Science.gov

Sample records for acid concentration particle

  1. Computational Study of the Malonic Acid Tautomerization Products in Highly Concentrated Particles

    DOE PAGES

    Dick-Pérez, Marilú; Windus, Theresa L.

    2017-03-09

    Knowing the tautomeric form of malonic acid (MA) in concentrated particles is critical to understanding its effect on the atmosphere. Energies and vibrational modes of hydrated MA particles were calculated using density functional theory (DFT) at the B3LYP/6-31G(d,p) level and the effective fragment potential (EFP) method. Visualization of the keto and enol isomer vibrational modes enabled the assignment of keto isomer peaks in the 1710–1750 cm–1 range, and previously unidentified experimental IR peaks in the 1690–1710 cm–1 can now be attributed to the enol isomer. Furthermore, a comparison of calculated spectra of pure hydrated enol or keto isomers confirm recentmore » experimental evidence, of a shift in the keto–enol tautomer equilibrium when MA exists as concentrated particles.« less

  2. Computational Study of the Malonic Acid Tautomerization Products in Highly Concentrated Particles.

    PubMed

    Dick-Pérez, Marilú; Windus, Theresa L

    2017-03-23

    Knowing the tautomeric form of malonic acid (MA) in concentrated particles is critical to understanding its effect on the atmosphere. Energies and vibrational modes of hydrated MA particles were calculated using density functional theory (DFT) at the B3LYP/6-31G(d,p) level and the effective fragment potential (EFP) method. Visualization of the keto and enol isomer vibrational modes enabled the assignment of keto isomer peaks in the 1710-1750 cm(-1) range, and previously unidentified experimental IR peaks in the 1690-1710 cm(-1) can now be attributed to the enol isomer. Comparison of calculated spectra of pure hydrated enol or keto isomers confirm recent experimental evidence, presented by Ghorai et al. ( J. Phys. Chem. A 2011 , 115 , 4373 - 4380 ) of a shift in the keto-enol tautomer equilibrium when MA exists as concentrated particles.

  3. Tangential Flow Ultrafiltration Allows Purification and Concentration of Lauric Acid-/Albumin-Coated Particles for Improved Magnetic Treatment

    PubMed Central

    Zaloga, Jan; Stapf, Marcus; Nowak, Johannes; Pöttler, Marina; Friedrich, Ralf P.; Tietze, Rainer; Lyer, Stefan; Lee, Geoffrey; Odenbach, Stefan; Hilger, Ingrid; Alexiou, Christoph

    2015-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are frequently used for drug targeting, hyperthermia and other biomedical purposes. Recently, we have reported the synthesis of lauric acid-/albumin-coated iron oxide nanoparticles SEONLA-BSA, which were synthesized using excess albumin. For optimization of magnetic treatment applications, SPION suspensions need to be purified of excess surfactant and concentrated. Conventional methods for the purification and concentration of such ferrofluids often involve high shear stress and low purification rates for macromolecules, like albumin. In this work, removal of albumin by low shear stress tangential ultrafiltration and its influence on SEONLA-BSA particles was studied. Hydrodynamic size, surface properties and, consequently, colloidal stability of the nanoparticles remained unchanged by filtration or concentration up to four-fold (v/v). Thereby, the saturation magnetization of the suspension can be increased from 446.5 A/m up to 1667.9 A/m. In vitro analysis revealed that cellular uptake of SEONLA-BSA changed only marginally. The specific absorption rate (SAR) was not greatly affected by concentration. In contrast, the maximum temperature Tmax in magnetic hyperthermia is greatly enhanced from 44.4 °C up to 64.9 °C by the concentration of the particles up to 16.9 mg/mL total iron. Taken together, tangential ultrafiltration is feasible for purifying and concentrating complex hybrid coated SPION suspensions without negatively influencing specific particle characteristics. This enhances their potential for magnetic treatment. PMID:26287178

  4. Tangential Flow Ultrafiltration Allows Purification and Concentration of Lauric Acid-/Albumin-Coated Particles for Improved Magnetic Treatment.

    PubMed

    Zaloga, Jan; Stapf, Marcus; Nowak, Johannes; Pöttler, Marina; Friedrich, Ralf P; Tietze, Rainer; Lyer, Stefan; Lee, Geoffrey; Odenbach, Stefan; Hilger, Ingrid; Alexiou, Christoph

    2015-08-14

    Superparamagnetic iron oxide nanoparticles (SPIONs) are frequently used for drug targeting, hyperthermia and other biomedical purposes. Recently, we have reported the synthesis of lauric acid-/albumin-coated iron oxide nanoparticles SEON(LA-BSA), which were synthesized using excess albumin. For optimization of magnetic treatment applications, SPION suspensions need to be purified of excess surfactant and concentrated. Conventional methods for the purification and concentration of such ferrofluids often involve high shear stress and low purification rates for macromolecules, like albumin. In this work, removal of albumin by low shear stress tangential ultrafiltration and its influence on SEON(LA-BSA) particles was studied. Hydrodynamic size, surface properties and, consequently, colloidal stability of the nanoparticles remained unchanged by filtration or concentration up to four-fold (v/v). Thereby, the saturation magnetization of the suspension can be increased from 446.5 A/m up to 1667.9 A/m. In vitro analysis revealed that cellular uptake of SEON(LA-BSA) changed only marginally. The specific absorption rate (SAR) was not greatly affected by concentration. In contrast, the maximum temperature Tmax in magnetic hyperthermia is greatly enhanced from 44.4 °C up to 64.9 °C by the concentration of the particles up to 16.9 mg/mL total iron. Taken together, tangential ultrafiltration is feasible for purifying and concentrating complex hybrid coated SPION suspensions without negatively influencing specific particle characteristics. This enhances their potential for magnetic treatment.

  5. Analysis of preferential particle concentration

    NASA Astrophysics Data System (ADS)

    Shariff, Karim

    2008-11-01

    It is known from simulations of particle laden turbulent flows (Squires and Eaton 1991; Wang and Maxey 1993) that particles having a relaxation time nearly equal to the Kolmogorov time preferentially concentrate in regions of weak vorticity. Here we consider the set of equations for particle dilatation, strain, and rotation which provides an understanding of this behavior. This set is derived from the two-fluid equations for the coupled fluid and particle phases. Fluid strain induces particle strain, which causes particle dilatation to always decrease. Fluid rotation, on the other hand, induces particle rotation, which causes particle dilatation to always increase. Illustrative solutions are provided for spatially linear flows and the case of pure strain nicely illustrates how particles concentrate. The analysis also suggests devices and flows that would be particularly good at concentrating particles.

  6. Continuous flow dielectrophoretic particle concentrator

    SciTech Connect

    Cummings, Eric B.

    2007-04-17

    A continuous-flow filter/concentrator for separating and/or concentrating particles in a fluid is disclosed. The filter is a three-port device an inlet port, an filter port and a concentrate port. The filter separates particles into two streams by the ratio of their dielectrophoretic mobility to their electrokinetic, advective, or diffusive mobility if the dominant transport mechanism is electrokinesis, advection, or diffusion, respectively.Also disclosed is a device for separating and/or concentrating particles by dielectrophoretic trapping of the particles.

  7. Alpha-Lipoic Acid Reduces LDL-Particle Number and PCSK9 Concentrations in High-Fat Fed Obese Zucker Rats

    PubMed Central

    Carrier, Bradley; Wen, Shin; Zigouras, Sophia; Browne, Richard W.; Li, Zhuyun; Patel, Mulchand S.; Williamson, David L.; Rideout, Todd C.

    2014-01-01

    We characterized the hypolipidemic effects of alpha-lipoic acid (LA, R-form) and examined the associated molecular mechanisms in a high fat fed Zucker rat model. Rats (n = 8) were assigned to a high fat (HF) diet or the HF diet with 0.25% LA (HF-LA) for 30 days and pair fed to remove confounding effects associated with the anorectic properties of LA. Compared with the HF controls, the HF-LA group was protected against diet-induced obesity (102.5±3.1 vs. 121.5±3.6,% change BW) and hypercholesterolemia with a reduction in total-C (−21%), non-HDL-C (−25%), LDL-C (−16%), and total LDL particle number (−46%) and an increase in total HDL particles (∼22%). This cholesterol-lowering response was associated with a reduction in plasma PCSK9 concentration (−70%) and an increase in hepatic LDLr receptor protein abundance (2 fold of HF). Compared with the HF-fed animals, livers of LA-supplemented animals were protected against TG accumulation (−46%), likely through multiple mechanisms including: a suppressed lipogenic response (down-regulation of hepatic acetyl-CoA carboxylase and fatty acid synthase expression); enhanced hepatic fat oxidation (increased carnitine palmitoyltransferase Iα expression); and enhanced VLDL export (increased hepatic diacylglycerol acyltransferase and microsomal triglyceride transfer protein expression and elevated plasma VLDL particle number). Study results also support an enhanced fatty acid uptake (2.8 fold increase in total lipase activity) and oxidation (increased CPT1β protein abundance) in muscle tissue in LA-supplemented animals compared with the HF group. In summary, in the absence of a change in caloric intake, LA was effective in protecting against hypercholesterolemia and hepatic fat accumulation under conditions of strong genetic and dietary predisposition toward obesity and dyslipidemia. PMID:24595397

  8. Influence of crustal dust and sea spray supermicron particle concentrations and acidity on inorganic NO3− aerosol during the 2013 Southern Oxidant and Aerosol Study

    DOE PAGES

    Allen, H. M.; Draper, D. C.; Ayres, B. R.; ...

    2015-09-25

    Inorganic aerosol composition was measured in the southeastern United States, a region that exhibits high aerosol mass loading during the summer, as part of the 2013 Southern Oxidant and Aerosol Study (SOAS) campaign. Measurements using a Monitor for AeRosols and GAses (MARGA) revealed two periods of high aerosol nitrate (NO3−) concentrations during the campaign. These periods of high nitrate were correlated with increased concentrations of supermicron crustal and sea spray aerosol species, particularly Na+ and Ca2+, and with a shift towards aerosol with larger (1 to 2.5 μm) diameters. We suggest this nitrate aerosol forms by multiphase reactions of HNO3more » and particles, reactions that are facilitated by transport of crustal dust and sea spray aerosol from a source within the United States. The observed high aerosol acidity prevents the formation of NH4NO3, the inorganic nitrogen species often dominant in fine-mode aerosol at higher pH. In addition, calculation of the rate of the heterogeneous uptake of HNO3 on mineral aerosol supports the conclusion that aerosol NO3− is produced primarily by this process, and is likely limited by the availability of mineral cation-containing aerosol surface area. Modeling of NO3− and HNO3 by thermodynamic equilibrium models (ISORROPIA II and E-AIM) reveals the importance of including mineral cations in the southeastern United States to accurately balance ion species and predict gas–aerosol phase partitioning.« less

  9. Mass distribution and concentrations of negative chemiions in the exhaust of a jet engine: Sulfuric acid concentrations and observation of particle growth

    NASA Astrophysics Data System (ADS)

    Miller, Thomas M.; Ballenthin, John O.; Viggiano, A. A.; Anderson, Bruce E.; Wey, Chowen C.

    Measurements of negative-ion composition and density have been made in the exhaust of a J85-GE-5H turbojet, at ground level, as part of the NASA-EXCAVATE campaign. The mass spectrometer was placed 3 m from the exhaust plane of the engine. Measurements were done as a function of engine power in six steps from idle (50%) to military power (100%). Since the exhaust velocity changes with power, this also corresponds to a time evolution for ion growth. At 100% power most of the ions are HSO 4- with minor amounts of HSO 4-(H 2O) n. With decreasing engine power the degree of hydration increases. In addition, ions with a 139-amu core dominate the spectra at lower engine power. The chemical identity of this ion is unknown. Observation of a small amount of NO 3- core ions in the high-power spectra allows the determination of H 2SO 4 concentrations, which turn out to be a fraction-of-a-percent of the total sulfur in the fuel. Combining the present data with several previous composition measurements allows one to observe ion evolution from bare ions to ions with masses >8000 amu. Ion densities are derived and appear consistent with previous measurements used in modeling studies indicating that ion nucleation is a probable mechanism for volatile aerosol formation.

  10. Focusing particle concentrator with application to ultrafine particles

    DOEpatents

    Hering, Susanne; Lewis, Gregory; Spielman, Steven R.

    2013-06-11

    Technology is presented for the high efficiency concentration of fine and ultrafine airborne particles into a small fraction of the sampled airflow by condensational enlargement, aerodynamic focusing and flow separation. A nozzle concentrator structure including an acceleration nozzle with a flow extraction structure may be coupled to a containment vessel. The containment vessel may include a water condensation growth tube to facilitate the concentration of ultrafine particles. The containment vessel may further include a separate carrier flow introduced at the center of the sampled flow, upstream of the acceleration nozzle of the nozzle concentrator to facilitate the separation of particle and vapor constituents.

  11. A statistical proxy for sulphuric acid concentration

    NASA Astrophysics Data System (ADS)

    Mikkonen, S.; Romakkaniemi, S.; Smith, J. N.; Korhonen, H.; Petäjä, T.; Plass-Duelmer, C.; Boy, M.; McMurry, P. H.; Lehtinen, K. E. J.; Joutsensaari, J.; Hamed, A.; Mauldin, R. L., III; Birmili, W.; Spindler, G.; Arnold, F.; Kulmala, M.; Laaksonen, A.

    2011-11-01

    Gaseous sulphuric acid is a key precursor for new particle formation in the atmosphere. Previous experimental studies have confirmed a strong correlation between the number concentrations of freshly formed particles and the ambient concentrations of sulphuric acid. This study evaluates a body of experimental gas phase sulphuric acid concentrations, as measured by Chemical Ionization Mass Spectrometry (CIMS) during six intensive measurement campaigns and one long-term observational period. The campaign datasets were measured in Hyytiälä, Finland, in 2003 and 2007, in San Pietro Capofiume, Italy, in 2009, in Melpitz, Germany, in 2008, in Atlanta, Georgia, USA, in 2002, and in Niwot Ridge, Colorado, USA, in 2007. The long term data were obtained in Hohenpeissenberg, Germany, during 1998 to 2000. The measured time series were used to construct proximity measures ("proxies") for sulphuric acid concentration by using statistical analysis methods. The objective of this study is to find a proxy for sulfuric acid that is valid in as many different atmospheric environments as possible. Our most accurate and universal formulation of the sulphuric acid concentration proxy uses global solar radiation, SO2 concentration, condensation sink and relative humidity as predictor variables, yielding a correlation measure (R) of 0.87 between observed concentration and the proxy predictions. Interestingly, the role of the condensation sink in the proxy was only minor, since similarly accurate proxies could be constructed with global solar radiation and SO2 concentration alone. This could be attributed to SO2 being an indicator for anthropogenic pollution, including particulate and gaseous emissions which represent sinks for the OH radical that, in turn, is needed for the formation of sulphuric acid.

  12. A statistical proxy for sulphuric acid concentration

    NASA Astrophysics Data System (ADS)

    Mikkonen, S.; Romakkaniemi, S.; Smith, J. N.; Korhonen, H.; Petäjä, T.; Plass-Duelmer, C.; Boy, M.; McMurry, P. H.; Lehtinen, K. E. J.; Joutsensaari, J.; Hamed, A.; Mauldin, R. L., III; Birmili, W.; Spindler, G.; Arnold, F.; Kulmala, M.; Laaksonen, A.

    2011-07-01

    Gaseous sulphuric acid is a key precursor for new particle formation in the atmosphere. Previous experimental studies have confirmed a strong correlation between the number concentrations of freshly formed particles and the ambient concentrations of sulphuric acid. This study evaluates a body of experimental gas phase sulphuric acid concentrations, as measured by Chemical Ionization Mass Spectrometry (CIMS) during six intensive measurement campaigns and one long-term observational period. The campaign datasets were measured in Hyytiälä, Finland, in 2003 and 2007, in San Pietro Capofiume, Italy, in 2009, in Melpitz, Germany, in 2008, in Atlanta, Georgia, USA, in 2002, and in Niwot Ridge, Colorado, USA, in 2007. The long term data were obtained in Hohenpeissenberg, Germany, during 1998 to 2000. The measured time series were used to construct proximity measures ("proxies") for sulphuric acid concentration by using statistical analysis methods. The objective of this study is to find a proxy for sulfuric acid that is valid in as many different atmospheric environments as possible. Our most accurate and universal formulation of the sulphuric acid concentration proxy uses global solar radiation, SO2 concentration, condensation sink and relative humidity as predictor variables, yielding a correlation measure (R) of 0.87 between observed concentration and the proxy predictions. Interestingly, the role of the condensation sink in the proxy was only minor, since similarly accurate proxies could be constructed with global solar radiation and SO2 concentration alone. This could be attributed to SO2 being an indicator for anthropogenic pollution, including particulate and gaseous emissions which represent sinks for the OH radical that, in turn, is needed for the formation of sulphuric acid.

  13. Consumption of high-oleic acid ground beef increases HDL-cholesterol concentration but both high- and low-oleic acid ground beef decrease HDL particle diameter in normocholesterolemic men.

    PubMed

    Gilmore, L Anne; Walzem, Rosemary L; Crouse, Stephen F; Smith, Dana R; Adams, Thaddeus H; Vaidyanathan, Vidya; Cao, Xiaojuan; Smith, Stephen B

    2011-06-01

    On the basis of previous results from this laboratory, this study tested the hypothesis that ground beef high in MUFA and low in SFA would increase the HDL-cholesterol (HDL-C) concentration and LDL particle diameter. In a crossover dietary intervention, 27 free-living normocholesterolemic men completed treatments in which five 114-g ground beef patties/wk were consumed for 5 wk with an intervening 4-wk washout period. Patties contained 24% total fat with a MUFA:SFA ratio of either 0.71 (low MUFA, from pasture-fed cattle) or 1.10 (high MUFA, from grain-fed cattle). High-MUFA ground beef provided 3.21 g more 18:1(n-9), 1.26 g less 18:0, 0.89 g less 16:0, and 0.36 g less 18:1(trans) fatty acids per patty than did the low-MUFA ground beef. Both ground beef interventions decreased plasma insulin and HDL(2) and HDL(3) particle diameters and increased plasma 18:0 and 20:4(n-6) (all P ≤ 0.05) relative to baseline values. Only the high-MUFA ground beef intervention increased the HDL-C concentration from baseline (P = 0.02). The plasma TG concentration was positively correlated with the plasma insulin concentration (r = 0.40; P < 0.001) and negatively correlated with HDL-C (r = -0.47; P < 0.001) and plasma 18:0 (r = -0.24; P < 0.01). Plasma insulin and HDL diameters were not correlated (r = 0.01; P > 0.50), indicating that reductions in these measures were not coordinately regulated. The data indicate that dietary beef interventions have effects on risk factors for cardiovascular disease that are independent (insulin, HDL diameters) and dependent (HDL-C) on beef fatty acid composition.

  14. EXPOSURE TO CONCENTRATED AMBIENT PARTICLES (CAPS): REVIEW

    EPA Science Inventory

    Epidemiologic studies support a participation of fine particulate matter (PM) with a diameter of 0.1 to 2.5 microm in the effects of air pollution particles on human health. The ambient fine particle concentrator is a recently developed technology that can enrich the mass of ambi...

  15. g Dependent particle concentration due to sedimentation

    NASA Astrophysics Data System (ADS)

    Haranas, Ioannis; Gkigkitzis, Ioannis; Zouganelis, George D.

    2012-11-01

    Sedimentation of particles in a fluid has long been used to characterize particle size distribution. Stokes' law is used to determine an unknown distribution of spherical particle sizes by measuring the time required for the particles to settle a known distance in a fluid of known viscosity and density. In this paper, we study the effects of gravity on sedimentation by examining the resulting particle concentration distributed in an equilibrium profile of concentration C m, n above the bottom of a container. This is for an experiment on the surface of the Earth and therefore the acceleration of gravity had been corrected for the oblateness of the Earth and its rotation. Next, at the orbital altitude of the spacecraft in orbit around Earth the acceleration due to the central field is corrected for the oblateness of the Earth. Our results show that for experiments taking place in circular or elliptical orbits of various inclinations around the Earth the concentration ratio C m, n / C m, ave , the inclination seems to be the most ineffective in affecting the concentration among all the orbital elements. For orbital experiment that use particles of diameter d p =0.001 μm the concentration ratios for circular and slightly elliptical orbits in the range e=0-0.1 exhibit a 0.009 % difference. The concentration ratio increases with the increase of eccentricity, which increases more for particles of larger diameters. Finally, for particles of the same diameter concentration ratios between Earth and Mars surface experiments are related in the following way C_{(m,n)_{mathit{Earth}}} = 0.99962 C_{(m,n)_{mathit{Mars}}}.

  16. Dielectrophoretic concentration of particles under electrokinetic flow

    DOEpatents

    Miles, Robin R.; Bettencourt, Kerry A.; Fuller, Christopher K.

    2004-09-07

    The use of dielectrophoresis to collect particles under the conditions of electrokinetically-driven flow. Dielectrophortic concentration of particles under electrokinetic flow is accomplished by interdigitated electrodes patterned on an inner surface of a microfluid channel, a DC voltage is applied across the ends to the channel, and an AC voltage is applied across the electrodes, and particles swept down the channel electrokinetically are trapped within the field established by the electrodes. The particles can be released when the voltage to the electrodes is released.

  17. Effects of particle size, helium gas pressure and microparticle dose on the plasma concentration of indomethacin after bombardment of indomethacin-loaded poly-L-lactic acid microspheres using a Helios gun system.

    PubMed

    Uchida, Masaki; Natsume, Hideshi; Kobayashi, Daisuke; Sugibayashi, Kenji; Morimoto, Yasunori

    2002-05-01

    We investigated the effects of the particle size of indomethacin-loaded poly-L-lactic acid microspheres (IDM-loaded PLA MS), the helium pressure used to accelerate the particles, and the bombardment dose of PLA MS on the plasma concentration of IDM after bombarding with IDM-loaded PLA MS of different particle size ranges, 20-38, 44-53 and 75-100 microm, the abdomen of hairless rats using the Helios gene gun system (Helios gun system). Using larger particles and a higher helium pressure, produced an increase in the plasma IDM concentration and the area under the plasma concentration-time curve (AUC) and resultant F (relative bioavailability with respect to intracutaneous injection) of IDM increased by an amount depending on the particle size and helium pressure. Although a reduction in the bombardment dose led to a decrease in C(max) and AUC, F increased on decreasing the bombardment dose. In addition, a more efficient F was obtained after bombarding with IDM-loaded PLA MS of 75-100 microm in diameter at each low dose in different sites of the abdomen compared with that after bolus bombardment with a high dose (dose equivalent). These results suggest that the bombardment injection of drug-loaded microspheres by the Helios gun system is a very useful tool for delivering a variety of drugs in powder form into the skin and systemic circulation.

  18. Acoustic concentration of particles in fluid flow

    DOEpatents

    Ward, Michael D.; Kaduchak, Gregory

    2010-11-23

    An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.

  19. Pretreating lignocellulosic biomass by the concentrated phosphoric acid plus hydrogen peroxide (PHP) for enzymatic hydrolysis: evaluating the pretreatment flexibility on feedstocks and particle sizes.

    PubMed

    Wang, Qing; Wang, Zhanghong; Shen, Fei; Hu, Jinguang; Sun, Fubao; Lin, Lili; Yang, Gang; Zhang, Yanzong; Deng, Shihuai

    2014-08-01

    In order to seek a high-efficient pretreatment path for converting lignocellulosic feedstocks to fermentable sugars by enzymatic hydrolysis, the concentrated H₃PO₄ plus H₂O₂ (PHP) was attempted to pretreat different lignocellulosic biomass for evaluating the pretreatment flexibility on feedstocks. Meanwhile, the responses of pretreatment to particle sizes were also evaluated. When the PHP-pretreatment was employed (final H₂O₂ and H₃PO₄ concentration of 1.77% and 80.0%), 71-96% lignin and more than 95% hemicellulose in various feedstocks (agricultural residues, hardwood, softwood, bamboo, and their mixture, and garden wastes mixture) can be removed. Consequently, more than 90% glucose conversion was uniformly achieved indicating PHP greatly improved the pretreatment flexibility to different feedstocks. Moreover, when wheat straw and oak chips were PHP-pretreated with different sizes, the average glucose conversion reached 94.9% and 100% with lower coefficient of variation (7.9% and 0.0%), which implied PHP-pretreatment can significantly weaken the negative effects of feedstock sizes on subsequent conversion.

  20. Mass concentration and ion composition of coarse and fine particles in an urban area in Beirut: effect of calcium carbonate on the absorption of nitric and sulfuric acids and the depletion of chloride

    NASA Astrophysics Data System (ADS)

    Kouyoumdjian, H.; Saliba, N. A.

    2006-05-01

    Levels of coarse (PM10-2.5) and fine (PM2.5) particles were determined between February 2004 and January 2005 in the city of Beirut, Lebanon. While low PM mass concentrations were measured in the rainy season, elevated levels were detected during sand storms originating from Arabian desert and/or Africa. Using ATR-FTIR and IC, it was shown that nitrate, sulfate, carbonate and chloride were the main anionic constituents of the coarse particles, whereas sulfate was mostly predominant in the fine particles in the form of (NH4)2SO4. Ammonium nitrate was not expected to be important because the medium was defined as ammonium poor. In parallel, the cations Ca2+ and Na+ dominated in the coarse, and NH4+, Ca2+ and Na+ in the fine particles. Coarse nitrate and sulfate ions resulted from the respective reactions of nitric and sulfuric acid with a relatively high amount of calcium carbonate. Both CaCO3 and Ca(NO3)2 crystals identified by ATR-FTIR in the coarse particles were found to be resistant to soaking in water for 24 h but became water soluble when they were formed in the fine particles suggesting, thereby, different growth and adsorption phenomena. The seasonal variational study showed that nitrate and sulfate ion concentrations increased in the summer due to the enhancement of photochemical reactions which facilitated the conversion of NO2 and SO2 gases into NO3- and SO42-, respectively. While nitrate was mainly due to local heavy traffic, sulfates were due to local and long-range transport phenomena. Using the air mass trajectory HYSPLIT model, it was found that the increase in the sulfate concentration correlated with wind vectors coming from Eastern and Central Europe. Chloride levels, on the other hand, were high when wind originated from the sea and low during sand storms. In addition to sea salt, elevated levels of chloride were also attributed to waste mass burning in proximity to the site. In comparison to other neighboring Mediterranean countries, relatively

  1. 1- and 2-particle Microrheology of Hyaluronic Acid

    NASA Astrophysics Data System (ADS)

    Sagan, Austin; Kearns, Sarah; Ross, David; Das, Moumita; Thurston, George; Franklin, Scott

    2015-03-01

    Hyaluronic acid (also called HA or Hyaluronan) is a high molecular weight polysaccaride ubiquitous in the extracellular matrix of soft tissue such as cartilage, skin, the eye's vitreous gel and synovial fluid. It has been shown to play an important role in mechanotransduction, cell migration and proliferation, and in tissue morphodynamics. We present a confocal microrheology study of hyaluronic acid of varying concentrations. The mean squared displacement (MSD) of sub-micron colloidal tracer particles is tracked in two dimensions and shows a transition from diffusive motion at low concentrations to small-time trapping by the protein network as the concentration increases. Correlations between particle motion can be used to determine an effective mean-squared displacement which deviates from the single-particle MSD as the fluid becomes less homogeneous. The real and effective mean-squared displacements are used to probe the local and space-averaged frequency dependent rheological properties of the fluid as the concentration changes.

  2. System for particle concentration and detection

    DOEpatents

    Morales, Alfredo M.; Whaley, Josh A.; Zimmerman, Mark D.; Renzi, Ronald F.; Tran, Huu M.; Maurer, Scott M.; Munslow, William D.

    2013-03-19

    A new microfluidic system comprising an automated prototype insulator-based dielectrophoresis (iDEP) triggering microfluidic device for pathogen monitoring that can eventually be run outside the laboratory in a real world environment has been used to demonstrate the feasibility of automated trapping and detection of particles. The system broadly comprised an aerosol collector for collecting air-borne particles, an iDEP chip within which to temporarily trap the collected particles and a laser and fluorescence detector with which to induce a fluorescence signal and detect a change in that signal as particles are trapped within the iDEP chip.

  3. Plasma polymerized allylamine coated quartz particles for humic acid removal.

    PubMed

    Jarvis, Karyn L; Majewski, Peter

    2012-08-15

    Allylamine plasma polymerization has been used to modify the surface of quartz particles for humic acid removal via an inductively coupled rotating barrel plasma reactor. Plasma polymerized allylamine (ppAA) films were deposited at a power of 25 W, allylamine flow rate of 4.4 sccm and polymerization times of 5-60 min. The influence of polymerization time on surface chemistry was investigated via X-ray photoelectron spectroscopy (XPS), time of flight secondary ion mass spectrometry (ToF-SIMS) and electrokinetic analysis. Acid orange 7 adsorption/desorption quantified the number of surface amine groups. Humic acid removal via ppAA quartz particles was examined by varying pH, removal time, humic acid concentration, and particle mass. Increasing the polymerization time increased the concentration of amine groups on the ppAA quartz surface, thus also increasing the isoelectric point. ToF-SIMS demonstrated uniform distribution of amine groups across the particle surface. Greatest humic acid removal was observed at pH 5 due to electrostatic attraction. At higher pH values, for longer polymerization times, humic acid removal was also observed due to hydrogen bonding. Increasing the initial humic acid concentration increased the mass of humic acid removed, with longer polymerization times exhibiting the greatest increases. Plasma polymerization using a rotating plasma reactor has shown to be a successful method for modifying quartz particles for the removal of humic acid. Further development of the plasma polymerization process and investigation of additional contaminants will aid in the development of a low cost water treatment system.

  4. Particle size- and concentration-dependent separation of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Witte, Kerstin; Müller, Knut; Grüttner, Cordula; Westphal, Fritz; Johansson, Christer

    2017-04-01

    Small magnetic nanoparticles with a narrow size distribution are of great interest for several biomedical applications. When the size of the particles decreases, the magnetic moment of the particles decreases. This leads to a significant increase in the separation time by several orders of magnitude. Therefore, in the present study the separation processes of bionized nanoferrites (BNF) with different sizes and concentrations were investigated with the commercial Sepmag Q system. It was found that an increasing initial particle concentration leads to a reduction of the separation time for large nanoparticles due to the higher probability of building chains. Small nanoparticles showed exactly the opposite behavior with rising particle concentration up to 0.1 mg(Fe)/ml. For higher iron concentrations the separation time remains constant and the measured Z-average decreases in the supernatant at same time intervals. At half separation time a high yield with decreasing hydrodynamic diameter of particles can be obtained using higher initial particle concentrations.

  5. Workplace aerosol mass concentration measurement using optical particle counters.

    PubMed

    Görner, Peter; Simon, Xavier; Bémer, Denis; Lidén, Göran

    2012-02-01

    Direct-reading aerosol measurement usually uses the optical properties of airborne particles to detect and measure particle concentration. In the case of occupational hygiene, mass concentration measurement is often required. Two aerosol monitoring methods are based on the principle of light scattering: optical particle counting (OPC) and photometry. The former analyses the light scattered by a single particle, the latter by a cloud of particles. Both methods need calibration to transform the quantity of scattered light detected into particle concentration. Photometers are simpler to use and can be directly calibrated to measure mass concentration. However, their response varies not only with aerosol concentration but also with particle size distribution, which frequently contributes to biased measurement. Optical particle counters directly measure the particle number concentration and particle size that allows assessment of the particle mass provided the particles are spherical and of known density. An integrating algorithm is used to calculate the mass concentration of any conventional health-related aerosol fraction. The concentrations calculated thus have been compared with simultaneous measurements by conventional gravimetric sampling to check the possibility of field OPC calibration with real workplace aerosols with a view to further monitoring particle mass concentration. Aerosol concentrations were measured in the food industry using the OPC GRIMM® 1.108 and the CIP 10-Inhalable and CIP 10-Respirable (ARELCO®) aerosol samplers while meat sausages were being brushed and coated with calcium carbonate. Previously, the original OPC inlet had been adapted to sample inhalable aerosol. A mixed aerosol of calcium carbonate and fungi spores was present in the workplace. The OPC particle-size distribution and an estimated average particle density of both aerosol components were used to calculate the mass concentration. The inhalable and respirable aerosol fractions

  6. Hyaluronic acid concentration in liver diseases.

    PubMed

    Gudowska, Monika; Gruszewska, Ewa; Panasiuk, Anatol; Cylwik, Bogdan; Flisiak, Robert; Świderska, Magdalena; Szmitkowski, Maciej; Chrostek, Lech

    2016-11-01

    The aim of this study was to evaluate the effect of liver diseases of different etiologies and clinical severity of liver cirrhosis on the serum level of hyaluronic acid. The results were compared with noninvasive markers of liver fibrosis: APRI, GAPRI, HAPRI, FIB-4 and Forn's index. Serum samples were obtained from 20 healthy volunteers and patients suffering from alcoholic cirrhosis (AC)-57 patients, non-alcoholic cirrhosis (NAC)-30 and toxic hepatitis (HT)-22. Cirrhotic patients were classified according to Child-Pugh score. Hyaluronic acid concentration was measured by the immunochemical method. Non-patented indicators were calculated using special formulas. The mean serum hyaluronic acid concentration was significantly higher in AC, NAC and HT group in comparison with the control group. There were significant differences in the serum hyaluronic acid levels between liver diseases, and in AC they were significantly higher than those in NAC and HT group. The serum hyaluronic acid level differs significantly due to the severity of cirrhosis and was the highest in Child-Pugh class C. The sensitivity, specificity, accuracy, positive and negative predictive values and the area under the ROC curve for hyaluronic acid and all non-patented algorithms were high and similar to each other. We conclude that the concentration of hyaluronic acid changes in liver diseases and is affected by the severity of liver cirrhosis. Serum hyaluronic acid should be considered as a good marker for noninvasive diagnosis of liver damage, but the combination of markers is more useful.

  7. Fatty Acids as Surfactants on Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Tervahattu, H.; Juhanoja, J.; Niemi, J.

    2003-12-01

    Fatty acids (n-alcanoic acids) are common compounds in numerous anthropogenic and natural emissions. According to Rogge et al. (1993), catalyst-equipped automobiles emitted more than 600 μg km-1 of fatty acids which was over 50% of all identified organics in fine aerosol emissions. Coal burning produces fatty acids ranging from about 1700 mg kg-1 for bituminous coal to over 10000 mg kg-1 for lignite (Oros and Simoneit, 2000). Similarly, biomass burning is an important source for aerosol fatty acids. They are the major identified compound group in deciduous tree smoke, their total emission factor being measured as 1589 mg kg-1 which was 56% of all identified organic compounds (Oros and Simoneit, 2001a). Large amounts of fatty acid are also emitted from burning of conifer trees and grass (Oros and Simoneit, 2001a; Simoneit, 2002). Fatty acids have been reported to be major constituents of marine aerosols in many investigations (Barger and Garrett, 1976; Gagosian et. al, 1981; Sicre et al., 1990; Stephanou, 1992). It has been suggested that as the marine aerosol particles form, they acquire a coating of organic surfactants (Blanchard, 1964; Gill et al., 1983; Middlebrook et al., 1998; Ellison et al., 1999). Amphiphilic molecules, including lipids, can be assembled as monomolecular layers at air/water interfaces as well as transported to a solid support. Recently, we could show by time-of-flight secondary ion mass spectrometry that fatty acids are important ingredients of the outermost surface layer of the sea-salt aerosol particles (Tervahattu et al., 2002). In their TOF-SIMS studies on the surface composition of atmospheric aerosols, Peterson and Tyler (2002) found fatty acids on the surface of Montana forest fire particles. In this work we have studied by TOF-SIMS the surface chemical composition of aerosol particles emitted from field fires in the Baltic and other East European countries and transported to Finland as well as aerosol particles transported from

  8. Heterogeneous Reaction of HO2 Radical with Dicarboxylic Acid Particles

    NASA Astrophysics Data System (ADS)

    Taketani, F.; Kanaya, Y.

    2010-12-01

    HOx(OH+ HO2) radical plays a central role in the tropospheric chemistry. Recently, the heterogeneous loss of HO2 by aerosol particles is a potentially important HOx sink in the troposphere suggested from observation study. However, there have been few studies for loss of HO2 by aerosols. In this study, we measured the HO2 uptake coefficients for four dicarboxylic acids (succinic acid, glutaric acid, adipic acid, and pimelic acid) aerosol particles under ambient conditions (760Torr and 296K) using an aerosol flow tube(AFT) coupled with a chemical conversion /laser-induced fluorescence(CC/LIF) technique. The CC/LIF technique enabled experiments to be performed at almost the same HO2 radical concentration as that in the atmosphere(-10^8 molecules/cm^3). In this system, the effect of the self-reaction of HO2 in the gas phase can be neglected. HO2 radicals were injected into the AFT through a vertically movable Pyrex tube. Injector position dependent profiles of LIF intensity were measured as a function of aerosol concentration at 30% and 70% of relative humilities (RH). Determined HO2 uptake coefficients by succinic acid, glutaric acid, adipic acid, and pimelic acid aerosol particles at 30% RH were 0.05 +/- 0.02, 0.07 +/- 0.03, 0.02 +/- 0.01, and 0.06 +/- 0.03, respectively, while the uptake coefficients by those particles at 70% RH were 0.13 +/- 0.05, 0.13 +/- 0.03, 0.06 +/- 0.01, and 0.11 +/- 0.03, respectively. These results suggest that compositions and relative humidity are significant to the HO2 uptake. We will discuss the potential HO2 loss processes.

  9. Nanotip analysis for dielectrophoretic concentration of nanosized viral particles

    NASA Astrophysics Data System (ADS)

    Yeo, Woon-Hong; Lee, Hyun-Boo; Kim, Jong-Hoon; Lee, Kyong-Hoon; Chung, Jae-Hyun

    2013-05-01

    Rapid and sensitive detection of low-abundance viral particles is strongly demanded in health care, environmental control, military defense, and homeland security. Current detection methods, however, lack either assay speed or sensitivity, mainly due to the nanosized viral particles. In this paper, we compare a dendritic, multi-terminal nanotip (‘dendritic nanotip’) with a single terminal nanotip (‘single nanotip’) for dielectrophoretic (DEP) concentration of viral particles. The numerical computation studies the concentration efficiency of viral particles ranging from 25 to 100 nm in radius for both nanotips. With DEP and Brownian motion considered, when the particle radius decreases by two times, the concentration time for both nanotips increases by 4-5 times. In the computational study, a dendritic nanotip shows about 1.5 times faster concentration than a single nanotip for the viral particles because the dendritic structure increases the DEP-effective area to overcome the Brownian motion. For the qualitative support of the numerical results, the comparison experiment of a dendritic nanotip and a single nanotip is conducted. Under 1 min of concentration time, a dendritic nanotip shows a higher sensitivity than a single nanotip. When the concentration time is 5 min, the sensitivity of a dendritic nanotip for T7 phage is 104 particles ml-1. The dendritic nanotip-based concentrator has the potential for rapid identification of viral particles.

  10. Nanotip analysis for dielectrophoretic concentration of nanosized viral particles.

    PubMed

    Yeo, Woon-Hong; Lee, Hyun-Boo; Kim, Jong-Hoon; Lee, Kyong-Hoon; Chung, Jae-Hyun

    2013-05-10

    Rapid and sensitive detection of low-abundance viral particles is strongly demanded in health care, environmental control, military defense, and homeland security. Current detection methods, however, lack either assay speed or sensitivity, mainly due to the nanosized viral particles. In this paper, we compare a dendritic, multi-terminal nanotip ('dendritic nanotip') with a single terminal nanotip ('single nanotip') for dielectrophoretic (DEP) concentration of viral particles. The numerical computation studies the concentration efficiency of viral particles ranging from 25 to 100 nm in radius for both nanotips. With DEP and Brownian motion considered, when the particle radius decreases by two times, the concentration time for both nanotips increases by 4-5 times. In the computational study, a dendritic nanotip shows about 1.5 times faster concentration than a single nanotip for the viral particles because the dendritic structure increases the DEP-effective area to overcome the Brownian motion. For the qualitative support of the numerical results, the comparison experiment of a dendritic nanotip and a single nanotip is conducted. Under 1 min of concentration time, a dendritic nanotip shows a higher sensitivity than a single nanotip. When the concentration time is 5 min, the sensitivity of a dendritic nanotip for T7 phage is 10(4) particles ml(-1). The dendritic nanotip-based concentrator has the potential for rapid identification of viral particles.

  11. Measurement of particle concentrations in a dental office.

    PubMed

    Sotiriou, Maria; Ferguson, Stephen F; Davey, Mark; Wolfson, Jack M; Demokritou, Philip; Lawrence, Joy; Sax, Sonja N; Koutrakis, Petros

    2008-02-01

    Particles in a dental office can be generated by a number of instruments, such as air-turbine handpieces, low-speed handpieces, ultrasonic scalers, bicarbonate polishers, polishing cups, as well as drilling and air sprays inside the oral cavity. This study examined the generation of particles during dental drilling and measured particle size, mass, and trace elements. The air sampling techniques included both continuous and integrated methods. The following particle continuous measurements were taken every minute: (1) size-selective particle number concentration (Climet); (2) total particle number concentration (PTRAK), and; (3) particle mass concentration (DustTrak). Integrated particle samples were collected for about 5 h on each of five sampling days, using a PM(2.5) sampler (ChemComb) for elemental/organic carbon analysis, and a PM(10) sampler (Harvard Impactor) for mass and elemental analyses. There was strong evidence that these procedures result in particle concentrations above background. The dental procedures produced number concentrations of relatively small particles (<0.5 microm) that were much higher than concentrations produced for the relatively larger particles (>0.5 microm). Also, these dental procedures caused significant elevation above background of certain trace elements (measured by X-ray fluorescence) but did not cause any elevation of elemental carbon (measured by thermal optical reflectance). Dental drilling procedures aerosolize saliva and products of drilling, producing particles small enough to penetrate deep into the lungs. The potential health impacts of the exposure of dental personnel to such particles need to be evaluated. Increased ventilation and personal breathing protection could be used to minimize harmful effects.

  12. Analysis of particle-borne odorants emitted from concentrated animal feeding operations.

    PubMed

    Yang, Xufei; Lorjaroenphon, Yaowapa; Cadwallader, Keith R; Wang, Xinlei; Zhang, Yuanhui; Lee, Jongmin

    2014-08-15

    Airborne particles are known to serve as a carrier of odors emanating from concentrated animal feeding operations (CAFOs). However, limited quantitative data about particle-borne odorants preclude an accurate assessment of the role of particles in odor transport. This study collected total suspended particulates (TSP) and PM10 (particles with aerodynamic diameter smaller than 10 μm) at the air exhaust of eight types of CAFOs (swine: farrowing, gestation, weaning, and finishing; poultry: manure-belt layer hen, tom turkey, chicken broiler, and cage-free layer hen; in total 20 animal buildings) in multiple seasons, and examined the variability in particle odorant composition with animal operation type, season, and particle size. Fifty-seven non-sulfur-containing odorants were identified and quantitated, including carbonyls, alcohols, acids, phenols, and nitrogen-containing compounds. They in total accounted for 2.19±1.52% TSP and 4.97±3.25% PM10 mass. Acetic acid and ethanol were most abundant but less odor-contributing than phenylacetic acid, indole, dodecanoic acid, and (E,E)-2,4-decadienal, as determined by odor activity value. Particle odorant composition varied significantly with animal operation type, season, and particle size. The TSP and PM10 samples from swine gestation buildings, for example, showed distinctly different odorant compositions than those from tom turkey buildings. The summer TSP and PM10 samples contained in general lower concentrations of short-chain fatty acids but higher concentrations of long-chain fatty acids, aldehydes, and short-chain alcohols than the winter samples. Compared to TSP, PM10 samples from different types of CAFOs shared a more similar odorant composition, contained higher odorant concentrations per mass of particles, and accounted for on average 53.2% of the odor strength of their corresponding TSP samples.

  13. Vertical particle concentration profiles around urban office buildings

    NASA Astrophysics Data System (ADS)

    Quang, T. N.; He, C.; Morawska, L.; Knibbs, L. D.; Falk, M.

    2012-06-01

    Despite its role in determining both indoor and outdoor human exposure to anthropogenic particles, there is limited information describing vertical profiles of particle concentrations in urban environments, especially for ultrafine particles. Furthermore, the results of the few studies performed have been inconsistent. As such, this study aimed to assess the influence of vehicle emissions and nucleation formation on particle characteristics (particle number size distribution - PNSD and PM2.5 concentration) at different heights around three urban office buildings located next to busy roads in Brisbane, Australia, and place these results in the broader context of the existing literature. Two sets of instruments were used to simultaneously measure PNSD, particle number (PN) and PM2.5 concentrations, respectively, for up to three weeks at each building. The results showed that both PNSD and PM2.5 concentration around building envelopes were influenced by vehicle emissions and new particle formation, and that they exhibited variability across the three different office buildings. During nucleation events, PN concentration in size range of <30 nm and total PN concentration increased (7-65% and 5-46%, respectively), while PM2.5 concentration decreased (36-52%) with height. This study has shown an under acknowledged role for nucleation in producing particles that can affect large numbers of people, due to the high density and occupancy of urban office buildings and the fact that the vast majority of people's time is spent indoors. These findings highlight important new information related to the previously overlooked role of particle formation in the urban atmosphere and its potential effects on selection of air intake locations and appropriate filter types when designing or upgrading mechanical ventilation systems in urban office buildings. The results also serve to better define particle behaviour and variability around building envelopes, which has implications for

  14. Impact of particle formation on atmospheric ions and particle number concentrations in an urban environment

    NASA Astrophysics Data System (ADS)

    Cheung, H. C.; Chou, C. C.-K.; Jayaratne, E. R.; Morawska, L.

    2015-04-01

    A measurement campaign was conducted from 3 to 19 December 2012 at an urban site of Brisbane, Australia. Size distribution of ions and particle number concentrations were measured to investigate the influence of particle formation and biomass burning on atmospheric ion and particle concentrations. Overall ion and particle number concentrations during the measurement period were found to be (- 1.2 × 103 cm- 3 | + 1.6 × 103 cm- 3) and 4.4 × 103, respectively. The results of correlation analysis between concentrations of ions and nitrogen oxides indicated that positive and negative ions originated from similar sources, and that vehicle exhaust emissions had a more significant influence on intermediate/large ions, while cluster ions rapidly attached to larger particles once emitted into the atmosphere. Diurnal variations in ion concentration suggested the enrichment of intermediate and large ions on new particle formation event days, indicating that they were involved in the particle formation processes. Elevated total ions, particularly larger ions, and particle number concentrations were found during biomass burning episodes. This could be due to the attachment of cluster ions onto accumulation mode particles or production of charged particles from biomass burning, which were in turn transported to the measurement site. The results of this work enhance scientific understanding of the sources of atmospheric ions in an urban environment, as well as their interactions with particles during particle formation processes.

  15. Vanadium concentrations in settled outdoor dust particles.

    PubMed

    Dundar, Mustafa S

    2006-12-01

    Atmospheric dustfall is an important aspect of urban dust studies. Vanadium is considered as the marker element of air pollution emitted from residual oil and coal combustion. In this study, vanadium levels of outdoor dust particles are determined. The studied area covers the six sites located in Adapazarí (Turkey), which represents an earthquake-hit environment. The mass deposition rate was calculated for each sampling plate over the 30-days collection periods. The deposition rates for the six places in Adapazarí ranged from 20.5 to 84.9 microg/cm2/day. The arithmetic mean deposition rate for all places was 45.3 microg/cm2/day. Total dust deposition and vanadium loadings typically increased in magnitude according to the area order: Kampus > Serdivan > Cark C. > Ozanlar > Erenler > Yeşiltepe and Kampus > Serdivan > Cark C. > Ozanlar > Erenler > Yeşiltepe, respectively. The results suggested that vanadium may be useful for assessing the level of environmental pollution.

  16. Influence of crustal dust and sea spray supermicron particle concentrations and acidity on inorganic NO3 aerosol during the 2013 Southern Oxidant and Aerosol Study

    SciTech Connect

    Allen, H. M.; Draper, D. C.; Ayres, B. R.; Ault, A.; Bondy, A.; Takahama, S.; Modini, R. L.; Baumann, K.; Edgerton, E.; Knote, C.; Laskin, A.; Wang, B.; Fry, J. L.

    2015-09-25

    Inorganic aerosol composition was measured in the southeastern United States, a region that exhibits high aerosol mass loading during the summer, as part of the 2013 Southern Oxidant and Aerosol Study (SOAS) campaign. Measurements using a Monitor for AeRosols and GAses (MARGA) revealed two periods of high aerosol nitrate (NO3) concentrations during the campaign. These periods of high nitrate were correlated with increased concentrations of supermicron crustal and sea spray aerosol species, particularly Na+ and Ca2+, and with a shift towards aerosol with larger (1 to 2.5 μm) diameters. We suggest this nitrate aerosol forms by multiphase reactions of HNO3 and particles, reactions that are facilitated by transport of crustal dust and sea spray aerosol from a source within the United States. The observed high aerosol acidity prevents the formation of NH4NO3, the inorganic nitrogen species often dominant in fine-mode aerosol at higher pH. In addition, calculation of the rate of the heterogeneous uptake of HNO3 on mineral aerosol supports the conclusion that aerosol NO3 is produced primarily by this process, and is likely limited by the availability of mineral cation-containing aerosol surface area. Modeling of NO3 and HNO3 by thermodynamic equilibrium models (ISORROPIA II and E-AIM) reveals the importance of including mineral cations in the southeastern United States to accurately balance ion species and predict gas–aerosol phase partitioning.

  17. Sulfuric Acid and Soot Particle Formation in Aircraft Exhaust

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf F.; Verma, S.; Ferry, G. V.; Howard, S. D.; Vay, S.; Kinne, S. A.; Baumgardner, D.; Dermott, P.; Kreidenweis, S.; Goodman, J.; Gore, Waren J. Y. (Technical Monitor)

    1997-01-01

    A combination of CN counts, Ames wire impactor size analyses and optical particle counter data in aircraft exhaust results in a continuous particle size distribution between 0.01 micrometer and 1 micrometer particle radius sampled in the exhaust of a Boeing 757 research aircraft. The two orders of magnitude size range covered by the measurements correspond to 6-7 orders of magnitude particle concentration. CN counts and small particle wire impactor data determine a nucleation mode, composed of aircraft-emitted sulfuric acid aerosol, that contributes between 62% and 85% to the total aerosol surface area and between 31% and 34% to its volume. Soot aerosol comprises 0.5% of the surface area of the sulfuric acid aerosol. Emission indices are: EIH2SO4 = 0.05 g/kgFUEL and (0.2-0.5) g/kgFUEL (for 75 ppmm and 675 ppmm fuel-S, respectively), 2.5E4particles/kgFUEL (for 75 and 675 ppmm fuel-S). The sulfur (gas) to H2SO4 (particle) conversion efficiency is between 10% and 25%.

  18. Saharan Dust Particle Size And Concentration Distribution In Central Ghana

    NASA Astrophysics Data System (ADS)

    Sunnu, A. K.

    2010-12-01

    A.K. Sunnu*, G. M. Afeti* and F. Resch+ *Department of Mechanical Engineering, Kwame Nkrumah University of Science and Technology (KNUST) Kumasi, Ghana. E-mail: albertsunnu@yahoo.com +Laboratoire Lepi, ISITV-Université du Sud Toulon-Var, 83162 La Valette cedex, France E-mail: resch@univ-tln.fr Keywords: Atmospheric aerosol; Saharan dust; Particle size distributions; Particle concentrations. Abstract The Saharan dust that is transported and deposited over many countries in the West African atmospheric environment (5°N), every year, during the months of November to March, known locally as the Harmattan season, have been studied over a 13-year period, between 1996 and 2009, using a location at Kumasi in central Ghana (6° 40'N, 1° 34'W) as the reference geographical point. The suspended Saharan dust particles were sampled by an optical particle counter, and the particle size distributions and concentrations were analysed. The counter gives the total dust loads as number of particles per unit volume of air. The optical particle counter used did not discriminate the smoke fractions (due to spontaneous bush fires during the dry season) from the Saharan dust. Within the particle size range measured (0.5 μm-25 μm.), the average inter-annual mean particle diameter, number and mass concentrations during the northern winter months of January and February were determined. The average daily number concentrations ranged from 15 particles/cm3 to 63 particles/cm3 with an average of 31 particles/cm3. The average daily mass concentrations ranged from 122 μg/m3 to 1344 μg/m3 with an average of 532 μg/m3. The measured particle concentrations outside the winter period were consistently less than 10 cm-3. The overall dust mean particle diameter, analyzed from the peak representative Harmattan periods over the 13-year period, ranged from 0.89 μm to 2.43 μm with an average of 1.5 μm ± 0.5. The particle size distributions exhibited the typical distribution pattern for

  19. Airborne particle concentrations at schools measured at different spatial scales

    NASA Astrophysics Data System (ADS)

    Buonanno, G.; Fuoco, F. C.; Morawska, L.; Stabile, L.

    2013-03-01

    Potential adverse effects on children health may result from school exposure to airborne particles. To address this issue, measurements in terms of particle number concentration, particle size distribution and black carbon (BC) concentrations were performed in three school buildings in Cassino (Italy) and its suburbs, outside and inside of the classrooms during normal occupancy and use. Additional time resolved information was gathered on ventilation condition, classroom activity, and traffic count data around the schools were obtained using a video camera. Across the three investigated school buildings, the outdoor and indoor particle number concentration monitored down to 4 nm and up to 3 μm ranged from 2.8 × 104 part cm-3 to 4.7 × 104 part cm-3 and from 2.0 × 104 part cm-3 to 3.5 × 104 part cm-3, respectively. The total particle concentrations were usually higher outdoors than indoors, because no indoor sources were detected. I/O measured was less than 1 (varying in a relatively narrow range from 0.63 to 0.74), however one school exhibited indoor concentrations higher than outdoor during the morning rush hours. Particle size distribution at the outdoor site showed high particle concentrations in different size ranges, varying during the day; in relation to the starting and finishing of school time two modes were found. BC concentrations were 5 times higher at the urban school compared with the suburban and suburban-to-urban differences were larger than the relative differences of ultrafine particle concentrations.

  20. Energetic particle-induced enhancements of stratospheric nitric acid

    NASA Technical Reports Server (NTRS)

    Aikin, Arthur C.

    1994-01-01

    Inclusion of complete ion chemistry in the calculation of minor species production during energetic particle deposition events leads to significant enhancement in the calculated nitric acid concentration during precipitation. An ionization rate of 1.2 x 10(exp 3)/cu cm/s imposed for 1 day increases HNO3 from 3 x 10(exp 5) to 6 x 10(exp 7)/cu cm at 50 km. With an ionization rate of 600 cu cm/s, the maximum HNO3 is 3 x 10(exp 7)/cu cm. Calculations which neglect negative ions predict the nitric acid will fall during precipitation events. The decay time for converting HNO3 into odd nitrogen and hydrogen is more than 1 day for equinoctial periods at 70 deg latitude. Examination of nitric acid data should yield important information on the magnitude and frequency of charged particle events.

  1. Effect of nitric acid concentrations on synthesis and stability of maghemite nanoparticles suspension.

    PubMed

    Nurdin, Irwan; Johan, Mohd Rafie; Yaacob, Iskandar Idris; Ang, Bee Chin

    2014-01-01

    Maghemite (γ-Fe2O3) nanoparticles have been synthesized using a chemical coprecipitation method at different nitric acid concentrations as an oxidizing agent. Characterization of all samples performed by several techniques including X-ray diffraction (XRD), transmission electron microscopy (TEM), alternating gradient magnetometry (AGM), thermogravimetric analysis (TGA), dynamic light scattering (DLS), and zeta potential. The XRD patterns confirmed that the particles were maghemite. The crystallite size of all samples decreases with the increasing concentration of nitric acid. TEM observation showed that the particles have spherical morphology with narrow particle size distribution. The particles showed superparamagnetic behavior with decreased magnetization values at the increasing concentration of nitric acid. TGA measurement showed that the stability temperature decreases with the increasing concentration of nitric acid. DLS measurement showed that the hydrodynamic particle sizes decrease with the increasing concentration of nitric acid. Zeta potential values show a decrease with the increasing concentration of nitric acid. The increasing concentration of nitric acid in synthesis of maghemite nanoparticles produced smaller size particles, lower magnetization, better thermal stability, and more stable maghemite nanoparticles suspension.

  2. The Effect of Particle Concentration on the Heating Rate of Ferrofluids for Magnetic Hyperthermia

    NASA Astrophysics Data System (ADS)

    Malaescu, I.; Marin, C. N.; Bunoiu, M.; Fannin, P. C.; Stefu, N.; Iordaconiu, L.

    2015-12-01

    The complex magnetic susceptibility χ(f) = χ'(f) - i χ″(f), of a ferrofluid sample with magnetite particles dispersed in kerosene and stabilized with oleic acid, over the range 0.1 GHz to 6 GHz, was determined. The initial sample has been successively diluted with kerosene (with a dilution rate of 2/3), thus obtaining further three samples. Using the complex magnetic susceptibility measurements of each sample, the frequency field and particle concentration dependencies of the heating rate of the ferrofluid samples, were analyzed. The results show the possibility of using the heating rate of ferrofluid samples with different particle concentrations, in hyperthermia applications.

  3. Particle sedimentation monitoring in high-concentration slurries

    NASA Astrophysics Data System (ADS)

    Nagasawa, Yoshihiro; Kato, Zenji; Tanaka, Satoshi

    2016-11-01

    In this study, the sedimentation states of particles in high-concentration slurries were elucidated by monitoring their internal states. We prepared transparent high-concentration silica slurries by adjusting the refractive index of the aqueous glycerol liquid in which the particles were dispersed to match that of the silica particles. In addition, a fluorescent dye was dissolved in the liquid. Then, we directly observed the individual and flocculated particles in the slurries during sedimentation by confocal laser scanning fluorescent microscopy. The particles were found to sediment very slowly while exhibiting fluctuating motion. The particle sedimentation rate in the high-concentration slurry with the aqueous glycerol solution (η =0.068 Pa. s ) and a particle volume fraction on the order of 0.3 was determined to be 1.58 ± 0.66 μ m. min-1 on the basis of the obtained image sequences for 24.9 h. In-situ observation provides a large amount of information about the sedimentation behavior of particles in condensed matter.

  4. High aerosol acidity despite declining atmospheric sulfate concentrations over the past 15 years

    NASA Astrophysics Data System (ADS)

    Weber, Rodney J.; Guo, Hongyu; Russell, Armistead G.; Nenes, Athanasios

    2016-04-01

    Particle acidity affects aerosol concentrations, chemical composition and toxicity. Sulfate is often the main acid component of aerosols, and largely determines the acidity of fine particles under 2.5 μm in diameter, PM2.5. Over the past 15 years, atmospheric sulfate concentrations in the southeastern United States have decreased by 70%, whereas ammonia concentrations have been steady. Similar trends are occurring in many regions globally. Aerosol ammonium nitrate concentrations were assumed to increase to compensate for decreasing sulfate, which would result from increasing neutrality. Here we use observed gas and aerosol composition, humidity, and temperature data collected at a rural southeastern US site in June and July 2013 (ref. ), and a thermodynamic model that predicts pH and the gas-particle equilibrium concentrations of inorganic species from the observations to show that PM2.5 at the site is acidic. pH buffering by partitioning of ammonia between the gas and particle phases produced a relatively constant particle pH of 0-2 throughout the 15 years of decreasing atmospheric sulfate concentrations, and little change in particle ammonium nitrate concentrations. We conclude that the reductions in aerosol acidity widely anticipated from sulfur reductions, and expected acidity-related health and climate benefits, are unlikely to occur until atmospheric sulfate concentrations reach near pre-anthropogenic levels.

  5. Source contributions to atmospheric fine carbon particle concentrations

    NASA Astrophysics Data System (ADS)

    Andrew Gray, H.; Cass, Glen R.

    A Lagrangian particle-in-cell air quality model has been developed that facilitates the study of source contributions to atmospheric fine elemental carbon and fine primary total carbon particle concentrations. Model performance was tested using spatially and temporally resolved emissions and air quality data gathered for this purpose in the Los Angeles area for the year 1982. It was shown that black elemental carbon (EC) particle concentrations in that city were dominated by emissions from diesel engines including both on-highway and off-highway applications. Fine primary total carbon particle concentrations (TC=EC+organic carbon) resulted from the accumulation of small increments from a great variety of emission source types including both gasoline and diesel powered highway vehicles, stationary source fuel oil and gas combustion, industrial processes, paved road dust, fireplaces, cigarettes and food cooking (e.g. charbroilers). Strategies for black elemental carbon particle concentration control will of necessity need to focus on diesel engines, while controls directed at total carbon particle concentrations will have to be diversified over a great many source types.

  6. [Ultrafine particle number concentration and size distribution of vehicle exhaust ultrafine particles].

    PubMed

    Lu, Ye-qiang; Chen, Qiu-fang; Sun, Zai; Cai, Zhi-liang; Yang, Wen-jun

    2014-09-01

    Ultrafine particle (UFP) number concentrations obtained from three different vehicles were measured using fast mobility particle sizer (FMPS) and automobile exhaust gas analyzer. UFP number concentration and size distribution were studied at different idle driving speeds. The results showed that at a low idle speed of 800 rmin-1 , the emission particle number concentration was the lowest and showed a increasing trend with the increase of idle speed. The majority of exhaust particles were in Nuclear mode and Aitken mode. The peak sizes were dominated by 10 nm and 50 nm. Particle number concentration showed a significantly sharp increase during the vehicle acceleration process, and was then kept stable when the speed was stable. In the range of 0. 4 m axial distance from the end of the exhaust pipe, the particle number concentration decayed rapidly after dilution, but it was not obvious in the range of 0. 4-1 m. The number concentration was larger than the background concentration. Concentration of exhaust emissions such as CO, HC and NO showed a reducing trend with the increase of idle speed,which was in contrast to the emission trend of particle number concentration.

  7. Amino Acid Formation on Interstellar Dust Particles

    NASA Astrophysics Data System (ADS)

    Meierhenrich, U. J.; Munoz Caro, G. M.; Barbier, B.; Brack, A.; Thiemann, W.; Goesmann, F.; Rosenbauer, H.

    2003-04-01

    In the dense interstellar medium dust particles accrete ice layers of known molecular composition. In the diffuse interstellar medium these ice layers are subjected to energetic UV-irradiation. Here, photoreactions form complex organic molecules. The interstellar processes were recently successfully simulated in two laboratories. At NASA Ames Research Center three amino acids were detected in interstellar ice analogues [1], contemporaneously, our European team reported on the identification of 16 amino acids therein [2]. Amino acids are the molecular building blocks of proteins in living organisms. The identification of amino acids on the simulated icy surface of interstellar dust particles strongly supports the assumption that the precursor molecules of life were delivered from interstellar and interplanetary space via (micro-) meteorites and/or comets to the earyl Earth. The results shall be verified by the COSAC experiment onboard the ESA cometary mission Rosetta [3]. [1] M.P. Bernstein, J.P. Dworkin, S.A. Sandford, G.W. Cooper, L.J. Allamandola: itshape Nature \\upshape 416 (2002), 401-403. [2] G.M. Muñoz Caro, U.J. Meierhenrich, W.A. Schutte, B. Barbier, A. Arcones Sergovia, H. Rosenbauer, W.H.-P. Thiemann, A. Brack, J.M. Greenberg: itshape Nature \\upshape 416 (2002), 403-406. [3] U. Meierhenrich, W.H.-P. Thiemann, H. Rosenbauer: itshape Chirality \\upshape 11 (1999), 575-582.

  8. Preferrential Concentration of Particles in Protoplanetary Nebula Turbulence

    NASA Technical Reports Server (NTRS)

    Hartlep, Thomas; Cuzzi, Jeffrey N.

    2015-01-01

    Preferential concentration in turbulence is a process that causes inertial particles to cluster in regions of high strain (in-between high vorticity regions), with specifics depending on their stopping time or Stokes number. This process is thought to be of importance in various problems including cloud droplet formation and aerosol transport in the atmosphere, sprays, and also in the formation of asteroids and comets in protoplanetary nebulae. In protoplanetary nebulae, the initial accretion of primitive bodies from freely-floating particles remains a problematic subject. Traditional growth-by-sticking models encounter a formidable "meter-size barrier" [1] in turbulent nebulae. One scenario that can lead directly from independent nebula particulates to large objects, avoiding the problematic m-km size range, involves formation of dense clumps of aerodynamically selected, typically mm-size particles in protoplanetary turbulence. There is evidence that at least the ordinary chondrite parent bodies were initially composed entirely of a homogeneous mix of such particles generally known as "chondrules" [2]. Thus, while it is arcane, turbulent preferential concentration acting directly on chondrule size particles are worthy of deeper study. Here, we present the statistical determination of particle multiplier distributions from numerical simulations of particle-laden isotopic turbulence, and a cascade model for modeling turbulent concentration at lengthscales and Reynolds numbers not accessible by numerical simulations. We find that the multiplier distributions are scale dependent at the very largest scales but have scale-invariant properties under a particular variable normalization at smaller scales.

  9. Opposed-flow virtual cyclone for particle concentration

    DOEpatents

    Rader, Daniel J.; Torczynski, John R.

    2000-12-05

    An opposed-flow virtual cyclone for aerosol collation which can accurately collect, classify, and concentrate (enrich) particles in a specific size range. The opposed-flow virtual cyclone is a variation on the virtual cyclone and has its inherent advantages (no-impact particle separation in a simple geometry), while providing a more robust design for concentrating particles in a flow-through type system. The opposed-flow virtual cyclone consists of two geometrically similar virtual cyclones arranged such that their inlet jets are inwardly directed and symmetrically opposed relative to a plane of symmetry located between the two inlet slits. A top plate bounds both jets on the "top" side of the inlets, while the other or lower wall curves "down" and away from each inlet jet. Each inlet jet will follow the adjacent lower wall as it turns away, and that particles will be transferred away from the wall and towards the symmetry plane by centrifugal action. After turning, the two jets merge smoothly along the symmetry line and flow parallel to it through the throat. Particles are transferred from the main flows, across a dividing streamline, and into a central recirculating region, where particle concentrations become greatly increased relative to the main stream.

  10. Fine particles and coarse particles: concentration relationships relevant to epidemiologic studies.

    PubMed

    Wilson, W E; Suh, H H

    1997-12-01

    Fine particles and coarse particles are defined in terms of the modal structure of particle size distributions typically observed in the atmosphere. Differences between the various modes are discussed. The fractions of fine and coarse particles collected in specific size ranges, such as total suspended particulate matter (TSP), PM10, PM2.5, and PM(10-2.5), are shown. Correlations of 24-h concentrations of PM2.5, PM10, and PM(10-2.5) at the same site show that, in Philadelphia and St. Louis, PM2.5 is highly correlated with PM10 but poorly correlated with PM (10-2.5). Among sites distributed across these urban areas, the site-to-site correlations of 24-h PM concentrations are high for PM2.5 but not for PM(10-2.5). This indicates that a PM measurement at a central monitor can serve as a better indicator of the community-wide concentration of fine particles than of coarse particles. The fraction of ambient outdoor particles found suspended indoors is greater for fine particles than for coarse particles because of the difference in indoor lifetimes. Consideration of these relationships leads to the hypothesis that the statistical associations found between daily PM indicators and health outcomes may be the result of variations in the fine particle component of the atmospheric aerosol, not of variations in the coarse component. As a result, epidemiologic studies using PM10 or TSP may provide more useful information on the acute health effects of fine particles than coarse particles. Fine and coarse particles are separate classes of pollutants and should be measured separately in research and epidemiologic studies. PM2.5 and PM(10-2.5) are indicators or surrogates, but not measurements, of fine and coarse particles.

  11. Electrophoretic mobility of silica particles in a mixture of toluene and ethanol at different particle concentrations.

    PubMed

    Medrano, M; Pérez, A T; Lobry, L; Peters, F

    2009-10-20

    In this paper we present measurements of the electrophoretic mobility of colloidal particles by using heterodyne detection of light scattering. The measurements have been made up to concentrations of 5.4% silica nanoparticles, with a diameter on the order of 80 nm, in a mixture of 70% toluene and 30% ethanol. To make possible the measurements at these concentrations, the liquid mixture is chosen so as to match the index of refraction of the particles, thus resulting in a transparent suspension.

  12. Statistical modeling of preferential concentration of heavy particles in turbulence

    NASA Astrophysics Data System (ADS)

    Hartlep, T.; Cuzzi, J. N.

    2014-12-01

    Preferential concentration in turbulent flows is a process that causes heavy particles to cluster in regions of high strain (in-between high vorticity regions), with specifics depending on their stopping time or Stokes number. This process is thought to be of importance in various problems including cloud droplet formation, aerosol transport in the atmosphere, sprays, and the formation of asteroid and comets in protoplanetary nebulae. Here, we present the statistical determination of particle multiplier distributions from large numerical simulations of particle-laden isotopic turbulence, and a cascade model for modeling turbulent concentration at scales and Reynolds numbers not accessible by numerical simulations. We find that the multiplier distributions are scale dependent at scales within a decade or so of the inertial scale, and have properties that differ from widely used "beta-function" models.

  13. PARTICLE ASSOCIATION EFFECTS ON MICROBIAL INDICATOR CONCENTRATIONS FOR CSO DISINFECTION

    EPA Science Inventory

    The effect of blending on indicator microorganism concentrations in combined sewer overflow (CSO) was investigated due to concerns that standard techniques fail to measure particle-associated organisms found in sewage. It was shown that blending CSO samples diluted in a mixture ...

  14. System for concentrating and analyzing particles suspended in a fluid

    DOEpatents

    Fiechtner, Gregory J.; Cummings, Eric B.; Singh, Anup K.

    2011-04-26

    Disclosed is a device for separating and concentrating particles suspended in a fluid stream by using dielectrophoresis (DEP) to trap and/or deflect those particles as they migrate through a fluid channel. The method uses fluid channels designed to constrain a liquid flowing through it to uniform electrokinetic flow velocities. This behavior is achieved by connecting deep and shallow sections of channels, with the channel depth varying abruptly along an interface. By careful design of abrupt changes in specific permeability at the interface, an abrupt and spatially uniform change in electrokinetic force can be selected. Because these abrupt interfaces also cause a sharp gradient in applied electric fields, a DEP force also can be established along the interface. Depending on the complex conductivity of the suspended particles and the immersion liquid, the DEP force can controllably complement or oppose the local electrokinetic force transporting the fluid through the channel allowing for manipulation of particles suspended in the transporting liquid.

  15. Forecasting ultrafine particle concentrations from satellite and in situ observations

    NASA Astrophysics Data System (ADS)

    Crippa, P.; Castruccio, S.; Pryor, S. C.

    2017-02-01

    Recent innovations in remote sensing technologies and retrievals offer the potential for predicting ultrafine particle (UFP) concentrations from space. However, the use of satellite observations to provide predictions of near-surface UFP concentrations is limited by the high frequency of incomplete predictor values (due to missing observations), the lack of models that account for the temporal dependence of UFP concentrations, and the large uncertainty in satellite retrievals. Herein we present a novel statistical approach designed to address the first two limitations. We estimate UFP concentrations by using lagged estimates of UFP and concurrent satellite-based observations of aerosol optical properties, ultraviolet solar radiation flux, and trace gas concentrations, wherein an expectation maximization algorithm is used to impute missing values in the satellite observations. The resulting model of UFP (derived by using an autoregressive moving average model with exogenous inputs) explains 51 and 28% of the day-to-day variability in concentrations at two sites in eastern North America.

  16. Memoryless control of boundary concentrations of diffusing particles.

    PubMed

    Singer, A; Schuss, Z; Nadler, B; Eisenberg, R S

    2004-12-01

    Flux between regions of different concentration occurs in nearly every device involving diffusion, whether an electrochemical cell, a bipolar transistor, or a protein channel in a biological membrane. Diffusion theory has calculated that flux since the time of Fick (1855), and the flux has been known to arise from the stochastic behavior of Brownian trajectories since the time of Einstein (1905), yet the mathematical description of the behavior of trajectories corresponding to different types of boundaries is not complete. We consider the trajectories of noninteracting particles diffusing in a finite region connecting two baths of fixed concentrations. Inside the region, the trajectories of diffusing particles are governed by the Langevin equation. To maintain average concentrations at the boundaries of the region at their values in the baths, a control mechanism is needed to set the boundary dynamics of the trajectories. Different control mechanisms are used in Langevin and Brownian simulations of such systems. We analyze models of controllers and derive equations for the time evolution and spatial distribution of particles inside the domain. Our analysis shows a distinct difference between the time evolution and the steady state concentrations. While the time evolution of the density is governed by an integral operator, the spatial distribution is governed by the familiar Fokker-Planck operator. The boundary conditions for the time dependent density depend on the model of the controller; however, this dependence disappears in the steady state, if the controller is of a renewal type. Renewal-type controllers, however, produce spurious boundary layers that can be catastrophic in simulations of charged particles, because even a tiny net charge can have global effects. The design of a nonrenewal controller that maintains concentrations of noninteracting particles without creating spurious boundary layers at the interface requires the solution of the time

  17. Modeling the effect of outdoor particle concentrations on indoor concentrations in a heated environment

    SciTech Connect

    Pandian, M.D. )

    1988-01-01

    Exposure to suspended particulate mater in the home or workplace can produce adverse human health effects. Sources of suspended particulate matter include cigarette smoke, consumer spray products, and dust from cement manufacture, metal processing, and coal-fired power generation. The particle concentrations in these indoor environments can be determined from experimental studies or modeling techniques. Many experimental studies have been conducted to determine the mass concentration of total suspended particulate matter, usually expressed in {mu}g/m{sup 3}, and the elemental composition of particulate matter in these environments. However, there is not much reported data on particle size distributions in indoor environments. One of the early indoor modeling efforts was undertaken by Shair and Heitner, who conducted a theoretical analysis for relating indoor pollutant concentrations to those outdoors. The author describes the theoretical analysis and compared it to results obtained from experiments on conditioned cigarette smoke particle concentrations in a room at 20{degrees}C and 60 {percent}.

  18. Genesis Concentrator Target Particle Contamination Mapping and Material Identification

    NASA Technical Reports Server (NTRS)

    Calaway, Michael J.; Rodriquez, M. C.; Allton, J. H.

    2007-01-01

    The majority of surface particles were found to be < 5 microns in diameter with increasing numbers close to the optical resolution limit of 0.3 microns. Acceleration grid EDS results show that the majority of materials appear to be from the SRC shell and SLA materials which include carbon-carbon fibers and Si-rich microspheres in a possible silicone binder. Other major debris material from the SRC included white paint, kapton, collector array fragments, and Al. Image analysis also revealed that SRC materials were also found mixed with the Utah mud and salt deposits. The EDS analysis of the acceleration grid showed that particles < 1 m where generally carbon based particles. Chemical cleaning techniques with Xylene and HF in an ultrasonic bath are currently being investigated for removal of small particles by the Genesis science team as well as ultra-pure water megasonic cleaning by the JSC team [4]. Removal of organic contamination from target materials is also being investigated by the science team with the use of UV-ozone cleaning devices at JSC and Open University [5]. In preparation for solar wind oxygen analyses at UCLA and Open University [1, 2], surface particle contamination on three Genesis concentrator targets was closely examined to evaluate cleaning strategies. Two silicon carbide (Genesis sample # 60001 and 60003) and one chemical vapor deposited (CVD) 13C concentrator target (60002) were imaged and mosaic mapped with optical microscopes. The resulting full target mosaic images and particle feature maps were subsequently compared with non-flight, but flight-like, concentrator targets and sample return capsule (SRC) materials. Contamination found on the flown concentrator acceleration grid was further examined using a scanning electron microscope (SEM). Energy dispersive X-ray spectroscopy (EDS) for particle identification was subsequently compared with the optical images from the flown targets. Figure 1 show that all three targets imaged in this report

  19. Coulombic wall slip of concentrated soft-particle suspensions

    NASA Astrophysics Data System (ADS)

    Adams, Michael; Liu, Wei; Zhang, Zhibing; Fryer, Peter

    2013-06-01

    The coefficients of friction of concentrated soft-particle suspensions (tomato paste and a microgel suspension) were measured as a function of the slip velocity for a number of substrates. The data are interpreted using a micro-elastohydrodynamic model that is consistent with significant bulk frictional dissipation and an increase in the number of particle-wall contacts with increasing normal stress. The origin of the Coulombic slip, which has not been observed previously for pastes, is ascribed to the sensitivity of the lubricating film thickness.

  20. Environmentally relevant concentrations of microplastic particles influence larval fish ecology.

    PubMed

    Lönnstedt, Oona M; Eklöv, Peter

    2016-06-03

    The widespread occurrence and accumulation of plastic waste in the environment have become a growing global concern over the past decade. Although some marine organisms have been shown to ingest plastic, few studies have investigated the ecological effects of plastic waste on animals. Here we show that exposure to environmentally relevant concentrations of microplastic polystyrene particles (90 micrometers) inhibits hatching, decreases growth rates, and alters feeding preferences and innate behaviors of European perch (Perca fluviatilis) larvae. Furthermore, individuals exposed to microplastics do not respond to olfactory threat cues, which greatly increases predator-induced mortality rates. Our results demonstrate that microplastic particles operate both chemically and physically on larval fish performance and development.

  1. Micelles Protect and Concentrate Activated Acetic Acid

    NASA Astrophysics Data System (ADS)

    Todd, Zoe; House, C.

    2014-01-01

    As more and more exoplanets are discovered and the habitability of such planets is considered, one can turn to searching for the origin of life on Earth in order to better understand what makes a habitable planet. Activated acetic acid, or methyl thioacetate, has been proposed to be central to the origin of life on Earth, and also as an important energy currency molecule in early cellular evolution. We have investigated the hydrolysis of methyl thioacetate under various conditions. Its uncatalyzed rate of hydrolysis is about three orders of magnitude faster (K = 0.00663 s^-1; 100°C, pH 7.5, concentration = 0.33mM) than published rates for its catalyzed production making it unlikely to accumulate under prebiotic conditions. However, we also observed that methyl thioacetate was protected from hydrolysis when inside its own hydrophobic droplets. We found that methyl thioacetate protection from hydrolysis was also possible in droplets of hexane and in the membranes of nonanoic acid micelles. Thus, the hydrophobic regions of prebiotic micelles and early cell membranes could have offered a refuge for this energetic molecule increasing its lifetime in close proximity to the reactions for which it would be needed. Methyl thioacetate could thus be important for the origin of life on Earth and perhaps for better understanding the potential habitability of other planets.

  2. Boron concentration measurement in biological tissues by charged particle spectrometry.

    PubMed

    Bortolussi, S; Altieri, S

    2013-11-01

    Measurement of boron concentration in biological tissues is a fundamental aspect of boron neutron capture therapy, because the outcome of the therapy depends on the distribution of boron at a cellular level, besides on its overall concentration. This work describes a measurement technique based on the spectroscopy of the charged particles emitted in the reaction (10)B(n,α)(7)Li induced by thermal neutrons, allowing for a quantitative determination of the boron concentration in the different components that may be simultaneously present in a tissue sample, such as healthy cells, tumor cells and necrotic cells. Thin sections of tissue containing (10)B are cut at low temperatures and irradiated under vacuum in a thermal neutron field. The charged particles arising from the sample during the irradiation are collected by a thin silicon detector, and their spectrum is used to determine boron concentration through relatively easy calculations. The advantages and disadvantages of this technique are here described, and validation of the method using tissue standards with known boron concentrations is presented.

  3. Effect of particle hardness on the penetration behavior of fabrics intercalated with dry particles and concentrated particle-fluid suspensions.

    PubMed

    Kalman, Dennis P; Merrill, Richard L; Wagner, Norman J; Wetzel, Eric D

    2009-11-01

    The penetration behavior of Kevlar fabric intercalated with dry particles and shear thickening fluids (STF), highly concentrated fluid-particle suspensions, is presented. In particular, the role of particle hardness is explored by comparing fabric treatments containing SiO(2) particles, which are significantly harder than Kevlar, to treatments containing softer poly(methyl methacrylate) (PMMA) particles. The fabric testing includes yarn pull-out, quasi-static spike puncture, and ballistic penetration resistance, performed on single fabric layers. It was found that both dry particle and STF treatments resulted in improvements in fabric properties relative to neat or poly(ethylene glycol) (PEG) treated fabrics. On comparison of treatments with different particle hardness, the SiO(2) materials performed better in all tests than comparable PMMA materials, although the SiO(2) treatments caused yarn failure in pull-out testing, reducing the total pull-out energy. In addition, resistance to yarn pull-out was found to be substantially higher for STF-treated fabrics than for dry particle treated fabrics. However, both dry particle addition and STF treatments exhibited comparable enhancements in puncture and ballistic resistance. These observations suggest that viscous stress transfer, friction, and physical entrainment of hard particles into filaments contribute to the demonstrated improvements in the properties of protective fabrics treated with shear thickening fluids.

  4. Evaluation of the performance of a particle concentrator for online instrumentation

    NASA Astrophysics Data System (ADS)

    Saarikoski, S.; Carbone, S.; Cubison, M. J.; Hillamo, R.; Keronen, P.; Sioutas, C.; Worsnop, D. R.; Jimenez, J. L.

    2014-07-01

    The performance of the miniature Versatile Aerosol Concentration Enrichment System (m-VACES; Geller et al., 2005) was investigated in laboratory and field studies using online instruments. Laboratory tests focused on the behavior of monodisperse ammonium sulfate (AS) or dioctyl sebacate (DOS) particles in the m-VACES measured with the aerodynamic particle sizer (APS) and scanning mobility particle sizer (SMPS). The ambient measurements were conducted at an urban site in Helsinki, Finland, where the operation of the m-VACES was explored in conjunction with a Soot Particle Aerosol Mass Spectrometer (SP-AMS) in addition to the SMPS. In laboratory tests, the growth of particles in water vapor produced a stable droplet size distribution independent of the original particle size. However, when the droplets were dried with the goal of measuring the original size distribution, a shift to larger particles was observed for small particle sizes (up to ~ 200 nm in mobility diameter). That growth was probably caused by water-soluble organic compounds absorbed on the water droplets from the gas phase, but not evaporated in the drying phase. In ambient measurements, a similar enrichment was observed for nitrate and sulfate in the m-VACES whereas the presence of acidic ambient particles affected the enrichment of ammonium. Gaseous ammonia was likely to be absorbed on acidic particles in the m-VACES, neutralizing the aerosol. For organics, the enrichment efficiency was comparable with sulfate and nitrate but a small positive artifact for hydrocarbons and nitrogen-containing organic compounds was noticed. Ambient and concentrated organic aerosol (OA) was analyzed further with positive matrix factorization (PMF). A three-factor solution was chosen for both of the data sets but the factors were slightly different for the ambient and concentrated OA, however, the data set used for the PMF analysis was limited in size (3 days) and therefore had substantial uncertainty. Overall, the

  5. Computation of Concentric Shell Particle Scattering Effects in Jovian Clouds

    NASA Astrophysics Data System (ADS)

    Fry, Patrick M.; Sromovsky, Lawrence A.

    2014-11-01

    From analysis of NIMS and ISO spectra of Jupiter Sromovsky and Fry (2010, Icarus 210, 211-229; 2010, Icarus 210, 230-257) concluded that both NH3 and NH4SH were present near the visible cloud tops, probably in the form of composite particles. Composite particles were also suggested from analysis of VIMS spectra of Saturn's Great Storm of 2010-2011 by Sromovsky et al. (2013, Icarus 226, 402-418), in this case concentric shells of H2O, NH4SH, and NH3. These results and suggestions that coatings of various materials might be capable of hiding NH3 spectral features on Jupiter, such as by Atreya et al. (2005, Planet. Space Sci. 53, 498-507), have raised interest in and a need for modeling of scattering properties of complex composite particles. Since many of the particle sizes inferred for composite particles are below or close to the range near 1 μm where particle shape has less impact on near IR spectral features (Clapp and Miller, 1993, Icarus 105, 529-536), concentric shell codes have considerable relevance to modeling of composite particles. Here we report on two codes: one fast code (Toon and Ackerman, 1981, Applied Optics 20, No. 20, 3657-3660) that is capable of handling a core and shell of different materials, and a slower code (Pena and Pal, 2009, Computer Physics Comm., 180, 2348-2354) that can handle an arbitrary number of layers. Typical times to calculate a phase function for a wide size distribution (gamma distribution with normalized variance of 0.1) for the faster core/shell code are about 0.75 seconds per wavelength. The newer slower, but more versatile, code runs about 10X slower, and will typically double or triple the execution time of our multiple scattering code when it is incorporated. Optimizing integration over particle size distributions to achieve suitable accuracy can minimize computational costs; we have therefore determined a rule for the number of intervals in the size distribution. Sample calculations will be presented to show effects

  6. Water and acid soluble trace metals in atmospheric particles

    NASA Technical Reports Server (NTRS)

    Lindberg, S. E.; Harriss, R. C.

    1983-01-01

    Continental aerosols are collected above a deciduous forest in eastern Tennessee and subjected to selective extractions to determine the water-soluble and acid-leachable concentrations of Cd, Mn, Pb, and Zn. The combined contributions of these metals to the total aerosol mass is 0.5 percent, with approximately 70 percent of this attributable to Pb alone. A substantial fraction (approximately 50 percent or more) of the acid-leachable metals is soluble in distilled water. In general, this water-soluble fraction increases with decreasing particle size and with increasing frequency of atmospheric water vapor saturation during the sampling period. The pattern of relative solubilities (Zn being greater than Mn, which is approximately equal to Cd, which is greater than Pb) is found to be similar to the general order of the thermodynamic solubilities of the most probable salts of these elements in continental aerosols with mixed fossil fuel and soil sources.

  7. Characterization of ultrafine particle number concentration and new particle formation in urban environment of Taipei, Taiwan

    NASA Astrophysics Data System (ADS)

    Cheung, H. C.; Chou, C. C.-K.; Huang, W.-R.; Tsai, C.-Y.

    2013-04-01

    An intensive aerosol characterization experiment was performed at the Taipei Aerosol and Radiation Observatory (TARO, 25.02° N, 121.53° E) in the urban area of Taipei, Taiwan during July 2012. Number concentration and size distribution of aerosol particles were measured continuously, which were accompanied by concurrent measurements of mass concentration of submicron particles, PM (d ≤ 1 μm), and photolysis rate of ozone, J(O1D). The averaged number concentrations of total (Ntotal), accumulation mode (Nacu), Aitken mode (Ntotal), and nucleation mode (Nnuc) particles were 7.6 × 103 cm-3, 1.2 × 103 cm-3, 4.4 × 103 cm-3, and 1.9 × 103 cm-3, respectively. Accordingly, the ultrafine particles (UFPs, d ≤ 100 nm) accounted for 83% of the total number concentration of particles measured in this study (10 ≤ d ≤ 429 nm), indicating the importance of UFPs to the air quality and radiation budget in Taipei and its surrounding areas. An averaged Nnuc/NOx ratio of ~60 cm-3 ppbv-1 was derived from nighttime measurements, which was suggested to be the characteristic of vehicle emissions that contributed to the "urban background" of nucleation mode particles throughout a day. On the contrary, it was found that the number concentration of nucleation mode particles was independent of NOx and could be elevated up to 10 times the "urban background" levels during daytime, suggesting a substantial amount of nucleation mode particles produced from photochemical processes. Consistency in the time series of the nucleation mode particle concentration and the proxy of H2SO4 production, UVB·SO2, for new particle formation (NPF) events showed that photo-oxidation of SO2 was responsible for the formation of new particles in our study area. Moreover, analysis upon the diameter growth rate, GR, and formation rate of nucleation mode particles, J10-25, found that the values of GR (8.5 ± 6.8 nm h-1) in Taipei were comparable to other urban areas, whereas the values of J10-25 (2.2 ± 1

  8. [Pollution characteristics of organic acids in atmospheric particles during haze periods in autumn in Guangzhou].

    PubMed

    Tan, Ji-hua; Zhao, Jing-ping; Duan, Jing-chun; Ma, Yong-liang; He, Ke-bin; Yang, Fu-mo

    2013-05-01

    Total suspended particles (TSP), collected during a typical haze period in Guangzhou, were analyzed for the fatty acids (C12-C30) and low molecular weight dicarboxylic acids (C3-C9) using gas chromatography/mass spectrometry (GC/MS). The results showed that the concentration of total fatty and carboxylic acids was pretty high during the haze episode. The ratios of fatty acids and carboxylic acids in haze to those in normal days were 1.9 and 2.5, respectively. During the episode of the increasing pollution, the fatty acids and carboxylic acids at night (653 ng x m(-3)) was higher than that (487 ng x m(-3)) in days. After that, the level of fatty acids and carboxylic acids in days (412 ng x m(-3)) was higher than that (336 ng x m(-3)) at night. In general, the time-series of fatty acids and carboxylic acids was similar to that of the air particle and carbonaceous species, however, the trend of the ratio of fatty acids and carboxylic acids to organic carbon was opposite to that of air particle and carbonaceous species. This ratio decreased with the increase of the concentration of air particle and after the night of 27th, the ratio increased with the decrease in the concentration of air particle. The results showed that haze pollution had a significant inhibitory effect on the enrichment of fatty and carboxylic acids. Based on the ratio of malonate to succinate (C3/C4), it could be found that primary sources contribute more to the atmospheric fatty and carboxylic acids during the autumn haze pollution periods in Guangzhou.

  9. Particle number concentrations over Europe in 2030: the role of emissions and new particle formation

    NASA Astrophysics Data System (ADS)

    Ahlm, L.; Julin, J.; Fountoukis, C.; Pandis, S. N.; Riipinen, I.

    2013-04-01

    The aerosol particle number concentration is a key parameter when estimating impacts of aerosol particles on climate and human health. We use a three-dimensional chemical transport model with detailed microphysics, PMCAMx-UF, to simulate particle number concentrations over Europe in the year 2030, by applying emission scenarios for trace gases and primary aerosols. The scenarios are based on expected changes in anthropogenic emissions of sulphur dioxide, ammonia, nitrogen oxides, and primary aerosol particles with a diameter less than 2.5 μm (PM2.5) focusing on a photochemically active period. For the baseline scenario, which represents a best estimate of the evolution of anthropogenic emissions in Europe, PMCAMx-UF predicts that the total particle number concentration (Ntot) will decrease by 30-70% between 2008 and 2030. The number concentration of particles larger than 100 nm (N100), a proxy for cloud condensation nuclei (CCN) concentration, is predicted to decrease by 40-70% during the same period. The predicted decrease in Ntot is mainly a result of reduced new particle formation due to the expected reduction in SO2 emissions, whereas the predicted decrease in N100 is a result of both decreasing condensational growth and reduced primary aerosol emissions. For larger emission reductions, PMCAMx-UF predicts reductions of 60-80% in both Ntot and N100 over Europe. Sensitivity tests reveal that a reduction in SO2 emissions is far more efficient than any other emission reduction investigated, in reducing Ntot. For N100, emission reductions of both SO2 and PM2.5 contribute significantly to the reduced concentration, even though SO2 plays the dominant role once more. The impact of SO2 for both new particle formation and growth over Europe may be expected to be somewhat higher during the simulated period with high photochemical activity than during times of the year with less incoming solar radiation. The predicted reductions in both Ntot and N100 between 2008 and 2030

  10. Particle number concentrations over Europe in 2030: the role of emissions and new particle formation

    NASA Astrophysics Data System (ADS)

    Ahlm, L.; Julin, J.; Fountoukis, C.; Pandis, S. N.; Riipinen, I.

    2013-10-01

    The aerosol particle number concentration is a key parameter when estimating impacts of aerosol particles on climate and human health. We use a three-dimensional chemical transport model with detailed microphysics, PMCAMx-UF, to simulate particle number concentrations over Europe in the year 2030, by applying emission scenarios for trace gases and primary aerosols. The scenarios are based on expected changes in anthropogenic emissions of sulfur dioxide, ammonia, nitrogen oxides, and primary aerosol particles with a diameter less than 2.5 μm (PM2.5) focusing on a photochemically active period, and the implications for other seasons are discussed. For the baseline scenario, which represents a best estimate of the evolution of anthropogenic emissions in Europe, PMCAMx-UF predicts that the total particle number concentration (Ntot) will decrease by 30-70% between 2008 and 2030. The number concentration of particles larger than 100 nm (N100), a proxy for cloud condensation nuclei (CCN) concentration, is predicted to decrease by 40-70% during the same period. The predicted decrease in Ntot is mainly a result of reduced new particle formation due to the expected reduction in SO2 emissions, whereas the predicted decrease in N100 is a result of both decreasing condensational growth and reduced primary aerosol emissions. For larger emission reductions, PMCAMx-UF predicts reductions of 60-80% in both Ntot and N100 over Europe. Sensitivity tests reveal that a reduction in SO2 emissions is far more efficient than any other emission reduction investigated, in reducing Ntot. For N100, emission reductions of both SO2 and PM2.5 contribute significantly to the reduced concentration, even though SO2 plays the dominant role once more. The impact of SO2 for both new particle formation and growth over Europe may be expected to be somewhat higher during the simulated period with high photochemical activity than during times of the year with less incoming solar radiation. The predicted

  11. Outdoor ultrafine particle concentrations in front of fast food restaurants.

    PubMed

    Vert, Cristina; Meliefste, Kees; Hoek, Gerard

    2016-01-01

    Ultrafine particles (UFPs) have been associated with negative effects on human health. Emissions from motor vehicles are the principal source of UFPs in urban air. A study in Vancouver suggested that UFP concentrations were related to density of fast food restaurants near the monitoring sites. A previous monitoring campaign could not separate the contribution of restaurants from road traffic. The main goal of this study has been the quantification of fast food restaurants' contribution to outdoor UFP concentrations. A portable particle number counter (DiscMini) has been used to carry out mobile monitoring in a largely pedestrianized area in the city center of Utrecht. A fixed route passing 17 fast food restaurants was followed on 8 days. UFP concentrations in front of the restaurants were 1.61 times higher than in a nearby square without any local sources used as control area and 1.22 times higher compared with all measurements conducted in between the restaurants. Adjustment for other sources such as passing mopeds, smokers or candles did not explain the increase. In conclusion, fast food restaurants result in significant increases in outdoor UFP concentrations in front of the restaurant.

  12. Effect of precursor concentration and spray pyrolysis temperature upon hydroxyapatite particle size and density.

    PubMed

    Cho, Jung Sang; Lee, Jeong-Cheol; Rhee, Sang-Hoon

    2016-02-01

    In the synthesis of hydroxyapatite powders by spray pyrolysis, control of the particle size was investigated by varying the initial concentration of the precursor solution and the pyrolysis temperature. Calcium phosphate solutions (Ca/P ratio of 1.67) with a range of concentrations from 0.1 to 2.0 mol/L were prepared by dissolving calcium nitrate tetrahydrate and diammonium hydrogen phosphate in deionized water and subsequently adding nitric acid. Hydroxyapatite powders were then synthesized by spray pyrolysis at 900°C and at 1500°C, using these calcium phosphate precursor solutions, under the fixed carrier gas flow rate of 10 L/min. The particle size decreased as the precursor concentration decreased and the spray pyrolysis temperature increased. Sinterability tests conducted at 1100°C for 1 h showed that the smaller and denser the particles were, the higher the relative densities were of sintered hydroxyapatite disks formed from these particles. The practical implication of these results is that highly sinterable small and dense hydroxyapatite particles can be synthesized by means of spray pyrolysis using a low-concentration precursor solution and a high pyrolysis temperature under a fixed carrier gas flow rate.

  13. Particle number concentrations near the Rome-Ciampino city airport

    NASA Astrophysics Data System (ADS)

    Stafoggia, M.; Cattani, G.; Forastiere, F.; Di Menno di Bucchianico, A.; Gaeta, A.; Ancona, C.

    2016-12-01

    Human exposure to ultrafine particles (UFP) has been postulated to be associated with adverse health effects, and there is interest regarding possible measures to reduce primary emissions. One important source of UFP are airport activities, with aircraft take-offs being the most relevant one. We implemented two measurement campaigns of total particle number concentrations (PNC), a proxy for UFP, near a medium-size airport in central Italy. One-minute PNC averages were collected on June 2011 and January 2012 concurrently with 30-min average meteorological data on temperature and wind speed/direction. Data on minute-specific take-offs and landings were obtained by the airport authorities. We applied statistical regression models to relate PNC data to the presence of aircraft activities while adjusting for time trends and meteorology, and estimated the increases in PNC ±15 min before and after take-offs and landings. We repeated the analyses considering prevalent wind direction and by size of the aircraft. We estimated PNC increases of 5400 particles/cm3/minute during the 15 min before and after take-offs, with a peak of 19,000 particles/cm3/minute within 5 min after take-offs. Corresponding figures for landings were 1300 and 1000 particles, respectively. The highest PNC estimates were obtained when the prevailing wind came from the runway direction, and led to estimated PNC increases of 60,000 particles/cm3/minute within 5 min after take-offs. No main differences were noted from the exhaust of different types of aircrafts. The area surrounding Ciampino airport is densely inhabited, raising concerns about the potential adverse effects of long-term and short-term exposure to airport-borne UFP. A close monitoring of airport activities and emissions is mandatory to reduce the public health impact of the airport on the nearby population.

  14. Polarizing Field and Particle Concentration Dependence of the Magnetic Loss Power in Ferrofluids

    NASA Astrophysics Data System (ADS)

    Fannin, Paul C.; Malaescu, Iosif; Stefu, Nicoleta; Marin, Catalin N.

    2009-05-01

    The frequency (f) and polarizing field (H) dependence of the complex magnetic permeability μ(f,H) = μ'(f,H)-iμ″(f,H), of different magnetic fluid samples, over the range 100 MHz to 6 GHz and 0 to 102.4 kA/m, respectively, were analyzed. Starting from an initial magnetic fluid sample (sample A) with magnetite particles dispersed in kerosene and stabilized with oleic acid, having particle concentration n = 19.16ṡ1022 m-3, three samples were obtained by successive dilution with kerosene (with a dilution ratio 2:3) (samples A1, A2, and A3). Based on the complex magnetic permeability measurements of each sample, and for each field value, values of the specific magnetic loss power were obtained. We have also studied the dependence on particle concentration of the magnetic loss power, both in zero polarizing field and in the presence of the polarizing field.

  15. Particle Size Concentration Distribution and Influences on Exhaled Breath Particles in Mechanically Ventilated Patients

    PubMed Central

    Chen, Yi-Fang; Huang, Sheng-Hsiu; Wang, Yu-Ling; Chen, Chun-Wan

    2014-01-01

    Humans produce exhaled breath particles (EBPs) during various breath activities, such as normal breathing, coughing, talking, and sneezing. Airborne transmission risk exists when EBPs have attached pathogens. Until recently, few investigations had evaluated the size and concentration distributions of EBPs from mechanically ventilated patients with different ventilation mode settings. This study thus broke new ground by not only evaluating the size concentration distributions of EBPs in mechanically ventilated patients, but also investigating the relationship between EBP level and positive expiratory end airway pressure (PEEP), tidal volume, and pneumonia. This investigation recruited mechanically ventilated patients, with and without pneumonia, aged 20 years old and above, from the respiratory intensive care unit of a medical center. Concentration distributions of EBPs from mechanically ventilated patients were analyzed with an optical particle analyzer. This study finds that EBP concentrations from mechanically ventilated patients during normal breathing were in the range 0.47–2,554.04 particles/breath (0.001–4.644 particles/mL). EBP concentrations did not differ significantly between the volume control and pressure control modes of the ventilation settings in the mechanically ventilated patients. The patient EBPs were sized below 5 µm, and 80% of them ranged from 0.3 to 1.0 µm. The EBPs concentrations in patients with high PEEP (> 5 cmH2O) clearly exceeded those in patients with low PEEP (≤ 5 cmH2O). Additionally, a significant negative association existed between pneumonia duration and EBPs concentration. However, tidal volume was not related to EBPs concentration. PMID:24475230

  16. Decreasing particle number concentrations in a warming atmosphere and implications

    NASA Astrophysics Data System (ADS)

    Yu, F.; Luo, G.; Turco, R. P.; Ogren, J. A.; Yantosca, R. M.

    2011-10-01

    New particle formation contributes significantly to the number concentration of condensation nuclei (CN) as well as cloud CN (CCN), a key factor determining aerosol indirect radiative forcing of the climate system. Using a physics-based nucleation mechanism that is consistent with a range of field observations of aerosol formation, it is shown that projected increases in global temperatures could significantly inhibit new particle, and CCN, formation rates worldwide. An analysis of CN concentrations observed at four NOAA ESRL/GMD baseline stations since the 1970s and two other sites since 1990s reveals long-term decreasing trends consistent with these predictions. The analysis also suggests, owing to larger observed CN reductions at remote sites than can be explained by the basic nucleation mechanism, that dimethylsulphide (DMS) emissions may be decreasing worldwide with increasing global temperatures, implying a positive DMS-based cloud feedback forcing of the climate ("CLAW"). The combined effects of rising temperatures on aerosol nucleation rates, and possibly on DMS emissions, may imply substantial decreases in future tropospheric particle abundances associated with global warming, delineating a potentially significant feedback mechanism that increases Earth's climate sensitivity to greenhouse gas emissions. Further research is needed to quantify the magnitude of such a feedback process.

  17. Decreasing particle number concentrations in a warming atmosphere and implications

    NASA Astrophysics Data System (ADS)

    Yu, F.; Luo, G.; Turco, R. P.; Ogren, J. A.; Yantosca, R. M.

    2012-03-01

    New particle formation contributes significantly to the number concentration of condensation nuclei (CN) as well as cloud CN (CCN), a key factor determining aerosol indirect radiative forcing of the climate system. Using a physics-based nucleation mechanism that is consistent with a range of field observations of aerosol formation, it is shown that projected increases in global temperatures could significantly inhibit new particle, and CCN, formation rates worldwide. An analysis of CN concentrations observed at four NOAA ESRL/GMD baseline stations since the 1970s and two other sites since 1990s reveals long-term decreasing trends that are consistent in sign with, but are larger in magnitude than, the predicted temperature effects. The possible reasons for larger observed long-term CN reductions at remote sites are discussed. The combined effects of rising temperatures on aerosol nucleation rates and other chemical and microphysical processes may imply substantial decreases in future tropospheric particle abundances associated with global warming, delineating a potentially significant feedback mechanism that increases Earth's climate sensitivity to greenhouse gas emissions. Further research is needed to quantify the magnitude of such a feedback process.

  18. Sea salt particles react with organic acids in atmosphere

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-10-01

    Sea salt, or sodium chloride (NaCl), particles lofted into the atmosphere by the motion of ocean waves affect atmospheric chemistry; these particles can undergo reactions with trace atmospheric gases and internal mixing with anthropogenic pollutants depositing on particle surface. Several studies have found that NaCl particles in the atmosphere are depleted in chloride and have attributed this to reactions with inorganic acids. However, reactions with inorganic acids do not fully account for the observed chloride depletion in some locations; it has been suggested that organic acids, likely of anthropogenic origin, may also play a role in chloride depletion, but results have been uncertain.

  19. Serum sialic acid and CEA concentrations in human breast cancer.

    PubMed

    Hogan-Ryan, A; Fennelly, J J; Jones, M; Cantwell, B; Duffy, M J

    1980-04-01

    The concentration of bound sialic acid in the sera of 56 normal subjects and 65 subjects with breast cancer was measured, in order to determine (1) whether serum sialic acid concentrations are raised in breast cancer and (2) whether the concentration of sialic acid in serum reflects tumour stage. The amount of sialic acid in serum was compared to serum carcinoembryonic antigen (CEA) values. Urinary hydroxyproline and serum alkaline phosphatase concentrations were used as indicators of bone and liver involvement. Erythrocyte sedimentation rate (ESR) was also measured. Significantly elevated serum sialic acid concentrations were found in breast cancer, and showed correlation with tumour stage. Serum sialic acid values did not correlate with CEA values. The results suggest that measurement of serum sialic acid concentrations may be of adjunctive value in assessing tumour stage.

  20. Characterization of the interactions within fine particle mixtures in highly concentrated suspensions for advanced particle processing.

    PubMed

    Otsuki, Akira; Bryant, Gary

    2015-12-01

    This paper aims to summarize recent investigations into the dispersion of fine particles, and the characterization of their interactions, in concentrated suspensions. This summary will provide a better understanding of the current status of this research, and will provide useful feedback for advanced particle processing. Such processes include the fabrication of functional nanostructures and the sustainable beneficiation of complex ores. For example, there has been increasing demand for complex ore utilization due to the noticeable decrease in the accessibility of high grade and easily extractable ores. In order to maintain the sustainable use of mineral resources, the effective beneficiation of complex ores is urgently required. It can be successfully achieved only with selective particle/mineral dispersion/liberation and the assistance of mineralogical and particle characterization.

  1. Free Amino-acid Concentrations in Fetal Fluids

    PubMed Central

    Cockburn, F.; Robins, S. P.; Forfar, J. O.

    1970-01-01

    The pattern of free amino-acid concentrations in maternal venous plasma, fetal umbilical arterial plasma, fetal urine, and amniotic fluid at 15 to 20 weeks' gestation has been determined. Free amino-acid concentrations were greater in fetal plasma than in maternal plasma, amniotic fluid, or fetal urine. The ratios of amino-acid concentrations in fetal umbilical arterial plasma and urine indicate that the fetal kidney can effectively conserve amino-acids, possibly reaching an adult level of competence in this respect. There was little correlation between amino-acid concentrations in the fluids analysed with the exception of that between amniotic fluid and fetal urine. PMID:5472758

  2. High concentrations of coarse particles emitted from a cattle feeding operation

    NASA Astrophysics Data System (ADS)

    Hiranuma, N.; Brooks, S. D.; Gramann, J.; Auvermann, B. W.

    2011-08-01

    Housing roughly 10 million head of cattle in the United States alone, open air cattle feedlots represent a significant but poorly constrained source of atmospheric particles. Here we present a comprehensive characterization of physical and chemical properties of particles emitted from a large representative cattle feedlot in the Southwest United States. In the summer of 2008, measurements and samplings were conducted at the upwind and downwind edges of the facility. A series of far-field measurements and samplings was also conducted 3.5 km north of the facility. Two instruments, a GRIMM Sequential Mobility Particle Sizer (SMPS) and a GRIMM Portable Aerosol Spectrometer (PAS), were used to measure particle size distributions over the range of 0.01 to 25 μm diameter. Raman microspectroscopy was used to determine the chemical composition of particles on a single particle basis. Volume size distributions of dust were dominated by coarse mode particles. Twenty-four hour averaged concentrations of PM10 (particulate matter with a diameter of 10 μm or less) were as high as 1200 μg m-3 during the campaign. The primary constituents of the particulate matter were carbonaceous materials, such as humic acid, water soluble organics, and less soluble fatty acids, including stearic acid and tristearin. A significant fraction of the organic particles was present in internal mixtures with salts. Basic characteristics such as size distribution and composition of agricultural aerosols were found to be different than the properties of those found in urban and semi-urban aerosols. Failing to account for such differences may lead to errors in estimates of aerosol effects on local air quality, visibility, and public health.

  3. Particle size and metals concentrations of dust from a paint manufacturing plant.

    PubMed

    Huang, Siew Lai; Yin, Chun-Yang; Yap, Siaw Yang

    2010-02-15

    In this study, the particle size distribution and concentration of metallic elements of solvent- and water-based paint dust from bulk dust collected from dust-collecting hoppers were determined. The mean particle size diameter over a 12-week sampling period was determined using a particle size analyzer. The metals composition and concentration of the dust were determined via acid digestion technique followed by concentration analysis using inductively coupled plasma. The volume weighted mean particle diameters were found to be 0.941+/-0.016 and 8.185+/-0.201 microm for solvent- and water-based paint dust, respectively. The mean concentrations of metals in solvent-based paint dust were found to be 100+/-20.00 microg/g (arsenic), 1550+/-550.00 microg/g (copper), 15,680+/-11,780.00 microg/g (lead) and 30,460+/-10,580.00 microg/g (zinc) while the mean concentrations of metals in water-based paint dust were found to be 20.65+/-6.11 microg/g (arsenic), 9.14+/-14.65 microg/g (copper), 57.46+/-22.42 microg/g (lead) and 1660+/-1260 microg/g (zinc). Both paint dust types could be considered as hazardous since almost all of the dust particles were smaller than 10 microm. Particular emphasis on containment of solvent-based paint dust particles should be given since it was shown that they were very fine in size (<1 microm) and had high lead and zinc concentrations.

  4. Field evaluation of nanofilm detectors for measuring acidic particles in indoor and outdoor air.

    PubMed

    Cohen, Beverly S; Heikkinen, Maire S A; Hazi, Yair; Gao, Hai; Peters, Paul; Lippmann, Morton

    2004-09-01

    This field evaluation study was conducted to assess new technology designed to measure number concentrations of strongly acidic ultrafine particles. Interest in these particles derives from their potential to cause adverse health effects. Current methods for counting and sizing airborne ultrafine particles cannot isolate those particles that are acidic. We hypothesized that the size-resolved number concentration of such particles to which people are exposed could be measured by newly developed iron nanofilm detectors on which sulfuric acid (H2SO4*) droplets produce distinctive ringed reaction sites visible by atomic force microscopy (AFM). We carried out field measurements using an array of samplers, with and without the iron nanofilm detectors, that allowed indirect comparison of particle number concentrations and size-resolved measures of acidity. The iron nanofilm detectors are silicon chips (5 mm x 5 mm x 0.6 mm) that are coated with iron by vapor deposition. The iron layer was 21.5 or 26 nm thick for the two batches used in these experiments. After exposure the detector surface was scanned topographically by AFM to view and enumerate the ringed acid reaction sites and deposited nonacidic particles. The number of reaction sites and particles per scan can be counted directly on the image displayed by AFM. Sizes can also be measured, but for this research we did not size particles collected in the field. The integrity of the surface of iron nanofilm detectors was monitored by laboratory analysis and by deploying blank detectors and detectors that had previously been exposed to H2SO4 calibration aerosols. The work established that the detectors could be used with confidence in temperate climates. Under extreme high humidity and high temperature, the surface film was liable to detach from the support, but remaining portions of the film still produced reliable data. Exposure to ambient gases in a filtered air canister during the field tests did not affect the film

  5. Mathematical modeling of atmospheric fine particle-associated primary organic compound concentrations

    NASA Astrophysics Data System (ADS)

    Rogge, Wolfgang F.; Hildemann, Lynn M.; Mazurek, Monica A.; Cass, Glen R.; Simoneit, Bernd R. T.

    1996-08-01

    An atmospheric transport model has been used to explore the relationship between source emissions and ambient air quality for individual particle phase organic compounds present in primary aerosol source emissions. An inventory of fine particulate organic compound emissions was assembled for the Los Angeles area in the year 1982. Sources characterized included noncatalyst- and catalyst-equipped autos, diesel trucks, paved road dust, tire wear, brake lining dust, meat cooking operations, industrial oil-fired boilers, roofing tar pots, natural gas combustion in residential homes, cigarette smoke, fireplaces burning oak and pine wood, and plant leaf abrasion products. These primary fine particle source emissions were supplied to a computer-based model that simulates atmospheric transport, dispersion, and dry deposition based on the time series of hourly wind observations and mixing depths. Monthly average fine particle organic compound concentrations that would prevail if the primary organic aerosol were transported without chemical reaction were computed for more than 100 organic compounds within an 80 km × 80 km modeling area centered over Los Angeles. The monthly average compound concentrations predicted by the transport model were compared to atmospheric measurements made at monitoring sites within the study area during 1982. The predicted seasonal variation and absolute values of the concentrations of the more stable compounds are found to be in reasonable agreement with the ambient observations. While model predictions for the higher molecular weight polycyclic aromatic hydrocarbons (PAH) are in agreement with ambient observations, lower molecular weight PAH show much higher predicted than measured atmospheric concentrations in the particle phase, indicating atmospheric decay by chemical reactions or evaporation from the particle phase. The atmospheric concentrations of dicarboxylic acids and aromatic polycarboxylic acids greatly exceed the contributions that

  6. Concentration of Sulphuric Acid: Premature Failure of Bamag Pots,

    DTIC Science & Technology

    1983-05-01

    AD-A139 523 CONCENTRATION OF SULPHURIC ACID: PREMATURE FAILURE OF 1/1 BAMAG POTS(U) MATERIALS RESEARCH LABS ASCOT VAL (AUSTRALIA) J J BATTEN ET AL...VICTORIA REPORT MRL-R-885 CONCENTRATION OF SULPHURIC ACID: PREMATURE FAILURE OF BAMAG POTS Jeffrey J. Batten & Peter J. Knuckey , *. ’ 3 : :, U...black . wi " te, m ith nv: IY)V DEPARTMENT OF DEFENCE MATERIALS RESEARCH LABORATORIES REPORT MRL-R-885 CONCENTRATION OF SULPHURIC ACID: PREMATURE

  7. Evaluation of the performance of a particle concentrator for on-line instrumentation

    NASA Astrophysics Data System (ADS)

    Saarikoski, S.; Carbone, S.; Cubison, M. J.; Hillamo, R.; Keronen, P.; Sioutas, C.; Worsnop, D. R.; Jimenez, J. L.

    2014-03-01

    The performance of the miniature Versatile Aerosol Concentration Enrichment System (m-VACES, Geller et al., 2005) was investigated in laboratory and field studies using on-line instruments. Laboratory tests focused on the behavior of monodisperse ammonium sulfate (AS) or dioctyl sebacate (DOS) particles in the m-VACES measured with the Aerodynamic Particle Sizer (APS) and Scanning Mobility Particle Sizer (SMPS). The ambient measurements were conducted at an urban site in Helsinki, Finland, where the operation of the m-VACES was explored in conjunction with a Soot Particle Aerosol Mass Spectrometer (SP-AMS) in addition to the SMPS. In laboratory tests, the growth of particles in water vapor produced a stable droplet size distribution independent of the original particle size. However, when the droplets were dried with the goal of measuring the original size distribution, a shift to larger particles was observed for small particle sizes (up to ~ 200 nm in mobility diameter). That growth was probably caused by water-soluble organic compounds absorbed on the water droplets from the gas phase, but not evaporated in the drying phase. In ambient measurements, similar enrichment factors (EFs) were observed for nitrate, sulfate, organics and refractory black carbon. Size-dependent EFs showed a small shift in the accumulation mode peak size after the m-VACES. The presence of acidic ambient particles affected the enrichment of ammonium and chloride. Gaseous ammonia was observed to be absorbed on acidic particles in the m-VACES, neutralizing the aerosol. As a result the contribution of ammonium to particle mass increased from 6% for ambient to 9% for concentrated aerosol. The opposite trend was observed for chloride, since a fraction of chloride evaporated from acidic particles upon neutralization. Organic artifacts were quite small but a small positive artifact for hydrocarbons and nitrogen-containing organic compounds was observed. However, the oxidation state of organics

  8. Particle-bound polycyclic aromatic hydrocarbon concentrations in transportation microenvironments

    NASA Astrophysics Data System (ADS)

    Houston, Douglas; Wu, Jun; Yang, Dongwoo; Jaimes, Guillermo

    2013-06-01

    This study is one of the first case studies to characterize the exposure of urban residents to traffic-related air pollution across locations and transportation microenvironments during everyday activities. Twenty-four adult residents of Boyle Heights, a neighborhood near downtown Los Angeles, carried a portable air pollution monitor and a Global Positioning Systems (GPS) tracking device for a total of 96 days. We found significant spatial and temporal variation in the particle-bound polycyclic aromatic hydrocarbon (pPAH) concentrations in transportation microenvironments. Average pPAH concentrations were higher while walking outdoors (190 ng m-3) compared to traveling in private passenger vehicles (138-155 ng m-3) or traveling in public transportation (61-124 ng m-3). Although travel comprised 5% of participant days, it was associated with 27% of overall daily pPAH exposure. Regression models explained 40-55% of the variation in daily average pPAH concentrations, and 40-44% of the variation in 1-min interval concentrations. Important factors included time spent traveling, travel speed, meteorological and nearby land use factors, time of day, and proximity to roadways. Although future research is needed to develop stronger predictive models, our study demonstrates portable tracking devices can provide a more complete, diurnal characterization of air pollution exposures for urban populations.

  9. [Adsorption of acid orange II from aqueous solution onto modified peat-resin particles].

    PubMed

    Sun, Qing-Ye; Yang, Lin-Zhang

    2007-06-01

    The adsorption of acid orange II onto modified peat-resin particles was examined in aqueous solution in a batch system. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms. The pseudo-first-order, pseudo-second-order kinetic and the intraparticle diffusion models were used to describe the kinetic data. The results showed that both Langmuir and Freundlich adsorption models could be used to describe the adsorption of acid orange II onto modified peat-resin particles. The maximum adsorption capacity was 71.43 mg x g(-1). The data analysis indicated that the intraparticle diffusion model could fit the results of kinetic experiment well. The adsorption rate of acid orange II onto modified peat-resin particles is affected by the initial dye concentrations, sizes and doses of modified peat-resin particles and agitation rates. The surface of modified peat-resin particle is the major adsorption area.

  10. Spatial variability of fine particle concentrations in three European areas

    NASA Astrophysics Data System (ADS)

    Hoek, Gerard; Meliefste, Kees; Cyrys, Josef; Lewné, Marie; Bellander, Tom; Brauer, Mike; Fischer, Paul; Gehring, Ulrike; Heinrich, Joachim; van Vliet, Patricia; Brunekreef, Bert

    Epidemiological studies of long-term air pollution effects have been hampered by difficulties in characterizing the spatial variation in air pollution. We conducted a study to assess the risk of long-term exposure to traffic-related air pollution for the development of inhalant allergy and asthma in children in Stockholm county, Munich and the Netherlands. Exposure to traffic-related air pollution was assessed through a 1-year monitoring program and regression modeling using exposure indicators. This paper documents the performance of the exposure monitoring strategy and the spatial variation of ambient particle concentrations. We measured the ambient concentration of PM2.5 and the reflectance of PM2.5 filters ('soot') at 40-42 sites representative of different exposure conditions of the three study populations. Each site was measured during four 14-day average sampling periods spread over one year (spring 1999 to summer 2000). In each study area, a continuous measurement site was operated to remove potential bias due to temporal variation. The selected approach was an efficient method to characterize spatial differences in annual average concentration between a large number of sites in each study area. Adjustment with data from the continuous measurement site improved the precision of the calculated annual averages, especially for PM2.5. Annual average PM2.5 concentrations ranged from 11 to 20 μg/m 3 in Munich, from 8 to 16 μg/m 3 in Stockholm and from 14 to 26 μg/m 3 in the Netherlands. Larger spatial contrasts were found for the absorption coefficient of PM2.5. PM2.5 concentrations were on average 17-18% higher at traffic sites than at urban background sites, but PM2.5 absorption coefficients at traffic sites were between 31% and 55% increased above background. This suggests that spatial variation of traffic-related air pollution may be underestimated if PM2.5 only is measured.

  11. Indoor concentrations of fine particles and particle-bound PAHs in Gothenburg, Sweden

    NASA Astrophysics Data System (ADS)

    Johannesson, S.; Bergemalm-Rynell, K.; Strandberg, B.; Sällsten, G.

    2009-02-01

    Fine particles are formed in a variety of processes, both natural and anthropogenic. Epidemiological studies have shown an association between exposure to particulate matter and adverse health effects. Airborne particles contain a variety of compounds, including polycyclic aromatic hydrocarbons (PAHs), and several of the PAHs are known or suspected carcinogens. In this study, stationary measurements of PM2.5 were performed in the residences of 20 study participants along with simultaneous monitoring at an urban background site. The collected particle mass was then analyzed for its content of some particle-bound PAHs using GC-MS. The median level of PM2.5 indoors was 7.3 μg/m3 and in urban background 5.3 μg/m3. For benzo(a)pyrene (B(a)P) the corresponding results were 10 pg/m3 and 35 pg/m3, respectively. There were significant correlations between indoor and ambient levels for both PM2.5 (rs=0.58, p=0.02) and B(a)P (rs=0.67, p=0.007). No significant correlation was, however, found between the concentration of PM2.5 and the associated levels of the investigated PAH compounds. This finding implies that exposure to B(a)P or other particle-bound PAH components needs to be separately assessed.

  12. Differences in metal concentration by particle size in house dust and soil.

    PubMed

    Beamer, Paloma I; Elish, Christina A; Roe, Denise J; Loh, Miranda M; Layton, David W

    2012-03-01

    The majority of particles that adhere to hands are <63 μm in diameter yet risk assessments for soil remediation are typically based on soil samples sieved to <250 μm. The objective of our study was to determine if there is a significant difference in metal concentration by particle size in both house dust and soil. We obtained indoor dust and yard soil samples from 10 houses in Tucson, Arizona. All samples were sieved to <63 μm and 63 to <150 μm and analyzed for 30 elements via ICP-MS following nitric acid digestion. We conducted t-tests of the log-transformed data to assess for significant differences that were adjusted with a Bonferroni correction to account for multiple comparisons. In house dust, significant differences in concentration were observed for Be, Al, and Mo between particles sizes, with a higher concentration observed in the smaller particle sizes. Significant differences were also determined for Mg, Ca, Cr, Co, Cu, Ge, Zr, Ag, Ba, and Pb concentration in yard soil samples, with the higher concentration observed in the smaller particles size for each element. The results of this exploratory study indicate that current risk assessment practices for soil remediation may under estimate non-dietary ingestion exposure. This is of particular concern for young children who are more vulnerable to this exposure route due to their high hand mouthing frequencies. Additional studies with a greater number of samples and wider geographic distribution with different climates and soil types should be completed to determine the most relevant sampling practices for risk assessment.

  13. Differences in Metal Concentration by Particle Size in House Dust and Soil

    PubMed Central

    Elish, Christina A.; Roe, Denise J.; Loh, Miranda; Layton, David W.

    2013-01-01

    The majority of particles that adhere to hands are <63 μm in diameter yet risk assessments for soil remediation are typically based on soil samples sieved to <250 μm. The objective of our study was to determine if there is a significant difference in metal concentration by particle size in both house dust and soil. We obtained indoor dust and yard soil samples from 10 houses in Tucson, Arizona. All samples were sieved to <63 μm and 63 to <150 μm and analyzed for 30 elements via ICP-MS following nitric acid digestion. We conducted t-tests of the log-transformed data to assess for significant differences that were adjusted with a Bonferroni correction to account for multiple comparisons. In house dust significant differences in concentration were observed for Be, Al, and Mo between particles sizes, with a higher concentration observed in the smaller particles size. Significant differences were also determined for Mg, Ca, Cr, Co, Cu, Ge, Zr, Ag, Ba, and Pb concentration in yard soil samples, with the higher concentration observed in the smaller particles size for each element. The results of this exploratory study indicate that current risk assessment practices for soil remediation may under estimate non-dietary ingestion exposure. This is of particular concern for young children who are more vulnerable to this exposure route due to their high hand mouthing frequencies. Additional studies with a greater number of samples and wider geographic distribution with different climates and soil types should be completed to determine the most relevant sampling practices for risk assessment. PMID:22245917

  14. Submicron particle mass concentrations and sources in the Amazonian wet season (AMAZE-08)

    SciTech Connect

    Chen, Q.; Farmer, D. K.; Rizzo, L. V.; Pauliqueivis, T.; Kuwata, Mikinori; Karl, Thomas G.; Guenther, Alex B.; Allan, James D.; Coe, H.; Andreae, M. O.; Poeschl, U.; Jiminez, J. L.; Artaxo, Paulo; Martin, Scot T.

    2015-01-01

    Real-time mass spectra of non-refractory component of submicron aerosol particles were recorded in a tropical rainforest in the central Amazon basin during the wet season of 2008, as a part of the Amazonian Aerosol Characterization Experiment (AMAZE-08). Organic components accounted on average for more than 80% of the non-refractory submicron particle mass concentrations during the period of measurements. Ammonium was present in sufficient quantities to halfway neutralize sulfate. In this acidic, isoprene-dominated, low-NOx environment the high-resolution mass spectra as well as mass closures with ion chromatography measurements did not provide evidence for significant contributions of organosulfate species, at least at concentrations above uncertainty levels. Positive-matrix factorization of the time series of particle mass spectra identified four statistical factors to account for the variance of the signal intensities of the organic constituents: a factor HOA having a hydrocarbon-like signature and identified as regional emissions of primary organic material, a factor OOA-1 associated with fresh production of secondary organic material by a mechanism of BVOC oxidation followed by gas-to-particle conversion, a factor OOA-2 consistent with reactive uptake of isoprene oxidation products, especially epoxydiols by acidic particles, and a factor OOA-3 associated with long range transport and atmospheric aging. The OOA-1, -2, and -3 factors had progressively more oxidized signatures. Diameter-resolved mass spectral markers also suggested enhanced reactive uptake of isoprene oxidation products to the accumulation mode for the OOA-2 factor, and such size partitioning can be indicative of in-cloud process. The campaign-average factor loadings were in a ratio of 1.1:1.0 for the OOA-1 compared to the OOA-2 pathway, suggesting the comparable importance of gas-phase compared to particle-phase (including cloud waters) production pathways of secondary organic material during

  15. DICARBOXYLIC ACID CONCENTRATION TRENDS AND SAMPLING ARTIFACTS

    EPA Science Inventory

    Dicarboxylic acids associated with airborne particulate matter were measured during a summer period in Philadelphia that included multiple air pollution episodes. Samples were collected for two ten hour periods each day using a high volume sampler with two quartz fiber filters in...

  16. Convection in colloidal suspensions with particle-concentration-dependent viscosity.

    PubMed

    Glässl, M; Hilt, M; Zimmermann, W

    2010-07-01

    The onset of thermal convection in a horizontal layer of a colloidal suspension is investigated in terms of a continuum model for binary-fluid mixtures where the viscosity depends on the local concentration of colloidal particles. With an increasing difference between the viscosity at the warmer and the colder boundary the threshold of convection is reduced in the range of positive values of the separation ratio psi with the onset of stationary convection as well as in the range of negative values of psi with an oscillatory Hopf bifurcation. Additionally the convection rolls are shifted downwards with respect to the center of the horizontal layer for stationary convection psi>0 and upwards for the Hopf bifurcation (psi<0.

  17. FINE AND COARSE PARTICLES: CONCENTRATION RELATIONSHIPS RELEVANT TO EPIDEMIOLOGICAL STUDIES

    EPA Science Inventory

    Fine particles and coarse particles are defined in terms of the modal structure of particle size distributions typically observed in the atmosphere. Differences among the various modes are discussed. The fractions of fine and coarse particles collected in specific size ranges, ...

  18. Influence of coffee intake on urinary hippuric acid concentration.

    PubMed

    Ogawa, Masanori; Suzuki, Yoshihiro; Endo, Yoko; Kawamoto, Toshihiro; Kayama, Fujio

    2011-01-01

    Intake of foods and drinks containing benzoic acid influences the urinary hippuric acid (HA) concentration, which is used to monitor toluene exposure in Japan. Therefore, it is necessary to control the intake of benzoic acid before urine collection. Recently, some reports have suggested that components of coffee, such as chlorogenic, caffeic, and quinic acids are metabolized to HA. In this study, we evaluated the influence of coffee intake on the urinary HA concentration in toluene-nonexposed workers who had controlled their benzoic acid intake, and investigated which components of coffee influenced the urinary HA concentration. We collected urine from 15 healthy men who did not handle toluene during working hours, after they had consumed coffee, and we measured their urinary HA concentrations; the benzoic acid intake was controlled in these participants during the study period. The levels of chlorogenic, caffeic, and quinic acids in coffee were analyzed by LC-MS/MS. Urinary HA concentration increased significantly with increasing coffee consumption. Spectrophotometric LC-MS/MS analysis of coffee indicated that it contained chlorogenic and quinic acids at relatively high concentrations but did not contain benzoic acid. Our findings suggest that toluene exposure in coffee-consuming workers may be overestimated.

  19. Nucleic acid separations using superficially porous silica particles.

    PubMed

    Close, Elizabeth D; Nwokeoji, Alison O; Milton, Dafydd; Cook, Ken; Hindocha, Darsha M; Hook, Elliot C; Wood, Helen; Dickman, Mark J

    2016-04-01

    Ion pair reverse-phase liquid chromatography has been widely employed for nucleic acid separations. A wide range of alternative stationary phases have been utilised in conjunction with ion pair reverse-phase chromatography, including totally porous particles, non-porous particles, macroporous particles and monolithic stationary phases. In this study we have utilised superficially porous silica particles in conjunction with ion pair reverse-phase liquid chromatography for the analysis of nucleic acids. We have investigated a range of different pore-sizes and phases for the analysis of a diverse range of nucleic acids including oligonucleotides, oligoribonucleotides, phosphorothioate oligonucleotides and high molecular weight dsDNA and RNA. The pore size of the superficially porous silica particles was shown to significantly affect the resolution of the nucleic acids. Optimum separations of small oligonucleotides such as those generated in RNase mapping experiments were obtained with 80Å pore sizes and can readily be interfaced with mass spectrometry analysis. Improved resolution of larger oligonucleotides (>19mers) was observed with pore sizes of 150Å. The optimum resolution for larger dsDNA/RNA molecules was achieved using superficially porous silica particles with pore sizes of 400Å. Furthermore, we have utilised 150Å pore size solid-core particles to separate typical impurities of a fully phosphorothioated oligonucleotide, which are often generated in the synthesis of this important class of therapeutic oligonucleotide.

  20. Stability of lipid encapsulated ferulic acid particles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Encapsulation of bioactive compounds by a solid lipid matrix provides stability and a mechanism for controlled release in formulated products. Phenolic compounds exhibit antioxidant and antimicrobial activities and have applications as functional food and feed additives. Ferulic acid, a common pheno...

  1. Guarded capacitance probes for measuring particle concentration and flow

    DOEpatents

    Louge, M.Y.

    1995-10-17

    Guarded capacitance probe structures are constructed with guard electrodes surrounding one or more sensor electrodes and ground electrodes or grounded surfaces surrounding the guard electrodes. In a one sensor embodiment, the probe utilizes an apertured sensor electrode and the guard electrode both surrounds the sensor electrode and fills the aperture. This embodiment is particularly useful for measuring particle concentration in a fluid suspension contained within a vessel or pipe. The portion of the guard electrode within the aperture of the sensor electrode prevents electric field lines from emanating from the sensor electrode into the fluid suspension and toward infinity. A two sensor embodiment of the probe is useful for measuring flow velocities of fluid suspensions through cross correlation of the outputs generated by each sensor. The relative dimensions of the guard and sensor electrodes are selected to provide the most accurate measurements by confining the electric lines emanating from the sensor electrode or electrodes and terminating on the surrounding grounded surfaces to a small measurement volume of the fluid suspension near the vessel or pipe wall. 14 figs.

  2. Guarded capacitance probes for measuring particle concentration and flow

    DOEpatents

    Louge, Michel Y.

    1995-01-01

    Guarded capacitance probe structures are constructed with guard electrodes surrounding one or more sensor electrodes and ground electrodes or grounded surfaces surrounding the guard electrodes. In a one sensor embodiment, the probe utilizes an apertured sensor electrode and the guard electrode both surrounds the sensor electrode and fills the aperture. This embodiment is particularly useful for measuring particle concentration in a fluid suspension contained within a vessel or pipe. The portion of the guard electrode within the aperture of the sensor electrode prevents electric field lines from emanating from the sensor electrode into the fluid suspension and toward infinity. A two sensor embodiment of the probe is useful for measuring flow velocities of fluid suspensions through cross correlation of the outputs generated by each sensor. The relative dimensions of the guard and sensor electrodes are selected to provide the most accurate measurements by confining the electric lines emanating from the sensor electrode or electrodes and terminating on the surrounding grounded surfaces to a small measurement volume of the fluid suspension near the vessel or pipe wall.

  3. Guarded capacitance probes for measuring particle concentration and flow

    DOEpatents

    Louge, Michel Y.

    1996-01-01

    Guarded capacitance probe structures are constructed with guard electrodes surrounding one or more sensor electrodes and ground electrodes or grounded surfaces surrounding the guard electrodes. In a one sensor embodiment, the probe utilizes an apertured sensor electrode and the guard electrode both surrounds the sensor electrode and fills the aperture. This embodiment is particularly useful for measuring particle concentration in a fluid suspension contained within a vessel or pipe. The portion of the guard electrode within the aperture of the sensor electrode prevents electric field lines from emanating from the sensor electrode into the fluid suspension and toward infinity. A two sensor embodiment of the probe is useful for measuring flow velocities of fluid suspensions through cross correlation of the outputs generated by each sensor. The relative dimensions of the guard and sensor electrodes are selected to provide the most accurate measurements by confining the electric lines emanating from the sensor electrode or electrodes and terminating on the surrounding grounded surfaces to a small measurement volume of the fluid suspension near the vessel or pipe wall.

  4. Guarded capacitance probes for measuring particle concentration and flow

    DOEpatents

    Louge, M.Y.

    1996-08-13

    Guarded capacitance probe structures are constructed with guard electrodes surrounding one or more sensor electrodes and ground electrodes or grounded surfaces surrounding the guard electrodes. In a one sensor embodiment, the probe utilizes an apertured sensor electrode and the guard electrode both surrounds the sensor electrode and fills the aperture. This embodiment is particularly useful for measuring particle concentration in a fluid suspension contained within a vessel or pipe. The portion of the guard electrode within the aperture of the sensor electrode prevents electric field lines from emanating from the sensor electrode into the fluid suspension and toward infinity. A two sensor embodiment of the probe is useful for measuring flow velocities of fluid suspensions through cross correlation of the outputs generated by each sensor. The relative dimensions of the guard and sensor electrodes are selected to provide the most accurate measurements by confining the electric lines emanating from the sensor electrode or electrodes and terminating on the surrounding grounded surfaces to a small measurement volume of the fluid suspension near the vessel or pipe wall. 14 figs.

  5. Vaginal concentrations of lactic acid potently inactivate HIV

    PubMed Central

    Aldunate, Muriel; Tyssen, David; Johnson, Adam; Zakir, Tasnim; Sonza, Secondo; Moench, Thomas; Cone, Richard; Tachedjian, Gilda

    2013-01-01

    Objectives When Lactobacillus spp. dominate the vaginal microbiota of women of reproductive age they acidify the vagina to pH <4.0 by producing ∼1% lactic acid in a nearly racemic mixture of d- and l-isomers. We determined the HIV virucidal activity of racemic lactic acid, and its d- and l-isomers, compared with acetic acid and acidity alone (by the addition of HCl). Methods HIV-1 and HIV-2 were transiently treated with acids in the absence or presence of human genital secretions at 37°C for different time intervals, then immediately neutralized and residual infectivity determined in the TZM-bl reporter cell line. Results l-lactic acid at 0.3% (w/w) was 17-fold more potent than d-lactic acid in inactivating HIVBa-L. Complete inactivation of different HIV-1 subtypes and HIV-2 was achieved with ≥0.4% (w/w) l-lactic acid. At a typical vaginal pH of 3.8, l-lactic acid at 1% (w/w) more potently and rapidly inactivated HIVBa-L and HIV-1 transmitter/founder strains compared with 1% (w/w) acetic acid and with acidity alone, all adjusted to pH 3.8. A final concentration of 1% (w/w) l-lactic acid maximally inactivated HIVBa-L in the presence of cervicovaginal secretions and seminal plasma. The anti-HIV activity of l-lactic acid was pH dependent, being abrogated at neutral pH, indicating that its virucidal activity is mediated by protonated lactic acid and not the lactate anion. Conclusions l-lactic acid at physiological concentrations demonstrates potent HIV virucidal activity distinct from acidity alone and greater than acetic acid, suggesting a protective role in the sexual transmission of HIV. PMID:23657804

  6. Effect of ions on sulfuric acid-water binary particle formation: 1. Theory for kinetic- and nucleation-type particle formation and atmospheric implications

    NASA Astrophysics Data System (ADS)

    Merikanto, Joonas; Duplissy, Jonathan; Määttänen, Anni; Henschel, Henning; Donahue, Neil M.; Brus, David; Schobesberger, Siegfried; Kulmala, Markku; Vehkamäki, Hanna

    2016-02-01

    We derive a version of Classical Nucleation Theory normalized by quantum chemical results on sulfuric acid-water hydration to describe neutral and ion-induced particle formation in the binary sulfuric acid-water system. The theory is extended to treat the kinetic regime where the nucleation free energy barrier vanishes at high sulfuric acid concentrations or low temperatures. In the kinetic regime particle formation rates become proportional to sulfuric acid concentration to second power in the neutral system or first power in the ion-induced system. We derive simple general expressions for the prefactors in kinetic-type and activation-type particle formation calculations applicable also to more complex systems stabilized by other species. The theory predicts that the binary water-sulfuric acid system can produce strong new particle formation in the free troposphere both through barrier crossing and through kinetic pathways. At cold stratospheric and upper free tropospheric temperatures neutral formation dominates the binary particle formation rates. At midtropospheric temperatures the ion-induced pathway becomes the dominant mechanism. However, even the ion-induced binary mechanism does not produce significant particle formation in warm boundary layer conditions, as it requires temperatures below 0°C to take place at atmospheric concentrations. The theory successfully reproduces the characteristics of measured charged and neutral binary particle formation in CERN CLOUD3 and CLOUD5 experiments, as discussed in a companion paper.

  7. Highly accurate boronimeter assay of concentrated boric acid solutions

    SciTech Connect

    Ball, R.M. )

    1992-01-01

    The Random-Walk Boronimeter has successfully been used as an on-line indicator of boric acid concentration in an operating commercial pressurized water reactor. The principle has been adapted for measurement of discrete samples to high accuracy and to concentrations up to 6000 ppm natural boron in light water. Boric acid concentration in an aqueous solution is a necessary measurement in many nuclear power plants, particularly those that use boric acid dissolved in the reactor coolant as a reactivity control system. Other nuclear plants use a high-concentration boric acid solution as a backup shutdown system. Such a shutdown system depends on rapid injection of the solution and frequent surveillance of the fluid to ensure the presence of the neutron absorber. The two methods typically used to measure boric acid are the chemical and the physical methods. The chemical method uses titration to determine the ionic concentration of the BO[sub 3] ions and infers the boron concentration. The physical method uses the attenuation of neutrons by the solution and infers the boron concentration from the neutron absorption properties. This paper describes the Random-Walk Boronimeter configured to measure discrete samples to high accuracy and high concentration.

  8. Heart Rate Response and Lactic Acid Concentration in Squash Players.

    ERIC Educational Resources Information Center

    Beaudin, Paula; And Others

    1978-01-01

    It was concluded that playing squash is an activity that results in heart rate responses of sufficient intensity to elicit aerobic training effects without producing high lactic acid concentration in the blood. (MM)

  9. Effects of humic acid on physical and hydrodynamic properties of kaolin flocs by particle image velocimetry.

    PubMed

    Zhong, Runsheng; Zhang, Xihui; Xiao, Feng; Li, Xiaoyan; Cai, Zhonghua

    2011-07-01

    The physical and hydrodynamic properties of kaolin flocs including floc size, strength, regrowth, fractal structure and settling velocity were investigated by in situ particle image velocimetry technique at different humic acid concentration. Jar-test experimental results showed that the adsorbed humic acid had a significant influence on the coagulation process for alum and ferric chloride. Kaolin flocs formed with the ferric chloride were larger and stronger than those for alum at same humic acid concentration. Floc strength and regrowth were estimated by strength factor and recovery factor at different humic acid concentration. It was found that the increased humic acid concentration had a slight influence on the strength of kaolin flocs and resulted in much worse floc regrowth. In addition, the floc regrowth after breakage depended on the shear history and coagulants under investigation. The changes in fractal structure recorded continuously by in situ particle image velocimetry technique during the growth-breakage-regrowth processes provided a supporting information that the kaolin flocs exhibited a multilevel structure. It was proved that the increased humic acid concentration resulted in decrease in mass fractal dimension of kaolin flocs and consequently worse sedimentation performance through free-settling and microbalance techniques.

  10. Relationships among particle number, surface area, and respirable mass concentrations in automotive engine manufacturing.

    PubMed

    Heitbrink, William A; Evans, Douglas E; Ku, Bon Ki; Maynard, Andrew D; Slavin, Thomas J; Peters, Thomas M

    2009-01-01

    This study investigated the relationships between particle number, surface area, and respirable mass concentration measured simultaneously in a foundry and an automotive engine machining and assembly center. Aerosol concentrations were measured throughout each plant with a condensation particle counter for number concentration, a diffusion charger for active surface area concentration, and an optical particle counter for respirable mass concentration. At selected locations, particle size distributions were characterized with the optical particle counter and an electrical low pressure impactor. Statistical analyses showed that active surface area concentration was correlated with ultrafine particle number concentration and weakly correlated with respirable mass concentration. Correlation between number and active surface area concentration was stronger during winter (R2 = 0.6 for both plants) than in the summer (R2 = 0.38 and 0.36 for the foundry and engine plant respectively). The stronger correlation in winter was attributed to use of direct-fire gas fired heaters that produced substantial numbers of ultrafine particles with a modal diameter between 0.007 and 0.023 mu m. These correlations support findings obtained through theoretical analysis. Such analysis predicts that active surface area increasingly underestimates geometric surface area with increasing particle size, particularly for particles larger than 100 nm. Thus, a stronger correlation between particle number concentration and active surface area concentration is expected in the presence of high concentrations of ultrafine particles. In general, active surface area concentration may be a concentration metric that is distinct from particle number concentration and respirable mass concentration. For future health effects or toxicological studies involving nano-materials or ultrafine aerosols, this finding needs to be considered, as exposure metrics may influence data interpretation.

  11. ULTRAFINE PARTICLE CONCENTRATIONS NEAR FREEWAYS AT NIGHT OR EARLY MORNING UNDER CALM WEATHER CONDITIONS

    EPA Science Inventory

    There is evidence that ultrafine (UF) particles dominate the number concentrations in close proximity to the roadway. The UF particles are also known to be more toxic than larger sizes of PM on an equal mass basis. In this work, UF particle number concentrations were measured u...

  12. Studies of single aerosol particles containing malonic acid, glutaric acid, and their mixtures with sodium chloride. II. Liquid-state vapor pressures of the acids.

    PubMed

    Pope, Francis D; Tong, Hai-Jie; Dennis-Smither, Ben J; Griffiths, Paul T; Clegg, Simon L; Reid, Jonathan P; Cox, R Anthony

    2010-09-23

    The vapor pressures of two dicarboxylic acids, malonic acid and glutaric acid, are determined by the measurement of the evaporation rate of the dicarboxylic acids from single levitated particles. Two laboratory methods were used to isolate single particles, an electrodynamic balance and optical tweezers (glutaric acid only). The declining sizes of individual aerosol particles over time were followed using elastic Mie scattering or cavity enhanced Raman scattering. Experiments were conducted over the temperature range of 280-304 K and a range of relative humidities. The subcooled liquid vapor pressures of malonic and glutaric acid at 298.15 K were found to be 6.7(-1.2)(+2.6) x 10(-4) and 11.2(-4.7)(+9.6) x 10(-4) Pa, respectively, and the standard enthalpies of vaporization were respectively 141.9 ± 19.9 and 100.8 ± 23.9 kJ mol(-1). The vapor pressures of both glutaric acid and malonic acid in single particles composed of mixed inorganic/organic composition were found to be independent of salt concentration within the uncertainty of the measurements. Results are compared with previous laboratory determinations and theoretical predictions.

  13. Submicron particle mass concentrations and sources in the Amazonian wet season (AMAZE-08)

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Farmer, D. K.; Rizzo, L. V.; Pauliquevis, T.; Kuwata, M.; Karl, T. G.; Guenther, A.; Allan, J. D.; Coe, H.; Andreae, M. O.; Pöschl, U.; Jimenez, J. L.; Artaxo, P.; Martin, S. T.

    2015-04-01

    Real-time mass spectra of the non-refractory species in submicron aerosol particles were recorded in a tropical rainforest in the central Amazon Basin during the wet season from February to March 2008, as a part of the Amazonian Aerosol Characterization Experiment (AMAZE-08). Organic material accounted on average for more than 80% of the non-refractory submicron particle mass concentrations during the period of measurements. There was insufficient ammonium to neutralize sulfate. In this acidic, isoprene-rich, HO2-dominant environment, positive-matrix factorization of the time series of particle mass spectra identified four statistical factors to account for the 99% of the variance in the signal intensities of the organic constituents. The first factor was identified as associated with regional and local pollution and labeled "HOA" for its hydrocarbon-like characteristics. A second factor was associated with long-range transport and labeled "OOA-1" for its oxygenated characteristics. A third factor, labeled "OOA-2," was implicated as associated with the reactive uptake of isoprene oxidation products, especially of epoxydiols to acidic haze, fog, or cloud droplets. A fourth factor, labeled "OOA-3," was consistent with an association with the fresh production of secondary organic material (SOM) by the mechanism of gas-phase oxidation of biogenic volatile organic precursors followed by gas-to-particle conversion of the oxidation products. The suffixes 1, 2, and 3 on the OOA labels signify ordinal ranking with respect to the extent of oxidation represented by the factor. The process of aqueous-phase oxidation of water-soluble products of gas-phase photochemistry might also have been associated to some extent with the OOA-2 factor. The campaign-average factor loadings had a ratio of 1.4:1 for OOA-2 : OOA-3, suggesting the comparable importance of particle-phase compared to gas-phase pathways for the production of SOM during the study period.

  14. Concentration and characterization of airborne particles in Tehran's subway system.

    PubMed

    Kamani, Hosein; Hoseini, Mohammad; Seyedsalehi, Mahdi; Mahdavi, Yousef; Jaafari, Jalil; Safari, Gholam Hosein

    2014-06-01

    Particulate matter is an important air pollutant, especially in closed environments like underground subway stations. In this study, a total of 13 elements were determined from PM10 and PM2.5 samples collected at two subway stations (Imam Khomeini and Sadeghiye) in Tehran's subway system. Sampling was conducted in April to August 2011 to measure PM concentrations in platform and adjacent outdoor air of the stations. In the Imam Khomeini station, the average concentrations of PM10 and PM2.5 were 94.4 ± 26.3 and 52.3 ± 16.5 μg m(-3) in the platform and 81.8 ± 22.2 and 35 ± 17.6 μg m(-3) in the outdoor air, respectively. In the Sadeghiye station, mean concentrations of PM10 and PM2.5 were 87.6 ± 23 and 41.3 ± 20.4 μg m(-3) in the platform and 73.9 ± 17.3 and 30 ± 15 μg m(-3), in the outdoor air, respectively. The relative contribution of elemental components in each particle fraction were accounted for 43% (PM10) and 47.7% (PM2.5) in platform of Imam Khomeini station and 15.9% (PM10) and 18.5% (PM2.5) in the outdoor air of this station. Also, at the Sadeghiye station, each fraction accounted for 31.6% (PM10) and 39.8% (PM2.5) in platform and was 11.7% (PM10) and 14.3% (PM2.5) in the outdoor. At the Imam Khomeini station, Fe was the predominant element to represent 32.4 and 36 % of the total mass of PM10 and PM2.5 in the platform and 11.5 and 13.3% in the outdoor, respectively. At the Sadeghiye station, this element represented 22.7 and 29.8% of total mass of PM10 and PM2.5 in the platform and 8.7 and 10.5% in the outdoor air, respectively. Other major crustal elements were 5.8% (PM10) and 5.3% (PM2.5) in the Imam Khomeini station platform and 2.3 and 2.4% in the outdoor air, respectively. The proportion of other minor elements was significantly lower, actually less than 7% in total samples, and V was the minor concentration in total mass of PM10 and PM2.5 in both platform stations.

  15. New Particle Formation and Growth from Methanesulfonic Acid, Amines, Water, and Organics

    NASA Astrophysics Data System (ADS)

    Arquero, K. D.; Ezell, M. J.; Finlayson-Pitts, B. J.

    2014-12-01

    Particles in the atmosphere can influence visibility, negatively impact human health, and affect climate. The largest uncertainty in determining global radiative forcing is attributed to atmospheric aerosols. While new particle formation in many locations is correlated with sulfuric acid in air, neither the gas-phase binary nucleation of H2SO4-H2O nor the gas-phase ternary nucleation of H2SO4-NH3-H2O alone can fully explain observations. An additional potential particle source, based on previous studies in this laboratory, is methanesulfonic acid (MSA) with amines and water vapor. However, organics are ubiquitous in the atmosphere, with secondary organic aerosol (SOA) being a major component of particles. Organics could be involved in the initial stages of particle formation by enhancing or inhibiting nucleation from sulfuric acid or MSA, in addition to contributing to their growth to form SOA. Experiments to measure the effects of a series of organics of varying structure on particle formation and growth from MSA, amines, and water were performed in a custom-built small volume aerosol flow tube reactor. Analytical instruments and techniques include a scanning mobility particle sizer to measure particle size distributions, sampling onto a weak cation exchange resin with analysis by ion chromatography to measure amine concentrations, and filter collection and analysis by ultra-high performance liquid chromatography tandem mass spectrometry to measure MSA concentrations. Organics were measured by atmospheric pressure chemical ionization tandem mass spectrometry. The impact of these organics on the initial particle formation as well as growth will be reported. The outcome is an improved understanding of fundamental chemistry of nucleation and growth to ultimately be incorporated into climate models to better predict how particles affect the global climate budget.

  16. On the gas-particle partitioning of soluble organic aerosol in two urban atmospheres with contrasting emissions: 2. Gas and particle phase formic acid

    NASA Astrophysics Data System (ADS)

    Liu, Jiumeng; Zhang, Xiaolu; Parker, Eric T.; Veres, Patrick R.; Roberts, James M.; de Gouw, Joost A.; Hayes, Patrick L.; Jimenez, Jose L.; Murphy, Jennifer G.; Ellis, Raluca A.; Huey, L. Greg; Weber, Rodney J.

    2012-10-01

    Gas and fine particle (PM2.5) phase formic acid concentrations were measured with online instrumentation during separate one-month studies in the summer of 2010 in Los Angeles (LA), CA, and Atlanta, GA. In both urban environments, median gas phase concentrations were on the order of a few ppbv (LA 1.6 ppbv, Atlanta 2.3 ppbv) and median particle phase concentrations were approximately tens of ng/m3 (LA 49 ng/m3, Atlanta 39 ng/m3). LA formic acid gas and particle concentrations had consistent temporal patterns; both peaked in the early afternoon and generally followed the trends in photochemical secondary gases. Atlanta diurnal trends were more irregular, but the mean diurnal profile had similar afternoon peaks in both gas and particle concentrations, suggesting a photochemical source in both cities. LA formic acid particle/gas (p/g) ratios ranged between 0.01 and 12%, with a median of 1.3%. No clear evidence that LA formic acid preferentially partitioned to particle water was observed, except on three overcast periods of suppressed photochemical activity. Application of Henry's Law to predict partitioning during these periods greatly under-predicted particle phase formate concentrations based on bulk aerosol liquid water content (LWC) and pH estimated from thermodynamic models. In contrast to LA, formic acid partitioning in Atlanta appeared to be more consistently associated with elevated relative humidity (i.e., aerosol LWC), although p/g ratios were somewhat lower, ranging from 0.20 to 5.8%, with a median of 0.8%. Differences in formic acid gas absorbing phase preferences between these two cities are consistent with that of bulk water-soluble organic carbon reported in a companion paper.

  17. Oleic acid coated magnetic nano-particles: Synthesis and characterizations

    SciTech Connect

    Panda, Biswajit Goyal, P. S.

    2015-06-24

    Magnetic nano particles of Fe{sub 3}O{sub 4} coated with oleic acid were synthesized using wet chemical route, which involved co-precipitation of Fe{sup 2+} and Fe{sup 3+} ions. The nano particles were characterized using XRD, TEM, FTIR, TGA and VSM. X-ray diffraction studies showed that nano particles consist of single phase Fe{sub 3}O{sub 4} having inverse spinel structure. The particle size obtained from width of Bragg peak is about 12.6 nm. TEM analysis showed that sizes of nano particles are in range of 6 to 17 nm with a dominant population at 12 - 14 nm. FTIR and TGA analysis showed that -COOH group of oleic acid is bound to the surface of Fe{sub 3}O{sub 4} particles and one has to heat the sample to 278° C to remove the attached molecule from the surface. Further it was seen that Fe{sub 3}O{sub 4} particles exhibit super paramagnetism with a magnetization of about 53 emu/ gm.

  18. Brain dopamine and amino acid concentrations in Lurcher mutant mice.

    PubMed

    Reader, T A; Strazielle, C; Botez, M I; Lalonde, R

    1998-03-15

    Lurcher mutant mice are characterized by massive degeneration of the cerebellum, including Purkinje cells and granule cells, as well as for the loss of neurons from the inferior olive. Concentrations of dopamine and two of its metabolites and of several amino acid neurotransmitters were determined in the cerebellum and in other brain regions of these mutants. By comparison to wild-type mice of the same background strain, glutamate and taurine concentrations were reduced in the Lurcher cerebellum. No decrease was found for aspartate, gamma-aminobutyric acid (GABA), glycine, as well as dopamine and its metabolites. Moreover, no neurochemical alterations occurred in the brain stem, thalamus, or neostriatum of Lurcher mutants. A selective reduction of glutamate concentration was found in the hippocampus, while all amino acids measured were decreased in the entorhinal-piriform areas. These results indicate region-selective reductions of neurotransmitter concentrations in a mouse mutant with a defined cerebellar cortical pathology.

  19. Concentrating phenolic acids from Lonicera japonica by nanofiltration technology

    NASA Astrophysics Data System (ADS)

    Li, Cunyu; Ma, Yun; Li, Hongyang; Peng, Guoping

    2017-03-01

    Response surface analysis methodology was used to optimize the concentrate process of phenolic acids from Lonicera japonica by nanofiltration technique. On the basis of the influences of pressure, temperature and circulating volume, the retention rate of neochlorogenic acid, chlorogenic acid and 4-dicaffeoylquinic acid were selected as index, molecular weight cut-off of nanofiltration membrane, concentration and pH were selected as influencing factors during concentrate process. The experiment mathematical model was arranged according to Box-Behnken central composite experiment design. The optimal concentrate conditions were as following: nanofiltration molecular weight cut-off, 150 Da; solutes concentration, 18.34 µg/mL; pH, 4.26. The predicted value of retention rate was 97.99% under the optimum conditions, and the experimental value was 98.03±0.24%, which was in accordance with the predicted value. These results demonstrate that the combination of Box-Behnken design and response surface analysis can well optimize the concentrate process of Lonicera japonica water-extraction by nanofiltration, and the results provide the basis for nanofiltration concentrate for heat-sensitive traditional Chinese medicine.

  20. Unprecedented concentrations of indigenous amino acids in primitive CR meteorites

    NASA Astrophysics Data System (ADS)

    Ehrenfreund, Pascale; Martins, Zita; Alexander, Conel; Orzechowska, Grazyna; Fogel, Marylin

    CR meteorites are among the most primitive meteorites. We have performed pioneering work determining the compositional characteristics of amino acids in this type of carbonaceous chondrites. We report the first measurements of amino acids in Antarctic CR meteorites, two of which show the highest amino acid concentrations ever found in a chondrite. We have analyzed the amino acid content of the Antarctic CRs EET92042, GRA95229 and GRO95577 using high performance liquid chromatography with UV fluorescence detection (HPLC-FD) and gas chromatography-mass spectrometry (GC-MS). Additionally, compound-specific carbon isotopic measurements for most of the individual amino acids from the EET92042 and GRA95229 meteorites were achieved by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). Our data show that EET92042 and GRA95229 are the most amino acid-rich chondrites ever analyzed, with total amino acid concentrations of 180 and 249 parts-per-million (ppm), respectively. GRO95577, however, is depleted in amino acids (<1 ppm). The most abundant amino acids present in the EET92042 and GRA95229 meteorites are the α-amino acids glycine, isovaline, α-aminoisobutyric acid (α-AIB), and alanine, with δ 13 C values ranging from +31.6% to +50.5%. The highly enriched carbon isotope results together with racemic enantiomeric ratios determined for most amino acids indicate that primitive organic matter was preserved in these meteorites. In addition, the relative abundances of α-AIB and β-alanine amongst Antarctic CR meteorites appear to correspond to the degree of aqueous alteration on their respective parent body. Investigating the abundances and isotopic composition of amino acids in primitive chondrites helps to understand the role of meteorites as a source of extraterrestrial prebiotic organic compounds to the early Earth.

  1. Effect of polymer species and concentration on the production of mefenamic acid nanoparticles by media milling.

    PubMed

    Ito, Atsutoshi; Konnerth, Christoph; Schmidt, Jochen; Peukert, Wolfgang

    2016-01-01

    The effect of four structurally different polymer species (hydroxypropylcellulose, polyvinylpyrrolidone, vinylpyrrolidone-vinyl acetate copolymer and polyvinyl alcohol) on the production of mefenamic acid nanoparticles during media milling has been studied. It was found that product particle sizes are strongly determined by the type of polymeric stabiliser as well as by its concentration at constant process conditions. With respect to small product particle sizes an optimum excipient concentration was identified and adjusted for colloidal stability of the drug nanosuspensions. Furthermore, it was found that overdosing of excipients must be omitted to suppress ripening due to enhanced solubilisation phenomena. Hence, the smallest product particle sizes were obtained using a polymeric stabiliser which exhibits a high affinity to the model drug compound and a low solubilisation capacity. Affinities of each polymer species to mefenamic acid and corresponding surface concentrations were determined using straightforward and simple viscosity measurements of the supernatant. A relationship between polymer affinity, solubilisation capacity and limiting product particle size has been observed, which supports the hypothesis that final product particle sizes are rather determined by the solid-liquid equilibrium than by pure mechanical fracture.

  2. [Does coffee drinking influence serum uric acid concentration?].

    PubMed

    Olak-Białoń, Bogusława; Marcisz, Czesław; Jonderko, Gerard; Olak, Zygfryd; Szymszal, Jan; Orzeł, Arkadiusz

    2004-01-01

    The drinking of coffee, a commonly used beverage, was a subject of many studies, mainly regarded to coffee influence on cardiovascular system. However, only one study indicates that coffee drinking in male adults may lead to decrease in serum uric acid level. Hyperuricaemia is a risk factor of many diseases. The aim of this study was to examine the influence of coffee drinking on serum uric acid concentration. 1955 working persons aged from 18 to 65 years were included into research. There were 571 women among them. We determined energy expenditure during professional work, blood pressure, body mass index, and measured serum levels of uric acid, glucose and creatinine. The amount of coffee and ethanol consumption was evaluated on the ground of an interview. It was showed that persons drinking coffee have lower serum uric acid concentration than non-drinkers, especially among women, who drank more coffee then men. Uricaemia was correlated negatively with number of cups of coffee consumed and positively with body mass index, ethanol consumption and diastolic blood pressure. The author conclude that: 1) among women drinking on an average 10 cups of coffee per week appeared a decrease in serum uric acid concentration and a lower risk of development of hyperuricaemia, 2) elevated serum uric acid concentration is accompanied by elevated blood pressure and increased body mass index.

  3. Simultaneous acetic acid separation and monosaccharide concentration by reverse osmosis.

    PubMed

    Zhou, Fanglei; Wang, Cunwen; Wei, Jiang

    2013-03-01

    This study aimed to investigate the feasibility and efficiency of simultaneous acetic acid separation and sugar concentration in model lignocellulosic hydrolyzates by reverse osmosis. The effects of operation parameters such as pH, temperature, pressure and feed concentration on the solute retentions were examined with a synthetic xylose–glucose–acetic acid model solution. Results showed that the monosaccharides were almost completely rejected at above 20 bar, while the acetic acid retention increased with the increase in pH and pressure, and decreased with the temperature increase. The maximum separation factors of acetic acid over xylose and glucose reached as high as 211.5 and 228.4 at pH 2.93 (the initial pH of model lignocellulosic hydrolyzates), 40 °C and 20 bar. Furthermore, the concentration and diafiltration process were employed at optimal operation conditions. Consequently, a high sugar concentration and a beneficially lower acetic acid concentration were simultaneously achieved by reverse osmosis.

  4. Aerosol pH buffering in the southeastern US: Fine particles remain highly acidic despite large reductions in sulfate

    NASA Astrophysics Data System (ADS)

    Weber, R. J.; Guo, H.; Russell, A. G.; Nenes, A.

    2015-12-01

    pH is a critical aerosol property that impacts many atmospheric processes, including biogenic secondary organic aerosol formation, gas-particle phase partitioning, and mineral dust or redox metal mobilization. Particle pH has also been linked to adverse health effects. Using a comprehensive data set from the Southern Oxidant and Aerosol Study (SOAS) as the basis for thermodynamic modeling, we have shown that particles are currently highly acidic in the southeastern US, with pH between 0 and 2. Sulfate and ammonium are the main acid-base components that determine particle pH in this region, however they have different sources and their concentrations are changing. Over 15 years of network data show that sulfur dioxide emission reductions have resulted in a roughly 70 percent decrease in sulfate, whereas ammonia emissions, mainly link to agricultural activities, have been largely steady, as have gas phase ammonia concentrations. This has led to the view that particles are becoming more neutralized. However, sensitivity analysis, based on thermodynamic modeling, to changing sulfate concentrations indicates that particles have remained highly acidic over the past decade, despite the large reductions in sulfate. Furthermore, anticipated continued reductions of sulfate and relatively constant ammonia emissions into the future will not significantly change particle pH until sulfate drops to clean continental background levels. The result reshapes our expectation of future particle pH and implies that atmospheric processes and adverse health effects linked to particle acidity will remain unchanged for some time into the future.

  5. Method of particle trajectory recognition in particle flows of high particle concentration using a candidate trajectory tree process with variable search areas

    DOEpatents

    Shaffer, Franklin D.

    2013-03-12

    The application relates to particle trajectory recognition from a Centroid Population comprised of Centroids having an (x, y, t) or (x, y, f) coordinate. The method is applicable to visualization and measurement of particle flow fields of high particle. In one embodiment, the centroids are generated from particle images recorded on camera frames. The application encompasses digital computer systems and distribution mediums implementing the method disclosed and is particularly applicable to recognizing trajectories of particles in particle flows of high particle concentration. The method accomplishes trajectory recognition by forming Candidate Trajectory Trees and repeated searches at varying Search Velocities, such that initial search areas are set to a minimum size in order to recognize only the slowest, least accelerating particles which produce higher local concentrations. When a trajectory is recognized, the centroids in that trajectory are removed from consideration in future searches.

  6. Single step natural poly(tannic acid) particle preparation as multitalented biomaterial.

    PubMed

    Sahiner, Nurettin; Sagbas, Selin; Aktas, Nahit

    2015-04-01

    In this study, we report the preparation of poly(tannic acid) (p(TA)) particles by crosslinking with glycerol diglycidyl ether (GDE) and trimethylolpropane triglycidyl ether (TMPGDE). The p(TA) particles are negatively charged as obtained by the zeta potential measurements, -27mV. P(TA) particles are found to be an effective antioxidant material as 170mgL(-1) of p(TA) particle demonstrated the antioxidant equivalency of 82.5±7.2mgL(-1) of gallic acid (GA), used as standard in Folin-Ciocalteau (FC) method. Additionally, TA and p(TA) particles have a strong antimicrobial effect against Escherichia coli ATCC 8739, Staphylococcus aureus ATCC 6538, and Bacillus subtilis ATCC 6633. Furthermore, p(TA) particles were used as drug delivery materials by using model drugs such as TA itself, and GA in the release studies in PBS at pH7.4 at 37.5°C, and found that p(TA) particles can release 80.8 and 87.4% of the loaded TA and GA, respectively. Interestingly, p(TA) maintained its fluorescent property upon crosslinking of TA units. It is further demonstrated that p(TA) particles are as effective as cisplatin (a cancer drug) against A549 cancerous cells that both showed about 36 and 34% cell viability, respectively whereas linear TA showed 66% cell viability at 37.5μgmL(-1) concentration. Above this concentration p(TA) and cisplatin showed almost the same toxicity against A549 cancerous cells. Additionally, p(TA) particles are found to be much more biocompatible against L929 Fibroblast cells, about 84% cell viability in comparison to linear TA with about 53% at 75μgmL(-1) concentration.

  7. Optimization of encoded hydrogel particles for nucleic acid quantification.

    PubMed

    Pregibon, Daniel C; Doyle, Patrick S

    2009-06-15

    The accurate quantification of nucleic acids is of utmost importance for clinical diagnostics, drug discovery, and basic science research. These applications require the concurrent measurement of multiple targets while demanding high-throughput analysis, high sensitivity, specificity between closely related targets, and a wide dynamic range. In attempt to create a technology that can simultaneously meet these demands, we recently developed a method of multiplexed analysis using encoded hydrogel particles. Here, we demonstrate tuning of hydrogel porosity with semi-interpenetrating networks of poly(ethylene glycol), develop a quantitative model to understand hybridization kinetics, and use the findings from these studies to enhance particle design for nucleic acid detection. With an optimized particle design and efficient fluorescent labeling scheme, we demonstrate subattomole sensitivity and single-nucleotide specificity for small RNA targets.

  8. Preparation and characterization of uniform particles of uric acid and its salts.

    PubMed

    Mohamed, Amr Ali; Matijević, Egon

    2013-02-15

    Uric acid, the major component in many kinds of kidney stones, as well as its sodium, ammonium, calcium, and barium salts were successfully prepared as uniform dispersions by precipitation in basic aqueous solutions. The effects of the reactant concentrations, pH, and the stabilizers were evaluated in detail. Except for the platelets of the pure acid, all prepared compounds appeared as needles or their aggregates. The electron micrographs showed that kidney stones consisted of such aggregates although less regular in size and morphology. All prepared urate salts had a 1:1 cation/uric acid ratio, regardless of the valence of the cation. The electrokinetic measurements showed all these particles to have negative ζ-potentials over the pH range 3-9. The precipitated salt particles were chemically and morphologically unstable at low pH values by decomposing into ill-defined aggregates of the pure uric acid.

  9. Comparison of sulfur measurements from a regional fine particle network with concurrent acid modes network results

    SciTech Connect

    Bennett, R.L.; Stockburger, L.; Barnes, H.M.

    1994-01-01

    The Fine Particle Network (FPN), a system of fine particle (less than 2.5 micrometers) samplers, was operated at 41 sites selected from the Enviromental Protection Agency Acid MODES program during the two year period in 1988-90. The 24-hour sample results included fine particle mass and the most predominant chemical element concentrations determined by wavelength dispersive x-ray fluorescence analysis. Statistical summaries of the fine mass and sulfur concentrations by site and season were prepared. The availability of simultaneous particulate sulfate measurements from independent collection and analytical procedures provided an opportunity to examine their agreement and provide a more reliable data base for evaluation of regional particulate models and estimation of contribution to urban aerosol concentration.

  10. Factors affecting the concentration of outdoor particles indoors (COPI): Identification of data needs and existing data

    SciTech Connect

    Thatcher, Tracy L.; McKone, Thomas E.; Fisk, William J.; Sohn, Michael D.; Delp, Woody W.; Riley, William J.; Sextro, Richard G.

    2001-12-01

    The process of characterizing human exposure to particulate matter requires information on both particle concentrations in microenvironments and the time-specific activity budgets of individuals among these microenvironments. Because the average amount of time spent indoors by individuals in the US is estimated to be greater than 75%, accurate characterization of particle concentrations indoors is critical to exposure assessments for the US population. In addition, it is estimated that indoor particle concentrations depend strongly on outdoor concentrations. The spatial and temporal variations of indoor particle concentrations as well as the factors that affect these variations are important to health scientists. For them, knowledge of the factors that control the relationship of indoor particle concentrations to outdoor levels is particularly important. In this report, we identify and evaluate sources of data for those factors that affect the transport to and concentration of outdoor particles in the indoor environment. Concentrations of particles indoors depend upon the fraction of outdoor particles that penetrate through the building shell or are transported via the air handling (HVAC) system, the generation of particles by indoor sources, and the loss mechanisms that occur indoors, such as deposition. To address these issues, we (i) identify and assemble relevant information including the behavior of particles during air leakage, HVAC operations, and particle filtration; (ii) review and evaluate the assembled information to distinguish data that are directly relevant to specific estimates of particle transport from those that are only indirectly useful and (iii) provide a synthesis of the currently available information on building air-leakage parameters and their effect on indoor particle matter concentrations.

  11. Measurement of airborne particle concentrations near the Sunset Crater volcano, Arizona.

    PubMed

    Benke, Roland R; Hooper, Donald M; Durham, James S; Bannon, Donald R; Compton, Keith L; Necsoiu, Marius; McGinnis, Ronald N

    2009-02-01

    Direct measurements of airborne particle mass concentrations or mass loads are often used to estimate health effects from the inhalation of resuspended contaminated soil. Airborne particle mass concentrations were measured using a personal sampler under a variety of surface-disturbing activities within different depositional environments at both volcanic and nonvolcanic sites near the Sunset Crater volcano in northern Arizona. Focused field investigations were performed at this analog site to improve the understanding of natural and human-induced processes at Yucca Mountain, Nevada. The level of surface-disturbing activity was found to be the most influential factor affecting the measured airborne particle concentrations, which increased over three orders of magnitude relative to ambient conditions. As the surface-disturbing activity level increased, the particle size distribution and the majority of airborne particle mass shifted from particles with aerodynamic diameters less than 10 mum (0.00039 in) to particles with aerodynamic diameters greater than 10 mum (0.00039 in). Under ambient conditions, above average wind speeds tended to increase airborne particle concentrations. In contrast, stronger winds tended to decrease airborne particle concentrations in the breathing zone during light and heavy surface-disturbing conditions. A slight increase in the average airborne particle concentration during ambient conditions was found above older nonvolcanic deposits, which tended to be finer grained than the Sunset Crater tephra deposits. An increased airborne particle concentration was realized when walking on an extremely fine-grained deposit, but the sensitivity of airborne particle concentrations to the resuspendible fraction of near-surface grain mass was not conclusive in the field setting when human activities disturbed the bulk of near-surface material. Although the limited sample size precluded detailed statistical analysis, the differences in airborne particle

  12. Functionalised carboxylic acids in atmospheric particles: An annual cycle revealing seasonal trends and possible sources

    NASA Astrophysics Data System (ADS)

    Teich, Monique; van Pinxteren, Dominik; Herrmann, Hartmut

    2013-04-01

    Carboxylic acids represent a major fraction of the water soluble organic carbon (WSOC) in atmospheric particles. Among the particle phase carboxylic acids, straight-chain monocarboxylic acids (MCA) and dicarboxylic acids (DCA) with 2-10 carbon atoms have extensively been studied in the past. However, only a few studies exist dealing with functionalised carboxylic acids, i.e. having additional hydroxyl-, oxo- or nitro-groups. Regarding atmospheric chemistry, these functionalised carboxylic acids are of particular interest as they are supposed to be formed during atmospheric oxidation processes, e.g. through radical reactions. Therefore they can provide insights into the tropospheric multiphase chemistry. During this work 28 carboxylic acids (4 functionalised aliphatic MCAs, 5 aromatic MCAs, 3 nitroaromatic MCAs, 6 aliphatic DCAs, 6 functionalised aliphatic DCAs, 4 aromatic DCAs) were quantitatively determined in 256 filter samples taken at the rural research station Melpitz (Saxony, Germany) with a PM10 Digitel DHA-80 filter sampler. All samples were taken in 2010 covering a whole annual cycle. The resulting dataset was examined for a possible seasonal dependency of the acid concentrations. Furthermore the influence of the air mass origin on the acid concentrations was studied based on a simple two-sector classification (western or eastern sector) using a back trajectory analysis. Regarding the annual average, adipic acid was found to be the most abundant compound with a mean concentration of 7.8 ng m-3 followed by 4-oxopimelic acid with 6.1 ng m-3. The sum of all acid concentrations showed two maxima during the seasonal cycle; one in summer and one in winter, whereas the highest overall acid concentrations were found in summer. In general the target acids could be divided into two different groups, where one group has its maximum concentration in summer and the other group during winter. The first group contains all investigated aliphatic mono- and dicarboxylic

  13. Optical Properties of Internally Mixed Aerosol Particles Composed of Dicarboxylic Acids and Ammonium Sulfate

    NASA Astrophysics Data System (ADS)

    Freedman, Miriam A.; Hasenkopf, Christa A.; Beaver, Melinda R.; Tolbert, Margaret A.

    2009-10-01

    We have investigated the optical properties of internally mixed aerosol particles composed of dicarboxylic acids and ammonium sulfate using cavity ring-down aerosol extinction spectroscopy at a wavelength of 532 nm. The real refractive indices of these nonabsorbing species were retrieved from the extinction and concentration of the particles using Mie scattering theory. We obtain refractive indices for pure ammonium sulfate and pure dicarboxylic acids that are consistent with literature values, where they exist, to within experimental error. For mixed particles, however, our data deviates significantly from a volume-weighted average of the pure components. Surprisingly, the real refractive indices of internal mixtures of succinic acid and ammonium sulfate are higher than either of the pure components at the highest organic weight fractions. For binary internal mixtures of oxalic or adipic acid with ammonium sulfate, the real refractive indices of the mixtures are approximately the same as ammonium sulfate for all organic weight fractions. Various optical mixing rules for homogeneous and slightly heterogeneous systems fail to explain the experimental real refractive indices. It is likely that complex particle morphologies are responsible for the observed behavior of the mixed particles. Implications of our results for atmospheric modeling and aerosol structure are discussed.

  14. COOKING-RELATED PARTICLE CONCENTRATIONS MEASURED IN AN OCCUPIED TOWNHOME IN RESTON, VA

    EPA Science Inventory

    In non-smoking households, cooking is one of the most significant sources of indoor particles. To date, there are limited data available regarding indoor particle concentrations generated by different types of cooking. To increase the knowledge base associated with particles ...

  15. Diffraction based optical particle sizer for on-line monitoring in hostile environments of low concentration particle laden flows

    NASA Astrophysics Data System (ADS)

    Golinelli, E.; Martinelli, P.; Musazzi, S.; Perini, U.; Trespidi, F.; Paganini, E.

    2001-06-01

    We present an optical particle sizer conceived for the on-line analysis of low concentration particle-laden flows. It belongs to the wide class of instruments based on the detection of the light scattered at small angle in the forward direction. Innovative solutions have been adopted both in the optical configuration and in the detection scheme which enable the instrument to operate at very low concentration regimes (i.e., at extinction values as small as 10-5). Particle classification is made over 31 size classes in the range of diameters 0.9-90 μm. The whole system has been designed for applications in hostile environments. Preliminary measurements have been carried out in a coal fired power plant on a flue duct downstream the electrostatic precipitators (average temperature 150 °C, particle concentration smaller than 50 mg/Nm3).

  16. Characterization of ultrafine particle number concentration and new particle formation in an urban environment of Taipei, Taiwan

    NASA Astrophysics Data System (ADS)

    Cheung, H. C.; Chou, C. C.-K.; Huang, W.-R.; Tsai, C.-Y.

    2013-09-01

    An intensive aerosol characterization experiment was performed at the Taipei Aerosol and Radiation Observatory (TARO, 25.02° N, 121.53° E) in the urban area of Taipei, Taiwan, during July 2012. Number concentration and size distribution of aerosol particles were measured continuously, which were accompanied by concurrent measurements of mass concentration of submicron particles, PM1 (d ≤ 1 μm), and photolysis rate of ozone, J(O1D). The averaged number concentrations of total (Ntotal), accumulation mode (Nacu), Aitken mode (NAitken), and nucleation mode (Nnuc) particles were 13.9 × 103 cm-3, 1.2 × 103 cm-3, 6.1 × 103 cm-3, and 6.6 × 103 cm-3, respectively. Accordingly, the ultrafine particles (UFPs, d ≤ 100 nm) accounted for 91% of the total number concentration of particles measured in this study (10 ≤ d ≤ 429 nm), indicating the importance of UFPs to the air quality and radiation budget in Taipei and its surrounding areas. An averaged Nnuc / NOx ratio of 192.4 cm-3 ppbv-1 was derived from nighttime measurements, which was suggested to be the characteristic of vehicle emissions that contributed to the "urban background" of nucleation mode particles throughout a day. On the contrary, it was found that the number concentration of nucleation mode particles was independent of NOx and could be elevated up to 10 times of the "urban background" levels during daytime, suggesting a substantial amount of nucleation mode particles produced from photochemical processes. Averages (± 1σ) of the diameter growth rate (GR) and formation rate of nucleation mode particles, J10, were 11.9 ± 10.6 nm h-1 and 6.9 ± 3.0 cm-3 s-1, respectively. Consistency in the time series of the nucleation mode particle concentration and the proxy of H2SO4 production, UVB · SO2/CS, for new particle formation (NPF) events suggested that photooxidation of SO2 was likely one of the major mechanisms for the formation of new particles in our study area. Moreover, it was revealed that the

  17. Apparatus and method for collection and concentration of respirable particles into a small fluid volume

    DOEpatents

    Simon, Jonathan N.; Brown, Steve B.

    2002-01-01

    An apparatus and method for the collection of respirable particles and concentration of such particles into a small fluid volume. The apparatus captures and concentrates small (1-10 .mu.m) respirable particles into a sub-millileter volume of fluid. The method involves a two step operation, collection and concentration: wherein collection of particles is by a wetted surface having small vertical slits that act as capillary channels; and concentration is carried out by transfer of the collected particles to a small volume (sub-milliliter) container by centrifugal force whereby the particles are forced through the vertical slits and contact a non-wetted wall surface, and are deflected to the bottom where they are contained for analysis, such as a portable flow cytometer or a portable PCR DNA analysis system.

  18. Preparation and characterization of uniform drug particles: dehydrocholic acid.

    PubMed

    Mohamed, Amr Ali; Matijević, Egon

    2012-02-15

    Two methods for the preparation of uniform dispersions of dehydrocholic acid of different morphologies are described. In the first case, the drug was dissolved in acetone and then re-precipitated by adding a non-solvent (either water or an aqueous stabilizer solution), which yielded rod-like particles. In the second procedure, spheres, consisting of small elongated subunits, were obtained by acidification of basic aqueous solutions of the drug. The resulting particles were characterized in terms of their structure and surface charge characteristics.

  19. CONCENTRATED AMBIENT AIR PARTICLES INDUCE PULMONARY INFLAMMATION IN HEALTHY HUMAN VOLUNTEERS

    EPA Science Inventory


    We tested the hypothesis that exposure of healthy volunteers to concentrated ambient particles (CAPS) is associated with an influx of inflammatory cells into the lower respiratory tract. Thirty-eight volunteers were exposed to either filtered air or particles concentrated fro...

  20. Carinal and tubular airway particle concentrations in the large airways of non-smokers in the general population: evidence for high particle concentration at airway carinas.

    PubMed Central

    Churg, A; Vedal, S

    1996-01-01

    OBJECTIVE: To evaluate the extent to which human airway carinas accumulate ambient atmospheric particles, a newly developed technique was used to micro-dissect and analyse particle concentration in tubular segments and carinas of the large airways of 10 necropsy lungs from non-smokers from the general population of Vancouver. METHODS: Ratios of the particle concentrations on the carinas to the tubular segment immediately preceding it were measured with analytical electron microscopy for the mainstem bronchus, upper and lower lobe bronchi, and four different segmental or subsegmental bronchi--that is, Weibel generations 1 to about 5. A total of 119 carinal-tubular pairs was evaluated. RESULTS: Over all cases, both carinal and tubular particle concentrations increased with increasing airway generation; the median ratio of carinal to tubular particle concentration was 9:1 and did not show any trend with airway generation. The ratio was > 5 in 71% of carinal-tubular pairs, > 10 in 42% of pairs, > 20 in 31% of pairs, and > 100 in 9% of pairs. Some subjects showed a notable tendency to high ratios, with many ratios > 100, and other subjects had a tendency toward low ratios. The predominant mineral species in both carinas and tubular airway segments was crystalline silica and the relative proportion was similar in both sites; however, mean particle diameter was consistently less in the carinal tissues. CONCLUSIONS: These findings suggest that the ratio of carinal to tubular retained particles in the large airways in non-smokers is higher than might be supposed from data generated in airway casts, and that there is considerable variation in this ratio between subjects. This finding is of potential interest in models of carcinogen, toxin, and dose of fibrogenic agent to the large airways as it suggests high and sometimes extreme concentrations of toxic particles at carinas, and thus reinforces the notion that carinas may be sites of initiation of disease. PMID:8983467

  1. Amino acid rejection behaviour as a function of concentration.

    PubMed

    Shirley, Jason; Mandale, Stephen; Williams, Paul M

    2011-05-11

    The solute rejection versus concentration behaviour of five different amino acids has been investigated using a Nitto Denko NTR7450 nanofiltration membrane. The experimental data for amino acid rejection was also compared against a combined steric and charge rejection model. At its isoelectric point, lysine was effectively neutral and its behaviour was well described by the model incorporating a steric function only. For phenylalanine, the combined model was found to fit the data well. In contrast there was poor agreement between the model and rejection data for glutamine, glutamic acid and glycine whose rejection values at first increased with concentration. This result implied that another governing process was in operation. Dimerisation as an explanation for the observed phenomena was also investigated. Size analysis of amino acid molecules as a function of the prevailing concentration using dynamic light scattering was limited but showed no evidence of dimerisation. This data was supported by osmotic pressure measurements which demonstrated no evidence of non-linearity in the relation between osmotic pressure and concentration.

  2. PARTICLE ASSOCIATION EFFECTS ON MICROBIAL INDICATOR CONCENTRATIONS AND CSO DISINFECTION

    EPA Science Inventory

    Combined sewer overflow (CSO) and wastewater disinfection effectiveness are evaluated by measuring microbial indicator concentrations before and after disinfection. The standard techniques for quantifying indicators are membrane filtration and multiple-tube fermentation/most pro...

  3. Deliquescence and crystallization of ammonium sulfate-glutaric acid and sodium chloride-glutaric acid particles

    NASA Astrophysics Data System (ADS)

    Pant, Atul; Fok, Abel; Parsons, Matthew T.; Mak, Jackson; Bertram, Allan K.

    2004-06-01

    In the following, we report the deliquescence relative humidities (DRH) and crystallization relative humidities (CRH) of mixed inorganic-organic particles, specifically ammonium sulfate-glutaric acid and sodium chloride-glutaric acid particles. Knowledge of the DRH and CRH of mixed inorganic-organic particles is crucial for predicting the role of aerosol particles in the atmosphere. Our DRH results are in good agreement with previous measurements, but our CRH results are significantly lower than some of the previous measurements reported in the literature. Our studies show that the DRH and CRH of ammonium sulfate and sodium chloride only decreased slightly when the mole fraction of the acid was less than 0.4. If other organics in the atmosphere behave in a similar manner, then the DRH and CRH of mixed inorganic-organic atmospheric particles will only be slightly less than the DRH and CRH of pure inorganic particles when the organic mole fraction is less than 0.4. Our results also show that if the particles contain a significant amount of organics (mole fraction > 0.5) the crystallization relative humidity decreases significantly and the particles are more likely to remain in the liquid state. Further work is needed to determine if other organics species of atmospheric importance have a similar effect.

  4. Concentrations of ultrafine particles at a highway toll collection booth and exposure implications for toll collectors.

    PubMed

    Cheng, Yu-Hsiang; Huang, Cheng-Hsiung; Huang, Hsiao-Lin; Tsai, Chuen-Jinn

    2010-12-15

    Research regarding the magnitude of ultrafine particle levels at highway toll stations is limited. This study measured ambient concentrations of ultrafine particles at a highway toll station from October 30 to November 1 and November 5 to November 6, 2008. A scanning mobility particle sizer was used to measure ultrafine particle concentrations at a ticket/cash tollbooth. Levels of hourly average ultrafine particles at the tollbooth were about 3-6 times higher than those in urban backgrounds, indicating that a considerable amount of ultrafine particles are exhausted from passing vehicles. A bi-modal size distribution pattern with a dominant mode at about <6 nm and a minor mode at about 40 nm was observed at the tollbooth. The high amounts of nanoparticles in this study can be attributed to gas-to-particle reactions in fresh fumes emitted directly from vehicles. The influences of traffic volume, wind speed, and relative humidity on ultrafine particle concentrations were also determined. High ambient concentrations of ultrafine particles existed under low wind speed, low relative humidity, and high traffic volume. Although different factors account for high ambient concentrations of ultrafine particles at the tollbooth, measurements indicate that toll collectors who work close to traffic emission sources have a high exposure risk.

  5. Vehicle and driving characteristics that influence in-cabin particle number concentrations.

    PubMed

    Hudda, Neelakshi; Kostenidou, Evangelia; Sioutas, Constantinos; Delfino, Ralph J; Fruin, Scott A

    2011-10-15

    In-transit microenvironments experience elevated levels of vehicle-related pollutants such as ultrafine particles. However, in-vehicle particle number concentrations are frequently lower than on-road concentrations due to particle losses inside vehicles. Particle concentration reduction occurs due to a complicated interplay between a vehicle's air-exchange rate (AER), which determines particle influx rate, and particle losses due to surfaces and the in-cabin air filter. Accurate determination of inside-to-outside particle concentration ratios is best made under realistic aerodynamic and AER conditions because these ratios and AER are determined by vehicle speed and ventilation preference, in addition to vehicle characteristics such as age. In this study, 6 vehicles were tested at 76 combinations of driving speeds, ventilation conditions (i.e., outside air or recirculation), and fan settings. Under recirculation conditions, particle number attenuation (number reduction for 10-1000 nm particles) averaged 0.83 ± 0.13 and was strongly negatively correlated with increasing AER, which in turn depended on speed and the age of the vehicle. Under outside air conditions, attenuation averaged 0.33 ± 0.10 and primarily decreased at higher fan settings that increased AER. In general, in-cabin particle number reductions did not vary strongly with particle size, and cabin filters exhibited low removal efficiencies.

  6. pH-Sensitive ionomeric particles obtained via chemical conjugation of silk with poly(amino acid)s.

    PubMed

    Serban, Monica A; Kaplan, David L

    2010-12-13

    Silk-fibroin-based biomaterials have been widely utilized for a range of biomaterial-related systems. For all these previously reported systems, the β-sheet forming feature of the silk was the key stabilizing element of the final material structure. Herein, we describe a different strategy, based on the engineering of silk-based ionomers that can yield stable colloidal composites or particle suspensions through electrostatic interactions. These silk-based ionomers were obtained by carbodiimide-mediated coupling of silk fibroin with polylysine hydrobromide and polyglutamic acid sodium salts, respectively. Colloidal composites could be obtained by mixing the ionomeric pair at high concentration (i.e., 25% w/v), while combining them at lower concentrations (i.e., 5% w/v) yielded particle suspensions. The assembly of the ionomers was driven by electrostatic interactions, pH-dependent, and reversible. The network assembly appeared to be polarized, with the interacting poly(amino acid) chains clustered to the core of the particles and the silk backbone oriented outward. In agreement with this assembly mode, doxorubicin, a hydrophilic antitumor drug, could be released at a slow rate, in a pH-dependent manner, indicating that the inside of the ionomeric particles was mainly hydrophilic in nature.

  7. Apparatus to collect, classify, concentrate, and characterize gas-borne particles

    DOEpatents

    Rader, Daniel J.; Torczynski, John R.; Wally, Karl; Brockmann, John E.

    2003-12-16

    An aerosol lab-on-a-chip (ALOC) integrates one or more of a variety of particle collection, classification, concentration (enrichment), an characterization processes onto a single substrate or layered stack of such substrates. By mounting a UV laser diode laser light source on the substrate, or substrates tack, so that it is located down-stream of the sample inlet port and at right angle the sample particle stream, the UV light source can illuminate individual particles in the stream to induce a fluorescence response in those particles having a fluorescent signature such as biological particles, some of said particles. An illuminated particle having a fluorescent signal above a threshold signal would trigger a sorter module that would separate that particle from the particle stream.

  8. Solubility of methanol in low-temperature aqueous sulfuric acid and implications for atmospheric particle composition

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Essin, Andrew M.; Golden, David M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    Using traditional Knudsen cell techniques, we find well-behaved Henry's law uptake of methanol in aqueous 45 - 70 wt% H2SO4 solutions at temperatures between 197 and 231 K. Solubility of methanol increases with decreasing temperature and increasing acidity, with an effective Henry's law coefficient ranging from 10(exp 5) - 10(exp 8) M/atm. Equilibrium uptake of methanol into sulfuric acid aerosol particles in the upper troposphere and lower stratosphere will not appreciably alter gas-phase concentrations of methanol. The observed room temperature reaction between methanol and sulfuric acid is too slow to provide a sink for gaseous methanol at the temperatures of the upper troposphere and lower stratosphere. It is also too slow to produce sufficient quantities of soluble reaction products to explain the large amount of unidentified organic material seen in particles of the upper troposphere.

  9. Ice formation on nitric acid coated dust particles: Laboratory and modeling studies

    SciTech Connect

    Kulkarni, Gourihar R.; Zhang, Kai; Zhao, Chun; Nandasiri, Manjula I.; Shutthanandan, V.; Liu, Xiaohong; Fast, Jerome D.; Berg, Larry K.

    2015-08-16

    Changes in the ice nucleation characteristics of atmospherically relevant mineral dust particles due to nitric acid coating are not well understood. Further, the atmospheric implications of dust coating on ice-cloud properties under different assumptions of primary ice nucleation mechanisms are unknown. We investigated ice nucleation ability of Arizona test dust, illite, K-feldspar and quartz as a function of temperature (-25 to -30°C) and relative humidity with respect to water (75 to 110%). Particles were size selected at 250 nm and transported (bare or coated) to the ice nucleation chamber to determine the fraction of particles nucleating ice at various temperature and water saturation conditions. All dust nucleated ice at water-subsaturated conditions, but the coated particles showed a reduction in their ice nucleation ability compared to bare particles. However, at water-supersaturated conditions, we observed that bare and coated particles had nearly similar ice nucleation characteristics. X-ray diffraction patterns indicated that structural properties of bare dust particles modified after acid treatment. We found that lattice parameters were slightly different, but crystallite sizes of the coated particles were reduced compared to bare particles. Next, single-column model results show that simulated ice crystal number concentrations mostly depends upon fraction of particles that are coated, primary ice nucleation mechanisms, and the competition between ice nucleation mechanisms to nucleate ice. In general, we observed that coating modify the ice-cloud properties and the picture of ice and mixed-phase cloud evolution is complex when different primary ice nucleation mechanisms are competing for fixed water vapor mass.

  10. Reduced Burst Release and Enhanced Oral Bioavailability in Shikimic Acid-Loaded Polylactic Acid Submicron Particles by Coaxial Electrospray.

    PubMed

    Wang, Miaomiao; Wang, Yuanwen; Omari-Siaw, Emmanuel; Wang, Shengli; Zhu, Yuan; Xu, Ximing

    2016-08-01

    In this study, using the coaxial electrospray method, we prepared submicron particles of the water-soluble drug shikimic acid (SA) with polylactic acid (PLA) as a polymer, to reduce the burst release and enhance the oral bioavailability. In vitro release study performed in HCl solution (pH 1.2) showed that the coaxial electrospray submicron particles could reduce burst release effect and presented a sustained release profile, compared with free SA and the particles prepared by electrospray method. The absorption of SA in the intestinal tract, studied using an in situ perfusion method in rats, also revealed jejunum as the main absorptive segment followed by duodenum and ileum. Moreover, the SA-loaded particles greatly enhanced the absorption of SA in the tested intestinal segments. The intestinal absorption rate was not enhanced with increasing drug concentration (5-15 μg/mL) which suggested that active transport or facilitated diffusion could play vital role in SA absorption. In addition, the SA-loaded PLA coaxial electrospray particle exhibited a prolonged plasma circulation with enhanced bioavailability after oral administration. In all, the coaxial electrospray technique could provide notable advantages for the oral delivery of SA, thereby enhancing its clinical application.

  11. Protein adsorption from flowing solutions on pure and maleic acid copolymer modified glass particles.

    PubMed

    Klose, Theresia; Welzel, Petra B; Werner, Carsten

    2006-08-01

    The adsorption of human serum albumin (HSA) and lysozyme (LSZ) on pure as well as maleic acid (MA) copolymer coated spherical soda lime glass particles was investigated under flowing conditions. Coating the glass particles with two different maleic acid copolymers alters the properties of the particle surface concerning its charge and hydrophobicity in a well-defined gradation. Frontal chromatography was used to determine the surface concentration of the adsorbed proteins and to establish adsorption isotherms. The introduced methodology was demonstrated to provide a powerful means to study protein adsorption at solid/liquid interfaces. Investigations with virginal and protein-preadsorbed glass particles revealed that even under streaming conditions HSA is irreversibly adsorbed, whereas LSZ partially desorbs. For LSZ and HSA the adsorbed amounts and the isotherms strongly depend on the surface "history", i.e. the presence or absence of preadsorbed protein layers, and the kind of surface modification of the glass. Compared to the soda lime glass surface the adsorption of HSA was strongly increased on surfaces modified with a hydrophobic maleic acid copolymer indicating a strong hydrophobic protein-surface interaction. By coating the surface with a hydrophilic and more negatively charged maleic acid copolymer the adsorption of HSA to that surface was lower and comparable to the adsorption onto plain glass due to the electrostatic repulsion between HSA and the modified surface. In contrast the affinity to any of the investigated particle surfaces was generally higher for LSZ than for HSA which can be mainly attributed to the electrostatic attraction between LZS and the surface. The adsorbed amount of LSZ on the copolymer coated particle surfaces was much higher than on the pure soda lime glass particles indicating superposed hydrophobic interactions in the case of the hydrophobic MA copolymer layer and an increased density of anionic sites as well as interactions of

  12. Quantitative assessment of the sulfuric acid contribution to new particle growth.

    PubMed

    Bzdek, Bryan R; Zordan, Christopher A; Pennington, M Ross; Luther, George W; Johnston, Murray V

    2012-04-17

    The Nano Aerosol Mass Spectrometer (NAMS) was deployed to rural/coastal and urban sites to measure the composition of 20-25 nm diameter nanoparticles during new particle formation (NPF). NAMS provides a quantitative measure of the elemental composition of individual, size-selected nanoparticles. In both environments, particles analyzed during NPF were found to be enhanced in elements associated with inorganic species (nitrogen, sulfur) relative to that associated with organic species (carbon). A molecular apportionment algorithm was applied to the elemental data in order to place the elemental composition into a molecular context. These measurements show that sulfate constitutes a substantial fraction of total particle mass in both environments. The contribution of sulfuric acid to new particle growth was quantitatively determined and the gas-phase sulfuric acid concentration required to incorporate the measured sulfate fraction was calculated. The calculated values were compared to those calculated by a sulfuric acid proxy that considers solar radiation and SO(2) levels. The two values agree within experimental uncertainty. Sulfate accounts for 29-46% of the total mass growth of particles. Other species contributing to growth include ammonium, nitrate, and organics. For each location, the relative amounts of these species do not change significantly with growth rate. However, for the coastal location, sulfate contribution increases with increasing temperature whereas nitrate contribution decreases with increasing temperature.

  13. Seasonal and spatial changes of free and bound organic acids in total suspended particles in Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Ma, Shexia; Peng, Ping'an; Song, Jianzhong; Bi, Xinhui; Zhao, Jinping; He, Lulu; Sheng, Guoying; Fu, Jiamo

    2010-12-01

    The concentrations and compositions of free and bound organic acids in total suspended particles from typical urban, suburban and forest park sites of Guangzhou were determined in this study. The free form of organic acids (solvent extractable) in aerosols in Guangzhou varied with site and season. The suburban samples contained the highest contents of alkanoic, alkenoic and dicarboxylic acids. These findings were consistent with a higher supply of hydrocarbons and NOx in the suburban area. However, concentrations of aromatic acids were similar in the urban, suburban and forest park sites. Generally, winter season samples of the acids from anthropogenic sources contained more organic acids than summer season samples due to stronger removal by wet deposition in the summer. For the acids from botanic sources, the summer season samples were higher. In addition to the free acids, bound acids (solvent non-extractable) mainly formed by esterification of free acids were also found in the samples. In general, bound acids were higher than free acids. Esterification is mainly controlled by the pKa of organic acids and the atmospheric pH value. This explains why aromatic and dicarboxylic acids occur mainly as bound forms and why the samples from urban sites contained high levels of bound acids as the pH of rain water can reach 4.53. Concentrations of alkanoic and alkenoic acids in the aerosols of Guangzhou were much higher than those in the other areas studied.

  14. Xanthan from sulphuric acid treated tapioca pulp: influence of acid concentration on xanthan fermentation.

    PubMed

    Gunasekar, V; Reshma, K R; Treesa, Greeshma; Gowdhaman, D; Ponnusami, V

    2014-02-15

    Xanthan gum was produced by fermentation of sulphuric acid pre-treated tapioca pulp. Effect of sulphuric acid concentration (0.5%, 2.5% and 5.0%) on xanthan fermentation was investigated. Maximum xanthan yield (7.1g/l) was obtained with 0.5% sulphuric acid pre-treatment. Further, increase in sulphuric acid concentration caused formation of inhibitory substance and lowered xanthan yield. The product was confirmed as xanthan using FTIR, (1)H NMR analyses. Viscosity was measured by Brookfield viscometer and the molecular weight was determined from the intrinsic viscosity. The results confirmed that the yield and quality of xanthan produced were strongly influenced by the acid concentration.

  15. Issues and progress in determining background ozone and particle concentrations

    NASA Astrophysics Data System (ADS)

    Pinto, J. P.

    2011-12-01

    Exposure to ambient ozone is associated with a variety of health outcomes ranging from mild breathing discomfort to mortality. For the purpose of health risk and policy assessments EPA evaluates the anthropogenic increase in ozone above background concentrations and has defined the North American (NA) background concentration of O3 as that which would occur in the U.S. in the absence of anthropogenic emissions of precursors in the U.S., Canada, and Mexico. Monthly average NA background ozone has been used to evaluate health risks, but EPA and state air quality managers must also estimate day specific ozone background levels for high ozone episodes as part of urban scale photochemical modeling efforts to support ozone regulatory programs. The background concentration of O3 is of more concern than other air pollutants because it typically represents a much larger fraction of observed O3 than do the backgrounds of other criteria pollutants (particulate matter (PM), CO, NO2, SO2). NA background cannot be determined directly from ambient monitoring data because of the influence of NA precursor emissions on formation of ozone within NA. Instead, estimates of NA background O3 have been based on GEOS-Chem using simulations in which NA anthropogenic precursor emissions are zeroed out. Thus, modeled NA background O3 includes contributions from natural sources of precursors (including CH4, NMVOCs, NOx, and CO) everywhere in the world, anthropogenic sources of precursors outside of NA, and downward transport of O3 from the stratosphere. Although monitoring data cannot determine NA background directly, measurements by satellites, aircraft, ozonesondes and surface monitors have proved to be highly useful for identifying sources of background O3 and for evaluating the performance of the GEOS-Chem model. Model simulated NA background concentrations are strong functions of location and season with large inter-day variability and with values increasing with elevation and higher in

  16. The effect of acid-base clustering and ions on the growth of atmospheric nano-particles

    NASA Astrophysics Data System (ADS)

    Lehtipalo, Katrianne; Rondo, Linda; Kontkanen, Jenni; Schobesberger, Siegfried; Jokinen, Tuija; Sarnela, Nina; Kürten, Andreas; Ehrhart, Sebastian; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Sipilä, Mikko; Yli-Juuti, Taina; Duplissy, Jonathan; Adamov, Alexey; Ahlm, Lars; Almeida, João; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; Dommen, Josef; Downard, Andrew J.; Dunne, Eimear M.; Flagan, Richard C.; Guida, Roberto; Hakala, Jani; Hansel, Armin; Jud, Werner; Kangasluoma, Juha; Kerminen, Veli-Matti; Keskinen, Helmi; Kim, Jaeseok; Kirkby, Jasper; Kupc, Agnieszka; Kupiainen-Määttä, Oona; Laaksonen, Ari; Lawler, Michael J.; Leiminger, Markus; Mathot, Serge; Olenius, Tinja; Ortega, Ismael K.; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud; Rissanen, Matti P.; Ruuskanen, Taina; Santos, Filipe D.; Schallhart, Simon; Schnitzhofer, Ralf; Simon, Mario; Smith, James N.; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Tomé, António; Vaattovaara, Petri; Vehkamäki, Hanna; Vrtala, Aron E.; Wagner, Paul E.; Williamson, Christina; Wimmer, Daniela; Winkler, Paul M.; Virtanen, Annele; Donahue, Neil M.; Carslaw, Kenneth S.; Baltensperger, Urs; Riipinen, Ilona; Curtius, Joachim; Worsnop, Douglas R.; Kulmala, Markku

    2016-05-01

    The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions. Here we study nano-particle growth in the CLOUD (Cosmics Leaving OUtdoors Droplets) chamber, starting from the formation of molecular clusters. We present measured growth rates at sub-3 nm sizes with different atmospherically relevant concentrations of sulphuric acid, water, ammonia and dimethylamine. We find that atmospheric ions and small acid-base clusters, which are not generally accounted for in the measurement of sulphuric acid vapour, can participate in the growth process, leading to enhanced growth rates. The availability of compounds capable of stabilizing sulphuric acid clusters governs the magnitude of these effects and thus the exact growth mechanism. We bring these observations into a coherent framework and discuss their significance in the atmosphere.

  17. Extension of Einstein's viscosity equation to that for concentrated dispersions of solutes and particles.

    PubMed

    Toda, Kiyoshi; Furuse, Hisamoto

    2006-12-01

    A viscosity equation for concentrated solutions or suspensions is derived as an extension of Einstein's hydrodynamic viscosity theory for dilute dispersions of spherical particles. The derivation of the equation is based on the calculation of dissipation of mechanical energy into heat in the dispersion, subtracting the energy dissipation in the portion of solutes or particles. The viscosity equation derived thus was well fitted to the viscosity-concentration relationship of the concentrated aqueous solutions of glucose and sucrose. For the suspensions of bakers' yeast, the concentration dependency of viscosity was expressed well with some modification for the flow pattern around suspended particles. It is suggested that these viscosity equations can be widely applied to both diluted and concentrated dispersions of various solutes and particles.

  18. Adiponectin and visfatin concentrations in children treated with valproic acid.

    PubMed

    Rauchenzauner, Markus; Haberlandt, Edda; Scholl-Bürgi, Sabine; Ernst, Barbara; Hoppichler, Fritz; Karall, Daniela; Ebenbichler, Christoph F; Rostasy, Kevin; Luef, Gerhard

    2008-02-01

    Chronic antiepileptic therapy with valproic acid (VPA) is associated with increased body weight and insulin resistance in adults and children. Attempts to determine the underlying pathophysiologic mechanisms have failed. Adipocytokines have recently been defined as a link between glucose and fat metabolism. We herein demonstrate that VPA-associated overweight is accompanied by lower adiponectin and higher leptin concentrations in children. The absence of any relationship with visfatin concentration does not suggest a role of this novel insulin-mimetic hormone in VPA-associated metabolic alterations. Therefore, adiponectin and leptin but not visfatin may be considered as potential regulators of glucose and fat metabolism during VPA-therapy.

  19. Oxidative aging of mixed oleic acid/sodium chloride aerosol particles

    NASA Astrophysics Data System (ADS)

    Dennis-Smither, Benjamin J.; Miles, Rachael E. H.; Reid, Jonathan P.

    2012-10-01

    Studies of the oxidative aging of single mixed component aerosol particles formed from oleic acid (OL) and sodium chloride over a range of relative humidities (RH) and ozone concentrations by aerosol optical tweezers are reported. The rate of loss of OL and changes in the organic phase volume are directly measured, comparing particles with effloresced and deliquesced inorganic seeds. The kinetics of the OL loss are analyzed and the value of the reactive uptake coefficient of ozone by OL is compared to previous studies. The reaction of OL is accompanied by a decrease in the particle volume, consistent with the evaporation of semivolatile products over a time scale of tens of thousands of seconds. Measurements of the change in the organic phase volume allow the branching ratio to involatile components to be estimated; between 50 and 85% of the initial organic volume remains involatile, depending on ozone concentration. The refractive index (RI) of the organic phase increases during and after evaporation of volatile products, consistent with aging followed by a slow restructuring in particle morphology. The hygroscopicity of the particle and kinetics of the response of the organic phase to changes in RH are investigated. Both size and RI of unoxidized and oxidized particles respond promptly to RH changes with values of the RI consistent with linear mixing rules. Such studies of the simultaneous changes in composition and size of mixed component aerosol provide valuable data for benchmarking kinetic models of heterogeneous atmospheric aging.

  20. Characterization of personal exposure concentration of fine particles for adults and children exposed to high ambient concentrations in Beijing, China.

    PubMed

    Du, Xuan; Kong, Qian; Ge, Weihua; Zhang, Shaojun; Fu, Lixin

    2010-01-01

    In China, the health risk from overexposure to particles is becoming an important public health concern. To investigate daily exposure characteristics to PM2.5 with high ambient concentration in urban area, a personal exposure study was conducted for school children, and office workers in Beijing, China. For all participants (N = 114), the mean personal 24-hr exposure concentration was 102.5, 14.7, 0.093, 0.528, 0.934, 0.174 and 0.703 microg/m3 for PM2.5, black carbon, Mn, Al, Ca, Pb, and Fe. Children's exposure concentrations of PM2.5 were 4-5 times higher than those in related studies. The ambient concentration of PM2.5 (128.5 microg/m3) was significantly higher than the personal exposure concentration (P < 0.05), and exceed the reference concentration (25 microg/m3) of WHO air quality guideline. Good correlation relationships and significant differences were identified between ambient concentration and personal exposure concentration. The relationships indicate that the ambient concentration is the main factor influencing personal exposure concentration, but is not a good indicator of personal exposure concentration. Outdoor activities (commute mode, exposure to heating, workday or weekend travel) influenced personal exposure concentrations significantly, but the magnitude of the influence from indoor activities (exposure to cooking) was masked by the high ambient concentrations.

  1. Effect of anions and humic acid on the performance of nanoscale zero-valent iron particles coated with polyacrylic acid.

    PubMed

    Kim, Hong-Seok; Ahn, Jun-Young; Kim, Cheolyong; Lee, Seockheon; Hwang, Inseong

    2014-10-01

    Effects of anions (NO3(-), HCO3(-), Cl(-), SO4(2-)) and humic acid on the reactivity and core/shell chemistries of polyacrylic acid-coated nanoscale zero-valent iron (PAA-NZVI) and inorganically modified NZVI (INORG-NZVI) particles were investigated. The reactivity tests under various ion concentrations (0.2-30mN) revealed the existence of a favorable molar ratio of anion/NZVI that increased the reactivity of NZVI particles. The presence of a relatively small amount of humic acid (0.5mgL(-1)) substantially decreased the INORG-NZVI reactivity by 76%, whereas the reactivity of PAA-NZVI decreased only by 12%. The XRD and TEM results supported the role of the PAA coating of PAA-NZVI in impeding the oxidation of the Fe(0) core by groundwater solutes. This protective role provided by the organic coating also resulted in a 2.3-fold increase in the trichloroethylene (TCE) reduction capacity of PAA-NZVI compared to that of INORG-NZVI in the presence of anions/humic acid. Ethylene and ethane were simultaneously produced as the major reduction products of TCE in both NZVI systems, suggesting that a hydrodechlorination occurred without the aid of metallic catalysts. The PAA coating, originally designed to improve the mobility of NZVI, enhanced TCE degradation performances of NZVI in the presence of anions and humic acid.

  2. Vertical variations of particle number concentration and size distribution in a street canyon in Shanghai, China.

    PubMed

    Li, X L; Wang, J S; Tu, X D; Liu, W; Huang, Z

    2007-06-01

    Measurements of particle number size distribution in the range of 10-487 nm were made at four heights on one side of an asymmetric street canyon on Beijing East Road in Shanghai, China. The result showed that the number size distributions were bimodal or trimodal and lognormal in form. Within a certain height from 1.5 to 20 m, the particle size distributions significantly changed with increasing height. The particle number concentrations in the nucleation mode and in the Aitken mode significantly dropped, and the peaking diameter in the Aitken mode shifted to larger sizes. The variations of the particle number size distributions in the accumulation mode were less significant than those in the nucleation and Aitken modes. The particle number size distributions slightly changed with increasing height ranging from 20 to 38 m. The particle number concentrations in the street canyon showed a stronger association with the pre-existing particle concentrations and the intensity of the solar radiation when the traffic flow was stable. The particle number concentrations were observed higher in Test I than in Test II, probably because the small pre-existing particle concentrations and the intense solar radiation promoted the formation of new particles. The pollutant concentrations in the street canyon showed a stronger association with wind speed and direction. For example, the concentrations of total particle surface area, total particle volume, PM2.5 and CO were lower in Test I (high wind speed and step-up canyon) than in Test II (low wind speed and wind blowing parallel to the canyon). The equations for the normalized concentration curves of the total particle number, CO and PM2.5 in Test I and Test II were derived. A power functions was found to be a good estimator for predicting the concentrations of total particle number, CO and PM2.5 at different heights. The decay rates of PM2.5 and CO concentrations were lower in Test I than in Test II. However, the decay rate of the

  3. Particle size tailoring of ursolic acid nanosuspensions for improved anticancer activity by controlled antisolvent precipitation.

    PubMed

    Wang, Yancai; Song, Ju; Chow, Shing Fung; Chow, Albert H L; Zheng, Ying

    2015-10-15

    The present study was aimed at tailoring the particle size of ursolic acid (UA) nanosuspension for improved anticancer activity. UA nanosuspensions were prepared by antisolvent precipitation using a four-stream multi-inlet vortex mixer (MIVM) under defined conditions of varying solvent composition, drug feeding concentration or stream flow rate. The resulting products were characterized for particle size and polydispersity. Two of the UA nanosuspensions with mean particle sizes of 100 and 300 nm were further assessed for their in-vitro activity against MCF-7 breast cancer cells using fluorescence microscopy with 4',6-diamidino-2-phenylindole (DAPI) staining, as well as flow cytometry with propidium (PI) staining and with double staining by fluorescein isothiocyanate. It was revealed that the solvent composition, drug feeding concentration and stream flow rate were critical parameters for particle size control of the UA nanosuspensions generated with the MIVM. Specifically, decreasing the UA feeding concentration or increasing the stream flow rate or ethanol content resulted in a reduction of particle size. Excellent reproducibility for nanosuspension production was demonstrated for the 100 and 300 nm UA preparations with a deviation of not more than 5% in particle size from the mean value of three independent batches. Fluorescence microscopy and flow cytometry revealed that these two different sized UA nanosuspensions, particularly the 300 nm sample, exhibited a higher anti-proliferation activity against the MCF-7 cells and afforded a larger population of these cells in both early and late apoptotic phases. In conclusion, MIVM is a robust and pragmatic tool for tailoring the particle size of the UA nanosuspension. Particle size appears to be a critical determinant of the anticancer activity of the UA nanoparticles.

  4. Particle number concentration, size distribution and chemical composition during haze and photochemical smog episodes in Shanghai.

    PubMed

    Wang, Xuemei; Chen, Jianmin; Cheng, Tiantao; Zhang, Renyi; Wang, Xinming

    2014-09-01

    The aerosol number concentration and size distribution as well as size-resolved particle chemical composition were measured during haze and photochemical smog episodes in Shanghai in 2009. The number of haze days accounted for 43%, of which 30% was severe (visibility<2km) and moderate (2km≤visibility<3km) haze, mainly distributed in winter and spring. The mean particle number concentration was about 17,000/cm(3) in haze, more than 2 times that in clean days. The greatest increase of particle number concentration was in 0.5-1μm and 1-10μm size fractions during haze events, about 17.78 times and 8.78 times those of clean days. The largest increase of particle number concentration was within 50-100nm and 100-200nm fractions during photochemical smog episodes, about 5.89 times and 4.29 times those of clean days. The particle volume concentration and surface concentration in haze, photochemical smog and clean days were 102, 49, 15μm(3)/cm(3) and 949, 649, 206μm(2)/cm(3), respectively. As haze events got more severe, the number concentration of particles smaller than 50nm decreased, but the particles of 50-200nm and 0.5-1μm increased. The diurnal variation of particle number concentration showed a bimodal pattern in haze days. All soluble ions were increased during haze events, of which NH4(+), SO4(2-) and NO3(-) increased greatly, followed by Na(+), K(+), Ca(2+) and Cl(-). These ions were very different in size-resolved particles during haze and photochemical smog episodes.

  5. On the factors governing the abundance of oxalic acid in tropospheric aerosol particles

    NASA Astrophysics Data System (ADS)

    van Pinxteren, D.; Neusuess, C.; Brüggemann, E.; Gnauk, T.; Müller, K.; Herrmann, H.

    2010-12-01

    Oxalic acid is frequently observed as one of the most abundant single organic compounds in tropospheric particles. Its sources are commonly believed to be of secondary nature. In state-of-the-art multiphase chemistry models, different pathways exist, which can lead to oxalic acid as final product. Anthropogenic hydrocarbon emissions can be photochemically degraded to glyoxal and methyglyoxal, which - after partitioning into deliquescent particles or cloud droplets - are further oxidized via glyoxylic acid to oxalic acid [Herrmann et al., 2005]. A biogenic oxidation pathway starts with isoprene or monoterpene emissions and leads to glycolaldehyde and methylglyoxal via methacrolein and methylvinylketone, followed by aqueous phase oxalic acid formation [Lim et al., 2005]. As suggested by Warneck, 2003, a marine pathway might exist, starting from marine ethene emissions and leading via glycolaldehyde to oxalic acid. The aim of this study was to elucidate from field measurements the importance of each of these pathways. To this aim, oxalic acid concentrations from 144 size-resolved particle samples (5-stage Berner impactor) from different continental and coastal European sampling sites were statistically analyzed using principal component analysis (PCA). Hourly back trajectories were calculated for each sampling interval using the HYSPLIT model [Draxler and Rolph, 2003] and combined in a novel way with global land cover data to yield “residence times” of the sampled air masses above urban, agricultural, forested, and oceanic areas. These residence times served as quantitative proxies for different emission regimes (anthropogenic, biogenic, marine) in the statistical analysis. Additionally, meteorological parameters such as sunflux along the trajectories or mixing layer depth at the sampling site were retrieved from the HYSPLIT output. PCA of the continental dataset retrieved two factors that were connected to the oxalic acid concentrations. A first one showed high

  6. Concentration and particle size distribution of polycyclic aromatic hydrocarbons formed by thermal cooking.

    PubMed

    Saito, E; Tanaka, N; Miyazaki, A; Tsuzaki, M

    2014-06-15

    The concentration and particle size distribution of 19 major polycyclic aromatic hydrocarbons (PAHs) emitted by thermal cooking were investigated. Corn, trout, beef, prawns, and pork were selected for grilling. The PAHs in the oil mist emitted when the food was grilled were collected according to particle size range and analysed by GC/MS. Much higher concentrations of PAHs were detected in the oil mist emitted by grilled pork, trout, and beef samples, which were rich in fat. The main components of the cooking exhaust were 3- and 4-ring PAHs, regardless of food type. The particle size distribution showed that almost all the PAHs were concentrated in particles with diameters of <0.43 μm. For pork, the toxic equivalent of benzo[a]pyrene accounted for 50% of the PAHs in particles with diameters of <0.43 μm. From these results, we estimated that >90% of the PAHs would reach the alveolar region of the lungs.

  7. Equilibrium concentrations for pyruvate dehydrogenase and the citric acid cycle at specified concentrations of certain coenzymes.

    PubMed

    Alberty, Robert A

    2004-04-01

    It is of interest to calculate equilibrium compositions of systems of biochemical reactions at specified concentrations of coenzymes because these reactants tend to be in steady states. Thermodynamic calculations under these conditions require the definition of a further transformed Gibbs energy G" by use of a Legendre transform. These calculations are applied to the pyruvate dehydrogenase reaction plus the citric acid cycle, but steady-state concentrations of CoA, acetyl-CoA and succinyl-CoA cannot be specified because they are involved in the conservation of carbon atoms. These calculations require the use of linear algebra to obtain further transformed Gibbs energies of formation of reactants and computer programs to calculate equilibrium compositions. At specified temperature, pH, ionic strength and specified concentrations of several coenzymes, the equilibrium composition depends on the specified concentrations of the coenzymes and the initial amounts of reactants.

  8. Immersion freezing in concentrated solution droplets for a variety of ice nucleating particles

    NASA Astrophysics Data System (ADS)

    Wex, Heike; Kohn, Monika; Grawe, Sarah; Hartmann, Susan; Hellner, Lisa; Herenz, Paul; Welti, Andre; Lohmann, Ulrike; Kanji, Zamin; Stratmann, Frank

    2016-04-01

    The measurement campaign LINC (Leipzig Ice Nucleation counter Comparison) was conducted in September 2015, during which ice nucleation measurements as obtained with the following instruments were compared: - LACIS (Leipzig Aerosol Cloud Interaction Simulator, see e.g. Wex et al., 2014) - PIMCA-PINC (Portable Immersion Mode Cooling Chamber together with PINC) - PINC (Portable Ice Nucleation Chamber, Chou et al., 2011) - SPIN (SPectrometer for Ice Nuclei, Droplet Measurement Technologies) While LACIS and PIMCA-PINC measured immersion freezing, PINC and SPIN varied the super-saturation during the measurements and collected data also for relative humidities below 100% RHw. A suite of different types of ice nucleating particles were examined, where particles were generated from suspensions, subsequently dried and size selected. For the following samples, data for all four instruments are available: K-feldspar, K-feldspar treated with nitric acid, Fluka-kaolinite and birch pollen. Immersion freezing measurements by LACIS and PIMCA-PINC were in excellent agreement. Respective parameterizations from these measurement were used to model the ice nucleation behavior below water vapor saturation, assuming that the process can be described as immersion freezing in concentrated solutions. This is equivalent to simply including a concentration dependent freezing point depression in the immersion freezing parameterization, as introduced for coated kaolinite particles in Wex et al. (2014). Overall, measurements performed below water vapor saturation were reproduced by the model, and it will be discussed in detail, why deviations were observed in some cases. Acknowledgement: Part of this work was funded by the DFG Research Unit FOR 1525 INUIT, grant WE 4722/1-2. Literature: Chou, C., O. Stetzer, E. Weingartner, Z. Juranyi, Z. A. Kanji, and U. Lohmann (2011), Ice nuclei properties within a Saharan dust event at the Jungfraujoch in the Swiss Alps, Atmos. Chem. Phys., 11(10), 4725

  9. Radon in indoor concentrations and indoor concentrations of metal dust particles in museums and other public buildings.

    PubMed

    Carneiro, G L; Braz, D; de Jesus, E F; Santos, S M; Cardoso, K; Hecht, A A; Dias da Cunha, Moore K

    2013-06-01

    The aim of this study was to evaluate the public and occupational exposure to radon and metal-bearing particles in museums and public buildings located in the city of Rio de Janeiro, Brazil. For this study, four buildings were selected: two historic buildings, which currently house an art gallery and an art museum; and two modern buildings, a chapel and a club. Integrated radon concentration measurements were performed using passive radon detectors with solid state nuclear track detector-type Lexan used as nuclear track detector. Air samplers with a cyclone were used to collect the airborne particle samples that were analyzed by the particle-induced X-ray emission technique. The average unattached-radon concentrations in indoor air in the buildings were above 40 Bq/m(3), with the exception of Building D as measured in 2009. The average radon concentrations in indoor air in the four buildings in 2009 were below the recommended reference level by World Health Organization (100 Bq/m(3)); however, in 2011, the average concentrations of radon in Buildings A and C were above this level, though lower than 300 Bq/m(3). The average concentrations of unattached radon were lower than 148 Bq/m(3) (4pCi/L), the USEPA level recommended to take action to reduce the concentrations of radon in indoor air. The unattached-radon average concentrations were also lower than the value recommended by the European Union for new houses. As the unattached-radon concentrations were below the international level recommended to take action to reduce the radon concentration in air, it was concluded that during the period of sampling, there was low risk to human health due to the inhalation of unattached radon in these four buildings.

  10. Modeling particle number concentrations along Interstate 10 in El Paso, Texas

    NASA Astrophysics Data System (ADS)

    Olvera, Hector A.; Jimenez, Omar; Provencio-Vasquez, Elias

    2014-12-01

    Annual average daily particle number concentrations around a highway were estimated with an atmospheric dispersion model and a land use regression model. The dispersion model was used to estimate particle concentrations along Interstate 10 at 98 locations within El Paso, Texas. This model employed annual averaged wind speed and annual average daily traffic counts as inputs. A land use regression model with vehicle kilometers traveled as the predictor variable was used to estimate local background concentrations away from the highway to adjust the near-highway concentration estimates. Estimated particle number concentrations ranged between 9.8 × 103 particles/cc and 1.3 × 105 particles/cc, and averaged 2.5 × 104 particles/cc (SE 421.0). Estimates were compared against values measured at seven sites located along I10 throughout the region. The average fractional error was 6% and ranged between -1% and -13% across sites. The largest bias of -13% was observed at a semi-rural site where traffic was lowest. The average bias amongst urban sites was 5%. The accuracy of the estimates depended primarily on the emission factor and the adjustment to local background conditions. An emission factor of 1.63 × 1014 particles/veh-km was based on a value proposed in the literature and adjusted with local measurements. The integration of the two modeling techniques ensured that the particle number concentrations estimates captured the impact of traffic along both the highway and arterial roadways. The performance and economical aspects of the two modeling techniques used in this study shows that producing particle concentration surfaces along major roadways would be feasible in urban regions where traffic and meteorological data are readily available.

  11. Modeling particle number concentrations along Interstate 10 in El Paso, Texas

    PubMed Central

    Olvera, Hector A.; Jimenez, Omar; Provencio-Vasquez, Elias

    2014-01-01

    Annual average daily particle number concentrations around a highway were estimated with an atmospheric dispersion model and a land use regression model. The dispersion model was used to estimate particle concentrations along Interstate 10 at 98 locations within El Paso, Texas. This model employed annual averaged wind speed and annual average daily traffic counts as inputs. A land use regression model with vehicle kilometers traveled as the predictor variable was used to estimate local background concentrations away from the highway to adjust the near-highway concentration estimates. Estimated particle number concentrations ranged between 9.8 × 103 particles/cc and 1.3 × 105 particles/cc, and averaged 2.5 × 104 particles/cc (SE 421.0). Estimates were compared against values measured at seven sites located along I10 throughout the region. The average fractional error was 6% and ranged between -1% and -13% across sites. The largest bias of -13% was observed at a semi-rural site where traffic was lowest. The average bias amongst urban sites was 5%. The accuracy of the estimates depended primarily on the emission factor and the adjustment to local background conditions. An emission factor of 1.63 × 1014 particles/veh-km was based on a value proposed in the literature and adjusted with local measurements. The integration of the two modeling techniques ensured that the particle number concentrations estimates captured the impact of traffic along both the highway and arterial roadways. The performance and economical aspects of the two modeling techniques used in this study shows that producing particle concentration surfaces along major roadways would be feasible in urban regions where traffic and meteorological data are readily available. PMID:25313294

  12. Modeling particle number concentrations along Interstate 10 in El Paso, Texas.

    PubMed

    Olvera, Hector A; Jimenez, Omar; Provencio-Vasquez, Elias

    2014-12-01

    Annual average daily particle number concentrations around a highway were estimated with an atmospheric dispersion model and a land use regression model. The dispersion model was used to estimate particle concentrations along Interstate 10 at 98 locations within El Paso, Texas. This model employed annual averaged wind speed and annual average daily traffic counts as inputs. A land use regression model with vehicle kilometers traveled as the predictor variable was used to estimate local background concentrations away from the highway to adjust the near-highway concentration estimates. Estimated particle number concentrations ranged between 9.8 × 10(3) particles/cc and 1.3 × 10(5) particles/cc, and averaged 2.5 × 10(4) particles/cc (SE 421.0). Estimates were compared against values measured at seven sites located along I10 throughout the region. The average fractional error was 6% and ranged between -1% and -13% across sites. The largest bias of -13% was observed at a semi-rural site where traffic was lowest. The average bias amongst urban sites was 5%. The accuracy of the estimates depended primarily on the emission factor and the adjustment to local background conditions. An emission factor of 1.63 × 10(14) particles/veh-km was based on a value proposed in the literature and adjusted with local measurements. The integration of the two modeling techniques ensured that the particle number concentrations estimates captured the impact of traffic along both the highway and arterial roadways. The performance and economical aspects of the two modeling techniques used in this study shows that producing particle concentration surfaces along major roadways would be feasible in urban regions where traffic and meteorological data are readily available.

  13. Shear-induced particle diffusion and its effects on the flow of concentrated suspensions

    SciTech Connect

    Acrivos, A.

    1996-12-31

    The mechanism underlying shear-induced particle diffusion in concentrated suspensions is clarified. Examples are then presented where this diffusion process plays a crucial role in determining the manner by which such suspensions flow under laminar conditions.

  14. Effect of Particle Hardness on the Penetration Behavior of Fabrics Intercalated with Dry Particles and Concentrated Particle-Fluid Suspensions

    DTIC Science & Technology

    2009-11-03

    The PMMA particles were synthesized via a free-radical reaction of dilute methyl methacrylate monomer in mixed methanol and water solvent at 70 °C for...significantly harder than Kevlar, to treatments containing softer poly( methyl methacrylate ) (PMMA) particles. The fabric testing includes yarn pull-out...treatments resulted in improvements in fabric properties relative to neat or poly( ethylene glycol) (PEG) treated fabrics. On comparison of treatments with

  15. Influence of dust-particle concentration on gas-discharge plasma

    SciTech Connect

    Sukhinin, G. I.; Fedoseev, A. V.

    2010-01-15

    A self-consistent kinetic model of a low-pressure dc glow discharge with dust particles based on Boltzmann equation for the electron energy distribution function is presented. The ions and electrons production in ionizing processes as well as their recombination on the dust-particle surface and on the discharge tube wall were taken into account. The influence of dust-particle concentration N{sub d} on gas discharge and dust particles parameters was investigated. It is shown that the increase of N{sub d} leads to the increase of an averaged electric field and ion density, and to the decrease of a dust-particle charge and electron density in the dusty cloud. The results were obtained in a wide region of different discharge and dusty plasma parameters: dust particles density 10{sup 2}-10{sup 8} cm{sup -3}, discharge current density 10{sup -1}-10{sup 1} mA/cm{sup 2}, and dust particles radius 1, 2, and 5 mum. The scaling laws for dust-particle surface potential and electric filed dependencies on dust-particle density, particle radius and discharge currents were revealed. It is shown that the absorption of electrons and ions on the dust particles surface does not lead to the electron energy distribution function depletion due to a self-consistent adjustment of dust particles and discharge parameters.

  16. Influence of dust-particle concentration on gas-discharge plasma.

    PubMed

    Sukhinin, G I; Fedoseev, A V

    2010-01-01

    A self-consistent kinetic model of a low-pressure dc glow discharge with dust particles based on Boltzmann equation for the electron energy distribution function is presented. The ions and electrons production in ionizing processes as well as their recombination on the dust-particle surface and on the discharge tube wall were taken into account. The influence of dust-particle concentration N(d) on gas discharge and dust particles parameters was investigated. It is shown that the increase of N(d) leads to the increase of an averaged electric field and ion density, and to the decrease of a dust-particle charge and electron density in the dusty cloud. The results were obtained in a wide region of different discharge and dusty plasma parameters: dust particles density 10(2)-10(8) cm(-3), discharge current density 10(-1)-10(1) mA/cm(2), and dust particles radius 1, 2, and 5 microm. The scaling laws for dust-particle surface potential and electric filed dependencies on dust-particle density, particle radius and discharge currents were revealed. It is shown that the absorption of electrons and ions on the dust particles surface does not lead to the electron energy distribution function depletion due to a self-consistent adjustment of dust particles and discharge parameters.

  17. Adsorption of acids and bases from aqueous solutions onto silicon dioxide particles.

    PubMed

    Zengin, Huseyin; Erkan, Belgin

    2009-12-30

    The adsorption of acids and bases onto the surface of silicon dioxide (SiO(2)) particles was systematically studied as a function of several variables, including activation conditions, contact time, specific surface area, particle size, concentration and temperature. The physical properties of SiO(2) particles were investigated, where characterizations were carried out by FT-IR spectroscopy, and morphology was examined by scanning electron microscopy (SEM). The SEM of samples showed good dispersion and uniform SiO(2) particles with an average diameter of about 1-1.5 microm. The adsorption results revealed that SiO(2) surfaces possessed effective interactions with acids and bases, and greatest adsorption capacity was achieved with NaOH, where the best fit isotherm model was the Freundlich adsorption model. The adsorption properties of raw SiO(2) particles were further improved by ultrasonication. Langmuir monolayer adsorption capacity of NaOH adsorbate at 25 degrees C on sonicated SiO(2) (182.6 mg/g) was found to be greater than that of the unsonicated SiO(2) (154.3mg/g). The spontaneity of the adsorption process was established by decreases in DeltaG(ads)(0), which varied from -10.5 to -13.6 kJ mol(-1), in the temperature range 283-338K.

  18. Prediction of particle formation and number concentration over the United States with WRF-Chem + APM model

    NASA Astrophysics Data System (ADS)

    Luo, G.; Yu, F.

    2010-12-01

    Aerosol nucleation events have been widely observed at various locations around the world and well recognized to dominate the particle number abundance and cloud condensation nuclei concentrations in many parts of the troposphere. An advanced particle microphysics model (APM), which has been previously incorporated into a global chemistry transport model (GEOS-Chem) and validated against a large set of aerosol measurements (Yu and Luo, 2009; Yu et al., 2010), has been successfully integrated into the Weather Research and Forecast model coupled with Chemistry (WRF-Chem). The size-resolved (sectional) APM model, which distinguishes secondary and primary particles and keeps track of the amount of secondary species coated on each type of primary particles (black carbon, primary organic carbon, dust, and sea salt), is designed to capture key particle properties important for their health and climatic effects while keep the computing cost at a reasonable level. WRF-Chem has 53 tracers for CBM-Z mechanism, and it took 2.2 hours for one day simulations covering a region of 3780×2916 km2 with 27 km horizontal resolutions and 34 layers on an 8-CPU Linux workstation (2.2 Ghz Dual Quad-Core AMD Opteron Processor 2354). The coupled WRF-Chem-APM model has 138 tracers (85 additional tracers associated with APM), and it took 5.02 hours on the same machine for same day simulation with full size-resolved microphysics (nucleation, condensation, coagulation, deposition, and scavenging) and CBM-Z chemistry. The WRF-Chem + APM has been employed to study the formation and growth of particles over the United States, using relevant outputs from GEOS-Chem + APM as initial conditions and boundary conditions. We show that ion-mediated nucleation of sulfuric acid and water can lead to significant new particle formation over the United States and nucleation rates have strongly spatial and temporal variations. The simulated spatial (both horizontal and vertical) distribution of particle

  19. Wood dust particle and mass concentrations and filtration efficiency in sanding of wood materials.

    PubMed

    Welling, Irma; Lehtimäki, Matti; Rautio, Sari; Lähde, Tero; Enbom, Seppo; Hynynen, Pasi; Hämeri, Kaarle

    2009-02-01

    The importance of fine particles has become apparent as the knowledge of their effects on health has increased. Fine particle concentrations have been published for outside air, plasma arc cutting, welding, and grinding, but little data exists for the woodworking industry. Sanding was evaluated as the producer of the woodworking industry's finest particles, and was selected as the target study. The number of dust particles in different particle size classes and the mass concentrations were measured in the following environments: workplace air during sanding in plywood production and in the inlet and return air; in the dust emission chamber; and in filter testing. The numbers of fine particles were low, less than 10(4) particles/cm(3) (10(7) particles/L). They were much lower than typical number concentrations near 10(6) particles/cm(3) measured in plasma arc cutting, grinding, and welding. Ultrafine particles in the size class less than 100 nm were found during sanding of MDF (medium density fiberboard) sheets. When the cleaned air is returned to the working areas, the dust content in extraction systems must be monitored continuously. One way to monitor the dust content in the return air is to use an after-filter and measure pressure drop across the filter to indicate leaks in the air-cleaning system. The best after-filtration materials provided a clear increase in pressure drop across the filter in the loading of the filter. The best after-filtration materials proved to be quite effective also for fine particles. The best mass removal efficiencies for fine particles around 0.3 mum were over 80% for some filter materials loaded with sanding wood dust.

  20. In situ particle size distributions and volume concentrations from a LISST-100 laser particle sizer and a digital floc camera

    NASA Astrophysics Data System (ADS)

    Mikkelsen, Ole A.; Hill, Paul S.; Milligan, Timothy G.; Chant, Robert J.

    2005-10-01

    A LISST-100 in situ laser particle sizer was deployed together with a digital floc camera during field work in the Newark Bay area (USA) and along the Apennine margin (the Adriatic Sea, Italy). The purpose of these simultaneous deployments was to investigate how well in situ particle (floc) sizes and volume concentrations from the two different instruments compared. In the Adriatic Sea the two instruments displayed the same temporal variation, but the LISST provided lower estimates of floc size by a factor of 2-3, compared to the DFC. In the Newark Bay area, the LISST provided higher values of floc size by up to a factor of 2. When floc size was computed using only the overlapping size bins from the two instruments the discrepancy disappeared. The reason for the discrepancy in size was found to be related to several issues: First, the LISST measured particles in the 2.5-500 μm range, whereas the camera measured particles in the 135-9900 μm range, so generally the LISST should provide lower estimates of floc size, as it measures the smaller particles. Second, in the Newark Bay area scattering from particles >500 μm generally caused the LISST to overestimate the volume of particles in its largest size bin, thereby increasing apparent floc size. Relative to the camera, the LISST generally provided estimates of total floc volume that were lower by a factor of 3. Factors that could explain this discrepancy are errors arising from the accuracy of the LISST volume conversion coefficient and image processing. Regardless of these discrepancies, the shapes of the size spectra from the instruments were similar in the regions of overlap and could be matched by multiplying with an appropriate correction coefficient. This facilitated merging of the size spectra from the LISST and the DFC, yielding size spectra in the 2.5-9900 μm range. The merged size spectra generally had one or more peaks in the coarse end of the spectrum, presumably due to the presence of flocs. The fine

  1. Evaluation of the effects of dietary particle fractions on fermentation profile and concentration of microbiota in the rumen of dairy cows fed grass silage-based diets.

    PubMed

    Zebeli, Qendrim; Tafaj, Myqerem; Junck, Benjamin; Mansmann, Dominik; Steingass, Herbert; Drochner, Winfried

    2008-06-01

    The study evaluated the effects of three different theoretical particle lengths (TPL) of grass silage on the distribution of particle fractions of the diet and the resulting effects on fermentation profile and concentrations of protozoa and mixed bacterial mass in the rumen of three lactating Holstein cows fed total mixed rations (45% grass silage, 5% grass hay and 50% concentrate) ad libitum. Decreasing TPL of grass silage (long, medium, short) reduced particles retained on the 19-mm sieve of the Penn State Particle Separator, while particle fractions from 8 mm to 19 mm and smaller than 8 mm were increased. Different TPL did not affect pH and the concentration of volatile fatty acids in the rumen. However, lowering the TPL from long to medium increased significantly the bicarbonate concentration, acetate proportion and protozoal number in the rumen, whereas the proportion of bacterial protein in ruminal digesta and its amino acid concentration were significantly increased by the short TPL. For the current feeding conditions, it can be concluded that increasing the fraction of particles between 8 and 19 mm and probably even the fraction below 8 mm by decreasing TPL of grass silage do not adversely affect rumen conditions and can be beneficial in terms of optimising concentration and activity of ruminal microbiota in high-yielding dairy cows.

  2. Ion size effects on the electrokinetics of spherical particles in salt-free concentrated suspensions

    NASA Astrophysics Data System (ADS)

    Roa, Rafael; Carrique, Felix; Ruiz-Reina, Emilio

    2012-02-01

    In this work we study the influence of the counterion size on the electrophoretic mobility and on the dynamic mobility of a suspended spherical particle in a salt-free concentrated colloidal suspension. Salt-free suspensions contain charged particles and the added counterions that counterbalance their surface charge. A spherical cell model approach is used to take into account particle-particle electro-hydrodynamic interactions in concentrated suspensions. The finite size of the counterions is considered including an entropic contribution, related with the excluded volume of the ions, in the free energy of the suspension, giving rise to a modified counterion concentration profile. We are interested in studying the linear response of the system to an electric field, thus we solve the different electrokinetic equations by using a linear perturbation scheme. We find that the ionic size effect is quite important for moderate to high particles charges at a given particle volume fraction. In addition for such particle surface charges, both the electrophoretic mobility and the dynamic mobility suffer more important changes the larger the particle volume fraction for each ion size. The latter effects are more relevant the larger the ionic size.

  3. Particle concentrations, gas-particle partitioning, and species intercorrelations for Polycyclic Aromatic Hydrocarbons (PAH) emitted during biomass burning

    NASA Astrophysics Data System (ADS)

    Jenkins, Bryan M.; Daniel Jones, A.; Turn, Scott Q.; Williams, Robert B.

    Eight types of agricultural and forest fuels including 4 cereal crop residues and 4 wood fuels were burned in a combustion wind tunnel to simulate the open burning of biomass. Concentrations for 19 PAH species in particulate matter were found to range between 120 and 4000 mg kg -1, representing between 1 and 70% of total PAH emission. Weakly flaming spreading fires in the cereals were observed to produce higher levels of heavier PAH than more robust fires, with greater partitioning of PAH to the particle phase. Individual species concentrations appeared well correlated within groups based primarily on molecular weight, but no single species was observed to correlate with all others to serve as an indicator of PAH emission strength. Equilibrium gas-particle partitioning did not appear to be achieved within the 3-5 s residence time prior to sampling for sampling temperatures between 32 and 87°C, and in particular for the heavier species emitted from wood fuel pile fires with higher stack gas temperatures and shorter residence times. Total PAH emission, particle-phase concentrations, and fraction of PAH on particles were more strongly influenced by burning conditions than by fuel type.

  4. Modeling Particle Concentration In Slurry Flows Using Shear-Induced Migration: Theory vs. Experiments

    NASA Astrophysics Data System (ADS)

    Lin, Kanhui; Latterman, Paul; Koch, Trystan; Hu, Vincent; Ho, Joyce; Mata, Matthew; Murisic, Nebojsa; Bertozzi, Andrea

    2009-11-01

    Different flow regimes observed in our experimental study of particle-laden thin film flows are characterized by differing particle concentration profiles. We develop a theoretical model for particle concentration in order to capture our experimental observations. Our model is based on equilibrium assumption and it incorporates all relevant physical mechanisms, including shear-induced particle migration and settling due to gravity. It leads to a coupled system of ordinary differential equations for particle volume fraction and shear, which are solved numerically for various parameter sets. We find excellent agreement between our numerical results and experimental data. Our model is not only successful in reproducing the experimentally observed regimes, but also in capturing the connection between these regimes and the experimental parameters.

  5. CO(2)-concentrating: consequences in crassulacean acid metabolism.

    PubMed

    Lüttge, Ulrich

    2002-11-01

    The consequences of CO(2)-concentrating in leaf air-spaces of CAM plants during daytime organic acid decarboxylation in Phase III of CAM (crassulacean acid metabolism) are explored. There are mechanistic consequences of internal CO(2) partial pressures, p(i)(CO(2)). These are (i) effects on stomata, i.e. high p(i)(CO(2)) eliciting stomatal closure in Phase III, (ii) regulation of malic acid remobilization from the vacuole, malate decarboxylation and refixation of CO(2) via Rubisco (ribulose bisphosphate carboxylase/oxygenase), and (iii) internal signalling functions during the transitions between Phases II and III and III and IV, respectively, in the natural day/night cycle and in synchronizing the circadian clocks of individual leaf cells or leaf patches in the free-running endogenous rhythmicity of CAM. There are ecophysiological consequences. Obvious beneficial ecophysiological consequences are (i) CO(2)-acquisition, (ii) increased water-use- efficiency, (iii) suppressed photorespiration, and (iv) reduced oxidative stress by over-energization of the photosynthetic apparatus. However, the general potency of these beneficial effects may be questioned. There are also adverse ecophysiological consequences. These are (i) energetics, (ii) pH effects and (iii) Phase III oxidative stress. A major consequence of CO(2)-concentrating in Phase III is O(2)-concentrating, increased p(i)(CO(2)) is accompanied by increased p(i)(O(2)). Do reversible shifts of C(3)/CAM-intermediate plants between the C(3)-CAM-C(3) modes of photosynthesis indicate that C(3)-photosynthesis provides better protection from irradiance stress? There are many open questions and CAM remains a curiosity.

  6. 40 CFR Appendix A to Subpart Uuu... - Determination of Metal Concentration on Catalyst Particles (Instrumental Analyzer Procedure)

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Catalyst Particles (Instrumental Analyzer Procedure) A Appendix A to Subpart UUU of Part 63 Protection of... Metal Concentration on Catalyst Particles (Instrumental Analyzer Procedure) 1.0Scope and Application. 1... concentrations on catalyst particles. This method is applicable for catalyst particles obtained from the...

  7. 40 CFR Appendix A to Subpart Uuu... - Determination of Metal Concentration on Catalyst Particles (Instrumental Analyzer Procedure)

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Catalyst Particles (Instrumental Analyzer Procedure) A Appendix A to Subpart UUU of Part 63 Protection of... Concentration on Catalyst Particles (Instrumental Analyzer Procedure) 1.0Scope and Application. 1.1Analytes. The... concentrations on catalyst particles. This method is applicable for catalyst particles obtained from the...

  8. 40 CFR Appendix A to Subpart Uuu... - Determination of Metal Concentration on Catalyst Particles (Instrumental Analyzer Procedure)

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... on Catalyst Particles (Instrumental Analyzer Procedure) A Appendix A to Subpart UUU of Part 63...—Determination of Metal Concentration on Catalyst Particles (Instrumental Analyzer Procedure) 1.0Scope and... analyte concentrations on catalyst particles. This method is applicable for catalyst particles...

  9. 40 CFR Appendix A to Subpart Uuu... - Determination of Metal Concentration on Catalyst Particles (Instrumental Analyzer Procedure)

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... on Catalyst Particles (Instrumental Analyzer Procedure) A Appendix A to Subpart UUU of Part 63...—Determination of Metal Concentration on Catalyst Particles (Instrumental Analyzer Procedure) 1.0Scope and... analyte concentrations on catalyst particles. This method is applicable for catalyst particles...

  10. 40 CFR Appendix A to Subpart Uuu... - Determination of Metal Concentration on Catalyst Particles (Instrumental Analyzer Procedure)

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Catalyst Particles (Instrumental Analyzer Procedure) A Appendix A to Subpart UUU of Part 63 Protection of... Concentration on Catalyst Particles (Instrumental Analyzer Procedure) 1.0Scope and Application. 1.1Analytes. The... concentrations on catalyst particles. This method is applicable for catalyst particles obtained from the...

  11. Non-hydrolytic formation of silica and polysilsesquioxane particles from alkoxysilane monomers with formic acid in toluene/tetrahydrofuran solutions

    NASA Astrophysics Data System (ADS)

    Boday, Dylan J.; Tolbert, Stephanie; Keller, Michael W.; Li, Zhe; Wertz, Jason T.; Muriithi, Beatrice; Loy, Douglas A.

    2014-03-01

    Silica and polysilsesquioxane particles are used as fillers in composites, catalyst supports, chromatographic separations media, and even as additives to cosmetics. The particles are generally prepared by hydrolysis and condensation of tetraalkoxysilanes and/or organotrialkoxysilanes, respectively, in aqueous alcohol solutions. In this study, we have discovered a new, non-aqueous approach to prepare silica and polysilsesquioxane particles. Spherical, nearly monodisperse, silica particles (600-6,000 nm) were prepared from the reaction of tetramethoxysilane with formic acid (4-8 equivalents) in toluene or toluene/tetrahydrofuran solutions. Polymerization of organotrialkoxysilanes with formic acid failed to afford particles, but bridged polysilsesquioxane particles were obtained from monomers with two trialkoxysilyl group attached to an organic-bridging group. The mild acidic conditions allowed particles to be prepared from monomers, such as bis(3-triethoxysilylpropyl)tetrasulfide, which are unstable to Stöber or base-catalyzed emulsion polymerization conditions. The bridged polysilsesquioxane particles were generally less spherical and more polydisperse than silica particles. Both silica and bridged polysilsesquioxane nanoparticles could be prepared in good yields at monomer concentrations considerably higher than used in Stöber or emulsion approaches.

  12. Diurnal variations in the plasma concentrations of mevalonic acid in patients with abetalipoproteinaemia.

    PubMed

    Pappu, A S; Illingworth, D R

    1994-10-01

    Previous studies have demonstrated that changes in the rates of cholesterol biosynthesis can be evaluated by the determination of plasma concentrations of sterol intermediates, including mevalonic acid and lathosterol and that, in normal human subjects, a diurnal rhythm exists in which the highest concentrations of sterol intermediates are observed at night. The factors responsible for this diurnal rhythm in cholesterol synthesis are, however, unknown. To test the hypothesis that the nocturnal increase in cholesterol biosynthesis is attributable to a reduced rate of hepatic uptake of chylomicron remnants at night as compared to higher rates of uptake during the daytime in response to alimentary lipaemia, we have examined the diurnal rhythm of mevalonic acid in six normal volunteers and three patients with phenotypic abetalipoproteinaemia. The latter patients do not absorb appreciable amounts of dietary cholesterol and are unable to synthesize chylomicron particles. Plasma concentrations of mevalonic acid exhibited a diurnal rhythm in the normal subjects, and the highest plasma concentrations were observed between 24.00 hours/04.00 hours. A similar rhythm was observed in the plasma of patients with abetalipoproteinaemia. These results suggest that the nocturnal increase in cholesterol biosynthesis which occurs in humans is not attributable to reduced hepatic uptake of chylomicron remnants at night; further studies are needed to better define those factors which influence the periodicity of cholesterol biosynthesis in humans.

  13. Particle concentrations and number size distributions in the planetary boundary layer derived from airship based measurements

    NASA Astrophysics Data System (ADS)

    Tillmann, Ralf; Zhao, Defeng; Ehn, Mikael; Hofzumahaus, Andreas; Holland, Frank; Rohrer, Franz; Kiendler-Scharr, Astrid; Wahner, Andreas

    2014-05-01

    Atmospheric particles play a key role for regional and global climate due to their direct and indirect radiative forcing effects. The concentration and size of the particles are important variables to these effects. Within the continental planetary boundary layer (PBL) the particle number size distribution is influenced by meteorological parameters, local sinks and sources resulting in variable spatial distributions. However, measurements of particle number size distributions over a broad vertical range of the PBL are rare. The airship ZEPPELIN NT is an ideal platform to measure atmospheric aerosols on a regional scale within an altitude range up to 1000 m. For campaigns in the Netherlands, Northern Italy and South Finland in 2012 and 2013 the airship was deployed with a wide range of instruments, including measurements of different trace gases, short lived radicals, solar radiation, aerosols and meteorological parameters. Flights were carried out at different times of the day to investigate the influence of the diurnal evolution of the PBL on atmospheric trace gases and aerosols. During night and early morning hours the concentration and size distribution of atmospheric particles were found to be strongly influenced by the layered structure of the PBL, i.e. the nocturnal boundary layer and the residual layer. Within the residual layer particle concentrations stay relatively constant as this layer is decoupled from ground sources. The particles persist in the accumulation mode as expected for an aged aerosol. In the nocturnal boundary layer particle concentrations and size are more dynamic with higher concentrations than in the residual layer. A few hours after sunrise, the layered structure of the PBL intermixes. During daytime the PBL is well mixed and a negative concentration gradient with increasing height is observed. Several height profiles at different times of the day and at different locations in Europe were measured. The aerosol measurements will be

  14. Measurement of particle number and related pollutant concentrations in an urban area in South Brazil

    NASA Astrophysics Data System (ADS)

    Agudelo-Castañeda, D. M.; Teixeira, E. C.; Rolim, S. B. A.; Pereira, F. N.; Wiegand, F.

    2013-05-01

    The purpose of the present study was to analyze atmospheric particle number concentration at Sapucaia do Sul, in the Metropolitan Area of Porto Alegre, and associate it with the pollutants NO, NO2, and O3. Measurements were performed in two periods: August to October, in 2010 and 2011. We used the following equipment: the continuous particulate monitor (CPM), the chemiluminescent nitrogen oxide analyzer (AC32M), and the UV photometric ozone analyzer (O342M). Daily and hourly particle number concentrations in fractions PR1.0 (0.3-1.0 μm), PR2.5 (1.0-2.5 μm), and PR10 (2.5-10 μm), and concentrations of pollutants NO, NO2, NOx, and O3 were measured. These data were correlated with meteorological parameters such as wind speed, temperature, relative humidity, and solar radiation. The daily variation of OX (NO2 + O3) and its relation with NO2 were also established. The results obtained for daily particle number concentration (particles L-1) showed that the area of study had higher particle number of PR2.5 and PR1.0 size ranges, with values of 19.5 and 28.51 particles L-1, respectively. Differences in particle number concentrations in PR1 and PR2.5 size ranges were found between weekdays and weekends. The daily variation per hour of concentrations of particle number, NO, and NOx showed peaks during increased traffic flow in the morning and in the evening. NO2 showed peaks at different times, with the first peak (morning) 2 h after the peak of NO, and a second peak in the evening (19:00). This is due to the oxidation of NO and to the photolysis of NO3 formed overnight. Correlation analysis suggests that there may be a relationship between the fine and ultrafine particles and NO, probably indicating that they have similar sources, such as vehicular emissions. In addition, a possible relationship of solar radiation with fine particle number concentrations, as well as with O3 was also observed. The results, too, show an inverse relationship between particle number

  15. Composition and hygroscopicity of aerosol particles at Mt. Lu in South China: Implications for acid precipitation

    NASA Astrophysics Data System (ADS)

    Li, Weijun; Chi, Jianwei; Shi, Zongbo; Wang, Xinfeng; Chen, Bin; Wang, Yan; Li, Tao; Chen, Jianmin; Zhang, Daizhou; Wang, Zifa; Shi, Chune; Liu, Liangke; Wang, Wenxing

    2014-09-01

    Physicochemical properties of aerosol particles were studied at Mt. Lu, an elevated site (115°59‧E, 29°35‧N, 1165 m) within the acid precipitation area. Northeast winds transport copious amounts of air pollutants and water vapor from the Yangtze River Delta into this acid precipitation area. NH4+ and SO42- are the dominant ions in PM2.5 and determine aerosol acidity. Individual particle analysis shows abundant S-rich and metals (i.e. Fe-, Zn-, Mn-, and Pb-rich) particles. Unlike aerosol particles in North China and urban areas, there are little soot and mineral particles at Mt. Lu. Lack of mineral particles contributed to the higher acidity in precipitation in the research area. Nano-sized spherical metal particles were observed to be embedded in 37% of S-rich particles. These metal particles were likely originated from heavy industries and fired-power plants. Hygroscopic experiments show that most particles start to deliquesce at 73-76% but organic coating lowers the particle deliquescence relative humidity (DRH) to 63-73%. The DRHs of these aerosol particles are clearly smaller than that of pure ammonium sulfate particles which is 80%. Since RH in ambient air was relatively high, ranging from 65% to 85% during our study period, most particles at our sampling site were in liquid phase. Our results suggest that liquid phase reactions in aerosol particles may contribute to SO2 to sulfuric acid conversion in the acid precipitation area.

  16. The effect of inorganic particle concentration on bacteria-virus-nanoflagellate dynamics.

    PubMed

    Salter, Ian; Böttjer, Daniela; Christaki, Urania

    2011-10-01

    The effect of inorganic particle concentrations on bacteria-virus-nanoflagellate dynamics in an oligotrophic coastal system was investigated using a model aluminosilicate, kaolinite, with a modal size of 2.1 µm. Virus-only, bacteria-only and bacteria-virus-nanoflagellate incubations were carried out at increasing kaolinite concentrations to elucidate the microbial response. The sorption of bacteria and viruses to kaolinite particles was negligible over a concentration range of 1-50 mg l(-1). In contrast, the abundance of heterotrophic nanoflagellates was negatively correlated with kaolinite concentrations following both 48 and 96 h incubations. Calculated nanoflagellate bacterial ingestion rates were reduced by 5-35% depending on kaolinite particle concentration. In the bacteria-virus-nanoflagellate incubations viral production increased by 56 × 10(3) to 104 × 10(3) VLPs ml(-1) h(-1) as a function of kaolinite particle concentration. Our results demonstrate for the first time that the interaction of microbial populations with inorganic particles can shift the balance between protist and virally mediated mortality of marine heterotrophic prokaryotes.

  17. Investigation of particle inertial migration in high particle concentration suspension flow by multi-electrodes sensing and Eulerian-Lagrangian simulation in a square microchannel

    PubMed Central

    Zhao, Tong; Liu, Kai; Takei, Masahiro

    2016-01-01

    The inertial migration of neutrally buoyant spherical particles in high particle concentration (αpi > 3%) suspension flow in a square microchannel was investigated by means of the multi-electrodes sensing method which broke through the limitation of conventional optical measurement techniques in the high particle concentration suspensions due to interference from the large particle numbers. Based on the measured particle concentrations near the wall and at the corner of the square microchannel, particle cross-sectional migration ratios are calculated to quantitatively estimate the migration degree. As a result, particle migration to four stable equilibrium positions near the centre of each face of the square microchannel is found only in the cases of low initial particle concentration up to 5.0 v/v%, while the migration phenomenon becomes partial as the initial particle concentration achieves 10.0 v/v% and disappears in the cases of the initial particle concentration αpi ≥ 15%. In order to clarify the influential mechanism of particle-particle interaction on particle migration, an Eulerian-Lagrangian numerical model was proposed by employing the Lennard-Jones potential as the inter-particle potential, while the inertial lift coefficient is calculated by a pre-processed semi-analytical simulation. Moreover, based on the experimental and simulation results, a dimensionless number named migration index was proposed to evaluate the influence of the initial particle concentration on the particle migration phenomenon. The migration index less than 0.1 is found to denote obvious particle inertial migration, while a larger migration index denotes the absence of it. This index is helpful for estimation of the maximum initial particle concentration for the design of inertial microfluidic devices. PMID:27158288

  18. Investigation of particle inertial migration in high particle concentration suspension flow by multi-electrodes sensing and Eulerian-Lagrangian simulation in a square microchannel.

    PubMed

    Zhao, Tong; Yao, Jiafeng; Liu, Kai; Takei, Masahiro

    2016-03-01

    The inertial migration of neutrally buoyant spherical particles in high particle concentration (αpi  > 3%) suspension flow in a square microchannel was investigated by means of the multi-electrodes sensing method which broke through the limitation of conventional optical measurement techniques in the high particle concentration suspensions due to interference from the large particle numbers. Based on the measured particle concentrations near the wall and at the corner of the square microchannel, particle cross-sectional migration ratios are calculated to quantitatively estimate the migration degree. As a result, particle migration to four stable equilibrium positions near the centre of each face of the square microchannel is found only in the cases of low initial particle concentration up to 5.0 v/v%, while the migration phenomenon becomes partial as the initial particle concentration achieves 10.0 v/v% and disappears in the cases of the initial particle concentration αpi  ≥ 15%. In order to clarify the influential mechanism of particle-particle interaction on particle migration, an Eulerian-Lagrangian numerical model was proposed by employing the Lennard-Jones potential as the inter-particle potential, while the inertial lift coefficient is calculated by a pre-processed semi-analytical simulation. Moreover, based on the experimental and simulation results, a dimensionless number named migration index was proposed to evaluate the influence of the initial particle concentration on the particle migration phenomenon. The migration index less than 0.1 is found to denote obvious particle inertial migration, while a larger migration index denotes the absence of it. This index is helpful for estimation of the maximum initial particle concentration for the design of inertial microfluidic devices.

  19. Epilepsy and the concentrations of plasma amino acids in humans.

    PubMed

    Huxtable, R J; Laird, H; Lippincott, S E; Walson, P

    1983-01-01

    We have examined the correlation between the presence of epilepsy in humans, and plasma amino acid levels. Subjects were divided into those having pure generalized tonic-clonic seizures (grand mal group), those having generalized tonic-clonic seizures plus other types of epilepsy (mixed group), and those suffering from epilepsies other than grand mal (no grand mal group). Compared to non-epileptic controls, the grand mal group had significantly higher fasting plasma levels of aspartate (100% increase) and glutamate (380% increase) but significant decreases were seen with phenylalanine (?23%), lysine (?27%), and tryptophan (?30%). The no grand mal group showed similar changes except for lysine. The mixed group showed elevations in glutamate, but decreases only in cysteine and methionine. In response to a high protein meal, plasma levels of alanine, cysteine and methionine rose significantly less for the no grand mal group compared to the control group. Increases in aspartate and glutamate concentrations strongly correlated with the prescription of phenytoin. However, the concentrations of these amino acids were not significantly correlated with the actual plasma levels of phenytoin.

  20. Optical determination of incipient soot particle concentrations in ethene laminar diffusion flames.

    SciTech Connect

    Gupta, S. B.; Santoro, R. J.

    1999-07-06

    Recent studies in premixed flames have shown the existence of ''transparent particles.'' These particles, 2 nm in size and in high number densities are considered to be a phase transitional between the gas phase PAH species and particulate soot. In the present study, various optical diagnostics were evaluated for measuring the concentration of these particles in situ, Through such evaluations, a technique using extinction at two wavelengths was found to be ideal. While employing such a technique, the volume fractions of these particles in an ethene laminar diffusion flame were measured. Low in the flame, these particles were found to be concentrated in the fuel rich core, while at higher locations, they could be found with appreciable volume fractions even in the soot laden regions. Having given due consideration for the errors due to uncertainties in the optical constants, we report the existence of these particles in an ethene flame with volume fractions comparable to those of soot. Also, similar measurements performed in a low sooting ethene/methanol flame show the concentration of these particles to be of the same order of magnitude as in a pure ethene flame.

  1. Diamine-sulfuric acid reactions are a potent source of new particle formation

    NASA Astrophysics Data System (ADS)

    Jen, Coty N.; Bachman, Ryan; Zhao, Jun; McMurry, Peter H.; Hanson, David R.

    2016-01-01

    Atmospheric nucleation from sulfuric acid depends on the concentrations and the stabilizing effect of other trace gases, such as ammonia and amines. Diamines are an understudied class of atmospherically relevant compounds, and we examine how they affect sulfuric acid nucleation in both flow reactor experiments and the atmosphere. The number of particles produced from sulfuric acid and diamines in the flow reactor was equal to or greater than the number formed from monoamines, implying that diamines are more effective nucleating agents. Upper limits of diamine abundance were also monitored during three field campaigns: Lamont, OK (2013); Lewes, DE (2012); and Atlanta, GA (2009). Mixing ratios were measured as high as tens of parts per trillion by volume (GA and OK). Laboratory results suggest that diamines at these levels are important for atmospheric nucleation. Diamines likely participate in atmospheric nucleation and should be considered in nucleation measurements and models.

  2. Factors Affecting the Association between Ambient Concentrations and Personal Exposures to Particles and Gases

    PubMed Central

    Sarnat, Stefanie Ebelt; Coull, Brent A.; Schwartz, Joel; Gold, Diane R.; Suh, Helen H.

    2006-01-01

    Results from air pollution exposure assessment studies suggest that ambient fine particles [particulate matter with aerodynamic diameter ≤ 2.5 μg (PM2.5)], but not ambient gases, are strong proxies of corresponding personal exposures. For particles, the strength of the personal–ambient association can differ by particle component and level of home ventilation. For gases, however, such as ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2), the impact of home ventilation on personal–ambient associations is untested. We measured 24-hr personal exposures and corresponding ambient concentrations to PM2.5, sulfate (SO42−), elemental carbon, O3, NO2, and SO2 for 10 nonsmoking older adults in Steubenville, Ohio. We found strong associations between ambient particle concentrations and corresponding personal exposures. In contrast, although significant, most associations between ambient gases and their corresponding exposures had low slopes and R2 values; the personal–ambient NO2 association in the fall season was moderate. For both particles and gases, personal–ambient associations were highest for individuals spending most of their time in high- compared with low-ventilated environments. Cross-pollutant models indicated that ambient particle concentrations were much better surrogates for exposure to particles than to gases. With the exception of ambient NO2 in the fall, which showed moderate associations with personal exposures, ambient gases were poor proxies for both gas and particle exposures. In combination, our results suggest that a) ventilation may be an important modifier of the magnitude of effect in time-series health studies, and b) results from time-series health studies based on 24-hr ambient concentrations are more readily interpretable for particles than for gases. PMID:16675415

  3. Factors affecting the association between ambient concentrations and personal exposures to particles and gases.

    PubMed

    Sarnat, Stefanie Ebelt; Coull, Brent A; Schwartz, Joel; Gold, Diane R; Suh, Helen H

    2006-05-01

    Results from air pollution exposure assessment studies suggest that ambient fine particles [particulate matter with aerodynamic diameterparticles, the strength of the personal-ambient association can differ by particle component and level of home ventilation. For gases, however, such as ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2), the impact of home ventilation on personal-ambient associations is untested. We measured 24-hr personal exposures and corresponding ambient concentrations to PM2.5, sulfate (SO2-(4)), elemental carbon, O3, NO2, and SO2 for 10 nonsmoking older adults in Steubenville, Ohio. We found strong associations between ambient particle concentrations and corresponding personal exposures. In contrast, although significant, most associations between ambient gases and their corresponding exposures had low slopes and R2 values; the personal-ambient NO2 association in the fall season was moderate. For both particles and gases, personal-ambient associations were highest for individuals spending most of their time in high- compared with low-ventilated environments. Cross-pollutant models indicated that ambient particle concentrations were much better surrogates for exposure to particles than to gases. With the exception of ambient NO2 in the fall, which showed moderate associations with personal exposures, ambient gases were poor proxies for both gas and particle exposures. In combination, our results suggest that a) ventilation may be an important modifier of the magnitude of effect in time-series health studies, and b) results from time-series health studies based on 24-hr ambient concentrations are more readily interpretable for particles than for gases.

  4. Distribution of the concentration of heavy metals associated with the sediment particles accumulated on road surfaces.

    PubMed

    Zafra, C A; Temprano, J; Tejero, I

    2011-07-01

    The heavy metal pollution caused by road run-off water constitutes a problem in urban areas. The metallic load associated with road sediment must be determined in order to study its impact in drainage systems and receiving waters, and to perfect the design of prevention systems. This paper presents data regarding the sediment collected on road surfaces in the city of Torrelavega (northern Spain) during a period of 65 days (132 samples). Two sample types were collected: vacuum-dried samples and those swept up following vacuuming. The sediment loading (g m(-2)), particle size distribution (63-2800 microm) and heavy metal concentrations were determined. The data showed that the concentration of heavy metals tends to increase with the reduction in the particle diameter (exponential tendency). The concentrations ofPb, Zn, Cu, Cr, Ni, Cd, Fe, Mn and Co in the size fraction <63 microm were 350, 630, 124, 57, 56, 38, 3231, 374 and 51 mg kg(-1), respectively (average traffic density: 3800 vehicles day(-1)). By increasing the residence time of the sediment, the concentration increases, whereas the ratio of the concentration between the different size fractions decreases. The concentration across the road diminishes when the distance between the roadway and the sampling siteincreases; when the distance increases, the ratio between size fractions for heavy metal concentrations increases. Finally, the main sources of heavy metals are the particles detached by braking (brake pads) and tyre wear (rubber), and are associated with particle sizes <125 microm.

  5. Optical tweezing electrophoresis of single biotinylated colloidal particles for avidin concentration measurement

    NASA Astrophysics Data System (ADS)

    Brans, Toon; Strubbe, Filip; Schreuer, Caspar; Neyts, Kristiaan; Beunis, Filip

    2015-06-01

    We present a novel approach for label-free concentration measurement of a specific protein in a solution. The technique combines optical tweezers and microelectrophoresis to establish the electrophoretic mobility of a single microparticle suspended in the solution. From this mobility measurement, the amount of adsorbed protein on the particle is derived. Using this method, we determine the concentration of avidin in a buffer solution. After calibration of the setup, which accounts for electro-osmotic flow in the measurement device, the mobilities of both bare and biotinylated microspheres are measured as a function of the avidin concentration in the mixture. Two types of surface adsorption are identified: the biotinylated particles show specific adsorption, resulting from the binding of avidin molecules with biotin, at low avidin concentrations (below 0.04 μg/ml) while at concentrations of several μg/ml non-specific on both types of particles is observed. These two adsorption mechanisms are incorporated in a theoretical model describing the relation between the measured mobility and the avidin concentration in the mixture. This model describes the electrophoretic mobility of these particles accurately over four orders of magnitude of the avidin concentration.

  6. Modeling the impact of sea-spray on particle concentrations in a coastal city

    SciTech Connect

    Pryor, S C; Barthelmie, R J; Schoof, J T; Binkowski, F S; Monache, L D; Stull, R B

    2006-04-19

    An atmospheric chemistry-transport model is used to assess the impacts of sea-spray chemistry on the particle composition in and downwind of a coastal city--Vancouver, British Columbia. Reactions in/on sea-spray affect the entire particle ensemble and particularly the size distribution of particle nitrate. Urban air quality, and particularly airborne particles, is a major concern in terms of human health impacts. Sea-spray is known to be a major component of the particle ensemble at coastal sites yet relatively few air quality models include the interaction of gases with sea-spray and the fate of the particles produced. Sea-spray is not an inert addition to the particle ensemble because heterogeneous chemistry in/on sea-spray droplets changes the droplets composition and the particle size distribution, which impacts deposition and the ion balance in different particle size fractions. It is shown that the ISOPART model is capable of simulating gas and particle concentrations in the coastal metropolis of Vancouver and the surrounding valley. It is also demonstrated that to accurately simulate ambient concentrations of particles and reactive/soluble gases in a coastal valley it is absolutely critical to include heterogeneous chemistry in/on sea-spray. Partitioning of total particle-NO{sub 3}{sup -} between sea-spray and NH{sub 4}NO{sub 3} is highly sensitive to the amount of sea-spray present, and hence the initial vertical profile, sea-spray source functions [48] and the wind speed. When a fixed wind speed is used to initialize the sea-spray vertical profiles, as expected, the sea-spray concentration decays with distance inland, but the particle-NO{sub 3}{sup -} concentration decays more slowly because it is also a function of the uptake rate for HNO{sub 3}. The simulation results imply model analyses of air quality in coastal cities conducted without inclusion of sea-spray interactions may yield highly misleading results in terms of emission sensitivities of the PM

  7. Free fatty acids do not acutely increase asymmetrical dimethylarginine concentrations.

    PubMed

    Namiranian, K; Mittermayer, F; Artwohl, M; Pleiner, J; Schaller, G; Mayer, B X; Bayerle-Eder, M; Roden, M; Baumgartner-Parzer, S; Wolzt, M

    2005-12-01

    Concentrations of asymmetrical dimethylarginine (ADMA) and free fatty acids (FFAs) are elevated in insulin resistance which is associated with impaired vascular function. We hypothesized that FFAs could alter vascular tone by affecting ADMA concentrations. Plasma FFA levels were increased in seventeen healthy male volunteers by Intralipid/heparin infusion; hemodynamic and biochemical parameters were measured after 90 minutes. Plasma collected before and during Intralipid/heparin or equivalent synthetic FFAs was incubated with human umbilical vein endothelial cells (HUVECs) in vitro. Intralipid/heparin infusion resulted in an approximately seven-fold increase in plasma FFA levels to 1861 +/- 139 micromol/l, which was paralleled by increased systemic blood pressure and forearm blood flow. Intralipid/heparin did not affect ADMA (baseline mean 0.59 [95 % confidence interval [CI]: 0.54; 0.64] and 0.56 [CI: 0.51; 0.59] after 90 minutes), but slightly decreased SDMA (from 0.76, [CI: 0.70; 0.83] to 0.71 [CI: 0.64; 0.74], p < 0.05), and had no effect on ADMA/SDMA ratio. There was no correlation between ADMA and FFA concentrations or forearm blood flow. Incubation of HUVECs with FFA-rich plasma or synthetic FFAs induced an ADMA release after 24 hours, but not after 90 minutes. Acutely increased FFA levels caused hemodynamic effects but did not affect ADMA. Prolonged elevation of FFA levels might influence vascular function by increasing ADMA levels.

  8. Role of Polymer Segment-Particle Surface Interactions in Controlling Nanoparticle Dispersions in Concentrated Polymer Solutions

    SciTech Connect

    Kim, So Youn; Zukoski, Charles F.

    2014-09-24

    The microstructure of particles suspended in concentrated polymer solutions is examined with small-angle X-ray scattering and small-angle neutron scattering. Of interest are changes to long wavelength particle density fluctuations in ternary mixtures of silica nanoparticles suspended in concentrated solutions of poly(ethylene glycol). The results are understood in terms of application of the pseudo-two-component polymer reference interaction site model (PRISM) theory modified to account for solvent addition via effective contact strength of interfacial attraction, εpc, in an implicit manner. The combined experimental-theoretical study emphasizes the complex interactions between solvent, polymer, and particle surface that control particle miscibility but also demonstrate that these factors can all be understood in terms of variations of εpc.

  9. Hydrodynamic particle migration in a concentrated suspension undergoing flow between rotating eccentric cylinders

    SciTech Connect

    Phan-Thien, Nhan; Graham, A.L.; Abbott, J.R.; Altobelli, S.A.; Mondy, L.A.

    1995-07-01

    We report on experimental measurements and numerical predictions of shear-induced migration of particles in concentrated suspensions subjected to flow in the wide gap between a rotating inner cylinder placed eccentrically within a fixed outer cylinder (a cylindrical bearing). The suspensions consists of large, noncolloidal spherical particles suspended in a viscous Newtonian liquid. Nuclear magnetic resonance (NMR) imaging is used to measure the time evolution of concentration and velocity profiles as the flow induced particle migration from the initial, well-mixed state. A model originally proposed by Phillips et al. (1992) is generalized to two dimensions. The coupled equations of motion and particle migration are solved numerically using an explicit pseudo-transient finite volume formulation. While not all of the qualitative features observed in the experiments are reproduced by this general numerical implementation, the velocity predictions show moderately good agreement with the experimental data.

  10. Effects of temperature and particle size on acid aerosol-induced bronchoconstriction. Report for April 1986-November 1988 (Final)

    SciTech Connect

    Sheppard, D.; Balmes, J.; Christian, D.

    1989-01-01

    The investigators exposed asthmatic subjects to aerosols of sulfuric acid or saline with varying particle size and osmolarity. Aerosols of unbuffered sulfuric acid at pH 2 did not cause bronchoconstriction in the subjects when inhaled during rest at a sulfate concentration of nearly 3 mg/cm m. Neither osmolarity nor particle size appeared to influence the lack of bronchoconstrictor effect. The investigators also studied whether there was a positive interaction between acidity and low temperature with regard to the potentiation of hypoosmolar aerosol-induced bronchoconstriction. They exposed asthmatic subjects to hypoosmolar aerosols of either sulfuric acid at pH 2 or saline at pH 5.5 at either 7 or 22 deg C. No evidence of a positive interaction between acidity and low temperature was found.

  11. Particle Deformation and Concentration Polarization in Electroosmotic Transport of Hydrogels through Pores

    SciTech Connect

    Vlassiouk, Ivan V

    2013-01-01

    In this article, we report detection of deformable, hydrogel particles by the resistive-pulse technique using single pores in a polymer film. The hydrogels pass through the pores by electroosmosis and cause formation of a characteristic shape of resistive pulses indicating the particles underwent dehydration and deformation. These effects were explained via a non-homogeneous pressure distribution along the pore axis modeled by the coupled Poisson-Nernst-Planck and Navier Stokes equations. The local pressure drops are induced by the electroosmotic fluid flow. Our experiments also revealed the importance of concentration polarization in the detection of hydrogels. Due to the negative charges as well as branched, low density structure of the hydrogel particles, concentration of ions in the particles is significantly higher than in the bulk. As a result, when electric field is applied across the membrane, a depletion zone can be created in the vicinity of the particle observed as a transient drop of the current. Our experiments using pores with openings between 200 and 1600 nm indicated the concentration polarization dominated the hydrogels detection for pores wider than 450 nm. The results are of importance for all studies that involve transport of molecules, particles and cells through pores with charged walls. The developed inhomogeneous pressure distribution can potentially influence the shape of the transported species. The concentration polarization changes the interpretation of the resistive pulses; the observed current change does not necessarily reflect only the particle size but also the size of the depletion zone that is formed in the particle vicinity.

  12. Magnetic field and particle concentration competitive effects on ferrofluid based silicone elastomer microstructure

    SciTech Connect

    Balasoiu, M.; Lebedev, V. T.; Orlova, D. N.; Bica, I.

    2011-12-15

    Structural peculiarities of ferroelastomers composed of polydimetylsiloxane with embedded magnetite particles during polymerization have been studied by small-angle neutron scattering. The effects of ferroparticles' concentration in the range of C = 0-6 wt %, and external magnetic fields of induction B = 0-1 kG applied during the polymerization on the structure of polymeric matrix and particles distribution in polymer were analyzed.

  13. Preparation of monodisperse zirconia particles by thermal hydrolysis in highly concentrated solutions

    SciTech Connect

    Kato, Etsuro; Hirano, Masanori; Kobayashi, Yuichi; Asoh, Keisuke; Mori, Makoto; Nakata, Masato

    1996-04-01

    Monodisperse zirconia particles were prepared by the thermal hydrolysis of mixtures of zirconyl chloride, zirconium hydroxide, and water at high concentrations corresponding to about 5 mol/L Zr. The particles, as first prepared, were temporarily agglomerated spheres composed of primary ultrafine zirconia crystals. The agglomerated particles collapsed and dispersed in water to form a translucent sol. When vacuum dried and followed by heat treatment, they were not dispersible. The size of the agglomerated particles increased with increasing molar ratio of the zirconium chloride in the starting mixture, varying from about 0.2 to 0.6 {micro}m. Using the sample thus obtained, monodisperse tetragonal zirconia particles of about 0.35 {micro}m containing 3 mol% Y{sub 2}O{sub 3} with a relatively uniform composition were obtained by homogeneous precipitation of YOHCO{sub 3} by heating with urea and calcination at 800 C.

  14. Simple Model for Gold Nano Particles Concentration Dependence of Resonance Energy Transfer Intensity

    NASA Astrophysics Data System (ADS)

    Hoa, N. M.; Ha, C. V.; Nga, D. T.; Lan, N. T.; Nhung, T. H.; Viet, N. A.

    2016-06-01

    Gold nano particles (GNPs) concentration dependence of the energy transfer occurs between the fluorophores and GNPs is investigated. In the case of theses pairs, GNPs can enhance or quench the fluorescence of fluorophores depending upon the relative magnitudes of two energy transfer mechanisms: i) the plasmonic field enhancement at the fluorophores emission frequencies (plasmon coupled fluorescence enhancement) and ii) the localized plasmon coupled Forster energy transfer from fluorescent particles to gold particles, which quenches the fluorescence. The competition of these mechanisms is depending on the spectral overlap of fluorophores and GNPs, their relative concentration, excitation wavelength. Simple two branches surface plasmon polariton model for GNPs concentration dependence of the energy transfer is proposed. The experimental data and theoretical results confirm our findings.

  15. Estimation of collection efficiency depended on feed particle concentration for axial flow cyclone dust collector

    NASA Astrophysics Data System (ADS)

    Ogawa, Akira

    1999-09-01

    A cyclone dust collector is applied in many industries. Especially the axial flow cyclone is the most simple construction and it keeps high reliability for maintenance. On the other hand, the collection efficiency of the cyclone depends not only on the inlet gas velocity but also on the feed particle concentration. The collection efficiency increases with increasing feed particle concentration. However until now the problem of how to estimate the collection efficiency depended on the feed particle concentration is remained except the investigation by Muschelknautz & Brunner[6]. Therefore in this paper one of the estimate method for the collection efficiency of the axial flow cyclones is proposed. The application to the geometrically similar type of cyclone of the body diameters D 1=30, 50, 69 and 99 mm showed in good agreement with the experimental results of the collection efficiencies which were described in detail in the paper by Ogawa & Sugiyama[8].

  16. The Role of Oxalic Acid in New Particle Formation from Methanesulfonic Acid, Methylamine, and Water.

    PubMed

    Arquero, Kristine D; Gerber, R Benny; Finlayson-Pitts, Barbara J

    2017-02-21

    Atmospheric particles are notorious for their effects on human health and visibility and are known to influence climate. Though sulfuric acid and ammonia/amines are recognized as main contributors to new particle formation (NPF), models and observations have indicated that other species may be involved. It has been shown that nucleation from methanesulfonic acid (MSA) and amines, which is enhanced with added water, can also contribute to NPF. While organics are ubiquitous in air and likely to be involved in NPF by stabilizing small clusters for further growth, their effects on the MSA-amine system are not known. This work investigates the effect of oxalic acid (OxA) on NPF from the reaction of MSA and methylamine (MA) at 1 atm and 294 K in the presence and absence of water vapor using an aerosol flow reactor. OxA and MA do not efficiently form particles even in the presence of water, but NPF is enhanced when adding MSA to OxA-MA with and without water. The addition of OxA to MSA-MA mixtures yields a modest NPF enhancement, whereas the addition of OxA to MSA-MA-H2O has no effect. Possible reasons for these effects are discussed.

  17. Increased ultrafine particles and carbon monoxide concentrations are associated with asthma exacerbation among urban children

    PubMed Central

    Evans, Kristin A.; Halterman, Jill S.; Hopke, Philip K.; Fagnano, Maria; Rich, David Q.

    2014-01-01

    Objectives Increased air pollutant concentrations have been linked to several asthma-related outcomes in children, including respiratory symptoms, medication use, and hospital visits. However, few studies have examined effects of ultrafine particles in a pediatric population. Our primary objective was to examine the effects of ambient concentrations of ultrafine particles on asthma exacerbation among urban children and determine whether consistent treatment with inhaled corticosteroids could attenuate these effects. We also explored the relationship between asthma exacerbation and ambient concentrations of accumulation mode particles, fine particles (≤ 2.5 micrograms [μm]; PM2.5), carbon monoxide, sulfur dioxide, and ozone. We hypothesized that increased 1 to 7 day concentrations of ultrafine particles and other pollutants would be associated with increases in the relative odds of an asthma exacerbation, but that this increase in risk would be attenuated among children receiving school-based corticosteroid therapy. Methods We conducted a pilot study using data from 3–10 year-old children participating in the School-Based Asthma Therapy trial. Using a time-stratified case-crossover design and conditional logistic regression, we estimated the relative odds of a pediatric asthma visit treated with prednisone (n=96 visits among 74 children) associated with increased pollutant concentrations in the previous 7 days. We re-ran these analyses separately for children receiving medications through the school-based intervention and children in a usual care control group. Results Interquartile range increases in ultrafine particles and carbon monoxide concentrations in the previous 7 days were associated with increases in the relative odds of a pediatric asthma visit, with the largest increases observed for 4-day mean ultrafine particles (interquartile range=2088 p/cm3; OR=1.27; 95% CI=0.90–1.79) and 7-day mean carbon monoxide (interquartile range=0.17 ppm; OR=1.63; 95

  18. Urban background levels of particle number concentration and sources in Vilnius, Lithuania

    NASA Astrophysics Data System (ADS)

    Byčenkienė, Steigvilė; Plauškaitė, Kristina; Dudoitis, Vadimas; Ulevicius, Vidmantas

    2014-06-01

    This study presents results of research on urban aerosol particles with a focus on the aerosol particle number concentration (PNC) and the particle size distribution. The real time measurements of aerosol PNC (> 4.5 nm) and number size distributions (9-840 nm) were performed. The seasonal variations essentially comprised the minimum monthly mean in October 2010 (3400 ± 3000 cm- 3) and the maximum in April 2011 (19,000 ± 15,000 cm- 3). The mean annual PNC was 10,000 ± 8000 cm- 3 with an average mode size of 30-50 nm. The presence of strong diurnal patterns in aerosol PNC was evident as a direct effect of three sources of aerosol particles (nucleation, traffic, and residential heating). Hybrid receptor modeling potential source contribution function (PSCF) and concentration weighted trajectory (CWT) were used by incorporating 72-h backward trajectories and measurements of PNC in Vilnius. The results of trajectory clustering and the PSCF method demonstrated that possible additional source areas contributing to the elevated particle number concentration in Vilnius could be industrial areas in central Europe. Principal component analysis (PCA) revealed highest loadings for PNC, PM10, NOx, NO, NO2 and SO2 concentrations, indicating combustion processes occurring in vehicle engines and use of sulfur-containing fossil fuels for residential heating.

  19. Effect of dissolved oxygen concentration on iron efficiency: Removal of three chloroacetic acids.

    PubMed

    Tang, Shun; Wang, Xiao-mao; Mao, Yu-qin; Zhao, Yu; Yang, Hong-wei; Xie, Yuefeng F

    2015-04-15

    The monochloroacetic, dichloroacetic and trichloroacetic acid (MCAA, DCAA and TCAA) removed by metallic iron under controlled dissolved oxygen conditions (0, 0.75, 1.52, 2.59, 3.47 or 7.09 mg/L DO) was investigated in well-mixed batch systems. The removal of CAAs increased first and then decreased with increasing DO concentration. Compared with anoxic condition, the reduction of MCAA and DCAA was substantially enhanced in the presence of O2, while TCAA reduction was significantly inhibited above 2.59 mg/L. The 1.52 mg/L DO was optimum for the formation of final product, acetic acid. Chlorine mass balances were 69-102%, and carbon mass balances were 92-105%. With sufficient mass transfer from bulk to the particle surface, the degradation of CAAs was limited by their reduction or migration rate within iron particles, which were dependent on the change of reducing agents and corrosion coatings. Under anoxic conditions, the reduction of CAAs was mainly inhibited by the available reducing agents in the conductive layer. Under low oxic conditions, the increasing reducing agents and thin lepidocrocite layer were favorable for CAA dechlorination. Under high oxic conditions, the redundant oxygen competing for reducing agents and significant lepidocrocite growth became the major restricting factors. Various CAA removal mechanisms could be potentially applied to explaining the effect of DO concentration on iron efficiency for contaminant reduction in water and wastewater treatment.

  20. A fiber-optic probe for particle sizing in concentrated suspensions

    NASA Technical Reports Server (NTRS)

    Dhadwal, Harbans S.; Ansari, Rafat R.; Meyer, William V.

    1991-01-01

    A fiber-optic probe employing two monomode optical fibers, one for transmitting a Gaussian laser beam to the scattering volume and the second, positioned at some backscatter angle, for receiving the scattered light is described. Performance and suitability of the system for a process control environment is assessed by studying a suspension of polystyrene latex particles over a wide range of sizes and concentrations. The results show that the probe is ideal for a process control environment in industrial and laboratory applications. Particle size is recovered, without any additional corrections for multiple light scattering, in concentrations containing up to 10 percent solids of 39-nm polystyrene latex spheres.

  1. Foamy Virus Protein—Nucleic Acid Interactions during Particle Morphogenesis

    PubMed Central

    Hamann, Martin V.; Lindemann, Dirk

    2016-01-01

    Compared with orthoretroviruses, our understanding of the molecular and cellular replication mechanism of foamy viruses (FVs), a subfamily of retroviruses, is less advanced. The FV replication cycle differs in several key aspects from orthoretroviruses, which leaves established retroviral models debatable for FVs. Here, we review the general aspect of the FV protein-nucleic acid interactions during virus morphogenesis. We provide a summary of the current knowledge of the FV genome structure and essential sequence motifs required for RNA encapsidation as well as Gag and Pol binding in combination with details about the Gag and Pol biosynthesis. This leads us to address open questions in FV RNA engagement, binding and packaging. Based on recent findings, we propose to shift the point of view from individual glycine-arginine-rich motifs having functions in RNA interactions towards envisioning the FV Gag C-terminus as a general RNA binding protein module. We encourage further investigating a potential new retroviral RNA packaging mechanism, which seems more complex in terms of the components that need to be gathered to form an infectious particle. Additional molecular insights into retroviral protein-nucleic acid interactions help us to develop safer, more specific and more efficient vectors in an era of booming genome engineering and gene therapy approaches. PMID:27589786

  2. Concentrations of fine, ultrafine, and black carbon particles in auto-rickshaws in New Delhi, India

    NASA Astrophysics Data System (ADS)

    Apte, Joshua, S.; Kirchstetter, Thomas W.; Reich, Alexander, H.; Deshpande, Shyam J.; Kaushik, Geetanjali; Chel, Arvind; Marshall, Julian D.; Nazaroff, William W.

    2011-08-01

    Concentrations of air pollutants from vehicles are elevated along roadways, indicating that human exposure in transportation microenvironments may not be adequately characterized by centrally located monitors. We report results from ˜180 h of real-time measurements of fine particle and black carbon mass concentration (PM 2.5, BC) and ultrafine particle number concentration (PN) inside a common vehicle, the auto-rickshaw, in New Delhi, India. Measured exposure concentrations are much higher in this study (geometric mean for ˜60 trip-averaged concentrations: 190 μg m -3 PM 2.5, 42 μg m -3 BC, 280 × 10 3 particles cm -3; GSD ˜1.3 for all three pollutants) than reported for transportation microenvironments in other megacities. In-vehicle concentrations exceeded simultaneously measured ambient levels by 1.5× for PM 2.5, 3.6× for BC, and 8.4× for PN. Short-duration peak concentrations (averaging time: 10 s), attributable to exhaust plumes of nearby vehicles, were greater than 300 μg m -3 for PM 2.5, 85 μg m -3 for BC, and 650 × 10 3 particles cm -3 for PN. The incremental increase of within-vehicle concentration above ambient levels—which we attribute to in- and near-roadway emission sources—accounted for 30%, 68% and 86% of time-averaged in-vehicle PM 2.5, BC and PN concentrations, respectively. Based on these results, we estimate that one's exposure during a daily commute by auto-rickshaw in Delhi is as least as large as full-day exposures experienced by urban residents of many high-income countries. This study illuminates an environmental health concern that may be common in many populous, low-income cities.

  3. Two-hundredfold volume concentration of dilute cell and particle suspensions using chip integrated multistage acoustophoresis.

    PubMed

    Nordin, Maria; Laurell, Thomas

    2012-11-21

    Concentrating cells is a frequently performed step in cell biological assays and medical diagnostics. The commonly used centrifuge exhibits limitations when dealing with rare cell events and small sample volumes. Here, we present an acoustophoresis microfluidic chip utilising ultrasound to concentrate particles and cells into a smaller volume. The method is label-free, continuous and independent of suspending fluid, allowing for low cost and minimal preparation of the samples. Sequential concentration regions and two-dimensional acoustic standing wave focusing of cells and particles were found critical to accomplish concentration factors beyond one hundred times. Microparticles (5 μm in diameter) used to characterize the system were concentrated up to 194.2 ± 9.6 times with a recovery of 97.1 ± 4.8%. Red blood cells and prostate cancer cells were concentrated 145.0 ± 5.0 times and 195.7 ± 36.2 times, respectively, with recoveries of 97.2 ± 3.3% and 97.9 ± 18.1%. The data demonstrate that acoustophoresis is an effective technique for continuous flow-based concentration of cells and particles, offering a much needed intermediate step between sorting and detection of rare cell samples in lab-on-a-chip systems.

  4. How comparable are size-resolved particle number concentrations from different instruments?

    NASA Astrophysics Data System (ADS)

    Hornsby, K. E.; Pryor, S. C.

    2012-12-01

    The need for comparability of particle size resolved measurements originates from multiple drivers including: (i) Recent suggestions that air quality standards for particulate matter should migrate from being mass-based to incorporating number concentrations. This move would necessarily be predicated on measurement comparability which is absolutely critical to compliance determination. (ii) The need to quantify and diagnose causes of variability in nucleation and growth rates in nano-particle experiments conducted in different locations. (iii) Epidemiological research designed to identify key parameters in human health responses to fine particle exposure. Here we present results from a detailed controlled laboratory instrument inter-comparison experiment designed to investigate data comparability in the size range of 2.01-523.3 nm across a range of particle composition, modal diameter and absolute concentration. Particle size distributions were generated using a TSI model 3940 Aerosol Generation System (AGS) diluted using zero air, and sampled using four TSI Scanning Mobility Particle Spectrometer (SMPS) configurations and a TSI model 3091 Fast Mobility Particle Sizer (FMPS). The SMPS configurations used two Electrostatic Classifiers (EC) (model 3080) attached to either a Long DMA (LDMA) (model 3081) or a Nano DMA (NDMA) (model 3085) plumbed to either a TSI model 3025A Butanol Condensed Particle Counting (CPC) or a TSI model 3788 Water CPC. All four systems were run using both high and low flow conditions, and were operated with both the internal diffusion loss and multiple charge corrections turned on. The particle compositions tested were sodium chloride, ammonium nitrate and olive oil diluted in ethanol. Particles of all three were generated at three peak concentration levels (spanning the range observed at our experimental site), and three modal particle diameters. Experimental conditions were maintained for a period of 20 minutes to ensure experimental

  5. Mechanochemical leaching of chalcopyrite concentrate by sulfuric acid

    NASA Astrophysics Data System (ADS)

    Mohammadabad, Farhad Khorramshahi; Hejazi, Sina; khaki, Jalil Vahdati; Babakhani, Abolfazl

    2016-04-01

    This study aimed to introduce a new cost-effective methodology for increasing the leaching efficiency of chalcopyrite concentrates at ambient temperature and pressure. Mechanical activation was employed during the leaching (mechanochemical leaching) of chalcopyrite concentrates in a sulfuric acid medium at room temperature and atmospheric pressure. High energy ball milling process was used during the leaching to provide the mechanochemical leaching condition, and atomic absorption spectroscopy and cyclic voltammetry were used to determine the leaching behavior of chalcopyrite. Moreover, X-ray diffraction and scanning electron microscopy were used to characterize the chalcopyrite powder before and after leaching. The results demonstrated that mechanochemical leaching was effective; the extraction of copper increased significantly and continuously. Although the leaching efficiency of chalcopyrite was very low at ambient temperature, the percentages of copper dissolved in the presence of hydrogen peroxide (H2O2) and ferric sulfate (Fe2(SO4)3) after 20 h of mechanochemical leaching reached 28% and 33%, respectively. Given the efficiency of the developed method and the facts that it does not require the use of an autoclave and can be conducted at room temperature and atmospheric pressure, it represents an economical and easy-to-use method for the leaching industry.

  6. Linking particle number concentration (PNC), meteorology and traffic variables in a UK street canyon

    NASA Astrophysics Data System (ADS)

    Price, Heather D.; Arthur, Robert; BéruBé, Kelly A.; Jones, Tim P.

    2014-10-01

    Ambient particle number concentration (PNC) has been linked with adverse health outcomes such as asthma, reduced lung function and cardiovascular disease. To investigate the relationship between PNC, meteorology and traffic we measured size segregated respirable particles in a busy commuter street in Swansea, UK for ten months using a Dekati Electrical Low Pressure Impactor (ELPI). The ELPI segregates particles into 12 size fractions between 7 nm and 10 μm. The median PNC for the sampling period was 31,545 cm- 3. For the ultrafine particles (7-93 nm), the highest PNC was found in winter (46,615 cm- 3; 15 minute average) and the lowest for that size fraction in summer (29,696 cm- 3). For the particles below 93 nm there was a trimodal distribution to weekdays (particularly Monday to Wednesday), with PNC peaks at 09:00, 16:00 and 23:00. Wind direction had a significant influence on PNC and differed between particles in the fine range (below 2.5 μm) and more coarse particles (up to 10 μm). For fine particles, winds parallel to the canyon were associated with higher PNCs which were attributed to the replenishment of traffic particles. For coarse particles, PNCs were higher from winds perpendicular to the canyon and this was linked to source distribution around the sampling site and the recirculation of pollutants within the canyon. During times when vehicle volumes were high and vehicles were exhibiting stop-start behaviour, if this was combined with low wind speeds, ultrafine PNC was highest. This effect was generally observed during the morning rush hour. Current mass-based legislation does not take into account exposure to the number of particles or the change in population exposure diurnally.

  7. Chromotropic acid-formaldehyde reaction in strongly acidic media. The role of dissolved oxygen and replacement of concentrated sulphuric acid.

    PubMed

    Fagnani, E; Melios, C B; Pezza, L; Pezza, H R

    2003-05-28

    The procedure for formaldehyde analysis recommended by the National Institute for Occupational Safety and Health (NIOSH) is the Chromotropic acid spectrophotometric method, which is the one that uses concentrated sulphuric acid. In the present study the oxidation step associated with the aforementioned method for formaldehyde determination was investigated. Experimental evidence has been obtained indicating that when concentrated H(2)SO(4) (18 mol l(-1)) is used (as in the NIOSH procedure) that acid is the oxidizing agent. On the other hand, oxidation through dissolved oxygen takes place when concentrated H(2)SO(4) is replaced by concentrated hydrochloric (12 mol l(-1)) and phosphoric (14.7 mol l(-1)) acids as well as by diluted H(2)SO(4) (9.4 mol l(-1)). Based on investigations concerning the oxidation step, a modified procedure was devised, in which the use of the potentially hazardous and corrosive concentrated H(2)SO(4) was eliminated and advantageously replaced by a less harmful mixture of HCl and H(2)O(2).

  8. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry.

    PubMed

    Rondo, L; Ehrhart, S; Kürten, A; Adamov, A; Bianchi, F; Breitenlechner, M; Duplissy, J; Franchin, A; Dommen, J; Donahue, N M; Dunne, E M; Flagan, R C; Hakala, J; Hansel, A; Keskinen, H; Kim, J; Jokinen, T; Lehtipalo, K; Leiminger, M; Praplan, A; Riccobono, F; Rissanen, M P; Sarnela, N; Schobesberger, S; Simon, M; Sipilä, M; Smith, J N; Tomé, A; Tröstl, J; Tsagkogeorgas, G; Vaattovaara, P; Winkler, P M; Williamson, C; Wimmer, D; Baltensperger, U; Kirkby, J; Kulmala, M; Petäjä, T; Worsnop, D R; Curtius, J

    2016-03-27

    Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection of H2SO4 in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time in the CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI-APi-TOF (Chemical Ionization-Atmospheric Pressure interface-Time Of Flight) mass spectrometers. In addition, neutral sulfuric acid clusters were measured with the CI-APi-TOFs. The CLOUD7 measurements show that in the presence of dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS represents only a fraction of the total H2SO4, contained in the monomer and the clusters that is available for particle growth. Although it was found that the addition of dimethylamine dramatically changes the H2SO4 cluster distribution compared to binary (H2SO4-H2O) conditions, the CIMS detection efficiency does not seem to depend substantially on whether an individual H2SO4 monomer is clustered with a DMA molecule. The experimental observations are supported by numerical simulations based on A Self-contained Atmospheric chemistry coDe coupled with a molecular process model (Sulfuric Acid Water NUCleation) operated in the kinetic limit.

  9. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Rondo, L.; Ehrhart, S.; Kürten, A.; Adamov, A.; Bianchi, F.; Breitenlechner, M.; Duplissy, J.; Franchin, A.; Dommen, J.; Donahue, N. M.; Dunne, E. M.; Flagan, R. C.; Hakala, J.; Hansel, A.; Keskinen, H.; Kim, J.; Jokinen, T.; Lehtipalo, K.; Leiminger, M.; Praplan, A.; Riccobono, F.; Rissanen, M. P.; Sarnela, N.; Schobesberger, S.; Simon, M.; Sipilä, M.; Smith, J. N.; Tomé, A.; Tröstl, J.; Tsagkogeorgas, G.; Vaattovaara, P.; Winkler, P. M.; Williamson, C.; Wimmer, D.; Baltensperger, U.; Kirkby, J.; Kulmala, M.; Petäjä, T.; Worsnop, D. R.; Curtius, J.

    2016-03-01

    Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection of H2SO4 in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time in the CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI-APi-TOF (Chemical Ionization-Atmospheric Pressure interface-Time Of Flight) mass spectrometers. In addition, neutral sulfuric acid clusters were measured with the CI-APi-TOFs. The CLOUD7 measurements show that in the presence of dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS represents only a fraction of the total H2SO4, contained in the monomer and the clusters that is available for particle growth. Although it was found that the addition of dimethylamine dramatically changes the H2SO4 cluster distribution compared to binary (H2SO4-H2O) conditions, the CIMS detection efficiency does not seem to depend substantially on whether an individual H2SO4 monomer is clustered with a DMA molecule. The experimental observations are supported by numerical simulations based on A Self-contained Atmospheric chemistry coDe coupled with a molecular process model (Sulfuric Acid Water NUCleation) operated in the kinetic limit.

  10. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry

    PubMed Central

    Ehrhart, S.; Kürten, A.; Adamov, A.; Bianchi, F.; Breitenlechner, M.; Duplissy, J.; Franchin, A.; Dommen, J.; Donahue, N. M.; Dunne, E. M.; Flagan, R. C.; Hakala, J.; Hansel, A.; Keskinen, H.; Kim, J.; Jokinen, T.; Lehtipalo, K.; Leiminger, M.; Praplan, A.; Riccobono, F.; Rissanen, M. P.; Sarnela, N.; Schobesberger, S.; Simon, M.; Sipilä, M.; Smith, J. N.; Tomé, A.; Tröstl, J.; Tsagkogeorgas, G.; Vaattovaara, P.; Winkler, P. M.; Williamson, C.; Wimmer, D.; Baltensperger, U.; Kirkby, J.; Kulmala, M.; Petäjä, T.; Worsnop, D. R.; Curtius, J.

    2016-01-01

    Abstract Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection of H2SO4 in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time in the CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI‐APi‐TOF (Chemical Ionization‐Atmospheric Pressure interface‐Time Of Flight) mass spectrometers. In addition, neutral sulfuric acid clusters were measured with the CI‐APi‐TOFs. The CLOUD7 measurements show that in the presence of dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS represents only a fraction of the total H2SO4, contained in the monomer and the clusters that is available for particle growth. Although it was found that the addition of dimethylamine dramatically changes the H2SO4 cluster distribution compared to binary (H2SO4‐H2O) conditions, the CIMS detection efficiency does not seem to depend substantially on whether an individual H2SO4 monomer is clustered with a DMA molecule. The experimental observations are supported by numerical simulations based on A Self‐contained Atmospheric chemistry coDe coupled with a molecular process model (Sulfuric Acid Water NUCleation) operated in the kinetic limit. PMID:27610289

  11. Sex Steroid Modulation of Fatty Acid Utilization and Fatty Acid Binding Protein Concentration in Rat Liver

    PubMed Central

    Ockner, Robert K.; Lysenko, Nina; Manning, Joan A.; Monroe, Scott E.; Burnett, David A.

    1980-01-01

    The mechanism by which sex steroids influence very low density hepatic lipoprotein triglyceride production has not been fully elucidated. In previous studies we showed that [14C]oleate utilization and incorporation into triglycerides were greater in hepatocyte suspensions from adult female rats than from males. The sex differences were not related to activities of the enzymes of triglyceride biosynthesis, whereas fatty acid binding protein (FABP) concentration in liver cytosol was greater in females. These findings suggested that sex differences in lipoprotein could reflect a sex steroid influence on the availability of fatty acids for hepatocellular triglyceride biosynthesis. In the present studies, sex steroid effects on hepatocyte [14C]oleate utilization and FABP concentration were investigated directly. Hepatocytes from immature (30-d-old) rats exhibited no sex differences in [14C]oleate utilization. With maturation, total [14C]oleate utilization and triglyceride biosynthesis increased moderately in female cells and decreased markedly in male cells; the profound sex differences in adults were maximal by age 60 d. Fatty acid oxidation was little affected. Rats were castrated at age 30 d, and received estradiol, testosterone, or no hormone until age 60 d, when hepatocyte [14C]oleate utilization was studied. Castration virtually eliminated maturational changes and blunted the sex differences in adults. Estradiol or testosterone largely reproduced the appropriate adult pattern of [14C]oleate utilization regardless of the genotypic sex of the treated animal. In immature females and males, total cytosolic FABP concentrations were similar. In 60-d-old animals, there was a striking correlation among all groups (females, males, castrates, and hormone-treated) between mean cytosolic FABP concentration on the one hand, and mean total [14C]oleate utilization (r = 0.91) and incorporation into triglycerides (r = 0.94) on the other. In 30-d-old animals rates of [14C

  12. Unexpectedly high indoor hydroxyl radical concentrations associated with nitrous acid.

    PubMed

    Gómez Alvarez, Elena; Amedro, Damien; Afif, Charbel; Gligorovski, Sasho; Schoemaecker, Coralie; Schoemacker, Coralie; Fittschen, Christa; Doussin, Jean-Francois; Wortham, Henri

    2013-08-13

    The hydroxyl (OH) radical is the most important oxidant in the atmosphere since it controls its self-oxidizing capacity. The main sources of OH radicals are the photolysis of ozone and the photolysis of nitrous acid (HONO). Due to the attenuation of solar radiation in the indoor environment, the possibility of OH formation through photolytic pathways indoors has been ignored up to now. In the indoor air, the ozonolysis of alkenes has been suggested as an alternative route of OH formation. Models and indirect measurements performed up to now according to this hypothesis suggest concentrations of OH radicals on the order of 10(4)-10(5) molecules per cubic centimeter. Here, we present direct measurements of significant amounts of OH radicals of up to 1.8⋅10(6) molecules per cubic centimeter during an experimental campaign carried out in a school classroom in Marseille. This concentration is on the same order of magnitude of outdoor OH levels in the urban scenario. We also show that photolysis of HONO is an important source of OH radicals indoors under certain conditions (i.e., direct solar irradiation inside the room). Additionally, the OH concentrations were found to follow a linear dependence with the product J(HONO)⋅[HONO]. This was also supported by using a simple quasiphotostationary state model on the OH radical budget. These findings force a change in our understanding of indoor air quality because the reactivity linked to OH would involve formation of secondary species through chemical reactions that are potentially more hazardous than the primary pollutants in the indoor air.

  13. Unexpectedly high indoor hydroxyl radical concentrations associated with nitrous acid

    PubMed Central

    Gómez Alvarez, Elena; Amedro, Damien; Afif, Charbel; Gligorovski, Sasho; Schoemaecker, Coralie; Fittschen, Christa; Doussin, Jean-Francois; Wortham, Henri

    2013-01-01

    The hydroxyl (OH) radical is the most important oxidant in the atmosphere since it controls its self-oxidizing capacity. The main sources of OH radicals are the photolysis of ozone and the photolysis of nitrous acid (HONO). Due to the attenuation of solar radiation in the indoor environment, the possibility of OH formation through photolytic pathways indoors has been ignored up to now. In the indoor air, the ozonolysis of alkenes has been suggested as an alternative route of OH formation. Models and indirect measurements performed up to now according to this hypothesis suggest concentrations of OH radicals on the order of 104–105 molecules per cubic centimeter. Here, we present direct measurements of significant amounts of OH radicals of up to 1.8⋅106 molecules per cubic centimeter during an experimental campaign carried out in a school classroom in Marseille. This concentration is on the same order of magnitude of outdoor OH levels in the urban scenario. We also show that photolysis of HONO is an important source of OH radicals indoors under certain conditions (i.e., direct solar irradiation inside the room). Additionally, the OH concentrations were found to follow a linear dependence with the product J(HONO)⋅[HONO]. This was also supported by using a simple quasiphotostationary state model on the OH radical budget. These findings force a change in our understanding of indoor air quality because the reactivity linked to OH would involve formation of secondary species through chemical reactions that are potentially more hazardous than the primary pollutants in the indoor air. PMID:23898188

  14. [Study on number concentration distribution of atmospheric ultrafine particles in Hangzhou].

    PubMed

    Xie, Xiao-Fang; Sun, Zai; Fu, Zhi-Min; Yang, Wen-Jun; Lin, Jian-Zhong

    2013-02-01

    Atmospheric ultrafine particles (UFPs) were measured with fast mobility particle sizer(FMPS) in Hangzhou, during March 2011 to February 2012. The number concentration and size distribution of UFPs associated with meteorology were studied. The results showed that the number concentration of UFPs was logarithmic bi-modal distribution, and the seasonal levels presented winter > summer > spring> autumn. The highest monthly average concentration was 3.56 x 10(4) cm-3 in December and the lowest was 2.51 x 10(4) cm-3 in October. The seasonal values of count medium diameter(CMD) were spring > winter > autumn > summer. The highest monthly average CMD was 53. 51 nm in April and the lowest was 16.68 nm in June. Meteorological factors had effects on concentration of UFPs.

  15. A Simple Parametrization for the Concentration Variance Dissipation in a Lagrangian Single-Particle Model

    NASA Astrophysics Data System (ADS)

    Ferrero, Enrico; Mortarini, Luca; Purghè, Federico

    2017-04-01

    A model for the evaluation of the concentration fluctuation variance is coupled with a one-particle Lagrangian stochastic model and results compared to a wind-tunnel simulation experiment. In this model the concentration variance evolves along the particle trajectories according to the same Langevin equation used for the simulation of the velocity field, and its dissipation is taken into account through a decay term with a finite time scale. Indeed, while the mean concentration is conserved, the concentration variance is not and our model takes into account its dissipation. A simple parametrization for the dissipation time scale is proposed and it is found that it depends linearly on time and on the ratio between the size and the height of the source through a scaling factor of 1 / 3.

  16. 21 CFR 146.148 - Reduced acid frozen concentrated orange juice.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Reduced acid frozen concentrated orange juice. 146... Canned Fruit Juices and Beverages § 146.148 Reduced acid frozen concentrated orange juice. (a) Reduced acid frozen concentrated orange juice is the food that complies with the requirements for...

  17. 21 CFR 146.148 - Reduced acid frozen concentrated orange juice.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Reduced acid frozen concentrated orange juice. 146... Canned Fruit Juices and Beverages § 146.148 Reduced acid frozen concentrated orange juice. (a) Reduced acid frozen concentrated orange juice is the food that complies with the requirements for...

  18. 21 CFR 146.148 - Reduced acid frozen concentrated orange juice.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Reduced acid frozen concentrated orange juice. 146... Canned Fruit Juices and Beverages § 146.148 Reduced acid frozen concentrated orange juice. (a) Reduced acid frozen concentrated orange juice is the food that complies with the requirements for...

  19. 21 CFR 146.148 - Reduced acid frozen concentrated orange juice.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Reduced acid frozen concentrated orange juice. 146... Canned Fruit Juices and Beverages § 146.148 Reduced acid frozen concentrated orange juice. (a) Reduced acid frozen concentrated orange juice is the food that complies with the requirements for...

  20. 21 CFR 146.148 - Reduced acid frozen concentrated orange juice.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Reduced acid frozen concentrated orange juice. 146... Canned Fruit Juices and Beverages § 146.148 Reduced acid frozen concentrated orange juice. (a) Reduced acid frozen concentrated orange juice is the food that complies with the requirements for...

  1. Monitor of the concentration of particles of dense radioactive materials in a stream of air

    DOEpatents

    Yule, Thomas J.

    1979-01-01

    A monitor of the concentration of particles of radioactive materials such as plutonium oxide in diameters as small as 1/2 micron includes in combination a first stage comprising a plurality of virtual impactors, a second stage comprising a further plurality of virtual impactors, a collector for concentrating particulate material, a radiation detector disposed near the collector to respond to radiation from collected material and means for moving a stream of air, possibly containing particulate contaminants, through the apparatus.

  2. Air pollutant concentrations near three Texas roadways, Part I: Ultrafine particles

    NASA Astrophysics Data System (ADS)

    Zhu, Yifang; Pudota, Jayanth; Collins, Donald; Allen, David; Clements, Andrea; DenBleyker, Allison; Fraser, Matt; Jia, Yuling; McDonald-Buller, Elena; Michel, Edward

    Vehicular emitted air pollutant concentrations were studied near three types of roadways in Austin, Texas: (1) State Highway 71 (SH-71), a heavily traveled arterial highway dominated by passenger vehicles; (2) Interstate 35 (I-35), a limited access highway north of Austin in Georgetown; and (3) Farm to Market Road 973 (FM-973), a heavily traveled surface roadway dominated by truck traffic. Air pollutants examined include carbon monoxide (CO), oxides of nitrogen (NO x), and carbonyl species in the gas-phase. In the particle phase, ultrafine particle (UFP) concentrations (diameter < 100 nm), fine particulate matter (PM 2.5, diameter < 2.5 μm) mass and carbon content and several particle-bound organics were examined. All roadways had an upwind stationary sampling location, one or two fixed downwind sample locations and a mobile monitoring platform that characterized pollutant concentrations fall-off with increased distance from the roadways. Data reported in this paper focus on UFP while other pollutants and near-roadway chemical processes are examined in a companion paper. Traffic volume, especially heavy-duty traffic, wind speed, and proximity to the road were found to be the most important factors determining UFP concentrations near the roadways. Since wind directions were not consistent during the sampling periods, distances along wind trajectories from the roadway to the sampling points were used to study the decay characteristics of UFPs. Under perpendicular wind conditions, for all studied roadway types, particle number concentrations increased dramatically moving from the upwind side to the downwind side. The elevated particle number concentrations decay exponentially with increasing distances from the roadway with sharp concentration gradients observed within 100-150 m, similar to previously reported studies. A single exponential decay curve was found to fit the data collected from all three roadways very well under perpendicular wind conditions. No

  3. Characterization study of cesium concentrated particles in the soils near the Fukushima Daiichi nuclear power plant

    NASA Astrophysics Data System (ADS)

    Satou, Yukihiko; Sueki, Keisuke; Sasa, Kimikazu; Adachi, Kouji; Igarashi, Yasuhito

    2015-04-01

    Radionuclides from the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident contaminated a vast area. Two types of contamination, spread and spot types, were observed in soils with autoradiography using an imaging plate. Other samples such as dust filters, vegetation, X-ray films, and so on, also indicate the spot type contamination in the early stage of the FDNPP accident. The source of spot type contamination is well known as hot particles at the Chernobyl Nuclear Power Plant (ChNPP) accident in 1986. Hot particles were divided into two groups, fuel hot particles and fission product particles, and they were emitted directly from reactor core with phreatic explosion and fire. In contrast, the official reports of the FDNPP accident did not conforme core explosion. In addition, the emitted total amount of Uranium was very few (Yamamoto et al., 2014). Thus, the spot type contaminations were not identified as the same of hot particles yet. Therefore, the present study aimed to pick up and identify the spot contaminations in soils. Surface soil samples were collected at 20 km northwest from the FDNPP in June 2013. Soils were spread in plastic bags for autoradiography with imaging plate analysis. Then, the soil particles were collected on a sticky carbon tape and analyzed by SEM-EDS to detect radioactive particles. Finally, particles were confirmed to contain photo peaks in the γ-spectrum by a germanium semiconductor detector. Four radioactive particles were isolated from the soil samples in the present study. Detected γ-ray emission radionuclides were only Cs-134 and Cs-137. The X-ray spectra on the SEM-EDS of all particles showed a Cs peak as well as O, Fe, Zn, and Rb peaks, and these elements were distributed uniformly within the particles. In addition, uniform distribution of Si was also shown. Moreover, U was detected from one of the particles, but U concentration was very low and existed locally in the particle. These characters are very similar to previous

  4. Ratios of total suspended solids to suspended sediment concentrations by particle size

    USGS Publications Warehouse

    Selbig, W.R.; Bannerman, R.T.

    2011-01-01

    Wet-sieving sand-sized particles from a whole storm-water sample before splitting the sample into laboratory-prepared containers can reduce bias and improve the precision of suspended-sediment concentrations (SSC). Wet-sieving, however, may alter concentrations of total suspended solids (TSS) because the analytical method used to determine TSS may not have included the sediment retained on the sieves. Measuring TSS is still commonly used by environmental managers as a regulatory metric for solids in storm water. For this reason, a new method of correlating concentrations of TSS and SSC by particle size was used to develop a series of correction factors for SSC as a means to estimate TSS. In general, differences between TSS and SSC increased with greater particle size and higher sand content. Median correction factors to SSC ranged from 0.29 for particles larger than 500m to 0.85 for particles measuring from 32 to 63m. Great variability was observed in each fraction-a result of varying amounts of organic matter in the samples. Wide variability in organic content could reduce the transferability of the correction factors. ?? 2011 American Society of Civil Engineers.

  5. Development of a Magnetic Resonance Imaging-Based Method for Particle Concentration Measurement

    NASA Astrophysics Data System (ADS)

    Borup, Daniel D.; Elkins, Christopher J.; Eaton, John K.

    2016-11-01

    Magnetic Resonance Imaging (MRI) is well suited for the study of fluid mechanics in complex flows where optical access is not possible. Current MRI-based techniques allow for the measurement of 3D, 3-component velocity and scalar concentration fields. The current work aims to develop and validate a technique for measuring the concentration of a dispersed phase of solid microspheres in a turbulent water flow. Such a diagnostic would allow for the study of the transport of small particles in arbitrarily complicated biological, engineering, or natural flows. In the presence of paramagnetic particles, MRI signal decays more rapidly than it does for pure water due to small disturbances in the magnetic field. We predicted the spatial extent and magnitude of this disturbance using a standard theoretical framework for MRI and obtained reasonable agreement with experimental results. Using the linear relationship between particle volume fraction and signal decay rate, we also obtained 3D concentration data for a particle streak injected into a ribbed serpentine channel flow. These data were used to validate the new method, and the transport of solid particles was compared to the transport of a passive scalar in the same flow. Daniel Borup is supported by NSF Grant No. DGE-114747.

  6. Reduction of an azo dye acid black 24 solution using synthesized nanoscale zerovalent iron particles.

    PubMed

    Shu, Hung-Yee; Chang, Ming-Chin; Yu, Hsing-Hung; Chen, Wang-Hung

    2007-10-01

    The strong color and high total organic carbon (TOC) of laboratory-synthesized azo dye, C.I. Acid Black 24 (AB24), solution was substantially reduced with particles of chemically synthesized nanoscale zerovalent iron (NZVI) under varied conditions of experimental variables such as NZVI dosage, initial dye concentration, and pH. From the results, the synthesized NZVI particles can effectively remove color and TOC of AB24 dye solution under certain conditions. The best removal efficiencies for color and TOC were obtained as 98.9 and 53.8%, respectively, with an initial dye concentration of 100 mg L(-1) and an NZVI dosage of 0.3348 g L(-1). Additionally, the removal rates followed an empirical rate equation with respect to the initial dye concentration as well as the NZVI dosage. The NZVI dosage addition exponentially increments the removal efficiency, with observed empirical reaction rate constants (k) of 0.046-0.603 min(-1) for added NZVI of 0.0335-0.3348 g L(-1). Moreover, the largest unit removal capacity was 609.4 mg of AB24 uptake for each gram of NZVI (i.e., 609.4 mg AB24/g NZVI). Ultimately, the ideal operation conditions were 0.1674-0.3348 g L(-1) of NZVI dosage, 15-30 min of reaction time, and pH 4-9 for 25-100 mg L(-1) of initial dye concentration.

  7. Concentrations and Sources of Airborne Particles in a Neonatal Intensive Care Unit

    PubMed Central

    Licina, Dusan; Bhangar, Seema; Brooks, Brandon; Baker, Robyn; Firek, Brian; Tang, Xiaochen; Morowitz, Michael J.; Banfield, Jillian F.; Nazaroff, William W.

    2016-01-01

    Premature infants in neonatal intensive care units (NICUs) have underdeveloped immune systems, making them susceptible to adverse health consequences from air pollutant exposure. Little is known about the sources of indoor airborne particles that contribute to the exposure of premature infants in the NICU environment. In this study, we monitored the spatial and temporal variations of airborne particulate matter concentrations along with other indoor environmental parameters and human occupancy. The experiments were conducted over one year in a private-style NICU. The NICU was served by a central heating, ventilation and air-conditioning (HVAC) system equipped with an economizer and a high-efficiency particle filtration system. The following parameters were measured continuously during weekdays with 1-min resolution: particles larger than 0.3 μm resolved into 6 size groups, CO2 level, dry-bulb temperature and relative humidity, and presence or absence of occupants. Altogether, over sixteen periods of a few weeks each, measurements were conducted in rooms occupied with premature infants. In parallel, a second monitoring station was operated in a nearby hallway or at the local nurses’ station. The monitoring data suggest a strong link between indoor particle concentrations and human occupancy. Detected particle peaks from occupancy were clearly discernible among larger particles and imperceptible for submicron (0.3–1 μm) particles. The mean indoor particle mass concentrations averaged across the size range 0.3–10 μm during occupied periods was 1.9 μg/m3, approximately 2.5 times the concentration during unoccupied periods (0.8 μg/m3). Contributions of within-room emissions to total PM10 mass in the baby rooms averaged 37–81%. Near-room indoor emissions and outdoor sources contributed 18–59% and 1–5%, respectively. Airborne particle levels in the size range 1–10 μm showed strong dependence on human activities, indicating the importance of indoor

  8. Synthesis of Non-Toxic Silica Particles Stabilized by Molecular Complex Oleic-Acid/Sodium Oleate

    PubMed Central

    Spataru, Catalin Ilie; Ianchis, Raluca; Petcu, Cristian; Nistor, Cristina Lavinia; Purcar, Violeta; Trica, Bogdan; Nitu, Sabina Georgiana; Somoghi, Raluca; Alexandrescu, Elvira; Oancea, Florin; Donescu, Dan

    2016-01-01

    The present work is focused on the preparation of biocompatible silica particles from sodium silicate, stabilized by a vesicular system containing oleic acid (OLA) and its alkaline salt (OLANa). Silica nanoparticles were generated by the partial neutralization of oleic acid (OLA), with the sodium cation present in the aqueous solutions of sodium silicate. At the molar ratio OLA/Na+ = 2:1, the molar ratio (OLA/OLANa = 1:1) required to form vesicles, in which the carboxyl and carboxylate groups have equal concentrations, was achieved. In order to obtain hydrophobically modified silica particles, octadecyltriethoxysilane (ODTES) was added in a sodium silicate sol–gel mixture at different molar ratios. The interactions between the octadecyl groups from the modified silica and the oleyl chains from the OLA/OLANa stabilizing system were investigated via simultaneous thermogravimetry (TG) and differential scanning calorimetry (DSC) (TG-DSC) analyses.A significant decrease in vaporization enthalpy and an increase in amount of ODTES were observed. Additionally, that the hydrophobic interaction between OLA and ODTES has a strong impact on the hybrids’ final morphology and on their textural characteristics was revealed. The highest hydrodynamic average diameter and the most negative ζ potential were recorded for the hybrid in which the ODTES/sodium silicate molar ratio was 1:5. The obtained mesoporous silica particles, stabilized by the OLA/OLANa vesicular system, may find application as carriers for hydrophobic bioactive molecules. PMID:27869768

  9. Airborne particle concentration and meteorologic conditions associated with pneumonia incidence in feedlot cattle

    SciTech Connect

    MacVean, D.W.; Franzen, D.K.; Keefe, T.J.; Bennett, B.W.

    1986-12-01

    To elucidate the role of air quality on the occurrence of pneumonia in feedlot cattle, the following environmental values were measured at a feedlot: suspended particulates in 5 particle-size fractions, relative humidity, air temperature, and barometric pressure. Pneumonia incidence data were classified by the number of days the cattle had been at the feedlot (days on feed). The concentration of airborne particles, range of temperature, days on feed, and season of the year were associated with incidence of pneumonia in cattle. Pneumonia incidence rates were greatest both within 15 days of arrival at the feedlot and during the fall sampling periods. The incidence of pneumonia in the 16 to 30 days-on-feed group was closely associated with the concentration of particles 2.0 to 3.3 microns in diameter and the range of daily temperature when exposure occurred 15 days before the onset of disease in the fall and 10 days before in the spring.

  10. Interactions of meteoric smoke particles with sulphuric acid in the Earth's stratosphere

    NASA Astrophysics Data System (ADS)

    Saunders, R. W.; Dhomse, S.; Tian, W. S.; Chipperfield, M. P.; Plane, J. M. C.

    2012-05-01

    Nano-sized meteoric smoke particles (MSPs) with iron-magnesium silicate compositions, formed in the upper mesosphere as a result of meteoric ablation, may remove sulphuric acid from the gas-phase above 40 km and may also affect the composition and behaviour of supercooled H2SO4-H2O droplets in the global stratospheric aerosol (Junge) layer. This study describes a time-resolved spectroscopic analysis of the evolution of the ferric (Fe3+) ion originating from amorphous ferrous (Fe2+)-based silicate powders dissolved in varying Wt % sulphuric acid (30-75 %) solutions over a temperature range of 223-295 K. Complete dissolution of the particles was observed under all conditions. The first-order rate coefficient for dissolution decreases at higher Wt % and lower temperature, which is consistent with the increased solution viscosity limiting diffusion of H2SO4 to the particle surfaces. Dissolution under stratospheric conditions should take less than a week, and is much faster than the dissolution of crystalline Fe2+ compounds. The chemistry climate model UMSLIMCAT (based on the UKMO Unified Model) was then used to study the transport of MSPs through the middle atmosphere. A series of model experiments were performed with different uptake coefficients. Setting the concentration of 1.5 nm radius MSPs at 80 km to 3000 cm-3 (based on rocket-borne charged particle measurements), the model matches the reported Wt % Fe values of 0.5-1.0 in Junge layer sulphate particles, and the MSP optical extinction between 40 and 75 km measured by a satellite-borne spectrometer, if the global meteoric input rate is about 20 tonnes per day. The model indicates that an uptake coefficient ≥0.01 is required to account for the observed two orders of magnitude depletion of H2SO4 vapour above 40 km.

  11. Interactions of meteoric smoke particles with sulphuric acid in the Earth's stratosphere

    NASA Astrophysics Data System (ADS)

    Saunders, R. W.; Dhomse, S.; Tian, W. S.; Chipperfield, M. P.; Plane, J. M. C.

    2012-01-01

    Nano-sized meteoric smoke particles (MSPs) with iron-magnesium silicate compositions, formed in the upper mesosphere as a result of meteoric ablation, may remove sulphuric acid from the gas-phase above 40 km and may also affect the composition and behaviour of supercooled H2SO4-H2O droplets in the global stratospheric aerosol (Junge) layer. This study describes a time-resolved spectroscopic analysis of the evolution of the ferric (Fe3+) ion originating from amorphous ferrous (Fe2+)-based silicate powders dissolved in varying Wt % sulphuric acid (30-75%) solutions over a temperature range of 223-295 K. Complete dissolution of the particles was observed under all conditions. The first-order rate coefficient for dissolution decreases at higher Wt % and lower temperature, which is consistent with the increased solution viscosity limiting diffusion of H2SO4 to the particle surfaces. Dissolution under stratospheric conditions should take less than a week, and is much faster than the dissolution of crystalline Fe2+ compounds. The chemistry climate model UMSLIMCAT (based on the UKMO Unified Model) was then used to study the transport of MSPs through the middle atmosphere. A series of model experiments were performed with different uptake coefficients. Setting the concentration of 1.5 nm radius MSPs at 80 km to 3000 cm-3 (based on rocket-borne charged particle measurements), the model matches the reported Wt % Fe values of 0.5-1.0 in Junge layer sulphate particles, and the MSP optical extinction between 40 and 75 km measured by a satellite-borne spectrometer, if the global meteoric input rate is about 20 t d-1. The model indicates that an uptake coefficient ≥0.01 is required to account for the observed two orders of magnitude depletion of H2SO4 vapour above 40 km.

  12. Elevated Concentrations of Lead in Particulate Matter on the Neighborhood-Scale in Delhi, India As Determined by Single Particle Analysis.

    PubMed

    Shen, Hongru; Peters, Thomas M; Casuccio, Gary S; Lersch, Traci L; West, Roger R; Kumar, Amit; Kumar, Naresh; Ault, Andrew P

    2016-05-17

    High mass concentrations of atmospheric lead particles are frequently observed in the Delhi, India metropolitan area, although the sources of lead particles are poorly understood. In this study, particles sampled across Delhi (August - December 2008) were analyzed by computer-controlled scanning electron microscopy with energy dispersive X-ray spectroscopy (CCSEM-EDX) to improve our understanding of the spatial and physicochemical variability of lead-rich particles (>90% lead). The mean mass concentration of lead-rich particles smaller than 10 μm (PM10) was 0.7 μg/m(3) (1.5 μg/m(3) std. dev.) with high variability (range: 0-6.2 μg/m(3)). Four samples (16% of 25 samples) with PM10 lead-rich particle concentrations >1.4 μg/m(3) were defined as lead events and studied further. The temporal characteristics, heterogeneous spatial distribution, and wind patterns of events, excluded regional monsoon conditions or common anthropogenic sources from being the major causes of the lead events. Individual particle composition, size, and morphology analysis indicate informal recycling operations of used lead-acid batteries as the likely source of the lead events. This source is not typically included in emission inventories, and the observed isolated hotspots with high lead concentrations could represent an elevated exposure risk in certain neighborhoods of Delhi.

  13. EFFECTS OF METAL COMPONENTS IN CONCENTRATED AMBIENT AIR PARTICLES ON PULMONARY INJURY

    EPA Science Inventory

    EFFECTS OF METAL COMPONENTS IN CONCENTRATED AMBIENT AIR PARTICLES ON PULMONARY INJURY. Yuh-Chin Huang, Jackie Stonehuerner, Jackie Carter, Andrew J. Ghio, Robert B. Devlin. NHEERL, US EPA, RTP, NC.
    The mechanisms for cardiopulmonary morbidity associated with exposure to air po...

  14. TISSUE REMODELING IN THE HUMAN LUNG IN RELATION TO PARTICLE CONCENTRATION AND METAL CONTENT

    EPA Science Inventory

    TISSUE REMODELING IN THE HUMAN LUNG IN RELATION TO PARTICLE CONCENTRATION AND METAL CONTENT. J Gallagher1, J Inmon1, S Schlaegle2, A Levine2, T Rogers3, J Scott1, F Green4, M Schenker5, K Pinkerton5 1NHEERL, US-EPA, RTP, NC, USA; 2RJ Lee Group Inc, Monroeville, Pa, USA; ...

  15. The Effects of Vegetation Barriers on Near-road Ultrafine Particle Number and Carbon Monoxide Concentrations

    EPA Science Inventory

    Numerous studies have shown that people living in near-roadway communities (within 100 m of the road) are exposed to high ultrafine particle (UFP) number concentrations, which may be associated with adverse health effects. Vegetation barriers have been shown to affect pollutant t...

  16. Concentration of Methylamine and Ethylamine Salts measured by a particle into liquid sampler and Ion Chromatography

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A Particle-Into-Liquid Sampler (PILS) and ion chromatographs (ICs) were used to detect the concentration of methylamine salts associated with atmospheric particulate matter reactions in a smog chamber. The smog chamber is located at U.C. Riverside’s College of Engineering Center for Environmental Re...

  17. DEVELOPMENT AND LABORATORY CHARACTERIZATION OF A PROTOTYPE COARSE PARTICLE CONCENTRATOR FOR INHALATION TOXICOLOGICAL STUDIES. (R825270)

    EPA Science Inventory

    This paper presents the development and laboratory characterization of a prototype slit nozzle virtual impactor that can be used to concentrate coarse particles. A variety of physical design and flow parameters were evaluated including different acceleration and collection sli...

  18. Apparatus and method for concentrating and filtering particles suspended in a fluid

    DOEpatents

    Fiechtner, Gregory J.; Cummings, Eric B.; Singh, Anup K.

    2009-05-19

    Disclosed is a device for separating and concentrating particles suspended in a fluid stream by using dielectrophoresis (DEP) to trap and/or deflect those particles as they migrate through a fluid channel. The method uses fluid channels designed to constrain a liquid flowing through it to uniform electrokinetic flow velocities. This behavior is achieved by connecting deep and shallow sections of channels, with the channel depth varying abruptly along an interface. By careful design of abrupt changes in specific permeability at the interface, an abrupt and spatially uniform change in electrokinetic force can be selected. Because these abrupt interfaces also cause a sharp gradient in applied electric fields, a DEP force also can be established along the interface. Depending on the complex conductivity of the suspended particles and the immersion liquid, the DEP force can controllably complement or oppose the local electrokinetic force transporting the fluid through the channel allowing for manipulation of particles suspended in the transporting liquid.

  19. Cascade model for particle concentration and enstrophy in fully developed turbulence with mass-loading feedback.

    PubMed

    Hogan, R C; Cuzzi, J N

    2007-05-01

    A cascade model is described based on multiplier distributions determined from three-dimensional (3D) direct numerical simulations (DNS) of turbulent particle laden flows, which include two-way coupling between the phases at global mass loadings equal to unity. The governing Eulerian equations are solved using psuedospectral methods on up to 512(3) computional grid points. DNS results for particle concentration and enstrophy at Taylor microscale Reynolds numbers in the range 34-170 were used to directly determine multiplier distributions on spatial scales three times the Kolmogorov length scale. The multiplier probability distribution functions (PDFs) are well characterized by the beta distribution function. The width of the PDFs, which is a measure of intermittency, decreases with increasing mass loading within the local region where the multipliers are measured. The functional form of this dependence is not sensitive to Reynolds numbers in the range considered. A partition correlation probability is included in the cascade model to account for the observed spatial anticorrelation between particle concentration and enstrophy. Joint probability distribution functions of concentration and enstrophy generated using the cascade model are shown to be in excellent agreement with those derived directly from our 3D simulations. Probabilities predicted by the cascade model are presented at Reynolds numbers well beyond what is achievable by direct simulation. These results clearly indicate that particle mass loading significantly reduces the probabilities of high particle concentration and enstrophy relative to those resulting from unloaded runs. Particle mass density appears to reach a limit at around 100 times the gas density. This approach has promise for significant computational savings in certain applications.

  20. Surface-level fine particle mass concentrations: from hemispheric distributions to megacity sources.

    PubMed

    Hidy, George M

    2009-07-01

    Since 1990, basic knowledge of the "chemical climate" of fine particles, has greatly improved from Junge's compilation from the 1960s. A worldwide baseline distribution of fine particle concentrations on a synoptic scale of approximately 1000 km can be estimated at least qualitatively from measurements. A geographical distribution of fine particle characteristics is deduced from a synthesis of a variety of disparate data collected at ground level on all continents, especially in the northern hemisphere. On the average, the regional mass concentrations range from 1 to 80 microg/m3, with the highest concentrations in regions of high population density and industrialization. Fine particles by mass on a continental and hemispheric spatial scale are generally dominated by non-sea salt sulfate (0.2 to approximately 20 microg/m3, or approximately 25%) and organic carbon (0.2-> 10 microg/m3, or approximately 25%), with lesser contributions of ammonium, nitrate, elemental carbon, and elements found in sea salt or soil dust. The crustal and trace metal elements contribute a varied amount to fine particle mass depending on location, with a larger contribution in marine conditions or during certain events such as dust storms or volcanic disturbances. The average distribution of mass concentration and major components depends on the proximity to areal aggregations of sources, most of which are continental in origin, with contributions from sea salt emissions in the marine environment. The highest concentrations generally are within or near very large population and industrial centers, especially in Asia, including parts of China and India, as well as North America and Europe. Natural sources of blowing dust, sea salt, and wildfires contribute to large, intermittent spatial-scale particle loadings beyond these ranges. A sampling of 10 megacities illustrates a range of characteristic particle composition, dependent on local and regional sources. Long-range transport of pollution

  1. Influence of atmospheric dispersion and new particle formation events on ambient particle number concentration in Rochester, United States, and Toronto, Canada.

    PubMed

    Jeong, Cheol-Heon; Evans, Greg J; Hopke, Philip K; Chalupa, David; Utell, Mark J

    2006-04-01

    Continuous measurements of particle number concentrations were performed in Rochester, NY, and Toronto, Ontario, Canada during the 2003 calendar year. Strong seasonal dependency in particle number concentration was observed at two sites. The average number concentration of ambient particles was 9670 +/- 6960 cm(-3) in Rochester, whereas in Toronto the average number of particles was 28,010 +/- 13,350 cm(-3). The particle number concentrations were higher in winter months than in summer months by a factor of 1.5 in Rochester and 1.6 in Toronto. In general, there were also distinct diurnal variations of aerosol number concentration. The highest weekdays/weekends ratio of number concentration was typically observed during the rush-hour period in winter months with a ratio of 2.1 in Rochester and 2.0 in Toronto. The correlation in the total particle number concentrations between the two urban sites was stronger in winter because of the common urban traffic patterns, but weaker in summer because of local sulfur dioxide (SO2)-related particle formation events in Rochester in the summer. Strong morning particle formation events were frequently observed during colder winter months. Good correlations between particle number and carbon monoxide (CO) as well as temperature suggested that motorvehicle emissions lead to the formation of new particles as the exhaust mixes with the cold air. Regional nucleation and growth events frequently occurred in April. Local SO2-related particle formation events most frequently occurred in August. SO2 and UV-B were highly correlated with particle concentration, suggesting a high association of photochemical processes with these local events. A high directionality in a northerly direction was observed for particle number and SO2, indicating the influence of point sources located north of Rochester.

  2. Concentration, Size Distribution, and Infectivity of Airborne Particles Carrying Swine Viruses

    PubMed Central

    Alonso, Carmen; Raynor, Peter C.; Davies, Peter R.; Torremorell, Montserrat

    2015-01-01

    When pathogens become airborne, they travel associated with particles of different size and composition. Particle size determines the distance across which pathogens can be transported, as well as the site of deposition and the survivability of the pathogen. Despite the importance of this information, the size distribution of particles bearing viruses emitted by infectious animals remains unknown. In this study we characterized the concentration and size distribution of inhalable particles that transport influenza A virus (IAV), porcine reproductive and respiratory syndrome virus (PRRSV), and porcine epidemic diarrhea virus (PEDV) generated by acutely infected pigs and assessed virus viability for each particle size range. Aerosols from experimentally infected pigs were sampled for 24 days using an Andersen cascade impactor able to separate particles by size (ranging from 0.4 to 10 micrometer (μm) in diameter). Air samples collected for the first 9, 20 and the last 3 days of the study were analyzed for IAV, PRRSV and PEDV, respectively, using quantitative reverse transcription polymerase chain reaction (RT-PCR) and quantified as geometric mean copies/m3 within each size range. IAV was detected in all particle size ranges in quantities ranging from 5.5x102 (in particles ranging from 1.1 to 2.1μm) to 4.3x105 RNA copies/m3 in the largest particles (9.0–10.0μm). PRRSV was detected in all size ranges except particles between 0.7 and 2.1μm in quantities ranging from 6x102 (0.4–0.7μm) to 5.1x104 RNA copies/m3 (9.0–10.0μm). PEDV, an enteric virus, was detected in all particle sizes and in higher quantities than IAV and PRRSV (p < 0.0001) ranging from 1.3x106 (0.4–0.7μm) to 3.5x108 RNA copies/m3 (9.0–10.0μm). Infectious status was demonstrated for the 3 viruses, and in the case of IAV and PRRSV, viruses were isolated from particles larger than 2.1μm. In summary, our results indicated that airborne PEDV, IAV and PRRSV can be found in a wide range of

  3. Color Change of Sudan III against Concentrated Sulfuric Acid in Acetonitrile and Quantification for a Small Amount of Concentrated Sulfuric Acid.

    PubMed

    Sakurai, Takao; Kurata, Shoji; Ogino, Kenji

    2016-01-01

    The color-changing phenomenon of hydrophobic bisazo dye, Sudan III in an acetonitrile solution against the addition of concentrated sulfuric acid has been discovered and the chromic properties investigated. Based on observations, a novel quantification method of concentrated sulfuric acid has been developed. Sudan III changes its color from orange to blue against a small volume of sulfuric acid, and the acetonitrile solution of Sudan III is the most suitable for observing the color-change phenomenon. (1)H-NMR and UV-Vis spectroscopic studies showed that the color-change mechanism of Sudan III against sulfuric acid is due to the protonation of the dye by sulfuric acid. This phenomenon is applicable to the quantification of concentrated sulfuric acid by introducing the Hammett acidity function. The proposed method requires only a small amount of the sample, 0.04 mL, and enables rapid quantification.

  4. The effects of vegetation barriers on near-road ultrafine particle number and carbon monoxide concentrations.

    PubMed

    Lin, Ming-Yeng; Hagler, Gayle; Baldauf, Richard; Isakov, Vlad; Lin, Hong-Yiou; Khlystov, Andrey

    2016-05-15

    Numerous studies have shown that people living in near-roadway communities (within 100 m of the road) are exposed to high ultrafine particle (UFP) number concentrations, which may be associated with adverse health effects. Vegetation barriers have been shown to affect pollutant transport via particle deposition to leaves and altering the dispersion of emission plumes, which in turn would modify the exposure of near-roadway communities to traffic-related UFPs. In this study, both stationary (equipped with a Scanning Mobility Particle Sizer, SMPS) and mobile (equipped with Fast Mobility Particle Sizer, FMPS) measurements were conducted to investigate the effects of vegetation barriers on downwind UFP (particle diameters ranging from 14 to 102 nm) concentrations at two sites in North Carolina, USA. One site had mainly deciduous vegetation while the other was primarily coniferous; both sites have a nearby open field without the vegetation barriers along the same stretch of limited access road, which served as a reference. During downwind conditions (traffic emissions transported towards the vegetation barrier) and when the wind speed was above or equal to 0.5m/s, field measurements indicated that vegetation barriers with full foliage reduced UFP and CO concentrations by 37.7-63.6% and 23.6-56.1%, respectively. When the test was repeated at the same sites during winter periods when deciduous foliage was reduced, the deciduous barrier during winter showed no significant change in UFP concentration before and after the barrier. Results from the stationary (using SMPS) and mobile (using FMPS) measurements for UFP total number concentrations generally agreed to within 20%.

  5. Morphological control of calcium oxalate particles in the presence of poly-(styrene-alt-maleic acid)

    NASA Astrophysics Data System (ADS)

    Yu, Jiaguo; Tang, Hua; Cheng, Bei; Zhao, Xiujian

    2004-10-01

    Calcium oxalate (CaOx) particles exhibiting different shapes and phase structures were fabricated by a simple precipitation reaction of sodium oxalate with calcium chloride in the absence and presence of poly-(styrene-alt-maleic acid) (PSMA) as a crystal modifier at room temperature. The as-obtained products were characterized with scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effects of reaction conditions including pH, [Ca2+]/[C2O42-] ratio and concentration of PSMA and CaC2O4 on the crystal forms and morphologies of the as-obtained calcium oxalate were investigated. The results show that various crystal morphologies of calcium oxalate, such as parallelograms, plates, spheres, bipyramids etc. can be obtained depending on the experimental conditions. Higher polymer concentration favors formation of the metastable calcium oxalate dihydrate (COD) crystals. Lower pH is beneficial to the formation of plate-like CaOx crystals. Especially, the monodispersed parallelogram-like CaOx crystals can be produced by PSMA as an additive at pH 2. PSMA may act as a good inhibitor for urolithiasis since it induces the formation of COD and reduces the particle size of CaOx. This research may provide new insight into the morphological control of CaOx particles and the prevention of urolithiasis.

  6. Dissolution of plutonium oxide in nitric acid at high hydrofluoric acid concentrations

    SciTech Connect

    Kazanjian, A.R.; Stevens, J.R.

    1984-06-15

    The dissolution of plutonium dioxide in nitirc acid (HNO/sub 3/) at high hydrofluoric acid (HF) concentrations has been investigated. Dissolution rate curves were obtained using 12M HNO/sub 3/ and HF at concentrations varying from 0.05 to 1.0 molar. The dissolution rate increased with HF concentration up to 0.2M and then decreased at higher concentrations. There was very little plutonium dissolved at 0.7 and 1.0M HF because of the formation of insoluble PuF/sub 4/. Various oxidizing agents were added to 12M HNO/sub 3/-1M HF dissolvent to oxidize Pu(IV) to Pu(VI) and prevent the formation of PuF/sub 4/. Ceric (Ce(IV)) and silver (Ag(II)) ions were the most effective in dissolving PuO/sub 2/. Although these two oxidants greatly increased the dissolution rate, the rates were not as rapid as those obtained with 12M HNO/sub 3/-0.2M HF.

  7. European Marine Background Ice Nucleating Particle concentrations Measured at the Mace Head Station, Ireland.

    NASA Astrophysics Data System (ADS)

    Atkinson, James; Kanji, Zamin A.; Ovadnevaite, Jurgita; Ceburnis, Darius; O'Dowd, Colin

    2016-04-01

    Ice formation is an important process which controls cloud microphysical properties and can be critical in the creation of precipitation, therefore influencing the hydrological cycle and energy budget of the Earth. Ice Nucleating Particles (INP) can greatly increase the temperature and rate of ice formation, but the sources and geographical distributions of these particles is not well understood. Mace Head in Ireland is a coastal site on the north eastern edge of Europe with prevailing winds generally from the Atlantic Ocean with little continental influence. Observations of INP concentration from August 2015 using the Horizontal Ice Nucleation Chamber (HINC) at temperature of -30 C are presented. Correlations between the INP and meteorological conditions and aerosol compositions are made, as well as comparisons with commonly used INP concentration parameterisations. Observed INP concentrations are generally low, suggesting that oceanic sources in this region do not contribute significant numbers of INP to the global distribution.

  8. Power law relation between particle concentrations and their sizes in the blood plasma

    NASA Astrophysics Data System (ADS)

    Kirichenko, M. N.; Chaikov, L. L.; Zaritskii, A. R.

    2016-08-01

    This work is devoted to the investigation of sizes and concentrations of particles in blood plasma by dynamic light scattering (DLS). Blood plasma contains many different proteins and their aggregates, microparticles and vesicles. Their sizes, concentrations and shapes can give information about donor's health. Our DLS study of blood plasma reveals unexpected dependence: with increasing of the particle sizes r (from 1 nm up to 1 μm), their concentrations decrease as r-4 (almost by 12 orders). We found also that such dependence was repeated for model solution of fibrinogen and thrombin with power coefficient is -3,6. We believe that this relation is a fundamental law of nature that shows interaction of proteins (and other substances) in biological liquids.

  9. Influence of medium range transport of particles from nucleation burst on particle number concentration within the urban airshed

    NASA Astrophysics Data System (ADS)

    Cheung, H. C.; Morawska, L.; Ristovski, Z. D.; Wainwright, D.

    2012-06-01

    An elevated particle number concentration (PNC) observed during nucleation events could play a significant contribution to the total particle load and therefore to the air pollution in the urban environments. Therefore, a field measurement study of PNC was commenced to investigate the temporal and spatial variations of PNC within the urban airshed of Brisbane, Australia. PNC was monitored at urban (QUT), roadside (WOO) and semi-urban (ROC) areas around the Brisbane region during 2009. During the morning traffic peak period, the highest relative fraction of PNC reached about 5% at QUT and WOO on weekdays. PNC peaks were observed around noon, which correlated with the highest solar radiation levels at all three stations, thus suggesting that high PNC levels were likely to be associated with new particle formation caused by photochemical reactions. Wind rose plots showed relatively higher PNC for the NE direction, which was associated with industrial pollution, accounting for 12%, 9% and 14% of overall PNC at QUT, WOO and ROC, respectively. Although there was no significant correlation between PNC at each station, the variation of PNC was well correlated among three stations during regional nucleation events. In addition, PNC at ROC was significantly influenced by upwind urban pollution during the nucleation burst events, with the average enrichment factor of 15.4. This study provides an insight into the influence of regional nucleation events on PNC in the Brisbane region and it the first study to quantify the effect of urban pollution on semi-urban PNC through the nucleation events.

  10. Temperature-dependent accumulation mode particle and cloud nuclei concentrations from biogenic sources during WACS 2010

    NASA Astrophysics Data System (ADS)

    Ahlm, L.; Shakya, K. M.; Russell, L. M.; Schroder, J. C.; Wong, J. P. S.; Sjostedt, S. J.; Hayden, K. L.; Liggio, J.; Wentzell, J. J. B.; Wiebe, H. A.; Mihele, C.; Leaitch, W. R.; Macdonald, A. M.

    2013-03-01

    Submicron aerosol particles collected simultaneously at the mountain peak (2182 m a.s.l.) and at a forested mid-mountain site (1300 m a.s.l.) on Whistler Mountain, British Columbia, Canada, during June and July 2010 were analyzed by Fourier transform infrared (FTIR) spectroscopy for quantification of organic functional groups. Positive matrix factorization (PMF) was applied to the FTIR spectra. Three PMF factors associated with (1) combustion, (2) biogenics, and (3) vegetative detritus were identified at both sites. The biogenic factor was correlated with both temperature and several volatile organic compounds (VOCs). The combustion factor dominated the submicron particle mass during the beginning of the campaign, when the temperature was lower and advection was from the Vancouver area, but as the temperature started to rise in early July, the biogenic factor came to dominate as a result of increased emissions of biogenic VOCs, and thereby increased formation of secondary organic aerosol (SOA). On average, the biogenic factor represented 69% and 49% of the submicron organic particle mass at Whistler Peak and at the mid-mountain site, respectively. The lower fraction at the mid-mountain site was a result of more vegetative detritus there, and also higher influence from local combustion sources. The biogenic factor was strongly correlated (r~0.9) to number concentration of particles with diameter (Dp)> 100 nm, whereas the combustion factor was better correlated to number concentration of particles with Dp<100 nm (r~0.4). The number concentration of cloud condensation nuclei (CCN) was correlated (r~0.7) to the biogenic factor for supersaturations (S) of 0.2% or higher, which indicates that particle condensational growth from biogenic vapors was an important factor in controlling the CCN concentration for clouds where S≥0.2%. Both the number concentration of particles with Dp>100 nm and numbers of CCN for S≥0.2% were correlated to temperature. Considering the

  11. Temperature-dependent accumulation mode particle and cloud nuclei concentrations from biogenic sources during WACS 2010

    NASA Astrophysics Data System (ADS)

    Ahlm, L.; Shakya, K. M.; Russel, L. M.; Schroder, J. C.; Wong, J. P. S.; Sjostedt, S. J.; Hayden, K. L.; Liggio, J.; Wentzell, J. J. B.; Wiebe, H. A.; Mihele, C.; Leaitch, W. R.; Macdonald, A. M.

    2012-10-01

    Submicron aerosol particles collected simultaneously at the mountain peak (2182 m a.s.l.) and at a forested mid-mountain site (1300 m a.s.l.) on Whistler Mountain, British Columbia, Canada, during June and July 2010 were analyzed by Fourier transform infrared (FTIR) spectroscopy for quantification of organic functional groups. Positive matrix factorization (PMF) was applied to the FTIR spectra. Three PMF factors associated with (1) combustion, (2) biogenics, and (3) vegetative detritus, were identified at both sites. The biogenic factor was correlated with both temperature and several volatile organic compounds (VOCs). The combustion factor dominated the submicron particle mass during the beginning of the campaign when the temperature was lower and advection was from the Vancouver area, but as the temperature started to rise in early July the biogenic factor came to dominate as a result of increased emissions of biogenic VOCs and thereby increased formation of secondary organic aerosol (SOA). On average, the biogenic factor represented 69% and 49% of the submicron organic particle mass at Whistler Peak and at the mid-mountain site, respectively. The lower fraction at the mid-mountain site was a result of more vegetative detritus there, and also higher influence from local combustion sources. The biogenic factor was strongly correlated (r ~ 0.9) to number concentration of particles with diameter (Dp)> 100 nm, whereas the combustion factor was better correlated to number concentration of particles with Dp < 100 nm (r~ 0.4). The number concentration of cloud condensation nuclei (CCN) was correlated (r ~ 0.7) to the biogenic factor for supersaturations (S) of 0.2% or higher, which indicates that particle condensational growth from biogenic vapors was an important factor in controlling the CCN concentration for clouds where S≥0.2%. Both the number concentration of particles with Dp > 100 nm and numbers of CCN for S≥0.2% were correlated to temperature. Considering

  12. Factors affecting the stability of the performance of ambient fine-particle concentrators.

    PubMed

    Kim, S; Sioutas, C; Chang, M C; Gong, H

    2000-01-01

    This article describes a systematic evaluation of factors affecting the stability of the performance of Harvard ambient fine-particle concentrators, an essential requirement for controlled animal and human exposure studies that utilize these technologies. Phenomenological problems during the operation of the concentrator, including pressure drop increase and decrease in concentration enrichment, were statistically correlated with ambient air parameters such as temperature, relative humidity, PM2.5 mass concentration, and mass median diameter. The normalized hourly pressure drop across the concentrator was strongly associated (R2 = .81) with the product of ambient PM2.5 mass concentration and the difference between the vapor pressure downstream of the impactor nozzle and the saturation vapor pressure at the adiabatic expansion temperature (i.e., the temperature of the aerosol immediately downstream of the virtual impactors). From multiple regression analysis, the average enrichment factor was predicted reasonably well (R2 = .67) by aerosol mass median diameter and the normalized hourly pressure drop. Based on these results, we can anticipate in any given day whether an exposure study can be conducted without a considerable increase in the concentrator pressure drop, which might lead to an abrupt or premature termination of the exposure. As particle mass concentration and ambient dewpoint are the two main parameters responsible for raising the pressure drop across the concentrator, efforts should be made to either desiccate the ambient aerosol at days of high dewpoints, or to dilute the ambient PM at days of high concentrations, prior to drawing the aerosol through the virtual impactors. The latter approach is recommended on days of severe ambient pollution conditions because it is simpler and also makes it possible to maintain the appropriate concentration level delivered to the exposure chamber.

  13. Characterization of a Quadrotor Unmanned Aircraft System for Aerosol-Particle-Concentration Measurements.

    PubMed

    Brady, James M; Stokes, M Dale; Bonnardel, Jim; Bertram, Timothy H

    2016-02-02

    High-spatial-resolution, near-surface vertical profiling of atmospheric chemical composition is currently limited by the availability of experimental platforms that can sample in constrained environments. As a result, measurements of near-surface gradients in trace gas and aerosol particle concentrations have been limited to studies conducted from fixed location towers or tethered balloons. Here, we explore the utility of a quadrotor unmanned aircraft system (UAS) as a sampling platform to measure vertical and horizontal concentration gradients of trace gases and aerosol particles at high spatial resolution (1 m) within the mixed layer (0-100 m). A 3D Robotics Iris+ autonomous quadrotor UAS was outfitted with a sensor package consisting of a two-channel aerosol optical particle counter and a CO2 sensor. The UAS demonstrated high precision in both vertical (±0.5 m) and horizontal positions (±1 m), highlighting the potential utility of quadrotor UAS drones for aerosol- and trace-gas measurements within complex terrain, such as the urban environment, forest canopies, and above difficult-to-access areas such as breaking surf. Vertical profiles of aerosol particle number concentrations, acquired from flights conducted along the California coastline, were used to constrain sea-spray aerosol-emission rates from coastal wave breaking.

  14. An exemple of particle concentration reduction in Parisian subway stations by electrostatic precipitation.

    PubMed

    Tokarek, S; Bernis, A

    2006-11-01

    The air quality in Parisian subway stations is a great concern to users and the public authorities. Particle concentration is one of the major problems; indeed concentrations observed in stations are generally superior to those collected in the street. The subway generates its own particles from wheels / rail contact, braking, the ground... One of the ways explored to lower this level of particles is a removal treatment: the principle is to treat the ambient air using a suitable system placed in stations. Following literature, the process chosen by Paris Transport Authority is the electrostatic precipitator. An electrostatic precipitator prototype from the Recycl'Air company is installed in May 2001 in a closed station on the 5th line (Italy Place -Bobigny). Results show that, by the end of approximately one year, the efficiency has fallen by 15% and it is therefore necessary to clean the precipitation cartridges. A consideration has also been made on the possibility to equip an entire subway station. According to the results obtained, about twenty filters placed in the top of a non mechanically ventilated station would permit to half an initial concentration in particles of 230 microg m(-3).

  15. Morphology of protein particles produced by spray freezing of concentrated solutions.

    PubMed

    Engstrom, Josh D; Simpson, Dale T; Lai, Edwina S; Williams, Robert O; Johnston, Keith P

    2007-02-01

    The mechanisms for the formation of high surface area lysozyme particles in spray freezing processes are described as a function of spray geometry and atomization, solute concentration and the calculated cooling rate. In the spray freeze-drying (SFD) process, droplets are atomized into a gas and then freeze upon contact with a liquid cryogen. In the spray freezing into liquid (SFL) process, a solution is sprayed directly into the liquid cryogen below the gas-liquid meniscus. A wide range of feed concentrations is examined for two cryogens, liquid nitrogen (LN2) and isopentane (i-C5). The particle morphologies are characterized by SEM micrographs and BET measurements of specific surface area. As a result of boiling of the cryogen (Leidenfrost effect), the cooling rate for SFL into LN2 is several orders of magnitude slower than for SFL into i-C5 and for SFD in the case of either LN2 or i-C5. For 50 mg/mL concentrated feed solutions, the slower cooling of SFL into LN2 leads to a surface area of 34 m(2)/g. For the other three cases with more rapid cooling rates, surface areas were greater than 100 m(2)/g. The ability to adjust the cooling rate to vary the final particle surface area is beneficial for designing particles for controlled release applications.

  16. Effect of L (+) ascorbic acid and monosodium glutamate concentration on the morphology of calcium carbonate

    NASA Astrophysics Data System (ADS)

    Saraya, Mohamed El-shahte Ismaiel

    2015-11-01

    In this study, monosodium glutamate and ascorbic acid were used as crystal and growth modifiers to control the crystallization of CaCO3. Calcium carbonate prepared by reacting a mixed solution of Na2CO3 with CaCl2 at ambient temperature, (25 °C), constant Ca++/ CO3- - molar ratio and pH with stirring. The polymorph and morphology of the crystals were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The results indicate that rhombohedral calcite was only formed in water without organic additives, and both calcite and spherical vaterite with various morphologies were produced in the presence of monosodium glutamate. The content of vaterite increased as the monosodium glutamate increased. In addition, spherical vaterite was obtained in the presence of different concentrations of ascorbic acid. The spherical vaterite posses an aggregate shape composed of nano-particles, ranging from 30 to 50 nm as demonstrated by the SEM and TEM analyses. Therefore, the ascorbic stabilizes vaterite and result in nano-particles compared to monosodium glutamate.

  17. The role of acid-base effects on particle charging in apolar media.

    PubMed

    Gacek, Matthew Michael; Berg, John C

    2015-06-01

    The creation and stabilization of electric charge in apolar environments (dielectric constant≈2) have been an area of interest dating back to when an explanation was sought for the occurrence of what are now known as electrokinetic explosions during the pumping of fuels. More recently attention has focused on the charging of suspended particles in such media, underlying such applications as electrophoretic displays (e.g., the Amazon Kindle® reader) and new printing devices (e.g., the HP Indigo® Digital Press). The endeavor has been challenging owing to the complexity of the systems involved and the large number of factors that appear to be important. A number of different, and sometimes conflicting, theories for particle surface charging have been advanced, but most observations obtained in the authors' laboratory, as well as others, appear to be explainable in terms of an acid-base mechanism. Adducts formed between chemical functional groups on the particle surface and monomers of reverse micelle-forming surfactants dissociate, leaving charged groups on the surface, while the counter-charges formed are sequestered in the reverse micelles. For a series of mineral oxides in a given medium with a given surfactant, surface charging (as quantified by the maximum electrophoretic mobility or zeta potential obtained as surfactant concentration is varied) was found to scale linearly with the aqueous PZC (or IEP) values of the oxides. Different surfactants, with the same oxide series, yielded similar behavior, but with different PZC crossover points between negative and positive particle charging, and different slopes of charge vs. PZC. Thus the oxide series could be used as a yardstick to characterize the acid-base properties of the surfactants. This has led directly to the study of other materials, including surface-modified oxides, carbon blacks, pigments (charge transfer complexes), and polymer latices. This review focuses on the acid-base mechanism of particle

  18. Size and concentration measurements of particles produced in commercial chromium plating processes

    SciTech Connect

    Bonin, M.P.; Flower, W.L.; Renzi, R.F.; Peng, L.W.

    1995-11-01

    Optical measurements of particle size and concentration were made at the chromium plating tank and exhaust system at a commercial hexavalent chromium plating facility. Particles were examined at three locations in the exhaust system: (1) directly at the hexavalent chromium plating bath surface, (2) at the exit of a cyclone separator located in the exhaust system approximately three to four meters downstream of the bath, and (3) in the exhaust stack, downstream of the induced draft fan and all abatement devices. Particle diameters at the bath surface ranged from 0.3 to 25 {mu}m. Downstream of the cyclone exit and mesh pad filters, particle top sizes were approximately 5 and 0.7 mm, respectively. On a mass basis, the collection efficiency of all abatement devices was 99.997%. Assuming that droplets in the flow consist primarily of water and chromium, correcting the total particle mass flow against water content gives a chromium emission rate of 64,000 {mu}g/hr, which compares favorably with a value of 77,000 {mu}g/hr measured with EPA methods. This initial agreement, which should be validated through additional measurements over a broad range of flow conditions, raises the possibility of continuous monitoring for chromium metal emissions using particle size/mass as a surrogate. 6 refs., 7 figs.

  19. Thermodynamic correction of particle concentrations measured by underwing probes on fast flying aircraft

    NASA Astrophysics Data System (ADS)

    Weigel, R.; Spichtinger, P.; Mahnke, C.; Klingebiel, M.; Afchine, A.; Petzold, A.; Krämer, M.; Costa, A.; Molleker, S.; Jurkat, T.; Minikin, A.; Borrmann, S.

    2015-12-01

    Particle concentration measurements with underwing probes on aircraft are impacted by air compression upstream of the instrument body as a function of flight velocity. In particular for fast-flying aircraft the necessity arises to account for compression of the air sample volume. Hence, a correction procedure is needed to invert measured particle number concentrations to ambient conditions that is commonly applicable for different instruments to gain comparable results. In the compression region where the detection of particles occurs (i.e. under factual measurement conditions), pressure and temperature of the air sample are increased compared to ambient (undisturbed) conditions in certain distance away from the aircraft. Conventional procedures for scaling the measured number densities to ambient conditions presume that the particle penetration speed through the instruments' detection area equals the aircraft speed (True Air Speed, TAS). However, particle imaging instruments equipped with pitot-tubes measuring the Probe Air Speed (PAS) of each underwing probe reveal PAS values systematically below those of the TAS. We conclude that the deviation between PAS and TAS is mainly caused by the compression of the probed air sample. From measurements during two missions in 2014 with the German Gulfstream G-550 (HALO - High Altitude LOng range) research aircraft we develop a procedure to correct the measured particle concentration to ambient conditions using a thermodynamic approach. With the provided equation the corresponding concentration correction factor ξ is applicable to the high frequency measurements of each underwing probe which is equipped with its own air speed sensor (e.g. a pitot-tube). ξ-values of 1 to 0.85 are calculated for air speeds (i.e. TAS) between 60 and 260 m s-1. From HALO data it is found that ξ does not significantly vary between the different deployed instruments. Thus, for the current HALO underwing probe configuration a parameterisation of

  20. Particle concentration dynamics in the ventilation duct after an artificial release: for countering potential bioterrorist attack.

    PubMed

    You, Siming; Wan, Man Pun

    2014-02-28

    Ventilation duct serves as a potential target for bioterrorist attack. Understanding the dynamics of aerosolized harmful agents in the ventilation ducts provides the fundamentals for effective control and management, e.g., risk assessment. In this work, new models for predicting the concentration dynamics in the ventilation duct after a particle resuspension (representing the case that harmful agents are dosed when the ventilation is off and subsequently being turned on) or puff injection (representing the case that harmful agents are dosed when the ventilation is running) event were derived based on the mass balance model. The models were validated by a series of wind tunnel experiments. Indoor airborne particle concentration models were derived by incorporating the proposed ventilation duct models for resuspension and injection cases. The effects of resuspension and injection in the duct on indoor airborne particle concentration were examined by two hypothetical cases of Bacillus anthracis dosage using the derived models. For the same amount of BW agent dosage in the ventilation duct, the resuspension type release prolongs the exposure of harmful agents whereas the injection type release produces a higher peak concentration.

  1. Toxicity of chemical components of fine particles inhaled by aged rats: effects of concentration.

    PubMed

    Kleinman, Michael T; Hyde, Dallas M; Bufalino, Charles; Basbaum, Carol; Bhalla, Deepak K; Mautz, William J

    2003-09-01

    This study tested the hypothesis that exposure to mixtures containing fine particles and ozone (O3) would cause pulmonary injury and decrements in functions of immunological cells in exposed rats (22-24 months old) in a dose-dependent manner. Rats were exposed to high and low concentrations of ammonium bisulfate and elemental carbon and to 0.2 ppm O3. Control groups were exposed to purified air or O3 alone. The biological end points measured included histopathological markers of lung injury, bronchoalveolar lung fluid proteins, and measures of the function of the lung's innate immunological defenses (macrophage antigen-directed phagocytosis and respiratory burst activity). Exposure to O3 alone at 0.2 ppm did not result in significant changes in any of the measured end points. Exposures to the particle mixtures plus O3 produced statistically significant changes consistent with adverse effects. The low-concentration mixture produced effects that were statistically significant compared to purified air but, with the exception of macrophage Fc receptor binding, exposure to the high-concentration mixture did not. The effects of the low- and high-concentration mixtures were not significantly different. The study supports previous work that indicated that particle + O3 mixtures were more toxic than O3 alone.

  2. Amino Acid Composition of an Organic Brown Rice Protein Concentrate and Isolate Compared to Soy and Whey Concentrates and Isolates.

    PubMed

    Kalman, Douglas S

    2014-06-30

    A protein concentrate (Oryzatein-80™) and a protein isolate (Oryzatein-90™) from organic whole-grain brown rice were analyzed for their amino acid composition. Two samples from different batches of Oryzatein-90™ and one sample of Oryzatein-80™ were provided by Axiom Foods (Los Angeles, CA, USA). Preparation and analysis was carried out by Covance Laboratories (Madison, WI, USA). After hydrolysis in 6-N hydrochloric acid for 24 h at approximately 110 °C and further chemical stabilization, samples were analyzed by HPLC after pre-injection derivitization. Total amino acid content of both the isolate and the concentrate was approximately 78% by weight with 36% essential amino acids and 18% branched-chain amino acids. These results are similar to the profiles of raw and cooked brown rice except in the case of glutamic acid which was 3% lower in the isolate and concentrate. The amino acid content and profile of the Oryzatein-90™ isolate was similar to published values for soy protein isolate but the total, essential, and branched-chain amino acid content of whey protein isolate was 20%, 39% and 33% greater, respectively, than that of Oryzatein-90™. These results provide a valuable addition to the nutrient database of protein isolates and concentrates from cereal grains.

  3. Various concentrations of erucic acid in mustard oil and mustard.

    PubMed

    Wendlinger, Christine; Hammann, Simon; Vetter, Walter

    2014-06-15

    Erucic acid is a typical constituent of mustard or rape. Foodstuff with a high content of erucic acid is considered undesirable for human consumption because it has been linked to myocardial lipidosis and heart lesions in laboratory rats. As a result, several countries have restricted its presence in oils and fats. In this study, the erucic acid content in several mustard oils and prepared mustard samples from Germany and Australia was determined. Seven of nine mustard oil samples exceeded the permitted maximum levels established for erucic acid (range: 0.3-50.8%, limit: 5%). The erucic acid content in mustard samples (n=15) varied from 14% to 33% in the lipids. Two servings (i.e. 20 g) of the mustards with the highest erucic acid content already surpassed the tolerable daily intake established by Food Standards Australia New Zealand. However, a careful selection of mustard cultivars could lower the nutritional intake of erucic acid.

  4. On the growth of nitric and sulfuric acid aerosol particles under stratospheric conditions

    NASA Technical Reports Server (NTRS)

    Hamill, Patrick; Turco, R. P.; Toon, O. B.

    1988-01-01

    A theory for the formation of frozen aerosol particles in the Antarctic stratosphere was developed and applied to the formation of polar stratospheric clouds. The theory suggests that the condensed ice particles are composed primarily of nitric acid and water, with small admixtures of sulfuric and hydrochloric acids in solid solution. The proposed particle formation mechanism is in agreement with the magnitude and seasonal behavior of the optical extinction observed in the winter polar stratosphere.

  5. Modulation of absence seizures by branched-chain amino acids: correlation with brain amino acid concentrations.

    PubMed

    Dufour, F; Nalecz, K A; Nalecz, M J; Nehlig, A

    2001-07-01

    The occurrence of absence seizures might be due to a disturbance of the balance between excitatory and inhibitory neurotransmissions in the thalamo-cortical loop. In this study, we explored the consequences of buffering the glutamate content of brain cells on the occurrence and duration of seizures in Genetic Absence Epilepsy Rats from Strasbourg (GAERS), a genetic model of generalized non-convulsive epilepsy. Branched-chain amino acids (BCAAs) and alpha-ketoisocaproate (alpha-KIC), the ketoacid of leucine were repeatedly shown to have a critical role in brain glutamate metabolism. Thus, GAERS were injected by intraperitoneal (i.p.) or intracerebroventricular (i.c.v.) route with these compounds, then the effects on seizures were evaluated on the electroencephalographic recording. We also measured the concentration of amino acids in thalamus and cortex after an i.p. injection of leucine or alpha-KIC. Intracerebroventricular injections of leucine or alpha-KIC did not influence the occurrence of seizures, possibly because the substances reached only the cortex. BCAAs and alpha-KIC, injected intraperitoneally, increased the number of seizures whereas they had only a slight effect on their duration. Leucine and alpha-KIC decreased the concentration of glutamate in thalamus and cortex without affecting GABA concentrations. Thus, BCAAs and alpha-KIC, by decreasing the effects of glutamatergic neurotransmission could facilitate those of GABAergic neurotransmission, which is known to increase the occurrence of seizures in GAERS.

  6. Temperature and magnetic field responsive hyaluronic acid particles with tunable physical and chemical properties

    NASA Astrophysics Data System (ADS)

    Ekici, Sema; Ilgin, Pinar; Yilmaz, Selahattin; Aktas, Nahit; Sahiner, Nurettin

    2011-01-01

    We report the preparation and characterization of thiolated-temperature-responsive hyaluronic acid-cysteamine-N-isopropyl acrylamide (HA-CYs-NIPAm) particles and thiolated-magnetic-responsive hyaluronic acid (HA-Fe-CYs) particles. Linear hyaluronic acid (HA) crosslinked with divinyl sulfone as HA particles was prepared using a water-in-oil micro emulsion system which were then oxidized HA-O with NaIO4 to develop aldehyde groups on the particle surface. HA-O hydrogel particles were then reacted with cysteamine (CYs) which interacted with aldehydes on the HA surface to form HA particles with cysteamine (HA-CYs) functionality on the surface. HA-CYs particles were further exposed to radical polymerization with NIPAm to obtain temperature responsive HA-CYs-NIPAm hydrogel particles. To acquire magnetic field responsive HA composites, magnetic iron particles were included in HA to form HA-Fe during HA particle preparation. HA-Fe hydrogel particles were also chemically modified. The prepared HA-CYs-NIPAm demonstrated temperature dependent size variations and phase transition temperature. HA-CYs-NIPAm and HA-Fe-CYs particles can be used as drug delivery vehicles. Sulfamethoxazole (SMZ), an antibacterial drug, was used as a model drug for temperature-induced release studies from these particles.

  7. Preparation of monodisperse aqueous microspheres containing high concentration of l-ascorbic acid by microchannel emulsification.

    PubMed

    Khalid, Nauman; Kobayashi, Isao; Neves, Marcos A; Uemura, Kunihiko; Nakajima, Mitsutoshi; Nabetani, Hiroshi

    2015-01-01

    Monodisperse aqueous microspheres containing high concentrations of l-ascorbic acid with different concentrations of sodium alginate (Na-ALG) and magnesium sulfate (MgSO4) were prepared by using microchannel emulsification (MCE). The continuous phase was water-saturated decane containing a 5% (w/w) hydrophobic emulsifier. The flow rate of the continuous phase was maintained at 10 mL h(-1), whereas the pressure applied to the disperse phase was varied between 3 and 25 kPa. The disperse phase optimized for successfully generating aqueous microspheres included 2% (w/w) Na-ALG and 1% (w/w) MgSO4. At a higher MgSO4 concentration, the generated microspheres resulted in coalescence and subsequent bursting. At a lower MgSO4 concentration, unstable and polydisperse microspheres were obtained. The aqueous microspheres generated from the MCs under optimized conditions had a mean particle diameter (dav) of 14-16 µm and a coefficient of variation (CV) of less than 8% at the disperse phase pressures of 5-15 kPa.

  8. Atmospheric concentrations and gas/particle partitioning of neutral poly- and perfluoroalkyl substances in northern German coast

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Xie, Zhiyong; Möller, Axel; Mi, Wenying; Wolschke, Hendrik; Ebinghaus, Ralf

    2014-10-01

    Total 58 high volume air samples were collected in Büsum, Germany, from August 2011 to October 2012 to investigate air concentrations of 12 per- and polyfluoroalkyl substances (PFASs) and their gas/particle partitioning. The total concentration (vapor plus particle phases) of the 12 PFASs (ΣPFASs) ranged from 8.6 to 155 pg/m3 (mean: 41 pg/m3) while fluorotelomer alcohols 8:2 (8:2 FTOH) dominated all samples accounting for 61.9% of ΣPFASs and the next most species were 10:2 FTOH (12.7%). Air mass back trajectory analysis showed that atmospheric PFASs in most samples were from long range atmospheric transport processes and had higher ratios of 8:2 to 6:2 FTOH compared to the data obtained from urban/industrial sources. Small portion of particle PFASs in the atmosphere was observed and the average percent to ΣPFASs was 2.0%. The particle-associated fractions of different PFASs decreased from perfluorooctane sulfonamidoethanols (FOSEs) (15.5%) to fluorotelomer acrylates (FTAs) (7.6%) to perfluorooctane sulfonamides (FOSAs) (3.1%) and FTOHs (1.8%), indicating the functional group obviously influenced their gas/particle partitioning. For neutral compounds with acid dissociation constant (pKa) > 7.0 (i.e., FTOHs, FOSEs and FOSAs), a significant log-linear relationship was observed between their gas/particle partition coefficients (KSP) and vapor pressures (pºL), suggesting the gas/particle partitioning of neutral PFASs agreed with the classical logKSP-logpºL relation. Due to the pKa values of 6:2 and 8:2 FTA below the typical environmental pH conditions, they mainly exist as ionic form in aerosols, and the corrected logKSP (neutral form) were considerably lower than those of FTOHs, FOSEs and FOSAs with similar vapor pressures. Considering the strong partitioning potential to aqueous phases for ionic PFASs at higher pH values, a need exists to develop a model taking account of the ad/absorption mechanism to the condensed phase of aerosols for ionizable PFASs (e

  9. Effect of acid concentration and treatment time on acid-alcohol modified jackfruit seed starch properties.

    PubMed

    Dutta, Himjyoti; Paul, Sanjib Kumar; Kalita, Dipankar; Mahanta, Charu Lata

    2011-09-15

    The properties of starch extracted from jackfruit (Artocarpus heterophyllus Lam.) seeds, collected from west Assam after acid-alcohol modification by short term treatment (ST) for 15-30min with concentrated hydrochloric acid and long term treatment (LT) for 1-15days with 1M hydrochloric acid, were investigated. Granule density, freeze thaw stability, solubility and light transmittance of the treated starches increased. A maximum decrease in the degree of polymerisation occurred in ST of 30min (2607.6). Jackfruit starch had 27.1±0.04% amylose content (db), which in ST initially decreased and then increased with the severity of treatment; in LT the effect was irregular. The pasting profile and granule morphology of the treated samples were severely modified. Native starch had the A-type crystalline pattern and crystalline structure increased on treatment. FTIR spectra revealed slight changes in bond stretching and bending. Colour measurement indicated that whiteness increased on treatment. Acid modified jackfruit seed starch can have applications in the food industry.

  10. Concentrations and properties of airborne particles in the Mexico City subway system

    NASA Astrophysics Data System (ADS)

    Mugica-Álvarez, V.; Figueroa-Lara, J.; Romero-Romo, M.; Sepúlveda-Sánchez, J.; López-Moreno, T.

    2012-03-01

    Samples of PM10 and PM2.5 were collected using High Vol and MiniVol devices on the platform of a subway station in Mexico City and in an outdoor location close to it, using such devices. Soluble extractable organic matter (SEOM) and water solubility of metals were determined. Elemental composition and solubility of trace metals were determined and individual aerosol particles were studied with scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDX). The concentration levels in both sizes were similar during all days with the exception of weekends, especially on Sunday when activity decreases due to lower trains' frequency. The largest particles concentrations in the subway were found from 06:00 to 14:00 and the lowest concentrations were registered from 22:00 to 06:00. Concentrations of PM2.5 ranging between 60 μg m-3 and 93 μg m-3 (10% and 90% percentile) in the subway were 6% larger than outside, whereas PM10 were 20% larger than outside ranging from 88 μg m-3 to 145 μg m-3. Greater Fe, Cu, Ni, Cr and Mn concentrations were quantified in the subway samples as compared to the airborne particles by up to 2.5, 9, 1.8, 2.0 and 2.6 times, respectively. Even when the solubility percent of these metals in the subway PM was smaller than in the outdoor airborne particles, metals' concentrations were greater. SEM and EDS exhibit the presence of many individual particles with a large metal content in the subway samples. Correlation analysis showed the influence of outdoor PM in the subway aerosols, but characterization revealed also important differences in the presence of metals and SEOM, due to underground sources such as friction, brake system, and metals from sparking. This means that a large number of commuters are exposed during labor days to large toxic metals concentrations as they transit.

  11. Thermodynamic correction of particle concentrations measured by underwing probes on fast-flying aircraft

    NASA Astrophysics Data System (ADS)

    Weigel, Ralf; Spichtinger, Peter; Mahnke, Christoph; Klingebiel, Marcus; Afchine, Armin; Petzold, Andreas; Krämer, Martina; Costa, Anja; Molleker, Sergej; Reutter, Philipp; Szakáll, Miklós; Port, Max; Grulich, Lucas; Jurkat, Tina; Minikin, Andreas; Borrmann, Stephan

    2016-10-01

    Particle concentration measurements with underwing probes on aircraft are impacted by air compression upstream of the instrument body as a function of flight velocity. In particular, for fast-flying aircraft the necessity arises to account for compression of the air sample volume. Hence, a correction procedure is needed to invert measured particle number concentrations to ambient conditions that is commonly applicable to different instruments to gain comparable results. In the compression region where the detection of particles occurs (i.e. under factual measurement conditions), pressure and temperature of the air sample are increased compared to ambient (undisturbed) conditions in certain distance away from the aircraft. Conventional procedures for scaling the measured number densities to ambient conditions presume that the air volume probed per time interval is determined by the aircraft speed (true air speed, TAS). However, particle imaging instruments equipped with pitot tubes measuring the probe air speed (PAS) of each underwing probe reveal PAS values systematically below those of the TAS. We conclude that the deviation between PAS and TAS is mainly caused by the compression of the probed air sample. From measurements during two missions in 2014 with the German Gulfstream G-550 (HALO - High Altitude LOng range) research aircraft we develop a procedure to correct the measured particle concentration to ambient conditions using a thermodynamic approach. With the provided equation, the corresponding concentration correction factor ξ is applicable to the high-frequency measurements of the underwing probes, each of which is equipped with its own air speed sensor (e.g. a pitot tube). ξ values of 1 to 0.85 are calculated for air speeds (i.e. TAS) between 60 and 250 m s-1. For different instruments at individual wing position the calculated ξ values exhibit strong consistency, which allows for a parameterisation of ξ as a function of TAS for the current HALO

  12. An experimental study of thermal diffusivity of Au nanoparticles: effects of concentration particle size

    NASA Astrophysics Data System (ADS)

    Shahriari, Esmaeil; Moradi, Mohammad; Raeisi, Morteza

    2016-12-01

    In this article, Au nanoparticles in polyvinylpyrrolidone (PVP) solution were prepared by gamma radiation at different concentrations. The solutions were irradiated at doses of 50 kGy for making different sizes. The average sizes of particle in the prepared samples were measured using the nanophox machine. A dual-beam mode-mismatched thermal lens (TL) method was used to investigate the effect of thermal diffusivity of samples. The TL measurement was carried out using a green diode laser (wavelength 532 nm, 60 mW) and a He-Ne laser (wavelength 632.8 nm, 0.5 mW) for excitation source and probe beam, respectively. The results showed that the thermal diffusivity of samples enhances with the growth of particle size and density of solutions. This increment can be attributed to phonon scattering at interface of particles-liquid and contact between the nanoparticles and surrounded liquid.

  13. Effects of running the Bostom Marathon on plasma concentrations of large neutral amino acids

    NASA Technical Reports Server (NTRS)

    Conlay, L. A.; Wurtman, R. J.; Lopez G-Coviella, I.; Blusztajn, J. K.; Vacanti, C. A.; Logue, M.; During, M.; Caballero, B.; Maher, T. J.; Evoniuk, G.

    1989-01-01

    Plasma large neutral amino acid concentrations were measured in thirty-seven subjects before and after completing the Boston Marathon. Concentrations of tyrosine, phenylalanine, and methionine increased, as did their 'plasma ratios' (i.e., the ratio of each amino acid's concentration to the summed plasma concentrations of the other large neutral amino acids which compete with it for brain uptake). No changes were noted in the plasma concentrations of tryptophan, leucine, isoleucine, nor valine; however, the 'plasma ratios' of valine, leucine, and isoleucine all decreased. These changes in plasma amino acid patterns may influence neurotransmitter synthesis.

  14. Contribution of ants in modifying of soil acidity and particle size distribution

    NASA Astrophysics Data System (ADS)

    Morgun, Alexandra; Golichenkov, Maxim

    2015-04-01

    Being a natural body, formed by the influence of biota on the upper layers of the Earth's crust, the soil is the most striking example of biogenic-abiogenic interactions in the biosphere. Invertebrates (especially ants that build soil nests) are important agents that change soil properties in well developed terrestrial ecosystems. Impact of soil microorganisms on soil properties is particularly described in numerous literature and concerns mainly chemical properties and general indicators of soil biological activity. Influence of ants (as representatives of the soil mesofauna) mostly appears as mechanical movement of soil particles and aggregates, and chemical effects caused by concentration of organic matter within the ant's nest. The aim of this research was to evaluate the effect of ants on physical and chemical soil attributes such as particle size distribution and soil acidity. The samples were taken from aerial parts of Lasius niger nests, selected on different elements of the relief (summit position, slope, terrace and floodplain) in the Arkhangelsk region (north of the European part of Russia) and compared with the specimens of the upper horizons of the reference soils. Particle size distribution was determined by laser diffraction method using laser diffraction particle size analyzer «Analysette 22 comfort» (FRITSCH, Germany). The acidity (pH) was determined by potentiometry in water suspension. Particle size distribution of the samples from the nests is more variable as compared to the control samples. For example, the content of 5-10 μm fraction ranges from 9% to 12% in reference soils, while in the anthill samples the variation is from 8% to 15%. Similarly, for 50-250 μm fraction - it ranges from 15% to 18% in reference soils, whereas in anthills - from 6% to 29%. The results of particle size analysis showed that the reference sample on the terrace has silty loam texture and nests soil L. niger are medium loam. The reference soil on the slope is

  15. Size-fractionated major particle composition and concentrations from the US GEOTRACES North Atlantic Zonal Transect

    NASA Astrophysics Data System (ADS)

    Lam, Phoebe J.; Ohnemus, Daniel C.; Auro, Maureen E.

    2015-06-01

    The concentration and the major phase composition (particulate organic matter, CaCO3, opal, lithogenic matter, and iron and manganese oxyhydroxides) of marine particles is thought to determine the scavenging removal of particle-reactive TEIs. Particles are also the vector for transferring carbon from the atmosphere to the deep ocean via the biological carbon pump, and their composition may determine the efficiency and strength of this transfer. Here, we present the first full ocean depth section of size-fractionated (1-51 μm, >51 μm) suspended particulate matter (SPM) concentration and major phase composition from the US GEOTRACES North Atlantic Zonal Transect between Woods Hole, MA and Lisbon, Portugal conducted in 2010 and 2011. Several major particle features are notable in the section: intense benthic nepheloid layers were observed in the western North American margin with concentrations of SPM of up to 1648 μg/L, two to three orders of magnitude higher than surrounding waters, that were dominated by lithogenic material. A more moderate benthic nepheloid layer was also observed in the eastern Mauritanian margin (44 μg/L) that had a lower lithogenic content and, notably, significant concentrations of iron and manganese oxyhydroxides (2.5% each). An intermediate nepheloid layer reaching 102 μg/L, an order of magnitude above surrounding waters, was observed associated with the Mediterranean Outflow. Finally, there was a factor of two enhancement in SPM at the TAG hydrothermal plume due almost entirely to the addition of iron oxyhydroxides from the hydrothermal vent. We observe correlations between POC and CaCO3 in large (>51 μm) particles in the upper 2000 m, but not deeper than 2000 m, and no correlations between POC and CaCO3 at any depth in small (<51 μm) particles. There were also no correlations between POC and lithogenic material in large particles. Overall, there were very large uncertainties associated with all regression coefficients for mineral

  16. Equine endurance exercise alters serum branched-chain amino acid and alanine concentrations.

    PubMed

    Trottier, N L; Nielsen, B D; Lang, K J; Ku, P K; Schott, H C

    2002-09-01

    Six 2-year-old Arabian horses were used to determine whether 60 km prolonged endurance exercise (approximately 4 h) alters amino acid concentrations in serum and muscle, and the time required for serum amino acid concentrations to return to basal resting values. Blood and muscle samples were collected throughout exercise and during a 3 day recovery period. Isoleucine concentration in muscle tended to increase and leucine and valine did not change due to exercise. Serum alanine concentrations did not increase immediately after exercise, but increased at 24, 48 and 72 h postexercise. Serum isoleucine, leucine, and valine concentrations decreased after exercise and time required to reach pre-exercising concentrations was 48 h. In conclusion, endurance exercise in the horse decreases serum isoleucine, leucine, and valine concentrations, and increases serum alanine concentration. The decrease in serum branched-chain amino acid concentrations did not correspond to a measurable increase in total muscle branched-chain amino acid concentrations.

  17. Influence of bleaching on flavor of 34% whey protein concentrate and residual benzoic acid concentration in dried whey products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies have shown that bleaching negatively affects the flavor of 70% whey protein concentrate (WPC70), but bleaching effects on lower-protein products have not been established. Benzoyl peroxide (BP), a whey bleaching agent, degrades to benzoic acid (BA) and may elevate BA concentrations...

  18. Influence of Bleaching on Flavor of 34% Whey Protein Concentrate and Residual Benzoic Acid Concentration in Dried Whey Proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies have shown that bleaching negatively affects the flavor of 70% whey protein concentrate (WPC70), but bleaching effects on lower-protein products have not been established. Benzoyl peroxide (BP), a whey bleaching agent, degrades to benzoic acid (BA) and may elevate BA concentrations...

  19. Shear-induced reaction-limited aggregation kinetics of brownian particles at arbitrary concentrations.

    PubMed

    Zaccone, Alessio; Gentili, Daniele; Wu, Hua; Morbidelli, Massimo

    2010-04-07

    The aggregation of interacting brownian particles in sheared concentrated suspensions is an important issue in colloid and soft matter science per se. Also, it serves as a model to understand biochemical reactions occurring in vivo where both crowding and shear play an important role. We present an effective medium approach within the Smoluchowski equation with shear which allows one to calculate the encounter kinetics through a potential barrier under shear at arbitrary colloid concentrations. Experiments on a model colloidal system in simple shear flow support the validity of the model in the concentration range considered. By generalizing Kramers' rate theory to the presence of shear and collective hydrodynamics, our model explains the significant increase in the shear-induced reaction-limited aggregation kinetics upon increasing the colloid concentration.

  20. Features of an underexpanded pulsed impact gas-dispersed jet with a high particle concentration

    NASA Astrophysics Data System (ADS)

    Sadin, D. V.; Lyubarskii, S. D.; Gravchenko, Yu. A.

    2017-01-01

    We have reported on the results of a numerical simulation of the inflow of an underexpanded pulsed gas-dispersed jet with a high particle concentration onto a rigid obstacle unbounded in the transverse direction. The characteristic features of such interaction, in particular, the anomalous formation of the shock-wave structure of the two-phase flow at the subsonic velocity of the carrier gas and the evolution of self-sustained oscillations, have been investigated.

  1. Influence of medium range transport of particles from nucleation burst on particle number concentration within the urban airshed

    NASA Astrophysics Data System (ADS)

    Cheung, H. C.; Morawska, L.; Ristovski, Z. D.; Wainwright, D.

    2011-12-01

    Elevated particle number concentration (PNC) observed during nucleation events could make a significant contribution to the total particle load and thus air pollution in urban environments. Therefore, a field measurement study of PNC was conducted to investigate the temporal and spatial variations of PNC within the urban airshed of Brisbane, Australia. PNC was monitored at urban (QUT), roadside (WOO) and semi-urban (ROC) areas around the Brisbane region during 2009. The results showed that morning traffic exhaust emissions were the main contributor to high PNCs at QUT and WOO which contributed 5.5% and 5.1 5 during the week, respectively, with a less significant contribution on weekends. PNC peaks were observed around noon, which correlated with the highest solar radiation levels at all three stations, thus suggesting that high PNC levels were likely to be associated with new particle formation caused by photochemical reactions. Wind rose plots showed relatively higher PNC for the NE direction, which was associated with industrial pollution, accounting for 12%, 9% and 14% of overall PNC at QUT, WOO and ROC, respectively. Although there was no significant correlation between PNC at each station, the variation of PNC was well correlated among three stations during regional nucleation events. In addition, PNC at ROC was significantly influenced by upwind urban pollution during the nucleation burst events, with the average enrichment factor of 15.4. This study provides an insight into the influence of regional nucleation events on PNC in the Brisbane region and is the first study to quantify the effect of urban pollution on semi-urban PNC through the nucleation events.

  2. Enhanced concentrations of citric acid in spring aerosols collected at the Gosan background site in East Asia

    NASA Astrophysics Data System (ADS)

    Jung, Jinsang; Kawamura, Kimitaka

    2011-09-01

    In order to investigate water-soluble dicarboxylic acids and related compounds in the aerosol samples under the Asian continent outflow, total suspended particle (TSP) samples ( n = 32) were collected at the Gosan site in Jeju Island over 2-5 days integration during 23 March-1 June 2007 and 16-24 April 2008. The samples were analyzed for water-soluble dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls using a capillary gas chromatography technique. We found elevated concentrations of atmospheric citric acid (range: 20-320 ng m -3) in the TSP samples during mid- to late April of 2007 and 2008. To specify the sources of citric acid, dicarboxylic acids and related compounds were measured in the pollen sample collected at the Gosan site (Pollen_Gosan), authentic pollen samples from Japanese cedar ( Cryptomeria) (Pollen_cedar) and Japanese cypress ( Chamaecyparis obtusa) (Pollen_cypress), and tangerine fruit produced from Jeju Island. Citric acid (2790 ng in unit mg of pollen mass) was found as most abundant species in the Pollen_Gosan, followed by oxalic acid (2390 ng mg -1). Although citric acid was not detected in the Pollen_cedar and Pollen_cypress as major species, it was found as a dominant species in the tangerine juice while malic acid was detected as major species in the tangerine peel, followed by oxalic and citric acids. Since Japanese cedar trees are planted around tangerine farms to prevent strong winds from the Pacific Ocean, citric acid that may be directly emitted from tangerine is likely adsorbed on pollens emitted from Japanese cedar and then transported to the Gosan site. Much lower malic/citric acid ratios obtained under cloudy condition than clear condition suggest that malic acid may rapidly decompose to lower molecular weight compounds such as oxalic and malonic acids (

  3. Facile preparation of acid-resistant magnetite particles for removal of Sb(Ⅲ) from strong acidic solution

    PubMed Central

    Wang, Dong; Guan, Kaiwen; Bai, Zhiping; Liu, Fuqiang

    2016-01-01

    Abstract A new facile coating strategy based on the hydrophobicity of methyl groups was developed to prevent nano-sized magnetite particles from strong acid corrosion. In this method, three steps of hydrolysis led to three layers of protection shell coating Fe3O4 nanoparticles. Filled with hydrophobic methyl groups, the middle layer mainly prevented the magnetic core from strong acid corrosion. These magnetite particles managed to resist 1 M HCl solution and 2.5 M H2SO4 solution. The acid resistant ability was higher than those reported previously. After further modification with amino-methylene-phosphonic groups, these magnetite particles successfully adsorbed Sb(III) in strong acid solution. This new strategy can also be applied to protect other materials from strong acid corrosion. PMID:27877860

  4. Modeling the impact of sea-spray on particle concentrations in a coastal city.

    PubMed

    Pryor, S C; Barthelmie, R J; Schoof, J T; Binkowski, F S; Delle Monache, L; Stull, R

    2008-02-25

    With the worlds population becoming increasingly focused on coastal locations there is a need to better understand the interactions between anthropogenic emissions and marine atmospheres. Herein an atmospheric chemistry-transport model is used to assess the impacts of sea-spray chemistry on the particle composition in and downwind of a coastal city--Vancouver, British Columbia. It is shown that the model can reasonably represent the average features of the gas phase and particle climate relative to in situ measurements. It is further demonstrated that reactions in/on sea-spray affect the entire particle ensemble and particularly the size distribution of particle nitrate, but that the importance of these heterogeneous reactions is critically dependent on both the initial vertical profile of sea spray and the sea-spray source functions. The results emphasize the need for improved understanding of sea spray production and dispersion and further that model analyses of air quality in coastal cities conducted without inclusion of sea-spray interactions may yield mis-leading results in terms of emission sensitivities of particle composition and concentrations.

  5. Measured concentrations of radioactive particles in air in the vicinity of the Anaconda Uranium Mill

    SciTech Connect

    Momeni, M H; Kisieleski, W E

    1980-02-01

    Concentrations of radioactive particles (U-238, Th-230, Ra-226, and Pb-210) in air were measured in the vicinity of the Anaconda Uranium Mill, Bluewater, New Mexico. Airborne particles were collected at three stations for about two-thirds of a year using a continuous collection method at a sampling rate of 10 L/min, and also were measured in monthly composites collected periodically at four stations using high volume air samplers at a sampling rate of 1400 L/min. The ratios of concentrations of each radionuclide to the concentrations of U-238 indicate that the concentrations of the radionuclides are influenced principally by the proximity of the major sources of emission and the direction of the wind. In all cases, the concentration of Pb-210 exceeded that of U-238. The ratio of Pb-210/U-238 was 12.3 and 13.3 for stations dominated by the emissions from the tailings and ore pads, but was only 1.6 for the station dominated by the yellowcake stack emission. The ratio of the radionuclide concentrations measured by the two methods of sample collection was between 0.8 and 1.2 for uranium, radium, and lead at station 104, but was 0.28 to 1.7 for thorium, radium, and lead at stations 101 and 102. The average concentrations calculated from the measurements made in this study suggest that releases from the Anaconda mill were made well within the existing limits of the maximum permissible concentrations for inhalation exposure of the general public.

  6. Field and Laboratory Studies of Reactions between Atmospheric Water Soluble Organic Acids and Inorganic Particles

    SciTech Connect

    Wang, Bingbing; Kelly, Stephen T.; Sellon, Rachel E.; Shilling, John E.; Tivanski, Alexei V.; Moffet, Ryan C.; Gilles, Mary K.; Laskin, Alexander

    2013-06-25

    Atmospheric inorganic particles undergo complex heterogeneous reactions that change their physicochemical properties. Depletion of chloride in sea salt particles was reported in previous field studies and was attributed to the acid displacement of chlorides with inorganic acids, such as nitric and sulfuric acids [1-2]. Recently, we showed that NaCl can react with water soluble organic acids (WSOA) and release gaseous hydrochloric acid (HCl) resulting in formation of organic salts [3]. A similar mechanism is also applicable to mixed WSOA/nitrate particles where multi-phase reactions are driven by the volatility of nitric acid. Furthermore, secondary organic material, which is a complex mixture of carboxylic acids, exhibits the same reactivity towards chlorides and nitrates. Here, we present a systematic study of reactions between atmospheric relevant WSOA, SOM, and inorganic salts including NaCl, NaNO3, and Ca(NO3)2 using complementary micro-spectroscopy analysis.

  7. Effects of particle size and acid addition on the remediation of chromite ore processing residue using ferrous sulfate.

    PubMed

    Jagupilla, Santhi Chandra; Moon, Deok Hyun; Wazne, Mahmoud; Christodoulatos, Christos; Kim, Min Gyu

    2009-08-30

    A bench-scale treatability study was conducted to assess the effects of particle size and acid addition on the remediation of chromite ore processing residue (COPR) using ferrous sulfate. The remediation scheme entailed the chemical reduction of hexavalent chromium [Cr(VI)] and the mitigation of swell potential. Leaching tests and the EQ3/6 geochemical model were used to estimate the acid dosage required to destabilize Cr(VI)-bearing and swell-causing minerals. The model predicted greater acid dosage than that estimated from the batch leaching tests. This indicated that mass transfer limitation may be playing a significant role in impeding the dissolution of COPR minerals following acid addition and hence hindering the remediation of COPR. Cr(VI) concentrations determined by alkaline digestion for the treated samples were less than the current NJDEP standard. However, Cr(VI) concentrations measured by X-ray absorption near edge structure (XANES) were greater than those measured by alkaline digestion. Greater Cr(VI) percentages were reduced for acid pretreated and also for smaller particle size COPR samples. Upon treatment, brownmillerite content was greatly reduced for the acid pretreated samples. Conversely, ettringite, a swell-causing mineral, was not observed in the treated COPR.

  8. Pickering Emulsion Gels Prepared by Hydrogen-Bonded Zein/Tannic Acid Complex Colloidal Particles.

    PubMed

    Zou, Yuan; Guo, Jian; Yin, Shou-Wei; Wang, Jin-Mei; Yang, Xiao-Quan

    2015-08-26

    Food-grade colloidal particles and complexes, which are formed via modulation of the noncovalent interactions between macromolecules and natural small molecules, can be developed as novel functional ingredients in a safe and sustainable way. For this study was prepared a novel zein/tannic acid (TA) complex colloidal particle (ZTP) based on the hydrogen-bonding interaction between zein and TA in aqueous ethanol solution by using a simple antisolvent approach. Pickering emulsion gels with high oil volume fraction (φ(oil) > 50%) were successfully fabricated via one-step homogenization. Circular dichroism (CD) and small-angle X-ray scattering (SAXS) measurements, which were used to characterize the structure of zein/TA complexes in ethanol solution, clearly showed that TA binding generated a conformational change of zein without altering their supramolecular structure at pH 5.0 and intermediate TA concentrations. Consequently, the resultant ZTP had tuned near neutral wettability (θ(ow) ∼ 86°) and enhanced interfacial reactivity, but without significantly decreased surface charge. These allowed the ZTP to stabilize the oil droplets and further triggered cross-linking to form a continuous network among and around the oil droplets and protein particles, leading to the formation of stable Pickering emulsion gels. Layer-by-layer (LbL) interfacial architecture on the oil-water surface of the droplets was observed, which implied a possibility to fabricate hierarchical interface microstructure via modulation of the noncovalent interaction between hydrophobic protein and natural polyphenol.

  9. Concentrations, size distributions and temporal variations of fluorescent biological aerosol particles in southern tropical India

    NASA Astrophysics Data System (ADS)

    Valsan, Aswathy; Krishna R, Ravi; CV, Biju; Huffman, Alex; Poschl, Ulrich; Gunthe, Sachin

    2015-04-01

    Biological aerosols constitute a wide range of dead and alive biological materials and structures that are suspended in the atmosphere. They play an important role in the atmospheric physical, chemical and biological processes and health of living being by spread of diseases among humans, plants, and, animals. The atmospheric abundance, sources, physical properties of PBAPs as compared to non-biological aerosols, however, is poorly characterized. The Indian tropical region, where large fraction of the world's total population is residing, experiences a distinctive meteorological phenomenon by means of Indian Summer Monsoon (IMS). Thus, the properties and characteristics of biological aerosols are also expected to be very diverse over the Indian subcontinent depending upon the seasons. Here we characterize the number concentration and size distribution of Fluorescent Biological Aerosol Particles (FBAP) at a high altitude continental site, Munnar (10.09 N, 77.06 E; 1605 m asl) in South India during the South-West monsoon, which constitute around 80 percent of the annual rainfall in Munnar. Continuous three months measurements (from 01 June 2014 to 21 Aug 2104) FBAPs were carried out at Munnar using Ultra Violet Aerodynamic Particle Sizer (UVAPS) during IMS. The mean number and mass concentration of coarse FBAP averaged over the entire campaign was 1.7 x 10-2 cm-3 and 0.24 µg m-3 respectively, which corresponds to 2 percent and 6 percent of total aerosol particle number and mass concentration. In agreement to other previous measurements the number size distribution of FBAP also peaks at 3.2 micron indicating the strong presence of fungal spores. This was also supported by the Scanning Electron Microscopic analysis of bioaerosols on filter paper. They also displayed a strong diurnal cycle with maximum concentration occurring at early morning hours. During periods of heavy and continuous rain where the wind is consistently blowing from South-West direction it was

  10. The effect of aerosol vertical profiles on satellite-estimated surface particle sulfate concentrations

    SciTech Connect

    Liu, Yang; Wang, Zifeng; Wang, Jun; Ferrare, Richard A.; Newsom, Rob K.; Welton, Ellsworth J.

    2011-02-15

    The aerosol vertical distribution is an important factor in determining the relationship between satellite retrieved aerosol optical depth (AOD) and ground-level fine particle pollution concentrations. We evaluate how aerosol profiles measured by ground-based lidar and simulated by models can help improve the association between AOD retrieved by the Multi-angle Imaging Spectroradiometer (MISR) and fine particle sulfate (SO4) concentrations using matched data at two lidar sites. At the Goddard Space Flight Center (GSFC) site, both lidar and model aerosol profiles marginally improve the association between SO4 concentrations and MISR fractional AODs, as the correlation coefficient between cross-validation (CV) and observed SO4 concentrations changes from 0.87 for the no-scaling model to 0.88 for models scaled with aerosol vertical profiles. At the GSFC site, a large amount of urban aerosols resides in the well-mixed boundary layer so the column fractional AODs are already excellent indicators of ground-level particle pollution. In contrast, at the Atmospheric Radiation Measurement Program (ARM) site with relatively low aerosol loadings, scaling substantially improves model performance. The correlation coefficient between CV and observed SO4 concentrations is increased from 0.58 for the no-scaling model to 0.76 in the GEOS-Chem scaling model, and the model bias is reduced from 17% to 9%. In summary, despite the inaccuracy due to the coarse horizontal resolution and the challenges of simulating turbulent mixing in the boundary layer, GEOS-Chem simulated aerosol profiles can still improve methods for estimating surface aerosol (SO4) mass from satellite-based AODs, particularly in rural areas where aerosols in the free troposphere and any long-range transport of aerosols can significantly contribute to the column AOD.

  11. A new design strategy for dispersion stabilization of Ni particles based on the surface acid and base properties of Ni particles.

    PubMed

    Lee, Sangkyu; Yoon, Seon-Mi; Choi, Jae-Young; Paik, Ungyu

    2007-08-15

    A dispersion technology for Ni particles suspended in a non-aqueous medium based on the quantitative evaluation of surface acid-base properties of Ni particles is described. A quantitative analysis of surface acid-base properties of Ni particles was performed using non-aqueous titration. Dimethylamino ethanol and acetic acid were used as probe molecules to detect surface acid-base amounts of Ni particles. The dispersion system was designed on the basis of the amounts of surface acid-base sites on the Ni particle surface. Rheological behavior and agglomerate particle size data demonstrate that the dispersion stability of the designed Ni suspension is markedly improved, as expected. Therefore, the design strategy to improve the dispersion stability of Ni particles was successful. This strategy is expected to be applicable to dispersion systems of other particles suspended in a non-aqueous medium.

  12. Fabrication of Janus particles composed of poly (lactic-co-glycolic) acid and hard fat using a solvent evaporation method.

    PubMed

    Matsumoto, Akihiro; Murao, Satoshi; Matsumoto, Michiko; Watanabe, Chie; Murakami, Masahiro

    2016-01-01

    The feasibility of fabricating Janus particles based on phase separation between a hard fat and a biocompatible polymer was investigated. The solvent evaporation method used involved preparing an oil-in-water (o/w) emulsion with a mixture of poly (lactic-co-glycolic) acid (PLGA), hard fat, and an organic solvent as the oil phase and a polyvinyl alcohol aqueous solution as the water phase. The Janus particles were formed when the solvent was evaporated to obtain certain concentrations of PLGA and hard fat in the oil phase, at which phase separation was estimated to occur based on the phase diagram analysis. The hard fat hemisphere was proven to be the oil phase using a lipophilic dye Oil Red O. When the solvent evaporation process was performed maintaining a specific volume during the emulsification process; Janus particles were formed within 1.5 h. However, the formed Janus particles were destroyed by stirring for over 6 h. In contrast, a few Janus particles were formed when enough water to dissolve the oil phase solvent was added to the emulsion immediately after the emulsification process. The optimized volume of the solvent evaporation medium dominantly formed Janus particles and maintained the conformation for over 6 h with stirring. These results indicate that the formation and stability of Janus particles depend on the rate of solvent evaporation. Therefore, optimization of the solvent evaporation rate is critical to obtaining stable PLGA and hard fat Janus particles.

  13. Study on the leaching behavior of galena concentrate in fluosilicic acid solution using hydrogen peroxide as oxidant

    NASA Astrophysics Data System (ADS)

    Anugrah, Rezky Iriansyah; Mubarok, M. Zaki; Amalia, Dessy

    2017-01-01

    Lead (Pb) extraction from galena through leaching has not been commercialized in Indonesia. Therefore, the study of leaching behavior of Bogor galena concentrate in fluosilicic acid (H2SiF6) solution with hydrogen peroxide (H2O2) as oxidant was studied. The study was focused to investigate the effect of dissolution parameters such as temperature, stirring speed, solid percentage, acid concentration and particle sizes of the feed. The added oxidant (H2O2) was kept constant at 9.80 M. The result of Pb extraction percentage without oxidant addition was only 58.28% while by using oxidant in the leaching process, Pb extraction as high as 99.26% was achieved when conducted at 97 °C in 2.25 hours (135 minutes) using -100+150 mesh of concentrate in 3.44 M of H2SiF6 with 12% of solid percentage.

  14. The effect of acid-base clustering and ions on the growth of atmospheric nano-particles.

    PubMed

    Lehtipalo, Katrianne; Rondo, Linda; Kontkanen, Jenni; Schobesberger, Siegfried; Jokinen, Tuija; Sarnela, Nina; Kürten, Andreas; Ehrhart, Sebastian; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Sipilä, Mikko; Yli-Juuti, Taina; Duplissy, Jonathan; Adamov, Alexey; Ahlm, Lars; Almeida, João; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; Dommen, Josef; Downard, Andrew J; Dunne, Eimear M; Flagan, Richard C; Guida, Roberto; Hakala, Jani; Hansel, Armin; Jud, Werner; Kangasluoma, Juha; Kerminen, Veli-Matti; Keskinen, Helmi; Kim, Jaeseok; Kirkby, Jasper; Kupc, Agnieszka; Kupiainen-Määttä, Oona; Laaksonen, Ari; Lawler, Michael J; Leiminger, Markus; Mathot, Serge; Olenius, Tinja; Ortega, Ismael K; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud; Rissanen, Matti P; Ruuskanen, Taina; Santos, Filipe D; Schallhart, Simon; Schnitzhofer, Ralf; Simon, Mario; Smith, James N; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Tomé, António; Vaattovaara, Petri; Vehkamäki, Hanna; Vrtala, Aron E; Wagner, Paul E; Williamson, Christina; Wimmer, Daniela; Winkler, Paul M; Virtanen, Annele; Donahue, Neil M; Carslaw, Kenneth S; Baltensperger, Urs; Riipinen, Ilona; Curtius, Joachim; Worsnop, Douglas R; Kulmala, Markku

    2016-05-20

    The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions. Here we study nano-particle growth in the CLOUD (Cosmics Leaving OUtdoors Droplets) chamber, starting from the formation of molecular clusters. We present measured growth rates at sub-3 nm sizes with different atmospherically relevant concentrations of sulphuric acid, water, ammonia and dimethylamine. We find that atmospheric ions and small acid-base clusters, which are not generally accounted for in the measurement of sulphuric acid vapour, can participate in the growth process, leading to enhanced growth rates. The availability of compounds capable of stabilizing sulphuric acid clusters governs the magnitude of these effects and thus the exact growth mechanism. We bring these observations into a coherent framework and discuss their significance in the atmosphere.

  15. Comparison of sources of submicron particle number concentrations measured at two sites in Rochester, NY.

    PubMed

    Kasumba, John; Hopke, Philip K; Chalupa, David C; Utell, Mark J

    2009-09-01

    Sources contributing to the submicron particles (100-470 nm) measured between January 2002 and December 2007 at two different New York State Department of Environmental Conservation (NYS DEC) sites in Rochester, NY were identified and apportioned using a bilinear receptor model, positive matrix factorization (PMF). Measurements of aerosol size distributions and number concentrations for particles in the size range of 10-500 nm have been made since December 2001 to date in Rochester. The measurements are being made using a scanning mobility particle sizer (SMPS) consisting of a DMA and a CPC (TSI models 3071 and 3010, respectively). From December 2001 to March 2004, particle measurements were made at the NYS DEC site in downtown Rochester, but it was moved to the eastside of Rochester in May 2004. Each measurement period was divided into three seasons i.e., winter (December, January, and February), summer (June, July, and August), and the transitional periods (March, April, May, September, October, and November) so as to avoid experimental uncertainty resulting from too large season-to-season variability in ambient temperature and solar photon intensity that would lead to unstable/non-stationary size distributions. Therefore, the seasons were analyzed independently for possible sources. Ten sources were identified at both sites and these include traffic, nucleation, residential/commercial heating, industrial emissions, secondary nitrate, ozone- rich secondary aerosol, secondary sulfate, regionally transported aerosol, and a mixed source of nucleation and traffic. These results show that the measured total outdoor particle number concentrations in Rochester generally vary with similar temporal patterns, suggesting that the central monitoring site data can be used to estimate outdoor exposure in other parts of the city.

  16. Why sulfuric acid forms particles so extremely well, and how organics might still compete

    NASA Astrophysics Data System (ADS)

    Kurten, T.; Ehn, M.; Kupiainen, O.; Olenius, T.; Rissanen, M.; Thornton, J. A.; Nielsen, L.; Jørgensen, S.; Ortega Colomer, I. K.; Kjaergaard, H. G.; Vehkamäki, H.

    2013-12-01

    It is a well-known result in aerosol science that the single most important molecule for the first steps of new-particle formation in our atmosphere is sulfuric acid, H2SO4. From a chemical perspective, this seems somewhat counterintuitive: the atmosphere contains thousands of different organic compounds, many of which can potentially form oxidation products with even lower volatility than H2SO4. The unique role of sulfuric acid is due to its formation kinetics. The conversion of sulfur dioxide, SO2 to H2SO4 requires only a single oxidant molecule (e.g. OH), as subsequent steps are extremely rapid. Still, the saturation vapor pressure of H2SO4 is over 108 times lower than that of SO2. In contrast, the oxidation reactions of organic molecules typically lower their saturation vapor pressure by only a factor of 10-1000 per oxidation step. Therefore, organic compounds are usually lost to pre-existing aerosol surfaces before they have undergone sufficiently many oxidation reactions to nucleate on their own. The presence of strong nitrogen-containing base molecules such as amines enhances the particle-forming advantages of sulfuric acid even further. Quantum chemical calculations indicate that the evaporation rate of sulfuric acid from key clusters containing two acid molecules may decrease by a factor of 108 in the presence of ppt-level concentrations of amines, implying a total decrease of up to 1016 in the effective vapor pressure going from SO2 to H2SO4. In some circumstances, this decrease causes the energy barrier for new-particle formation to disappear: the process is no longer nucleation, and some common applications of e.g. the nucleation theorem cease to apply. Cluster kinetic models combined with first-principles evaporation rates appear to describe this sulfuric acid - base clustering reasonably well, and result in cluster formation rates close to those measured at the CLOUD experiment in CERN. There may nevertheless exist exceptions to the general rule that

  17. Relating urban airborne particle concentrations to shipping using carbon based elemental emission ratios

    NASA Astrophysics Data System (ADS)

    Johnson, Graham R.; Juwono, Alamsyah M.; Friend, Adrian J.; Cheung, Hing-Cho; Stelcer, Eduard; Cohen, David; Ayoko, Godwin A.; Morawska, Lidia

    2014-10-01

    This study demonstrates a novel method for testing the hypothesis that variations in primary and secondary particle number concentration (PNC) in urban air are related to residual fuel oil combustion at a coastal port lying 30 km upwind, by examining the correlation between PNC and airborne particle composition signatures chosen for their sensitivity to the elemental contaminants present in residual fuel oil. Residual fuel oil combustion indicators were chosen by comparing the sensitivity of a range of concentration ratios to airborne emissions originating from the port. The most responsive were combinations of vanadium and sulphur concentration ([S], [V]) expressed as ratios with respect to black carbon concentration ([BC]). These correlated significantly with ship activity at the port and with the fraction of time during which the wind blew from the port. The average [V] when the wind was predominantly from the port was 0.52 ng m-3 (87%) higher than the average for all wind directions and 0.83 ng m-3 (280%) higher than that for the lowest vanadium yielding wind direction considered to approximate the natural background. Shipping was found to be the main source of V impacting urban air quality in Brisbane. However, contrary to the stated hypothesis, increases in PNC related measures did not correlate with ship emission indicators or ship traffic. Hence at this site ship emissions were not found to be a major contributor to PNC compared to other fossil fuel combustion sources such as road traffic, airport and refinery emissions.

  18. Vertical profiles of black carbon concentration and particle number size distribution in the North China Plain

    NASA Astrophysics Data System (ADS)

    Ran, L.; Deng, Z.

    2013-12-01

    The vertical distribution of aerosols is of great importance to our understanding in the impacts of aerosols on radiation balance and climate, as well as air quality and public health. To better understand and estimate the effects of atmospheric components including trace gases and aerosols on atmospheric environment and climate, an intensive field campaign, Vertical Observations of trace Gases and Aerosols in the North China Plain (VOGA-NCP), was carried out from late July to early August 2013 over a rural site in the polluted NCP. During the campaign, vertical profiles of black carbon (BC) concentration and particle number size distribution were measured respectively by a micro-Aethalometer and an optical particle counter attached to a tethered balloon within 1000 m height. Meteorological parameters, including temperature, relative humidity, wind speed and wind direction, were measured simultaneously by a radiosonde also attached to the tethered balloon. Preliminary results showed distinct diurnal variations of the vertical distribution of aerosol total number concentration and BC concentration, following the development of the mixing layer. Generally, there was a well mixing of aerosols within the mixing layer and a sharp decrease above the mixing layer. Particularly, a small peak of BC concentrations was observed around 400-500 m height for several profiles. Further analysis would be needed to explain such phenomenon. It was also found that measured vertical profiles of BC using the filter-based method might be affected by the vertical distribution of relative humidity.

  19. Elevational Variation in Soil Amino Acid and Inorganic Nitrogen Concentrations in Taibai Mountain, China

    PubMed Central

    Yang, Xin; Zhu, Lianfeng; Zhang, Junhua; Jin, Qianyu; Wu, Lianghuan

    2016-01-01

    Amino acids are important sources of soil organic nitrogen (N), which is essential for plant nutrition, but detailed information about which amino acids predominant and whether amino acid composition varies with elevation is lacking. In this study, we hypothesized that the concentrations of amino acids in soil would increase and their composition would vary along the elevational gradient of Taibai Mountain, as plant-derived organic matter accumulated and N mineralization and microbial immobilization of amino acids slowed with reduced soil temperature. Results showed that the concentrations of soil extractable total N, extractable organic N and amino acids significantly increased with elevation due to the accumulation of soil organic matter and the greater N content. Soil extractable organic N concentration was significantly greater than that of the extractable inorganic N (NO3−-N + NH4+-N). On average, soil adsorbed amino acid concentration was approximately 5-fold greater than that of the free amino acids, which indicates that adsorbed amino acids extracted with the strong salt solution likely represent a potential source for the replenishment of free amino acids. We found no appreciable evidence to suggest that amino acids with simple molecular structure were dominant at low elevations, whereas amino acids with high molecular weight and complex aromatic structure dominated the high elevations. Across the elevational gradient, the amino acid pool was dominated by alanine, aspartic acid, glycine, glutamic acid, histidine, serine and threonine. These seven amino acids accounted for approximately 68.9% of the total hydrolyzable amino acid pool. The proportions of isoleucine, tyrosine and methionine varied with elevation, while soil major amino acid composition (including alanine, arginine, aspartic acid, glycine, histidine, leucine, phenylalanine, serine, threonine and valine) did not vary appreciably with elevation (p>0.10). The compositional similarity of many

  20. Comparison of daytime and nighttime concentration profiles and size distributions of ultrafine particles near a major highway.

    PubMed

    Zhu, Yifang; Kuhn, Thomas; Mayo, Paul; Hinds, William C

    2006-04-15

    Previously we have conducted systematic measurements of the concentration and size distribution of ultrafine particles in the vicinity of major highways during daytime in Los Angeles. The present study compares these with similar measurements made at night. Particle number concentration was measured by a condensation particle counter (CPC) and size distributions in the size range from 7 to 300 nm were measured by a scanning mobility particle sizer (SMPS). Measurements were taken at 30, 60, 90, 150, and 300 m upwind and downwind from the center of the 1-405 freeway. Average traffic flow at night was about 25% of that observed during the day. Particle number concentration measured at 30 m downwind from the freeway was 80% of previous daytime measurements. This discrepancy between changes in traffic counts and particle number concentrations is apparently due to the decreased temperature, increased relative humidity, and lower wind speed at night. Particle size distributions do not change as dramatically as they did during the daytime. Particle number concentration decays exponentially downwind from the freeway similarly to what was observed during the day, but at a slower rate. No particle number concentration gradient has been observed for the upwind side of the freeway. No PM2.5 and very weak PM10 concentration gradients were observed downwind of thefreeway at night. Ultrafine particle number concentration measured at 300 m downwind from the freeway was still distinguishably higher than upwind background concentration at night. These data may be used to help estimate exposure to ultrafine particles in the vicinity of major highways for epidemiology studies.

  1. Regulation of uterine and umbilical amino acid uptakes by maternal amino acid concentrations.

    PubMed

    Thureen, P J; Anderson, S M; Hay, W W

    2000-09-01

    We tested the hypothesis that decreased fetal amino acid (AA) supply, produced by maternal hypoaminoacidemia (low AA) during hyperglycemia (HG), is reversible with maternal AA infusion and regulates fetal insulin concentration ([I]). We measured net uterine and umbilical AA uptakes during maternal HG/low AA concentration ([AA]) and after maternal intravenous infusion of a mixed AA solution. After 5 days HG, all maternal [AA] except glycine were decreased >50%, particularly essential [AA] (P < 0.00005). Most fetal [AA] also were decreased, especially branched-chain AA (P < 0.001). Maternal AA infusion increased net uterine uptakes of Val, Leu, Ile, Met, and Ser and net umbilical uptakes of Val, Leu, Ile, Met, Phe, and Arg but did not change net uteroplacental uptake of any AA. Fetal [I] increased 55 +/- 14%, P < 0.001, with correction of fetal [AA], despite the lack of change in fetal glucose concentration. Thus generalized maternal hypoaminoacidemia decreases uterine and umbilical uptakes of primarily the essential AA and decreases fetal branched-chain [AA]. These changes are reversed with correction of maternal [AA], which also increases fetal [I].

  2. Particle size and concentration adjustments of tomato products for Howard mold count.

    PubMed

    Bandler, R; Cichowicz, S M; Cichowicz, S; Floyd, D; Kaminski, J; Russell, G; Senff, W; Trauba, R

    1981-05-01

    The present AOAC method for mold counts of tomato products (44.096) provides no inter-product standardization of concentration among juice, sauce, paste, puree, and catsup; no intra-product standardization of concentration for juice, sauce, and catsup; and no adjustment for degree of comminution. Use of the official method, therefore, could result in an artificially increased mold count for products which have undergone extreme comminution. A new method was developed to adjust all products to the same concentration and grind them to a uniform particle size, thereby ensuring comparable mold counts on products produced by different processes. Collaborative study results showed equal repeatability for both the official and the proposed methods and a lower coefficient of variation for the proposed method.

  3. Multi-step process for concentrating magnetic particles in waste sludges

    DOEpatents

    Watson, John L.

    1990-01-01

    This invention involves a multi-step, multi-force process for dewatering sludges which have high concentrations of magnetic particles, such as waste sludges generated during steelmaking. This series of processing steps involves (1) mixing a chemical flocculating agent with the sludge; (2) allowing the particles to aggregate under non-turbulent conditions; (3) subjecting the mixture to a magnetic field which will pull the magnetic aggregates in a selected direction, causing them to form a compacted sludge; (4) preferably, decanting the clarified liquid from the compacted sludge; and (5) using filtration to convert the compacted sludge into a cake having a very high solids content. Steps 2 and 3 should be performed simultaneously. This reduces the treatment time and increases the extent of flocculation and the effectiveness of the process. As partially formed aggregates with active flocculating groups are pulled through the mixture by the magnetic field, they will contact other particles and form larger aggregates. This process can increase the solids concentration of steelmaking sludges in an efficient and economic manner, thereby accomplishing either of two goals: (a) it can convert hazardous wastes into economic resources for recycling as furnace feed material, or (b) it can dramatically reduce the volume of waste material which must be disposed.

  4. Multi-step process for concentrating magnetic particles in waste sludges

    DOEpatents

    Watson, J.L.

    1990-07-10

    This invention involves a multi-step, multi-force process for dewatering sludges which have high concentrations of magnetic particles, such as waste sludges generated during steelmaking. This series of processing steps involves (1) mixing a chemical flocculating agent with the sludge; (2) allowing the particles to aggregate under non-turbulent conditions; (3) subjecting the mixture to a magnetic field which will pull the magnetic aggregates in a selected direction, causing them to form a compacted sludge; (4) preferably, decanting the clarified liquid from the compacted sludge; and (5) using filtration to convert the compacted sludge into a cake having a very high solids content. Steps 2 and 3 should be performed simultaneously. This reduces the treatment time and increases the extent of flocculation and the effectiveness of the process. As partially formed aggregates with active flocculating groups are pulled through the mixture by the magnetic field, they will contact other particles and form larger aggregates. This process can increase the solids concentration of steelmaking sludges in an efficient and economic manner, thereby accomplishing either of two goals: (a) it can convert hazardous wastes into economic resources for recycling as furnace feed material, or (b) it can dramatically reduce the volume of waste material which must be disposed. 7 figs.

  5. Modeling source contributions to submicron particle number concentrations measured in Rochester, New York

    SciTech Connect

    Ogulei, D.; Hopke, P.K.; Chalupa, D.C.; Utell, M.J.

    2007-02-15

    An advanced receptor model was used to elicit source information based on ambient submicron (0.01-0.47 {mu}m) particle number concentrations, gaseous species, and meteorological variables measured at the New York State Department of Environmental Conservation central monitoring site in Rochester, NY. Four seasonal data sets (winter, spring, summer, and fall) were independently investigated. A total of ten different sources were identified, including two traffic factors, two nucleation factors, industrial emissions, residential/commercial heating, secondary nitrate, secondary sulfate, ozone-rich secondary aerosol, and regionally transported aerosol. The resolved sources were generally characterized by similar number modes for either winter, spring, summer or fall. The size distributions for nucleation were dominated by the smallest particles ({lt}10-30 nm) that gradually grew to larger sizes as could be seen by observing the volume profiles. In addition, the nucleation factors were closely linked to traffic rush hours suggesting that cooling of tail-pipe emissions may have induced nucleation activity in the vicinity of the highways. Industrial emissions were dominated by emissions from coal-fired power plants that were located to the northwest of the sampling site. These facilities represent the largest point emission sources of SO{sub 2}, and probably ultrafine ({lt}0.1 {mu}m) or submicron particles, in Rochester. Regionally transported material was characterized by accumulation mode particles. Air parcel back-trajectories showed transport of air masses from the industrial midwest.

  6. Effects of wind on background particle concentrations at truck freight terminals.

    PubMed

    Garcia, Ronald; Hart, Jaime E; Davis, Mary E; Reaser, Paul; Natkin, Jonathan; Laden, Francine; Garshick, Eric; Smith, Thomas J

    2007-01-01

    Truck freight terminals are predominantly located near highways and industrial facilities. This proximity to pollution sources, coupled with meteorological conditions and wind patterns, may affect occupational exposures to particles at these work locations. To understand this process, data from an environmental sampling study of particles at U.S. trucking terminals, along with weather and geographic maps, were analyzed to determine the extent to which the transportation of particles from local pollutant sources elevated observed occupational exposures at these locations. To help identify potential upwind sources, wind direction weighted averages and speed measurements were used to construct wind roses that were superimposed on overhead photos of the terminal and examined for upwind source activity. Statistical tests were performed on these "source" and "nonsource" directions to determine whether there were significant differences in observed particle levels between the two groups. Our results provide evidence that nearby upwind pollution sources significantly elevated background concentrations at only a few of the locations sampled, whereas the majority provided little to no evidence of a significant upwind source effect.

  7. Origin of high particle number concentrations reaching the St. Louis, Midwest Supersite.

    PubMed

    de Foy, Benjamin; Schauer, James J

    2015-08-01

    Ultrafine particles are associated with adverse health effects. Total Particle Number Concentration (TNC) of fine particles were measured during 2002 at the St. Louis - Midwest supersite. The time series showed overall low level with frequent large peaks. The time series was analyzed alongside criteria pollutant measurements and meteorological observations. Multiple regression analysis was used to identify further contributing factors and to determine the association of different pollutants with TNC levels. This showed the strong contribution of sulfur dioxide (SO2) and nitrogen oxides (NOx) to high TNC levels. The analysis also suggested that increased dispersion resulting from faster winds and higher mixing heights led to higher TNC levels. Overall, the results show that there were intense particle nucleation events in a SO2 rich plume reaching the site which contributed around 29% of TNC. A further 40% was associated with primary emissions from mobile sources. By separating the remaining TNC by time of day and clear sky conditions, we suggest that most likely 8% of TNC are due to regional nucleation events and 23% are associated with the general urban background.

  8. [Concentration of hydrochloric acid and pepsin in gastric juice in dogs after starvation and refeeding].

    PubMed

    Andreeva, Iu V; Polenov, S A

    2005-03-01

    Feeding fogs with meat after a 3-day period of starvation increased hydrochloric acid concentration with subsequent return of the parameter to normal values. Under the same conditions, pepsin concentration decreased and raised up after re-feeding. Histamine administration following the starvation decreased hydrochloric acid concentration with subsequent normalising. In three days after re-feeding and histamine administration, pepsin concentration drooped owing, probably, to a decrease of parietal cell H2-receptor affinity to histamine. Pentagastrin administration after the starvation increased hydrochloric acid concentration. The findings suggest G-cell function inhibition occurring after a 3-day starvation which is important for the stomach mucous membrane protection.

  9. Analysis of the Hydrogen Reduction Rate of Magnetite Concentrate Particles in a Drop Tube Reactor Through CFD Modeling

    NASA Astrophysics Data System (ADS)

    Fan, Deqiu; Mohassab, Yousef; Elzohiery, Mohamed; Sohn, H. Y.

    2016-06-01

    A computational fluid dynamics (CFD) approach, coupled with experimental results, was developed to accurately evaluate the kinetic parameters of iron oxide particle reduction. Hydrogen reduction of magnetite concentrate particles was used as a sample case. A detailed evaluation of the particle residence time and temperature profile inside the reactor is presented. This approach eliminates the errors associated with assumptions like constant particle temperature and velocity while the particles travel down a drop tube reactor. The gas phase was treated as a continuum in the Eulerian frame of reference, and the particles are tracked using a Lagrangian approach in which the trajectory and velocity are determined by integrating the equation of particle motion. In addition, a heat balance on the particle that relates the particle temperature to convection and radiation was also applied. An iterative algorithm that numerically solves the governing coupled ordinary differential equations was developed to determine the pre-exponential factor and activation energy that best fit the experimental data.

  10. The serum uric acid concentration is not causally linked to diabetic nephropathy in type 1 diabetes.

    PubMed

    Ahola, Aila J; Sandholm, Niina; Forsblom, Carol; Harjutsalo, Valma; Dahlström, Emma; Groop, Per-Henrik

    2017-02-21

    Previous studies have shown a relationship between uric acid concentration and progression of renal disease. Here we studied causality between the serum uric acid concentration and progression of diabetic nephropathy in 3895 individuals with type 1 diabetes in the FinnDiane Study. The renal status was assessed with the urinary albumin excretion rate and estimated glomerular filtration rate (eGFR) at baseline and at the end of the follow-up. Based on previous genomewide association studies on serum uric acid concentration, 23 single nucleotide polymorphisms (SNPs) with good imputation quality were selected for the SNP score. This score was used to assess the causality between serum uric acid and renal complications using a Mendelian randomization approach. At baseline, the serum uric acid concentration was higher with worsening renal status. In multivariable Cox regression analyses, baseline serum uric acid concentration was not independently associated with progression of diabetic nephropathy over a mean follow-up of 7 years. However, over the same period, baseline serum uric acid was independently associated with the decline in eGFR. In the cross-sectional logistic regression analyses, the SNP score was associated with the serum uric acid concentration. Nevertheless, the Mendelian randomization showed no causality between uric acid and diabetic nephropathy, eGFR categories, or eGFR as a continuous variable. Thus, our results suggest that the serum uric acid concentration is not causally related to diabetic nephropathy but is a downstream marker of kidney damage.

  11. Measurements and predictors of on-road ultrafine particle concentrations and associated pollutants in Los Angeles

    NASA Astrophysics Data System (ADS)

    Fruin, S.; Westerdahl, D.; Sax, T.; Sioutas, C.; Fine, P. M.

    Motor vehicles are the dominant source of oxides of nitrogen (NO x), particulate matter (PM), and certain air toxics (e.g., benzene, 1,3-butadiene) in urban areas. On roadways, motor vehicle-related pollutant concentrations are typically many times higher than ambient concentrations. Due to high air exchange rates typical of moving vehicles, this makes time spent in vehicles on roadways a major source of exposure. This paper presents on-road measurements for Los Angeles freeways and arterial roads taken from a zero-emission electric vehicle outfitted with real-time instruments. The objective was to characterize air pollutant concentrations on roadways and identify the factors associated with the highest concentrations. Our analysis demonstrated that on freeways, concentrations of ultrafine particles (UFPs), black carbon, nitric oxide, and PM-bound polycyclic aromatic hydrocarbons (PM-PAH) are generated primarily by diesel-powered vehicles, despite the relatively low fraction (˜6%) of diesel-powered vehicles on Los Angeles freeways. However, UFP concentrations on arterial roads appeared to be driven primarily by proximity to gasoline-powered vehicles undergoing hard accelerations. Concentrations were roughly one-third of those on freeways. By using a multiple regression model for the freeway measurements, we were able to explain 60-70% of the variability in concentrations of UFP, black carbon, nitric oxide, and PM-PAH using measures of diesel truck density and hour of day (as an indicator of wind speed). Freeway concentrations of these pollutants were also well correlated with readily available annual average daily truck counts, potentially allowing improved population exposure estimates for epidemiology studies. Based on these roadway measurements and average driving time, it appears that 33-45% of total UFP exposure for Los Angeles residents occurs due to time spent traveling in vehicles.

  12. n-Alkanoic monocarboxylic acid concentrations in urban and rural aerosols: Seasonal dependence and major sources

    NASA Astrophysics Data System (ADS)

    Shannigrahi, Ardhendu S.; Pettersson, Jan B. C.; Langer, Sarka; Arrhenius, Karine; Hagström, Magnus; Janhäll, Sara; Hallquist, Mattias; Pathak, Ravi Kant

    2014-06-01

    We report new data on the abundance and distribution of n-monocarboxylic acids (n-MCAs) in fine- and coarse-mode aerosols in rural and urban areas of Sweden, and determine their possible sources. Overall, C6-C16n-MCAs accounted for ~ 0.5-1.2% of the total PM10 (particulate matter ≤ 10 μm) mass. In general, the C12-C16 fraction was the most abundant (> 75%), with the exception of wintertime samples from a rural site, where C6-C11 acids accounted for 65% of the total C6-C16n-MCA mass. Positive matrix factorization analysis revealed four major sources of n-MCAs: traffic emissions, wood combustion, microbial activity, and a fourth factor that was dominated by semi-volatile n-MCAs. Traffic emissions were important in the urban environment in both seasons and at the rural site during winters, and were a major source of C9-C11 acids. Wood combustion was a significant source at urban sites during the winter and also to some extent at the rural site in both seasons. This is consistent with the use of wood for domestic heating but may also be related to meat cooking. Thus, during the winter, traffic, wood combustion and microbial activity were all important sources in the urban environment, while traffic was the dominant source at the rural site. During the summer, there was considerable day-to-day variation in n-MCA concentrations but microbial activity was the dominant source. The semi-volatile low molecular weight C6-C8 acids accounted for a small (~ 5-10%) fraction of the total mass of n-MCAs. This factor is unlikely to be linked to a single source and its influence instead reflects the partitioning of these compounds between the gas and particle phases. This would explain their greater contribution during the winter.

  13. Effects of butter naturally enriched with conjugated linoleic acid and vaccenic acid on blood lipids and LDL particle size in growing pigs

    PubMed Central

    Haug, Anna; Sjøgren, Per; Hølland, Nina; Müller, Hanne; Kjos, Nils P; Taugbøl, Ole; Fjerdingby, Nina; Biong, Anne S; Selmer-Olsen, Eirik; Harstad, Odd M

    2008-01-01

    Background Cow milk is a natural source of the cis 9, trans 11 isomer of conjugated linoleic acid (c9,t11-CLA) and trans vaccenic acid (VA). These fatty acids may be considered as functional foods, and the concentration in milk can be increased by e.g. sunflower oil supplementation to the dairy cow feed. The objective of this study was to compare the effects of regular butter with a special butter naturally enriched in c9,t11-CLA and VA on plasma lipids in female growing pigs. The experimental period lasted for three weeks and the two diets provided daily either 5.0 g c9,t11-CLA plus 15.1 g VA or 1.3 g c9,t11-CLA plus 3.6 g VA. Results The serum concentrations of c9,t11-CLA, VA and alpha-linolenic acid were increased and myristic (14:0) and palmitic acid (16:0) were reduced in the pigs fed the CLA+VA-rich butter-diet compared to regular butter, but no differences in plasma concentrations of triacylglycerol, cholesterol, HDL-cholesterol, LDL-cholesterol, LDL particle size distribution or total cholesterol/HDL cholesterol were observed among the two dietary treatment groups. Conclusion Growing pigs fed diets containing butter naturally enriched in about 20 g c9,t11-CLA plus VA daily for three weeks, had increased serum concentrations of alpha-linolenic acid and decreased myristic and palmitic acid compared to pigs fed regular butter, implying a potential benefit of the CLA+VA butter on serum fatty acid composition. Butter enriched in CLA+VA does not appear to have significant effect on the plasma lipoprotein profile in pigs. PMID:18759970

  14. Spatial and temporal variation of particle number concentration in Augsburg, Germany

    PubMed Central

    Cyrys, Josef; Pitz, Mike; Heinrich, Joachim; Wichmann, H.-Erich; Peters, Annette

    2008-01-01

    Epidemiological studies on health effects of outdoor air pollution are largely based on single monitoring site for estimating the exposure of people living in urban areas. For such an approach two aspects are important: the temporal correlation and the spatial variation of the absolute levels of concentrations measured at different sites in an urban area. Whereas many studies have shown small spatial variability of fine particles in urban areas, little is known on how well a single monitoring station could represent the temporal and spatial variation of ultrafine particles across urban areas. In our study we investigated the temporal and spatial variation of particle number concentration (PNC) at four background sites in Augsburg, Germany. Two of them were influenced by traffic, one was placed in the outskirts of the city. The average PNC levels at two urban background sites with traffic impact were 16,943 cm−3 and 20,702 cm−3, respectively, compared to 11,656 cm−3 at the urban background site without traffic impact (ratio 1.2 to 1.8). The Spearman correlation coefficients between the monitoring sites were high (r>0.80). The pronounced differences in absolute PNC levels suggest that the use of a single monitoring station in long-term epidemiological studies must be insufficient to attribute accurate exposure levels of PNC to all study subjects. On the other hand, the high temporal correlations of PNC across the city area of Augsburg implicate that in epidemiological time-series studies the use of one single ambient monitoring site is an adequate approach for characterizing exposure to ultrafine particles. PMID:18511107

  15. Particle phase distribution of polycyclic aromatic hydrocarbons in stormwater--Using humic acid and iron nano-sized colloids as test particles.

    PubMed

    Nielsen, Katrine; Kalmykova, Yuliya; Strömvall, Ann-Margret; Baun, Anders; Eriksson, Eva

    2015-11-01

    The distribution of polycyclic aromatic hydrocarbons (PAHs) in different particulate fractions in stormwater: Total, Particulate, Filtrated, Colloidal and Dissolved fractions, were examined and compared to synthetic suspensions of humic acid colloids and iron nano-sized particles. The distribution of low-molecular weight PAHs (LMW PAHs), middle-molecular weight PAHs (MMW PAHs) and high-molecular weight PAHs (HMW PAHs) among the fractions was also evaluated. The results from the synthetic suspensions showed that the highest concentrations of the PAHs were found in the Filtrated fractions and, surprisingly, high loads were found in the Dissolved fractions. The PAHs identified in stormwater in the Particulate fractions and Dissolved fractions follow their hydrophobic properties. In most samples >50% of the HMW PAHs were found in the Particulate fractions, while the LMW and MMW PAHs were found to a higher extent in the Filtrated fractions. The highest concentrations of PAHs were present in the stormwater with the highest total suspended solids (TSS); the relative amount of the HMW PAHs was highest in the Particulate fractions (particles>0.7 μm). The highest concentration of PAHs in the Colloidal fraction was found in the sample with occurrence of small nano-sized particles (<10nm). The results show the importance of developing technologies that both can manage particulate matter and effectively remove PAHs present in the Colloidal and Dissolved fractions in stormwater.

  16. Ventilation dependence of concentration metrics of Ultra-fine Particles in a coagulating household smoke.

    PubMed

    Anand, S; Sreekanth, B; Mayya, Y S

    2016-01-01

    Role of Ultra-fine Particles (UFPs) in causing adverse health effects among large population across the world, attributable to household smoke, is being increasingly recognized. However, there is very little theoretical perspective available on the complex behavior of the UFP metrics with respect to controlling factors, such as ventilation rate and particle emission rate from the combustion sources. This numerical study examines through coagulation dynamics, the dependence of UFP metrics, viz., number (PN), mass (PM(0.1)) and surface area (PA(0.1)) concentrations below 0.1 μm diameter, on ventilation and the number emission rate from household smoke. For strong sources, the steady-state concentrations of these metrics are found to increase initially with increasing Air Exchange Rate (AER), reach a peak value and then decrease. Counter correlations are seen between UFP metric and PM(2.5) concentrations. The concepts of Critical Air Exchange Rate (CAER) and Half-Value Air Exchange Rate (HaVAER) have been introduced which indicate a feasibility of mitigation of PM(0.1) and PA(0.1), unlike PN, by ventilation techniques. The study clearly brings forth complex differential behavior of the three UFP metrics. The results are further discussed.

  17. Estimating particle sizes, concentrations, and total mass of ash in volcanic clouds using weather radar

    NASA Astrophysics Data System (ADS)

    Harris, D. M.; Rose, W. I., Jr.

    1983-12-01

    Radar observations of the March 19, 1982 ash eruption of Mount St. Helens were used to estimate the volume of the ash cloud (2000 + or - 500 cu km), the concentration of ash (0.2-0.6 g/cu m), and the total mass of ash erupted (3-10 x 10 to the 11th g). Previously published ashfall data for the May 18, 1980 Mount St. Helens eruption were studied using an inversion technique to estimate 6-hr mean particle concentration (3 g/cu m), the size distribution, the total ashfall mass (5 x 10 to the 14th g), and radar reflectivity factors for the ash cloud. Because volcanic ash clouds with particle concentrations of at least 0.2 g/cu m are produced in very small (in terms of total ashfall mass) eruptions of duration less than 1 min, volcanic ash clouds must be considered an extremely serious hazard to in-flight aircraft, regardless of the eruption magnitude.

  18. Electrochemical Hydrogen Concentrator for Phosphoric Acid Fuel Cells.

    DTIC Science & Technology

    1987-11-01

    cathode, no systematic relationship between contaminant concentrations and operating conditions could be discerned in any of the cell configurations... the cathode. No * systematic relationship between contaminant concentrations in the product gas and operating conditions or anode catalyst could be...34-l,, PElO3.-l ’ T DISCLAIMERS THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION, UNLESS SO DESIGNATED

  19. Development of a high-volume concentrated ambient particles system (CAPS) for human and animal inhalation toxicological studies.

    PubMed

    Demokritou, Philip; Gupta, Tarun; Ferguson, Stephen; Koutrakis, Petros

    2003-02-01

    A two-stage, high-volume, ambient particle concentrator was developed and characterized. This versatile system, depending on its operational parameters, can be used to fractionate and concentrate particles in three size ranges (PM(10-2.5), PM(10-1), PM(2.5-1)). The performance of this concentrated ambient particle system (CAPS), as well as its individual virtual impaction stages, was investigated as a function of several parameters, including minor-to-total flow ratios and acceleration nozzle Reynolds number. During these laboratory tests, performance parameters such as concentration enrichment factor (CF), particle losses, collection efficiency curves, cutpoint, and pressure drop were measured. The main objective of these investigations was to optimize the ability of the system to concentrate ambient PM(2.5-10) and PM(1-10) particles. PM(2.5-10) particles were concentrated by a factor of 70 to 150. The flow rate of the concentrated aerosol can range between 12.5 and 50 LPM (L/min). Other features of the system include relatively low-pressure drops in the major and minor flows, low particle losses, and a compact design. Performance evaluation of the system also confirmed that separation and concentration of the PM(2.5-10) particles occurred without any significant distortion of the size distribution, during the concentration process. Similar results were obtained for the PM(1-10) size range. For this size range, concentration enrichment was 70 times, and again, no particle size distribution distortion was observed. The overall performance of this versatile system makes it suitable for inhalation toxicological studies.

  20. Dissolved, particulate and acid-leachable trace metal concentrations in North Atlantic precipitation collected on the Global Change Expedition

    SciTech Connect

    Lim, B.; Jickells, T.D. )

    1990-12-01

    Atmospheric inputs of trace metals into surface waters are an important pathway for the oceanic biogeochemical cycling of many trace constituents. Rainwater samples from six precipitation events were collected on board ship during legs 3 and 4 of the Global Change Expedition over the North Atlantic Ocean and analyzed for dissolved, particulate (Al and Pb), and acid-leachable trace metals (Al, Fe, Mn, Cd, Cu, Pb, Zn). Acid-leachable concentrations of the elements were similar to reported values from the North Atlantic and Pacific Oceans which were measured using comparable acidification procedures. Concentrations of dissolved and particulate Al and Pb were determined in rain events acid-leachable and total trace metal concentrations suggest that the acid-leachable fraction of metals can significantly underestimate total concentrations of crustal elements in rain. The solubilities of Al and Pb in precipitation were variable and mean solubilities of the elements were 13% and 45%, respectively. Recycled sea salt components were less than 14% for Al, Fe, Mn, Pb, Cd, Cu, and Zn, indicating that the net trace metal flux is from the atmosphere to the oceans. Deep sea particle fluxes for these metals through the western tropical North Atlantic exceed atmospheric deposition fluxes by a factor of 18 to 41. 57 refs., 2 figs., 12 tabs.

  1. The effect of dust emissions from open storage piles to particle ambient concentration and human exposure.

    PubMed

    Chalvatzaki, E; Aleksandropoulou, V; Glytsos, T; Lazaridis, M

    2012-12-01

    The current study focus on the determination of dust emissions from piles in open storage yards of a municipal solid waste (MSW) composting site and the subsequent atmospheric dust dispersion. The ISC3-ST (Industrial Source Complex Version 3 - Short Term) model was used for the evaluation of the PM(10) ambient concentrations associated with the dispersion of MSW compost dust emissions in air. Dust emission rates were calculated using the United States Environmental Protection Agency proposed dust resuspension formulation from open storage piles using local meteorological data. The dispersion modelling results on the spatial distribution of PM(10) source depletion showed that the maximum concentrations were observed at a distance 25-75 m downwind of the piles in the prevailing wind direction. Sensitivity calculations were performed also to reveal the effect of the compost pile height, the friction velocity and the receptor height on the ambient PM(10) concentration. It was observed that PM(10) concentrations (downwind in the prevailing wind direction) increased with increasing the friction velocity, increasing the pile height (for distances greater than 125 m from the source) and decreasing the receptor height (for distances greater than 125 m from the source). Furthermore, the results of ISC3-ST were analysed with the ExDoM (Exposure Dose Model) human exposure model. The ExDoM is a model for calculating the human exposure and the deposition dose, clearance, and finally retention of aerosol particles in the human respiratory tract (RT). PM(10) concentration at the composting site was calculated as the sum of the concentration from compost pile dust resuspension and the background concentration. It was found that the exposure to PM(10) and deposited lung dose for an adult Caucasian male who is not working at the composting site is less by 20-74% and 29-84%, respectively, compared to those for a worker exposed to PM concentrations at the composting site.

  2. Summary and implications of reported amino acid concentrations in the Murchison meteorite

    SciTech Connect

    Shock, E.L.; Schulte, M.D. )

    1990-11-01

    A study of literature reports of the concentrations of amino acids in extracts from the Murchison meteorite shows that many of the concentration ratios are constant. There are two possible interpretations of these ratios. One is that they are controlled by the pathways through which the amino acids formed, from which it follows that the amino acids are distributed in the same proportions throughout the meteorite. The other interpretation is that the ratios result from the analytical procedures used to extract the amino acids from the meteorite. These methods rely heavily on high-temperature (100{degree}C) aqueous extraction and subsequent high-temperature acid hydrolysis. A correlation was observed in the present study between the relative concentrations of several amino acids in the meteorite extracts and their relative aqueous solubilities at 100{degree}C. The extract solutions are dilute, and far from the saturation limits, but these correlations suggest that the sampling procedure affects directly the reported concentrations for these amino acids. If the extraction process does not bias the results, and all extractable amino acids are removed from meteorite samples, then the properties of amino acids which control both their solubilities and their concentrations in the meteorite need to be established. The possibility of sampling bias needs to be tested experimentally before concluding that extraction is complete, and that the constant relative abundances indicate that the relative concentrations of amino acids are homogeneous in the meteorite.

  3. Serum amino acid concentrations in patients receiving total parenteral nutrition with an amino acid plus dextrose mixture.

    PubMed

    Philcox, J C; Hartley, T F; Worthley, L I; Thomas, D W

    1984-01-01

    The results of monitoring the serum amino acid concentrations during three infusion regimens using a 5:4 mixture of 70% glucose and the synthetic L-amino acid solution, Synthamin 17 (Travasol) are reported. Twelve stabilized patients received continuous total parenteral nutrition (TPN), eight of whom were subsequently placed on a second regimen of cyclical feeding. A separate group of five patients was infused with amino acids, both with and without simultaneous glucose. The serum amino acid concentrations indicated that the supply of valine, leucine, isoleucine, lysine, and histidine, and the synthesis of taurine from the infused methionine was suboptimal, particularly if the period of TPN was prolonged. The synthesis of tyrosine from phenylalanine appeared to be inversely proportional to the infusion rate of the TPN mixture, in particular the glucose component, resulting in depressed tyrosine and increased phenylalanine concentrations in serum during continuous iv nutrition. Cyclical infusions, on the other hand, permitted the tyrosine and phenylalanine concentrations to return to normal during the noninfusion stage of the cycle. Amino acid measurements enabled us to design an amino acids additive mixture which normalized the serum concentrations in three long-term home parenteral nutrition patients. As a result of these investigations serum amino acid measurements are used routinely to monitor the efficacy of TPN and accommodate any specific amino acid requirements of individual patients.

  4. Ultrasonic device for real-time sewage velocity and suspended particles concentration measurements.

    PubMed

    Abda, F; Azbaid, A; Ensminger, D; Fischer, S; François, P; Schmitt, P; Pallarès, A

    2009-01-01

    In the frame of a technological research and innovation network in water and environment technologies (RITEAU, Réseau de Recherche et d'Innovation Technologique Eau et Environnement), our research group, in collaboration with industrial partners and other research institutions, has been in charge of the development of a suitable flowmeter: an ultrasonic device measuring simultaneously the water flow and the concentration of size classes of suspended particles. Working on the pulsed ultrasound principle, our multi-frequency device (1 to 14 MHz) allows flow velocity and water height measurement and estimation of suspended solids concentration. Velocity measurements rely on the coherent Doppler principle. A self developed frequency estimator, so called Spectral Identification method, was used and compared to the classical Pulse-Pair method. Several measurements campaigns on one wastewater collector of the French city of Strasbourg gave very satisfactory results and showed smaller standard deviation values for the Doppler frequency extracted by the Spectral Identification method. A specific algorithm was also developed for the water height measurements. It relies on the water surface acoustic impedance rupture and its peak localisation and behaviour in the collected backscattering data. This algorithm was positively tested on long time measurements on the same wastewater collector. A large part of the article is devoted to the measurements of the suspended solids concentrations. Our data analysis consists in the adaptation of the well described acoustic behaviour of sand to the behaviour of wastewater particles. Both acoustic attenuation and acoustic backscattering data over multiple frequencies are analyzed for the extrapolation of size classes and respective concentrations. Under dry weather conditions, the massic backscattering coefficient and the overall size distribution showed similar evolution whatever the measurement site was and were suggesting a global

  5. On the peculiarities of LDA method in two-phase flows with high concentrations of particles

    NASA Astrophysics Data System (ADS)

    Poplavski, S. V.; Boiko, V. M.; Nesterov, A. U.

    2016-10-01

    Popular applications of laser Doppler anemometry (LDA) in gas dynamics are reviewed. It is shown that the most popular method cannot be used in supersonic flows and two-phase flows with high concentrations of particles. A new approach to implementation of the known LDA method based on direct spectral analysis, which offers better prospects for such problems, is presented. It is demonstrated that the method is suitable for gas-liquid jets. Owing to the progress in laser engineering, digital recording of spectra, and computer processing of data, the method is implemented at a higher technical level and provides new prospects of diagnostics of high-velocity dense two-phase flows.

  6. Calculations of critical micelle concentration by dissipative particle dynamics simulations: the role of chain rigidity.

    PubMed

    Lee, Ming-Tsung; Vishnyakov, Aleksey; Neimark, Alexander V

    2013-09-05

    Micelle formation in surfactant solutions is a self-assembly process governed by complex interplay of solvent-mediated interactions between hydrophilic and hydrophobic groups, which are commonly called heads and tails. However, the head-tail repulsion is not the only factor affecting the micelle formation. For the first time, we present a systematic study of the effect of chain rigidity on critical micelle concentration and micelle size, which is performed with the dissipative particle dynamics simulation method. Rigidity of the coarse-grained surfactant molecule was controlled by the harmonic bonds set between the second-neighbor beads. Compared to flexible molecules with the nearest-neighbor bonds being the only type of bonded interactions, rigid molecules exhibited a lower critical micelle concentration and formed larger and better-defined micelles. By varying the strength of head-tail repulsion and the chain rigidity, we constructed two-dimensional diagrams presenting how the critical micelle concentration and aggregation number depend on these parameters. We found that the solutions of flexible and rigid molecules that exhibited approximately the same critical micelle concentration could differ substantially in the micelle size and shape depending on the chain rigidity. With the increase of surfactant concentration, primary micelles of more rigid molecules were found less keen to agglomeration and formation of nonspherical aggregates characteristic of flexible molecules.

  7. Dependence between nonvolatile nucleation mode particle and soot number concentrations in an EGR equipped heavy-duty Diesel engine exhaust.

    PubMed

    Lähde, Tero; Rönkkö, Topi; Virtanen, Annele; Solla, Anu; Kytö, Matti; Söderström, Christer; Keskinen, Jorma

    2010-04-15

    Heavy duty diesel engine exhaust characteristics were studied with direct tailpipe sampling on an engine dynamometer. The exhaust particle size distributions, total particle mass, and gaseous emissions were measured with different load conditions without after-treatment. The measured particle size distributions were bimodal; distinctive accumulation and nucleation modes were detected for both volatile and dry particle samples. The condensing volatile compounds changed the characteristics of the nonvolatile nucleation mode while the soot/accumulation mode characteristics (concentration and diameter) were unchanged. A clear dependence between the soot and the nonvolatile nucleation mode number concentrations was detected. While the concentration of the soot mode decreased, the nonvolatile nucleation mode concentration increased. The soot mode number concentration decrease was related to soot-NOx trade-off; the decrease of the exhaust gas recirculation rate decreased soot emission and increased NOx emission. Simultaneously detected increase of the nonvolatile nucleation mode concentration may be caused by the decrease of the soot mode sink or by changed combustion characteristics. However, the total particle number concentration increased with decreasing soot mode number concentration. The proportion of the particle number concentration between the nonvolatile nucleation and soot mode followed the NO2:NO ratio linearly. While ratio NO2:NO increased the proportion of soot mode number concentration in total number concentration increased. Regardless of the mechanism that causes the balance between the soot mode and the nonvolatile nucleation mode emissions, the changes in the particle number size distribution should be taken into account while the particle mass emissions are controlled with combustion optimization.

  8. Particle size distribution of hydrocyanic acid in gari, a cassava-based product.

    PubMed

    Maduagwu, E N; Fafunso, M

    1980-12-01

    A reciprocal relationship was observed between the cyanide content of gari and particle size. Hydrocyanic acid (HCN) content was positively correlated (r = 0.62) with sugar content but the correlation with starch content was poor (r = 0.33). From both the nutritional and toxicological standpoints, it would appear that larger particles size in gari is beneficial.

  9. Evaluation of folic acid release from spray dried powder particles of pectin-whey protein nano-capsules.

    PubMed

    Assadpour, Elham; Jafari, Seid-Mahdi; Maghsoudlou, Yahya

    2017-02-01

    Our main goal was to evaluate release kinetics of nano-encapsulated folic acid within a double W1/O/W2 emulsion. First, W1/O nano-emulsions loaded with folic acid were prepared and re-emulsified into an aqueous phase (W2) containing single whey protein concentrate (WPC) layer or double layer complex of WPC-pectin to form W1/O/W2 emulsions. Final double emulsions were spray dried and their microstructure was analyzed in terms of scanning electron microscopy (SEM), and Fourier Transform Infrared spectroscopy (FTIR). Also the release trends of folic acid were determined and fitted with experimental models of zero and first order, Higuchi, and Hixson-Crowell. It was revealed that folic acid nano-capsules made with Span as the surfactant had the lowest release rate in acidic conditions (pH=4) and highest release in the alkaline conditions (pH=11). The best model fitting for folic acid release data was observed for single layer WPC encapsulated powders with the highest R(2). Our FTIR data showed there was no chemical interaction between WPC and pectin in double layered capsules and based on SEM results, single WPC layered capsules resulted in smooth and uniform particles which by incorporating pectin, some wrinkles and shrinkage were found in the surface of spray dried powder particles.

  10. Using Conductivity Measurements to Determine the Identities and Concentrations of Unknown Acids: An Inquiry Laboratory Experiment

    ERIC Educational Resources Information Center

    Smith, K. Christopher; Garza, Ariana

    2015-01-01

    This paper describes a student designed experiment using titrations involving conductivity measurements to identify unknown acids as being either HCl or H[subscript 2]SO[subscript 4], and to determine the concentrations of the acids, thereby improving the utility of standard acid-base titrations. Using an inquiry context, students gain experience…

  11. Nitric Acid Uptake on Subtropical Cirrus Cloud Particles

    NASA Technical Reports Server (NTRS)

    Popp, P. J.; Gao, R. S.; Marcy, T. P.; Fahey, D. W.; Hudson, P. K.; Thompson, T. L.; Kaercher, B.; Ridley, B. A.; Weinheimer, A. J.; Knapp, D. J.; Montzka, D. D.; Baumgardner, D.; Garrett, T. J.; Weinstock, E. M.; Smith, J. B.; Sayres, D. S.; Pittman, J. V.; Dhaniyala, S.; Bui, T. P.; Mahoney, M. J.

    2004-01-01

    The redistribution of HNO3 via uptake and sedimentation by cirrus cloud particles is considered an important term in the upper tropospheric budget of reactive nitrogen. Numerous cirrus cloud encounters by the NASA WB-57F high-altitude research aircraft during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) were accompanied by the observation of condensed-phase HNO3 with the NOAA chemical ionization mass spectrometer. The instrument measures HNO3 with two independent channels of detection connected to separate forward and downward facing inlets that allow a determination of the amount of HNO3 condensed on ice particles. Subtropical cirrus clouds, as indicated by the presence of ice particles, were observed coincident with condensed-phase HNO3 at temperatures of 197-224 K and pressures of 122-224 hPa. Maximum levels of condensed-phase HNO3 approached the gas-phase equivalent of 0.8 ppbv. Ice particle surface coverages as high as 1.4 # 10(exp 14) molecules/ square cm were observed. A dissociative Langmuir adsorption model, when using an empirically derived HNO3 adsorption enthalpy of -11.0 kcal/mol, effectively describes the observed molecular coverages to within a factor of 5. The percentage of total HNO3 in the condensed phase ranged from near zero to 100% in the observed cirrus clouds. With volume-weighted mean particle diameters up to 700 ?m and particle fall velocities up to 10 m/s, some observed clouds have significant potential to redistribute HNO3 in the upper troposphere.

  12. Nitric Acid Uptake on Subtropical Cirrus Cloud Particles

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The redistribution of HNO3 via uptake and sedimentation by cirrus cloud particles is considered an important term in the upper tropospheric budget of reactive nitrogen. Numerous cirrus cloud encounters by the NASA WB-57F high-altitude research aircraft during CRYSTAL-FACE were accompanied by the observation of condensed-phase HNO3 with the NOAA chemical ionization mass spectrometer. The instrument measures HNO3 with two independent channels of detection connected to separate forward- and downward-facing inlets that allow a determination of the amount of HNO3 condensed on ice particles. Subtropical cirrus clouds, as indicated by the presence of ice particles, were observed coincident with condensed-phase HNO3 at temperatures of 197 K - 224 K and pressures of 122 hPa - 224 hPa. Maximum levels of condensed-phase HNO3 approached the gas-phase equivalent of 0.8 ppbv. Ice particle surface coverages as high as 1.4- 10(exp 14) molecules/sq cm were observed. A dissociative Langmuir adsorption model, when using an empirically derived HNO3 adsorption enthalpy of -11.0 kcal/mol, effectively describes the observed molecular coverages to within a factor of 5. The percentage of total HNO3 in the condensed phase ranged from near zero to 100% in the observed cirrus clouds. With volume-weighted mean particle diameters up to 700 pm and particle fall velocities up to 10 m/s, some observed clouds have significant potential to redistribute HNO3 in the upper troposphere.

  13. A chamber study of the influence of boreal BVOC emissions and sulfuric acid on nanoparticle formation rates at ambient concentrations

    NASA Astrophysics Data System (ADS)

    Dal Maso, M.; Liao, L.; Wildt, J.; Kiendler-Scharr, A.; Kleist, E.; Tillmann, R.; Sipilä, M.; Hakala, J.; Lehtipalo, K.; Ehn, M.; Kerminen, V.-M.; Kulmala, M.; Worsnop, D.; Mentel, T.

    2016-02-01

    Aerosol formation from biogenic and anthropogenic precursor trace gases in continental background areas affects climate via altering the amount of available cloud condensation nuclei. Significant uncertainty still exists regarding the agents controlling the formation of aerosol nanoparticles. We have performed experiments in the Jülich plant-atmosphere simulation chamber with instrumentation for the detection of sulfuric acid and nanoparticles, and present the first simultaneous chamber observations of nanoparticles, sulfuric acid, and realistic levels and mixtures of biogenic volatile compounds (BVOCs). We present direct laboratory observations of nanoparticle formation from sulfuric acid and realistic BVOC precursor vapour mixtures performed at atmospherically relevant concentration levels. We directly measured particle formation rates separately from particle growth rates. From this, we established that in our experiments, the formation rate was proportional to the product of sulfuric acid and biogenic VOC emission strength. The formation rates were consistent with a mechanism in which nucleating BVOC oxidation products are rapidly formed and activate with sulfuric acid. The growth rate of nanoparticles immediately after birth was best correlated with estimated products resulting from BVOC ozonolysis.

  14. Influence of polymer molecular weight and concentration on coexistence curve of isobutyric acid + water.

    PubMed

    Reddy, P Madhusudhana; Venkatesu, P; Bohidar, H B

    2011-10-27

    We report the influence of variation of molecular weights (MWs = 2, 4, 6, and 9 × 10(5) g mol(-1)) and concentration (C) of a long-chain polymer (polyethylene oxide, PEO) on an upper critical solution temperature (UCST) of isobutyric acid (I) + water (W) using density (ρ) measurements as a function of temperature. The ρ values in each coexisting phase of IW have been measured at three different PEO concentrations (C = 0.395, 0.796, and 1.605 mg/cm(3)) in the near critical composition of IW at temperatures below the system's upper critical point for each molecular weight (MW) of PEO. Further, to ascertain the PEO behavior in IW we have measured the polydispersity values for both coexisting liquid phases by using dynamic light scattering (DLS). The data show that the polymer was significantly affected in the critical region of IW and these various MWs and concentrations of PEO show significant modulation on the critical exponents (β), the critical temperatures (T(c)), and critical composition (ϕ(c)), which are depicting the shape of the coexistence curve. The values of β and T(c) increase with increasing PEO MW and concentrations. Besides, the ϕ(c) values slightly decrease with increasing the C values in the mixture of IW. However, the rate of decrease in ϕ(c) is insignificant. Our experimental results explicitly elucidate that most of polymer chain entangles in water rich phase, thereby the polymer monomers strongly interact with neighbor solvent particles and also intra chain interaction between polymer monomers.

  15. High plasma uric acid concentration: causes and consequences

    PubMed Central

    2012-01-01

    High plasma uric acid (UA) is a precipitating factor for gout and renal calculi as well as a strong risk factor for Metabolic Syndrome and cardiovascular disease. The main causes for higher plasma UA are either lower excretion, higher synthesis or both. Higher waist circumference and the BMI are associated with higher insulin resistance and leptin production, and both reduce uric acid excretion. The synthesis of fatty acids (tryglicerides) in the liver is associated with the de novo synthesis of purine, accelerating UA production. The role played by diet on hyperuricemia has not yet been fully clarified, but high intake of fructose-rich industrialized food and high alcohol intake (particularly beer) seem to influence uricemia. It is not known whether UA would be a causal factor or an antioxidant protective response. Most authors do not consider the UA as a risk factor, but presenting antioxidant function. UA contributes to > 50% of the antioxidant capacity of the blood. There is still no consensus if UA is a protective or a risk factor, however, it seems that acute elevation is a protective factor, whereas chronic elevation a risk for disease. PMID:22475652

  16. Dynamics of statistically confident particle sizes and concentrations in blood plasma obtained by the dynamic light scattering method

    NASA Astrophysics Data System (ADS)

    Chaikov, Leonid L.; Kirichenko, Marina N.; Krivokhizha, Svetlana V.; Zaritskiy, Alexander R.

    2015-05-01

    The work is devoted to the study of sizes and concentrations of proteins, and their aggregates in blood plasma samples, using static and dynamic light scattering methods. A new approach is proposed based on multiple repetition of measurements of intensity size distribution and on counting the number of registrations of different sizes, which made it possible to obtain statistically confident particle sizes and concentrations in the blood plasma. It was revealed that statistically confident particle sizes in the blood plasma were stable during 30 h of observations, whereas the concentrations of particles of different sizes varied as a result of redistribution of material between them owing to the protein degradation processes.

  17. Dynamics of statistically confident particle sizes and concentrations in blood plasma obtained by the dynamic light scattering method.

    PubMed

    Chaikov, Leonid L; Kirichenko, Marina N; Krivokhizha, Svetlana V; Zaritskiy, Alexander R

    2015-05-01

    The work is devoted to the study of sizes and concentrations of proteins, and their aggregates in blood plasma samples, using static and dynamic light scattering methods. A new approach is proposed based on multiple repetition of measurements of intensity size distribution and on counting the number of registrations of different sizes, which made it possible to obtain statistically confident particle sizes and concentrations in the blood plasma. It was revealed that statistically confident particle sizes in the blood plasma were stable during 30 h of observations, whereas the concentrations of particles of different sizes varied as a result of redistribution of material between them owing to the protein degradation processes.

  18. Carbon concentration and particle precipitation during directional solidification of multicrystalline silicon for solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Lijun; Nakano, Satoshi; Kakimoto, Koichi

    2008-04-01

    The content and uniformity of carbon and silicon carbide (SiC) precipitates have an important impact on the efficiency of solar cells made of multicrystalline silicon. We established a dynamic model of SiC particle precipitation in molten silicon based on the Si-C phase diagram. Coupling with a transient global model of heat transfer, computations were carried out to clarify the characteristics of carbon segregation and particle formation in a directional solidification process for producing multicrystalline silicon for solar cells. The effects of impurity level in silicon feedstock and solidification process conditions on the distributions of substitutional carbon and SiC precipitates in solidified silicon ingots were investigated. It was shown that the content of SiC particles precipitated in solidified ingots increases markedly in magnitude as well as in space with increase in carbon concentration in silicon feedstock when it exceeds 1.26×10 17 atoms/cm 3. The distribution of SiC precipitates can be controlled by optimizing the process conditions. SiC precipitates are clustered at the center-upper region in an ingot solidified in a fast-cooling process but at the periphery-upper region for a slow-cooling process.

  19. Contribution of feldspar and marine organic aerosols to global ice nucleating particle concentrations

    NASA Astrophysics Data System (ADS)

    Vergara-Temprado, Jesús; Murray, Benjamin J.; Wilson, Theodore W.; O'Sullivan, Daniel; Browse, Jo; Pringle, Kirsty J.; Ardon-Dryer, Karin; Bertram, Allan K.; Burrows, Susannah M.; Ceburnis, Darius; DeMott, Paul J.; Mason, Ryan H.; O'Dowd, Colin D.; Rinaldi, Matteo; Carslaw, Ken S.

    2017-03-01

    Ice-nucleating particles (INPs) are known to affect the amount of ice in mixed-phase clouds, thereby influencing many of their properties. The atmospheric INP concentration changes by orders of magnitude from terrestrial to marine environments, which typically contain much lower concentrations. Many modelling studies use parameterizations for heterogeneous ice nucleation and cloud ice processes that do not account for this difference because they were developed based on INP measurements made predominantly in terrestrial environments without considering the aerosol composition. Errors in the assumed INP concentration will influence the simulated amount of ice in mixed-phase clouds, leading to errors in top-of-atmosphere radiative flux and ultimately the climate sensitivity of the model. Here we develop a global model of INP concentrations relevant for mixed-phase clouds based on laboratory and field measurements of ice nucleation by K-feldspar (an ice-active component of desert dust) and marine organic aerosols (from sea spray). The simulated global distribution of INP concentrations based on these two species agrees much better with currently available ambient measurements than when INP concentrations are assumed to depend only on temperature or particle size. Underestimation of INP concentrations in some terrestrial locations may be due to the neglect of INPs from other terrestrial sources. Our model indicates that, on a monthly average basis, desert dusts dominate the contribution to the INP population over much of the world, but marine organics become increasingly important over remote oceans and they dominate over the Southern Ocean. However, day-to-day variability is important. Because desert dust aerosol tends to be sporadic, marine organic aerosols dominate the INP population on many days per month over much of the mid- and high-latitude Northern Hemisphere. This study advances our understanding of which aerosol species need to be included in order to

  20. The role of dust storms in total atmospheric particle concentrations at two sites in the western U.S.

    USGS Publications Warehouse

    Neff, Jason C.; Reynolds, Richard L.; Munson, Seth M.; Fernandez, Daniel; Belnap, Jayne

    2013-01-01

    Mineral aerosols are produced during the erosion of soils by wind and are a common source of particles (dust) in arid and semiarid regions. The size of these particles varies widely from less than 2 µm to larger particles that can exceed 50 µm in diameter. In this study, we present two continuous records of total suspended particle (TSP) concentrations at sites in Mesa Verde and Canyonlands National Parks in Colorado and Utah, USA, respectively, and compare those values to measurements of fine and coarse particle concentrations made from nearby samplers. Average annual concentrations of TSP at Mesa Verde were 90 µg m−3 in 2011 and at Canyonlands were 171 µg m−3 in 2009, 113 µg m−3 in 2010, and 134 µg m−3 in 2011. In comparison, annual concentrations of fine (diameter of 2.5 µm and below) and coarse (2.5–10 µm diameter) particles at these sites were below 10 µg m−3 in all years. The high concentrations of TSP appear to be the result of regional dust storms with elevated concentrations of particles greater than 10 µm in diameter. These conditions regularly occur from spring through fall with 2 week mean TSP periodically in excess of 200 µg m−3. Measurement of particles on filters indicates that the median particle size varies between approximately 10 µm in winter and 40 µm during the spring. These persistently elevated concentrations of large particles indicate that regional dust emission as dust storms and events are important determinants of air quality in this region.

  1. Amino acid concentrations in plasma and erythrocytes in aregeneratory and haemolytic anaemias.

    PubMed

    Seip, M; Lindemann, R; Gjesdahl, P; Gjessing, L R

    1975-10-01

    The concentrations of unbound amino acids in erythrocytes and in plasma from 7 normal individuals, 11 patients with various types of aregeneratory anaemia, and 4 patients with hereditary haemolytic anaemias were determined on a Technicon Amino Acid Analyzer (Perry et al 1970). Most amino acids were normally found in higher concentrations in plasma than intracellularly. Cystine, methionine and trypotophan were almost exclusively present in plasma. Aspartic acid, however, was mainly found in erythrocytes, and glutathione only in erythrocytes. Glutamic acid and ornithine were more concentrated in the cells, while glycine and asparagine showed approximately the same concentrations in erythrocytes as in plasma. In the patients, plasma amino acids showed little deviations from normal, but in the erythrocytes there were striking changes. Erythrocyte glutamic acid concentrations were moderately to markedly elevated in all patients studied, and glycine concentrations in 13 out of 15 patients. In addition, the following amino acids were increased intracellularly in more than one patient: glutamine (8 patients), serine (7), asparagine (5), threonine (4), taurine (3), alanine (2), valine (2), ornithine (2), lysine (2), citrulline (2). Aspartic acid was decreased in erythrocytes from 4 patients with aregeneratory and 1 with haemolytic anaemia.

  2. Platelet Activation by Low Concentrations of Intact Oxidized LDL Particles Involves the PAF Receptor

    PubMed Central

    Chen, Rui; Chen, Xi; Salomon, Robert G.; McIntyre, Thomas M.

    2008-01-01

    Objective Mitochondrial depolarization aids platelet activation. Oxidized LDL (oxLDL) contains the medium length oxidatively truncated phospholipid hexadecyl azelaoyl-lysoPAF (HAz-LPAF) that disrupts mitochondrial function in nucleated cells, so oxLDL may augment platelet activation. Methods and Results Flow cytometry showed intact oxLDL particles synergized with sub-threshold amounts of soluble agonists to increase intracellular Ca++, and initiate platelet aggregation and surface expression of activated gpIIb/IIIa and P-selectin. oxLDL also induced aggregation and increased intracellular Ca++ in FURA2-labeled cells by itself at low, although not higher, concentrations. HAz-LPAF, alone and in combination with sub-stimulatory amounts of thrombin, rapidly increased cytoplasmic Ca++ and initiated aggregation. HAz-LPAF depolarized mitochondria in intact platelets, but this required concentrations beyond those that directly activated platelets. An unexpectedly large series of chemically pure truncated phospholipids generated by oxidative fragmentation of arachidonoyl-, docosahexaneoyl-, or linoleoyl alkyl phospholipids were platelet agonists. The PAF receptor, thought to effectively recognize only phospholipids with very short sn-2 residues, was essential for platelet activation because PAF receptor agonists blocked signaling by all these medium length phospholipids and oxLDL. Conclusions Intact oxLDL particles activate platelets through the PAF receptor, and the PAF receptor responds to a far wider range of oxidized phospholipids in oxLDL than anticipated. PMID:19112165

  3. Real-time measurements of suspended sediment concentration and particle size using five techniques

    NASA Astrophysics Data System (ADS)

    Felix, D.; Albayrak, I.; Abgottspon, A.; Boes, R. M.

    2016-11-01

    Fine sediments are important in the design and operation of hydropower plants (HPPs), in particular with respect to sediment management and hydro-abrasive erosion in hydraulic machines. Therefore, there is a need for reliable real-time measurements of suspended sediment mass concentration (SSC) and particle size distribution (PSD). The following instruments for SSC measurements were investigated in a field study during several years at the HPP Fieschertal in the Swiss Alps: (1) turbidimeters, (2) a Laser In-Situ Scattering and Trans- missometry instrument (LISST), (3) a Coriolis Flow and Density Meter (CFDM), (4) acoustic transducers, and (5) pressure sensors. LISST provided PSDs in addition to concentrations. Reference SSCs were obtained by gravimetrical analysis of automatically taken water samples. In contrast to widely used turbidimeters and the single-frequency acoustic method, SSCs obtained from LISST, the CFDM or the pressure sensors were less or not affected by particle size variations. The CFDM and the pressure sensors allowed measuring higher SSC than the optical or the acoustic techniques (without dilution). The CFDM and the pressure sensors were found to be suitable to measure SSC ≥ 2 g/l. In this paper, the measuring techniques, instruments, setup, methods for data treatment, and selected results are presented and discussed.

  4. Middle East measurements of concentration and size distribution of aerosol particles for coastal zones

    NASA Astrophysics Data System (ADS)

    Bendersky, Sergey; Kopeika, Norman S.; Blaunstein, Natan S.

    2005-10-01

    Recently, an extension of the Navy Aerosol Model (NAM) was proposed based on analysis of an extensive series of measurements at the Irish Atlantic Coast and at the French Mediterranean Coast. We confirm the relevance of that work for the distant eastern Meditteranean and extend several coefficients of that coastal model, proposed by Piazzola et al. for the Meditteranean Coast (a form of the Navy Aerosol Model), to midland Middle East coastal environments. This analysis is based on data collected at three different Middle East coastal areas: the Negev Desert (Eilat) Red Sea Coast, the Sea of Galilee (Tiberias) Coast, and the Mediterranean (Haifa) Coast. Aerosol size distributions are compared with those obtained through measurements carried out over the Atlantic, Pacific, and Indian Ocean Coasts, and Mediterranean, and Baltic Seas Coasts. An analysis of these different results allows better understanding of the similarities and differences between different coastal lake, sea, and open ocean zones. It is shown that in the coastal regions in Israel, compared to open ocean and other sea zones, larger differences in aerosol particle concentration are observed. The aerosol particle concentrations and their dependences on wind speed for these coastal zones are analyzed and discussed. We propose to classify the aerosol distribution models to either: 1. a coastal model with marine aerosol domination; 2. a coastal model with continental aerosol domination (referred to as midland coast in this work); or 3. a coastal model with balanced marine and continental conditions.

  5. Enhancing effect of marine oligotrophy on environmental concentrations of particle-reactive trace elements

    SciTech Connect

    Jeffree, R.A.; Szymczak, R.

    2000-05-15

    A biogeochemical model has been previously developed that explains the inverse and nonlinear relationship between Po-210 concentration in zooplankton and their biomass, under oligotrophic conditions in French Polynesia. In this study the model structure was reviewed to determine a set of biogeochemical behaviors of Po-210, proposed to be critical to its environmental enhancement under oligotrophy: this set was then used to identify 25 other elements with comparable behaviors to Po-210. Field investigation in the Timor Sea showed that four of these a priori identified elements, viz. Cd, Co, Pb, and Mn as well as Cr and Ni, showed elevated water concentrations with reduced particle removal rates in the euphotic zone, results that are consistent with those previously obtained for Po-210 and the proposed explanatory model. These findings point to the enhanced susceptibility to contamination with particle-reactive elements of oligotrophic marine systems, whose degree and geographic extent may be enhanced by projected increases in sea surface temperatures from global warming.

  6. Control of aerosol contaminants in indoor air: combining the particle concentration reduction with microbial inactivation.

    PubMed

    Grinshpun, Sergey A; Adhikari, Atin; Honda, Takeshi; Kim, Ki Youn; Toivola, Mika; Rao, K S Ramchander; Reponen, Tiina

    2007-01-15

    An indoor air purification technique, which combines unipolar ion emission and photocatalytic oxidation (promoted by a specially designed RCI cell), was investigated in two test chambers, 2.75 m3 and 24.3 m3, using nonbiological and biological challenge aerosols. The reduction in particle concentration was measured size selectively in real-time, and the Air Cleaning Factor and the Clean Air Delivery Rate (CADR) were determined. While testing with virions and bacteria, bioaerosol samples were collected and analyzed, and the microorganism survival rate was determined as a function of exposure time. We observed that the aerosol concentration decreased approximately 10 to approximately 100 times more rapidly when the purifier operated as compared to the natural decay. The data suggest that the tested portable unit operating in approximately 25 m3 non-ventilated room is capable to provide CADR-values more than twice as great than the conventional closed-loop HVAC system with a rating 8 filter. The particle removal occurred due to unipolar ion emission, while the inactivation of viable airborne microorganisms was associated with photocatalytic oxidation. Approximately 90% of initially viable MS2 viruses were inactivated resulting from 10 to 60 min exposure to the photocatalytic oxidation. Approximately 75% of viable B. subtilis spores were inactivated in 10 min, and about 90% or greater after 30 min. The biological and chemical mechanisms that led to the inactivation of stress-resistant airborne viruses and bacterial spores were reviewed.

  7. Dry deposition, concentration and gas/particle partitioning of atmospheric carbazole

    NASA Astrophysics Data System (ADS)

    Esen, Fatma; Tasdemir, Yücel; Cindoruk, S. Sıddık

    2010-03-01

    The atmospheric concentrations and dry deposition of carbazole were measured to present the temporal changes, gas/particle partitioning and magnitude of fluxes. Atmospheric samples were collected from July 2004 to May 2005 at four different sites in Bursa, Turkey. The average total (gas and particulate) carbazole concentrations were 7.6 ± 9.9 ng m - 3 in Gulbahce (Residential), 1.1 ± 1.2 ng m - 3 in BUTAL (Traffic), 3.3 ± 5.0 ng m - 3 in BOID (Industrial), and 1.2 ± 0.7 ng m - 3 in the Uludag University Campus (UU) (Suburban). Experimental gas/particle partition coefficient ( Kp) was determined using the study results and compared with Kp values calculated from octanol-air and soot-air + octanol partitioning models. Total dry deposition fluxes of carbazole were 290 ± 484 ng m - 2 d - 1 in BUTAL and 72 ± 67 ng m - 2 d - 1 in the UU Campus. Particulate phase dry deposition velocities were 0.81 ± 0.78 cm s - 1 and 0.90 ± 1.53 cm s - 1 for BUTAL and the UU Campus, respectively. On the other hand, gas-phase mass transfer coefficients were calculated to be 0.34 ± 0.29 cm s - 1 and 0.26 ± 0.17 cm s - 1 for BUTAL and the UU Campus, respectively.

  8. Ultrasonic Method for Concentration and Particle Size Analysis in Dense Coal-water Slurry

    NASA Astrophysics Data System (ADS)

    Xue, Minghua; Su, Mingxu; Dong, Lili; Shang, Zhitao; Cai, Xiaoshu

    2007-06-01

    The concentration and particle size distribution in particulate two-phase flow are the important parameters in a wide variety of industrial areas. For the purpose of on-line characterizing dense coal-water slurry, ultrasonic methods have many advantages, such as no-dilution, real-time and no-invasion, while light-based techniques are not capable of providing information because optical methods normally require the sample to be diluted. In this paper, the modified Urick equation including temperature modification, which can be used to determine concentration from the measurement of velocity in the coal-water slurry, is evaluated on the basis of model analysis and experiments. Combined with the optimum regulation technique inverse algorithm, the particle size distribution of the coal-water slurry is obtained according to the attenuation prediction of Coupled-phase model plus Bouguer-Lambert-Beer-Law scattering model and experimental attenuation at frequencies ranges from 3MHz to 12MHz. This technique brings the possibility of using ultrasound for on-line measurement of dense slurry.

  9. Water administration of medium-chain fatty acid caprylic acid produced variable efficacy against cecal Campylobacter jejuni concentrations in broilers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter is one of the most common causes of foodborne illness, and poultry is considered a primary source of Campylobacter infections. Caprylic acid, an eight-carbon fatty acid, has been shown in previous studies to reduce enteric cecal Campylobacter concentrations in poultry when administere...

  10. Practical considerations in the concentration and recovery of spent nitration acids

    SciTech Connect

    Evans, C.M.

    1995-12-01

    Most organic nitrations employ sulphuric acid or oleum in the nitration acid. Even in rare nitric acid only nitrations, sulphuric acid is used as the dehydrating agent to produce 99% nitric acid. The used sulphuric acid is discharged in a diluted form contaminated with organic components and nitric/nitrous species. Pressures are emloyed to reconcentrate and reprocess such spent acids. Acid recovery and concentration is expensive. This paper discusses some of the aspects which must be considered when contemplating acid recovery. In the current industrial climate, acid recovery and recycle should be regarded as an integral part of a nitration process development rather than an afterthought. Case histories will be given in which such considerations influenced the course of the development of the nitration process itself. Emphasis will be placed on the importance of well planned bench and pilot scale test programmes.

  11. Association between the concentration of fine particles in the atmosphere and acute respiratory diseases in children

    PubMed Central

    Nascimento, Antônio Paula; Santos, Jane Meri; Mill, José Geraldo; de Souza, Juliana Bottoni; Reis, Neyval Costa; Reisen, Valdério Anselmo

    2016-01-01

    ABSTRACT OBJECTIVE To analyze the association between fine particulate matter concentration in the atmosphere and hospital care by acute respiratory diseases in children. METHODS Ecological study, carried out in the region of Grande Vitória, Espírito Santo, in the winter (June 21 to September 21, 2013) and summer (December 21, 2013 to March 19, 2014). We assessed data of daily count for outpatient care and hospitalization by respiratory diseases (ICD-10) in children from zero to 12 years in three hospitals in the Region of Grande Vitória. For collecting fine particulate matter, we used portable samplers of particles installed in six locations in the studied region. The Generalized Additive Model with Poisson distribution, fitted for the effects of predictor covariates, was used to evaluate the relationship between respiratory outcomes and concentration of fine particulate matter. RESULTS The increase of 4.2 µg/m3 (interquartile range) in the concentration of fine particulate matter increased in 3.8% and 5.6% the risk of medical care or hospitalization, respectively, on the same day and with six-day lag from the exposure. CONCLUSIONS We identified positive association between outpatient care and hospitalizations of children under 12 years due to acute respiratory diseases and the concentration of fine particulate matter in the atmosphere. PMID:28099552

  12. Effects of coating of dicarboxylic acids on the mass-mobility relationship of soot particles.

    PubMed

    Xue, Huaxin; Khalizov, Alexei F; Wang, Lin; Zheng, Jun; Zhang, Renyi

    2009-04-15

    Atandem differential mobility analyzer (TDMA) and a differential mobility analyzer-aerosol particle mass analyzer (DMA-APM) have been employed to study morphology and hygroscopicity of soot aerosol internally mixed with dicarboxylic acids. The effective densities, fractal dimensions, and dynamic shape factors of soot particles before and after coating with succinic and glutaric acids are determined. Coating of soot with succinic acid results in a significant increase in the particle mobility diameter, mass, and effective density, but these properties recover to their initial values once succinic acid is removed by heating, suggesting that no restructuring of the soot core occurs. This conclusion is also supported from the observation of similar fractal dimensions and dynamic shape factors for fresh and coated/heated soot aggregates. Also, no change is observed when succinic acid-coated aggregates are cycled through elevated relative humidity (5% to 90% to 5% RH) below the succinic acid deliquescence point. When soot is coated with glutaric acid, the particle mass increases, but the mobility diameter shrinks by 10-40%. Cycling the soot aerosol coated with glutaric acid through elevated relative humidity leads to an additional mass increase, indicating that condensed water remains within the coating even at low RH. The fractal dimension of soot particles increases after coating and remains high when glutaric acid is removed by heating. The dynamic shape factor of glutaric acid-coated and heated soot is significantly lower than that of fresh soot, suggesting a significant restructuring of the soot agglomerates by glutaric acid. The results imply that internal mixing of soot aerosol during atmospheric aging leads to changes in hygroscopicity, morphology, and effective density, which likely modify their effects on direct and indirect climate forcing and deposition in the human respiratory system.

  13. Isoprene in poplar emissions: effects on new particle formation and OH concentrations

    NASA Astrophysics Data System (ADS)

    Kiendler-Scharr, A.; Andres, S.; Bachner, M.; Behnke, K.; Broch, S.; Hofzumahaus, A.; Holland, F.; Kleist, E.; Mentel, T. F.; Rubach, F.; Springer, M.; Steitz, B.; Tillmann, R.; Wahner, A.; Schnitzler, J.-P.; Wildt, J.

    2011-08-01

    Stress-induced volatile organic compound (VOC) emissions from transgenic Grey poplar, modified in isoprene emission potential were used for the investigation of photochemical secondary organic aerosol (SOA) formation. Nucleation rates of up to 3600 cm-3 s-1 were observed in our experiments. In poplar, acute ozone stress induces the emission of a wide array of VOCs dominated by sesquiterpenes and aromatic VOCs. Constitutive light-dependent emission of isoprene ranged between 66 nmol m-2 s-1 in non-transgenic controls (wild type WT) and nearly zero (<0.5 nmol m-2 s-1) in isoprene emission-repressed lines (line RA22), respectively. In the presence of isoprene new particle formation was suppressed compared to non-isoprene containing VOC mixtures. Compared to isoprene/monoterpene systems emitted from other plants the suppression of nucleation by isoprene was less effective for the VOC mixture emitted from stressed poplar. This is explained by the observed high efficiency of new particle formation for emissions from stressed poplar. Direct measurements of OH in the reaction chamber revealed that the steady state concentration of OH is lower in the presence of isoprene than in the absence of isoprene, supporting the hypothesis that isoprenes' suppressing effect on nucleation is related to radical chemistry. In order to test whether isoprene contributes to SOA mass formation, fully deuterated isoprene (C5D8) was added to the stress-induced emission profile of an isoprene free poplar mutant. Mass spectral analysis showed that, despite the isoprene-induced suppression of particle formation, fractions of deuterated isoprene were incorporated into the SOA. A fractional mass yield of 2.3 % of isoprene was observed. Future emission changes due to land use and climate change may therefore affect both gas phase oxidation capacity and new particle number formation.

  14. Isoprene in poplar emissions: effects on new particle formation and OH concentrations

    NASA Astrophysics Data System (ADS)

    Kiendler-Scharr, A.; Andres, S.; Bachner, M.; Behnke, K.; Broch, S.; Hofzumahaus, A.; Holland, F.; Kleist, E.; Mentel, T. F.; Rubach, F.; Springer, M.; Steitz, B.; Tillmann, R.; Wahner, A.; Schnitzler, J.-P.; Wildt, J.

    2012-01-01

    Stress-induced volatile organic compound (VOC) emissions from transgenic Grey poplar modified in isoprene emission potential were used for the investigation of photochemical secondary organic aerosol (SOA) formation. In poplar, acute ozone stress induces the emission of a wide array of VOCs dominated by sesquiterpenes and aromatic VOCs. Constitutive light-dependent emission of isoprene ranged between 66 nmol m-2 s-1 in non-transgenic controls (wild type WT) and nearly zero (<0.5 nmol m-2 s-1) in isoprene emission-repressed plants (line RA22), respectively. Nucleation rates of up to 3600 cm-3 s-1 were observed in our experiments. In the presence of isoprene new particle formation was suppressed compared to non-isoprene containing VOC mixtures. Compared to isoprene/monoterpene systems emitted from other plants the suppression of nucleation by isoprene was less effective for the VOC mixture emitted from stressed poplar. This is explained by the observed high efficiency of new particle formation for emissions from stressed poplar. Direct measurements of OH in the reaction chamber revealed that the steady state concentration of OH is lower in the presence of isoprene than in the absence of isoprene, supporting the hypothesis that isoprenes' suppressing effect on nucleation is related to radical chemistry. In order to test whether isoprene contributes to SOA mass formation, fully deuterated isoprene (C5D8) was added to the stress-induced emission profile of an isoprene free poplar mutant. Mass spectral analysis showed that, despite the isoprene-induced suppression of particle formation, fractions of deuterated isoprene were incorporated into the SOA. A fractional mass yield of 2.3% of isoprene was observed. Future emission changes due to land use and climate change may therefore affect both gas phase oxidation capacity and new particle number formation.

  15. Modulating protein adsorption onto hydroxyapatite particles using different amino acid treatments

    PubMed Central

    Lee, Wing-Hin; Loo, Ching-Yee; Van, Kim Linh; Zavgorodniy, Alexander V.; Rohanizadeh, Ramin

    2012-01-01

    Hydroxyapatite (HA) is a material of choice for bone grafts owing to its chemical and structural similarities to the mineral phase of hard tissues. The combination of osteogenic proteins with HA materials that carry and deliver the proteins to the bone-defective areas will accelerate bone regeneration. The study investigated the treatment of HA particles with different amino acids such as serine (Ser), asparagine (Asn), aspartic acid (Asp) and arginine (Arg) to enhance the adsorption ability of HA carrier for delivering therapeutic proteins to the body. The crystallinity of HA reduced when amino acids were added during HA preparation. Depending on the types of amino acid, the specific surface area of the amino acid-functionalized HA particles varied from 105 to 149 m2 g–1. Bovine serum albumin (BSA) and lysozyme were used as model proteins for adsorption study. The protein adsorption onto the surface of amino acid-functionalized HA depended on the polarities of HA particles, whereby, compared with lysozyme, BSA demonstrated higher affinity towards positively charged Arg-HA. Alternatively, the binding affinity of lysozyme onto the negatively charged Asp-HA was higher when compared with BSA. The BSA and lysozyme adsorptions onto the amino acid-functionalized HA fitted better into the Freundlich than Langmuir model. The amino acid-functionalized HA particles that had higher protein adsorption demonstrated a lower protein-release rate. PMID:21957116

  16. [Production of a concentrate of Mucor bacilliformis acid protease].

    PubMed

    Bottaro Castilla, H R; Waehner, R S; Meinardi, C A; Zalazar, C A; Fraile, E R

    1982-01-01

    A concentrate of milk-clotting enzyme was produced by culture of Mucor bacilliformis on wheat bran medium moistened to 120% water on dry bases with HC1 2 N solution. The wheat bran was autoclaved, spread on trays and inoculated with 5.10(6) spore/gr of dry bran. After 10 days of culture at 21 degrees C, the enzyme produced was extracted with water and adjusted to pH 4.4. The precipitation was performed with ethanol. The precipitate was dissolved in HCl solution (pH 4.5) and it was concentrated by dialysis against polyethylene glycol 20.000. The enzyme solution had a specific activity of 1123 units/mg. and it was tested in the elaboration of cream cheese.

  17. Preparation and properties of films cast from mixtures of poly(vinyl alcohol) and submicron particles prepared from amylose-palmitic acid inclusion complexes.

    PubMed

    Fanta, George F; Selling, Gordon W; Felker, Frederick C; Kenar, James A

    2015-05-05

    The use of starch in polymer composites for film production has been studied for increasing biodegradability, improving film properties and reducing cost. In this study, submicron particles were prepared from amylose-sodium palmitate complexes both by rapidly cooling jet-cooked starch-palmitic acid mixtures and by acidifying solutions of starch-sodium palmitate complexes. Films were cast containing poly(vinyl alcohol) (PVOH) with up to 50% starch particles. Tensile strength decreased and Young's modulus increased with starch concentration, but percent elongations remained similar to controls regardless of preparation method or starch content. Microscopy showed particulate starch distribution in films made with rapidly cooled starch-palmitic acid particles but smooth, diffuse starch staining with acidified sodium palmitate complexes. The mild effects on tensile properties suggest that submicron starch particles prepared from amylose-palmitic acid complexes provide a useful, commercially viable approach for PVOH film modification.

  18. Acidic gases and nitrate and sulfate particles in the atmosphere in the city of Guadalajara, México.

    PubMed

    Saldarriaga-Noreña, Hugo; Waliszewski, Stefan; Murillo-Tovar, Mario; Hernández-Mena, Leonel; de la Garza-Rodríguez, Iliana; Colunga-Urbina, Edith; Cuevas-Ordaz, Rosalva

    2012-05-01

    Atmospheric concentrations of nitrous acid, nitric acid, nitrate and sulfate particles were obtained in this study from April to June 2008 in the center of the city of Guadalajara, while concentrations of ozone, sulfur dioxide, nitrogen dioxide and meteorological parameters (temperature and relative humidity), were acquired by the Secretaría del Medio Ambiente para el Desarrollo Sustentable del Estado de Jalisco (SEMADES). The results showed that nitric acid (2.7 μg m(-3)) was 2.7 times higher than nitrous acid (1.0 μg m(-3)). The sulfur dioxide (SO(2)) concentration indicated an opposite trend to sulfate (SO(4) (2-)), with the average concentration of SO(2) (6.9 μg m(-3)) higher in almost the entire period of study. The sulfur conversion ratio (Fs, 24.9%) and nitrogen conversion ratio (Fn, 6.2%), were revealed to be similar to that reported in other urban areas during warm seasons. It is also noted that ozone is not the main oxidizer of nitrogen dioxide and sulfur dioxide. This determination was made by taking into account the slightly positively correlation determined for Fn (r(2) = 0.084) and Fs (r(2) = 0.092) with ozone that perhaps suggests there are other oxidizing species such as the radical OH, which are playing an important role in the processes of atmospheric oxidation in this area.

  19. Organosulfates and organic acids in Arctic aerosols: speciation, annual variation and concentration levels

    NASA Astrophysics Data System (ADS)

    Hansen, A. M. K.; Kristensen, K.; Nguyen, Q. T.; Zare, A.; Cozzi, F.; Nøjgaard, J. K.; Skov, H.; Brandt, J.; Christensen, J. H.; Ström, J.; Tunved, P.; Krejci, R.; Glasius, M.

    2014-08-01

    Sources, composition and occurrence of secondary organic aerosols in the Arctic were investigated at Zeppelin Mountain, Svalbard, and Station Nord, northeastern Greenland, during the full annual cycle of 2008 and 2010, respectively. Speciation of organic acids, organosulfates and nitrooxy organosulfates - from both anthropogenic and biogenic precursors were in focus. A total of 11 organic acids (terpenylic acid, benzoic acid, phthalic acid, pinic acid, suberic acid, azelaic acid, adipic acid, pimelic acid, pinonic acid, diaterpenylic acid acetate and 3-methyl-1,2,3-butanetricarboxylic acid), 12 organosulfates and 1 nitrooxy organosulfate were identified in aerosol samples from the two sites using a high-performance liquid chromatograph (HPLC) coupled to a quadrupole Time-of-Flight mass spectrometer. At Station Nord, compound concentrations followed a distinct annual pattern, where high mean concentrations of organosulfates (47 ± 14 ng m-3) and organic acids (11.5 ± 4 ng m-3) were observed in January, February and March, contrary to considerably lower mean concentrations of organosulfates (2 ± 3 ng m-3) and organic acids (2.2 ± 1 ng m-3) observed during the rest of the year. At Zeppelin Mountain, organosulfate and organic acid concentrations remained relatively constant during most of the year at a mean concentration of 15 ± 4 ng m-3 and 3.9 ± 1 ng m-3, respectively. However during four weeks of spring, remarkably higher concentrations of total organosulfates (23-36 ng m-3) and total organic acids (7-10 ng m-3) were observed. Elevated organosulfate and organic acid concentrations coincided with the Arctic haze period at both stations, where northern Eurasia was identified as the main source region. Air mass transport from northern Eurasia to Zeppelin Mountain was associated with a 100% increase in the number of detected organosulfate species compared with periods of air mass transport from the Arctic Ocean, Scandinavia and Greenland. The results from this

  20. Influence of acid functionalization on the cardiopulmonary toxicity of carbon nanotubes and carbon black particles in mice

    SciTech Connect

    Tong Haiyan McGee, John K.; Saxena, Rajiv K.; Kodavanti, Urmila P.; Devlin, Robert B.; Gilmour, M. Ian

    2009-09-15

    Engineered carbon nanotubes are being developed for a wide range of industrial and medical applications. Because of their unique properties, nanotubes can impose potentially toxic effects, particularly if they have been modified to express functionally reactive chemical groups on their surface. The present study was designed to evaluate whether acid functionalization (AF) enhanced the cardiopulmonary toxicity of single-walled carbon nanotubes (SWCNT) as well as control carbon black particles. Mice were exposed by oropharyngeal aspiration to 10 or 40 {mu}g of saline-suspended single-walled carbon nanotubes (SWCNTs), acid-functionalized SWCNTs (AF-SWCNTs), ultrafine carbon black (UFCB), AF-UFCB, or 2 {mu}g LPS. 24 hours later, pulmonary inflammatory responses and cardiac effects were assessed by bronchoalveolar lavage and isolated cardiac perfusion respectively, and compared to saline or LPS-instilled animals. Additional mice were assessed for histological changes in lung and heart. Instillation of 40 {mu}g of AF-SWCNTs, UFCB and AF-UFCB increased percentage of pulmonary neutrophils. No significant effects were observed at the lower particle concentration. Sporadic clumps of particles from each treatment group were observed in the small airways and interstitial areas of the lungs according to particle dose. Patches of cellular infiltration and edema in both the small airways and in the interstitium were also observed in the high dose group. Isolated perfused hearts from mice exposed to 40 {mu}g of AF-SWCNTs had significantly lower cardiac functional recovery, greater infarct size, and higher coronary flow rate than other particle-exposed animals and controls, and also exhibited signs of focal cardiac myofiber degeneration. No particles were detected in heart tissue under light microscopy. This study indicates that while acid functionalization increases the pulmonary toxicity of both UFCB and SWCNTs, this treatment caused cardiac effects only with the AF

  1. Size distributions of fine and ultrafine particles in the city of Strasbourg: correlation between number of particles and concentrations of NO(x) and SO(2) gases and some soluble ions concentration determination.

    PubMed

    Roth, Estelle; Kehrli, Damaris; Bonnot, Karine; Trouvé, Gwénaëlle

    2008-01-01

    An Electrical Low Pressure Impactor (ELPI) was used during spring and autumn 2003 in the centre of Strasbourg for the measurement of atmospheric aerosols size distribution. The concentration of NO(x) and SO(2) in air was simultaneously measured with specific analysers. Samples were collected in the range 0.007-10 microm in equivalent aerodynamic diameter size. Number distributions are representative of a pollution originating from urban traffic with a particle size distribution exhibiting a nucleation mode below 29 nm and an accumulation mode around 80 nm in size. A mean particle density equal to 39000+/-35000 total particles per cm(3) with a size ranging from 7 to 10 microm was obtained after a sampling period of 2 weeks in spring. About 86.9% of the number of particles have an aerodynamic diameter below 0.1 microm and 13.1% between 0.1 and 1 microm. Correlation coefficients between the number of particles impacted on each ELPI plate and gas concentrations (SO(2) and NO(x)) showed that the numbers of particles with diameter between 0.10 and 0.62 microm are highly related to the NO(x) concentration. This result indicates that particles are traffic induced since NO(x) is mainly emitted by cars as shown by measurements on various sites. Particles are less clearly correlated to the SO(2) concentration. Particle analysis on different ELPI plates for a sampling period of 2 weeks in autumn showed high level of soluble NO(3)(-), SO(4)(2-) and NH(4)(+) ions. Indeed, up to 90% b.w. of these three species were found in the particle range 0.1-1 microm. The formation of particulate NH(4)NO(3) is favoured by high NO(x) concentration, which induces the formation of gaseous HNO(3).

  2. Heterogeneous kinetics, products, and mechanisms of ferulic acid particles in the reaction with NO3 radicals

    NASA Astrophysics Data System (ADS)

    Liu, Changgeng; Zhang, Peng; Wen, Xiaoying; Wu, Bin

    2017-03-01

    Methoxyphenols, as an important component of wood burning, are produced by lignin pyrolysis and considered to be the potential tracers for wood smoke emissions. In this work, the heterogeneous reaction between ferulic acid particles and NO3 radicals was investigated. Six products including oxalic acid, 4-vinylguaiacol, vanillin, 5-nitrovanillin, 5-nitroferulic acid, and caffeic acid were confirmed by gas chromatography-mass spectrometry (GC-MS). In addition, the reaction mechanisms were proposed and the main pathways were NO3 electrophilic addition to olefin and the meta-position to the hydroxyl group. The uptake coefficient of NO3 radicals on ferulic acid particles was 0.17 ± 0.02 and the effective rate constant under experimental conditions was (1.71 ± 0.08) × 10-12 cm3 molecule-1 s-1. The results indicate that ferulic acid degradation by NO3 can be an important sink at night.

  3. Inhibition of hepatic gluconeogenesis by niflumic acid correlates with the concentration of the free form.

    PubMed

    Kelmer-Bracht, A M; Bracht, A

    1993-05-01

    Inhibition of hepatic gluconeogenesis by niflumic acid, a non-steroidal antiinflammatory drug, was measured in order to correlate the effect of the drug with the concentration of the free drug. The concentration of free drug was changed in two ways: (a) by changing the albumin concentration at a fixed total (free+bound) niflumic acid concentration; and, (b) by changing the drug concentration at a fixed albumin concentration. The degree of inhibition of gluconeogenesis by niflumic acid depends strictly on the concentration of the free drug, with half-maximal inhibition at 19.25 microM. This result is consistent with binding equilibrium in the extracellular space and with a flow-limited distribution between the extra- and intracellular spaces as proposed by our previous work.

  4. Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates, and temperatures

    NASA Astrophysics Data System (ADS)

    Kürten, Andreas; Bianchi, Federico; Almeida, Joao; Kupiainen-Määttä, Oona; Dunne, Eimear M.; Duplissy, Jonathan; Williamson, Christina; Barmet, Peter; Breitenlechner, Martin; Dommen, Josef; Donahue, Neil M.; Flagan, Richard C.; Franchin, Alessandro; Gordon, Hamish; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Ickes, Luisa; Jokinen, Tuija; Kangasluoma, Juha; Kim, Jaeseok; Kirkby, Jasper; Kupc, Agnieszka; Lehtipalo, Katrianne; Leiminger, Markus; Makhmutov, Vladimir; Onnela, Antti; Ortega, Ismael K.; Petäjä, Tuukka; Praplan, Arnaud P.; Riccobono, Francesco; Rissanen, Matti P.; Rondo, Linda; Schnitzhofer, Ralf; Schobesberger, Siegfried; Smith, James N.; Steiner, Gerhard; Stozhkov, Yuri; Tomé, António; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Wagner, Paul E.; Wimmer, Daniela; Ye, Penglin; Baltensperger, Urs; Carslaw, Ken; Kulmala, Markku; Curtius, Joachim

    2016-10-01

    Binary nucleation of sulfuric acid and water as well as ternary nucleation involving ammonia are thought to be the dominant processes responsible for new particle formation (NPF) in the cold temperatures of the middle and upper troposphere. Ions are also thought to be important for particle nucleation in these regions. However, global models presently lack experimentally measured NPF rates under controlled laboratory conditions and so at present must rely on theoretical or empirical parameterizations. Here with data obtained in the European Organization for Nuclear Research CLOUD (Cosmics Leaving OUtdoor Droplets) chamber, we present the first experimental survey of NPF rates spanning free tropospheric conditions. The conditions during nucleation cover a temperature range from 208 to 298 K, sulfuric acid concentrations between 5 × 105 and 1 × 109 cm-3, and ammonia mixing ratios from zero added ammonia, i.e., nominally pure binary, to a maximum of 1400 parts per trillion by volume (pptv). We performed nucleation studies under pure neutral conditions with zero ions being present in the chamber and at ionization rates of up to 75 ion pairs cm-3 s-1 to study neutral and ion-induced nucleation. We found that the contribution from ion-induced nucleation is small at temperatures between 208 and 248 K when ammonia is present at several pptv or higher. However, the presence of charges significantly enhances the nucleation rates, especially at 248 K with zero added ammonia, and for higher temperatures independent of NH3 levels. We compare these experimental data with calculated cluster formation rates from the Atmospheric Cluster Dynamics Code with cluster evaporation rates obtained from quantum chemistry.

  5. Rheology and Structure of Concentrated Suspensions of Hard Spheres. Shear Induced Particle Migration

    NASA Astrophysics Data System (ADS)

    Mills, P.; Snabre, P.

    1995-10-01

    The apparent shear viscosity, in the non-Brownian limit, for a homogeneous suspension of monodispersed hard spheres in systems ranging from dilute to concentrated was previously established. From an estimation of the viscous dissipation. We use the inter-particle distance dependence of the shear viscosity for determining the components of a local stress tensor associated with the transient network of particles for the volume fraction above the percolation threshold. For this purpose, we develop a model based on lubrication forces between colliding particles for coupling the particle stress tensor to the stress tensor of the suspension considered as an effective medium. In the case of non-uniform flows with low shear rate regions, it is necessary to introduce a non-local stress tensor since the stress can be directly transmitted by the network of particles over a correlation length larger than the particle diameter. This approach shows ... A partir d'une estimation de la dissipation visqueuse, nous avons précedemment évalué la viscosité apparente de cisaillement des suspensions homogènes de sphères dures monodisperses et non Browniennes dans les systèmes dilués ou concentrés. Nos utilisons la dépendance de la viscosité de cisaillement avec la distance moyenne entre les particules pour déterminer les composantes d'un tenseur local de contraintes associé à l'amas transitoire de particlues au dessus de la fraction volumique critique de percolation. Nous developpons pour cela un modèle basé sur les forces de lubrification s'exerçant au cours des collisions entre les particules afin de coupler le tenseur local de contraintes associé aux particules et le tenseur des contraintes dans la suspension assimilée à un milieu effectif. Dans le cas des écoulements non uniformes présentant des zones de faible cisaillement, il est nécessaire de considérer un tenseur non local des contraintes car les forces peuvent alors se transmettre directement à travers l

  6. Exposure to Concentrated Ambient Particles Does Not Affect Vascular Function in Patients with Coronary Heart Disease

    PubMed Central

    Mills, Nicholas L.; Robinson, Simon D.; Fokkens, Paul H. B.; Leseman, Daan L. A. C.; Miller, Mark R.; Anderson, David; Freney, Evelyn J.; Heal, Mathew R.; Donovan, Robert J.; Blomberg, Anders; Sandström, Thomas; MacNee, William; Boon, Nicholas A.; Donaldson, Ken; Newby, David E.; Cassee, Flemming R.

    2008-01-01

    Background Exposure to fine particulate air pollution is associated with increased cardiovascular morbidity and mortality. We previously demonstrated that exposure to dilute diesel exhaust causes vascular dysfunction in humans. Objectives We conducted a study to determine whether exposure to ambient particulate matter causes vascular dysfunction. Methods Twelve male patients with stable coronary heart disease and 12 age-matched volunteers were exposed to concentrated ambient fine and ultrafine particles (CAPs) or filtered air for 2 hr using a randomized, double-blind cross-over study design. We measured peripheral vascular vasomotor and fibrinolytic function, and inflammatory variables—including circulating leukocytes, serum C-reactive protein, and exhaled breath 8-isoprostane and nitrotyrosine—6–8 hr after both exposures. Results Particulate concentrations (mean ± SE) in the exposure chamber (190 ± 37 μg/m3) were higher than ambient levels (31 ± 8 μg/m3) and levels in filtered air (0.5 ± 0.4 μg/m3; p < 0.001). Chemical analysis of CAPs identified low levels of elemental carbon. Exhaled breath 8-isoprostane concentrations increased after exposure to CAPs (16.9 ± 8.5 vs. 4.9 ± 1.2 pg/mL, p < 0.05), but markers of systemic inflammation were largely unchanged. Although there was a dose-dependent increase in blood flow and plasma tissue plasminogen activator release (p < 0.001 for all), CAPs exposure had no effect on vascular function in either group. Conclusions Despite achieving marked increases in particulate matter, exposure to CAPs—low in combustion-derived particles—did not affect vasomotor or fibrinolytic function in either middle-aged healthy volunteers or patients with coronary heart disease. These findings contrast with previous exposures to dilute diesel exhaust and highlight the importance of particle composition in determining the vascular effects of particulate matter in humans. PMID:18560524

  7. Effect of temperature and concentration on benzoyl peroxide bleaching efficacy and benzoic acid levels in whey protein concentrate.

    PubMed

    Smith, T J; Gerard, P D; Drake, M A

    2015-11-01

    Much of the fluid whey produced in the United States is a by-product of Cheddar cheese manufacture and must be bleached. Benzoyl peroxide (BP) is currently 1 of only 2 legal chemical bleaching agents for fluid whey in the United States, but benzoic acid is an unavoidable by-product of BP bleaching. Benzoyl peroxide is typically a powder, but new liquid BP dispersions are available. A greater understanding of the bleaching characteristics of BP is necessary. The objective of the study was to compare norbixin destruction, residual benzoic acid, and flavor differences between liquid whey and 80% whey protein concentrates (WPC80) bleached at different temperatures with 2 different benzoyl peroxides (soluble and insoluble). Two experiments were conducted in this study. For experiment 1, 3 factors (temperature, bleach type, bleach concentration) were evaluated for norbixin destruction using a response surface model-central composite design in liquid whey. For experiment 2, norbixin concentration, residual benzoic acid, and flavor differences were explored in WPC80 from whey bleached by the 2 commercially available BP (soluble and insoluble) at 5 mg/kg. In liquid whey, soluble BP bleached more norbixin than insoluble BP, especially at lower concentrations (5 and 10 mg/kg) at both cold (4°C) and hot (50°C) temperatures. The WPC80 from liquid whey bleached with BP at 50°C had lower norbixin concentration, benzoic acid levels, cardboard flavor, and aldehyde levels than WPC80 from liquid whey bleached with BP at 4°C. Regardless of temperature, soluble BP destroyed more norbixin at lower concentrations than insoluble BP. The WPC80 from soluble-BP-bleached wheys had lower cardboard flavor and lower aldehyde levels than WPC80 from insoluble-BP-bleached whey. This study suggests that new, soluble (liquid) BP can be used at lower concentrations than insoluble BP to achieve equivalent bleaching and that less residual benzoic acid remains in WPC80 powder from liquid whey

  8. PARTICLE CONCENTRATIONS IN INNER-CITY HOMES OF CHILDREN WITH ASTHMA: THE EFFECTS OF SMOKING, COOKING, AND OUTDOOR POLLUTION

    EPA Science Inventory

    Inner-city children have high rates of asthma. Exposures to particles, including allergens, may cause or exacerbate asthma symptoms. As part of an epidemiologic study of inner-city children with asthma, continuous (10-min average) measurements of particle concentrations were made...

  9. Studies of single aerosol particles containing malonic acid, glutaric acid, and their mixtures with sodium chloride. I. Hygroscopic growth.

    PubMed

    Pope, Francis D; Dennis-Smither, Ben J; Griffiths, Paul T; Clegg, Simon L; Cox, R Anthony

    2010-04-29

    We describe a newly constructed electrodynamic balance with which to measure the relative mass of single aerosol particles at varying relative humidity. Measurements of changing mass with respect to the relative humidity allow mass (m) growth factors (m(aqueous)/m(dry)) and diameter (d) growth factors (d(aqueous)/d(dry)) of the aerosol to be determined. Four aerosol types were investigated: malonic acid, glutaric acid, mixtures of malonic acid and sodium chloride, and mixtures of glutaric acid and sodium chloride. The mass growth factors of the malonic acid and glutaric acid aqueous phase aerosols, at 85% relative humidity, were 2.11 +/- 0.08 and 1.73 +/- 0.19, respectively. The mass growth factors of the mixed organic/inorganic aerosols are dependent upon the molar fraction of the individual components. Results are compared with previous laboratory determinations and theoretical predictions.

  10. Concentration levels and source apportionment of ultrafine particles in road microenvironments

    NASA Astrophysics Data System (ADS)

    Argyropoulos, G.; Samara, C.; Voutsa, D.; Kouras, A.; Manoli, E.; Voliotis, A.; Tsakis, A.; Chasapidis, L.; Konstandopoulos, A.; Eleftheriadis, K.

    2016-03-01

    A mobile laboratory unit (MOBILAB) with on-board instrumentation (Scanning Mobility Particle Sizer, SMPS; Ambient NOx analyzer) was used to measure size-resolved particle number concentrations (PNCs) of quasi-ultrafine particles (UFPs, 9-372 nm), along with NOx, in road microenvironments. On-road measurements were carried out in and around a large Greek urban agglomeration, the Thessaloniki Metropolitan Area (TMA). Two 2-week measurement campaigns were conducted during the warm period of 2011 and the cold period of 2012. During each sampling campaign, MOBILAB was driven through a 5-day inner-city route and a second 5-day external route covering in total a wide range of districts (urban, urban background, industrial and residential), and road types (major and minor urban roads, freeways, arterial and interurban roads). All routes were conducted during working days, in morning and in afternoon hours under real-world traffic conditions. Spatial classification of MOBILAB measurements involved the assignment of measurement points to location bins defined by the aspect ratio of adjacent urban street canyons (USCs). Source apportionment was further carried out, by applying Positive Matrix Factorization (PMF) to particle size distribution data. Apportioned PMF factors were interpreted, by employing a two-step methodology, which involved (a) statistical association of PMF factor contributions with 12 h air-mass back-trajectories ending at the TMA during MOBILAB measurements, and (b) Multiple Linear Regression (MLR) using PMF factor contributions as the dependent variables, while relative humidity, solar radiation flux, and vehicle speed were used as the independent variables. The applied data analysis showed that low-speed cruise and high-load engine operation modes are the two dominant sources of UFPs in most of the road microenvironments in the TMA, with significant contributions from background photochemical processes during the warm period, explaining the reversed

  11. Primary Accretion and Turbulent Cascades: Scale-Dependence of Particle Concentration Multiplier Probability Distribution Functions

    NASA Astrophysics Data System (ADS)

    Cuzzi, Jeffrey N.; Weston, B.; Shariff, K.

    2013-10-01

    Primitive bodies with 10s-100s of km diameter (or even larger) may form directly from small nebula constituents, bypassing the step-by-step “incremental growth” that faces a variety of barriers at cm, m, and even 1-10km sizes. In the scenario of Cuzzi et al (Icarus 2010 and LPSC 2012; see also Chambers Icarus 2010) the immediate precursors of 10-100km diameter asteroid formation are dense clumps of chondrule-(mm-) size objects. These predictions utilize a so-called cascade model, which is popular in turbulence studies. One of its usual assumptions is that certain statistical properties of the process (the so-called multiplier pdfs p(m)) are scale-independent within a cascade of energy from large eddy scales to smaller scales. In similar analyses, Pan et al (2011 ApJ) found discrepancies with results of Cuzzi and coworkers; one possibility was that p(m) for particle concentration is not scale-independent. To assess the situation we have analyzed recent 3D direct numerical simulations of particles in turbulence covering a much wider range of scales than analyzed by either Cuzzi and coworkers or by Pan and coworkers (see Bec et al 2010, J. Flu. Mech 646, 527). We calculated p(m) at scales ranging from 45-1024η where η is the Kolmogorov scale, for both particles with a range of stopping times spanning the optimum value, and for energy dissipation in the fluid. For comparison, the p(m) for dissipation have been observed to be scale-independent in atmospheric flows (at much larger Reynolds number) for scales of at least 30-3000η. We found that, in the numerical simulations, the multiplier distributions for both particle concentration and fluid dissipation are as expected at scales of tens of η, but both become narrower and less intermittent at larger scales. This is consistent with observations of atmospheric flows showing scale independence to >3000η if scale-free behavior is established only after some number 10 of large-scale bifurcations (at scales perhaps

  12. Submicrometer-Sized Thermometer Particles Exploiting Selective Nucleic Acid Stability.

    PubMed

    Puddu, Michela; Mikutis, Gediminas; Stark, Wendelin J; Grass, Robert N

    2016-01-27

    Encapsulated nucleic acid selective damage quantification by real-time polymerase chain reaction is used as sensing mechanism to build a novel class of submicrometer size thermometer. Thanks to the high thermal and chemical stability, and the capability of storing the read accumulated thermal history, the sensor overcomes some of current limitations in small scale thermometry.

  13. Short communication: Association of milk fatty acids with early lactation hyperketonemia and elevated concentration of nonesterified fatty acids.

    PubMed

    Mann, S; Nydam, D V; Lock, A L; Overton, T R; McArt, J A A

    2016-07-01

    The objective of our study was to extend the limited research available on the association between concentrations of milk fatty acids and elevated nonesterified fatty acids (NEFA) and β-hydroxybutyrate (BHB) concentrations in early lactation dairy cattle. Measurement of milk fatty acids for detection of cows in excessive negative energy balance has the potential to be incorporated in routine in-line monitoring systems. Blood samples were taken from 84 cows in second or greater lactation 3 times per week between 3 to 14 d in milk. Cows were characterized as hyperketonemic (HYK) if blood BHB concentration was ≥1.2mmol/L at least once and characterized as having elevated concentrations of NEFA (NEFAH) if serum NEFA concentration was ≥1mmol/L at least once. Composition of colostrum and milk fatty acids at wk 2 postpartum was used to investigate the potential diagnostic value of individual fatty acids and fatty acid ratios for the correct classification of cows with NEFA and BHB concentrations above these thresholds, respectively. Receiver operating characteristic (ROC) curves were used to identify thresholds of fatty acid concentration and fatty acid ratios when ROC area under the curve was ≥0.70. Correct classification rate (CCR, %) was calculated as {[(number of true positives + number of true negatives)/total number tested] × 100}. None of the colostrum fatty acids yielded a sufficiently high area under the curve in ROC analysis for the association with HYK and NEFAH. The following fatty acids and fatty acid ratios were identified for an association with NEFAH (threshold, CCR): C15:0 (≤0.65g/100g, 68.3%); cis-9 C16:1 (≥1.85g/100g, 70.7%); cis-9 C18:1 (≥26g/100g, 69.5%), cis-9 C18:1 to C15:0 ratio (≥45, 69.5%); cis-9 C16:1 to C15:0 (≥2.50, 73.2%). Several fatty acids were associated with HYK (threshold, CCR): C6:0 (≤1.68g/100g, 80.5%), C8:0 (≤0.80g/100g, 80.5%), C10:0 (≤1.6g/100g, 79.3%); C12:0 (≤1.42g/100g, 82.9%); C14:0 (≤6.10g/100g, 84

  14. A Stochastic Framework For Sediment Concentration Estimation By Accounting Random Arrival Processes Of Incoming Particles Into Receiving Waters

    NASA Astrophysics Data System (ADS)

    Tsai, C.; Hung, R. J.

    2015-12-01

    This study attempts to apply queueing theory to develop a stochastic framework that could account for the random-sized batch arrivals of incoming sediment particles into receiving waters. Sediment particles, control volume, mechanics of sediment transport (such as mechanics of suspension, deposition and resuspension) are treated as the customers, service facility and the server respectively in queueing theory. In the framework, the stochastic diffusion particle tracking model (SD-PTM) and resuspension of particles are included to simulate the random transport trajectories of suspended particles. The most distinguished characteristic of queueing theory is that customers come to the service facility in a random manner. In analogy to sediment transport, this characteristic is adopted to model the random-sized batch arrival process of sediment particles including the random occurrences and random magnitude of incoming sediment particles. The random occurrences of arrivals are simulated by Poisson process while the number of sediment particles in each arrival can be simulated by a binominal distribution. Simulations of random arrivals and random magnitude are proposed individually to compare with the random-sized batch arrival simulations. Simulation results are a probabilistic description for discrete sediment transport through ensemble statistics (i.e. ensemble means and ensemble variances) of sediment concentrations and transport rates. Results reveal the different mechanisms of incoming particles will result in differences in the ensemble variances of concentrations and transport rates under the same mean incoming rate of sediment particles.

  15. Turbulent Concentration of mm-Size Particles in the Protoplanetary Nebula: Scale-Dependent Cascades

    NASA Technical Reports Server (NTRS)

    Cuzzi, J. N.; Hartlep, T.

    2015-01-01

    The initial accretion of primitive bodies (here, asteroids in particular) from freely-floating nebula particles remains problematic. Traditional growth-by-sticking models encounter a formidable "meter-size barrier" (or even a mm-to-cm-size barrier) in turbulent nebulae, making the preconditions for so-called "streaming instabilities" difficult to achieve even for so-called "lucky" particles. Even if growth by sticking could somehow breach the meter size barrier, turbulent nebulae present further obstacles through the 1-10km size range. On the other hand, nonturbulent nebulae form large asteroids too quickly to explain long spreads in formation times, or the dearth of melted asteroids. Theoretical understanding of nebula turbulence is itself in flux; recent models of MRI (magnetically-driven) turbulence favor low-or- no-turbulence environments, but purely hydrodynamic turbulence is making a comeback, with two recently discovered mechanisms generating robust turbulence which do not rely on magnetic fields at all. An important clue regarding planetesimal formation is an apparent 100km diameter peak in the pre-depletion, pre-erosion mass distribution of asteroids; scenarios leading directly from independent nebula particulates to large objects of this size, which avoid the problematic m-km size range, could be called "leapfrog" scenarios. The leapfrog scenario we have studied in detail involves formation of dense clumps of aerodynamically selected, typically mm-size particles in turbulence, which can under certain conditions shrink inexorably on 100-1000 orbit timescales and form 10-100km diameter sandpile planetesimals. There is evidence that at least the ordinary chondrite parent bodies were initially composed entirely of a homogeneous mix of such particles. Thus, while they are arcane, turbulent concentration models acting directly on chondrule size particles are worthy of deeper study. The typical sizes of planetesimals and the rate of their formation can be

  16. Uptake of nitric acid by sub-micron-sized ice particles

    NASA Astrophysics Data System (ADS)

    Arora, O. P.; Cziczo, D. J.; Morgan, A. M.; Abbatt, J. P. D.; Niedziela, R. F.

    The uptake of gas phase nitric acid by half-micron-diameter ice crystals has been studied at 230 K by measuring the nitrate content of ice particles which have been exposed to 5 × 10-6 torr of nitric acid in a low temperature flow tube. A cold NaOH-coated denuder is used to distinguish gas-phase nitric acid from adsorbed nitric acid. Ice particle diameters were determined by fitting measured aerosol infrared extinction spectra to spectra calculated via Mie theory, and their number density is measured directly with a CN counter. Under conditions in which the surface is saturated and not all the gas-phase nitric acid adsorbs, the measured uptakes are 1.2 × 1014 molecules/cm² where the surface area is the geometric area of the particles. Within experimental uncertainties, this surface coverage is the same as that measured on thin films of ice formed by freezing liquid water. These results are the first quantitative study of the nitric acid uptake capacity of ice particles, and they provide additional support to the suggestion that ice and snow provide a route for the efficient scavenging of nitric acid from the atmosphere.

  17. External concentration of organic acid anions and pH: key independent variables for studying how organic acids inhibit growth of bacteria in mildly acidic foods.

    PubMed

    Carpenter, C E; Broadbent, J R

    2009-01-01

    Although the mechanisms by which organic acids inhibit growth of bacteria in mildly acidic foods are not fully understood, it is clear that intracellular accumulation of anions is a primary contributor to inhibition of bacterial growth. We hypothesize that intracellular accumulation of anions is driven by 2 factors, external anion concentration and external acidity. This hypothesis follows from basic chemistry principles that heretofore have not been fully applied to studies in the field, and it has led us to develop a novel approach for predicting internal anion concentration by controlling the external concentration of anions and pH. This approach overcomes critical flaws in contemporary experimental design that invariably target concentration of either protonated acid or total acid in the growth media thereby leaving anion concentration to vary depending on the pK(a) of the acids involved. Failure to control external concentration of anions has undoubtedly confounded results, and it has likely led to misleading conclusions regarding the antimicrobial action of organic acids. In summary, we advocate an approach for directing internal anion levels by controlling external concentration of anions and pH because it presents an additional opportunity to study the mechanisms by which organic acids inhibit bacterial growth. Knowledge gained from such studies would have important application in the control of important foodborne pathogens such as Listeria monocytogenes, and may also facilitate efforts to promote the survival in foods or beverages of desirable probiotic bacteria.

  18. Annular denuders for use in global climate and stratospheric measurements of acidic gases and particles

    NASA Technical Reports Server (NTRS)

    Stevens, Robert K.

    1991-01-01

    Measurements of acidic and basic gases that coexist with fine particle (less than 2.5 micron) may be useful for determining the impact of these species on global climate changes and determining species that influence stratospheric ozone levels. Annular denuders are well suited for this purpose. A new concentric annular denuder system, consisting of a three channel denuder, a Teflon coated cyclone preseparator, and a multistage filter pack was developed, evaluated, and shown to provide reliable atmospheric measurements of SO2, HNO2, HNO3, NH3, SO4(=), NH4(+), NO3(-), and H(+). For example, the precision of the annular denuder for the ambient measurements of HNO3 and nitrates at concentrations between 0.1 to 3 microgram/cu m was + or - 12 and 16 pct., respectively. The 120 x 25 mm three channel denuder is encased in a stainless steel sheath and has annular spaces that are 1 mm wide. This design was shown to have nearly identical capacity for removal of SO2 as conventional 210 x 25 mm single channel denuder configurations. The cyclone preseparator was designed and tested to have a D sub 50 cutoff diameter of 2.5 micron and minimal retention of HNO3.

  19. Concentrated ambient ultrafine particle exposure induces cardiac change in young healthy volunteers

    EPA Science Inventory

    Exposure to ambient ultrafine particles has been associated with cardiopulmonary toxicity and mortality. Adverse effects specifically linked to ultrafine particles include loss of sympathovagal balance and altered hemostasis. To characterize the effects of ultrafine particles in ...

  20. Impact of a cylindrical rod on a concentrated particle suspension: dynamics, crack growth and relaxation

    NASA Astrophysics Data System (ADS)

    Myftiu, Eglind; Roche, Matthieu; Kim, Pilnam; Stone, Howard A.

    2010-11-01

    Many highly concentrated particle suspensions are shear thickening; the viscosity increases with shear rate. The physics underlying shear thickening is still under discussion. In recent years, it was pointed out that shear thickening may be connected with a liquid-to-solid phase transition of the suspension. We provide direct evidence of this transition by studying the behavior of aqueous cornstarch suspensions of various concentration and layer thicknesses after impact of a free-falling cylindrical rod, which induces high strain rates and stresses. We observe patterns of regularly distributed radial cracks growing outwards from the impact region. Just after impact, a wave propagates on the surface of the layer and in the neighborhood of the impact a cavity expands. During this expansion, the cavity boundary is torn, and cracks start to grow. These cracks have rough boundaries, as is seen in solids. Once the cracks have reached their maximal extension, the suspension relaxes. The solvent slowly fills the cracks, until the layer returns to its initial shape. We discuss the influence of the layer thickness, starch concentration and impact energy on the dynamics of these cracks. We also discuss some properties of the solid phase of these suspensions as well as their relaxation dynamics.

  1. Transparent exopolymer particles (TEP)-associated membrane fouling at different Na(+) concentrations.

    PubMed

    Meng, Shujuan; Liu, Yu

    2017-03-15

    Membrane filtration has been widely applied for water treatment, wastewater reclamation and seawater desalination. Although extensive research work has been conducted to better understand the fouling mechanism under various conditions, little has been known about the transparent exopolymer particles (TEP)-associated membrane fouling at different Na(+) concentrations. In this study, the influence of Na(+) concentration on the TEP formation as well as the filtration behaviors of alginate blocks was investigated. Results showed that increasing Na(+) concentration substantially reduced the TEP formation from all types of alginate blocks, thus preventing the cake layer development on the membrane surface. As a result, the TEP-associated membrane fouling was found to be kinetically slower and much less at higher Na(+) level. Furthermore, filtration tests of alginate blocks at freshwater and seawater conditions were also conducted, showing that TEP-associated fouling in freshwater is much server than that in seawater at the defined conditions. This study reveals that the TEP formation is significantly influenced by the chemistry condition of bulk solution and membrane fouling is profoundly affected by the TEP levels in feed water.

  2. Seasonal variation of atmospheric particle number concentrations, new particle formation and atmospheric oxidation capacity at the high Arctic site Villum Research Station, Station Nord

    NASA Astrophysics Data System (ADS)

    Nguyen, Quynh T.; Glasius, Marianne; Sørensen, Lise L.; Jensen, Bjarne; Skov, Henrik; Birmili, Wolfram; Wiedensohler, Alfred; Kristensson, Adam; Nøjgaard, Jacob K.; Massling, Andreas

    2016-09-01

    This work presents an analysis of the physical properties of sub-micrometer aerosol particles measured at the high Arctic site Villum Research Station, Station Nord (VRS), northeast Greenland, between July 2010 and February 2013. The study focuses on particle number concentrations, particle number size distributions and the occurrence of new particle formation (NPF) events and their seasonality in the high Arctic, where observations and characterization of such aerosol particle properties and corresponding events are rare and understanding of related processes is lacking.A clear accumulation mode was observed during the darker months from October until mid-May, which became considerably more pronounced during the prominent Arctic haze months from March to mid-May. In contrast, nucleation- and Aitken-mode particles were predominantly observed during the summer months. Analysis of wind direction and wind speed indicated possible contributions of marine sources from the easterly side of the station to the observed summertime particle number concentrations, while southwesterly to westerly winds dominated during the darker months. NPF events lasting from hours to days were mostly observed from June until August, with fewer events observed during the months with less sunlight, i.e., March, April, September and October. The results tend to indicate that ozone (O3) might be weakly anti-correlated with particle number concentrations of the nucleation-mode range (10-30 nm) in almost half of the NPF events, while no positive correlation was observed. Calculations of air mass back trajectories using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model for the NPF event days suggested that the onset or interruption of events could possibly be explained by changes in air mass origin. A map of event occurrence probability was computed, indicating that southerly air masses from over the Greenland Sea were more likely linked to those events.

  3. In situ air-water and particle-water partitioning of perfluorocarboxylic acids, perfluorosulfonic acids and perfluorooctyl sulfonamide at a wastewater treatment plant.

    PubMed

    Vierke, Lena; Ahrens, Lutz; Shoeib, Mahiba; Palm, Wolf-Ulrich; Webster, Eva M; Ellis, David A; Ebinghaus, Ralf; Harner, Tom

    2013-08-01

    In situ measurements of air and water phases at a wastewater treatment plant (WWTP) were used to investigate the partitioning behavior of perfluorocarboxylic acids (PFCAs), perfluorosulfonic acids (PFSAs) and perfluorooctyl sulfonamide (HFOSA) and their conjugate bases (PFC(-)s, PFS(-)s, and FOSA(-), respectively). Particle-dissolved (Rd) and air-water (QAW) concentration ratios were determined at different tanks of a WWTP. Sum of concentrations of C4-12,14 PFC(A)s, C4,6,8,10 PFS(A)s and (H)FOSA were as high as 50 pg m(-3) (atmospheric gas phase), 2300 ng L(-1) (aqueous dissolved phase) and 2500 ng L(-1) (aqueous particle phase). Particle-dissolved concentration ratios of total species, log Rd, ranged from -2.9 to 1.3 for PFS(A)s, from -1.9 to 1.1 for PFC(A)s and was 0.71 for (H)FOSA. These field-based values agree well with equilibrium partitioning data reported in the literature, suggesting that any in situ generation from precursors, if they are present in this system, occurs at a slower rate than the rate of approach to equilibrium. Acid QAW were also estimated. Good agreement between the QAW and the air-water equilibrium partition coefficient for C8PFCA suggests that the air above the WWTP tanks is at or near equilibrium with the water. Uncertainties in these QAW values are attributed mainly to variability in pKa values reported in the literature. The WWTP provides a unique environment for investigating environmental fate processes of the PFCAs and PFSAs under 'real' conditions in order to better understand and predict their fate in the environment.

  4. The effects of vehicle emissions and nucleation events on vertical particle concentration profiles around urban office buildings

    NASA Astrophysics Data System (ADS)

    Quang, T. N.; He, C.; Morawska, L.; Knibbs, L. D.; Falk, M.

    2012-01-01

    Despite its role in determining both indoor and outdoor human exposure to anthropogenic particles, there is limited information describing vertical profiles of particle concentrations in urban environments, especially for ultrafine particles. Furthermore, the results of the few studies performed have been inconsistent. As such this study aimed to assess the influence of vehicle emissions and nucleation formation on particle concentrations (PN and PM2.5) at different heights around three urban office buildings located next to busy roads in Brisbane, Australia, and place these results in the broader context of the existing literature. Two sets of instruments were used to simultaneously measure PN size distribution, PN and PM2.5 concentrations, respectively, for up to three weeks each at three office buildings. The results showed that both PN and PM2.5 concentrations around building envelope were influenced by vehicle emissions and new particle formation, and that they exhibited variability across the three different office buildings. During the nucleation event, PN concentrations increased (21-46%), while PM2.5 concentrations decreased (36-52%) with height at all three buildings. This study has shown an underappreciated role of nucleation in producing particles that can affect large numbers of people, due to the high density and occupancy of urban office buildings and the fact that the vast majority of people's time is spent indoors. These findings highlight important new information related to the previously overlooked role of particle formation in the urban atmosphere and its potential effects on selection of air intake locations and appropriate filter types when designing or upgrading mechanical ventilation systems in urban office buildings. The results also serve to better define particle behaviour and variability around building envelopes, which has implications for studies of both human exposure and particle dynamics.

  5. Water uptake properties of internally mixed sodium halide and succinic acid particles

    NASA Astrophysics Data System (ADS)

    Miñambres, Lorena; Méndez, Estíbaliz; Sánchez, María N.; Castaño, Fernando; Basterretxea, Francisco J.

    2011-10-01

    Sea salt aerosols include appreciable fractions of organic material, that can affect properties such as hygroscopicity, phase transition or chemical reactivity. Although sodium chloride is the major component of marine salt, bromide and iodide ions tend to accumulate onto particle surfaces and influence their behaviour. The hygroscopic properties of internally mixed submicrometric particles composed of succinic acid (SA) and NaX (where X = F, Cl, Br or I) have been studied by infrared absorption spectroscopy in an aerosol flow cell at ambient temperature for different relative succinic acid/NaX compositions. The results show that deliquescence relative humidities of SA/NaF and SA/NaCl are equal to those of the pure sodium halides. SA/NaBr particles, on the other hand, deliquesce at lower relative humidities than pure NaBr particles, the effect being more marked as the SA/NaBr mass ratio approaches unity. The SA/NaI system behaves as a non-deliquescent system, absorbing liquid water at all relative humidities, as in pure NaI. Succinic acid phase in the particles has been spectroscopically monitored at given values of both RH and SA/NaX solute mass ratio. The different hygroscopic properties as the halogen ion is changed can be rationalized in terms of simple thermodynamic arguments and can be attributed to the relative contributions of ion-molecule interactions in the solid particles. The observed behaviour is of interest for tropospheric sea salt aerosols mixed with organic acids.

  6. Feasibility of the Simultaneous Determination of Monomer Concentrations and Particle Size in Emulsion Polymerization Using in Situ Raman Spectroscopy

    PubMed Central

    2015-01-01

    An immersion Raman probe was used in emulsion copolymerization reactions to measure monomer concentrations and particle sizes. Quantitative determination of monomer concentrations is feasible in two-monomer copolymerizations, but only the overall conversion could be measured by Raman spectroscopy in a four-monomer copolymerization. The feasibility of measuring monomer conversion and particle size was established using partial least-squares (PLS) calibration models. A simplified theoretical framework for the measurement of particle sizes based on photon scattering is presented, based on the elastic-sphere-vibration and surface-tension models. PMID:26900256

  7. High concentrations of biological aerosol particles and ice nuclei during and after rain

    NASA Astrophysics Data System (ADS)

    Huffman, J. A.; Pöhlker, C.; Prenni, A. J.; DeMott, P. J.; Mason, R. H.; Robinson, N. H.; Fröhlich-Nowoisky, J.; Tobo, Y.; Després, V. R.; Garcia, E.; Gochis, D. J.; Harris, E.; Müller-Germann, I.; Ruzene, C.; Schmer, B.; Sinha, B.; Day, D. A.; Andreae, M. O.; Jimenez, J. L.; Gallagher, M.; Kreidenweis, S. M.; Bertram, A. K.; Pöschl, U.

    2013-01-01

    Bioaerosols are relevant for public health and may play an important role in the climate system, but their atmospheric abundance, properties and sources are not well understood. Here we show that the concentration of airborne biological particles in a forest ecosystem increases dramatically during rain and that bioparticles are closely correlated with atmospheric ice nuclei (IN). The greatest increase of bioparticles and IN occurred in the size range of 2-6 μm, which is characteristic for bacterial aggregates and fungal spores. By DNA analysis we found high diversities of airborne bacteria and fungi, including human and plant pathogens (mildew, smut and rust fungi, molds, Enterobacteraceae, Pseudomonadaceae). In addition to known bacterial and fungal IN (Pseudomonas sp., Fusarium sporotrichioides), we discovered two species of IN-active fungi that were not previously known as biological ice nucleators (Isaria farinosa and Acremonium implicatum). Our findings suggest that atmospheric bioaerosols, IN and rainfall are more tightly coupled than previously assumed.

  8. High concentrations of biological aerosol particles and ice nuclei during and after rain

    NASA Astrophysics Data System (ADS)

    Huffman, J. Alex; Pöhlker, Christopher; Prenni, Anthony; DeMott, Paul; Mason, Ryan; Robinson, Niall; Fröhlich-Nowoisky, Janine; Tobo, Yutaka; Després, Viviane; Garcia, Elvin; Gochis, David; Sinha, Bärbel; Day, Douglas; Andreae, Meinrat; Jimenez, Jose; Gallagher, Martin; Kreidenweis, Sonia; Bertram, Allan; Pöschl, Ulrich

    2013-04-01

    Bioaerosols are relevant for public health and may play an important role in the climate system, but their atmospheric abundance, properties and sources are not well understood. Here we show that the concentration of airborne biological particles in a forest ecosystem increases dramatically during rain and that bioparticles are closely correlated with atmospheric ice nuclei (IN). The greatest increase of bioparticles and IN occurred in the size range of 2-6 µm, which is characteristic for bacterial aggregates and fungal spores. By DNA analysis we found high diversities of airborne bacteria and fungi, including human and plant pathogens (mildew, smut and rust fungi, molds, Enterobacteraceae, Pseudomonadaceae). In addition to known bacterial and fungal IN (Pseudomonas sp., Fusarium sporotrichioides), we discovered two species of IN-active fungi that were not previously known as biological ice nucleators (Isaria farinosa and Acremonium implicatum). Our findings suggest that atmospheric bioaerosols, IN and rainfall are more tightly coupled than previously assumed.

  9. Comparison of Satellite Observations of Aerosol Optical Depth to Surface Monitor Fine Particle Concentration

    NASA Technical Reports Server (NTRS)

    Kleb, Mary M.; AlSaadi, Jassim A.; Neil, Doreen O.; Pierce, Robert B.; Pippin, Margartet R.; Roell, Marilee M.; Kittaka, Chieko; Szykman, James J.

    2004-01-01

    Under NASA's Earth Science Applications Program, the Infusing satellite Data into Environmental Applications (IDEA) project examined the relationship between satellite observations and surface monitors of air pollutants to facilitate a more capable and integrated observing network. This report provides a comparison of satellite aerosol optical depth to surface monitor fine particle concentration observations for the month of September 2003 at more than 300 individual locations in the continental US. During September 2003, IDEA provided prototype, near real-time data-fusion products to the Environmental Protection Agency (EPA) directed toward improving the accuracy of EPA s next-day Air Quality Index (AQI) forecasts. Researchers from NASA Langley Research Center and EPA used data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument combined with EPA ground network data to create a NASA-data-enhanced Forecast Tool. Air quality forecasters used this tool to prepare their forecasts of particle pollution, or particulate matter less than 2.5 microns in diameter (PM2.5), for the next-day AQI. The archived data provide a rich resource for further studies and analysis. The IDEA project uses data sets and models developed for tropospheric chemistry research to assist federal, state, and local agencies in making decisions concerning air quality management to protect public health.

  10. Impurity identifications, concentrations and particle fluxes from spectral measurements of the EXTRAP T2R plasma

    NASA Astrophysics Data System (ADS)

    Menmuir, S.; Kuldkepp, M.; Rachlew, E.

    2006-10-01

    An absolute intensity calibrated 0.5 m spectrometer with optical multi-channel analyser detector was used to observe the visible-UV radiation from the plasma in the EXTRAP T2R reversed field pinch experiment. Spectral lines were identified indicating the presence of oxygen, chromium, iron and molybdenum impurities in the hydrogen plasma. Certain regions of interest were examined in more detail and at different times in the plasma discharge. Impurity concentration calculations were made using the absolute intensities of lines of OIV and OV measured at 1-2 ms into the discharge generating estimates of the order of 0.2% of ne in the central region rising to 0.7% of ne at greater radii for OIV and 0.3% rising to 0.6% for OV. Edge electron temperatures of 0.5-5 eV at electron densities of 5-10×1011 cm-3 were calculated from the measured relative intensities of hydrogen Balmer lines. The absolute intensities of hydrogen lines and of multiplets of neutral chromium and molybdenum were used to determine particle fluxes (at 4-5 ms into the plasma) of the order 1×1016, 7×1013 and 3×1013 particles cm-2 s-1, respectively.

  11. Relationship between adipic acid concentration and the core symptoms of autism spectrum disorders.

    PubMed

    Puig-Alcaraz, Carmen; Fuentes-Albero, Milagros; Cauli, Omar

    2016-08-30

    Dicarboxylic acids are an important source of information about metabolism and potential physiopathological alterations in children with autism spectrum disorders (ASDs). We measured the concentration between dicarboxylic adipic and suberic acids in children with an ASD and typically-developing (TD) children and analyzed any relationships between the severity of the core symptoms of ASDs and other clinical features (drugs, supplements, drugs, or diet). The core symptoms of autism were evaluated using the DSM-IV criteria, and adipic acid and suberic acid were measured in urine samples. Overall, no increase in the concentration of adipic acid in children with ASDs compared to TD children, however when considering vitamin B supplementation in ASD there were significantly increased level of urinary adipic acid in children with an ASD not taking vitamin B supplementation compared to supplemented children or to TD children. No significant difference were observed in suberic acid. Interestingly, the increase in adipic acid concentration was significantly and indirectly correlated with the severity of the deficit in socialization and communication skills in children with an ASD. Therefore, therapeutic treatments aimed at decreasing adipic acid concentration might not be beneficial for treating the core symptoms of ASDs.

  12. International Airport Impacts to Air Quality: Size and Related Properties of Large Increases in Ultrafine Particle Number Concentrations.

    PubMed

    Hudda, N; Fruin, S A

    2016-04-05

    We measured particle size distributions and spatial patterns of particle number (PN) and particle surface area concentrations downwind from the Los Angeles International Airport (LAX) where large increases (over local background) in PN concentrations routinely extended 18 km downwind. These elevations were mostly comprised of ultrafine particles smaller than 40 nm. For a given downwind distance, the greatest increases in PN concentrations, along with the smallest mean sizes, were detected at locations under the landing jet trajectories. The smaller size of particles in the impacted area, as compared to the ambient urban aerosol, increased calculated lung deposition fractions to 0.7-0.8 from 0.5-0.7. A diffusion charging instrument (DiSCMini), that simulates alveolar lung deposition, measured a fivefold increase in alveolar-lung deposited surface area concentrations 2-3 km downwind from the airport (over local background), decreasing steadily to a twofold increase 18 km downwind. These ratios (elevated lung-deposited surface area over background) were lower than the corresponding ratios for elevated PN concentrations, which decreased from tenfold to twofold over the same distance, but the spatial patterns of elevated concentrations were similar. It appears that PN concentration can serve as a nonlinear proxy for lung deposited surface area downwind of major airports.

  13. Summary and implications of reported amino acid concentrations in the Murchison meteorite

    NASA Astrophysics Data System (ADS)

    Shock, Everett L.; Schulte, Mitchell D.

    1990-11-01

    A study of literature reports of the concentrations of amino acids in extracts from the Murchison meteorite shows that many of the concentration ratios are constant. There are two possible interpretations of these ratios. One is that they are controlled by the pathways through which the amino acids formed, from which it follows that the amino acids are distributed in the same proportions throughout the meteorite. The other interpretation is that the ratios result from the analytical procedures used to extract the amino acids from the meteorite. These methods rely heavily on high-temperature (100°C) aqueous extraction and subsequent high-temperature acid hydrolysis. A correlation was observed in the present study between the relative concentrations of several amino acids in the meteorite extracts and their relative aqueous solubilities at 100°C (alanine, valine, leucine, isoleucine, norleucine, aspartic acid, glutamic acid, and glycine). The extract solutions are dilute, and far from the saturation limits, but these correlations suggest that the sampling procedure affects directly the reported concentrations for these amino acids. Ratios of the concentration of serine to those of glycine are also constant but cannot be accounted for solely by relative solubilities, and, as suggested elsewhere, serine as well as phenylalanine and methionine may be terrestrial contaminants. Data for β-alanine, α-aminobutyric acid, proline, sarcosine, alloisoleucine, β-aminoisobutyric acid, β-aminobutyric acid, and threonine also show constant abundances relative to glycine, but lack of solubility data at extraction conditions prohibits evaluating the extent of possible sampling bias for these amino acids. If the extraction process does not bias the results, and all extractable amino acids are removed from meteorite samples, then the properties of amino acids which control both their solubilities and their concentrations in the meteorite need to be established. The possibility of

  14. On the composition of ammonia-sulfuric-acid ion clusters during aerosol particle formation

    NASA Astrophysics Data System (ADS)

    Schobesberger, S.; Franchin, A.; Bianchi, F.; Rondo, L.; Duplissy, J.; Kürten, A.; Ortega, I. K.; Metzger, A.; Schnitzhofer, R.; Almeida, J.; Amorim, A.; Dommen, J.; Dunne, E. M.; Ehn, M.; Gagné, S.; Ickes, L.; Junninen, H.; Hansel, A.; Kerminen, V.-M.; Kirkby, J.; Kupc, A.; Laaksonen, A.; Lehtipalo, K.; Mathot, S.; Onnela, A.; Petäjä, T.; Riccobono, F.; Santos, F. D.; Sipilä, M.; Tomé, A.; Tsagkogeorgas, G.; Viisanen, Y.; Wagner, P. E.; Wimmer, D.; Curtius, J.; Donahue, N. M.; Baltensperger, U.; Kulmala, M.; Worsnop, D. R.

    2015-01-01

    The formation of particles from precursor vapors is an important source of atmospheric aerosol. Research at the Cosmics Leaving OUtdoor Droplets (CLOUD) facility at CERN tries to elucidate which vapors are responsible for this new-particle formation, and how in detail it proceeds. Initial measurement campaigns at the CLOUD stainless-steel aerosol chamber focused on investigating particle formation from ammonia (NH3) and sulfuric acid (H2SO4). Experiments were conducted in the presence of water, ozone and sulfur dioxide. Contaminant trace gases were suppressed at the technological limit. For this study, we mapped out the compositions of small NH3-H2SO4 clusters over a wide range of atmospherically relevant environmental conditions. We covered [NH3] in the range from < 2 to 1400 pptv, [H2SO4] from 3.3 × 106 to 1.4 × 109 cm-3 (0.1 to 56 pptv), and a temperature range from -25 to +20 °C. Negatively and positively charged clusters were directly measured by an atmospheric pressure interface time-of-flight (APi-TOF) mass spectrometer, as they initially formed from gas-phase NH3 and H2SO4, and then grew to larger clusters containing more than 50 molecules of NH3 and H2SO4, corresponding to mobility-equivalent diameters greater than 2 nm. Water molecules evaporate from these clusters during sampling and are not observed. We found that the composition of the NH3-H2SO4 clusters is primarily determined by the ratio of gas-phase concentrations [NH3] / [H2SO4], as well as by temperature. Pure binary H2O-H2SO4 clusters (observed as clusters of only H2SO4) only form at [NH3] / [H2SO4] < 0.1 to 1. For larger values of [NH3] / [H2SO4], the composition of NH3-H2SO4 clusters was characterized by the number of NH3 molecules m added for each added H2SO4 molecule n (Δm/Δ n), where n is in the range 4-18 (negatively charged clusters) or 1-17 (positively charged clusters). For negatively charged clusters, Δ m/Δn saturated between 1 and 1.4 for [NH3] / [H2SO4] > 10. Positively

  15. On the composition of ammonia-sulfuric acid clusters during aerosol particle formation

    NASA Astrophysics Data System (ADS)

    Schobesberger, S.; Franchin, A.; Bianchi, F.; Rondo, L.; Duplissy, J.; Kürten, A.; Ortega, I. K.; Metzger, A.; Schnitzhofer, R.; Almeida, J.; Amorim, A.; Dommen, J.; Dunne, E. M.; Ehn, M.; Gagné, S.; Ickes, L.; Junninen, H.; Hansel, A.; Kerminen, V.-M.; Kirkby, J.; Kupc, A.; Laaksonen, A.; Lehtipalo, K.; Mathot, S.; Onnela, A.; Petäjä, T.; Riccobono, F.; Santos, F. D.; Sipilä, M.; Tomé, A.; Tsagkogeorgas, G.; Viisanen, Y.; Wagner, P. E.; Wimmer, D.; Curtius, J.; Donahue, N. M.; Baltensperger, U.; Kulmala, M.; Worsnop, D. R.

    2014-05-01

    The formation of particles from precursor vapors is an important source of atmospheric aerosol. Research at the Cosmics Leaving OUtdoor Droplets (CLOUD) facility at CERN tries to elucidate which vapors are responsible for this new particle formation, and how in detail it proceeds. Initial measurement campaigns at the CLOUD stainless-steel aerosol chamber focused on investigating particle formation from ammonia (NH3) and sulfuric acid (H2SO4). Experiments were conducted in the presence of water, ozone and sulfur dioxide. Contaminant trace gases were suppressed at the technological limit. For this study, we mapped out the compositions of small NH3-H2SO4 clusters over a wide range of atmospherically relevant environmental conditions. We covered [NH3] in the range from <2 to 1400 pptv, [H2SO4] from 3.3 × 106 to 1.4 × 109 cm-3, and a temperature range from -25 to +20 °C. Negatively and positively charged clusters were directly measured by an atmospheric pressure interface time-of-flight (APi-TOF) mass spectrometer, as they initially formed from gas-phase NH3 and H2SO4, and then grew to larger clusters containing more than 50 molecules of NH3 and H2SO4, corresponding to mobility-equivalent diameters greater than 2 nm. Water molecules evaporate from these clusters during sampling and are not observed. We found that the composition of the NH3-H2SO4 clusters is primarily determined by the ratio of gas-phase concentrations [NH3] / [H2SO4], as well as by temperature. Pure binary H2O-H2SO4 clusters (observed as clusters of only H2SO4) only form at [NH3] / [H2SO4]<0.1 to 1. For larger values of [NH3] / [H2SO4], the composition of NH3-H2SO4 clusters was characterized by the number of NH3 molecules m added for each added H2SO4 molecule n (Δm / Δn), where n is in the range 4-18 (negatively charged clusters) or 1-17 (positively charged clusters). For negatively charged clusters, Δm / Δn saturated between 1 and 1.4 for [NH3] / [H2SO4]>10. Positively charged clusters grew on

  16. Effects of concentrated ambient particles on normal and hypersecretory airways in rats.

    PubMed

    Harkema, Jack R; Keeler, Gerald; Wagner, James; Morishita, Masako; Timm, Edward; Hotchkiss, Jon; Marsik, Frank; Dvonch, Timothy; Kaminski, Norbert; Barr, Edward

    2004-08-01

    in southwestern Detroit during the summer months when particulate air pollution is usually high (July and September 2000). We monitored the outdoor air pollution in this community daily, and exposed normal and compromised rats to concentrated PM2.5 from this local urban atmosphere. Rats in the inhalation studies were exposed for 1 day or for 4 or 5 consecutive days (10 hours/day) to either filtered air (controls) or concentrated ambient particles (CAPs) delivered by a Harvard ambient fine particle concentrator. Rats were killed 24 hours after the end of the exposure. Biochemical, morphometric, and molecular techniques were used to identify airway epithelial and inflammatory responses to CAPs. Lung lobes were also either intratracheally lavaged with saline to determine cellular composition and protein in bronchoalveolar lavage fluid (BALF) or removed for analysis by inductively coupled plasma-mass spectrometry (ICPMS) to detect retention of ambient PM2.5--derived trace elements. The Harvard concentrator effectively concentrated the fine ambient particles from this urban atmosphere (10-30 times) without significantly changing the major physicochemical features of the atmospheric particles. Daily CAPs mass concentrations during the 10-hour exposure period (0800-1800) in July ranged from 16 to 895 microg/m3 and in September ranged from 81 to 755 microg/m3. In general, chemical characteristics of ambient particles were conserved through the concentrator into the exposure chamber. Single or repeated exposures to CAPs did not cause adverse effects in the nasal or pulmonary airways of healthy F344 or BN rats. In addition, CAPs-related toxicity was not observed in F344 rats pretreated with bacterial endotoxin. Variable airway responses to CAPs exposure were observed in BN rats with preexisting allergic airway disease induced by OVA sensitization and challenge. Only OVA-challenged BN rats exposed to CAPs for 5 consecutive days in September 2000 had significant increases in

  17. Triggering of Myocardial Infarction by Increased Ambient Fine Particle Concentration: Effect Modification by Source Direction

    PubMed Central

    Hopke, Philip K.; Kane, Cathleen; Utell, Mark J.; Chalupa, David C.; Kumar, Pramod; Ling, Frederick; Gardner, Blake; Rich, David Q.

    2015-01-01

    Background Previously, we reported a 18% increased odds of ST-elevation myocardial infarction (STEMI) associated with each 7.1 µg/m3 increase in PM2.5 concentration in the hour prior to MI onset. We found no association with non-ST elevation myocardial infarction (NSTEMI). We examined if this association was modified by PM2.5 source direction. Methods We used the NOAA HYbrid Single-Particle Lagrangian Trajectory (HYSPLIT) model to calculate each hourly air mass location for the 24 hours before each case or control time period in our previous PM2.5/STEMI case-crossover analysis. Using these data on patients with STEMI (n=338), hourly PM2.5 concentrations, and case-crossover methods, we evaluated whether our PM2.5/STEMI association was modified by whether the air mass passed through each of the 8 cardinal wind direction sectors in the previous 24 hours. Results When the air mass passed through the West-Southwest direction (WSW) any time in the past 24 hours, the odds of STEMI associated with each 7.1 µg/m3 increase in PM2.5 concentration in the previous hour (OR=1.27; 95% CI=1.08, 1.22) was statistically significantly (p=0.01) greater than the relative odds of STEMI associated with increased PM2.5 concentration when the wind arrived from any other direction (OR=0.99; 95% CI=0.80, 1.22). We found no other effect modification by any other source direction. Further, relative odds estimates were largest when the time spent in the WSW was 8-16 hours, compared to ≤7 hours or 17-24 hours, suggesting that particles arising from sources in this direction were more potent in triggering STEMIs. Conclusions Since relative odds estimates were higher when the air mass passed through the WSW octant in the past 24 hours, there may be specific components of the ambient aerosol that are more potent in triggering STEMIs. This direction is associated with substantial emissions from coal-fired power plants and other industrial sources of the Ohio River Valley, many of which are

  18. Trace metal concentrations in suspended particles, sediments and clams (Ruditapes philippinarum) from Jiaozhou Bay of China.

    PubMed

    Li, Yu; Yu, Zhiming; Song, Xiuxian; Mu, Qinglin

    2006-10-01

    Suspended particulate matter (SPM), sediments and clams were collected at three sites in Jiaozhou Bay to assess the magnitude of trace metal pollution in the area. Metal concentrations in SPM (Cu: 40.11-203; Zn: 118-447; Pb: 50.1-132; Cd: 0.55-4.39; Cr: 147.6-288; Mn: 762-1670 microg/g), sediments (Cu: 17.64-34.26; Zn: 80.79-110; Pb: 24.57-49.59; Cd: 0.099-0.324; Cr: 41.6-88.1; Mn: 343-520 microg/g) and bivalves (Cu: 6.41-19.76; Zn: 35.5-85.5; Pb: 0.31-1.01; Cd: 0.51-0.67; Mn: 27.45-67.6 microg/g) are comparable to those reported for other moderately polluted world environments. SPM showed a less clear pattern. Metal concentrations in sediments displayed a clear geographical trend with values increasing with proximity to major urban centers. The clams (on dry weight) showed a complex pattern due to the variability introduced by age-related factors. Cd showed an apparent reverse industrial trend with higher concentrations in clams collected at distant stations. Zn, Pb and Mn showed no clear geographical pattern, whereas Cu increased in the clams collected in the most industrialized area. In addition, the bioaccumulation factors (BAF) were calculated. The result indicated that the studied Ruditapes philippinarum in Jiaozhou Bay possessed different bioaccumulation capacities for Cd, Zn, Cu, Pb and Mn, and Cd, Zn had a relatively high assimilation of those metals from sediment particles. A significant relationship with clam age was observed for Zn (positive) and Cu (negative) suggesting different physiological requirements for both metals with age. Trace metal concentrations measured in the tissue of the investigated clam were in the range considered safe by the WHO for human use.

  19. Concentration dependence of 4-methylbenzophenone choleic acid crystal phosphorescence: Evidence for a percolation driven structural transformation

    NASA Astrophysics Data System (ADS)

    Kook, S.-K.; Kim, D.-Y.; Hanson, D. M.

    1989-12-01

    Steady state phosphorescence spectra at 4.2 K were obtained for different concentrations of 4-methylbenzophenone (MBP) doped into deoxycholic acid (DCA) crystals. The spectra indicate that at concentrations of 14% and below, the sample consists of choleic acid crystals partially filled with MBP and as the concentration increases to 16%, enough guest sites are filled with MBP to cause the local structure to change to that of the stoichiometric crystal. The stoichiometric ratio of DCA to MBP was determined to be 2:1. Spectral shifts characteristic of energy transfer processes are not observed over the concentration range of 4% to 33% MBP.

  20. Concentration and fractionation of hydrophobic organic acid constituents from natural waters by liquid chromatography

    USGS Publications Warehouse

    Thurman, E.M.; Malcolm, R.L.

    1979-01-01

    A scheme is presented which used adsorption chromatography with pH gradient elution and size-exclusion chromatography to concentrate and separate hydrophobic organic acids from water. A review of chromatographic processes involved in the flow scheme is also presented. Organic analytes which appear in each aqueous fraction are quantified by dissolved organic carbon analysis. Hydrophobic organic acids in a water sample are concentrated on a porous acrylic resin. These acids usually constitute approximately 30-50 percent of the dissolved organic carbon in an unpolluted water sample and are eluted with an aqueous eluent (dilute base). The concentrate is then passed through a column of polyacryloylmorpholine gel, which separates the acids into high- and low-molecular-weight fractions. The high- and low-molecular-weight eluates are reconcentrated by adsorption chromatography, then are eluted with a pH gradient into strong acids (predominately carboxylic acids) and weak acids (predominately phenolic compounds). For standard compounds and samples of unpolluted waters, the scheme fractionates humic substances into strong and weak acid fractions that are separated from the low molecular weight acids. A new method utilizing conductivity is also presented to estimate the acidic components in the methanol fraction.

  1. Organic Acid Concentrations in Rivers Within the Amazon River Drainage Basin

    NASA Astrophysics Data System (ADS)

    Skoog, A.

    2007-12-01

    The composition of the dissolved organic matter pool in both fresh and marine waters is largely unknown. Concentrations of low-molecular-weight organic acids (oxalate, citrate, glycolate, formate, acetate, succinate) have been determined in Brasilian (18 rivers sampled) and Peruvian (19 rivers sampled) rivers within the Amazon River drainage basin. Succinate concentrations were below the detection limit in all rivers. The dominant acid varied among the sampled rivers, indicating that organic acid concentrations depend on river basin characteristics. Organic-acid carbon comprised a highly significant, but variable, fraction of total dissolved carbon, with a range of 3-90%, indicating that organic-acid-derived carbon may be an important source of biologically labile carbon within the Amazon River drainage basin.

  2. Raman scattering investigations of the interaction of a COV with pure and acid doped ice particles

    NASA Astrophysics Data System (ADS)

    Facq, S.; Oancea, A.; Focsa, C.; Chazallon, B.

    2009-04-01

    Ice present in polar stratosphere is as well a common component of the troposphere, particularly in cirrus clouds widespread in tropopause and upper troposphere region. With water droplets, ice constitutes the condensed matter that can interact with atmospheric trace gases via many different trapping processes (co-deposition i.e; incorporation during growing ice conditions, adsorption, freezing etc). The incorporation of trace gases in ice surface/volume can both affect the atmospheric chemistry and the ice structure and reactivity. This can therefore modify the nature and composition of the incorporated species in ice, or in the gas phase. Recently, field measurements have demonstrated the presence of nitric acid in ice particles from cirrus clouds(1,2) (concentration between 0.63 wt% and 2.5 wt %). Moreover, laboratory experiments have shown that the uptake of atmospheric trace gases can be enhanced up to 1 or 2 orders of magnitude in these doped ice particles. Among trace gases capable to interact with atmospheric condensed matter figure volatile organic compounds such as aldehydes, ketones and alcohols (ex: ethanol and methanol). They play an important role in the upper troposphere (3,4) and snowpack chemistry (5) as they can be easily photolysed, producing free radicals and so influence the oxidizing capacity and the ozone-budget of the atmosphere (3,4). The temperature range at which these physico-chemical processes occur extents between ~ 190 K and 273K. Interaction between ice and trace gases are therefore largely dependent on the ice surface properties as well as on the phase formation dynamic (crystalline or not). This study aims to examine and characterize the incorporation of a COV (ex: ethanol), at the surface or in the volume of ice formed by different growth mechanisms (vapour deposition or droplets freezing). Vibrational spectra of water OH and ethanol CH-spectral regions are analysed using confocal micro-Raman spectroscopy at different temperatures

  3. Facile preparation of core@shell and concentration-gradient spinel particles for Li-ion battery cathode materials

    NASA Astrophysics Data System (ADS)

    Kozawa, Takahiro; Naito, Makio

    2015-02-01

    Core@shell and concentration-gradient particles have attracted much attention as improved cathodes for Li-ion batteries (LIBs). However, most of their preparation routes have employed a precisely-controlled co-precipitation method. Here, we report a facile preparation route of core@shell and concentration-gradient spinel particles by dry powder processing. The core@shell particles composed of the MnO2 core and the Li(Ni,Mn)2O4 spinel shell are prepared by mechanical treatment using an attrition-type mill, whereas the concentration-gradient spinel particles with an average composition of LiNi0.32Mn1.68O4 are produced by calcination of their core@shell particles as a precursor. The concentration-gradient LiNi0.32Mn1.68O4 spinel cathode exhibits the high discharge capacity of 135.3 mA h g-1, the wide-range plateau at a high voltage of 4.7 V and the cyclability with a capacity retention of 99.4% after 20 cycles. Thus, the facile preparation route of the core@shell and concentration-gradient particles may provide a new opportunity for the discovery and investigation of functional materials as well as for the cathode materials for LIBs.

  4. Corona ions from overhead transmission voltage powerlines: effect on direct current electric field and ambient particle concentration levels.

    PubMed

    J-Fatokun, Folasade; Jayaratne, Rohan; Morawska, Lidia; Birtwhistle, David; Rachman, Rihandanu; Mengersen, Kerrie

    2010-01-01

    Along with their essential role in electricity transmission and distribution, some powerlines also generate large concentrations of corona ions. This study aimed at the comprehensive investigation of corona ions, vertical direct current electric field (dc e-field), ambient aerosol particle charge, and particle number concentration levels in the proximity of some high/subtransmission voltage powerlines. The influence of meteorology on the instantaneous value of these parameters and the possible existence of links or associations between the parameters measured were also statistically investigated. The presence of positive and negative polarities of corona ions was associated with variation in the mean vertical dc e-field, ambient ion, and particle charge concentration level. Though these variations increased with wind speed, their values also decreased with distance from the powerlines. Predominately positive polarities of ions were recorded up to a distance of 150 m (with the maximum values recorded 50 m downwind of the powerlines). At 200 m from the source, negative ions predominated. Particle number concentration levels, however, remained relatively constant (10(3) particle cm(-3)), irrespective of the sampling site and distance from the powerlines. Meteorological factors of temperature, humidity, and wind direction showed no influence on the electrical parameters measured. The study also discovered that e-field measurements were not necessarily a true representation of the ground-level ambient ion/particle charge concentrations.

  5. Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields.

    PubMed

    Collins, David J; Ma, Zhichao; Ai, Ye

    2016-05-17

    Concentration and separation of particles and biological specimens are fundamental functions of micro/nanofluidic systems. Acoustic streaming is an effective and biocompatible way to create rapid microscale fluid motion and induce particle capture, though the >100 MHz frequencies required to directly generate acoustic body forces on the microscale have traditionally been difficult to generate and localize in a way that is amenable to efficient generation of streaming. Moreover, acoustic, hydrodynamic, and electrical forces as typically applied have difficulty manipulating specimens in the submicrometer regime. In this work, we introduce highly focused traveling surface acoustic waves (SAW) at high frequencies between 193 and 636 MHz for efficient and highly localized production of acoustic streaming vortices on microfluidic length scales. Concentration occurs via a novel mechanism, whereby the combined acoustic radiation and streaming field results in size-selective aggregation in fluid streamlines in the vicinity of a high-amplitude acoustic beam, as opposed to previous acoustic radiation induced particle concentration where objects typically migrate toward minimum pressure locations. Though the acoustic streaming is induced by a traveling wave, we are able to manipulate particles an order of magnitude smaller than possible using the traveling wave force alone. We experimentally and theoretically examine the range of particle sizes that can be captured in fluid streamlines using this technique, with rapid particle concentration demonstrated down to 300 nm diameters. We also demonstrate that locations of trapping and concentration are size-dependent, which is attributed to the combined effects of the acoustic streaming and acoustic forces.

  6. Facile preparation of core@shell and concentration-gradient spinel particles for Li-ion battery cathode materials

    PubMed Central

    Kozawa, Takahiro; Naito, Makio

    2015-01-01

    Core@shell and concentration-gradient particles have attracted much attention as improved cathodes for Li-ion batteries (LIBs). However, most of their preparation routes have employed a precisely-controlled co-precipitation method. Here, we report a facile preparation route of core@shell and concentration-gradient spinel particles by dry powder processing. The core@shell particles composed of the MnO2 core and the Li(Ni,Mn)2O4 spinel shell are prepared by mechanical treatment using an attrition-type mill, whereas the concentration-gradient spinel particles with an average composition of LiNi0.32Mn1.68O4 are produced by calcination of their core@shell particles as a precursor. The concentration-gradient LiNi0.32Mn1.68O4 spinel cathode exhibits the high discharge capacity of 135.3 mA h g−1, the wide-range plateau at a high voltage of 4.7 V and the cyclability with a capacity retention of 99.4% after 20 cycles. Thus, the facile preparation route of the core@shell and concentration-gradient particles may provide a new opportunity for the discovery and investigation of functional materials as well as for the cathode materials for LIBs. PMID:27877756

  7. Facile preparation of core@shell and concentration-gradient spinel particles for Li-ion battery cathode materials.

    PubMed

    Kozawa, Takahiro; Naito, Makio

    2015-02-01

    Core@shell and concentration-gradient particles have attracted much attention as improved cathodes for Li-ion batteries (LIBs). However, most of their preparation routes have employed a precisely-controlled co-precipitation method. Here, we report a facile preparation route of core@shell and concentration-gradient spinel particles by dry powder processing. The core@shell particles composed of the MnO2 core and the Li(Ni,Mn)2O4 spinel shell are prepared by mechanical treatment using an attrition-type mill, whereas the concentration-gradient spinel particles with an average composition of LiNi0.32Mn1.68O4 are produced by calcination of their core@shell particles as a precursor. The concentration-gradient LiNi0.32Mn1.68O4 spinel cathode exhibits the high discharge capacity of 135.3 mA h g(-1), the wide-range plateau at a high voltage of 4.7 V and the cyclability with a capacity retention of 99.4% after 20 cycles. Thus, the facile preparation route of the core@shell and concentration-gradient particles may provide a new opportunity for the discovery and investigation of functional materials as well as for the cathode materials for LIBs.

  8. Source appointment of fine particle number and volume concentration during severe haze pollution in Beijing in January 2013.

    PubMed

    Liu, Zirui; Wang, Yuesi; Hu, Bo; Ji, Dongsheng; Zhang, Junke; Wu, Fangkun; Wan, Xin; Wang, Yonghong

    2016-04-01

    Extreme haze episodes repeatedly shrouded Beijing during the winter of 2012-2013, causing major environmental and health problems. To better understand these extreme events, particle number size distribution (PNSD) and particle chemical composition (PCC) data collected in an intensive winter campaign in an urban site of Beijing were used to investigate the sources of ambient fine particles. Positive matrix factorization (PMF) analysis resolved a total of eight factors: two traffic factors, combustion factors, secondary aerosol, two accumulation mode aerosol factors, road dust, and long-range transported (LRT) dust. Traffic emissions (54%) and combustion aerosol (27%) were found to be the most important sources for particle number concentration, whereas combustion aerosol (33%) and accumulation mode aerosol (37%) dominated particle volume concentrations. Chemical compositions and sources of fine particles changed dynamically in the haze episodes. An enhanced role of secondary inorganic species was observed in the formation of haze pollution. Regional transport played an important role for high particles, contribution of which was on average up to 24-49% during the haze episodes. Secondary aerosols from urban background presented the largest contributions (45%) for the rapid increase of fine particles in the severest haze episode. In addition, the invasion of LRT dust aerosols further elevated the fine particles during the extreme haze episode. Our results showed a clear impact of regional transport on the local air pollution, suggesting the importance of regional-scale emission control measures in the local air quality management of Beijing.

  9. Using Simple Quadratic Equations to Estimate Equilibrium Concentrations of an Acid

    ERIC Educational Resources Information Center

    Brilleslyper, Michael A.

    2004-01-01

    Application of quadratic equations to standard problem in chemistry like finding equilibrium concentrations of ions in an acid solution is explained. This clearly shows that pure mathematical analysis has meaningful applications in other areas as well.

  10. Fluorescent Biological Aerosol Particle Concentrations and Size Distributions Measured with an Ultraviolet Aerodynamic Particle Sizer (UV-APS) in Central Europe

    NASA Astrophysics Data System (ADS)

    Huffman, J. A.; Treutlein, B.; Pöschl, U.

    2009-12-01

    Primary biological aerosol particles (PBAPs), including bacteria, spores and pollen, are essential for the spread of organisms and disease in the biosphere, and numerous studies have suggested that they may be important for atmospheric processes, including the formation of clouds and precipitation. The atmospheric abundance and size distribution of PBAPs, however, are largely unknown. At a semi-urban site in Mainz, Germany, we used an ultraviolet aerodynamic particle sizer (UV-APS) to measure fluorescent biological aerosol particles (FBAPs), which can be regarded as viable bioaerosol particles representing a lower limit for the actual abundance of PBAPs. Fluorescence of non-biological aerosol components are likely to influence the measurement results obtained for fine particles (< 1 µm), but not for coarse particles (1 - 20 µm). Averaged over the four-month measurement period (August - December 2006), the mean number concentration of coarse FBAPs was ~3x10-2 cm-3, corresponding to ~4% of total coarse particle number [1]. The mean mass concentration of FBAPs was ~1 µg m-3, corresponding to ~20% of total coarse particle mass. The FBAP number size distributions exhibited alternating patterns with peaks at various diameters. A pronounced peak at ~3 µm was essentially always observed and can be described by the following campaign-average lognormal fit parameters: geometric mean diameter 3.2 µm, geometric standard deviation 1.3, number concentration 1.6 x 10-2 cm-3. This peak is likely due to fungal spores or agglomerated bacteria, and it exhibited a pronounced diel cycle with maximum intensity during early/mid-morning. FBAP peaks around ~1.5 µm, ~5 µm, and ~13 µm were also observed, but less pronounced and less frequent. These may be explained by single bacterial cells, larger fungal spores, and pollen grains, respectively. The observed number concentrations and characteristic sizes of FBAPs are consistent with microscopic, biological and chemical analyses of

  11. Fluorescent biological aerosol particle concentrations and size distributions measured with an ultraviolet aerodynamic particle sizer (UV-APS) in Central Europe

    NASA Astrophysics Data System (ADS)

    Huffman, J. A.; Treutlein, B.; Pöschl, U.

    2009-08-01

    Primary biological aerosol particles (PBAPs), including bacteria, spores and pollen, are essential for the spread of organisms and disease in the biosphere, and numerous studies have suggested that they may be important for atmospheric processes, including the formation of clouds and precipitation. The atmospheric abundance and size distribution of PBAPs, however, are largely unknown. At a semi-urban site in Mainz, Germany, we used an ultraviolet aerodynamic particle sizer (UV-APS) to measure fluorescent biological aerosol particles (FBAPs), which can be regarded as viable bioaerosol particles representing a lower limit for the actual abundance of PBAPs. Fluorescence of non-biological aerosol components are likely to influence the measurement results obtained for fine particles (<1 μm), but not for coarse particles (1-20 μm). Averaged over the four-month measurement period (August-December 2006), the mean number concentration of coarse FBAPs was ~3×10-2 cm-3, corresponding to ~4% of total coarse particle number. The mean mass concentration of FBAPs was ~1 μg m-3, corresponding to ~20% of total coarse particle mass. The FBAP number size distributions exhibited alternating patterns with peaks at various diameters. A pronounced peak at ~3 μm was essentially always observed and can be described by the following campaign-average lognormal fit parameters: geometric mean diameter 3.2 μm, geometric standard deviation 1.3, number concentration 1.6×10-2 cm-3. This peak is likely due to fungal spores or agglomerated bacteria, and it exhibited a pronounced diel cycle with maximum intensity during early/mid-morning. FBAP peaks around ~1.5 μm, ~5 μm, and ~13 μm were also observed, but less pronounced and less frequent. These may be explained by single bacterial cells, larger fungal spores, and pollen grains, respectively. The observed number concentrations and characteristic sizes of FBAPs are consistent with microscopic, biological and chemical analyses of PBAPs in

  12. Fluorescent biological aerosol particle concentrations and size distributions measured with an Ultraviolet Aerodynamic Particle Sizer (UV-APS) in Central Europe

    NASA Astrophysics Data System (ADS)

    Huffman, J. A.; Treutlein, B.; Pöschl, U.

    2010-04-01

    Primary Biological Aerosol Particles (PBAPs), including bacteria, spores and pollen, are essential for the spread of organisms and disease in the biosphere, and numerous studies have suggested that they may be important for atmospheric processes, including the formation of clouds and precipitation. The atmospheric abundance and size distribution of PBAPs, however, are largely unknown. At a semi-urban site in Mainz, Germany we used an Ultraviolet Aerodynamic Particle Sizer (UV-APS) to measure Fluorescent Biological Aerosol Particles (FBAPs), which provide an estimate of viable bioaerosol particles and can be regarded as an approximate lower limit for the actual abundance of PBAPs. Fluorescence of non-biological aerosol components are likely to influence the measurement results obtained for fine particles (<1 μm), but not for coarse particles (1-20 μm). Averaged over the four-month measurement period (August-December 2006), the mean number concentration of coarse FBAPs was ~3×10-2 cm-3, corresponding to ~4% of total coarse particle number. The mean mass concentration of FBAPs was ~1μg m-3, corresponding to ~20% of total coarse particle mass. The FBAP number size distributions exhibited alternating patterns with peaks at various diameters. A pronounced peak at ~3 μm was essentially always observed and can be described by the following campaign-average lognormal fit parameters: geometric mean diameter 3.2 μm, geometric standard deviation 1.3, number concentration 1.6×10-2 cm-3. This peak is likely due to fungal spores or agglomerated bacteria, and it exhibited a pronounced diel cycle (24-h) with maximum intensity during early/mid-morning. FBAP peaks around ~1.5 μm, ~5 μm, and ~13 μm were also observed, but less pronounced and less frequent. These may be single bacterial cells, larger fungal spores, and pollen grains, respectively. The observed number concentrations and characteristic sizes of FBAPs are consistent with microscopic, biological and chemical

  13. Plasma osmotic and electrolyte concentrations of largemouth bass from some acidic Florida lakes

    SciTech Connect

    Canfield, D.E. Jr.; Maceina, M.J.; Nordlie, F.G.; Shireman, J.V.

    1985-05-01

    Five acidic clear (pH 3.7-4.9), three acidic colored (pH 4.1-4.6), and three neutral (pH 6.9-7.3) north-central Florida lakes were surveyed in 1983 to determine plasma osmotic and electrolyte concentrations, growth, and coefficients of condition for largemouth bass Micropterus salmoides floridanus. Plasma osmotic concentrations averaged greater than 273 milliosmoles/kg in fish from acidic colored and circumneutral lakes, but averaged less than 269 milliosmoles/kg in four of the acidic clear lakes. Growth and coefficients of condition of largemouth bass > 305 mm total length in the acidic lakes were significantly lower than in the neutral lakes. Reductions in fish growth and condition, however, could be r