induce lipid peroxidation in sensitive fungi, which may promote the ensuing loss of integrity in the plasma membrane. This direct effect on fungal membranes may contribute, at least in part, to the observed antimicrobial effects of these two salts. PMID:17337539

  3. Starch composites with aconitic acid.

    PubMed

    Gilfillan, William Neil; Doherty, William O S

    2016-05-01

    The aim of this project is to examine the effectiveness of using aconitic acid (AcA), a tricarboxylic acid which contains a carbon/carbon double bond (CC), to enhance the properties of starch-based films. Starch/glycerol cast films were prepared with 0, 2, 5, 10 and 15wt% AcA (starch wt% basis) and the properties analysed. It was shown that AcA acted as both a cross-linking agent and also a strong plasticising agent. The 5wt% AcA derived starch films were the most effectively cross-linked having the lowest solubility (28wt%) and decreased swelling coefficient (35vol.%) by approximately 3 times and 2.4 times respectively compared to the control film submerged in water (23°C). There was also a significant increase in the film elongation at break by approximately 35 times (compared to the control) with the addition of 15wt% AcA, emphasising the plasticising effect of AcA. However, generally there was a reduced tensile strength, softening of the film, and reduced thermal stability with increased amounts of AcA. PMID:26876996

  4. Characterization of Fatty Acid Composition in Bone Marrow Fluid From Postmenopausal Women: Modification After Hip Fracture.

    PubMed

    Miranda, Melissa; Pino, Ana María; Fuenzalida, Karen; Rosen, Clifford J; Seitz, Germán; Rodríguez, J Pablo

    2016-10-01

    Bone marrow adipose tissue (BMAT) is associated with low bone mass, although the functional consequences for skeletal maintenance of increased BMAT are currently unclear. BMAT might have a role in systemic energy metabolism, and could be an energy source as well as an endocrine organ for neighboring bone cells, releasing cytokines, adipokines and free fatty acids into the bone marrow microenvironment. The aim of the present report was to compare the fatty acid composition in the bone marrow supernatant fluid (BMSF) and blood plasma of postmenopausal women women (65-80 years old). BMSF was obtained after spinning the aspirated bone marrow samples; donors were classified as control, osteopenic or osteoporotic after dual-energy X-ray absorptiometry. Total lipids from human bone marrow fluid and plasma were extracted, converted to the corresponding methyl esters, and finally analyzed by a gas chromatographer coupled with a mass spectrometer. Results showed that fatty acid composition in BMSF was dynamic and distinct from blood plasma, implying significance in the locally produced lipids. The fatty acid composition in the BMSF was enriched in saturated fatty acid and decreased in unsaturated fatty acids as compared to blood plasma, but this relationship switched in women who suffered a hip fracture. On the other hand, there was no relationship between BMSF and bone mineral density. In conclusion, lipid composition of BMSF is distinct from the circulatory compartment, most likely reflecting the energy needs of the marrow compartment. J. Cell. Biochem. 117: 2370-2376, 2016. © 2016 Wiley Periodicals, Inc. PMID:27416518

  5. Differential effects of saturated versus unsaturated dietary fatty acids on weight gain and myocellular lipid profiles in mice

    PubMed Central

    Timmers, S; de Vogel-van den Bosch, J; de Wit, N; Schaart, G; van Beurden, D; Hesselink, M; van der Meer, R; Schrauwen, P

    2011-01-01

    Objective: In conditions of continuous high-fat (HF) intake, the degree of saturation of the fatty acids (FAs) in the diet might have a crucial role in the onset of obesity and its metabolic complications. In particular, the FA composition of the diet might influence the storage form of lipids inside skeletal muscle. The aim of the present study was to examine whether the FA composition of HF diets differentially affects weight gain and accumulation of myocellular triacylglycerol (TAG) and diacylglycerol (DAG). Furthermore, we examined whether the FA composition of the diet was reflected in the composition of the myocellular lipid intermediates. Design: C57Bl6 mice were fed HF diets (45% energy) mainly containing palm oil (PO), cocoa butter (CB), olive oil (OO) or safflower oil (SO; n=6 per group) for 8 weeks. A low-fat diet (10% energy, PO) was used as control. Body weight was monitored weekly. At the end of the dietary intervention, myocellular TAG and DAG content and profiles were measured. Results: We here show that HF_CB prevented weight gain after 8 weeks of HF feeding. Furthermore, the HF diet rich in SO prevented the accumulation of both myocellular TAG and DAG. Interestingly, the FA composition of DAG and TAG in skeletal muscle was a reflection of the dietary FA composition. Conclusion: Already after a relatively short period, the dietary FA intake relates to the FA composition of the lipid metabolites in the muscle. A diet rich in polyunsaturated FAs seems to prevent myocellular lipid accumulation. PMID:23449423

  6. Characterization of membrane fraction lipid composition and function of cirrhotic rat liver. Role of S-adenosyl-L-methionine.

    PubMed

    Muriel, P; Mourelle, M

    1992-01-01

    The effect of S-adenosyl-L-methionine (SAM) administration on the lipid composition of the membrane fraction obtained from livers of cirrhotic rats was studied. Four groups of animals were used: group 1 received CCl4 for 8 weeks to induce cirrhosis. Animals in group 2 received 3 daily i.m. injections of SAM 20 mg/kg in addition to CCl4. Groups 3 and 4 were control groups of SAM and vehicles. Seventy-two h after the end of treatment all animals were killed and livers were studied to measure glycogen, cAMP contents and to isolate membrane fractions. The membrane activity of Na+,K(+)- and Ca(2+)-ATPases was measured and the lipid content was analyzed in extracts. Phospholipids were determined by thin-layer chromatography and fatty acids by gas chromatography. Chronic CCl4 treatment led to increases in cholesterol and in the cholesterol/phospholipid ratio. Analysis of phospholipids revealed an increase in phosphatidylserines. Saturated fatty acids increased, while unsaturated decreased significantly. The CCl4-treated group showed a decrease in glycogen and an increase in cAMP contents. Na+,K(+)- and Ca(2+)-ATPases activity were highly reduced in cirrhotic membranes. In the group receiving CCl4 + SAM the lipid composition and the function of liver membrane fraction showed no difference compared to normal controls, except for fatty acid composition which was similar to concentrations in the CCl4-treated group. Glycogen depletion was only partially prevented whereas cAMP levels were normalized in the CCl4 + SAM group. Our results showed that membrane lipid alterations were accompanied by changes in the activity of enzymes embedded in the membrane fraction derived from CCl4-cirrhotic rats.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1310704

  7. Influence of lecithin-lipid composition on physico-chemical properties of nanoliposomes loaded with a hydrophobic molecule.

    PubMed

    Bouarab, Lynda; Maherani, Behnoush; Kheirolomoom, Azadeh; Hasan, Mahmoud; Aliakbarian, Bahar; Linder, Michel; Arab-Tehrany, Elmira

    2014-03-01

    In this work, we studied the effect of nanoliposome composition based on phospholipids of docosahexaenoic acid (PL-DHA), salmon and soya lecithin, on physico-chemical characterization of vector. Cinnamic acid was encapsulated as a hydrophobic molecule in nanoliposomes made of three different lipid sources. The aim was to evaluate the influence of membrane lipid structure and composition on entrapment efficiency and membrane permeability of cinnamic acid. These properties are important for active molecule delivery. In addition, size, electrophoretic mobility, phase transition temperature, elasticity and membrane fluidity were measured before and after encapsulation. The results showed a correlation between the size of the nanoliposome and the entrapment. The entrapment efficiency of cinnamic acid was found to be the highest in liposomes prepared from salmon lecithin. The nanoliposomes composed of salmon lecithin presented higher capabilities as a carrier for cinnamic acid encapsulation. These vesicles also showed a high stability which in turn increases the membrane rigidity of nanoliposome as evaluated by their elastic properties, membrane fluidity and phase transition temperature. PMID:24355384

  8. Lipid classes and fatty acid regiodistribution in triacylglycerols of seed oils of two Sambucus species (S. nigra L. and S. ebulus L.).

    PubMed

    Dulf, Francisc Vasile; Oroian, Ioan; Vodnar, Dan Cristian; Socaciu, Carmen; Pintea, Adela

    2013-01-01

    The oil content and fatty acid composition of total lipids (TLs) and main lipid classes (NLs- neutral and PLs- polar lipids) in seeds of two wild Sambucus species (S. nigra and S. ebulus) from Transylvania (Romania) were determined by capillary gas chromatography (GC-MS). In addition, the positional distribution of fatty acids in seed triacylglycerols (TAGs) was determined by hydrolysis with pancreatic lipase. The seeds were found to be rich in fat (22.40-24.90 g/100g) with high amounts of polyunsaturated fatty acids (PUFAs) ranging from 68.96% (S. ebulus) to 75.15% (S. nigra). High ratios of PUFAs/SFAs (saturated fatty acids), ranging from 7.06 (S. nigra) to 7.64 (S. ebulus), and low ratios of n-6/n-3, ranging from 0.84 (S. nigra) to 1.51 (S. ebulus), were determined in both oils. The lipid classes/subclasses analyzed (PLs, MAGs--monoacylglycerols, DAGs--diacylglycerols, FFAs--free fatty acids, TAGs and SEs--sterol esters) were separated and identified using thin-layer chromatography. The fatty acid compositions of the TAG fractions were practically identical to the profiles of TLs, with the same dominating fatty acids in both analyzed species. SEs and FFAs, were characterized by high proportions of SFAs. The sn-2 position of TAGs was esterified predominantly with linoleic acid (43.56% for S. nigra and 50.41% for S. ebulus). PMID:24071984

  9. Dietary linoleic acid-induced alterations in pro- and anti-nociceptive lipid autacoids

    PubMed Central

    Ringel, Amit; Majchrzak-Hong, Sharon F; Yang, Jun; Blanchard, Helene; Zamora, Daisy; Loewke, James D; Rapoport, Stanley I; Hibbeln, Joseph R; Davis, John M; Hammock, Bruce D; Taha, Ameer Y

    2016-01-01

    Background Chronic idiopathic pain syndromes are major causes of personal suffering, disability, and societal expense. Dietary n-6 linoleic acid has increased markedly in modern industrialized populations over the past century. These high amounts of linoleic acid could hypothetically predispose to physical pain by increasing the production of pro-nociceptive linoleic acid-derived lipid autacoids and by interfering with the production of anti-nociceptive lipid autacoids derived from n-3 fatty acids. Here, we used a rat model to determine the effect of increasing dietary linoleic acid as a controlled variable for 15 weeks on nociceptive lipid autacoids and their precursor n-6 and n-3 fatty acids in tissues associated with idiopathic pain syndromes. Results Increasing dietary linoleic acid markedly increased the abundance of linoleic acid and its pro-nociceptive derivatives and reduced the abundance of n-3 eicosapentaenoic acid and docosahexaenoic acid and their anti-nociceptive monoepoxide derivatives. Diet-induced changes occurred in a tissue-specific manner, with marked alterations of nociceptive lipid autacoids in both peripheral and central tissues, and the most pronounced changes in their fatty acid precursors in peripheral tissues. Conclusions The present findings provide biochemical support for the hypothesis that the high linoleic acid content of modern industrialized diets may create a biochemical susceptibility to develop chronic pain. Dietary linoleic acid lowering should be further investigated as part of an integrative strategy for the prevention and management of idiopathic pain syndromes. PMID:27030719

  10. Effect of acetic acid on lipid accumulation by glucose-fed activated sludge cultures

    SciTech Connect

    Mondala, Andro; Hernandez, Rafael; French, Todd; McFarland, Linda; Sparks, Darrell; Holmes, William; Haque, Monica

    2012-01-01

    The effect of acetic acid, a lignocellulose hydrolysis by-product, on lipid accumulation by activated sludge cultures grown on glucose was investigated. This was done to assess the possible application of lignocellulose as low-cost and renewable fermentation substrates for biofuel feedstock production. Results: Biomass yield was reduced by around 54% at a 2 g L -1 acetic acid dosage but was increased by around 18% at 10 g L -1 acetic acid dosage relative to the control run. The final gravimetric lipid contents at 2 and 10 g L -1 acetic acid levels were 12.5 + 0.7% and 8.8 + 3.2% w/w, respectively, which were lower than the control (17.8 + 2.8% w/w). However, biodiesel yields from activated sludge grown with acetic acid (5.6 + 0.6% w/w for 2 g L -1 acetic acid and 4.2 + 3.0% w/w for 10 g L -1 acetic acid) were higher than in raw activated sludge (1-2% w/w). The fatty acid profiles of the accumulated lipids were similar with conventional plant oil biodiesel feedstocks. Conclusions: Acetic acid enhanced biomass production by activated sludge at high levels but reduced lipid production. Further studies are needed to enhance acetic acid utilization by activated sludge microorganisms for lipid biosynthesis.

  11. Regulation of Lipid Synthesis in Soybeans by Two Benzoic Acid Herbicides 1

    PubMed Central

    Muslih, Raad K.; Linscott, Dean L.

    1977-01-01

    The effects of 3-nitro-2,5-dichlorobenzoic acid (dinoben) and 3-amino-2,4-dichlorobenzoic acid (chloramben) on lipid formation and on the incorporation of various substrates into lipids by intact seeds and subcellular fractions of germinating soybean (Glycine max [L.] Merr. `Amsoy') were studied. Dinoben (20 μg/ml) inhibited synthesis of total lipids 67%, neutral lipids 73%, glycolipids 51%, and phospholipids 39% in germinating seeds. When polar lipids were analyzed further, inhibition of individual lipid classes was also observed. Chloramben (20 μg/ml) stimulated total lipid synthesis 25%. With the exception of the mitochondrial fraction where malonate thiokinase was absent, dinoben inhibited up to 99% the incorporation of acetate and malonate into lipids, but did not inhibit acetyl-CoA and malonyl-CoA incorporation. Chloramben stimulated the incorporation of all substrates tested into lipids by all fractions except the mitochondrial fraction when malonate was the substrate. When dinoben and chloramben were used in combinations, chloramben did not reverse the inhibitory effect of dinoben. It is concluded that the dinoben inhibitory effect is specific and is associated with the acetate and malonate thiokinase systems. The chloramben effect is stimulatory to either acetyl-CoA carboxylase or fatty acid synthetase or both. PMID:16660173

  12. Dual Role for Phospholipid:Diacylglycerol Acyltransferase: Enhancing Fatty Acid Synthesis and Diverting Fatty Acids from Membrane Lipids to Triacylglycerol in Arabidopsis Leaves[C][W

    PubMed Central

    Fan, Jilian; Yan, Chengshi; Zhang, Xuebin; Xu, Changcheng

    2013-01-01

    There is growing interest in engineering green biomass to expand the production of plant oils as feed and biofuels. Here, we show that PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE1 (PDAT1) is a critical enzyme involved in triacylglycerol (TAG) synthesis in leaves. Overexpression of PDAT1 increases leaf TAG accumulation, leading to oil droplet overexpansion through fusion. Ectopic expression of oleosin promotes the clustering of small oil droplets. Coexpression of PDAT1 with oleosin boosts leaf TAG content by up to 6.4% of the dry weight without affecting membrane lipid composition and plant growth. PDAT1 overexpression stimulates fatty acid synthesis (FAS) and increases fatty acid flux toward the prokaryotic glycerolipid pathway. In the trigalactosyldiacylglycerol1-1 mutant, which is defective in eukaryotic thylakoid lipid synthesis, the combined overexpression of PDAT1 with oleosin increases leaf TAG content to 8.6% of the dry weight and total leaf lipid by fourfold. In the plastidic glycerol-3-phosphate acyltransferase1 mutant, which is defective in the prokaryotic glycerolipid pathway, PDAT1 overexpression enhances TAG content at the expense of thylakoid membrane lipids, leading to defects in chloroplast division and thylakoid biogenesis. Collectively, these results reveal a dual role for PDAT1 in enhancing fatty acid and TAG synthesis in leaves and suggest that increasing FAS is the key to engineering high levels of TAG accumulation in green biomass. PMID:24076979

  13. Evolution of foam cells in subcutaneous rabbit carrageenan granulomas. II. Tissue and macrophage lipid composition.

    PubMed Central

    Kelley, J. L.; Suenram, C. A.; Valente, A. J.; Sprague, E. A.; Rozek, M. M.; Schwartz, C. J.

    1985-01-01

    This study describes the lipid composition of differentiating macrophage-derived foam cells in the inflammatory carrageenan granuloma. In this model, macrophages exposed in vivo to diet-induced hypercholesterolemia progressively accumulate electron-translucent lipid inclusions; and at 14 and 28 days, many assume the morphologic features of arterial plaque foam cells. Subcutaneous carrageenan granulomas were induced in 24 pellet-fed (NC) and 24 cholesterol-fed (HC) rabbits, and tissue was harvested at 4, 14, and 28 days. Total (TC) and free cholesterol (FC), cholesteryl esters (CEs), CE fatty acids, triglycerides (TGs), and phospholipids (PLs) were measured on lipid extracts from tissue. TC, FC, and CEs were also measured on isolated, cultured granuloma macrophages. Tissue TCs and FCs were significantly elevated in HC relative to NC rabbits at both 14 and 28 days (P less than 0.005 and P less than 0.01, respectively). CE accumulation in HC granuloma tissue was 80-fold greater at 14 days and 178-fold greater at 28 days (P less than 0.005), compared with NC granulomas. Oleic acid (18:1), the principal CE fatty acid in both NC and HC granulomas, accounted for significantly more (P less than 0.05) of the total CE fatty acids in HC (48%) relative to NC granulomas (37%). No net accumulation of TG was observed with time in NC or HC animals. Although diet did not influence tissue PL content, significant increases (P less than 0.05) were observed at 14 days in NC rabbits and at 14 and 28 days in HC rabbits relative to 4-day levels. CE accumulation was significantly greater in cultured macrophages isolated from HC granulomas at 14 days (P less than 0.001) and 28 days (P less than 0.01). These findings have demonstrated the significant accumulation of CEs in both HC granuloma tissue and in cultured HC macrophage/foam cells in vivo. The carrageenan granuloma model has, we believe, considerable potential for defining mechanisms responsible for CE accumulation in the

  14. The adrenal specific toxicant mitotane directly interacts with lipid membranes and alters membrane properties depending on lipid composition.

    PubMed

    Scheidt, Holger A; Haralampiev, Ivan; Theisgen, Stephan; Schirbel, Andreas; Sbiera, Silviu; Huster, Daniel; Kroiss, Matthias; Müller, Peter

    2016-06-15

    Mitotane (o,p'.-DDD) is an orphan drug approved for the treatment of adrenocortical carcinoma. The mechanisms, which are responsible for this activity of the drug, are not completely understood. It can be hypothesized that an impact of mitotane is mediated by the interaction with cellular membranes. However, an interaction of mitotane with (lipid) membranes has not yet been investigated in detail. Here, we characterized the interaction of mitotane and its main metabolite o,p'-dichlorodiphenyldichloroacetic acid (o,p'-DDA) with lipid membranes by applying a variety of biophysical approaches of nuclear magnetic resonance, electron spin resonance, and fluorescence spectroscopy. We found that mitotane and o,p'-DDA bind to lipid membranes by inserting into the lipid-water interface of the bilayer. Mitotane but not o,p'-DDA directly causes a disturbance of bilayer structure leading to an increased permeability of the membrane for polar molecules. Mitotane induced alterations of the membrane integrity required the presence of phosphatidylethanolamine and/or cholesterol. Collectively, our data for the first time characterize the impact of mitotane on the lipid membrane structure and dynamics, which may contribute to a better understanding of specific mitotane effects and side effects. PMID:27002491

  15. [Lipid Composition of Different Breeds of Milk Fat Globules by Confocal Raman Microscopy].

    PubMed

    Luo, Jie; Wang, Zi-wei; Song, Jun-hong; Pang, Rui-peng; Ren, Fa-zheng

    2016-01-01

    Different breeds of cows affect the form of fat exist in dairy products and the final functionality, which depended mainly on the composition of the milk fat globules(MFG). However, the relationship between the composition and breeds has not been illuminated. In our study, differences in the lipid content and fatty acid composition of native bovine, buffalo and yak MFG were investigated by confocal Raman spectroscopy. The research offers the possibility of acquisition and analysis of the Raman signal without disruption of the structure of fat globule. The results showed that yak MFG had a higher ratio of band intensities at 2 885/2 850 cm(-1), indicating yak MFG tend to have a triglyceride core in a fluid state with a milk fat globule membrane in a crystalline state. The buffalo and yak MFG had a higher level of unsaturation compared to bovine MFG, shown by a higher ratio of band intensities at 1 655/1 744 cm(-1). The results indicate that small MFG of buffalo is more unsaturated than yak, while the large MFG of buffalo is less unsaturated than the yak. Thus, selective use of cream with yak MFG would allow a harder and more costly churning process but lead to a softer butter. Buffalo milk which contains larger MFG is more suitable for cream and MFG membrane separation. PMID:27228754

  16. Fatty acids for controlled release applications: A comparison between prilling and solid lipid extrusion as manufacturing techniques.

    PubMed

    Vervaeck, A; Monteyne, T; Siepmann, F; Boone, M N; Van Hoorebeke, L; De Beer, T; Siepmann, J; Remon, J P; Vervaet, C

    2015-11-01

    The aim of the present study was to evaluate the solid state characteristics, drug release and stability of fatty acid-based formulations after processing via prilling and solid lipid extrusion. Myristic acid (MA), stearic acid (SA) and behenic acid (BA) were used as matrix formers combined with metoprolol tartrate (MPT) as model drug. The prilling process allowed complete dissolution of MPT in the molten fatty acid phase, generating semi-crystalline MPT and the formation of hydrogen bonds between drug and fatty acids in the solid prills. In contrast, as solid lipid extrusion (SLE) induced only limited melting of the fatty acids, molecular interaction with the drug was inhibited, yielding crystalline MPT. Although the addition of a low melting fatty acid allowed more MPT/fatty acid interaction during extrusion, crystalline MPT was detected after processing. Mathematical modeling revealed that the extrudates exhibited a higher apparent drug/water mobility than prills of the same composition, probably due to differences in the inner systems' structure. Irrespective of the processing method, mixed fatty acid systems (e.g. MA/BA) exhibited a lower matrix porosity, resulting in a slower drug release rate. Solid state analysis of these systems indicated that the crystalline structure of the fatty acids was maintained after SLE, while prilling generated a reduced MA crystallinity. Binary MPT/fatty acid systems processed via extrusion showed better stability during storage at 40 °C than the corresponding prills. Although mixed fatty acid systems were stable at 25 °C, stability problems were encountered during storage at 40 °C: a faster release was obtained from the prills, whereas drug release from the extrudates was slower. PMID:26428938

  17. Fatty acid composition and freeze-thaw resistance in lactobacilli.

    PubMed

    Gomez Zavaglia, A; Disalvo, E A; De Antoni, G L

    2000-05-01

    The fatty acid composition and freeze-thaw resistance of eight strains of thermophilic lactobacilli were studied. Seven of these contained the same polar and neutral lipids, the five major components making up 90% of the cellular fatty acid pool being 14:0, 16:0, 16:1, 18:1 and C19 cyclopropane (cyc19:0). Strain comparison by means of cluster analysis based on the fatty acid ratios using the overlap coefficient revealed two well defined clusters. One was formed by three strains of species Lactobacillus delbrueckii subsp. lactis and Lb. delbrueckii subsp. delbrueckii, the other included five strains of the species Lb. delbrueckii subsp. bulgaricus, Lb. acidophilus and Lb. helveticus. Resistance of strains with a high content of unsaturated fatty acids (66-70%) decreased with increasing cyc19:0 concentrations. In contrast, in strains with a low concentration of unsaturated fatty acids (42-49%), increasing cyc19:0 levels were associated with increased freeze-thaw resistance. PMID:10840678

  18. Archaeal Lipid Genes: Clues to Life in Acid and the Evolution of Membranes

    NASA Astrophysics Data System (ADS)

    Macalady, J. L.; Croft, L.; Vestling, M. M.; Harms, A. C.; Zheng, L.; Baumler, D. J.; Kaspar, C. W.; Banfield, J. F.

    2002-12-01

    Microorganisms living in acid mine drainage environments face extraordinary challenges. Acid-loving archaea such as Ferroplasma acidarmanus maintain pH gradients of 4 to 5 pH units across their membranes and thrive in hot, extremely low pH (0-1), metal-rich, solutions. New lipid analyses for two extremely acidophilic archaea, F. acidarmanus and F. acidiphilum, reveal that all known archaeal acidophiles have cell membranes composed primarily of tetraether-linked lipids. Because tetraether lipids assemble in rigid monolayers that exclude protons and metals, we suggest that tetraether synthesis genes are essential for archaeal survival in acid. Fusion of two diether-linked lipids to form a tetraether-linked lipid is a distinctive biochemical reaction with no analogy in bacteria and eukaryotes. In addition to archaeal acidophiles, tetraethers are present in members of every archaeal lineage except halophiles. Genes responsible for tetraether synthesis and subsequent biochemical steps which "tune" membrane lipid properties in response to environmental changes have not been identified to date. Comparative genomic analyses using the newly completed genome of F. acidarmanus and available genomes from Bacteria, Archaea and Eukarya have generated candidate tetraether synthase genes found only in archaea. Because tetraether-linked lipids are advantageous for acid-loving and possibly also for heat-loving archaea, the phylogeny of these genes has the potential to shed new light on role of hot, acid environments in early evolution.

  19. Fatty acids from VLDL lipolysis products induce lipid droplet accumulation in human monocytes

    PubMed Central

    den Hartigh, Laura J; Connolly-Rohrbach, Jaime E; Fore, Samantha; Huser, Thomas R; Rutledge, John C

    2010-01-01

    One mechanism by which monocytes become activated postprandially is by exposure to triglyceride (TG)-rich lipoproteins such as very low-density lipoproteins (VLDL). VLDL are hydrolyzed by lipoprotein lipase (LpL) at the blood-endothelial cell interface, releasing free fatty acids. In this study, we examined postprandial monocyte activation in more detail, and found that lipolysis products generated from postprandial VLDL induce the formation of lipid-filled droplets within cultured THP-1 monocytes, characterized by coherent anti-stokes Raman spectroscopy. Organelle-specific stains revealed an association of lipid droplets with the endoplasmic reticulum, confirmed by electron microscopy. Lipid droplet formation was reduced when LpL-released fatty acids were bound by bovine serum albumin, which also reduced cellular inflammation. Furthermore, saturated fatty acids induced more lipid droplet formation in monocytes compared to mono- and polyunsaturated fatty acids. Monocytes treated with postprandial VLDL lipolysis products contained lipid droplets with more intense saturated Raman spectroscopic signals than monocytes treated with fasting VLDL lipolysis products. In addition, we found that human monocytes isolated during the peak postprandial period contain more lipid droplets compared to those from the fasting state, signifying that their development is not limited to cultured cells but also occurs in vivo. In summary, circulating free fatty acids can mediate lipid droplet formation in monocytes and potentially be used as a biomarker to assess an individual’s risk of developing atherosclerotic cardiovascular disease. PMID:20208007

  20. The intact muscle lipid composition of bulls: an investigation by MALDI-TOF MS and 31P NMR.

    PubMed

    Dannenberger, Dirk; Süss, Rosmarie; Teuber, Kristin; Fuchs, Beate; Nuernberg, Karin; Schiller, Jürgen

    2010-02-01

    The analysis of beef lipids is normally based on chromatographic techniques and/or gas chromatography in combination with mass spectrometry (GC/MS). Modern techniques of soft-ionization MS were so far scarcely used to investigate the intact lipids in muscle tissues of beef. The objective of the study was to investigate whether matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry and (31)P nuclear magnetic resonance (NMR) spectroscopy are useful tools to study the intact lipid composition of beef. For the MALDI-TOF MS and (31)P NMR investigations muscle samples were selected from a feeding experiment with German Simmental bulls fed different diets. Beside the triacylglycerols (TAGs), phosphatidylethanolamine (PE), phosphatidylcholine (PC) and phosphatidylinositol (PI) species the MALDI-TOF mass spectra of total muscle lipids gave also intense signals of cardiolipin (CL) species. The application of different matrix compounds, 2,5-dihydroxybenzoic acid (DHB) and 9-aminoacridine (9-AA), leads to completely different mass spectra: 9-AA is particularly useful for the detection of (polar) phospholipids, whereas apolar lipids, such as cholesterol and triacylglycerols, are exclusively detected if DHB is used. Finally, the quality of the negative ion mass spectra is much higher if 9-AA is used. PMID:19900429

  1. Ascorbic acid protects lipids in human plasma and low-density lipoprotein against oxidative damage

    SciTech Connect

    Frei, B. )

    1991-12-01

    The authors exposed human blood plasma and low-density lipoprotein (LDL) to many different oxidative challenges and followed the temporal consumption of endogenous antioxidants in relation to the initiation of oxidative damage. Under all types of oxidizing conditions, ascorbic acid completely protects lipids in plasma and LDL against detectable peroxidative damage as assessed by a specific and highly sensitive assay for lipid peroxidation. Ascorbic acid proved to be superior to the other water-soluble plasma antioxidants bilirubin, uric acid, and protein thiols as well as to the lipoprotein-associated antioxidants alpha-tocopherol, ubiquinol-10, lycopene, and beta-carotene. Although these antioxidants can lower the rate of detectable lipid peroxidation, they are not able to prevent its initiation. Only ascorbic acid is reactive enough to effectively intercept oxidants in the aqueous phase before they can attack and cause detectable oxidative damage to lipids.

  2. Pinolenic Acid Downregulates Lipid Anabolic Pathway in HepG2 Cells.

    PubMed

    Lee, Ah Ron; Han, Sung Nim

    2016-07-01

    Pine nut oil (PNO) was reported to reduce lipid accumulation in the liver. However, the specific effect of pinolenic acid (18:3, all-cis-Δ5,9,12), a unique component of PNO, on lipid metabolism has not been studied. We hypothesized that pinolenic acid downregulates the lipid anabolic pathway in HepG2 cells. HepG2 cells were incubated in serum-free medium supplemented with 50 μM bovine serum albumin (BSA), palmitic acid, oleic acid, γ-linolenic acid, pinolenic acid, eicosapentaenoic acid (EPA), or α-linolenic acid for 24 h. Lipid accumulation was determined by Oil Red O (ORO) staining. The mRNA levels of genes related to fatty acid biosynthesis (SREBP1c, FAS, SCD1, and ACC1), fatty acid oxidation (ACC2, PPARα, CPT1A, and ACADL), cholesterol synthesis (SREBP2 and HMGCR), and lipoprotein uptake (LDLr) and of genes that may be involved in the downregulation of the lipogenic pathway (ACSL3, ACSL4, and ACSL5) were determined by qPCR. LDLR protein levels were measured by Western blot analysis. The mRNA levels of SREBP1c, FAS, and SCD1 were significantly downregulated by pinolenic acid treatment compared to BSA control (53, 54, and 38 % lower, respectively). In addition, the mRNA levels of HMGCR, ACSL3, and LDLr were significantly lower (30, 30, and 43 % lower, respectively), and ACSL4 tended to be lower in the pinolenic acid group (20 % lower, P = 0.082) relative to the control group. In conclusion, pinolenic acid downregulated the lipid anabolic pathway in HepG2 cells by reducing expression of genes related to lipid synthesis, lipoprotein uptake, and the regulation of the lipogenic pathway. PMID:27084371

  3. Wildfire effects on soil lipid composition in burnt eucalypt stands, in north-central Portugal

    NASA Astrophysics Data System (ADS)

    Faria, Sílvia; De la Rosa, José Maria; Knicker, Heike; González-Pérez, José A.; González-Vila, Francisco J.; Keizer, Jan Jacob

    2013-04-01

    long chain molecules. All, burnt and unburnt samples contained a homologous series of C18 - C35 n-alkanes, with maximum at C27 and C29. The results further suggested an enrichment in the burnt samples of homologues of low molecular weight (as evidenced by a decrease in average chain length) and of even-numbered homologues (as evidenced by a decrease in the Carbon Preference Index-CPI). Apparently, the wildfire also reduced the natural odd-to-even CPI of the n-alkane series. Saturated n-fatty acid bimodal series were detected in the range C14-C3, with a sharp first maximum at C16 and a second maximum at C24, indicating a strong contribution by epicuticular waxes from vascular plants. The n-fatty acid series distribution seemed a particularly good indicator of soil quality status and post-fire recovery, discerning significant seasonal variations in the lipid composition as well as a partial recovery of after 24 months after the wildfire.

  4. Fatty Acid and Lipid Profiles with Emphasis on n-3 Fatty Acids and Phospholipids from Ciona intestinalis.

    PubMed

    Zhao, Yadong; Wang, Miao; Lindström, Mikael E; Li, Jiebing

    2015-10-01

    In order to establish Ciona intestinalis as a new bioresource for n-3 fatty acids-rich marine lipids, the animal was fractionated into tunic and inner body tissues prior to lipid extraction. The lipids obtained were further classified into neutral lipids (NL), glycolipids (GL) and phospholipids (PL) followed by qualitative and quantitative analysis using GC-FID, GC-MS, (1)H NMR, 2D NMR, MALDI-TOF-MS and LC-ESI-MS methods. It was found that the tunic and inner body tissues contained 3.42-4.08% and 15.9-23.4% of lipids respectively. PL was the dominant lipid class (42-60%) irrespective of the anatomic fractions. From all lipid fractions and classes, the major fatty acids were 16:0, 18:1n-9, C20:1n-9, C20:5n-3 (EPA) and C22:6n-3 (DHA). The highest amounts of long chain n-3 fatty acids, mainly EPA and DHA, were located in PL from both body fractions. Cholestanol and cholesterol were the dominant sterols together with noticeable amounts of stellasterol, 22 (Z)-dehydrocholesterol and lathosterol. Several other identified and two yet unidentified sterols were observed for the first time from C. intestinalis. Different molecular species of phosphatidylcholine (34 species), sphingomyelin (2 species), phosphatidylethanolamine (2 species), phosphatidylserine (10 species), phosphatidylglycerol (9 species), ceramide (38 species) and lysophospholipid (5 species) were identified, representing the most systematic PL profiling knowledge so far for the animal. It could be concluded that C. intestinalis lipids should be a good alternative for fish oil with high contents of n-3 fatty acids. The lipids would be more bioavailable due to the presence of the fatty acids being mainly in the form of PL. PMID:26233815

  5. Altering the Mitochondrial Fatty Acid Synthesis (mtFASII) Pathway Modulates Cellular Metabolic States and Bioactive Lipid Profiles as Revealed by Metabolomic Profiling

    PubMed Central

    Clay, Hayley B.; Parl, Angelika K.; Mitchell, Sabrina L.; Singh, Larry; Bell, Lauren N.; Murdock, Deborah G.

    2016-01-01

    Despite the presence of a cytosolic fatty acid synthesis pathway, mitochondria have retained their own means of creating fatty acids via the mitochondrial fatty acid synthesis (mtFASII) pathway. The reason for its conservation has not yet been elucidated. Therefore, to better understand the role of mtFASII in the cell, we used thin layer chromatography to characterize the contribution of the mtFASII pathway to the fatty acid composition of selected mitochondrial lipids. Next, we performed metabolomic analysis on HeLa cells in which the mtFASII pathway was either hypofunctional (through knockdown of mitochondrial acyl carrier protein, ACP) or hyperfunctional (through overexpression of mitochondrial enoyl-CoA reductase, MECR). Our results indicate that the mtFASII pathway contributes little to the fatty acid composition of mitochondrial lipid species examined. Additionally, loss of mtFASII function results in changes in biochemical pathways suggesting alterations in glucose utilization and redox state. Interestingly, levels of bioactive lipids, including lysophospholipids and sphingolipids, directly correlate with mtFASII function, indicating that mtFASII may be involved in the regulation of bioactive lipid levels. Regulation of bioactive lipid levels by mtFASII implicates the pathway as a mediator of intracellular signaling. PMID:26963735

  6. Tolerance to Changes in Membrane Lipid Composition as a Selected Trait of Membrane Proteins†

    PubMed Central

    Sanders, Charles R.; Mittendorf, Kathleen F.

    2011-01-01

    Membrane lipid composition can vary dramatically across the three domains of life and even within single organisms. Here we review evidence that the lipid-exposed surfaces of membrane proteins have generally evolved to maintain correct structure and function in the face of major changes in lipid composition. Such tolerance has allowed evolution to extensively remodel membrane lipid compositions during the emergence of new species without having to extensively remodel the associated membrane proteins. The tolerance of membrane proteins also permits single-celled organisms to vary membrane lipid composition in response to their changing environments and enables dynamic and organelle-specific variations in the lipid compositions of eukaryotic cells. Membrane protein structural biology has greatly benefited from this seemingly intrinsic property of membrane proteins: the majority of structures determined to date have been characterized under model membrane conditions that little-resemble native membranes. Nevertheless, with a few notable exceptions most experimentally-determined membrane protein structures appear, to a good approximation, to faithfully report on native structure. PMID:21848311

  7. Intrinsic curvature hypothesis for biomembrane lipid composition: a role for nonbilayer lipids.

    PubMed Central

    Gruner, S M

    1985-01-01

    A rationale is presented for the mix of "bilayer" and "nonbilayer" lipids, which occurs in biomembranes. A theory for the L alpha-HII phase transition and experimental tests of the theory are reviewed. It is suggested that the phase behavior is largely the result of a competition between the tendency for certain lipid monolayers to curl and the hydrocarbon packing strains that result. The tendency to curl is quantitatively given by the intrinsic radius of curvature, Ro, which minimizes the bending energy of a lipid monolayer. When bilayer (large Ro) and nonbilayer (small Ro) lipids are properly mixed, the resulting layer has a value of Ro that is at the critical edge of bilayer stability. In this case, bilayers may be destabilized by the protein-mediated introduction of hydrophobic molecules, such as dolichol. An x-ray diffraction investigation of the effect of dolichol on such a lipid mixture is described. This leads to the hypothesis that biomembranes homeostatically adjust their intrinsic curvatures to fall into an optimum range. Experimental strategies for testing the hypothesis are outlined. PMID:3858841

  8. Seasonal changes in the composition of storage and membrane lipids in overwintering larvae of the codling moth, Cydia pomonella.

    PubMed

    Rozsypal, Jan; Koštál, Vladimír; Berková, Petra; Zahradníčková, Helena; Simek, Petr

    2014-10-01

    The codling moth (Cydia pomonella) is a major insect pest of apples worldwide. It overwinters as a diapausing fifth instar larva. The overwintering is often a critical part of the insect life-cycle in temperate zone. This study brings detailed analysis of seasonal changes in lipid composition and fluidity in overwintering larvae sampled in the field. Fatty acid composition of triacylglycerol (TG) depots in the fat body and relative proportions of phospholipid (PL) molecular species in biological membranes were analyzed. In addition, temperature of melting (Tm) in TG depots was assessed by using differential scanning calorimetry and the conformational order (fluidity) of PL membranes was analyzed by measuring the anisotropy of fluorescence polarization of diphenylhexatriene probe in membrane vesicles. We observed a significant increase of relative proportion of linoleic acid (C18:2n6) at the expense of palmitic acid (C16:0) in TG depots during the larval transition to diapause accompanied with decreasing melting temperature of total lipids, which might increase the accessibility of depot fats for enzymatic breakdown during overwintering. The fluidity of membranes was maintained very high irrespective of developmental mode or seasonally changing acclimation status of larvae. The seasonal changes in PL composition were relatively small. We discuss these results in light of alternative survival strategies of codling moth larvae (supercooling vs. freezing), variability and low predictability of environmental conditions, and other cold tolerance mechanisms such as extending the supercooling capacity and massive accumulation of cryoprotective metabolites. PMID:25436961

  9. Identification of marine-derived lipids in juvenile coho salmon and aquatic insects through fatty acid analysis

    USGS Publications Warehouse

    Heintz, Ron A.; Wipfli, Mark S.; Hudson, John P.

    2010-01-01

    The energetic benefits enjoyed by consumers in streams with salmon runs depend on how those benefits are accrued. Adult Pacific salmon Oncorhynchus spp. deliver significant amounts of nutrients (i.e., nitrogen and phosphorus) and carbon to streams when they spawn and die; these nutrient additions can have demonstrable effects on primary production in streams. Consumption of carcass tissues or eggs provides for direct energy subsidies to consumers and may have significant effects on their condition. In this study, comparisons of juvenile coho salmon O. kisutch and aquatic insects exposed to terrestrial and marine energy sources demonstrated that direct consumption of marine-derived lipids had a significant effect on the lipid reserves of consumers. Direct consumption of marine-derived tissues was verified through fatty acid analysis. Selected aquatic insects and juvenile coho salmon were reared for 6 weeks in experimental streams supplied with terrestrial or marine energy sources. Chironomid midges, nemourid stoneflies, and juvenile coho salmon exposed to the marine energy source altered their fatty acid compositions by incorporating the long-chain polyunsaturated fatty acids that are characteristic of marine fish. The fatty acid composition of baetid mayflies was unaffected. The direct movement of specific fatty markers indicated that direct consumption of marine-derived tissues led to increased energy reserves (triacylglycerols) in consumers. Similar results were obtained for juvenile coho salmon sampled from natural streams before and after the arrival of adult salmon runs. These data indicate that marine-derived lipids from anadromous fish runs are an important source of reserve lipids for consumers that overwinter in streams.

  10. Small Drops Get Fat: Unexpected Fatty Acid in Cytoplasmic Lipid Droplets.

    PubMed

    Thurnher, Martin

    2016-06-23

    In a model of transcellular lipid biosynthesis, Guijas et al. (2016), in this issue of Cell Chemical Biology, demonstrate that lipid droplet-containing "foamy" monocytes unexpectedly accumulate 16:1n9-palmitoleic acid, which has anti-inflammatory function in vitro and in vivo. This uncommon positional isomer of 16:1n7-palmitoleic acid represents a candidate biomarker for early cardiovascular disease detection. PMID:27341429

  11. Altered Lipid Composition of Surfactant and Lung Tissue in Murine Experimental Malaria-Associated Acute Respiratory Distress Syndrome

    PubMed Central

    Scaccabarozzi, Diletta; Deroost, Katrien; Lays, Natacha; Taramelli, Donatella

    2015-01-01

    Malaria-associated acute lung injury (MA-ALI) and its more severe form malaria-associated acute respiratory distress syndrome (MA-ARDS) are common, often fatal complications of severe malaria infections. However, little is known about their pathogenesis. In this study, biochemical alterations of the lipid composition of the lungs were investigated as possible contributing factors to the severity of murine MA-ALI/ARDS. C57BL/6J mice were infected with Plasmodium berghei NK65 to induce lethal MA-ARDS, or with Plasmodium chabaudi AS, a parasite strain that does not induce lung pathology. The lipid profile of the lung tissue from mice infected with Plasmodium berghei NK65 developing MA-ALI/ARDS, but not that from mice without lung pathology or controls, was characterized by high levels of phospholipids -mainly phosphatidylcholine- and esterified cholesterol. The high levels of polyunsaturated fatty acids and the linoleic/oleic fatty acid ratio of the latter reflect the fatty acid composition of plasma cholesterol esters. In spite of the increased total polyunsaturated fatty acid pool, which augments the relative oxidability of the lung membranes, and the presence of hemozoin, a known pro-oxidant, no excess oxidative stress was detected in the lungs of Plasmodium berghei NK65 infected mice. The bronchoalveolar lavage (BAL) fluid of Plasmodium berghei NK65 infected mice was characterized by high levels of plasma proteins. The phospholipid profile of BAL large and small aggregate fractions was also different from uninfected controls, with a significant increase in the amounts of sphingomyelin and lysophosphatidylcholine and the decrease in phosphatidylglycerol. Both the increase of proteins and lysophosphatidylcholine are known to decrease the intrinsic surface activity of surfactant. Together, these data indicate that an altered lipid composition of lung tissue and BAL fluid, partially ascribed to oedema and lipoprotein infiltration, is a characteristic feature of murine

  12. Altered Lipid Composition of Surfactant and Lung Tissue in Murine Experimental Malaria-Associated Acute Respiratory Distress Syndrome.

    PubMed

    Scaccabarozzi, Diletta; Deroost, Katrien; Lays, Natacha; Omodeo Salè, Fausta; Van den Steen, Philippe E; Taramelli, Donatella

    2015-01-01

    Malaria-associated acute lung injury (MA-ALI) and its more severe form malaria-associated acute respiratory distress syndrome (MA-ARDS) are common, often fatal complications of severe malaria infections. However, little is known about their pathogenesis. In this study, biochemical alterations of the lipid composition of the lungs were investigated as possible contributing factors to the severity of murine MA-ALI/ARDS. C57BL/6J mice were infected with Plasmodium berghei NK65 to induce lethal MA-ARDS, or with Plasmodium chabaudi AS, a parasite strain that does not induce lung pathology. The lipid profile of the lung tissue from mice infected with Plasmodium berghei NK65 developing MA-ALI/ARDS, but not that from mice without lung pathology or controls, was characterized by high levels of phospholipids -mainly phosphatidylcholine- and esterified cholesterol. The high levels of polyunsaturated fatty acids and the linoleic/oleic fatty acid ratio of the latter reflect the fatty acid composition of plasma cholesterol esters. In spite of the increased total polyunsaturated fatty acid pool, which augments the relative oxidability of the lung membranes, and the presence of hemozoin, a known pro-oxidant, no excess oxidative stress was detected in the lungs of Plasmodium berghei NK65 infected mice. The bronchoalveolar lavage (BAL) fluid of Plasmodium berghei NK65 infected mice was characterized by high levels of plasma proteins. The phospholipid profile of BAL large and small aggregate fractions was also different from uninfected controls, with a significant increase in the amounts of sphingomyelin and lysophosphatidylcholine and the decrease in phosphatidylglycerol. Both the increase of proteins and lysophosphatidylcholine are known to decrease the intrinsic surface activity of surfactant. Together, these data indicate that an altered lipid composition of lung tissue and BAL fluid, partially ascribed to oedema and lipoprotein infiltration, is a characteristic feature of murine

  13. Compositional and Thermal Properties of Thylakoid Polar Lipids of Nerium oleander L. in Relation to Chilling Sensitivity

    PubMed Central

    Orr, Glenda R.; Raison, John K.

    1987-01-01

    The polar lipid classes from thylakoids of Nerium oleander L. were studied with the aim of relating changes in their composition and thermal behavior with reported changes in the transition temperature of their polar lipids and chilling sensitivity of their leaves. With an increase in growth temperature, the transition temperature of phosphatidylglycerol increased from 16°C to 26°C, and for sulfoquinovosyldiacylglycerol from 19°C to 24°C. Transitions in the other lipid classes were below −10°C for plants grown at both growth temperature. The major changes in the molecular species of phosphatidylglycerol, with increasing growth temperature, were an increase in 1-oleoyl-2-palmitoyl phosphatidylglycerol from 21 to 39% and a decrease in 1-oleoyl-2-trans-3-hexadecanoic phosphatidylglycerol from 51 to 25%. Although the disaturated species increased from 8 to 23%, the maximum was less than that reported for chilling-sensitive plants. There was no change in the sum of the palmitic, hexadeca-trans-3-enoic and stearic acids. Dipalmitoyl sulfoquinovosyldiacylglycerol increased from 12 to 20% and 1-linolenoyl-2-palmitoyl sulfoquinovosyldiacylglycerol decreased from 40 to 30%. It is concluded that the increase in the transition temperature of the polar lipids and the sensitivity of acclimated oleander plants to chilling could not be predicted by the absolute sum of the saturated fatty acids or disaturated molecular species in phosphatidylglycerol. The polar lipid transition appears to be a product of mixing of both high and low melting-point lipids. PMID:16665412

  14. Effect of Growth Temperature on the Lipid Composition of Cyanidium caldarium

    PubMed Central

    Kleinschmidt, M. G.; McMahon, Vern A.

    1970-01-01

    Cyanidium caldarium was cultured at 20 and 55 C and harvested during exponential growth phase. Comparative lipid studies on each cell type show a decrease by one-half of the total lipid in cells grown at 55 C over cells grown at 20 C. While the distribution of lipid into each of five lipid classes was not influenced by high temperature (55 C), the degree of unsaturation was greatly affected. Ratios of unsaturated to saturated fatty acids in these cells decreased 3-fold with increased temperature in the growth environment. Cells cultured at 20 C contained 30% of their fatty acids as linolenic while this fatty acid could not be detected in cells cultured at 55 C. PMID:16657451

  15. Effect of mycolic acid on surface activity of binary surfactant lipid monolayers.

    PubMed

    Chimote, G; Banerjee, R

    2008-12-15

    In pulmonary tuberculosis, Mycobacterium tuberculosis lies in close physical proximity to alveolar surfactant. Cell walls of the mycobacteria contain loosely bound, detachable surface-active lipids. In this study, the effect of mycolic acid (MA), the most abundant mycobacterial cell wall lipid, on the surface activity of phospholipid mixtures from lung surfactant was investigated using Langmuir monolayers and atomic force microscopy (AFM). In the presence of mycolic acid, all the surfactant lipid mixtures attained high minimum surface tensions (between 20 and 40 mN/m) and decreased surface compressibility moduli <50 mN/m. AFM images showed that the smooth surface topography of surfactant lipid monolayers was altered with addition of MA. Aggregates with diverse heights of at least two layer thicknesses were found in the presence of mycolic acid. Mycolic acids could aggregate within surfactant lipid monolayers and result in disturbed monolayer surface activity. The extent of the effect of mycolic acid depended on the initial state of the monolayer, with fluid films of DPPC-POPC and DPPC-CHOL being least affected. The results imply inhibitory effects of mycolic acid toward lung surfactant lipids and could be a mechanism of lung surfactant dysfunction in pulmonary tuberculosis. PMID:18848703

  16. Bioconversion of volatile fatty acids derived from waste activated sludge into lipids by Cryptococcus curvatus.

    PubMed

    Liu, Jia; Liu, Jia-Nan; Yuan, Ming; Shen, Zi-Heng; Peng, Kai-Ming; Lu, Li-Jun; Huang, Xiang-Feng

    2016-07-01

    Pure volatile fatty acid (VFA) solution derived from waste activated sludge (WAS) was used to produce microbial lipids as culture medium in this study, which aimed to realize the resource recovery of WAS and provide low-cost feedstock for biodiesel production simultaneously. Cryptococcus curvatus was selected among three oleaginous yeast to produce lipids with VFAs derived from WAS. In batch cultivation, lipid contents increased from 10.2% to 16.8% when carbon to nitrogen ratio increased from about 3.5 to 165 after removal of ammonia nitrogen by struvite precipitation. The lipid content further increased to 39.6% and the biomass increased from 1.56g/L to 4.53g/L after cultivation for five cycles using sequencing batch culture (SBC) strategy. The lipids produced from WAS-derived VFA solution contained nearly 50% of monounsaturated fatty acids, including palmitic acid, heptadecanoic acid, ginkgolic acid, stearic acid, oleic acid, and linoleic acid, which showed the adequacy of biodiesel production. PMID:27038264

  17. Altered membrane lipid composition and functional parameters of circulating cells in cockles (Cerastoderma edule) affected by disseminated neoplasia.

    PubMed

    Le Grand, Fabienne; Soudant, Philippe; Marty, Yanic; Le Goïc, Nelly; Kraffe, Edouard

    2013-01-01

    Membrane lipid composition and morpho-functional parameters were investigated in circulating cells of the edible cockle (Cerastoderma edule) affected by disseminated neoplasia (neoplastic cells) and compared to those from healthy cockles (hemocytes). Membrane sterol levels, phospholipid (PL) class and subclass proportions and their respective fatty acid (FA) compositions were determined. Morpho-functional parameters were evaluated through total hemocyte count (THC), mortality rate, phagocytosis ability and reactive oxygen species (ROS) production. Both morpho-functional parameters and lipid composition were profoundly affected in neoplastic cells. These dedifferentiated cells displayed higher THC (5×), mortality rate (3×) and ROS production with addition of carbonyl cyanide m-chloro phenylhydrazone (1.7×) but lower phagocytosis ability (½×), than unaffected hemocytes. Total PL amounts were higher in neoplastic cells than in hemocytes (12.3 and 5.1 nmol×10(-6) cells, respectively). However, sterols and a particular subclass of PL (plasmalogens; 1-alkenyl-2-acyl PL) were present in similar amounts in both cell type membranes. This led to a two times lower proportion of these membrane lipid constituents in neoplastic cells when compared to hemocytes (20.5% vs. 42.1% of sterols in total membrane lipids and 21.7% vs. 44.2% of plasmalogens among total PL, respectively). Proportions of non-methylene interrupted FA- and 20:1n-11-plasmalogen molecular species were the most impacted in neoplastic cells when compared to hemocytes (⅓× and ¼×, respectively). These changes in response to this leukemia-like disease in bivalves highlight the specific imbalance of plasmalogens and sterols in neoplastic cells, in comparison to the greater stability of other membrane lipid components. PMID:23333874

  18. Wheat germ oil and α-lipoic acid predominantly improve the lipid profile of broiler meat.

    PubMed

    Arshad, Muhammad Sajid; Anjum, Faqir Muhammad; Khan, Muhammad Issa; Shahid, Muhammad

    2013-11-20

    In response to recent assertions that synthetic antioxidants may have the potential to cause toxic effects and to consumers' increased attention to consuming natural products, the poultry industry has been seeking sources of natural antioxidants, alone or in combination with synthetic antioxidants that are currently being used by the industry. The present study was conducted to determine the effect of α-lipoic acid, α-tocopherol, and wheat germ oil on the status of antioxidant enzymes, fatty acid profile, and serum biochemical profile of broiler blood. One-day-old (180) broiler birds were fed six different feeds varying in their antioxidant content: no addition (T1), natural α-tocopherol (wheat germ oil, T2), synthetic α-tocopherol (T3), α-lipoic acid (T4), α-lipoic acid together with natural α-tocopherol (T5), and α-lipoic acid together with synthetic α-tocopherol (T6). The composition of saturated and unsaturated fatty acids in the breast and leg meat was positively influenced by the different dietary supplements. The content of fatty acid was significantly greater in broilers receiving T2 both in breast (23.92%) and in leg (25.82%) meat, whereas lower fatty acid levels was found in broilers receiving diets containing T6 in the breast (19.57%) and leg (21.30%) meat. Serum total cholesterol (113.42 mg/dL) and triglycerides (52.29 mg/dL) were lowest in the group given natural α-tocopherol and α-lipoic acid. Wheat germ oil containing natural α-tocopherol alone or with α-lipoic acid was more effective than synthetic α-tocopherol in raising levels of antioxidant enzymes superoxide dismutase, catalase, and glutathione reductase while lowering plasma total cholesterol, low-density lipoprotein, and triglycerides and raising high-density lipoprotein and plasma protein significantly. It was concluded that the combination of wheat germ oil and α-lipoic acid is helpful in improving the lipid profile of broilers. PMID:24191686

  19. Lipid metabolism and body composition in Gclm(-/-) mice

    SciTech Connect

    Kendig, Eric L.; Chen, Ying; Krishan, Mansi; Johansson, Elisabet; Schneider, Scott N.; Genter, Mary Beth; Nebert, Daniel W.; Shertzer, Howard G.

    2011-12-15

    In humans and experimental animals, high fat diets (HFD) are associated with risk factors for metabolic diseases, such as excessive weight gain and adiposity, insulin resistance and fatty liver. Mice lacking the glutamate-cysteine ligase modifier subunit gene (Gclm(-/-)) and deficient in glutathione (GSH), are resistant to HFD-mediated weight gain. Herein, we evaluated Gclm-associated regulation of energy metabolism, oxidative stress, and glucose and lipid homeostasis. C57BL/6J Gclm(-/-) mice and littermate wild-type (WT) controls received a normal diet or an HFD for 11 weeks. HFD-fed Gclm(-/-) mice did not display a decreased respiratory quotient, suggesting that they are unable to process lipid for metabolism. Although dietary energy consumption and intestinal lipid absorption were unchanged in Gclm(-/-) mice, feeding these mice an HFD did not produce excess body weight nor fat storage. Gclm(-/-) mice displayed higher basal metabolic rates resulting from higher activities of liver mitochondrial NADH-CoQ oxidoreductase, thus elevating respiration. Although Gclm(-/-) mice exhibited strong systemic and hepatic oxidative stress responses, HFD did not promote glucose intolerance or insulin resistance. Furthermore, HFD-fed Gclm(-/-) mice did not develop fatty liver, likely resulting from very low expression levels of genes encoding lipid metabolizing enzymes. We conclude that Gclm is involved in the regulation of basal metabolic rate and the metabolism of dietary lipid. Although Gclm(-/-) mice display a strong oxidative stress response, they are protected from HFD-induced excessive weight gain and adipose deposition, insulin resistance and steatosis. -- Highlights: Black-Right-Pointing-Pointer A high fat diet does not produce body weight and fat gain in Gclm(-/-) mice. Black-Right-Pointing-Pointer A high fat diet does not induce steatosis or insulin resistance in Gclm(-/-) mice. Black-Right-Pointing-Pointer Gclm(-/-) mice have high basal metabolism and mitochondrial

  20. Expression of lipases and lipid receptors in sperm storage tubules and possible role of fatty acids in sperm survival in the hen oviduct.

    PubMed

    Huang, A; Isobe, N; Obitsu, T; Yoshimura, Y

    2016-04-15

    The aim of this study was to determine the role of fatty acids for sperm survival in the sperm storage tubules (SSTs) of the hen oviduct. The mucosa tissues of uterovaginal junction (UVJ) of White Leghorn laying hens with or without artificial insemination using semen from Barred Plymouth Rock roosters were collected. The lipid density in the epithelium of UVJ and SST was analyzed by Sudan black B staining. The expressions of genes encoding lipid receptors and lipases were assayed by polymerase chain reaction in UVJ mucosa and SST cells isolated by laser microdissection. Fatty acid composition was analyzed by gas chromatography, and sperm were cultured with or without the identified predominant fatty acids for 24 hours to examine their effect on sperm viability. The lipid droplets were localized in the epithelium of UVJ mucosa and SSTs. The expression of genes encoding very low-density lipoprotein receptor(VLDLR), low-density lipoprotein receptor (LDLR), and fatty acid translocase (FAT/CD36) were found in SST cells. Expression of genes encoding endothelial lipase (EL), lipase H (LIPH), adipose triglyceride lipase (ATGL), and lipoprotein lipase (LPL) were found in UVJ. In contrast, only ATGL was found in SST cells, and its expression was significantly upregulated after artificial insemination. In UVJ mucosal tissues, five fatty acids, namely myristic acid (C14), palmitic acid (C16), stearic acid (C18), oleic acid (C18:1n9), and linoleic acid (C18:2n6), were identified as predominant fatty acids. The viability of sperm cultured with 1 mM oleic acid or linoleic acid was significantly higher than the sperm in the control culture without fatty acids. These results suggest that lipids in the SST cells may be degraded by ATGL, and fatty acids including oleic acid and linoleic acid may be released into the SST lumen to support sperm survival. PMID:26777559

  1. Determination of fatty acid composition and quality characteristics of oils from palm fruits using solvent extraction

    NASA Astrophysics Data System (ADS)

    Kasmin, Hasimah; Lazim, Azwan Mat; Awang, Roila

    2015-09-01

    Palm oil contains about 45% of saturated palmitic acid and 39% of mono-unsaturated oleic acid. Investigations made in the past to trace the fatty acid composition in palm revealed that ripeness of fresh fruit bunch (FFB) affect oil composition. However, there is no evidence that processing operations affect oil composition, although different stage of processing does affect the quality of oil extracted. An improved method for sterilizing the oil palm fruits by dry heating, followed by oil extraction has been studied. This method eliminates the use of water, thus, increasing the extraction of lipid soluble. The objective of this study is to determine the possibility production of palm oil with different fatty acid composition (FAC) as well as the changes in quality from conventional milling. The unripe and ripe FFB were collected, sterilized and extracted using different method of solvent extraction. Preliminary data have shown that variation in FAC will also alter the physical and chemical properties of the oil extracted.

  2. Monounsaturated fatty acids reduce the barrier of stratum corneum lipid membranes by enhancing the formation of a hexagonal lateral packing.

    PubMed

    Mojumdar, Enamul H; Helder, Richard W J; Gooris, Gert S; Bouwstra, Joke A

    2014-06-10

    The effectiveness of the skin barrier underlies the outer layer of the skin: the stratum corneum (SC). However, in several skin diseases this barrier is impaired. In two inflammatory skin diseases, atopic eczema and Netherton syndrome, an increased level of monounsaturated fatty acids (MUFAs) has been observed as opposed to healthy skin. In the present study, we aimed to investigate the effect of MUFAs on the lipid organization and skin lipid barrier using an in vitro model membrane system, the stratum corneum substitute (SCS), mimicking the SC lipid composition and organization. To achieve our goal, the SCS has been prepared with increasing levels of MUFAs using various chain length. Permeation studies and trans-epidermal water loss measurements show that an increment of MUFAs reduces the lipid barrier in the SCS. The increased level of unsaturation exerts its effect by reducing the packing density in the lipid organization, while the lamellar phases are not affected. Our findings indicate that increased levels of MUFAs may contribute to the impaired skin barrier in diseased skin. PMID:24818519

  3. Yeast fermentation of carboxylic acids obtained from pyrolytic aqueous phases for lipid production.

    PubMed

    Lian, Jieni; Garcia-Perez, Manuel; Coates, Ralph; Wu, Hongwei; Chen, Shulin

    2012-08-01

    The presence of very reactive C1-C4 molecules adversely affects the quality bio-oils produced from the pyrolysis of lignocellulosic materials. In this paper a scheme to produce lipids with Cryptococcus curvatus from the carboxylic acids in the pyrolytic aqueous phase collected in fractional condensers is proposed. The capacities of three oleaginous yeasts C. curvatus, Rhodotorula glutinis, Lipomyces starkeyi to ferment acetate, formate, hydroxylacat-aldehyde, phenol and acetol were investigated. While acetate could be a good carbon source for lipid production, formate provides additional energy and contributes to yeast growth and lipid production as auxiliary energy resource. Acetol could slightly support yeast growth, but it inhibits lipid accumulation. Hydroxyacetaldehyde and phenols showed high yeast growth and lipid accumulation inhibition. A pyrolytic aqueous phase with 20 g/L acetate was fermented with C. curvatus, after neutralization and detoxification to produce 6.9 g/L dry biomass and 2.2 g/L lipid. PMID:22705522

  4. Membrane lipid compositional sensing by the inducible amphipathic helix of CCT.

    PubMed

    Cornell, Rosemary B

    2016-08-01

    The amphipathic helical (AH) membrane binding motif is recognized as a major device for lipid compositional sensing. We explore the function and mechanism of sensing by the lipid biosynthetic enzyme, CTP:phosphocholine cytidylyltransferase (CCT). As the regulatory enzyme in phosphatidylcholine (PC) synthesis, CCT contributes to membrane PC homeostasis. CCT directly binds and inserts into the surface of bilayers that are deficient in PC and therefore enriched in lipids that enhance surface charge and/or create lipid packing voids. These two membrane physical properties induce the folding of the CCT M domain into a ≥60 residue AH. Membrane binding activates catalysis by a mechanism that has been partially deciphered. We review the evidence for CCT compositional sensing, and the membrane and protein determinants for lipid selective membrane-interactions. We consider the factors that promote the binding of CCT isoforms to the membranes of the ER, nuclear envelope, or lipid droplets, but exclude CCT from other organelles and the plasma membrane. The CCT sensing mechanism is compared with several other proteins that use an AH motif for membrane compositional sensing. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon. PMID:26747646

  5. All-trans retinoic acid-loaded lipid nanoparticles as a transdermal drug delivery carrier.

    PubMed

    Charoenputtakhun, Ponwanit; Opanasopit, Praneet; Rojanarata, Theerasak; Ngawhirunpat, Tanasait

    2014-03-01

    The objective of this study was to investigate the effects of drug amounts (0.1%, 0.2% and 0.3% w/w), amounts of the oil (10%, 15% and 20% w/w of lipid matrix) and types of the oil (soybean oil (S), medium chain triglycerides (M), oleic acids (O) and linoleic acids (L)) in lipid matrix of all-trans retinoic acid (ATRA)-loaded nanostructured lipid carriers (NLCs) for transdermal drug delivery. The ATRA-loaded solid lipid nanoparticles (SLNs) were formulated with 30% w/w cetyl palmitate. All lipid nanoparticles had average sizes between 130 and 241 nm and had negative zeta potentials. The drug loading of all formulations was higher than 95%. The release of drug from all lipid nanoparticles followed zero-order kinetics. The amount of drug released from all the NLCs and SLNs was significantly greater than the drug released from the ATRA suspension. The ATRA flux of the SLNs was higher than the NLCs. The flux of the NLCs containing oleic acid was significantly higher than the other types of oils. The chemical stability at 4 °C, the percentage of ATRA remaining in all the lipid nanoparticles tested was higher than 80%. It can be concluded that both the SLNs and NLCs are promising dermal drug delivery systems for ATRA. PMID:23356887

  6. Isolation and Characterization of Chicken Yolk Vitelline Membrane Lipids Using Eggs Enriched With Conjugated Linoleic Acid.

    PubMed

    Shinn, Sara Elizabeth; Liyanage, Rohana; Lay, Jackson O; Proctor, Andrew

    2016-06-01

    The vitelline membrane (VM) encloses the chicken egg yolk, separating it from albumen. The VM weakens during storage, and dietary lipid modification significantly affects its strength. However, no studies have characterize the fatty acyl residue (FA) composition of the VM, and reports of VM isolation and quantified lipid content are inconsistent. Therefore, the objectives of this study were: (1) to develop a washing and isolation method that removes residual yolk from VM without damage; (2) to determine the FA and lipid composition of CLA-rich egg yolk VM, relative to controls; (3) to determine the effect of 20 days of refrigeration on VM FA and lipid composition. To determine VM FA and lipid composition, 36 hens received either a corn-soybean meal-based control diet ("Control"), or the Control supplemented with either 10 % soy oil ("Soy control"), or 10 % CLA-rich soy oil ("CLA") for 30 days. VM were analyzed the day of collection ("fresh"), or after 20 days of refrigeration ("refrigerated"). There were no differences in FA compositions of fresh and refrigerated membranes within a treatment. CLA-rich yolk VM contains CLA, greater SFA, and significantly greater DHA relative to controls. Direct MALDI-TOF-MS identified 15 phosphatidylcholines, three phosphatidylethanolamines, one sphingomyelin, and 15 triacylglycerols in VM. Lipid species that showed significant differences among egg types included nine phosphatidylcholines and six triacylglycerols. MALDI analysis indicated significant differences in nine lipid classes on the VM inner layer. After refrigeration, five lipid classes on the inner layer and seven lipid classes on the outer layer had statistically significant differences among VM types. PMID:27108035

  7. Selection for low erucic acid and genetic mapping of loci affecting the accumulation of very long-chain fatty acids in meadowfoam seed storage lipids.

    PubMed

    Gandhi, S D; Kishore, V K; Crane, J M; Slabaugh, M B; Knapp, S J

    2009-06-01

    Erucic acid (22:1(13)) has been identified as an anti-nutritional compound in meadowfoam (Limnanthes alba) and other oilseeds in the Brassicales, a classification which has necessitated the development of low erucic acid cultivars for human consumption. The erucic acid concentrations of meadowfoam wild types (8%-24%) surpass industry standards for human consumption (acid lines and identify loci affecting the accumulation of 22:1(13) and other very long-chain fatty acids (VLCFAs) in meadowfoam seed storage lipids. LE76, a low erucic acid line, was developed by 3 cycles of selection in an ethyl methanesulfonate-treated wildtype population. LE76 produced 3% 22:1(13), threefold less than the M0 population. Wildtype x LE76 F2 populations produced continuous, approximately normal erucic and dienoic acid distributions. Loss-of-function mutations apparently did not segregate and individuals with low 22:1(13) concentrations (lipids by genotyping and phenotyping wildtype x low erucic acid F2 progeny. Composite interval mapping identified 3 moderately large-effect erucic acid QTL. The low erucic acid parent transmitted favorable alleles for 2 of 3 QTL, suggesting low erucic acid cultivars can be developed by combining favorable alleles transmitted by wildtype and low erucic acid parents. PMID:19483773

  8. Reduced expression of CDP-DAG synthase changes lipid composition and leads to male sterility in Drosophila

    PubMed Central

    Laurinyecz, Barbara; Péter, Mária; Vedelek, Viktor; Kovács, Attila L.; Juhász, Gábor; Maróy, Péter; Vígh, László; Balogh, Gábor; Sinka, Rita

    2016-01-01

    Drosophila spermatogenesis is an ideal system to study the effects of changes in lipid composition, because spermatid elongation and individualization requires extensive membrane biosynthesis and remodelling. The bulk of transcriptional activity is completed with the entry of cysts into meiotic division, which makes post-meiotic stages of spermatogenesis very sensitive to even a small reduction in gene products. In this study, we describe the effect of changes in lipid composition during spermatogenesis using a hypomorphic male sterile allele of the Drosophila CDP-DAG synthase (CdsA) gene. We find that the CdsA mutant shows defects in spermatid individualization and enlargement of mitochondria and the axonemal sheath of the spermatids. Furthermore, we could genetically rescue the male sterile phenotype by overexpressing Phosphatidylinositol synthase (dPIS) in a CdsA mutant background. The results of lipidomic and genetic analyses of the CdsA mutant highlight the importance of correct lipid composition during sperm development and show that phosphatidic acid levels are crucial in late stages of spermatogenesis. PMID:26791243

  9. The influence of hypothyroidism on the transport of phosphate and on the lipid composition in rat-liver mitochondria.

    PubMed

    Paradies, G; Ruggiero, F M; Dinoi, P

    1991-11-18

    The influence of hypothyroidism on the transport of phosphate and on the lipid composition in rat-liver mitochondria was examined. It was found that the rate of phosphate transport is reduced (around 40%) in mitochondria from hypothyroid rats compared to that obtained in mitochondria from normal rats. Treatment of hypothyroid rats with thyroid hormone reverses this effect completely. Kinetic analysis of the phosphate transport indicates that only the Vmax of this process is affected, while there is no change in the Km values. The lower rate of phosphate transport in mitochondria from hypothyroid rats is also demonstrated by swelling experiments. There is no significant difference either in the respiratory control ratios or in the ADP/O ratios between these two types of mitochondria. The hepatic mitochondrial lipid composition is altered significantly in hypothyroid rats. The total cholesterol increases, the phospholipids decrease and the cholesterol/phospholipid molar ratio increases (around 40%). Among the phospholipids, cardiolipin shows the greatest alteration (30% decrease in the hypothyroid rats). The phosphatidylethanolamine/phosphatidylcholine ratio also decreases. Alterations were also found in the pattern of fatty acids. These changes in lipid composition may be responsible, at least in part, for the depression of the phosphate carrier activity in mitochondria from hypothyroid rats. PMID:1751524

  10. Serum Paraoxonase 1 Activity Is Associated with Fatty Acid Composition of High Density Lipoprotein

    PubMed Central

    Boshtam, Maryam; Pourfarzam, Morteza; Ani, Mohsen; Naderi, Gholam Ali; Basati, Gholam; Mansourian, Marjan; Dinani, Narges Jafari; Asgary, Seddigheh; Abdi, Soheila

    2013-01-01

    Introduction. Cardioprotective effect of high density lipoprotein (HDL) is, in part, dependent on its related enzyme, paraoxonase 1 (PON1). Fatty acid composition of HDL could affect its size and structure. On the other hand, PON1 activity is directly related to the structure of HDL. This study was designed to investigate the association between serum PON1 activity and fatty acid composition of HDL in healthy men. Methods. One hundred and forty healthy men participated in this research. HDL was separated by sequential ultracentrifugation, and its fatty acid composition was analyzed by gas chromatography. PON1 activity was measured spectrophotometrically using paraxon as substrate. Results. Serum PON1 activity was directly correlated with the amount of stearic acid and dihomo-gamma-linolenic acid (DGLA). PON1/HDL-C was directly correlated with the amount of miristic acid, stearic acid, and DGLA and was inversely correlated with total amount of ω6 fatty acids of HDL. Conclusion. The fatty acid composition of HDL could affect the activity of its associated enzyme, PON1. As dietary fats are the major determinants of serum lipids and lipoprotein composition, consuming some special dietary fatty acids may improve the activity of PON1 and thereby have beneficial effects on health. PMID:24167374

  11. Effects of free fatty acids on meibomian lipid films.

    PubMed

    Arciniega, Juan C; Nadji, Erfan J; Butovich, Igor A

    2011-10-01

    The purpose of this study was to evaluate the impact of free fatty acids (FFA), namely oleic (OA) and linoleic (LA) ones, on meibomian lipid films (MLF) using a Langmuir trough (LT) and a Brewster angle microscope (BAM). Human meibum was collected from healthy volunteers. A Tris-buffered saline (TBS, pH 7.4) was used as the control aqueous subphase for LT experiments. Then, varying amounts of OA and LA were dissolved in TBS to make FFA-containing subphases. Predetermined amounts of meibum were loaded onto the surface of the (TBS/±FFA) subphases to form MLF. Then, surface pressure-area (π/A) isotherms of MLF were recorded. Standard rheological parameters such as rigidity, elasticity, and hysteresis, were computed. In a separate experiment, OA and LA were pre-mixed with meibum at different weight ratios prior their spreading onto the control TBS subphase, and the (π/A) isotherms of the resulting mixed films of meibum and FFA were studied and analyzed in the same fashion as described above. When studied at the normal corneal temperature of 34 °C with the (TBS/-FFA) subphase, meibum formed stable films. When (TBS/+FFA) subphase was used, both FFA quickly disrupted the MLF, acting in a similar fashion. BAM revealed that the most dramatic changes in the structure of MLF occurred in the range of OA concentrations between 5 and 15 μM. However, this effect was apparent even with 2.5 μM OA. When OA was pre-mixed with meibum, but was absent from the subphase, it caused gradual concentration-dependent changes in the (π/A) isotherms, but the MLF did not disappear from the surface. Thus, tested FFA showed a remarkable ability to disrupt, and/or prevent the formation of, human MLF, which could contribute to the onset of those forms of dry eye disease that are associated with enhanced activity of lipolytic enzymes, such as chronic blepharitis. PMID:21718696

  12. Mechanism of bile acid-regulated glucose and lipid metabolism in duodenal-jejunal bypass

    PubMed Central

    Chai, Jie; Zou, Lei; Li, Xirui; Han, Dali; Wang, Shan; Hu, Sanyuan; Guan, Jie

    2015-01-01

    Bile acid plays an important role in regulating blood glucose, lipid and energy metabolism. The present study was implemented to determine the effect of duodenal-jejunal bypass (DJB) on FXR, TGR-5expression in terminal ileum and its bile acid-related mechanism on glucose and lipid metabolism. Immunohistochemistry was used to detect relative gene or protein expression in liver and intestine. Firstly, we found that expression of FXR in liver and terminal ileum of DJB group was significantly higher than that in S-DJB group (P<0.05). In addition, DJB dramatically increased the activation of TGR-5 in the liver of rats. Furthermore, PEPCK, G6Pase, FBPase 1 and GLP-1 were up-regulated by DJB. In conclusion, these results showed that bile acid ameliorated glucose and lipid metabolism through bile acid-FXR and bile acid- TGR-5 signaling pathway. PMID:26884847

  13. Combined nitrogen limitation and cadmium stress stimulate total carbohydrates, lipids, protein and amino acid accumulation in Chlorella vulgaris (Trebouxiophyceae).

    PubMed

    Chia, Mathias Ahii; Lombardi, Ana Teresa; da Graça Gama Melão, Maria; Parrish, Christopher C

    2015-03-01

    Metals have interactive effects on the uptake and metabolism of nutrients in microalgae. However, the effect of trace metal toxicity on amino acid composition of Chlorella vulgaris as a function of varying nitrogen concentrations is not known. In this research, C. vulgaris was used to investigate the influence of cadmium (10(-7) and 2.0×10(-8)molL(-1) Cd) under varying nitrogen (2.9×10(-6), 1.1×10(-5) and 1.1×10(-3)molL(-1)N) concentrations on its growth rate, biomass and biochemical composition. Total carbohydrates, total proteins, total lipids, as well as individual amino acid proportions were determined. The combination of Cd stress and N limitation significantly inhibited growth rate and cell density of C. vulgaris. However, increasing N limitation and Cd stress stimulated higher dry weight and chlorophyll a production per cell. Furthermore, biomolecules like total proteins, carbohydrates and lipids increased with increasing N limitation and Cd stress. Ketogenic and glucogenic amino acids were accumulated under the stress conditions investigated in the present study. Amino acids involved in metal chelation like proline, histidine and glutamine were significantly increased after exposure to combined Cd stress and N limitation. We conclude that N limitation and Cd stress affects the physiology of C. vulgaris by not only decreasing its growth but also stimulating biomolecule production. PMID:25625522

  14. Hepatic fatty acid composition differs between chronic hepatitis C patients with and without steatosis.

    PubMed

    Arendt, Bianca M; Mohammed, Saira S; Aghdassi, Elaheh; Prayitno, Nita R; Ma, David W L; Nguyen, Augustin; Guindi, Maha; Sherman, Morris; Heathcote, E Jenny; Allard, Johane P

    2009-04-01

    Hepatic fatty acid (FA) composition may influence steatosis development in patients with chronic hepatitis C (CHC). In a cross-sectional study, we compared the hepatic FA profile in hepatitis C patients with (n = 9) and without (n = 33) steatosis (> or =5% of hepatocytes involved). FA composition of hepatic and RBC total lipids was measured by gas chromatography. Lipid peroxidation and antioxidants in liver and plasma, blood biochemistry, and nutritional status were also assessed. Patients with steatosis had more fibrosis, higher necroinflammatory activity of their hepatitis C infection, were more often infected with genotype 3, and had lower serum cholesterol. Monounsaturated FA in the liver were higher and trans FA were lower in patients with steatosis. Lower stearic acid and higher oleic acid in hepatic total lipids suggested higher Delta9-desaturase activity. alpha-Linolenic acid in the liver was higher and the ratios of long-chain PUFA:essential FA precursors were lower for (n-3) and (n-6) PUFA. Plasma vitamin C was lower in steatosis, but RBC FA composition and other parameters did not differ. We conclude that hepatic FA composition is altered in patients with hepatitis C and steatosis, probably due to modulation of enzymatic elongation and desaturation. Oxidative stress or nutritional status does not seem to play a predominant role for development of steatosis in CHC. PMID:19211827

  15. Bulk Organic Matter and Lipid Biomarker Composition of Chesapeake Bay Surficial Sediments as Indicators of Environmental Processes

    NASA Astrophysics Data System (ADS)

    Zimmerman, A. R.; Canuel, E. A.

    2001-09-01

    Seasonal measurements of lipid biomarker (fatty acid and sterol) composition along with organic carbon and nitrogen elemental and stable isotopic signatures were made in surficial sediments collected along the salinity gradient of the Chesapeake Bay mainstem. These data along with water quality information including chlorophyll and dissolved oxygen concentration were used to assess temporal and spatial variations in organic matter (OM) composition and the processes that control its distribution. While the amount of OM in sediments was largely related to sediment surface area and exhibited very little seasonal variability, OM lipid composition was spatially and temporally variable. Principal components analysis (PCA) identified three suites of lipid compounds that encapsulate these elements of variability. The first, representing allochthonous versus autochthonous OM identified the Northern Bay as the major site of terrestrial OM deposition. The greater contribution of terrestrial OM in this region was supported by elemental C:N and stable isotope data. The second was identified as a seasonal component of lipid composition and indicated the deposition of labile, primarily diatom-derived OM in the spring and degradation of this OM through the summer and fall. This component was particularly enriched in Southern Bay sediments relative to other portions of the Bay and varied with tributary water inflow. A third component of OM composition represented microbially-derived OM which, although most abundant in the Mid-Bay, represented the greatest fraction of OM in the Southern Bay. Sediments of the Mid-Bay were particularly enriched in flagellate-derived OM in the summer. Sediment OM composition was not influenced by water-column dissolved oxygen concentration. The combination of lipid biomarkers and PCA proved a more sensitive indicator of sediment OM sources and reactivity than bulk elemental or isotopic data and presents a picture of the estuary as a trap for both

  16. Detailed Dimethylacetal and Fatty Acid Composition of Rumen Content from Lambs Fed Lucerne or Concentrate Supplemented with Soybean Oil

    PubMed Central

    Alves, Susana P.; Santos-Silva, José; Cabrita, Ana R. J.; Fonseca, António J. M.; Bessa, Rui J. B.

    2013-01-01

    Lipid metabolism in the rumen is responsible for the complex fatty acid profile of rumen outflow compared with the dietary fatty acid composition, contributing to the lipid profile of ruminant products. A method for the detailed dimethylacetal and fatty acid analysis of rumen contents was developed and applied to rumen content collected from lambs fed lucerne or concentrate based diets supplemented with soybean oil. The methodological approach developed consisted on a basic/acid direct transesterification followed by thin-layer chromatography to isolate fatty acid methyl esters from dimethylacetal, oxo- fatty acid and fatty acid dimethylesters. The dimethylacetal composition was quite similar to the fatty acid composition, presenting even-, odd- and branched-chain structures. Total and individual odd- and branched-chain dimethylacetals were mostly affected by basal diet. The presence of 18∶1 dimethylacetals indicates that biohydrogenation intermediates might be incorporated in structural microbial lipids. Moreover, medium-chain fatty acid dimethylesters were identified for the first time in the rumen content despite their concentration being relatively low. The fatty acids containing 18 carbon-chain lengths comprise the majority of the fatty acids present in the rumen content, most of them being biohydrogenation intermediates of 18∶2n−6 and 18∶3n−3. Additionally, three oxo- fatty acids were identified in rumen samples, and 16-O-18∶0 might be produced during biohydrogenation of the 18∶3n−3. PMID:23484024

  17. Preparation of fatty acid methyl esters for gas-chromatographic analysis of marine lipids: insight studies.

    PubMed

    Carvalho, Ana P; Malcata, F Xavier

    2005-06-29

    Assays for fatty acid composition in biological materials are commonly carried out by gas chromatography, after conversion of the lipid material into the corresponding methyl esters (FAME) via suitable derivatization reactions. Quantitative derivatization depends on the type of catalyst and processing conditions employed, as well as the solubility of said sample in the reaction medium. Most literature pertinent to derivatization has focused on differential comparison between alternative methods; although useful to find out the best method for a particular sample, additional studies on factors that may affect each step of FAME preparation are urged. In this work, the influence of various parameters in each step of derivatization reactions was studied, using both cod liver oil and microalgal biomass as model systems. The accuracies of said methodologies were tested via comparison with the AOCS standard method, whereas their reproducibility was assessed by analysis of variance of (replicated) data. Alkaline catalysts generated lower levels of long-chain unsaturated FAME than acidic ones. Among these, acetyl chloride and BF(3) were statistically equivalent to each other. The standard method, which involves alkaline treatment of samples before acidic methylation with BF(3), provided equivalent results when compared with acidic methylation with BF(3) alone. Polarity of the reaction medium was found to be of the utmost importance in the process: intermediate values of polarity [e.g., obtained by a 1:1 (v/v) mixture of methanol with diethyl ether or toluene] provided amounts of extracted polyunsaturated fatty acids statistically higher than those obtained via the standard method. PMID:15969474

  18. Effect of weak permanent magnetic field on lipid composition and content in perilla leaves.

    PubMed

    Novitskii, Yurii; Novitskaya, Galina; Serdyukov, Yurii

    2016-02-01

    Composition and content of lipids were studied in leaves of red perilla plants (Perilla nankinensis [Lour.] Decne.) grown in weak permanent horizontal magnetic field (PMF) of 500 µT flux density under controlled illumination, temperature, and humidity in the phytothron chamber. Control plants were grown under similar conditions, but without PMF exposure. Exposure of perilla plants for a month to PMF retarded plant flowering as compared to control. PMF treatment increased total lipid content, including polar lipids, among them glycolipids and phospholipids. PMF did not affect content of neutral lipids. It is concluded that PMF stimulated synthesis of membrane lipids of chloroplasts, mitochondria, and cytoplasm in perilla leaves. A possible role of PMF as a factor imitating the additional light source retarding flowering of a short-day perilla plants is discussed. PMID:26866720

  19. Quantitative Composition Analysis of Lipid Membranes by High-Resolution Secondary Ion Mass Spectrometry

    SciTech Connect

    Kraft, M L; Weber, P K; Lin, W C; Blanchette, C D; Longo, M L; Hutcheon, I D; Boxer, S G

    2005-04-29

    The lateral organization and interactions of lipid and protein components within biological membranes are essential for their functions. Investigations of the lateral organization within membranes hinge upon the ability to differentiate one component of interest from another. Typically, fluorophores are conjugated to specific components, and the organization is probed with fluorescence microscopy. However, bulky fluorophores may change the physical properties of the components they label, only the labeled components can be visualized, and the diffraction limit of light restricts the lateral resolution. Here we present a method to image microdomains within supported lipid membranes using isotopic labels and high-resolution secondary ion mass spectrometry (SIMS) performed with the NanoSIMS 50 (Cameca). Lateral resolution of 100 nm is achieved with high sensitivity. Quantitative information on the lipid composition within each domain was determined using calibration curves constructed from homogeneous lipid bilayer samples that systematically varied in the isotopically labeled lipid content.

  20. Cellular fatty acid composition of Haemophilus equigenitalis.

    PubMed Central

    Sugimoto, C; Miyagawa, E; Mitani, K; Nakazawa, M; Isayama, Y

    1982-01-01

    The cellular fatty acid composition of eight Haemophilus equigenitalis strains was determined by gas-liquid chromatography. All strains showed a grossly similar pattern characterized by large amounts of 18:1 and 16:0. The amounts of 16:1, 18:2, 18:0, 3-OH 14:0, 3-OH 16:0, and 3-OH 18:1 were relatively small. PMID:7096556

  1. Normal lipid composition of fibroblasts from a case of type II achondrogenesis.

    PubMed

    Le Lous, M; Hors-Cayla, M C; Hendrickx, G F; Maroteaux, P

    1980-08-01

    Fibroblasts from a case of achondrogenesis type II and fibroblasts from a normal control donor were subcultivated in vitro in parallel. The lipid study on these cells showed similar total lipid content, free cholesterol level, phospholipid distribution and fatty acid patterns, while neutral glycerides were slightly more elevated in the control fibroblasts. The histological finding of Laxova et al. (1973) could not be confirmed. PMID:7439202

  2. Schistosoma mansoni: modulation of schistosomular lipid composition by serum.

    PubMed

    Rumjanek, F D; McLaren, D J

    1981-08-01

    Human serum and foetal calf serum have been compared in terms of their ability to modify the biochemical and immunological properties of the schistosomular surface. Artificially transformed schistosomula were incubated in the presence of serum for 24 h and then radioiodinated using the chloramine T method. With this method only lipids are labelled. Foetal calf serum produces a net loss of lipids from the schistosomula, particularly of mono- and diglycerides. Human serum however, promotes not only a loss of mono- and diglycerides, but also a substantial uptake of cholesterol and triglycerides. Schistosomula recovered from the lungs of mice could also be labelled and contained besides triglycerides, an increased amount of cholesterol esters. The modulation of surface lipids in worms cultured with human serum correlates with the observation that such schistosomula develop significantly greater protection against eosinophil-mediated cytotoxicity in vitro than do individuals incubated with foetal calf serum. On the other hand, schistosomula cultured in the presence of either human serum or foetal calf serum develop the same degree of protection against complement-dependent lethal antibody; this result indicates that resistance against complement-mediated damage may be independent of the uptake of cholesterol and/or triglycerides, and might involve only limited alterations in the surface configuration of the schistosomulum. PMID:7278882

  3. Lipid, fatty acid and energy density profiles of white sharks: insights into the feeding ecology and ecophysiology of a complex top predator.

    PubMed

    Pethybridge, Heidi R; Parrish, Christopher C; Bruce, Barry D; Young, Jock W; Nichols, Peter D

    2014-01-01

    Lipids are major sources of metabolic energy in sharks and are closely linked to environmental conditions and biological cycles, such as those related to diet, reproduction and migration. In this study, we report for the first time, the total lipid content, lipid class composition and fatty acid profiles of muscle and liver tissue of white sharks, Carcharodon carcharias, of various lengths (1.5-3.9 m), sampled at two geographically separate areas off southern and eastern Australia. Muscle tissue was low in total lipid content (<0.9% wet mass, wm) and was dominated by phospholipids (>90% of total lipid) and polyunsaturated fatty acids (34±12% of total fatty acids). In contrast, liver was high in total lipid which varied between 51-81% wm and was dominated by triacylglycerols (>93%) and monounsaturated fatty acids (36±12%). With knowledge of total lipid and dry tissue mass, we estimated the energy density of muscle (18.4±0.1 kJ g-1 dm) and liver (34.1±3.2 kJ g-1 dm), demonstrating that white sharks have very high energetic requirements. High among-individual variation in these biochemical parameters and related trophic markers were observed, but were not related to any one biological or environmental factor. Signature fatty acid profiles suggest that white sharks over the size range examined are generalist predators with fish, elasmobranchs and mammalian blubber all contributing to the diet. The ecological applications and physiological influences of lipids in white sharks are discussed along with recommendations for future research, including the use of non-lethal sampling to examine the nutritional condition, energetics and dietary relationships among and between individuals. Such knowledge is fundamental to better understand the implications of environmental perturbations on this iconic and threatened species. PMID:24871223

  4. Lipid, Fatty Acid and Energy Density Profiles of White Sharks: Insights into the Feeding Ecology and Ecophysiology of a Complex Top Predator

    PubMed Central

    Pethybridge, Heidi R.; Parrish, Christopher C.; Bruce, Barry D.; Young, Jock W.; Nichols, Peter D.

    2014-01-01

    Lipids are major sources of metabolic energy in sharks and are closely linked to environmental conditions and biological cycles, such as those related to diet, reproduction and migration. In this study, we report for the first time, the total lipid content, lipid class composition and fatty acid profiles of muscle and liver tissue of white sharks, Carcharodon carcharias, of various lengths (1.5–3.9 m), sampled at two geographically separate areas off southern and eastern Australia. Muscle tissue was low in total lipid content (<0.9% wet mass, wm) and was dominated by phospholipids (>90% of total lipid) and polyunsaturated fatty acids (34±12% of total fatty acids). In contrast, liver was high in total lipid which varied between 51–81% wm and was dominated by triacylglycerols (>93%) and monounsaturated fatty acids (36±12%). With knowledge of total lipid and dry tissue mass, we estimated the energy density of muscle (18.4±0.1 kJ g−1 dm) and liver (34.1±3.2 kJ g−1 dm), demonstrating that white sharks have very high energetic requirements. High among-individual variation in these biochemical parameters and related trophic markers were observed, but were not related to any one biological or environmental factor. Signature fatty acid profiles suggest that white sharks over the size range examined are generalist predators with fish, elasmobranchs and mammalian blubber all contributing to the diet. The ecological applications and physiological influences of lipids in white sharks are discussed along with recommendations for future research, including the use of non-lethal sampling to examine the nutritional condition, energetics and dietary relationships among and between individuals. Such knowledge is fundamental to better understand the implications of environmental perturbations on this iconic and threatened species. PMID:24871223

  5. Reductions in Serum Lipids with a 4-year Decline in Serum Perfluorooctanoic Acid and Perfluorooctanesulfonic Acid

    PubMed Central

    Fitz-Simon, Nicola; Fletcher, Tony; Luster, Michael I.; Steenland, Kyle; Calafat, Antonia M.; Kato, Kayoko; Armstrong, Ben

    2016-01-01

    Background Several epidemiological cross-sectional studies have found positive associations between serum concentrations of lipids and perfluorooctanoic acid (PFOA, or C8). A longitudinal study should be less susceptible to biases from uncontrolled confounding or reverse causality. Methods We investigated the association between within-individual changes in serum PFOA and perfluorooctanesulfonic acid (PFOS) and changes in serum lipid levels (low-density lipoprotein [LDL] cholesterol, high-density lipoprotein cholesterol, total cholesterol, and triglycerides) over a 4.4-year period. The study population consisted of 560 adults living in parts of Ohio and West Virginia where public drinking water had been contaminated with PFOA. They had participated in a cross-sectional study in 2005–2006, and were followed up in 2010, by which time exposure to PFOA had been substantially reduced. Results Overall serum concentrations of PFOA and PFOS fell by half from initial geometric means of 74.8 and 18.5 ng/mL, respectively, with little corresponding change in LDL cholesterol (mean increase 1.8%, standard deviation 26.6%). However, there was a tendency for people with greater declines in serum PFOA or PFOS to have greater LDL decrease. For a person whose serum PFOA fell by half, the predicted fall in LDL cholesterol was 3.6% (95% confidence interval = 1.5–5.7%). The association with a decline in PFOS was even stronger, with a 5% decrease in LDL (2.5–7.4%). Conclusions Our findings from this longitudinal study support previous evidence from cross-sectional studies of positive associations between PFOA and PFOS in serum and LDL cholesterol. PMID:23685825

  6. Chemical characteristics, fatty acid composition and conjugated linoleic acid (CLA) content of traditional Greek yogurts.

    PubMed

    Serafeimidou, Amalia; Zlatanos, Spiros; Laskaridis, Kostas; Sagredos, Angelos

    2012-10-15

    Many studies with conjugated linoleic acid (CLA) indicate that it has a protective effect against mammary cancer. Because dairy products are the most important dietary sources of CLA, we have investigated the CLA concentrations and additionally the fatty acid profiles and chemical composition of several commercial, traditional, Greek yogurts from different geographical origin. The fat content of yogurts was in the order of goatlipid basis compared to full-fat yogurts. Samples from mountain areas showed average c-9, t-11 CLA content higher than those from prairie districts. The highest amounts of saturated fatty acids (SFA) were found in low-fat yogurts, of monounsaturated fatty acids (MUFA) in sheep milk yogurts and of polyunsaturated fatty acid (PUFA) in low-fat cow milk yogurts. PMID:23442628

  7. Effect of Cattle Breed on Meat Quality, Muscle Fiber Characteristics, Lipid Oxidation and Fatty Acids in China

    PubMed Central

    Xie, Xiangxue; Meng, Qingxiang; Cui, Zhenliang; Ren, Liping

    2012-01-01

    The objective was to compare meat quality, muscle fiber characteristics, lipid oxidation and fatty acids of Limousin (LIM), Simmtental (SIM), Luxi (LX), Qinchuan (QC) and Jinnan (JN) offered the same diet in China. After finishing, eight bulls from each breed were randomly selected for slaughter at 18.5 months old. Longissimus dorsi (ld) muscle was taken from the carcass for meat quality evaluations. Breed had little effect on most of meat and fat color parameters except for Hue and b* in which QC had lower values. LIM showed higher pH (24 h) and better water holding capacity than other breeds. LIM showed the lowest dry matter content but the highest crude protein. LX and LIM had higher percentage and density of red muscle fiber than other breeds. Lipid oxidations were significantly lower in LIM than in QC, with the LX, SIM and JN having the intermediate values. Compared to other four breeds, QC provided the highest values of polyunsaturated fatty acids (PUFA), n-6 fatty acids and n-3 fatty acids. In conclusion, LIM scored better on most of meat quality characteristics; however, local breeds such as LX and QC also had better muscle fiber characteristics and better fatty acids composition. PMID:25049633

  8. Nutritional strategies to improve the lipid composition of meat, with emphasis on Thailand and Asia.

    PubMed

    Jaturasitha, S; Chaiwang, N; Kayan, A; Kreuzer, M

    2016-10-01

    This article reviews opportunities for enriching the lipids of meat with n-3 fatty acids and conjugated linoleic acids (CLAs), both considered beneficial to human health. Special focus is put on feeds available and research carried out in Thailand. A differentiated consideration concerning the value of different n-3 fatty acids and isomers of CLAs is necessary. In ruminants, it is difficult to enrich the meat with n-3 fatty acids due to the extensive ruminal biohydrogenation of unsaturated fatty acids, but several possibilities to enhance the proportion of the most desired CLA isomer, rumenic acid, exist. By contrast, pork and poultry meat can be easily enriched with n-3 fatty acids. With purified CLA sources, CLAs also can be enhanced, but it is difficult to achieve this exclusively for rumenic acid. An interesting approach might consist in supplementing the CLA precursor vaccenic acid instead. Possible constraints for meat quality and in the fatty acid levels achieved are outlined. PMID:27127010

  9. Composition of Hydrothermal Vent Microbial Communities as Revealed by Analyses of Signature Lipids, Stable Carbon Isotopes and Aquificales Cultures

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda L.; Edger, Wolfgang; Huber, Robert; Hinrichs, Kai-Uwe; Hayes, John M.; DesMarais, David J.; Cady, Sherry; Hope, Janet M.; Summons, Roger E.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Extremely thermophilic microbial communities associated with the siliceous vent walls and outflow channel of Octopus Spring, Yellowstone National Park, have been examined for lipid biomarkers and carbon isotopic signatures. These data were compared with that obtained from representatives of three Aquificales genera. Thermocrinis ruber. "Thermocrinis sp. HI", Hydrogenobacter thermophilus TK-6, Aquifex pyrophilus and Aquifex aeolicus all contained phospholipids composed not only of the usual ester-linked fatty acids, but also ether-linked alkyls. The fatty acids of all cultured organisms were dominated by a very distinct pattern of n-C-20:1 and cy-C-21 compounds. The alkyl glycerol ethers were present primarily as CIS() monoethers with the expection of the Aquifex spp. in which dialkyl glycerol ethers with a boarder carbon-number distribution were also present. These Aquificales biomarker lipids were the major constituents in the lipid extracts of the Octopus Spring microbial samples. Two natural samples, a microbial biofilm growing in association with deposition of amorphous silica on the vent walls at 92 C, and the well-known 'pink-streamers community' (PSC), siliceous filaments of a microbial consortia growing in the upper outflow channel at 87 C were analyzed. Both the biofilm and PSC samples contained mono and dialkyl glycerol ethers with a prevalence of C-18 and C-20 alkyls. Phospholipid fatty acids were comprised of both the characteristic Aquificales n-C-20:1 and cy-C-21, and in addition, a series of iso-branched fatty acids from i-C-15:0 to i-C-21:0, With i-C-17:0 dominant in the PSC and i-C-19:0 in the biofilm, suggesting the presence of two major bacterial groups. Bacteriohopanepolyols were absent and the minute quantities of archaeol detected showed that Archaea were only minor constituents. Carbon isotopic compositions of the PSC yielded information about community structure and likely physiology. Biomass was C-13-depleted (10.9%) relative to available

  10. Fatty acids composition of Caenorhabditis elegans using accurate mass GCMS-QTOF.

    PubMed

    Henry, Parise; Owopetu, Olufunmilayo; Adisa, Demilade; Nguyen, Thao; Anthony, Kevin; Ijoni-Animadu, David; Jamadar, Sakha; Abdel-Rahman, Fawzia; Saleh, Mahmoud A

    2016-08-01

    The free living nematode Caenorhabditis elegans is a proven model organism for lipid metabolism research. Total lipids of C. elegans were extracted using chloroform and methanol in 2:1 ratio (v/v). Fatty acids composition of the extracted total lipids was converted to their corresponding fatty acids methyl esters (FAMEs) and analyzed by gas chromatography/accurate mass quadrupole time of flight mass spectrometry using both electron ionization and chemical ionization techniques. Twenty-eight fatty acids consisting of 12 to 22 carbon atoms were identified, 65% of them were unsaturated. Fatty acids containing 12 to17 carbons were mostly saturated with stearic acid (18:0) as the major constituent. Several branched-chain fatty acids were identified. Methyl-14-methylhexadecanoate (iso- 17:0) was the major identified branched fatty acid. This is the first report to detect the intact molecular parent ions of the identified fatty acids in C. elegans using chemical ionization compared to electron ionization which produced fragmentations of the FAMEs. PMID:27166662

  11. Fatty acid composition analyses of the DCMU resistant mutants of Nannochloropsis oculata (eustigmatophyceae)

    NASA Astrophysics Data System (ADS)

    Jimin, Zhang; Shuang, Liu; Xue, Sun; Guanpin, Yang; Xuecheng, Zhang; Zhenhui, Gao

    2003-04-01

    Ultraviolet mutagenesis was applied to Nannochloropsis oculata and three mutants resistant to 3-(3, 4-dichlorophenyl)-1,1-dimethylurea (DCMU) were isolated. The cellular chlorophyll a and total lipid content of the wild are higher in the medium supplemented with DCMU than in the control without DCMU. Without DCMU, the growth rates and chlorophyll a contents of the mutants are similar to those of the wild. Significant changes of fatty acid content and composition have occurred in DCMU-resistant mutants growing in the medium supplemented with DCMU. The total lipid, palmitic acid (16:0), palmitoleic acid (16:1ω9) and oleic (18:1ω9) contents decrease significantly, while the vaccenic acid (18:1ω11) increases significantly and the EPA content of dried powder increases slightly in the mutants. The study may provide a basis to improve EPA content in Nannochloropsis oculata in the future.

  12. Effects of Fatty Acid Treatments on the Dexamethasone-Induced Intramuscular Lipid Accumulation in Chickens

    PubMed Central

    Wang, Xiao juan; Wei, Dai lin; Song, Zhi gang; Jiao, Hong chao; Lin, Hai

    2012-01-01

    Background Glucocorticoid has an important effect on lipid metabolism in muscles, and the type of fatty acid likely affects mitochondrial utilization. Therefore, we hypothesize that the different fatty acid types treatment may affect the glucocorticoid induction of intramuscular lipid accumulation. Methodology/Principal Findings The effect of dexamethasone (DEX) on fatty acid metabolism and storage in skeletal muscle of broiler chickens (Gallus gallus domesticus) was investigated with and without fatty acid treatments. Male Arbor Acres chickens (31 d old) were treated with either palmitic acid (PA) or oleic acid (OA) for 7 days, followed by DEX administration for 3 days (35–37 d old). The DEX-induced lipid uptake and oxidation imbalance, which was estimated by increased fatty acid transport protein 1 (FATP1) expression and decreased carnitine palmitoyl transferase 1 activity, contributed to skeletal muscle lipid accumulation. More sensitive than glycolytic muscle, the oxidative muscle in DEX-treated chickens showed a decrease in the AMP to ATP ratio, a decrease in AMP-activated protein kinase (AMPK) alpha phosphorylation and its activity, as well as an increase in the phosphorylation of mammalian target of rapamycin (mTOR) and ribosomal p70S6 kinase, without Akt activation. DEX-stimulated lipid deposition was augmented by PA, but alleviated by OA, in response to pathways that were regulated differently, including AMPK, mTOR and FATP1. Conclusions DEX-induced intramuscular lipid accumulation was aggravated by SFA but alleviated by unsaturated fatty acid. The suppressed AMPK and augmented mTOR signaling pathways were involved in glucocortcoid-mediated enhanced intramuscular fat accumulation. PMID:22623960

  13. Prebiotic oligomerization of amino acids inside lipid vesicles of unsaturated and saturated fatty acids in hydrothermal environments

    NASA Astrophysics Data System (ADS)

    Imai, E.; Furuuchi, R.; Nemoto, A.; Hatori, K.; Honda, H.; Matsuno, K.

    We have already attempted an experimental model simulating seawater circulation in the vicinity of hydrothermal vents in the primitive ocean. We used a flow reactor that was constructed for simulating the pressure and temperature conditions of the hydrothermal vents. In the flow reactor, a high-temperature high-pressure fluid at 125˜ 250°C and at 20MPa was injected into a low temperature (0˜ 40°C ) chamber that was maintained at about the same high pressure as the fluid. We then experimentally examined a possibility of oligomerizing amino acids on or inside lipid vesicles. We compared three different kinds of lipid vesicles made of unsaturated fatty acids (oleic acid), saturated fatty acids (decanoic acid) and phospholipids (DPPC). Identification of the oligomeric products was made with the aid of an HPLC analysis. The oligomeric yields from glycine increased significantly in the presence of lipid vesicles compared to the case of their absence. On the other hand, there was found no significant difference in the yields of oligomers between in the presence of lipid vesicles dissolved by surfactant and in their absence. The possibility of lipid molecules serving as catalysts for oligomerization may be dismissed. The diameters of those lipid vesicles observed under a phase contrast microscope were about 10 micrometer or less. The total volume shared by oleic acid vesicles was about 5 % of the total volume of the suspension. Oligomerization of glycine inside oleic acid vesicles was enhanced more than 15 times compared to that proceeding in their outside. Enhancement of oligomerization of glycine in the presence of lipid vesicles was repeated as the reactants revisited the interface zone between the hot and cold regions. Even those lipid vesicles made of saturated fatty acid such as decanoic acid could have been functional in enhancing the oligomerization of monomers in their inside in the primitive ocean. References E. Imai, et al. (1999) Science 283, 831-833. H

  14. Encapsulation of ployunsaturated fatty acid esters with solid lipid particles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyunsaturated fatty acids (PUFA) such as a-linolenic acid (ALA) and docosahexaenoic acid (DHA) are known to improve cardiovascular and nervous system health. These compounds are increasingly used in food and animal feed formulations. However, the high degree of unsaturation in these structures can...

  15. Culture strategies for lipid production using acetic acid as sole carbon source by Rhodosporidium toruloides.

    PubMed

    Huang, Xiang-Feng; Liu, Jia-Nan; Lu, Li-Jun; Peng, Kai-Ming; Yang, Gao-Xiang; Liu, Jia

    2016-04-01

    Rhodosporidium toruloides AS 2.1389 was tested using different concentrations of acetic acid as a low-cost carbon source for the production of microbial lipids, which are good raw materials for biodiesel production. It grew and had higher lipid contents in media containing 4-20g/L acetic acid as the sole carbon source, compared with that in glucose-containing media under the same culture conditions. At acetic acid concentrations as high as 20g/L and the optimal carbon-to-nitrogen ratio (C/N) of 200 in a batch culture, the highest biomass production was 4.35g/L, with a lipid content of 48.2%. At acetic acid concentrations as low as 4g/L, a sequencing batch culture (SBC) with a C/N of 100 increased biomass production to 4.21g/L, with a lipid content of 38.6%. These results provide usable culture strategies for lipid production by R. toruloides AS 2.1389 when using diverse waste-derived volatile fatty acids. PMID:26851898

  16. Distribution and Carbon-Isotope Composition of Lipid Biomarkers in Lake Sediments on the Tibetan Plateau, China

    NASA Astrophysics Data System (ADS)

    Tuo, J.; Li, Q.; Li, Y.; Jiang, H.; Dong, H.; Zhang, C. L.

    2005-12-01

    The goal of this study was to determine the carbon source and microbial community structure in different lake environments on the Tibetan Plateau using carbon isotopes and lipid biomarkers. Microbial mats and sediments were collected from Erhai-, Qinghai-, Gahai-, and Chaka-lakes, which have different pHs (7.4-9.5) and salinities (0.1-21%). Phospholipid fatty acids (PLFA) have different distribution patterns in algal mats, sandy mud, and salt deposits, which may reflect changes in microbial community structure in different environments. For example, terminally branched fatty acids reflect heterotrophic bacteria and varied from less than 1% in a brown algal mat in Lake Gahai to 23% in a salt deposit in Lake Chaka. The cyclopropyl fatty acids may reflect stress conditions under different salinities. These compounds varied from 0% in algal mats living on the bank of the lake, which received freshwater run off, to 12% in grey mud in the saline lake water. On the other hand, long-chain n-alkanes in these samples reflect contributions of a mixture of epicuticular waxes of higher plants and submerged or floating aquatic macrophytes. Carbon isotopes of lipid biomarkers indicate different sources of organic carbon in different lake sediments. For example, carbon isotopes of total organic carbon and lipid biomarkers averaged -23.9 ± 1.5‰ (n = 2) and -26.0 ± 3.1‰ (n = 18), respectively, in Lake Erhai, and averaged -30.0 ± 1.5‰ (n = 4) and -33.5 ± 3.3‰ (n = 92), respectively, in Lake Gahai. These results suggest that a relatively heavy carbon source is going into Lake Erhai compared to carbon sources going into Lake Gahai. This study indicates that the distribution patterns of the lipid biomarkers and theirs carbon-isotope compositions can be used to evaluate the community structure and the source of carbon that supports microbial growth in lake sediments on the Tibetan Plateau.

  17. Characterization of five typical agave plants used to produce mezcal through their simple lipid composition analysis by gas chromatography.

    PubMed

    Martínez-Aguilar, Juan Fco; Peña-Alvarez, Araceli

    2009-03-11

    Five agave plants typically used in Mexico for making mezcal in places included in the Denomination of Origin (Mexican federal law that establishes the territory within which mezcal can be produced) of this spirit were analyzed: Agave salmiana ssp. crassispina, A. salmiana var. salmiana, Agave angustifolia, Agave cupreata, and Agave karwinskii. Fatty acid and total simple lipid profiles of the mature heads of each plant were determined by means of a modified Bligh-Dyer extraction and gas chromatography. Sixteen fatty acids were identified, from capric to lignoceric, ranging from 0.40 to 459 microg/g of agave. Identified lipids include free fatty acids, beta-sitosterol, and groups of mono-, di-, and triacylglycerols, their total concentration ranging from 459 to 992 microg/g of agave. Multivariate analyses performed on the fatty acid profiles showed a close similarity between A. cupreata and A. angustifolia. This fact can be ascribed to the taxa themselves or differences in growing conditions, an issue that is still to be explored. These results help to characterize the agaves chemically and can serve to relate the composition of mezcals from various states of Mexico with the corresponding raw material. PMID:19216532

  18. Nitrogen solubility in odontocete blubber and mandibular fats in relation to lipid composition.

    PubMed

    Lonati, Gina L; Westgate, Andrew J; Pabst, D Ann; Koopman, Heather N

    2015-08-01

    Understanding toothed whale (odontocete) diving gas dynamics is important given the recent atypical mass strandings of odontocetes (particularly beaked whales) associated with mid-frequency naval sonar. Some stranded whales have exhibited gas emboli (pathologies resembling decompression sickness) in their specialized intramandibular and extramandibular fat bodies used for echolocation and hearing. These tissues have phylogenetically unique, endogenous lipid profiles with poorly understood biochemical properties. Current diving gas dynamics models assume an Ostwald nitrogen (N2) solubility of 0.07 ml N2 ml(-1) oil in odontocete fats, although solubility in blubber from many odontocetes exceeds this value. The present study examined N2 solubility in the blubber and mandibular fats of seven species across five families, relating it to lipid composition. Across all species, N2 solubility increased with wax ester content and was generally higher in mandibular fats (0.083 ± 0.002 ml N2 ml(-1) oil) than in blubber (0.069 ± 0.007 ml N2 ml(-1) oil). This effect was more pronounced in mandibular fats with higher concentrations of shorter, branched fatty acids/alcohols. Mandibular fats of short-finned pilot whales, Atlantic spotted dolphins and Mesoplodon beaked whales had the highest N2 solubility values (0.097 ± 0.005, 0.081 ± 0.007 and 0.080 ± 0.003 ml N2 ml(-1) oil, respectively). Pilot and beaked whales may experience high N2 loads during their relatively deeper dives, although more information is needed about in vivo blood circulation to mandibular fats. Future diving models should incorporate empirically measured N2 solubility of odontocete mandibular fats to better understand N2 dynamics and potential pathologies from gas/fat embolism. PMID:26290593

  19. Dietary lipid quality and mitochondrial membrane composition in trout: responses of membrane enzymes and oxidative capacities.

    PubMed

    Martin, N; Bureau, D P; Marty, Y; Kraffe, E; Guderley, H

    2013-04-01

    To examine whether membrane fatty acid (FA) composition has a greater impact upon specific components of oxidative phosphorylation or on overall properties of muscle mitochondria, rainbow trout (Oncorhynchus mykiss) were fed two diets differing only in FA composition. Diet 1 was enriched in 18:1n-9 and 18:2n-6 while Diet 2 was enriched in 22:6n-3. The FA composition of mitochondrial phospholipids was strongly affected by diet. 22:6n-3 levels were twice as high (49%) in mitochondrial phospholipids of fish fed Diet 2 than in those fed Diet 1. 18:2n-6 content of the phospholipids also followed the diets, whereas 18:1n-9 changed little. All n-6 FA, most notably 22:5n-6, were significantly higher in fish fed Diet 1. Nonetheless, total saturated FA, total monounsaturated FA and total polyunsaturated FA in mitochondrial phospholipids varied little. Despite a marked impact of diet on specific FA levels in mitochondrial phospholipids, only non-phosphorylating (state 4) rates were higher in fish fed Diet 2. Phosphorylating rates (state 3), oxygen consumption due to flux through the electron transport chain complexes as well as the corresponding spectrophotometric activities did not differ with diet. Body mass affected state 4 rates and cytochrome c oxidase and F 0 F 1 ATPase activities while complex I showed a diet-specific effect of body mass. Only the minor FA that were affected by body mass were correlated with functional properties. The regulated incorporation of dietary FA into phospholipids seems to allow fish to maintain critical membrane functions even when the lipid quality of their diets varies considerably, as is likely in their natural environment. PMID:23052948

  20. Permeability of acetic acid across gel and liquid-crystalline lipid bilayers conforms to free-surface-area theory.

    PubMed Central

    Xiang, T X; Anderson, B D

    1997-01-01

    Solubility-diffusion theory, which treats the lipid bilayer membrane as a bulk lipid solvent into which permeants must partition and diffuse across, fails to account for the effects of lipid bilayer chain order on the permeability coefficient of any given permeant. This study addresses the scaling factor that must be applied to predictions from solubility-diffusion theory to correct for chain ordering. The effects of bilayer chemical composition, temperature, and phase structure on the permeability coefficient (Pm) of acetic acid were investigated in large unilamellar vesicles by a combined method of NMR line broadening and dynamic light scattering. Permeability values were obtained in distearoylphosphatidylcholine, dipalmitoylphosphatidylcholine, dimyristoylphosphatidylcholine, and dilauroylphosphatidylcholine bilayers, and their mixtures with cholesterol, at various temperatures both above and below the gel-->liquid-crystalline phase transition temperatures (Tm). A new scaling factor, the permeability decrement f, is introduced to account for the decrease in permeability coefficient from that predicted by solubility-diffusion theory owing to chain ordering in lipid bilayers. Values of f were obtained by division of the observed Pm by the permeability coefficient predicted from a bulk solubility-diffusion model. In liquid-crystalline phases, a strong correlation (r = 0.94) between f and the normalized surface density sigma was obtained: in f = 5.3 - 10.6 sigma. Activation energies (Ea) for the permeability of acetic acid decreased with decreasing phospholipid chain length and correlated with the sensitivity of chain ordering to temperature, [symbol: see text] sigma/[symbol: see text](1/T), as chain length was varied. Pm values decreased abruptly at temperatures below the main phase transition temperatures in pure dipalmitoylphosphatidylcholine and dimyristoylphosphatidylcholine bilayers (30-60-fold) and below the pretransition in dipalmitoylphosphatidylcholine

  1. [Effect of phenolic ketones on ethanol fermentation and cellular lipid composition of Pichia stipitis].

    PubMed

    Yang, Jinlong; Cheng, Yichao; Zhu, Yuanyuan; Zhu, Junjun; Chen, Tingting; Xu, Yong; Yong, Qiang; Yu, Shiyuan

    2016-02-01

    Lignin degradation products are toxic to microorganisms, which is one of the bottlenecks for fuel ethanol production. We studied the effects of phenolic ketones (4-hydroxyacetophenone, 4-hydroxy-3-methoxy-acetophenone and 4-hydroxy-3,5-dimethoxy-acetophenone) derived from lignin degradation on ethanol fermentation of xylose and cellular lipid composition of Pichia stipitis NLP31. Ethanol and the cellular fatty acid of yeast were analyzed by high performance liquid chromatography (HPLC) and gas chromatography/mass spectrometry (GC/MS). Results indicate that phenolic ketones negatively affected ethanol fermentation of yeast and the lower molecular weight phenolic ketone compound was more toxic. When the concentration of 4-hydroxyacetophenone was 1.5 g/L, at fermentation of 24 h, the xylose utilization ratio, ethanol yield and ethanol concentration decreased by 42.47%, 5.30% and 9.76 g/L, respectively, compared to the control. When phenolic ketones were in the medium, the ratio of unsaturated fatty acids to saturated fatty acids (UFA/SFA) of yeast cells was improved. When 1.5 g/L of three aforementioned phenolic ketones was added to the fermentation medium, the UFA/SFA ratio of yeast cells increased to 3.03, 3.06 and 3.61, respectively, compared to 2.58 of the control, which increased cell membrane fluidity and instability. Therefore, phenolic ketones can reduce the yeast growth, increase the UFA/SFA ratio of yeast and lower ethanol productivity. Effectively reduce or remove the content of lignin degradation products is the key to improve lignocellulose biorefinery. PMID:27382768

  2. Enhancement of lipid production and fatty acid profiling in Chlamydomonas reinhardtii, CC1010 for biodiesel production.

    PubMed

    Karpagam, R; Preeti, R; Ashokkumar, B; Varalakshmi, P

    2015-11-01

    Lipid from microalgae is one of the putative oil resources to facilitate the biodiesel production during this era of energy dissipation and environmental pollution. In this study, the key parameters such as biomass productivity, lipid productivity and lipid content were evaluated at the early stationary phase of Chlamydomonas reinhardtii, CC1010 cultivated in nutrient starved (nitrogen, phosphorous), glucose (0.05%, 0.1%, 0.15% and 0.2%) and vitamin B12 supplementation (0.001%, 0.002% and 0.003%) in Tris-Acetate-Phosphate (TAP) medium. The lipid content in nitrogen starved media was 61% which is 2.34 folds higher than nutrient sufficient TAP medium. Glucose supplementation has lead to proportional increase in biomass productivity with the increasing concentration of glucose whereas vitamin B12 supplementations had not shown any influence in lipid and biomass production. Further, fatty acid methyl ester (FAME) profiling of C. reinhardtii, CC 1010 has revealed more than 80% of total SFA (saturated fatty acid) and MUFA (mono unsaturated fatty acid) content. Quality checking parameters of biodiesel like cetane number, saponification value, iodine number and degree of unsaturation were analyzed and the biodiesel fuel properties were found to be appropriate as per the international standards, EN 14214 and ASTM D6751. Conclusively, among all the treatments, nitrogen starvation with 0.1% glucose supplementation had yielded high lipid content in C. reinhardtii, CC 1010. PMID:25838071

  3. Effects of lipid composition on the membrane activity and lipid phase behaviour of Vibrio sp. DSM14379 cells grown at various NaCl concentrations.

    PubMed

    Danevcic, Tjasa; Rilfors, Leif; Strancar, Janez; Lindblom, Göran; Stopar, David

    2005-06-15

    The membrane lipid composition of living cells generally adjusts to the prevailing environmental and physiological conditions. In this study, membrane activity and lipid composition of the Gram-negative bacterium Vibrio sp. DSM14379, grown aerobically in a peptone-yeast extract medium supplemented with 0.5, 1.76, 3, 5 or 10% (w/v) NaCl, was determined. The ability of the membrane to reduce a spin label was studied by EPR spectroscopy under different salt concentrations in cell suspensions labeled with TEMPON. For lipid composition studies, cells were harvested in a late exponential phase and lipids were extracted with chloroform-methanol-water, 1:2:0.8 (v/v). The lipid polar head group and acyl chain compositions were determined by thin-layer and gas-liquid chromatographies. (31)P-NMR spectroscopy was used to study the phase behaviour of the cell lipid extracts with 20 wt.% water contents in a temperature range from -10 to 50 degrees C. The results indicate that the ability of the membrane to reduce the spin label was highest at optimal salt concentrations. The composition of both polar head groups and acyl chains changed markedly with increasing salinity. The fractions of 16:0, 16:1 and 18:0 acyl chains increased while the fraction of 18:1 acyl chains decreased with increasing salinity. The phosphatidylethanolamine fraction correlated inversely with the lysophosphatidylethanolamine fraction, with phosphatidylethanolamine exhibiting a minimum, and lysophosphatidylethanolamine a maximum, at the optimum growth rate. The fraction of lysophosphatidylethanolamine was surprisingly high in the lipid extracts. This lipid can form normal micellar and hexagonal phases and it was found that all lipid extracts form a mixture of lamellar and normal isotropic liquid crystalline phases. This is an anomalous behaviour since the nonlamellar phases formed by total lipid extracts are generally of the reversed type. PMID:15878424

  4. [Fatty acids composition of the marine snails Phyllonotus pomum and Chicoreus brevifrons (Muricidae)].

    PubMed

    D'Armas, Haydelba; Yáñez, Dayanis; Reyes, Dilia; Salazar, Gabriel

    2010-06-01

    Muricid species of P. pomum and C. brevifrons are of economic importance in the Caribbean. This study includes a comparative evaluation of fatty acid content in the total lipid composition of Phyllonotus pomum and Chicoreus brevifrons. Snail samples were collected during the rainy, dry and transition seasons, in Punta Arena, Sucre (Venezuela). Total lipids were extracted and the specific fatty acid contents were analyzed by gas chromatography. Lipid concentrations varied between 0.87 and 1.85%, with minimum and maximum values corresponding to C. brevifrons collected during rainy and dry seasons, respectively. In the case of total lipids, a high concentration of unsaturated fatty acids (57.21-70.05%) was observed followed by saturated fatty acids (20.33-31.94%), during all seasons. The polyunsaturated occurred in higher proportion among the unsaturated fatty acids, except for P. pomum which showed higher proportion of monounsaturated fatty acids (38.95%) during the transition season. The prevailing fatty acids were: C14:0, C16:0, C18:0, C20:1, C22:1 omega-11, C22:1 omega-9, C18:3 omega-3, C20:5 omega-3 and C22:6 omega-3, among which docosahexaenoic acid was the predominant polyunsaturated fatty acid, showing values between 4.62 and 33.11%. The presence of high concentrations of polyunsaturated fatty acids found in P. Pomum and C. brevifrons allow their recommendation for human consumption with appropriate resource utilization. PMID:20527465

  5. Direct comparison of fatty acid ratios in single cellular lipid droplets as determined by Raman spectroscopy and gas chromatography

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cellular lipid droplets are the least studied and least understood cellular organelles in eukaryotic and prokaryotic cells. Despite a broad research trying to understand lipid droplets it has not been possible to determine the composition of individual cellular lipid droplets. In this paper we prese...

  6. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism.

    PubMed

    Patti, Mary-Elizabeth; Houten, Sander M; Bianco, Antonio C; Bernier, Raquel; Larsen, P Reed; Holst, Jens J; Badman, Michael K; Maratos-Flier, Eleftheria; Mun, Edward C; Pihlajamaki, Jussi; Auwerx, Johan; Goldfine, Allison B

    2009-09-01

    The multifactorial mechanisms promoting weight loss and improved metabolism following Roux-en-Y gastric bypass (GB) surgery remain incompletely understood. Recent rodent studies suggest that bile acids can mediate energy homeostasis by activating the G-protein coupled receptor TGR5 and the type 2 thyroid hormone deiodinase. Altered gastrointestinal anatomy following GB could affect enterohepatic recirculation of bile acids. We assessed whether circulating bile acid concentrations differ in patients who previously underwent GB, which might then contribute to improved metabolic homeostasis. We performed cross-sectional analysis of fasting serum bile acid composition and both fasting and post-meal metabolic variables, in three subject groups: (i) post-GB surgery (n = 9), (ii) without GB matched to preoperative BMI of the index cohort (n = 5), and (iii) without GB matched to current BMI of the index cohort (n = 10). Total serum bile acid concentrations were higher in GB (8.90 +/- 4.84 micromol/l) than in both overweight (3.59 +/- 1.95, P = 0.005, Ov) and severely obese (3.86 +/- 1.51, P = 0.045, MOb). Bile acid subfractions taurochenodeoxycholic, taurodeoxycholic, glycocholic, glycochenodeoxycholic, and glycodeoxycholic acids were all significantly higher in GB compared to Ov (P < 0.05). Total bile acids were inversely correlated with 2-h post-meal glucose (r = -0.59, P < 0.003) and fasting triglycerides (r = -0.40, P = 0.05), and positively correlated with adiponectin (r = -0.48, P < 0.02) and peak glucagon-like peptide-1 (GLP-1) (r = 0.58, P < 0.003). Total bile acids strongly correlated inversely with thyrotropic hormone (TSH) (r = -0.57, P = 0.004). Together, our data suggest that altered bile acid levels and composition may contribute to improved glucose and lipid metabolism in patients who have had GB. PMID:19360006

  7. How Bacterial Pathogens Eat Host Lipids: Implications for the Development of Fatty Acid Synthesis Therapeutics*

    PubMed Central

    Yao, Jiangwei; Rock, Charles O.

    2015-01-01

    Bacterial type II fatty acid synthesis (FASII) is a target for the development of novel therapeutics. Bacteria incorporate extracellular fatty acids into membrane lipids, raising the question of whether pathogens use host fatty acids to bypass FASII and defeat FASII therapeutics. Some pathogens suppress FASII when exogenous fatty acids are present to bypass FASII therapeutics. FASII inhibition cannot be bypassed in many bacteria because essential fatty acids cannot be obtained from the host. FASII antibiotics may not be effective against all bacteria, but a broad spectrum of Gram-negative and -positive pathogens can be effectively treated with FASII inhibitors. PMID:25648887

  8. Effect of cell rupturing methods on the drying characteristics and lipid compositions of microalgae.

    PubMed

    Viswanathan, T; Mani, S; Das, K C; Chinnasamy, S; Bhatnagar, A; Singh, R K; Singh, M

    2012-12-01

    This paper investigated the effect of cell rupturing methods on the drying characteristics and the lipid compositions of a green algae consortium grown in an open raceway pond. The ruptured microalgae samples obtained from French press, autoclave and sonication methods were used for conducting thin layer drying experiment at four drying temperatures (30, 50, 70 and 90 °C). The rate of moisture removal at each drying condition was recorded until no change in moisture loss. A typical drying curve for a microalgae consortium indicated that the rate of drying was limited by diffusion. Among three drying models (Newton, Page and Henderson-Pabis) used to fit the drying data, Page model fitted well on the experimental drying data with a coefficient of determination (R(2)) of 0.99. Solvent extraction of French press ruptured cells produced the highest total lipid yield with no significant change in lipid compositions. PMID:23073099

  9. [The effect of cadmium chloride and hydrogen peroxide on the lipid peroxidation and fractional composition of lipids in hepatocytes of rats].

    PubMed

    Borikov, O Iu; Kaliman, P A

    2004-01-01

    The isolated hepatocytes were incubated in the medium, containing cadmium chloride or hydrogen peroxide. Influence of the latter on the intensity of lipid peroxidation and contents of some lipids fractions, as well as viability of hepatocytes in these conditions has been studied. It is shown that under such cultivation conditions the activation of lipid peroxidation in the hepatocytes takes place. Its activation in presence of cadmium chloride was one of the factors of the membranes damage. The changes in the content of some fractions of lipids were similar both under the incubations of the cells with cadmium chloride and hydrogen peroxide. This allows one to suppose that cadmium chloride causes changes in the lipid composition of membranes as a result of intensification of lipid peroxidation. PMID:15915720

  10. The Composition of West Nile Virus Lipid Envelope Unveils a Role of Sphingolipid Metabolism in Flavivirus Biogenesis

    PubMed Central

    Martín-Acebes, Miguel A.; Merino-Ramos, Teresa; Blázquez, Ana-Belén; Casas, Josefina; Escribano-Romero, Estela

    2014-01-01

    ABSTRACT West Nile virus (WNV) is an emerging zoonotic mosquito-borne flavivirus responsible for outbreaks of febrile illness and meningoencephalitis. The replication of WNV takes place on virus-modified membranes from the endoplasmic reticulum of the host cell, and virions acquire their envelope by budding into this organelle. Consistent with this view, the cellular biology of this pathogen is intimately linked to modifications of the intracellular membranes, and the requirement for specific lipids, such as cholesterol and fatty acids, has been documented. In this study, we evaluated the impact of WNV infection on two important components of cellular membranes, glycerophospholipids and sphingolipids, by mass spectrometry of infected cells. A significant increase in the content of several glycerophospholipids (phosphatidylcholine, plasmalogens, and lysophospholipids) and sphingolipids (ceramide, dihydroceramide, and sphingomyelin) was noticed in WNV-infected cells, suggesting that these lipids have functional roles during WNV infection. Furthermore, the analysis of the lipid envelope of WNV virions and recombinant virus-like particles revealed that their envelopes had a unique composition. The envelopes were enriched in sphingolipids (sphingomyelin) and showed reduced levels of phosphatidylcholine, similar to sphingolipid-enriched lipid microdomains. Inhibition of neutral sphingomyelinase (which catalyzes the hydrolysis of sphingomyelin into ceramide) by either pharmacological approaches or small interfering RNA-mediated silencing reduced the release of flavivirus virions as well as virus-like particles, suggesting a role of sphingomyelin-to-ceramide conversion in flavivirus budding and confirming the importance of sphingolipids in the biogenesis of WNV. IMPORTANCE West Nile virus (WNV) is a neurotropic flavivirus spread by mosquitoes that can infect multiple vertebrate hosts, including humans. There is no specific vaccine or therapy against this pathogen licensed

  11. Lipid remodelling during epididymal maturation of rat spermatozoa. Enrichment in plasmenylcholines containing long-chain polyenoic fatty acids of the n-9 series.

    PubMed Central

    Aveldaño, M I; Rotstein, N P; Vermouth, N T

    1992-01-01

    In their transit from the caput to the cauda segments of the epididymis, rat spermatozoa undergo significant modifications in lipid content and composition. The amount of lipid phosphorus per cell decreases, and most lipid classes show specific changes in their constituent fatty acids. A depletion of phosphatidylcholine and phosphatidylethanolamine, concomitant with a virtually unchanged amount of the corresponding plasmalogens, are the major alterations, plasmenylcholine thereby becoming the major phospholipid. Diphosphatidylglycerol, sphingomyelin and the phosphoinositides decrease to a lesser extent or do not change at all, also resulting in relative increases with sperm maturation. Concerning the fatty acids, the proportions of oleate (C18:1, n-9) and linoleate (C18:2, n-6) in most lipids decrease on movement of sperm from caput to cauda, augmenting in turn the proportions of longer-chain (C20 to C24) and more unsaturated fatty acids. Docosapentaenoate (C22:5, n-6) is a major acyl chain present in all lipids at both stages, but uncommon long-chain polyenoic fatty acids of the n-9 series are also present, being almost exclusively found in the choline glycerophospholipids. These fatty acids are found to undergo the most significant changes during sperm maturation. They are minor components of plasmenylcholine in immature spermatozoa, but increase severalfold on maturation, representing more than half of the acyl chains of this major lipid in cells from the cauda. The high concentration of n-9 polyenes in mature sperm plasmenylcholine raises intriguing questions on the possible role epididymal cells may play in providing spermatozoa with such an unusual phospholipid. These plasmenylcholines could contribute to the characteristic lipid domain organization of the mature spermatozoa plasma membrane. PMID:1567371

  12. Lipid remodelling during epididymal maturation of rat spermatozoa. Enrichment in plasmenylcholines containing long-chain polyenoic fatty acids of the n-9 series.

    PubMed

    Aveldaño, M I; Rotstein, N P; Vermouth, N T

    1992-04-01

    In their transit from the caput to the cauda segments of the epididymis, rat spermatozoa undergo significant modifications in lipid content and composition. The amount of lipid phosphorus per cell decreases, and most lipid classes show specific changes in their constituent fatty acids. A depletion of phosphatidylcholine and phosphatidylethanolamine, concomitant with a virtually unchanged amount of the corresponding plasmalogens, are the major alterations, plasmenylcholine thereby becoming the major phospholipid. Diphosphatidylglycerol, sphingomyelin and the phosphoinositides decrease to a lesser extent or do not change at all, also resulting in relative increases with sperm maturation. Concerning the fatty acids, the proportions of oleate (C18:1, n-9) and linoleate (C18:2, n-6) in most lipids decrease on movement of sperm from caput to cauda, augmenting in turn the proportions of longer-chain (C20 to C24) and more unsaturated fatty acids. Docosapentaenoate (C22:5, n-6) is a major acyl chain present in all lipids at both stages, but uncommon long-chain polyenoic fatty acids of the n-9 series are also present, being almost exclusively found in the choline glycerophospholipids. These fatty acids are found to undergo the most significant changes during sperm maturation. They are minor components of plasmenylcholine in immature spermatozoa, but increase severalfold on maturation, representing more than half of the acyl chains of this major lipid in cells from the cauda. The high concentration of n-9 polyenes in mature sperm plasmenylcholine raises intriguing questions on the possible role epididymal cells may play in providing spermatozoa with such an unusual phospholipid. These plasmenylcholines could contribute to the characteristic lipid domain organization of the mature spermatozoa plasma membrane. PMID:1567371

  13. Sodium pump molecular activity and membrane lipid composition in two disparate ectotherms, and comparison with endotherms.

    PubMed

    Turner, Nigel; Hulbert, A J; Else, Paul L

    2005-02-01

    Previous research has shown that the lower sodium pump molecular activity observed in tissues of ectotherms compared to endotherms, is largely related to the lower levels of polyunsaturates and higher levels of monounsaturates found in the cell membranes of ectotherms. Marine-based ectotherms, however, have very polyunsaturated membranes, and in the current study, we measured molecular activity and membrane lipid composition in tissues of two disparate ectothermic species, the octopus (Octopus vulgaris) and the bearded dragon lizard (Pogona vitticeps), to determine whether the high level of membrane polyunsaturation generally observed in marine-based ectotherms is associated with an increased sodium pump molecular activity relative to other ectotherms. Phospholipids from all tissues of the octopus were highly polyunsaturated and contained high concentrations of the omega-3 polyunsaturate, docosahexaenoic acid (22:6 (n-3)). In contrast, phospholipids from bearded dragon tissues contained higher proportions of monounsaturates and lower proportions of polyunsaturates. Sodium pump molecular activity was only moderately elevated in tissues of the octopus compared to the bearded dragon, despite the much greater level of polyunsaturation in octopus membranes. When the current data were combined with data for the ectothermic cane toad, a significant (P = 0.003) correlation was observed between sodium pump molecular activity and the content of 22:6 (n-3) in the surrounding membrane. These results are discussed in relation to recent work which shows a similar relationship in endotherms. PMID:15726386

  14. Caenorhabditis elegans PAQR-2 and IGLR-2 Protect against Glucose Toxicity by Modulating Membrane Lipid Composition.

    PubMed

    Svensk, Emma; Devkota, Ranjan; Ståhlman, Marcus; Ranji, Parmida; Rauthan, Manish; Magnusson, Fredrik; Hammarsten, Sofia; Johansson, Maja; Borén, Jan; Pilon, Marc

    2016-04-01

    In spite of the worldwide impact of diabetes on human health, the mechanisms behind glucose toxicity remain elusive. Here we show that C. elegans mutants lacking paqr-2, the worm homolog of the adiponectin receptors AdipoR1/2, or its newly identified functional partner iglr-2, are glucose intolerant and die in the presence of as little as 20 mM glucose. Using FRAP (Fluorescence Recovery After Photobleaching) on living worms, we found that cultivation in the presence of glucose causes a decrease in membrane fluidity in paqr-2 and iglr-2 mutants and that genetic suppressors of this sensitivity act to restore membrane fluidity by promoting fatty acid desaturation. The essential roles of paqr-2 and iglr-2 in the presence of glucose are completely independent from daf-2 and daf-16, the C. elegans homologs of the insulin receptor and its downstream target FoxO, respectively. Using bimolecular fluorescence complementation, we also show that PAQR-2 and IGLR-2 interact on plasma membranes and thus may act together as a fluidity sensor that controls membrane lipid composition. PMID:27082444

  15. Caenorhabditis elegans PAQR-2 and IGLR-2 Protect against Glucose Toxicity by Modulating Membrane Lipid Composition

    PubMed Central

    Svensk, Emma; Devkota, Ranjan; Ståhlman, Marcus; Ranji, Parmida; Rauthan, Manish; Magnusson, Fredrik; Hammarsten, Sofia; Johansson, Maja; Borén, Jan; Pilon, Marc

    2016-01-01

    In spite of the worldwide impact of diabetes on human health, the mechanisms behind glucose toxicity remain elusive. Here we show that C. elegans mutants lacking paqr-2, the worm homolog of the adiponectin receptors AdipoR1/2, or its newly identified functional partner iglr-2, are glucose intolerant and die in the presence of as little as 20 mM glucose. Using FRAP (Fluorescence Recovery After Photobleaching) on living worms, we found that cultivation in the presence of glucose causes a decrease in membrane fluidity in paqr-2 and iglr-2 mutants and that genetic suppressors of this sensitivity act to restore membrane fluidity by promoting fatty acid desaturation. The essential roles of paqr-2 and iglr-2 in the presence of glucose are completely independent from daf-2 and daf-16, the C. elegans homologs of the insulin receptor and its downstream target FoxO, respectively. Using bimolecular fluorescence complementation, we also show that PAQR-2 and IGLR-2 interact on plasma membranes and thus may act together as a fluidity sensor that controls membrane lipid composition. PMID:27082444

  16. Lipochemistry of the progamic stage of a self-incompatible species: Neutral lipids and fatty acids of the secretory stigma during its glandular activity, and of the solid style, the ovary and the anther in Forsythia intermedia Zab. (Heterostylic species).

    PubMed

    Dumas, C

    1977-01-01

    Chromatographic (thin-layer, gas column, column chromatography) analyses of neutral lipids and fatty acids of reproductive tissues of Forsythia intermedia Zab., a self-incompatible species, were performed with two objectives in mind: 1. To determine whether there is a qualitative evolution of the different classes of lipids and fatty acids that could be correlated with the three functional stages observed during previous histochemical and ultrastructural studies. The stigmatic exudate and intracellular accumulations consist mainly of neutral lipids. 2. To compare the lipid composition of the stigma (both "thrum" and "pin" forms) with that of the style, the ovary, and the anther, and to investigate the possible existence of a stigma-specific lipid compound. Stigmatic neutral lipids are found mostly in a glyceridic mixture probably containing hydrocarbons and terpenes. The fatty acids identified are between C:7 and C: 12, with the maximum unsaturated form being a C: 18. During the secretory process there is no great qualitative diference between the neutral lipids and fatty acids found in the stigmas of "thrum" and "pin" forms. Sterols are present in styles, ovaries, and anthers, but not in stigmas. They represent the only difference in the lipid composition of these various floral structures. PMID:24420636

  17. Bile acid signaling in lipid metabolism: metabolomic and lipidomic analysis of lipid and bile acid markers linked to anti-obesity and anti-diabetes in mice.

    PubMed

    Qi, Yunpeng; Jiang, Changtao; Cheng, Jie; Krausz, Kristopher W; Li, Tiangang; Ferrell, Jessica M; Gonzalez, Frank J; Chiang, John Y L

    2015-01-01

    Bile acid synthesis is the major pathway for catabolism of cholesterol. Cholesterol 7α-hydroxylase (CYP7A1) is the rate-limiting enzyme in the bile acid biosynthetic pathway in the liver and plays an important role in regulating lipid, glucose and energy metabolism. Transgenic mice overexpressing CYP7A1 (CYP7A1-tg mice) were resistant to high-fat diet (HFD)-induced obesity, fatty liver, and diabetes. However the mechanism of resistance to HFD-induced obesity of CYP7A1-tg mice has not been determined. In this study, metabolomic and lipidomic profiles of CYP7A1-tg mice were analyzed to explore the metabolic alterations in CYP7A1-tg mice that govern the protection against obesity and insulin resistance by using ultra-performance liquid chromatography-coupled with electrospray ionization quadrupole time-of-flight mass spectrometry combined with multivariate analyses. Lipidomics analysis identified seven lipid markers including lysophosphatidylcholines, phosphatidylcholines, sphingomyelins and ceramides that were significantly decreased in serum of HFD-fed CYP7A1-tg mice. Metabolomics analysis identified 13 metabolites in bile acid synthesis including taurochenodeoxycholic acid, taurodeoxycholic acid, tauroursodeoxycholic acid, taurocholic acid, and tauro-β-muricholic acid (T-β-MCA) that differed between CYP7A1-tg and wild-type mice. Notably, T-β-MCA, an antagonist of the farnesoid X receptor (FXR) was significantly increased in intestine of CYP7A1-tg mice. This study suggests that reducing 12α-hydroxylated bile acids and increasing intestinal T-β-MCA may reduce high fat diet-induced increase of phospholipids, sphingomyelins and ceramides, and ameliorate diabetes and obesity. This article is part of a Special Issue entitled Linking transcription to physiology in lipodomics. PMID:24796972

  18. Bile acid signaling in lipid metabolism: Metabolomic and lipidomic analysis of lipid and bile acid markers linked to anti-obesity and anti-diabetes in mice

    PubMed Central

    Qi, Yunpeng; Jiang, Changtao; Cheng, Jie; Krausz, Kristopher W.; Li, Tiangang; Ferrell, Jessica M.; Gonzalez, Frank J.; Chiang, John Y.L.

    2014-01-01

    Bile acid synthesis is the major pathway for catabolism of cholesterol. Cholesterol 7α-hydroxylase (CYP7A1) is the rate-limiting enzyme in the bile acid biosynthetic pathway in the liver and plays an important role in regulating lipid, glucose and energy metabolism. Transgenic mice overexpressing CYP7A1 (CYP7A1-tg mice) were resistant to high-fat diet (HFD)-induced obesity, fatty liver, and diabetes. However the mechanism of resistance to HFD-induced obesity of CYP7A1-tg mice has not been determined. In this study, metabolomic and lipidomic profiles of CYP7A1-tg mice were analyzed to explore the metabolic alterations in CYP7A1-tg mice that govern the protection against obesity and insulin resistance by using ultra-performance liquid chromatography-coupled with electrospray ionization quadrupole time-of-flight mass spectrometry combined with multivariate analyses. Lipidomics analysis identified seven lipid markers including lysophosphatidylcholines, phosphatidylcholines, sphingomyelins and ceramides that were significantly decreased in serum of HFD-fed CYP7A1-tg mice. Metabolomics analysis identified 13 metabolites in bile acid synthesis including taurochenodeoxycholic acid, taurodeoxycholic acid, tauroursodeoxycholic acid, taurocholic acid, and tauro-β-muricholic acid (T-β-MCA) that differed between CYP7A1-tg and wild-type mice. Notably, T-β-MCA, an antagonist of the farnesoid X receptor (FXR) was significantly increased in intestine of CYP7A1-tg mice. This study suggests that reducing 12α-hydroxylated bile acids and increasing intestinal T-β-MCA may reduce high fat diet-induced increase of phospholipids, sphingomyelins and ceramides, and ameliorate diabetes and obesity. PMID:24796972

  19. The reactions of hypochlorous acid, the reactive oxygen species produced by myeloperoxidase, with lipids.

    PubMed

    Spickett, C M; Jerlich, A; Panasenko, O M; Arnhold, J; Pitt, A R; Stelmaszyńska, T; Schaur, R J

    2000-01-01

    Myeloperoxidase (MPO), an abundant enzyme in phagocytes, has been implicated in the pathogenesis of various inflammatory diseases including atherosclerosis. The major oxidant produced by MPO, hypochlorous acid (HOCl), is able to modify a great variety of biomolecules by chlorination and/or oxidation. In this paper the reactions of lipids (preferentially unsaturated fatty acids and cholesterol) with either reagent HOCl or HOCl generated by the MPO-hydrogen peroxide-chloride system are reviewed. One of the major issues has been whether the reaction of HOCl with lipids of low density lipoprotein (LDL) yields predominantly chlorohydrins or lipid hydroperoxides. Electrospray mass spectrometry provided direct evidence that chlorohydrins rather than peroxides are the major products of HOCl- or MPO-treated LDL phosphatidylcholines. Nevertheless lipid peroxidation is a possible alternative reaction of HOCl with polyunsaturated fatty acids if an additional radical source such as pre-formed lipid hydroperoxides is available. In phospholipids carrying a primary amino group such as phosphatidylethanolamine chloramines are the preferred products compared to chlorohydrins. Cholesterol can be converted by HOCl to great variety of oxysterols besides three isomers of chlorohydrins. For the situation in vivo it appears that the type of reaction occurring between HOCl and lipids would very much depend on the circumstances, e.g. the pH and the presence of radical initiators. The biological effects of lipid chlorohydrins are not yet well understood. It has been shown that chlorohydrins of both unsaturated fatty acids as well as of cholesterol may cause lysis of target cells, possibly by disruption of membrane structures. PMID:11996112

  20. Pantothenic acid and its derivatives protect Ehrlich ascites tumor cells against lipid peroxidation.

    PubMed

    Slyshenkov, V S; Rakowska, M; Moiseenok, A G; Wojtczak, L

    1995-12-01

    Preincubation of Ehrlich ascites tumor cells at 22 or 32 degrees C, but not at 0 degree C, with pantothenic acid, 4'-phosphopantothenic acid, pantothenol, or pantethine reduced lipid peroxidation (measured by production of thiobarbituric acid-reactive compounds) induced by the Fenton reaction (Fe2+ + H2O2) and partly protected the plasma membrane against the leakiness to cytoplasmic proteins produced by the same reagent. Pantothenic acid and its derivatives did not inhibit (Fe2+ + H2O2)-induced peroxidation of phospholipid multilamellar vesicles, thus indicating that their effect on the cells was not due to the scavenging mechanism. Homopantothenic acid and its 4'-phosphate ester (which are not precursors of CoA) neither protected Ehrlich ascites tumor cells against lipid peroxidation nor prevented plasma membrane leakiness under the same conditions. Incubation of the cells with pantothenic acid, 4'-phosphopantothenic acid, pantothenol, or pantethine significantly increased the amount of cellular CoA and potentiated incorporation of added palmitate into phospholipids and cholesterol esters. It is concluded that pantothenic acid and its related compounds protect the plasma membrane of Ehrlich ascites tumor cells against the damage by oxygen free radicals due to increasing cellular level of CoA. The latter compound may act by diminishing propagation of lipid peroxidation and promoting repair mechanisms, mainly the synthesis of phospholipids. PMID:8582649

  1. Erythrocyte Membrane Fatty Acid Composition in Premenopausal Patients with Iron Deficiency Anemia.

    PubMed

    Aktas, Mehmet; Elmastas, Mahfuz; Ozcicek, Fatih; Yilmaz, Necmettin

    2016-03-01

    Iron deficiency anemia (IDA) is one of the most common nutritional disorders in the world. In the present study, we evaluated erythrocyte membrane fatty acid composition in premenopausal patients with IDA. Blood samples of 102 premenopausal women and 88 healthy control subjects were collected. After the erythrocytes were separated from the blood samples, the membrane lipids were carefully extracted, and the various membrane fatty acids were measured by gas chromatography (GC). Statistical analyses were performed with the SPSS software program. We used blood ferritin concentration <15 ng/mL as cut-off for the diagnosis of IDA. The five most abundant individual fatty acids obtained were palmitic acid (16:0), oleic acid (18:1, n-9c), linoleic acid (18:2, n-6c), stearic acid (18:0), and erucic acid (C22:1, n-9c). These compounds constituted about 87% of the total membrane fatty acids in patients with IDA, and 79% of the total membrane fatty acids in the control group. Compared with control subjects, case patients had higher percentages of palmitic acid (29.9% case versus 25.3% control), oleic acid (16.8% case versus 15.1% control), and stearic acid (13.5% case versus 10.5% control), and lower percentages of erucic acid (11.5% case versus 13.6% control) and linoleic acid (15.2% case versus 15.4% control) in their erythrocyte membranes. In conclusion, the total-erythrocyte-membrane saturated fatty acid (SFA) composition in premenopausal women with IDA was found to be higher than that in the control group; however, the total-erythrocyte-membrane unsaturated fatty acid (UFA) composition in premenopausal women with IDA was found to be lower than that in the control group. The differences in these values were statistically significant. PMID:26876679

  2. Effect of Cd sup 2+ CN lipid composition of thylakoid membranes CF wheat chloroplasts

    SciTech Connect

    Malik, D.; Sheoran, I.S.; Singh, R. )

    1990-05-01

    Cadmium application in wheat plants decreased thylakoid total lipids, total glycolipids, total phospholipids and total neutral lipids by 22, 23, 12 and 25% respectively. MGDG and DGDG were the major glycolipids and their level decreased by 32 and 27%, respectively under cadmium treatment. Sulpholipids were also decreased by 27%. Cadmium application also decreased the concentration of phosphatidyl glycerol (PG) and phosphatidyl choline (PC) to the extent of about 57 and 31%, respectively. Phosphatidic acid, which could not be detected under control, appeared in cadmium treated leaves. Triglycerides, the major constituents of neutral lipids, were decreased by 68%. However, free fatty acid content increased by about 19% under cadmium treatment. These results indicate that cadmium treatment affects the architecture of thylakoid membranes which in turn may adversely affect the light reactions of photosynthesis.

  3. Studies in lipid histochemistry. XIII. The OPA (osmiumtetroxide-periodic acid-alpha-naphthylamine) method for the detection of apolar lipids.

    PubMed

    Elleder, M

    1975-09-29

    A new procedure for the detection of apolar lipids is described. It is a modification of the OTAN method (Adams, 1959) using periodic acid which oxidatively removes lower osmium derivatives from polar sites only, leaving those in apolar lipids intact and demonstrable with alpha-naphthylamine. Control steps for the exclusion of the possible interference of some less polar complex lipids and of lipopigments are described. The described technic is superior to the conventionally used sudan dyes due partly to the fact that only aqueous solutions are employed thus excluding any extraction of lipids, partly to the more distinct coloration. PMID:171245

  4. Entry of Bluetongue Virus Capsid Requires the Late Endosome-specific Lipid Lysobisphosphatidic Acid*

    PubMed Central

    Patel, Avnish; Mohl, Bjorn-Patrick; Roy, Polly

    2016-01-01

    The entry of viruses into host cells is one of the key processes of infection. The mechanisms of cellular entry for enveloped virus have been well studied. The fusion proteins as well as the facilitating cellular lipid factors involved in the viral fusion entry process have been well characterized. The process of non-enveloped virus cell entry, in comparison, remains poorly defined, particularly for large complex capsid viruses of the family Reoviridae, which comprises a range of mammalian pathogens. These viruses enter cells without the aid of a limiting membrane and thus cannot fuse with host cell membranes to enter cells. Instead, these viruses are believed to penetrate membranes of the host cell during endocytosis. However, the molecular mechanism of this process is largely undefined. Here we show, utilizing an in vitro liposome penetration assay and cell biology, that bluetongue virus (BTV), an archetypal member of the Reoviridae, utilizes the late endosome-specific lipid lysobisphosphatidic acid for productive membrane penetration and viral entry. Further, we provide preliminary evidence that lipid lysobisphosphatidic acid facilitates pore expansion during membrane penetration, suggesting a mechanism for lipid factor requirement of BTV. This finding indicates that despite the lack of a membrane envelope, the entry process of BTV is similar in specific lipid requirements to enveloped viruses that enter cells through the late endosome. These results are the first, to our knowledge, to demonstrate that a large non-enveloped virus of the Reoviridae has specific lipid requirements for membrane penetration and host cell entry. PMID:27036941

  5. Entry of Bluetongue Virus Capsid Requires the Late Endosome-specific Lipid Lysobisphosphatidic Acid.

    PubMed

    Patel, Avnish; Mohl, Bjorn-Patrick; Roy, Polly

    2016-06-01

    The entry of viruses into host cells is one of the key processes of infection. The mechanisms of cellular entry for enveloped virus have been well studied. The fusion proteins as well as the facilitating cellular lipid factors involved in the viral fusion entry process have been well characterized. The process of non-enveloped virus cell entry, in comparison, remains poorly defined, particularly for large complex capsid viruses of the family Reoviridae, which comprises a range of mammalian pathogens. These viruses enter cells without the aid of a limiting membrane and thus cannot fuse with host cell membranes to enter cells. Instead, these viruses are believed to penetrate membranes of the host cell during endocytosis. However, the molecular mechanism of this process is largely undefined. Here we show, utilizing an in vitro liposome penetration assay and cell biology, that bluetongue virus (BTV), an archetypal member of the Reoviridae, utilizes the late endosome-specific lipid lysobisphosphatidic acid for productive membrane penetration and viral entry. Further, we provide preliminary evidence that lipid lysobisphosphatidic acid facilitates pore expansion during membrane penetration, suggesting a mechanism for lipid factor requirement of BTV. This finding indicates that despite the lack of a membrane envelope, the entry process of BTV is similar in specific lipid requirements to enveloped viruses that enter cells through the late endosome. These results are the first, to our knowledge, to demonstrate that a large non-enveloped virus of the Reoviridae has specific lipid requirements for membrane penetration and host cell entry. PMID:27036941

  6. Composition and oxidative stability of a structured lipid from amaranth oil in a milk-based infant formula.

    PubMed

    Pina-Rodriguez, Ashanty M; Akoh, Casimir C

    2010-03-01

    Amaranth oil can be enzymatically modified to match breast milk fat analog requirements. We have developed a structured lipid (SL) from amaranth oil that, in combination with milk fat, delivers recommended amounts of docosahexaenoic acid (DHA) with palmitic acid specifically esterified at the sn-2 position of the triacylglycerol (TAG) backbone. The aim of this study was to study the final fatty acid (FA) contribution and oxidation stability of an infant formula prepared using the structured lipid DCAO (DHA-containing customized amaranth oil). DCAO was included as complementary fat in a "prototype" infant formula, and prepared in parallel with a "control" infant formula under the same processing conditions. The same ingredients but different complementary fat sources were used. A blend of the most commonly used vegetable oils (palm olein, soybean, coconut, and high-oleic sunflower oils) for infant formula was used instead of DCAO in the "control" formula. Additionally, "prototype" and "control" infant formulas were compared to a "commercial" product in terms of FA composition. The oxidative stability index (OSI) of the extracted fats from "prototype,"control," and "commercial" infant formulas were evaluated and compared to the OSI of the substrate fat replacers used. DCAO was the least stable compared to other fat analogs. The use of commercial antioxidants in DCAO containing products should prevent oxidation and therefore increase their stability. PMID:20492217

  7. Structures of malonic acid diamide/phospholipid composites and their lipoplexes.

    PubMed

    Janich, Christopher; Taßler, Stephanie; Meister, Annette; Hause, Gerd; Schäfer, Jens; Bakowsky, Udo; Brezesinski, Gerald; Wölk, Christian

    2016-07-01

    As a continuation of previous work, the self-assembly process of cationic lipid formulations in the presence and absence of DNA was investigated with respect to binary lipid mixtures suitable as polynucleotide carrier systems. The lipid blends consist of one malonic-acid-based cationic lipid with a varying alkyl chain pattern, either N-{6-amino-1-[N-(9Z)-octadec-9-enylamino]-1-oxohexan-(2S)-2-yl}-N'-{2-[N,N-bis(2-aminoethyl)amino]ethyl}-2-hexadecylpropandiamide () or N-[6-amino-1-oxo-1-(N-tetradecylamino)hexan-(2S)-2-yl]-N'-{2-[N,N-bis(2-aminoethyl)amino]ethyl}-2-hexadecylpropandiamide (), and one neutral co-lipid, either 1,2-di-[(9Z)-octadec-9-enoyl]-sn-glycero-3-phosphocholine (DOPE) or 1,2-di-(hexadecanoyl)-sn-glycero-3-phosphocholine (DPPC). Although the cationic lipids exhibit only slight differences in their structure, the DNA transfer efficiency varies drastically. Therefore, self-assembly was studied in 3D systems by small- and wide-angle X-ray scattering (SAXS and WAXS) and transmission electron microscopy (TEM) as well as in 2D systems by infrared reflection-absorption spectroscopy (IRRAS) on Langmuir films. The investigated lipid mixtures show quite different self-assembly in the absence of DNA, with varying structures from vesicles (/DOPE; /DOPE) and tubes (/DOPE) to discoid structures (/DPPC; /DPPC). Twisted ribbons and sheets, which were stabilized due to hydrogen-bond networks, were found in all investigated lipid mixtures in the absence of DNA. The addition of DNA leads to the formation of lamellar lipoplexes for all the investigated lipid compositions. The lipoplexes differ in crucial parameters, such as the lamellar repeat distance and the spacing between the DNA strands, indicating differences in the binding strength between DNA and the lipid composition. The formation of associates with an ideal charge density might emerge as a key parameter for efficient DNA transfer. Furthermore, the structures observed for the different lipid compositions in

  8. Copepod omnivory in the North Water Polynya (Baffin Bay) during autumn: spatial patterns in lipid composition

    NASA Astrophysics Data System (ADS)

    Stevens, Catherine J.; Deibel, Don; Parrish, Christopher C.

    2004-11-01

    To deduce spatial patterns in copepod lipid composition and feeding strategy (i.e., degree of omnivory) in the North Water Polynya (Baffin Bay), three dominant species were sampled extensively over a broad geographical area (∼75-78°N; 77-69°W). Calanus hyperboreus CV, C. glacialis CV and Metridia longa females were collected in shallow and deep strata at 16 stations during autumn 1999 (August-October). Principal components analysis (PCA) revealed that all species fed omnivorously in the southeastern (SE) region of the polynya. Here, copepods generally had elevated levels of carnivorous (e.g., 18 : 1 (n - 9)), dinoflagellate (e.g., 18 : 4 (n - 3) ; 22 : 6 (n - 3)) and bacterial fatty acid markers (e.g., odd-numbered and/or branched; 18:1(n - 7)). Copepods in the SE contained low proportions of diatom (e.g., 16 : 4 (n - 1) ; 20 : 5 (n - 3)) and phytoplankton (e.g., polyunsaturated fatty acids) markers, relative to animals from northwest stations. Values of the omnivory index 'UC' (i.e., unsaturation coefficient) were also low in SE copepods, which implied reduced phytoplankton ingestion. Spatial patterns in seston fatty acid composition resembled the dietary signatures in that dinoflagellate and bacterial indices were highest in SE waters. Estimates of primary production, particulate organic carbon, carbon to chlorophyll ratios, and abundances of diatoms, dinoflagellates and bacteria, provided further evidence of the importance of the microbial loop at SE stations. Comparable spatial patterns in feeding strategy were observed in both sampling layers, indicating that copepods from the entire water column were feeding on a similar food source. Several interesting species-specific trends also emerged from the PCA. In general, C. hyperboreus fed the most herbivorously, followed by C. glacialis and M. longa. C. glacialis showed a stronger connection to the microbial food web than the other two species, and M. longa fed herbivorously throughout much of the polynya

  9. New Poly(amino acid methacrylate) Brush Supports the Formation of Well-Defined Lipid Membranes

    PubMed Central

    2015-01-01

    A novel poly(amino acid methacrylate) brush comprising zwitterionic cysteine groups (PCysMA) was utilized as a support for lipid bilayers. The polymer brush provides a 12-nm-thick cushion between the underlying hard support and the aqueous phase. At neutral pH, the zeta potential of the PCysMA brush was ∼−10 mV. Cationic vesicles containing >25% DOTAP were found to form a homogeneous lipid bilayer, as determined by a combination of surface analytical techniques. The lipid mobility as measured by FRAP (fluorescence recovery after photobleaching) gave diffusion coefficients of ∼1.5 μm2 s–1, which are comparable to those observed for lipid bilayers on glass substrates. PMID:25746444

  10. Roles of Chlorogenic Acid on Regulating Glucose and Lipids Metabolism: A Review

    PubMed Central

    Meng, Shengxi; Cao, Jianmei; Feng, Qin; Peng, Jinghua; Hu, Yiyang

    2013-01-01

    Intracellular glucose and lipid metabolic homeostasis is vital for maintaining basic life activities of a cell or an organism. Glucose and lipid metabolic disorders are closely related with the occurrence and progression of diabetes, obesity, hepatic steatosis, cardiovascular disease, and cancer. Chlorogenic acid (CGA), one of the most abundant polyphenol compounds in the human diet, is a group of phenolic secondary metabolites produced by certain plant species and is an important component of coffee. Accumulating evidence has demonstrated that CGA exerts many biological properties, including antibacterial, antioxidant, and anticarcinogenic activities. Recently, the roles and applications of CGA, particularly in relation to glucose and lipid metabolism, have been highlighted. This review addresses current studies investigating the roles of CGA in glucose and lipid metabolism. PMID:24062792

  11. New poly(amino acid methacrylate) brush supports the formation of well-defined lipid membranes.

    PubMed

    Blakeston, Anita C; Alswieleh, Abdullah M; Heath, George R; Roth, Johannes S; Bao, Peng; Cheng, Nan; Armes, Steven P; Leggett, Graham J; Bushby, Richard J; Evans, Stephen D

    2015-03-31

    A novel poly(amino acid methacrylate) brush comprising zwitterionic cysteine groups (PCysMA) was utilized as a support for lipid bilayers. The polymer brush provides a 12-nm-thick cushion between the underlying hard support and the aqueous phase. At neutral pH, the zeta potential of the PCysMA brush was ∼-10 mV. Cationic vesicles containing >25% DOTAP were found to form a homogeneous lipid bilayer, as determined by a combination of surface analytical techniques. The lipid mobility as measured by FRAP (fluorescence recovery after photobleaching) gave diffusion coefficients of ∼1.5 μm(2) s(-1), which are comparable to those observed for lipid bilayers on glass substrates. PMID:25746444

  12. Role of a liver fatty acid-binding protein gene in lipid metabolism in chicken hepatocytes.

    PubMed

    Gao, G L; Na, W; Wang, Y X; Zhang, H F; Li, H; Wang, Q G

    2015-01-01

    This study investigated the role of the chicken liver fatty acid-binding protein (L-FABP) gene in lipid metabolism in hepatocytes, and the regulatory relationships between L-FABP and genes related to lipid metabolism. The short hairpin RNA (shRNA) interference vector with L-FABP and an eukaryotic expression vector were used. Chicken hepatocytes were subjected to shRNA-mediated knockdown or L-FABP cDNA overexpression. Expression levels of lipid metabolism-related genes and biochemical parameters were detected 24, 36, 48, 60, and 72 h after transfection with the interference or overexpression plasmids for L-FABP, PPARα and L-BABP expression levels, and the total amount of cholesterol, were significantly affected by L-FABP expression. L-FABP may affect lipid metabolism by regulating PPARα and L-BABP in chicken hepatocytes. PMID:25966259

  13. Acyl chain composition and coexisting fluid phases in lipid bilayers

    NASA Astrophysics Data System (ADS)

    Gu, Yongwen; Bradley, Miranda; Mitchell, Drake

    2011-10-01

    At room temperature phospholipid bilayers enriched in sphingolipids and cholesterol may form a solid phase as well as two coexisting fluid phases. These are the standard fluid phase, or the liquid-disordered phase, ld, and the liquid-ordered phase, lo, which is commonly associated with lipid rafts. Ternary mixtures of palmitoyl-oleoyl-phosphocholine (POPC; 16:0,18:1 PC), sphingomyelin (SPM), and cholesterol (Chol) form coexisting lo, ld and solid phases over a wide range of molar ratios. We are examining the ability of two fluorescent probes to detect these 2 phases: NBD linked to di-16:0 PE which partitions strongly into the lo phase and NBD linked to di-18:1 PE which partitions strongly into the ld phase. We are also examining the effect of the highly polyunsaturated phospholipid stearoyl-docosahexanoyl-phosphocholine (SDPC; 18:0, 22:6 PC) on the ternary phase diagram of POPC/SPM/Chol with particular focus on the functionally important lo/ld coexistence region. We report on the fluorescence lifetime and anisotropy decay dynamics of these two fluorescent probes.

  14. Age-Specific Lipid and Fatty Acid Profiles of Atlantic Salmon Juveniles in the Varzuga River.

    PubMed

    Murzina, Svetlana A; Nefedova, Zinaida A; Pekkoeva, Svetlana N; Veselov, Alexey E; Efremov, Denis A; Nemova, Nina N

    2016-01-01

    The age-specific lipid and fatty acid profiles of juvenile Atlantic salmon at different ages (0+, 1+, and 2+ years) after hatching from nests located in the mainstream of a large Arctic River, the Varzuga River, and resettling to the favorable Sobachji shoal in autumn before overwinter are herein presented. The contemporary methods of the lipid analysis were used: thin layer chromatography and gas chromatography. The results show that the stability of the regulation of important functions in developing organisms is maintained through structural alterations in lipids. These alterations can be considered as a sequence of the modifications and changes in the ratios of certain lipid classes and fatty acids constituents. In general, changes in the