Science.gov

Sample records for acid concentration temperature

  1. Effect of temperature and concentration on benzoyl peroxide bleaching efficacy and benzoic acid levels in whey protein concentrate.

    PubMed

    Smith, T J; Gerard, P D; Drake, M A

    2015-11-01

    Much of the fluid whey produced in the United States is a by-product of Cheddar cheese manufacture and must be bleached. Benzoyl peroxide (BP) is currently 1 of only 2 legal chemical bleaching agents for fluid whey in the United States, but benzoic acid is an unavoidable by-product of BP bleaching. Benzoyl peroxide is typically a powder, but new liquid BP dispersions are available. A greater understanding of the bleaching characteristics of BP is necessary. The objective of the study was to compare norbixin destruction, residual benzoic acid, and flavor differences between liquid whey and 80% whey protein concentrates (WPC80) bleached at different temperatures with 2 different benzoyl peroxides (soluble and insoluble). Two experiments were conducted in this study. For experiment 1, 3 factors (temperature, bleach type, bleach concentration) were evaluated for norbixin destruction using a response surface model-central composite design in liquid whey. For experiment 2, norbixin concentration, residual benzoic acid, and flavor differences were explored in WPC80 from whey bleached by the 2 commercially available BP (soluble and insoluble) at 5 mg/kg. In liquid whey, soluble BP bleached more norbixin than insoluble BP, especially at lower concentrations (5 and 10 mg/kg) at both cold (4°C) and hot (50°C) temperatures. The WPC80 from liquid whey bleached with BP at 50°C had lower norbixin concentration, benzoic acid levels, cardboard flavor, and aldehyde levels than WPC80 from liquid whey bleached with BP at 4°C. Regardless of temperature, soluble BP destroyed more norbixin at lower concentrations than insoluble BP. The WPC80 from soluble-BP-bleached wheys had lower cardboard flavor and lower aldehyde levels than WPC80 from insoluble-BP-bleached whey. This study suggests that new, soluble (liquid) BP can be used at lower concentrations than insoluble BP to achieve equivalent bleaching and that less residual benzoic acid remains in WPC80 powder from liquid whey

  2. Gas diffusion electrode setup for catalyst testing in concentrated phosphoric acid at elevated temperatures

    SciTech Connect

    Wiberg, Gustav K. H. E-mail: m.arenz@chem.ku.dk; Fleige, Michael; Arenz, Matthias E-mail: m.arenz@chem.ku.dk

    2015-02-15

    We present a detailed description of the construction and testing of an electrochemical cell setup allowing the investigation of a gas diffusion electrode containing carbon supported high surface area catalysts. The setup is designed for measurements in concentrated phosphoric acid at elevated temperature, i.e., very close to the actual conditions in high temperature proton exchange membrane fuel cells (HT-PEMFCs). The cell consists of a stainless steel flow field and a PEEK plastic cell body comprising the electrochemical cell, which exhibits a three electrode configuration. The cell body and flow field are braced using a KF-25 vacuum flange clamp, which allows an easy assembly of the setup. As demonstrated, the setup can be used to investigate temperature dependent electrochemical processes on high surface area type electrocatalysts, but it also enables quick screening tests of HT-PEMFC catalysts under realistic conditions.

  3. Simultaneous determination of nitric acid and uranium concentrations in aqueous solution from measurements of electrical conductivity, density, and temperature

    SciTech Connect

    Spencer, B.B.

    1991-01-01

    Nuclear fuel reprocessing plants handle aqueous solutions of nitric acid and uranium in large quantities. Automatic control of process operations requires reliable measurements of these solutes concentration, but this is difficult to directly measure. Physical properties such as solution density and electrical conductivity vary with solute concentration and temperature. Conductivity, density and temperature can be measured accurately with relatively simple and inexpensive devices. These properties can be used to determine solute concentrations will good correlations. This paper provides the appropriate correlations for solutions containing 2 to 6 Molar (M) nitric acid and 0 to 300 g/L uranium metal at temperatures from 25--90{degrees}C. The equations are most accurate below 5 M nitric acid, due to a broad maximum in the conductivity curve at 6 M. 12 refs., 9 figs., 6 tabs.

  4. Effects of temperature and sodium chloride concentration on the phospholipid and fatty acid compositions of a halotolerant Planococcus sp.

    PubMed

    Miller, K J

    1985-04-01

    The phospholipid headgroup composition and fatty acid composition of a gram-positive halotolerant Planococcus sp. (strain A4a) were examined as a function of growth temperature (5 to 35 degrees C) and NaCl content (0 to 1.5 M) of the growth medium. When the growth temperature was decreased, the relative amount of mono-unsaturated branched-chain fatty acids increased. When Planococcus sp. strain A4a was grown in media containing high NaCl concentrations, the relative amount of the major fatty acid, Ca15:0, increased. The relative amount of anionic phospholipid also increased when the NaCl concentration of the growth medium was increased. The increase in anionic phospholipid content resulted from a decrease in the relative mole percent content of phosphatidylethanolamine and an increase in the relative mole percent content of cardiolipin.

  5. Soil temperature and plant growth stage influence nitrogen uptake and amino acid concentration of apple during early spring growth.

    PubMed

    Dong, S; Scagel, C F; Cheng, L; Fuchigami, L H; Rygiewicz, P T

    2001-05-01

    In spring, nitrogen (N) uptake by apple roots begins about 3 weeks after bud break. We used 1-year-old 'Fuji' Malus domestica Borkh on M26 bare-root apple trees to determine whether the onset of N uptake in spring is dependent solely on the growth stage of the plant or is a function of soil temperature. Five times during early season growth, N uptake and total amino acid concentration were measured in trees growing at aboveground day/night temperatures of 23/15 degrees C and belowground temperatures of 8, 12, 16 or 20 degrees C. We used (15NH4)(15NO3) to measure total N uptake and rate of uptake and found that both were significantly influenced by both soil temperature and plant growth stage. Rate of uptake of 15N increased with increasing soil temperature and changed with plant growth stage. Before bud break, 15N was not detected in trees growing in the 8 degrees C soil treatment, whereas 15N uptake increased with increasing soil temperatures between 12 and 20 degrees C. Ten days after bud break, 15N was still not detected in trees growing in the 8 degrees C soil treatment, although total 15N uptake and uptake rate continued to increase with increasing soil temperatures between 12 and 20 degrees C. Twenty-one days after bud break, trees in all temperature treatments were able to acquire 15N from the soil, although the amount of uptake increased with increasing soil temperature. Distribution of 15N in trees changed as plants grew. Most of the 15N absorbed by trees before bud break (approximately 5% of 15N supplied per tree) remained in the roots. Forty-six days after bud break, approximately one-third of the 15N absorbed by the trees in the 12-20 degrees C soil temperature treatments remained in the roots, whereas the shank, stem and new growth contained about two-thirds of the 15N taken up by the roots. Total amino acid concentration and distribution of amino acids in trees changed with plant growth stage, but only the amino acid concentration in new growth and

  6. Geographic variation in the relationships of temperature, salinity or sigma sub t versus plant nutrient concentrations in the world ocean. [silicic acid, nitrate, and phosphate concentration

    NASA Technical Reports Server (NTRS)

    Kamykowski, D.; Zentara, S. J.

    1985-01-01

    A NODC data set representing all regions of the world ocean was analyzed for temperature and sigma-t relationships with nitrate, phosphate or silicic acid. Six cubic regressions were for each ten degree square of latitude and longitude containing adequate data. World maps display the locations that allow the prediction of plant nutrient concentrations from temperature or sigma-t. Geographic coverage improves along the sequence: nitrate, phosphate, and silicic acid and is better for sigma-t than for temperature. Contour maps of the approximate temperature of sigma-t at which these nitrients are no longer measurable in a parcel of water are generated, based on a percentile analysis of the temperature or sigma-t at which less than a selected amount of plant nutrient occurs. Results are stored on magnetic tape in tabular form. The global potential to predict plant nutrient concentrations from remotely sensed temperature of sigma-t and to emphasize the latitudinally and longitudinally changing phytoplankton growth environment in present and past oceans is demonstrated.

  7. Kinetics of heterogeneous reaction of ozone with linoleic acid and its dependence on temperature, physical state, RH, and ozone concentration.

    PubMed

    Zeng, Guang; Holladay, Sara; Langlois, Danielle; Zhang, Yunhong; Liu, Yong

    2013-03-07

    Heterogeneous reaction between ozone and linoleic acid (LA) thin film was investigated by a flow reactor coupled to attenuated total reflection infrared spectroscopy (FR-ATR-IR) over wide ranges of temperature, relative humidity (RH), and ozone concentration under atmospheric pressure condition. Pseudo-first-order rate constants kapp and overall reactive uptake coefficients γ were acquired on the basis of changes in absorbance from peaks located near 1743, 1710, 1172, and 1110 cm(-1), which can be assigned to C═O in ester, C═O in acid, and C-C and C-O stretching modes, respectively. Results showed that the kapp and γ increased nearly by a factor of 6 with increasing temperatures from 258 to 314 K. It was noted the temperature effect on the reaction kinetics was much more pronounced at lower temperatures. Such behavior can be explained by a change in the physical state of LA at lower temperatures. In addition, kapp and γ were enhanced by 2-fold as the RH increased from 0 to 80%. Moreover, the effect of ozone concentration on the reaction kinetics was reported for the first time. kapp was found to display a Langmuir-Hinshelwood dependence on ozone concentration with KO3 = (1.146 ± 0.017) × 10(-15) molecules cm(-3) and k[S] = 0.0522 ± 0.0004 s(-1), where KO3 is a parameter that describes the partitioning of ozone to the thin film surface, and k[S] is the maximum pseudo-first-order coefficient at high ozone concentration. Furthermore, yields and hygroscopic properties of reaction products were also investigated by FTIR spectroscopy. The intensity ratio of two C═O stretching bands, A1743/A1710, which was utilized as an indicator of the product yields, increased sharply with increasing temperatures in the lower temperature region (258-284 K), and then remained nearly constant in the higher temperature region (284-314 K). The product yields showed no significant variation with RH, for the intensity ratio of A1743/A1710 barely changed in the wide RH range 0

  8. Rapid concentration of deoxyribonucleic acid via Joule heating induced temperature gradient focusing in poly-dimethylsiloxane microfluidic channel.

    PubMed

    Ge, Zhengwei; Wang, Wei; Yang, Chun

    2015-02-09

    This paper reports rapid microfluidic electrokinetic concentration of deoxyribonucleic acid (DNA) with the Joule heating induced temperature gradient focusing (TGF) by using our proposed combined AC and DC electric field technique. A peak of 480-fold concentration enhancement of DNA sample is achieved within 40s in a simple poly-dimethylsiloxane (PDMS) microfluidic channel of a sudden expansion in cross-section. Compared to a sole DC field, the introduction of an AC field can reduce DC field induced back-pressure and produce sufficient Joule heating effects, resulting in higher concentration enhancement. Within such microfluidic channel structure, negative charged DNA analytes can be concentrated at a location where the DNA electrophoretic motion is balanced with the bulk flow driven by DC electroosmosis under an appropriate temperature gradient field. A numerical model accounting for a combined AC and DC field and back-pressure driven flow effects is developed to describe the complex Joule heating induced TGF processes. The experimental observation of DNA concentration phenomena can be explained by the numerical model.

  9. Influence of temperature, time, liquid/solid ratio and sulfuric acid concentration on the hydrolysis of palm empty fruit bunches.

    PubMed

    Ferrer, Ana; Requejo, Ana; Rodríguez, Alejandro; Jiménez, Luis

    2013-02-01

    The influence of temperature (150-190 °C), time (0-20 min), liquid/solid ratio (6-8) and sulfuric acid concentration (0.1-0.5%), on the hydrolysis of palm empty fruit bunches (EFBs) was studied and the liquid and solid fractions were analyzed. Polynomial models were found to reproduce the experimental results with errors less than 15% in most of the cases (except for xylose concentration). Operating conditions of 190 °C for 15 min at a liquid/solid ratio of 6 and a sulfuric acid concentration of 0.1% resulted in the production of 3.12, 4.0, 2.35 and 2.28 g/L of glucose, xylose, arabinose and acetic acid, respectively, starting with 1000 g of EFBs. The yield was 67.96%. Soda-anthraquinone, ethanol and ethanolamine pulping of the solid fraction provided pulps with brightness values (63.24%, 28.78%, 48.76%), but with poor resistance properties (6.57-8.54 Nm/g for tensile index, 0.38-0.44 k N/g for burst index and 0.96-1.02 mN m2/g for tear index). Therefore it is advisable to use the pulps for speciality papers or for bioethanol-production.

  10. Factors influencing the formation of histaminol, hydroxytyrosol, tyrosol, and tryptophol in wine: Temperature, alcoholic degree, and amino acids concentration.

    PubMed

    Bordiga, M; Lorenzo, C; Pardo, F; Salinas, M R; Travaglia, F; Arlorio, M; Coïsson, J D; Garde-Cerdán, T

    2016-04-15

    The validation of a HPLC-PDA-MS/MS chromatographic method for the quali/quantitative characterization of histaminol, hydroxytyrosol, tyrosol, and tryptophol in wine has been described and discussed. Four standards showed a good linearity with high correlation coefficient values (over 0.9989) and LOD and LOQ were 0.001-0.015 mg/L and 0.004-0.045 mg/L, respectively. Furthermore, this study reported how factors such as temperature, alcoholic degree, and amino acids concentration are able to influence the formation of these four alcohols in Monastrell wines. The quantification values of these alcohols has been detected both at the half and end of alcoholic fermentation, and at the end of malolactic fermentation. In relation to interactions between factors, several significant variations emerged (p ⩽ 0.001). The impact of amino acids supplementation in Monastrell must it has been demonstrated, mainly in regards to histaminol and tryptophol.

  11. Effects of dietary supplemental L-carnitine and ascorbic acid on performance, carcass composition and plasma L-carnitine concentration of broiler chicks reared under different temperature.

    PubMed

    Celik, L; Oztürkcan, O

    2003-02-01

    The present study was initiated to determine whether dietary supplemental L-carnitine and ascorbic acid affect growth performance, carcass yield and composition, abdominal fat and plasma L-carnitine concentration of broiler chicks reared under normal and high temperature. During the experiment, two temperature regimes were employed in two experimental rooms, which were identical but different in environmental temperature. The regimes were thermoneutral (20-22 degrees C for 24 h) or recycling hot (34-36 degrees C for 8 h and 20-22 degrees C for 16 h). One-day-old broiler chicks (ROSS) were used in the experiment. A 2 x 2 x 2 factorial arrangement was employed with two levels (0 and 50 mg/kg) of supplemental L-carnitine and two levels (0 or 500 mg/kg) of supplemental ascorbic acid in drinking water under thermoneutral or high temperature regimes. Body weight gain was affected by high temperature. However, body weight gain was significantly improved in animals receiving supplemental L-carnitine, ascorbic acid or L-carnitine + ascorbic acid compared to animals receiving unsupplemented diet under high temperature. On the other hand, supplemental L-carnitine or L-carnitine + ascorbic acid reduced body weight gain under thermoneutral condition. Supplemental ascorbic acid significantly improved feed conversion efficiency, the improvement was relatively greater under high temperature. The L-carnitine content in the plasma was higher in the groups receiving supplemental L-carnitine and ascorbic acid under high temperature, while broilers fed supplemental L-carnitine and ascorbic acid had a decreased level of plasma L-carnitine concentration under normal temperature. It is concluded that dietary supplemental L-carnitine or L-carnitine + ascorbic acid may have positive effects on body weight gain, carcass weight under high temperature conditions.

  12. Carbon Dioxide Exchange and Acidity Levels in Detached Pineapple, Ananas comosus (L.), Merr., Leaves during the Day at Various Temperatures, Oxygen and Carbon Dioxide Concentrations 1

    PubMed Central

    Moradshahi, Ali; Vines, H. Max; Black, Clanton C.

    1977-01-01

    The effects of temperature, O2, and CO2 on titratable acid content and on CO2 exchange were measured in detached pineapple (Ananas comosus) leaves during the daily 15-hour light period. Comparative measurements were made in air and in CO2-free air. Increasing the leaf temperature from 20 to 35 C decreased the total CO2 uptake in air and slightly increased the total CO2 released into CO2-free air. Between 25 and 35 C, the activation energy for daily acid loss was near 12 kcal mol−1, but at lower temperatures the activation energy was much greater. Increasing O2 or decreasing the CO2 concentration decreased the total CO2 fixation in air, whereas the total CO2 released in CO2-free air was increased. The total acid content remained constant at 20 C, but it decreased progressively with increasing temperature both in air and in CO2-free air. The total acid content at 30 C remained constant in 2% O2 irrespective of CO2 concentration. The total acid content decreased in 21 and 50% O2 as the CO2 increased from 0 to 300, and 540 μl/l of CO2. The data indicate that photorespiration is present in pineapple. The lack of acid loss in 2% O2 suggests that light deacidification is dependent upon respiration and that higher O2 concentrations are required to saturate deacidification. PMID:16659832

  13. Osmotic Concentration of Gooseberry Fruits – The Influence of Temperature, Time and Pretreatment Methods on Mass Transfer and Total Polyphenol and Organic Acid Content

    PubMed Central

    Kucner, Anna; Sójka, Michał; Klewicka, Elżbieta

    2014-01-01

    Summary The objective of the study is to assess the influence of temperature, time and enzymatic pretreatment on the osmotic concentration of gooseberry fruits (cultivar Biały Triumf). The fruits were osmotically concentrated in a sucrose solution at 65 °Brix and 40 to 70 °C for 5 to 240 min. Two experimental procedures were employed. In the first procedure, prior to concentration the fruits were immersed in the solution containing lipolytic enzymes, and then in the solution containing pectinolytic enzymes. In the second procedure, pectinolytic enzymes were added to the sucrose solution. The kinetics of the osmotic concentration was studied based on the changes in dry matter content, water loss, and solid gain. Higher temperature and longer process time led to higher values of the mentioned parameters. After 1 h of concentration at 40 °C, dry matter content was 13.9%, while at 70 °C it was 20.4%. The use of pectinolytic enzymes during osmotic concentration resulted in higher effectiveness of the process. After 2 h of concentration with the use of pectinolytic enzymes, solid gain was seven times higher than that in the control sample. Enzymatic treatment with lipase and pectinase before concentration also increased solid gain during osmotic concentration (up to twelve times after 2 h at 40 °C). The lower processing temperature, the higher retention of phenolic compounds in fruits was observed. The retention of phenolics was the highest at 40 °C (92.2% at 2 h). Among organic acids (malic, shikimic and citric), the highest retention was exhibited by citric acid; at 1 h of concentration, its fraction in the obtained fruit syrup content was from 95.9 to 83.1% as compared to the starting material. PMID:27904314

  14. Influences of temperature, H2SO4 concentration and Sn content on corrosion behaviors of PbSn alloy in sulfuric acid solution

    NASA Astrophysics Data System (ADS)

    Li, D. G.; Chen, D. R.; Wang, J. D.; Chen, H. S.

    2011-10-01

    The influences of temperature, H2SO4 concentration and Sn content on corrosion behaviors of PbSn alloys in sulfuric acid solution were investigated by potentiodynamic curve, cyclic voltammetry (CV), linear sweeping voltage (LSV), electrochemical impedance spectra (EIS), a.c. voltammetry (ACV) and Mott-Schottky analysis. The microstructure of the corrosion layer on PbSn alloy was analyzed by scanning electron microscopy (SEM). The results showed that the corrosion resistance of PbSn alloy increased with ascending Sn content and H2SO4 concentration, the increment of temperature can decrease the corrosion resistance of PbSn alloy in H2SO4 solution. The conductivity of the anodic film on PbSn alloy was enhanced with increasing temperature, ascending Sn content and descending H2SO4 concentration. SEM result revealed that the corrosion film after cyclic voltammetry was consisted of tetragonal crystal, the porosity enlarged with decreasing temperature, Sn content and H2SO4 concentration.

  15. The metabolic response in fish to mildly elevated water temperature relates to species-dependent muscular concentrations of imidazole compounds and free amino acids.

    PubMed

    Geda, Fikremariam; Declercq, Annelies M; Remø, Sofie C; Waagbø, Rune; Lourenço, Marta; Janssens, Geert P J

    2017-04-01

    Fish species show distinct differences in their muscular concentrations of imidazoles and free amino acids (FAA). This study was conducted to investigate whether metabolic response to mildly elevated water temperature (MEWT) relates to species-dependent muscular concentrations of imidazoles and FAA. Thirteen carp and 17 Nile tilapia, housed one per aquarium, were randomly assigned to either acclimation (25°C) or MEWT (30°C) for 14 days. Main muscular concentrations were histidine (HIS; P<0.001) in carp versus N-α-acetylhistidine (NAH; P<0.001) and taurine (TAU; P=0.001) in tilapia. Although the sum of imidazole (HIS+NAH) and TAU in muscle remained constant over species and temperatures (P>0.05), (NAH+HIS)/TAU ratio was markedly higher in carp versus tilapia, and decreased with MEWT only in carp (P<0.05). Many of the muscular FAA concentrations were higher in carp than in tilapia (P<0.05). Plasma acylcarnitine profile suggested a higher use of AA and fatty acids in carp metabolism (P<0.05). On the contrary, the concentration of 3-hydroxyisovalerylcarnitine, a sink of leucine catabolism, (P=0.009) pointed to avoidance of leucine use in tilapia metabolism. Despite a further increase of plasma longer-chain acylcarnitines in tilapia at MEWT (P=0.009), their corresponding beta-oxidation products (3-hydroxy-longer-chain acylcarnitines) remained constant. Together with higher plasma non-esterified fatty acids (NEFA) in carp (P=0.001), the latter shows that carp, being a fatter fish, more readily mobilises fat than tilapia at MEWT, which coincides with more intensive muscular mobilization of imidazoles. This study demonstrates that fish species differ in their metabolic response to MEWT, which is associated with species-dependent changes in muscle imidazole to taurine ratio.

  16. Fast fabrication of self-ordered anodic porous alumina on oriented aluminum grains by high acid concentration and high temperature anodization.

    PubMed

    Cheng, Chuan; Ngan, Alfonso H W

    2013-05-31

    Anodic porous alumina, which exhibits a characteristic nanohoneycomb structure, has been used in a wide range of nanotechnology applications. The conventional fabrication method of mild anodization (MA) requires a prolonged anodization time which is impractical for batch processing, and self-ordered porous structures can only be formed within narrow processing windows so that the dimensions of the resultant structures are extremely limited. The alternative hard anodization (HA) may easily result in macroscopic defects on the alumina surface. In this work, by systematically varying the anodization conditions including the substrate grain orientation, electrolyte concentration, temperature, voltage, and time, a new oxalic acid based anodization method, called high acid concentration and high temperature anodization (HHA), is found, which can result in far better self-ordering of the porous structures at rates 7-26 times faster than MA, under a continuous voltage range of 30-60 V on (001) oriented Al grains. Unlike HA, no macroscopic defects appear under the optimum self-ordered conditions of HHA at 40 V, even for pore channels grown up to high aspect ratios of more than 3000. Compared to MA and HA, HHA provides more choices of self-ordered nano-porous structures with fast and mechanically stable formation features for practical applications.

  17. SORPTION OF MERCURY SPECIES BY ACTIVATED CARBONS AND CALCIUM-BASES SORBENTS: EFFECT OF TEMPERATURE, MERCURY CONCENTRATION AND ACID GASES

    EPA Science Inventory

    Bench-scale studies of mercury/sorbent reactions were conducted to understand mechanistic limitations of field-scale attempts to reduce emissions of mercury from combustion processes. The effects of temperature (60 - 140 degrees C), sulfur dioxide (SO2, 1000 ppm ), hydrogen chlor...

  18. Inactivation kinetics of spores of Bacillus cereus strains treated by a peracetic acid-based disinfectant at different concentrations and temperatures.

    PubMed

    Sudhaus, Nadine; Pina-Pérez, Maria Consuelo; Martínez, Antonio; Klein, Günter

    2012-05-01

    The purpose of this study was to assess the effect of a commercial peracetic acid-based disinfectant against spores of Bacillus cereus, to identify the most influential factor for the final number of microorganisms after different disinfection procedures, and to evaluate the nature of the inactivation kinetics. The spores of four different strains of B. cereus (DSM 318, 4312, 4313, and 4384) were treated with five different disinfectant concentrations (0.25%, 0.5%, 1.0%, 1.5%, and 2.0% [w/v]) at three different temperatures (10°C, 15°C, and 20°C) with or without protein load. A higher temperature and PES 15/23 concentration resulted in a higher inactivation. Inactivation of B. cereus strain 4312 was around 2 log₁₀ cycles at 10°C and around 7 log₁₀ at 20°C (conc=1% [w/v] PAA; t=60 min; without protein). The protein load at higher concentrations did not significantly reduce the efficacy of the disinfectant (p>0.05). This article indicates the applicability of the Weibull model to fit the B. cereus disinfectant survival curves. A Monte Carlo simulation was used to carry out a sensitivity analysis, which revealed the most influential factors affecting the final number of microorganisms after the disinfection process.

  19. Using rumen probes to examine effects of conjugated linoleic acids and dietary concentrate proportion on rumen pH and rumen temperature of periparturient dairy cows.

    PubMed

    Petzold, M; Meyer, U; Spilke, J; Dänicke, S

    2014-08-01

    The study aimed to examine the influence of supplemented conjugated linoleic acids (CLA) to periparturient cows receiving different concentrate proportions antepartum on rumen pH (RpH) and rumen temperature (RT). Twenty pregnant German Holstein cows were equipped with rumen probes for continuous RpH and RT measurement in a frequency of 15 min to investigate effects of dietary concentrate and CLA around parturition and the impact of parturition itself on RpH and RT. Cows had ad libitum access to partial mixed rations, 3 weeks prior to calving until day 7 post-partum. Antepartum, cows received 100 g/day control fat (CON) or CLA supplement, either in low (20%; CON-20, CLA-20) or high concentrate diet (60%; CON-60, CLA-60). Post-partum, concentrate proportion was adjusted to 50% while fat supplementation continued. Compared with adapted feeding, high concentrate proportions antepartum tended to increase DMI and reduced RpH. Groups CON-60 and CLA-60 spent more than 4 h per day below RpH 5.6 during late pregnancy, indicating the presence of subacute rumen acidosis (SARA). The RT remained unaffected antepartum. Before calving, cows spent less time below RpH 5.6 and SARA could be detected in each group post-partum. Mean RpH increased slightly antepartum, whereas few hours before parturition a sharp decrease in RpH could be observed, accompanied with increased RT. Overall, it seems that CLA supplementation influences RpH and RT. Bearing in mind that rumen parameters fluctuate during day and herd level must be known, rumen probes for continuous RpH and RT measurement could be a useful management tool for animal health surveillance and may also help to predict parturition.

  20. A statistical proxy for sulphuric acid concentration

    NASA Astrophysics Data System (ADS)

    Mikkonen, S.; Romakkaniemi, S.; Smith, J. N.; Korhonen, H.; Petäjä, T.; Plass-Duelmer, C.; Boy, M.; McMurry, P. H.; Lehtinen, K. E. J.; Joutsensaari, J.; Hamed, A.; Mauldin, R. L., III; Birmili, W.; Spindler, G.; Arnold, F.; Kulmala, M.; Laaksonen, A.

    2011-11-01

    Gaseous sulphuric acid is a key precursor for new particle formation in the atmosphere. Previous experimental studies have confirmed a strong correlation between the number concentrations of freshly formed particles and the ambient concentrations of sulphuric acid. This study evaluates a body of experimental gas phase sulphuric acid concentrations, as measured by Chemical Ionization Mass Spectrometry (CIMS) during six intensive measurement campaigns and one long-term observational period. The campaign datasets were measured in Hyytiälä, Finland, in 2003 and 2007, in San Pietro Capofiume, Italy, in 2009, in Melpitz, Germany, in 2008, in Atlanta, Georgia, USA, in 2002, and in Niwot Ridge, Colorado, USA, in 2007. The long term data were obtained in Hohenpeissenberg, Germany, during 1998 to 2000. The measured time series were used to construct proximity measures ("proxies") for sulphuric acid concentration by using statistical analysis methods. The objective of this study is to find a proxy for sulfuric acid that is valid in as many different atmospheric environments as possible. Our most accurate and universal formulation of the sulphuric acid concentration proxy uses global solar radiation, SO2 concentration, condensation sink and relative humidity as predictor variables, yielding a correlation measure (R) of 0.87 between observed concentration and the proxy predictions. Interestingly, the role of the condensation sink in the proxy was only minor, since similarly accurate proxies could be constructed with global solar radiation and SO2 concentration alone. This could be attributed to SO2 being an indicator for anthropogenic pollution, including particulate and gaseous emissions which represent sinks for the OH radical that, in turn, is needed for the formation of sulphuric acid.

  1. A statistical proxy for sulphuric acid concentration

    NASA Astrophysics Data System (ADS)

    Mikkonen, S.; Romakkaniemi, S.; Smith, J. N.; Korhonen, H.; Petäjä, T.; Plass-Duelmer, C.; Boy, M.; McMurry, P. H.; Lehtinen, K. E. J.; Joutsensaari, J.; Hamed, A.; Mauldin, R. L., III; Birmili, W.; Spindler, G.; Arnold, F.; Kulmala, M.; Laaksonen, A.

    2011-07-01

    Gaseous sulphuric acid is a key precursor for new particle formation in the atmosphere. Previous experimental studies have confirmed a strong correlation between the number concentrations of freshly formed particles and the ambient concentrations of sulphuric acid. This study evaluates a body of experimental gas phase sulphuric acid concentrations, as measured by Chemical Ionization Mass Spectrometry (CIMS) during six intensive measurement campaigns and one long-term observational period. The campaign datasets were measured in Hyytiälä, Finland, in 2003 and 2007, in San Pietro Capofiume, Italy, in 2009, in Melpitz, Germany, in 2008, in Atlanta, Georgia, USA, in 2002, and in Niwot Ridge, Colorado, USA, in 2007. The long term data were obtained in Hohenpeissenberg, Germany, during 1998 to 2000. The measured time series were used to construct proximity measures ("proxies") for sulphuric acid concentration by using statistical analysis methods. The objective of this study is to find a proxy for sulfuric acid that is valid in as many different atmospheric environments as possible. Our most accurate and universal formulation of the sulphuric acid concentration proxy uses global solar radiation, SO2 concentration, condensation sink and relative humidity as predictor variables, yielding a correlation measure (R) of 0.87 between observed concentration and the proxy predictions. Interestingly, the role of the condensation sink in the proxy was only minor, since similarly accurate proxies could be constructed with global solar radiation and SO2 concentration alone. This could be attributed to SO2 being an indicator for anthropogenic pollution, including particulate and gaseous emissions which represent sinks for the OH radical that, in turn, is needed for the formation of sulphuric acid.

  2. Hyaluronic acid concentration in liver diseases.

    PubMed

    Gudowska, Monika; Gruszewska, Ewa; Panasiuk, Anatol; Cylwik, Bogdan; Flisiak, Robert; Świderska, Magdalena; Szmitkowski, Maciej; Chrostek, Lech

    2016-11-01

    The aim of this study was to evaluate the effect of liver diseases of different etiologies and clinical severity of liver cirrhosis on the serum level of hyaluronic acid. The results were compared with noninvasive markers of liver fibrosis: APRI, GAPRI, HAPRI, FIB-4 and Forn's index. Serum samples were obtained from 20 healthy volunteers and patients suffering from alcoholic cirrhosis (AC)-57 patients, non-alcoholic cirrhosis (NAC)-30 and toxic hepatitis (HT)-22. Cirrhotic patients were classified according to Child-Pugh score. Hyaluronic acid concentration was measured by the immunochemical method. Non-patented indicators were calculated using special formulas. The mean serum hyaluronic acid concentration was significantly higher in AC, NAC and HT group in comparison with the control group. There were significant differences in the serum hyaluronic acid levels between liver diseases, and in AC they were significantly higher than those in NAC and HT group. The serum hyaluronic acid level differs significantly due to the severity of cirrhosis and was the highest in Child-Pugh class C. The sensitivity, specificity, accuracy, positive and negative predictive values and the area under the ROC curve for hyaluronic acid and all non-patented algorithms were high and similar to each other. We conclude that the concentration of hyaluronic acid changes in liver diseases and is affected by the severity of liver cirrhosis. Serum hyaluronic acid should be considered as a good marker for noninvasive diagnosis of liver damage, but the combination of markers is more useful.

  3. Analysis of cationic structure in some room-temperature molten fluorides and dependence of their ionic conductivity and viscosity on hydrofluoric acid concentration.

    PubMed

    Isogai, Tomohiro; Nakai, Takaaki; Inoue, Hidemi; Nakanishi, Kenta; Kohara, Shinji; Saito, Morihiro; Inaba, Minoru; Tasaka, Akimasa

    2011-08-11

    To understand the ionic and nonionic species in (CH(3))(4)NF·mHF, (CH(3))(3)N·mHF, (C(2)H(5))(4)NF·mHF, and (C(2)H(5))(3)N·mHF melts, the structures of these melts were investigated by infrared spectroscopy, NMR, and high-energy X-ray diffraction. Infrared spectra revealed that three kinds of fluorohydrogenate anions, (FH)(n)F(-) (n = 1, 2, and 3), and molecular hydrofluoric acid (HF) are present in every melt. Ionic conductivity and viscosity of these melts were measured and correlated with their cationic structure. The ionic conductivity of the R(4)N(+)-systems was higher than that of corresponding R(3)NH(+)-systems because a strong N-H···F(HF)(n) interaction prevents the motion of R(3)NH(+) cations in the R(3)N·mHF melts. (CH(3))(4)N(+) and (CH(3))(3)NH(+) cations gave higher ionic conductivity than (C(2)H(5))(4)N(+) and (C(2)H(5))(3)NH(+) cations, respectively, because the ionic radii of former cations were smaller than those of latter. It was concluded that these effects on ionic conductivity can be explained by the cationic structure and the concentration of molecular HF in the melts.

  4. Neutral thermospheric temperature from ion concentration measurements

    NASA Technical Reports Server (NTRS)

    Breig, E. L.; Donaldson, J. S.; Hanson, W. B.; Hoffman, J. H.; Power, R. A.; Kayser, D. C.; Spencer, N. W.; Wharton, L. E.

    1981-01-01

    A technique for extracting information on neutral temperature from in situ F region measurements of O(+) and H(+) ion concentrations is analyzed and evaluated. Advantage is taken of the condition of charge-exchange equilibrium of these species in the neighborhood of 320 km to infer the associated relative abundances of neutral oxygen and hydrogen. Results are shown to be generally consistent with other concurrent in situ measurements.

  5. Simultaneous acetic acid separation and monosaccharide concentration by reverse osmosis.

    PubMed

    Zhou, Fanglei; Wang, Cunwen; Wei, Jiang

    2013-03-01

    This study aimed to investigate the feasibility and efficiency of simultaneous acetic acid separation and sugar concentration in model lignocellulosic hydrolyzates by reverse osmosis. The effects of operation parameters such as pH, temperature, pressure and feed concentration on the solute retentions were examined with a synthetic xylose–glucose–acetic acid model solution. Results showed that the monosaccharides were almost completely rejected at above 20 bar, while the acetic acid retention increased with the increase in pH and pressure, and decreased with the temperature increase. The maximum separation factors of acetic acid over xylose and glucose reached as high as 211.5 and 228.4 at pH 2.93 (the initial pH of model lignocellulosic hydrolyzates), 40 °C and 20 bar. Furthermore, the concentration and diafiltration process were employed at optimal operation conditions. Consequently, a high sugar concentration and a beneficially lower acetic acid concentration were simultaneously achieved by reverse osmosis.

  6. Concentrating phenolic acids from Lonicera japonica by nanofiltration technology

    NASA Astrophysics Data System (ADS)

    Li, Cunyu; Ma, Yun; Li, Hongyang; Peng, Guoping

    2017-03-01

    Response surface analysis methodology was used to optimize the concentrate process of phenolic acids from Lonicera japonica by nanofiltration technique. On the basis of the influences of pressure, temperature and circulating volume, the retention rate of neochlorogenic acid, chlorogenic acid and 4-dicaffeoylquinic acid were selected as index, molecular weight cut-off of nanofiltration membrane, concentration and pH were selected as influencing factors during concentrate process. The experiment mathematical model was arranged according to Box-Behnken central composite experiment design. The optimal concentrate conditions were as following: nanofiltration molecular weight cut-off, 150 Da; solutes concentration, 18.34 µg/mL; pH, 4.26. The predicted value of retention rate was 97.99% under the optimum conditions, and the experimental value was 98.03±0.24%, which was in accordance with the predicted value. These results demonstrate that the combination of Box-Behnken design and response surface analysis can well optimize the concentrate process of Lonicera japonica water-extraction by nanofiltration, and the results provide the basis for nanofiltration concentrate for heat-sensitive traditional Chinese medicine.

  7. Concentration and temperature effects on ovostatin activity

    NASA Technical Reports Server (NTRS)

    Moriarity, Debra M.

    1994-01-01

    Light scattering experiments performed at Mississippi State University using MSFC ovostatin preparations indicated that at low ovostatin concentrations, below 0.2 mg/ml, the protein was dissociating from a tetramer into dimers. Since the proposed mechanism of action involved the tetrameric form of the protein, we hypothesized that perhaps under the conditions of our assays at various O/T ratios the ovostatin was becoming dissociated into an inactive dimer. To examine this possibility we assayed the ovostatin activity as a function of ovostatin concentration and of temperature of the assay. Data are presented that show the results of these assays at 23 C, 30 C, 37 C and 42 C respectively. The data are highly suggestive that there is a decrease in ovostatin activity as the concentration of the protein falls below 0.06 mg/ml. This may not be of any physiological importance, however, since the concentration of ovostatin in the egg is about 0.5 mg/ml. Curiously, the dissociation of the tetramer into dimers does not show a significant temperature dependence as would be expected for an equilibrium reaction. Whether this is in fact the case, or whether the differences are so small as to not be discerned from the current data remains to be seen. Another aspect to consider is that in the egg the primary role of the ovostatin may or may not be as a protease inhibitor. Although the inhibition of collagenase by ovostatin may be an important aspect of embryogenesis, it is also possible that it functions as a binding protein for some substance. In this regard, all ovostatin preparations from MSFC have shown an approximately 88,000 MW protein associated with the ovostatin. The identity of this protein is not currently known and may be the subject of future studies.

  8. Solubility of HCL in sulfuric acid at stratospheric temperatures

    NASA Technical Reports Server (NTRS)

    Williams, Leah R.; Golden, David M.

    1993-01-01

    The solubility of HCl in sulfuric acid was measured using a Knudsen cell technique. Effective Henry's law constants are reported for sulfuric acid concentrations between 50 and 60 weight percent and for temperatures between 220 and 230 K. The measured values indicate that very little HCl will be dissolved in the stratospheric sulfate aerosol particles.

  9. Micelles Protect and Concentrate Activated Acetic Acid

    NASA Astrophysics Data System (ADS)

    Todd, Zoe; House, C.

    2014-01-01

    As more and more exoplanets are discovered and the habitability of such planets is considered, one can turn to searching for the origin of life on Earth in order to better understand what makes a habitable planet. Activated acetic acid, or methyl thioacetate, has been proposed to be central to the origin of life on Earth, and also as an important energy currency molecule in early cellular evolution. We have investigated the hydrolysis of methyl thioacetate under various conditions. Its uncatalyzed rate of hydrolysis is about three orders of magnitude faster (K = 0.00663 s^-1; 100°C, pH 7.5, concentration = 0.33mM) than published rates for its catalyzed production making it unlikely to accumulate under prebiotic conditions. However, we also observed that methyl thioacetate was protected from hydrolysis when inside its own hydrophobic droplets. We found that methyl thioacetate protection from hydrolysis was also possible in droplets of hexane and in the membranes of nonanoic acid micelles. Thus, the hydrophobic regions of prebiotic micelles and early cell membranes could have offered a refuge for this energetic molecule increasing its lifetime in close proximity to the reactions for which it would be needed. Methyl thioacetate could thus be important for the origin of life on Earth and perhaps for better understanding the potential habitability of other planets.

  10. Effect of temperature on Chinese rice wine brewing with high concentration presteamed whole sticky rice.

    PubMed

    Liu, Dengfeng; Zhang, Hong-Tao; Xiong, Weili; Hu, Jianhua; Xu, Baoguo; Lin, Chi-Chung; Xu, Ling; Jiang, Lihua

    2014-01-01

    Production of high quality Chinese rice wine largely depends on fermentation temperature. However, there is no report on the ethanol, sugars, and acids kinetics in the fermentation mash of Chinese rice wine treated at various temperatures. The effects of fermentation temperatures on Chinese rice wine quality were investigated. The compositions and concentrations of ethanol, sugars, glycerol, and organic acids in the mash of Chinese rice wine samples were determined by HPLC method. The highest ethanol concentration and the highest glycerol concentration both were attained at the fermentation mash treated at 23 °C. The highest peak value of maltose (90 g/L) was obtained at 18 °C. Lactic acid and acetic acid both achieved maximum values at 33 °C. The experimental results indicated that temperature contributed significantly to the ethanol production, acid flavor contents, and sugar contents in the fermentation broth of the Chinese rice wines.

  11. Effect of Temperature on Chinese Rice Wine Brewing with High Concentration Presteamed Whole Sticky Rice

    PubMed Central

    Zhang, Hong-Tao; Xiong, Weili; Hu, Jianhua; Xu, Baoguo; Lin, Chi-Chung; Xu, Ling; Jiang, Lihua

    2014-01-01

    Production of high quality Chinese rice wine largely depends on fermentation temperature. However, there is no report on the ethanol, sugars, and acids kinetics in the fermentation mash of Chinese rice wine treated at various temperatures. The effects of fermentation temperatures on Chinese rice wine quality were investigated. The compositions and concentrations of ethanol, sugars, glycerol, and organic acids in the mash of Chinese rice wine samples were determined by HPLC method. The highest ethanol concentration and the highest glycerol concentration both were attained at the fermentation mash treated at 23°C. The highest peak value of maltose (90 g/L) was obtained at 18°C. Lactic acid and acetic acid both achieved maximum values at 33°C. The experimental results indicated that temperature contributed significantly to the ethanol production, acid flavor contents, and sugar contents in the fermentation broth of the Chinese rice wines. PMID:24672788

  12. Equilibrium concentrations for pyruvate dehydrogenase and the citric acid cycle at specified concentrations of certain coenzymes.

    PubMed

    Alberty, Robert A

    2004-04-01

    It is of interest to calculate equilibrium compositions of systems of biochemical reactions at specified concentrations of coenzymes because these reactants tend to be in steady states. Thermodynamic calculations under these conditions require the definition of a further transformed Gibbs energy G" by use of a Legendre transform. These calculations are applied to the pyruvate dehydrogenase reaction plus the citric acid cycle, but steady-state concentrations of CoA, acetyl-CoA and succinyl-CoA cannot be specified because they are involved in the conservation of carbon atoms. These calculations require the use of linear algebra to obtain further transformed Gibbs energies of formation of reactants and computer programs to calculate equilibrium compositions. At specified temperature, pH, ionic strength and specified concentrations of several coenzymes, the equilibrium composition depends on the specified concentrations of the coenzymes and the initial amounts of reactants.

  13. Vapor pressures and calculated heats of vaporization of concentrated nitric acid solutions in the composition range 71 to 89 percent nitrogen dioxide, 1 to 10 percent water, and in the temperature range 10 to 60 degrees C

    NASA Technical Reports Server (NTRS)

    Mckeown, A B; Belles, Frank E

    1954-01-01

    Total vapor pressures were measured for 16 acid mixtures of the ternary system nitric acid, nitrogen dioxide, and water within the temperature range 10 degrees to 60 degrees Celsius, and with the composition range 71 to 89 weight percent nitric acid, 7 to 20 weight percent nitrogen dioxide, and 1 to 10 weight percent water. Heats of vaporization were calculated from the vapor pressure measurements for each sample for the temperatures 25, 40, and 60 degrees Celsius. The ullage of the apparatus used for the measurements was 0.46. Ternary diagrams showing isobars as a function of composition of the system were constructed from experimental and interpolated data for the temperatures 25, 40, 45, and 60 degrees C and are presented herein.

  14. Serum sialic acid and CEA concentrations in human breast cancer.

    PubMed

    Hogan-Ryan, A; Fennelly, J J; Jones, M; Cantwell, B; Duffy, M J

    1980-04-01

    The concentration of bound sialic acid in the sera of 56 normal subjects and 65 subjects with breast cancer was measured, in order to determine (1) whether serum sialic acid concentrations are raised in breast cancer and (2) whether the concentration of sialic acid in serum reflects tumour stage. The amount of sialic acid in serum was compared to serum carcinoembryonic antigen (CEA) values. Urinary hydroxyproline and serum alkaline phosphatase concentrations were used as indicators of bone and liver involvement. Erythrocyte sedimentation rate (ESR) was also measured. Significantly elevated serum sialic acid concentrations were found in breast cancer, and showed correlation with tumour stage. Serum sialic acid values did not correlate with CEA values. The results suggest that measurement of serum sialic acid concentrations may be of adjunctive value in assessing tumour stage.

  15. Free Amino-acid Concentrations in Fetal Fluids

    PubMed Central

    Cockburn, F.; Robins, S. P.; Forfar, J. O.

    1970-01-01

    The pattern of free amino-acid concentrations in maternal venous plasma, fetal umbilical arterial plasma, fetal urine, and amniotic fluid at 15 to 20 weeks' gestation has been determined. Free amino-acid concentrations were greater in fetal plasma than in maternal plasma, amniotic fluid, or fetal urine. The ratios of amino-acid concentrations in fetal umbilical arterial plasma and urine indicate that the fetal kidney can effectively conserve amino-acids, possibly reaching an adult level of competence in this respect. There was little correlation between amino-acid concentrations in the fluids analysed with the exception of that between amniotic fluid and fetal urine. PMID:5472758

  16. Relationship between intensity, concentration, and temperature for drinking water odorants.

    PubMed

    Whelton, Andrew J; Dietrich, Andrea M

    2004-03-01

    Odor analyses experiments indicated that, for the concentrations and temperatures tested, odor intensity was a function of both aqueous concentration and water temperature for water containing 1-butanol, free available chlorine, geosmin, n-hexanal, 2-methylisoborneol, and trans-2, cis-6 nonadienal. At weak odorant concentrations (approximately 4 on the flavor profile rating scale) the perceived odor intensity of these six chemicals was greater when the temperature was 45 degrees C than was 25 degrees C. Both of these temperatures are commonly encountered by consumers when they use tap water. Odor response to water containing isobutanal was affected by concentration but not water temperature. Experiments also revealed that reduction in aqueous concentration did not consistently reduce odor intensity; for some aqueous concentrations and chemicals an increase in odor intensity occurred at lower concentrations.

  17. Mechanochemical leaching of chalcopyrite concentrate by sulfuric acid

    NASA Astrophysics Data System (ADS)

    Mohammadabad, Farhad Khorramshahi; Hejazi, Sina; khaki, Jalil Vahdati; Babakhani, Abolfazl

    2016-04-01

    This study aimed to introduce a new cost-effective methodology for increasing the leaching efficiency of chalcopyrite concentrates at ambient temperature and pressure. Mechanical activation was employed during the leaching (mechanochemical leaching) of chalcopyrite concentrates in a sulfuric acid medium at room temperature and atmospheric pressure. High energy ball milling process was used during the leaching to provide the mechanochemical leaching condition, and atomic absorption spectroscopy and cyclic voltammetry were used to determine the leaching behavior of chalcopyrite. Moreover, X-ray diffraction and scanning electron microscopy were used to characterize the chalcopyrite powder before and after leaching. The results demonstrated that mechanochemical leaching was effective; the extraction of copper increased significantly and continuously. Although the leaching efficiency of chalcopyrite was very low at ambient temperature, the percentages of copper dissolved in the presence of hydrogen peroxide (H2O2) and ferric sulfate (Fe2(SO4)3) after 20 h of mechanochemical leaching reached 28% and 33%, respectively. Given the efficiency of the developed method and the facts that it does not require the use of an autoclave and can be conducted at room temperature and atmospheric pressure, it represents an economical and easy-to-use method for the leaching industry.

  18. Temperature Affects Fatty Acids In Methylococcus Capsulatus

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda L.

    1993-01-01

    According to report, temperature of growth of thermotolerant, methane-oxidizing bacterium Methylococcus capsulatus (Bath) affects both proportion of monounsaturated fatty acids and cis/trans ratio of these acids in cell membrane. Because suboptimum growth temperature is potential stress factor, it may be possible to use such cis/trans ratios as indices of stresses upon methane-oxidizing microbial communities. Research in microbiology of methanotrophs increasing because of possible commercial exploitation of these organisms as biocatalysts or as sources of useful polymers; knowledge of effect of temperature on ability of methanotrophs to utilize methane useful in optimization of conditions of growth.

  19. Interaction effects of lactic acid and acetic acid at different temperatures on ethanol production by Saccharomyces cerevisiae in corn mash.

    PubMed

    Graves, Tara; Narendranath, Neelakantam V; Dawson, Karl; Power, Ronan

    2007-01-01

    The combined effects of lactic acid and acetic acid on ethanol production by S. cerevisiae in corn mash, as influenced by temperature, were examined. Duplicate full factorial experiments (three lactic acid concentrations x three acetic acid concentrations) were performed to evaluate the interaction between lactic and acetic acids on the ethanol production of yeast at each of the three temperatures, 30, 34, and 37 degrees C. Corn mash at 30% dry solids adjusted to pH 4 after lactic and acetic acid addition was used as the substrate. Ethanol production rates and final ethanol concentrations decreased (P<0.001) progressively as the concentration of combined lactic and acetic acids in the corn mash increased and the temperature was raised from 30 to 37 degrees C. At 30 degrees C, essentially no ethanol was produced after 96 h when 0.5% w/v acetic acid was present in the mash (with 0.5, 2, and 4% w/v lactic acid). At 34 and 37 degrees C, the final concentrations of ethanol produced by the yeast were noticeably reduced by the presence of 0.3% w/v acetic acid and >or=2% w/v lactic acid. It can be concluded that, as in previous studies with defined media, lactic acid and acetic acid act synergistically to reduce ethanol production by yeast in corn mash. In addition, the inhibitory effects of combined lactic and acetic acid in corn mash were more apparent at elevated temperatures.

  20. Concentration of Sulphuric Acid: Premature Failure of Bamag Pots,

    DTIC Science & Technology

    1983-05-01

    AD-A139 523 CONCENTRATION OF SULPHURIC ACID: PREMATURE FAILURE OF 1/1 BAMAG POTS(U) MATERIALS RESEARCH LABS ASCOT VAL (AUSTRALIA) J J BATTEN ET AL...VICTORIA REPORT MRL-R-885 CONCENTRATION OF SULPHURIC ACID: PREMATURE FAILURE OF BAMAG POTS Jeffrey J. Batten & Peter J. Knuckey , *. ’ 3 : :, U...black . wi " te, m ith nv: IY)V DEPARTMENT OF DEFENCE MATERIALS RESEARCH LABORATORIES REPORT MRL-R-885 CONCENTRATION OF SULPHURIC ACID: PREMATURE

  1. Concentration-temperature superposition of helix folding rates in gelatin.

    PubMed

    Gornall, J L; Terentjev, E M

    2007-07-13

    Using optical rotation as the primary technique, we have characterized the kinetics of helix renaturation in water solutions of gelatin. By covering a wide range of solution concentrations we identify a universal exponential dependence of folding rate on concentration and quench temperature. We demonstrate a new concentration-temperature superposition of data at all temperatures and concentrations, and build the corresponding master curve. The normalized rate constant is consistent with helix lengthening. Nucleation of the triple helix occurs rapidly and contributes less to the helical onset than previously thought.

  2. Summary and implications of reported amino acid concentrations in the Murchison meteorite

    SciTech Connect

    Shock, E.L.; Schulte, M.D. )

    1990-11-01

    A study of literature reports of the concentrations of amino acids in extracts from the Murchison meteorite shows that many of the concentration ratios are constant. There are two possible interpretations of these ratios. One is that they are controlled by the pathways through which the amino acids formed, from which it follows that the amino acids are distributed in the same proportions throughout the meteorite. The other interpretation is that the ratios result from the analytical procedures used to extract the amino acids from the meteorite. These methods rely heavily on high-temperature (100{degree}C) aqueous extraction and subsequent high-temperature acid hydrolysis. A correlation was observed in the present study between the relative concentrations of several amino acids in the meteorite extracts and their relative aqueous solubilities at 100{degree}C. The extract solutions are dilute, and far from the saturation limits, but these correlations suggest that the sampling procedure affects directly the reported concentrations for these amino acids. If the extraction process does not bias the results, and all extractable amino acids are removed from meteorite samples, then the properties of amino acids which control both their solubilities and their concentrations in the meteorite need to be established. The possibility of sampling bias needs to be tested experimentally before concluding that extraction is complete, and that the constant relative abundances indicate that the relative concentrations of amino acids are homogeneous in the meteorite.

  3. DICARBOXYLIC ACID CONCENTRATION TRENDS AND SAMPLING ARTIFACTS

    EPA Science Inventory

    Dicarboxylic acids associated with airborne particulate matter were measured during a summer period in Philadelphia that included multiple air pollution episodes. Samples were collected for two ten hour periods each day using a high volume sampler with two quartz fiber filters in...

  4. Elevational Variation in Soil Amino Acid and Inorganic Nitrogen Concentrations in Taibai Mountain, China

    PubMed Central

    Yang, Xin; Zhu, Lianfeng; Zhang, Junhua; Jin, Qianyu; Wu, Lianghuan

    2016-01-01

    Amino acids are important sources of soil organic nitrogen (N), which is essential for plant nutrition, but detailed information about which amino acids predominant and whether amino acid composition varies with elevation is lacking. In this study, we hypothesized that the concentrations of amino acids in soil would increase and their composition would vary along the elevational gradient of Taibai Mountain, as plant-derived organic matter accumulated and N mineralization and microbial immobilization of amino acids slowed with reduced soil temperature. Results showed that the concentrations of soil extractable total N, extractable organic N and amino acids significantly increased with elevation due to the accumulation of soil organic matter and the greater N content. Soil extractable organic N concentration was significantly greater than that of the extractable inorganic N (NO3−-N + NH4+-N). On average, soil adsorbed amino acid concentration was approximately 5-fold greater than that of the free amino acids, which indicates that adsorbed amino acids extracted with the strong salt solution likely represent a potential source for the replenishment of free amino acids. We found no appreciable evidence to suggest that amino acids with simple molecular structure were dominant at low elevations, whereas amino acids with high molecular weight and complex aromatic structure dominated the high elevations. Across the elevational gradient, the amino acid pool was dominated by alanine, aspartic acid, glycine, glutamic acid, histidine, serine and threonine. These seven amino acids accounted for approximately 68.9% of the total hydrolyzable amino acid pool. The proportions of isoleucine, tyrosine and methionine varied with elevation, while soil major amino acid composition (including alanine, arginine, aspartic acid, glycine, histidine, leucine, phenylalanine, serine, threonine and valine) did not vary appreciably with elevation (p>0.10). The compositional similarity of many

  5. Influence of coffee intake on urinary hippuric acid concentration.

    PubMed

    Ogawa, Masanori; Suzuki, Yoshihiro; Endo, Yoko; Kawamoto, Toshihiro; Kayama, Fujio

    2011-01-01

    Intake of foods and drinks containing benzoic acid influences the urinary hippuric acid (HA) concentration, which is used to monitor toluene exposure in Japan. Therefore, it is necessary to control the intake of benzoic acid before urine collection. Recently, some reports have suggested that components of coffee, such as chlorogenic, caffeic, and quinic acids are metabolized to HA. In this study, we evaluated the influence of coffee intake on the urinary HA concentration in toluene-nonexposed workers who had controlled their benzoic acid intake, and investigated which components of coffee influenced the urinary HA concentration. We collected urine from 15 healthy men who did not handle toluene during working hours, after they had consumed coffee, and we measured their urinary HA concentrations; the benzoic acid intake was controlled in these participants during the study period. The levels of chlorogenic, caffeic, and quinic acids in coffee were analyzed by LC-MS/MS. Urinary HA concentration increased significantly with increasing coffee consumption. Spectrophotometric LC-MS/MS analysis of coffee indicated that it contained chlorogenic and quinic acids at relatively high concentrations but did not contain benzoic acid. Our findings suggest that toluene exposure in coffee-consuming workers may be overestimated.

  6. Refractive Secondary Solar Concentrator Demonstrated High-Temperature Operation

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.

    2002-01-01

    Space applications that utilize solar thermal energy--such as electric power conversion systems, thermal propulsion systems, and furnaces--require highly efficient solar concentration systems. The NASA Glenn Research Center is developing the refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. When used in combination with advanced lightweight primary concentrators, such as inflatable thin films, the refractive secondary concentrator enables very high system concentration ratios and very high temperatures. Last year, Glenn successfully demonstrated a secondary concentrator throughput efficiency of 87 percent, with a projected efficiency of 93 percent using an antireflective coating. Building on this achievement, Glenn recently successfully demonstrated high-temperature operation of the secondary concentrator when it was used to heat a rhenium receiver to 2330 F. The high-temperature demonstration of the concentrator was conducted in Glenn's 68-ft long Tank 6 thermal vacuum facility equipped with a solar simulator. The facility has a rigid panel primary concentrator that was used to concentrate the light from the solar simulator onto the refractive secondary concentrator. NASA Marshall Space Flight Center provided a rhenium cavity, part of a solar thermal propulsion engine, to serve as the high-temperature receiver. The prototype refractive secondary concentrator, measuring 3.5 in. in diameter and 11.2 in. long, is made of single-crystal sapphire. A water-cooled splash shield absorbs spillage light outside of the 3.5-in. concentrator aperture. Multilayer foil insulation composed of tungsten, molybdenum, and niobium is used to minimize heat loss from the hightemperature receiver. A liquid-cooled canister calorimeter is used to measure the heat loss through the multilayer foil insulation.

  7. Convective flows in enclosures with vertical temperature or concentration gradients

    NASA Technical Reports Server (NTRS)

    Wang, L. W.; Chai, A. T.; Sun, D. J.

    1988-01-01

    The transport process in the fluid phase during the growth of a crystal has a profound influence on the structure and quality of the solid phase. In vertical growth techniques the fluid phase is often subjected to vertical temperature and concentration gradients. The main objective is to obtain more experimental data on convective flows in enclosures with vertical temperature or concentration gradients. Among actual crystal systems the parameters vary widely. The parametric ranges studied for mass transfer are mainly dictated by the electrochemical system employed to impose concentration gradients. Temperature or concentration difference are maintained between two horizontal end walls. The other walls are kept insulated. Experimental measurements and observations were made of the heat transfer or mass transfer, flow patterns, and the mean and fluctuating temperature distribution. The method used to visualize the flow pattern in the thermal cases is an electrochemical pH-indicator method. Laser shadowgraphs are employed to visualize flow patterns in the solutal cases.

  8. Concentration of Umami Compounds in Pork Meat and Cooking Juice with Different Cooking Times and Temperatures.

    PubMed

    Rotola-Pukkila, Minna K; Pihlajaviita, Seija T; Kaimainen, Mika T; Hopia, Anu I

    2015-12-01

    This study examined the concentrations of umami compounds in pork loins cooked at 3 different temperatures and 3 different lengths of cooking times. The pork loins were cooked with the sous vide technique. The free amino acids (FAAs), glutamic acid and aspartic acid; the 5'-nucleotides, inosine-5'-monophosphate (IMP) and adenosine-5'-monophosphate (AMP); and corresponding nucleoside inosine of the cooked meat and its released juice were determined by high-performance liquid chromatography. Under the experimental conditions used, the cooking temperature played a more important role than the cooking time in the concentration of the analyzed compounds. The amino acid concentrations in the meat did not remain constant under these experimental conditions. The most notable effect observed was that of the cooking temperature and the higher amino acid concentrations in the released juice of meat cooked at 80 °C compared with 60 and 70 °C. This is most likely due to the heat induced hydrolysis of proteins and peptides releasing water soluble FAAs from the meat into the cooking juice. In this experiment, the cooking time and temperature had no influence on the IMP concentrations observed. However, the AMP concentrations increased with the increasing temperature and time. This suggests that the choice of time and temperature in sous vide cooking affects the nucleotide concentration of pork meat. The Sous vide technique proved to be a good technique to preserve the cooking juice and the results presented here show that cooking juice is rich in umami compounds, which can be used to provide a savory or brothy taste.

  9. Vaginal concentrations of lactic acid potently inactivate HIV

    PubMed Central

    Aldunate, Muriel; Tyssen, David; Johnson, Adam; Zakir, Tasnim; Sonza, Secondo; Moench, Thomas; Cone, Richard; Tachedjian, Gilda

    2013-01-01

    Objectives When Lactobacillus spp. dominate the vaginal microbiota of women of reproductive age they acidify the vagina to pH <4.0 by producing ∼1% lactic acid in a nearly racemic mixture of d- and l-isomers. We determined the HIV virucidal activity of racemic lactic acid, and its d- and l-isomers, compared with acetic acid and acidity alone (by the addition of HCl). Methods HIV-1 and HIV-2 were transiently treated with acids in the absence or presence of human genital secretions at 37°C for different time intervals, then immediately neutralized and residual infectivity determined in the TZM-bl reporter cell line. Results l-lactic acid at 0.3% (w/w) was 17-fold more potent than d-lactic acid in inactivating HIVBa-L. Complete inactivation of different HIV-1 subtypes and HIV-2 was achieved with ≥0.4% (w/w) l-lactic acid. At a typical vaginal pH of 3.8, l-lactic acid at 1% (w/w) more potently and rapidly inactivated HIVBa-L and HIV-1 transmitter/founder strains compared with 1% (w/w) acetic acid and with acidity alone, all adjusted to pH 3.8. A final concentration of 1% (w/w) l-lactic acid maximally inactivated HIVBa-L in the presence of cervicovaginal secretions and seminal plasma. The anti-HIV activity of l-lactic acid was pH dependent, being abrogated at neutral pH, indicating that its virucidal activity is mediated by protonated lactic acid and not the lactate anion. Conclusions l-lactic acid at physiological concentrations demonstrates potent HIV virucidal activity distinct from acidity alone and greater than acetic acid, suggesting a protective role in the sexual transmission of HIV. PMID:23657804

  10. Highly accurate boronimeter assay of concentrated boric acid solutions

    SciTech Connect

    Ball, R.M. )

    1992-01-01

    The Random-Walk Boronimeter has successfully been used as an on-line indicator of boric acid concentration in an operating commercial pressurized water reactor. The principle has been adapted for measurement of discrete samples to high accuracy and to concentrations up to 6000 ppm natural boron in light water. Boric acid concentration in an aqueous solution is a necessary measurement in many nuclear power plants, particularly those that use boric acid dissolved in the reactor coolant as a reactivity control system. Other nuclear plants use a high-concentration boric acid solution as a backup shutdown system. Such a shutdown system depends on rapid injection of the solution and frequent surveillance of the fluid to ensure the presence of the neutron absorber. The two methods typically used to measure boric acid are the chemical and the physical methods. The chemical method uses titration to determine the ionic concentration of the BO[sub 3] ions and infers the boron concentration. The physical method uses the attenuation of neutrons by the solution and infers the boron concentration from the neutron absorption properties. This paper describes the Random-Walk Boronimeter configured to measure discrete samples to high accuracy and high concentration.

  11. Heart Rate Response and Lactic Acid Concentration in Squash Players.

    ERIC Educational Resources Information Center

    Beaudin, Paula; And Others

    1978-01-01

    It was concluded that playing squash is an activity that results in heart rate responses of sufficient intensity to elicit aerobic training effects without producing high lactic acid concentration in the blood. (MM)

  12. Modelling malic acid accumulation in fruits: relationships with organic acids, potassium, and temperature.

    PubMed

    Lobit, Philippe; Genard, Michel; Soing, Patrick; Habib, Robert

    2006-01-01

    Malic acid production, degradation, and storage during fruit development have been modelled. The model assumes that malic acid content is determined essentially by the conditions of its storage in the mesocarp cells, and provides a simplified representation of the mechanisms involved in the accumulation of malate in the vacuole and their regulation by thermodynamic constraints. Solving the corresponding system of equations made it possible to predict the malic acid content of the fruit as a function of organic acids, potassium concentration, and temperature. The model was applied to peach fruit, and parameters were estimated from the data of fruit development monitored over 2 years. The predictions were in good agreement with experimental data. Simulations were performed to analyse the behaviour of the model in response to variations in composition and temperature.

  13. Effect of nitric acid concentrations on synthesis and stability of maghemite nanoparticles suspension.

    PubMed

    Nurdin, Irwan; Johan, Mohd Rafie; Yaacob, Iskandar Idris; Ang, Bee Chin

    2014-01-01

    Maghemite (γ-Fe2O3) nanoparticles have been synthesized using a chemical coprecipitation method at different nitric acid concentrations as an oxidizing agent. Characterization of all samples performed by several techniques including X-ray diffraction (XRD), transmission electron microscopy (TEM), alternating gradient magnetometry (AGM), thermogravimetric analysis (TGA), dynamic light scattering (DLS), and zeta potential. The XRD patterns confirmed that the particles were maghemite. The crystallite size of all samples decreases with the increasing concentration of nitric acid. TEM observation showed that the particles have spherical morphology with narrow particle size distribution. The particles showed superparamagnetic behavior with decreased magnetization values at the increasing concentration of nitric acid. TGA measurement showed that the stability temperature decreases with the increasing concentration of nitric acid. DLS measurement showed that the hydrodynamic particle sizes decrease with the increasing concentration of nitric acid. Zeta potential values show a decrease with the increasing concentration of nitric acid. The increasing concentration of nitric acid in synthesis of maghemite nanoparticles produced smaller size particles, lower magnetization, better thermal stability, and more stable maghemite nanoparticles suspension.

  14. How does tomato quality (sugar, acid, and nutritional quality) vary with ripening stage, temperature, and irradiance?

    PubMed

    Gautier, Hélène; Diakou-Verdin, Vicky; Bénard, Camille; Reich, Maryse; Buret, Michel; Bourgaud, Frédéric; Poëssel, Jean Luc; Caris-Veyrat, Catherine; Génard, Michel

    2008-02-27

    The objective of this study was to understand the respective impact of ripening stage, temperature, and irradiance on seasonal variations of tomato fruit quality. During ripening, concentrations in reducing sugars, carotenes, ascorbate, rutin, and caffeic acid derivates increased, whereas those in titratable acidity, chlorophylls, and chlorogenic acid content decreased. Fruit temperature and irradiance affected final fruit composition. Sugars and acids (linked to fruit gustative quality) were not considerably modified, but secondary metabolites with antioxidant properties were very sensitive to fruit environment. Increased fruit irradiance enhanced ascorbate, lycopene, beta-carotene, rutin, and caffeic acid derivate concentrations and the disappearance of oxidized ascorbate and chlorophylls. Increasing the temperature from 21 to 26 degrees C reduced total carotene content without affecting lycopene content. A further temperature increase from 27 to 32 degrees C reduced ascorbate, lycopene, and its precursor's content, but enhanced rutin, caffeic acid derivates, and glucoside contents. The regulation by light and temperature of the biosynthesis pathways of secondary metabolites is discussed.

  15. High aerosol acidity despite declining atmospheric sulfate concentrations over the past 15 years

    NASA Astrophysics Data System (ADS)

    Weber, Rodney J.; Guo, Hongyu; Russell, Armistead G.; Nenes, Athanasios

    2016-04-01

    Particle acidity affects aerosol concentrations, chemical composition and toxicity. Sulfate is often the main acid component of aerosols, and largely determines the acidity of fine particles under 2.5 μm in diameter, PM2.5. Over the past 15 years, atmospheric sulfate concentrations in the southeastern United States have decreased by 70%, whereas ammonia concentrations have been steady. Similar trends are occurring in many regions globally. Aerosol ammonium nitrate concentrations were assumed to increase to compensate for decreasing sulfate, which would result from increasing neutrality. Here we use observed gas and aerosol composition, humidity, and temperature data collected at a rural southeastern US site in June and July 2013 (ref. ), and a thermodynamic model that predicts pH and the gas-particle equilibrium concentrations of inorganic species from the observations to show that PM2.5 at the site is acidic. pH buffering by partitioning of ammonia between the gas and particle phases produced a relatively constant particle pH of 0-2 throughout the 15 years of decreasing atmospheric sulfate concentrations, and little change in particle ammonium nitrate concentrations. We conclude that the reductions in aerosol acidity widely anticipated from sulfur reductions, and expected acidity-related health and climate benefits, are unlikely to occur until atmospheric sulfate concentrations reach near pre-anthropogenic levels.

  16. Brain dopamine and amino acid concentrations in Lurcher mutant mice.

    PubMed

    Reader, T A; Strazielle, C; Botez, M I; Lalonde, R

    1998-03-15

    Lurcher mutant mice are characterized by massive degeneration of the cerebellum, including Purkinje cells and granule cells, as well as for the loss of neurons from the inferior olive. Concentrations of dopamine and two of its metabolites and of several amino acid neurotransmitters were determined in the cerebellum and in other brain regions of these mutants. By comparison to wild-type mice of the same background strain, glutamate and taurine concentrations were reduced in the Lurcher cerebellum. No decrease was found for aspartate, gamma-aminobutyric acid (GABA), glycine, as well as dopamine and its metabolites. Moreover, no neurochemical alterations occurred in the brain stem, thalamus, or neostriatum of Lurcher mutants. A selective reduction of glutamate concentration was found in the hippocampus, while all amino acids measured were decreased in the entorhinal-piriform areas. These results indicate region-selective reductions of neurotransmitter concentrations in a mouse mutant with a defined cerebellar cortical pathology.

  17. Unprecedented concentrations of indigenous amino acids in primitive CR meteorites

    NASA Astrophysics Data System (ADS)

    Ehrenfreund, Pascale; Martins, Zita; Alexander, Conel; Orzechowska, Grazyna; Fogel, Marylin

    CR meteorites are among the most primitive meteorites. We have performed pioneering work determining the compositional characteristics of amino acids in this type of carbonaceous chondrites. We report the first measurements of amino acids in Antarctic CR meteorites, two of which show the highest amino acid concentrations ever found in a chondrite. We have analyzed the amino acid content of the Antarctic CRs EET92042, GRA95229 and GRO95577 using high performance liquid chromatography with UV fluorescence detection (HPLC-FD) and gas chromatography-mass spectrometry (GC-MS). Additionally, compound-specific carbon isotopic measurements for most of the individual amino acids from the EET92042 and GRA95229 meteorites were achieved by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). Our data show that EET92042 and GRA95229 are the most amino acid-rich chondrites ever analyzed, with total amino acid concentrations of 180 and 249 parts-per-million (ppm), respectively. GRO95577, however, is depleted in amino acids (<1 ppm). The most abundant amino acids present in the EET92042 and GRA95229 meteorites are the α-amino acids glycine, isovaline, α-aminoisobutyric acid (α-AIB), and alanine, with δ 13 C values ranging from +31.6% to +50.5%. The highly enriched carbon isotope results together with racemic enantiomeric ratios determined for most amino acids indicate that primitive organic matter was preserved in these meteorites. In addition, the relative abundances of α-AIB and β-alanine amongst Antarctic CR meteorites appear to correspond to the degree of aqueous alteration on their respective parent body. Investigating the abundances and isotopic composition of amino acids in primitive chondrites helps to understand the role of meteorites as a source of extraterrestrial prebiotic organic compounds to the early Earth.

  18. [Does coffee drinking influence serum uric acid concentration?].

    PubMed

    Olak-Białoń, Bogusława; Marcisz, Czesław; Jonderko, Gerard; Olak, Zygfryd; Szymszal, Jan; Orzeł, Arkadiusz

    2004-01-01

    The drinking of coffee, a commonly used beverage, was a subject of many studies, mainly regarded to coffee influence on cardiovascular system. However, only one study indicates that coffee drinking in male adults may lead to decrease in serum uric acid level. Hyperuricaemia is a risk factor of many diseases. The aim of this study was to examine the influence of coffee drinking on serum uric acid concentration. 1955 working persons aged from 18 to 65 years were included into research. There were 571 women among them. We determined energy expenditure during professional work, blood pressure, body mass index, and measured serum levels of uric acid, glucose and creatinine. The amount of coffee and ethanol consumption was evaluated on the ground of an interview. It was showed that persons drinking coffee have lower serum uric acid concentration than non-drinkers, especially among women, who drank more coffee then men. Uricaemia was correlated negatively with number of cups of coffee consumed and positively with body mass index, ethanol consumption and diastolic blood pressure. The author conclude that: 1) among women drinking on an average 10 cups of coffee per week appeared a decrease in serum uric acid concentration and a lower risk of development of hyperuricaemia, 2) elevated serum uric acid concentration is accompanied by elevated blood pressure and increased body mass index.

  19. Summary and implications of reported amino acid concentrations in the Murchison meteorite

    NASA Astrophysics Data System (ADS)

    Shock, Everett L.; Schulte, Mitchell D.

    1990-11-01

    A study of literature reports of the concentrations of amino acids in extracts from the Murchison meteorite shows that many of the concentration ratios are constant. There are two possible interpretations of these ratios. One is that they are controlled by the pathways through which the amino acids formed, from which it follows that the amino acids are distributed in the same proportions throughout the meteorite. The other interpretation is that the ratios result from the analytical procedures used to extract the amino acids from the meteorite. These methods rely heavily on high-temperature (100°C) aqueous extraction and subsequent high-temperature acid hydrolysis. A correlation was observed in the present study between the relative concentrations of several amino acids in the meteorite extracts and their relative aqueous solubilities at 100°C (alanine, valine, leucine, isoleucine, norleucine, aspartic acid, glutamic acid, and glycine). The extract solutions are dilute, and far from the saturation limits, but these correlations suggest that the sampling procedure affects directly the reported concentrations for these amino acids. Ratios of the concentration of serine to those of glycine are also constant but cannot be accounted for solely by relative solubilities, and, as suggested elsewhere, serine as well as phenylalanine and methionine may be terrestrial contaminants. Data for β-alanine, α-aminobutyric acid, proline, sarcosine, alloisoleucine, β-aminoisobutyric acid, β-aminobutyric acid, and threonine also show constant abundances relative to glycine, but lack of solubility data at extraction conditions prohibits evaluating the extent of possible sampling bias for these amino acids. If the extraction process does not bias the results, and all extractable amino acids are removed from meteorite samples, then the properties of amino acids which control both their solubilities and their concentrations in the meteorite need to be established. The possibility of

  20. Whey protein concentrate storage at elevated temperature and humidity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dairy processors are finding new export markets for whey protein concentrate (WPC), a byproduct of cheesemaking, but they need to know if full-sized bags of this powder will withstand high temperature and relative humidity (RH) levels during unrefrigerated storage under tropical conditions. To answ...

  1. Corn stover saccharification with concentrated sulfuric acid: effects of saccharification conditions on sugar recovery and by-product generation.

    PubMed

    Liu, Ze-Shen; Wu, Xiao-Lei; Kida, Kenji; Tang, Yue-Qin

    2012-09-01

    Although concentrated sulfuric acid saccharification is not a novel method for breaking down lignocellulosic biomass, the process by which saccharification affects biomass decomposition, sugar recovery, and by-product generation is not well studied. The present study employed Taguchi experimental design to study the effects of seven parameters on corn stover concentrated sulfuric acid saccharification. The concentration of sulfuric acid and the temperature of solubilization significantly affect corn stover decomposition. They also have significant effects on glucose and xylose recoveries. Low generation of furfural and 5-hydroxymethyl-2-furfural (5HMF) was noted and organic acids were the main by-products detected in the hydrolysate. Temperature also significantly affected the generation of levulinic acid and formic acid; however, acetic acid generation was not significantly influenced by all seven parameters. The ratio of acid to feedstock significantly affected glucose recovery, but not total sugar recovery. The corn stover hydrolysate was well fermented by both glucose- and xylose-fermenting yeast strains.

  2. Influence of ethanol and temperature on the cellular fatty acid composition of Zygosaccharomyces bailii spoilage yeasts.

    PubMed

    Baleiras Couto, M M; Huis in't Veld, J H

    1995-03-01

    Changes in the fatty acid profile of Zygosaccharomyces bailii strains, isolated from different sources, after growth at increasing concentrations of ethanol and/or decreasing temperatures were determined. Differences in fatty acid composition between Zygosaccharomyces bailii strains at standard conditions (25 degrees C, 0% initial ethanol) were observed and could be related to ethanol tolerance. Zygosaccharomyces bailii strain isolated from wine showed the highest ethanol tolerance in relation to growth rate. Surprisingly, an increase in ethanol concentration or a decrease in growth temperature caused a decrease in the degree of unsaturation of total cellular fatty acids. On the other hand, the mean chain length increased (high ethanol concentration) or decreased (low temperature) depending on the stress factor. When both stress situations (high ethanol concentration and low temperature) were present at the same time, the degree of unsaturation remained approximately constant. With decreasing temperatures, the C16/C18 ratio increased in studies of initial ethanol content below 5%, and above 5% ethanol, decreased.

  3. Stability-time profile of trichloroacetic acid at various concentrations and storage conditions.

    PubMed

    Spinowitz, A L; Rumsfield, J

    1989-09-01

    Trichloroacetic acid (TCA) is a deliquescent chemical widely used for a variety of procedures. Stability of various concentrations of TCA in both amber glass and plastic bottles stored under refrigeration and at room temperature was measured at several time points. Extended stability data suggest that TCA potency is stable for 23 weeks and would best be maintained in glass amber bottles stored under refrigeration.

  4. Effect of initial temperature and concentration of catalyst in polyeugenol production

    SciTech Connect

    Widayat

    2015-12-29

    Objective of this research to study influencing of sulfuric acid concentration and initials temperature on polymerization of eugenol. Eugenol is the largest compound in the clove oil that used as raw material. Eugenol was polymerized laboratory scale. Polymerization processing conducted in reactor at 30 minutes. Polyeugenol was obtained in polymerization was conducted at temperature 40°C and ratio eugenol to sulfuric acid 1:15 mole. This research was pbtained the highest yield 81.49%. However, the weight would be increase in according with increasing of initial temperature. The polymerization in temperature 50°C with 1:1.5 mole ratio has the heaviest molecule weight; 47,530.76 gr/mole.

  5. Effect of initial temperature and concentration of catalyst in polyeugenol production

    NASA Astrophysics Data System (ADS)

    Widayat, Fatuchrohman, Alviano; Gustiasih, Ellen

    2015-12-01

    Objective of this research to study influencing of sulfuric acid concentration and initials temperature on polymerization of eugenol. Eugenol is the largest compound in the clove oil that used as raw material. Eugenol was polymerized laboratory scale. Polymerization processing conducted in reactor at 30 minutes. Polyeugenol was obtained in polymerization was conducted at temperature 40°C and ratio eugenol to sulfuric acid 1:15 mole. This research was pbtained the highest yield 81.49%. However, the weight would be increase in according with increasing of initial temperature. The polymerization in temperature 50°C with 1:1.5 mole ratio has the heaviest molecule weight; 47,530.76 gr/mole.

  6. Amino acid rejection behaviour as a function of concentration.

    PubMed

    Shirley, Jason; Mandale, Stephen; Williams, Paul M

    2011-05-11

    The solute rejection versus concentration behaviour of five different amino acids has been investigated using a Nitto Denko NTR7450 nanofiltration membrane. The experimental data for amino acid rejection was also compared against a combined steric and charge rejection model. At its isoelectric point, lysine was effectively neutral and its behaviour was well described by the model incorporating a steric function only. For phenylalanine, the combined model was found to fit the data well. In contrast there was poor agreement between the model and rejection data for glutamine, glutamic acid and glycine whose rejection values at first increased with concentration. This result implied that another governing process was in operation. Dimerisation as an explanation for the observed phenomena was also investigated. Size analysis of amino acid molecules as a function of the prevailing concentration using dynamic light scattering was limited but showed no evidence of dimerisation. This data was supported by osmotic pressure measurements which demonstrated no evidence of non-linearity in the relation between osmotic pressure and concentration.

  7. Diode Laser Measurements of Concentration and Temperature in Microgravity Combustion

    NASA Technical Reports Server (NTRS)

    Silver, Joel A.; Kane, Daniel J.

    1999-01-01

    Diode laser absorption spectroscopy provides a direct method of determinating species concentration and local gas temperature in combustion flames. Under microgravity conditions, diode lasers are particularly suitable, given their compact size, low mass and low power requirements. The development of diode laser-based sensors for gas detection in microgravity is presented, detailing measurements of molecular oxygen. Current progress of this work and future application possibilities for these methods on the International Space Station are discussed.

  8. Future CO2 concentrations, though not warmer temperatures, enhance wheat photosynthesis temperature responses.

    PubMed

    Alonso, Aitor; Pérez, Pilar; Morcuende, Rosa; Martinez-Carrasco, Rafael

    2008-01-01

    The temperature dependence of C3 photosynthesis is known to vary according to the growth environment. Atmospheric CO2 concentration and temperature are predicted to increase with climate change. To test whether long-term growth in elevated CO2 and temperature modifies photosynthesis temperature response, wheat (Triticum aestivum L.) was grown in ambient CO2 (370 micromol mol(-1)) and elevated CO2 (700 micromol mol(-1)) combined with ambient temperatures and 4 degrees C warmer ones, using temperature gradient chambers in the field. Flag leaf photosynthesis was measured at temperatures ranging from 20 to 35 degrees C and varying CO2 concentrations between ear emergence and anthesis. The maximum rate of carboxylation was determined in vitro in the first year of the experiment and from the photosynthesis-intercellular CO2 response in the second year. With measurement CO2 concentrations of 330 micromol mol(-1) or lower, growth temperature had no effect on flag leaf photosynthesis in plants grown in ambient CO2, while it increased photosynthesis in elevated growth CO2. However, warmer growth temperatures did not modify the response of photosynthesis to measurement temperatures from 20 to 35 degrees C. A central finding of this study was that the increase with temperature in photosynthesis and the photosynthesis temperature optimum were significantly higher in plants grown in elevated rather than ambient CO2. In association with this, growth in elevated CO2 increased the temperature response (activation energy) of the maximum rate of carboxylation. The results provide field evidence that growth under CO2 enrichment enhances the response of Rubisco activity to temperature in wheat.

  9. Estimating upper ocean phosphate concentrations using ARGO float temperature profiles

    NASA Astrophysics Data System (ADS)

    Kamykowski, Daniel

    2008-11-01

    The ARGO free-drifting profiling float array, with >3125 floats deployed between 60°N and 60°S latitudes at about 3° resolution as of May 2008 and each float profiling through 2000 m every 10 days, provides a comprehensive four-dimensional view of temperature and salinity in the world ocean. The resulting dataset complements satellite-based sea surface temperature (SST) measurements and similarly will complement future satellite-based sea surface salinity measurements. Although plans exist to add biogeochemical sensors to future floats, cost and depth restrictions may limit comprehensive upgrades to a fraction of all floats deployed after 2008. Temperature-nutrient (TN) relationships provide a mechanism to estimate nutrient concentrations from temperature to supplement sparser nutrient concentration measurements potentially obtained using non-chemical approaches like ISUS-based nitrate. Both negative and positive aspects of applying a temperature-phosphate (TP) linear regression matrix with global coverage (70°N and 70°S) are examined. The TP linear regression matrix was derived by combining an existing 1° latitude and longitude table of phosphate depletion temperatures (PDT) or X-intercepts with representative TP linear regression slopes derived from the GEOSECS dataset. Temperatures from datasets with associated latitude and longitude coordinates and, in some cases, measured phosphate concentrations ([PO 4]) were matched with calculated TP linear regression slopes and Y-intercepts in the global matrix with 1° resolution using MSExcel Lookup worksheet functions to calculate TP-estimated [PO 4]. The mean deviation of TP-estimated [PO 4] <3.0 μM from measured [PO 4] is 0.18±0.18 μM at Hawaii (HOT) and 0.04±0.08 μM at Bermuda (BATS) time series stations and 0.28±0.27 μM over all considered World Ocean Circulation Experiment (WOCE) stations representing the different ocean basins. In general, TP-estimated [PO 4] represents measured [PO 4] more accurately

  10. High temperature helical tubular receiver for concentrating solar power system

    NASA Astrophysics Data System (ADS)

    Hossain, Nazmul

    In the field of conventional cleaner power generation technology, concentrating solar power systems have introduced remarkable opportunity. In a solar power tower, solar energy concentrated by the heliostats at a single point produces very high temperature. Falling solid particles or heat transfer fluid passing through that high temperature region absorbs heat to generate electricity. Increasing the residence time will result in more heat gain and increase efficiency. A novel design of solar receiver for both fluid and solid particle is approached in this paper which can increase residence time resulting in higher temperature gain in one cycle compared to conventional receivers. The helical tubular solar receiver placed at the focused sunlight region meets the higher outlet temperature and efficiency. A vertical tubular receiver is modeled and analyzed for single phase flow with molten salt as heat transfer fluid and alloy625 as heat transfer material. The result is compared to a journal paper of similar numerical and experimental setup for validating our modeling. New types of helical tubular solar receivers are modeled and analyzed with heat transfer fluid turbulent flow in single phase, and granular particle and air plug flow in multiphase to observe the temperature rise in one cyclic operation. The Discrete Ordinate radiation model is used for numerical analysis with simulation software Ansys Fluent 15.0. The Eulerian granular multiphase model is used for multiphase flow. Applying the same modeling parameters and boundary conditions, the results of vertical and helical receivers are compared. With a helical receiver, higher temperature gain of heat transfer fluid is achieved in one cycle for both single phase and multiphase flow compared to the vertical receiver. Performance is also observed by varying dimension of helical receiver.

  11. Circadian changes in endogenous concentrations of indole-3-acetic acid, melatonin, serotonin, abscisic acid and jasmonic acid in Characeae (Chara australis Brown)

    PubMed Central

    Beilby, Mary J; Turi, Christina E; Baker, Teesha C; Tymm, Fiona JM; Murch, Susan J

    2015-01-01

    Giant-celled Characeae (Chara australis Brown), grown for 4 months on 12/12 hr day/night cycle and summer/autumn temperatures, exhibited distinct concentration maxima in auxin (indole-3-acetic acid; IAA), melatonin and serotonin about 4 hr after subjective daybreak. These concentration peaks persisted after 3 day pretreatment in continuous darkness: confirming a circadian rhythm, rather than a response to “light on.” The plants pretreated for 3 d in continuous light exhibited several large IAA concentration maxima throughout the 24 hr. The melatonin and serotonin concentrations decreased and were less synchronized with IAA. Chara plants grown on 9/15 hr day/night cycle for 4 months and winter/spring temperatures contained much smaller concentrations of IAA, melatonin and serotonin. The IAA concentration maxima were observed in subjective dark phase. Serotonin concentration peaks were weakly correlated with those of IAA. Melatonin concentration was low and mostly independent of circadian cycle. The “dark” IAA concentration peaks persisted in plants treated for 3 d in the dark. The plants pretreated for 3 d in the light again developed more IAA concentration peaks. In this case the concentration maxima in melatonin and serotonin became more synchronous with those in IAA. The abscisic acid (ABA) and jasmonic acid (JA) concentrations were also measured in plants on winter regime. The ABA concentration did not exhibit circadian pattern, while JA concentration peaks were out of phase with those of IAA. The data are discussed in terms of crosstalk between metabolic pathways. PMID:26382914

  12. Xanthan from sulphuric acid treated tapioca pulp: influence of acid concentration on xanthan fermentation.

    PubMed

    Gunasekar, V; Reshma, K R; Treesa, Greeshma; Gowdhaman, D; Ponnusami, V

    2014-02-15

    Xanthan gum was produced by fermentation of sulphuric acid pre-treated tapioca pulp. Effect of sulphuric acid concentration (0.5%, 2.5% and 5.0%) on xanthan fermentation was investigated. Maximum xanthan yield (7.1g/l) was obtained with 0.5% sulphuric acid pre-treatment. Further, increase in sulphuric acid concentration caused formation of inhibitory substance and lowered xanthan yield. The product was confirmed as xanthan using FTIR, (1)H NMR analyses. Viscosity was measured by Brookfield viscometer and the molecular weight was determined from the intrinsic viscosity. The results confirmed that the yield and quality of xanthan produced were strongly influenced by the acid concentration.

  13. [Effect of Light Color Temperature on Human Concentration and Creativity].

    PubMed

    Weitbrecht, W U; Bärwolff, H; Lischke, A; Jünger, S

    2015-06-01

    Light has different biological effects depending on the color temperature and intensity. This may be the reason for its differing effects. We investigated the influence of color temperature (3000 K, 4500 K, 6000 K) under constant high intensity (1000 Lux) on concentration and creativity of 50 students and employees of the Cologne University of Applied Sciences, Campus Gummersbach (age: 30.9 +/- 10.8y.). As test method we used d2-bq-test, creativity test (mean of the number of ideas on 5 themes), word test and logic test. In addition, test subjects were asked to evaluate their impression of light by means of a questionnaire. To exclude the circadian influence and learning effects on the result, we performed tests at the same time of the day using a random order of color temperature. We found that creativity was better under warm light (3000 K) than under colder light (4500 K, 6000 K). Concentration was best under cold light (6000 K). Under the same light intensity conditions, subjects judged blue light (6000 K) to be brighter than red light (3000 K).

  14. Temperature Features of Enzymes Affecting Crassulacean acid Metabolism

    PubMed Central

    Brandon, P. C.

    1967-01-01

    Enzymes involved in malic acid production via a pathway with 2 carboxylation reactions and in malic acid conversion via total oxidation have been demonstrated in mitochondria of Bryophyllum tubiflorum Harv. Activation of the mitochondria by Tween 40 was necessary to reveal part of the enzyme activities. The temperature behavior of the enzymes has been investigated, revealing optimal activity of acid-producing enzymes at 35°. Even at 53° the optimum for acid-converting enzymes was not yet reached. From the simultaneous action of acid-producing and acid-converting enzyme systems the overall result at different temperatures was established. Up to 15° the net result was a malic acid production. Moderate temperatures brought about a decrease in this accumulation, which was partly accompanied by a shift to isocitrate production, while at higher temperatures total oxidation of the acids exceeded the production. PMID:16656606

  15. Variation in available cesium concentration with parameters during temperature induced extraction of cesium from soil.

    PubMed

    Parajuli, Durga; Takahashi, Akira; Tanaka, Hisashi; Sato, Mutsuto; Fukuda, Shigeharu; Kamimura, Ryuichi; Kawamoto, Tohru

    2015-02-01

    Cesium extraction behavior of brown forest type soil collected from paddy fields in Fukushima nuclear accident affected areas was studied. In nitric acid or sulfuric acid solutions at elevated temperature, the concentration of Cs in soil available for extraction, m0, has been estimated on the basis of modified canonical equation and the equations derived from assumed equilibria. With the variation in temperature, mixing time, and soil to solvent ratio, the observed m0 values in 0.5 M acid solution ranged between 1.5 and 2.9 mg cesium per kilogram of soil. By increasing the acid concentration to 3 M, the value of m0 could be sharply increased to 5.1 mg/kg even at 95 °C. This variation in the extractable concentration of cesium with the parameters signifies the existence of different binding sites in the soil matrix. The results observed for uncontaminated sample could be reproduced with the radioactive cesium contaminated sample belonging to the same soil group.

  16. Adiponectin and visfatin concentrations in children treated with valproic acid.

    PubMed

    Rauchenzauner, Markus; Haberlandt, Edda; Scholl-Bürgi, Sabine; Ernst, Barbara; Hoppichler, Fritz; Karall, Daniela; Ebenbichler, Christoph F; Rostasy, Kevin; Luef, Gerhard

    2008-02-01

    Chronic antiepileptic therapy with valproic acid (VPA) is associated with increased body weight and insulin resistance in adults and children. Attempts to determine the underlying pathophysiologic mechanisms have failed. Adipocytokines have recently been defined as a link between glucose and fat metabolism. We herein demonstrate that VPA-associated overweight is accompanied by lower adiponectin and higher leptin concentrations in children. The absence of any relationship with visfatin concentration does not suggest a role of this novel insulin-mimetic hormone in VPA-associated metabolic alterations. Therefore, adiponectin and leptin but not visfatin may be considered as potential regulators of glucose and fat metabolism during VPA-therapy.

  17. Excess Thermodynamic Properties of Concentrated Aqueous Solutions at High Temperatures

    SciTech Connect

    Guszkiewicz, M.S.

    2001-06-07

    Measurements of the vapor pressure of the solvent in wide ranges of concentration and temperature provide information on solute solvation and ion pairing--the two phenomena most often invoked for description of dilute solutions. Even in moderately concentrated solutions, as interionic distances become comparable to ionic diameters, these simple concepts gradually lose their meaning and solutions behave like molten salts. The usefulness of experimental vapor pressure results increases rapidly with their accuracy, since derived properties, such as solution enthalpies and heat capacities, can be calculated. Very accurate results can be obtained by the isopiestic method, but primary vapor pressure data for standard solutions are needed. In order to obtain vapor pressures at conditions where accurate isopiestic standards are not available and to establish more accurate standards, the ORNL isopiestic apparatus was modified for simultaneous direct vapor pressure measurements and isopiestic comparisons. There are no comprehensive solution theories derived from molecular level models and able to predict thermodynamic properties of various electrolytes as the composition changes from dilute solutions to molten salts in a wide range of temperatures. Empirical and semi-empirical models are useful for representation of experimental results, interpretation of measurements of other properties such as conductance., solubility or liquid-vapor partitioning of solutes, and for verification of theoretical predictions. Vapor pressures for aqueous CaCl{sub 2}, CaBr{sub 2}, LiCl, LiBr, LiI, NaI were measured at temperatures between 380 and 523 K in the concentration range extended to water activities below 0.2 (over 30 mol/kg for LiCl). General equations based on the modified Pitzer ion-interaction model were used to obtain enthalpy and heat capacity surfaces, which are compared with direct calorimetric measurements.

  18. High Temperature Concentrated Solar Power Using Liquid Metal

    NASA Astrophysics Data System (ADS)

    Henry, Asegun

    One of the most attractive ways to try and reduce the cost of concentrated solar power (CSP) is to increase the system efficiency and the biggest loss in the system occurs in the conversion of heat to electricity via heat engine. Heat engines that utilize turbomachinery currently operate near their thermodynamic limitations and thus one of the only ways to improve heat engine efficiency is to increase the turbine inlet temperature. Significant effort is being devoted to the development of supercritical CO2 heat engines, but the most efficient heat engines are combined cycles, which reach efficiencies as high as 60%. However, such heat engines require turbine inlet temperatures ~1300-1500C, which is far beyond what is currently feasible with the state of the art molten salt infrastructure. In working towards the development of a system that can operate in the 1300-1500C temperature range, the most significant challenges lie in the materials and forming functional and reliable components out of new materials. One of the most attractive options from a cost and heat transfer perspective is to use liquid metals, such as tin and aluminum-silicon alloys along with a ceramic based infrastructure. This talk will overview ongoing efforts in the Atomistic Simulation and Energy (ASE) research group at Georgia Tech to develop prototype components such as an efficient high temperature cavity receiver, pumps and valves that can make a liquid metal based CSP infrastructure realizable.

  19. Charge carrier concentration and temperature dependent recombination in polymer-fullerene solar cells

    NASA Astrophysics Data System (ADS)

    Foertig, A.; Baumann, A.; Rauh, D.; Dyakonov, V.; Deibel, C.

    2009-08-01

    We performed temperature dependent transient photovoltage and photocurrent measurements on poly(3-hexylthiophene):[6,6]-phenyl-C61 butyric acid methyl ester bulk heterojuction solar cells. We found a strongly charge carrier concentration and temperature dependent Langevin recombination prefactor. The observed recombination mechanism is discussed in terms of bimolecular recombination. The experimental results were compared with charge carrier extraction by linearly increasing voltage measurements done on the same blend system. We explain the charge carrier dynamics, following an apparent order larger than two, by dynamic trapping of charges in the tail states of the Gaussian density of states.

  20. Determination of D- and L-alanine concentrations using a pyruvic acid sensor.

    PubMed

    Inaba, Yohei; Hamada-Sato, Naoko; Kobayashi, Takeshi; Imada, Chiaki; Watanabe, Etsuo

    2003-08-01

    The concentrations of D- and L-alanine in bivalves are useful as indicators of environmental pollution. Amino acid oxidase with a low substrate specificity catalyzes the oxidation of various amino acids. Among the various amino acids, pyruvic acid can be generated from alanine only by the catalytic oxidative reaction of this oxidase. Therefore, in this study, the concentrations of D- and L-alanine were determined from the concentration of pyruvic acid, which was determined from the consumption of oxygen based on the oxidative reaction of pyruvate oxidase. From this point of view, there is a very strong possibility that biosensors utilizing enzymes with a low substrate specificity can be developed. The results obtained were as follows. (1) The optimum conditions for the use of pyruvic acid sensor were as follows: temperature of 25 degrees C, pH of 6.8, flow rate of 0.1 ml/min, thiamin diphosphate concentration of 1.5 mM, and injection volume of 50 microl. (2) D-Alanine and L-alanine optimally reacted with D- and L-amino acid oxidase at 30 degrees C, pH 8.2, for 30 min and at 37 degrees C, pH 7.8, for 90 min, respectively. (3) The linear relationships between the concentrations of D- and L-alanine and the output of the sensor were obtained at 3.56-106.8 microg of D-alanine and 5.34-71.3 microg of L-alanine. (4) The concentrations of D- and L-alanine in Meretrix iusoria, Patinopecten yessonsi, and Corbicula leana obtained by the proposed assay were in good agreement with those determined by a conventional method.

  1. Effect of acid and temperature on the discontinuous shear thickening phenomenon of silica nanoparticle suspensions

    NASA Astrophysics Data System (ADS)

    Li, Shuangbing; Wang, Jixiao; Cai, Wei; Zhao, Song; Wang, Zhi; Wang, Shichang

    2016-08-01

    The discontinuous shear thickening (DST) phenomenon of silica nanoparticle suspensions was investigated in this article. First, the non-aggregated silica nanoparticles were synthesized and characterized. The results indicate that the silica nanoparticles are spherical particles with a narrow size distribution with a diameter of approximately 90 nm. Next, the influence of nitric acid concentration and temperature on the DST phenomenon of shear thickening fluids (STFs) was investigated. The results indicate that the concentrated fluids with nitric acid concentration below 8.50 mmol/L and at a temperature below 40 °C exhibit a readily noticeable DST phenomenon.

  2. Effects of flux concentrations and sintering temperature on dental porcelain

    NASA Astrophysics Data System (ADS)

    Ghose, Polash; Gafur, Md. Abdul; Das, Sujan Kumar; Ranjan Chakraborty, Shyamal; Mohsin, Md.; Deb, Arun Kumar; Rakibul Qadir, Md.

    2014-02-01

    In this study, samples of dental porcelain bodies have been made by using the materials collected from selected deposits employing different mixing proportions of clay, quartz and feldspar. Dental porcelain ceramics have been successfully fabricated by using the sintering technique together with some Na2CO3 additive. The dental porcelain powder has been pressed into pellets at first and subsequently sintered at 700, 800, 900, 1000 and 1100 °C for 2 h. The physical and mechanical properties of the prepared samples have been investigated. The sintering behavior of the fired samples has been evaluated by bulk density, linear shrinkage, water absorption and apparent porosity measurements. This study includes the evaluation of the Vickers's microhardness by microhardness tester. Phase analysis and microstructural study have been performed by XRD and optical microscope respectively. Optical properties have been investigated using UV-visible spectroscopy. Influence of firing conditions on leucite formation, densification and microstructural development of the sintered samples has been investigated. It has been found that the choice of sintering temperature is one of the key factors in controlling leucite crystallization in dental porcelain ceramics. It has also been found that the flux concentration of material and the effect of temperature on preparation of dental porcelain contribute to the firing shrinkage and hardness, which has been found to increase with the increase of treatment temperature.

  3. Modeling temperature dependence of trace element concentrations in groundwater using temperature dependent distribution coefficient

    NASA Astrophysics Data System (ADS)

    Saito, H.; Saito, T.; Hamamoto, S.; Komatsu, T.

    2015-12-01

    In our previous study, we have observed trace element concentrations in groundwater increased when groundwater temperature was increased with constant thermal loading using a 50-m long vertical heat exchanger installed at Saitama University, Japan. During the field experiment, 38 degree C fluid was circulated in the heat exchanger resulting 2.8 kW thermal loading over 295 days. Groundwater samples were collected regularly from 17-m and 40-m deep aquifers at four observation wells located 1, 2, 5, and 10 m, respectively, from the heat exchange well and were analyzed with ICP-MS. As a result, concentrations of some trace elements such as boron increased with temperature especially at the 17-m deep aquifer that is known as marine sediment. It has been also observed that the increased concentrations have decreased after the thermal loading was terminated indicating that this phenomenon may be reversible. Although the mechanism is not fully understood, changes in the liquid phase concentration should be associated with dissolution and/or desorption from the solid phase. We therefore attempt to model this phenomenon by introducing temperature dependence in equilibrium linear adsorption isotherms. We assumed that distribution coefficients decrease with temperature so that the liquid phase concentration of a given element becomes higher as the temperature increases under the condition that the total mass stays constant. A shape function was developed to model the temperature dependence of the distribution coefficient. By solving the mass balance equation between the liquid phase and the solid phase for a given element, a new term describing changes in the concentration was implemented in a source/sink term of a standard convection dispersion equation (CDE). The CDE was then solved under a constant ground water flow using FlexPDE. By calibrating parameters in the newly developed shape function, the changes in element concentrations observed were quite well predicted. The

  4. Uptake of Hypobromous Acid (HOBr) by Aqueous Sulfuric Acid Solutions: Low-Temperature Solubility and Reaction

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Michelsen, Rebecca R.; Ashbourn, Samatha F. M.; Rammer, Thomas A.; Golden, David M.

    2005-01-01

    Hypobromous acid (HOBr) is a key species linking inorganic bromine to the chlorine and odd hydrogen chemical families. We have measured the solubility of HOBr in 45 - 70 wt% sulfuric acid solutions representative of upper tropospheric and lower stratospheric aerosol composition. Over the temperature range 201 - 252 K, HOBr is quite soluble in sulfuric acid, with an effective Henry's law coefficient, H* = 10(exp 4) - 10(exp 7) mol/L/atm. H* is inversely dependent on temperature, with Delta H = -46.2 kJ/mol and Delta S = -106.2 J/mol/K for 55 - 70 wt% H2SO4 solutions. Our study includes temperatures which overlap both previous measurements of HOBr solubility. For uptake into aqueous 45 wt% H2SO4, the solubility can be described by log H* = 3665/T - 10.63. For 55 - 70 wt% H2SO4, log H* = 2412/T - 5.55. At temperatures colder than approx. 213 K, the solubility of HOBr in 45 wt% H2SO4 is noticeably larger than in 70 wt% H2SO4. The solubility of HOBr is comparable to that of HBr, indicating that upper tropospheric and lower stratospheric aerosols should contain equilibrium concentrations of HOBr which equal or exceed those of HBr. Our measurements indicate chemical reaction of HOBr upon uptake into aqueous sulfuric acid in the presence of other brominated gases followed by evolution of gaseous products including Br2O and Br2, particularly at 70 wt% H2SO4.

  5. Solubility of HBr in sulfuric acid at stratospheric temperatures

    SciTech Connect

    Williams, L.R.; Golden, D.M.; Huestis, D.L.

    1995-04-20

    The solubility of HBr in 54 to 72 wt % sulfuric acid at low temperatures (200 to 240 K) was measured using two different experimental techniques. In the first, the time dependence of the uptake coefficient of HBr was measured in a Knudsen cell reactor and analyzed to give the effective Henry`s law coefficient. In the second, equilibrium vapor pressures of HBr (gas) over solutions containing known concentrations of HBr (dissolved) were measured. The two techniques were in good agreement. Typical values of the effective Henry`s law coefficient at 220 K were 1.5 x 10{sup 7} M/atm for 54 wt %, 2.2 x 10{sup 6} M/atm for 60 wt %, 1.5 x 10{sup 5} M/atm for 66 wt %, and 8.5 x 10{sup 3} M/atm for 72 wt % sulfuric acid. The measured solubilities combined with the stratospheric gas phase concentration of HBr indicate that very little HBr will be dissolved in stratospheric sulfate aerosol particles. 28 refs., 4 figs., 2 tabs.

  6. CO(2)-concentrating: consequences in crassulacean acid metabolism.

    PubMed

    Lüttge, Ulrich

    2002-11-01

    The consequences of CO(2)-concentrating in leaf air-spaces of CAM plants during daytime organic acid decarboxylation in Phase III of CAM (crassulacean acid metabolism) are explored. There are mechanistic consequences of internal CO(2) partial pressures, p(i)(CO(2)). These are (i) effects on stomata, i.e. high p(i)(CO(2)) eliciting stomatal closure in Phase III, (ii) regulation of malic acid remobilization from the vacuole, malate decarboxylation and refixation of CO(2) via Rubisco (ribulose bisphosphate carboxylase/oxygenase), and (iii) internal signalling functions during the transitions between Phases II and III and III and IV, respectively, in the natural day/night cycle and in synchronizing the circadian clocks of individual leaf cells or leaf patches in the free-running endogenous rhythmicity of CAM. There are ecophysiological consequences. Obvious beneficial ecophysiological consequences are (i) CO(2)-acquisition, (ii) increased water-use- efficiency, (iii) suppressed photorespiration, and (iv) reduced oxidative stress by over-energization of the photosynthetic apparatus. However, the general potency of these beneficial effects may be questioned. There are also adverse ecophysiological consequences. These are (i) energetics, (ii) pH effects and (iii) Phase III oxidative stress. A major consequence of CO(2)-concentrating in Phase III is O(2)-concentrating, increased p(i)(CO(2)) is accompanied by increased p(i)(O(2)). Do reversible shifts of C(3)/CAM-intermediate plants between the C(3)-CAM-C(3) modes of photosynthesis indicate that C(3)-photosynthesis provides better protection from irradiance stress? There are many open questions and CAM remains a curiosity.

  7. Temperature effect on a high stearic acid sunflower mutant.

    PubMed

    Fernández-Moya, Valle; Martínez-Force, Enrique; Garcés, Rafael

    2002-01-01

    Vegetable oil with elevated saturated fatty acid content may be useful for producing solid fat without hydrogenation or transesterification. Under the nutritional point of view stearic acid is preferred to other saturated fatty acids because of its neutral effect on serum cholesterol lipoproteins. Selection of a very high stearic acid sunflower (Helianthus annuus L.) line (CAS-14), with up to a 37.3% of stearic acid in the seed oil, and the relationship between the expression of this character and the growth temperature are presented. The mutant was selected from the M(2) progeny of 3000 mutagenized seeds (4 mM sodium azide mutagenesis treatment) by analysing the fatty acid composition of half-seed by gas liquid chromatography. In order to genetically fix the mutant character, plants were grown at high day/night temperatures during seed formation. We found that temperatures higher than 30/20 degrees C are required for good expression of the phenotype, the maximum stearic acid content being obtained at 39/24 degrees C. This behaviour is totally opposed to that observed in normal and previously isolated high-stearic acid sunflower lines that contain more stearic acid at low temperature. Thus, a new type of temperature regulation on the stearate desaturation must occur. This line is the sunflower mutant with the highest stearic acid content reported so far.

  8. Structural investigations on Nd-doped silica nanocomposites: effect of sintering temperature and dopant concentration

    NASA Astrophysics Data System (ADS)

    Narang, Surbhi; Rani, Saruchi; Aghamkar, Praveen; Kumar, Sushil

    2014-08-01

    Neodymium-doped silica nanocomposites were prepared from an acid-catalysed sol-gel solution followed by heat treatment. The structural and microstructural properties of the prepared samples as a function of sintering temperature and Nd concentration are reported. Fourier transform infrared spectra show that phase separation occurs during heat treatment. The presence of Nd2O3 and α-Nd2Si2O7 phases in the samples was established by X-ray diffraction (XRD), and transmission electron microscopy (TEM) micrographs revealed the microstructure of the nanocomposites. From XRD patterns, the crystallite size was determined using the Debye-Scherrer formula, while the particle size was estimated from TEM micrographs. The results suggest that sintering at high temperature enhances the crystallinity and density of Nd2O3-SiO2 nanocomposites, while the high concentration of neodymium prevents the crystallization of SiO2.

  9. Effects of Fungicide Treatment on Free Amino Acid Concentration and Acrylamide-Forming Potential in Wheat.

    PubMed

    Curtis, Tanya Y; Powers, Stephen J; Halford, Nigel G

    2016-12-28

    Acrylamide forms from free asparagine and reducing sugars during frying, baking, roasting, or high-temperature processing, and cereal products are major contributors to dietary acrylamide intake. Free asparagine concentration is the determining factor for acrylamide-forming potential in cereals, and this study investigated the effect of fungicide application on free asparagine accumulation in wheat grain. Free amino acid concentrations were measured in flour from 47 varieties of wheat grown in a field trial in 2011-2012. The wheat had been supplied with nitrogen and sulfur and treated with growth regulators and fungicides. Acrylamide formation was measured after the flour had been heated at 180 °C for 20 min. Flour was also analyzed from 24 (of the 47) varieties grown in adjacent plots that were treated in identical fashion except that no fungicide was applied, resulting in visible infection by Septoria tritici, yellow rust, and brown rust. Free asparagine concentration in the fungicide-treated wheat ranged from 1.596 to 3.987 mmol kg(-1), with a significant (p < 0.001 to p = 0.006, F test) effect of variety for not only free asparagine but all of the free amino acids apart from cysteine and ornithine. There was also a significant (p < 0.001, F test) effect of variety on acrylamide formation, which ranged from 134 to 992 μg kg(-1). There was a significant (p < 0.001, F test) correlation between free asparagine concentration and acrylamide formation. Both free asparagine concentration and acrylamide formation increased in response to a lack of fungicide treatment, the increases in acrylamide ranging from 2.7 to 370%. Free aspartic acid concentration also increased, whereas free glutamic acid concentration increased in some varieties but decreased in others, and free proline concentration decreased. The study showed disease control by fungicide application to be an important crop management measure for mitigating the problem of acrylamide formation in wheat

  10. Epilepsy and the concentrations of plasma amino acids in humans.

    PubMed

    Huxtable, R J; Laird, H; Lippincott, S E; Walson, P

    1983-01-01

    We have examined the correlation between the presence of epilepsy in humans, and plasma amino acid levels. Subjects were divided into those having pure generalized tonic-clonic seizures (grand mal group), those having generalized tonic-clonic seizures plus other types of epilepsy (mixed group), and those suffering from epilepsies other than grand mal (no grand mal group). Compared to non-epileptic controls, the grand mal group had significantly higher fasting plasma levels of aspartate (100% increase) and glutamate (380% increase) but significant decreases were seen with phenylalanine (?23%), lysine (?27%), and tryptophan (?30%). The no grand mal group showed similar changes except for lysine. The mixed group showed elevations in glutamate, but decreases only in cysteine and methionine. In response to a high protein meal, plasma levels of alanine, cysteine and methionine rose significantly less for the no grand mal group compared to the control group. Increases in aspartate and glutamate concentrations strongly correlated with the prescription of phenytoin. However, the concentrations of these amino acids were not significantly correlated with the actual plasma levels of phenytoin.

  11. Effect of precursor concentration and spray pyrolysis temperature upon hydroxyapatite particle size and density.

    PubMed

    Cho, Jung Sang; Lee, Jeong-Cheol; Rhee, Sang-Hoon

    2016-02-01

    In the synthesis of hydroxyapatite powders by spray pyrolysis, control of the particle size was investigated by varying the initial concentration of the precursor solution and the pyrolysis temperature. Calcium phosphate solutions (Ca/P ratio of 1.67) with a range of concentrations from 0.1 to 2.0 mol/L were prepared by dissolving calcium nitrate tetrahydrate and diammonium hydrogen phosphate in deionized water and subsequently adding nitric acid. Hydroxyapatite powders were then synthesized by spray pyrolysis at 900°C and at 1500°C, using these calcium phosphate precursor solutions, under the fixed carrier gas flow rate of 10 L/min. The particle size decreased as the precursor concentration decreased and the spray pyrolysis temperature increased. Sinterability tests conducted at 1100°C for 1 h showed that the smaller and denser the particles were, the higher the relative densities were of sintered hydroxyapatite disks formed from these particles. The practical implication of these results is that highly sinterable small and dense hydroxyapatite particles can be synthesized by means of spray pyrolysis using a low-concentration precursor solution and a high pyrolysis temperature under a fixed carrier gas flow rate.

  12. Microarray-based transcriptome of Listeria monocytogenes adapted to sublethal concentrations of acetic acid, lactic acid, and hydrochloric acid.

    PubMed

    Tessema, Girum Tadesse; Møretrø, Trond; Snipen, Lars; Heir, Even; Holck, Askild; Naterstad, Kristine; Axelsson, Lars

    2012-09-01

    Listeria monocytogenes , an important foodborne pathogen, commonly encounters organic acids in food-related environments. The transcriptome of L. monocytogenes L502 was analyzed after adaptation to pH 5 in the presence of acetic acid, lactic acid, or hydrochloric acid (HCl) at 25 °C, representing a condition encountered in mildly acidic ready-to-eat food kept at room temperature. The acid-treated cells were compared with a reference culture with a pH of 6.7 at the time of RNA harvesting. The number of genes and magnitude of transcriptional responses were higher for the organic acids than for HCl. Protein coding genes described for low pH stress, energy transport and metabolism, virulence determinates, and acid tolerance response were commonly regulated in the 3 acid-stressed cultures. Interestingly, the transcriptional levels of histidine and cell wall biosynthetic operons were upregulated, indicating possible universal response against low pH stress in L. monocytogenes. The opuCABCD operon, coding proteins for compatible solutes transport, and the transcriptional regulator sigL were significantly induced in the organic acids, strongly suggesting key roles during organic acid stress. The present study revealed the complex transcriptional responses of L. monocytogenes towards food-related acidulants and opens the roadmap for more specific and in-depth future studies.

  13. Fatty acid composition and extreme temperature tolerance following exposure to fluctuating temperatures in a soil arthropod.

    PubMed

    van Dooremalen, Coby; Suring, Wouter; Ellers, Jacintha

    2011-09-01

    Ectotherms commonly adjust their lipid composition to ambient temperature to counteract detrimental thermal effects on lipid fluidity. However, the extent of lipid remodeling and the associated fitness consequences under continuous temperature fluctuations are not well-described. The objective of this study was to investigate the effect of repeated temperature fluctuations on fatty acid composition and thermal tolerance. We exposed the springtail Orchesella cincta to two constant temperatures of 5 and 20°C, and a continuously fluctuating treatment between 5 and 20°C every 2 days. Fatty acid composition differed significantly between constant low and high temperatures. As expected, animals were most cold tolerant in the low temperature treatment, while heat tolerance was highest under high temperature. Under fluctuating temperatures, fatty acid composition changed with temperature initially, but later in the experiment fatty acid composition stabilized and closely resembled that found under constant warm temperatures. Consistent with this, heat tolerance in the fluctuating temperature treatment was comparable to the constant warm treatment. Cold tolerance in the fluctuating temperature treatment was intermediate compared to animals acclimated to constant cold or warmth, despite the fact that fatty acid composition was adjusted to warm conditions. This unexpected finding suggests that in animals acclimated to fluctuating temperatures an additional underlying mechanism is involved in the cold shock response. Other aspects of homeoviscous adaptation may protect animals during extreme cold. This paper forms a next step to fully understand the functioning of ectotherms in more thermally variable environments.

  14. Free fatty acids do not acutely increase asymmetrical dimethylarginine concentrations.

    PubMed

    Namiranian, K; Mittermayer, F; Artwohl, M; Pleiner, J; Schaller, G; Mayer, B X; Bayerle-Eder, M; Roden, M; Baumgartner-Parzer, S; Wolzt, M

    2005-12-01

    Concentrations of asymmetrical dimethylarginine (ADMA) and free fatty acids (FFAs) are elevated in insulin resistance which is associated with impaired vascular function. We hypothesized that FFAs could alter vascular tone by affecting ADMA concentrations. Plasma FFA levels were increased in seventeen healthy male volunteers by Intralipid/heparin infusion; hemodynamic and biochemical parameters were measured after 90 minutes. Plasma collected before and during Intralipid/heparin or equivalent synthetic FFAs was incubated with human umbilical vein endothelial cells (HUVECs) in vitro. Intralipid/heparin infusion resulted in an approximately seven-fold increase in plasma FFA levels to 1861 +/- 139 micromol/l, which was paralleled by increased systemic blood pressure and forearm blood flow. Intralipid/heparin did not affect ADMA (baseline mean 0.59 [95 % confidence interval [CI]: 0.54; 0.64] and 0.56 [CI: 0.51; 0.59] after 90 minutes), but slightly decreased SDMA (from 0.76, [CI: 0.70; 0.83] to 0.71 [CI: 0.64; 0.74], p < 0.05), and had no effect on ADMA/SDMA ratio. There was no correlation between ADMA and FFA concentrations or forearm blood flow. Incubation of HUVECs with FFA-rich plasma or synthetic FFAs induced an ADMA release after 24 hours, but not after 90 minutes. Acutely increased FFA levels caused hemodynamic effects but did not affect ADMA. Prolonged elevation of FFA levels might influence vascular function by increasing ADMA levels.

  15. Dynamic behavior of the bray-liebhafsky oscillatory reaction controlled by sulfuric acid and temperature

    NASA Astrophysics Data System (ADS)

    Pejić, N.; Vujković, M.; Maksimović, J.; Ivanović, A.; Anić, S.; Čupić, Ž.; Kolar-Anić, Lj.

    2011-12-01

    The non-periodic, periodic and chaotic regimes in the Bray-Liebhafsky (BL) oscillatory reaction observed in a continuously fed well stirred tank reactor (CSTR) under isothermal conditions at various inflow concentrations of the sulfuric acid were experimentally studied. In each series (at any fixed temperature), termination of oscillatory behavior via saddle loop infinite period bifurcation (SNIPER) as well as some kind of the Andronov-Hopf bifurcation is presented. In addition, it was found that an increase of temperature, in different series of experiments resulted in the shift of bifurcation point towards higher values of sulfuric acid concentration.

  16. Temperature-dependent deliquescence relative humidities and water activities using humidity controlled thermogravimetric analysis with application to malonic acid.

    PubMed

    Beyer, Keith D; Schroeder, Jason R; Kissinger, Jared A

    2014-04-03

    We utilize a new experimental technique, humidity-controlled thermogravimetric analysis (HTGA), to determine temperature-dependent deliquescence relative humidities (DRH) and to determine the equilibrium concentration of a solution at a given temperature and relative humidity. To that end, we have investigated the malonic acid/water system determining the DRH and concentration/RH relationship in the temperature range 303-278 K. Excellent agreement is found with literature values for the DRH of malonic acid as a function of temperature and for the concentration/RH relationship at several temperatures. Thus, we extend the DRH and concentration/RH relationship to a broader temperature range and are using the HTGA experiments to investigate other organic acids.

  17. Influence of fermentation temperature on volatile thiols concentrations in Sauvignon blanc wines.

    PubMed

    Masneuf-Pomarède, Isabelle; Mansour, Chantal; Murat, Marie-Laure; Tominaga, Takatoshi; Dubourdieu, Denis

    2006-05-01

    The effect of Saccharomyces cerevisiae strains on the amount of 4-mercapto-4-methylpentan-2-one, a major varietal aroma of Sauvignon blanc wines, was demonstrated by previous research work. However, the influence of different alcoholic fermentation parameters on the levels of volatile thiols (4-mercapto-4-methylpentan-2-one, 3-mercaptohexan-1-ol and 3-mercaptohexyl acetate) in wines has not yet been investigated. The impact of fermentation temperature on the final amount of volatiles thiols and on some other analytical parameters (ethanol, total acidity, residual sugars, volatile acidity) was determined in a model medium and in grape juice. Interaction between fermentation temperature and yeast strain was also tested. The fermentation temperature influenced the amount of volatile thiols irrespective of the yeast strain used. The final levels of 4MMP and 3MH in model medium and in wines were higher when the alcoholic fermentation is conducted at 20 degrees C than at 13 degrees C. The 3MHA, which was correlated with the amount of 3MH determined in wines, was also higher when the alcoholic fermentation was conducted at 20 degrees C. From a technological point of view, the choice of yeast strain and fermentation temperature has a decisive influence on the concentrations of the varietal aromas of Sauvignon blanc wines.

  18. The stability of amino acids at submarine hydrothermal vent temperatures

    NASA Technical Reports Server (NTRS)

    Bada, Jeffrey L.; Miller, Stanley L.; Zhao, Meixun

    1995-01-01

    It has been postulated that amino acid stability at hydrothermal vent temperatures is controlled by a metastable thermodynamic equilibrium rather than by kinetics. Experiments reported here demonstrate that the amino acids are irreversibly destroyed by heating at 240 C and that quasi-equilibrium calculations give misleading descriptions of the experimental observations. Equilibrium thermodynamic calculations are not applicable to organic compounds under high-temperature submarine vent conditions.

  19. Temperature and intensity of sonoluminescence radiation in sulfuric acid.

    PubMed

    Moshaii, A; Hoseini, M A; Gharibzadeh, S; Tavakoli-Anaraki, A

    2012-07-01

    The spectral radiation of sonoluminescence (SL) from sulfuric acid doped with various Xe concentrations has been studied in a hydrochemical simulation, including radiation effects of both continuum and line emissions. The simulation considers the same temperature for both continuum and line parts of the SL spectrum and gives results in agreement with the experiment. Also, it can properly show period-doubling dynamics for a 50 torr bubble. For most of the allowable driving pressures, it is shown that both the temperature and the intensity of SL for a 4 torr bubble are greater than those of a 50 torr bubble. However, for the range of pressures near the maximum driving conditions of the 50 torr bubble, the SL intensity of this bubble can be up to three orders of magnitude greater than the 4 torr bubble. This case, which is in agreement with the experiment, is obtained when the light-emitting region of the 50 torr bubble is about three orders of magnitude greater than the 4 torr bubble.

  20. Capillary electrophoresis method with UV-detection for analysis of free amino acids concentrations in food.

    PubMed

    Omar, Mei Musa Ali; Elbashir, Abdalla Ahmed; Schmitz, Oliver J

    2017-01-01

    Simple and inexpensive capillary electrophoresis with UV-detection method (CE-UV) was optimized and validated for determination of six amino acids namely (alanine, asparagine, glutamine, proline, serine and valine) for Sudanese food. Amino acids in the samples were derivatized with 4-chloro-7-nitro-2,1,3-benzoxadiazole (NBD-Cl) prior to CE-UV analysis. Labeling reaction conditions (100mM borate buffer at pH 8.5, labeling reaction time 60min, temperature 70°C and NBD-Cl concentration 40mM) were systematically investigated. The optimal conditions for the separation were 100mM borate buffer at pH 9.7 and detected at 475nm. The method was validated in terms of linearity, limit of detection (LOD), limit of quantification (LOQ), precision (repeatability) (RSD%) and accuracy (recovery). Good linearity was achieved for all amino acids (r(2)>0.9981) in the concentration range of 2.5-40mg/L. The LODs in the range of 0.32-0.56mg/L were obtained. Recoveries of amino acids ranging from 85% to 108%, (n=3) were obtained. The validated method was successfully applied for the determination of amino acids for Sudanese food samples.

  1. Chromotropic acid-formaldehyde reaction in strongly acidic media. The role of dissolved oxygen and replacement of concentrated sulphuric acid.

    PubMed

    Fagnani, E; Melios, C B; Pezza, L; Pezza, H R

    2003-05-28

    The procedure for formaldehyde analysis recommended by the National Institute for Occupational Safety and Health (NIOSH) is the Chromotropic acid spectrophotometric method, which is the one that uses concentrated sulphuric acid. In the present study the oxidation step associated with the aforementioned method for formaldehyde determination was investigated. Experimental evidence has been obtained indicating that when concentrated H(2)SO(4) (18 mol l(-1)) is used (as in the NIOSH procedure) that acid is the oxidizing agent. On the other hand, oxidation through dissolved oxygen takes place when concentrated H(2)SO(4) is replaced by concentrated hydrochloric (12 mol l(-1)) and phosphoric (14.7 mol l(-1)) acids as well as by diluted H(2)SO(4) (9.4 mol l(-1)). Based on investigations concerning the oxidation step, a modified procedure was devised, in which the use of the potentially hazardous and corrosive concentrated H(2)SO(4) was eliminated and advantageously replaced by a less harmful mixture of HCl and H(2)O(2).

  2. Sex Steroid Modulation of Fatty Acid Utilization and Fatty Acid Binding Protein Concentration in Rat Liver

    PubMed Central

    Ockner, Robert K.; Lysenko, Nina; Manning, Joan A.; Monroe, Scott E.; Burnett, David A.

    1980-01-01

    The mechanism by which sex steroids influence very low density hepatic lipoprotein triglyceride production has not been fully elucidated. In previous studies we showed that [14C]oleate utilization and incorporation into triglycerides were greater in hepatocyte suspensions from adult female rats than from males. The sex differences were not related to activities of the enzymes of triglyceride biosynthesis, whereas fatty acid binding protein (FABP) concentration in liver cytosol was greater in females. These findings suggested that sex differences in lipoprotein could reflect a sex steroid influence on the availability of fatty acids for hepatocellular triglyceride biosynthesis. In the present studies, sex steroid effects on hepatocyte [14C]oleate utilization and FABP concentration were investigated directly. Hepatocytes from immature (30-d-old) rats exhibited no sex differences in [14C]oleate utilization. With maturation, total [14C]oleate utilization and triglyceride biosynthesis increased moderately in female cells and decreased markedly in male cells; the profound sex differences in adults were maximal by age 60 d. Fatty acid oxidation was little affected. Rats were castrated at age 30 d, and received estradiol, testosterone, or no hormone until age 60 d, when hepatocyte [14C]oleate utilization was studied. Castration virtually eliminated maturational changes and blunted the sex differences in adults. Estradiol or testosterone largely reproduced the appropriate adult pattern of [14C]oleate utilization regardless of the genotypic sex of the treated animal. In immature females and males, total cytosolic FABP concentrations were similar. In 60-d-old animals, there was a striking correlation among all groups (females, males, castrates, and hormone-treated) between mean cytosolic FABP concentration on the one hand, and mean total [14C]oleate utilization (r = 0.91) and incorporation into triglycerides (r = 0.94) on the other. In 30-d-old animals rates of [14C

  3. Unexpectedly high indoor hydroxyl radical concentrations associated with nitrous acid.

    PubMed

    Gómez Alvarez, Elena; Amedro, Damien; Afif, Charbel; Gligorovski, Sasho; Schoemaecker, Coralie; Schoemacker, Coralie; Fittschen, Christa; Doussin, Jean-Francois; Wortham, Henri

    2013-08-13

    The hydroxyl (OH) radical is the most important oxidant in the atmosphere since it controls its self-oxidizing capacity. The main sources of OH radicals are the photolysis of ozone and the photolysis of nitrous acid (HONO). Due to the attenuation of solar radiation in the indoor environment, the possibility of OH formation through photolytic pathways indoors has been ignored up to now. In the indoor air, the ozonolysis of alkenes has been suggested as an alternative route of OH formation. Models and indirect measurements performed up to now according to this hypothesis suggest concentrations of OH radicals on the order of 10(4)-10(5) molecules per cubic centimeter. Here, we present direct measurements of significant amounts of OH radicals of up to 1.8⋅10(6) molecules per cubic centimeter during an experimental campaign carried out in a school classroom in Marseille. This concentration is on the same order of magnitude of outdoor OH levels in the urban scenario. We also show that photolysis of HONO is an important source of OH radicals indoors under certain conditions (i.e., direct solar irradiation inside the room). Additionally, the OH concentrations were found to follow a linear dependence with the product J(HONO)⋅[HONO]. This was also supported by using a simple quasiphotostationary state model on the OH radical budget. These findings force a change in our understanding of indoor air quality because the reactivity linked to OH would involve formation of secondary species through chemical reactions that are potentially more hazardous than the primary pollutants in the indoor air.

  4. Unexpectedly high indoor hydroxyl radical concentrations associated with nitrous acid

    PubMed Central

    Gómez Alvarez, Elena; Amedro, Damien; Afif, Charbel; Gligorovski, Sasho; Schoemaecker, Coralie; Fittschen, Christa; Doussin, Jean-Francois; Wortham, Henri

    2013-01-01

    The hydroxyl (OH) radical is the most important oxidant in the atmosphere since it controls its self-oxidizing capacity. The main sources of OH radicals are the photolysis of ozone and the photolysis of nitrous acid (HONO). Due to the attenuation of solar radiation in the indoor environment, the possibility of OH formation through photolytic pathways indoors has been ignored up to now. In the indoor air, the ozonolysis of alkenes has been suggested as an alternative route of OH formation. Models and indirect measurements performed up to now according to this hypothesis suggest concentrations of OH radicals on the order of 104–105 molecules per cubic centimeter. Here, we present direct measurements of significant amounts of OH radicals of up to 1.8⋅106 molecules per cubic centimeter during an experimental campaign carried out in a school classroom in Marseille. This concentration is on the same order of magnitude of outdoor OH levels in the urban scenario. We also show that photolysis of HONO is an important source of OH radicals indoors under certain conditions (i.e., direct solar irradiation inside the room). Additionally, the OH concentrations were found to follow a linear dependence with the product J(HONO)⋅[HONO]. This was also supported by using a simple quasiphotostationary state model on the OH radical budget. These findings force a change in our understanding of indoor air quality because the reactivity linked to OH would involve formation of secondary species through chemical reactions that are potentially more hazardous than the primary pollutants in the indoor air. PMID:23898188

  5. 21 CFR 146.148 - Reduced acid frozen concentrated orange juice.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Reduced acid frozen concentrated orange juice. 146... Canned Fruit Juices and Beverages § 146.148 Reduced acid frozen concentrated orange juice. (a) Reduced acid frozen concentrated orange juice is the food that complies with the requirements for...

  6. 21 CFR 146.148 - Reduced acid frozen concentrated orange juice.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Reduced acid frozen concentrated orange juice. 146... Canned Fruit Juices and Beverages § 146.148 Reduced acid frozen concentrated orange juice. (a) Reduced acid frozen concentrated orange juice is the food that complies with the requirements for...

  7. 21 CFR 146.148 - Reduced acid frozen concentrated orange juice.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Reduced acid frozen concentrated orange juice. 146... Canned Fruit Juices and Beverages § 146.148 Reduced acid frozen concentrated orange juice. (a) Reduced acid frozen concentrated orange juice is the food that complies with the requirements for...

  8. 21 CFR 146.148 - Reduced acid frozen concentrated orange juice.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Reduced acid frozen concentrated orange juice. 146... Canned Fruit Juices and Beverages § 146.148 Reduced acid frozen concentrated orange juice. (a) Reduced acid frozen concentrated orange juice is the food that complies with the requirements for...

  9. 21 CFR 146.148 - Reduced acid frozen concentrated orange juice.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Reduced acid frozen concentrated orange juice. 146... Canned Fruit Juices and Beverages § 146.148 Reduced acid frozen concentrated orange juice. (a) Reduced acid frozen concentrated orange juice is the food that complies with the requirements for...

  10. Temperature dependence of DNA condensation at high ionic concentration

    NASA Astrophysics Data System (ADS)

    Mao, Wei; Gao, Qingqing; Liu, Yanhui; Fan, Yangtao; Hu, Lin; Xu, Houqiang

    2016-08-01

    A series of experiments pointed out that compact states of DNA condensed by multivalent cation prefer higher temperature. The condensed DNA takes elongated coil or compact globule states and the population of the compact globule states increases with an increase in temperature. At the same time, a recent experimental work carried out in buffer solution without multivalent cation points out that DNA persistence length strongly depends on the temperature. DNA persistence length is a key parameter for quantitative interpretation of the conformational properties of DNA and related to the bending rigidity of DNA. It is necessary to revolve the effects of temperature dependence of persistence length on DNA condensation, and a model including the temperature dependence of persistence length and strong correlation of multivalent cation on DNA is provided. The autocorrelation function of the tangent vectors is found as an effective way to detect the temperature dependence of toroid conformations. With an increase in temperature, the first periodic oscillation in the autocorrelation function shifts left and the number of segments containing the first periodic oscillation decreases gradually. According to the experiments mentioned above, the long-axis length is defined to estimate the temperature dependence of condensation process further. At the temperatures defined in experiments mentioned above, the relation between long-axis length and temperature matches the experimental results.

  11. Properties of acid whey as a function of pH and temperature.

    PubMed

    Chandrapala, Jayani; Duke, Mikel C; Gray, Stephen R; Zisu, Bogdan; Weeks, Mike; Palmer, Martin; Vasiljevic, Todor

    2015-07-01

    Compositional differences of acid whey (AW) in comparison with other whey types limit its processability and application of conventional membrane processing. Hence, the present study aimed to identify chemical and physical properties of AW solutions as a function of pH (3 to 10.5) at 4 different temperatures (15, 25, 40, or 90°C) to propose appropriate membrane-processing conditions for efficient use of AW streams. The concentration of minerals, mainly calcium and phosphate, and proteins in centrifuged supernatants was significantly lowered with increase in either pH or temperature. Lactic acid content decreased with pH decline and rose at higher temperatures. Calcium appeared to form complexes with phosphates and lactates mainly, which in turn may have induced molecular attractions with the proteins. An increase in pH led to more soluble protein aggregates with large particle sizes. Surface hydrophobicity of these particles increased significantly with temperature up to 40°C and decreased with further heating to 90°C. Surface charge was clearly pH dependent. High lactic acid concentrations appeared to hinder protein aggregation by hydrophobic interactions and may also indirectly influence protein denaturation. Processing conditions such as pH and temperature need to be optimized to manipulate composition, state, and surface characteristics of components of AW systems to achieve an efficient separation and concentration of lactic acid and lactose.

  12. Color Change of Sudan III against Concentrated Sulfuric Acid in Acetonitrile and Quantification for a Small Amount of Concentrated Sulfuric Acid.

    PubMed

    Sakurai, Takao; Kurata, Shoji; Ogino, Kenji

    2016-01-01

    The color-changing phenomenon of hydrophobic bisazo dye, Sudan III in an acetonitrile solution against the addition of concentrated sulfuric acid has been discovered and the chromic properties investigated. Based on observations, a novel quantification method of concentrated sulfuric acid has been developed. Sudan III changes its color from orange to blue against a small volume of sulfuric acid, and the acetonitrile solution of Sudan III is the most suitable for observing the color-change phenomenon. (1)H-NMR and UV-Vis spectroscopic studies showed that the color-change mechanism of Sudan III against sulfuric acid is due to the protonation of the dye by sulfuric acid. This phenomenon is applicable to the quantification of concentrated sulfuric acid by introducing the Hammett acidity function. The proposed method requires only a small amount of the sample, 0.04 mL, and enables rapid quantification.

  13. Solubility of methanol in low-temperature aqueous sulfuric acid and implications for atmospheric particle composition

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Essin, Andrew M.; Golden, David M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    Using traditional Knudsen cell techniques, we find well-behaved Henry's law uptake of methanol in aqueous 45 - 70 wt% H2SO4 solutions at temperatures between 197 and 231 K. Solubility of methanol increases with decreasing temperature and increasing acidity, with an effective Henry's law coefficient ranging from 10(exp 5) - 10(exp 8) M/atm. Equilibrium uptake of methanol into sulfuric acid aerosol particles in the upper troposphere and lower stratosphere will not appreciably alter gas-phase concentrations of methanol. The observed room temperature reaction between methanol and sulfuric acid is too slow to provide a sink for gaseous methanol at the temperatures of the upper troposphere and lower stratosphere. It is also too slow to produce sufficient quantities of soluble reaction products to explain the large amount of unidentified organic material seen in particles of the upper troposphere.

  14. Dissolution of plutonium oxide in nitric acid at high hydrofluoric acid concentrations

    SciTech Connect

    Kazanjian, A.R.; Stevens, J.R.

    1984-06-15

    The dissolution of plutonium dioxide in nitirc acid (HNO/sub 3/) at high hydrofluoric acid (HF) concentrations has been investigated. Dissolution rate curves were obtained using 12M HNO/sub 3/ and HF at concentrations varying from 0.05 to 1.0 molar. The dissolution rate increased with HF concentration up to 0.2M and then decreased at higher concentrations. There was very little plutonium dissolved at 0.7 and 1.0M HF because of the formation of insoluble PuF/sub 4/. Various oxidizing agents were added to 12M HNO/sub 3/-1M HF dissolvent to oxidize Pu(IV) to Pu(VI) and prevent the formation of PuF/sub 4/. Ceric (Ce(IV)) and silver (Ag(II)) ions were the most effective in dissolving PuO/sub 2/. Although these two oxidants greatly increased the dissolution rate, the rates were not as rapid as those obtained with 12M HNO/sub 3/-0.2M HF.

  15. A field investigation of the relationship between zinc and acid volatile sulfide concentrations in freshwater sediments

    USGS Publications Warehouse

    Ankley, Gerald T.; Liber, Karsten; Call, Daniel J.; Markee, Thomas P.; Canfield, Timothy J.; Ingersoll, Christopher G.

    1996-01-01

    Understanding relationships between cationic metals such as cadmium, copper, nickel, lead and zinc, and amorphous iron sulfides, measured as acid volatile sulfide (AVS), is key to predicting metal bioavailability and toxicity insediments. The objective of the present study was to assess seasonal and spatial variations of AVS in freshwater sediments contaminated with zinc. Sediments were sampled from three streams with varying levels of zinc contamination at two different times, March and June of 1995, representing cold- and warm-weather situations. Interstitial (pore) water concentrations of zinc, and solid phase concentrations of AVS and zinc were measured in surficial and deep sediment horizons. Toxicity tests (10-d) with the amphipodHyalella azteca were conducted using intact cores. Sediment zinc concentrations from six sites within the primary test stream differed by about five-fold, and also varied seasonally. Acid volatile sulfide concentrations were generally lower than those of zinc, and pore water zinc concentrations typically were elevated. There was a positive correlation between solid-phase AVS and zinc concentrations, suggesting that the system was dominated by zinc, as opposed to iron sulfides. In contrast to expectations arising from some studies of seasonal variations of AVS in iron-dominated systems, AVS concentrations were smaller in June than in March. However, this was likely due to a major storm event and associated sediment scouring before the June sampling, rather than to seasonal processes related to variations in temperature and dissolved oxygen. Based upon an indirect analysis of depth variations in AVS, there was some indication that zinc sulfide might be less prone to oxidation than iron sulfide. There was a strong correlation between toxicity of the sediment samples toH. azteca and interstitial water concentrations of zinc; however, the possible contribution of other contaminants to sediment toxicity cannot be dismissed.

  16. Diagnostic system for measuring temperature, pressure, CO2 concentration and H2O concentration in a fluid stream

    DOEpatents

    Partridge, Jr., William P.; Jatana, Gurneesh Singh; Yoo, Ji-Hyung; Parks, II, James E.

    2017-01-10

    A diagnostic system for measuring temperature, pressure, CO.sub.2 concentration and H.sub.2O concentration in a fluid stream is described. The system may include one or more probes that sample the fluid stream spatially, temporally and over ranges of pressure and temperature. Laser light sources are directed down pitch optical cables, through a lens and to a mirror, where the light sources are reflected back, through the lens to catch optical cables. The light travels through the catch optical cables to detectors, which provide electrical signals to a processer. The processer utilizes the signals to calculate CO.sub.2 concentration based on the temperatures derived from H.sub.2O vapor concentration. A probe for sampling CO.sub.2 and H.sub.2O vapor concentrations is also disclosed. Various mechanical features interact together to ensure the pitch and catch optical cables are properly aligned with the lens during assembly and use.

  17. The effect of feed solids concentration and inlet temperature on the flavor of spray dried whey protein concentrate.

    PubMed

    Park, Curtis W; Bastian, Eric; Farkas, Brian; Drake, MaryAnne

    2014-01-01

    Previous research has demonstrated that unit operations in whey protein manufacture promote off-flavor production in whey protein. The objective of this study was to determine the effects of feed solids concentration in liquid retentate and spray drier inlet temperature on the flavor of dried whey protein concentrate (WPC). Cheddar cheese whey was manufactured, fat-separated, pasteurized, bleached (250 ppm hydrogen peroxide), and ultrafiltered (UF) to obtain WPC80 retentate (25% solids, wt/wt). The liquid retentate was then diluted with deionized water to the following solids concentrations: 25%, 18%, and 10%. Each of the treatments was then spray dried at the following temperatures: 180 °C, 200 °C, and 220 °C. The experiment was replicated 3 times. Flavor of the WPC80 was evaluated by sensory and instrumental analyses. Particle size and surface free fat were also analyzed. Both main effects (solids concentration and inlet temperature) and interactions were investigated. WPC80 spray dried at 10% feed solids concentration had increased surface free fat, increased intensities of overall aroma, cabbage and cardboard flavors and increased concentrations of pentanal, hexanal, heptanal, decanal, (E)2-decenal, DMTS, DMDS, and 2,4-decadienal (P < 0.05) compared to WPC80 spray dried at 25% feed solids. Product spray dried at lower inlet temperature also had increased surface free fat and increased intensity of cardboard flavor and increased concentrations of pentanal, (Z)4-heptenal, nonanal, decanal, 2,4-nonadienal, 2,4-decadienal, and 2- and 3-methyl butanal (P < 0.05) compared to product spray dried at higher inlet temperature. Particle size was higher for powders from increased feed solids concentration and increased inlet temperature (P < 0.05). An increase in feed solids concentration in the liquid retentate and inlet temperature within the parameters evaluated decreased off-flavor intensity in the resulting WPC80.

  18. Water-lactose behavior as a function of concentration and presence of lactic acid in lactose model systems.

    PubMed

    Wijayasinghe, Rangani; Vasiljevic, Todor; Chandrapala, Jayani

    2015-12-01

    The presence of high amounts of lactic acid in acid whey restricts its ability to be further processed because lactose appears to remain in its amorphous form. A systematic study is lacking in this regard especially during the concentration step. Hence, the main aim of the study was to establish the structure and behavior of water molecules surrounding lactose in the presence of 1% (wt/wt) lactic acid at a concentration up to 50% (wt/wt). Furthermore, the crystallization nature of freeze-dried lactose with or without lactic acid was established using differential scanning calorimetry and Fourier transform infrared spectroscopy. Two mechanisms were proposed to describe the behavior of water molecules around lactose molecules during the concentration of pure lactose and lactose solutions with lactic acid. Pure lactose solution exhibited a water evaporation enthalpy of ~679 J·g(-1), whereas lactose+ lactic acid solution resulted in ~965 J·g(-1) at a 50% (wt/wt) concentration. This indicates a greater energy requirement for water removal around lactose in the presence of lactic acid. Higher crystallization temperatures were observed with the presence of lactic acid, indicating a delay in crystallization. Furthermore, less crystalline lactose (~12%) was obtained in the presence of lactic acid, indicating high amorphous nature compared with pure lactose where ~50% crystallinity was obtained. The Fourier transform infrared spectra revealed that the strong hydration layer consisting lactic acid and H3O(+) ions surrounded lactose molecules via strong H bonds, which restricted water mobility, induced a change in structure of lactose, or both, creating unfavorable conditions for lactose crystallization. Thus, partial or complete removal of lactic acid from acid whey may be the first step toward improving the ability of acid whey to be processed.

  19. Amino Acid Composition of an Organic Brown Rice Protein Concentrate and Isolate Compared to Soy and Whey Concentrates and Isolates.

    PubMed

    Kalman, Douglas S

    2014-06-30

    A protein concentrate (Oryzatein-80™) and a protein isolate (Oryzatein-90™) from organic whole-grain brown rice were analyzed for their amino acid composition. Two samples from different batches of Oryzatein-90™ and one sample of Oryzatein-80™ were provided by Axiom Foods (Los Angeles, CA, USA). Preparation and analysis was carried out by Covance Laboratories (Madison, WI, USA). After hydrolysis in 6-N hydrochloric acid for 24 h at approximately 110 °C and further chemical stabilization, samples were analyzed by HPLC after pre-injection derivitization. Total amino acid content of both the isolate and the concentrate was approximately 78% by weight with 36% essential amino acids and 18% branched-chain amino acids. These results are similar to the profiles of raw and cooked brown rice except in the case of glutamic acid which was 3% lower in the isolate and concentrate. The amino acid content and profile of the Oryzatein-90™ isolate was similar to published values for soy protein isolate but the total, essential, and branched-chain amino acid content of whey protein isolate was 20%, 39% and 33% greater, respectively, than that of Oryzatein-90™. These results provide a valuable addition to the nutrient database of protein isolates and concentrates from cereal grains.

  20. Various concentrations of erucic acid in mustard oil and mustard.

    PubMed

    Wendlinger, Christine; Hammann, Simon; Vetter, Walter

    2014-06-15

    Erucic acid is a typical constituent of mustard or rape. Foodstuff with a high content of erucic acid is considered undesirable for human consumption because it has been linked to myocardial lipidosis and heart lesions in laboratory rats. As a result, several countries have restricted its presence in oils and fats. In this study, the erucic acid content in several mustard oils and prepared mustard samples from Germany and Australia was determined. Seven of nine mustard oil samples exceeded the permitted maximum levels established for erucic acid (range: 0.3-50.8%, limit: 5%). The erucic acid content in mustard samples (n=15) varied from 14% to 33% in the lipids. Two servings (i.e. 20 g) of the mustards with the highest erucic acid content already surpassed the tolerable daily intake established by Food Standards Australia New Zealand. However, a careful selection of mustard cultivars could lower the nutritional intake of erucic acid.

  1. Quantifying phosphoric acid in high-temperature polymer electrolyte fuel cell components by X-ray tomographic microscopy.

    PubMed

    Eberhardt, S H; Marone, F; Stampanoni, M; Büchi, F N; Schmidt, T J

    2014-11-01

    Synchrotron-based X-ray tomographic microscopy is investigated for imaging the local distribution and concentration of phosphoric acid in high-temperature polymer electrolyte fuel cells. Phosphoric acid fills the pores of the macro- and microporous fuel cell components. Its concentration in the fuel cell varies over a wide range (40-100 wt% H3PO4). This renders the quantification and concentration determination challenging. The problem is solved by using propagation-based phase contrast imaging and a referencing method. Fuel cell components with known acid concentrations were used to correlate greyscale values and acid concentrations. Thus calibration curves were established for the gas diffusion layer, catalyst layer and membrane in a non-operating fuel cell. The non-destructive imaging methodology was verified by comparing image-based values for acid content and concentration in the gas diffusion layer with those from chemical analysis.

  2. Modulation of absence seizures by branched-chain amino acids: correlation with brain amino acid concentrations.

    PubMed

    Dufour, F; Nalecz, K A; Nalecz, M J; Nehlig, A

    2001-07-01

    The occurrence of absence seizures might be due to a disturbance of the balance between excitatory and inhibitory neurotransmissions in the thalamo-cortical loop. In this study, we explored the consequences of buffering the glutamate content of brain cells on the occurrence and duration of seizures in Genetic Absence Epilepsy Rats from Strasbourg (GAERS), a genetic model of generalized non-convulsive epilepsy. Branched-chain amino acids (BCAAs) and alpha-ketoisocaproate (alpha-KIC), the ketoacid of leucine were repeatedly shown to have a critical role in brain glutamate metabolism. Thus, GAERS were injected by intraperitoneal (i.p.) or intracerebroventricular (i.c.v.) route with these compounds, then the effects on seizures were evaluated on the electroencephalographic recording. We also measured the concentration of amino acids in thalamus and cortex after an i.p. injection of leucine or alpha-KIC. Intracerebroventricular injections of leucine or alpha-KIC did not influence the occurrence of seizures, possibly because the substances reached only the cortex. BCAAs and alpha-KIC, injected intraperitoneally, increased the number of seizures whereas they had only a slight effect on their duration. Leucine and alpha-KIC decreased the concentration of glutamate in thalamus and cortex without affecting GABA concentrations. Thus, BCAAs and alpha-KIC, by decreasing the effects of glutamatergic neurotransmission could facilitate those of GABAergic neurotransmission, which is known to increase the occurrence of seizures in GAERS.

  3. Comparative study on two-step concentrated acid hydrolysis for the extraction of sugars from lignocellulosic biomass.

    PubMed

    Wijaya, Yanuar Philip; Putra, Robertus Dhimas Dhewangga; Widyaya, Vania Tanda; Ha, Jeong-Myeong; Suh, Dong Jin; Kim, Chang Soo

    2014-07-01

    Among all the feasible thermochemical conversion processes, concentrated acid hydrolysis has been applied to break the crystalline structure of cellulose efficiently and scale up for mass production as lignocellulosic biomass fractionation process. Process conditions are optimized by investigating the effect of decrystallization sulfuric acid concentration (65-80 wt%), hydrolysis temperature (80°C and 100°C), hydrolysis reaction time (during two hours), and biomass species (oak wood, pine wood, and empty fruit bunch (EFB) of palm oil) toward sugar recovery. At the optimum process condition, 78-96% sugars out of theoretically extractable sugars have been fractionated by concentrated sulfuric acid hydrolysis of the three different biomass species with 87-90 g/L sugar concentration in the hydrolyzate and highest recalcitrance of pine (softwood) was determined by the correlation of crystallinity index and sugar yield considering reaction severity.

  4. Preparation of levoglucosenone through sulfuric acid promoted pyrolysis of bagasse at low temperature.

    PubMed

    Sui, Xian-wei; Wang, Zhi; Liao, Bing; Zhang, Ying; Guo, Qing-xiang

    2012-01-01

    Fast pyrolysis of bagasse pretreated by sulfuric acid was conducted in a fixed bed reactor to prepare levoglucosenone (LGO), a very important anhydrosugar for organic synthesis. The liquid yield and LGO yield were studied at temperatures from 240 to 350 °C and sulfuric acid loadings from 0.92 to 7.10 wt.%. An optimal LGO yield of 7.58 wt.% was obtained at 270 °C with a sulfuric acid pretreatment concentration of 0.05 M (corresponding to 4.28 wt.% sulfuric acid loading). For comparison, microcrystalline cellulose pretreated by 0.05 M sulfuric acid solution was pyrolyzed at temperature from 270 °C to 320 °C, and bagasse loaded with 3-5 wt.% phosphoric acid was pyrolyzed at temperature from 270 °C to 350 °C. The highest yield of LGO from bagasse was 30% higher than that from microcrystalline cellulose, and treatment with sulfuric acid allowed a 21% higher yield than treatment with phosphoric acid.

  5. Effect of acid concentration and treatment time on acid-alcohol modified jackfruit seed starch properties.

    PubMed

    Dutta, Himjyoti; Paul, Sanjib Kumar; Kalita, Dipankar; Mahanta, Charu Lata

    2011-09-15

    The properties of starch extracted from jackfruit (Artocarpus heterophyllus Lam.) seeds, collected from west Assam after acid-alcohol modification by short term treatment (ST) for 15-30min with concentrated hydrochloric acid and long term treatment (LT) for 1-15days with 1M hydrochloric acid, were investigated. Granule density, freeze thaw stability, solubility and light transmittance of the treated starches increased. A maximum decrease in the degree of polymerisation occurred in ST of 30min (2607.6). Jackfruit starch had 27.1±0.04% amylose content (db), which in ST initially decreased and then increased with the severity of treatment; in LT the effect was irregular. The pasting profile and granule morphology of the treated samples were severely modified. Native starch had the A-type crystalline pattern and crystalline structure increased on treatment. FTIR spectra revealed slight changes in bond stretching and bending. Colour measurement indicated that whiteness increased on treatment. Acid modified jackfruit seed starch can have applications in the food industry.

  6. Effects of running the Bostom Marathon on plasma concentrations of large neutral amino acids

    NASA Technical Reports Server (NTRS)

    Conlay, L. A.; Wurtman, R. J.; Lopez G-Coviella, I.; Blusztajn, J. K.; Vacanti, C. A.; Logue, M.; During, M.; Caballero, B.; Maher, T. J.; Evoniuk, G.

    1989-01-01

    Plasma large neutral amino acid concentrations were measured in thirty-seven subjects before and after completing the Boston Marathon. Concentrations of tyrosine, phenylalanine, and methionine increased, as did their 'plasma ratios' (i.e., the ratio of each amino acid's concentration to the summed plasma concentrations of the other large neutral amino acids which compete with it for brain uptake). No changes were noted in the plasma concentrations of tryptophan, leucine, isoleucine, nor valine; however, the 'plasma ratios' of valine, leucine, and isoleucine all decreased. These changes in plasma amino acid patterns may influence neurotransmitter synthesis.

  7. Equine endurance exercise alters serum branched-chain amino acid and alanine concentrations.

    PubMed

    Trottier, N L; Nielsen, B D; Lang, K J; Ku, P K; Schott, H C

    2002-09-01

    Six 2-year-old Arabian horses were used to determine whether 60 km prolonged endurance exercise (approximately 4 h) alters amino acid concentrations in serum and muscle, and the time required for serum amino acid concentrations to return to basal resting values. Blood and muscle samples were collected throughout exercise and during a 3 day recovery period. Isoleucine concentration in muscle tended to increase and leucine and valine did not change due to exercise. Serum alanine concentrations did not increase immediately after exercise, but increased at 24, 48 and 72 h postexercise. Serum isoleucine, leucine, and valine concentrations decreased after exercise and time required to reach pre-exercising concentrations was 48 h. In conclusion, endurance exercise in the horse decreases serum isoleucine, leucine, and valine concentrations, and increases serum alanine concentration. The decrease in serum branched-chain amino acid concentrations did not correspond to a measurable increase in total muscle branched-chain amino acid concentrations.

  8. Nitric acid in polar stratospheric clouds - Similar temperature of nitric acid condensation and cloud formation

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf F.; Snetsinger, Kenneth G.; Hamill, Patrick; Goodman, Jindra K.; Mccormick, M. Patrick

    1990-01-01

    As shown independently by two different techniques, nitric acid aerosols and polar stratospheric clouds (PSCs) both form below similar threshold temperatures. This supports the idea that the PSC particles involved in chlorine activation and ozone depletion in the winter polar stratosphere are composed of nitric acid. One technique used to show this is the inertial impaction of nitric acid aerosols using an Er-2 aircraft; the other method is remote sensing of PSCs by the Stratospheric Aerosol Measurement (SAM II) satellite borne optical sensor. Both procedures were in operation during the Arctic Airborne Stratospheric Expedition in 1989, and the Airborne Antarctic Ozone Experiment in 1987. Analysis of Arctic particles gathered in situ indicates the presence of nitric acid below a 'first appearance' temperature Tfa = 202 K. This is the same highest temperature at which PSCs are seen by the SAM II satellite. In comparison, a 'first appearance' temperature Tfa = 198 K as found for the Antarctic samples.

  9. Rapid Assessment of the Influence of Solution pH, Anion Concentration and Temperature on the Dissolution of Alloy 22

    SciTech Connect

    Gray, J J; Hayes, J R; Gdowski, G E; Viani, B E; Orme, C A

    2005-05-19

    We introduce an acid titration technique for the rapid characterization of the influence of solution pH, anion (such as chloride) concentration and temperature on the dissolution of metals. We demonstrate the technique with the characterization of the dissolution of alloy 22 (Ni-22Cr-13Mo-3W-3Fe) exposed to chloride-containing hydrochloric, sulfuric and nitric acid environments as a function of pH (from pH 5 to pH -1) and temperature (25-90 C). A combination of electrochemical techniques (electrochemical impedance spectroscopy and linear polarization resistance) and atomic force microscopy are used to characterize the influence of the various solutions on the dissolution of alloy 22. In solutions containing hydrochloric and sulfuric acids, a critical temperature exists for passive film breakdown on alloy 22 for all environments tested. Below the critical temperature, corrosion rates are less than 1 {micro}m/year. Above the critical temperature, the effect of temperature on dissolution rates is a function of both the pH and chloride content of the solution. In nitric acid containing solutions, the presence of nitrates promotes a stable passive oxide film that inhibits dissolution in all environments tested.

  10. Influence of bleaching on flavor of 34% whey protein concentrate and residual benzoic acid concentration in dried whey products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies have shown that bleaching negatively affects the flavor of 70% whey protein concentrate (WPC70), but bleaching effects on lower-protein products have not been established. Benzoyl peroxide (BP), a whey bleaching agent, degrades to benzoic acid (BA) and may elevate BA concentrations...

  11. Influence of Bleaching on Flavor of 34% Whey Protein Concentrate and Residual Benzoic Acid Concentration in Dried Whey Proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies have shown that bleaching negatively affects the flavor of 70% whey protein concentrate (WPC70), but bleaching effects on lower-protein products have not been established. Benzoyl peroxide (BP), a whey bleaching agent, degrades to benzoic acid (BA) and may elevate BA concentrations...

  12. Temperature Shift Experiments Suggest That Metabolic Impairment and Enhanced Rates of Photorespiration Decrease Organic Acid Levels in Soybean Leaflets Exposed to Supra-Optimal Growth Temperatures.

    PubMed

    Sicher, Richard C

    2015-08-05

    Elevated growth temperatures are known to affect foliar organic acid concentrations in various plant species. In the current study, citrate, malate, malonate, fumarate and succinate decreased 40 to 80% in soybean leaflets when plants were grown continuously in controlled environment chambers at 36/28 compared to 28/20 °C. Temperature effects on the above mentioned organic acids were partially reversed three days after plants were transferred among optimal and supra-optimal growth temperatures. In addition, CO2 enrichment increased foliar malate, malonate and fumarate concentrations in the supra-optimal temperature treatment, thereby mitigating effects of high temperature on respiratory metabolism. Glycerate, which functions in the photorespiratory pathway, decreased in response to CO2 enrichment at both growth temperatures. The above findings suggested that diminished levels of organic acids in soybean leaflets upon exposure to high growth temperatures were attributable to metabolic impairment and to changes of photorespiratory flux. Leaf development rates differed among temperature and CO2 treatments, which affected foliar organic acid levels. Additionally, we report that large decreases of foliar organic acids in response to elevated growth temperatures were observed in legume species.

  13. Influence of polymer molecular weight and concentration on coexistence curve of isobutyric acid + water.

    PubMed

    Reddy, P Madhusudhana; Venkatesu, P; Bohidar, H B

    2011-10-27

    We report the influence of variation of molecular weights (MWs = 2, 4, 6, and 9 × 10(5) g mol(-1)) and concentration (C) of a long-chain polymer (polyethylene oxide, PEO) on an upper critical solution temperature (UCST) of isobutyric acid (I) + water (W) using density (ρ) measurements as a function of temperature. The ρ values in each coexisting phase of IW have been measured at three different PEO concentrations (C = 0.395, 0.796, and 1.605 mg/cm(3)) in the near critical composition of IW at temperatures below the system's upper critical point for each molecular weight (MW) of PEO. Further, to ascertain the PEO behavior in IW we have measured the polydispersity values for both coexisting liquid phases by using dynamic light scattering (DLS). The data show that the polymer was significantly affected in the critical region of IW and these various MWs and concentrations of PEO show significant modulation on the critical exponents (β), the critical temperatures (T(c)), and critical composition (ϕ(c)), which are depicting the shape of the coexistence curve. The values of β and T(c) increase with increasing PEO MW and concentrations. Besides, the ϕ(c) values slightly decrease with increasing the C values in the mixture of IW. However, the rate of decrease in ϕ(c) is insignificant. Our experimental results explicitly elucidate that most of polymer chain entangles in water rich phase, thereby the polymer monomers strongly interact with neighbor solvent particles and also intra chain interaction between polymer monomers.

  14. Fundamental Study on Temperature Dependence of Deposition Rate of Silicic Acid - 13270

    SciTech Connect

    Shinmura, Hayata; Niibori, Yuichi; Mimura, Hitoshi

    2013-07-01

    The dynamic behavior of the silicic acid is one of the key factors to estimate the condition of the repository system after the backfill. This study experimentally examined the temperature dependence of dynamic behavior of supersaturated silicic acid in the co-presence of solid phase, considering Na ions around the repository, and evaluated the deposition rate constant, k, of silicic acid by using the first-order reaction equation considering the specific surface area. The values of k were in the range of 1.0x10{sup -11} to 1.0x10{sup -9} m/s in the temperature range of 288 K to 323 K. The deposition rate became larger with increments of temperature under the Na ion free condition. Besides, in the case of Na ions 0.6 M, colloidal silicic acid decreased dramatically at a certain time. This means that the diameter of the colloidal silicic acid became larger than the pore size of filter (0.45 μm) due to bridging of colloidal silicic acid. Furthermore, this study estimated the range of altering area and the aperture of flow-path in various value of k corresponding to temperature by using advection-dispersion model. The concentration in the flow-path became lower with increments of temperature, and when the value of k is larger than 1.0x10{sup -11} m/s, the deposition range of supersaturated silicic acid was estimated to be less than 20 m around the repository. In addition, the deposition of supersaturated silicic acid led the decrement of flow-path aperture, which was remarkable under the condition of relatively high temperature. Such a clogging in flow paths is expected as a retardation effect of radionuclides. (authors)

  15. Pervaporation of Water from Aqueous Sulfuric Acid at Elevated Temperatures Using Nafion® Membranes

    SciTech Connect

    Christopher J. Orme; Frederick F. Stewart

    2009-01-01

    The concentration of sulfuric acid by pervaporation has been studied using Nafion-112® and Nafion-117® membranes, which have been characterized in terms of flux, permeability, and selectivity at 100 ºC and 120 ºC. Feed concentrations investigated ranged from 40 to over 80 weight percent. In general, water fluxes ranged from 100-8000 g/m2h, depending on feed acid concentration and separations factors as high as 104 were observed. Membrane stability was probed using Dynamic Mechanical Analysis that revealed some embrittlement of the membranes during use. Further studies showed that the embrittlement was due to an interaction with the acid and was not induced by the operating temperature.

  16. Selection of suitable mineral acid and its concentration for biphasic dilute acid hydrolysis of the sodium dithionite delignified Prosopis juliflora to hydrolyze maximum holocellulose.

    PubMed

    Naseeruddin, Shaik; Desai, Suseelendra; Venkateswar Rao, L

    2016-02-01

    Two grams of delignified substrate at 10% (w/v) level was subjected to biphasic dilute acid hydrolysis using phosphoric acid, hydrochloric acid and sulfuric acid separately at 110 °C for 10 min in phase-I and 121 °C for 15 min in phase-II. Combinations of acid concentrations in two phases were varied for maximum holocellulose hydrolysis with release of fewer inhibitors, to select the suitable acid and its concentration. Among three acids, sulfuric acid in combination of 1 & 2% (v/v) hydrolyzed maximum holocellulose of 25.44±0.44% releasing 0.51±0.02 g/L of phenolics and 0.12±0.002 g/L of furans, respectively. Further, hydrolysis of delignified substrate using selected acid by varying reaction time and temperature hydrolyzed 55.58±1.78% of holocellulose releasing 2.11±0.07 g/L and 1.37±0.03 g/L of phenolics and furans, respectively at conditions of 110 °C for 45 min in phase-I & 121 °C for 60 min in phase-II.

  17. Temperature influence on luminescent coupling efficiency in concentrator MJ SCs

    SciTech Connect

    Shvarts, Maxim Emelyanov, Viktor; Mintairov, Mikhail; Evstropov, Valery; Timoshina, Nailya

    2015-09-28

    In the work, presented are the results of investigation of temperature dependencies of the luminescent coupling effectiveness in lattice-matched (LM) GaInP/GaAs/Ge and metamorphic (MM) GaInP/GaInAs/Ge solar cells. The “ordinary” luminescent coupling effectiveness rise has been observed with temperature decrease for GaAs-Ge, GaInP-GaInAs and GaInAs-Ge pairs of subcells, and its limiting values have been defined. A “reverse” behavior of the luminescent coupling effectiveness for the GaInP-GaAs pair has been found, determined emittance potential drop of wideband GaInP p-n junction. It is shown that the established “unusual” behavior of the LC efficiency may be determined by the presence of thermalized centers of non-radiative recombination of charge carriers for the GaInP subcell in GaInP/GaAs/Ge LM structure. Estimation of characteristic parameters for the nonradiative recombination processes in wideband GaInP p-n junction has been carried out, and values for the energy of the nonradiative center thermalization (E{sub nrad2} =79.42meV) and for the activation energy of nonradiative band-to-band recombination (E{sub A}=33.4meV) have been obtained.

  18. Regulation of uterine and umbilical amino acid uptakes by maternal amino acid concentrations.

    PubMed

    Thureen, P J; Anderson, S M; Hay, W W

    2000-09-01

    We tested the hypothesis that decreased fetal amino acid (AA) supply, produced by maternal hypoaminoacidemia (low AA) during hyperglycemia (HG), is reversible with maternal AA infusion and regulates fetal insulin concentration ([I]). We measured net uterine and umbilical AA uptakes during maternal HG/low AA concentration ([AA]) and after maternal intravenous infusion of a mixed AA solution. After 5 days HG, all maternal [AA] except glycine were decreased >50%, particularly essential [AA] (P < 0.00005). Most fetal [AA] also were decreased, especially branched-chain AA (P < 0.001). Maternal AA infusion increased net uterine uptakes of Val, Leu, Ile, Met, and Ser and net umbilical uptakes of Val, Leu, Ile, Met, Phe, and Arg but did not change net uteroplacental uptake of any AA. Fetal [I] increased 55 +/- 14%, P < 0.001, with correction of fetal [AA], despite the lack of change in fetal glucose concentration. Thus generalized maternal hypoaminoacidemia decreases uterine and umbilical uptakes of primarily the essential AA and decreases fetal branched-chain [AA]. These changes are reversed with correction of maternal [AA], which also increases fetal [I].

  19. [Concentration of hydrochloric acid and pepsin in gastric juice in dogs after starvation and refeeding].

    PubMed

    Andreeva, Iu V; Polenov, S A

    2005-03-01

    Feeding fogs with meat after a 3-day period of starvation increased hydrochloric acid concentration with subsequent return of the parameter to normal values. Under the same conditions, pepsin concentration decreased and raised up after re-feeding. Histamine administration following the starvation decreased hydrochloric acid concentration with subsequent normalising. In three days after re-feeding and histamine administration, pepsin concentration drooped owing, probably, to a decrease of parietal cell H2-receptor affinity to histamine. Pentagastrin administration after the starvation increased hydrochloric acid concentration. The findings suggest G-cell function inhibition occurring after a 3-day starvation which is important for the stomach mucous membrane protection.

  20. The serum uric acid concentration is not causally linked to diabetic nephropathy in type 1 diabetes.

    PubMed

    Ahola, Aila J; Sandholm, Niina; Forsblom, Carol; Harjutsalo, Valma; Dahlström, Emma; Groop, Per-Henrik

    2017-02-21

    Previous studies have shown a relationship between uric acid concentration and progression of renal disease. Here we studied causality between the serum uric acid concentration and progression of diabetic nephropathy in 3895 individuals with type 1 diabetes in the FinnDiane Study. The renal status was assessed with the urinary albumin excretion rate and estimated glomerular filtration rate (eGFR) at baseline and at the end of the follow-up. Based on previous genomewide association studies on serum uric acid concentration, 23 single nucleotide polymorphisms (SNPs) with good imputation quality were selected for the SNP score. This score was used to assess the causality between serum uric acid and renal complications using a Mendelian randomization approach. At baseline, the serum uric acid concentration was higher with worsening renal status. In multivariable Cox regression analyses, baseline serum uric acid concentration was not independently associated with progression of diabetic nephropathy over a mean follow-up of 7 years. However, over the same period, baseline serum uric acid was independently associated with the decline in eGFR. In the cross-sectional logistic regression analyses, the SNP score was associated with the serum uric acid concentration. Nevertheless, the Mendelian randomization showed no causality between uric acid and diabetic nephropathy, eGFR categories, or eGFR as a continuous variable. Thus, our results suggest that the serum uric acid concentration is not causally related to diabetic nephropathy but is a downstream marker of kidney damage.

  1. Pickled egg production: effect of brine acetic acid concentration and packing conditions on acidification rate.

    PubMed

    Acosta, Oscar; Gao, Xiaofan; Sullivan, Elizabeth K; Padilla-Zakour, Olga I

    2014-05-01

    U.S. federal regulations require that acidified foods must reach a pH of 4.6 or lower within 24 h of packaging or be kept refrigerated until then. Processes and formulations should be designed to satisfy this requirement, unless proper studies demonstrate the safety of other conditions. Our objective was to determine the effect of brine acetic acid concentration and packing conditions on the acidification rate of hard-boiled eggs. Eggs were acidified (60/40 egg-to-brine ratio) at various conditions of brine temperature, heat treatment to filled jars, and postpacking temperature: (i) 25 °C/none/25 °C (cold fill), (ii) 25 °C/none/2 °C (cold fill/refrigerated), (iii) 85 °C/none/25 °C (hot fill), and (iv) 25 °C/100 °C for 16 min/25 °C (water bath). Three brine concentrations were evaluated (7.5, 4.9, and 2.5% acetic acid) and egg pH values (whole, yolk, four points within egg) were measured from 4 to 144 h, with eggs equilibrating at pH 3.8, 4.0, and 4.3, respectively. Experiments were conducted in triplicate, and effects were considered significant when P < 0.05. Multiple linear regression analysis was conducted to evaluate the effect on pH values at the center of the yolk. Regression analysis showed that brine concentration of 2.5% decreased the acidification rate, while packing conditions of the hot fill trial increased it. Inverse prediction was used to determine the time for the center of the yolk and the total yolk to reach a pH value of 4.6. These results demonstrate the importance of conducting acidification studies with proper pH measurements to determine safe conditions to manufacture commercially stable pickled eggs.

  2. Effect of cooking temperature on the crystallinity of acid hydrolysed-oil palm cellulose

    NASA Astrophysics Data System (ADS)

    Kuthi, Fatin Afifah Binti Ahmad; Badri, Khairiah Haji

    2014-09-01

    In this research, we studied the effect of acid hydrolysis temperature on the crystallinity of cellulose produced from empty fruit bunch (EFB). The hydrolysis temperature was studied from 120 to 140 °C at a fixed time and sulfuric acid, H2SO4 concentration which were 1 h and 1% (v/v) respectively. X-ray diffractometry (XRD) was carried out to measure the crystallinity of cellulose produced at varying hydrolysis temperatures. During hydrolysis, the amorphous region of α-cellulose was removed and the crystalline region was obtained. Percentage of crystallinity (CrI) for acid hydrolysed cellulose at 120, 130 and 140 °C were 54.21, 50.59 and 50.55 % respectively. Morphological studies using scanning electron microscope (SEM) showed that acid hydrolysis defibrilised to microfibrils in α-cellulose. The extraction process to produce α-cellulose has also been successfully carried out as the impurities at the outer surface, lignin and hemicellulose were removed. These findings were supported by the disappearance of peaks at 1732, 1512 and 1243 cm-1 on Fourier Transform infrared (FTIR) spectrum of α-cellulose. Similar peaks were identified in both the commercial microcrystalline cellulose (C-MCC) and acid hydrolysed cellulose (H-EFB), indicating the effectiveness of heat-catalysed acid hydrolysis.

  3. Changes in aggregation behavior of collagen molecules in solution with varying concentrations of acetic acid.

    PubMed

    Yang, Huan; Xu, Songcheng; Shen, Lirui; Liu, Wentao; Li, Guoying

    2016-11-01

    A critical aggregation concentration of 0.30-0.50mg/mL was previously obtained for type I collagen at 0.1M acetic acid (AA). In the present study, the aggregation behavior of collagen in solution (0.5mg/mL) in the presence of 0.1-2.0M AA was investigated. Circular dichroism showed that the three helix structure was maintained across the whole AA concentration range. However, the ratio of positive peak intensity over negative peak intensity varied depending on the conformational state of collagen aggregates. Ultra-sensitive differential scanning calorimetry revealed that transition temperatures Tm1 and Tm2 decreased by 8.35°C and 7.80°C, respectively, between 0.1M and 2.0M, indicating a possible relationship between the aggregation state and the thermal effect. The surrounding polarity of collagen molecules in solution containing pyrene was investigated by fluorescence spectroscopy, which demonstrated that disaggregation of collagen aggregates was enhanced with increasing AA concentration. This observation was correlated with changes in collagen fiber size observed by atomic force microscopy. Furthermore, collagen tyrosine residues were blue-shifted in an intrinsic fluorescence spectra, further indicating changes in aggregation behavior with increasing AA concentration. Finally, the dynamic response of collagen molecules to AA was analyzed by two-dimensional correlation fluorescence spectra.

  4. Amino acid concentrations in hypothalamic and caudate nuclei during microwave-induced thermal stress: Analysis by microdialysis

    SciTech Connect

    Mason, P.A.; Doyle, J.M.; Escarciga, R.; Romano, W.F.; Donnellan, J.P.; Berger, R.E.

    1997-05-01

    Exposure to radiofrequency radiation (RFR) may produce thermal responses. Extracellular amino acid concentrations in the hypothalamus (Hyp) and caudate nucleus (CN) were measured by using in vivo microdialysis before and during exposure to RFR. Under urethane anesthetic, each rat was implanted stereotaxically with a nonmetallic microdialysis probe and temperature probe guides and then placed in the exposure chamber. The rat laid on its right side with its head and neck placed directly under the wave guide. Temperature probes were placed in the lift brain, right brain, face, left tympanum, and rectum. Each microdialysis sample was collected over a 20 min period. The microdialysis probe was perfused for 2 h before the rat was exposed to 5.02 GHz radiation. The right and left sides of the brain were maintained at approximately 41.2 and 41.7 C, respectively, throughout a 40 min exposure period. Initially when the brain was being heated to these temperatures, the time-averaged specific absorption rates (SARs) for the right and left sides of the brain were 29 and 40 W/kg, respectively. Concentrations of aspartic acid, glutamic acid, serine, glutamine, and glycine in dialysate were determined by using high-pressure liquid chromatography with electrochemical detection. In the Hyp and CN, the concentrations of aspartic acid, serine, and glycine increased significantly during RFR exposure.

  5. Electrochemical Hydrogen Concentrator for Phosphoric Acid Fuel Cells.

    DTIC Science & Technology

    1987-11-01

    cathode, no systematic relationship between contaminant concentrations and operating conditions could be discerned in any of the cell configurations... the cathode. No * systematic relationship between contaminant concentrations in the product gas and operating conditions or anode catalyst could be...34-l,, PElO3.-l ’ T DISCLAIMERS THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION, UNLESS SO DESIGNATED

  6. Serum amino acid concentrations in patients receiving total parenteral nutrition with an amino acid plus dextrose mixture.

    PubMed

    Philcox, J C; Hartley, T F; Worthley, L I; Thomas, D W

    1984-01-01

    The results of monitoring the serum amino acid concentrations during three infusion regimens using a 5:4 mixture of 70% glucose and the synthetic L-amino acid solution, Synthamin 17 (Travasol) are reported. Twelve stabilized patients received continuous total parenteral nutrition (TPN), eight of whom were subsequently placed on a second regimen of cyclical feeding. A separate group of five patients was infused with amino acids, both with and without simultaneous glucose. The serum amino acid concentrations indicated that the supply of valine, leucine, isoleucine, lysine, and histidine, and the synthesis of taurine from the infused methionine was suboptimal, particularly if the period of TPN was prolonged. The synthesis of tyrosine from phenylalanine appeared to be inversely proportional to the infusion rate of the TPN mixture, in particular the glucose component, resulting in depressed tyrosine and increased phenylalanine concentrations in serum during continuous iv nutrition. Cyclical infusions, on the other hand, permitted the tyrosine and phenylalanine concentrations to return to normal during the noninfusion stage of the cycle. Amino acid measurements enabled us to design an amino acids additive mixture which normalized the serum concentrations in three long-term home parenteral nutrition patients. As a result of these investigations serum amino acid measurements are used routinely to monitor the efficacy of TPN and accommodate any specific amino acid requirements of individual patients.

  7. Advances in Acid Concentration Membrane Technology for the Sulfur-Iodine Thermochemical Cycle

    SciTech Connect

    Frederick F. Stewart; Christopher J. Orme

    2006-11-01

    One of the most promising cycles for the thermochemical generation of hydrogen is the Sulfur-Iodine (S-I) process, where aqueous HI is thermochemically decomposed into H2 and I2 at approximately 350 degrees Celsius. Regeneration of HI is accomplished by the Bunsen reaction (reaction of SO2, water, and iodine to generate H2SO4 and HI). Furthermore, SO2 is regenerated from the decomposition of H2SO4 at 850 degrees Celsius yielding the SO2 as well as O2. Thus, the cycle actually consists of two concurrent oxidation-reduction loops. As HI is regenerated, co-produced H2SO4 must be separated so that each may be decomposed. Current flowsheets employ a large amount (~83 mol% of the entire mixture) of elemental I2 to cause the HI and the H2SO4 to separate into two phases. To aid in the isolation of HI, which is directly decomposed into hydrogen, water and iodine must be removed. Separation of iodine is facilitated by removal of water. Sulfuric acid concentration is also required to facilitate feed recycling to the sulfuric acid decomposer. Decomposition of the sulfuric acid is an equilibrium limited process that leaves a substantial portion of the acid requiring recycle. Distillation of water from sulfuric acid involves significant corrosion issues at the liquid-vapor interface. Thus, it is desirable to concentrate the acid without boiling. Recent efforts at the INL have concentrated on applying pervaporation through Nafion-117, Nafion-112, and sulfonated poly(etheretherketone) (S-PEEK) membranes for the removal of water from HI/water and HI/Iodine/water feedstreams. In pervaporation, a feed is circulated at low pressure across the upstream side of the membrane, while a vacuum is applied downstream. Selected permeants sorb into the membrane, transport through it, and are vaporized from the backside. Thus, a concentration gradient is established, which provides the driving force for transport. In this work, membrane separations have been performed at temperatures as high as

  8. Variable Temperature Infrared Spectroscopy Studies of Aromatic Acid Adsorbate Effects on Montmorillonite Dehydration.

    PubMed

    Ingram, Audrey L; Nickels, Tara M; Maraoulaite, Dalia K; White, Robert L

    2017-02-01

    Molecular interactions between benzoic, salicylic, and acetylsalicylic acids and water contained within montmorillonite clay interlayer spaces are characterized by using variable temperature diffuse reflection infrared Fourier transform spectroscopy (VT-DRIFTS). By using sample perturbation and difference spectroscopy, infrared (IR) spectral variations resulting from the removal of interlayer water are used to characterize aromatic acid local environment changes. Difference spectra features representing functional group perturbations are correlated with changes in IR absorptions associated with -O-H and -C = O stretching vibrations. Results suggest that adsorbate carboxylic acid functionalities participate in extensive hydrogen bonding and that the strengths of these interactions are diminished when clays are dehydrated. The nature of these interactions and their temperature-dependent properties are found to depend on adsorbate structure and concentration as well as the clay interlayer cation.

  9. Transformation of 5-O-caffeoylquinic acid in blueberries during high-temperature processing.

    PubMed

    Dawidowicz, Andrzej L; Typek, Rafal

    2014-11-12

    Chlorogenic acid (CQA), an ester of caffeic with quinic acid, is a natural compound found in a wide array of plants. Although coffee beans are most frequently mentioned as plant products remarkably rich in CQAs, their significant amounts can also be found in many berries, for example, blueberries. This paper shows and discusses the thermal stability of the main CQA representative, that is, 5-O-caffeoylquinic acid (5-CQA), during high-temperature processing of blueberries (as in the production of blueberry foods) in systems containing sucrose in low and high concentration. It has been found that up to 11 components (5-CQA derivatives and its reaction product with water) can be formed from 5-CQA during the processing of blueberries. Their formation speed depends on the sucrose concentration in the processed system, which has been confirmed in the artificial system composed of 5-CQA water solution containing different amounts of the sugar.

  10. Preparation of Rutile from Ilmenite Concentrate Through Pressure Leaching with Hydrochloric Acid

    NASA Astrophysics Data System (ADS)

    Xiang, Junyi; Liu, Songli; Lv, Xuewei; Bai, Chenguang

    2017-04-01

    Take into account the fact that the natural rutile utilized for the production of titanium dioxide pigment through chloride process is desperately lacking worldwide especially in China, an attempt was exploited for extracting synthetic rutile from Yunnan ilmenite concentrate with hydrochloric acid pressure leaching process. The leaching parameters for one step leaching process were investigated. The results shown that the optimum condition is leaching temperature of 413 K (140 °C), acid concentration of 20 pct HCl, leaching time of 4 hours and liquid/solid mass ratio of 8:1. A two steps leaching process was also suggested to reutilize the leaching liquor which with a high content of HCl. The results showed that the content of HCl decreased from 135 to 75 g/L, total iron increased from 44.5 g/L to about 87.6 g/L, and the liquid/solid mass ratio decreased to 5:1 with a two steps leaching process. The leaching product produced through a two steps leaching process shows a pure golden red with a high content of titanium (92.65 pct TiO2), a relatively low content of calcium (0.10 pct CaO) and magnesium (0.12 pct MgO), but high content of silicon (5.72 pct SiO2).

  11. Preparation of Rutile from Ilmenite Concentrate Through Pressure Leaching with Hydrochloric Acid

    NASA Astrophysics Data System (ADS)

    Xiang, Junyi; Liu, Songli; Lv, Xuewei; Bai, Chenguang

    2016-12-01

    Take into account the fact that the natural rutile utilized for the production of titanium dioxide pigment through chloride process is desperately lacking worldwide especially in China, an attempt was exploited for extracting synthetic rutile from Yunnan ilmenite concentrate with hydrochloric acid pressure leaching process. The leaching parameters for one step leaching process were investigated. The results shown that the optimum condition is leaching temperature of 413 K (140 °C), acid concentration of 20 pct HCl, leaching time of 4 hours and liquid/solid mass ratio of 8:1. A two steps leaching process was also suggested to reutilize the leaching liquor which with a high content of HCl. The results showed that the content of HCl decreased from 135 to 75 g/L, total iron increased from 44.5 g/L to about 87.6 g/L, and the liquid/solid mass ratio decreased to 5:1 with a two steps leaching process. The leaching product produced through a two steps leaching process shows a pure golden red with a high content of titanium (92.65 pct TiO2), a relatively low content of calcium (0.10 pct CaO) and magnesium (0.12 pct MgO), but high content of silicon (5.72 pct SiO2).

  12. Temperature induced denaturation of collagen in acidic solution.

    PubMed

    Mu, Changdao; Li, Defu; Lin, Wei; Ding, Yanwei; Zhang, Guangzhao

    2007-07-01

    The denaturation of collagen solution in acetic acid has been investigated by using ultra-sensitive differential scanning calorimetry (US-DSC), circular dichroism (CD), and laser light scattering (LLS). US-DSC measurements reveal that the collagen exhibits a bimodal transition, i.e., there exists a shoulder transition before the major transition. Such a shoulder transition can recover from a cooling when the collagen is heated to a temperature below 35 degrees C. However, when the heating temperature is above 37 degrees C, both the shoulder and major transitions are irreversible. CD measurements demonstrate the content of triple helix slowly decreases with temperature at a temperature below 35 degrees C, but it drastically decreases at a higher temperature. Our experiments suggest that the shoulder transition and major transition arise from the defibrillation and denaturation of collagen, respectively. LLS measurements show the average hydrodynamic radius R(h), radius of gyration R(g)of the collagen gradually decrease before a sharp decrease at a higher temperature. Meanwhile, the ratio R(g)/R(h) gradually increases at a temperature below approximately 34 degrees C and drastically increases in the range 34-40 degrees C, further indicating the defibrillation of collagen before the denaturation.

  13. Using Conductivity Measurements to Determine the Identities and Concentrations of Unknown Acids: An Inquiry Laboratory Experiment

    ERIC Educational Resources Information Center

    Smith, K. Christopher; Garza, Ariana

    2015-01-01

    This paper describes a student designed experiment using titrations involving conductivity measurements to identify unknown acids as being either HCl or H[subscript 2]SO[subscript 4], and to determine the concentrations of the acids, thereby improving the utility of standard acid-base titrations. Using an inquiry context, students gain experience…

  14. Raman spectroscopic study of the aging and nitration of actinide processing anion-exchange resins in concentrated nitric acid

    SciTech Connect

    Buscher, C. T.; Donohoe, R. J.; Mecklenburg, S. L.; Berg, J. M.; Tait, C. D.; Morris, D. E. [Chemical Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

    1999-08-01

    Degradation of two types of anion exchange resins, Dowex 11 and Reillex HPQ, from the action of concentrated nitric acid (4 to 12 M) and radiolysis [from depleted uranium as UO{sub 2}{sup 2+} nitrate species and {sup 239}Pu as Pu(IV) nitrate species] was followed as a function of time with Raman vibrational spectroscopy. Elevated temperatures ({approx}50 degree sign C) were used in the absence of actinide metal loading to simulate longer exposures of the resin to a HNO{sub 3} process stream and waste storage conditions. In the absence of actinide loading, only minor changes in the Dowex resin at acid concentrations {<=}10 M were observed, while at 12 M acid concentration, the emergence of a Raman peak at 1345 cm-1 indicates the addition of nitro functional groups to the resin. Similar studies with the Reillex resin show it to be more resistant to nitric acid attack at all acid concentrations. Incorporation of weakly radioactive depleted uranium as the UO{sub 2}{sup 2+} nitrate species to the ion-exchange sites of Dowex 11 under differing nitric acid concentrations (6 to 12 M) at room temperature showed no Raman evidence of resin degradation or nitration, even after several hundred days of contact. In contrast, Raman spectra for Dowex 11 in the presence of {sup 239}Pu as Pu(IV) nitrate species reveal numerous changes indicating resin alterations, including a new mode at 1345 cm-1 consistent with a Pu(IV)-nitrate catalyzed addition of nitro groups to the resin backbone. (c) 2000 Society for Applied Spectroscopy.

  15. High-temperature passive direct methanol fuel cells operating with concentrated fuels

    NASA Astrophysics Data System (ADS)

    Zhao, Xuxin; Yuan, Wenxiang; Wu, Qixing; Sun, Hongyuan; Luo, Zhongkuan; Fu, Huide

    2015-01-01

    Conventionally, passive direct methanol fuel cells (DMFC) are fed with diluted methanol solutions and can hardly be operated at elevated temperatures (>120 °C) because the ionic conductivity of Nafion-type proton exchange membranes depends strongly on water content. Such a system design would limit its energy density and power density in mobile applications. In this communication, a passive vapor feed DMFC capable of operating with concentrated fuels at high temperatures is reported. The passive DMFC proposed in this work consists of a fuel reservoir, a perforated silicone sheet, a vapor chamber, two current collectors and a membrane electrode assembly (MEA) based on a phosphoric acid doped polybenzimidazole (PBI) membrane. The experimental results reveal that the methanol crossover through a PBI membrane is substantially low when compared with the Nafion membranes and the PBI-based passive DMFC can yield a peak power density of 37.2 mW cm-2 and 22.1 mW cm-2 at 180 °C when 16 M methanol solutions and neat methanol are used respectively. In addition, the 132 h discharge test indicates that the performance of this new DMFC is quite stable and no obvious performance degradation is observed after activation, showing its promising applications in portable power sources.

  16. High plasma uric acid concentration: causes and consequences

    PubMed Central

    2012-01-01

    High plasma uric acid (UA) is a precipitating factor for gout and renal calculi as well as a strong risk factor for Metabolic Syndrome and cardiovascular disease. The main causes for higher plasma UA are either lower excretion, higher synthesis or both. Higher waist circumference and the BMI are associated with higher insulin resistance and leptin production, and both reduce uric acid excretion. The synthesis of fatty acids (tryglicerides) in the liver is associated with the de novo synthesis of purine, accelerating UA production. The role played by diet on hyperuricemia has not yet been fully clarified, but high intake of fructose-rich industrialized food and high alcohol intake (particularly beer) seem to influence uricemia. It is not known whether UA would be a causal factor or an antioxidant protective response. Most authors do not consider the UA as a risk factor, but presenting antioxidant function. UA contributes to > 50% of the antioxidant capacity of the blood. There is still no consensus if UA is a protective or a risk factor, however, it seems that acute elevation is a protective factor, whereas chronic elevation a risk for disease. PMID:22475652

  17. Temperature effect on photolysis decomposing of perfluorooctanoic acid.

    PubMed

    Zhang, Tiliang; Pan, Gang; Zhou, Qin

    2016-04-01

    Perfluorooctanoic acid (PFOA) is recalcitrant to degrade and mineralize. Here, the effect of temperature on the photolytic decomposition of PFOA was investigated. The decomposition of PFOA was enhanced from 34% to 99% in 60 min of exposure when the temperature was increased from 25 to 85°C under UV light (201-600 nm). The limited degree of decomposition at 25°C was due to low quantum yield, which was increased by a factor of 12 at 85°C. Under the imposed conditions, the defluorination ratio increased from 8% at 25°C to 50% at 85°C in 60 min. Production of perfluorinated carboxylic acids (PFCAs, C7-C5), PFCAs (C4-C3) and TFA (trifluoroacetic acid, C2) accelerated and attained a maximum within 30 to 90 min at 85°C. However, these reactions did not occur at 25°C despite extended irradiation to 180 min. PFOA was decomposed in a step-wise process by surrendering one CF2 unit. In each cyclical process, increased temperature enhanced the quantum yields of irradiation and reactions between water molecules and intermediates radicals. The energy consumption for removing each μmol of PFOA was reduced from 82.5 kJ at 25°C to 10.9 kJ at 85°C using photolysis. Photolysis coupled with heat achieved high rates of PFOA degradation and defluorination.

  18. Effect of temperature & salt concentration on salt tolerant nitrate-perchlorate reducing bacteria: Nitrate degradation kinetics.

    PubMed

    Ebrahimi, Shelir; Nguyen, Thi Hau; Roberts, Deborah J

    2015-10-15

    The sustainability of nitrate-contaminated water treatment using ion-exchange processes can be achieved by regenerating the exhausted resin several times. Our previous study shows that the use of multi-cycle bioregeneration of resin enclosed in membrane is an effective and innovative regeneration method. In this research, the effects of two independent factors (temperature and salt concentration) on the biological denitrification rate were studied. The results of this research along with the experimental results of the previous study on the effect of the same factors on nitrate desorption rate from the resin allow the optimization of the bioregeneration process. The results of nitrate denitrification rate study show that the biodegradation rate at different temperature and salt concentration is independent of the initial nitrate concentration. At each specific salt concentration, the nitrate removal rate increased with increasing temperature with the average value of 0.001110 ± 0.0000647 mg-nitrate/mg-VSS.h.°C. However, the effect of different salt concentrations was dependent on the temperature; there is a significant interaction between salt concentration and temperature; within each group of temperatures, the nitrate degradation rate decreased with increasing the salt concentration. The temperature affected the tolerance to salinity and culture was less tolerant to high concentration of salt at low temperature. Evidenced by the difference between the minimum and maximum nitrate degradation rate being greater at lower temperature. At 35 °C, a 32% reduction in the nitrate degradation rate was observed while at 12 °C this reduction was 69%. This is the first published study to examine the interaction of salt concentration and temperature during biological denitrification.

  19. Amino acid concentrations in plasma and erythrocytes in aregeneratory and haemolytic anaemias.

    PubMed

    Seip, M; Lindemann, R; Gjesdahl, P; Gjessing, L R

    1975-10-01

    The concentrations of unbound amino acids in erythrocytes and in plasma from 7 normal individuals, 11 patients with various types of aregeneratory anaemia, and 4 patients with hereditary haemolytic anaemias were determined on a Technicon Amino Acid Analyzer (Perry et al 1970). Most amino acids were normally found in higher concentrations in plasma than intracellularly. Cystine, methionine and trypotophan were almost exclusively present in plasma. Aspartic acid, however, was mainly found in erythrocytes, and glutathione only in erythrocytes. Glutamic acid and ornithine were more concentrated in the cells, while glycine and asparagine showed approximately the same concentrations in erythrocytes as in plasma. In the patients, plasma amino acids showed little deviations from normal, but in the erythrocytes there were striking changes. Erythrocyte glutamic acid concentrations were moderately to markedly elevated in all patients studied, and glycine concentrations in 13 out of 15 patients. In addition, the following amino acids were increased intracellularly in more than one patient: glutamine (8 patients), serine (7), asparagine (5), threonine (4), taurine (3), alanine (2), valine (2), ornithine (2), lysine (2), citrulline (2). Aspartic acid was decreased in erythrocytes from 4 patients with aregeneratory and 1 with haemolytic anaemia.

  20. Upscaling energy concentration in multifrequency single-bubble sonoluminescence with strongly degassed sulfuric acid

    NASA Astrophysics Data System (ADS)

    Dellavale, Damián; Rechiman, Ludmila; Rosselló, Juan Manuel; Bonetto, Fabián

    2012-07-01

    Single-bubble sonoluminescence (SBSL) was explored under a variety of multifrequency excitations. In particular, biharmonic excitation was used to produce SBSL for unprecedented low dissolved noble gas concentrations in a sulfuric acid solution. Reducing the amount of dissolved noble gas makes it possible to reach higher acoustic pressures on the SL bubble, which otherwise are not attainable because of the Bjerknes instability. By using biharmonic excitation, we were able to experimentally trap and to spatially stabilize SL bubbles for xenon pressure overhead as low as 1mbar. As a result, we have access to regions in phase space where the plasma temperatures are higher than the ones reached before for bubbles driven at ≈30kHz.

  1. Upscaling energy concentration in multifrequency single-bubble sonoluminescence with strongly degassed sulfuric acid.

    PubMed

    Dellavale, Damián; Rechiman, Ludmila; Rosselló, Juan Manuel; Bonetto, Fabián

    2012-07-01

    Single-bubble sonoluminescence (SBSL) was explored under a variety of multifrequency excitations. In particular, biharmonic excitation was used to produce SBSL for unprecedented low dissolved noble gas concentrations in a sulfuric acid solution. Reducing the amount of dissolved noble gas makes it possible to reach higher acoustic pressures on the SL bubble, which otherwise are not attainable because of the Bjerknes instability. By using biharmonic excitation, we were able to experimentally trap and to spatially stabilize SL bubbles for xenon pressure overhead as low as 1 mbar. As a result, we have access to regions in phase space where the plasma temperatures are higher than the ones reached before for bubbles driven at ≈30 kHz.

  2. Seasonal cycle and temperature dependence of pinene oxidation products, dicarboxylic acids and nitrophenols in fine and coarse air particulate matter

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Müller, L.; Winterhalter, R.; Moortgat, G. K.; Hoffmann, T.; Pöschl, U.

    2010-05-01

    Filter samples of fine and coarse air particulate matter (PM) collected over a period of one year in central Europe (Mainz, Germany) were analyzed for water-soluble organic compounds (WSOCs), including the α- and β-pinene oxidation products pinic acid, pinonic acid and 3-methyl-1,2,3-butanetricarboxylic acid (3-MBTCA), as well as a variety of dicarboxylic acids and nitrophenols. Seasonal variations and other characteristic features in fine, coarse, and total PM (TSP) are discussed with regard to aerosol sources and sinks in comparison to data from other studies and regions. The ratios of adipic acid and phthalic acid to azelaic acid indicate that the investigated samples were mainly influenced by biogenic sources. A strong Arrhenius-type correlation was found between the 3-MBTCA concentration and inverse temperature (R2=0.79, n=52, Ea=126±10 kJ mol-1, temperature range 275-300 K). Model calculations suggest that the temperature dependence observed for 3-MBTCA can be explained by enhanced photochemical production due to an increase of hydroxyl radical (OH) concentration with increasing temperature, whereas the influence of gas-particle partitioning appears to play a minor role. The results indicate that the OH-initiated oxidation of pinonic acid is the rate-limiting step in the formation of 3-MBTCA, and that 3-MBTCA may be a suitable tracer for the chemical aging of biogenic secondary organic aerosol (SOA) by OH radicals. An Arrhenius-type temperature dependence was also observed for the concentration of pinic acid (R2=0.60, n=56, Ea=84±9 kJ mol-1); it can be tentatively explained by the temperature dependence of biogenic pinene emission as the rate-limiting step of pinic acid formation.

  3. Seasonal cycle and temperature dependence of pinene oxidation products, dicarboxylic acids and nitrophenols in fine and coarse air particulate matter

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Y.; Müller, L.; Winterhalter, R.; Moortgat, G. K.; Hoffmann, T.; Pöschl, U.

    2010-08-01

    Filter samples of fine and coarse air particulate matter (PM) collected over a period of one year in central Europe (Mainz, Germany) were analyzed for water-soluble organic compounds (WSOCs), including the α- and β-pinene oxidation products pinic acid, pinonic acid and 3-methyl-1,2,3-butanetricarboxylic acid (3-MBTCA), as well as a variety of dicarboxylic acids and nitrophenols. Seasonal variations and other characteristic features in fine, coarse, and total PM (TSP) are discussed with regard to aerosol sources and sinks in comparison to data from other studies and regions. The ratios of adipic acid and phthalic acid to azelaic acid indicate that the investigated aerosol samples were mainly influenced by biogenic sources. A strong Arrhenius-type correlation was found between the 3-MBTCA concentration and inverse temperature (R2 = 0.79, n = 52, Ea = 126 ± 10 kJ mol-1, temperature range 275-300 K). Model calculations suggest that the temperature dependence observed for 3-MBTCA can be explained by enhanced photochemical production due to an increase of hydroxyl radical (OH) concentration with increasing temperature, whereas the influence of gas-particle partitioning appears to play a minor role. The results indicate that the OH-initiated oxidation of pinonic acid is the rate-limiting step in the formation of 3-MBTCA, and that 3-MBTCA may be a suitable tracer for the chemical aging of biogenic secondary organic aerosol (SOA) by OH radicals. An Arrhenius-type temperature dependence was also observed for the concentration of pinic acid (R2 = 0.60, n = 56, Ea = 84 ± 9 kJ mol-1); it can be tentatively explained by the temperature dependence of biogenic pinene emission as the rate-limiting step of pinic acid formation.

  4. Solubility of acetic acid and trifluoroacetic acid in low-temperature (207-245 k) sulfuric acid solutions: implications for the upper troposphere and lower stratosphere.

    PubMed

    Andersen, Mads P Sulbaek; Axson, Jessica L; Michelsen, Rebecca R H; Nielsen, Ole John; Iraci, Laura T

    2011-05-05

    The solubility of gas-phase acetic acid (CH(3)COOH, HAc) and trifluoroacetic acid (CF(3)COOH, TFA) in aqueous sulfuric acid solutions was measured in a Knudsen cell reactor over ranges of temperature (207-245 K) and acid composition (40-75 wt %, H(2)SO(4)). For both HAc and TFA, the effective Henry's law coefficient, H*, is inversely dependent on temperature. Measured values of H* for TFA range from 1.7 × 10(3) M atm(-1) in 75.0 wt % H(2)SO(4) at 242.5 K to 3.6 × 10(8) M atm(-1) in 40.7 wt % H(2)SO(4) at 207.8 K. Measured values of H* for HAc range from 2.2 × 10(5) M atm(-1) in 57.8 wt % H(2)SO(4) at 245.0 K to 3.8 × 10(8) M atm(-1) in 74.4 wt % H(2)SO(4) at 219.6 K. The solubility of HAc increases with increasing H(2)SO(4) concentration and is higher in strong sulfuric acid than in water. In contrast, the solubility of TFA decreases with increasing sulfuric acid concentration. The equilibrium concentration of HAc in UT/LS aerosol particles is estimated from our measurements and is found to be up to several orders of magnitude higher than those determined for common alcohols and small carbonyl compounds. On the basis of our measured solubility, we determine that HAc in the upper troposphere undergoes aerosol partitioning, though the role of H(2)SO(4) aerosol particles as a sink for HAc in the upper troposphere and lower stratosphere will only be discernible under high atmospheric sulfate perturbations.

  5. Amorphous-Amorphous Phase Separation of Freeze-Concentrated Protein and Amino Acid Excipients for Lyophilized Formulations.

    PubMed

    Izutsu, Ken-Ichi; Yoshida, Hiroyuki; Shibata, Hiroko; Goda, Yukihiro

    2016-01-01

    The objective of this study was to elucidate the mixing state of proteins and amino acid excipients concentrated in the amorphous non-ice region of frozen solutions. Thermal analysis of frozen aqueous solutions was performed in heating scans before and after a heat treatment. Frozen aqueous solutions containing a protein (e.g., recombinant human albumin, gelatin) or a polysaccharide (dextran) and an amino acid excipient (e.g., L-arginine, L-arginine hydrochloride, L-arginine monophosphate, sodium L-glutamate) at varied mass ratios showed single or double Tg' (glass transition temperature of maximally freeze-concentrated solutes). Some mixture frozen solutions rich in the polymers maintained the single Tg' of the freeze-concentrated amorphous solute-mixture phase. In contrast, amino acid-rich mixture frozen solutions revealed two Tg's that suggested transition of concentrated non-crystalline solute-mixture phase and excipient-dominant phase. Post-freeze heat treatment induced splitting of the Tg' in some intermediate mass ratio mixture solutions. The mixing state of proteins and amino acids varied depending on their structure, salt types, mass ratio, composition of co-solutes (e.g., NaCl) and thermal history. Information on the varied mixing states should be valuable for the rational use of amino acid excipients in lyophilized protein pharmaceuticals.

  6. An inverse radiation model for optical determination of temperature and species concentration: Development and validation

    NASA Astrophysics Data System (ADS)

    Ren, Tao; Modest, Michael F.; Fateev, Alexander; Clausen, Sønnik

    2015-01-01

    In this study, we present an inverse calculation model based on the Levenberg-Marquardt optimization method to reconstruct temperature and species concentration from measured line-of-sight spectral transmissivity data for homogeneous gaseous media. The high temperature gas property database HITEMP 2010 (Rothman et al. (2010) [1]), which contains line-by-line (LBL) information for several combustion gas species, such as CO2 and H2O, was used to predict gas spectral transmissivities. The model was validated by retrieving temperatures and species concentrations from experimental CO2 and H2O transmissivity measurements. Optimal wavenumber ranges for CO2 and H2O transmissivity measured across a wide range of temperatures and concentrations were determined according to the performance of inverse calculations. Results indicate that the inverse radiation model shows good feasibility for measurements of temperature and gas concentration.

  7. Water administration of medium-chain fatty acid caprylic acid produced variable efficacy against cecal Campylobacter jejuni concentrations in broilers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter is one of the most common causes of foodborne illness, and poultry is considered a primary source of Campylobacter infections. Caprylic acid, an eight-carbon fatty acid, has been shown in previous studies to reduce enteric cecal Campylobacter concentrations in poultry when administere...

  8. Practical considerations in the concentration and recovery of spent nitration acids

    SciTech Connect

    Evans, C.M.

    1995-12-01

    Most organic nitrations employ sulphuric acid or oleum in the nitration acid. Even in rare nitric acid only nitrations, sulphuric acid is used as the dehydrating agent to produce 99% nitric acid. The used sulphuric acid is discharged in a diluted form contaminated with organic components and nitric/nitrous species. Pressures are emloyed to reconcentrate and reprocess such spent acids. Acid recovery and concentration is expensive. This paper discusses some of the aspects which must be considered when contemplating acid recovery. In the current industrial climate, acid recovery and recycle should be regarded as an integral part of a nitration process development rather than an afterthought. Case histories will be given in which such considerations influenced the course of the development of the nitration process itself. Emphasis will be placed on the importance of well planned bench and pilot scale test programmes.

  9. Effects of whey protein concentrate, feed moisture and temperature on the physicochemical characteristics of a rice-based extruded flour.

    PubMed

    Teba, Carla da Silva; Silva, Erika Madeira Moreira da; Chávez, Davy William Hidalgo; Carvalho, Carlos Wanderlei Piler de; Ascheri, José Luis Ramírez

    2017-08-01

    The influence of whey protein concentrate (WPC), feed moisture and temperature on the physicochemical properties of rice-based extrudates has been investigated. WPC (0.64-7.36g/100g rice) was extruded under 5 moisture (16.64-23.36g/100g) and 5 temperature (106.36-173.64°C) established by a 3(2) central composite rotational design. Physicochemical properties [color, porosimetry, crystallinity, water solubility and absorption, pasting properties, reconstitution test, proximate composition, amino acids, minerals and electrophoresis] were determined. WPC and feed moisture increased redness, yellowness and decreased luminosity. Feed moisture and temperature increased density and total volume pore. WPC and moisture increased crystallinity, but only WPC increased solubility and decrease the retrogradation tendency. Increasing temperature increased the viscosity of the extrudates. The addition of WPC improved the nutritional composition of the extrudates, especially proteins. It is suggested that the extrusion process positively affected the retention of most of the polypeptides chains.

  10. [Production of a concentrate of Mucor bacilliformis acid protease].

    PubMed

    Bottaro Castilla, H R; Waehner, R S; Meinardi, C A; Zalazar, C A; Fraile, E R

    1982-01-01

    A concentrate of milk-clotting enzyme was produced by culture of Mucor bacilliformis on wheat bran medium moistened to 120% water on dry bases with HC1 2 N solution. The wheat bran was autoclaved, spread on trays and inoculated with 5.10(6) spore/gr of dry bran. After 10 days of culture at 21 degrees C, the enzyme produced was extracted with water and adjusted to pH 4.4. The precipitation was performed with ethanol. The precipitate was dissolved in HCl solution (pH 4.5) and it was concentrated by dialysis against polyethylene glycol 20.000. The enzyme solution had a specific activity of 1123 units/mg. and it was tested in the elaboration of cream cheese.

  11. Chitosan-phosphotungstic acid complex as membranes for low temperature H2-O2 fuel cell

    NASA Astrophysics Data System (ADS)

    Santamaria, M.; Pecoraro, C. M.; Di Quarto, F.; Bocchetta, P.

    2015-02-01

    Free-standing Chitosan/phosphotungstic acid polyelectrolyte membranes were prepared by an easy and fast in-situ ionotropic gelation process performed at room temperature. Scanning electron microscopy was employed to study their morphological features and their thickness as a function of the chitosan concentration. The membrane was tested as proton conductor in low temperature H2-O2 fuel cell allowing to get peak power densities up to 350 mW cm-2. Electrochemical impedance measurements allowed to estimate a polyelectrolyte conductivity of 18 mS cm-1.

  12. Impact of confinement on proteins concentrated in lithocholic acid based organic nanotubes.

    PubMed

    Lu, Qin; Kim, Youngchan; Bassim, Nabil; Collins, Greg E

    2015-09-15

    Organic nanotubes form in aqueous solution near physiological pH by self-assembly of lithocholic acid (LCA) with inner diameters of 20-40nm. The encapsulation of enhanced green fluorescent protein (eGFP) and resultant confinement effect for eGFP within these nanotubes is studied via confocal microscopy. Timed release rate studies of eGFP encapsulated in LCA nanotubes and fluorescence recovery after photobleaching (FRAP) indicate that the diffusive transport of eGFP out of and/or within the nanotubes is very slow, in contrast to the rapid introduction of eGFP into the nanotubes. By encapsulating two fluorescent proteins in LCA nanotubes, eGFP and mCherry, as a fluorescence resonance energy transfer (FRET) pair, the FRET efficiencies are determined using FRET imaging microscopy at three different protein concentrations with a fixed donor-to-acceptor ratio of 1:1. Förster theory reveals that the proteins are spatially separated by 4.8-7.2nm in distance inside these nanotubes. The biomimetic nanochannels of LCA nanotubes not only afford a confining effect on eGFP that results in enhanced chemical and thermal stability under conditions of high denaturant concentration and temperature, but also function as protein concentrators for enriching protein in the nanochannels from a diluted protein solution by up to two orders of magnitude.

  13. Organosulfates and organic acids in Arctic aerosols: speciation, annual variation and concentration levels

    NASA Astrophysics Data System (ADS)

    Hansen, A. M. K.; Kristensen, K.; Nguyen, Q. T.; Zare, A.; Cozzi, F.; Nøjgaard, J. K.; Skov, H.; Brandt, J.; Christensen, J. H.; Ström, J.; Tunved, P.; Krejci, R.; Glasius, M.

    2014-08-01

    Sources, composition and occurrence of secondary organic aerosols in the Arctic were investigated at Zeppelin Mountain, Svalbard, and Station Nord, northeastern Greenland, during the full annual cycle of 2008 and 2010, respectively. Speciation of organic acids, organosulfates and nitrooxy organosulfates - from both anthropogenic and biogenic precursors were in focus. A total of 11 organic acids (terpenylic acid, benzoic acid, phthalic acid, pinic acid, suberic acid, azelaic acid, adipic acid, pimelic acid, pinonic acid, diaterpenylic acid acetate and 3-methyl-1,2,3-butanetricarboxylic acid), 12 organosulfates and 1 nitrooxy organosulfate were identified in aerosol samples from the two sites using a high-performance liquid chromatograph (HPLC) coupled to a quadrupole Time-of-Flight mass spectrometer. At Station Nord, compound concentrations followed a distinct annual pattern, where high mean concentrations of organosulfates (47 ± 14 ng m-3) and organic acids (11.5 ± 4 ng m-3) were observed in January, February and March, contrary to considerably lower mean concentrations of organosulfates (2 ± 3 ng m-3) and organic acids (2.2 ± 1 ng m-3) observed during the rest of the year. At Zeppelin Mountain, organosulfate and organic acid concentrations remained relatively constant during most of the year at a mean concentration of 15 ± 4 ng m-3 and 3.9 ± 1 ng m-3, respectively. However during four weeks of spring, remarkably higher concentrations of total organosulfates (23-36 ng m-3) and total organic acids (7-10 ng m-3) were observed. Elevated organosulfate and organic acid concentrations coincided with the Arctic haze period at both stations, where northern Eurasia was identified as the main source region. Air mass transport from northern Eurasia to Zeppelin Mountain was associated with a 100% increase in the number of detected organosulfate species compared with periods of air mass transport from the Arctic Ocean, Scandinavia and Greenland. The results from this

  14. Liquid-vapor partitioning of NaCl(aq) from concentrated brines at temperatures to 350{degrees}C

    SciTech Connect

    Simonson, J.M.; Palmer, Donald A.; Carter, R.W.

    1994-01-20

    Compositions of coexisting liquid and vapor phases have been determined at temperatures from 250 to 350°C for brines containing NaCl and either HCI or NaOH by direct sampling of both phases from a static phase-equilibration apparatus. In these experiments, NaCl concentrations in the liquid phase ranged to 6.5 mol-kg{sup -1}, with corresponding vapor-phase NaCl concentrations varying strongly with temperature and brine composition. Acid or base was added to the brines to suppress unknown contributions of NaCl(aq) hydrolysis products to the observed volatilities. Thermodynamic partitioning constants for NaCl have been determined from the observed compositions of the coexisting phases combined with the known activity coefficients of NaCl(aq) in the liquid phase. An apparent dependence of the values of these partitioning constants on brine concentration is explained by considering the effect of decreasing pressure on the density of the vapor phase. Concentrations of HCI and NaCl in steam produced from various natural brines may be calculated as hnctions of temperature and brine composition based on these new results coupled with our previous determinations of the partitioning constants for HCl(aq). Application of these results to The Geysers will be discussed in terms of the composition of postulated brines which could be in equilibrium with observed steam compositions at various temperatures.

  15. Inhibition of hepatic gluconeogenesis by niflumic acid correlates with the concentration of the free form.

    PubMed

    Kelmer-Bracht, A M; Bracht, A

    1993-05-01

    Inhibition of hepatic gluconeogenesis by niflumic acid, a non-steroidal antiinflammatory drug, was measured in order to correlate the effect of the drug with the concentration of the free drug. The concentration of free drug was changed in two ways: (a) by changing the albumin concentration at a fixed total (free+bound) niflumic acid concentration; and, (b) by changing the drug concentration at a fixed albumin concentration. The degree of inhibition of gluconeogenesis by niflumic acid depends strictly on the concentration of the free drug, with half-maximal inhibition at 19.25 microM. This result is consistent with binding equilibrium in the extracellular space and with a flow-limited distribution between the extra- and intracellular spaces as proposed by our previous work.

  16. Relationships between near-surface plankton concentrations, hydrography, and satellite-measured sea surface temperature

    NASA Technical Reports Server (NTRS)

    Thomas, A. C.; Emery, W. J.

    1988-01-01

    Sea surface temperatures (SSTs) mapped by IR satellite images and in situ hydrographic measurements off the west coast of British Columbia for early-winter and midsummer periods were correlated with in situ measurements of surface chlorophyll and zooplankton concentration. Correlations between winter log(e) transformed zooplankton concentrations and SSTs demonstrated that IR satellite imagery could explain 49 percent of the sampled zooplankton concentration variance. A least-squares-fit nonlinear equation showed that satellite-measured SST patterns explained 72 percent of the log(e) transformed chlorophyll variance. However, summer zooplankton concentrations were not consistently related to satellite temperature patterns.

  17. Study on the leaching behavior of galena concentrate in fluosilicic acid solution using hydrogen peroxide as oxidant

    NASA Astrophysics Data System (ADS)

    Anugrah, Rezky Iriansyah; Mubarok, M. Zaki; Amalia, Dessy

    2017-01-01

    Lead (Pb) extraction from galena through leaching has not been commercialized in Indonesia. Therefore, the study of leaching behavior of Bogor galena concentrate in fluosilicic acid (H2SiF6) solution with hydrogen peroxide (H2O2) as oxidant was studied. The study was focused to investigate the effect of dissolution parameters such as temperature, stirring speed, solid percentage, acid concentration and particle sizes of the feed. The added oxidant (H2O2) was kept constant at 9.80 M. The result of Pb extraction percentage without oxidant addition was only 58.28% while by using oxidant in the leaching process, Pb extraction as high as 99.26% was achieved when conducted at 97 °C in 2.25 hours (135 minutes) using -100+150 mesh of concentrate in 3.44 M of H2SiF6 with 12% of solid percentage.

  18. Modelling the impact of room temperature on concentrations of polychlorinated biphenyls (PCBs) in indoor air.

    PubMed

    Lyng, Nadja Lynge; Clausen, Per Axel; Lundsgaard, Claus; Andersen, Helle Vibeke

    2016-02-01

    Buildings contaminated with polychlorinated biphenyls (PCBs) are a health concern for the building occupants. Inhalation exposure is linked to indoor air concentrations of PCBs, which are known to be affected by indoor temperatures. In this study, a highly PCB contaminated room was heated to six temperature levels between 20 and 30 C, i.e. within the normal fluctuation of indoor temperatures, while the air exchange rate was constant. The steady-state air concentrations of seven PCBs were determined at each temperature level. A model based on Clausius-Clapeyron equation, ln(P) = -ΔH/RT + a(0), where changes in steady-state air concentrations in relation to temperature, was tested. The model was valid for PCB-28, PCB-52 and PCB-101; the four other congeners were sporadic or non-detected. For each congener, the model described a large proportion (R(2)>94%) of the variation in indoor air PCB levels. The results showed that one measured concentration of PCB at a known steady-state temperature can be used to predict the steady-state concentrations at other temperatures under circumstances where e.g. direct sunlight does not influence temperatures and the air exchange rate is constant. The model was also tested on field data from a PCB remediation case in an apartment in another contaminated building complex where PCB concentrations and temperature were measured simultaneously and regularly throughout one year. The model fitted relatively well with the regression of measured PCB air concentrations, ln(P) vs. 1/T, at varying temperature between 16.3 and 28.2 °C, even though the measurements were carried out under uncontrolled environmental condition.

  19. Initiation Temperature for Runaway Tri-n-Butyl Phosphate/Nitric Acid Reaction

    SciTech Connect

    Rudisill, T.S.

    2000-11-28

    During a review of the H-Canyon authorization basis, Defense Nuclear Facility Safety Board (DNFSB) staff members questioned the margin of safety associated with a postulated tri-n-butyl phosphate (TBP)/nitric acid runaway reaction due to the inadvertent heating of a canyon tank containing greater than 3000 lbs (1362 kg) of TBP. The margin of safety was partially based on experiments and calculations performed by the Actinide Technology Section (ATS) to support deletion of indication of tank agitation as a Safety Class System. In the technical basis for deletion of this system, ATS personnel conservatively calculated the equilibrium temperature distribution of a canyon tank containing TBP and nitric acid layers which were inadvertently heated by a steam jet left on following a transfer. The maximum calculated temperature (128 degrees C) was compared to the minimum initiation temperature for a runaway reaction (greater than 130 degrees C) documented by experimental work in the mid 195 0s. In this work, the initiation temperature as a function of nitric acid concentration was measured for 0 and 20 wt percent dissolved solids. The DNFSB staff members were concerned that data for 0 wt percent dissolved solids were not conservative given the facts that data for 20 wt percent dissolved solids show initiation temperatures at or below 130 degrees C and H-Canyon solutions normally contained a small amount of dissolved solids.

  20. Strategies for automated sample preparation, nucleic acid purification, and concentration of low-target-number nucleic acids in environmental and food processing samples

    NASA Astrophysics Data System (ADS)

    Bruckner-Lea, Cynthia J.; Holman, David A.; Schuck, Beatrice L.; Brockman, Fred J.; Chandler, Darrell P.

    1999-01-01

    The purpose of this work is to develop a rapid, automated system for nucleic acid purification and concentration from environmental and food processing samples. Our current approach involves off-line filtration and cell lysis (ballistic disintegration) functions in appropriate buffers followed by automated nucleic acid capture and purification on renewable affinity matrix microcolumns. Physical cell lysis and renewable affinity microcolumns eliminate the need for toxic organic solvents, enzyme digestions or other time- consuming sample manipulations. Within the renewable affinity microcolumn, we have examined nucleic acid capture and purification efficiency with various microbead matrices (glass, polymer, paramagnetic), surface derivitization (sequence-specific capture oligonucleotides or peptide nucleic acids), and DNA target size and concentration under variable solution conditions and temperatures. Results will be presented comparing automated system performance relative to benchtop procedures for both clean (pure DNA from a laboratory culture) and environmental (soil extract) samples, including results which demonstrate 8 minute purification and elution of low-copy nucleic acid targets from a crude soil extract in a form suitable for PCR or microarray-based detectors. Future research will involve the development of improved affinity reagents and complete system integration, including upstream cell concentration and cell lysis functions and downstream, gene-based detectors. Results of this research will ultimately lead to improved processes and instrumentation for on-line, automated monitors for pathogenic micro-organisms in food, water, air, and soil samples.

  1. Short communication: Association of milk fatty acids with early lactation hyperketonemia and elevated concentration of nonesterified fatty acids.

    PubMed

    Mann, S; Nydam, D V; Lock, A L; Overton, T R; McArt, J A A

    2016-07-01

    The objective of our study was to extend the limited research available on the association between concentrations of milk fatty acids and elevated nonesterified fatty acids (NEFA) and β-hydroxybutyrate (BHB) concentrations in early lactation dairy cattle. Measurement of milk fatty acids for detection of cows in excessive negative energy balance has the potential to be incorporated in routine in-line monitoring systems. Blood samples were taken from 84 cows in second or greater lactation 3 times per week between 3 to 14 d in milk. Cows were characterized as hyperketonemic (HYK) if blood BHB concentration was ≥1.2mmol/L at least once and characterized as having elevated concentrations of NEFA (NEFAH) if serum NEFA concentration was ≥1mmol/L at least once. Composition of colostrum and milk fatty acids at wk 2 postpartum was used to investigate the potential diagnostic value of individual fatty acids and fatty acid ratios for the correct classification of cows with NEFA and BHB concentrations above these thresholds, respectively. Receiver operating characteristic (ROC) curves were used to identify thresholds of fatty acid concentration and fatty acid ratios when ROC area under the curve was ≥0.70. Correct classification rate (CCR, %) was calculated as {[(number of true positives + number of true negatives)/total number tested] × 100}. None of the colostrum fatty acids yielded a sufficiently high area under the curve in ROC analysis for the association with HYK and NEFAH. The following fatty acids and fatty acid ratios were identified for an association with NEFAH (threshold, CCR): C15:0 (≤0.65g/100g, 68.3%); cis-9 C16:1 (≥1.85g/100g, 70.7%); cis-9 C18:1 (≥26g/100g, 69.5%), cis-9 C18:1 to C15:0 ratio (≥45, 69.5%); cis-9 C16:1 to C15:0 (≥2.50, 73.2%). Several fatty acids were associated with HYK (threshold, CCR): C6:0 (≤1.68g/100g, 80.5%), C8:0 (≤0.80g/100g, 80.5%), C10:0 (≤1.6g/100g, 79.3%); C12:0 (≤1.42g/100g, 82.9%); C14:0 (≤6.10g/100g, 84

  2. External concentration of organic acid anions and pH: key independent variables for studying how organic acids inhibit growth of bacteria in mildly acidic foods.

    PubMed

    Carpenter, C E; Broadbent, J R

    2009-01-01

    Although the mechanisms by which organic acids inhibit growth of bacteria in mildly acidic foods are not fully understood, it is clear that intracellular accumulation of anions is a primary contributor to inhibition of bacterial growth. We hypothesize that intracellular accumulation of anions is driven by 2 factors, external anion concentration and external acidity. This hypothesis follows from basic chemistry principles that heretofore have not been fully applied to studies in the field, and it has led us to develop a novel approach for predicting internal anion concentration by controlling the external concentration of anions and pH. This approach overcomes critical flaws in contemporary experimental design that invariably target concentration of either protonated acid or total acid in the growth media thereby leaving anion concentration to vary depending on the pK(a) of the acids involved. Failure to control external concentration of anions has undoubtedly confounded results, and it has likely led to misleading conclusions regarding the antimicrobial action of organic acids. In summary, we advocate an approach for directing internal anion levels by controlling external concentration of anions and pH because it presents an additional opportunity to study the mechanisms by which organic acids inhibit bacterial growth. Knowledge gained from such studies would have important application in the control of important foodborne pathogens such as Listeria monocytogenes, and may also facilitate efforts to promote the survival in foods or beverages of desirable probiotic bacteria.

  3. Wood properties of Scots pines (Pinus sylvestris) grown at elevated temperature and carbon dioxide concentration.

    PubMed

    Kilpeläinen, Antti; Peltola, Heli; Ryyppö, Aija; Sauvala, Kari; Laitinen, Kaisa; Kellomäki, Seppo

    2003-09-01

    Impacts of elevated temperature and carbon dioxide concentration ([CO2]) on wood properties of 15-year-old Scots pines (Pinus sylvestris L.) grown under conditions of low nitrogen supply were investigated in open-top chambers. The treatments consisted of (i) ambient temperature and ambient [CO2] (AT+AC), (ii) ambient temperature and elevated [CO2] (AT+EC), (iii) elevated temperature and ambient [CO2] (ET+AC) and (iv) elevated temperature and elevated [CO2] (ET+EC). Wood properties analyzed for the years 1992-1994 included ring width, early- and latewood width and their proportions, intra-ring wood density (minimum, maximum and mean, as well as early- and latewood densities), mean fiber length and chemical composition of the wood (cellulose, hemicellulose, lignin and acetone extractive concentration). Absolute radial growth over the 3-year period was 54% greater in AT+EC trees and 30 and 25% greater in ET+AC and ET+EC trees, respectively, than in AT+AC trees. Neither elevated temperature nor elevated [CO2] had a statistically significant effect on ring width, early- and latewood widths or their proportions. Both latewood density and maximum intra-ring density were increased by elevated [CO2], whereas fiber length was increased by elevated temperature. Hemicellulose concentration decreased and lignin concentration increased significantly in response to elevated temperature. There were no statistically significant interaction effects of elevated temperature and elevated [CO2] on the wood properties, except on earlywood density.

  4. Methanol Uptake By Low Temperature Aqueous Sulfuric Acid Solutions

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Essin, Andrew M.; Golden, David M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    To evaluate the role of upper tropospheric and lower stratospheric aerosols in the global budget of methanol, the solubility and reactivity of CH3OH in aqueous sulfuric acid solutions are under investigation. Using standard uptake techniques in a Knudsen cell reactor, we have measured the effective Henry's law coefficient, H(*), for methanol dissolution into 45 to 70 percent by weight H2SO4. We find that methanol solubility ranges from 10(exp 5) to 10(exp 8) M/atm and increases with decreasing temperature and with increasing sulfuric acid content. These solubility measurements include uptake due to physical solvation and all rapid equilibria which are established in solution. Our data indicate that simple uptake by aqueous sulfuric acid particles will not be a significant sink for methanol in the UT/LS. These results differ from those recently reported in the literature, and an explanation of this disparity will be presented. In addition to solvation, reaction between primary alcohols and sulfuric acid does occur, leading to the production of alkyl sulfates. Literature values for the rate of this reaction suggest that formation of CH3OSO3H may proceed in the atmosphere but is not significant under our experimental conditions. Results obtained using a complementary equilibrium measurement technique confirm this directly. In addition, the extent of methanol sequestration via formation of mono- and dimethylsulfate will be evaluated under several atmospheric conditions.

  5. Methanol Uptake by Low Temperature Aqueous Sulfuric Acid Solutions

    NASA Technical Reports Server (NTRS)

    Iraci, L. T.; Essin, A. M.; Golden, D. M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    The global methanol budget is currently unbalanced, with source terms significantly larger than the sinks terms. To evaluate possible losses of gaseous methanol to sulfate aerosols, the solubility and reactivity of methanol in aqueous sulfuric acid solutions representative of upper tropospheric and lower stratospheric aerosols is under investigation. Methanol will partition into sulfate aerosols according to its Henry's law solubility. Using standard uptake techniques in a Knudsen cell reactor, we have measured the effective Henry's law coefficient, H*, for cold (196 - 220 K) solutions ranging between 45 and 70 wt % H2SO4. We have found that methanol solubility ranges from approx. 10(exp 5) - 10(exp 7) M/atm for UT/LS conditions. Solubility increases with decreasing temperature and with increasing sulfuric acid content. Although methanol is slightly more soluble than are acetone and formaldehyde, current data indicate that uptake by clean aqueous sulfuric acid particles will not be a significant sink for methanol in the UT/LS. These solubility measurements include uptake due to physical solvation and any rapid equilibria which are established in solution. Reaction between primary alcohols and sulfuric acid does occur, leading to the production of alkyl sulfates. Literature values for the rate of this reaction suggest that formation of CH3OSO3H is not significant over our experimental time scale for solutions below 80 wt % H2SO4. To confirm this directly, results obtained using a complementary equilibrium measurement technique will also be presented.

  6. Assessment for Melting Temperature Measurement of Nucleic Acid by HRM

    PubMed Central

    2016-01-01

    High resolution melting (HRM), with a high sensitivity to distinguish the nucleic acid species with small variations, has been widely applied in the mutation scanning, methylation analysis, and genotyping. For the aim of extending HRM for the evaluation of thermal stability of nucleic acid secondary structures on sequence dependence, we investigated effects of the dye of EvaGreen, metal ions, and impurities (such as dNTPs) on melting temperature (Tm) measurement by HRM. The accuracy of HRM was assessed as compared with UV melting method, and little difference between the two methods was found when the DNA Tm was higher than 40°C. Both insufficiency and excessiveness of EvaGreen were found to give rise to a little bit higher Tm, showing that the proportion of dye should be considered for precise Tm measurement of nucleic acids. Finally, HRM method was also successfully used to measure Tms of DNA triplex, hairpin, and RNA duplex. In conclusion, HRM can be applied in the evaluation of thermal stability of nucleic acid (DNA or RNA) or secondary structural elements (even when dNTPs are present). PMID:27833775

  7. Temperature and concentration dependence of SANS spectra of aqueous solutions of short-chain amphiphiles

    NASA Astrophysics Data System (ADS)

    D'Arrigo, G.; Giordano, R.; Teixeira, J.

    2009-05-01

    The small-angle neutron scattering (SANS) of some aqueous solutions of short-chain amphiphiles (glycols, diglycols, diols) has been measured as a function of concentration and temperature. The analysis of the spectra in terms of the Teubner-Strey phenomelogical formula indicates that, on increasing the concentration of the amphiphile, the structure of all these systems evolves in a similar way, i.e. a transition from disordered structures toward correlated aggregates (microstructures). The transition is depressed by increasing the temperature.

  8. Evaluation of Oxygen Concentrators and Chemical Oxygen Generators at Altitude and Temperature Extremes

    DTIC Science & Technology

    2015-04-22

    AFRL-SA-WP-SR-2015-0010 Evaluation of Oxygen Concentrators and Chemical Oxygen Generators at Altitude and Temperature Extremes...REPORT TYPE Special Report 3. DATES COVERED (From – To) March 2013 – December 2014 4. TITLE AND SUBTITLE Evaluation of Oxygen Concentrators and...Chemical Oxygen Generators at Altitude and Temperature Extremes 5a. CONTRACT NUMBER FA8650-10-2-6140 5b. GRANT NUMBER FA8650-13-2-6B16 5c

  9. Isolation of bacterial cellulose nanocrystalline from pineapple peel waste: Optimization of acid concentration in the hydrolysis method

    NASA Astrophysics Data System (ADS)

    Anwar, Budiman; Rosyid, Nurul Huda; Effendi, Devi Bentia; Nandiyanto, Asep Bayu Dani; Mudzakir, Ahmad; Hidayat, Topik

    2016-02-01

    Isolation of needle-shaped bacterial cellulose nanocrystalline with a diameter of 16-64 nm, a fiber length of 258-806 nm, and a degree of crystallinity of 64% from pineapple peel waste using an acid hydrolysis process was investigated. Experimental showed that selective concentration of acid played important roles in isolating the bacterial cellulose nanocrystalline from the cellulose source. To achieve the successful isolation of bacterial cellulose nanocrystalline, various acid concentrations were tested. To confirm the effect of acid concentration on the successful isolation process, the reaction conditions were fixed at a temperature of 50°C, a hydrolysis time of 30 minutes, and a bacterial cellulose-to-acid ratio of 1:50. Pineapple peel waste was used as a model for a cellulose source because to the best of our knowledge, there is no report on the use of this raw material for producing bacterial cellulose nanocrystalline. In fact, this material can be used as an alternative for ecofriendly and cost-free cellulose sources. Therefore, understanding in how to isolate bacterial cellulose nanocrystalline from pineapple peel waste has the potential for large-scale production of inexpensive cellulose nanocrystalline.

  10. Coupling of surface temperatures and atmospheric CO2 concentrations during the Palaeozoic era.

    PubMed

    Came, Rosemarie E; Eiler, John M; Veizer, Ján; Azmy, Karem; Brand, Uwe; Weidman, Christopher R

    2007-09-13

    Atmospheric carbon dioxide concentrations seem to have been several times modern levels during much of the Palaeozoic era (543-248 million years ago), but decreased during the Carboniferous period to concentrations similar to that of today. Given that carbon dioxide is a greenhouse gas, it has been proposed that surface temperatures were significantly higher during the earlier portions of the Palaeozoic era. A reconstruction of tropical sea surface temperatures based on the delta18O of carbonate fossils indicates, however, that the magnitude of temperature variability throughout this period was small, suggesting that global climate may be independent of variations in atmospheric carbon dioxide concentration. Here we present estimates of sea surface temperatures that were obtained from fossil brachiopod and mollusc shells using the 'carbonate clumped isotope' method-an approach that, unlike the delta18O method, does not require independent estimates of the isotopic composition of the Palaeozoic ocean. Our results indicate that tropical sea surface temperatures were significantly higher than today during the Early Silurian period (443-423 Myr ago), when carbon dioxide concentrations are thought to have been relatively high, and were broadly similar to today during the Late Carboniferous period (314-300 Myr ago), when carbon dioxide concentrations are thought to have been similar to the present-day value. Our results are consistent with the proposal that increased atmospheric carbon dioxide concentrations drive or amplify increased global temperatures.

  11. Relationship between adipic acid concentration and the core symptoms of autism spectrum disorders.

    PubMed

    Puig-Alcaraz, Carmen; Fuentes-Albero, Milagros; Cauli, Omar

    2016-08-30

    Dicarboxylic acids are an important source of information about metabolism and potential physiopathological alterations in children with autism spectrum disorders (ASDs). We measured the concentration between dicarboxylic adipic and suberic acids in children with an ASD and typically-developing (TD) children and analyzed any relationships between the severity of the core symptoms of ASDs and other clinical features (drugs, supplements, drugs, or diet). The core symptoms of autism were evaluated using the DSM-IV criteria, and adipic acid and suberic acid were measured in urine samples. Overall, no increase in the concentration of adipic acid in children with ASDs compared to TD children, however when considering vitamin B supplementation in ASD there were significantly increased level of urinary adipic acid in children with an ASD not taking vitamin B supplementation compared to supplemented children or to TD children. No significant difference were observed in suberic acid. Interestingly, the increase in adipic acid concentration was significantly and indirectly correlated with the severity of the deficit in socialization and communication skills in children with an ASD. Therefore, therapeutic treatments aimed at decreasing adipic acid concentration might not be beneficial for treating the core symptoms of ASDs.

  12. Effect of L (+) ascorbic acid and monosodium glutamate concentration on the morphology of calcium carbonate

    NASA Astrophysics Data System (ADS)

    Saraya, Mohamed El-shahte Ismaiel

    2015-11-01

    In this study, monosodium glutamate and ascorbic acid were used as crystal and growth modifiers to control the crystallization of CaCO3. Calcium carbonate prepared by reacting a mixed solution of Na2CO3 with CaCl2 at ambient temperature, (25 °C), constant Ca++/ CO3- - molar ratio and pH with stirring. The polymorph and morphology of the crystals were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The results indicate that rhombohedral calcite was only formed in water without organic additives, and both calcite and spherical vaterite with various morphologies were produced in the presence of monosodium glutamate. The content of vaterite increased as the monosodium glutamate increased. In addition, spherical vaterite was obtained in the presence of different concentrations of ascorbic acid. The spherical vaterite posses an aggregate shape composed of nano-particles, ranging from 30 to 50 nm as demonstrated by the SEM and TEM analyses. Therefore, the ascorbic stabilizes vaterite and result in nano-particles compared to monosodium glutamate.

  13. FTIR studies of low temperature sulfuric acid aerosols

    NASA Technical Reports Server (NTRS)

    Anthony, S. E.; Tisdale, R. T.; Disselkamp, R. S.; Tolbert, M. A.; Wilson, J. C.

    1995-01-01

    Sub-micrometer sized sulfuric acid H2SO4 particles were generated using a constant output atomizer source. The particles were then exposed to water vapor before being injected into a low temperature cell. Multipass transmission Fourier Transformation Infrared (FTIR) spectroscopy was used to determine the phase and composition of the aerosols as a function of time for periods of up to five hours. Binary H2SO4H2O aerosols with compositions from 35 to 95 wt % H2SO4 remained liquid for over 3 hours at room temperatures ranging from 189-240 K. These results suggest that it is very difficut to freeze SSAs via homogeneous nucleation. Attempts to form aerosols more dilute than 35 wt % H2SO4 resulted in ice formation.

  14. THE EFFECT OF ANOLYTE PRODUCT ACID CONCENTRATION ON HYBRID SULFUR CYCLE PERFORMANCE

    SciTech Connect

    Gorensek, M.; Summers, W.

    2010-03-24

    The Hybrid Sulfur (HyS) cycle (Fig. 1) is one of the simplest, all-fluids thermochemical cycles that has been devised for splitting water with a high-temperature nuclear or solar heat source. It was originally patented by Brecher and Wu in 1975 and extensively developed by Westinghouse in the late 1970s and early 1980s. As its name suggests, the only element used besides hydrogen and oxygen is sulfur, which is cycled between the +4 and +6 oxidation states. HyS comprises two steps. One is the thermochemical (>800 C) decomposition of sulfuric acid (H{sub 2}SO{sub 4}) to sulfur dioxide (SO{sub 2}), oxygen (O{sub 2}), and water. H{sub 2}SO{sub 4} = SO{sub 2} + 1/2 O{sub 2} + H{sub 2}O. The other is the SO{sub 2}-depolarized electrolysis of water to H{sub 2}SO{sub 4} and hydrogen (H{sub 2}), SO{sub 2} + 2 H{sub 2}O = H{sub 2}SO{sub 4} + H{sub 2}, E{sup o} = -0.156 V, explaining the 'hybrid' designation. These two steps taken together split water into H{sub 2} and O{sub 2} using heat and electricity. Researchers at the Savannah River National Laboratory (SRNL) and at the University of South Carolina (USC) have successfully demonstrated the use of proton exchange membrane (PEM) electrolyzers (Fig. 2) for the SO{sub 2}-depolarized electrolysis (sulfur oxidation) step, while Sandia National Laboratories (SNL) successfully demonstrated the high-temperature sulfuric acid decomposition (sulfur reduction) step using a bayonet-type reactor (Fig. 3). This latter work was performed as part of the Sulfur-Iodine (SI) cycle Integrated Laboratory Scale demonstration at General Atomics (GA). The combination of these two operations results in a simple process that will be more efficient and cost-effective for the massive production of hydrogen than alkaline electrolysis. Recent developments suggest that the use of PEMs other than Nafion will allow sulfuric acid to be produced at higher concentrations (>60 wt%), offering the possibility of net thermal efficiencies around 50% (HHV basis

  15. Concentration dependence of 4-methylbenzophenone choleic acid crystal phosphorescence: Evidence for a percolation driven structural transformation

    NASA Astrophysics Data System (ADS)

    Kook, S.-K.; Kim, D.-Y.; Hanson, D. M.

    1989-12-01

    Steady state phosphorescence spectra at 4.2 K were obtained for different concentrations of 4-methylbenzophenone (MBP) doped into deoxycholic acid (DCA) crystals. The spectra indicate that at concentrations of 14% and below, the sample consists of choleic acid crystals partially filled with MBP and as the concentration increases to 16%, enough guest sites are filled with MBP to cause the local structure to change to that of the stoichiometric crystal. The stoichiometric ratio of DCA to MBP was determined to be 2:1. Spectral shifts characteristic of energy transfer processes are not observed over the concentration range of 4% to 33% MBP.

  16. Concentration and fractionation of hydrophobic organic acid constituents from natural waters by liquid chromatography

    USGS Publications Warehouse

    Thurman, E.M.; Malcolm, R.L.

    1979-01-01

    A scheme is presented which used adsorption chromatography with pH gradient elution and size-exclusion chromatography to concentrate and separate hydrophobic organic acids from water. A review of chromatographic processes involved in the flow scheme is also presented. Organic analytes which appear in each aqueous fraction are quantified by dissolved organic carbon analysis. Hydrophobic organic acids in a water sample are concentrated on a porous acrylic resin. These acids usually constitute approximately 30-50 percent of the dissolved organic carbon in an unpolluted water sample and are eluted with an aqueous eluent (dilute base). The concentrate is then passed through a column of polyacryloylmorpholine gel, which separates the acids into high- and low-molecular-weight fractions. The high- and low-molecular-weight eluates are reconcentrated by adsorption chromatography, then are eluted with a pH gradient into strong acids (predominately carboxylic acids) and weak acids (predominately phenolic compounds). For standard compounds and samples of unpolluted waters, the scheme fractionates humic substances into strong and weak acid fractions that are separated from the low molecular weight acids. A new method utilizing conductivity is also presented to estimate the acidic components in the methanol fraction.

  17. Investigation of Relation Between Outdoor Temperature and Radon Concentration in Buildings

    SciTech Connect

    Muellerova, M.; Holy, K.

    2007-11-26

    The results of measurements of radon concentration variations in two types of buildings in Slovakia are reported. The AlphaGUARD radon monitor was used for continuous monitoring of radon activity concentration in indoor air. The analysis showed that the indoor radon in both buildings had very different responses to outdoor temperature.

  18. Organic Acid Concentrations in Rivers Within the Amazon River Drainage Basin

    NASA Astrophysics Data System (ADS)

    Skoog, A.

    2007-12-01

    The composition of the dissolved organic matter pool in both fresh and marine waters is largely unknown. Concentrations of low-molecular-weight organic acids (oxalate, citrate, glycolate, formate, acetate, succinate) have been determined in Brasilian (18 rivers sampled) and Peruvian (19 rivers sampled) rivers within the Amazon River drainage basin. Succinate concentrations were below the detection limit in all rivers. The dominant acid varied among the sampled rivers, indicating that organic acid concentrations depend on river basin characteristics. Organic-acid carbon comprised a highly significant, but variable, fraction of total dissolved carbon, with a range of 3-90%, indicating that organic-acid-derived carbon may be an important source of biologically labile carbon within the Amazon River drainage basin.

  19. Ultrasound for low temperature dyeing of wool with acid dye.

    PubMed

    Ferrero, F; Periolatto, M

    2012-05-01

    The possibility of reducing the temperature of conventional wool dyeing with an acid levelling dye using ultrasound was studied in order to reach exhaustion values comparable to those obtained with the standard procedure at 98 °C, obtaining dyed samples of good quality. The aim was to develop a laboratory method that could be transferred at industrial level, reducing both the energy consumption and fiber damage caused by the prolonged exposure to high temperature without the use of polluting auxiliary agents. Dyeings of wool fabrics were carried out in the temperature range between 60 °C and 80 °C using either mechanical or ultrasound agitation of the bath and coupling the two methods to compare the results. For each dyeing, the exhaustion curves of the dye bath were determined and the better results of dyeing kinetics were obtained with ultrasound coupled with mechanical stirring. Hence the corresponding half dyeing times, absorption rate constants according to Cegarra-Puente modified equation and ultrasonic efficiency were calculated in comparison with mechanical stirring alone. In the presence of ultrasound the absorption rate constants increased by at least 50%, at each temperature, confirming the synergic effect of sonication on the dyeing kinetics. Moreover the apparent activation energies were also evaluated and the positive effect of ultrasound was ascribed to the pre-exponential factor of the Arrhenius equation. It was also shown that the effect of ultrasound at 60 °C was just on the dye bath, practically unaffecting the wool fiber surface, as confirmed by the results of SEM analysis. Finally, fastness tests to rubbing and domestic laundering yielded good values for samples dyed in ultrasound assisted process even at the lower temperature. These results suggest the possibility, thanks to the use of ultrasound, to obtain a well equalized dyeing on wool working yet at 60°C, a temperature process strongly lower than 98°C, currently used in industry

  20. Using Simple Quadratic Equations to Estimate Equilibrium Concentrations of an Acid

    ERIC Educational Resources Information Center

    Brilleslyper, Michael A.

    2004-01-01

    Application of quadratic equations to standard problem in chemistry like finding equilibrium concentrations of ions in an acid solution is explained. This clearly shows that pure mathematical analysis has meaningful applications in other areas as well.

  1. Lipoxygenase in Caragana jubata responds to low temperature, abscisic acid, methyl jasmonate and salicylic acid.

    PubMed

    Bhardwaj, Pardeep Kumar; Kaur, Jagdeep; Sobti, Ranbir Chander; Ahuja, Paramvir Singh; Kumar, Sanjay

    2011-09-01

    Lipoxygenase (LOX) catalyses oxygenation of free polyunsaturated fatty acids into oxylipins, and is a critical enzyme of the jasmonate signaling pathway. LOX has been shown to be associated with biotic and abiotic stress responses in diverse plant species, though limited data is available with respect to low temperature and the associated cues. Using rapid amplification of cDNA ends, a full-length cDNA (CjLOX) encoding lipoxygenase was cloned from apical buds of Caragana jubata, a temperate plant species that grows under extreme cold. The cDNA obtained was 2952bp long consisting of an open reading frame of 2610bp encoding 869 amino acids protein. Multiple alignment of the deduced amino acid sequence with those of other plants demonstrated putative LH2/ PLAT domain, lipoxygenase iron binding catalytic domain and lipoxygenase_2 signature sequences. CjLOX exhibited up- and down-regulation of gene expression pattern in response to low temperature (LT), abscisic acid (ABA), methyl jasmonate (MJ) and salicylic acid (SA). Among all the treatments, a strong up-regulation was observed in response to MJ. Data suggests an important role of jasmonate signaling pathway in response to LT in C. jubata.

  2. Influence of stress concentrator shape and testing temperature on impact fracture regularities of pipeline steel

    NASA Astrophysics Data System (ADS)

    Vlasov, I. V.; Panin, S. V.; Maruschak, P. O.; Moiseenko, D. D.; Berto, F.

    2017-02-01

    The structure and impact toughness of the pipeline 17Mn1Si steel have been studied. The main attention was paid to the analysis of various conditions of stress concentration under dynamic loadings. The process of strain localization with increasing stress state stiffness at the tip of the concentrator with decreasing testing temperature was investigated. Impact loading diagrams for specimens with various stress concentrator shapes were registered and analyzed.

  3. Plasma osmotic and electrolyte concentrations of largemouth bass from some acidic Florida lakes

    SciTech Connect

    Canfield, D.E. Jr.; Maceina, M.J.; Nordlie, F.G.; Shireman, J.V.

    1985-05-01

    Five acidic clear (pH 3.7-4.9), three acidic colored (pH 4.1-4.6), and three neutral (pH 6.9-7.3) north-central Florida lakes were surveyed in 1983 to determine plasma osmotic and electrolyte concentrations, growth, and coefficients of condition for largemouth bass Micropterus salmoides floridanus. Plasma osmotic concentrations averaged greater than 273 milliosmoles/kg in fish from acidic colored and circumneutral lakes, but averaged less than 269 milliosmoles/kg in four of the acidic clear lakes. Growth and coefficients of condition of largemouth bass > 305 mm total length in the acidic lakes were significantly lower than in the neutral lakes. Reductions in fish growth and condition, however, could be related to either acidic conditions or lake trophic status. 29 references, 3 tables.

  4. Effects of chromic-acid concentration on the structure and properties of chromium coatings

    SciTech Connect

    Solodkova, L.N.; Solov'eva, Z.A.; Monev, M.; Nikolova, S.; Rashkov, S.; Dobrev, Ts.

    1987-10-01

    In the interest of decreasing the amount of chromium and other electrolytic effluents that enter the waste stream during chromium electrodeposition processes, and of optimizing plating speeds at reduced chromic acid concentrations, the authors seek to establish the effects of decreasing the chromic acid concentration in the electrolyte on the microstructure, microhardness, internal stress behavior, and tendency toward hydridation of chromium coatings obtained from various electrolyte compositions. Plating kinetics and lattice parameters were also investigated.

  5. Additive Effects of Alcohols, Their Acidic By-Products, and Temperature on the Yeast Pachysolen tannophilus.

    PubMed

    Barbosa, M de F; Lee, H; Collins-Thompson, D L

    1990-02-01

    The effects of alcohols on the growth and fermentation of the yeast Pachysolen tannophilus were investigated at both 30 and 35 degrees C. Addition of alcohols to the culture medium decreased both the growth rate and the final cell yield in a dose-dependent manner, and this decrease was more severe at 35 degrees C. The concentration for 50% growth rate inhibition decreased as the chain length of the alcohol increased. In fermentations using a high initial cell density, production of acids was always observed when the medium was supplemented with alcohols. Supplementation of the culture medium with a short-chain alcohol plus the corresponding acid was shown to exert an additive deleterious effect on fermentation, and this effect increased with temperature. Production of acids was associated with the presence of alcohol dehydrogenase activity in cell extracts.

  6. Organosulfates and organic acids in Arctic aerosols: speciation, annual variation and concentration levels

    NASA Astrophysics Data System (ADS)

    Hansen, A. M. K.; Kristensen, K.; Nguyen, Q. T.; Zare, A.; Cozzi, F.; Nøjgaard, J. K.; Skov, H.; Brandt, J.; Christensen, J. H.; Ström, J.; Tunved, P.; Krejci, R.; Glasius, M.

    2014-02-01

    Sources, composition and occurrence of secondary organic aerosols (SOA) in the Arctic were investigated at Zeppelin Mountain, Svalbard, and Station Nord, northeast Greenland, during the full annual cycle of 2008 and 2010 respectively. We focused on the speciation of three types of SOA tracers: organic acids, organosulfates and nitrooxy organosulfates from both anthropogenic and biogenic precursors, here presenting organosulfate concentrations and compositions during a full annual cycle and chemical speciation of organosulfates in Arctic aerosols for the first time. Aerosol samples were analysed using High Performance Liquid Chromatography coupled to a quadrupole Time-of-Flight mass spectrometer (HPLC-q-TOF-MS). A total of 11 organic acids (terpenylic acid, benzoic acid, phthalic acid, pinic acid, suberic acid, azelaic acid, adipic acid, pimelic acid, pinonic acid, diaterpenylic acid acetate (DTAA) and 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA)), 12 organosulfates and one nitrooxy organosulfate were identified at the two sites. Six out of the 12 organosulfates are reported for the first time. Concentrations of organosulfates follow a distinct annual pattern at Station Nord, where high concentration were observed in late winter and early spring, with a mean total concentration of 47 (±14) ng m-3, accounting for 7 (±2)% of total organic matter, contrary to a considerably lower organosulfate mean concentration of 2 (±3) ng m-3 (accounting for 1 (±1)% of total organic matter) observed during the rest of the year. The organic acids followed the same temporal trend as the organosulfates at Station Nord; however the variations in organic acid concentrations were less pronounced, with a total mean organic acid concentration of 11.5 (±4) ng m-3 (accounting for 1.7 (±0.6)% of total organic matter) in late winter and early spring, and 2.2 (±1) ng m-3 (accounting for 0.9 (±0.4)% of total organic matter) during the rest of the year. At Zeppelin Mountain

  7. Membrane assisted and temperature controlled on-line evaporative concentration for microfluidics.

    PubMed

    Fornells, E; Barnett, B; Bailey, M; Shellie, R A; Hilder, E F; Breadmore, M C

    2017-02-24

    A membrane evaporation concentrator for continuous flow conditions is introduced. The membrane evaporation concentrator provides nearly 30-fold concentration in less than 60min whilst maintaining solute integrity under different sub-ambient pressure conditions and mild temperatures. To better understand the performance of the concentrator, a theoretical model was developed using caffeine as a model analyte, and used to predict the concentration performance of three target analytes at different conditions. An exponential relationship exists between temperature and concentration factor. By using the model it was determined that a 10-fold concentration (±0.5) can be performed at 56.72±0.07°C and at a flow rate of 10μLmin(-1). Altogether, the model provides a better understanding of the process and ease of application in a wide variety of analytical methods. This work demonstrates that it is possible to obtain high concentrations with a continuously flowing fluid when temperature is precisely controlled and in times that are reasonable compared to existing evaporation concentration procedures.

  8. Relationships between Stomatal Behavior and Internal Carbon Dioxide Concentration in Crassulacean Acid Metabolism Plants

    PubMed Central

    Cockburn, William; Ting, Irwin P.; Sternberg, Leonel O.

    1979-01-01

    Measurements of internal gas phase CO2 concentration, stomatal resistance, and acid content were made in Crassulacean acid metabolism plants growing under natural conditions. High CO2 concentrations, sometimes in excess of 2%, were observed during the day in a range of taxonomically widely separated plants (Opuntia ficus-indica L., Opuntia basilaris Engelm. and Bigel., Agave desertii Engelm., Yucca schidigera Roezl. ex Ortiges, Ananas comosus [L.] Merr., Aloe vera L., Cattleya sp. and Phalanopsis sp.) and below ambient air concentrations were observed at night. Stomatal resistance was always high when CO2 concentration was high and experiments in which attempts were made to manipulate internal CO2 concentrations gave data consistent with stomatal behavior in Crassulacean acid metabolism being controlled by internal CO2 concentration. Exogenous CO2 applied in darkness at a concentration similar to those observed in the light caused stomatal resistance to increase. In pads of Opuntia basilaris Engelm. and Bigel. subjected to severe water stress internal gas phase CO2 concentrations exhibited fluctuations opposite in phase to fluctuations in acid content. Stomatal resistance remained high and the opening response to low CO2 concentration was almost entirely eliminated. PMID:16660851

  9. Relationships between Stomatal Behavior and Internal Carbon Dioxide Concentration in Crassulacean Acid Metabolism Plants.

    PubMed

    Cockburn, W

    1979-06-01

    Measurements of internal gas phase CO(2) concentration, stomatal resistance, and acid content were made in Crassulacean acid metabolism plants growing under natural conditions. High CO(2) concentrations, sometimes in excess of 2%, were observed during the day in a range of taxonomically widely separated plants (Opuntia ficus-indica L., Opuntia basilaris Engelm. and Bigel., Agave desertii Engelm., Yucca schidigera Roezl. ex Ortiges, Ananas comosus [L.] Merr., Aloe vera L., Cattleya sp. and Phalanopsis sp.) and below ambient air concentrations were observed at night.Stomatal resistance was always high when CO(2) concentration was high and experiments in which attempts were made to manipulate internal CO(2) concentrations gave data consistent with stomatal behavior in Crassulacean acid metabolism being controlled by internal CO(2) concentration. Exogenous CO(2) applied in darkness at a concentration similar to those observed in the light caused stomatal resistance to increase.In pads of Opuntia basilaris Engelm. and Bigel. subjected to severe water stress internal gas phase CO(2) concentrations exhibited fluctuations opposite in phase to fluctuations in acid content. Stomatal resistance remained high and the opening response to low CO(2) concentration was almost entirely eliminated.

  10. Temperature and concentration dependences of density and refraction of aqueous duloxetine solutions

    NASA Astrophysics Data System (ADS)

    Deosarkar, S. D.; Deoraye, S. M.; Kalyankar, T. M.

    2014-07-01

    Present paper reports the measured densities (ρ) and refractive indices ( n D) of aqueous solutions of Duloxetine drug in wide range of molal concentrations ( m = 0.0101-0.1031 mol kg-1) and at different temperatures (297.15, 302.15, and 307.15 K). Apparent molar volumes (φv) of drug were calculated from density data and fitted to Masson's relation and partial molar volumes (φ{v/0}) were evaluated at different temperatures. Concentration dependence of refractive index ( n D = Kc + n {D/0}) at experimental temperature has been studied. Density and refractive index data has been used for the calculation of specific refractions ( R D). Experimental (ρ and n D) and calculated (φv, φ{v/0}, and R D) properties have been interpreted in terms of concentration and temperature effects on structural fittings and drug-water interactions.

  11. Size-resolved sulfuric acid mist concentrations at phosphate fertilizer manufacturing facilities in Florida.

    PubMed

    Hsu, Yu-Mei; Wu, Chang-Yu; Lundgren, Dale A; Birky, Brian K

    2007-01-01

    Strong inorganic acid mists containing sulfuric acid were identified as a 'known human carcinogen' in a National Toxicology Program (NTP) report where phosphate fertilizer manufacture was listed as one of many occupational exposures to strong acids. To properly assess the occupational exposure to sulfuric acid mists in modern facilities, approved National Institute for Occupational Safety and Health (NIOSH) Method 7903 and a cascade impactor were used for measuring the total sulfuric acid mist concentration and size-resolved sulfuric acid mist concentration, respectively. Sampling was conducted at eight phosphate fertilizer plants and two background sites in Florida and there were 24 sampling sites in these plants. Samples were analyzed by ion chromatography (IC) to quantify the water-soluble ion species. The highest sulfuric acid concentrations by the cascade impactor were obtained at the sulfuric acid pump tank area. When high aerosol mass concentrations (100 micro g m(-3)) were observed at this area, the sulfuric acid mists were in the coarse mode. The geometric mean sulfuric acid concentrations (+/-geometric standard deviation) of PM(23) (aerodynamic cut size smaller than 23 micro m), PM(10) and PM(2.5) from the cascade impactor were 41.7 (+/-5.5), 37.9 (+/-5.8) and 22.1 (+/-4.5) micro g m(-3), respectively. The geometric mean (+/-geometric standard deviation) for total sulfuric acid concentration from the NIOSH method samples was 143 (+/-5.08) micro g m(-3). Sulfuric acid mist concentrations varied significantly among the plants and even at the same location. The measurements by the NIOSH method were 1.5-229 times higher than those by the cascade impactor. Moreover, using the NIOSH method, the sulfuric acid concentrations measured at the lower flow rate (0.30 Lpm) were higher than those at the higher flow rate (0.45 Lpm). One possible reason for the significant differences between the results from the cascade impactor and the NIOSH method is the potential

  12. Temperature, Molecular Weight, and Concentration Dependences of Thermal Diffusion for Ethylene Glycol Oligomers and Crown Ethers

    NASA Astrophysics Data System (ADS)

    Maeda, Kousaku; Kita, Rio; Shinyashiki, Naoki; Yagihara, Shin

    The Soret coefficient ST of ethylene glycol oligomers (EGOs) and crown ethers (CEs) in water were obtained by thermal diffusion forced Rayleigh scattering by changing the temperature, molecular weight, and concentration. The effect of a hydroxyl group on the EGOs and the effect of the cyclic structure of CEs on the thermal diffusion were determined systematically by changing the molecular weights of the EGOs and CEs. For dilute aqueous solutions, EGOs and CEs, except EG, show positive ST values that decrease with increasing temperature, which is similar to the results of previous studies on mixtures of water and organic solvents. The temperature dependence of ST changes its behavior from negative to positive with decreasing number of repeating units of EGOs. This behavior is related to the increase in the number density of the hydroxyl group. The ST values of EG show two different concentration regions, namely, the low concentration (0-2 wt %) and high concentration (2-100 wt %) regions.

  13. Characterization of CdTe Films Deposited at Various Bath Temperatures and Concentrations Using Electrophoretic Deposition

    PubMed Central

    Daud, Mohd Norizam Md; Zakaria, Azmi; Jafari, Atefeh; Ghazali, Mohd Sabri Mohd; Abdullah, Wan Rafizah Wan; Zainal, Zulkarnain

    2012-01-01

    CdTe film was deposited using the electrophoretic deposition technique onto an ITO glass at various bath temperatures. Four batch film compositions were used by mixing 1 to 4 wt% concentration of CdTe powder with 10 mL of a solution of methanol and toluene. X-ray Diffraction analysis showed that the films exhibited polycrystalline nature of zinc-blende structure with the (111) orientation as the most prominent peak. From the Atomic Force Microscopy, the thickness and surface roughness of the CdTe film increased with the increase of CdTe concentration. The optical energy band gap of film decreased with the increase of CdTe concentration, and with the increase of isothermal bath temperature. The film thickness increased with respect to the increase of CdTe concentration and bath temperature, and following, the numerical expression for the film thickness with respect to these two variables has been established. PMID:22754325

  14. Characterization of CdTe films deposited at various bath temperatures and concentrations using electrophoretic deposition.

    PubMed

    Daud, Mohd Norizam Md; Zakaria, Azmi; Jafari, Atefeh; Ghazali, Mohd Sabri Mohd; Abdullah, Wan Rafizah Wan; Zainal, Zulkarnain

    2012-01-01

    CdTe film was deposited using the electrophoretic deposition technique onto an ITO glass at various bath temperatures. Four batch film compositions were used by mixing 1 to 4 wt% concentration of CdTe powder with 10 mL of a solution of methanol and toluene. X-ray Diffraction analysis showed that the films exhibited polycrystalline nature of zinc-blende structure with the (111) orientation as the most prominent peak. From the Atomic Force Microscopy, the thickness and surface roughness of the CdTe film increased with the increase of CdTe concentration. The optical energy band gap of film decreased with the increase of CdTe concentration, and with the increase of isothermal bath temperature. The film thickness increased with respect to the increase of CdTe concentration and bath temperature, and following, the numerical expression for the film thickness with respect to these two variables has been established.

  15. Effect of Boric Acid Concentration on Viscosity of Slag and Property of Weld Metal Obtained from Underwater Wet Welding

    NASA Astrophysics Data System (ADS)

    Guo, Ning; Guo, Wei; Xu, Changsheng; Du, Yongpeng; Feng, Jicai

    2015-06-01

    Underwater wet welding is a crucial repair and maintenance technology for nuclear plant. A boric acid environment raises a new challenge for the underwater welding maintenance of nuclear plant. This paper places emphasis on studying the influence of a boric acid environment in nuclear plant on the underwater welding process. Several groups of underwater wet welding experiments have been conducted in boric acid aqueous solution with different concentration (0-35000 ppm). The viscosity of the welding slag and the mechanical properties of welds, such as the hardness, strength, and elongation, have been studied. The results show that with increasing boric acid concentration, the viscosity of the slag decreases first and then increases at a lower temperature (less than 1441 °C). However, when the temperature is above 1480 °C, the differences between the viscosity measurements become less pronounced, and the viscosity tends to a constant value. The hardness and ductility of the joints can be enhanced significantly, and the maximum strength of the weld metal can be reached at 2300 ppm.

  16. Experimental Limiting Oxygen Concentrations for Nine Organic Solvents at Temperatures and Pressures Relevant to Aerobic Oxidations in the Pharmaceutical Industry

    PubMed Central

    2015-01-01

    Applications of aerobic oxidation methods in pharmaceutical manufacturing are limited in part because mixtures of oxygen gas and organic solvents often create the potential for a flammable atmosphere. To address this issue, limiting oxygen concentration (LOC) values, which define the minimum partial pressure of oxygen that supports a combustible mixture, have been measured for nine commonly used organic solvents at elevated temperatures and pressures. The solvents include acetic acid, N-methylpyrrolidone, dimethyl sulfoxide, tert-amyl alcohol, ethyl acetate, 2-methyltetrahydrofuran, methanol, acetonitrile, and toluene. The data obtained from these studies help define safe operating conditions for the use of oxygen with organic solvents. PMID:26622165

  17. Thermoresponsive gelling behavior of concentrated alumina suspensions containing poly(acrylic acid) and PEO-PPO-PEO copolymer.

    PubMed

    Kondo, Akira; Xu, Hui; Abe, Hiroya; Naito, Makio

    2012-05-01

    Thermoresponsive gelling behavior of concentrated alumina suspensions with poly(acrylic acid) (PAA) and triblock copolymer (PEO(101)-PPO(56)-PEO(101), Pluronic F127) was investigated as a function of PAA concentration (0.4-1.2 mass%) for ceramic solid free forming. The copolymer species assemble into micelles at temperatures above 15°C, yielding aqueous physical gel. In this study, the concentrated alumina aqueous suspensions (φ=35 vol%) were first prepared using the anionic dispersant of PAA, and then the copolymer species (10 mass%) were dissolved at a cooled temperature at 10°C. The addition of the copolymer species had a negligible influence on the adsorption state of PAA onto the alumina surfaces. The PAA concentration needed for the saturation adsorption on the alumina surfaces was ~0.6 mass%. When the PAA concentration was this value or slightly less, the suspension became gel state at 30°C from low viscous state at 10°C. The thermally induced alumina gel had excellent viscoelastic properties, and thereby the three dimensional periodic ceramic structures were successfully fabricated by a direct colloidal printing method that using the gels as "solid" inks at the room temperature. On the other hand, when it exceeded the saturation adsorption limit, the gelling behavior was not observed, indicating that the non-adsorbing PAA species may partly suppress the micellization of the copolymer on the heating.

  18. Arachidonic Acid and Eicosapentaenoic Acid Metabolism in Juvenile Atlantic Salmon as Affected by Water Temperature

    PubMed Central

    Norambuena, Fernando; Morais, Sofia; Emery, James A.; Turchini, Giovanni M.

    2015-01-01

    Salmons raised in aquaculture farms around the world are increasingly subjected to sub-optimal environmental conditions, such as high water temperatures during summer seasons. Aerobic scope increases and lipid metabolism changes are known plasticity responses of fish for a better acclimation to high water temperature. The present study aimed at investigating the effect of high water temperature on the regulation of fatty acid metabolism in juvenile Atlantic salmon fed different dietary ARA/EPA ratios (arachidonic acid, 20:4n-6/ eicosapentaenoic acid, 20:5n-3), with particular focus on apparent in vivo enzyme activities and gene expression of lipid metabolism pathways. Three experimental diets were formulated to be identical, except for the ratio EPA/ARA, and fed to triplicate groups of Atlantic salmon (Salmo salar) kept either at 10°C or 20°C. Results showed that fatty acid metabolic utilisation, and likely also their dietary requirements for optimal performance, can be affected by changes in their relative levels and by environmental temperature in Atlantic salmon. Thus, the increase in temperature, independently from dietary treatment, had a significant effect on the β-oxidation of a fatty acid including EPA, as observed by the apparent in vivo enzyme activity and mRNA expression of pparα -transcription factor in lipid metabolism, including β-oxidation genes- and cpt1 -key enzyme responsible for the movement of LC-PUFA from the cytosol into the mitochondria for β-oxidation-, were both increased at the higher water temperature. An interesting interaction was observed in the transcription and in vivo enzyme activity of Δ5fad–time-limiting enzyme in the biosynthesis pathway of EPA and ARA. Such, at lower temperature, the highest mRNA expression and enzyme activity was recorded in fish with limited supply of dietary EPA, whereas at higher temperature these were recorded in fish with limited ARA supply. In consideration that fish at higher water temperature

  19. Sensitivity of surface temperature and atmospheric temperature to perturbations in the stratospheric concentration of ozone and nitrogen dioxide

    NASA Technical Reports Server (NTRS)

    Ramanathan, V.; Callis, L. B.; Boughner, R. E.

    1976-01-01

    A radiative-convective model is proposed for estimating the sensitivity of the atmospheric radiative heating rates and atmospheric and surface temperatures to perturbations in the concentration of O3 and NO2 in the stratosphere. Contribution to radiative energy transfer within the atmosphere from H2O, CO2, O3, and NO2 is considered. It is found that the net solar radiation absorbed by the earth-atmosphere system decreases with a reduction in O3; if the reduction of O3 is accompanied by an increase in NO2, there is a compensating effect due to solar absorption by NO2. The surface temperature and atmospheric temperature decrease with decreasing stratospheric O3. Another major conclusion is the strong sensitivity of surface temperature to the vertical distribution of O3 within the atmosphere. The results should be considered as reflecting the sensitivity of the proposed model rather than the sensitivity of the actual earth-atmosphere system.

  20. Conformation of protonated glutamic acid at room and cryogenic temperatures.

    PubMed

    Bouchet, Aude; Klyne, Johanna; Ishiuchi, Shun-Ichi; Fujii, Masaaki; Dopfer, Otto

    2017-01-27

    Recognition properties of biologically relevant molecules depend on their conformation. Herein, the conformation of protonated glutamic acid (H(+)Glu) isolated in quadruple ion traps is characterized by vibrational spectroscopy at room and cryogenic temperatures and dispersion-corrected density functional theory calculations at the B3LYP-D3/aug-cc-pVTZ level. The infrared multiple photon dissociation (IRMPD) spectrum recorded in the fingerprint range at room temperature using an IR free electron laser is attributed to the two most stable and nearly isoenergetic conformations (1-cc and 2-cc) with roughly equal population (ΔG298 = 0.0 kJ mol(-1)). Both have bridging C[double bond, length as m-dash]O(HNH)(+)O[double bond, length as m-dash]C ionic H-bonds of rather different strengths but cannot be distinguished by their similar IRMPD spectra. In contrast, the higher-resolution single-photon IRPD spectrum of H2-tagged H(+)Glu recorded in the conformation-sensitive X-H stretch range in a trap held at 10 K distinguishes both conformers. At low temperature, 1-cc is roughly twice more abundant than 2-cc, in line with its slightly lower calculated energy (ΔE0 = 0.5 kJ mol(-1)). This example illustrates the importance of cryogenic cooling, single-photon absorption conditions, and the consideration of the X-H stretch range for the identification of biomolecular conformations involving hydrogen bonds.

  1. Effect of organic acids and temperature on survival of Shigella flexneri in broth at pH 4.

    PubMed

    Zaika, Laura L

    2002-09-01

    The survival of bacterial pathogens in acidified foods depends not only on the hydrogen ion concentration, but also on the type of acid and the storage temperature. Shigella flexneri is a foodborne pathogen that is acid tolerant. The survival of S. flexneri 5348 in brain heart infusion broth supplemented with 0.04 M acetic, citric, lactic, malic, or tartaric acid and adjusted to pH 4 with HCI or NaOH was studied. The control medium was brain heart infusion broth adjusted to pH 4 with HCI. Stationary-phase cells were inoculated into media at initial populations of 6 to 7 log10 CFU/ml and incubated at 4, 19, 28, and 37 degrees C. A two-phase linear inactivation model was applied to plate count data to derive lag times (tL) and slopes of the curves, from which D-values and time required for a 4-log10 decrease in population (T4D) were calculated. In all cases, survival increased with decreasing temperature. For each acid, tL, the D-value, and T4D increased with decreasing temperature. All acids inhibited S. flexneri to some extent but to differing degrees as follows: lactic acid, acetic acid > citric acid, malic acid, tartaric acid > HCl. The T4D values for the control medium and for media containing acetic, citric, lactic, malic, and tartaric acids were 64, 47, 50, 34, 58, and 52 h, respectively, at 37 degrees C and 2,607, 1,498, 1,905, 1,346, 1,726, and 2,134 h, respectively, at 4 degrees C. The results of this study indicate that organic acids may aid in the inactivation of Shigella. However, these data also suggest that foods stored at or below room temperature containing low levels (< 1%) of acids could cause illness if contaminated with Shigella.

  2. Energy concentration and positional stability of sonoluminescent bubbles in sulfuric acid for different static pressures.

    PubMed

    Rosselló, Juan Manuel; Dellavale, Damián; Bonetto, Fabián José

    2013-09-01

    In this study we report several experimental and numerical results on the influence of static pressure (P_{0}) over the main parameters in single bubble sonoluminescence (SBSL), using a sulfuric acid aqueous solution (SA) with low concentrations of argon gas dissolved. Bifrequency driving was used in the experiments to enhance spatial stability of the bubbles. The experimental results were compared with simulations provided by a numerical code that models the radial dynamics of the bubbles. The results showed that an increase on the static pressure of the system shifts the Bjerknes instability threshold, allowing the bubble to access higher acoustic pressures (P_{Ac}^{}). Furthermore, a decrease in the measured ambient radius R_{0} and the calculated relative gas concentration c_{∞}/c_{0} were observed. A notorious increment in the bubble collapse violence and energy focusing for P_{0} above 1 bar was achieved. These were mainly indicated by the growth of the bubble expansion ratio (R_{max}/R_{0}), the bubble mechanical energy density, and the maximum bubble wall velocity dR/dt. In agreement with the previous statement, the maximum temperature during the bubble collapse predicted by the model is augmented as well. The use of different harmonics in the ultrasound pressure field regarding energy focusing is also discussed. Finally, we analyzed the stability regions of the R_{0}-P_{Ac}^{} parameter space via numerical predictions for P_{0} above the measured, identifying the shape instabilities as the main limiting agent to obtain further energy concentration in SA systems at high static pressures.

  3. Determination of Dicarboxylic Acid Concentrations in Surface Microlayer of Dams in Okinawa, Japan

    NASA Astrophysics Data System (ADS)

    Kotani, Y.; Taira, N.; Kamizato, C.; Arakaki, T.

    2008-12-01

    The surface microlayer (SML) is a thin layer that forms the boundary between atmosphere and water body. The SML includes fatty acid, protein and other organic compounds. It is the site across which the atmosphere-water system interacts. It also has unique chemical, physical and biological properties, which are very different from those of the underlying water. We determined concentrations of dicarboxylic acids (oxalic, malic, malonic, succinic, adipic, phthalic, fumaric, and maleic acids) in the SML, and compared with those of underlying bulk water. Dicarboxylic acids are the major organic compounds found in atmospheric aerosols, which can be derived from the wind-blown SML. The sampling sites we chose were dams in Okinawa, Japan. The SML was sampled by using a glass plate method. Concentrations of dicarboxylic acids were determined by using a GC-FID after derivatization. The results showed that the dicarboxylic acid concentrations were 2- 17 times higher than those of the underlying water. We have also found that the concentrations of some of the dicarboxylic acids were lower in the afternoon than those in the morning at the same sampling site.

  4. Concentration of Nitric Acid Strongly Influences Chemical Composition of Graphite Oxide.

    PubMed

    Jankovsky, Ondrej; Novacek, Michal; Luxa, Jan; Sedmidubsky, David; Bohacova, Marie; Pumera, Martin; Sofer, Zdenek

    2017-02-28

    Graphite oxide is the most widely used precursor for the synthesis of graphene by top-down methods. We demonstrate a significant influence of nitric acid concentration on the structure and composition of the graphite oxide prepared by graphite oxidation. In general, two main chlorate based oxidation methods are currently used for graphite oxide synthesis, Staudenmaier method dealing with 98 wt.% nitric acid and Hofmann method dealing with 68 wt.% nitric acid. However a gradual change of nitric acid concentration allowed for the continuous change of the graphite oxide composition. The prepared samples were thoroughly characterized by microscopic techniques as well as various spectroscopic and analytical methods. Lowering of nitric acid concentration led to an increase of oxidation degree and in particular to a concentration of epoxy and hydroxyl groups. This knowledge is not only useful for the large scale synthesis of graphite oxide with tunable size and chemical composition, but the use of nitric acid in lower concentration can also significantly reduce the overall cost of the synthesis.

  5. Kinetic study of catechin stability: effects of pH, concentration, and temperature.

    PubMed

    Li, Na; Taylor, Lynne S; Ferruzzi, Mario G; Mauer, Lisa J

    2012-12-26

    The degradation behaviors of catechins in dilute aqueous systems, including tea beverages and catechin solutions, have been documented; however, their reaction kinetics in green tea concentrated solutions, and impacts of pH, concentration, and temperature thereon, have not yet been established. In this study, reactions were conducted at pH levels ranging from 1.5 to 7, concentrations ranging from 1 to 1666.7 mg/mL, and temperatures ranging from 25 to 120 °C. Catechin contents were determined using high-performance liquid chromatography. Catechins were found to be more stable at high concentrations around pH 4. An empirical model for catechin content was established as a function of pH and temperature and showed good correlation between green tea concentrated solutions and previous reports of catechin stability in powder systems. These results provide useful approaches for shelf life calculations and catechin loss predictions at given temperature and pH conditions in green tea concentrates.

  6. Effects of temperature and particle size on acid aerosol-induced bronchoconstriction. Report for April 1986-November 1988 (Final)

    SciTech Connect

    Sheppard, D.; Balmes, J.; Christian, D.

    1989-01-01

    The investigators exposed asthmatic subjects to aerosols of sulfuric acid or saline with varying particle size and osmolarity. Aerosols of unbuffered sulfuric acid at pH 2 did not cause bronchoconstriction in the subjects when inhaled during rest at a sulfate concentration of nearly 3 mg/cm m. Neither osmolarity nor particle size appeared to influence the lack of bronchoconstrictor effect. The investigators also studied whether there was a positive interaction between acidity and low temperature with regard to the potentiation of hypoosmolar aerosol-induced bronchoconstriction. They exposed asthmatic subjects to hypoosmolar aerosols of either sulfuric acid at pH 2 or saline at pH 5.5 at either 7 or 22 deg C. No evidence of a positive interaction between acidity and low temperature was found.

  7. Comparison of XAD macroporous resins for the concentration of fulvic acid from aqueous solution

    USGS Publications Warehouse

    Aiken, G.R.

    1979-01-01

    Five macroreticular, nonlonlc AmberlHe XAD resins were evaluated for concentration and Isolation of fulvlc acid from aqueous solution. The capacity of each resin for fulvlc acid was measured by both batch and column techniques. Elution efficiencies were determined by desorptlon with 0.1 N NaOH. Highest recoveries were obtained with the acrylic ester resins which proved to be most efficient for both adsorption and elution of fulvlc acid. Compared to the acrylic ester resins, usefulness of the styrene dvlnybenzene resins to remove fulvlc acid is limited because of slow diffusion-controlled adsorption and formation of charge-transfer complexes, which hinders elution. ?? 1979 American Chemical Society.

  8. Effects of squat exercise and branched-chain amino acid supplementation on plasma free amino acid concentrations in young women.

    PubMed

    Shimomura, Yoshiharu; Kobayashi, Hisamine; Mawatari, Kazunori; Akita, Keiichi; Inaguma, Asami; Watanabe, Satoko; Bajotto, Gustavo; Sato, Juichi

    2009-06-01

    The present study was conducted to examine alterations in plasma free amino acid concentrations induced by squat exercise and branched-chain amino acid (BCAA) supplementation in young, untrained female subjects. In the morning on the exercise session day, participants ingested drinks containing either BCAA (isoleucine:leucine:valine=1:2.3:1.2) or dextrin (placebo) at 0.1 g/kg body weight 15 min before a squat exercise session, which consisted of 7 sets of 20 squats, with 3 min intervals between sets. In the placebo trial, plasma BCAA concentrations were decreased subsequent to exercise, whereas they were significantly increased in the BCAA trial until 2 h after exercise. Marked changes in other free amino acids in response to squat exercise and BCAA supplementation were observed. In particular, plasma concentrations of methionine and aromatic amino acids were temporarily decreased in the BCAA trial, being significantly lower than those in the placebo trial. These results suggest that BCAA intake before exercise affects methionine and aromatic amino acid metabolism.

  9. Low Temperature Adaptation Is Not the Opposite Process of High Temperature Adaptation in Terms of Changes in Amino Acid Composition

    PubMed Central

    Yang, Ling-Ling; Tang, Shu-Kun; Huang, Ying; Zhi, Xiao-Yang

    2015-01-01

    Previous studies focused on psychrophilic adaptation generally have demonstrated that multiple mechanisms work together to increase protein flexibility and activity, as well as to decrease the thermostability of proteins. However, the relationship between high and low temperature adaptations remains unclear. To investigate this issue, we collected the available predicted whole proteome sequences of species with different optimal growth temperatures, and analyzed amino acid variations and substitutional asymmetry in pairs of homologous proteins from related species. We found that changes in amino acid composition associated with low temperature adaptation did not exhibit a coherent opposite trend when compared with changes in amino acid composition associated with high temperature adaptation. This result indicates that during their evolutionary histories the proteome-scale evolutionary patterns associated with prokaryotes exposed to low temperature environments were distinct from the proteome-scale evolutionary patterns associated with prokaryotes exposed to high temperature environments in terms of changes in amino acid composition of the proteins. PMID:26614525

  10. Osmotic potential calculations of inorganic and organic aqueous solutions over wide solute concentration levels and temperatures

    SciTech Connect

    Cochrane, T. T.; Cochrane, T. A.

    2016-01-15

    Purpose: To demonstrate that the authors’ new “aqueous solution vs pure water” equation to calculate osmotic potential may be used to calculate the osmotic potentials of inorganic and organic aqueous solutions over wide ranges of solute concentrations and temperatures. Currently, the osmotic potentials of solutions used for medical purposes are calculated from equations based on the thermodynamics of the gas laws which are only accurate at low temperature and solute concentration levels. Some solutions used in medicine may need their osmotic potentials calculated more accurately to take into account solute concentrations and temperatures. Methods: The authors experimented with their new equation for calculating the osmotic potentials of inorganic and organic aqueous solutions up to and beyond body temperatures by adjusting three of its factors; (a) the volume property of pure water, (b) the number of “free” water molecules per unit volume of solution, “N{sub f},” and (c) the “t” factor expressing the cooperative structural relaxation time of pure water at given temperatures. Adequate information on the volume property of pure water at different temperatures is available in the literature. However, as little information on the relative densities of inorganic and organic solutions, respectively, at varying temperatures needed to calculate N{sub f} was available, provisional equations were formulated to approximate values. Those values together with tentative t values for different temperatures chosen from values calculated by different workers were substituted into the authors’ equation to demonstrate how osmotic potentials could be estimated over temperatures up to and beyond bodily temperatures. Results: The provisional equations formulated to calculate N{sub f}, the number of free water molecules per unit volume of inorganic and organic solute solutions, respectively, over wide concentration ranges compared well with the calculations of N{sub f

  11. Estimate of serum immunoglobulin G concentration using refractometry with or without caprylic acid fractionation.

    PubMed

    Morrill, K M; Polo, J; Lago, A; Campbell, J; Quigley, J; Tyler, H

    2013-07-01

    Objectives of this study were to develop a rapid calf-side test to determine serum IgG concentrations using caprylic acid (CA) fractionation, followed by refractometry of the IgG-rich supernatant and compare the accuracy of this method with results obtained using refractometry using raw serum. Serum samples (n=200) were obtained from 1-d-old calves, frozen (-20°C), and shipped to the laboratory. Samples were allowed to thaw for 1h at room temperature. Fractionation with CA was conducted by adding 1mL of serum to a tube containing 45, 60, or 75µL of CA and 0.5, 1.0, or 1.5mL of 0.06 M acetic acid. The tube contents were mixed well, allowed to react for 1 min, and then centrifuged at 3,300 × g for 0, 10, or 20 min at 25°C. The %Brix and refractive index of the fractionated supernatant were determined using a digital refractometer. Nonfractionated serum was analyzed for %Brix (BRn), refractive index (nDn), and IgG concentration by radial immunodiffusion. The mean serum IgG concentration was 19.0 mg/mL [standard deviation (SD)=9.7], with a range of 3.5 to 47.0 mg/mL. The mean serum BRn was 8.6 (SD=0.91), with a range of 6.8 to 11.0. The mean serum nDn was 1.34566 (SD=0.00140), with a range of 1.34300 to 1.34930. Serum nDn was positively correlated with IgG concentration (correlation coefficient=0.86; n=185). Fractionated samples treated with 1mL 0.6 M acetic acid and 60µL of CA and not centrifuged before analysis resulted in a strong relationship between the refractive index of the fractionated supernatant and IgG (correlation coefficient=0.80; n=45). Regression was used to determine cut points indicative of 10, 12, and 14 mg of IgG/mL to determine the sensitivity and specificity of refractometry to identify failure of passive transfer (serum IgG <10 mg/mL at 24 h old). The nDn were 1.34414, 1.34448, and 1.34480 to predict 10, 12, and 14 mg of IgG/mL of serum, respectively. The BRn cut points were 7.6, 7.8, and 8.0, respectively. The nDn cut points of 1.34448 and

  12. Combined effects of water temperature and copper ion concentration on catalase activity in Crassostrea ariakensis

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Yang, Hongshuai; Liu, Jiahui; Li, Yanhong; Liu, Zhigang

    2015-07-01

    A central composite experimental design and response surface method were used to investigate the combined effects of water temperature (18-34°C) and copper ion concentration (0.1-1.5 mg/L) on the catalase (CAT) activity in the digestive gland of Crassostrea ariakensis. The results showed that the linear effects of temperature were significant ( P<0.01), the quadratic effects of temperature were significant ( P<0.05), the linear effects of copper ion concentration were not significant ( P>0.05), and the quadratic effects of copper ion concentration were significant ( P<0.05). Additionally, the synergistic effects of temperature and copper ion concentration were not significant ( P>0.05), and the effect of temperature was greater than that of copper ion concentration. A model equation of CAT enzyme activity in the digestive gland of C. ariakensis toward the two factors of interest was established, with R 2, Adj. R 2 and Pred. R 2 values as high as 0.943 7, 0.887 3 and 0.838 5, respectively. These findings suggested that the goodness of fit to experimental data and predictive capability of the model were satisfactory, and could be practically applied for prediction under the conditions of the study. Overall, the results suggest that the simultaneous variation of temperature and copper ion concentration alters the activity of the antioxidant enzyme CAT by modulating active oxygen species metabolism, which may be utilized as a biomarker to detect the effects of copper pollution.

  13. Effect of pressure and temperature on the gelatinization of starch at various starch concentrations.

    PubMed

    Baks, Tim; Bruins, Marieke E; Janssen, Anja E M; Boom, Remko M

    2008-01-01

    The effects of pressure, temperature, and treatment time on the degree of gelatinization were determined with differential scanning calorimetry measurements for wheat starch-water mixtures with starch concentrations varying between 5 and 80 w/w %. Although simple models could be used to describe the degree of starch gelatinization as a function of pressure or temperature, a more complex model based on the Gibbs energy difference had to be used to describe the degree of gelatinization as a function of both pressure and temperature. The experimental and model data were used to construct a phase diagram for 5, 30, and 60 w/w % wheat starch-water mixtures. Data obtained from literature were in accordance with our phase diagrams. These phase diagrams can be used to estimate the degree of gelatinisation after applying a certain pressure and temperature on a starch-water mixture with starch concentrations in the range of 5 and 60 w/w %.

  14. Effects of increased CO2 concentrations on surface temperature of the early earth

    NASA Technical Reports Server (NTRS)

    Kuhn, W. R.; Kasting, J. F.

    1983-01-01

    It is pointed out that enhanced levels of CO2 in the atmosphere could have provided the necessary warming to maintain the temperature above freezing. The processes that have been proposed for these larger amounts of CO2 are increased tectonic activity, a decrease in the solubility of CO2 in the oceans, rock weathering, and sediment deposition. It is shown here that large CO2 concentrations are necessary to maintain the early earth's surface temperature at approximately today's level. A thousand times the present atmospheric level of CO2 in the atmosphere would yield a temperature of 292 K, whereas a 100-fold increase in CO2 concentration would give a temperature of 284 K. The surface warming is highly dependent on the amount of water vapor and clouds, and knowledge of both of these during the early history of the earth is scant.

  15. Room-Temperature Determination of Two-Dimensional Electron Gas Concentration and Mobility in Heterostructures

    NASA Technical Reports Server (NTRS)

    Schacham, S. E.; Mena, R. A.; Haugland, E. J.; Alterovitz, S. A.

    1993-01-01

    A technique for determination of room-temperature two-dimensional electron gas (2DEG) concentration and mobility in heterostructures is presented. Using simultaneous fits of the longitudinal and transverse voltages as a function of applied magnetic field, we were able to separate the parameters associated with the 2DEG from those of the parallel layer. Comparison with the Shubnikov-de Haas data derived from measurements at liquid helium temperatures proves that the analysis of the room-temperature data provides an excellent estimate of the 2DEG concentration. In addition we were able to obtain for the first time the room-temperature mobility of the 2DEG, an important parameter to device application. Both results are significantly different from those derived from conventional Hall analysis.

  16. Yb doping concentration and temperature influence on Yb:LuAG thermal lensing

    NASA Astrophysics Data System (ADS)

    Veselský, Karel; Šulc, Jan; Jelínková, Helena; Nejezchleb, Karel; Škoda, Václav

    2016-03-01

    The aim of this study was to investigate whether refractive power of thermal lens for Yb:LuAG crystal at cryogenic temperatures depends on Yb doping concentration which has not been examined yet. The three measured Yb:LuAG laser rods samples (length of 3 mm, diameter 3 mm, AR @ 0.94 μm and 1.03 μm, doping concentration 5.4, 8.4 and 16.6 at. % Yb/Lu) were mounted in the temperature controlled copper holder of the liquid nitrogen cryostat. Samples were longitudinally pumped with fiber coupled CW laser diode at 0.930 μm with the focal point 0.4 mm in diameter. The 38 mm long semi-hemispherical laser resonator consisted of a flat pump mirror (HR @ 1.03 μm and HT 0.94 μm) and curved output coupler (r=500 mm) of reflectivity 94 % @ 1.06 μm. The refractive power of thermal lens was estimated indirectly by measuring of change in the position of focused laser beam focal point. The measurement was performed for constant absorbed power of 10 W in temperature range from 80 up to 240 K. It was observed that cryogenic cooling caused reduction of thermal lens power, which increased linearly with increasing temperature. For temperatures from 80 to 160 K refractive power was identical for all concentration. For higher temperature the refractive power of thermal lens increased with increasing Yb3+ concentration. Presented study shows that application of cryogenic temperature leads to reduction of thermal effect even for high dopant concentration in Yb:LuAG crystal. This is essential for reaching of high output power while maintaining high beam quality.

  17. Correlation Studies of Sea Ice Concentration with Surface Temperature and Meltponding

    NASA Technical Reports Server (NTRS)

    Comiso, J. C.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    The spatial and temporal variability of sea ice concentrations derived from passive microwave data is studied in conjunction with co-registered high resolution infrared and visible satellite data. Cloud free infrared and visible data provide surface temperature and large scale surface characteristics, respectively, that can be used to better understand regional and seasonal fluctuations in ice concentrations. Results from correlation analysis of ice concentration versus surface temperature data show the intuitively expected negative relationship but the strength in the relationship is unexpectedly very strong. In the Antarctic, the correlation is consistently very high spatially when yearly anomalies are used, and not so high in some areas when seasonal anomalies are used, especially during spring and summer. In the monthly anomalies, the correlation is also good, especially in dynamically active regions. The expanse in the anomalies in surface temperature are shown to go way beyond the sea ice regions into the open ocean and continental areas, suggesting strong atmospheric forcing. Weak correlations are normally found in highly consolidated areas, where large changes in temperature do not cause large changes in ice concentration on a short term, and in open ocean polynya areas, where the change in ice concentration may be cause by melt from the underside of the ice. In the Arctic, strong correlations between surface temperature and ice concentration are evident for all seasons except during the summer. In the summer, factors such as meltponding, surface wetness, and ice breakup, as detected by high resolution visible data, contributes to larger uncertainties in the determination of ice concentration and the lack of good correlation of the variables.

  18. The interaction of temperature and sucrose concentration on foraging preferences in bumblebees

    NASA Astrophysics Data System (ADS)

    Whitney, Heather M.; Dyer, Adrian; Chittka, Lars; Rands, Sean A.; Glover, Beverley J.

    2008-09-01

    Several authors have found that flowers that are warmer than their surrounding environment have an advantage in attracting pollinators. Bumblebees will forage preferentially on warmer flowers, even if equal nutritional reward is available in cooler flowers. This raises the question of whether warmth and sucrose concentration are processed independently by bees, or whether sweetness detectors respond to higher sugar concentration as well as higher temperature. We find that bumblebees can use lower temperature as a cue to higher sucrose reward, showing that bees appear to process the two parameters strictly independently. Moreover, we demonstrate that sucrose concentration takes precedence over warmth, so that when there is a difference in sucrose concentration, bees will typically choose the sweeter feeder, even if the less sweet feeder is several degrees warmer.

  19. Effect of concentration and temperature on surface tension of sodium hyaluronate saline solutions.

    PubMed

    Ribeiro, Walkiria; Mata, José Luis; Saramago, Benilde

    2007-06-19

    The effect of concentration and temperature on the surface tension of sodium hyaluronate (NaHA) saline solutions was investigated using the technique of the shape of pendant drops. The decay rate of the surface tension with the increase of NaHA concentration was well-described by the empirical Hua-Rosen equation. Adsorption at the air-liquid interface was estimated using the Gibbs equation. The temperature dependence of a dilute solution and a semidilute entangled solution was numerically fitted with a second-order polynomial equation. The surface behavior of the NaHA saline solutions was interpreted in terms of their known viscoelastic properties.

  20. A simplified CARS measurement system for rapid determination of temperature and oxygen concentration

    NASA Technical Reports Server (NTRS)

    Fujii, Shoichi

    1987-01-01

    A new spectroscopic concept for the rapid determination of temperature and oxygen concentration by CARS (Coherent Anti-Stokes Raman Spectroscopy) was described. The ratio of two spectral regions in the broadband Q-branch spectrum was detected by photomultipliers in a monochromator, which ratio depends on temperature and species concentration. The comparison of the measured data with theory was made using a flat flame burner and an electric furnace, with reasonable results. Various optical techniques for alignment were introduced including a highly efficient, stable dye oscillator. The combination of the spectroscopic concept and the optical techniques will make the CARS measurement system rapid in data processing and simple in optical parts.

  1. Influence of the Latitudinal Temperature Gradient on Soil Dust Concentration and Deposition in Greenland

    NASA Technical Reports Server (NTRS)

    Tegen, Ina; Rind, David

    2000-01-01

    To investigate the effects of changes in the latitudinal temperature gradient and the global mean temperature on dust concentration in the Northern Hemisphere, experiments with the GISS GCM (Goddard Institute for Space Studies General Circulation Model) are performed. The dust concentration over Greenland is calculated from sources in central and eastern Asia, which are integrated on-line in the model. The results show that an increase in the latitudinal temperature gradient increases both the Asian dust source strength and the concentration over Greenland. The source increase is the result of increased surface winds, and to a minor extent, the increase in Greenland dust is also associated with increased northward transport. Cooling the climate in addition to this increased gradient leads to a decrease in precipitation scavenging, which helps produce a further (slight) increase in Greenland dust in this experiment. Reducing the latitudinal gradient reduces the surface wind and hence the dust source, with a subsequent reduction in Greenland dust concentrations. Warming the climate in addition to this reduced gradient leads to a further reduction in Greenland dust due to enhanced precipitation scavenging. These results can be used to evaluate the relationship of Greenland ice core temperature changes to changes in the latitudinal and global temperatures.

  2. Influence of the Latitudinal Temperature Gradient on Soil Dust Concentration and Deposition in Greenland

    NASA Technical Reports Server (NTRS)

    Tegen, Ina; Rind, David

    2000-01-01

    To investigate the effects of changes in the latitudinal temperature gradient and the global mean temperature on dust concentration in the Northern Hemisphere, experiments with the Goddard Institute for Space Studies General Circulation Model (GISS GCM) are performed. The dust concentration over Greenland is calculated from sources in central and eastern Asia, which are integrated on-line in the model. The results show that an increase in the latitudinal temperature gradient increases both the Asian dust source strength and the concentration over Greenland. The source increase is the result of increased surface winds, and to a minor extent, the increase in Greenland dust is also associated with increased northward transport. Cooling the climate in addition to this increased gradient leads to a decrease in precipitation scavenging, which helps produce a further (slight) increase in Greenland dust in this experiment. Reducing the latitudinal gradient reduces the surface wind and hence the dust source, with a subsequent reduction in Greenland dust concentrations. Warming the climate in addition to this reduced gradient leads to a further reduction in Greenland dust due to enhanced precipitation scavenging. These results can be used to evaluate the relationship of Greenland ice core temperature changes to changes in the latitudinal and global temperatures.

  3. The temperature and concentration dependencies of diffusion coefficients of seven helium-fluoroethane systems

    NASA Astrophysics Data System (ADS)

    Dunlop, Peter J.; Bignell, C. M.

    1992-10-01

    Binary diffusion coefficients are reported as functions of concentration and temperature for seven helium-fluoroethane systems. An empirical correlation is made between the temperature-dependent effective cross sections for diffusion and the number of electrons in the heavy species interacting with the light helium atoms. Some of the experiments suggest a possible ``isomer effect'' due to the differences in molecular configuration of the fluoroethane species.

  4. Effect of microgravity, temperature, and concentration on fibrin and collagen assembly.

    PubMed

    Nunes, C R; Roedersheimer, M T; Simske, S J; Luttges, M W

    1995-08-01

    In purified form collagen and fibrin can be processed into gel-like matrices of interconnecting fibers. The microscopic structure of materials produced from these macromolecules is critical to their utility as biomaterials. Varying the conditions of the assembly environment allows for the production of a wide range of morphologies. In this study, changes in gravity, temperature, and concentration were examined. Contrary to protein crystal growth studies which indicate substantial increases in organization and size in microgravity, the gravitational environment had no repeatable effect on collagen and fibrin fiber diameters and matrix porosity. However, fibrin gels formed in microgravity appeared more homogeneous than ground samples. Changes in temperature and concentration of both protein and buffer had substantial effects on fiber diameters and material porosity for both collagen and fibrin. Temperature experiments were performed over the range 23.8 to 39 degrees C for fibrin and 22 to 33 degrees C for collagen. Thrombin concentration was varied from 0.02 to 0.10 units/ml for fibrin experiments and buffer concentration was varied by means of a dialysis membrane for collagen experiments. Consequently, the temperature and concentration controls developed for flight experiments are being considered for their potential in developing fibrin and collagen based materials with well-defined microscopic structures. The increased homogeneity of fibrin gels produced in microgravity suggests the possibility of using this environment for the production of optimal biomaterials.

  5. Carbohydrate concentrations and freezing stress resistance of silver birch buds grown under elevated temperature and ozone.

    PubMed

    Riikonen, Johanna; Kontunen-Soppela, Sari; Vapaavuori, Elina; Tervahauta, Arja; Tuomainen, Marjo; Oksanen, Elina

    2013-03-01

    The effects of slightly elevated temperature (+0.8 °C), ozone (O3) concentration (1.3 × ambient O3 concentration) and their combination on over-wintering buds of Betula pendula Roth were studied after two growing seasons of exposure in the field. Carbohydrate concentrations, freezing stress resistance (FSR), bud dry weight to fresh weight ratio, and transcript levels of cytochrome oxidase (COX), alternative oxidase (AOX) and dehydrin (LTI36) genes were studied in two clones (clones 12 and 25) in December. Elevated temperature increased the bud dry weight to fresh weight ratio and the ratio of raffinose family oligosaccharides to sucrose and the transcript levels of the dehydrin (LTI36) gene (in clone 12 only), but did not alter the FSR of the buds. Genotype-specific alterations in carbohydrate metabolism were found in the buds grown under elevated O3. The treatments did not significantly affect the transcript level of the COX or AOX genes. No clear pattern of an interactive effect between elevated temperature and O3 concentration was found. According to these data, the increase in autumnal temperatures and slightly increasing O3 concentrations do not increase the risk for freeze-induced damage in winter in silver birch buds, although some alterations in bud physiology occur.

  6. Low-concentration CPC's for low-temperature solar energy applications

    SciTech Connect

    Gordon, J.M.

    1986-02-01

    The authors consider the feasiblity of low-concentration CPC's for low-temperature applications. A quantitative assessment of optical gains versus thermal losses, and of savings in reflector area, leads to the conclusion that low-concentration CPC's of relatively small acceptance angle may be competitive with, or superior to, flat plates. Calculations of yearly collected energy and material requirements are presented, and comparisons are made with corresponding flat plate collectors.

  7. Influence of bleaching on flavor of 34% whey protein concentrate and residual benzoic acid concentration in dried whey proteins.

    PubMed

    Listiyani, M A D; Campbell, R E; Miracle, R E; Dean, L O; Drake, M A

    2011-09-01

    Previous studies have shown that bleaching negatively affects the flavor of 70% whey protein concentrate (WPC70), but bleaching effects on lower-protein products have not been established. Benzoyl peroxide (BP), a whey bleaching agent, degrades to benzoic acid (BA) and may elevate BA concentrations in dried whey products. No legal limit exists in the United States for BP use in whey, but international concerns exist. The objectives of this study were to determine the effect of hydrogen peroxide (HP) or BP bleaching on the flavor of 34% WPC (WPC34) and to evaluate residual BA in commercial and experimental WPC bleached with and without BP. Cheddar whey was manufactured in duplicate. Pasteurized fat-separated whey was subjected to hot bleaching with either HP at 500 mg/kg, BP at 50 or 100 mg/kg, or no bleach. Whey was ultrafiltered and spray dried into WPC34. Color [L*(lightness), a* (red-green), and b* (yellow-blue)] measurements and norbixin extractions were conducted to compare bleaching efficacy. Descriptive sensory and instrumental volatile analyses were used to evaluate bleaching effects on flavor. Benzoic acid was extracted from experimental and commercial WPC34 and 80% WPC (WPC80) and quantified by HPLC. The b* value and norbixin concentration of BP-bleached WPC34 were lower than HP-bleached and control WPC34. Hydrogen peroxide-bleached WPC34 displayed higher cardboard flavor and had higher volatile lipid oxidation products than BP-bleached or control WPC34. Benzoyl peroxide-bleached WPC34 had higher BA concentrations than unbleached and HP-bleached WPC34 and BA concentrations were also higher in BP-bleached WPC80 compared with unbleached and HP-bleached WPC80, with smaller differences than those observed in WPC34. Benzoic acid extraction from permeate showed that WPC80 permeate contained more BA than did WPC34 permeate. Benzoyl peroxide is more effective in color removal of whey and results in fewer flavor side effects compared with HP and residual BA is

  8. Body mass index, gestational weight gain and fatty acid concentrations during pregnancy: the Generation R Study.

    PubMed

    Vidakovic, Aleksandra Jelena; Jaddoe, Vincent W V; Gishti, Olta; Felix, Janine F; Williams, Michelle A; Hofman, Albert; Demmelmair, Hans; Koletzko, Berthold; Tiemeier, Henning; Gaillard, Romy

    2015-11-01

    Obesity during pregnancy may be correlated with an adverse nutritional status affecting pregnancy and offspring outcomes. We examined the associations of prepregnancy body mass index and gestational weight gain with plasma fatty acid concentrations in mid-pregnancy. This study was embedded in a population-based prospective cohort study among 5636 women. We obtained prepregnancy body mass index and maximum weight gain during pregnancy by questionnaires. We measured concentrations of saturated fatty acid (SFA), monounsaturated fatty acid (MUFA), n-3 polyunsaturated fatty acid (n-3 PUFA) and n-6 polyunsaturated fatty acid (n-6 PUFA) at a median gestational age of 20.5 (95% range 17.1-24.9) weeks. We used multivariate linear regression models. As compared to normal weight women, obese women had higher total SFA concentrations [difference: 0.10 standard deviation (SD) (95% Confidence Interval (CI) 0, 0.19)] and lower total n-3 PUFA concentrations [difference: - 0.11 SD (95% CI - 0.20, - 0.02)]. As compared to women with sufficient gestational weight gain, those with excessive gestational weight gain had higher SFA concentrations [difference: 0.16 SD (95% CI 0.08, 0.25)], MUFA concentrations [difference: 0.16 SD (95% CI 0.08, 0.24)] and n-6 PUFA concentrations [difference: 0.12 SD (95% CI 0.04, 0.21)]. These results were not materially affected by adjustment for maternal characteristics. Our results suggest that obesity and excessive weight gain during pregnancy are associated with an adverse fatty acids profile. Further studies are needed to assess causality and direction of the observed associations.

  9. Concentrating versus non-concentrating reactors for solar photocatalytic degradation of p-nitrotoluene-o-sulfonic acid.

    PubMed

    Parra, S; Malato, S; Blanco, J; Péringer, P; Pulgari, C

    2001-01-01

    The photocatalytic oxidation of the non-biodegradable p-nitrotoluene-o-sulfonic acid (p-NTS) in homogeneous (photo-Fenton reactions) and heterogeneous (with TiO2) solutions has been studied at a pilot-scale under solar irradiation at the Plataforma Solar de Almeria (PSA). In this study two different reactors were tested: a medium concentrating radiation system (Heliomans, HM) and a non-concentrating radiation system (CPC). Their advantages and disadvantages for p-NTS degradation have been compared and discussed. The degradation rates obtained in the CPC collector are around three times more efficient than in the HM collectors. However, in both systems, 100% of the initial concentration of p-NTS was removed. Kinetic experiments were performed in both systems using TiO2 suspensions. During the photodegradation, the disappearance of p-NTS was followed by HPLC, the mineralization of the solution by the TOC technique, the evolution of NO3-, NO2-, and SO4(2-) concentration by ionic chromatography, the toxicity by the standard Microtox test, and the biodegradability by BOD5 and COD measurements. The obtained results demonstrated the utility of the heterogeneous catalysis (using TiO2 as catalyst) as a pretreatment method that can be followed by a biological process.

  10. Dietary predictors and plasma concentrations of perfluorinated alkyl acids in a Singapore population.

    PubMed

    Liu, Yu; Su, Jin; van Dam, Rob M; Prem, Kiesha; Hoong, Joey Y S; Zou, Li; Lu, Yonghai; Ong, Choon Nam

    2017-03-01

    Perfluorinated alkyl acids (PFAAs), a family of man-made organofluorinated compounds, have drawn much attention due to their ubiquitous existence in the environment and their bioaccumulation potential. Here, we examined the plasma concentrations of thirteen PFAAs in a healthy population (N = 270) in Singapore, and investigated the association between major food groups and plasma PFAA concentrations. We detected eight types of PFAAs in more than 75% of all samples (N = 270), and their median concentrations ranged from 0.05 to 8.34 ng mL(-1). Age- and gender-related differences were observed for the three dominant PFAAs, i.e., perfluorooctanesulfonic acid (PFOS), perfluorohexane sulfonate (PFHxS) and perfluorooctanoate acid (PFOA), with concentrations being higher in men and older adults. Multiple linear regression analyses showed that fish, shellfish, red meat and poultry were associated with increased PFAAs concentrations in plasma, whereas grains and soy products showed inverse associations with PFAAs. Further, significant correlations were observed between various long-chain PFAAs and plasma concentrations of omega-3 fatty acids, suggesting seafood was a significant source of these PFAAs, within this population. Future studies on diet exposure to PFAAs are encouraged to focus more on the effects on diet pattern.

  11. High temperature stimulates acetic acid accumulation and enhances the growth inhibition and ethanol production by Saccharomyces cerevisiae under fermenting conditions.

    PubMed

    Woo, Ji-Min; Yang, Kyung-Mi; Kim, Sae-Um; Blank, Lars M; Park, Jin-Byung

    2014-07-01

    Cellular responses of Saccharomyces cerevisiae to high temperatures of up to 42 °C during ethanol fermentation at a high glucose concentration (i.e., 100 g/L) were investigated. Increased temperature correlated with stimulated glucose uptake to produce not only the thermal protectant glycerol but also ethanol and acetic acid. Carbon flux into the tricarboxylic acid (TCA) cycle correlated positively with cultivation temperature. These results indicate that the increased demand for energy (in the form of ATP), most likely caused by multiple stressors, including heat, acetic acid, and ethanol, was matched by both the fermentation and respiration pathways. Notably, acetic acid production was substantially stimulated compared to that of other metabolites during growth at increased temperature. The acetic acid produced in addition to ethanol seemed to subsequently result in adverse effects, leading to increased production of reactive oxygen species. This, in turn, appeared to cause the specific growth rate, and glucose uptake rate reduced leading to a decrease of the specific ethanol production rate far before glucose depletion. These results suggest that adverse effects from heat, acetic acid, ethanol, and oxidative stressors are synergistic, resulting in a decrease of the specific growth rate and ethanol production rate and, hence, are major determinants of cell stability and ethanol fermentation performance of S. cerevisiae at high temperatures. The results are discussed in the context of possible applications.

  12. Magnetic resonance tells microbiology where to go; bacterial teichoic acid protects liquid water at sub-zero temperatures

    NASA Astrophysics Data System (ADS)

    Rice, Charles V.; Wickham, Jason R.; Eastman, Margaret A.; Harrison, William; Pereira, Mark P.; Brown, Eric D.

    2008-08-01

    Numerous chemical additives lower the freezing point of water, but life at sub-zero temperatures is sustained by a limited number of biological cryoprotectants. Antifreeze proteins in fish, plants, and insects provide protection to a few degrees below freezing. Microbes have been found to survive at even lower temperatures, although, with a few exceptions, antifreeze proteins are missing. Survival has been attributed to external factors, such as high salt concentration (brine veins) and adhesion to particulates or ice crystal defects. Teichoic acid is a phosphodiester polymer ubiquitous in Gram positive bacteria, composing 50% of the mass of the bacterial cell wall and excreted into the extracellular space of biofilm communities. We have found that when bound to the peptidoglycan cell wall (wall teichoic acid) or as a free molecule (lipoteichoic acid), teichoic acid is surrounded by liquid water at temperatures significantly below freezing. Using solid-state NMR, we are unable to collect 31P CPMAS spectra for frozen solutions of lipoteichoic acid at temperatures above -60 °C. For wall teichoic acid in D2O, signals are not seen above -30 °C. These results can be explained by the presence of liquid water, which permits rapid molecular motion to remove 1H/31P dipolar coupling. 2H quadrupole echo NMR spectroscopy reveals that both liquid and solid water are present. We suggest that teichoic acids could provide a shell of liquid water around biofilms and planktonic bacteria, removing the need for brine veins to prevent bacterial freezing.

  13. Rheology of a primary and secondary sewage sludge mixture: dependency on temperature and solid concentration.

    PubMed

    Baroutian, Saeid; Eshtiaghi, Nicky; Gapes, Daniel J

    2013-07-01

    The main objective of this study was to investigate the rheology of mixed primary and secondary sludge and its dependency on solid content and temperature. Results of this study showed that the temperature and solid concentration are critical parameters affecting the mixed sludge rheology. It was found that the yield stress increases with an increase in the sludge solid content and decreases with increasing temperature. The rheological behaviour of sludges was modelled using the Herschel-Bulkley model. The results of the model showed a good agreement with experimental data. Depending on the total solid content, the average error varied between 3.25% and 6.22%.

  14. Effect of Oxygen Concentration on Autogenous Ignition Temperature and Pneumatic Impact Ignitability of Nonmetallic Materials

    NASA Technical Reports Server (NTRS)

    Smith, Sarah

    2009-01-01

    Extensive test data exist on the ignitability of nonmetallic materials in pure oxygen, but these characteristics are not as well understood for lesser oxygen concentrations. In this study, autogenous ignition temperature testing and pneumatic impact testing were used to better understand the effects of oxygen concentration on ignition of nonmetallic materials. Tests were performed using oxygen concentrations of 21, 34, 45, and 100 %. The following materials were tested: PTFE Teflon(Registered Trademark), Buna-N, Silicone, Zytel(Registered Trademark) 42, Viton(registered Trademark) A, and Vespel(Registered Trademark) SP-21.

  15. Energy and Angle Resolved Uptake of Organic Gases in Concentrated Sulfuric Acid

    NASA Astrophysics Data System (ADS)

    Fiehrer, Kathleen; Nathanson, Gilbert

    1996-03-01

    We have measured the uptake of reactive gases in concentrated (98.8 wtsulfuric acid at 298 K. Our goal is to determine the fraction of gas molecules that dissolve in and react with concentrated sulfuric acid as a function of impact angle, collision energy, and gas molecule basicity (pKBH+). These gases include olefins, alcohols, ethers, aldehydes, and carboxylic acids. We have investigated how scattering and solvation compete at high and low impact energies and at grazing and perpendicular approach directions. We find that the sticking probability decreases slowly with increasing impact energy and with more grazing angle of incidence. However, the sticking probabilities change dramatically with gas functionality and scale monotonically with the molecule's solution phase basicity. Thus, the sticking probability decreases in the order ethanol, dimethyl ether, formic acid, acetaldehyde, and propene.

  16. Stage of harvest and polyunsaturated essential fatty acid concentrations in purslane (Portulaca oleraceae) leaves.

    PubMed

    Palaniswamy, U R; McAvoy, R J; Bible, B B

    2001-07-01

    Purslane is a nutritious vegetable crop rich in the polyunsaturated essential fatty acids (PUEFA) alpha-linolenic acid (LNA) and linoleic acid (LA), which are essential for normal human growth, health promotion, and disease prevention. Total lipids and fatty acid concentrations at three stages of harvest (6-, 10-, and 14-true-leaf stages) were examined in a cultivated variety of purslane (Portulaca oleraceae L. var. sativa). The 14-true-leaf stage of growth was found to be ideal for harvest because at this stage the leaf area, shoot fresh weight, shoot dry weight, and PUEFA concentrations per gram of leaf fresh weight were higher (P < or = 0.05) than at the 6- and 10-true-leaf stages of growth. The LNA to LA ratio was also highest at the 14-true-leaf stage.

  17. Temperature reduction of solar cells in a concentrator photovoltaic system using a long wavelength cut filter

    NASA Astrophysics Data System (ADS)

    Ahmad, Nawwar; Ota, Yasuyuki; Nishioka, Kensuke

    2017-03-01

    We propose a Fresnel lens optical concentration system that can reduce the solar cell temperature. For the reduction of the solar cell temperature, we added a long-wavelength cut filter in order to utilize the part of the solar spectrum that is beneficial to a solar cell while reflecting the rest of the long-wavelength spectrum. A thermal simulation was conducted to estimate the actual cell temperature for optical systems with and without the long-wavelength cut filter, and the results showed a decrease of approximately 25.3 °C in the solar cell temperature using the filter. The lifetime of a solar cell can be extended by reducing its temperature, and the results showed an increase of 1.9 × 105 h in the lifetime of the solar cell.

  18. The formation of calcium lactate crystals is responsible for concentrated acid whey thickening.

    PubMed

    Mimouni, A; Bouhallab, S; Famelart, M H; Naegele, D; Schuck, P

    2007-01-01

    The use of spray drying for dehydration of acid whey is generally limited by the appearance of uncontrolled thickening and solidifying of the whey mass during the lactose crystallization step. The origin of this physical change is still unknown and probably linked to complex interactions between physical properties and chemical composition of these products. To understand this phenomenon, we simulated the thickening of concentrated acid whey on a laboratory scale by measuring the flow resistance changes as a function of time and whey composition. The thickening process was characterized by an amplitude of torque and a lag time (induction time). Thickening of lactic acid whey concentrate occurred regardless of the presence of whey proteins or lactose crystals. Moreover, this work clearly demonstrated that the thickening process was due to the formation of filamentous structures corresponding to calcium lactate crystals and showed a large dependence on calcium and lactate contents, pH, and phosphate concentration.

  19. Temperature Dependence of the Concentration Kinetics of Absorption of Phosphate and Potassium in Corn Roots 12

    PubMed Central

    Bravo-F, Pedro; Uribe, Ernest G.

    1981-01-01

    The effect of temperature on respiration and kinetics of H2PO4− and K+ uptake in corn roots was determined in the range of 2 to 42 C. The response of uptake to temperature, determined from Q10 and activation energy (Ea) data, for the anion and the cation differ significantly, especially in the range of uptake mechanism (Mech.) I. At 2.5 micromolar the Ea for K+ uptake below the 13 C transition is 29.3 kilocalories per mole. As the K+ concentration is increased, Ea declines and at 0.25 millimolar is 21.6 kilocalories per mole. Accompanying this change in Ea is a shifting of the apparent transition temperature from 13 to 17 C. Above the temperature transition the Ea's for K+ uptake in the Mech. I range are quite low (3.0) and this value is unchanged by increases of K+ concentration to 0.25 millimolar. In the range of Mech. II above 1 millimolar K+ the temperature transitions are not seen and plots become linear. The Ea's show an increasing trend from 4.7 at 1 millimolar to 6.1 at 50 millimolar. The uptake of H2PO4− is much more temperature sensitive having a constant Ea at concentrations in the Mech. I range below the 13 C temperature transition. The Arrhenius plots reveal a second transition at 22 C and the Ea for this segment is 21.0. Above the second transition the Ea remains high (10.0) and is constant in the range of Mech. I. In the range of Mech. II there is a concentration dependent decline in Ea for H2PO4− uptake (22.7 at 1.0 millimolar to 1.0 at 50 millimolar). There is no definable low temperature transition at these concentrations. Ion uptake is found to be much more sensitive to low temperature than respiration in this chill-sensitive species. The data suggest that the low temperature reduction of ion transport is more closely related to restriction of function of active transport systems than to either respiration or membrane permeability. PMID:16661760

  20. Sex Differences in Long Chain Fatty Acid Utilization and Fatty Acid Binding Protein Concentration in Rat Liver

    PubMed Central

    Ockner, Robert K.; Burnett, David A.; Lysenko, Nina; Manning, Joan A.

    1979-01-01

    Female sex and estrogen administration are associated with increased hepatic production of triglyceride-rich lipoproteins; the basis for this has not been fully elucidated. Inasmuch as hepatic lipoprotein production is also influenced by FFA availability and triglyceride biosynthesis, we investigated sex differences in FFA utilization in rat hepatocyte suspensions and in the components of the triglyceride biosynthetic pathway. Isolated adult rat hepatocyte suspensions were incubated with albumin-bound [14C]oleate for up to 15 min. At physiological and low oleate concentrations, cells from females incorporated significantly more 14C into glycerolipids, especially triglycerides, and into oxidation products than did male cells, per milligram cell protein. At 0.44 mM oleate, incorporation into triglycerides in female cells was approximately twice that in male cells. Comparable sex differences were observed in cells from fasted animals and when [14C]-glycerol incorporation was measured. At higher oleate concentrations, i.e., fatty acid:albumin mole ratios in excess of 2:1, these sex differences were no longer demonstrable, suggesting that maximal rates of fatty acid esterification and oxidation were similar in female and male cells. In female and male hepatic microsomes, specific activities of long chain acyl coenzyme A synthetase, phosphatidate phosphohydrolase, and diglyceride acyltransferase were similar, but glycerol-3-phosphate acyltransferase activity was slightly greater in females at certain substrate concentrations. Microsomal incorporation of [14C]oleate into total glycerolipids was not significantly greater in females. In further contrast to intact cells, microsomal incorporation of [14C]oleate into triglycerides, although significantly greater in female microsomes, accounted for only a small fraction of the fatty acid esterified. The binding affinity and stoichiometry of partially purified female hepatic fatty acid binding protein (FABP) were similar to

  1. LIMS Instrument Package (LIP) balloon experiment: Nimbus 7 satellite correlative temperature, ozone, water vapor, and nitric acid measurements

    NASA Technical Reports Server (NTRS)

    Lee, R. B., III; Gandrud, B. W.; Robbins, D. E.; Rossi, L. C.; Swann, N. R. W.

    1982-01-01

    The Limb Infrared Monitor of the Stratosphere (LIMS) LIP balloon experiment was used to obtain correlative temperature, ozone, water vapor, and nitric acid data at altitudes between 10 and 36 kilometers. The performance of the LIMS sensor flown on the Nimbus 7 Satellite was assessed. The LIP consists of the modified electrochemical concentration cell ozonesonde, the ultraviolet absorption photometric of ozone, the water vapor infrared radiometer sonde, the chemical absorption filter instrument for nitric acid vapor, and the infrared radiometer for nitric acid vapor. The limb instrument package (LIP), its correlative sensors, and the resulting data obtained from an engineering and four correlative flights are described.

  2. Platelet-derived Factor Concentrates with Hyaluronic Acid Scaffolds for Treatment of Deep Burn Wounds

    PubMed Central

    Minabe, Toshiharu; Yamakawa, Tomomi; Araki, Jun; Sano, Hitomi; Yoshimura, Kotaro

    2016-01-01

    Summary: A deep burn wound is a critical condition that generally necessitates vascularized tissue coverage. We performed the injection of platelet-derived factor concentrates combined with non–cross-linked hyaluronic acid scaffolds for 2 patients with critical burn wounds with bone and tendon exposure and achieved successful healing. Hyaluronic acid was considered to have served as a controlled-release carrier of platelet-derived factors, being clinically effective for the treatment of deep burn wounds. PMID:27826482

  3. Influence of various concentrations of selenic acid (IV) on the activity of soil enzymes.

    PubMed

    Nowak, J; Kaklewski, K; Klódka, D

    2002-05-27

    The aim of this experiment was the assessment of the influence of various concentrations of H2SeO3 (0.05, 0.5 and 5 mM) on the activity of soil enzymes over 112 days. The lab experiment was performed using soil samples (dust-silt black soil of 1.92% organic C content, pH 7.7), 60% maximal water capacity. The soil samples were treated with a selenic acid water solution at the concentrations mentioned above. As a reference, natural soil was used (without the selenic acid). The activity of the following enzymes was tested: beta-glucosidase, nitrate reductase, urease, dehydrogenase, acid and alkaline phosphatases. The soil was sampled at days 0, 1, 3, 7, 14, 28, 56 and 112. The results of the study have shown that the selenic acid had no effect on the activity of the beta-glucosidase in soil. In the course of the whole experiment, the applied selenic acid inhibited activity of the nitrate reductase up to 70% at 5 mM, and the activity of dehydrogenase was also decreased--by up to 85% at 5 mM, similarly to urease (with the exception of days 14 and 28), and acid phosphatase (until day 56). The activity of alkaline phosphatase was increased by the lowest concentration of selenic acid and decreased by the highest, which was found in the course of the whole experiment. The 5-mM concentration of selenic acid inhibited the activity of all the enzymes tested in this experiment.

  4. The impact of chronic imipramine treatment on amino acid concentrations in the hippocampus of mice.

    PubMed

    Nagasawa, Mao; Murakami, Tatsuro; Tomonaga, Shozo; Furuse, Mitsuhiro

    2012-09-01

    The relationship between antidepressants and monoamine concentrations in the brain has been well investigated, but few studies have investigated the relationship between antidepressants and amino acid concentrations in the brain. The purpose of the present study was therefore to investigate the effect of the chronic antidepressant imipramine on amino acid and monoamine concentrations in the mouse brain and plasma. Chronic imipramine treatment decreased the concentration of 5-hydroxyindoleaceticacid/5-hydroxytryptamine in the cerebral cortex and increased that of norepinephrine (NE) in the hippocampus. Since these changes were conspicuous effects of the antidepressant, we concluded that imipramine acts on the central nervous system. No change in amino acid concentrations in plasma was induced by chronic imipramine treatment, but several changes were confirmed in the cerebral cortex, the hypothalamus and the hippocampus. Chronic imipramine treatment caused increases in L-methionine, L-tyrosine, and L-lysine in the cerebral cortex, and an increase in L-aspartate in the hypothalamus. Contrary to this, the concentrations of L-aspartate, L-serine, L-asparagine, glycine, L-glutamine, gamma-aminobutyric acid, L-threonine, L-arginine, L-proline, L-valine, and L-methionine in the hippocampus were decreased by chronic imipramine treatment. The present results demonstrate that the metabolism of several amino acids in the brain, but not of those in plasma, was altered by chronic imipramine treatment. The findings in the present study may help to further elucidate the relationship between amino acids and the effects and side effects of antidepressants.

  5. Changes in volatile compounds in whey protein concentrate stored at elevated temperature and humidity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whey protein concentrate (WPC) has been recommended for use in emergency aid programs, but it is often stored overseas without temperature and relative humidity (RH) control, which may cause it to be rejected because of yellowing, off-flavors, or clumping. Therefore, the volatile compounds present ...

  6. Hyperspectral Imaging of a Turbine Engine Exhaust Plume to Determine Radiance, Temperature, and Concentration Spatial Distributions

    DTIC Science & Technology

    2009-03-01

    3 II. Background...12 3 . Diagram of setup for experiments conducted by Schäfer et al., and Schurmann et al. [13, 14...relative temperature and chemical species concentration from the hyperspectral datacube collected using the Telops FIRST-MWE. 3 Overview To this

  7. Physical and chemical changes in whey protein concentrate stored at elevated temperature and humidity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chemistry of whey protein concentrate (WPC) under adverse storage conditions was monitored to provide information on shelf life in hot, humid areas. WPC34 (34.9 g protein/100 g) and WPC80 (76.8 g protein/100 g) were stored for up to 18 mo under ambient conditions and at elevated temperature and...

  8. Photosynthesis in tropical cover crop legumes influenced by irradiance, external carbon dioxide concentration and temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In plantation crops perennial tropical legumes are grown as understory plants, receive limited irradiance, and are subjected to elevated levels of CO2 and temperature. Independent short-term effects of photosynthetic photon flux density (PPFD), external carbon dioxide concentration [CO2] and temper...

  9. Temperature and species-concentration measurements in turbulent flames by the CARS technique

    SciTech Connect

    Goss, L.P.; Schreiber, P.W.; Switzer, G.L.; Trump, D.D.

    1983-09-01

    Simultaneous temperature and N/sub 2/-concentration data have been obtained employing a 10-Hz coherent anti-stokes Raman spectroscopy system on two propane-air turbulent-jet diffusion flames with Reynolds numbers of 2000 and 6000. Average values, probability density functions, and correlation plots show reasonable trends for both centerline and radial profiles of the turbulent flames.

  10. A noninvasive, remote and precise method for temperature and concentration estimation using magnetic nanoparticles.

    PubMed

    Zhong, Jing; Liu, Wenzhong; Du, Zhongzhou; César de Morais, Paulo; Xiang, Qing; Xie, Qingguo

    2012-02-24

    This study describes an approach for remote measuring of on-site temperature and particle concentration using magnetic nanoparticles (MNPs) via simulation and also experimentally. The sensor model indicates that under different applied magnetic fields, the magnetization equation of the MNPs can be discretized to give a higher-order nonlinear equation in two variables that consequently separates information regarding temperature and particle concentration. As a result, on-site tissue temperature or nanoparticle concentration can be determined using remote detection of the magnetization. In order to address key issues in the higher-order equation we propose a new solution method of the first-order model from the perspective of the generalized inverse matrix. Simulations for solving the equation, as well as to optimize the solution of higher equations, were carried out. In the final section we describe a prototype experiment used to investigate the measurement of the temperature in which we used a superconducting magnetometer and commercial MNPs. The overall error after nine repeated measurements was found to be less than 0.57 K within 310-350 K, with a corresponding root mean square of less than 0.55 K. A linear relationship was also found between the estimated concentration of MNPs and the sample's mass.

  11. A statistical analysis of three ensembles of crop model responses to temperature and CO2 concentration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ensembles of process-based crop models are now commonly used to simulate crop growth and development for climate scenarios of temperature and/or precipitation changes corresponding to different projections of atmospheric CO2 concentrations. This approach generates large datasets with thousands of de...

  12. Threshold changes in rat brain docosahexaenoic acid incorporation and concentration following graded reductions in dietary alpha-linolenic acid

    PubMed Central

    Taha, Ameer Y.; Chang, Lisa; Chen, Mei

    2016-01-01

    Background This study tested the dietary level of alpha-linolenic acid (α-LNA, 18:3n-3) sufficient to maintain brain 14C-Docosahexaenoic acid (DHA, 22:6n-3) metabolism and concentration following graded α-LNA reduction. Methods 18–21 day male Fischer-344 (CDF) rats were randomized to the AIN-93G diet containing as a % of total fatty acids, 4.6% (“n-3 adequate”), 3.6%, 2.7%, 0.9% or 0.2% (“n-3 deficient”) α-LNA for 15 weeks. Rats were intravenously infused with 14C-DHA to steady state for 5 minutes, serial blood samples collected to obtain plasma and brains excised following microwave fixation. Labeled and unlabeled DHA concentrations were measured in plasma and brain to calculate the incorporation coefficient, k*, and incorporation rate, Jin. Results Compared to 4.6% α-LNA controls, k* was significantly increased in ethanolamine glycerophospholipids in the 0.2% α-LNA group. Circulating unesterified DHA and brain incorporation rates (Jin) were significantly reduced at 0.2% α-LNA. Brain total lipid and phospholipid DHA concentrations were reduced at or below 0.9% α-LNA. Conclusion Threshold changes for brain DHA metabolism and concentration were maintained at or below 0.9% dietary α-LNA, suggesting the presence of homeostatic mechanisms to maintain brain DHA metabolism when dietary α-LNA intake is low. PMID:26869088

  13. Changes in plasma amino acid concentrations with increasing age in patients with propionic acidemia.

    PubMed

    Scholl-Bürgi, Sabine; Sass, Jörn Oliver; Heinz-Erian, Peter; Amann, Edda; Haberlandt, Edda; Albrecht, Ursula; Ertl, Claudia; Sigl, Sara Baumgartner; Lagler, Florian; Rostasy, Kevin; Karall, Daniela

    2010-05-01

    The objective of the study is to analyze plasma amino acid concentrations in propionic acidemia (PA) for the purpose of elucidating possible correlations between propionyl-CoA carboxylase deficiency and distinct amino acid behavior. Plasma concentrations of 19 amino acids were measured in 240 random samples from 11 patients (6 families) with enzymatically and/or genetically proven propionic acidemia (sampling period, January 2001-December 2007). They were compared with reference values from the literature and correlated with age using the Pearson correlation coefficient test. Decreased plasma concentrations were observed for glutamine, histidine, threonine, valine, isoleucine, leucine, phenylalanine and arginine. Levels of glycine, alanine and aspartate were elevated, while values of serine, asparagine, ornithine and glutamate were normal. For lysine, proline and methionine a clear association was not possible. Significant correlations with age were observed for 13 amino acids (positive correlation: asparagine, glutamine, proline, alanine, histidine, threonine, methionine, arginine; negative correlation: leucine, phenylalanine, ornithine, glutamate and aspartate). This study gives new insight over long-term changes in plasma amino acid concentrations and may provide options for future therapies (e.g., substitution of anaplerotic substances) in PA patients.

  14. [Evaluation of folate substitution in women with epilepsy. Determination of erythrocyte folic acid concentrations].

    PubMed

    Bauer, J; Bös, M; Rück, J; Stoffel-Wagner, B

    2011-04-01

    Insufficient maternal folate concentrations appear to be a fetal risk factor for neural tube defects (NTD). Erythrocyte folate concentrations are widely accepted as an indicator of tissue folate storage. We retrospectively evaluated erythrocyte folate concentrations to examine if a recommended daily dosage of 5 mg folic acid is sufficient to balance the impact of antiepileptic drugs (AED) on folate metabolism in women with epilepsy. Data of 48 women (mean age 30.3 years) with idiopathic epilepsy with generalized seizures (n=12) or symptomatic epilepsy with focal seizures (n=36) were available, 43 women submitted to further analysis and 30 women received AED monotherapy. Duration of folic acid supplementation varied between 0.5 and 12 months. The daily dosage of folic acid ranged from 0.4 to 15 mg and 32 women received 5 mg/day. Erythrocyte folate concentrations ranged from 282 to 1596 ng/ml (mean 780 ng/ml). In 29 out of the 32 women (90.6%) on 5 mg folic acid per day, red cell folate was ≥400 ng/ml. In previous studies the risk for NTD was estimated to be 0.8‰ if red cell folate was ≥400 ng/ml. Our results suggest that 5 mg/day folic acid as preconception supplementation in women with epilepsy is effective to balance the impact of AEDs on folate metabolism in women with epilepsy.

  15. Acid tolerance in Salmonella typhimurium induced by culturing in the presence of organic acids at different growth temperatures.

    PubMed

    Alvarez-Ordóñez, Avelino; Fernández, Ana; Bernardo, Ana; López, Mercedes

    2010-02-01

    The influence of growth temperature and acidification of the culture medium up to pH 4.25 with acetic, citric, lactic and hydrochloric acids on the growth and subsequent acid resistance at pH 3.0 of Salmonella typhimurium CECT 443 was studied. The minimum pH value which allowed for S. typhimurium growth within the temperature range of 25-37 degrees C was 4.5 when the pH was reduced using citric and hydrochloric acids, and 5.4 and 6.4 when lactic acid and acetic acid were used, respectively. At high (45 degrees C) or low (10 degrees C) temperatures, the growth pH boundary was increased about 1 pH unit. The growth temperature markedly modified the acid resistance of the resulting cells. In all cases, D-values were lower for cells grown at 10 degrees C and significantly increased with increasing growth temperature up to 37 degrees C, at which D-values obtained were up to 10 times higher. Cells grown at 45 degrees C showed D-values similar to those found for cells grown at 25 degrees C. The growth of cells in acidified media, regardless of the pH value, caused an increase in their acid resistance at the four incubation temperatures, although the magnitude of the Acid Tolerance Response (ATR) observed depended on the growth temperature. Acid adapted cultures at 10 degrees C showed D-values ranging from 5.75 to 6.91 min, which turned out to be about 2 times higher than those corresponding to non-acid adapted cultures, while higher temperatures induced an increase in D-values of at least 3.5 times. Another finding was that, while at 10 and 45 degrees C no significant differences among the effect of the different acids tested in inducing an ATR were observed, when cells were grown at 25 and 37 degrees C citric acid generally turned out to be the acid which induced the strongest ATR. Results obtained in this study show that growth temperature is an important factor affecting S. typhimurium acid resistance and could contribute to find new strategies based on intelligent

  16. Low auxotrophy-complementing amino acid concentrations reduce yeast chronological life span.

    PubMed

    Gomes, Pedro; Sampaio-Marques, Belém; Ludovico, Paula; Rodrigues, Fernando; Leão, Cecília

    2007-01-01

    In the yeast Saccharomyces cerevisiae, interventions resembling caloric restriction, either by reduction of glucose or non-essential amino acid content in the medium, prolong life span and retard aging. Here we have examined the role of auxotrophy-complementing amino acid supplementation of S. cerevisiae strains in determining yeast chronological life span and stress resistance. The results obtained from cells cultured in standard amino acid concentrations revealed a reduced final biomass yield and premature aging phenotypes. These included shorter life span and indicators of oxidative stress, together with a G2/M cell cycle arrest and the appearance of a sub-G0/G1 population pointing to the occurrence of a specific cell death programme under starvation of essential amino acids. In order to overcome this starvation, five times higher amino acid concentrations were supplied to the medium as has already been commonly used by few laboratories. Such cultures reached more than five-fold higher final biomass yield in stationary phase and the early aging phenotypes were abrogated. Furthermore, in a long-lived yeast strain lacking TOR1, there was no positive effect of amino acid supplementation on longevity. On the contrary, amino acid supply had a positive effect on chronological life span of RAS2 deleted cells. This study may provide novel insights into the role of essential nutrients and their effect on aging process and raises the warning that the positive effects of caloric restriction on life span maybe restricted to non-essential nutrients. Moreover, the severe consequences on cell physiology, life span and stress resistance induced by essential amino acid imbalances presents a note of caution for those still using standard amino acid concentrations for studies with auxotrophic yeast strains.

  17. Lactic acid fermentation from food waste with indigenous microbiota: Effects of pH, temperature and high OLR.

    PubMed

    Tang, Jialing; Wang, Xiaochang; Hu, Yisong; Zhang, Yongmei; Li, Yuyou

    2016-06-01

    The effects of pH, temperature and high organic loading rate (OLR) on lactic acid production from food waste without extra inoculum addition were investigated in this study. Using batch experiments, the results showed that although the hydrolysis rate increased with pH adjustment, the lactic acid concentration and productivity were highest at pH 6. High temperatures were suitable for solubilization but seriously restricted the acidification processes. The highest lactic acid yield (0.46g/g-TS) and productivity (278.1mg/Lh) were obtained at 37°C and pH 6. In addition, the lactic acid concentration gradually increased with the increase in OLR, and the semi-continuous reactor could be stably operated at an OLR of 18g-TS/Ld. However, system instability, low lactic acid yield and a decrease in VS removal were noticed at high OLRs (22g-TS/Ld). The concentrations of volatile fatty acids (VFAs) in the fermentation mixture were relatively low but slightly increased with OLR, and acetate was the predominant VFA component. Using high-throughput pyrosequencing, Lactobacillus from the raw food waste was found to selectively accumulate and become dominant in the semi-continuous reactor.

  18. The effects of temperature and NaCl concentration on tetragonal lysozyme face growth rates

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth; Pusey, Marc Lee

    1994-01-01

    Measurements were made of the (110) and (101) face growth rates of the tetragonal form of hen egg white lysozyme at 0.1M sodium acetate buffer, pH 4.0, from 4 to 22 C and with 3.0%, 5.0%, and 7.0% NaCl used as the precipitating salt. The data were collected at supersaturation ratios ranging from approximately 4 to approximately 63. Both decreasing temperature and increasing salt concentrations shifted plots of the growth rate versus C/C(sat) to the right, i.e. higher supersaturations were required for comparable growth rates. The observed trends in the growth data are counter to those expected from the solubility data. If tetragonal lysozyme crystal growth is by addition of ordered aggregates from the solution, then the observed growth data could be explained as a result of the effects of lowered temperature and increased salt concentration on the kinetics and equilibrium processes governing protein-protein interactions in solution. The data indicate that temperature would be a more tractable means of controlling the growth rate for tetragonal lysozyme crystals contrary to the usual practice in, e.g., vapor diffusion protein crystal growth, where both the precipitant and protein concentrations are simultaneously increased. However, the available range for control is dependent upon the protein concentration, with the greatest growth rate control being at the lower concentration.

  19. Low temperature measurements of state-of-the-art concentrator solar cells

    NASA Astrophysics Data System (ADS)

    Rumyantsev, Valery D.; Chekalin, Alexander V.; Malevskiy, Dmitry A.; Shvarts, Maxim Z.; Andreev, Valery M.

    2015-09-01

    Knowing the temperature behavior of the photovoltaic parameters in multi-junction (MJ) solar cells (SCs) can give information suitable for comparing different cell structures and for estimating a potential of their operation in various environmental conditions. As a rule, the cell structures are designed specifically for terrestrial (with high sunlight concentration), or space (sometimes with relatively low concentration) applications, differing in certain, but not principal, details. Structural improvements introduced in one of the cell types may highlight the effective ways for improvements applicable for another cell type. In this work, a set of the state-of-the-art concentrator triple-junction SCs were investigated to analyze the influence of temperature in a very wide range of -170 ≤ T ≤ +85°C, together with the sunlight concentration ratio variation, on the cell performance. In particular, the PV conversion efficiencies as high as 50 - 52% (AM1.5d) have been measured in the temperature range of -120 - -150°C for the sunlight concentration ratios of C = 50 - 300 suns. Such investigations may be regarded as a tool for revealing the presence of the "parasitic" built-in energy barriers at cell structure optimization.

  20. Newtonian viscosity of high solids kraft black liquors: Effects of temperature and solids concentrations

    SciTech Connect

    Zaman, A.A.; Fricke, A.L. . Dept. of Chemical Engineering)

    1994-02-01

    The Newtonian (zero shear rate) viscosities of four different softwood kraft black liquors from a four variable-two level factorially designed experiment for pulping slash pine were determined for solids concentrations up to 84% and temperatures up to 140 C (413.2 K). Methods of measurement and estimation of zero shear rate viscosities from viscosity-shear rate data have been described and compared. The combination of the absolute reaction rates and free-volume concepts were used to express the relationship between the Newtonian viscosity and temperature. Attempts were made to obtain a generalized correlation for Newtonian viscosity as a function of temperature and solids concentrations. The results of this model and results of the previous empirical correlation have been compared and discussed.

  1. Influence of volatile fatty acid concentration stability on anaerobic degradation of linear alkylbenzene sulfonate.

    PubMed

    Okada, Dagoberto Y; Delforno, Tiago P; Esteves, Andressa S; Polizel, Juliana; Hirasawa, Julia S; Duarte, Iolanda C S; Varesche, Maria B A

    2013-10-15

    Linear alkylbenzene sulfonate (LAS) is an anionic surfactant used in cleaning products, which is usually found in wastewaters. Despite the greater LAS removal rate related to a lower concentrations of volatile fatty acids (VFA), the influence of different ranges of VFA on LAS degradation is not known. LAS degradation was evaluated in upflow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors at different ranges of VFA concentrations. The reactors were fed with a synthetic wastewater containing LAS (14 mg/L). A greater LAS removal rate (40-80%) was related to the lower and narrower range of acetic acid concentration (1-22 mg/L) in the EGSB reactor. In the UASB reactor, the acetic acid concentrations presented a wider range (2-45 mg/L), and some low LAS removal rates (around 20-25%) were observed even at low acetic acid concentrations (<10 mg/L). The high recirculation rate in the EGSB reactor improved substrate-biomass contact, which resulted in a narrower range of VFA and greater LAS removal rate.

  2. Profile of organic acid concentrations in the digestive gland and hemolymph of Biomphalaria glabrata under estivation.

    PubMed

    Bezerra, J C; Kemper, A; Becker, W

    1999-01-01

    Using high performance liquid chromatography (HPLC) analysis it was possible to determine simultaneously the concentration of organic acids (pyruvate, lactate, succinate, fumarate, malate, acetate, propionate, acetoacetate, and ss-hydroxybutyrate) in the digestive gland and the extracellular concentration of these same acids in the hemolymph of estivating Biomphalaria glabrata, the intermediate host of Schistosoma mansoni. After a 7 day period of estivation, there was a significant increase in the tissue levels of lactate, succinate, malate and acetate compared to non-estivating snails. After 14 days of estivation, the levels of lactate and acetate were also significantly elevated. The hemolymph concentrations of pyruvate and acetate increased significantly after 7 days and acetate concentrations continued to be significantly increased up to 14 days of estivation. The other organic acids studied, such as ketone body acetoacetate and ss-hydroxybutyrate or the volatile acid propionate, did not accumulate. Their tissue concentrations, however, increased on the 7th day of estivation and reached normal levels within two weeks of estivation for some of them. One should take into consideration how the reduction in metabolism can be handled under aerobic conditions, and what role anaerobic pathways may play in both energy formation and redox balance processes.

  3. IMPACT OF TIME / TEMPERATURE CURING CONDITIONS AND ALUMINATE CONCENTRATIONS ON SALTSTONE PROPERTIES

    SciTech Connect

    Harbour, J.; Edwards, T.; Williams, V.

    2009-05-05

    This report addresses the impact of (1) the time and temperature curing conditions (profile) and (2) the impact of higher aluminate concentrations in the decontaminated salt solution on Saltstone processing and performance properties. The results demonstrate that performance properties as well as some of the processing properties of Saltstone are highly sensitive to the conditions of time and temperature under which curing occurs. This sensitivity is in turn dependent on the concentration of aluminate in the salt feed solution. In general, the performance properties and indicators (Young's modulus, compressive strength and total porosity) are reduced when curing is initially carried out under high temperature. However, this reduction in performance properties is dependent on the sequence of temperatures (the time/temperature profile) experienced during the curing process. That is, samples that are subjected to a 1, 2, 3 or 4 day curing time at 60 C followed by final curing at 22 C lead to performance properties that are significantly different than the properties of grouts allowed to cure for 1, 2, 3 or 4 days at 22 C followed by a treatment at 60 C. The performance properties of Saltstone cured in the sequence of higher temperature first are generally less (and in some cases significantly less) than performance properties of Saltstone cured only at 22 C. This loss in performance was shown to be mitigated by increased slag content or cement content in the premix at the expense of fly ash. For the sequence in which the Saltstone is initially cured at 22 C followed by a higher temperature cure, the performance properties can be equal to or greater than the properties observed with curing only at 22 C curing. The results in this report indicate that in order to meaningfully measure and report the performance properties of Saltstone, one has to know the time/temperature profile conditions under which the Saltstone will be cured. This will require thermal modeling and

  4. Regional trends in soil acidification and exchangeable metal concentrations in relation to acid deposition rates.

    PubMed

    Stevens, Carly J; Dise, Nancy B; Gowing, David J

    2009-01-01

    The deposition of high levels of reactive nitrogen (N) and sulphur (S), or the legacy of that deposition, remain among the world's most important environmental problems. Although regional impacts of acid deposition in aquatic ecosystems have been well documented, quantitative evidence of wide-scale impacts on terrestrial ecosystems is not common. In this study we analysed surface and subsoil chemistry of 68 acid grassland sites across the UK along a gradient of acid deposition, and statistically related the concentrations of exchangeable soil metals (1 M KCl extraction) to a range of potential drivers. The deposition of N, S or acid deposition was the primary correlate for 8 of 13 exchangeable metals measured in the topsoil and 5 of 14 exchangeable metals in the subsoil. In particular, exchangeable aluminium and lead both show increased levels above a soil pH threshold of about 4.5, strongly related to the deposition flux of acid compounds.

  5. Interactions among temperature, moisture, and oxygen concentrations in controlling decomposition rates in a boreal forest soil

    NASA Astrophysics Data System (ADS)

    Sierra, Carlos A.; Malghani, Saadatullah; Loescher, Henry W.

    2017-02-01

    Determining environmental controls on soil organic matter decomposition is of importance for developing models that predict the effects of environmental change on global soil carbon stocks. There is uncertainty about the environmental controls on decomposition rates at temperature and moisture extremes, particularly at high water content levels and high temperatures. It is uncertain whether observed declines in decomposition rates at high temperatures are due to declines in the heat capacity of extracellular enzymes as predicted by thermodynamic theory, or due to simultaneous declines in soil moisture. It is also uncertain whether oxygen limits decomposition rates at high water contents. Here we present the results of a full factorial experiment using organic soils from a boreal forest incubated at high temperatures (25 and 35 °C), a wide range of water-filled pore space (WFPS; 15, 30, 60, 90 %), and contrasting oxygen concentrations (1 and 20 %). We found support for the hypothesis that decomposition rates are high at high temperatures, provided that enough moisture and oxygen are available for decomposition. Furthermore, we found that decomposition rates are mostly limited by oxygen concentrations at high moisture levels; even at 90 % WFPS, decomposition proceeded at high rates in the presence of oxygen. Our results suggest an important degree of interaction among temperature, moisture, and oxygen in determining decomposition rates at the soil core scale.

  6. Dependency of working temperature and equivalent constant of concentric disk-type piezoelectric transformer

    NASA Astrophysics Data System (ADS)

    Chou, I.-Mu; Lai, Yi-Ying; Wu, Wen-Jong; Lee, Chih-Kung

    2011-03-01

    This paper presents the effect of equivalent constant and output power on working temperature of concentric disk-type piezoelectric transformer. To analyze the energy loss in the piezoelectric transformer, the equivalent circuit model was built. Losses in the piezoelectric transformer are considered generally having two different parts: dielectric loss and mechanical loss. First of all, a measurement circuit based on an impedance analyzer was built. Then, the circuit simulation software PSIM was employed to verify the experimental results obtained. Secondly, according to the experimental results, temperature and input voltage are the two factors which influenced the energy loss in a piezoelectric transformer. As the input voltage and temperature increased, the energy loss rises, as well. In addition, when the input voltage is low, the temperature becomes the main influencing factor for energy loss of the piezoelectric transformer. On the other hand, when the input voltage is high, the main factor for energy loss of the piezoelectric transformer is the input voltage other than the temperature. Furthermore, the control loop that dealt with the energy loss of the piezoelectric transformer was proposed. At different temperatures, the variations of losses of the piezoelectric transformer are presented in this paper. Finally, the dielectric loss and mechanical loss are combined to analyze the losses within piezoelectric transformers. Then, the relationship between the output power of the piezoelectric transformer and the temperature was revealed. The result showed that as the temperature increased, the output power decreased.

  7. Effect of folic acid supplementation on homocysteine concentration and association with training in handball players

    PubMed Central

    2013-01-01

    Background Strenuous physical activity can alter the status of folic acid, a vitamin directly associated with homocysteine (Hcy); alterations in this nutrient are a risk factor for cardiovascular disease. Handball players are a population at risk for nutrient deficiency because of poor dietary habits. Objective The aims of this study were to evaluate nutritional status for macronutrients and folic acid in members of a high-performance handball team, and determine the effect of a nutritional intervention with folic acid supplementation and education. Design A total of 14 high-performance handball players were monitored by recording training time, training intensity (according to three levels of residual heart rate (RHR): <60%, 60%–80% and >80%), and subjective perceived exertion (RPE) during a 4-month training period. Nutritional, laboratory and physical activity variables were recorded at baseline (Week 0), after 2 months of dietary supplementation with 200 μg folic acid (50% of the recommended daily allowance) (Week 8) and after 2 months without supplementation (Week 16). We compared training load and analyzed changes in plasma concentrations of Hcy before and after the intervention. Results Bivariate analysis showed a significant negative correlation (P < 0.01) between Hcy and folic acid concentrations (r = −0.84) at Week 8, reflecting a significant change in Hcy concentration (P < 0.05) as a result of hyperhomocysteinemia following the accumulation of high training loads. At Week 16 we observed a significant negative correlation (P < 0.01) between Hcy concentration and training time with an RHR <60%, indicating that aerobic exercise avoided abrupt changes in Hcy and may thus reduce the risk of cardiovascular accidents in high-performance athletes. Conclusion Integral monitoring and education are needed for practitioners of handball sports to record their folic acid status, a factor that directly affects Hcy metabolism. Folic acid

  8. Thermophysical properties of carboxylic and amino acid buffers at subzero temperatures: relevance to frozen state stabilization.

    PubMed

    Sundaramurthi, Prakash; Suryanarayanan, Raj

    2011-06-02

    Macromolecules and other thermolabile biologicals are often buffered and stored in frozen or dried (freeze-dried) state. Crystallization of buffer components in frozen aqueous solutions and the consequent pH shifts were studied in carboxylic (succinic, malic, citric, tartaric acid) and amino acid (glycine, histidine) buffers. Aqueous buffer solutions were cooled from room temperature (RT) to -25 °C and the pH of the solution was measured as a function of temperature. The thermal behavior of frozen solutions was investigated by differential scanning calorimetry (DSC), and the crystallized phases were identified by X-ray diffractometry (XRD). Based on the solubility of the neutral species of each buffer system over a range of temperatures, it was possible to estimate its degree of supersaturation at the subambient temperature of interest. This enabled us to predict its crystallization propensity in frozen systems. The experimental and the predicted rank orderings were in excellent agreement. The malate buffer system was robust with no evidence of buffer component crystallization and hence negligible pH shift. In the citrate and tartrate systems, at initial pH < pK(a)(2), only the most acidic buffer component (neutral form) crystallized on cooling, causing an increase in the freeze-concentrate pH. In glycine buffer solutions, when the initial pH was ∼3 units < isoelectric pH (pI = 5.9), β-glycine crystallization caused a small decrease in pH, while a similar effect but in the opposite direction was observed when the initial pH was ∼3 units > pI. In the histidine buffer system, depending on the initial pH, either histidine or histidine HCl crystallized.

  9. Influence of temperature and hydroxyl concentration on incipient soot formation in premixed flames

    NASA Technical Reports Server (NTRS)

    Harris, M. M.; King, G. B.; Laurendeau, N. M.

    1986-01-01

    Critical equivalence ratios phi(c) have been measured as a function of temperature (1600-1880 K) for premixed flames at atmospheric pressure. The five fuels studied are methane, ethane, propane, ethylene, and acetylene. The flames were stabilized on a flat flame burner and the temperatures were measured using sodium D-line reversal. A linear relationship is found between In phi(c) and 1/T for each fuel. Based on a global kinetic model in which soot precursors are formed by fuel pyrolysis and oxidized by OH, a predictive correlation has been developed which shows the influence of temperature, OH concentration, and C/H ratio on sooting tendency. This correlation describes all of the measured phi(c) versus temperature data, suggesting that the overall mechanism of soot formation is similar among aliphatic fuels.

  10. Room-temperature ferroelectricity of SrTiO{sub 3} films modulated by cation concentration

    SciTech Connect

    Yang, Fang; Zhang, Qinghua; Yang, Zhenzhong; Gu, Junxing; Liang, Yan; Li, Wentao; Wang, Weihua; Jin, Kuijuan; Gu, Lin; Guo, Jiandong

    2015-08-24

    The room-temperature ferroelectricity of SrTiO{sub 3} is promising for oxide electronic devices controlled by multiple fields. An effective way to control the ferroelectricity is highly demanded. Here, we show that the off-centered antisite-like defects in SrTiO{sub 3} films epitaxially grown on Si (001) play the determinative role in the emergence of room-temperature ferroelectricity. The density of these defects changes with the film cation concentration sensitively, resulting in a varied coercive field of the ferroelectric behavior. Consequently, the room-temperature ferroelectricity of SrTiO{sub 3} films can be effectively modulated by tuning the temperature of metal sources during the molecular beam epitaxy growth. Such an easy and reliable modulation of the ferroelectricity enables the flexible engineering of multifunctional oxide electronic devices.

  11. Low-power concentration and separation using temperature gradient focusing via Joule heating.

    PubMed

    Kim, Sun Min; Sommer, Greg J; Burns, Mark A; Hasselbrink, Ernest F

    2006-12-01

    We present an experimental study of temperature gradient focusing (TGF) exploiting an inherent Joule heating phenomenon. A simple variable-width PDMS device delivers rapid and repeatable focusing of model analytes using significantly lower power than conventional TGF techniques. High electric potential applied to the device induces a temperature gradient within the microchannel due to the channel's variable width, and the temperature-dependent mobility of the analytes causes focusing at a specific location. The PDMS device also shows simultaneous separation and concentration capability of a mixture of two sample analytes in less than 10 min. An experiment combining Joule heating with external heating/cooling further supports the hypothesis that temperature is indeed the dominant factor in achieving focusing with this technique.

  12. High temperature properties of alloys being considered for design of a concentric canister launcher

    SciTech Connect

    Kassner, M E; Lowry, R W; Rosen, R S

    1998-06-01

    This report describes a study to determine the high temperature mechanical properties of several titanium alloys and to compare them with properties of AISI 316L stainless steel and ASTM A 387 structural steel. The steel materials are less costly to procure but exhibit good resistance to corrosion in seawater environments. Six titanium alloys were evaluated as candidate materials for use in a c Concentric Canister Launcher (CCL). Each titanium alloy was tested at three temperatures (68°, 2000°F, and 2400°F). Strain-rate changes tests were used to determine the strain rate sensitivity of the alloys at each test temperature. Optical metallography was performed on two of the alloys to determine the relationship between test temperature and microstructure (presence of second phase precipitates, grain size). Complete test results are includes, a long with figures and tables of test data.

  13. [The Influence of Different Ionic Concentration in Cell Physiological Solution on Temperature Measurement by Near Infrared].

    PubMed

    Zheng, Yu; Chen, Xiong; Zhou, Mei; Wang, Meng-jun; Wang, Jin-hai; Li, Gang; Cui, Jun

    2015-10-01

    It is important to real-timely monitor and control the temperature of cell physiological solution in patch clamp experiments, which can eliminate the uncertainty due to temperature and improve the measurement accuracy. This paper studies the influence of different ions at different concentrations in the physiological solution on precision of a temperature model by using near infrared spectroscopy and chemometrics method. Firstly, we prepared twelve sample solutions respectively with the solutes of CaCl2, KCl and NaCl at four kinds of concentrations, and collected the spectra of different solutions at the setting temperature range 20-40 degrees C, the range of the spectra is 9 615-5 714 cm(-1). Then we divided the spectra of each solution at different temperatures into two parts (a training set and a prediction set) by three methods. Interval partial least squares method was used to select an effective wavelength range and develop calibration models between the spectra in the selected range and temperature velues. The experimental results show that RMSEP of CaCl2 solution with 0.25 g x mL(-1) is maximum, the result of the three tests are 0.386 3, 0.303 7 and 0.337 2 degrees C, RMSEP of NaCl with 0.005 g x mL(-1) solution is minimum, the result of the three tests are 0.220 8, 0.155 3 and 0.145 2 degrees C. The experimental results indicate that Ca2+ has the greatest influence on the accuracy of the temperature model of the cell physiological solution, then K+, and Na+ has the least influence. And with the ionic concentration increasing, the model accuracy decreases. Therefore; when we build the temperature model of cell physiological solution, it is necessary to change the proportion of the three kinds of main ions in cell physiological solution reasonably in order to correct the effects of different ionic concentrations in physiological solution and improve the accuracy of temperature measurements by near infrared spectroscopy.

  14. Tangential Flow Ultrafiltration Allows Purification and Concentration of Lauric Acid-/Albumin-Coated Particles for Improved Magnetic Treatment

    PubMed Central

    Zaloga, Jan; Stapf, Marcus; Nowak, Johannes; Pöttler, Marina; Friedrich, Ralf P.; Tietze, Rainer; Lyer, Stefan; Lee, Geoffrey; Odenbach, Stefan; Hilger, Ingrid; Alexiou, Christoph

    2015-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are frequently used for drug targeting, hyperthermia and other biomedical purposes. Recently, we have reported the synthesis of lauric acid-/albumin-coated iron oxide nanoparticles SEONLA-BSA, which were synthesized using excess albumin. For optimization of magnetic treatment applications, SPION suspensions need to be purified of excess surfactant and concentrated. Conventional methods for the purification and concentration of such ferrofluids often involve high shear stress and low purification rates for macromolecules, like albumin. In this work, removal of albumin by low shear stress tangential ultrafiltration and its influence on SEONLA-BSA particles was studied. Hydrodynamic size, surface properties and, consequently, colloidal stability of the nanoparticles remained unchanged by filtration or concentration up to four-fold (v/v). Thereby, the saturation magnetization of the suspension can be increased from 446.5 A/m up to 1667.9 A/m. In vitro analysis revealed that cellular uptake of SEONLA-BSA changed only marginally. The specific absorption rate (SAR) was not greatly affected by concentration. In contrast, the maximum temperature Tmax in magnetic hyperthermia is greatly enhanced from 44.4 °C up to 64.9 °C by the concentration of the particles up to 16.9 mg/mL total iron. Taken together, tangential ultrafiltration is feasible for purifying and concentrating complex hybrid coated SPION suspensions without negatively influencing specific particle characteristics. This enhances their potential for magnetic treatment. PMID:26287178

  15. Tangential Flow Ultrafiltration Allows Purification and Concentration of Lauric Acid-/Albumin-Coated Particles for Improved Magnetic Treatment.

    PubMed

    Zaloga, Jan; Stapf, Marcus; Nowak, Johannes; Pöttler, Marina; Friedrich, Ralf P; Tietze, Rainer; Lyer, Stefan; Lee, Geoffrey; Odenbach, Stefan; Hilger, Ingrid; Alexiou, Christoph

    2015-08-14

    Superparamagnetic iron oxide nanoparticles (SPIONs) are frequently used for drug targeting, hyperthermia and other biomedical purposes. Recently, we have reported the synthesis of lauric acid-/albumin-coated iron oxide nanoparticles SEON(LA-BSA), which were synthesized using excess albumin. For optimization of magnetic treatment applications, SPION suspensions need to be purified of excess surfactant and concentrated. Conventional methods for the purification and concentration of such ferrofluids often involve high shear stress and low purification rates for macromolecules, like albumin. In this work, removal of albumin by low shear stress tangential ultrafiltration and its influence on SEON(LA-BSA) particles was studied. Hydrodynamic size, surface properties and, consequently, colloidal stability of the nanoparticles remained unchanged by filtration or concentration up to four-fold (v/v). Thereby, the saturation magnetization of the suspension can be increased from 446.5 A/m up to 1667.9 A/m. In vitro analysis revealed that cellular uptake of SEON(LA-BSA) changed only marginally. The specific absorption rate (SAR) was not greatly affected by concentration. In contrast, the maximum temperature Tmax in magnetic hyperthermia is greatly enhanced from 44.4 °C up to 64.9 °C by the concentration of the particles up to 16.9 mg/mL total iron. Taken together, tangential ultrafiltration is feasible for purifying and concentrating complex hybrid coated SPION suspensions without negatively influencing specific particle characteristics. This enhances their potential for magnetic treatment.

  16. Indonesian low rank coal oxidation: The effect of H2O2 concentration and oxidation temperature

    NASA Astrophysics Data System (ADS)

    Rahayu, S. S.; Findiati, F.; Aprilia, F.

    2016-11-01

    Extraction of Indonesian low rank coals by alkaline solution has been performed to isolate the humic substances. Pretreatments of the coals by oxidation using H2O2 prior to extraction are required to have higher yield of humic substances. In the previous research, only the extraction process was considered. Therefore, the effects of reaction temperature and residence time on coal oxidation and composition of extract residues are also investigated in this research. The oxidation temperatures studied were 40°C, 50°C, and 70°C and the H2O2 concentrations studied were 5%, 15%, 20 %, and 30 %. All the oxidation variables were studied for 90 minutes. The results show that the higher the concentration of H2O2 used, the less oxidized coal produced. The same trend was obtained by using higher oxidation temperature. The effect of H2O2 concentration, oxidation temperature and reaction time to the yield of humic substances extraction have positive trends.

  17. Temperature-dependent transformation thermotics for unsteady states: Switchable concentrator for transient heat flow

    NASA Astrophysics Data System (ADS)

    Li, Ying; Shen, Xiangying; Huang, Jiping; Ni, Yushan

    2016-04-01

    For manipulating heat flow efficiently, recently we established a theory of temperature-dependent transformation thermotics which holds for steady-state cases. Here, we develop the theory to unsteady-state cases by considering the generalized Fourier's law for transient thermal conduction. As a result, we are allowed to propose a new class of intelligent thermal metamaterial - switchable concentrator, which is made of inhomogeneous anisotropic materials. When environmental temperature is below or above a critical value, the concentrator is automatically switched on, namely, it helps to focus heat flux in a specific region. However, the focusing does not affect the distribution pattern of temperature outside the concentrator. We also perform finite-element simulations to confirm the switching effect according to the effective medium theory by assembling homogeneous isotropic materials, which bring more convenience for experimental fabrication than inhomogeneous anisotropic materials. This work may help to figure out new intelligent thermal devices, which provide more flexibility in controlling heat flow, and it may also be useful in other fields that are sensitive to temperature gradient, such as the Seebeck effect.

  18. Temperature Dependent Measurement And Simulation Of Fresnel Lenses For Concentrating Photovoltaics

    NASA Astrophysics Data System (ADS)

    Hornung, Thorsten; Bachmaier, Andreas; Nitz, Peter; Gombert, Andreas

    2010-10-01

    Concentrating photovoltaics (CPV) require large areas of optical components that concentrate incident sunlight effectively onto a solar cell. Fresnel lenses are often used as primary optical component providing this concentration. When applied in the field, varying conditions during operation lead to variations in lens temperature which has a strong impact on the optical efficiency of the lenses. A setup for indoor characterization with the ability to heat lens plates allows for the assessment of the quality of Fresnel lenses by means of their irradiance profiles in the focal plane. To analyze the measured temperature dependency we simulate thermal deformations of the lens geometry with finite element method (FEM) tools and use the resulting lens geometry as an input to ray tracing simulations. We performed high accuracy measurements of the temperature and wavelength dependent refractive indices of relevant lens materials to obtain additional input data for computer simulations. A close match between computer simulations and measurements of the irradiance in the focal plane could be achieved, validating our simulation approach. This allows us to judge and optimize the temperature dependence of new lens designs before building and testing prototypes. The simulations themselves allow us to analyze and understand all superimposed effects in detail. The developed tools in combination with detailed solar resource data and knowledge of the CPV system will be the basis for future assessment of overall performance and further optimization of optics for CPV applications.

  19. Effect of temperature and concentration on thermal conductivity and viscosity of ferrofluid loaded with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Shahsavar, A.; Saghafian, M.; Salimpour, M. R.; Shafii, M. B.

    2016-10-01

    The aim of this paper is to investigate the thermal conductivity and viscosity of a hybrid nanofluid containing tetramethylammonium hydroxide (TMAH) coated Fe3O4 nanoparticles and gum arabic (GA) coated carbon nanotubes (CNTs), experimentally. The magnetic nanoparticles and CNTs are physically attached as the result of interaction between the TMAH and GA molecules. The morphology and structure of the samples are characterized with X-ray diffraction (XRD) and transmission electron microscopy (TEM). The experiments are carried out in the magnetic nanoparticles volume concentration range of 0.1-0.9 %, CNT volume concentration range of 0.05-1.35 % and the temperature range of 25-55 °C. The viscosity of the hybrid nanofluid increases with the increase of volume concentration, while it decreases with the increase of temperature. Besides, results show that hybrid nanofluid behaves as a shear thinning fluid. Furthermore, it is observed that the thermal conductivity of the hybrid nanofluid enhances with temperature and volume concentration.

  20. The influence of HCl concentration and demineralization temperature of Atrina pectinata shells on quality of chitin

    NASA Astrophysics Data System (ADS)

    Nugroho, Intan Lazuardi; Pursetyo, Kustiawan Tri; Masithah, Endang Dewi

    2017-02-01

    Atrina pectinata is one of shells species widely consumed by people, which means the high consumption will generate the availability of shells in the environment as waste. Chitin can be produced from the shells. Shells contain quite high minerals that it should be demineralized to reduce the mineral content from the shells. This study aimed to determine the effect of HCl concentration and temperature affect chitin characteristics as the result of demineralization process from pen shells. The method based on two steps, there were demineralization and deproteination. This study used Completely Randomized Design (CRD) with two factors, including HCl concentration (2N, 4N, and 6N) and temperature (33°C and 60°C) which consists six combination treatments and three replications. Data was analyzed by using Analysis of Variance (ANOVA) and followed by Duncan's Multiple Range Test. The results showed that interaction of HCl concentration and temperature has significant effect (p<0.05) to ash content of chitin. The use concentration of 6N and 33°C produced the lowest ash content. Characteristics chitin resulted from the treatment of 6N and 33°C produced ash content 25.33% ± 6.82, moisture content 3.67% ± 1.10, yield 0.72% ± 0.12 and protein content 5.86%.

  1. Effects of relative humidity and root temperature on calcium concentration and tipburn development in lettuce.

    PubMed

    Collier, G F; Tibbitts, T W

    1984-03-01

    Growth chamber studies were undertaken with a tipburn-sensitive cultivar of romaine lettuce (Lactuca sativa L. cv. Lobjoits Green Cos) grown under a photosynthetic photon flux density of 320 micromoles s-1 m-2 for 16 hours; light and dark temperatures were 26.0 degrees and 12.5 degrees C, respectively. As the relative humidity (RH) during the light period was decreased from 74% to 51%, growth was retarded, Ca concentration increased, and the onset of tipburn delayed. Decreasing RH during the dark period from 95% to 90% reduced growth and resulted in lower Ca concentrations and earlier tipburn development. Further decreases from 90% to 65% caused no additional change in growth or tipburn response. Root temperatures of 23.5 degrees, compared with 15.0 degrees, slightly increased Ca concentration but induced earlier tipburn development. Ca concentrations were increased and tipburn delayed by humidity conditions which provided large diurnal fluctuations in water potential in the plant and which encouraged root pressure flow during the dark period. Elevated root temperatures did not provide expected increases in Ca accumulation in young leaves.

  2. Effect of growth temperature on cellular fatty acids in sulphate-reducing bacteria.

    PubMed

    Könneke, Martin; Widdel, Friedrich

    2003-11-01

    The effect of growth temperature on the cellular fatty acid composition of sulphate-reducing bacteria (SRB) was studied in 12 species belonging to eight genera including psychrophiles and mesophiles. Most of these species were of marine origin. The investigated SRB with the exception of four Desulfobacter species exhibited only a minor increase in the proportion of cis-unsaturated fatty acids (by < or = 5% per 10 degrees C) when the growth temperature was decreased; psychrophiles maintained their typically high content of cis-unsaturated fatty acids (around 75% of total fatty acids) nearly constant. The four Desulfobacter species, however, increased the proportion of cis-unsaturated among total fatty acids significantly (by > or =14% per 10 degrees C; measured in late growth phase) with decreasing growth temperature. The ratio between unsaturated and saturated fatty acids in Desulfobacter species changed not only with the growth temperature, but also with the growth state in batch cultures at constant temperature. Changes of cellular fatty acids were studied in detail with D. hydrogenophilus, the most psychrotolerant (growth range 0-35 degrees C) among the mesophilic SRB examined. Desulfobacter hydrogenophilus also formed cis-9,10-methylenehexadecanoic acid (a cyclopropane fatty acid) and 10-methylhexadecanoic acid. At low growth temperature (12 degrees C), the relative amount of these fatty acids was at least threefold lower; this questions the usefulness of 10-methylhexadecanoic acid as a reliable biomarker of Desulfobacter in cold sediments.

  3. Salicylic acid induces apoptosis in colon carcinoma cells grown in-vitro: Influence of oxygen and salicylic acid concentration

    SciTech Connect

    Zitta, Karina; Meybohm, Patrick; Bein, Berthold; Huang, Ying; Heinrich, Christin; Scholz, Jens; Steinfath, Markus; Albrecht, Martin

    2012-04-15

    In solid tumors the hypoxic environment can promote tumor progression and resistance to therapy. Recently, acetylsalicylic acid a major component of analgesic drugs and its metabolite salicylic acid (SA) have been shown to reduce the risk of colon cancer, but the mechanisms of action remain still unclear. Here we elucidate the effects of physiologically relevant concentrations of SA on colon carcinoma cells (CaCo-2) grown under normoxic and hypoxic conditions. Western blotting, caspase-3/7 apoptosis assays, MTS cell-proliferation assays, LDH cytotoxicity assays and hydrogen peroxide measurements were performed to investigate the effects of 1 and 10 {mu}M SA on CaCo-2 cells grown under normoxic conditions and cells exposed to hypoxia. Under normoxic conditions, SA did not influence cell proliferation or LDH release of CaCo-2 cells. However, caspase-3/7 activity was significantly increased. Under hypoxia, cell proliferation was reduced and LDH release and caspase-3/7 activities were increased. None of these parameters was altered by the addition of SA under hypoxic conditions. Hypoxia increased hydrogen peroxide concentrations 300-fold and SA significantly augmented the release of hydrogen peroxide under normoxic, but not under hypoxic conditions. Phosphorylation of the pro-survival kinases akt and erk1/2 was not changed by SA under hypoxic conditions, whereas under normoxia SA reduced phosphorylation of erk1/2 after 2 hours. We conclude that in colon carcinoma cells effects of SA on apoptosis and cellular signaling are dependent on the availability of oxygen. -- Highlights: Black-Right-Pointing-Pointer Effects of salicylic acid on colon carcinoma cells grown under normoxic and hypoxic conditions Black-Right-Pointing-Pointer Salicylic acid increases caspase-3/7 activity and hydrogen peroxide release under normoxia Black-Right-Pointing-Pointer Salicylic acid decreases pro-survival erk-1/2 phosphorylation under normoxia Black-Right-Pointing-Pointer Salicylic acid does

  4. Acid and organic aerosol coatings on magnetic nanoparticles increase iron concentrations in human airway epithelial cells.

    PubMed

    Ghio, Andrew J; Dailey, Lisa A; Richards, Judy H; Jang, Myoseon

    2009-07-01

    Numerous industrial applications for man-made nanoparticles have been proposed. Interactions of nanoparticles with agents in the atmosphere may impact human health. We tested the postulate that in vitro exposures of respiratory epithelial cells to airborne magnetic nanoparticles (MNP; Fe(3)O(4)) with and without a secondary organic aerosol (SOA) and an inorganic acid could affect iron homeostasis, oxidative stress, and interleukin (IL)-8 release. Cell iron concentrations were increased after exposures to MNP and values were further elevated with co-exposures to either SOA or inorganic acid. Increased expression of ferritin and elevated levels of RNA for DMT1, proteins for iron storage and transport respectively, followed MNP exposures, but values were significant for only those with co-exposures to inorganic acid and organic aerosols. Cell iron concentration corresponded to a measure of oxidative stress in the airway epithelial cells; MNP with co-exposures to SOA and inorganic acid increased both available metal and indices of oxidant generation. Finally, the release of a proinflammatory cytokine (i.e. IL-8) by the exposed cells similarly increased with cell iron concentration. We conclude that MNP can interact with a SOA and an inorganic acid to present metal in a catalytically reactive state to cultured respiratory cells. This produces an oxidative stress to affect a release of IL-8.

  5. Production of fuel ethanol from bamboo by concentrated sulfuric acid hydrolysis followed by continuous ethanol fermentation.

    PubMed

    Sun, Zhao-Yong; Tang, Yue-Qin; Iwanaga, Tomohiro; Sho, Tomohiro; Kida, Kenji

    2011-12-01

    An efficient process for the production of fuel ethanol from bamboo that consisted of hydrolysis with concentrated sulfuric acid, removal of color compounds, separation of acid and sugar, hydrolysis of oligosaccharides and subsequent continuous ethanol fermentation was developed. The highest sugar recovery efficiency was 81.6% when concentrated sulfuric acid hydrolysis was carried out under the optimum conditions. Continuous separation of acid from the saccharified liquid after removal of color compounds with activated carbon was conducted using an improved simulated moving bed (ISMB) system, and 98.4% of sugar and 90.5% of acid were recovered. After oligosaccharide hydrolysis and pH adjustment, the unsterilized saccharified liquid was subjected to continuous ethanol fermentation using Saccharomycescerevisiae strain KF-7. The ethanol concentration, the fermentation yield based on glucose and the ethanol productivity were approximately 27.2 g/l, 92.0% and 8.2 g/l/h, respectively. These results suggest that the process is effective for production of fuel ethanol from bamboo.

  6. NHI-Acid Concentration Membranes -- Membrane Recommendations for the S-I Cycle

    SciTech Connect

    Frederick F Stewart

    2007-03-01

    Scope: The purpose of this draft report is to make recommendations concerning the applicability of specific membrane materials for acid concentration processes to the Sulfur-Iodine (S-I) thermochemical cycle integrated laboratory scale (ILS) demonstration. Introduction Acid concentration membrane processes have been studied for possible inclusion in the Sulfur-Iodine integrated laboratory scale (S-I ILS) demonstration. The need for this technology is driven by the chemical processes required for economical water splitting using the S-I cycle. Of the chemical processes inherent to the S-I cycle that have been identified as targets for deployment of membrane technology, three have been studied during the past three fiscal years as a part of the DOE Nuclear Hydrogen Initiative. First, the ability to concentrate hydriodic acid (HI) and iodine mixtures was sought as a method for aiding in the isolation of HI away from water and iodine. Isolated HI would then be delivered to the HI decomposition process for liberation of product hydrogen. Second, an extension of this technology to sulfuric acid was proposed to benefit sulfuric acid decomposition recycle. Third, decomposition of HI to form hydrogen is equilibrium limited. Removal of hydrogen, utilizing Le Chatelier’s principle, will increase to overall conversion and thus increasing the efficiency of the S-I cycle.

  7. Biofilter for generation of concentrated sulphuric acid from H2S.

    PubMed

    Rabbani, K A; Charles, W; Kayaalp, A; Cord-Ruwisch, R; Ho, G

    2016-08-01

    Biofilters are used for the conversion of odorous hydrogen sulphide to odourless sulphate in wastewater treatment plants under the right conditions of moisture and pH. One of the consequences of maintaining the suitable pH and moisture content is the production of large volumes of weakly acidic leachate. This paper presents a biofilter with a maximum H2S elimination capacity of 16.3 g m(-3) h(-1) and removal efficiency greater than 95 % which produces small volumes (1 mL of solution L(-1) of reactor day(-1)) of sulphuric acid with a concentration greater than 5.5 M after 150 days of continuous operation. The concentrated sulphuric acid was produced by intermittently trickling a minimum amount of nutrient solution down the upflow biofilter which created a moisture and pH gradient within the biofilter resulting in an environment at the top for the bacterial conversion of H2S, while sulphuric acid was accumulated at the base. Genetic diversity profiling of samples taken from different sections of the biofilter confirms that the upper sections of the biofilter had the best environment for the bacteria to convert H2S to sulphate. The formation of concentrated sulphuric acid presents an opportunity for the recovery of sulphur from the waste stream as a usable product.

  8. Effect of sulfuric acid concentration of bentonite and calcination time of pillared bentonite

    NASA Astrophysics Data System (ADS)

    Mara, Ady; Wijaya, Karna; Trisunaryati, Wega; Mudasir

    2016-04-01

    An activation of natural clay has been developed. Activation was applied by refluxing the natural bentonite in variation of the sulfuric acid concentration and calcination time of pillared bentonite (PLC). Calcination was applied using oven in microwave 2,45 GHz. Determination of acidity was applied by measuring the amount of adsorbed ammonia and pyridine. Morphological, functional groups and chrystanility characterizations were analyzed using SEM, TEM, FTIR and XRD. Porosity was analyzed using SSA. The results showed that the greater of the concentration of sulfuric acid and calcination time was, the greater the acidity of bentonite as well as the pore diameter were. FTIR spectra showed no fundamental changes in the structure of the natural bentonite, SEM, and TEM images were showing an increase in space or field due to pillarization while the XRD patterns showed a shift to a lower peak. Optimization was obtained at a concentration of 2 M of sulfuric acid and calcination time of 20 minutes, keggin ion of 2.2 and suspension of 10 mmol, respectively each amounted to 11.7490 mmol/gram of ammonia and 2.4437 mmol/gram of pyridine with 154.6391 m2/gram for surface area, 0.130470 m3/gram of pore volume and 3.37484 nm of pore diameter.

  9. Effects of temperature and alkali concentration on the dynamic interfacial tension between heavy oil and alkaline solutions

    SciTech Connect

    Chiwetelu, C.I.; Neale, G.H.; Hornof, V. ); George, A.E. )

    1992-01-01

    This paper deals with the screening of a number of alkaline reagents for potential application in the waterflooding of heavy oil reservoirs at moderate temperatures. Sodium hydroxide, sodium metasilicate and sodium orthosilicate were all screened in accordance with a novel methodology that is based on physical and interfacial property measurements for selecting the most appropriate alkali for a target crude. The experimental oil was a Saskatchewan crude with an acid number of 1.88 mg KOH/g oil and a viscosity of 475 mPa.s at 25{degrees} C. The interfacial tension between this oil and distilled water was measured at various temperatures ranging from 25{degrees} C to 75{degrees} C. These tension values were relatively unaffected by changes in temperature as well as by the contact time between the two phases. However, the viscosity of the oil decreased by 87% when the temperature was raised from 35{degrees} C to 75{degrees} C. The addition of small quantities of the alkaline reagents (up to a maximum concentration of 500 mM in salt-free water) resulted in significant reductions in the interfacial tension.

  10. Positive effects of growth at suboptimal temperature and high salt concentration on long-term survival of Lactobacillus sakei.

    PubMed

    Marceau, Anika; Zagorec, Monique; Champomier-Vergès, Marie Christine

    2003-01-01

    Lactobacillus sakei is a lactic acid bacterium commonly found on fresh meat and represents the predominant flora of vacuum-packed meat. In the present article, we studied the behavior of L. sakei in a chemically defined medium under various growth conditions relative to temperature or NaCl concentration. Growth occurred at each temperature, but growth rate and final cell density decreased at low temperature and survival was enhanced. In the presence of NaCl, we also observed a longer doubling time and a lower final cell density together with an enhanced long-term survival. When both conditions were combined, the long-term survival was greatly increased to about 28 weeks. Differences in cell morphology were observed under electron microscopy when cells were grown at low temperature in the presence of salt. We speculate that these are due to modifications in membrane structure. These results show that L. sakei is able to adapt to these environmental conditions and that slow growth is clearly associated with enhanced long-term survival.

  11. Spatially Resolved Temperature and Water Vapor Concentration Distributions in Supersonic Combustion Facilities by TDLAT

    NASA Technical Reports Server (NTRS)

    Busa, K. M.; McDaniel J. C.; Diskin, G. S.; DePiro, M. J.; Capriotti, D. P.; Gaffney, R. L.

    2012-01-01

    Detailed knowledge of the internal structure of high-enthalpy flows can provide valuable insight to the performance of scramjet combustors. Tunable Diode Laser Absorption Spectroscopy (TDLAS) is often employed to measure temperature and species concentration. However, TDLAS is a path-integrated line-of-sight (LOS) measurement, and thus does not produce spatially resolved distributions. Tunable Diode Laser Absorption Tomography (TDLAT) is a non-intrusive measurement technique for determining two-dimensional spatially resolved distributions of temperature and species concentration in high enthalpy flows. TDLAT combines TDLAS with tomographic image reconstruction. More than 2500 separate line-of-sight TDLAS measurements are analyzed in order to produce highly resolved temperature and species concentration distributions. Measurements have been collected at the University of Virginia's Supersonic Combustion Facility (UVaSCF) as well as at the NASA Langley Direct-Connect Supersonic Combustion Test Facility (DCSCTF). Due to the UVaSCF s unique electrical heating and ability for vitiate addition, measurements collected at the UVaSCF are presented as a calibration of the technique. Measurements collected at the DCSCTF required significant modifications to system hardware and software designs due to its larger measurement area and shorter test duration. Tomographic temperature and water vapor concentration distributions are presented from experimentation on the UVaSCF operating at a high temperature non-reacting case for water vitiation level of 12%. Initial LOS measurements from the NASA Langley DCSCTF operating at an equivalence ratio of 0.5 are also presented. Results show the capability of TDLAT to adapt to several experimental setups and test parameters.

  12. Evidence of Causality Between the Atmospheric Concentration Level of Carbon Dioxide and Temperature

    NASA Astrophysics Data System (ADS)

    Forbes, K. F.

    2014-12-01

    Climate change skeptics remain unconvinced that increases in the atmospheric concentration of carbon dioxide (CO2) has any climate or meteorological implications. In contrast, many climate scientists believe that increases in CO2 concentration levels do indeed have climate and meteorological consequences but that it is impossible to disentangle these effects from those of other factors. This paper contends that it is possible to assess the effects of CO2 and other greenhouse gases on weather. This paper explores the relationship between the atmospheric concentration of CO2 and the dry-bulb temperature using hourly CO2atmospheric concentration and solar irradiance data from the Mauna Loa Observatory (MLO) in Hawaii. The starting point of this paper is the recognition that meteorologists do not explicitly take CO2-induced temperature changes into account when making weather forecasts. The analysis makes use of day-ahead hourly weather forecast data to control for expected weather conditions exclusive of CO2 considerations. The analysis employs a two-step procedure. In the first step, the issue of functional form is addressed. Using the results of the first step as a base, an autoregressive moving average (ARMA) process is then modeled. The estimation results are consistent with the hypothesis that the hourly CO2 concentration level has implications for temperature. An out-of-sample forecast is then performed using six months of hourly data. Consistent with the existence of a causal relationship, the inclusion of the CO2 level as an explanatory variable improves the accuracy of the forecast. The improved forecast is also more accurate than conventional temperature forecasts for the same location.

  13. A spherical-structure based fiber sensor for simultaneous measurement of ammonia gas concentration and temperature

    NASA Astrophysics Data System (ADS)

    Han, Wei; Liu, Dejun; Lian, Xiaokang; Mallik, Arun Kumar; Wei, Fangfang; Sun, Lei; Farrell, Gerald; Semenova, Yuliya; Wu, Qiang

    2016-11-01

    A novel fiber sensor for simultaneous measurement of ammonia gas concentration and temperature is proposed. The sensor is fabricated from two sections of single-mode fiber which are cleaved and then a fusion splicer and which is then used to fabricate spherically shaped structures at the end facets. The fusion arc is used to soften the glass which naturally assumes a spherical shape due to surface tension. A short section of multimode fiber is then fusion spliced with the two spherical-shaped ends of the single mode fibers so both the core modes and the cladding modes of the multimode fiber are excited to create two kinds of interference dips: One is created by core modes only which is not sensitive to ammonia gas since the core is isolated by the cladding so the effective refractive index of the core does not change when the refractive index of the environment changes, The other dip is created by the coupling of the core mode and cladding mod, which with a suitable coating is sensitive to ammonia gas. Silica sol-gel was prepared and coated on the fiber surface as a sensing layer for detecting ammonia gas concentration. The experimental results show that the two dips have linear wavelength shift responses but with different sensitivities to ammonia gas concentration (5.03×10-4nm/ppm for dip1 and -2.5×10- 5nm/ppm for dip2) and temperature (0.0067 nm/ºC for dip1 and 0.0149 nm/ºC for dip2. By constructing a wavelength shifts matrix for the two dips vs. ammonia gas concentration and temperature, both the ammonia gas concentration and temperature can be measured simultaneously.

  14. Temperature Compensation in Determining of Remazol Black B Concentrations Using Plastic Optical Fiber Based Sensor

    PubMed Central

    Chong, Su Sin; Aziz, A.R. Abdul; Harun, Sulaiman W.; Arof, Hamzah

    2014-01-01

    In this study, the construction and test of tapered plastic optical fiber (POF) sensors, based on an intensity modulation approach are described. Tapered fiber sensors with different diameters of 0.65 mm, 0.45 mm, and 0.35 mm, were used to measure various concentrations of Remazol black B (RBB) dye aqueous solutions at room temperature. The concentrations of the RBB solutions were varied from 0 ppm to 70 ppm. In addition, the effect of varying the temperature of the RBB solution was also investigated. In this case, the output of the sensor was measured at four different temperatures of 27 °C, 30 °C, 35 °C, and 40 °C, while its concentration was fixed at 50 ppm and 100 ppm. The experimental results show that the tapered POF with d = 0.45 mm achieves the best performance with a reasonably good sensitivity of 61 × 10−4 and a linearity of more than 99%. It also maintains a sufficient and stable signal when heat was applied to the solution with a linearity of more than 97%. Since the transmitted intensity is dependent on both the concentration and temperature of the analyte, multiple linear regression analysis was performed to combine the two independent variables into a single equation. The resulting equation was then validated experimentally and the best agreement between the calculated and experimental results was achieved by the sensor with d = 0.45 mm, where the minimum discrepancy is less than 5%. The authors conclude that POF-based sensors are suitable for RBB dye concentration sensing and, with refinement in fabrication, better results could be achieved. Their low fabrication cost, simple configuration, accuracy, and high sensitivity would attract many potential applications in chemical and biological sensing. PMID:25166498

  15. Abscisic acid form, concentration, and application timing influence phenology and bud cold hardiness in Merlot grapevines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of abscisic acid (ABA) form, concentration and application timing on bud cold hardiness, phenology and fruiting performance on ‘Merlot’ grapevines (Vitis vinifera) were evaluated in a three year field trial with site locations in British Columbia Canada, Ontario Canada, Washington U.S. ...

  16. Total volatile fatty acid concentrations are unreliable estimators of treatment effects on ruminal fermentation in vivo

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatile fatty acid concentrations ([VFA], mM) have long been used to assess impact of dietary treatments on ruminal fermentation in vivo. However, discrepancies in statistical results between VFA and VFA pool size (VFAmol), possibly related to ruminal digesta liquid amount (LIQ, kg), suggest issues...

  17. Effect of manganese on the concentration of amino acids in different regions of the rat brain.

    PubMed

    Lipe, G W; Duhart, H; Newport, G D; Slikker, W; Ali, S F

    1999-01-01

    The present study was designed to determine if chronic exposure of weanlings and adult rats to Mn produces significant alterations in amino acid concentrations in different regions of the rat brain. Weanling (30 day old) and adult (90 day old) male rats were exposed to 10 and 20 mg Mn/kg body weight per day, by gavage, for 30 days. Forty-eight hours after the last dose, animals were sacrificed by decapitation and brains were dissected into different regions to determine the concentration of amino acids by HPLC/EC. A dose dependent decrease in body weight gain was found in the adult, but not in the weanling rats. Significant increases occurred in concentrations of aspartate, glutamate, glutamine, taurine and gamma-aminobutyric acid (GABA) in the cerebellum of the adult rats dosed with 20 mg/kg per day, Mn. A significant decrease in the concentration of glutamine was observed in caudate nucleus and hippocampus of weanling rats dosed with 10 mg/kg, Mn. These data suggest that chronic Mn exposure can produce a decrease in body weight gain in adult rats and alterations in amino acids in different regions of weanling and adult rat brains.

  18. EFFECTS OF THREE CONCENTRATIONS OF MIXED FATTY ACIDS ON DECHLORINATION OF TETRACHLOROETHENE IN AQUIFER MICRO- COSMS

    EPA Science Inventory

    Chloroethenes are among the most common organic contaminants of ground water. The biotransformation of these compounds by reductive dechlorination is a promising technology for in situ treatment. The effects of three concentrations of a fatty acids mixture on the reductive dehalo...

  19. Mineral, flavonoid, and fatty acid concentrations in ten diverse Lablab purpureus (L.) sweet accessions.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seeds of Hyacinth bean (Lablab purpureus [L.]) Sweet containing high concentrations of minerals, flavonoids and fatty acids may provide government agencies with a nutrient-dense and health-beneficial food for use in hunger stricken and nutrient deprived people. Seeds from ten hyacinth bean accession...

  20. Role of lauric acid-potassium hydroxide concentration on bacterial contamination of spray washed broiler carcasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of experiments were conducted to examine reductions in bacterial contamination of broiler carcasses washed in a spray cabinet with various concentrations of lauric acid (LA)-potassium hydroxide (KOH) solutions. Fifty eviscerated carcasses and 5 ceca were obtained from the processing line of...

  1. The impact of melt ponds on summertime microwave brightness temperatures and sea-ice concentrations

    NASA Astrophysics Data System (ADS)

    Kern, Stefan; Rösel, Anja; Toudal Pedersen, Leif; Ivanova, Natalia; Saldo, Roberto; Tage Tonboe, Rasmus

    2016-09-01

    Sea-ice concentrations derived from satellite microwave brightness temperatures are less accurate during summer. In the Arctic Ocean the lack of accuracy is primarily caused by melt ponds, but also by changes in the properties of snow and the sea-ice surface itself. We investigate the sensitivity of eight sea-ice concentration retrieval algorithms to melt ponds by comparing sea-ice concentration with the melt-pond fraction. We derive gridded daily sea-ice concentrations from microwave brightness temperatures of summer 2009. We derive the daily fraction of melt ponds, open water between ice floes, and the ice-surface fraction from contemporary Moderate Resolution Spectroradiometer (MODIS) reflectance data. We only use grid cells where the MODIS sea-ice concentration, which is the melt-pond fraction plus the ice-surface fraction, exceeds 90 %. For one group of algorithms, e.g., Bristol and Comiso bootstrap frequency mode (Bootstrap_f), sea-ice concentrations are linearly related to the MODIS melt-pond fraction quite clearly after June. For other algorithms, e.g., Near90GHz and Comiso bootstrap polarization mode (Bootstrap_p), this relationship is weaker and develops later in summer. We attribute the variation of the sensitivity to the melt-pond fraction across the algorithms to a different sensitivity of the brightness temperatures to snow-property variations. We find an underestimation of the sea-ice concentration by between 14 % (Bootstrap_f) and 26 % (Bootstrap_p) for 100 % sea ice with a melt-pond fraction of 40 %. The underestimation reduces to 0 % for a melt-pond fraction of 20 %. In presence of real open water between ice floes, the sea-ice concentration is overestimated by between 26 % (Bootstrap_f) and 14 % (Bootstrap_p) at 60 % sea-ice concentration and by 20 % across all algorithms at 80 % sea-ice concentration. None of the algorithms investigated performs best based on our investigation of data from summer 2009. We suggest that those algorithms which are

  2. The Effects of Concentration and Temperature on Vesicle Adsorption and Bilayer Formation

    NASA Astrophysics Data System (ADS)

    Weirich, Kimberly; Israelachvili, Jacob; Fygenson, Deborah

    2010-03-01

    Supported lipid bilayers (SLBs) are pursued as thin surface coatings and as model systems in which to study membrane-bound processes. We investigate the adsorption of small unilamellar phospholipid vesicles onto glass and the subsequent formation of planar SLBs using temperature-controlled, time-resolved fluorescence microscopy. We report the effects of vesicle concentration and temperature on the time course of lipid adsorption. Our results suggest that isolated vesicle rupture is a rare event and that bilayer edge plays a key role in SLB formation. It enhances vesicle-surface affinity and promotes further rupture.

  3. Determination of chlorine concentration using single temperature modulated semiconductor gas sensor

    NASA Astrophysics Data System (ADS)

    Woźniak, Ł.; Kalinowski, P.; Jasiński, G.; Jasiński, P.

    2016-11-01

    A periodic temperature modulation using sinusoidal heater voltage was applied to a commercial SnO2 semiconductor gas sensor. Resulting resistance response of the sensor was analyzed using a feature extraction method based on Fast Fourier Transformation (FFT). The amplitudes of the higher harmonics of the FFT from the dynamic nonlinear responses of measured gas were further utilized as an input for Artificial Neuron Network (ANN). Determination of the concentration of chlorine was performed. Moreover, this work evaluates the sensor performance upon sinusoidal temperature modulation.

  4. Dietary n-6 PUFA deprivation for 15 weeks reduces arachidonic acid concentrations while increasing n-3 PUFA concentrations in organs of post-weaning male rats

    PubMed Central

    Igarashi, Miki; Gao, Fei; Kim, Hyung-Wook; Ma, Kaizong; Bell, Jane M.; Rapoport, Stanley I.

    2009-01-01

    Few studies have examined effects of feeding animals a diet deficient in n-6 polyunsaturated fatty acids (PUFAs) but with an adequate amount of n-3 PUFAs. To do this, we fed post-weaning male rats a control n-6 and n-3 PUFA adequate diet and an n-6 deficient diet for 15 weeks, and measured stable lipid and fatty acid concentrations in different organs. The deficient diet contained nutritionally essential linoleic acid (LA,18:2n-6) as 2.3% of total fatty acids (10% of the recommended minimum LA requirement for rodents) but no arachidonic acid (AA, 20:4n-6), and an adequate amount (4.8% of total fatty acids) of α-linolenic acid (18:3n-3). The deficient compared with adequate diet did not significantly affect body weight, but decreased testis weight by 10%. AA concentration was decreased significantly in serum (−86%), brain (−27%), liver (−68%), heart (−39%), testis (−25%), and epididymal adipose tissue (−77%). Eicosapentaenoic (20:5n-3) and docosahexaenoic acid (22:6n-3) concentrations were increased in all but adipose tissue, and the total monounsaturated fatty acid concentration was increased in all organs. The concentration of 20:3n-9, a marker of LA deficiency, was increased by the deficient diet, and serum concentrations of triacylglycerol, total cholesterol and total phospholipid were reduced. In summary, 15 weeks of dietary n-6 PUFA deficiency with n-3 PUFA adequacy significantly reduced n-6 PUFA concentrations in different organs of male rats, while increasing n-3 PUFA and monounsaturated fatty acid concentrations. This rat model could be used to study metabolic, functional and behavioral effects of dietary n-6 PUFA deficiency. PMID:19073280

  5. Dynamic Changes in Amino Acid Concentration Profiles in Patients with Sepsis

    PubMed Central

    Xie, Aimei; Liu, Dan; Rao, Weiqiao; Lan, Liping; Li, Xuan; Li, Fang; Xiao, Kun; Wang, Huijuan; Yan, Peng; Li, Xin; Xie, Lixin

    2015-01-01

    Objectives The goal of this work was to explore the dynamic concentration profiles of 42 amino acids and the significance of these profiles in relation to sepsis, with the aim of providing guidance for clinical therapies. Methods Thirty-five critically ill patients with sepsis were included. These patients were further divided into sepsis (12 cases) and severe sepsis (23 cases) groups or survivor (20 cases) and non-survivor (15 cases) groups. Serum samples from the patients were collected on days 1, 3, 5, 7, 10, and 14 following intensive care unit (ICU) admission, and the serum concentrations of 42 amino acids were measured. Results The metabolic spectrum of the amino acids changed dramatically in patients with sepsis. As the disease progressed further or with poor prognosis, the levels of the different amino acids gradually increased, decreased, or fluctuated over time. The concentrations of sulfur-containing amino acids (SAAs), especially taurine, decreased significantly as the severity of sepsis worsened or with poor prognosis of the patient. The serum concentrations of SAAs, especially taurine, exhibited weak negative correlations with the Sequential Organ Failure Assessment (SOFA) (r=-0.319) and Acute Physiology and Chronic Health Evaluation (APACHE) II (r=-0.325) scores. The areas under the receiver operating characteristic curves of cystine, taurine, and SAA levels and the SOFA and APACHE II scores, which denoted disease prognosis, were 0.623, 0.674, 0.678, 0.86, and 0.857, respectively. Conclusions Critically ill patients with disorders of amino acid metabolism, especially of SAAs such as cystine and taurine, may provide an indicator of the need for the nutritional support of sepsis in the clinic. Trial Registration ClinicalTrial.gov identifier NCT01818830. PMID:25849571

  6. Milk fatty acids as possible biomarkers to early diagnose elevated concentrations of blood plasma nonesterified fatty acids in dairy cows.

    PubMed

    Jorjong, S; van Knegsel, A T M; Verwaeren, J; Lahoz, M Val; Bruckmaier, R M; De Baets, B; Kemp, B; Fievez, V

    2014-11-01

    Most cows encounter a state of negative energy balance during the periparturient period, which may lead to metabolic disorders and impaired fertility. The aim of this study was to assess the potential of milk fatty acids as diagnostic tools of detrimental levels of blood plasma nonesterified fatty acids (NEFA), defined as NEFA concentrations beyond 0.6 mmol/L, in a data set of 92 early lactating cows fed a glucogenic or lipogenic diet and subjected to 0-, 30-, or 60-d dry period before parturition. Milk was collected in wk 2, 3, 4, and 8 (n = 368) and blood was sampled weekly from wk 2 to 8 after parturition. Milk was analyzed for milk fatty acids and blood plasma for NEFA. Data were classified as "at risk of detrimental blood plasma NEFA" (NEFA ≥ 0.6 mmol/L) and "not at risk of detrimental blood plasma NEFA" (NEFA <0.6 mmol/L). Concentrations of 45 milk fatty acids and milk fat C18:1 cis-9-to-C15:0 ratio were subjected to a discriminant analysis. Milk fat C18:1 cis-9 revealed the most discriminating variable to identify detrimental blood plasma NEFA. A false positive rate of 10% allowed us to diagnose 46% of the detrimental blood plasma NEFA cases based on a milk fat C18:1 cis-9 concentration of at least 230 g/kg of milk fatty acids. Additionally, it was assessed whether the milk fat C18:1 cis-9 concentrations of wk 2 could be used as an early warning for detrimental blood plasma NEFA risk during the first 8 wk in lactation. Cows with at least 240 g/kg of C18:1 cis-9 in milk fat had about 50% chance to encounter blood plasma NEFA values of 0.6 mmol/L or more during the first 8 wk of lactation, with a false positive rate of 11.4%. Profit simulations were based on costs for cows suffering from detrimental blood plasma NEFA, and costs for preventive treatment based on daily dosing of propylene glycol for 3 wk. Given the relatively low incidence rate (8% of all observations), continuous monitoring of milk fatty acids during the first 8 wk of lactation to diagnose

  7. Influence of changes in glutathione concentration on body temperature and tolerance to cerebral ischemia.

    PubMed

    Kolesnichenko, L S; Kulinsky, V I; Sotnikova, G V; Kovtun, V Yu

    2003-05-01

    Two compounds that deplete glutathione (buthionine sulfoximine and diethyl maleate) with different mechanisms of action decrease body temperature and increase tolerance to complete global cerebral ischemia, both correlating closely with the glutathione concentration decrease. Glutathione apparently participates in the regulations of these functional parameters. GSH diethyl ester does not influence the latter, though it increases moderately the GSH concentration. Injection of GSH ester into the cerebral ventricles or subcutaneously selectively increases the GSH level in the brain and liver. An influence of the brain on the glutathione system in the liver was revealed. Diethyl maleate and GSH ester increase the activity of glutathione metabolizing enzymes under certain conditions.

  8. Effect of fluoride concentration in adhesives on morphology of acid-base resistant zones.

    PubMed

    Kirihara, Masaru; Inoue, Go; Nikaido, Toru; Ikeda, Masaomi; Sadr, Alireza; Tagami, Junji

    2013-01-01

    This study aimed to investigate the effect of fluoride concentration in adhesives on morphology of acid-base resistant zone (ABRZ). Seven experimental adhesives with different concentrations of NaF (0 wt%; F0 to 100 wt%: F100) were prepared based on the formulation of a commercially available adhesive (Clearfil Protect Bond, F100). The resin-dentin interface of the bonded specimen was subjected to demineralizing solution and NaOCl, sectioned, polished and argon-ion etched for SEM observation. Fluoride release from each adhesive was measured using an ion-selective electrode. Fluoride ion release from the adhesive linearly increased with higher NaF concentration. The ABRZ area increased significantly with higher NaF concentration except for F0, F10, and F20 (p<0.05). F100 showed the largest ABRZ, where a slope of acid-resistant dentin was clearly observed at the bottom of the ABRZ. The concentration of NaF in the two-step self-etching adhesive resin influenced the amount of dentin structure remaining after acid-challenge.

  9. Polyunsaturated fatty acid consumption and concentration among South Indian women during pregnancy.

    PubMed

    Dwarkanath, Pratibha; Muthayya, Sumithra; Thomas, Tinku; Vaz, Mario; Parikh, Panam; Mehra, Ruchika; Kurpad, Anura V

    2009-01-01

    In recent years there is growing interest on the role of long chain omega-3 polyunsaturated fatty acids (omega-3 LC-PUFA) in pregnancy and the growth and development of the offspring. We aim to characterize and provide baseline data on the intake of LCPUFA (omega-3 and omega-6) in a prospective cohort of 829 pregnant Indian women and report associations between LCPUFA intake and erythrocyte membrane phospholipid fatty acid concentration in a sub-group at baseline (1st trimester), the 2nd and 3rd trimesters of pregnancy. The dietary intake of all the macronutrients and of alpha-linolenic acid(ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) significantly increased over the 3 trimesters of pregnancy while that of omega-6 fatty acids (FA) remained unchanged. Median omega-3 FA intakes of ALA, EPA and DHA, however, were on average low at 0.56, 0.003 and 0.011 g/d, respectively while LA was 14.6 g/d during pregnancy. Consequently, the intake ratio of ALA to LA in the women in the present study was very low at 1:26. A significant decline in erythrocyte membrane arachidonic acid (AA) concentration but not of DHA was observed throughout pregnancy. This might be due to increased efficiency in terms of elongation of parent omega-3 FA. Dietary methods for improving the consumption of omega-3 FA need to be considered in the diets of young women as well as during pregnancy. As newborns primarily depend on placental transfer of omega-3 FA there is need to examine the omega-3 LC-PUFA concentration in infants of mother's with low intakes of omega-3 FA.

  10. Passive sampler for measurements of atmospheric nitric acid vapor (HNO3) concentrations.

    PubMed

    Bytnerowicz, A; Padgett, P E; Arbaugh, M J; Parker, D R; Jones, D P

    2001-12-05

    Nitric acid (HNO3) vapor is an important nitrogenous air pollutant responsible for increasing saturation of forests with nitrogen and direct injury to plants. The USDA Forest Service and University of California researchers have developed a simple and inexpensive passive sampler for monitoring air concentrations of HNO3. Nitric acid is selectively absorbed on 47-mm Nylasorb nylon filters with no interference from particulate NO3-. Concentrations determined with the passive samplers closely corresponded with those measured with the co-located honeycomb annular denuder systems. The PVC protective caps of standardized dimensions protect nylon filters from rain and wind and allow for reliable measurements of ambient HNO3 concentrations. The described samplers have been successfully used in Sequoia National Park, the San Bernardino Mountains, and on Mammoth Mountain in California.

  11. Intermediate temperature proton conductors for PEM fuel cells based on phosphonic acid as protogenic group: a progress report.

    PubMed

    Steininger, H; Schuster, M; Kreuer, K D; Kaltbeitzel, A; Bingöl, B; Meyer, W H; Schauff, S; Brunklaus, G; Maier, J; Spiess, H W

    2007-04-21

    The melting behaviour and transport properties of straight chain alkanes mono- and difunctionalized with phosphonic acid groups have been investigated as a function of their length. The increase of melting temperature and decrease of proton conductivity with increasing chain length is suggested to be the consequence of an increasing ordering of the alkane segments which constrains the free aggregation of the phosphonic acid groups. However, the proton mobility is reduced to a greater extent than the proton diffusion coefficient indicating an increasing cooperativity of proton transport with increasing length of the alkane segment. The results clearly indicate that the "spacer concept", which had been proven successful in the optimization of the proton conductivity of heterocycle based systems, fails in the case of phosphonic acid functionalized polymers. Instead, a very high concentration of phosphonic acid functional groups forming "bulky" hydrogen bonded aggregates is suggested to be essential for obtaining very high proton conductivity. Aggregation is also suggested to reduce condensation reactions generally observed in phosphonic acid containing systems. On the basis of this understanding, the proton conductivities of poly(vinyl phosphonic acid) and poly(meta-phenylene phosphonic acid) are discussed. Though both polymers exhibit a substantial concentration of phosphonic acid groups, aggregation seems to be constrained to such an extent that intrinsic proton conductivity is limited to values below sigma = 10(-3) S cm(-1) at T = 150 degrees C. The results suggest that different immobilization concepts have to be developed in order to minimize the conductivity reduction compared to the very high intrinsic proton conductivity of neat phosphonic acid under quasi dry conditions. In the presence of high water activities, however, (as usually present in PEM fuel cells) the very high ion exchange capacities (IEC) possible for phosphonic acid functionalized ionomers (IEC

  12. Experimental and numerical results for CO2 concentration and temperature profiles in an occupied room

    NASA Astrophysics Data System (ADS)

    Cotel, Aline; Junghans, Lars; Wang, Xiaoxiang

    2014-11-01

    In recent years, a recognition of the scope of the negative environmental impact of existing buildings has spurred academic and industrial interest in transforming existing building design practices and disciplinary knowledge. For example, buildings alone consume 72% of the electricity produced annually in the United States; this share is expected to rise to 75% by 2025 (EPA, 2009). Significant reductions in overall building energy consumption can be achieved using green building methods such as natural ventilation. An office was instrumented on campus to acquire CO2 concentrations and temperature profiles at multiple locations while a single occupant was present. Using openFOAM, numerical calculations were performed to allow for comparisons of the CO2 concentration and temperature profiles for different ventilation strategies. Ultimately, these results will be the inputs into a real time feedback control system that can adjust actuators for indoor ventilation and utilize green design strategies. Funded by UM Office of Vice President for Research.

  13. Analysis of temperature influences on the amplitude-frequency characteristics of Rn gas concentration.

    PubMed

    Finkelstein, Michael; Eppelbaum, Lev V; Price, Colin

    2006-01-01

    The ventilation mechanism of Rn gas in underground environments is considered. Ventilation plays an important role in influencing the variability (harmonics) of Rn gas in the porous space below the earth's surface. We propose a new physical-environmental model of relating Rn gas concentrations to air temperature variations at the earth's surface. Applicability of this model was tested after searching for Rn gas indicators of geodynamic processes in two underground tunnels in central and southern Israel. The theoretical estimation of Rn gas concentrations shows a good agreement with the observed values. We demonstrate the possibility of Rn gas anomalies being caused by atmospheric temperature variations and the necessity to take these effects into account when investigating geodynamic processes.

  14. High pressure-temperature electrical conductivity of magnesiowustite as a function of iron oxide concentration

    NASA Technical Reports Server (NTRS)

    Li, Xiaoyuan; Jeanloz, Raymond

    1990-01-01

    The electrical conductivity of (Mg, Fe)O magnesiowustite containing 9 and 27.5 mol pct FeO has been measured at simultaneously high pressures (30-32 GPa) and temperatures using a diamond anvil cell heated with a continuous wave Nd:YAG laser and an external resistance heater. The conductivity depends strongly on the FeO concentration at both ambient and high pressures. At the pressures and temperatures of about 30 GPa and 2000 K, conditions expected in the lower mantle, the magnesiowustite containing 27.5 percent FeO is 3 orders of magnitude more conductive than that containing 9 percent FeO. The activation energy of magnesiowustite decreases with increasing iron concentration from 0.38 (+ or - 0.09) eV at 9 percent FeO to 0.29 (+ or - 0.05) eV at 27.5 percent FeO.

  15. Monitoring sodium chloride concentrations and density profiles in solar ponds by electrical conductivity and temperature measurement

    SciTech Connect

    Fynn, R.P.; Short, T.H.; Badger, P.C.; Sciarini, M.J.

    1980-01-01

    A simple accurate and semi-automatic system was developed for monitoring sodium chloride concentrations and density profiles in a solar pond. The profile meter, which measures pond solution conductivity and temperature, and the equations which convert this data into salt concentration and/or brine density, are covered in detail so that any potential users may construct their own equipment. The use of the profile meter, its advantages and disadvantages, are discussed. Emphasis is placed on the day-to-day profile monitoring that the conductivity-temperature method enables, and the use of the meter during modification of the pond profiles. A program is also available to calculate the pond profile using a Hewlett-Packard HP-97 programmable calculator.

  16. Efficiency of tandem solar cell systems as function of temperature and solar energy concentration ratio

    NASA Technical Reports Server (NTRS)

    Gokcen, N. A.; Loferski, J. J.

    1979-01-01

    The results of a comprehensive theoretical analysis of tandem photovoltaic solar cells as a function of temperature and solar concentration ratio are presented. The overall efficiencies of tandem cell stacks consisting of as many as 24 cells having gaps in the 0.7 to 3.6 eV range were calculated for temperatures of 200, 300, 400, and 500 K and for illumination by an AMO solar spectrum having concentration ratios of 1, 100, 500, and 1000 suns. For ideal diodes (A = B = 1), the calculations show that the optimized overall efficiency has a limiting value eta sub opt of approximately 70 percent for T = 200 K and C = 1000; for T = 300 K and C = 1000, this limiting efficiency approaches 60 percent.

  17. Dietary supplementation with cholesterol and docosahexaenoic acid affects concentrations of amino acids in tissues of young pigs

    PubMed Central

    Li, Peng; Kim, Sung Woo; Li, Xilong; Datta, Sujay; Pond, Wilson G.

    2013-01-01

    Cholesterol and docosahexaenoic acid (DHA) are important nutrients for neural development of infants. However, little is known about the effect of cholesterol or DHA on concentrations of amino acids (AA) in neonatal tissues. This study was conducted with the piglet (an established model for studying human infant nutrition) to test the hypothesis that dietary supplementation with the lipids may modulate AA availability in tissues. Sixteen newborn pigs were nursed by sows for 24 h and then assigned to one of four treatment groups, representing supplementation with 0.0% (control), 0.2% cholesterol, 0.2% DHA, or cholesterol plus DHA to the basal milk-formula. All piglets were euthanized at 49 days of age. In brain, cholesterol supplementation reduced (P < 0.05) concentrations of glutamate, serine, glutamine, threonine, β-alanine, alanine, methionine, isoleucine, leucine, and γ-aminobutyrate but increased (P < 0.05) concentrations of glycine and lysine, whereas DHA supplementation similarly affected (P < 0.05) concentrations of the same AA (except for isoleucine and lysine) and taurine. In addition, concentrations of most AA in liver, muscle and plasma were substantially altered by dietary supplementation of cholesterol and DHA in a tissue-dependent manner. Further, DHA reduced concentrations of carnosine in skeletal muscle, as well as ammonia in both plasma and brain. The results reveal that cholesterol and DHA can regulate AA metabolism and availability in various tissues of piglets. These novel findings have important implications for designing the next generation of infant formula to optimize neonatal growth and development. PMID:18972185

  18. Temperature-dependent accumulation mode particle and cloud nuclei concentrations from biogenic sources during WACS 2010

    NASA Astrophysics Data System (ADS)

    Ahlm, L.; Shakya, K. M.; Russell, L. M.; Schroder, J. C.; Wong, J. P. S.; Sjostedt, S. J.; Hayden, K. L.; Liggio, J.; Wentzell, J. J. B.; Wiebe, H. A.; Mihele, C.; Leaitch, W. R.; Macdonald, A. M.

    2013-03-01

    Submicron aerosol particles collected simultaneously at the mountain peak (2182 m a.s.l.) and at a forested mid-mountain site (1300 m a.s.l.) on Whistler Mountain, British Columbia, Canada, during June and July 2010 were analyzed by Fourier transform infrared (FTIR) spectroscopy for quantification of organic functional groups. Positive matrix factorization (PMF) was applied to the FTIR spectra. Three PMF factors associated with (1) combustion, (2) biogenics, and (3) vegetative detritus were identified at both sites. The biogenic factor was correlated with both temperature and several volatile organic compounds (VOCs). The combustion factor dominated the submicron particle mass during the beginning of the campaign, when the temperature was lower and advection was from the Vancouver area, but as the temperature started to rise in early July, the biogenic factor came to dominate as a result of increased emissions of biogenic VOCs, and thereby increased formation of secondary organic aerosol (SOA). On average, the biogenic factor represented 69% and 49% of the submicron organic particle mass at Whistler Peak and at the mid-mountain site, respectively. The lower fraction at the mid-mountain site was a result of more vegetative detritus there, and also higher influence from local combustion sources. The biogenic factor was strongly correlated (r~0.9) to number concentration of particles with diameter (Dp)> 100 nm, whereas the combustion factor was better correlated to number concentration of particles with Dp<100 nm (r~0.4). The number concentration of cloud condensation nuclei (CCN) was correlated (r~0.7) to the biogenic factor for supersaturations (S) of 0.2% or higher, which indicates that particle condensational growth from biogenic vapors was an important factor in controlling the CCN concentration for clouds where S≥0.2%. Both the number concentration of particles with Dp>100 nm and numbers of CCN for S≥0.2% were correlated to temperature. Considering the

  19. Temperature-dependent accumulation mode particle and cloud nuclei concentrations from biogenic sources during WACS 2010

    NASA Astrophysics Data System (ADS)

    Ahlm, L.; Shakya, K. M.; Russel, L. M.; Schroder, J. C.; Wong, J. P. S.; Sjostedt, S. J.; Hayden, K. L.; Liggio, J.; Wentzell, J. J. B.; Wiebe, H. A.; Mihele, C.; Leaitch, W. R.; Macdonald, A. M.

    2012-10-01

    Submicron aerosol particles collected simultaneously at the mountain peak (2182 m a.s.l.) and at a forested mid-mountain site (1300 m a.s.l.) on Whistler Mountain, British Columbia, Canada, during June and July 2010 were analyzed by Fourier transform infrared (FTIR) spectroscopy for quantification of organic functional groups. Positive matrix factorization (PMF) was applied to the FTIR spectra. Three PMF factors associated with (1) combustion, (2) biogenics, and (3) vegetative detritus, were identified at both sites. The biogenic factor was correlated with both temperature and several volatile organic compounds (VOCs). The combustion factor dominated the submicron particle mass during the beginning of the campaign when the temperature was lower and advection was from the Vancouver area, but as the temperature started to rise in early July the biogenic factor came to dominate as a result of increased emissions of biogenic VOCs and thereby increased formation of secondary organic aerosol (SOA). On average, the biogenic factor represented 69% and 49% of the submicron organic particle mass at Whistler Peak and at the mid-mountain site, respectively. The lower fraction at the mid-mountain site was a result of more vegetative detritus there, and also higher influence from local combustion sources. The biogenic factor was strongly correlated (r ~ 0.9) to number concentration of particles with diameter (Dp)> 100 nm, whereas the combustion factor was better correlated to number concentration of particles with Dp < 100 nm (r~ 0.4). The number concentration of cloud condensation nuclei (CCN) was correlated (r ~ 0.7) to the biogenic factor for supersaturations (S) of 0.2% or higher, which indicates that particle condensational growth from biogenic vapors was an important factor in controlling the CCN concentration for clouds where S≥0.2%. Both the number concentration of particles with Dp > 100 nm and numbers of CCN for S≥0.2% were correlated to temperature. Considering

  20. Effect of ethanol concentrations on temperature driven structural changes of chymotrypsin inhibitor 2.

    PubMed

    Mohanta, Dayanidhi; Jana, Madhurima

    2016-04-28

    A series of atomistic molecular dynamics (MD) simulations of a small enzymatic protein Chymotrypsin Inhibitor 2 (CI2) in water-ethanol mixed solutions were carried out to explore the underlying mechanism of ethanol driven conformational changes of the protein. Efforts have been made to probe the influence of ethanol concentrations ranging from 0% to 75% (v/v) at ambient condition (300 K (T1)) and at elevated temperatures (375 K (T2) and 450 K (T3)) to investigate the temperature induced conformational changes of the protein further. Our study showed that the effect of varying ethanol concentrations on protein's structure is almost insignificant at T1 and T2 temperatures whereas at T3 temperature, partial unfolding of CI2 in 10% ethanol solution followed by full unfolding of the protein at ethanol concentrations above 25% occurs. However, interestingly, at T3 temperature CI2's native structure was found to be retained in pure water (0% ethanol solution) indicating that the cosolvent ethanol do play an important role in thermal denaturation of CI2. Such observations were quantified in the light of root-mean-square deviations (RMSDs) and radius of gyration. Although higher RMSD values of β-sheet over α-helix indicate complete destruction of the β-structure of CI2 at high ethanol concentrations, the associated time scale showed that the faster melting of α-helix happens over β-sheet. Around 60%-80% of initial native contacts of the protein were found broken with the separation of hydrophobic core consisting eleven residues at ethanol concentrations greater than 25%. This leads protein to expand with the increase in solvent accessible surface area. The interactions between protein and solvent molecules showed that protein's solvation shell preferred to accommodate ethanol molecules as compared to water thereby excluded water molecules from CI2's surface. Further, concentration dependent differential self-aggregation behavior of ethanol is likely to regulate the

  1. Effect of ethanol concentrations on temperature driven structural changes of chymotrypsin inhibitor 2

    NASA Astrophysics Data System (ADS)

    Mohanta, Dayanidhi; Jana, Madhurima

    2016-04-01

    A series of atomistic molecular dynamics (MD) simulations of a small enzymatic protein Chymotrypsin Inhibitor 2 (CI2) in water-ethanol mixed solutions were carried out to explore the underlying mechanism of ethanol driven conformational changes of the protein. Efforts have been made to probe the influence of ethanol concentrations ranging from 0% to 75% (v/v) at ambient condition (300 K (T1)) and at elevated temperatures (375 K (T2) and 450 K (T3)) to investigate the temperature induced conformational changes of the protein further. Our study showed that the effect of varying ethanol concentrations on protein's structure is almost insignificant at T1 and T2 temperatures whereas at T3 temperature, partial unfolding of CI2 in 10% ethanol solution followed by full unfolding of the protein at ethanol concentrations above 25% occurs. However, interestingly, at T3 temperature CI2's native structure was found to be retained in pure water (0% ethanol solution) indicating that the cosolvent ethanol do play an important role in thermal denaturation of CI2. Such observations were quantified in the light of root-mean-square deviations (RMSDs) and radius of gyration. Although higher RMSD values of β-sheet over α-helix indicate complete destruction of the β-structure of CI2 at high ethanol concentrations, the associated time scale showed that the faster melting of α-helix happens over β-sheet. Around 60%-80% of initial native contacts of the protein were found broken with the separation of hydrophobic core consisting eleven residues at ethanol concentrations greater than 25%. This leads protein to expand with the increase in solvent accessible surface area. The interactions between protein and solvent molecules showed that protein's solvation shell preferred to accommodate ethanol molecules as compared to water thereby excluded water molecules from CI2's surface. Further, concentration dependent differential self-aggregation behavior of ethanol is likely to regulate the

  2. Strong Relationships in Acid-Base Chemistry – Modeling Protons Based on Predictable Concentrations of Strong Ions, Total Weak Acid Concentrations, and pCO2

    PubMed Central

    Kellum, John A.

    2016-01-01

    Understanding acid-base regulation is often reduced to pigeonholing clinical states into categories of disorders based on arterial blood sampling. An earlier ambition to quantitatively explain disorders by measuring production and elimination of acid has not become standard clinical practice. Seeking back to classical physical chemistry we propose that in any compartment, the requirement of electroneutrality leads to a strong relationship between charged moieties. This relationship is derived in the form of a general equation stating charge balance, making it possible to calculate [H+] and pH based on all other charged moieties. Therefore, to validate this construct we investigated a large number of blood samples from intensive care patients, where both data and pathology is plentiful, by comparing the measured pH to the modeled pH. We were able to predict both the mean pattern and the individual fluctuation in pH based on all other measured charges with a correlation of approximately 90% in individual patient series. However, there was a shift in pH so that fitted pH in general is overestimated (95% confidence interval -0.072–0.210) and we examine some explanations for this shift. Having confirmed the relationship between charged species we then examine some of the classical and recent literature concerning the importance of charge balance. We conclude that focusing on the charges which are predictable such as strong ions and total concentrations of weak acids leads to new insights with important implications for medicine and physiology. Importantly this construct should pave the way for quantitative acid-base models looking into the underlying mechanisms of disorders rather than just classifying them. PMID:27631369

  3. Aggregation and stability of Fe2O3:Influence of humic acid concentration, Fe2O3 concentration and pH

    NASA Astrophysics Data System (ADS)

    Ahmad, Nur Suraya; Radiman, Shahidan; Yaacob, Wan Zuhairi Wan

    2016-11-01

    The scenario of released nanoparticles from consumer product into the environment especially natural waters are increased concern nowadays. Assessing their aggregation and stability under environmental conditions are important to determining their fate and behavior in natural waters. The aggregation behavior of Fe2O3 nanoparticles (NPs) was investigated at variable concentration of humic acid, Fe2O3 NPs concentration and pH variation in solution using dynamic light scattering to measure their z-average hydrodynamic diameter and zeta potential value. The stability are then evaluated by assessing their aggregation and disaggregation. Increasing humic acid concentration induced the disaggregation of Fe2O3 NPs. At a lower concentrations of Fe2O3 (< 30 mg/L), aggregate formed and disaggregation take place with increasing Fe2O3 concentration (50, 100, 150, 200 mg/L). The maximum aggregation was found in pH 4 at a constant concentration of humic acid of 100 mg/L and concentration of Fe2O3 (100 mg/L). High pH (>5) of solution induced disaggregation of suspensions and make it stable in the solution. TEM imaging have confirmed that Fe2O3 NPs aggregate and disaggregate in the presence of humic acid. Our study result shows that aggregation and stability of Fe2O3 NPs were depends on concentration of humic acid, concentration of NPs itself and the pH of the solutions.

  4. Separate and Concentrate Lactic Acid Using Combination of Nanofiltration and Reverse Osmosis Membranes

    NASA Astrophysics Data System (ADS)

    Li, Yebo; Shahbazi, Abolghasem; Williams, Karen; Wan, Caixia

    The processes of lactic acid production include two key stages, which are (a) fermentation and (b) product recovery. In this study, free cell of Bifidobacterium longum was used to produce lactic acid from cheese whey. The produced lactic acid was then separated and purified from the fermentation broth using combination of nanofiltration and reverse osmosis membranes. Nanofiltration membrane with a molecular weight cutoff of 100-400 Da was used to separate lactic acid from lactose and cells in the cheese whey fermentation broth in the first step. The obtained permeate from the above nanofiltration is mainly composed of lactic acid and water, which was then concentrated with a reverse osmosis membrane in the second step. Among the tested nanofiltration membranes, HL membrane from GE Osmonics has the highest lactose retention (97±1%). In the reverse osmosis process, the ADF membrane could retain 100% of lactic acid to obtain permeate with water only. The effect of membrane and pressure on permeate flux and retention of lactose/lactic acid was also reported in this paper.

  5. Separate and concentrate lactic acid using combination of nanofiltration and reverse osmosis membranes.

    PubMed

    Li, Yebo; Shahbazi, Abolghasem; Williams, Karen; Wan, Caixia

    2008-03-01

    The processes of lactic acid production include two key stages, which are (a) fermentation and (b) product recovery. In this study, free cell of Bifidobacterium longum was used to produce lactic acid from cheese whey. The produced lactic acid was then separated and purified from the fermentation broth using combination of nanofiltration and reverse osmosis membranes. Nanofiltration membrane with a molecular weight cutoff of 100-400 Da was used to separate lactic acid from lactose and cells in the cheese whey fermentation broth in the first step. The obtained permeate from the above nanofiltration is mainly composed of lactic acid and water, which was then concentrated with a reverse osmosis membrane in the second step. Among the tested nanofiltration membranes, HL membrane from GE Osmonics has the highest lactose retention (97 +/- 1%). In the reverse osmosis process, the ADF membrane could retain 100% of lactic acid to obtain permeate with water only. The effect of membrane and pressure on permeate flux and retention of lactose/lactic acid was also reported in this paper.

  6. Development and survival of embryos of lake herring at different constant oxygen concentrations and temperatures

    USGS Publications Warehouse

    Brooke, L.T.; Colby, P.J.

    1980-01-01

    Eggs of lake herring (Coregonus artedii) were incubated in a continuous-flow system at four constant water temperatures (2-8°C) and five dissolved oxygen (DO) concentrations (1-12 mg/L). In comparison with incubation time at 12 mg/L DO, time to median hatch was significantly longer (P<0.05) at 2 mg/L at 6°C (no hatch at 1 mg/L), at 3 mg/L or less at 4°C, and at 4 mg/L or less at 2°C. The time between hatching of the first and last eggs varied inversely with temperature. Mean total lengths of newly hatched fry were significantly shortened (P < 0.05) at 1 and 2 mg/L DO. At 6 and 8°C, percent survival through hatching was greater than at 2 and 4°C at DO of 4 mg/L or more, but fell to zero at 1 mg/L. The percentage of normal fry produced decreased noticeably below 4 mg/L DO. The optimum temperature for highest percentage survival of normal fry decreased directly with the level of dissolved oxygen. The temperatures at which the highest percentages of normal fry hatched from eggs incubated at DO concentrations of 4 or 8, 2, and 1 mg/L, were 6, 4, and 2°C, respectively-indicating a decreasing DO demand by embryos incubated at the lower temperatures. Our findings supported a previously published hypothesis that DO concentrations below 4 mg/L can be adverse to survival and development of coregonid embryos in nature.

  7. Temperature Oscillation Modulated Self-Assembly of Periodic Concentric Layered Magnesium Carbonate Microparticles

    PubMed Central

    Li, Shihong; Wang, Zheng Jim; Chang, Ting-Tung

    2014-01-01

    Intriguing patterns of periodic, concentric, layered, mineral microstructure are present in nature and organisms, yet they have elusive geneses. We hypothesize temperature oscillation can be an independent factor that causes the self-assembly of such patterns in mineral phases synthesized in solution. Static experiments verify that rhythmic concentric multi-layered magnesium carbonate microhemispheres can be synthesized from bicarbonate solution by temperature oscillation, without use of a chemical template, additive or gel-diffusion system. Appropriate reactant concentration and initial pH value can restrain the competitive growth of other mineral generations. Polarized light microscopy images indicate the microhemispheres are crystalline and the crystallinity increases with incubation time. The thickness of a single mineral layer of microhemisphere in microscale is precisely controlled by the waveform parameters of the temperature oscillation, while the layer number, which can reach tens to about one hundred, is constrained by the temperature oscillation period number. FT-IR spectra show that these microhemispheres synthesized under different conditions can be identified as the basic form of magnesium carbonate, hydromagnesite (Mg5(CO3)4(OH)2⋅4H2O). SEM images exhibit the characteristic microscopic texture of the alternating dark and light rings of these microhemispheres. TEM images and ED patterns suggest the nanoflakes of microhemispheres are present in polycrystalline form with some degree of oriented assembly. The temperature oscillation modulated self-assembly may offer a new mechanism to understand the formation of layered microstructure of minerals in solution, and provide a non-invasive and programmable means to synthesize hierarchically ordered materials. PMID:24520410

  8. Temperature oscillation modulated self-assembly of periodic concentric layered magnesium carbonate microparticles.

    PubMed

    Li, Shihong; Wang, Zheng Jim; Chang, Ting-Tung

    2014-01-01

    Intriguing patterns of periodic, concentric, layered, mineral microstructure are present in nature and organisms, yet they have elusive geneses. We hypothesize temperature oscillation can be an independent factor that causes the self-assembly of such patterns in mineral phases synthesized in solution. Static experiments verify that rhythmic concentric multi-layered magnesium carbonate microhemispheres can be synthesized from bicarbonate solution by temperature oscillation, without use of a chemical template, additive or gel-diffusion system. Appropriate reactant concentration and initial pH value can restrain the competitive growth of other mineral generations. Polarized light microscopy images indicate the microhemispheres are crystalline and the crystallinity increases with incubation time. The thickness of a single mineral layer of microhemisphere in microscale is precisely controlled by the waveform parameters of the temperature oscillation, while the layer number, which can reach tens to about one hundred, is constrained by the temperature oscillation period number. FT-IR spectra show that these microhemispheres synthesized under different conditions can be identified as the basic form of magnesium carbonate, hydromagnesite (Mg5(CO3)4(OH)2 ⋅ 4H2O). SEM images exhibit the characteristic microscopic texture of the alternating dark and light rings of these microhemispheres. TEM images and ED patterns suggest the nanoflakes of microhemispheres are present in polycrystalline form with some degree of oriented assembly. The temperature oscillation modulated self-assembly may offer a new mechanism to understand the formation of layered microstructure of minerals in solution, and provide a non-invasive and programmable means to synthesize hierarchically ordered materials.

  9. Changes of amino acid concentrations in the rat vestibular nuclei after midline lesions.

    PubMed

    Sun, Yizhe; Godfrey, Donald A; Godfrey, Matthew A; Hong, Steven; Jin, Yong-Ming; Rubin, Allan M

    2011-01-01

    Changes in concentrations of amino acids, especially GABA, glutamate, and aspartate, occur in vestibular nuclei after removal of cerebellar and labyrinth inputs. Here, we examined the effects of transecting midline-crossing connections between the two vestibular nuclear complexes, which especially include commissural connections. Three rats were euthanized at each of 2, 7, and 30 days after a midline cut at the level of the vestibular nuclei. Two sham-lesioned rats were prepared for surgery but no cut made. Samples of superior (SuVN), dorsal and ventral lateral (LVNd and LVNv), dorsal and ventral medial (MVNd and MVNv), and spinal vestibular nuclei (SpVN) were microdissected from freeze-dried coronal sections and assayed for amino acid concentrations. Reductions of GABA concentration occurred by 2 days and continued through 30 days after surgery in most regions. Glutamate and aspartate concentrations decreased by 2 days in LVN and MVN, then glutamate showed some recovery by 30 days. Glutamine and taurine concentrations increased in almost all regions. Glycine concentration decreased in MVN and LVNv. Our results support association of GABA, glutamate, aspartate, and to some extent glycine, with vestibular crossed connections. Comparisons to our previous studies suggest some complex lesion effects, especially in LVNd.

  10. The concentration of ascorbic acid and glutathione in 13 provenances of Acacia melanoxylon.

    PubMed

    Wujeska-Klause, Agnieszka; Bossinger, Gerd; Tausz, Michael

    2016-04-01

    Climate change can negatively affect sensitive tree species, affecting their acclimation and adaptation strategies. A common garden experiment provides an opportunity to test whether responses of trees from different provenances are genetically driven and if this response is related to factors at the site of origin. We hypothesized that antioxidative defence systems and leaf mass area ofAcacia melanoxylonR. Br. samples collected from different provenances will vary depending on local rainfall. Thirteen provenances ofA. melanoxylonoriginating from different rainfall habitats (500-2000 mm) were grown for 5 years in a common garden. For 2 years, phyllode samples were collected during winter and summer, for measurements of leaf mass area and concentrations of glutathione and ascorbic acid. Leaf mass area varied between seasons, years and provenances ofA. melanoxylon, and an increase was associated with decreasing rainfall at the site of origin. Ascorbic acid and glutathione concentrations varied between seasons, years (i.e., environmental factors) and among provenances ofA. melanoxylon In general, glutathione and ascorbic acid concentrations were higher in winter compared with summer. Ascorbic acid and glutathione were different among provenances, but this was not associated with rainfall at the site of origin.

  11. An integrated temperature-compensated flexible shear-stress sensor microarray with concentrated leading-wire.

    PubMed

    Tang, Jian; Liu, Wu; Zhang, Weiping; Sun, Yongming; Chen, Honghai

    2016-02-01

    Flexible shear stress sensor is quite important for characterizing curved surface flows. In this work, a novel integrated shear stress sensor microarray is designed with twenty parallel channels, which share the concentrated leading-wire to transmit the ground signal. Electrical pads in rows are easily connected to the circuits with two separate Wheatstone bridges and constant-temperature-difference mode operation is provided for the hot-wires. Temperature crosstalk between adjacent hot-wires is prevented well and the effectiveness of the temperature compensated circuits is verified. Relatively large output response is obtained as the shear stress varies and the sensitivity of the sensors is measured about 0.086 V(2)/Pa(1/3) with nonlinearity lower than 1%, revealing high performance characteristic of the sensors.

  12. Thermal Shock Behavior of Single Crystal Oxide Refractive Concentrators for High Temperatures Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Choi, Sung R.; Jacobson, Nathan S.; Miller, Robert A.

    1999-01-01

    Single crystal oxides such as yttria-stabilized zirconia (Y2O3-ZrO2), yttrium-aluminum-garnet (Y3Al5O12, or YAG), magnesium oxide (MgO) and sapphire (Al2O3) have been considered as refractive secondary concentrator materials for high temperature solar propulsion applications. However, thermal mechanical reliability of the oxide components in severe thermal environments during space mission sun/shade transitions is of great concern. In this paper, critical mechanical properties of these oxide crystals are determined by the indentation technique. Thermal shock resistance of the oxides is evaluated using a high power CO, laser under high temperature-high thermal gradients. Thermal stress fracture behavior and failure mechanisms of these oxide materials are investigated under various temperature and heating conditions.

  13. Dual chamber capillary viscometer for viscosity measurements of concentrated polymer solutions at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Akkarachittoor, Narayanan S.; Fricke, Arthur L.; Small, James D., Jr.

    1986-06-01

    A dual chamber capillary viscometer (DCCV) has been designed and constructed to measure steady shear viscosity of concentrated polymer solutions at temperatures above the solution normal boiling point. Projected equipment capabilities are as follows: Shear rate: 102≤γ˙≤104 s-1, Viscosity: 10-1≤η≤104 Pa s, Temperature: 300 ≤T≤520 K. Equipment design and results using Newtonian viscosity standards and various Newtonian polymer solutions are presented. Viscosity results determined with Newtonian standards are within ±5% or better of the reported values and two different concentrated polymer solutions and a paper coating (a suspension of clay in a starch-water solution) were used to test the equipment capabilities over wide ranges of shear rate, viscosity, and temperature. The ranges of equipment capabilities tested to date are Shear rate: 300≤γ≤5500 s-1, Viscosity: 0.12≤η≤7.5 Pa s, Temperature: 299≤T≤399 K.

  14. Determining Concentrations and Temperatures in Semiconductor Manufacturing Plasmas via Submillimeter Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Helal, Yaser H.; Neese, Christopher F.; De Lucia, Frank C.; Ewing, Paul R.; Agarwal, Ankur; Craver, Barry; Stout, Phillip J.; Armacost, Michael D.

    2016-06-01

    Plasmas used in the manufacturing processes of semiconductors are similar in pressure and temperature to plasmas used in studying the spectroscopy of astrophysical species. Likewise, the developed technology in submillimeter absorption spectroscopy can be used for the study of industrial plasmas and for monitoring manufacturing processes. An advantage of submillimeter absorption spectroscopy is that it can be used to determine absolute concentrations and temperatures of plasma species without the need for intrusive probes. A continuous wave, 500 - 750 GHz absorption spectrometer was developed for the purpose of being used as a remote sensor of gas and plasma species. An important part of this work was the optical design to match the geometry of existing plasma reactors in the manufacturing industry. A software fitting routine was developed to simultaneously fit for the background and absorption signal, solving for concentration, rotational temperature, and translational temperature. Examples of measurements made on inductively coupled plasmas will be demonstrated. We would like to thank the Texas Analog Center of Excellence/Semiconductor Research Corporation (TxACE/SRC) and Applied Materials for their support of this work.

  15. Measurement of CO2 concentration at high-temperature based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Jiuying; Li, Chuanrong; Zhou, Mei; Liu, Jianguo; Kan, Ruifeng; Xu, Zhenyu

    2017-01-01

    A diode laser sensor based on absorption spectroscopy has been developed for sensitive measurement of CO2 concentration at high-temperature. Measurement of CO2 can provide information about the extent of combustion and mix in a combustor that may be used to improve fuel efficiency. Most methods of in-situ combustion measurement of CO2 use the spectroscopic parameters taken from database like HITEMP which is mainly derived from the theoretical calculation and remains a high degree of uncertainty in the spectroscopic parameters. A fiber-coupled diode laser system for measurement of CO2 in combustion environment by use of the high-temperature spectroscopic parameters which are obtained by experiment was proposed. Survey spectra of the R(50) line of CO2 at 5007.787 cm-1 were recorded at high-temperature and various pressures to determine line intensities. The line intensities form the theoretical foundation for future applications of this diode laser sensor system. Survey spectra of four test gas mixtures containing 5.01%CO2, 10.01%CO2, 20.08%CO2, and 49.82%CO2 were measured to verify the accuracy of the diode laser sensor system. The measured results indicate that this sensor can measure CO2 concentration with 2% uncertainty in high temperatures.

  16. Carbon Dioxide Concentrations and Temperatures within Tour Buses under Real-Time Traffic Conditions

    PubMed Central

    Chiu, Chun-Fu; Chen, Ming-Hung; Chang, Feng-Hsiang

    2015-01-01

    This study monitored the carbon dioxide (CO2) concentrations and temperatures of three 43-seat tour buses with high-passenger capacities in a course of a three-day, two-night school excursion. Results showed that both driver zones and passenger zones of the tour buses achieved maximum CO2 concentrations of more than 3000 ppm, and maximum daily average concentrations of 2510.6 and 2646.9 ppm, respectively. The findings confirmed that the CO2 concentrations detected in the tour buses exceeded the indoor air quality standard of Taiwan Environmental Protection Administration (8 hr-CO2: 1000 ppm) and the air quality guideline of Hong Kong Environmental Protection Department (1 hr-CO2: 2500 ppm for Level 1 for buses). Observations also showed that high-capacity tour bus cabins with air conditioning system operating in recirculation mode are severely lacking in air exchange rate, which may negatively impact transportation safety. Moreover, the passenger zones were able to maintain a temperature of between 20 and 25°C during travel, which effectively suppresses the dispersion of volatile organic compounds. Finally, the authors suggest that in the journey, increasing the ventilation frequency of tour bus cabin, which is very beneficial to maintain the travel safety and enhance the quality of travel. PMID:25923722

  17. Carbon Dioxide Concentrations and Temperatures within Tour Buses under Real-Time Traffic Conditions.

    PubMed

    Chiu, Chun-Fu; Chen, Ming-Hung; Chang, Feng-Hsiang

    2015-01-01

    This study monitored the carbon dioxide (CO2) concentrations and temperatures of three 43-seat tour buses with high-passenger capacities in a course of a three-day, two-night school excursion. Results showed that both driver zones and passenger zones of the tour buses achieved maximum CO2 concentrations of more than 3000 ppm, and maximum daily average concentrations of 2510.6 and 2646.9 ppm, respectively. The findings confirmed that the CO2 concentrations detected in the tour buses exceeded the indoor air quality standard of Taiwan Environmental Protection Administration (8 hr-CO2: 1000 ppm) and the air quality guideline of Hong Kong Environmental Protection Department (1 hr-CO2: 2500 ppm for Level 1 for buses). Observations also showed that high-capacity tour bus cabins with air conditioning system operating in recirculation mode are severely lacking in air exchange rate, which may negatively impact transportation safety. Moreover, the passenger zones were able to maintain a temperature of between 20 and 25°C during travel, which effectively suppresses the dispersion of volatile organic compounds. Finally, the authors suggest that in the journey, increasing the ventilation frequency of tour bus cabin, which is very beneficial to maintain the travel safety and enhance the quality of travel.

  18. Field test analysis of concentrator photovoltaic system focusing on average photon energy and temperature

    NASA Astrophysics Data System (ADS)

    Husna, Husyira Al; Ota, Yasuyuki; Minemoto, Takashi; Nishioka, Kensuke

    2015-08-01

    The concentrator photovoltaic (CPV) system is unique and different from the common flat-plate PV system. It uses a multi-junction solar cell and a Fresnel lens to concentrate direct solar radiation onto the cell while tracking the sun throughout the day. The cell efficiency could reach over 40% under high concentration ratio. In this study, we analyzed a one year set of environmental condition data of the University of Miyazaki, Japan, where the CPV system was installed. Performance ratio (PR) was discussed to describe the system’s performance. Meanwhile, the average photon energy (APE) was used to describe the spectrum distribution at the site where the CPV system was installed. A circuit simulator network was used to simulate the CPV system electrical characteristics under various environmental conditions. As for the result, we found that the PR of the CPV systems depends on the APE level rather than the cell temperature.

  19. Equilibrium concentrations of N2H4 and its decomposition products at elevated temperatures and pressures

    NASA Technical Reports Server (NTRS)

    Smetana, F. O.; Fairchild, H. N., III; Martin, G. L.

    1973-01-01

    Liquid hydrazine is considered as a convenient source of hydrogen rather than just as a rocket fuel. For such purposes, the hydrogen is usually obtained by passing the hydrazine through a heated catalytic bed. One convenient measure of the effectiveness of a catalytic decomposition device as a whole is to compare the quantity of hydrogen produced with the equilibrium concentration of the gaseous species N2H4, NH3, N3, and H2 which would exist at the temperature and pressure found in various parts of the device. Calculations of the concentrations were carried out and are reported here. Following presentation of the results in both tabular and graphical forms is a comparison between the computed equilibrium concentrations and available experimental data.

  20. Blood concentrations of amino acids, glucose and lactate during experimental swine dysentery.

    PubMed

    Jonasson, R; Essén-Gustavsson, B; Jensen-Waern, M

    2007-06-01

    The aim of this study was to examine blood concentrations of amino acids, glucose and lactate in association with experimental swine dysentery. Ten pigs (approximately 23kg) were orally inoculated with Brachyspira hyodysenteriae. Eight animals developed muco-haemorrhagic diarrhoea with impaired general appearance, changes in white blood cell counts and increased levels of the acute phase protein Serum Amyolid A. Blood samples were taken before inoculation, during the incubation period, during clinical signs of dysentery and during recovery. Neither plasma glucose nor lactate concentrations changed during the course of swine dysentery, but the serum concentrations of gluconeogenic non-essential amino acids decreased during dysentery. This was mainly due to decreases in alanine, glutamine, serine and tyrosine. Lysine increased during dysentery and at the beginning of the recovery period, and leucine increased during recovery. Glutamine, alanine and tyrosine levels show negative correlations with the numbers of neutrophils and monocytes. In conclusion, swine dysentery altered the blood concentrations of amino acids, but not of glucose or lactate.

  1. Diurnal variations in the plasma concentrations of mevalonic acid in patients with abetalipoproteinaemia.

    PubMed

    Pappu, A S; Illingworth, D R

    1994-10-01

    Previous studies have demonstrated that changes in the rates of cholesterol biosynthesis can be evaluated by the determination of plasma concentrations of sterol intermediates, including mevalonic acid and lathosterol and that, in normal human subjects, a diurnal rhythm exists in which the highest concentrations of sterol intermediates are observed at night. The factors responsible for this diurnal rhythm in cholesterol synthesis are, however, unknown. To test the hypothesis that the nocturnal increase in cholesterol biosynthesis is attributable to a reduced rate of hepatic uptake of chylomicron remnants at night as compared to higher rates of uptake during the daytime in response to alimentary lipaemia, we have examined the diurnal rhythm of mevalonic acid in six normal volunteers and three patients with phenotypic abetalipoproteinaemia. The latter patients do not absorb appreciable amounts of dietary cholesterol and are unable to synthesize chylomicron particles. Plasma concentrations of mevalonic acid exhibited a diurnal rhythm in the normal subjects, and the highest plasma concentrations were observed between 24.00 hours/04.00 hours. A similar rhythm was observed in the plasma of patients with abetalipoproteinaemia. These results suggest that the nocturnal increase in cholesterol biosynthesis which occurs in humans is not attributable to reduced hepatic uptake of chylomicron remnants at night; further studies are needed to better define those factors which influence the periodicity of cholesterol biosynthesis in humans.

  2. Effects of phosphoric acid concentration on oxygen reduction kinetics at platinum

    SciTech Connect

    Hsueh, K.L.; Chin, D.T.; Gonzalez, E.R.; Srinivasan, S.

    1984-04-01

    The oxygen reduction reaction was investigated at platinum electrodes in phosphoric acid in the concentration range 0.7M(6.6%) to 17.5M(95%) at 25/sup 0/C using the rotating ring-disk electrode technique. As a complement, cyclic voltammograms on platinum and potentials of zero charge of mercury were obtained as a function of phosphoric aci concentration. The mechanism of the oxygen electrode reaction is discussed in terms of the direct four-electron transfer reduction to water and the formation of hydrogen peroxide as an intermediate in a parallel two-electron transfer reaction The rate constants of the intermediate reaction steps were calculated from the ring-disk data for various potentials and electrolyte concentrations. The characteristics of the reaction were found to be markedly dependent on the concentration of phosphoric acid. These results are interpreted in terms of changes in oxygen solubility, proton activity, and double laye characteristics when passing over from a water to a phosphoric acid solvent structure.

  3. Benzoic Acid Production with Respect to Starter Culture and Incubation Temperature during Yogurt Fermentation using Response Surface Methodology.

    PubMed

    Yu, Hyung-Seok; Lee, Na-Kyoung; Jeon, Hye-Lin; Eom, Su Jin; Yoo, Mi-Young; Lim, Sang-Dong; Paik, Hyun-Dong

    2016-01-01

    Benzoic acid is occasionally used as a raw material supplement in food products and is sometimes generated during the fermentation process. In this study, the production of naturally occurring yogurt preservatives was investigated for various starter cultures and incubation temperatures, and considered food regulations. Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus rhamnosus, Lactobacillus casei, Lactobacillus paracasei, Lactobacillus reuteri, Lactobacillus plantarum, Bifidobacterium longum, Bifidobacterium lactis, Bifidobacterium bifidum, Bifidobacterium infantis, and Bifidobacterium breve were used as yogurt starter cultures in commercial starters. Among these strains, L. rhamnosus and L. paracasei showed the highest production of benzoic acid. Therefore, the use of L. rhamnosus, L. paracasei, S. thermophilus, and different incubation temperatures were examined to optimize benzoic acid production. Response surface methodology (RSM) based on a central composite design was performed for various incubation temperatures (35-44℃) and starter culture inoculum ratios (0-0.04%) in a commercial range of dairy fermentation processes. The optimum conditions were 0.04% L. rhamnosus, 0.01% L. paracasei, 0.02% S. thermophilus, and 38.12℃, and the predicted and estimated concentrations of benzoic acid were 13.31 and 13.94 mg/kg, respectively. These conditions maximized naturally occurring benzoic acid production during the yogurt fermentation process, and the observed production levels satisfied regulatory guidelines for benzoic acid in dairy products.

  4. Adenosine plasma level correlates with homocysteine and uric acid concentrations in patients with coronary artery disease.

    PubMed

    Fromonot, J; Deharo, P; Bruzzese, L; Cuisset, T; Quilici, J; Bonatti, S; Fenouillet, E; Mottola, G; Ruf, J; Guieu, R

    2016-03-01

    The role of hyperhomocysteinemia in coronary artery disease (CAD) patients remains unclear. The present study evaluated the relationship between homocysteine (HCys), adenosine plasma concentration (APC), plasma uric acid, and CAD severity evaluated using the SYNTAX score. We also evaluated in vitro the influence of adenosine on HCys production by hepatoma cultured cells (HuH7). Seventy-eight patients (mean age ± SD: 66.3 ± 11.3; mean SYNTAX score: 19.9 ± 12.3) and 30 healthy subjects (mean age: 61 ± 13) were included. We incubated HuH7 cells with increasing concentrations of adenosine and addressed the effect on HCys level in cell culture supernatant. Patients vs. controls had higher APC (0.82 ± 0.5 μmol/L vs 0.53 ± 0.14 μmol/L; p < 0.01), HCys (15 ± 7.6 μmol/L vs 6.8 ± 3 μmol/L, p < 0.0001), and uric acid (242.6 ± 97 vs 202 ± 59, p < 0.05) levels. APC was correlated with HCys and uric acid concentrations in patients (Pearson's R = 0.65 and 0.52; p < 0.0001, respectively). The SYNTAX score was correlated with HCys concentration. Adenosine induced a time- and dose-dependent increase in HCys in cell culture. Our data suggest that high APC is associated with HCys and uric acid concentrations in CAD patients. Whether the increased APC participates in atherosclerosis or, conversely, is part of a protective regulation process needs further investigations.

  5. Relative Amino Acid Concentrations as a Signature for Parent Body Processes of Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Botta, Oliver; Glavin, Daniel P.; Kminek, Gerhard; Bada, Jeffrey L.

    2002-01-01

    Most meteorites are thought to have originated from objects in the asteroid belt. Carbonaceous chondrites, which contain significant amounts of organic carbon including complex organic compounds, have also been suggested to be derived from comets. The current model for the synthesis of organic compounds found in carbonaceous chondrites includes the survival of interstellar organic compounds and the processing of some of these compounds on the meteoritic parent body. The amino acid composition of five CM carbonaceous chondrites, two CIs, one CR, and one CV3 have been measured using hot water extraction-vapor hydrolysis, OPA/NAC derivatization and high-performance liquid chromatography (HPLC). Total amino acid abundances in the bulk meteorites as well as the amino acid concentrations relative to glycine = 1.0 for beta-alanine, alpha-aminoisobutyric acid and D-alanine were determined. Additional data for three Antarctic CM meteorites were obtained from the literature. All CM meteorites analyzed in this study show a complex distribution of amino acids and a high variability in total concentration ranging from approx. 15,300 to approx. 5800 parts per billion (ppb), while the CIs show a total amino acid abundance of approx. 4300 ppb. The relatively (compared to glycine) high AIB content found in all the CMs is a strong indicator that Strecker-cyanohydrin synthesis is the dominant pathway for the formation of amino acids found in these meteorites. The data from the Antarctic CM carbonaceous chondrites are inconsistent with the results from the other CMs, perhaps due to influences from the Antarctic ice that were effective during their residence time. In contrast to CMs, the data from the CI carbonaceous chondrites indicate that the Strecker synthesis was not active on their parent bodies.

  6. Biological nitrogen fixation in acidic high-temperature geothermal springs in Yellowstone National Park, Wyoming.

    PubMed

    Hamilton, Trinity L; Lange, Rachel K; Boyd, Eric S; Peters, John W

    2011-08-01

    The near ubiquitous distribution of nifH genes in sediments sampled from 14 high-temperature (48.0-89.0°C) and acidic (pH 1.90-5.02) geothermal springs in Yellowstone National Park suggested a role for the biological reduction of dinitrogen (N(2)) to ammonia (NH(3)) (e.g. nitrogen fixation or diazotrophy) in these environments. nifH genes from these environments formed three unique phylotypes that were distantly related to acidiphilic, mesophilic diazotrophs. Acetylene reduction assays and (15) N(2) tracer studies in microcosms containing sediments sampled from acidic and high-temperature environments where nifH genes were detected confirmed the potential for biological N(2) reduction in these environments. Rates of acetylene reduction by sediment-associated populations were positively correlated with the concentration of NH(4)(+), suggesting a potential relationship between NH(4)(+) consumption and N(2) fixation activity. Amendment of microcosms with NH(4)(+) resulted in increased lag times in acetylene reduction assays. Manipulation of incubation temperature and pH in acetylene reduction assays indicated that diazotrophic populations are specifically adapted to local conditions. Incubation of sediments in the presence of a N(2) headspace yielded a highly enriched culture containing a single nifH phylotype. This phylotype was detected in all 14 geothermal spring sediments examined and its abundance ranged from ≈ 780 to ≈ 6800 copies (g dry weight sediment)(-1), suggesting that this organism may contribute N to the ecosystems. Collectively, these results for the first time demonstrate thermoacidiphilic N(2) fixation in the natural environment and extend the upper temperature for biological N(2) fixation in terrestrial systems.

  7. Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates, and temperatures

    NASA Astrophysics Data System (ADS)

    Kürten, Andreas; Bianchi, Federico; Almeida, Joao; Kupiainen-Määttä, Oona; Dunne, Eimear M.; Duplissy, Jonathan; Williamson, Christina; Barmet, Peter; Breitenlechner, Martin; Dommen, Josef; Donahue, Neil M.; Flagan, Richard C.; Franchin, Alessandro; Gordon, Hamish; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Ickes, Luisa; Jokinen, Tuija; Kangasluoma, Juha; Kim, Jaeseok; Kirkby, Jasper; Kupc, Agnieszka; Lehtipalo, Katrianne; Leiminger, Markus; Makhmutov, Vladimir; Onnela, Antti; Ortega, Ismael K.; Petäjä, Tuukka; Praplan, Arnaud P.; Riccobono, Francesco; Rissanen, Matti P.; Rondo, Linda; Schnitzhofer, Ralf; Schobesberger, Siegfried; Smith, James N.; Steiner, Gerhard; Stozhkov, Yuri; Tomé, António; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Wagner, Paul E.; Wimmer, Daniela; Ye, Penglin; Baltensperger, Urs; Carslaw, Ken; Kulmala, Markku; Curtius, Joachim

    2016-10-01

    Binary nucleation of sulfuric acid and water as well as ternary nucleation involving ammonia are thought to be the dominant processes responsible for new particle formation (NPF) in the cold temperatures of the middle and upper troposphere. Ions are also thought to be important for particle nucleation in these regions. However, global models presently lack experimentally measured NPF rates under controlled laboratory conditions and so at present must rely on theoretical or empirical parameterizations. Here with data obtained in the European Organization for Nuclear Research CLOUD (Cosmics Leaving OUtdoor Droplets) chamber, we present the first experimental survey of NPF rates spanning free tropospheric conditions. The conditions during nucleation cover a temperature range from 208 to 298 K, sulfuric acid concentrations between 5 × 105 and 1 × 109 cm-3, and ammonia mixing ratios from zero added ammonia, i.e., nominally pure binary, to a maximum of 1400 parts per trillion by volume (pptv). We performed nucleation studies under pure neutral conditions with zero ions being present in the chamber and at ionization rates of up to 75 ion pairs cm-3 s-1 to study neutral and ion-induced nucleation. We found that the contribution from ion-induced nucleation is small at temperatures between 208 and 248 K when ammonia is present at several pptv or higher. However, the presence of charges significantly enhances the nucleation rates, especially at 248 K with zero added ammonia, and for higher temperatures independent of NH3 levels. We compare these experimental data with calculated cluster formation rates from the Atmospheric Cluster Dynamics Code with cluster evaporation rates obtained from quantum chemistry.

  8. The Influence of High Aerosol Concentration on Atmospheric Boundary Layer Temperature Stratification

    SciTech Connect

    Khaykin, M.N.; Kadygrove, E.N.; Golitsyn, G.S.

    2005-03-18

    Investigations of the changing in the atmospheric boundary layer (ABL) radiation balance as cased by natural and anthropogenic reasons is an important topic of the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) program. The influence of aerosol on temperature stratification of ABL while its concentration was extremely high within a long period of time was studied experimentally. The case was observed in Moscow region (Russia) with the transport of combustion products from peat-bog and forest fires in July-September, 2002. At this time the visibility was some times at about 100-300 m. Aerosol concentration measured by Moscow University Observatory and A.M. Obukhov Institute of Atmospheric Physics field station in Zvenigorod (55.7 N; 36.6 E) for several days was in 50-100 times more than background one (Gorchakov at al 2003). The high aerosol concentration can change the radiation balance at ABL, and so to change thermal stratification in ABL above the mega lopolis. For the analysis the data were used of synchronous measurements by MTP-5 (Microwave Temperature Profiler operating at wavelength 5 mm) in two locations, namely: downtown Moscow and country-side which is 50 km apart to the West (Zvenigorod station). (Kadygrov and Pick 1998; Westwater at al 1999; Kadygrov at al 2002). Zvenigorod station is located in strongly continental climate zone which is in between of the climates of ARM sites (NSANorth Slope of Alaska and SGP-Southern Great Plains). The town of Zvenigorod has little industry, small traffic volume and topography conductive to a good air ventilation of the town. For these reasons Zvenigorod can be considered as an undisturbed rural site. For the analysis some days were chosen with close meteorological parameters (average temperature, humidity, wind, pressure and cloud form) but strongly differing in aerosol concentration level.

  9. Dual-Pump Coherent Anti-Stokes Raman Scattering Temperature and CO2 Concentration Measurements

    NASA Technical Reports Server (NTRS)

    Lucht, Robert P.; Velur-Natarajan, Viswanathan; Carter, Campbell D.; Grinstead, Keith D., Jr.; Gord, James R.; Danehy, Paul M.; Fiechtner, G. J.; Farrow, Roger L.

    2003-01-01

    Measurements of temperature and CO2 concentration using dual-pump coherent anti-Stokes Raman scattering, (CARS) are described. The measurements were performed in laboratory flames,in a room-temperature gas cell, and on an engine test stand at the U.S. Air Force Research Laboratory, Wright-Patterson Air Force Base. A modeless dye laser, a single-mode Nd:YAG laser, and an unintensified back-illuminated charge-coupled device digital camera were used for these measurements. The CARS measurements were performed on a single-laser-shot basis. The standard deviations of the temperatures and CO2 mole fractions determined from single-shot dual-pump CARS spectra in steady laminar propane/air flames were approximately 2 and 10% of the mean values of approximately 2000 K and 0.10, respectively. The precision and accuracy of single-shot temperature measurements obtained from the nitrogen part of the dual-pump CARS system were investigated in detail in near-adiabatic hydrogen/air/CO2 flames. The precision of the CARS temperature measurements was found to be comparable to the best results reported in the literature for conventional two-laser, single-pump CARS. The application of dual-pump CARS for single-shot measurements in a swirl-stabilized combustor fueled with JP-8 was also demonstrated.

  10. Stratospheric aerosol acidity, density, and refractive index deduced from SAGE 2 and NMC temperature data

    NASA Technical Reports Server (NTRS)

    Yue, G. K.; Poole, L. R.; Wang, P.-H.; Chiou, E. W.

    1994-01-01

    Water vapor concentrations obtained by the Stratospheric Aerosol and Gas Experiment 2 (SAGE 2) and collocated temperatures provided by the National Meteorological Center (NMC) from 1986 to 1990 are used to deduce seasonally and zonally averaged acidity, density, and refractive index of stratospheric aerosols. It is found that the weight percentage of sulfuric acid in the aerosols increases from about 60 just above the tropopause to about 86 at 35 km. The density increases from about 1.55 to 1.85 g/cu cm between the same altitude limits. Some seasonal variations of composition and density are evident at high latitudes. The refractive indices at 1.02, 0.694, and 0.532 micrometers increase, respectively, from about 1.425, 1.430, and 1.435 just above the tropopause to about 1.445, 1.455, and 1.458 at altitudes above 27 km, depending on the season and latitude. The aerosol properties presented can be used in models to study the effectiveness of heterogeneous chemistry, the mass loading of stratospheric aerosols, and the extinction and backscatter of aerosols at different wavelengths. Computed aerosol surface areas, rate coefficients for the heterogeneous reaction ClONO2 + H2O yields HOCl + HNO3 and aerosol mass concentrations before and after the Pinatubo eruption in June 1991 are shown as sample applications.

  11. The potential impact on atmospheric ozone and temperature of increasing trace gas concentrations

    NASA Technical Reports Server (NTRS)

    Brasseur, G.; Derudder, A.

    1987-01-01

    The response of the atmosphere to emissions of chlorofluorocarbons (CFCs) and other chlorocarbons, and to increasing concentrations of other radiatively active trace gases such as CO2, CH4, and N2O is calculated by a coupled chemical-radiative transport one-dimensional model. It is shown that significant reductions in the ozone concentration and in the temperature are expected in the upper stratosphere as a result of increasing concentrations of active chlorine produced by photodecomposition of the CFCs. The ozone content is expected to increase in the troposphere, as a consequence of increasing concentrations of methane and nitrogen oxides. Due to enhanced greenhouse effects, the Earth's surface should warm up by several degrees. The amplitude and even the sign of future changes in the ozone column are difficult to predict as they are strongly scenario-dependent. An early detection system to prevent noticeable ozone changes as a result of increasing concentrations of source gases should thus be based on a continuous monitoring of the ozone amount in the upper stratosphere rather than on measurements of the ozone column only. Measurements of NOx, Clx, and HOx are also required for unambiguous trend detection and interpretation.

  12. Elevated water temperature and carbon dioxide concentration increase the growth of a keystone echinoderm

    PubMed Central

    Gooding, Rebecca A.; Harley, Christopher D. G.; Tang, Emily

    2009-01-01

    Anthropogenic climate change poses a serious threat to biodiversity. In marine environments, multiple climate variables, including temperature and CO2 concentration ([CO2]), are changing simultaneously. Although temperature has well-documented ecological effects, and many heavily calcified marine organisms experience reduced growth with increased [CO2], little is known about the combined effects of temperature and [CO2], particularly on species that are less dependent on calcified shells or skeletons. We manipulated water temperature and [CO2] to determine the effects on the sea star Pisaster ochraceus, a keystone predator. We found that sea star growth and feeding rates increased with water temperature from 5 °C to 21 °C. A doubling of current [CO2] also increased growth rates both with and without a concurrent temperature increase from 12 °C to 15 °C. Increased [CO2] also had a positive but nonsignificant effect on sea star feeding rates, suggesting [CO2] may be acting directly at the physiological level to increase growth rates. As in past studies of other marine invertebrates, increased [CO2] reduced the relative calcified mass in sea stars, although this effect was observed only at the lower experimental temperature. The positive relationship between growth and [CO2] found here contrasts with previous studies, most of which have shown negative effects of [CO2] on marine species, particularly those that are more heavily calcified than P. ochraceus. Our findings demonstrate that increased [CO2] will not have direct negative effects on all marine invertebrates, suggesting that predictions of biotic responses to climate change should consider how different types of organisms will respond to changing climatic variables. PMID:19470464

  13. Microbial production of itaconic acid: developing a stable platform for high product concentrations.

    PubMed

    Kuenz, Anja; Gallenmüller, Yvonne; Willke, Thomas; Vorlop, Klaus-Dieter

    2012-12-01

    Biotechnologically produced itaconic acid (IA) is a promising organic acid with a wide range of applications and the potential to open up new application fields in the area of polymer chemistry, pharmacy, and agriculture. In this study, a systematic process optimization was performed with an own isolated strain of Aspergillus terreus and transferred from a 250-mL to a 15-L scale. An IA concentration of 86.2 g/L was achieved within 7 days with an overall productivity of 0.51 g/(L h), a maximum productivity of 1.2 g/(L h), and a yield of 86 mol%. A cultivation of other well-known A. terreus strains with the developed process showed no significant differences. Based on this, a process is developed providing a high final IA concentration independent of the used strain combined with high reproducibility.

  14. A Concentrated Hydrochloric Acid-based Method for Complete Recovery of DNA from Bone.

    PubMed

    Huynen, Leon; Lambert, David M

    2015-11-01

    The successful extraction of DNA from historical or ancient animal bone is important for the analysis of discriminating genetic markers. Methods used currently rely on the digestion of bone with EDTA and proteinase K, followed by purification with phenol/chloroform and silica bed binding. We have developed a simple concentrated hydrochloric acid-based method that precludes the use of phenol/chloroform purification and can lead to a several-fold increase in DNA yield when compared to other commonly used methods. Concentrated hydrochloric acid was shown to dissolve most of the undigested bone and allowed the efficient recovery of DNA fragments <100 bases in length. This method should prove useful for the recovery of DNAs from highly degraded animal bone, such as that found in historical or ancient samples.

  15. An intercomparison of measurement systems for vapor and particulate phase concentrations of formic and acetic acids

    NASA Technical Reports Server (NTRS)

    Keene, William C.; Talbot, Robert W.; Andreae, Meinrat O.; Beecher, Kristene; Berresheim, Harold

    1989-01-01

    During June 1986, eight systems for measuring vapor phase and four for measuring particulate phase concentrations of formic acid (HCOOH) and acetic acid (CH3COOH) were intercompared in central Virginia. HCOOH and CH3COOH vapors were sampled by condensate, mist, Chromosorb 103 GC resin, NaOH-coated annular denuders, NaOH-impregnated quartz filters, K2CO3 and NaCO3-impregnated cellulose filters, and Nylasorb membranes. Atmospheric aerosol was collected on Teflon and Nuclepore filters using both hi-vol and lo-vol systems to measure particulate phase concentrations. Performances of the mist chamber and K2CO3-impregnated filter techniques were evaluated using zero air and ambient air spiked with HCOOH(g) and CH3COOH(g), and formaldehyde from permeation sources. The advantages and drawbacks of these methods are reported and discussed.

  16. Rhodamine B conjugates of triterpenoic acids are cytotoxic mitocans even at nanomolar concentrations.

    PubMed

    Sommerwerk, Sven; Heller, Lucie; Kerzig, Christoph; Kramell, Annemarie E; Csuk, René

    2017-02-15

    Triterpenoic acids 1-6 exhibited very low or no cytotoxicity at all, but their corresponding 2,3-di-O-acetyl-piperazinyl amides 13-18 showed low EC50 values for several human tumor cell lines. Their cytotoxicity, however, was also high for the non-malignant mouse fibroblasts NIH 3T3. A significant improvement was achieved by preparing the rhodamine B derivatives 19-24. While rhodamine B is not cytotoxic (up to a concentration of 30μM - cut-off of the assay), the triterpenoid piperazine-spacered rhodamine B derivatives were cytotoxic in nano-molar concentration. Compound 24 (a diacetylated maslinic acid derivative) was most toxic for several human tumor cell lines but less toxic for mouse fibroblasts NIH 3T3. Staining and double-staining experiments revealed 24 to act as a mitocan.

  17. Isoeugenol concentrations in rainbow trout (Oncorhynchus mykiss) skin-on fillet tissue after exposure to AQUI-S™ at different temperatures, durations, and concentrations

    USGS Publications Warehouse

    Meinertz, Jeffery R.; Greseth, Shari L.; Schreier, Theresa M.; Bernardy, Jeffry A.; Gingerich, William H.

    2006-01-01

    At common water temperatures, the tissue concentration of isoeugenol in fillet tissue from fish exposed to 14-mg/L AQUI-S™ for 60 min was significantly greater than the isoeugenol concentration in fillet tissue from fish exposed to 34-mg/L AQUI-S™ for 10 min (P < 0.01). The isoeugenol concentration (78.8 μg/g) found in fillet tissue from fish exposed to 14-mg/L AQUI-S™ for 60 min at 17 °C was significantly greater than the isoeugenol tissue concentration (57.3 μg/g) generated at 7 °C (P < 0.01), but was not significantly greater than the isoeugenol tissue concentration (70.7 μg/g) generated at 12 °C (P = 0.22). AQUI-S™ exposure regimens and exposure temperatures can significantly impact drug residue concentrations in fillet tissue.

  18. An experimental and modeling study of humic acid concentration effect on H(+) binding: Application of the NICA-Donnan model.

    PubMed

    Vidali, Roza; Remoundaki, Emmanouela; Tsezos, Marios

    2009-11-15

    Humic substances are the most abundant components of the colloidal and the dissolved fraction of natural organic matter (NOM) and they are characterized by a strong binding capacity for both metals and organic pollutants, affecting their mobility and bioavailability. The understanding of the humic acidic character is the first necessary step for the study of the mechanisms of binding of other positively charged soluble metal species by humic molecules. The present work, which constitutes part of the Ph.D. thesis of Roza Vidali, reports results on the influence of the concentration of humic acids on the binding of protons obtained through both an experimental and a modeling approach. A reference purified peat humic acid (PPHA) isolated by the International Humic Substances Society (IHSS) and a humic acid from a Greek soil (GHA) were experimentally studied at various humic acid concentrations, ranging from 20 to 200mgL(-1). The proton binding isotherms obtained at different humic acid concentrations have shown that proton binding is dependent on the concentration of both humic acids. Proton binding experimental data were fitted to the NICA-Donnan model and the model parameter values were calculated for humic acid concentrations of 20 and >or=100mgL(-1). The results obtained for the NICA-Donnan parameters at humic acid concentrations >or=100mgL(-1) are in excellent agreement with those reported in the literature. However, these model parameter values cannot be used for modeling and predicting cation binding in natural aquatic systems, where humic acid concentrations are much lower. Two sets of the NICA-Donnan parameters are reported: one for humic acid concentrations of >or=100mgL(-1) and one for humic acid concentration of 20mgL(-1). The significance of the parameters values for each concentration level is also discussed.

  19. Decadal variations of rainwater formic and acetic acid concentrations in Wilmington, NC, USA

    NASA Astrophysics Data System (ADS)

    Willey, Joan D.; Glinski, Donna A.; Southwell, Melissa; Long, Michael S.; Avery, G. Brooks, Jr.; Kieber, Robert J.

    2011-02-01

    Concentrations of formic and acetic acid from January 2008 through March 2009 were compared to two previous studies at this location (conducted in 1987-1990 and 1996-1998) in order to quantify the extent to which temporal changes in DOC and pH can be explained by changes in these organic acids. The volume weighted 2008 formic and acetic acid concentrations (5.6 and 2.6 μM respectively) have decreased dramatically compared with those observed during the 1996-1998 study (9.9 and 7.3 μM) and are also lower than concentrations observed in the 1987-1990 study (7.4 and 3.6 μM). Changes in formic and acetic acids between 1996-97 and 2008 can account for approximately 50% of the DOC change and 40% of the H + change in rainwater over this same time period. These changes are most pronounced during the growing season, which is also the tourist and high traffic season at this location. Determining causation of these changes is difficult due to multiple biogenic and anthropogenic sources. However, the ratio of formic to acetic acid has also reverted back to a value consistent with reduced vehicular emissions, possibly related to the introduction of improved emission control technology including the use of reformulated gasoline in the late 1990's. Long term monitoring of seasonal, annual, and decadal trends will be of critical importance for evaluating the effects of future changes to atmospheric inputs such as the increased use of ethanol and other alternative fuels.

  20. Concentration-dependent mode of interaction of angiotensin II receptor blockers with uric acid transporter.

    PubMed

    Iwanaga, Takashi; Sato, Masanobu; Maeda, Tomoji; Ogihara, Toshio; Tamai, Ikumi

    2007-01-01

    Serum uric acid (SUA) is currently recognized as a risk factor for cardiovascular disease. It has been reported that an angiotensin II receptor blocker (ARB), losartan, decreases SUA level, whereas other ARBs, such as candesartan, have no lowering effect. Because the renal uric acid transporter (URAT1) is an important factor controlling the SUA level, we examined the involvement of URAT1 in those differential effects of various ARBs on SUA level at clinically relevant concentrations. This study was done by using URAT1-expressing Xenopus oocytes. Losartan, pratosartan, and telmisartan exhibited cis-inhibitory effects on the uptake of uric acid by URAT1, whereas at higher concentrations, only telmisartan did, and these ARBs reduced the uptake in competitive inhibition kinetics. On the other hand, candesartan, EXP3174 [2-n-butyl-4-chloro-1-[(2'-(1H-tetrazol-5-yl)biphenyl-4-yI)methyl]imidazole-5-carboxylic acid] (a major metabolite of losartan), olmesartan, and valsartan were not inhibitory. Preloading of those ARBs in the oocytes enhanced the URAT1-mediated uric acid uptake, showing a trans-stimulatory effect. The present study is a first demonstration of the differential effects of ARBs on URAT1 that some ARBs are both cis-inhibitory and trans-stimulatory, depending on concentration, whereas others exhibit either a trans-stimulatory or cis-inhibitory effect alone, which could explain the clinically observed differential effects of ARBs on SUA level. Furthermore, it was found that such differential effects of ARBs on URAT1 could be predicted from the partial chemical structures of ARBs, which will be useful information for the appropriate use and development of ARBs without an increase of SUA.

  1. Effect of temperature on the extraction of uranium(VI) from nitric acid by tri-n-amyl phosphate

    SciTech Connect

    Srinivasan, T.G.; Rao, P.R.V.; Sood, D.D. |

    1997-01-01

    Studies have been carried out on the effect of temperature on the extraction of U(VI) from nitric acid medium by tri-n-amyl phosphate/n-dodecane, measured as a function of the extractant concentration and aqueous phase acidity. The results indicate that the extraction is exothermic as in the case of tri-n-butyl phosphate. From the data available an effort has been made to calculate the equilibrium constant, the Gibbs energy change and the entropy changes of the extraction reaction. 21 refs., 3 figs., 4 tabs.

  2. Determination of pyruvic acid concentration using a bioluminescence system from Photobacterium leiognathi.

    PubMed

    Xuan, Guanhua; Lu, Xiaodong; Wang, Jingxue; Lin, Hong; Liu, Huihui

    2015-06-01

    A novel, highly sensitive and selective bacterial luminescence method for the detection of pyruvic acid (PA) is reported here. This method is based on a reaction system catalyzed by lactate dehydrogenase (LDH) with the bacterial luciferase-FMN:NADH oxidoreductase bioluminescence system in vitro. The reduced nicotinamide adenine dinucleotide (NADH) involved in the LDH reaction system could be quantitatively analyzed by the bioluminescence system. A good linear relationship between the luminescence intensity and pyruvic acid concentration was exhibited within the range of 0.00014-0.001 mol l(-1), and the pyruvic acid detection limit was found to be 8.537 × 10(-5) mol l(-1). This method was successfully applied to the detection of PA in quail serum with a good recovery of over 70%.

  3. Effects of signal corrections on measurements of temperature and OH concentrations using laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Yin, Zhiyao; Carter, Campbell D.; Lempert, Walter R.

    2014-07-01

    Temperature and OH concentrations derived from OH laser-induced fluorescence (LIF) are known to be susceptible to effects such as collisional quenching, laser absorption, and fluorescence trapping. In this paper, a set of analytical and easy-to-implement methods is presented for treating these effects. The significance of these signal corrections on inferred temperature and absolute OH concentration is demonstrated in an atmospheric-pressure, near-stoichiometric CH4-air flame stabilized on a Hencken burner, for laser excitation of both the A2Σ+←X2Π (0,0) and (1,0) bands. It is found that the combined effect of laser attenuation and fluorescence trapping can cause considerable error in the OH number density and temperature if not accounted for, even with A-X(1,0) excitation. The validity of the assumptions used in signal correction (that the excited-state distribution is either thermalized or frozen) is examined using time-dependent modeling of the ro-vibronic states during and after laser excitation. These assumptions are shown to provide good bounding approximations for treating transition-dependent issues in OH LIF, especially for an unknown collisional environment, and it is noted that the proposed methods are generally applicable to LIF-based measurements.

  4. High-temperature photochemical destruction of toxic organic wastes using concentrated solar radiation

    SciTech Connect

    Dellinger, B.; Graham, J.L.; Berman, J.M.; Taylor, P.H.

    1994-05-01

    Application of concentrated solar energy has been proposed to be a viable waste disposal option. Specifically, this concept of solar induced high-temperature photochemistry is based on the synergistic contribution of concentrated infrared (IR) radiation, which acts as an intense heating source, and near ultraviolet and visible (UV-VIS) radiation, which can induce destructive photochemical processes. Some significant advances have been made in the theoretical framework of high-temperature photochemical processes (Section 2) and development of experimental techniques for their study (Section 3). Basic thermal/photolytic studies have addressed the effect of temperature on the photochemical destruction of pure compounds (Section 4). Detailed studies of the destruction of reaction by-products have been conducted on selected waste molecules (Section 5). Some very limited results are available on the destruction of mixtures (Section 6). Fundamental spectroscopic studies have been recently initiated (Section 7). The results to date have been used to conduct some relatively simple scale-up studies of the solar detoxification process. More recent work has focused on destruction of compounds that do not directly absorb solar radiation. Research efforts have focused on homogeneous as well as heterogeneous methods of initiating destructive reaction pathways (Section 9). Although many conclusions at this point must be considered tentative due to lack of basic research, a clearer picture of the overall process is emerging (Section 10). However, much research remains to be performed and most follow several veins, including photochemical, spectroscopic, combustion kinetic, and engineering scale-up (Section 11).

  5. Effects of Eimeria acervulina infection severity on growth performance, apparent ileal amino acid digestibility, and plasma concentrations of amino acids, carotenoids, and α1-acid glycoprotein in broilers.

    PubMed

    Rochell, S J; Parsons, C M; Dilger, R N

    2016-07-01

    An experiment was conducted to evaluate growth performance, apparent ileal digestibility (AID) of amino acids, and plasma concentrations of amino acids, carotenoids, and α1-acid glycoprotein, an acute-phase protein, in broilers inoculated with graded doses of E. acervulina oocysts. Ross 308 male broilers (400 total) were housed in battery cages from 1 to 21 d post-hatch and received common corn-soybean meal-based diets throughout the experiment. At 9 d post-hatch, birds were individually weighed and allotted to 4 treatment groups with 10 replicate cages of 10 birds per cage. At 15 d post-hatch, all birds were inoculated with 1 mL of distilled water that contained 0, 2.5 × 10(5), 5.0 × 10(5), or 1.0 × 10(6) sporulated E. acervulina oocysts. At 21 d, birds were euthanized for collection of blood and ileal digesta. Body weight gain and feed efficiency decreased linearly (P < 0.05) with increasing E. acervulina dose. With the exception of Trp and Gly, AID values decreased (P < 0.05) linearly or quadratically for all amino acids by an average of 2.6 percentage units for birds inoculated with 1.0 × 10(6) oocysts compared with uninfected birds. Infection with E. acervulina caused a quadratic decrease (P < 0.05) in plasma carotenoid concentrations. Plasma concentrations of Arg and Tyr decreased linearly (P < 0.05) with increasing E. acervulina inoculation dose and plasma Gln and Asn decreased quadratically (P < 0.01). Linear increases (P < 0.05) were observed for plasma Lys, Leu, Ile, Val, Pro, and Orn as E. acervulina inoculation dose increased. Plasma α1-acid glycoprotein of broilers was not influenced (P > 0.05) by E. acervulina infection. In conclusion, E. acervulina challenge adversely impacted growth performance, plasma carotenoids, and AID of amino acids in a dose-dependent manner. However, plasma amino acid responses to graded E. acervulina inoculation doses varied considerably among amino acids. Thus, these results indicated that alterations

  6. Heat shock protein concentration and clarity of porcine lenses incubated at elevated temperatures

    PubMed Central

    Dzialoszynski, T. M.; Milne, K.J.; Trevithick, J.R.

    2016-01-01

    Purpose To quantify the concentration of heat shock proteins in lenses in lens organ culture at elevated temperatures, and to examine the relation between elevated temperature and lens clarity. Methods Pig lenses obtained from a local abattoir were dissected aseptically and incubated in medium M199 without serum for 4 days to stabilize, and lenses with protein leakage of less than 10 mg/l were obtained for heat shock exposure. Heat shock was performed by incubation for 1 h in M199 without serum at various temperatures ranging from 37 °C to 55 °C. After incubation for 24 h, cataract blurring of the images was assessed using Scantox™ and Scion Image analysis of the lens photographs. Lens homogenates were subsequently analyzed for Hsp70 and Hsp27 with western blotting. Results The degree of cataract blurring of the images increased with increasing temperature, but the two functional measures provided different results. Focal length inconsistency, as assessed with the back vertex distance standard error of the mean (BVD SEM; the variability in focal lengths measured at 20 equally spaced locations across the lens, Scantox™), increased nearly linearly with the heat treatment temperature. In contrast, decreased clarity, evident by a fuzzy image with lower contrast, was not markedly altered as the temperature rose until a threshold of approximately 47.5 °C. The inducible isoform of the Hsp70 family (Hsp70) of heat shock proteins was increased at all temperatures above the control except those above 50 °C. Changes in Hsp27 were less clear as the protein content increased only at the incubation temperatures of 39 °C and 48.5 °C. Conclusions The porcine lens demonstrates subtle changes in the variability of the focal length, and the variability increases as the incubation temperature rises. In contrast, lens clarity is relatively stable at temperatures up to 47.5 °C, above which dramatic changes, indicative of the formation of cataracts, occur. The lens content

  7. A high temperature hybrid photovoltaic-thermal receiver employing spectral beam splitting for linear solar concentrators

    NASA Astrophysics Data System (ADS)

    Mojiri, Ahmad; Stanley, Cameron; Rosengarten, Gary

    2015-09-01

    Hybrid photovoltaic/thermal (PV-T) solar collectors are capable of delivering heat and electricity concurrently. Implementing such receivers in linear concentrators for high temperature applications need special considerations such as thermal decoupling of the photovoltaic (pv) cells from the thermal receiver. Spectral beam splitting of concentrated light provides an option for achieving this purpose. In this paper we introduce a relatively simple hybrid receiver configuration that spectrally splits the light between a high temperature thermal fluid and silicon pv cells using volumetric light filtering by semi-conductor doped glass and propylene glycol. We analysed the optical performance of this device theoretically using ray tracing and experimentally through the construction and testing of a full scale prototype. The receiver was mounted on a commercial parabolic trough concentrator in an outdoor experiment. The prototype receiver delivered heat and electricity at total thermal efficiency of 44% and electrical efficiency of 3.9% measured relative to the total beam energy incident on the primary mirror.

  8. Analogy between temperature-dependent and concentration-dependent bacterial killing.

    PubMed

    Neef, C; van Gils, S A; IJzerman, W L

    2002-11-01

    In this article an analogy between temperature-dependent and concentration-dependent bacterial killing is described. The validation process of autoclaves uses parameters such as reduction rate constant k, decimal reduction time D and resistance coefficient z from an imaginary microorganism to describe the sterilization process. Total lethality of the process is calculated as the integral of the lethality (a function of the temperature) over time. In the case of concentration-dependent killing-i.e. using antibiotic drugs-the k-value is not necessarily a constant; it is the difference between growth and killing of the microorganism. Equations are derived for the decimal reduction time D and resistance coefficient z. Pharmacodynamic models of tobramycin, ciprofloxacin and ceftazidime are used to demonstrate that there is an optimal concentration for all three drugs: C(opt-tobra)=3.20 MICmg/l, C(opt-cipro)=3.45 MICmg/l and C(opt-cefta)=1.35 MICmg/l.

  9. Ballistics ordnance gelatine - How different concentrations, temperatures and curing times affect calibration results.

    PubMed

    Maiden, Nicholas R; Fisk, Wesley; Wachsberger, Christian; Byard, Roger W

    2015-08-01

    A study was undertaken to determine whether different concentrations of ordnance gelatine, water types, temperatures and curing times would have an effect on projectile penetration of a gelatine tissue surrogate. Both Federal Bureau of Investigation (FBI) and North Atlantic Treaty Organization (NATO) specified gelatines were compared against the FBI calibration standard. 10% w/w and 20% w/w concentrations of gelatine with Bloom numbers of 250 and 285 were prepared and cured at variable temperatures (3-20°C) for 21 hours-3 weeks. Each block was shot on four occasions on the same range using steel calibre 4.5 mm BBs fired from a Daisy(®) air rifle at the required standard velocity of 180 ± 4.5 m/s, to ascertain the mean penetration depth. The results showed no significant difference in mean penetration depth using the three different water types (p > 0.05). Temperature changes and curing times did affect penetration depth. At 10°C, mean penetration depth with 20% gelatine 285 Bloom for the two water types tested was 49.7 ± 1.5 mm after 21 h curing time, whereas the same formulation at 20°C using two different water types was 79.1 ± 2.1 mm after 100 h curing time (p < 0.001). Neither of the NATO 20% concentrations of gelatine at 10°C or a 20% concentration of 285 Bloom gelatine at 10°C met the same calibration standard as the FBI recommended 10% formulation at 4°C. A 20% concentration of 285 Bloom at 20°C met the same calibration/penetration criteria as a 10% concentration of 250 Bloom at 4 °C after 100 h of curing, therefore matching the FBI calibration standard for a soft tissue simulant for wound ballistics research. These results demonstrate significant variability in simulant properties. Failure to standardise ballistic simulants may invalidate experimental results.

  10. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry.

    PubMed

    Rondo, L; Ehrhart, S; Kürten, A; Adamov, A; Bianchi, F; Breitenlechner, M; Duplissy, J; Franchin, A; Dommen, J; Donahue, N M; Dunne, E M; Flagan, R C; Hakala, J; Hansel, A; Keskinen, H; Kim, J; Jokinen, T; Lehtipalo, K; Leiminger, M; Praplan, A; Riccobono, F; Rissanen, M P; Sarnela, N; Schobesberger, S; Simon, M; Sipilä, M; Smith, J N; Tomé, A; Tröstl, J; Tsagkogeorgas, G; Vaattovaara, P; Winkler, P M; Williamson, C; Wimmer, D; Baltensperger, U; Kirkby, J; Kulmala, M; Petäjä, T; Worsnop, D R; Curtius, J

    2016-03-27

    Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection of H2SO4 in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time in the CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI-APi-TOF (Chemical Ionization-Atmospheric Pressure interface-Time Of Flight) mass spectrometers. In addition, neutral sulfuric acid clusters were measured with the CI-APi-TOFs. The CLOUD7 measurements show that in the presence of dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS represents only a fraction of the total H2SO4, contained in the monomer and the clusters that is available for particle growth. Although it was found that the addition of dimethylamine dramatically changes the H2SO4 cluster distribution compared to binary (H2SO4-H2O) conditions, the CIMS detection efficiency does not seem to depend substantially on whether an individual H2SO4 monomer is clustered with a DMA molecule. The experimental observations are supported by numerical simulations based on A Self-contained Atmospheric chemistry coDe coupled with a molecular process model (Sulfuric Acid Water NUCleation) operated in the kinetic limit.

  11. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Rondo, L.; Ehrhart, S.; Kürten, A.; Adamov, A.; Bianchi, F.; Breitenlechner, M.; Duplissy, J.; Franchin, A.; Dommen, J.; Donahue, N. M.; Dunne, E. M.; Flagan, R. C.; Hakala, J.; Hansel, A.; Keskinen, H.; Kim, J.; Jokinen, T.; Lehtipalo, K.; Leiminger, M.; Praplan, A.; Riccobono, F.; Rissanen, M. P.; Sarnela, N.; Schobesberger, S.; Simon, M.; Sipilä, M.; Smith, J. N.; Tomé, A.; Tröstl, J.; Tsagkogeorgas, G.; Vaattovaara, P.; Winkler, P. M.; Williamson, C.; Wimmer, D.; Baltensperger, U.; Kirkby, J.; Kulmala, M.; Petäjä, T.; Worsnop, D. R.; Curtius, J.

    2016-03-01

    Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection of H2SO4 in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time in the CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI-APi-TOF (Chemical Ionization-Atmospheric Pressure interface-Time Of Flight) mass spectrometers. In addition, neutral sulfuric acid clusters were measured with the CI-APi-TOFs. The CLOUD7 measurements show that in the presence of dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS represents only a fraction of the total H2SO4, contained in the monomer and the clusters that is available for particle growth. Although it was found that the addition of dimethylamine dramatically changes the H2SO4 cluster distribution compared to binary (H2SO4-H2O) conditions, the CIMS detection efficiency does not seem to depend substantially on whether an individual H2SO4 monomer is clustered with a DMA molecule. The experimental observations are supported by numerical simulations based on A Self-contained Atmospheric chemistry coDe coupled with a molecular process model (Sulfuric Acid Water NUCleation) operated in the kinetic limit.

  12. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry

    PubMed Central

    Ehrhart, S.; Kürten, A.; Adamov, A.; Bianchi, F.; Breitenlechner, M.; Duplissy, J.; Franchin, A.; Dommen, J.; Donahue, N. M.; Dunne, E. M.; Flagan, R. C.; Hakala, J.; Hansel, A.; Keskinen, H.; Kim, J.; Jokinen, T.; Lehtipalo, K.; Leiminger, M.; Praplan, A.; Riccobono, F.; Rissanen, M. P.; Sarnela, N.; Schobesberger, S.; Simon, M.; Sipilä, M.; Smith, J. N.; Tomé, A.; Tröstl, J.; Tsagkogeorgas, G.; Vaattovaara, P.; Winkler, P. M.; Williamson, C.; Wimmer, D.; Baltensperger, U.; Kirkby, J.; Kulmala, M.; Petäjä, T.; Worsnop, D. R.; Curtius, J.

    2016-01-01

    Abstract Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection of H2SO4 in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time in the CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI‐APi‐TOF (Chemical Ionization‐Atmospheric Pressure interface‐Time Of Flight) mass spectrometers. In addition, neutral sulfuric acid clusters were measured with the CI‐APi‐TOFs. The CLOUD7 measurements show that in the presence of dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS represents only a fraction of the total H2SO4, contained in the monomer and the clusters that is available for particle growth. Although it was found that the addition of dimethylamine dramatically changes the H2SO4 cluster distribution compared to binary (H2SO4‐H2O) conditions, the CIMS detection efficiency does not seem to depend substantially on whether an individual H2SO4 monomer is clustered with a DMA molecule. The experimental observations are supported by numerical simulations based on A Self‐contained Atmospheric chemistry coDe coupled with a molecular process model (Sulfuric Acid Water NUCleation) operated in the kinetic limit. PMID:27610289

  13. Fatty acid concentration, proximate composition, and mineral composition in fishbone flour of Nile Tilapia.

    PubMed

    Petenuci, Maria Eugênia; Stevanato, Flávia Braidoti; Visentainer, Jeane Eliete Laguila; Matsushita, Makoto; Garcia, Edivaldo Egea; de Souza, Nilson Evelázio; Visentainer, Jesui Vergilio

    2008-03-01

    Nile tilapia (Oreochormis niloticus) fishbone is a fish part with unknown composition. After elaboration of flour fishbone of tilapia it was analysede. The results in 100 g of flour were: moisture (14.2%), protein (40.8%), total lipids (25.3%), and ash (18.3%), and mineral (in 100 g) was 2715.9 mg (calcium), 1.3 mg (iron), and 1132.7 mg (phosphorus). A total of 22 fatty acids were detected in fishbone flour total lipids (TL), being the major ones in (g) of total lipids: 16:0 (208.5 mg); 18:1n-9 (344.3 mg); and 18:2n-6 (109.6 mg). The concentration of linolenic acid--LNA (18:3n-3); eicopentaenoic acid--EPA (20:5n-3), and docosahexaenoic acid--DHA (22:6n-3) were (29.9 mg), (3.3 mg), and (12.9 mg), respectively. The content to saturated (SFA) were (296.2 mg), monounsaturated (MUFA) 415.0 mg, and polyunsaturated (PUFA) 175.6 mg. The ratio PUFA:MUFA:SFA was 1:2.4:1.7, and the ratio omega-6/omega-3 fatty acids were 2.8. The last is within the recommended values. The results show low concentrations of omega-3 fatty acids in flour. The value caloric and calcium, iron, phosphorus, and protein content the fishbone flour of tilapia may results a valuable alternative food in the human diet.

  14. Frontal Gamma-Aminobutyric Acid Concentrations Are Associated With Cognitive Performance in Older Adults

    PubMed Central

    Porges, Eric C.; Woods, Adam J.; Edden, Richard A.E.; Puts, Nicolaas A.J.; Harris, Ashley D.; Chen, Huaihou; Garcia, Amanda M.; Seider, Talia R.; Lamb, Damon G.; Williamson, John B.; Cohen, Ronald A.

    2017-01-01

    BACKGROUND Gamma-aminobutyric acid (GABA), the brain’s principal inhibitory neurotransmitter, has been associated with perceptual and attentional functioning. Recent application of magnetic resonance spectroscopy (MRS) provides in vivo evidence for decreasing GABA concentrations during adulthood. It is unclear, however, how age-related decrements in cerebral GABA concentrations contribute to cognitive decline, or whether previously reported declines in cerebral GABA concentrations persist during healthy aging. We hypothesized that participants with higher GABA concentrations in the frontal cortex would exhibit superior cognitive function and that previously reported age-related decreases in cortical GABA concentrations continue into old age. METHODS We measured GABA concentrations in frontal and posterior midline cerebral regions using a Mescher-Garwood point-resolved spectroscopy (MEGA-PRESS) 1H-MRS approach in 94 older adults without history or clinical evidence of mild cognitive impairment or dementia (mean age, 73 years). We administered the Montreal Cognitive Assessment to assess cognitive functioning. RESULTS Greater frontal GABA concentrations were associated with superior cognitive performance. This relation remained significant after controlling for age, years of education, and brain atrophy. GABA concentrations in both frontal and posterior regions decreased as a function of age. CONCLUSIONS These novel findings from a large, healthy, older population indicate that cognitive function is sensitive to cerebral GABA concentrations in the frontal cortex, and GABA concentration in frontal and posterior regions continue to decline in later age. These effects suggest that proton MRS may provide a clinically useful method for the assessment of normal and abnormal age-related cognitive changes and the associated physiological contributors. PMID:28217759

  15. The effects of allopurinol, uric acid, and inosine administration on xanthine oxidoreductase activity and uric acid concentrations in broilers.

    PubMed

    Settle, T; Carro, M D; Falkenstein, E; Radke, W; Klandorf, H

    2012-11-01

    The purpose of these studies was to determine the effects of uric acid (UA) and inosine administration on xanthine oxidoreductase activity in broilers. In experiment one, 25 broilers were assigned to 5 treatment groups: control, AL (25 mg of allopurinol/kg of body mass), AR (AL for 2 wk followed by allopurinol withdrawal over wk 3), UAF (AL plus 6.25 g of UA sodium salt/kg of feed), and UAI (AL plus 120 mg of UA sodium salt injected daily). The UA administration had no effect on plasma concentration of UA (P > 0.05), and all allopurinol-treated birds had lower (P < 0.05) UA levels than controls. The UA concentrations were restored in both plasma and kidney of AR birds at wk 3, but liver UA concentrations remained lower. Whereas xanthine oxidoreductase (XOR) activity in the liver (LXOR) was reduced (P < 0.05) by allopurinol treatment, XOR activity in the kidney (KXOR) was not affected (P = 0.05). In experiment two, 3 groups of 5 birds each were fed 0 (control), 0.6 M inosine/kg of feed (INO), or INO plus 50 mg of allopurinol/kg of body mass (INOAL). The INOAL birds showed lower total LXOR activity, but KXOR activity was not affected. Both INO and INOAL birds had higher plasma and kidney UA concentrations than controls. The results suggest that regulation of UA production is tissue dependent.

  16. Evaluation of the morphological changes of gastric mucosa induced by a low concentration of acetic acid using a rat model.

    PubMed

    Nakao, Ken-ichiro; Ro, Ayako; Kibayashi, Kazuhiko

    2014-02-01

    Oral ingestion of concentrated acetic acid causes corrosive injury of the gastrointestinal tract. To assess the effects of a low concentration of acetic acid on gastric mucosa, we examined the gastric mucosal changes in rats at 1 and 3 days after the injection of 5% or 25% acetic acid into the gastric lumen. The area of the gastric ulcerative lesions in the 25% acetic acid group was significantly larger than that in the 5% acetic acid group. The lesion area was reduced significantly at 3 days after injection in the 5% acetic acid group, whereas no significant difference in lesion area was observed at 1 and 3 days in the 25% acetic acid group. Histologically, corrosive necrosis was limited to the mucosal layer in the 5% acetic acid group, whereas necrosis extended throughout the gastric wall in the 25% acetic acid group. At 3 days post-injection, the 25% acetic acid group showed widespread persistent inflammation, whereas the 5% acetic acid group showed widespread appearance of fibroblasts indicative of a healing process. These results indicate that a low concentration of acetic acid damages the gastric mucosa and that the degree of mucosal damage depends on the concentration of acetic acid.

  17. Concentrations of retinol and tocopherols in the milk of cows supplemented with conjugated linoleic acid.

    PubMed

    Gessner, D K; Most, E; Schlegel, G; Kupczyk, K; Schwarz, F J; Eder, K

    2015-12-01

    This study was performed to investigate the hypothesis that supplementation of conjugated linoleic acid (CLA) changes the concentrations of retinol and tocopherols in the milk of cows. To investigate this hypothesis, Holstein cows received daily from 3 weeks ante-partum to 14 weeks post-partum either 172 g of a CLA-free rumen-protected control fat (control group, n = 20) or the same amount of a rumen-protected CLA fat, supplying 4.3 g of cis-9, trans-11 CLA and 3.8 g of trans-10, cis-12 CLA per d (CLA group, n = 20). Milk samples (collected at weeks 1, 3, 5, 8 and 11 of lactation) were analysed for retinol, α- and γ-tocopherol concentrations. Milk of cows supplemented with CLA had higher concentrations of retinol (+34%), α-tocopherol (+44%) and γ-tocopherol (+21%) than milk of control cows (p < 0.05). The daily output of these vitamins via milk was also greater in cows of the CLA group than in cows of the control group (+36, 50 and 24% for retinol, α-tocopherol and γ-tocopherol, respectively, p < 0.05). In agreement with higher concentrations of tocopherols, concentrations of thiobarbituric acid-reactive substances, determined in milk of week 5, were lower in cows of the CLA group than in control cows, indicative of a lower susceptibility of milk lipids to peroxidation. Plasma concentrations of retinol and α-tocopherol, determined at 1 and 5 weeks post-partum, were not different between the two groups of cows. In conclusion, this study shows that supplementing dairy cows with a moderate amount of CLA causes an increase of the concentrations of vitamins A and E in the milk and results in an increased output of those vitamins via milk. These effects might be beneficial with respect to the nutritional value of dairy products and the susceptibility of milk fat to oxidative deterioration.

  18. Conversion of Undaria pinnatifida residue to glycolic acid with recyclable methylamine in low temperature hydrothermal liquefaction.

    PubMed

    Chen, Yongxing; Ren, Xiulian; Wei, Qifeng

    2017-03-01

    The conversion of Undaria pinnatifida residue to glycolic acid was carried out using methylamine as catalyst by hydrothermal method at relatively low temperature. GC-MS and HPLC were used to identify the composition of bio-oil and liquid products which provide the knowledge of the chemical reaction pathways of the hydrothermal liquefaction. The main liquid product was organic acid which contained glycolic acid, lactic acid, formic acid and acetic acid. And the major organic acid was glycolic acid with the highest yield of 46.52% or 33.98% of dry biomass. Methylamine promoted the dissolution of cellulose from Undaria pinnatifida residue, and significantly improved the yield of glycolic acid. The mechanism of HTL was investigated and the results show that the carbocation C3 was attacked by methylamine molecule which led to the high yield of glycolic acid. In addition, the recovery of methylamine was studied and the highest recovery rate reached 99.28%.

  19. Formation and reduction of 5-hydroxymethylfurfural at frying temperature in model system as a function of amino acid and sugar composition.

    PubMed

    Kavousi, Parviz; Mirhosseini, Hamed; Ghazali, Hasanah; Ariffin, Abdul Azis

    2015-09-01

    5-Hydroxymethylfurfural (HMF) is formed during heat treatment of carbohydrate-containing foods, especially in a deep-fat frying process. This study aimed to investigate the effect of amino acids on the formation and reduction of HMF from glucose, fructose and sucrose at frying temperature in model systems containing binary mixtures of an amino acid and a sugar in equal concentrations (0.3M). The results revealed that the formation of HMF from sugars accelerated in the presence of acidic amino acids (i.e. glutamic and aspartic acids). Conversely, the presence of basic amino acids (i.e. lysine, arginine and histidine) led to reduced concentrations of HMF to non-detectable levels in model systems. The results showed that both pH and heating time significantly affected the formation of HMF from fructose in the presence of glutamic acid. In this regard, a higher amount of HMF was formed at lower pH.

  20. Influence of sodium chloride concentration on the controlled lactic acid fermentation of "Almagro" eggplants.

    PubMed

    Ballesteros, C; Palop, L; Sánchez, I

    1999-12-01

    The effect of a commercial Lactobacillus starter and sodium chloride concentration on the fermentation of "Almagro" eggplants (Solanum melongena L. var. esculentum depressum) was studied. The results of fermentation using added starter and varying salt concentrations (4, 6, and 10% w/v) in brine were compared with the results of spontaneous fermentation taking place in brine with a salt concentration of 4%. Fresh fruits, medium in size (34-44 g), were used in all cases; all fruits were blanched under identical conditions. Temperature in the fermenters was 32+/-2 degrees C. The results obtained indicate that addition of a suitable starter shortened the fermentation process, provided the salt concentration in the brine did not exceed 6%. In the conditions tested, the eggplants obtained after fermentation were found to be of good quality though somewhat bitter which may explained by the starter employed.

  1. Studies on renin release from isolated superfused glomeruli: effects of temperature, urea, ouabain and ethacrynic acid.

    PubMed Central

    Baumbach, L; Leyssac, P P; Skinner, S L

    1976-01-01

    1. The effects of different energy substrates, of low temperature, of urea, and of ouabain and ethacrynic acid were studied on the rate of renin release from viable juxtaglomerular cells during superfusion of isolated rat glomeruli. 2. Neither lactate nor glutamate altered renin release rate from that observed using glucose as the sole energy substrate. Succinate 10 mM elevated release transiently but did not influence the release caused by reductions in osmolality through lowering sucrose concentration. 3. Peak renin release was more prolonged and returned more slowly to control following reductions in osmolality in phosphate-Ringer than in bicarbonate-Ringer. 4. At 37 degrees C, the peak of renin released induced by hypo-osmolality was smaller and delayed, and returned earlier to control than at 30 degrees C. Reduction in temperature from 30 to 4 degrees C resulted in a 32-fold increase in basal release rate. At 4 degrees C a 20 m-osmole/kg reduction in tonicity caused an additional 2-5-fold increase in release rate. 6. Increasing superfusate osmolality with urea did not affect basal renin release but 100 mM urea suppressed the releasing effect of a 15 mM reduction in NaCl concentration. 7. Ouabain (10(-4) M) caused a small (33 +/- 9%, P less than 0-025) transient increase in renin release. Ethacrynic acid (10(-3) M) provoked a progressive increase in release reaching 100 +/- 15% above control within 50 min. In the presence of both inhibitors the release provoked by hyposmolality was prolonged. 8. It is concluded that renin release in vitro is a function of actively regulated cell volume and it is proposed that a similar mechanism could underline both barorecptor and macula densa controls of renin secretion in vivo. PMID:940062

  2. Sea surface temperature variation linked to elemental mercury concentrations measured on Mauna Loa

    NASA Astrophysics Data System (ADS)

    Carbone, F.; Landis, M. S.; Gencarelli, C. N.; Naccarato, A.; Sprovieri, F.; De Simone, F.; Hedgecock, I. M.; Pirrone, N.

    2016-07-01

    The Hg0 time series recorded at the Mauna Loa Observatory (MLO) in Hawaii between 2002 and 2009 has been analyzed using Empirical Mode Decomposition. This technique has been used in numerous contexts in order to identify periodical variations in time series data. The periodicities observed in the tropical Pacific sea surface temperature (SST), through the data collected from five buoys, are also observed in Hg0 concentrations and the relative humidity measured at the MLO. The lag times in the observed periodicities are related to the position of the buoys with respect to the measurement site. This demonstrates a direct link between climatological phenomena, in this case SST, and measured Hg0 and reflects the influence of ocean SST on Hg0 evasion. This is the first long-term experimental evidence of such a direct effect on Hg0 evasion from the oceanic surface driven by temperature.

  3. Modelling Extraction of White Tea Polyphenols: The Influence of Temperature and Ethanol Concentration.

    PubMed

    Peiró, Sara; Gordon, Michael H; Blanco, Mónica; Pérez-Llamas, Francisca; Segovia, Francisco; Almajano, María Pilar

    2014-10-21

    The optimization of the extraction of natural antioxidants from white tea has fostered intensive research. This study has investigated the effects of ethanol-water mixtures, temperature and time on the extraction of polyphenols and antioxidant components from white tea. The response surface methodology was applied to identify the best extraction conditions. The best conditions to maximize the extraction of total polyphenols were: ethanol, 50%, for 47.5 min. Although the yield of polyphenols was optimal at 65 °C, the maximum antioxidant capacity was achieved with an extraction temperature of 90 °C. This study has identified the optimal conditions for the extraction of tea liquor with the best antioxidant properties. Epigallocatechin gallate, epicatechin gallate, epigallocatechin and epicatechin were extracted from white tea at concentrations up to 29.6 ± 10.6, 5.40 ± 2.09, 5.04 ± 0.20 and 2.48 ± 1.10 mg/100 g.

  4. Concentration fluctuations in miscible polymer blends: Influence of temperature and chain rigidity

    SciTech Connect

    Dudowicz, Jacek; Freed, Karl F.; Douglas, Jack F.

    2014-05-21

    In contrast to binary mixtures of small molecule fluids, homogeneous polymer blends exhibit relatively large concentration fluctuations that can strongly affect the transport properties of these complex fluids over wide ranges of temperatures and compositions. The spatial scale and intensity of these compositional fluctuations are studied by applying Kirkwood-Buff theory to model blends of linear semiflexible polymer chains with upper critical solution temperatures. The requisite quantities for determining the Kirkwood-Buff integrals are generated from the lattice cluster theory for the thermodynamics of the blend and from the generalization of the random phase approximation to compressible polymer mixtures. We explore how the scale and intensity of composition fluctuations in binary blends vary with the reduced temperature τ ≡ (T − T{sub c})/T (where T{sub c} is the critical temperature) and with the asymmetry in the rigidities of the components. Knowledge of these variations is crucial for understanding the dynamics of materials fabricated from polymer blends, and evidence supporting these expectations is briefly discussed.

  5. Phenylnaphthalene as a Heat Transfer Fluid for Concentrating Solar Power: High-Temperature Static Experiments

    SciTech Connect

    Bell, Jason R; Joseph III, Robert Anthony; McFarlane, Joanna; Qualls, A L

    2012-05-01

    Concentrating solar power (CSP) may be an alternative to generating electricity from fossil fuels; however, greater thermodynamic efficiency is needed to improve the economics of CSP operation. One way of achieving improved efficiency is to operate the CSP loop at higher temperatures than the current maximum of about 400 C. ORNL has been investigating a synthetic polyaromatic oil for use in a trough type CSP collector, to temperatures up to 500 C. The oil was chosen because of its thermal stability and calculated low vapor and critical pressures. The oil has been synthesized using a Suzuki coupling mechanism and has been tested in static heating experiments. Analysis has been conducted on the oil after heating and suggests that there may be some isomerization taking place at 450 C, but the fluid appears to remain stable above that temperature. Tests were conducted over one week and further tests are planned to investigate stabilities after heating for months and in flow configurations. Thermochemical data and thermophysical predictions indicate that substituted polyaromatic hydrocarbons may be useful for applications that run at higher temperatures than possible with commercial fluids such as Therminol-VP1.

  6. Spectroscopic measurements of temperature and plasma impurity concentration during magnetic reconnection at the Swarthmore Spheromak Experiment

    NASA Astrophysics Data System (ADS)

    Chaplin, V. H.; Brown, M. R.; Cohen, D. H.; Gray, T.; Cothran, C. D.

    2009-04-01

    Electron temperature measurements during counterhelicity spheromak merging studies at the Swarthmore Spheromak Experiment (SSX) [M. R. Brown, Phys. Plasmas 6, 1717 (1999)] are presented. VUV monochromator measurements of impurity emission lines are compared with model spectra produced by the non-LTE excitation kinematics code PRISMSPECT [J. J. MacFarlane et al., in Proceedings of the Third Conference on Inertial Fusion Science and Applications (2004)] to yield the electron temperature in the plasma with 1 μs time resolution. Average Te is seen to increase from 12 to 19 eV during spheromak merging. Average C III ion temperature, measured with a new ion Doppler spectrometer (IDS) [C. D. Cothran et al., Rev. Sci. Instrum. 77, 063504 (2006)], likewise rises during spheromak merging, peaking at ˜22 eV, but a similar increase in Ti is seen during single spheromak discharges with no merging. The VUV emission line measurements are also used to constrain the concentrations of various impurities in the SSX plasma, which are dominated by carbon, but include some oxygen and nitrogen. A burst of soft x-ray emission is seen during reconnection with a new four-channel detector (SXR). There is evidence for spectral changes in the soft x-ray emission as reconnection progresses, although our single-temperature equilibrium spectral models are not able to provide adequate fits to all the SXR data.

  7. Improved high temperature solar absorbers for use in Concentrating Solar Power central receiver applications.

    SciTech Connect

    Stechel, Ellen Beth; Ambrosini, Andrea; Hall, Aaron Christopher; Lambert, Timothy L.; Staiger, Chad Lynn; Bencomo, Marlene

    2010-09-01

    Concentrating solar power (CSP) systems use solar absorbers to convert the heat from sunlight to electric power. Increased operating temperatures are necessary to lower the cost of solar-generated electricity by improving efficiencies and reducing thermal energy storage costs. Durable new materials are needed to cope with operating temperatures >600 C. The current coating technology (Pyromark High Temperature paint) has a solar absorptance in excess of 0.95 but a thermal emittance greater than 0.8, which results in large thermal losses at high temperatures. In addition, because solar receivers operate in air, these coatings have long term stability issues that add to the operating costs of CSP facilities. Ideal absorbers must have high solar absorptance (>0.95) and low thermal emittance (<0.05) in the IR region, be stable in air, and be low-cost and readily manufacturable. We propose to utilize solution-based synthesis techniques to prepare intrinsic absorbers for use in central receiver applications.

  8. Influence of H 2SO 4 concentration on the performance of lead-acid battery negative plates

    NASA Astrophysics Data System (ADS)

    Pavlov, D.; Petkova, G.; Rogachev, T.

    The influence of sulfuric acid concentration on negative plate performance has been studied on 12 V/32 Ah lead-acid batteries with three negative and four positive plates per cell, i.e. the negative active material limits battery capacity. Initial capacity tests, including C20 capacity, cold cranking ability and Peukert tests, have been carried out in a wide range of sulfuric acid concentrations (from 1.18 to 1.33 sp.gr.). High initial capacity and good CCA performance were registered for batteries with acid concentration between 1.24 and 1.30 sp.gr. The charge acceptance depends on acid concentration as well as on battery state of charge. Batteries with high SoC exhibit high charge acceptance at low acid concentrations. The cycle life tests at two discharge rates (10 and 3 h discharge) evidence that sulfuric acid concentration exerts a strong effect on negative plate performance. The cycle life of batteries decreases with increase of acid concentration. The obtained results demonstrate the high impact of lead sulfate solubility on the cycle life and charge efficiency of lead-acid batteries.

  9. [The correlation of tolerance to cerebral ischemia and body temperature with glutathione concentration].

    PubMed

    Kulinskiĭ, V I; Kolesnichenko, L S; Kovtun, V Iu; Sotnikova, G V

    2003-01-01

    Methodic approaches for the purposeful changes of glutathione concentration in the brain and liver by administration of glutathione depletors and prodrugs have been modified. Two different depletors (diethylmaleate and buthionine sulfoximine) cause considerable increase of tolerance to the complete global cerebral ischemia and hypothermia development which correlate closely with the decrease of GSH concentration. Five GSH prodrugs (GSH esters and oxothiazolidine carboxilate) and GSH itself usually decrease slightly body temperature but do not influence tolerance to ischemia in the most of series. The increase of tolerance to the complete global cerebral ischemia is connected not with GSH accumulation, but with its decrease. Evidently one of the two opposite GSH effects, sensitizing or protecting one, can predominate in different forms of cerebral ischemia.

  10. Extremophiles in Mineral Sulphide Heaps: Some Bacterial Responses to Variable Temperature, Acidity and Solution Composition

    PubMed Central

    Watling, Helen R.; Shiers, Denis W.; Collinson, David M.

    2015-01-01

    In heap bioleaching, acidophilic extremophiles contribute to enhanced metal extraction from mineral sulphides through the oxidation of Fe(II) and/or reduced inorganic sulphur compounds (RISC), such as elemental sulphur or mineral sulphides, or the degradation of organic compounds derived from the ore, biota or reagents used during mineral processing. The impacts of variable solution acidity and composition, as well as temperature on the three microbiological functions have been examined for up to four bacterial species found in mineral sulphide heaps. The results indicate that bacteria adapt to sufficiently high metal concentrations (Cu, Ni, Co, Zn, As) to allow them to function in mineral sulphide heaps and, by engaging alternative metabolic pathways, to extend the solution pH range over which growth is sustained. Fluctuating temperatures during start up in sulphide heaps pose the greatest threat to efficient bacterial colonisation. The large masses of ores in bioleaching heaps mean that high temperatures arising from sulphide oxidation are hard to control initially, when the sulphide content of the ore is greatest. During that period, mesophilic and moderately thermophilic bacteria are markedly reduced in both numbers and activity. PMID:27682094

  11. Effects of Light and Temperature on Fatty Acid Production in Nannochloropsis Salina

    SciTech Connect

    Van Wagenen, Jonathan M.; Miller, Tyler W.; Hobbs, Samuel J.; Hook, Paul W.; Crowe, Braden J.; Huesemann, Michael H.

    2012-03-12

    Accurate prediction of algal biofuel yield will require empirical determination of physiological responses to the climate, particularly light and temperature. One strain of interest, Nannochloropsis salina, was subjected to ranges of light intensity (5-850 {mu}mol m{sup -2} s{sup -1}) and temperature (13-40 C); exponential growth rate, total fatty acids (TFA) and fatty acid composition were measured. The maximum acclimated growth rate was 1.3 day{sup -1} at 23 C and 250 {mu}mol m{sup -2} s{sup -1}. Fatty acids were detected by gas chromatography with flame ionization detection (GC-FID) after transesterification to corresponding fatty acid methyl esters (FAME). A sharp increase in TFA containing elevated palmitic acid (C16:0) and palmitoleic acid (C16:1) during exponential growth at high light was observed, indicating likely triacylglycerol accumulation due to photo-oxidative stress. Lower light resulted in increases in the relative abundance of unsaturated fatty acids; in thin cultures, increases were observed in palmitoleic and eicosapentaenoeic acids (C20:5{omega}3). As cultures aged and the effective light intensity per cell converged to very low levels, fatty acid profiles became more similar and there was a notable increase of oleic acid (C18:1{omega}9). The amount of unsaturated fatty acids was inversely proportional to temperature, demonstrating physiological adaptations to increase membrane fluidity. This data will improve prediction of fatty acid characteristics and yields relevant to biofuel production.

  12. A method for concentrating organic dyes: colorimetric measurements of nitric oxides and sialic acids.

    PubMed

    Lalezari, Parviz; Lekhraj, Rukmani; Casper, Diana

    2011-09-01

    A new method for extraction and concentration of organic dyes that uses a reagent composed of a nonionic detergent mixed with an alcohol is described. We have observed that water-soluble organic dyes are also soluble in nonionic detergents and can be extracted by adding salt, which separates the dye-detergent component from the aqueous phase. We have also found that mixing nonionic detergents with alcohols markedly reduces their viscosity and produces stable, free-flowing, and effective reagents for color extraction. On the basis of these observations, we used a mixture of Triton X-100 and 1-butanol and observed that water-soluble natural and synthetic chromophores, as well as dyes generated in biochemical reactions, can be extracted, concentrated, and analyzed spectrophotometrically. Trypan blue and phenol red are used as examples of synthetic dyes, and red wine is used as an example of phenolic plant pigments. Applications for quantification of nitric oxides and sialic acids are described in more detail and show that as little as 0.15 nmol of nitric oxide and 0.20 nmol of sialic acid can be detected. A major advantage of this method is its ability to concentrate chromophores from dye-containing solutions that otherwise cannot be measured because of their low concentrations.

  13. nC60 deposition kinetics: the complex contribution of humic acid, ion concentration, and valence.

    PubMed

    McNew, Coy P; LeBoeuf, Eugene J

    2016-07-01

    The demonstrated toxicity coupled with inevitable environmental release of nC60 raise serious concerns about its environmental fate and transport, therefore it is crucial to understand how nC60 will interact with subsurface materials including attached phase soil and sediment organic matter (AP-SOM). This study investigated the attachment of nC60 onto a Harpeth humic acid (HHA) coated silica surface under various solution conditions using a quartz crystal microbalance with dissipation monitoring. The HHA coating greatly enhanced nC60 attachment at low ion concentrations while hindering attachment at high ion concentrations in the presence of both mono and divalent cations. At low ion concentrations, the HHA greatly reduced the surface potential of the silica, enhancing nC60 deposition through reduction in the electrostatic repulsion. At high ion concentrations however, the reduced surface potential became less important due to the near zero energy barrier to deposition and therefore non-DLVO forces dominated, induced by compaction of the HHA layer, and leading to hindered attachment. In this manner, observed contributions from the HHA layer were more complex than previously reported and by monitoring surface charge and calculated DLVO interaction energy alongside attachment experiments, this study advances the mechanistic understanding of the variable attachment contributions from the humic acid layer.

  14. Influence of HF acid catalyst concentration on properties of aerogel low-k thin films

    NASA Astrophysics Data System (ADS)

    Gaikwad, A. S.; Gupta, S. A.; Mahajan, A. M.

    2016-08-01

    The effect of hydrofluoric acid (HF) catalyst concentration in coating solution on chemical, physical and structural properties of silica aerogel thin films was investigated. The aerogel films were synthesized by using a sol-gel spin coating method followed by aging in ethanol and CO2 supercritical drying. The refractive index (RI) is observed to be reduced from 1.32 to 1.13 and porosity percentage increased from 30.21% to 71.64% in accordance with increasing HF concentration. Deposition of silica aerogel was confirmed from Fourier transform infrared spectroscopy measurement. The nanoporous nature of deposited films was confirmed from field effect scanning electron microscopy and observed pore diameter is in the range of 3.33 to 6.69 nm. The nanoporous nature of the film was also validated from atomic force microscopy and root mean square roughness was observed to be increased from 2.31 nm to 3.2 nm with increasing acid catalyst concentration in the coating solution. The calculated dielectric constant from CV measurement of fabricated metal-insulator-semiconductor structure for the silica aerogel formed at 0.8 ml HF concentration is observed to be 1.73. These deposited nanoporous silica aerogel low-k films with lower k value and smaller pore size have application as interlayer dielectric materials to minimize the disadvantages of porous materials.

  15. The effect of convalescent meridian acupressure after exercise on stress hormones and lactic acid concentration changes

    PubMed Central

    Shin, Won

    2013-01-01

    Meridian acupressure has been used as the one way recovering body conditions. The purpose of this study was to investigate whether meridian acupressure is effective on removing cortisol, norepinephrine, epinephrine, and lactic acid in blood following exercise. The subjects were 12 healthy male college students and data were processed using SPSS 12.0 statistical program and the results were calculated by setting the significance level at P< 0.05. First, there was a significant difference between exercise recovery group except for stability group and acupressure recovery group in convalescent cortisol concentration changes after exercise (P= 0.001). And acupressure recovery group showed a significant difference compared with two groups (P= 0.001). Second, exercise recovery group showed nonsignificant difference in convalescent norepinephrine concentration changes but meridian acupressure recovery group showed a significant difference (P= 0.001). There was a significance difference in the groups rather than exercise recovery group and rest recovery group (P= 0.001). Third, exercise recovery group and acupressure recovery group showed a significant difference in convalescent epinephrine concentration changes after exercise (P= 0.001). However, rest recovery group showed nonsignificant difference. In addition, three groups showed nonsignificant difference in the groups. However, it showed in order of acupressure= exercise> rest recovery. Fourth, three groups showed a significant difference in convalescent lactic acid concentration changes after exercise (P = 0.001). And it showed in order of acupressure= exercise> rest recovery after recovery treatment in the groups (P= 0.001). PMID:24278880

  16. Safflower oil consumption does not increase plasma conjugated linoleic acid concentrations in humans.

    PubMed

    Herbel, B K; McGuire, M K; McGuire, M A; Shultz, T D

    1998-02-01

    Conjugated linoleic acid (CLA) is a mixture of positional and geometric isomers of linoleic acid (LA) with conjugated double bonds. CLA has anticarcinogenic properties and has been identified in human tissues, dairy products, meats, and certain vegetable oils. A variety of animal products are good sources of CLA, but plant oils contain much less. However, plant oils are a rich source of LA, which may be isomerized to CLA by intestinal microorganisms in humans. To investigate the effect of triacylglycerol-esterified LA consumption on plasma concentrations of esterified CLA in total lipids, a dietary intervention (6 wk) was conducted with six men and six women. During the intervention period a salad dressing containing 21 g safflower oil providing 16 g LA/d was added to the subjects' daily diets. Three-day diet records and fasting blood were obtained initially and during dietary and postdietary intervention periods. Although LA intake increased significantly during the dietary intervention, plasma CLA concentrations were not affected. Plasma total cholesterol and LDL-cholesterol concentrations were significantly lower after addition of safflower oil to the diet. In summary, consumption of triacylglycerol-esterified LA in safflower oil did not increase plasma concentrations of esterified CLA in total lipids.

  17. Intrashell variations in amino acid concentrations and isoleucine epimerization ratios in fossil Hiatella arctica

    NASA Astrophysics Data System (ADS)

    Brigham, Julie K.

    1983-09-01

    Twenty-four valves of fossil Hiatella arctica were analyzed to determine if amino acid ratios varied from one region of a shell to another. The ratio of D-alloisoleucine/L-isoleucine, routinely used as a stratigraphic correlation tool and an indicator of relative age, did not vary significantly between five anatomically different shell parts in Hiatella arctica. Sampling only the hinge or central part of all valves, however, resulted in less variation about the average value. Analyses of only this part of the shell should improve the resolution of stratigraphic units by amino acid geochronology. The absolute concentrations of aspartic acid, threonine, serine, glutamic acid, glycine, alanine, valine, alloisoleucine, isoleucine, and leucine (in picomoles/milligram of shell) are significantly higher in the hinge and central part of the shell, whereas the outer growth edge appears to have lower levels of amino acids. This is true in both the FREE and TOTAL hydrolysate fractions. The reasons are not clear; however, the high value may be caused by a thin, protein-rich inner layer lining the valve out to the pallial line and/or differences in the proportion of inorganic carbonate to protein produced in different areas during shell growth. Alternatively, it may suggest leaching of the thinner, more vulnerable part of the shell growth edge.

  18. Reduced gamma-aminobutyric acid concentration is associated with physical disability in progressive multiple sclerosis.

    PubMed

    Cawley, Niamh; Solanky, Bhavana S; Muhlert, Nils; Tur, Carmen; Edden, Richard A E; Wheeler-Kingshott, Claudia A M; Miller, David H; Thompson, Alan J; Ciccarelli, Olga

    2015-09-01

    Neurodegeneration is thought to be the major cause of ongoing, irreversible disability in progressive stages of multiple sclerosis. Gamma-aminobutyric acid is the principle inhibitory neurotransmitter in the brain. The aims of this study were to investigate if gamma-aminobutyric acid levels (i) are abnormal in patients with secondary progressive multiple sclerosis compared with healthy controls; and (ii) correlate with physical and cognitive performance in this patient population. Thirty patients with secondary progressive multiple sclerosis and 17 healthy control subjects underwent single-voxel MEGA-PRESS (MEscher-GArwood Point RESolved Spectroscopy) magnetic resonance spectroscopy at 3 T, to quantify gamma-aminobutyric acid levels in the prefrontal cortex, right hippocampus and left sensorimotor cortex. All subjects were assessed clinically and underwent a cognitive assessment. Multiple linear regression models were used to compare differences in gamma-aminobutyric acid concentrations between patients and controls adjusting for age, gender and tissue fractions within each spectroscopic voxel. Regression was used to examine the relationships between the cognitive function and physical disability scores specific for these regions with gamma-aminobuytric acid levels, adjusting for age, gender, and total N-acetyl-aspartate and glutamine-glutamate complex levels. When compared with controls, patients performed significantly worse on all motor and sensory tests, and were cognitively impaired in processing speed and verbal memory. Patients had significantly lower gamma-aminobutyric acid levels in the hippocampus (adjusted difference = -0.403 mM, 95% confidence intervals -0.792, -0.014, P = 0.043) and sensorimotor cortex (adjusted difference = -0.385 mM, 95% confidence intervals -0.667, -0.104, P = 0.009) compared with controls. In patients, reduced motor function in the right upper and lower limb was associated with lower gamma-aminobutyric acid concentration in the

  19. MHD thermosolutal marangoni convection heat and mass transport of power law fluid driven by temperature and concentration gradient

    NASA Astrophysics Data System (ADS)

    Jiao, Chengru; Zheng, Liancun; Ma, Lianxi

    2015-08-01

    This paper studies the magnetohydrodynamic (MHD) thermosolutal Marangoni convection heat and mass transfer of power-law fluids driven by a power law temperature and a power law concentration which is assumed that the surface tension varies linearly with both the temperature and concentration. Heat and mass transfer constitutive equation is proposed based on N-diffusion proposed by Philip and the abnormal convection-diffusion model proposed by Pascal in which we assume that the heat diffusion depends non-linearly on both the temperature and the temperature gradient and the mass diffusion depends non-linearly on both the concentration and the concentration gradient with modified Fourier heat conduction for power law fluid. The governing equations are reduced to nonlinear ordinary differential equations by using suitable similarity transformations. Approximate analytical solution is obtained using homotopy analytical method (HAM). The transport characteristics of velocity, temperature and concentration fields are analyzed in detail.

  20. Effects of different vegetable oils on rumen fermentation and conjugated linoleic acid concentration in vitro

    PubMed Central

    Roy, Amitava; Mandal, Guru Prasad; Patra, Amlan Kumar

    2017-01-01

    Aim: The objective of this study was to investigate the effect of different vegetable oils on rumen fermentation and concentrations of beneficial cis-9 trans-11 C18:2 conjugated linoleic acid (CLA) and trans-11 C18:1 fatty acid (FA) in the rumen fluid in an in vitro condition. Materials and Methods: Six vegetable oils including sunflower, soybean, sesame, rice bran, groundnut, and mustard oils were used at three dose levels (0%, 3% and 4% of substrate dry matter [DM] basis) in three replicates for each treatment in a completely randomized design using 6 × 3 factorial arrangement. Rumen fluid for microbial culture was collected from four goats fed on a diet of concentrate mixture and berseem hay at a ratio of 60:40 on DM basis. The in vitro fermentation was performed in 100 ml conical flakes containing 50 ml of culture media and 0.5 g of substrates containing 0%, 3% and 4% vegetable oils. Results: Oils supplementation did not affect (p>0.05) in vitro DM digestibility, and concentrations of total volatile FAs and ammonia-N. Sunflower oil and soybean oil decreased (p<0.05) protozoal numbers with increasing levels of oils. Other oils had less pronounced effect (p>0.05) on protozoal numbers. Both trans-11 C18:1 FA and cis-9, trans-11 CLA concentrations were increased (p<0.05) by sunflower and soybean oil supplementation at 4% level with the highest concentration observed for sunflower oil. The addition of other oils did not significantly (p>0.05) increase the trans-11 C18:1 FA and cis-9, trans-11 CLA concentrations as compared to the control. The concentrations of stearic, oleic, linoleic, and linolenic acids were not altered (p>0.05) due to the addition of any vegetable oils. Conclusion: Supplementation of sunflower and soybean oils enhanced beneficial trans-11 C18:1 FA and cis-9, trans-11 CLA concentrations in rumen fluid, while sesame, rice bran, groundnut, and mustard oils were ineffective in this study. PMID:28246442

  1. Salicylhydroxamic acid (SHAM) inhibition of the dissolved inorganic carbon concentrating process in unicellular green algae

    SciTech Connect

    Goyal, A.; Tolbert, N.E. )

    1990-03-01

    Rates of photosynthetic O{sub 2} evolution, for measuring K{sub 0.5}(CO{sub 2} + HCO{sub 3}{sup {minus}}) at pH 7, upon addition of 50 micromolar HCO{sub 3}{sup {minus}} to air-adapted Chlamydomonas, Dunaliella, or Scenedesmus cells, were inhibited up to 90% by the addition of 1.5 to 4.0 millimolar salicylhydroxamic acid (SHAM) to the aqueous medium. The apparent K{sub i}(SHAM) for Chlamydomonas cells was about 2.5 millimolar, but due to low solubility in water effective concentrations would be lower. Salicylhydroxamic acid did not inhibit oxygen evolution or accumulation of bicarbonate by Scenedesmus cells between pH 8 to 11 or by isolated intact chloroplasts from Dunaliella. Thus, salicylhydroxamic acid appears to inhibit CO{sub 2} uptake, whereas previous results indicate that vanadate inhibits bicarbonate uptake. These conclusions were confirmed by three test procedures with three air-adapted algae at pH 7. Salicylhydroxamic acid inhibited the cellular accumulation of dissolved inorganic carbon, the rate of photosynthetic O{sub 2} evolution dependent on low levels of dissolved inorganic carbon (50 micromolar NaHCO{sub 3}), and the rate of {sup 14}CO{sub 2} fixation with 100 micromolar ({sup 14}C)HCO{sub 3}{sup {minus}}. Salicylhydroxamic acid inhibition of O{sub 2} evolution and {sup 14}CO{sub 2}-fixation was reversed by higher levels of NaHCO{sub 3}. Thus, salicylhydroxamic acid inhibition was apparently not affecting steps of photosynthesis other than CO{sub 2} accumulation. Although salicylhydroxamic acid is an inhibitor of alternative respiration in algae, it is not known whether the two processes are related.

  2. Effects of dissolved oxygen concentration on biodegradation of 2,4-dichlorophenoxyacetic acid.

    PubMed Central

    Shaler, T A; Klecka, G M

    1986-01-01

    Batch experiments were conducted to examine the effects of dissolved oxygen concentration on the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) by an enrichment culture of 2,4-D-utilizing bacteria. A modified Monod equation was found to describe the relationship between the specific growth rate and the concentrations of both the organic substrate and dissolved oxygen. Values for the maximum specific growth rate, yield, and Monod coefficient for growth on 2,4-D were 0.09 h-1, 0.14 g/g, and 0.6 mg/liter, respectively. The half-saturation constant for dissolved oxygen was estimated to be 1.2 mg/liter. These results suggest that dissolved oxygen concentrations below 1 mg/liter may be rate limiting for the biodegradation of chlorinated aromatic compounds such as 2,4-D, which have a requirement for molecular oxygen as a cosubstrate for metabolism. PMID:3729394

  3. Heterogeneous photocatalytic degradation of p-toluenesulfonic acid using concentrated solar radiation in slurry photoreactor.

    PubMed

    Kamble, Sanjay P; Sawant, Sudhir B; Pangarkar, Vishwas G

    2007-02-09

    In this work, the photocatalytic degradation (PCD) of p-toluenesulfonic acid (p-TSA) in batch reactor using concentrated solar radiation was investigated. The effect of the various operating parameters such as initial concentration of substrate, catalyst loading, solution pH and types of ions on photocatalytic degradation has been studied in a batch reactor to derive the optimum conditions. The rate of photocatalytic degradation was found to be maximum at the self pH (pH 3.34) of p-TSA. It was also observed that in the presence of anions and cations, the rate of PCD decreases drastically. The kinetics of photocatalytic degradation of p-TSA was studied. The PCD of p-TSA was also carried at these optimized conditions in a bench scale slurry bubble column reactor using concentrated solar radiation.

  4. Predicting the toxicity of sediment-associated trace metals with simultaneously extracted trace metal: Acid-volatile sulfide concentrations and dry weight-normalized concentrations: A critical comparison

    USGS Publications Warehouse

    Long, E.R.; MacDonald, D.D.; Cubbage, J.C.; Ingersoll, C.G.

    1998-01-01

    The relative abilities of sediment concentrations of simultaneously extracted trace metal: acid-volatile sulfide (SEM:AVS) and dry weight- normalized trace metals to correctly predict both toxicity and nontoxicity were compared by analysis of 77 field-collected samples. Relative to the SEM:AVS concentrations, sediment guidelines based upon dry weight-normalized concentrations were equally or slightly more accurate in predicting both nontoxic and toxic results in laboratory tests.

  5. Production of high optical purity l-lactic acid from waste activated sludge by supplementing carbohydrate: effect of temperature and pretreatment time.

    PubMed

    Jian, Qiwei; Li, Xiang; Chen, Yinguang; Liu, Yanan; Pan, Yin

    2016-10-01

    It has been widely accepted that the most environmentally beneficial way to treat waste activated sludge (WAS), the byproduct of municipal wastewater treatment plant, is to recover the valuable organic acid. However, the bio-conversion of lactic acid, one of the high added-value chemical, is seldom reported from WAS fermentation. In this paper, l-lactic acid was observed dominant in the WAS fermentation liquid with carbohydrate addition at ambient temperature. Furthermore, the effect of temperature on l-lactic acid and d-lactic acid production was fully discussed: two isomers were rapidly produced and consumed up in one day at mesophilic condition; and almost optically pure l-lactic acid was generated at thermophilic condition, yet time-consuming with yield of l-lactic acid enhancing by 52.9% compared to that at ambient temperature. The study mechanism showed that mesophilic condition was optimal for both production and consumption of l-lactic acid and d-lactic acid, while consumption of l-lactic acid and production of d-lactic acid were severely inhibited at thermophilic condition. Therefore, by maintaining thermophilic for 4 h in advance and subsequently fermenting mesophilic for 34 h, the concentration of l-lactic acid with optical activity of 98.3% was improved to 16.6 ± 0.5 g COD/L at a high specific efficiency of 0.6097/d.

  6. Effects of total gastrectomy on plasma silicon and amino acid concentrations in men.

    PubMed

    Tatara, Marcin R; Krupski, Witold; Szpetnar, Maria; Dąbrowski, Andrzej; Bury, Paweł; Szabelska, Anna; Charuta, Anna; Boguszewska-Czubara, Anna; Maciejewski, Ryszard; Wallner, Grzegorz

    2015-12-01

    The aim of the study was to determine one-year effects of total gastrectomy on plasma silicon and free amino acid concentrations in patients and evaluate changes of volumetric bone mineral density (vBMD) in lumbar spine. Eight patients were enrolled to the control (CTR) group. Six patients subjected to total gastrectomy (GX group) were included to the experimental group. vBMD in trabecular and cortical bone was measured in lumbar vertebrae at baseline (before surgery) and one year later using quantitative computed tomography. Plasma concentrations of silicon and free amino acids were determined at baseline and one year later using photometric method and ion-exchange chromatography. Body weights within CTR and GX groups were not different after one-year follow-up when compared to the baseline values (P > 0.05). An average annual decrease of vBMD in the trabecular bone in the gastrectomized patients reached 15.0% in lumbar spine and was significantly different in comparison to the percentage changes observed in CTR group (P = 0.02). One-year percentage change of vBMD in the cortical bone in L1 and L2 has shown significantly decreased values by 10.5 and 9.1% in the GX group when compared to the percentage change observed in the controls (P < 0.05). Plasma concentration of adipic acid was significantly higher by 101.6% one year after total gastrectomy procedure in the patients when compared to the baseline value (P = 0.01). Plasma concentration of silicon was significantly lowered by 26.7% one year after the total gastrectomy when compared to the baseline value (P = 0.009). Total gastrectomy in patients has induced severe osteoporotic changes in lumbar spine within one-year period. The observed osteoporotic changes were associated with decreased plasma concentration of silicon indicating importance of exocrine and endocrine functions of stomach for silicon homeostasis maintenance. Gastrectomy-induced bone loss was not related to decreased amino acid

  7. Asymmetric synthesis of aromatic β-amino acids using ω-transaminase: Optimizing the lipase concentration to obtain thermodynamically unstable β-keto acids.

    PubMed

    Mathew, Sam; Jeong, Seong-Su; Chung, Taeowan; Lee, Sang-Hyeup; Yun, Hyungdon

    2016-01-01

    Synthesized aromatic β-amino acids have recently attracted considerable attention for their application as precursors in many pharmacologically relevant compounds. Previous studies on asymmetric synthesis of aromatic β-amino acids using ω-transaminases could not be done efficiently due to the instability of β-keto acids. In this study, a strategy to circumvent the instability problem of β-keto acids was utilized to generate β-amino acids efficiently via asymmetric synthesis. In this work, thermodynamically stable β-ketoesters were initially converted to β-keto acids using lipase, and the β-keto acids were subsequently aminated using ω-transaminase. By optimizing the lipase concentration, we successfully overcame the instability problem of β-keto acids and enhanced the production of β-amino acids. This strategy can be used as a general approach to efficiently generate β-amino acids from β-ketoesters.

  8. Abscisic acid regulates seed germination of Vellozia species in response to temperature.

    PubMed

    Vieira, B C; Bicalho, E M; Munné-Bosch, S; Garcia, Q S

    2017-03-01

    The relationship between the phytohormones, gibberellin (GA) and abscisic acid (ABA) and light and temperature on seed germination is still not well understood. We aimed to investigate the role of the ABA and GA on seed germination of Vellozia caruncularis, V. intermedia and V. alutacea in response to light/dark conditions on different temperature. Seeds were incubated in GA (GA3 or GA4 ) or ABA and their respective biosynthesis inhibitors (paclobutrazol - PAC, and fluridone - FLU) solutions at two contrasting temperatures (25 and 40 °C). Furthermore, endogenous concentrations of active GAs and those of ABA were measured in seeds of V. intermedia and V. alutacea during imbibition/germination. Exogenous ABA inhibited the germination of Vellozia species under all conditions tested. GA, FLU and FLU + GA3 stimulated germination in the dark at 25 °C (GA4 being more effective than GA3 ). PAC reduced seed germination in V. caruncularis and V. alutacea, but did not affect germination of V. intermedia at 40 °C either under light or dark conditions. During imbibition in the dark, levels of active GAs decreased in the seeds of V. intermedia, but were not altered in those of V. alutacea. Incubation at 40 °C decreased ABA levels during imbibition in both V. caruncularis and V. alutacea. We conclude that the seeds of Vellozia species studied here require light or high temperature to germinate and ABA has a major role in the regulation of Vellozia seed germination in response to light and temperature.

  9. Fatty Acid and Cholesterol Concentrations in Usually Consumed Fish in Brazil

    PubMed Central

    Scherr, Carlos; Gagliardi, Ana Carolina Moron; Miname, Marcio Hiroshi; Santos, Raul Dias

    2015-01-01

    Background Several studies have demonstrated clinical benefits of fish consumption for the cardiovascular system. These effects are attributed to the increased amounts of polyunsaturated fatty acids in these foods. However, the concentrations of fatty acids may vary according to region. Objective The goal of this study was to determine the amount of,cholesterol and fatty acids in 10 Brazilian fishes and in a non-native farmed salmon usually consumed in Brazil. Methods The concentrations of cholesterol and fatty acids, especially omega-3, were determined in grilled fishes. Each fish sample was divided in 3 sub-samples (chops) and each one was extracted from the fish to minimize possible differences in muscle and fat contents. Results The largest cholesterol amount was found in white grouper (107.6 mg/100 g of fish) and the smallest in badejo (70 mg/100 g). Omega-3 amount varied from 0.01 g/100 g in badejo to 0.900 g/100 g in weakfish. Saturated fat varied from 0.687 g/100 g in seabass to 4.530 g/100 g in filhote. The salmon had the greatest concentration of polyunsaturated fats (3.29 g/100 g) and the highest content of monounsaturated was found in pescadinha (5.98 g/100 g). Whiting and boyfriend had the best omega-6/omega 3 ratios respectively 2.22 and 1.19, however these species showed very little amounts of omega-3. Conclusion All studied Brazilian fishes and imported salmon have low amounts of saturated fat and most of them also have low amounts of omega-3. PMID:25424160

  10. [The ultrafiltration at pre-analytical stage under detection of concentration of lactic acid in blood plasma].

    PubMed

    Alekseevskaia, E S; Zhloba, A A; Subbotina, T F

    2013-11-01

    The detection of concentration of lactic acid in blood plasma and other objects is especially applied to discover the mitochondria dysfunctions. The study was organized to analyze samplings of blood plasma and plasma ultra-filtrates taken from 80 healthy persons and 73 patients with activation of intravascular coagulation and fibrinolysis using lactate-oxidase test. The comparative analysis of results of detection of concentrations of lactic acid in blood plasma and its ultra-filtrate established that in 72% of cases the higher values of concentration of detecting lactic acid took place after procedure of ultra-filtration enabling separation of overwhelming quantity of protein. In accordance with accumulated experience in the field of clinical diagnostic practice the enzyme tests are to be applied to detect the concentration of lactic acid in blood plasma and other objects. The present study demonstrated the expediency of application of plasma ultra-filtrate to detect the concentration of lactic acid.

  11. Change in the plasmid copy number in acetic acid bacteria in response to growth phase and acetic acid concentration.

    PubMed

    Akasaka, Naoki; Astuti, Wiwik; Ishii, Yuri; Hidese, Ryota; Sakoda, Hisao; Fujiwara, Shinsuke

    2015-06-01

    Plasmids pGE1 (2.5 kb), pGE2 (7.2 kb), and pGE3 (5.5 kb) were isolated from Gluconacetobacter europaeus KGMA0119, and sequence analyses revealed they harbored 3, 8, and 4 genes, respectively. Plasmid copy numbers (PCNs) were determined by real-time quantitative PCR at different stages of bacterial growth. When KGMA0119 was cultured in medium containing 0.4% ethanol and 0.5% acetic acid, PCN of pGE1 increased from 7 copies/genome in the logarithmic phase to a maximum of 12 copies/genome at the beginning of the stationary phase, before decreasing to 4 copies/genome in the late stationary phase. PCNs for pGE2 and pGE3 were maintained at 1-3 copies/genome during all phases of growth. Under a higher concentration of ethanol (3.2%) the PCN for pGE1 was slightly lower in all the growth stages, and those of pGE2 and pGE3 were unchanged. In the presence of 1.0% acetic acid, PCNs were higher for pGE1 (10 copies/genome) and pGE3 (6 copies/genome) during the logarithmic phase. Numbers for pGE2 did not change, indicating that pGE1 and pGE3 increase their PCNs in response to acetic acid. Plasmids pBE2 and pBE3 were constructed by ligating linearized pGE2 and pGE3 into pBR322. Both plasmids were replicable in Escherichia coli, Acetobacter pasteurianus and G. europaeus, highlighting their suitability as vectors for acetic acid bacteria.

  12. Low plasma eicosapentaenoic acid concentration as a possible risk factor for intracerebral hemorrhage.

    PubMed

    Ikeya, Yoshimori; Fukuyama, Naoto; Mori, Hidezo

    2015-03-01

    N-3 fatty acids, including eicosapentaenoic acid (EPA), prevent ischemic stroke. The preventive effect has been attributed to an antithrombic effect induced by elevated EPA and reduced arachidonic acid (AA) levels. However, the relationship between intracranial hemorrhage and N-3 fatty acids has not yet been elucidated. In this cross-sectional study, we compared common clinical and lifestyle parameters between 70 patients with intracranial hemorrhages and 66 control subjects. The parameters included blood chemistry data, smoking, alcohol intake, fish consumption, and the incidences of underlying diseases. The comparisons were performed using the Mann-Whitney U test followed by multiple logistic regression analysis. Nonparametric tests revealed that the 70 patients with intracerebral hemorrhages exhibited significantly higher diastolic blood pressures and alcohol intakes and lower body mass indices, high-density lipoprotein (HDL) cholesterol levels, EPA concentrations, EPA/AA ratios, and vegetable consumption compared with the 66 control subjects. A multiple logistic regression analysis revealed that higher diastolic blood pressure and alcohol intake and lower body mass index, HDL cholesterol, EPA/AA ratio, and vegetable consumption were relative risk factors for intracerebral hemorrhage. High HDL cholesterol was a common risk factor in both of the sex-segregated subgroups and the <65-year-old subgroup. However, neither EPA nor the EPA/AA ratio was a risk factor in these subgroups. Eicosapentaenoic acid was relative risk factor only in the ≥65-year-old subgroup. Rather than higher EPA levels, lower EPA concentrations and EPA/AA ratios were found to be risk factors for intracerebral hemorrhage in addition to previously known risk factors such as blood pressure, alcohol consumption, and lifestyle.

  13. Influence of weather conditions on milk production and rectal temperature of Holsteins fed two levels of concentrate

    NASA Astrophysics Data System (ADS)

    Kabuga, J. D.; Sarpong, K.

    1991-12-01

    Twelve lactating Holstein cows in 2nd lactation were allocated randomly, six each, to two feeding treatments: high concentrate (1 kg dairy concentrate to 2 kg milk produced) and low concentrate (1 kg dairy concentrate to 4 kg milk produced) from 7 to 106 days postcalving. Forage and water were provided adalibitum. Milk and butter fat yields and rectal temperatures were examined in relation to 9 weather variables (minimum, maximum and mean temperatures, relative humidity, temperature-humidity index (THI), radiation, wind velocity and mean temperature of the previous day). Averages for milk yield, fat yield and rectal temperature were respectively 20.4 kg, 0.7 kg and 38.9°C for the high concentrate treatment and 18.4 kg, 0.6 kg and 38.6°C for the low concentrate treatment. Weather conditions accounted for 5.6%, 0.8% and 10.8% of the day to day variation in milk yield, fat yield and rectal remperature, respectively, for the high concentrate group and 29.4%, 9.7% and 0.6%, respectively, for the low concentrate group. Only measures of ambient temperature, especially mean temperature, were closely associated with these traits.

  14. Schistosoma mansoni: assessment of effects of oleic acid, cercarial age and water temperature on parasite-host attraction.

    PubMed

    Lee, Vivien S T; Burgess, Jefferey L; Sterling, Charles R; Lutz, Eric A

    2013-09-01

    Although the lifecycle of Schistosoma spp. and pathophysiology of schistosomiasis have been established, the mechanism by which cercariae find their host is not well understood. Speculatively, host infection by random and accidental host contact is not as biologically plausible as a biochemical mechanism of mammalian attraction. A few studies have indicated that biochemical cues and temperature gradients may play a role in host identification, attraction and attachment triggers. This study aimed to elucidate these mechanisms more specifically through evaluation of biochemical, age and temperature influences leading to Schistosoma mansoni cercariae attraction and attachment behaviors. Oleic acid, a common unsaturated free fatty acid in the outer layer of human skin, was tested for cercariae attraction across biologically relevant concentrations. Influence of media type (beeswax, nail varnish and agar), age-dependent behavior variability and environmentally appropriate temperatures (22 and 30 °C) were also evaluated. Results indicated that oleic acid at concentrations of 0.3, 0.9 and 1.8 g/mL in beeswax significantly increased median attachment to media (median attachment of 7.50%, 4.20% and 3.71%, respectively, P<0.001), compared with plain beeswax, with maximal attachment of 30.30% at 0.3g/mL of oleic acid. In media containing 0.3 g/mL of oleic acid, cercarial attachment was highest for freshly emerged cercariae to 5h post-emergence, with a significant decrease in attachment behavior at 10h post-emergence (P<0.01). Aquatic temperature at which cercariae were exposed to media did not yield significant results (P value >0.05). Biochemical, age and environmental factors influencing cercarial host attraction and attachment behavior have been elucidated by this study. This information will inform further development of devices for environmental surveillance and potentially improve cercarial exposure prevention strategies.

  15. Variable Temperature Infrared Spectroscopy Investigations of Benzoic Acid Desorption from Sodium and Calcium Montmorillonite Clays.

    PubMed

    Nickels, Tara M; Ingram, Audrey L; Maraoulaite, Dalia K; White, Robert L

    2015-12-01

    Processes involved in thermal desorption of benzoic acid from sodium and calcium montmorillonite clays are investigated by using variable temperature diffuse reflection Fourier transform infrared spectroscopy (DRIFTS). By monitoring the temperature dependence of infrared absorbance bands while heating samples, subtle changes in molecular vibrations are detected and employed to characterize specific benzoic acid adsorption sites. Abrupt changes in benzoic acid adsorption site properties occur for both clay samples at about 125 °C. Difference spectra absorbance band frequency variations indicate that adsorbed benzoic acid interacts with interlayer cations through water bridges and that these interactions can be disrupted by the presence of organic anions, in particular, benzoate.

  16. Physical and chemical changes in whey protein concentrate stored at elevated temperature and humidity.

    PubMed

    Tunick, Michael H; Thomas-Gahring, Audrey; Van Hekken, Diane L; Iandola, Susan K; Singh, Mukti; Qi, Phoebe X; Ukuku, Dike O; Mukhopadhyay, Sudarsan; Onwulata, Charles I; Tomasula, Peggy M

    2016-03-01

    In a case study, we monitored the physical properties of 2 batches of whey protein concentrate (WPC) under adverse storage conditions to provide information on shelf life in hot, humid areas. Whey protein concentrates with 34.9 g of protein/100g (WPC34) and 76.8 g of protein/100g (WPC80) were stored for up to 18 mo under ambient conditions and at elevated temperature and relative humidity. The samples became yellower with storage; those stored at 35 °C were removed from the study by 12 mo because of their unsatisfactory appearance. Decreases in lysine and increases in water activity, volatile compound formation, and powder caking values were observed in many specimens. Levels of aerobic mesophilic bacteria, coliforms, yeast, and mold were <3.85 log10 cfu/g in all samples. Relative humidity was not a factor in most samples. When stored in sealed bags, these samples of WPC34 and WPC80 had a shelf life of 9 mo at 35 °C but at least 18 mo at lower temperatures, which should extend the market for these products.

  17. Energy efficiency of a concentration gradient flow battery at elevated temperatures

    NASA Astrophysics Data System (ADS)

    van Egmond, W. J.; Starke, U. K.; Saakes, M.; Buisman, C. J. N.; Hamelers, H. V. M.

    2017-02-01

    Fast growth of intermittent renewable energy generation introduces a need for large scale electricity storage. The Concentration Gradient Flow Battery (CGFB) is an emerging technology which combines Electrodialysis with Reverse Electrodialysis into a flow battery which is able to safely store very large amounts of energy in environmental friendly NaCl solutions. In this work, (dis)charge efficiency, energy density and power density are both theoretically and experimentally investigated. Fifteen constant current experiments (-47.5 to +37.5 A m-2) are performed at 40 °C and two experiments (-32.5 and 15 A m-2) at 10 and 25 °C. The magnitudes of the three main energy dissipation sources (internal resistance, water transport and co-ion transport) are measured and mitigation strategies are proposed. The effect of current density, state of charge and temperature on the dissipation sources is analysed. Water transport is shown to cause hysteresis, lower (dis)charge efficiencies and lower energy capacity. At constant current and with increasing temperature, internal resistance is reduced but unwanted water transport is increased. This study reports charge efficiencies up to 58% and discharge efficiencies up to 72%. Full charge or discharge of the battery is shown inefficient. The optimal operating range is therefore introduced and identified (concentration difference Δm > 0.5 and energy efficiency η > 0.4).

  18. Biomechanical Performances of Networked Polyethylene Glycol Diacrylate: Effect of Photoinitiator Concentration, Temperature, and Incubation Time

    PubMed Central

    Khandaker, Morshed; Orock, Albert; Tarantini, Stefano; White, Jeremiah; Yasar, Ozlem

    2016-01-01

    Nutrient conduit networks can be introduced within the Polyethylene Glycol Diacrylate (PEGDA) tissue construct to enable cells to survive in the scaffold. Nutrient conduit networks can be created on PEGDA by macrochannel to nanochannel fabrication techniques. Such networks can influence the mechanical and cell activities of PEGDA scaffold. There is no study conducted to evaluate the effect of nutrient conduit networks on the maximum tensile stress and cell activities of the tissue scaffold. The study aimed to explore the influence of the network architecture on the maximum tensile stress of PEGDA scaffold and compared with the nonnetworked PEGDA scaffold. Our study found that there are 1.78 and 2.23 times decrease of maximum tensile stress due to the introduction of nutrient conduit networks to the PEGDA scaffold at 23°C and 37°C temperature conditions, respectively. This study also found statistically significant effect of network architecture, PI concentration, temperature, and wait time on the maximum failure stress of PEGDA samples (P value < 0.05). Cell viability results demonstrated that networked PEGDA hydrogels possessed increased viability compared to nonnetworked and decreased viability with increased photoinitiator concentrations. The results of this study can be used for the design of PEGDA scaffold with macrosize nutrient conduit network channels. PMID:26925104

  19. Production and functional evaluation of a protein concentrate from giant squid (Dosidicus gigas) by acid dissolution and isoelectric precipitation.

    PubMed

    Cortés-Ruiz, Juan A; Pacheco-Aguilar, Ramón; Elena Lugo-Sánchez, M; Gisela Carvallo-Ruiz, M; García-Sánchez, Guillermina

    2008-09-15

    A protein concentrate from giant squid (Dosidicus gigas) was produced under acidic conditions and its functional-technological capability evaluated in terms of its gel-forming ability, water holding capacity and colour attributes. Technological functionality of the concentrate was compared with that of squid muscle and a neutral concentrate. Protein-protein aggregates insoluble at high ionic strength (I=0.5M), were detected in the acidic concentrate as result of processing with no preclusion of its gel-forming ability during the sol-to-gel thermal transition. Even though washing under acidic condition promoted autolysis of the myosin heavy chain, the acidic concentrate displayed an outstanding ability to gel giving samples with a gel strength of 455 and 1160gcm at 75% and 90% compression respectively, and an AA folding test grade indicative of high gel strength, elasticity, and cohesiveness. The process proved to be a good alternative for obtaining a functional protein concentrate from giant squid muscle.

  20. Abscisic acid metabolizing rhizobacteria decrease ABA concentrations in planta and alter plant growth.

    PubMed

    Belimov, Andrey A; Dodd, Ian C; Safronova, Vera I; Dumova, Valentina A; Shaposhnikov, Alexander I; Ladatko, Alexander G; Davies, William J

    2014-01-01

    Although endogenous phytohormones such as abscisic acid (ABA) regulate root growth, and many rhizobacteria can modulate root phytohormone status, hitherto there have been no reports of rhizobacteria mediating root ABA concentrations and growth by metabolising ABA. Using a selective ABA-supplemented medium, two bacterial strains were isolated from the rhizosphere of rice (Oryza sativa) seedlings grown in sod-podzolic soil and assigned to Rhodococcus sp. P1Y and Novosphingobium sp. P6W using partial 16S rRNA gene sequencing and phenotypic patterns by the GEN III MicroPlate test. Although strain P6W had more rapid growth in ABA-supplemented media than strain P1Y, both could utilize ABA as a sole carbon source in batch culture. When rice seeds were germinated on filter paper in association with bacteria, root ABA concentration was not affected, but shoot ABA concentration of inoculated plants decreased by 14% (strain P6W) and 22% (strain P1Y). When tomato (Solanum lycopersicum) genotypes differing in ABA biosynthesis (ABA deficient mutants flacca - flc, and notabilis - not and the wild-type cv. Ailsa Craig, WT) were grown in gnotobiotic cultures on nutrient solution agar, rhizobacterial inoculation decreased root and/or leaf ABA concentrations, depending on plant and bacteria genotypes. Strain P6W inhibited primary root elongation of all genotypes, but increased leaf biomass of WT plants. In WT plants treated with silver ions that inhibit ethylene perception, both ABA-metabolising strains significantly decreased root ABA concentration, and strain P6W decreased leaf ABA concentration. Since these changes in ABA status also occurred in plants that were not treated with silver, it suggests that ethylene was probably not involved in regulating bacteria-mediated changes in ABA concentration. Correlations between plant growth and ABA concentrations in planta suggest that ABA-metabolising rhizobacteria may stimulate growth via an ABA-dependent mechanism.

  1. Lower Serum Bilirubin and Uric Acid Concentrations in Patients with Parkinson's Disease in China.

    PubMed

    Qin, Xiao-Ling; Zhang, Qing-Shan; Sun, Li; Hao, Meng-Wei; Hu, Zhao-Ting

    2015-05-01

    The objective of the study is to investigate the correlation between bilirubin and uric acid (UA) concentrations and symptoms of Parkinson's disease (PD) in Chinese population. A total of 425 PD patients and 460 controls were included in the current study. Patients were diagnosed by a neurologist and assessed using the Hoehn & Yahr (H&Y) scale. Venous blood samples were collected, and bilirubin and UA concentrations were analyzed. Compared to controls, indirect bilirubin (IBIL) and UA concentrations were lower in PD patients (P IBIL = 0.015, P UA = 0.000). Serum IBIL in different age subgroups and H&Y stage subgroups were also lower compared to the control group (P IBIL = 0.000, P UA = 0.000) but were not significantly different among these subgroups. Females in the control group had significantly lower serum IBIL and UA concentrations than males (P IBIL = 0.000, P UA = 0.000) and the PD group (P IBIL = 0.027, P UA = 0.000). In early PD (patients with <2-year medical history and no treatment), serum IBIL and UA concentrations were also lower than the controls (P IBIL = 0.013, P UA = 0.000). Although IBIL concentration was positively correlated with UA concentration in controls (R IBIL = 0.229, P IBIL = 0.004), this positive association was not observed in the PD group (R IBIL = -0.032, P IBIL = 0.724). Decreased levels of serum IBIL and UA were observed in PD patients. It is possible that individuals with decreased serum bilirubin and UA concentrations lack the endogenous defense system to prevent peroxynitrite and other free radicals from damaging and destroying dopaminergic cells in the substantia nigra. Our results provide a basis for further investigation into the role of bilirubin in PD.

  2. Water Deficit-Induced Changes in Concentrations in Proline and Some Other Amino Acids in the Phloem Sap of Alfalfa.

    PubMed

    Girousse, C.; Bournoville, R.; Bonnemain, J. L.

    1996-05-01

    Changes in amino acid composition of alfalfa (Medicago sativa L.) phloem sap were studies in response to a water deficit. Sap was collected by stylectomy. As the leaf water potential ([psi]) decreased from -0.4 to -2.0 MPa, there was significant increase of the total amino acid concentration, due to that of some amino acids: proline, valine, isoleucine, leucine, glutamic acid, aspartic acid, and threonine. Asparagine concentration, which is the main amino acid assayed in the phloem sap of alfalfa (it accounts for 70% of the total content), did not vary with the plant water status. The other amino acid concentrations remained stable as [psi] varied; in particular, [gamma]-amino butyric acid concentration remained unchanged, whereas it varied in response to wounding. The more striking change in the sieve tubes was the accumulation of proline, which was observed below a [psi] threshold value of about -0.9 MPa (concentration x60 for a decrease of [psi] from -0.9 to -2.0 MPa). The role of such changes in phloem sap amino acid concentration in osmotic adjustment of growing tissues is discussed.

  3. At-line near-infrared spectroscopy for monitoring concentrations in temperature-triggered glutamate fermentation.

    PubMed

    Liang, Jingbo; Zhang, Dalong; Guo, Xuan; Xu, Qingyang; Xie, Xixian; Zhang, Chenglin; Bai, Gang; Xiao, Xue; Chen, Ning

    2013-12-01

    Rapid development in the glutamate fermentation industry has dictated the need for effective fermentation monitoring by rapid and precise methods that provide real-time information for quality control of the end-product. In recent years, near-infrared (NIR) spectroscopy and multivariate calibration have been developed as fast, inexpensive, non-destructive and environmentally safe techniques for industrial applications. The purpose of this study was to develop models for monitoring glutamate, glucose, lactate and alanine concentrations in the temperature-triggered process of glutamate fermentation. NIR measurements of eight batches of samples were analyzed by partial least-squares regression with several spectral pre-processing methods. The coefficient of determination (R (2)), model root-mean square error of calibration (RMSEC), root-mean square error of prediction (RMSEP) and residual predictive deviation (RPD) of the test calibration for the glutamate concentration were 0.997, 3.11 g/L, 2.56 g/L and 19.81, respectively. For the glucose concentration, R (2), RMSEC, RMSEP and RPD were 0.989, 1.37 g/L, 1.29 g/L and 9.72, respectively. For the lactate concentration, R (2), RMSEC, RMSEP and RPD were 0.975, 0.078 g/L, 0.062 g/L and 6.29, respectively. For the alanine concentration, R (2), RMSEC, RMSEP and RPD were 0.964, 0.213 g/L, 0.243 g/L and 5.29, respectively. New batch fermentation as an external validation was used to check the models, and the results suggested that the predictive capacity of the models for the glutamate fermentation process was good.

  4. Regulation of dipeptide transport in Saccharomyces cerevisiae by micromolar amino acid concentrations

    SciTech Connect

    Island, M.D.; Naider, F.; Becker, J.M.

    1987-05-01

    Prototrophic Saccharomyces cerevisiae X2180, when grown on unsupplemented minimal medium, displayed little sensitivity to ethionine- and m-fluorophenylalanine-containing toxic dipeptides. The authors examined the influence of the 20 naturally occurring amino acids on sensitivity to toxic dipeptides. A number of these amino acids, at concentrations as low as 1 ..mu..M (leucine and tryptophan), produced large increases in sensitivity to leucyl-ethionine, alanyl-ethionine, and leucyl-m-fluorophenylalanine. Sensitivity to ethionine and m-fluorophenylalanine remained high under either set of conditions. The addition of 0.15 mM tryptophan to a growing culture resulted in the induction of dipeptide transport, as indicated by a 25-fold increase in the initial rate of L-leucyl-L(/sup 3/H)leucine accumulation. This increase, which was prevented by the addition of cycloheximide, began within 30 min and peaked approximately 240 min after a shift to medium containing tryptophan. Comparable increases in peptidase activity were not apparent in crude cell extracts form tryptophan-induced cultures. The authors concluded that S. cerevisiae possesses a specific mechanism for the induction of dipeptidetransport that can respond to very low concentrations of amino acids.

  5. Effects of different silanes and acid concentrations on bond strength of brackets to porcelain surfaces.

    PubMed

    Trakyali, Göksu; Malkondu, Ozlem; Kazazoğlu, Ender; Arun, Tülin

    2009-08-01

    The aim of this study was to determine the optimum silane-coupling agent and the optimum concentration of acid agent when bonding to porcelain surfaces. Eighty deglazed feldspathic porcelain discs with a diameter of 10 mm and a thickness of 2 mm mounted in acrylic resin blocks were randomly divided into four groups. In groups 1 and 2, the porcelain surfaces were etched with 9.6 per cent hydrofluoric (HF) acid and in groups 3 and 4 with 5 per cent HF acid. In groups 1 and 3, the Dynalock maxillary central incisor brackets were bonded with Pulpdent silane and Unite bonding adhesive and in groups 2 and 4 with Reliance silane and Unite. Shear forces were applied to the samples using an Instron universal test machine. The non-parametric Kruskal-Wallis test was used to determine significant differences in bond strengths between the four groups and Dunn's multiple comparison test to compare subgroups. The mean bond strengths and standard deviations of groups 1 to 4 were 5.51 +/- 1.19, 6.54 +/- 0.002, 4.55 +/- 1.93, and 6.39 +/- 0.45 MPa, respectively. Specimens bonded with Reliance showed a statistically significantly higher in vitro bond strength than those bonded with Pulpdent. The concentration of etching gels did not result in any statistically significant difference on the in vitro bond strength when evaluated separately.

  6. Effect of acid concentration and pulp properties on hydrolysis reactions of mercerized sisal.

    PubMed

    Lacerda, Talita M; Zambon, Márcia D; Frollini, Elisabete

    2013-03-01

    The influence of sulfuric acid concentration (H2SO4 5-25%, 100°C), crystallinity and fibers size on the hydrolysis reaction of sisal pulps were investigated, with the goal of evaluating both the liquor composition, as an important step in the production of bioethanol, and the residual non-hydrolyzed pulp, to determine its potential application as materials. Aliquots were withdrawn from the reaction media, and the liquor composition was analyzed by HPLC. The residual non-hydrolyzed pulps were characterized by SEM, their average molar mass and crystallinity index, and their size distribution was determined using a fiber analyzer. Sulfuric acid 25% led to the highest glucose content (approximately 10gL(-1)), and this acid concentration was chosen to evaluate the influence of both the fiber size and crystallinity of the starting pulp on hydrolysis. The results showed that fibers with higher length and lower crystallinity favored glucose production in approximately 12%, with respect to the highly crystalline shorter fibers.

  7. Uptake measurements of acetic acid on ice and nitric acid-doped thin ice films over upper troposphere/lower stratosphere temperatures.

    PubMed

    Romanias, Manolis N; Zogka, Antonia G; Papadimitriou, Vassileios C; Papagiannakopoulos, Panos

    2012-03-08

    The adsorption of gaseous acetic acid (CH(3)C(O)OH) on thin ice films and on ice doped with nitric acid (1.96 and 7.69 wt %) was investigated over upper troposphere and lower stratosphere (UT/LS) temperatures (198-208 K), and at low gas concentrations. Experiments were performed in a Knudsen flow reactor coupled to a quadrupole mass spectrometer. The initial uptake coefficients, γ(0), on thin ice films or HNO(3)-doped ice films were measured at low surface coverage. In all cases, γ(0) showed an inverse temperature dependence, and for pure thin ice films, it was given by the expression γ(0)(T) = (4.73 ± 1.13) × 10(-17) exp[(6496 ± 1798)/T]; the quoted errors are the 2σ precision of the linear fit, and the estimated systematic uncertainties are included in the pre-exponential factor. The inverse temperature dependence suggests that the adsorption process occurs via the formation of an intermediate precursor state. Uptakes were well represented by the Langmuir adsorption model, and the saturation surface coverage, N(max), on pure thin ice films was (2.11 ± 0.16) × 10(14) molecules cm(-2), independent of temperature in the range 198-206 K. Light nitration (1.96 and 7.69 wt %) of ice films resulted in more efficient CH(3)C(O)OH uptakes and larger N(max) values that may be attributed to in-bulk diffusion or change in nature of the gas-ice surface interaction. Finally, it was estimated that the rate of adsorption of acetic acid on high-density cirrus clouds in the UT/LS is fast, and this is reflected in the short atmospheric lifetimes (2-8 min) of acetic acid; however, the extent of this uptake is minor resulting in at most a 5% removal of acetic acid in UT/LS cirrus clouds.

  8. The hysteresis response of soil respiration and soil CO2 concentration to soil temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Q., Sr.; Katul, G. G.; Oren, R.; Daly, E.; Manzoni, S.; Yang, D.

    2015-12-01

    Diurnal hysteresis between soil temperature (Ts) and both CO2 concentration ([CO2]) and soil respiration rate (Rs) were reported across different field experiments. However, the causes of these hysteresis patterns remain a subject of debate, with biotic and abiotic factors both invoked as explanations. To address these issues, a CO2 gas transport model is developed by combining layer-wise mass conservation for subsurface gas-phase CO2, Fickian diffusion for gas transfer, and a CO2 source term that depends on soil temperature, moisture, and photosynthetic rate. Using this model, a hierarchy of numerical experiments were employed to disentangle the causes of the hysteretic [CO2]-Ts and CO2 flux-Ts (i.e., F -Ts) relations. Model results show that gas transport alone can introduce both [CO2]-Ts and F-Ts hysteresis, and also confirm prior findings that heat flow in soils lead to [CO2] and F(z) being out of phase with Ts, thereby providing another reason for the occurrence of both hysteresis. The area (Ahys) of the [CO2]-Ts hysteresis near the surface increases, while the Ahys of the Rs-Ts hysteresis decreases as soils become wetter. Moreover, a time-lagged carbon input from photosynthesis deformed the [CO2]-Ts and Rs-Ts patterns, causing a change in the loop direction from counterclockwise to clockwise with decreasing time lag. An asymmetric 8-shaped pattern emerged as the transition state between the two loop directions. Tracing the pattern and direction of the hysteretic [CO2]-Ts and Rs-Ts relations can provide new ways to fingerprint the effects of photosynthesis stimulation on soil microbial activity and detect the corresponding time lags. Key words: Hysteresis; Photosynthesis; Soil CO2 concentration; Soil respiration; Soil temperature; Soil moisture

  9. Solvent, temperature and concentration effects on the optical rotatory dispersion of (R)-3-methylcyclohexanone

    NASA Astrophysics Data System (ADS)

    Alenaizan, Asem; Al-Basheer, Watheq; Musa, Musa M.

    2017-02-01

    Optical rotatory dispersion (ORD) spectra are reported for isolated and solvated (R)-3-methylcyclohexanone (R-3MCH) in 10 solvents, of wide polarity range, and over the spectral range 350-650 nm. Sample concentration effects on ORD spectra of R-3MCH were also recorded and investigated over widely varying concentrations from 2.5 × 10-3 to 2.5 × 10-1 g/mL where an observed sensitivity of optical rotation (OR) to incident light wavelength at low concentrations is correlated to solvent effects. Temperature effects were also studied by recording ORD spectra over the temperature range 0-65 °C in toluene. Recorded specific OR was plotted against various solvent parameters, namely, dipole moment, polarity, refractive index and polarizability to probe solvent effects. Furthermore, solvent effects were studied by incorporating Kamlet's and Taft's solvent parameters in the multi-parametric linear fitting. Theoretically, ORD spectra and populations of optimized geometries of equatorial and axial conformers of R-3MCH were calculated in the gas and solvated phases. All theoretical calculations were performed employing the polarizable continuum model using density functional theoretical and composite scheme (G4) methods with aug-cc-pVTZ and aug-cc-pVDZ basis sets. Net ORD spectra of R-3MCH were generated by the Boltzmann-weighted sum of the contributions of the dominant conformers. Upon comparing theoretical and experimental ORD spectra, a very good agreement is observed for the ORD spectra in the gas phase and high polarity solvents compared to relatively lesser agreement in low polarity solvents.

  10. Maximized PUFA measurements improve insight in changes in fatty acid composition in response to temperature.

    PubMed

    van Dooremalen, Coby; Pel, Roel; Ellers, Jacintha

    2009-10-01

    A general mechanism underlying the response of ectotherms to environmental changes often involves changes in fatty acid composition. Theory predicts that a decrease in temperature causes an increase in unsaturation of fatty acids, with an important role for long-chain poly-unsaturated fatty acids (PUFAs). However, PUFAs are particularly unstable and susceptible to peroxidation, hence subtle differences in fatty acid composition can be challenging to detect. We determined the fatty acid composition in springtail (Collembola) in response to two temperatures (5 degrees C and 25 degrees C). First, we tested different sample preparation methods to maximize PUFAs. Treatments consisted of different solvents for primary lipid extraction, mixing with antioxidant, flushing with inert gas, and using different temperature exposures during saponification. Especially slow saponification at low temperature (90 min at 70 degrees C) in combination with replacement of headspace air with nitrogen during saponification and methylation maximized PUFAs for GC analysis. Applying these methods to measure thermal responses in fatty acid composition, the data showed that the (maximized) proportion of C(20) PUFAs increased at low acclimation temperature. However, C(18) PUFAs increased at high acclimation temperature, which is contrary to expectations. Our study illustrates that PUFA levels in lipids may often be underestimated and this may hamper a correct interpretation of differential responses of fatty acid composition.

  11. Stability of colloidal silver nanoparticles trapped in lipid bilayer: effect of lecithin concentration and applied temperature.

    PubMed

    Barani, Hossein; Montazer, Majid; Braun, Hans-Georg; Dutschk, Victoria

    2014-12-01

    The use of silver nanoparticle on various substrates has been widespread because of its good antibacterial properties that directly depend on the stability of the silver nanoparticles in a colloidal suspension. In this study, the colloidal solutions of the silver nanoparticles were synthesised by a simple and safe method by using lecithin as a stabilising agent and their stability was examined at various temperatures. The effect of the lecithin concentrations on the stability of the synthesised silver nanoparticles was examined from 25 to 80°C at 5°C intervals, by recording the changes in the UV-vis absorption spectra, the hydrodynamic diameter and the light scattering intensity of the silver nanoparticles. In addition, the morphology of the synthesised silver nanoparticles was investigated with the low-voltage scanning electron microscopy and transmission electron microscopy. The results indicated that increasing temperature caused different changes in the size of the stabilised and the unstabilised silver nanoparticles. The size of the stabilised silver nanoparticles reduced from 38 to 36 nm during increasing temperature, which confirmed good stability.

  12. Practical Considerations for Determination of Glass Transition Temperature of a Maximally Freeze Concentrated Solution.

    PubMed

    Pansare, Swapnil K; Patel, Sajal Manubhai

    2016-08-01

    Glass transition temperature is a unique thermal characteristic of amorphous systems and is associated with changes in physical properties such as heat capacity, viscosity, electrical resistance, and molecular mobility. Glass transition temperature for amorphous solids is referred as (T g), whereas for maximally freeze concentrated solution, the notation is (T g'). This article is focused on the factors affecting determination of T g' for application to lyophilization process design and frozen storage stability. Also, this review provides a perspective on use of various types of solutes in protein formulation and their effect on T g'. Although various analytical techniques are used for determination of T g' based on the changes in physical properties associated with glass transition, the differential scanning calorimetry (DSC) is the most commonly used technique. In this article, an overview of DSC technique is provided along with brief discussion on the alternate analytical techniques for T g' determination. Additionally, challenges associated with T g' determination, using DSC for protein formulations, are discussed. The purpose of this review is to provide a practical industry perspective on determination of T g' for protein formulations as it relates to design and development of lyophilization process and/or for frozen storage; however, a comprehensive review of glass transition temperature (T g, T g'), in general, is outside the scope of this work.

  13. Increases in both acute and chronic temperature potentiate tocotrienol concentrations in wild barley at 'Evolution Canyon'.

    PubMed

    Shen, Yu; Lansky, Ephraim; Traber, Maret; Nevo, Eviatar

    2013-09-01

    Biosynthesis of tocols (vitamin E isoforms) is linked to response to temperature in plants. 'Evolution Canyon', an ecogeographical microcosm extending over an average of 200 meters (range 100-400) wide area in the Carmel Mountains of northern Israel, has been suggested as a model for studying global warming. Both domestic (Hordeum vulgare) and wild (Hordeum spontaneum) barley compared with wheat, oat, corn, rice, and rye show high tocotrienol/tocopherol ratios. Therefore, we hypothesized that tocol distribution might change in response to global warming. α-, β-, γ-, and δ-tocopherol, and α-, β-, γ-, and δ-tocotrienol concentrations were measured in wild barley (H. spontaneum) seeds harvested from the xeric (African) and mesic (European) slopes of Evolution Canyon over a six-year period from 2005-2011. Additionally, we examined seeds from areas contiguous to and distant from the part of the Canyon severely burned during the Carmel Fire of December 2010. Increased α-tocotrienol (p<0.01) was correlated with 1) temperature increases, 2) to the hotter 'African' slope in contrast to the cooler 'European' slope, and 3) to propinquity to the fire. The study illustrates the role of α-tocotrienol in both chronic and acute temperature adaptation in wild barley and suggests future research into thermoregulatory mechanisms in plants.

  14. Temperature and wavelength dependent measurement and simulation of Fresnel lenses for concentrating photovoltaics

    NASA Astrophysics Data System (ADS)

    Hornung, Thorsten; Bachmaier, Andreas; Nitz, Peter; Gombert, Andreas

    2010-05-01

    Fresnel lenses are often used as primary optical components in concentrating photovoltaics (CPV). When applied in the field, varying conditions during operation lead to variations in lens temperature which has a strong impact on the optical efficiency of the lenses. A setup for indoor characterization with the ability to heat lens plates allows for the assessment of the quality of Fresnel lenses by means of their irradiance profiles in the focal plane. To analyze the measured temperature dependency we simulate thermal deformations of the lens geometry with finite element method (FEM) tools and use the resulting lens geometry as an input to ray tracing simulations. A close match between computer simulations and measurements of the irradiance profile in the focal plane is achieved, validating our simulation approach. This allows us to judge and optimize the temperature dependence of new lens designs before building and testing prototypes. The simulation enables us to analyze and understand all superimposed effects in detail. The developed tools in combination with detailed solar resource data and knowledge of the CPV system will be the basis for future assessment of overall performance and further optimization of optics for CPV applications.

  15. Hexavalent uranium diffusion into soils from concentrated acidic and alkaline solutions

    SciTech Connect

    Tokunaga, Tetsu K.; Wan, Jiamin; Pena, Jasquelin; Sutton, Stephen R.; Newville, Matthew

    2004-03-29

    Uranium contamination of soils and sediments often originates from acidic or alkaline waste sources, with diffusion being a major transport mechanism. Measurements of U(VI) diffusion from initially pH 2 and pH 11 solutions into a slightly alkaline Altamont soil and a neutral Oak Ridge soil were obtained through monitoring uptake from boundary reservoirs and from U concentration profiles within soil columns. The soils provided pH buffering, resulting in diffusion at nearly constant pH. Micro x-ray absorption near edge structure spectra confirmed that U remained in U(VI) forms in all soils. Time trends of U(VI) depletion from reservoirs, and U(VI) concentration profiles within soil columns yielded K{sub d} values consistent with those determined in batch tests at similar concentrations ({approx} 1 mM), and much lower than values for sorption at much lower concentrations (nM to {mu}M). These results show that U(VI) transport at high concentrations can be relatively fast at non-neutral pH, with negligible surface diffusion, because of weak sorption.

  16. Rare earth element concentrations in dissolved and acid available particulate forms for eastern UK rivers

    NASA Astrophysics Data System (ADS)

    Neal, C.

    2007-01-01

    Variations in concentration of yttrium (Y), lanthanum (La), cerium (Ce), neodymium (Nd), samarium (Sm) and gadolinium (Gd) among rivers of eastern England and the border with Scotland are described in relation to the dissolved (<0.45 µM) fraction and acid-available particulate (AAP) fractions. The rivers cover a range of rural, agricultural and urban/industrial environments. Yttrium and the lanthanides show significant levels of both dissolved and acid-available particulate forms (typically about 40% in the dissolved form). For the dissolved phase, Y and the lanthanides are linearly correlated with each other and with iron: most of this dissolved component may be in a micro-particulate/colloidal form. The Y and lanthanide relationships show marked scatter and there are anomalously high La concentrations at times for the rivers Great Ouse, Thames and Wear that are probably linked to pollutant sources. For the Ouse, and especially for one of its tributaries, the Swale, relatively high Sm concentrations are probably associated with mineralisation within the catchment and contamination of the associated flood plain. For the AAP components, there are strong linear relationships with Y and the lanthanides across all the rivers. There is also a strong link between these AAP associated REE and AAP iron, although the scatter is greater and the industrial rivers have a lower lanthanide to iron ratio, probably due to iron-rich contaminants.

  17. Effect of polymer species and concentration on the production of mefenamic acid nanoparticles by media milling.

    PubMed

    Ito, Atsutoshi; Konnerth, Christoph; Schmidt, Jochen; Peukert, Wolfgang

    2016-01-01

    The effect of four structurally different polymer species (hydroxypropylcellulose, polyvinylpyrrolidone, vinylpyrrolidone-vinyl acetate copolymer and polyvinyl alcohol) on the production of mefenamic acid nanoparticles during media milling has been studied. It was found that product particle sizes are strongly determined by the type of polymeric stabiliser as well as by its concentration at constant process conditions. With respect to small product particle sizes an optimum excipient concentration was identified and adjusted for colloidal stability of the drug nanosuspensions. Furthermore, it was found that overdosing of excipients must be omitted to suppress ripening due to enhanced solubilisation phenomena. Hence, the smallest product particle sizes were obtained using a polymeric stabiliser which exhibits a high affinity to the model drug compound and a low solubilisation capacity. Affinities of each polymer species to mefenamic acid and corresponding surface concentrations were determined using straightforward and simple viscosity measurements of the supernatant. A relationship between polymer affinity, solubilisation capacity and limiting product particle size has been observed, which supports the hypothesis that final product particle sizes are rather determined by the solid-liquid equilibrium than by pure mechanical fracture.

  18. Concentration of carbon dioxide by a high-temperature electrochemical membrane cell

    NASA Technical Reports Server (NTRS)

    Kang, M. P.; Winnick, J.

    1985-01-01

    The performance of a molten carbonate carbon dioxide concentrator (MCCDC) cell, as a device for removal of CO2 from manned spacecraft cabins without fuel expenditure, is investigated. The test system consists of an electrochemical cell (with an Li2CO3-38 mol pct K2CO3 membrane contained in a LiAlO2 matrix), a furnace, and a flow IR analyzer for monitoring CO2. Operation of the MCCDC-driven cell was found to be suitable for the task of CO2 removal: the cell performed at extremely low CO2 partial pressures (at or above 0.1 mm Hg); cathode CO2 efficiencies of 97 percent were achieved with 0.25 CO2 inlet concentration at 19 mA sq cm, at temperatures near 873 K. Anode concentrations of up to 5.8 percent were obtained. Simple cathode and anode performance equations applied to correlate cell performance agreed well with those measured experimentally. A flow diagram for the process is included.

  19. Physiological and transcriptional responses to high concentrations of lactic acid in anaerobic chemostat cultures of Saccharomyces cerevisiae.

    PubMed

    Abbott, Derek A; Suir, Erwin; van Maris, Antonius J A; Pronk, Jack T

    2008-09-01

    Based on the high acid tolerance and the simple nutritional requirements of Saccharomyces cerevisiae, engineered strains of this yeast are considered biocatalysts for industrial production of high-purity undissociated lactic acid. However, high concentrations of lactic acid are toxic to S. cerevisiae, thus limiting its growth and product formation. Physiological and transcriptional responses to high concentrations of lactic acid were studied in anaerobic, glucose-limited chemostat cultures grown at different pH values and lactic acid concentrations, resulting in a 50% decrease in the biomass yield. At pH 5, the yield decrease was caused mostly by osmotically induced glycerol production and not by the classic weak-acid action, as was observed at pH 3. Cultures grown at pH 5 with 900 mM lactic acid revealed an upregulation of many genes involved in iron homeostasis, indicating that iron chelation occurred at high concentrations of dissociated lactic acid. Chemostat cultivation at pH 3 with 500 mM lactate, resulting in lower anion concentrations, showed an alleviation of this iron homeostasis response. Six of the 10 known targets of the transcriptional regulator Haa1p were strongly upregulated in lactate-challenged cultures at pH 3 but showed only moderate induction by high lactate concentrations at pH 5. Moreover, the haa1Delta mutant exhibited a growth defect at high lactic acid concentrations at pH 3. These results indicate that iron homeostasis plays a major role in the response of S. cerevisiae to high lactate concentrations, whereas the Haa1p regulon is involved primarily in the response to high concentrations of undissociated lactic acid.

  20. Temperature and concentration dependent magnetic properties of epitaxial Fe{sub 1−x}Cr{sub x}-alloy films in the high Cr-concentration regime

    SciTech Connect

    Brüssing, F.; Abrudan, R.; Zabel, H.

    2014-07-21

    Soft magnetic materials with a Curie temperature (T{sub c}) close to room temperature are suitable candidates for device applications and for more fundamental aspects of magnetism. Promising candidates are Fe{sub 1−x}Cr{sub x}-alloys with a Fe concentration of about 25%–35%. We have grown by molecular beam epitaxy methods a number of epitaxial Fe{sub 1−x}Cr{sub x} alloys on MgO[100] and MgO[110] substrates, and we report on their structural and magnetic properties in this concentration range, including the dependence of the Curie temperature (T{sub c}) on the concentration, the magnetocrystalline anisotropy, and the development of the magnetic moment.

  1. Influence of acid volatile sulfides and metal concentrations on metal partitioning in contaminated sediments

    USGS Publications Warehouse

    Lee, J.-S.; Lee, B.-G.; Luoma, S.N.; Choi, H.J.; Koh, C.-H.; Brown, C.L.

    2000-01-01

    The influence of acid volatile sulfide (AVS) on the partitioning of Cd, Ni, and Zn in porewater (PW) and sediment as reactive metals (SEM, simultaneously extracted metals) was investigated in laboratory microcosms. Two spiking procedures were compared, and the effects of vertical geochemical gradients and infaunal activity were evaluated. Sediments were spiked with a Cd-Ni-Zn mixture (0.06, 3, 7.5 ??mol/g, respectively) containing four levels of AVS (0.5, 7.5, 15, 35 ??mol/g). The results were compared to sediments spiked with four levels of Cd-Ni-Zn mixtures at one AVS concentration (7.5 ??mol/g). A vertical redox gradient was generated in each treatment by an 18-d incubation with an oxidized water column. [AVS] in the surface sediments decreased by 65-95% due to oxidation during incubation; initial [AVS] was maintained at 0.5-7.5 cm depth. PW metal concentrations were correlated with [SEM - AVS] among all data. But PW metal concentrations were variable, causing the distribution coefficient, Kd(pw) (the ratio of [SEM] to PW metal concentrations) to vary by 2-3 orders of magnitude at a given [SEM - AVS]. One reason for the variability was that vertical profiles in PW metal concentrations appeared to be influenced by diffusion as well as [SEM - AVS]. The presence of animals appeared to enhance the diffusion of at least Zn. The generalization that PW metal concentrations are controlled by [SEM - AVS] is subject to some important qualifications if vertical gradients are complicated, metal concentrations vary, or equilibration times differ.The influence of acid volatile sulfide (AVS) on the partitioning of Cd, Ni, and Zn in porewater (PW) and sediment as reactive metals (SEM, simultaneously extracted metals) was investigated in laboratory microcosms. Two spiking procedures were compared, and the effects of vertical geochemical gradients and infaunal activity were evaluated. Sediments were spiked with a Cd-Ni-Zn mixture (0.06, 3, 7.5 ??mol/g, respectively) containing

  2. Temperature calibration of amino acid racemization: age implica