Science.gov

Sample records for acid core-double shell

  1. Facile synthesis of mercaptosuccinic acid-capped CdTe/CdS/ZnS core/double shell quantum dots with improved cell viability on different cancer cells and normal cells

    NASA Astrophysics Data System (ADS)

    Parani, Sundararajan; Bupesh, Giridharan; Manikandan, Elayaperumal; Pandian, Kannaiyan; Oluwafemi, Oluwatobi Samuel

    2016-11-01

    Water-soluble, mercaptosuccinic acid (MSA)-capped CdTe/CdS/ZnS core/double shell quantum dots (QDs) were prepared by successive growth of CdS and ZnS shells on the as-synthesized CdTe/CdSthin core/shell quantum dots. The formation of core/double shell structured QDs was investigated by ultraviolet-visible (UV-Vis) absorption and photoluminescence (PL) spectroscopy, PL decay studies, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The core/double shell QDs exhibited good photoluminescence quantum yield (PLQY) which is 70% higher than that of the parent core/shell QDs, and they are stable for months. The average particle size of the core/double shell QDs was ˜3 nm as calculated from the transmission electron microscope (TEM) images. The cytotoxicity of the QDs was evaluated on a variety of cancer cells such as HeLa, MCF-7, A549, and normal Vero cells by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) cell viability assay. The results showed that core/double shell QDs were less toxic to the cells when compared to the parent core/shell QDs. MCF-7 cells showed proliferation on incubation with QDs, and this is attributed to the metalloestrogenic activity of cadmium ions released from QDs. The core/double shell CdTe/CdS/ZnS (CSS) QDs were conjugated with transferrin and successfully employed for the biolabeling and fluorescent imaging of HeLa cells. These core/double shell QDs are highly promising fluorescent probe for cancer cell labeling and imaging applications.

  2. Core@Double-Shell Structured Nanocomposites: A Route to High Dielectric Constant and Low Loss Material.

    PubMed

    Huang, Yanhui; Huang, Xingyi; Schadler, Linda S; He, Jinliang; Jiang, Pingkai

    2016-09-28

    This work reports the advances of utilizing a core@double-shell nanostructure to enhance the electrical energy storage capability and suppress the dielectric loss of polymer nanocomposites. Two types of core@double-shell barium titanate (BaTiO3) matrix-free nanocomposites were prepared using a surface initiated atom transfer radical polymerization (ATRP) method to graft a poly(2-hydroxylethyle methacrylate)-block-poly(methyl methacrylate) and sodium polyacrylate-block-poly(2-hydroxylethyle methacrylate) block copolymer from BaTiO3 nanoparticles. The inner shell polymer is chosen to have either high dielectric constant or high electrical conductivity to provide large polarization, while the encapsulating outer shell polymer is chosen to be more insulating as to maintain a large resistivity and low loss. Finite element modeling was conducted to investigate the dielectric properties of the fabricated nanocomposites and the relaxation behavior of the grafted polymer. It demonstrates that confinement of the more conductive (lossy) phase in this multishell nanostructure is the key to achieving a high dielectric constant and maintaining a low loss. This promising multishell strategy could be generalized to a variety of polymers to develop novel nanocomposites.

  3. The synthesis of Au@C@Pt core-double shell nanocomposite and its application in enzyme-free hydrogen peroxide sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Yayun; Li, Yuhui; Jiang, Yingying; Li, Yancai; Li, Shunxing

    2016-08-01

    A novel Au@C@Pt core-double shell nanocomposite was synthesized and used to fabricate enzyme-free electrochemical sensor for rapid and sensitive detection of hydrogen peroxide (H2O2). The well-designed Au@C@Pt core-double shell nanocomposite was characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM) and energy-dispersed spectrum (EDS). The Au@C@Pt core-double shell nanocomposite modified glassy carbon electrode (Au@C@Pt/GCE) exhibits good electrocatalytic activity towards H2O2 reduction at 0.0 V and can be used as H2O2 sensor. The sensor displays two wide linear ranges towards H2O2 detection. The one is 9.0 μM-1.86 mM with high sensitivity of 144.7 μA mM-1 cm-2, and the other is 1.86 mM-7.11 mM with sensitivity of 80.1 μA mM-1 cm-2. When signal to noise (S/N) is 3, the calculated detection limit (LOD) is 0.13 μM. Furthermore, the interference from the common interfering species such as glucose, ascorbic acid, dopamine and uric acid can be effectively avoided to H2O2 detection. Additionally, the H2O2 sensor also displays good stability and reproducibility.

  4. One-pot synthesis of magnetic graphene nanocomposites decorated with core@double-shell nanoparticles for fast chromium removal.

    PubMed

    Zhu, Jiahua; Wei, Suying; Gu, Hongbo; Rapole, Sowjanya B; Wang, Qiang; Luo, Zhiping; Haldolaarachchige, Neel; Young, David P; Guo, Zhanhu

    2012-01-17

    A facile thermodecomposition process to synthesize magnetic graphene nanocomposites (MGNCs) is reported. High-resolution transmission electron microscopy and energy filtered elemental mapping revealed a core@double-shell structure of the nanoparticles with crystalline iron as the core, iron oxide as the inner shell and amorphous Si-S-O compound as the outer shell. The MGNCs demonstrate an extremely fast Cr(VI) removal from the wastewater with a high removal efficiency and with an almost complete removal of Cr(VI) within 5 min. The adsorption kinetics follows the pseudo-second-order model and the novel MGNC adsorbent exhibits better Cr(VI) removal efficiency in solutions with low pH. The large saturation magnetization (96.3 emu/g) of the synthesized nanoparticles allows fast separation of the MGNCs from liquid suspension. By using a permanent magnet, the recycling process of both the MGNC adsorbents and the adsorbed Cr(VI) is more energetically and economically sustainable. The significantly reduced treatment time required to remove the Cr(VI) and the applicability in treating the solutions with low pH make MGNCs promising for the efficient removal of heavy metals from the wastewater.

  5. Direct observation of the core/double-shell architecture of intense dual-mode luminescent tetragonal bipyramidal nanophosphors.

    PubMed

    Kim, Su Yeon; Jeong, Jong Seok; Mkhoyan, K Andre; Jang, Ho Seong

    2016-05-21

    Highly efficient downconversion (DC) green-emitting LiYF4:Ce,Tb nanophosphors have been synthesized for bright dual-mode upconversion (UC) and DC green-emitting core/double-shell (C/D-S) nanophosphors-Li(Gd,Y)F4:Yb(18%),Er(2%)/LiYF4:Ce(15%),Tb(15%)/LiYF4-and the C/D-S structure has been proved by extensive scanning transmission electron microscopy (STEM) analysis. Colloidal LiYF4:Ce,Tb nanophosphors with a tetragonal bipyramidal shape are synthesized for the first time and they show intense DC green light via energy transfer from Ce(3+) to Tb(3+) under illumination with ultraviolet (UV) light. The LiYF4:Ce,Tb nanophosphors show 65 times higher photoluminescence intensity than LiYF4:Tb nanophosphors under illumination with UV light and the LiYF4:Ce,Tb is adapted into a luminescent shell of the tetragonal bipyramidal C/D-S nanophosphors. The formation of the DC shell on the core significantly enhances UC luminescence from the UC core under irradiation of near infrared light and concurrently generates DC luminescence from the core/shell nanophosphors under UV light. Coating with an inert inorganic shell further enhances the UC-DC dual-mode luminescence by suppressing the surface quenching effect. The C/D-S nanophosphors show 3.8% UC quantum efficiency (QE) at 239 W cm(-2) and 73.0 ± 0.1% DC QE. The designed C/D-S architecture in tetragonal bipyramidal nanophosphors is rigorously verified by an energy dispersive X-ray spectroscopy (EDX) analysis, with the assistance of line profile simulation, using an aberration-corrected scanning transmission electron microscope equipped with a high-efficiency EDX. The feasibility of these C/D-S nanophosphors for transparent display devices is also considered.

  6. Direct observation of the core/double-shell architecture of intense dual-mode luminescent tetragonal bipyramidal nanophosphors

    NASA Astrophysics Data System (ADS)

    Kim, Su Yeon; Jeong, Jong Seok; Mkhoyan, K. Andre; Jang, Ho Seong

    2016-05-01

    Highly efficient downconversion (DC) green-emitting LiYF4:Ce,Tb nanophosphors have been synthesized for bright dual-mode upconversion (UC) and DC green-emitting core/double-shell (C/D-S) nanophosphors--Li(Gd,Y)F4:Yb(18%),Er(2%)/LiYF4:Ce(15%),Tb(15%)/LiYF4--and the C/D-S structure has been proved by extensive scanning transmission electron microscopy (STEM) analysis. Colloidal LiYF4:Ce,Tb nanophosphors with a tetragonal bipyramidal shape are synthesized for the first time and they show intense DC green light via energy transfer from Ce3+ to Tb3+ under illumination with ultraviolet (UV) light. The LiYF4:Ce,Tb nanophosphors show 65 times higher photoluminescence intensity than LiYF4:Tb nanophosphors under illumination with UV light and the LiYF4:Ce,Tb is adapted into a luminescent shell of the tetragonal bipyramidal C/D-S nanophosphors. The formation of the DC shell on the core significantly enhances UC luminescence from the UC core under irradiation of near infrared light and concurrently generates DC luminescence from the core/shell nanophosphors under UV light. Coating with an inert inorganic shell further enhances the UC-DC dual-mode luminescence by suppressing the surface quenching effect. The C/D-S nanophosphors show 3.8% UC quantum efficiency (QE) at 239 W cm-2 and 73.0 +/- 0.1% DC QE. The designed C/D-S architecture in tetragonal bipyramidal nanophosphors is rigorously verified by an energy dispersive X-ray spectroscopy (EDX) analysis, with the assistance of line profile simulation, using an aberration-corrected scanning transmission electron microscope equipped with a high-efficiency EDX. The feasibility of these C/D-S nanophosphors for transparent display devices is also considered.Highly efficient downconversion (DC) green-emitting LiYF4:Ce,Tb nanophosphors have been synthesized for bright dual-mode upconversion (UC) and DC green-emitting core/double-shell (C/D-S) nanophosphors--Li(Gd,Y)F4:Yb(18%),Er(2%)/LiYF4:Ce(15%),Tb(15%)/LiYF4--and the C/D-S structure

  7. Freestanding one-dimensional manganese dioxide nanoflakes-titanium cabide/carbon core/double shell arrays as ultra-high performance supercapacitor electrode

    NASA Astrophysics Data System (ADS)

    Kong, Shuying; Cheng, Kui; Ouyang, Tian; Ye, Ke; Gao, Yinyi; Wang, Guiling; Cao, Dianxue

    2015-10-01

    In this paper, freestanding one-dimensional MnO2 nanoflakes are successful prepared through a simple hydrothermal reaction by using the carbon shell of TiC/C core/shell arrays as the sacrificial template. Its structure and morphology are characterized by X-ray diffractometer, X-ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy, energy dispersive X-ray spectrometer and transmission electron microscopy. Results show that the thickness of the carbon shell decreased but also remained and the ultrathin MnO2 nanoflakes with thickness less than 5 nm uniformly grow on the surfaces of the TiC/C nanowire to form a core/double shell structure after the hydrothermal reaction. The electrochemical performance of the as-prepared electrode is evaluated by cyclic voltammetrys, galvanostatic charging-discharging tests and electrochemical impedance spectroscopy, and high capacities, excellent rate capabilities and exemplary cycling performance is obtained. The as-prepared electrode shows a high specific capacitance of 598.8 F g-1 and 85.8% of its initial capacitance is retained after 10,000 cycles at a high discharge current density of 10 A g-1, suggesting that this structure has a promising future as high-performance supercapacitor electrode.

  8. Multi-functional integration of pore P25@C@MoS2 core-double shell nanostructures as robust ternary anodes with enhanced lithium storage properties

    NASA Astrophysics Data System (ADS)

    Chen, Biao; Zhao, Naiqin; Wei, Chaopeng; Zhou, Jingwen; He, Fang; Shi, Chunsheng; He, Chunnian; Liu, Enzuo

    2017-04-01

    Ternary anodes have attracted more and more attention due to the characteristic advantages resulting from the effect integration of three different materials on the lithium storage mechanism with functional interfaces interaction. However, clarifying the distribution and interaction of carbon, MoS2 and TiO2 in the MoS2/C/TiO2 composite, which is helpful for the understanding of the formation and lithium storage mechanism of the ternary anodes, is a well-known challenge. Herein, a novel pore core-double shell nanostructure of P25@carbon network supported few-layer MoS2 nanosheet (P25@C@FL-MoS2) is successfully synthesized by a one-pot hydrothermal approach. The distribution and interaction of the carbon, MoS2 and TiO2 in the obtained P25@C@FL-MoS2 hybrid are systematically characterized by transmission electron microscopy, Raman spectra and X-ray photoelectron spectroscopy analysis et al. It is found that the carbon serves as binder, which supports few-layer MoS2 shell and coats the P25 core via Tisbnd Osbnd C bonds at the same time. Such multi-functional integration with smart structure and strong interfacial contact generates favorable structure stability and interfacial pseudocapacity-like storage mechanism. As a consequence, superior cycling and rate capacity of the muti-functional integration ternary P25@C@FL-MoS2 anode are achieved.

  9. Chitosan mediated synthesis of core/double shell ternary polyaniline/Chitosan/cobalt oxide nano composite-as high energy storage electrode material in supercapacitors

    NASA Astrophysics Data System (ADS)

    Vellakkat, Mini; Hundekkal, Devendrappa

    2016-01-01

    Nanostructured ternary composite of polyaniline (PANI), Co3O4 nanoparticles, and Chitosan (CS) has been prepared by an in situ chemical oxidation method, and the nanocomposites (CPAESCO) were used as supercapacitor electrodes. The Co3O4 nanoparticles are uniformly coated with CS and PANI layers in it. Different techniques (Fourier transform infrared spectrophotometry, x-ray diffraction, thermal gravimetric analysis, UV-visible spectroscopy, scanning electron microscopy, transmission electron microscopy and electro chemical analysis-cyclic voltammetry, galvanostatic charge/discharge (GCD), and electrochemical impedance spectroscopy) were used to analyse the optical, structural, thermal, chemical and supercapacitive aspects of the nanocomposites. Core/double shell ternary composite electrode exhibits significantly increased specific capacitance than PANI/Co3O4 or PANI/CS binary composites in supercapacitors. The ternary nanocomposite with 40% nanoparticle exhibits a highest specific capacitance reaching 687 F g-1, Energy density of (95.42 Wh kg-1 at 1 A g-1) and power density of (1549 W kg-1 at 3 A g-1) and outstanding cycling performance, with, 91% capacitance retained over 5000 cycles. It is found that this unique bio compatible nano composite with synergy is a new multifunctional material which will be useful in the design of supercapacitor electrodes and other energy conversion devices too.

  10. Core/Double-Shell Structured Na3V2(PO4)2F3@C Nanocomposite as the High Power and Long Lifespan Cathode for Sodium-Ion Batteries.

    PubMed

    Liu, Qiang; Meng, Xing; Wei, Zhixuan; Wang, Dongxue; Gao, Yu; Wei, Yingjin; Du, Fei; Chen, Gang

    2016-11-23

    NASICON-structured Na3V2(PO4)2F3 is considered as a potentially high-capacity cathode material for Na-ion batteries; however, its poor rate capability and insufficient cyclability remain a challenge for battery applications. To address this issue, we designed and successfully synthesized a core/double-shell structured Na3V2(PO4)2F3@C nanocomposite (Na3V2(PO4)2F3@CD) by in situ carbon coating and embedding the Na3V2(PO4)2F3 nanoparticles in ordered mesoporous carbon framework. Benefiting from the sufficient electrochemically available interfaces and abundant electronic/ionic pathways, this Na3V2(PO4)2F3@CD material demonstrated superior Na(+)-storage performance with a high reversible capacity of 120 mA h g(-1) at a moderate current of 1 C, a strong high-rate capability with 63 mA h g(-1) at an extremely high rate of 100 C, and a long-cycle lifespan with 65% capacity retention over 5000 cycles. These superior electrochemical performances remained stable when the Na3V2(PO4)2F3@CD cathode was used in a full cell, suggesting a promising application of the material for high rate and long lifespan sodium-ion batteries. Moreover, the architectural design and synthetic method developed in this work may provide a new avenue to create high performance Na(+)-host materials for a wide range of electric energy storage applications.

  11. Core-double-shell Fe3O4@carbon@poly(In(III)-carboxylate) microspheres: cycloaddition of CO2 and epoxides on coordination polymer shells constituted by imidazolium-derived Al(III)-Salen bifunctional catalysts.

    PubMed

    An, Qiao; Li, Zifeng; Graff, Robert; Guo, Jia; Gao, Haifeng; Wang, Changchun

    2015-03-04

    A hydrid microsphere Fe3O4@carbon@poly(In(III)-carboxylate) consisting of a cluster of Fe3O4 nanoparticles as the core, a carbon layer as the inner shell and a porous In(III)-carboxylate coordination polymer as the outer shell was prepared and applied as a recyclable catalyst for the cycloaddition reaction of CO2 and epoxides. Construction of this hybrid microsphere was achieved in the two steps, including (1) the one-pot solvothermal synthesis of Fe3O4@C particles with the abundant carboxylic groups on the carbon surface and (2) the subsequent growth of the outer shell polymers based on the precipitation coordination polymerization. Imidazolium-substituted Salen ligands were synthesized and chelated with the In(III) ions using the terminal carboxylic groups. The coordination polymer shell was formed on the Fe3O4@C particles, and the structures including shell thickness, surface area and porosity could be varied by tuning the feeding ratios of the In(III) ions and the ligands. The optimal structure of the coordination polymers showed a shell thickness of ca. 45 nm with ∼5 nm of mesopore, 174.7 m(2)/g of surface area and 0.2175 cm(3)/g of pore volume. In light of gas uptake capability, catalytic activity and magnetic susceptibility, cycloaddition of CO2 with a series of epoxides were studied by using Al-complexed Fe3O4@C@In(III)-[IL-Salen] microspheres. The results validated that the self-supporting catalytic layer with high surface area was of remarkable advantages, which were attributed from great increment of effective active sites and combination of nucleophilic/electrophilic synergistic property and CO2 uptake capability. Therefore, these hybrid microspheres provided excellent catalytic activity, prominent selectivity to cyclic carbonates and outstanding recyclability with the assistance of an applied magnetic field.

  12. Geochemistry of amino acids in shells of the clam Saxidomus

    USGS Publications Warehouse

    Kvenvolden, K.A.; Blunt, D.J.; McMenamin, M.A.; Straham, S.E.

    1980-01-01

    Concentrations of amino acids and their corresponding d l enantiomeric ratios have been measured in shells of the bivalve mollusk Saxidomus from eleven localities, ranging in age from modern to probably more than 500,000 yr, along the Pacific coast of North America. Natural logarithms of amino acid concentrations correlate well with d l ratios, and the relationship provides a possible guide to the selection of fossils for use in amino acid dating. The relative order of the extents of racemization of amino acids at any given time appears to change with increasing sample age. Application of the amino acid dating method to shells from Whidbey Island, Washington, yields an age of about 80,000 yr, in contrast to the previously determined radiocarbon age of 36,000 yr which was measured on some shell carbonate and considered a minimum age. The amino acid age is compatible with the geologic record in the area. ?? 1980.

  13. Cocoa shells for heavy metal removal from acidic solutions.

    PubMed

    Meunier, N; Laroulandie, J; Blais, J F; Tyagi, R D

    2003-12-01

    The development of economic and efficient processes for the removal of heavy metals present in acidic effluents from industrial sources or decontamination technologies has become a priority. The purpose of this work was to study the efficiency with which cocoa shells remove heavy metals from acidic solutions (pH 2) and to investigate how the composition of these solutions influences heavy metal uptake efficiency. Adsorption tests were conducted in agitated flasks with single-metal solutions (0.25 mM Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn), multi-metal solution (comprised of 0.25 mM of each of the cations above) and an effluent obtained from chemical leaching of metal-contaminated soil, in the presence of different cocoa shell concentrations (5-40 g/l). Results from the single-metal solution assays indicated that the fixation capacity of heavy metals by cocoa shells followed a specific order: Pb>Cr>Cd=Cu=Fe>Zn=Co>Mn=Ni=Al. Cocoa shells are particularly efficient in the removal of lead from very acidic solutions (q(max)=6.2 mg Pb/g, pH(i)=2.0 and T=22 degrees C). The presence of other metals and cations in solution did not seem to affect the recovery of lead. It was also observed that the maximum metal uptake was reached in less than 2 h. This research has also demonstrated that the removal of metals caused a decline in solution proton concentration (pH increase) and release of calcium, magnesium, potassium and sodium from the cocoa shells.

  14. Anacardic acid: molluscicide in cashew nut shell liquid.

    PubMed

    Sullivan, J T; Richards, C S; Lloyd, H A; Krishna, G

    1982-03-01

    The components of anacardic acid, (a mixture of 6-n-C (15) alkylsalicylic acids whose side chains vary in degrees of unsaturation) have been isolated by high pressure liquid chromatography from a crude extract of cashew nut shell, Anacardium occidentale, and tested for toxicity to fresh water snails, Biomphalaria glabrata. The triene component is the most toxic form (LC (50) 0.35 ppm), the diene and monoene components are less toxic (LC (50) 0.9 and 1.4 ppm), and the saturated component is relatively nontoxic (LC (50) > 5 ppm). Since decarboxylated anacardic acid (cardanol) and salicylic acid do not kill snails at concentrations up to 5 ppm, it appears that both, carboxyl group and unsaturated side chain are absolutely required for molluscicidal activity. The mechanism of toxicity of anacardic acid to snails is unknown.

  15. Introduction of biotin or folic acid into polypyrrole magnetite core-shell nanoparticles

    SciTech Connect

    Nan, Alexandrina; Turcu, Rodica; Liebscher, Jürgen

    2013-11-13

    In order to contribute to the trend in contemporary research to develop magnetic core shell nanoparticles with better properties (reduced toxicity, high colloidal and chemical stability, wide scope of application) in straightforward and reproducible methods new core shell magnetic nanoparticles were developed based on polypyrrole shells functionalized with biotin and folic acid. Magnetite nanoparticles stabilized by sebacic acid were used as magnetic cores. The morphology of magnetite was determined by transmission electron microscopy TEM, while the chemical structure investigated by FT-IR.

  16. Closed-system behaviour of the intra-crystalline fraction of amino acids in mollusc shells

    PubMed Central

    Penkman, K.E.H.; Kaufman, D.S.; Maddy, D.; Collins, M.J.

    2008-01-01

    When mollusc shells are analysed conventionally for amino acid geochronology, the entire population of amino acids is included, both inter- and intra-crystalline. This study investigates the utility of removing the amino acids that are most susceptible to environmental effects by isolating the fraction of amino acids encapsulated within mineral crystals of mollusc shells (intra-crystalline fraction). Bleaching, heating and leaching (diffusive loss) experiments were undertaken on modern and fossil Corbicula fluminalis, Margaritifera falcata, Bithynia tentaculata and Valvata piscinalis shells. Exposure of powdered mollusc shells to concentrated NaOCl for 48 h effectively reduced the amino acid content of the four taxa to a residual level, assumed to represent the intra-crystalline fraction. When heated in water at 140 °C for 24 h, only 1% of amino acids were leached from the intra-crystalline fraction of modern shells compared with 40% from whole shell. Free amino acids were more effectively retained in the intra-crystalline fraction, comprising 55% (compared with 18%) of the whole shell after 24 h at 140 °C. For fossil gastropods, the inter-shell variability in D/L values for the intra-crystalline fraction of a single-age population was reduced by 50% compared with conventionally analysed shells. In contrast, analysis of the intra-crystalline fraction of C. fluminalis does not appear to improve the results for this taxon, possibly due to variability in shell ultrastructure. Nonetheless, the intra-crystalline fraction in gastropods approximates a closed system of amino acids and appears to provide a superior subset of amino acids for geochronological applications. PMID:19684879

  17. Equation of state and critical point behavior of hard-core double-Yukawa fluids.

    PubMed

    Montes, J; Robles, M; López de Haro, M

    2016-02-28

    A theoretical study on the equation of state and the critical point behavior of hard-core double-Yukawa fluids is presented. Thermodynamic perturbation theory, restricted to first order in the inverse temperature and having the hard-sphere fluid as the reference system, is used to derive a relatively simple analytical equation of state of hard-core multi-Yukawa fluids. Using such an equation of state, the compressibility factor and phase behavior of six representative hard-core double-Yukawa fluids are examined and compared with available simulation results. The effect of varying the parameters of the hard-core double-Yukawa intermolecular potential on the location of the critical point is also analyzed using different perspectives. The relevance of this analysis for fluids whose molecules interact with realistic potentials is also pointed out.

  18. Ontogenetic trends in aspartic acid racemization and amino acid composition within modern and fossil shells of the bivalve Arctica

    NASA Astrophysics Data System (ADS)

    Goodfriend, Glenn A.; Weidman, Christopher R.

    2001-06-01

    Ontogenetic trends (umbo to growth edge of shell) in aspartic acid (Asp) racemization and amino acid composition and their evolution over time are examined in serial samples of annual growth bands from a time-series of three live-collected and two fossil (ca. 500 and 1000 y BP) shells of the long-lived bivalve Arctica islandica. The rate of Asp racemization is shown to be higher in the umbonal portion of the shells (laid down when the clams are young) but constant from a biological age of 10 to 20 y to more than 100 y. Corresponding changes are also seen in amino acid composition and concentration: with increasing biological age of the clam: total amino acid concentration increases substantially, the acidic amino acids Asp, glutamic acid, and alanine decrease in relative concentration (mole-percent) and more basic amino acids including tyrosine, phenylalanine, and lysine increase in relative concentration. These ontogenetic trends are generally retained in the fossil shells. These trends may reflect changing protein composition related to changes in growth rate. Clams grow considerably faster in their youth than when they are older, as indicated by changes in the annual growth increments. Production of more acidic proteins, which play a role in crystal growth, may be favored during the phase of faster growth, whereas more structural proteins, perhaps enhancing structural strength of the shell, may be favored during later growth. These ontogenetic differences in protein composition affect the observed rates of racemization of the protein pool. Some weak diagenetic trends in amino acid composition and abundance may be represented in the time series of shells. These results emphasize the importance of standardization of the location from which samples are taken from shells for dating by amino acid racemization analysis.

  19. Facile fabrication of siloxane @ poly (methylacrylic acid) core-shell microparticles with different functional groups

    NASA Astrophysics Data System (ADS)

    Zhao, Zheng-Bai; Tai, Li; Zhang, Da-Ming; Jiang, Yong

    2017-02-01

    Siloxane @ poly (methylacrylic acid) core-shell microparticles with functional groups were prepared by a facile hydrolysis-condensation method in this work. Three different silane coupling agents 3-methacryloxypropyltrimethoxysilane (MPS), 3-triethoxysilylpropylamine (APTES), and 3-glycidoxypropyltrimethoxysilane (GPTMS) were added along with tetraethoxysilane (TEOS) into the polymethylacrylic acid (PMAA) microparticle ethanol dispersion to form the Si@PMAA core-shell microparticles with different functional groups. The core-shell structure and the surface special functional groups of the resulting microparticles were measured by transmission electron microscopy and FTIR. The sizes of these core-shell microparticles were about 350-400 nm. The corresponding preparation conditions and mechanism were discussed in detail. This hydrolysis-condensation method also could be used to functionalize other microparticles which contain active groups on the surface. Meanwhile, the Si@PMAA core-shell microparticles with carbon-carbon double bonds and amino groups have further been applied to prepare hydrophobic coatings.

  20. Amino-acid racemizarion in Quaternary shell deposits at Willapa Bay, Washington

    USGS Publications Warehouse

    Kvenvolden, K.A.; Blunt, D.J.; Clifton, H.E.

    1979-01-01

    Extents of racemization ( d l ratios) of amino acids in fossil Saxidomus giganteus (Deshayes) and Ostrea lurida Carpenter were measured on shell deposits exposed at 21 sites on the east side of Willapa Bay, Washington. Amino acids from Saxidomus show less variability in d Spl ratios and, therefore, are of greater use in correlation and age estimation than are amino acids from Ostrea. Shells of two different ages, about 120,000 ?? 40,000 yr old and about 190,000 ?? 40,000 yr old, are present. These ages correspond to Stages 5 and 7 of the marine isotope record defined by Shackleton and Opdyke in 1973 and hence the shell deposits likely formed during two different high stands of sea level. The stratigraphic record at Willapa Bay is consistent with this interpretation. ?? 1979.

  1. Use of free amino acid composition of shell to estimate age since death of recent molluscs

    SciTech Connect

    Logan, A.M.; Powell, E.N.; Stanton, R.J. Jr.

    1985-01-01

    An understanding of death assemblage formation requires a measurement of time since death of constituent individuals. A new dating technique based on the measurement of the free amino acid content of mollusc shells has been developed which is inexpensive, rapid, and effective in dating time scales of a few decades to a few centuries. Since the breakdown of proteins of the matrix of mollusc shells begins soon after deposition, free amino acids gradually increase with shell age. The measurement of these can be used to determine the relative age among a group of shells. The future use of this technique depends on a clearer understanding of how free amino acid accumulation rate varies with age and species and developing effective calibration methods so that absolute rather than relative ages can be readily obtained. Three species were distributed widely enough for use - Rangia cuneata, Tagelus plebeius, and Phacoides pectinatus. A good relationship between free amino acids and relative age was present in all three species over the entire core; however some species and some amino acid were superior to others. Rangia cuneata produced the best correlation because it is epifaunal and thus died at the sediment surface rather than over an extended depth range and, also perhaps, because amino acid accumulation rates were more linear.

  2. Megranate-like nanoreactor with multiple cores and an acidic mesoporous shell for a cascade reaction

    NASA Astrophysics Data System (ADS)

    Wang, Xue; Guan, Buyuan; He, Yapeng; An, Dong; Zhang, Ye; Cao, Yu; Li, Xiang; Liu, Yunling; Huo, Qisheng

    2015-02-01

    Megranate-like nanoparticles possess a unique structure that is composed of multiple cores and shells, which is different from simple yolk-shell nanoparticles. Megranate-like nanoparticles can combine the properties of each component and be used as nanoreactors. This study describes the preparation of bifunctional megranate-like nanoreactors, consisting of multiple metal cores and thiol modified mesoporous SiO2 shells. Different metal nanoparticles (Pd, Pt, Au) can be incorporated into the structure as cores, and the thiol group in the shells can be oxidized to acidic -SO3H. The megranate-like nanoparticles show good bifunctional catalytic properties and recyclability in a cascade catalytic reaction for the desired benzimidazole derivative. Moreover, the individual components of the megranate-like nanoparticles also show good catalytic activities in the hydrogenation reduction of nitro-aromatics and the deprotection reaction of benzaldehyde dimethyl acetal.Megranate-like nanoparticles possess a unique structure that is composed of multiple cores and shells, which is different from simple yolk-shell nanoparticles. Megranate-like nanoparticles can combine the properties of each component and be used as nanoreactors. This study describes the preparation of bifunctional megranate-like nanoreactors, consisting of multiple metal cores and thiol modified mesoporous SiO2 shells. Different metal nanoparticles (Pd, Pt, Au) can be incorporated into the structure as cores, and the thiol group in the shells can be oxidized to acidic -SO3H. The megranate-like nanoparticles show good bifunctional catalytic properties and recyclability in a cascade catalytic reaction for the desired benzimidazole derivative. Moreover, the individual components of the megranate-like nanoparticles also show good catalytic activities in the hydrogenation reduction of nitro-aromatics and the deprotection reaction of benzaldehyde dimethyl acetal. Electronic supplementary information (ESI) available

  3. Reaction kinetics of free fatty acids esterification in palm fatty acid distillate using coconut shell biochar sulfonated catalyst

    NASA Astrophysics Data System (ADS)

    Hidayat, Arif; Rochmadi, Wijaya, Karna; Budiman, Arief

    2015-12-01

    Recently, a new strategy of preparing novel carbon-based solid acids has been developed. In this research, the esterification reactions of Palm Fatty Acid Distillate (PFAD) with methanol, using coconut shell biochar sulfonated catalyst from biomass wastes as catalyst, were studied. In this study, the coconut shell biochar sulfonated catalysts were synthesized by sulfonating the coconut shell biochar using concentrated H2SO4. The kinetics of free fatty acid (FFA) esterification in PFAD using a coconut shell biochar sulfonated catalyst was also studied. The effects of the mass ratio of catalyst to oil (1-10%), the molar ratio of methanol to oil (6:1-12:1), and the reaction temperature (40-60°C) were studied for the conversion of PFAD to optimize the reaction conditions. The results showed that the optimal conditions were an methanol to PFAD molar ratio of 12:1, the amount of catalyst of 10%w, and reaction temperature of 60°C. The proposed kinetic model shows a reversible second order reaction and represents all the experimental data satisfactorily, providing deeper insight into the kinetics of the reaction.

  4. Amino acid racemization dating of marine shells: A mound of possibilities

    PubMed Central

    Demarchi, Beatrice; Williams, Matt G.; Milner, Nicky; Russell, Nicola; Bailey, Geoff; Penkman, Kirsty

    2011-01-01

    Shell middens are one of the most important and widespread indicators for human exploitation of marine resources and occupation of coastal environments. Establishing an accurate and reliable chronology for these deposits has fundamental implications for understanding the patterns of human evolution and dispersal. This paper explores the potential application of a new methodology of amino acid racemization (AAR) dating of shell middens and describes a simple protocol to test the suitability of different molluscan species. This protocol provides a preliminary test for the presence of an intracrystalline fraction of proteins (by bleaching experiments and subsequent heating at high temperature), checking the closed system behaviour of this fraction during diagenesis. Only species which pass both tests can be considered suitable for further studies to obtain reliable age information. This amino acid geochronological technique is also applied to midden deposits at two latitudinal extremes: Northern Scotland and the Southern Red Sea. Results obtained in this study indicate that the application of this new method of AAR dating of shells has the potential to aid the geochronological investigation of shell mounds in different areas of the world. PMID:21776187

  5. Facile production of chitin from crab shells using ionic liquid and citric acid.

    PubMed

    Setoguchi, Tatsuya; Kato, Takeshi; Yamamoto, Kazuya; Kadokawa, Jun-ichi

    2012-04-01

    Facile production of chitin from crab shells was performed by direct extraction using an ionic liquid, 1-allyl-3-methylimidazolium bromide (AMIMBr), followed by demineralization using citric acid. First, dried crab shells were treated with AMIMBr at elevated temperatures to extract chitin. Supernatants separated by centrifugation were then subjected to a chelating treatment with an aqueous solution of citric acid to achieve demineralization. The precipitated extracts were filtered and dried. The isolated material was subjected to X-ray diffraction, IR, (1)H NMR, and energy-dispersive X-ray spectroscopy, and thermal gravimetric analysis; the results indicated the structure of chitin. On the basis of the IR spectra, the degree of deacetylation in the samples obtained was calculated to be <7%. Furthermore, the protein content was <0.1% and the M(w) values were 0.7-2.2×10(5).

  6. Multi-shell model of ion-induced nucleic acid condensation

    NASA Astrophysics Data System (ADS)

    Tolokh, Igor S.; Drozdetski, Aleksander V.; Pollack, Lois; Baker, Nathan A.; Onufriev, Alexey V.

    2016-04-01

    We present a semi-quantitative model of condensation of short nucleic acid (NA) duplexes induced by trivalent cobalt(iii) hexammine (CoHex) ions. The model is based on partitioning of bound counterion distribution around single NA duplex into "external" and "internal" ion binding shells distinguished by the proximity to duplex helical axis. In the aggregated phase the shells overlap, which leads to significantly increased attraction of CoHex ions in these overlaps with the neighboring duplexes. The duplex aggregation free energy is decomposed into attractive and repulsive components in such a way that they can be represented by simple analytical expressions with parameters derived from molecular dynamic simulations and numerical solutions of Poisson equation. The attractive term depends on the fractions of bound ions in the overlapping shells and affinity of CoHex to the "external" shell of nearly neutralized duplex. The repulsive components of the free energy are duplex configurational entropy loss upon the aggregation and the electrostatic repulsion of the duplexes that remains after neutralization by bound CoHex ions. The estimates of the aggregation free energy are consistent with the experimental range of NA duplex condensation propensities, including the unusually poor condensation of RNA structures and subtle sequence effects upon DNA condensation. The model predicts that, in contrast to DNA, RNA duplexes may condense into tighter packed aggregates with a higher degree of duplex neutralization. An appreciable CoHex mediated RNA-RNA attraction requires closer inter-duplex separation to engage CoHex ions (bound mostly in the "internal" shell of RNA) into short-range attractive interactions. The model also predicts that longer NA fragments will condense more readily than shorter ones. The ability of this model to explain experimentally observed trends in NA condensation lends support to proposed NA condensation picture based on the multivalent "ion binding

  7. Natural Product Anacardic Acid from Cashew Nut Shells Stimulates Neutrophil Extracellular Trap Production and Bactericidal Activity.

    PubMed

    Hollands, Andrew; Corriden, Ross; Gysler, Gabriela; Dahesh, Samira; Olson, Joshua; Raza Ali, Syed; Kunkel, Maya T; Lin, Ann E; Forli, Stefano; Newton, Alexandra C; Kumar, Geetha B; Nair, Bipin G; Perry, J Jefferson P; Nizet, Victor

    2016-07-01

    Emerging antibiotic resistance among pathogenic bacteria is an issue of great clinical importance, and new approaches to therapy are urgently needed. Anacardic acid, the primary active component of cashew nut shell extract, is a natural product used in the treatment of a variety of medical conditions, including infectious abscesses. Here, we investigate the effects of this natural product on the function of human neutrophils. We find that anacardic acid stimulates the production of reactive oxygen species and neutrophil extracellular traps, two mechanisms utilized by neutrophils to kill invading bacteria. Molecular modeling and pharmacological inhibitor studies suggest anacardic acid stimulation of neutrophils occurs in a PI3K-dependent manner through activation of surface-expressed G protein-coupled sphingosine-1-phosphate receptors. Neutrophil extracellular traps produced in response to anacardic acid are bactericidal and complement select direct antimicrobial activities of the compound.

  8. Green synthesis and characterization of Au@Pt core-shell bimetallic nanoparticles using gallic acid

    NASA Astrophysics Data System (ADS)

    Zhang, Guojun; Zheng, Hongmei; Shen, Ming; Wang, Lei; Wang, Xiaosan

    2015-06-01

    In this study, we developed a facile and benign green synthesis approach for the successful fabrication of well-dispersed urchin-like Au@Pt core-shell nanoparticles (NPs) using gallic acid (GA) as both a reducing and protecting agent. The proposed one-step synthesis exploits the differences in the reduction potentials of AuCl4- and PtCl62-, where the AuCl4- ions are preferentially reduced to Au cores and the PtCl62- ions are then deposited continuously onto the Au core surface as a Pt shell. The as-prepared Au@Pt NPs were characterized by transmission electron microscope (TEM); high-resolution transmission electron microscope (HR-TEM); scanning electron microscope (SEM); UV-vis absorption spectra (UV-vis); X-ray diffraction (XRD); Fourier transmission infrared spectra (FT-IR). We systematically investigated the effects of some experimental parameters on the formation of the Au@Pt NPs, i.e., the reaction temperature, the molar ratios of HAuCl4/H2PtCl6, and the amount of GA. When polyvinylpyrrolidone K-30 (PVP) was used as a protecting agent, the Au@Pt core-shell NPs obtained using this green synthesis method were better dispersed and smaller in size. The as-prepared Au@Pt NPs exhibited better catalytic activity in the reaction where NaBH4 reduced p-nitrophenol to p-aminophenol. However, the results showed that the Au@Pt bimetallic NPs had a lower catalytic activity than the pure Au NPs obtained by the same method, which confirmed the formation of Au@Pt core-shell nanostructures because the active sites on the surfaces of the Au NPs were covered with a Pt shell.

  9. A dual-core double emulsion platform for osmolarity-controlled microreactor triggered by coalescence of encapsulated droplets.

    PubMed

    Guan, Xuewei; Hou, Likai; Ren, Yukun; Deng, Xiaokang; Lang, Qi; Jia, Yankai; Hu, Qingming; Tao, Ye; Liu, Jiangwei; Jiang, Hongyuan

    2016-05-01

    Droplet-based microfluidics has provided a means to generate multi-core double emulsions, which are versatile platforms for microreactors in materials science, synthetic biology, and chemical engineering. To provide new opportunities for double emulsion platforms, here, we report a glass capillary microfluidic approach to first fabricate osmolarity-responsive Water-in-Oil-in-Water (W/O/W) double emulsion containing two different inner droplets/cores and to then trigger the coalescence between the encapsulated droplets precisely. To achieve this, we independently control the swelling speed and size of each droplet in the dual-core double emulsion by controlling the osmotic pressure between the inner droplets and the collection solutions. When the inner two droplets in one W/O/W double emulsion swell to the same size and reach the instability of the oil film interface between the inner droplets, core-coalescence happens and this coalescence process can be controlled precisely. This microfluidic methodology enables the generation of highly monodisperse dual-core double emulsions and the osmolarity-controlled swelling behavior provides new stimuli to trigger the coalescence between the encapsulated droplets. Such swelling-caused core-coalescence behavior in dual-core double emulsion establishes a novel microreactor for nanoliter-scale reactions, which can protect reaction materials and products from being contaminated or released.

  10. Effect of nitric acid treatment on activated carbon derived from oil palm shell

    NASA Astrophysics Data System (ADS)

    Allwar, Allwar; Hartati, Retno; Fatimah, Is

    2017-03-01

    The primary object of this work is to study the effect of nitric acid on the porous and morphology structure of activated carbon. Production of activated carbon from oil palm shell was prepared with pyrolysis process at temperature 900°C and by introduction of 10 M nitric acid. Determination of surface area, pore volume and pore size distribution of activated carbon was conducted by the N2 adsorption-desorption isotherm at 77 K. Morphology structure and elemental micro-analysis of activated carbon were estimated by Scanning Electron Microscopy (SEM) and energy dispersive X-ray (EDX), respectively. The result shows that activated carbon after treating with nitric acid proved an increasing porous characteristics involving surface area, pore volume and pore size distribution. It also could remove the contaminants including metals and exhibit an increasing of pores and crevices all over the surface.

  11. Isolation of anacardic acid from natural cashew nut shell liquid (CNSL) using supercritical carbon dioxide.

    PubMed

    Philip, Joseph Y N; Da Cruz Francisco, José; Dey, Estera S; Buchweishaija, Joseph; Mkayula, Lupituko L; Ye, Lei

    2008-10-22

    Solvent extracted cashew nut shell liquid (CNSL), conventionally known as natural CNSL, is a mixture of several alkenyl phenols. One of these alkenyl phenols is anacardic acid, which is present at the highest concentration. In view of anticipated industrial applications of anacardic acid, the objective of this work was to isolate anacardic acid from natural CNSL by supercritical carbon dioxide (scCO 2). In this study, the solubility data for natural CNSL in scCO 2 under a range of operating conditions of pressure (100, 200, and 300 bar), temperature (40 and 50 degrees C), and CO 2 flow rate (5, 10, and 15 g min (-1)) were established. The best scCO 2 working conditions were found to be 50 degrees C and 300 bar at a flow rate of 5 g min (-1) CO 2. Using 3 g of sample (CNSL/solid adsorbent = 1/2) under these scCO 2 conditions, it was possible to quantitatively isolate high purity anacardic acid from crude natural CNSL (82% of total anacardic acid) within 150 min. The anacardic acid isolated by scCO 2 was analyzed by different spectroscopic techniques (UV-vis, FT-IR, and (1)H NMR) and HPLC analysis, indicating that the anacardic acid isolated by scCO 2 has better quality than that obtained through a conventional method involving several chemical conversion steps.

  12. Multi-shell model of ion-induced nucleic acid condensation

    SciTech Connect

    Tolokh, Igor S.; Drozdetski, Aleksander V.; Pollack, Lois; Baker, Nathan A.; Onufriev, Alexey V.

    2016-04-21

    We present a semi-quantitative model of condensation of short nucleic acid (NA) duplexes in- duced by tri-valent cobalt hexammine (CoHex) ions. The model is based on partitioning of bound counterion distribution around single NA duplex into “external” and “internal” ion binding shells distinguished by the proximity to duplex helical axis. The duplex aggregation free energy is de- composed into attraction and repulsion components represented by simple analytic expressions. The source of the short-range attraction between NA duplexes in the aggregated phase is the in- teraction of CoHex ions in the overlapping regions of the “external” shells with the oppositely charged duplexes. The attraction depends on CoHex binding affinity to the “external” shell of nearly neutralized duplex and the number of ions in the shell overlapping volume. For a given NA duplex sequence and structure, these parameters are estimated from molecular dynamics simula- tion. The attraction is opposed by the residual repulsion of nearly neutralized duplexes as well as duplex configurational entropy loss upon aggregation. The estimates of the aggregation free energy are consistent with the experimental range of NA duplex condensation propensities, including the unusually poor condensation of RNA structures and subtle sequence effects upon DNA conden- sation. The model predicts that, in contrast to DNA, RNA duplexes may condense into tighter packed aggregates with a higher degree of duplex neutralization. The model also predicts that longer NA fragments will condense easier than shorter ones. The ability of this model to explain experimentally observed trends in NA condensation, lends support to proposed NA condensation picture based on the multivalent “ion binding shells”.

  13. Shell-crosslinked hyaluronic acid nanogels for live monitoring of hyaluronidase activity in vivo.

    PubMed

    Kim, Jihyun; Chong, Youhoon; Mok, Hyejung

    2014-06-01

    A hyaluronidase (HAdase) has been noticed as a potential drug target as well as prognostic marker because of its close associations with tumor invasion, metastasis, and angiogenesis. Accordingly, precise monitoring of HAdase activity in vivo seems to be crucial not only for the evaluation of HAdase activity but also for non-invasive molecular imaging. In our study, we propose a new organic, near-infrared fluorescence imaging probe, indocyanine green (ICG)-based stimuli-responsive fluorescence probe for selective imaging of HAdases with appreciable signal-to-noise (S/N) ratios in serum and in vivo. Shell-crosslinked hyaluronic acid (HA) nanogels (sc-nanogels) are generated via a reducible covalent linkage which incorporate ICG derivatives. The ICG-embeded HA nanogels via shell-crosslinking have preferable properties for ideal selective imaging and detection of HAdase activity in vivo. The sc-nanogels exhibit prominent chemical stability against external light, greatly control background signals in serum, and small size compared to use of self-assembled ICG-based carriers. Collapsed ICG in the hydrogel core is selectively disentangled by HAdase treatment for selective near-infrared imaging without unwanted background signal. The newly designed sc-nanogels may have great potential to serve as probes for improved selective imaging of HAdase-associated diseases in clinics as well as HAdase-activity screening in vivo.

  14. Potentiality of uranium biosorption from nitric acid solutions using shrimp shells.

    PubMed

    Ahmed, S H; El Sheikh, E M; Morsy, A M A

    2014-08-01

    Biosorption has gained important credibility during recent years because of its good performance and low cost. This work is concerned with studying the potentiality of the chitin component of the shrimp shells for uranium biosorption from nitric acid liquid solutions. The structural characteristics of the working chitin have been determined via Fourier Transform Infrared Spectroscopy (FTIR). The surface morphology was examined using Scanning Electron Microscopy (SEM). The adsorption capacity of biomass was investigated experimentally. The influence of contact time, pH, metal ion concentration, solution volume to mass ratio and temperature were evaluated and the results were fitted using adsorption isotherm models. The kinetic of uranium biosorption was also investigated as well as biosorption thermodynamic.

  15. Physicochemical properties of carbons prepared from pecan shell by phosphoric acid activation.

    PubMed

    Guo, Yanping; Rockstraw, David A

    2007-05-01

    Activated carbons were prepared from pecan shell by phosphoric acid activation. The pore structure and acidic surface groups of these carbons were characterized by nitrogen adsorption, Boehm titration and transmittance Fourier infrared spectroscopy (FTIR) techniques. The characterization results demonstrated that the development of pore structure was apparent at temperatures 250 degrees C, and reached 1130m(2)/g and 0.34cm(3)/g, respectively, at 500 degrees C. Impregnation ratio and soaking time at activation temperature also affected the pore development and pore size distribution of final carbon products. At an impregnation ratio of 1.5, activated carbon with BET surface area and micropore volume as high as 861m(2)/g and 0.289cm(3)/g was obtained at 400 degrees C. Microporous activated carbons were obtained in this study. Low impregnation ratio (less than 1.5) and activation temperature (less than 300 degrees C) are favorable to the formation of acidic surface functional groups, which consist of temperature-sensitive (unstable at high temperature) and temperature-insensitive (stable at high temperature) two parts. The disappearance of temperature-sensitive groups was significant at temperature 300 degrees C; while the temperature-insensitive groups are stable even at 500 degrees C. FTIR results showed that the temperature-insensitive part was mostly phosphorus-containing groups as well as some carbonyl-containing groups, while carbonyl-containing groups were the main contributor of temperature-sensitive part.

  16. A GREEN CHEMISTRY APPROACH TO PREPARATION OF CORE (FE OR CU)-SHELL (NOBLE METALS) NANOCOMPOSITES USING AQUEOUS ASCORBIC ACID

    EPA Science Inventory

    A greener method to fabricate novel core (Fe or Cu)-shell (noble metals) nanocomposites of transition metals such as Fe and Cu and noble metals such as Au, Pt, Pd, and Ag using aqueous ascorbic acid is described. Transition metal salts such as Cu and Fe were reduced using ascor...

  17. In-depth proteomic analysis of a mollusc shell: acid-soluble and acid-insoluble matrix of the limpet Lottia gigantea

    PubMed Central

    2012-01-01

    Background Invertebrate biominerals are characterized by their extraordinary functionality and physical properties, such as strength, stiffness and toughness that by far exceed those of the pure mineral component of such composites. This is attributed to the organic matrix, secreted by specialized cells, which pervades and envelops the mineral crystals. Despite the obvious importance of the protein fraction of the organic matrix, only few in-depth proteomic studies have been performed due to the lack of comprehensive protein sequence databases. The recent public release of the gastropod Lottia gigantea genome sequence and the associated protein sequence database provides for the first time the opportunity to do a state-of-the-art proteomic in-depth analysis of the organic matrix of a mollusc shell. Results Using three different sodium hypochlorite washing protocols before shell demineralization, a total of 569 proteins were identified in Lottia gigantea shell matrix. Of these, 311 were assembled in a consensus proteome comprising identifications contained in all proteomes irrespective of shell cleaning procedure. Some of these proteins were similar in amino acid sequence, amino acid composition, or domain structure to proteins identified previously in different bivalve or gastropod shells, such as BMSP, dermatopontin, nacrein, perlustrin, perlucin, or Pif. In addition there were dozens of previously uncharacterized proteins, many containing repeated short linear motifs or homorepeats. Such proteins may play a role in shell matrix construction or control of mineralization processes. Conclusions The organic matrix of Lottia gigantea shells is a complex mixture of proteins comprising possible homologs of some previously characterized mollusc shell proteins, but also many novel proteins with a possible function in biomineralization as framework building blocks or as regulatory components. We hope that this data set, the most comprehensive available at present, will

  18. Palladium-platinum core-shell electrocatalysts for oxygen reduction reaction prepared with the assistance of citric acid

    SciTech Connect

    Zhang, Lulu; Su, Dong; Zhu, Shangqian; Chang, Qiaowan; Yue, Jeffrey; Du, Zheng; Shao, Minhua

    2016-04-26

    Core–shell structure is a promising alternative to solid platinum (Pt) nanoparticles as electrocatalyst for oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). A simple method of preparing palladium (Pd)–platinum (Pt) core–shell catalysts (Pd@Pt/C) in a gram-batch was developed with the assistance of citric acid. The Pt shell deposition involves three different pathways: galvanic displacement reaction between Pd atoms and Pt cations, chemical reduction by citric acid, and reduction by negative charges on Pd surfaces. The uniform ultrathin (~0.4 nm) Pt shell was characterized by in situ X-ray diffraction (XRD) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images combined with electron energy loss spectroscopy (EELS). Compared with state-of-the-art Pt/C, the Pd@Pt/C core–shell catalyst showed 4 times higher Pt mass activity and much better durability upon potential cycling. As a result, both the mass activity and durability were comparable to that of Pd@Pt/C synthesized by a Cu-mediated-Pt-displacement method, which is more complicated and difficult for mass production.

  19. Palladium-platinum core-shell electrocatalysts for oxygen reduction reaction prepared with the assistance of citric acid

    DOE PAGES

    Zhang, Lulu; Su, Dong; Zhu, Shangqian; ...

    2016-04-26

    Core–shell structure is a promising alternative to solid platinum (Pt) nanoparticles as electrocatalyst for oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). A simple method of preparing palladium (Pd)–platinum (Pt) core–shell catalysts (Pd@Pt/C) in a gram-batch was developed with the assistance of citric acid. The Pt shell deposition involves three different pathways: galvanic displacement reaction between Pd atoms and Pt cations, chemical reduction by citric acid, and reduction by negative charges on Pd surfaces. The uniform ultrathin (~0.4 nm) Pt shell was characterized by in situ X-ray diffraction (XRD) and high-angle annular dark-field scanning transmission electron microscopymore » (HAADF-STEM) images combined with electron energy loss spectroscopy (EELS). Compared with state-of-the-art Pt/C, the Pd@Pt/C core–shell catalyst showed 4 times higher Pt mass activity and much better durability upon potential cycling. As a result, both the mass activity and durability were comparable to that of Pd@Pt/C synthesized by a Cu-mediated-Pt-displacement method, which is more complicated and difficult for mass production.« less

  20. Mesoporous core–shell Fenton nanocatalyst: a mild, operationally simple approach to the synthesis of adipic acid.

    PubMed

    Patra, Astam K; Dutta, Arghya; Bhaumik, Asim

    2013-09-09

    Mesoporous nanoparticles composed of γ-Al2O3 cores and α-Fe2O3 shells were synthesized in aqueous medium. The surface charge of γ-Al2O3 helps to form the core–shell nanocrystals. The core–shell structure and formation mechanism have been investigated by wide-angle XRD, energy-dispersive X-ray spectroscopy, and elemental mapping by ultrahigh-resolution (UHR) TEM and X-ray photoelectron spectroscopy. The N2 adsorption–desorption isotherm of this core–shell materials, which is of type IV, is characteristic of a mesoporous material having a BET surface area of 385 m2 g(−1) and an average pore size of about 3.2 nm. The SEM images revealed that the mesoporosity in this core–shell material is due to self-aggregation of tiny spherical nanocrystals with sizes of about 15–20 nm. Diffuse-reflectance UV/Vis spectra, elemental mapping by UHRTEM, and wide-angle XRD patterns indicate that the materials are composed of aluminum oxide cores and iron oxide shells. These Al2O3@Fe2O3 core–shell nanoparticles act as a heterogeneous Fenton nanocatalyst in the presence of hydrogen peroxide, and show high catalytic efficiency for the one-pot conversion of cyclohexanone to adipic acid in water. The heterogeneous nature of the catalyst was confirmed by a hot filtration test and analysis of the reaction mixture by atomic absorption spectroscopy. The kinetics of the reaction was monitored by gas chromatography and 1H NMR spectroscopy. The new core–shell catalyst remained in a separate solid phase, which could easily be removed from the reaction mixture by simple filtration and the catalyst reused efficiently.

  1. Synthesis of walnut shell modified with titanium dioxide and zinc oxide nanoparticles for efficient removal of humic acid from aqueous solutions.

    PubMed

    Naghizadeh, Ali; Shahabi, Habibeh; Ghasemi, Fatemeh; Zarei, Ahmad

    2016-12-01

    The main aim of this research was to study the efficiency of modified walnut shell with titanium dioxide (TiO2) and zinc oxide (ZnO) in the adsorption of humic acid from aqueous solutions. This experimental study was carried out in a batch condition to determine the effects of factors such as contact time, pH, humic acid concentration, dose of adsorbents (raw walnut shell, modified walnut shell with TiO2 and ZnO) on the removal efficiency of humic acid. pHzpc of raw walnut shell, walnut shell modified with TiO2 and walnut shell modified with ZnO were 7.6, 7.5, and 8, respectively. The maximum adsorption capacity of humic acid at concentration of 30 mg/L, contact time of 30 min at pH = 3 in an adsorbent dose of 0.02 g of walnut shell and ZnO and TiO2 modified walnut shell were found to be 35.2, 37.9, and 40.2 mg/g, respectively. The results showed that the studied adsorbents tended to fit with the Langmuir model. Walnut shell, due to its availability, cost-effectiveness, and also its high adsorption efficiency, can be proposed as a promising natural adsorbent in the removal of humic acid from aqueous solutions.

  2. Design and characterization of antimicrobial usnic acid loaded-core/shell magnetic nanoparticles.

    PubMed

    Taresco, Vincenzo; Francolini, Iolanda; Padella, Franco; Bellusci, Mariangela; Boni, Adriano; Innocenti, Claudia; Martinelli, Andrea; D'Ilario, Lucio; Piozzi, Antonella

    2015-01-01

    The application of magnetic nanoparticles (MNPs) in medicine is considered much promising especially because they can be handled and directed to specific body sites by external magnetic fields. MNPs have been investigated in magnetic resonance imaging, hyperthermia and drug targeting. In this study, properly functionalized core/shell MNPs with antimicrobial properties were developed to be used for the prevention and treatment of medical device-related infections. Particularly, surface-engineered manganese iron oxide MNPs, produced by a micro-emulsion method, were coated with two different polymers and loaded with usnic acid (UA), a dibenzofuran natural extract possessing antimicrobial activity. Between the two polymer coatings, the one based on an intrinsically antimicrobial cationic polyacrylamide (pAcDED) resulted to be able to provide MNPs with proper magnetic properties and basic groups for UA loading. Thanks to the establishment of acid-base interactions, pAcDED-coated MNPs were able to load and release significant drug amounts resulting in good antimicrobial properties versus Staphylococcus epidermidis (MIC = 0.1 mg/mL). The use of pAcDED having intrinsic antimicrobial activity as MNP coating in combination with UA likely contributed to obtain an enhanced antimicrobial effect. The developed drug-loaded MNPs could be injected in the patient soon after device implantation to prevent biofilm formation, or, later, in presence of signs of infection to treat the biofilm grown on the device surfaces.

  3. Removal of Se(IV) from aqueous solution using sulphuric acid-treated peanut shell.

    PubMed

    El-Shafey, E I

    2007-09-01

    A carbonaceous sorbent was prepared from peanut shell via sulphuric acid treatment. Se(IV) removal from aqueous solution on the sorbent was studied varying time, pH, Se(IV) concentration, temperature and sorbent status (wet and dry). Se(IV) removal was faster using the wet sorbent than the dry sorbent following a pseudo-first-order model. Se(IV) removal increases at low pH values, and decreases as pH increases until pH 7. Sorption was found to fit the Langmuir equation and sorption capacity for the wet sorbent was higher than that for the dry one. Both sorbents showed an increased selenium sorption by rising the temperature. Redox processes between Se(IV) and the carbon sorbent are involved. Analysis by scanning electron microscope and X-ray powder diffraction for the sorbent after the reaction with acidified Se(IV) confirmed the availability of elemental selenium as particles on the sorbent surface as a result of Se(IV) reduction. Physicochemical tests showed an increase in sorbent acidity, cation exchange capacity (CEC) and surface functionality after the reaction with acidified Se(IV), indicating the oxidation processes occurring on the sorbent surface. Due to its reduction properties, the sorbent seems efficient for Se(IV) removal from aqueous solution.

  4. Anoxic and oxic removal of humic acids with Fe@Fe2O3 core-shell nanowires: a comparative study.

    PubMed

    Wu, Hao; Ai, Zhihui; Zhang, Lizhi

    2014-04-01

    In this study we comparatively investigate the removal of humic acids with Fe@Fe2O3 core-shell nanowires under anoxic and oxic conditions. The products of humic acids after reacting with Fe@Fe2O3 core-shell nanowires under anoxic and oxic conditions were carefully examined with three-dimensional excitation emission matrix fluorescence spectroscopy and gas chromatography mass spectrometry. It was found that humic acids were removed by Fe@Fe2O3 core-shell nanowires via adsorption under anoxic condition. Langmuir adsorption isotherm was applicable to describe the adsorption processes. Kinetics of humic acids adsorption onto Fe@Fe2O3 core-shell nanowires was found to follow pseudo-second-order rate equation. By contrast, the oxic removal of humic acids with Fe@Fe2O3 core-shell nanowires involved adsorption and subsequent oxidation of humic acids because Fe@Fe2O3 core-shell nanowires could activate molecular oxygen to produce reactive oxygen species to oxidize humic acids. This subsequent oxidation of humic acids could improve the oxic removal rate to 2.5 times that of anoxic removal, accompanying with about 8.4% of mineralization. This study provides a new method for humic acids removal and also sheds light on the effects of humic acids on the pollutant removal by nano zero-valent iron.

  5. Kinetics and thermodynamic studies for removal of acid blue 129 from aqueous solution by almond shell

    PubMed Central

    2014-01-01

    Efficiency and performance of Almond shell (AS) adsorbent for the removal and recovery of Acid Blue 129 (AB129) from wastewater is presented in this report. The influence of variables including pH, initial dye concentration, adsorbent dosage, particle size, contact time and temperature on the dye removal have been investigated in batch method by one at a time optimization method. The experimental equilibrium data were tested by four widely used isotherm models namely, Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich (D–R). It was found that adsorption of AB129 on AS well with the Langmuir isotherm model, implying monolayer coverage of dye molecules onto the surface of the adsorbent. More than 98% removal efficiency was obtained within 14 min at adsorbent dose of 0.4 g for initial dye concentration of 40 mg/L at pH 2. Kinetics of the adsorption process was tested by pseudo-first-order and pseudo-second-order kinetics, and intraparticle diffusion mechanism. Pseudo-second-order kinetic model provided a better correlation for the experimental data studied in comparison to the pseudo-first-order model. Calculation of various thermodynamic parameters such as, Gibb’s free energy, entropy and enthalpy of the on-going adsorption process indicate feasibility and endothermic nature of AB129 adsorption on all adsorbents. This work can be used in design of adsorption columns for dyes removal. PMID:24620822

  6. Novel cost effective full scale mussel shell bioreactors for metal removal and acid neutralization.

    PubMed

    DiLoreto, Z A; Weber, P A; Olds, W; Pope, J; Trumm, D; Chaganti, S R; Heath, D D; Weisener, C G

    2016-12-01

    Acid mine drainage (AMD) impacted waters are a worldwide concern for the mining industry and countries dealing with this issue; both active and passive technologies are employed for the treatment of such waters. Mussel shell bioreactors (MSB) represent a passive technology that utilizes waste from the shellfish industry as a novel substrate. The aim of this study is to provide insight into the biogeochemical dynamics of a novel full scale MSB for AMD treatment. A combination of water quality data, targeted geochemical extractions, and metagenomic analyses were used to evaluate MSB performance. The MSB raised the effluent pH from 3.4 to 8.3 while removing up to ∼99% of the dissolved Al, and Fe and >90% Ni, Tl, and Zn. A geochemical gradient was observed progressing from oxidized to reduced conditions with depth. The redox conditions helped define the microbial consortium that consists of a specialized niche of organisms that influence elemental cycling (i.e. complex Fe and S cycling). MSB technology represents an economic and effective means of full scale, passive AMD treatment that is an attractive alternative for developing economies due to its low cost and ease of implementation.

  7. Multifunctional antitumor magnetite/chitosan- l-glutamic acid (core/shell) nanocomposites

    NASA Astrophysics Data System (ADS)

    Santos, Daniela P.; Ruiz, M. Adolfina; Gallardo, Visitación; Zanoni, Maria Valnice B.; Arias, José L.

    2011-09-01

    The development of anticancer drug delivery systems based on biodegradable nanoparticles has been intended to maximize the localization of chemotherapy agents within tumor interstitium, along with negligible drug distribution into healthy tissues. Interestingly, passive and active drug targeting strategies to cancer have led to improved nanomedicines with great tumor specificity and efficient chemotherapy effect. One of the most promising areas in the formulation of such nanoplatforms is the engineering of magnetically responsive nanoparticles. In this way, we have followed a chemical modification method for the synthesis of magnetite/chitosan- l-glutamic acid (core/shell) nanostructures. These magnetic nanocomposites (average size ≈340 nm) exhibited multifunctional properties based on its capability to load the antitumor drug doxorubicin (along with an adequate sustained release) and its potential for hyperthermia applications. Compared to drug surface adsorption, doxorubicin entrapment into the nanocomposites matrix yielded a higher drug loading and a slower drug release profile. Heating characteristics of the magnetic nanocomposites were investigated in a high-frequency alternating magnetic gradient: a stable maximum temperature of 46 °C was successfully achieved within 40 min. To our knowledge, this is the first time that such kind of stimuli-sensitive nanoformulation with very important properties (i.e., magnetic targeting capabilities, hyperthermia, high drug loading, and little burst drug release) has been formulated for combined antitumor therapy against cancer.

  8. Effect of the solvatation shell exchange on the formation of malvidin-3-O-glucoside-ellagic acid complexes.

    PubMed

    Kunsagi-Maté, Sandor; Ortmann, Erika; Kollar, Laszló; Nikfardjam, Martin Pour

    2007-10-11

    The interaction of malvidin-3-O-glucoside with ellagic acid was studied in aqueous solutions in dependence of the ethanol content of the samples. The results show significant changes of the thermodynamic parameters when the ethanol content exceeds 8%vol. The quantum chemical calculations and the solvent relaxation measurements validate that the solvatation shell of the malvidin-ellagic acid complexes changes from water to ethanol around this critical alcoholic concentration. The change of the solvate shell is accompanied by increasing copigmentation; i.e., higher "multi-sandwich" complexes are formed. According to the considerable role of this interaction (namely copigmentation) in the formation of color in red wines, our results have several consequences for the winemaking process with regard to the stabilization of wine color.

  9. Hollow Ag@Pd core-shell nanotubes as highly active catalysts for the electro-oxidation of formic acid.

    PubMed

    Jiang, Yuanyuan; Lu, Yizhong; Han, Dongxue; Zhang, Qixian; Niu, Li

    2012-03-16

    Ag nanowires are prepared as templates by a polyol reduction process. Then Ag nanotubes coated with a thin layer of Pd are synthesized through sequential reduction accompanied with the galvanic displacement reaction. The products show a hollow core-shell nanotubular structure, as demonstrated by detailed characterizations. The Ag@Pd can significantly improve the electrocatalytic activity towards the electro-oxidation of formic acid and enhance the stability of the Pd component. It is proposed that the enhanced electrochemically active surface area and modulated electron structure of Pd by Ag are responsible for the improvement of electrocatalytic activity and durability. The results obtained in this work are different from those previous reports, in which alloy walls with hollow interiors are usually formed. This work provides a new and simple method for synthesizing novel bimetallic core-shell structure with a hollow interior, which can be applied as high-performance catalysts for the electro-oxidation of formic acid.

  10. A comparative study of the kinetics of amino acid racemization/epimerization in fossil and modern mollusk shells

    SciTech Connect

    Goodfriend, G.A. Carnegie Inst. of Washington, Washington DC ); Meyer, V.R. )

    1991-11-01

    The present study examines the question of whether heating experiments on modern shell material accurately model the pattern of kinetics of racemization/epimerization in fossils. Using one modern sample and four fossil samples (dating to 9700-1700 yr B.P.) of a species of land snail from the Negev Desert, the kinetic behavior of the samples in laboratory heating experiments are compared. Results are then compared to the Holocene trend in kinetic patterns observed in a large series of radio-carbon-dated shells. For most amino acids (alanine, alloisoleucine/isoleucine, phenylalanine, and glutamic acid), the fossil material displays the same pattern of kinetics in relation to time as the modern shells; deviant patterns are observed for aspartic acid, proline, and methionine. Adherence to a first order kinetic pattern in heated shells occurs only in alloisoleucine/isoleucine (within the range of D/L ratios studied). Differences in the temperature dependence of racemization/epimerization rates are found between modern and fossil samples. In most cases this relationship when extrapolated to natural temperatures, does not agree well with observed rates of racemization/epimerization in the fossil series. However the pattern of change in rate of racemization/epimerization with time in heating experiments generally follows the trend observed in the fossil series rather well. The experiments indicate that heating experiment results for certain amino acids, such as the widely used alloisoleucine/isoleucine, do give good predictions of kinetic patterns in relation to time in fossils but that predictions of the temperature dependence of rates are less accurate.

  11. Preparation of core-shell PAN nanofibers encapsulated α-tocopherol acetate and ascorbic acid 2-phosphate for photoprotection.

    PubMed

    Wu, Xiao-Mei; Branford-White, Christopher J; Yu, Deng-Guang; Chatterton, Nicholas P; Zhu, Li-Min

    2011-01-01

    Magnesium l-ascorbic acid 2-phosphate (MAAP) and α-tocopherol acetate (α-TAc), as the stable vitamin C and vitamin E derivative, respectively, are often applied to skin care products for reducing UV damage. The encapsulation of MAAP (0.5%, g/mL) and α-TAc (5%, g/mL) together within the polyacrylonitrile (PAN) nanofibers was demonstrated using a coaxial electrospinning technique. The structure and morphology characterizations of the core-shell fibers MAAP/α-TAc-PAN were investigated by SEM, FTIR and XRD. As a negative control, the blend nanofibers MAAP/α-TAc/PAN were prepared from a normal electrospinning method. The results from SEM indicated that the morphology and diameter of the nanofibers were influenced by concentration of spinning solution, the polymer component of the shell, the carrying agent of the core and the fabricating methods, and the core-shell nanofibers obtained at the concentration of 8% had finer and uniform structure with the average diameters of 200 ± 15nm. From in vitro release studies it could be seen that both different fiber specimens showed a gradual increase in the amount of α-TAc or MAAP released from the nanofibers. Furthermore, α-TAc and MAAP released from the blend nanofibers showed the burst release at the maximum release of ∼15% and ∼40% during the first 6h, respectively, but their release amount from the core-shell nanofibers was only 10-12% during the initial part of the process. These results showed that core-shell nanofibers alleviated the initial burst release and gave better sustainability compared to that of the blend nanofibers. The present study would provide a basis for further optimization of processing conditions to obtain desired structured core-shell nanofibers and release kinetics for practical applications in dermal tissue.

  12. Anacardic Acid Constituents from Cashew Nut Shell Liquid: NMR Characterization and the Effect of Unsaturation on Its Biological Activities

    PubMed Central

    Morais, Selene M.; Silva, Katherine A.; Araujo, Halisson; Vieira, Icaro G.P.; Alves, Daniela R.; Fontenelle, Raquel O.S.; Silva, Artur M.S.

    2017-01-01

    Anacardic acids are the main constituents of natural cashew nut shell liquid (CNSL), obtained via the extraction of cashew shells with hexane at room temperature. This raw material presents high technological potential due to its various biological properties. The main components of CNSL are the anacardic acids, salicylic acid derivatives presenting a side chain of fifteen carbon atoms with different degrees of unsaturation (monoene–15:1, diene–15:2, and triene–15:3). Each constituent was isolated by column chromatography using silica gel impregnated with silver nitrate. The structures of the compounds were characterized by nuclear magnetic resonance through complete and unequivocal proton and carbon assignments. The effect of the side chain unsaturation was also evaluated in relation to antioxidant, antifungal and anticholinesterase activities, and toxicity against Artemia salina. The triene anacardic acid provided better results in antioxidant activity assessed by the inhibition of the free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH), higher cytotoxicity against A. salina, and acetylcholinesterase (AChE) inhibition. Thus, increasing the unsaturation of the side chain of anacardic acid increases its action against free radicals, AChE enzyme, and A. salina nauplii. In relation to antifungal activity, an inverse result was obtained, and the linearity of the molecule plays an important role, with monoene being the most active. In conclusion, the changes in structure of anacardic acids, which cause differences in polarity, contribute to the increase or decrease in the biological activity assessed. PMID:28300791

  13. Anacardic Acid Constituents from Cashew Nut Shell Liquid: NMR Characterization and the Effect of Unsaturation on Its Biological Activities.

    PubMed

    Morais, Selene M; Silva, Katherine A; Araujo, Halisson; Vieira, Icaro G P; Alves, Daniela R; Fontenelle, Raquel O S; Silva, Artur M S

    2017-03-16

    Anacardic acids are the main constituents of natural cashew nut shell liquid (CNSL), obtained via the extraction of cashew shells with hexane at room temperature. This raw material presents high technological potential due to its various biological properties. The main components of CNSL are the anacardic acids, salicylic acid derivatives presenting a side chain of fifteen carbon atoms with different degrees of unsaturation (monoene-15:1, diene-15:2, and triene-15:3). Each constituent was isolated by column chromatography using silica gel impregnated with silver nitrate. The structures of the compounds were characterized by nuclear magnetic resonance through complete and unequivocal proton and carbon assignments. The effect of the side chain unsaturation was also evaluated in relation to antioxidant, antifungal and anticholinesterase activities, and toxicity against Artemia salina. The triene anacardic acid provided better results in antioxidant activity assessed by the inhibition of the free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH), higher cytotoxicity against A. salina, and acetylcholinesterase (AChE) inhibition. Thus, increasing the unsaturation of the side chain of anacardic acid increases its action against free radicals, AChE enzyme, and A. salina nauplii. In relation to antifungal activity, an inverse result was obtained, and the linearity of the molecule plays an important role, with monoene being the most active. In conclusion, the changes in structure of anacardic acids, which cause differences in polarity, contribute to the increase or decrease in the biological activity assessed.

  14. Acidic Electrolyzed Water as a Novel Transmitting Medium for High Hydrostatic Pressure Reduction of Bacterial Loads on Shelled Fresh Shrimp

    PubMed Central

    Du, Suping; Zhang, Zhaohuan; Xiao, Lili; Lou, Yang; Pan, Yingjie; Zhao, Yong

    2016-01-01

    Acidic electrolyzed water (AEW), a novel non-thermal sterilization technology, is widely used in the food industry. In this study, we firstly investigated the effect of AEW as a new pressure transmitting medium for high hydrostatic pressure (AEW-HHP) processing on microorganisms inactivation on shelled fresh shrimp. The optimal conditions of AEW-HHP for Vibrio parahaemolyticus inactivation on sterile shelled fresh shrimp were obtained using response surface methodology: NaCl concentration to electrolysis 1.5 g/L, treatment pressure 400 MPa, treatment time 10 min. Under the optimal conditions mentioned above, AEW dramatically enhanced the efficiency of HHP for inactivating V. parahaemolyticus and Listeria monocytogenes on artificially contaminated shelled fresh shrimp, and the log reductions were up to 6.08 and 5.71 log10 CFU/g respectively, while the common HHP could only inactivate the two pathogens up to 4.74 and 4.31 log10 CFU/g respectively. Meanwhile, scanning electron microscopy (SEM) showed the same phenomenon. For the naturally contaminated shelled fresh shrimp, AEW-HHP could also significantly reduce the micro flora when examined using plate count and PCR-DGGE. There were also no significant changes, histologically, in the muscle tissues of shrimps undergoing the AEW-HHP treatment. In summary, using AEW as a new transmitting medium for HHP processing is an innovative non thermal technology for improving the food safety of shrimp and other aquatic products. PMID:27014228

  15. Hyaluronic acid embedded cellulose acetate phthlate core/shell nanoparticulate carrier of 5-fluorouracil.

    PubMed

    Garg, Ashish; Rai, Gopal; Lodhi, Santram; Jain, Alok Pal; Yadav, Awesh K

    2016-06-01

    Aim of this research was to prepare hyaluronic acid-modified-cellulose acetate phthalate (HAC) core shell nanoparticles (NPs) of 5-fluorouracil (5-FU). HAC copolymer was synthesized and confirmed by fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy. HAC NPs with 5-FU were prepared using HAC copolymer and compared with 5-FU loaded cellulose acetate phthalate (CAP) NPs. NPs were characterized by atomic force microscopy (AFM), particle size, zeta potential, polydispersity index, entrapment efficiency, in-vitro release, differential scanning calorimetry (DSC) and X-ray diffraction (XRD). HAC NPs were found slower release (97.30% in 48h) than (99.25% in 8h) CAP NPs. In cytotoxicity studies, showed great cytotoxic potential of 5-FU loaded HAC NPs in A549, MDA-MD-435 and SK-OV-3 cancer cellline. HAC NPs showing least hemolytic than CAP NPs and 5-FU. Area under curve (AUC), maximum plasma concentration (Cmax), mean residence time (MRT) and time to reach maximum plasma concentration Tmax), were observed 4398.1±7.90μgh/mL, 145.45±2.25μg/L, 45.74±0.25h, 72±0.50h, respectively of HAC NPs and 119.92±1.78μgh/mL, 46.38±3.42μg/L, 1.2±0.25h, 0.5±0.02h were observed in plain 5-FU solution. In conclusion, HAC NPs is effective deliver carrier of 5-FU for lung cancer.

  16. Hyaluronic Acid/PLGA Core/Shell Fiber Matrices Loaded with EGCG Beneficial to Diabetic Wound Healing.

    PubMed

    Shin, Yong Cheol; Shin, Dong-Myeong; Lee, Eun Ji; Lee, Jong Ho; Kim, Ji Eun; Song, Sung Hwa; Hwang, Dae-Youn; Lee, Jun Jae; Kim, Bongju; Lim, Dohyung; Hyon, Suong-Hyu; Lim, Young-Jun; Han, Dong-Wook

    2016-12-01

    During the last few decades, considerable research on diabetic wound healing strategies has been performed, but complete diabetic wound healing remains an unsolved problem, which constitutes an enormous biomedical burden. Herein, hyaluronic acid (HA)/poly(lactic-co-glycolic acid, PLGA) core/shell fiber matrices loaded with epigallocatechin-3-O-gallate (EGCG) (HA/PLGA-E) are fabricated by coaxial electrospinning. HA/PLGA-E core/shell fiber matrices are composed of randomly-oriented sub-micrometer fibers and have a 3D porous network structure. EGCG is uniformly dispersed in the shell and sustainedly released from the matrices in a stepwise manner by controlled diffusion and PLGA degradation over four weeks. EGCG does not adversely affect the thermomechanical properties of HA/PLGA-E matrices. The number of human dermal fibroblasts attached on HA/PLGA-E matrices is appreciably higher than that on HA/PLGA counterparts, while their proliferation is steadily retained on HA/PLGA-E matrices. The wound healing activity of HA/PLGA-E matrices is evaluated in streptozotocin-induced diabetic rats. After two weeks of surgical treatment, the wound areas are significantly reduced by the coverage with HA/PLGA-E matrices resulting from enhanced re-epithelialization/neovascularization and increased collagen deposition, compared with no treatment or HA/PLGA. In conclusion, the HA/PLGA-E matrices can be potentially exploited to craft strategies for the acceleration of diabetic wound healing and skin regeneration.

  17. Preparation of Porous Core-Shell Poly L-Lactic Acid/Polyethylene Glycol Superfine Fibres Containing Drug.

    PubMed

    Yang, Wenjing; He, Nongyue; Fu, Juan; Li, Zhiyang; Ji, Xuyuan

    2015-12-01

    In this paper, poly L-lactic acid (PLLA) blended with polyethylene glycol (PEG) was dissolved in methylene dichloride solution as the shell solution, and rapamycin (RAPA), was encapsulated inside the core of PLLA micro/nano fibres as a model drug. The effects of the blending ratio of PLLA to PEG, the concentration of the electrospinning solution, the voltage, the flow rate, and the encapsulation efficiency were studied. Uniform and porous RAPA-Loading PLLA fibres were obtained when the ratio of PLLA to PEG was 7/3, the concentration of PLLA was 3%, the applied voltage was 7.5 kV, and the pump speed was V(core) = 0.1 mL/h, V(shell) = 1 mL/h, repectively. The average diameter of PLLA fibres increased with the gradual increase in PLLA concentration. FTIR results showed that RAPA was successfully encapsulated into the core-co-shell PLLA fibres. Meanwhile, the RAPA-loading of coaxial electrospun PLLA fibres was significantly higher than that of the blending electrospun fibres. It was also found that the porous core-shell PLLA/PEG blending superfine fibres could regulate the appearance of pore on the surface of superfine fibres by adjusting the electrospinning parameters. The porous PLLA/PEG blending fibres can be used as drug carriers and, to improve the single way of drug release depending on the degradation of shell material to meet different need. It will be a remarkable breakthrough in the area for sustained and controlled release drug delivery system.

  18. Au/Pd core-shell nanoparticles with varied hollow Au cores for enhanced formic acid oxidation

    PubMed Central

    2013-01-01

    A facile method has been developed to synthesize Au/Pd core-shell nanoparticles via galvanic replacement of Cu by Pd on hollow Au nanospheres. The unique nanoparticles were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, ultraviolet–visible spectroscopy, and electrochemical measurements. When the concentration of the Au solution was decreased, grain size of the polycrystalline hollow Au nanospheres was reduced, and the structures became highly porous. After the Pd shell formed on these Au nanospheres, the morphology and structure of the Au/Pd nanoparticles varied and hence significantly affected the catalytic properties. The Au/Pd nanoparticles synthesized with reduced Au concentrations showed higher formic acid oxidation activity (0.93 mA cm-2 at 0.3 V) than the commercial Pd black (0.85 mA cm-2 at 0.3 V), suggesting a promising candidate as fuel cell catalysts. In addition, the Au/Pd nanoparticles displayed lower CO-stripping potential, improved stability, and higher durability compared to the Pd black due to their unique core-shell structures tuned by Au core morphologies. PMID:23452438

  19. Au/Pd core-shell nanoparticles with varied hollow Au cores for enhanced formic acid oxidation

    NASA Astrophysics Data System (ADS)

    Hsu, Chiajen; Huang, Chienwen; Hao, Yaowu; Liu, Fuqiang

    2013-03-01

    A facile method has been developed to synthesize Au/Pd core-shell nanoparticles via galvanic replacement of Cu by Pd on hollow Au nanospheres. The unique nanoparticles were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, ultraviolet-visible spectroscopy, and electrochemical measurements. When the concentration of the Au solution was decreased, grain size of the polycrystalline hollow Au nanospheres was reduced, and the structures became highly porous. After the Pd shell formed on these Au nanospheres, the morphology and structure of the Au/Pd nanoparticles varied and hence significantly affected the catalytic properties. The Au/Pd nanoparticles synthesized with reduced Au concentrations showed higher formic acid oxidation activity (0.93 mA cm-2 at 0.3 V) than the commercial Pd black (0.85 mA cm-2 at 0.3 V), suggesting a promising candidate as fuel cell catalysts. In addition, the Au/Pd nanoparticles displayed lower CO-stripping potential, improved stability, and higher durability compared to the Pd black due to their unique core-shell structures tuned by Au core morphologies.

  20. Au/Pd core-shell nanoparticles with varied hollow Au cores for enhanced formic acid oxidation.

    PubMed

    Hsu, Chiajen; Huang, Chienwen; Hao, Yaowu; Liu, Fuqiang

    2013-03-01

    A facile method has been developed to synthesize Au/Pd core-shell nanoparticles via galvanic replacement of Cu by Pd on hollow Au nanospheres. The unique nanoparticles were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, ultraviolet-visible spectroscopy, and electrochemical measurements. When the concentration of the Au solution was decreased, grain size of the polycrystalline hollow Au nanospheres was reduced, and the structures became highly porous. After the Pd shell formed on these Au nanospheres, the morphology and structure of the Au/Pd nanoparticles varied and hence significantly affected the catalytic properties. The Au/Pd nanoparticles synthesized with reduced Au concentrations showed higher formic acid oxidation activity (0.93 mA cm-2 at 0.3 V) than the commercial Pd black (0.85 mA cm-2 at 0.3 V), suggesting a promising candidate as fuel cell catalysts. In addition, the Au/Pd nanoparticles displayed lower CO-stripping potential, improved stability, and higher durability compared to the Pd black due to their unique core-shell structures tuned by Au core morphologies.

  1. Synthesis and characterization of a poly(lactic-co-glycolic acid) core + poly(N-isopropylacrylamide) shell nanoparticle system.

    PubMed

    Kosinski, Aaron M; Brugnano, Jamie L; Seal, Brandon L; Knight, Frances C; Panitch, Alyssa

    2012-01-01

    Poly(lactic-co-glycolic acid) (PLGA) is a popular material used to prepare nanoparticles for drug delivery. However, PLGA nanoparticles lack desirable attributes including active targeting abilities, resistance to aggregation during lyophilization, and the ability to respond to dynamic environmental stimuli. To overcome these issues, we fabricated a nanoparticle consisting of a PLGA core encapsulated within a shell of poly(N-isopropylacrylamide). Dynamic light scattering and transmission electron microscope imaging were used to characterize the nanoparticles, while an MTT assay and ELISA suggested biocompatibility in THP1 cells. Finally, a collagen type II binding assay showed successful modification of these nanoparticles with an active targeting moiety.

  2. Treatment of zinc-rich acid mine water in low residence time bioreactors incorporating waste shells and methanol dosing.

    PubMed

    Mayes, W M; Davis, J; Silva, V; Jarvis, A P

    2011-10-15

    Bioreactors utilising bacterially mediated sulphate reduction (BSR) have been widely tested for treating metal-rich waters, but sustained treatment of mobile metals (e.g. Zn) can be difficult to achieve in short residence time systems. Data are presented providing an assessment of alkalinity generating media (shells or limestone) and modes of metal removal in bioreactors receiving a synthetic acidic metal mine discharge (pH 2.7, Zn 15 mg/L, SO(4)(2-) 200mg/L, net acidity 103 mg/L as CaCO(3)) subject to methanol dosing. In addition to alkalinity generating media (50%, v.v.), the columns comprised an organic matrix of softwood chippings (30%), manure (10%) and anaerobic digested sludge (10%). The column tests showed sustained alkalinity generation, which was significantly better in shell treatments. The first column in each treatment was effective throughout the 422 days in removing >99% of the dissolved Pb and Cu, and effective for four months in removing 99% of the dissolved Zn (residence time: 12-14 h). Methanol was added to the feedstock after Zn breakthrough and prompted almost complete removal of dissolved Zn alongside improved alkalinity generation and sulphate attenuation. While there was geochemical evidence for BSR, sequential extraction of substrates suggests that the bulk (67-80%) of removed Zn was associated with Fe-Mn oxide fractions.

  3. On the importance of thermodynamic self-consistency for calculating clusterlike pair correlations in hard-core double Yukawa fluids

    NASA Astrophysics Data System (ADS)

    Kim, Jung Min; Castañeda-Priego, Ramón; Liu, Yun; Wagner, Norman J.

    2011-02-01

    Understanding the mechanisms of clustering in colloids, nanoparticles, and proteins is of significant interest in material science and both chemical and pharmaceutical industries. Recently, using an integral equation theory formalism, Bomont et al. [J. Chem. Phys. 132, 184508 (2010)] studied theoretically the temperature dependence, at a fixed density, of the cluster formation in systems where particles interact with a hard-core double Yukawa potential composed of a short-range attraction and a long-range repulsion. In this paper, we provide evidence that the low-q peak in the static structure factor, frequently associated with the formation of clusters, is a common behavior in systems with competing interactions. In particular, we demonstrate that, based on a thermodynamic self-consistency criterion, accurate structural functions are obtained for different choices of closure relations. Moreover, we explore the dependence of the low-q peak on the particle number density, temperature, and potential parameters. Our findings indicate that enforcing thermodynamic self-consistency is the key factor to calculate both thermodynamic properties and static structure factors, including the low-q behavior, for colloidal dispersions with both attractive and repulsive interactions. Additionally, a simple analysis of the mean number of neighboring particles provides a qualitative description of some of the cluster features.

  4. Using a Macroporous Silver Shell to Coat Sulfonic Acid Group-Functionalized Silica Spheres and Their Applications in Catalysis and Surface-Enhanced Raman Scattering.

    PubMed

    Ren, Guohong; Wang, Wenqin; Shang, Mengying; Zou, Hanzhi; Cheng, Shengwei

    2015-09-29

    In this paper, novel organic sulfonic acid group-functionalized silica spheres (SiO2-SO3H) were chosen as a template for fabricating core-shell SiO2-SO3H@Ag composite spheres by the seed-mediated growth method. The SiO2-SO3H spheres could be obtained easily by oxidation of the thiol group-terminated silica spheres (SiO2-SH) with H2O2. Due to the presence of sulfonic acid groups, the [Ag(NH3)2](+) ions were captured on the surface of the silica spheres, followed by in-site reduction to silver nanoseeds for further growth of the silver shell. By this strategy, the complete silver shell could be obtained, and the surface morphologies and structures of the silver shell could be controlled by adjusting the number of sulfonic acid groups on the silica spheres. A large number of sulfonic acid groups on the SiO2-SO3H spheres favored the formation of the macroporous silver shell, which was unique and exhibited good catalytic performance and a high surface-enhanced Raman scattering (SERS) enhancement ability.

  5. Investigation of cutaneous penetration properties of stearic acid loaded to dendritic core-multi-shell (CMS) nanocarriers.

    PubMed

    Lohan, S B; Icken, N; Teutloff, C; Saeidpour, S; Bittl, R; Lademann, J; Fleige, E; Haag, R; Haag, S F; Meinke, M C

    2016-03-30

    Dendritic core-multi shell (CMS) particles are polymer based systems consisting of a dendritic polar polyglycerol polymer core surrounded by a two-layer shell of nonpolar C18 alkyl chains and hydrophilic polyethylene glycol. Belonging to nanotransport systems (NTS) they allow the transport and storage of molecules with different chemical characters. Their amphipihilic character CMS-NTS permits good solubility in aqueous and organic solutions. We showed by multifrequency electron paramagnetic resonance (EPR) spectroscopy that spin-labeled 5-doxyl stearic acid (5DSA) can be loaded into the CMS-NTS. Furthermore, the release of 5DSA from the carrier into the stratum corneum of porcine skin was monitored ex vivo by EPR spectroscopy. Additionally, the penetration of the CMS-NTS into the skin was analyzed by fluorescence microscopy using indocarbocyanine (ICC) covalently bound to the nanocarrier. Thereby, no transport into the viable skin was observed, whereas the CMS-NTS had penetrated into the hair follicles down to a depth of 340 μm ± 82 μm. Thus, it could be shown that the combined application of fluorescence microscopy and multi-frequency EPR spectroscopy can be an efficient tool for investigating the loading of spin labeled drugs to nanocarrier systems, drug release and penetration into the skin as well as the localization of the NTS in the skin.

  6. Phosphoproteomes of Strongylocentrotus purpuratus shell and tooth matrix: identification of a major acidic sea urchin tooth phosphoprotein, phosphodontin

    PubMed Central

    2010-01-01

    Background Sea urchin is a major model organism for developmental biology and biomineralization research. However, identification of proteins involved in larval skeleton formation and mineralization processes in the embryo and adult, and the molecular characterization of such proteins, has just gained momentum with the sequencing of the Strongylocentrotus purpuratus genome and the introduction of high-throughput proteomics into the field. Results The present report contains the determination of test (shell) and tooth organic matrix phosphoproteomes. Altogether 34 phosphoproteins were identified in the biomineral organic matrices. Most phosphoproteins were specific for one compartment, only two were identified in both matrices. The sea urchin phosphoproteomes contained several obvious orthologs of mammalian proteins, such as a Src family tyrosine kinase, protein kinase C-delta 1, Dickkopf-1 and other signal transduction components, or nucleobindin. In most cases phosphorylation sites were conserved between sea urchin and mammalian proteins. However, the majority of phosphoproteins had no mammalian counterpart. The most interesting of the sea urchin-specific phosphoproteins, from the perspective of biomineralization research, was an abundant highly phosphorylated and very acidic tooth matrix protein composed of 35 very similar short sequence repeats, a predicted N-terminal secretion signal sequence, and an Asp-rich C-terminal motif, contained in [Glean3:18919]. Conclusions The 64 phosphorylation sites determined represent the most comprehensive list of experimentally identified sea urchin protein phosphorylation sites at present and are an important addition to the recently analyzed Strongylocentrotus purpuratus shell and tooth proteomes. The identified phosphoproteins included a major, highly phosphorylated protein, [Glean3:18919], for which we suggest the name phosphodontin. Although not sequence-related to such highly phosphorylated acidic mammalian dental

  7. Biosorption of formic and acetic acids from aqueous solution using activated carbon from shea butter seed shells

    NASA Astrophysics Data System (ADS)

    Adekola, Folahan A.; Oba, Ismaila A.

    2016-10-01

    The efficiency of prepared activated carbon from shea butter seed shells (SB-AC) for the adsorption of formic acid (FA) and acetic acid (AA) from aqueous solution was investigated. The effect of optimization parameters including initial concentration, agitation time, adsorbent dosage and temperature of adsorbate solution on the sorption capacity were studied. The SB-AC was characterized for the following parameters: bulk density, moisture content, ash content, pH, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The optimal conditions for the adsorption were established and the adsorption data for AA fitted Dubinin-Radushkevich (D-R) isotherm well, whereas FA followed Langmuir isotherm. The kinetic data were examined. It was found that pseudo-second-order kinetic model was found to adequately explain the sorption kinetic of AA and FA from aqueous solution. It was again found that intraparticle diffusion was found to explain the adsorption mechanism. Adsorption thermodynamic parameters were estimated and the negative values of ∆G showed that the adsorption process was feasible and spontaneous in nature, while the negative values of ∆H indicate that the adsorption process was exothermic. It is therefore established that SB-AC has good potential for the removal of AA and FA from aqueous solution. Hence, it should find application in the regular treatment of polluted water in aquaculture and fish breeding system.

  8. [Vitro study on gene transfection efficiency of hyaluronic acid modified core-shell liponanoparticles in human retinal pigment epithelium cells].

    PubMed

    Zhao, Ya-Nan; Gan, Li; Wang, Jing; Chen, Xi; Jia, Zheng; Gan, Yong; Liu, Jian-Ping

    2014-05-01

    The aim of this study is to prepare hyaluronic acid (HA) modified core-shell liponanoparticles (pHA-LCS-NPs) as gene delivery system and investigate its gene transfection efficiency in human retinal pigment epithelium (ARPE-19) cells in vitro. The pHA-LCS-NPs was prepared by firstly hydrating dry lipid film with CS-NPs suspension to get LCS-NPs, then modifying the lipid bilayer with HA by amidation reaction between HA and dioleoyl phosphatidylethanolamine (DOPE). Its morphology, particle size and zeta potential were investigated. XTT assay was used to evaluate the cell safety of different vectors in vitro. The gene transfection efficiency of pHA-LCS-NPs modified with different contents of HA was investigated in ARPE-19 cells with green fluorescent protein (pEGFP) as the reporter gene. The results showed that the obtained pHA-LCS-NPs exhibited a clear core-shell structure with the average particles size of (214.9 +/- 7.2) nm and zeta potential of (-35 +/- 3.7) mV. The 24 h cumulative release of gene from pHA-LCS-NPs was less than 30%. After 48 h incubation, gene transfection efficiency of pHA-LCS-NPs/pEGFP was 1.81 times and 3.75 times higher than that of CS-NPs/pEGFP and naked pEGFP, respectively. Also no obvious cytotoxicity was observed on pHA-LCS-NPs. It suggested that the pHA-LCS-NPs might be promising non-viral gene delivery systems with high efficiency and low cytotoxicity.

  9. Folic acid-conjugated core/shell ZnS:Mn/ZnS quantum dots as targeted probes for two photon fluorescence imaging of cancer cells.

    PubMed

    Geszke, Malgorzata; Murias, Marek; Balan, Lavinia; Medjahdi, Ghouti; Korczynski, Jaroslaw; Moritz, Michal; Lulek, Janina; Schneider, Raphaël

    2011-03-01

    This work presents a novel approach to producing water soluble manganese-doped core/shell ZnS/ZnS quantum dots (ZnS:Mn/ZnS). The Mn-doped ZnS core was prepared through a nucleation doping strategy and a ZnS shell was grown on ZnS:Mn d-dots by decomposition of Zn(2+)-3-mercaptopropionic acid (MPA) complexes at 100 °C. It was found that the Mn2+(4)T1→6A1 fluorescence emission at ∼590 nm significantly increased after growth of the shell when the Mn2+ doping content was 4.0 at.%. A photoluminescence quantum yield of ∼22% was obtained for core/shell nanocrystals. The nanoparticles were structurally and compositionally characterized by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and dynamic light scattering. The surface MPA molecules favor the dispersion of ZnS:Mn/ZnS QDs in aqueous media and make possible conjugation with targeting folic acid molecules. The folate receptor-mediated delivery of folic acid-conjugated ZnS:Mn/ZnS QDs was demonstrated using confocal microscopy with biphotonic excitation. Bare and folate-conjugated QDs exhibit only weak cytotoxicity towards folate receptor-positive T47D cancer cells and MCF-7 cells, used as a reference, at high concentrations (mmolar range) after 72h incubation.

  10. Microwave-assisted synthesis of a core-shell MWCNT/GONR heterostructure for the electrochemical detection of ascorbic acid, dopamine, and uric acid.

    PubMed

    Sun, Chia-Liang; Chang, Ching-Tang; Lee, Hsin-Hsien; Zhou, Jigang; Wang, Jian; Sham, Tsun-Kong; Pong, Way-Faung

    2011-10-25

    In this study, graphene oxide nanoribbons (GONRs) were synthesized from the facile unzipping of multiwalled carbon nanotubes (MWCNTs) with the help of microwave energy. A core-shell MWCNT/GONR-modified glassy carbon (MWCNT/GONR/GC) electrode was used to electrochemically detect ascorbic acid (AA), dopamine (DA), and uric acid (UA). In cyclic voltammograms, the MWCNT/GONR/GC electrode was found to outperform the MWCNT- and graphene-modified GC electrodes in terms of peak current. For the simultaneous sensing of three analytes, well-separated voltammetric peaks were obtained using a MWCNT/GONR/GC electrode in differential pulse voltammetry measurements. The corresponding peak separations were 229.9 mV (AA to DA), 126.7 mV (DA to UA), and 356.6 mV (AA to UA). This excellent electrochemical performance can be attributed to the unique electronic structure of MWCNTs/GONRs: a high density of unoccupied electronic states above the Fermi level and enriched oxygen-based functionality at the edge of the graphene-like structures, as revealed by X-ray absorption near-edge structure spectroscopy, obtained using scanning transmission X-ray microscopy.

  11. Spontaneous arrangement of a tumor targeting hyaluronic acid shell on irinotecan loaded PLGA nanoparticles.

    PubMed

    Giarra, Simona; Serri, Carla; Russo, Luisa; Zeppetelli, Stefania; De Rosa, Giuseppe; Borzacchiello, Assunta; Biondi, Marco; Ambrosio, Luigi; Mayol, Laura

    2016-04-20

    The arrangement of tumor targeting hyaluronic acid (HA) moieties on irinotecan (IRIN)-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) has been directed by means of a gradient of lipophilicity between the oil and water phases of the emulsion used to produce the NPs. PLGA constitutes the NP bulk while HA is superficially exposed, with amphiphilic poloxamers acting as a bridge between PLGA and HA. Differential scanning calorimetry, zeta potential analyses and ELISA tests were employed to support the hypothesis of polymer assembly in NP formulations. The presence of flexible HA chains on NP surface enhances NP size stability over time due to an increased electrostatic repulsion between NPs and a higher degree of hydration of the device surface. IRIN in vitro release kinetics can be sustained up to 7-13 days. In vitro biologic studies indicated that HA-containing NPs were more toxic than bare PLGA NPs against CD44-overexpressing breast carcinoma cells (HS578T), therefore indicating their ability to target CD44 receptor.

  12. Characterization of the first core sample of neutralized current acid waste from double-shell tank 101-AZ

    SciTech Connect

    Peterson, M E; Scheele, R D; Tingey, J M

    1989-09-01

    In FY 1989, Westinghouse Hanford Company (WHC) successfully obtained four core samples (totaling seven segments) of neutralized current acid waste (NCAW) from double-shell tanks (DSTs) 101-AZ and 102-AZ. A segment was a 19-in.-long and 1-in.-diameter cylindrical sample of waste. A core sample consisted of enough 19-in.-long segments to obtain the waste of interest. Three core samples were obtained from DST 101-AZ and one core sample from DST 102-AZ. Two DST 101-AZ core samples consisted of two segments per core, and the third core sample consisted of only one segment. The third core consisted of the solids from the bottom of the tank and was used to determine the relative abrasiveness of this NCAW. The DST 102-AZ core sample consisted of two segments. The core samples were transported to the Pacific Northwest Laboratory (PNL), where the waste was extruded from its sampler and extensively characterized. A characterization plan was followed that simulated the processing of the NCAW samples through retrieval, pretreatment and vitrification process steps. Physical, rheological, chemical and radiochemical properties were measured throughout the process steps. The characterization of the first core sample from DST 101-AZ was completed, and the results are provided in this report. The results for the other core characterizations will be reported in future reports. 3 refs., 13 figs., 10 tabs.

  13. Chitosan-functionalised poly(2-hydroxyethyl methacrylate) core-shell microgels as drug delivery carriers: salicylic acid loading and release.

    PubMed

    Mahattanadul, Natshisa; Sunintaboon, Panya; Sirithip, Piyawan; Tuchinda, Patoomratana

    2016-09-01

    This work presents the evaluation of chitosan-functionalised poly(2-hydroxyethyl methacrylate) (CS/PHEMA) core-shell microgels as drug delivery carriers. CS/PHEMA microgels were prepared by emulsifier-free emulsion polymerisation with N,N '-methylenebisacrylamide (MBA) as a crosslinker. The study on drug loading, using salicylic acid (SA) as a model drug, was performed. The results showed that the encapsulation efficiency (EE) increased as drug-to-microgel ratio was increased. Higher EE can be achieved with the increase in degree of crosslinking, by increasing the amount of MBA from 0.01 g to 0.03 g. In addition, the highest EE (61.1%) was observed at pH 3. The highest release of SA (60%) was noticed at pH 2.4, while the lowest one (49.4%) was obtained at pH 7.4. Moreover, the highest release of SA was enhanced by the presence of 0.2 M NaCl. The pH- and ionic-sensitivity of CS/PHEMA could be useful as a sustained release delivery device, especially for oral delivery.

  14. Material characterization of poly-lactic acid shelled ultrasound contrast agent and their dynamics

    NASA Astrophysics Data System (ADS)

    Paul, Shirshendu; Russakow, Daniel; Rodgers, Tyler; Sarkar, Kausik; Cochran, Michael; Wheatley, Margaret

    2011-11-01

    Micron-size gas bubbles encapsulated with lipids and proteins are used as contrast enhancing agents for ultrasound imaging. Biodegradable polymer poly-lactic acid (PLA) has recently been suggested as a possible means of encapsulation. Here, we report in vitro measurement of attenuation and scattering of ultrasound through an emulsion of PLA agent as well as theoretical modeling of the encapsulated bubble dynamics. The attenuation measured with three different transducers of central frequencies 2.25, 3.5 and 5 MHz, shows a peak around 2-3 MHz. These bubbles also show themselves to possess excellent scattering characteristics including strong non-linear response that can be used for harmonic and sub-harmonic contrast imaging. Our recently developed interfacial rheological models are applied to describe the dynamics of these bubbles; rheological model properties are estimated using measured attenuation data. The model is then applied to predict nonlinear scattered response, and the prediction is compared against experimental observation. Partially supported by NSF and NIH.

  15. Core-shell nanofibers of curcumin/cyclodextrin inclusion complex and polylactic acid: Enhanced water solubility and slow release of curcumin.

    PubMed

    Aytac, Zeynep; Uyar, Tamer

    2017-02-25

    Core-shell nanofibers were designed via electrospinning using inclusion complex (IC) of model hydrophobic drug (curcumin, CUR) with cyclodextrin (CD) in the core and polymer (polylactic acid, PLA) in the shell (cCUR/HPβCD-IC-sPLA-NF). CD-IC of CUR and HPβCD was formed at 1:2 molar ratio. The successful formation of core-shell nanofibers was revealed by TEM and CLSM images. cCUR/HPβCD-IC-sPLA-NF released CUR slowly but much more in total than PLA-CUR-NF at pH 1 and pH 7.4 due to the restriction of CUR in the core of nanofibers and solubility improvement shown in phase solubility diagram, respectively. Improved antioxidant activity of cCUR/HPβCD-IC-sPLA-NF in methanol:water (1:1) is related with the solubility enhancement achieved in water based system. The slow reaction of cCUR/HPβCD-IC-sPLA-NF in methanol is associated with the shell inhibiting the quick release of CUR. On the other hand, cCUR/HPβCD-IC-sPLA-NF exhibited slightly higher rate of antioxidant activity than PLA-CUR-NF in methanol:water (1:1) owing to the enhanced solubility. To conclude, slow release of CUR was achieved by core-shell nanofiber structure and inclusion complexation of CUR with HPβCD provides high solubility. Briefly, electrospinning of core-shell nanofibers with CD-IC core could offer slow release of drugs as well as solubility enhancement for hydrophobic drugs.

  16. Dissociation of a strong acid in neat solvents: diffusion is observed after reversible proton ejection inside the solvent shell.

    PubMed

    Veiga-Gutiérrez, Manoel; Brenlla, Alfonso; Carreira Blanco, Carlos; Fernández, Berta; Kovalenko, Sergey A; Rodríguez-Prieto, Flor; Mosquera, Manuel; Lustres, J Luis Pérez

    2013-11-14

    Strong-acid dissociation was studied in alcohols. Optical excitation of the cationic photoacid N-methyl-6-hydroxyquinolinium triggers proton transfer to the solvent, which was probed by spectral reconstruction of picosecond fluorescence traces. The process fulfills the classical Eigen-Weller mechanism in two stages: (a) solvent-controlled reversible dissociation inside the solvent shell and (b) barrierless splitting of the encounter complex. This can be appreciated only when fluorescence band integrals are used to monitor the time evolution of the reactant and product concentrations. Band integrals are insensitive to solvent dynamics and report relative concentrations directly. This was demonstrated by first measuring the fluorescence decay of the conjugate base across the full emission band, independently of the proton-transfer reaction. Multiexponential decay curves at single wavelengths result from a dynamic red shift of fluorescence in the course of solvent relaxation, whereas clean single exponential decays are obtained if the band integral is monitored instead. The extent of the shift is consistent with previously reported femtosecond transient absorption measurements, continuum theory of solvatochromism, and molecular properties derived from quantum chemical calculations. In turn, band integrals show clean biexponential decay of the photoacid and triexponential evolution of the conjugate base in the course of the proton transfer to solvent reaction. The dissociation step follows the slowest stage of solvation, which was measured here independently by picosecond fluorescence spectroscopy in five aliphatic alcohols. Also, the rate constant of the encounter-complex splitting stage is compatible with proton diffusion. Thus, for this photoacid, both stages reach the highest possible rates: solvation and diffusion control. Under these conditions, the concentration of the encounter complex is substantial during the earliest nanosecond.

  17. Fabrication and characterization of heparin-grafted poly-L-lactic acid-chitosan core-shell nanofibers scaffold for vascular gasket.

    PubMed

    Wang, Ting; Ji, Xuyuan; Jin, Lin; Feng, Zhangqi; Wu, Jinghang; Zheng, Jie; Wang, Hongyin; Xu, Zhe-Wu; Guo, Lingling; He, Nongyue

    2013-05-01

    Electrospun nanofibers were widely studied to be applied as potential materials for tissue engineering. A new technology to make poly-l-lactic acid/chitosan core/shell nanofibers from heterologous solution by coaxial electrospinning technique was designed for vascular gasket. Chitosan surface was cross-linked by genipin and modified by heparin. Different ratios of PLA/CS in heterologous solution were studied to optimize the surface morphology of fibers. Clean core-shell structures formed with a PLA/CS ratio at 1:3. Superior biocompatibility and mechanical properties were obtained by optimizing the core-shell structure morphology and surface cross-linking of chitosan. UE7T-13 cells grew well on the core-shell structure fibers as indicated by methylthiazolyldiphenyl-tetrazolium bromide (MTT) results and scanning electron microscopy (SEM) images. Compared with the pure PLA fiber meshes and commercial vascular patch, PLA/CS core-shell fibers had better mechanical strength. The elastic modulus was as high as 117.18 MPa, even though the yield stress of the fibers was lower than that of the commercial vascular patch. Attachment of red blood cell on the fibers was evaluated by blood anticoagulation experiments and in vitro blood flow experiments. The activated partial thromboplastin time (APTT) and prothrombin time (PT) value from PLA/CS nanofibers were significantly longer than that of pure PLA fibers. SEM images indicated there were hardly any red blood cells attached to the fibers with chitosan coating and heparin modification. This type of fiber mesh could potentially be used as vascular gasket.

  18. A new N-hydroxyethyliminodiacetic acid modified core-shell silica phase for chelation ion chromatography of alkaline earth, transition and rare earth elements.

    PubMed

    McGillicuddy, Nicola; Nesterenko, Ekaterina P; Nesterenko, Pavel N; Stack, Elaine M; Omamogho, Jesse O; Glennon, Jeremy D; Paull, Brett

    2013-12-20

    Bare core-shell silica (1.7μm) has been modified with iminodiacetic acid functional groups via standard silane chemistry, forming a new N-hydroxyethyliminodiacetic acid (HEIDA) functionalised core-shell stationary phase. The column was applied in high-performance chelation ion chromatography and evaluated for the retention of alkaline earth, transition and heavy metal cations. The influence of nitric acid eluent concentration, addition of complexing agent dipicolinic acid, eluent pH and column temperature on the column performance was investigated. The efficiencies obtained for transition and heavy metal cations (and resultant separations) were comparable or better than those previously obtained for alternative fully porous silica based chelation stationary phases, and a similarly modified monolithic silica column, ranging from ∼15 to 56μm HETP. Increasing the ionic strength of the eluent with the addition of KNO3 (0.75M) and increasing the column temperature (70°C) facilitated the isocratic separation of a mixture of 14 lanthanides and yttrium in under 12min, with HETP averaging 18μm (7μm for Ce(III)).

  19. Fatty acid compositions and trophic relationships of shelled molluscs from the Kuril-Kamchatka Trench and the adjacent abyssal plain

    NASA Astrophysics Data System (ADS)

    Kharlamenko, Vladimir I.; Würzberg, Laura; Peters, Janna; Borisovets, Evgeny E.

    2015-01-01

    Fatty acid (FA) compositions of 12 species of shelled molluscs (gastropods, bivalves, and scaphopods) from the Kuril-Kamchatka Trench and the adjacent abyssal plain were studied. According to the results of multivariate statistical analysis, molluscs were divided into three groups. Group I consisted of three scaphopod species, the bivalve Nucula profundorum and the gastropod Solariella delicata. FA compositions of this group were characterized by high levels of 20:4(n-6). We suggest that the FA pattern found in scaphopods with high values of 20:4(n-6) is most likely typical for that of benthic organisms feeding preferentially on foraminiferans. Group II included the bivalves Neilonella politissima, Bentharca asperula, and Rhinoclama filatovae. Bivalves from the second group had elevated concentrations of 22:6(n-3), and the ratio of 20:4(n-6) to 20:5(n-3) was lower than 1. Bivalves from the second group had elevated concentrations of 22:6(n-3). We propose that high concentrations of this FA can be used as a specific marker for a carnivorous feeding mode of deep-sea benthic invertebrates. The bivalve Bathyspinula calcarella as well as the scaphopod Polyschides sakuraii could not unambiguously be assigned to one group. Within the similarity analysis they rather clustered together with the foraminiferans feeders (group I), but forming an own subgroup. In the PCA on the other hand, P. sakuraii showed a position close to the other bivalves, while B. calcarella had an intermediate position between all three groups. Group III consisted of the gastropods Tacita holoserica and Paracteocina sp., which contained high concentrations of 20:5(n-3) and 22:5(n-3). Both are known to exhibit a carnivorous/scavenging feeding strategy. The very low content of DHA in both species is on first sight not consistent with the suggested carnivorous feeding behavior. A characteristic feature of Paracteocina sp. and T. holoserica was a high level of 22:5(n-3), and HUFA ratios indicate that DHA

  20. New core@shell nanogel based 2-acrylamido-2-methyl-1-propane sulfonic acid for preconcentration of Pb(II) from various water samples

    NASA Astrophysics Data System (ADS)

    Shoueir, Kamel Rizq; Akl, Magda Ali; Sarhan, Ali Ali; Atta, Ayman Mohamdy

    2016-12-01

    Poly(vinyl alcohol) core coated with poly(2-acrylamido-2-methyl-1-propanesulfonic acid-co-N-isopropylacrylamide) shell to produce well-define PVA@P(AMPS-co-NIPAm) core shell nanogels with a core of 25 ± 0.5 nm and shell of 5 ± 0.5 nm. The synthetic approach was produced by a surfactant free emulsion polymerization (SFEP). The specific area was found to be 1685.8 m2/g. The nanogels were studied in a batch adsorption for removal of Pb(II) ions and characterized by SEM, TEM, TGA and BET measurements. The results showed that the adsorption equilibrium data fitted the Langmuir isotherm and the kinetic studies are well described by the pseudo-second-order kinetic model. The Pb(II) maximum adsorption was 510.2 (mg/g) for PVA@P(90AMPS-co-10NIPAm) (wt.: wt%). The PVA@P(AMPS-co-NIPAm) nanogels were applied for extracting of Pb(II) in real different environmental water samples successfully with high recoveries reaches 104.4%.

  1. Fabrication and spectroscopic studies of folic acid-conjugated Fe3O4@Au core-shell for targeted drug delivery application

    NASA Astrophysics Data System (ADS)

    Karamipour, Sh.; Sadjadi, M. S.; Farhadyar, N.

    2015-09-01

    Gold coated magnetite core shell is a kind of nanoparticle that include magnetic iron oxide core with a thin layer nanogold. Fe3O4-gold core-shell nanostructure can be used in biomedical applications such as magnetic bioseparation, bioimaging, targeting drug delivery and cancer treatment. In this study, the synthesis and characterization of gold coated magnetite nanoparticles were discussed. Magnetite nanoparticles with an average size of 6 nm in diameter were synthesized by the chemical co-precipitation method and gold-coated Fe3O4 core-shell nanostructures were produced with an average size of 11.5 nm in diameter by reduction of Au3+ with citrate ion in the presence of Fe3O4. Folate-conjugated gold coated magnetite nanoparticles were synthesized to targeting folate receptor that is overexpressed on the surface of cancerous cells. For this purpose, we used L-cysteine, as a bi-functional linker for attachment to gold surface and it was linked to the gold nanoparticles surface through its thiol group. Then, we conjugated amino-terminated nanoparticles to folic acid with an amide-linkage formation. These gold magnetic nanoparticles were characterized by various techniques such as X-ray powder diffraction (XRD) analysis, Fourier transform infrared spectrometer (FT-IR), UV-visible spectroscopy, transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), dispersive analysis of X-ray (EDAX) and vibrating sample magnetometer (VSM) analysis. The magnetic and optical properties of Fe3O4 nanostructure were changed by gold coating and attachment of L-cysteine and folic acid to Fe3O4@Au nanoparticles.

  2. Piezo-phototronic effect enhanced UV photodetector based on CuI/ZnO double-shell grown on flexible copper microwire

    NASA Astrophysics Data System (ADS)

    Liu, Jingyu; Zhang, Yang; Liu, Caihong; Peng, Mingzeng; Yu, Aifang; Kou, Jinzong; Liu, Wei; Zhai, Junyi; Liu, Juan

    2016-06-01

    In this work, we present a facile, low-cost, and effective approach to fabricate the UV photodetector with a CuI/ZnO double-shell nanostructure which was grown on common copper microwire. The enhanced performances of Cu/CuI/ZnO core/double-shell microwire photodetector resulted from the formation of heterojunction. Benefiting from the piezo-phototronic effect, the presentation of piezocharges can lower the barrier height and facilitate the charge transport across heterojunction. The photosensing abilities of the Cu/CuI/ZnO core/double-shell microwire detector are investigated under different UV light densities and strain conditions. We demonstrate the I- V characteristic of the as-prepared core/double-shell device; it is quite sensitive to applied strain, which indicates that the piezo-phototronic effect plays an essential role in facilitating charge carrier transport across the CuI/ZnO heterojunction, then the performance of the device is further boosted under external strain.

  3. Microspheres Assembled from Chitosan-Graft-Poly(lactic acid) Micelle-Like Core-Shell Nanospheres for Distinctly Controlled Release of Hydrophobic and Hydrophilic Biomolecules.

    PubMed

    Niu, Xufeng; Liu, Zhongning; Hu, Jiang; Rambhia, Kunal J; Fan, Yubo; Ma, Peter X

    2016-07-01

    To simultaneously control inflammation and facilitate dentin regeneration, a copolymeric micelle-in-microsphere platform is developed in this study, aiming to simultaneously release a hydrophobic drug to suppress inflammation and a hydrophilic biomolecule to enhance odontogenic differentiation of dental pulp stem cells in a distinctly controlled fashion. A series of chitosan-graft-poly(lactic acid) copolymers is synthesized with varying lactic acid and chitosan weight ratios, self-assembled into nanoscale micelle-like core-shell structures in an aqueous system, and subsequently crosslinked into microspheres through electrostatic interaction with sodium tripolyphosphate. A hydrophobic biomolecule either coumarin-6 or fluocinolone acetonide (FA) is encapsulated into the hydrophobic cores of the micelles, while a hydrophilic biomolecule either bovine serum albumin or bone morphogenetic protein 2 (BMP-2) is entrapped in the hydrophilic shells and the interspaces among the micelles. Both hydrophobic and hydrophilic biomolecules are delivered with distinct and tunable release patterns. Delivery of FA and BMP-2 simultaneously suppresses inflammation and enhances odontogenesis, resulting in significantly enhanced mineralized tissue regeneration. This result also demonstrates the potential for this novel delivery system to deliver multiple therapeutics and to achieve synergistic effects.

  4. Highly active dealloyed Cu@Pt core-shell electrocatalyst towards 2-propanol electrooxidation in acidic solution

    NASA Astrophysics Data System (ADS)

    Poochai, Chatwarin

    2017-02-01

    Dealloyed Cu@Pt core-shell electrocatalyst was fabricated by cyclic co-electrodeposition and selective Cu dealloying (CCEd-sCuD) on carbon paper (CP), namely Cu@Pt/CP. The Cu@Pt/CP exhibited a core-shell structure comprising with a Cu-rich core and a Pt-rich shell. The crystalline phases of Pt/CP and Cu@Pt/CP were a face-centered cubic (fcc). The compressive lattice strain approximately 0.85% was found in the Cu@Pt/CP owing to a lattice mismatch between a core and a shell region. In the core-region, Cu was formed Pt-Cu alloy as major and copper oxide and also metallic copper as minor. The morphology and grain size of the Cu@Pt/CP displayed a porous spherical shape with 100 nm in diameter, while those of Pt/CP seemed to be a cubic shape with smaller diameter of 40 nm. In electrochemical and catalytic activity, the surface of Cu@Pt/CP had a larger electrochemical active surface area (ECSA) than that of Pt/CP due to a porous formation caused by Cu dealloying. It is not surprising that the Cu@Pt/CP showed higher catalytic activity and greater stability towards 0.5 M 2-propanol electrooxidation in 0.5 M H2SO4 in terms of peak current density (jp), peak potential (Ep), onset potential (Eonset), diffusion coefficient (D), and charge transfer resistance (Rct) which were caused by electronic structure modification, higher compressive lattice strain, and larger ECSA, compared with Pt/CP.

  5. Patterns of racemization and epimerization of amino acids in land snail shells over the course of the Holocene

    SciTech Connect

    Goodfriend, G.A. )

    1991-01-01

    The patterns of racemization of six amino acids and of epimerization of isoleucine over the course of the Holocene were studied in a series of 38 radiocarbon-dated samples of the land snail Trochoidea seetzeni from the Negev Desert in southern Israel. The D/L ratios of each of the amino acids show a strong correlation with age (r = 0.84-0.94) and thus good age predictive ability. The patterns in faster-racemizing amino acids do not conform to first-order kinetics. Transformation to parabolic kinetics linearizes these faster-racemizing amino acids, except for aspartic acid (which shows a very high initial rate of racemization). After transformation, each amino acid shows an equally good correlation with age (r = 0.91-0.93). The D/L ratios of the various amino acids covary very strongly, even after the covariation due to sample age is removed from the data set. Thus, analysis of more than one amino acid provides largely redundant information on sample age. Nevertheless, because of differences in racemization rates, some amino acids provide better time resolution in different time ranges - aspartic acid is especially useful for very young samples, and glutamic acid and isoleucine for older samples. Neither the depth of burial of the samples nor the burial mode appears to affect the rate of racemization or epimerization.

  6. Gas chromatographic determination and mechanism of formation of D-amino acids occurring in fermented and roasted cocoa beans, cocoa powder, chocolate and cocoa shell.

    PubMed

    Pätzold, R; Brückner, H

    2006-07-01

    Fermented cocoa beans of various countries of origin (Ivory Coast, Ghana, Sulawesi), cocoa beans roasted under defined conditions (100-150 degrees C; 30-120 min), low and high fat cocoa powder, various brands of chocolate, and cocoa shells were analyzed for their contents of free L-and D-amino acids. Amino acids were isolated from defatted products using a cation exchanger and converted into volatile N(O)-pentafluoropropionyl amino acid 2-propyl esters which were analyzed by enantioselective gas chromatography mass spectrometry on a Chirasil-L-Val capillary column. Besides common protein L-amino acids low amounts of D-amino acids were detected in fermented cocoa beans. Quantities of D-amino acids increased on heating. On roasting cocoa beans of the Forastero type from the Ivory Coast at 150 degrees C for 2 h, relative quantities of D-amino acids approached 17.0% D-Ala, 11.7% D-Ile, 11.1% D-Asx (Asp + Asn), 7.9% D-Tyr, 5.8% D-Ser, 4.8% D-Leu, 4.3% D-Phe, 37.0% D-Pro, and 1.2% D-Val. In cocoa powder and chocolate relative quantities amounted to 14.5% D-Ala, 10.6% D-Tyr, 9.8% D-Phe, 8.1% L-Asx, and 7.2% D-Ile. Lower quantities of other D-amino acids were also detected. In order to corroborate our hypothesis that D-amino acids are generated from Amadori compounds (fructose amino acids) formed in the course of the Maillard reaction, fructose-L-phenylalanine and fructose-D-phenylalanine were synthesized and heated at 200 degrees C for 5-60 min. Already after 5 min release of 11.7% D-Phe and 11.8% L-Phe in the free form could be analyzed. Based on the data a racemization mechanism is presented founded on the intermediate and reversible formation of an amino acid carbanion in the Amadori compounds.

  7. Binary release of ascorbic acid and lecithin from core-shell nanofibers on blood-contacting surface for reducing long-term hemolysis of erythrocyte.

    PubMed

    Shi, Qiang; Fan, Qunfu; Ye, Wei; Hou, Jianwen; Wong, Shing-Chung; Xu, Xiaodong; Yin, Jinghua

    2015-01-01

    There is an urgent need to develop blood-contacting biomaterials with long-term anti-hemolytic capability. To obtain such biomaterials, we coaxially electrospin [ascorbic acid (AA) and lecithin]/poly (ethylene oxide) (PEO) core-shell nanofibers onto the surface of styrene-b-(ethylene-co-butylene)-b-styrene elastomer (SEBS) that has been grafted with poly (ethylene glycol) (PEG) chains. Our strategy is based on that the grafted layers of PEG render the surface hydrophilic to reduce the mechanical injure to red blood cells (RBCs) while the AA and lecithin released from nanofibers on blood-contacting surface can actively interact with RBCs to decrease the oxidative damage to RBCs. We demonstrate that (AA and lecithin)/PEO core-shell structured nanofibers have been fabricated on the PEG grafted surface. The binary release of AA and lecithin in the distilled water is in a controlled manner and lasts for almost 5 days; during RBCs preservation, AA acts as an antioxidant and lecithin as a lipid supplier to the membrane of erythrocytes, resulting in low mechanical fragility and hemolysis of RBCs, as well as high deformability of stored RBCs. Our work thus makes a new approach to fabricate blood-contacting biomaterials with the capability of long-term anti-hemolysis.

  8. Effects of water, sodium hypochlorite, peroxyacetic acid, and acidified sodium chlorite on in-shell hazelnuts inoculated with Salmonella enterica serovar Panama.

    PubMed

    Weller, Lisa D; Daeschel, Mark A; Durham, Catherine A; Morrissey, Michael T

    2013-12-01

    Recent foodborne disease outbreaks involving minimally processed tree nuts have generated a need for improved sanitation procedures. Chemical sprays and dips have shown promise for reducing pathogens on fresh produce, but little research has been conducted for in-shell hazelnuts. This study analyzed the effectiveness of 3 chemical sanitizers for reducing Salmonella on in-shell hazelnuts. Treatments of water, sodium hypochlorite (NaOCl; 25 and 50 ppm), peroxyacetic acid (PAA; 80 and 120 ppm), and acidified sodium chlorite (ASC; 450, 830, and 1013 ppm) were sprayed onto hazelnut samples inoculated with Salmonella enterica serovar Panama. Hazelnut samples were immersed in liquid cultures of S. Panama for 24 h, air-dried, and then sprayed with water and chemical treatments. Inoculation achieved S. Panama populations of approximately 8.04 log CFU/hazelnut. Surviving S. panama populations were evaluated using a nonselective medium (tryptic soy agar), incubated 3 h, and then overlaid with selective media (xylose lysine deoxycholate agar). All of the chemical treatments significantly reduced S. Panama populations (P ≤ 0.0001). The most effective concentrations of ASC, PAA, and NaOCl treatments reduced populations by 2.65, 1.46, and 0.66 log units, respectively. ASC showed the greatest potential for use as a postharvest sanitation treatment.

  9. Poly(ethylene glycol)-poly(lactic-co-glycolic acid) core-shell microspheres with enhanced controllability of drug encapsulation and release rate.

    PubMed

    Cha, Chaenyung; Jeong, Jae Hyun; Kong, Hyunjoon

    2015-01-01

    Poly(lactic-co-glycolic acid) (PLGA) microspheres have been widely used as drug carriers for minimally invasive, local, and sustained drug delivery. However, their use is often plagued by limited controllability of encapsulation efficiency, initial burst, and release rate of drug molecules, which cause unsatisfactory outcomes and several side effects including inflammation. This study presents a new strategy of tuning the encapsulation efficiency and the release rate of protein drugs from a PLGA microsphere by filling the hollow core of the microsphere with poly(ethylene glycol) (PEG) hydrogels of varying cross-linking density. The PEG gel cores were prepared by inducing in situ cross-linking reactions of PEG monoacrylate solution within the PLGA microspheres. The resulting PEG-PLGA core-shell microspheres exhibited (1) increased encapsulation efficiency, (2) decreased initial burst, and (3) a more sustained release of protein drugs, as the cross-linking density of the PEG gel core was increased. In addition, implantation of PEG-PLGA core-shell microspheres encapsulated with vascular endothelial growth factor (VEGF) onto a chicken chorioallantoic membrane resulted in a significant increase in the number of new blood vessels at an implantation site, while minimizing inflammation. Overall, this strategy of introducing PEG gel into PLGA microspheres will be highly useful in tuning release rates and ultimately in improving the therapeutic efficacy of a wide array of protein drugs.

  10. Preparation, Characterization, and Optimization of Folic Acid-Chitosan-Methotrexate Core-Shell Nanoparticles by Box-Behnken Design for Tumor-Targeted Drug Delivery.

    PubMed

    Naghibi Beidokhti, Hamid Reza; Ghaffarzadegan, Reza; Mirzakhanlouei, Sasan; Ghazizadeh, Leila; Dorkoosh, Farid Abedin

    2017-01-01

    The objective of this study was to investigate the combined influence of independent variables in the preparation of folic acid-chitosan-methotrexate nanoparticles (FA-Chi-MTX NPs). These NPs were designed and prepared for targeted drug delivery in tumor. The NPs of each batch were prepared by coaxial electrospray atomization method and evaluated for particle size (PS) and particle size distribution (PSD). The independent variables were selected to be concentration of FA-chitosan, ratio of shell solution flow rate to core solution flow rate, and applied voltage. The process design of experiments (DOE) was obtained with three factors in three levels by Design expert software. Box-Behnken design was used to select 15 batches of experiments randomly. The chemical structure of FA-chitosan was examined by FTIR. The NPs of each batch were collected separately, and morphologies of NPs were investigated by field emission scanning electron microscope (FE-SEM). The captured pictures of all batches were analyzed by ImageJ software. Mean PS and PSD were calculated for each batch. Polynomial equation was produced for each response. The FE-SEM results showed the mean diameter of the core-shell NPs was around 304 nm, and nearly 30% of the produced NPs are in the desirable range. Optimum formulations were selected. The validation of DOE optimization results showed errors around 2.5 and 2.3% for PS and PSD, respectively. Moreover, the feasibility of using prepared NPs to target tumor extracellular pH was shown, as drug release was greater in the pH of endosome (acidic medium). Finally, our results proved that FA-Chi-MTX NPs were active against the human epithelial cervical cancer (HeLa) cells.

  11. Mechanism of in situ surface polymerization of gallic acid in an environmental-inspired preparation of carboxylated core-shell magnetite nanoparticles.

    PubMed

    Tóth, Ildikó Y; Szekeres, Márta; Turcu, Rodica; Sáringer, Szilárd; Illés, Erzsébet; Nesztor, Dániel; Tombácz, Etelka

    2014-12-30

    Magnetite nanoparticles (MNPs) with biocompatible coatings are good candidates for MRI (magnetic resonance imaging) contrasting, magnetic hyperthermia treatments, and drug delivery systems. The spontaneous surface induced polymerization of dissolved organic matter on environmental mineral particles inspired us to prepare carboxylated core-shell MNPs by using a ubiquitous polyphenolic precursor. Through the adsorption and in situ surface polymerization of gallic acid (GA), a polygallate (PGA) coating is formed on the nanoparticles (PGA@MNP) with possible antioxidant capacity. The present work explores the mechanism of polymerization with the help of potentiometric acid-base titration, dynamic light scattering (for particle size and zeta potential determination), UV-vis (UV-visible light spectroscopy), FTIR-ATR (Fourier-transformed infrared spectroscopy by attenuated total reflection), and XPS (X-ray photoelectron spectroscopy) techniques. We observed the formation of ester and ether linkages between gallate monomers both in solution and in the adsorbed state. Higher polymers were formed in the course of several weeks both on the surface of nanoparticles and in the dispersion medium. The ratio of the absorbances of PGA supernatants at 400 and 600 nm (i.e., the E4/E6 ratio commonly used to characterize the degree of polymerization of humic materials) was determined to be 4.3, similar to that of humic acids. Combined XPS, dynamic light scattering, and FTIR-ATR results revealed that, prior to polymerization, the GA monomers became oxidized to poly(carboxylic acid)s due to ring opening while Fe(3+) ions reduced to Fe(2+). Our published results on the colloidal and chemical stability of PGA@MNPs are referenced thoroughly in the present work. Detailed studies on biocompatibility, antioxidant property, and biomedical applicability of the particles will be published.

  12. Synthesis and drug-loading properties of folic acid-modified superparamagnetic Fe3O4 hollow microsphere core/mesoporous SiO2 shell composite particles

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Guo, Xue; Wei, Kaiwei; Wang, Lijuan; Yang, Dandan; Lai, Lifang; Cheng, Meiling; Liu, Qi

    2014-01-01

    A drug delivery system, which not only has superparamagnetic property, higher surface area but also has targeting function, has been developed. The core/shell structural magnetic magnetite mesoporous silica microspheres with amine groups (Fe3O4-SiO2-NH2) were first fabricated by a one-pot direct co-condensation method, then folic acid-modified magnetic mesoporous silica composite microspheres (Fe3O4-SiO2-NHFA) were obtained by the bonding of the Fe3O4-SiO2-NH2 with folic acid as targeted molecule. The resultant composite microspheres were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, scanning electron microscopy, low temperature nitrogen adsorption-desorption, and vibrating sample magnetometer. A well-known inflammational drug ibuprofen was used as a model drug to assess the loading and releasing behavior of the composite microspheres. Fe3O4-SiO2-NHFA system exhibits magnetic properties typical for superparamagnetic material with a higher saturation magnetization value of about 41.2 emu/g and has better capacity of drug storage (32.0 %) and sustained drug-release property. So this system has potential applications in biomedical field.

  13. Preparation and application of L-cysteine-modified CdSe/CdS core/shell nanocrystals as a novel fluorescence probe for detection of nucleic acid

    NASA Astrophysics Data System (ADS)

    Huang, Fenghua; Chen, Guonan

    2008-07-01

    The water-soluble L-cysteine-modified CdSe/CdS core/shell nanocrystals (expressed as CdSe/CdS/Cys nanocrystals) have been synthesized in aqueous by using L-cysteine as stabilizer. The size, shape, component and spectral property of CdSe/CdS/Cys nanocrystals were characterized by high-resolution transmission electron microscope (HRTEM), energy dispersive X-ray fluorescence (EDX), infrared spectrum (IR) and photoluminescence (PL). The results showed that the spherical CdSe/CdS/Cys nanocrystals with an average diameter of 2.3 nm have favorable fluorescent property, theirs photostability and fluorescence intensity are enhanced greatly after overcoating with CdS. The cysteine modified on the surface of core/shell CdSe/CdS nanocrystals renders the nanocrystals water-soluble and biocompatible. Based on the fluorescence quenching of the nanocrystals in the presence of calf thymus deoxyribonucleic acid (ct-DNA), a fluorescence quenching method has been developed for the determination of ct-DNA by using the nanocrystals as a novel fluorescence probe. The pH value of the system was selected at pH 7.4, with excitation and emission wavelength at 380 and 522 nm, respectively. Under the optimal conditions, the fluorescence quenching intensity of the system is linear with the concentration of ct-DNA in the range of 0.1-3.5 μg/mL ( r = 0.9987). The detection limit is 0.06 μg/mL. And two synthetic samples were analyzed satisfactorily.

  14. Preparation and unique electrical behaviors of monodispersed hybrid nanorattles of metal nanocores with hairy electroactive polymer shells.

    PubMed

    Cai, Tao; Zhang, Bin; Chen, Yu; Wang, Cheng; Zhu, Chun Xiang; Neoh, Koon-Gee; Kang, En-Tang

    2014-03-03

    A versatile template-assisted strategy for the preparation of monodispersed rattle-type hybrid nanospheres, encapsulating a movable Au nanocore in the hollow cavity of a hairy electroactive polymer shell (Au@air@PTEMA-g-P3HT hybrid nanorattles; PTEMA: poly(2-(thiophen-3-yl)ethyl methacrylate; P3HT: poly(3-hexylthiophene), was reported. The Au@silica core-shell nanoparticles, prepared by the modified Stöber sol-gel process on Au nanoparticle seeds, were used as templates for the synthesis of Au@silica@PTEMA core-double shell nanospheres. Subsequent oxidative graft polymerization of 3-hexylthiophene from the exterior surface of the Au@silica@PTEMA core-double shell nanospheres allowed the tailoring of surface functionality with electroactive P3HT brushes (Au@silica@PTEMA-g-P3HT nanospheres). The Au@air@ PTEMA-g-P3HT hybrid nanorattles were obtained after etching of the silica interlayer by HF. The as-prepared nanorattles were dispersed into an electrically insulating polystyrene matrix and for the first time used to fabricate nonvolatile memory devices. As a result, unique electrical behaviors, including insulator behavior, write-once-read-many-times and rewritable memory effects, and conductor behavior as well, were observed in the Al/Au@air@PTEMA-g-P3HT+PS/ITO (ITO: indium-tin oxide) sandwich thin-film devices.

  15. Shell Games.

    ERIC Educational Resources Information Center

    Atkinson, Bill

    1982-01-01

    The author critiques the program design and educational aspects of the Shell Games, a program developed by Apple Computer, Inc., which can be used by the teacher to design objective tests for adaptation to specific assessment needs. (For related articles, see EC 142 959-962.) (Author)

  16. Vibration of Shells

    NASA Technical Reports Server (NTRS)

    Leissa, A. W.

    1973-01-01

    The vibrational characteristics and mechanical properties of shell structures are discussed. The subjects presented are: (1) fundamental equations of thin shell theory, (2) characteristics of thin circular cylindrical shells, (3) complicating effects in circular cylindrical shells, (4) noncircular cylindrical shell properties, (5) characteristics of spherical shells, and (6) solution of three-dimensional equations of motion for cylinders.

  17. Building Atoms Shell by Shell.

    ERIC Educational Resources Information Center

    Sussman, Beverly

    1993-01-01

    Describes an atom-building activity where students construct three-dimensional models of atoms using a styrofoam ball as the nucleus and pom-poms, gum drops, minimarshmallows, or other small items of two different colors to represent protons and neutrons attached. Rings of various sizes with pom-poms attached represent electron shells and…

  18. Magnetic core-shell Fe₃O₄@SiO₂/MWCNT nanocomposite modified carbon paste electrode for amplified electrochemical sensing of uric acid.

    PubMed

    Arvand, Majid; Hassannezhad, Morassa

    2014-03-01

    A new type of nanocomposite based on multi-walled carbon nanotubes decorated with magnetic core-shell Fe3O4@SiO2 nanoparticles (Fe3O4@SiO2/MWCNTs) was prepared and used to fabricate a modified carbon paste electrode (CPE). The nanocomposite was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and Fourier transform infrared spectroscopy (FT-IR) techniques. Electrochemical behavior of uric acid (UA) was investigated on Fe3O4@SiO2/MWCNTs-CPE by cyclic voltammetry (CV) and square wave voltammetry (SWV) in phosphate buffer solution (pH6.0). Under the optimized conditions, the peak currents increased linearly with the concentration of UA in the range from 0.60 to 100.0 μM, with a detection limit of 0.13 μM. The proposed sensor was successfully applied for the determination of UA in biological fluids.

  19. Equilibrium and kinetic studies on the removal of Acid Red 114 from aqueous solutions using activated carbons prepared from seed shells.

    PubMed

    Thinakaran, N; Panneerselvam, P; Baskaralingam, P; Elango, D; Sivanesan, S

    2008-10-01

    The use of low-cost and ecofriendly adsorbents has been investigated as an ideal alternative to the current expensive methods of removing dyes from wastewater. This paper deals with the removal of Acid Red 114 (AR 114) from aqueous solutions using activated carbons prepared from agricultural waste materials such as gingelly (sesame) (Sp), cotton (Cp) and pongam (Pp) seed shells. Optimum conditions for AR 114 removal were found to be pH 3, adsorbent dosage=3g/L of solution and equilibrium time=4h. Higher removal percentages were observed at lower concentrations of AR 114. The adsorption isotherm data were fitted to Langmuir and Freundlich equation, and the adsorption capacity of the studied adsorbents was in the order Sp>Cp>Pp. Kinetic studies showed that the adsorption followed both pseudo-second-order and Elovich equation. The thermodynamics parameters such as DeltaG degrees, DeltaH degrees, DeltaS degrees were also evaluated. The activated carbons prepared were characterized by FT-IR, SEM and BET analysis.

  20. Shell worlds

    NASA Astrophysics Data System (ADS)

    Roy, Kenneth I.; Kennedy, Robert G., III; Fields, David E.

    2013-02-01

    The traditional concept of terraforming assumes ready availability of candidate planets with acceptable qualities: orbiting a star in its "Goldilocks zone", liquid water, enough mass, years longer than days, magnetic field, etc. But even stipulating affordable interstellar travel, we still might never find a good candidate elsewhere. Whatever we found likely would require centuries of heavy terraforming, just as Mars or Venus would here. Our increasing appreciation of the ubiquity of life suggests that any terra nova would already possess it. We would then face the dilemma of introducing alien life forms (us, our microbes) into another living world. Instead, we propose a novel method to create habitable environments for humanity by enclosing airless, sterile, otherwise useless planets, moons, and even large asteroids within engineered shells, which avoids the conundrum. These shells are subject to two opposing internal stresses: compression due to the primary's gravity, and tension from atmospheric pressure contained inside. By careful design, these two cancel each other resulting in zero net shell stress. Beneath the shell an Earth-like environment could be created similar in almost all respects to that of Home, except for gravity, regardless of the distance to the sun or other star. Englobing a small planet, moon, or even a dwarf planet like Ceres, would require astronomical amounts of material (quadrillions of tons) and energy, plus a great deal of time. It would be a quantum leap in difficulty over building Dyson Dots or industrializing our solar system, perhaps comparable to a mission across interstellar space with a living crew within their lifetime. But when accomplished, these constructs would be complete (albeit small) worlds, not merely large habitats. They could be stable across historic timescales, possibly geologic. Each would contain a full, self-sustaining ecology, which might evolve in curious directions over time. This has interesting implications

  1. Effect of fill weight, capsule shell, and sinker design on the dissolution behavior of capsule formulations of a weak acid drug candidate BMS-309403.

    PubMed

    Wu, Yongmei; Zhao, Fang; Paborji, Mehdi

    2003-01-01

    Two strengths of BMS-309403 capsules were developed from a common stock granulation. Dissolution testing of the capsules was conducted utilizing the USP apparatus 2 (paddle) with a neutral pH dissolution medium. Unexpectedly, the lower-strength capsules exhibited slower dissolution than the higher-strength capsules filled with the same stock granulation. Higher variability was also observed for the lower-strength capsules. This was found to be mainly caused by a low fill weight in a relatively large size hard gelatin capsule shell. Instead of bursting open, some gelatin capsule shells softened and collapsed onto the granulation, which delayed the release of the active drug. The problem was aggravated by the use of coil sinkers which hindered the medium flow around the capsules. Switching from the gelatin capsule shells to the HPMC (hydroxypropyl methylcellulose) shells reversed the dissolution rate ranking between the two capsule strengths. However, both dissolved at a slower rate initially than the gelatin capsules due to the inherent dissolution rate of the HPMC shells at pH 6.8. Notably, the HPMC shells did not occlude the granulation as observed with the gelatin shells. The study demonstrated that the dissolution of capsule formulations in neutral pH media was significantly affected by the fill weight, sinker design, and capsule shell type. Careful selection of these parameters is essential to objectively evaluate the in vitro drug release.

  2. Solar photocatalysis for treatment of Acid Yellow-17 (AY-17) dye contaminated water using Ag@TiO2 core-shell structured nanoparticles.

    PubMed

    Khanna, Ankita; Shetty K, Vidya

    2013-08-01

    Wastewater released from textile industries causes water pollution, and it needs to be treated before discharge to the environment by cost effective technologies. Solar photocatalysis is a promising technology for the treatment of dye wastewater. The Ag@TiO2 nanoparticles comprising of Ag core and TiO2 shell (Ag@TiO2) have unique photocatalytic property of inhibition of electron-hole recombination and visible light absorption, which makes it a promising photocatalyst for use in solar photocatalysis and with higher photocatalytic rate. Therefore, in the present work, the Ag@TiO2 nanoparticles synthesized by one pot method with postcalcination step has been used for the degradation of Acid Yellow-17 (AY-17) dye under solar light irradiation. The Ag@TiO2 nanoparticles were characterized using thermogravimetric-differential thermal analysis, X-ray diffraction, transmission electron microscopy, selected area electron diffraction, and energy dispersive X-ray analysis. The catalyst has been found to be very effective in solar photocatalysis of AY-17, as compared to other catalysts. The effects of pH, catalyst loading, initial dye concentration, and oxidants on photocatalysis were also studied. The optimized parameters for degradation of AY-17 using Ag@TiO2 were found to be pH 3, dye/catalyst ratio of 1:10 (g/g), and 2 g/L of (NH4)2S2O8 as oxidant. Efficient decolorization and mineralization of AY-17 was achieved. The kinetics of color, total organic carbon, and chemical oxygen demand removal followed the Langmuir-Hinshelwood model. Ag@TiO2 catalyst can be reused thrice without much decline in efficiency. The catalyst exhibited its potential as economic photocatalyst for treatment of dye wastewater.

  3. NIF Double Shell outer-shell experiments

    NASA Astrophysics Data System (ADS)

    Merritt, E. C.; Montgomery, D. S.; Kline, J. L.; Daughton, W. S.; Wilson, D. C.; Dodd, E. S.; Renner, D. B.; Cardenas, T.; Batha, S. H.

    2016-10-01

    At the core of the Double Shell concept is the kinetic energy transfer from the outer shell to the inner shell via collision. This collision sets both the implosion shape of the inner shell, from imprinting of the shape of the outer shell, as well as the maximum energy available to compress the DT fuel. Therefore, it is crucial to be able to control the time-dependent shape of the outer shell, such that the outer shell is nominally round at the collision time. We present the experiment results from our sub-scale ( 1 MJ) NIF outer-shell only shape tuning campaign, where we vary shape by changing a turn-on time delay between the same pulse shape on the inner and outer cone beams. This type of shape tuning is unique to this platform and only possible since the Double Shell design uses a single-shock drive (4.5 ns reverse ramp pulse). The outer-shell only targets used a 5.75 mm diameter standard near-vacuum NIF hohlraum with 0.032 mg/cc He gas fill, and a Be capsule with 0.4% uniform Cu dopant, with 242 um thick ablator. We also present results from a third outer-shell only shot used to measure shell trajectory, which is critical in determining the shell impact time. This work conducted under the auspices of the U.S. DOE by LANL under contract DE-AC52-06NA25396.

  4. Synthesis and organic surface modification of luminescent, lanthanide-doped core/shell nanomaterials (LnF3@SiO2@NH2@organic acid) for potential bioapplications: spectroscopic, structural, and in vitro cytotoxicity evaluation.

    PubMed

    Runowski, Marcin; Ekner-Grzyb, Anna; Mrówczyńska, Lucyna; Balabhadra, Sangeetha; Grzyb, Tomasz; Paczesny, Jan; Zep, Anna; Lis, Stefan

    2014-08-12

    A facile coprecipitation reaction between Ce(3+), Gd(3+), Tb(3+), and F(-) ions, in the presence of glycerine as a capping agent, led to the formation of ultrafine, nanocrystalline CeF3:Tb(3+) 5%, Gd(3+) 5% (LnF3). The as-prepared fluoride nanoparticles were successfully coated with an amine modified silica shell. Subsequently, the obtained LnF3@SiO2@NH2 nanostructures were conjugated with 4-ethoxybenzoic acid in order to prove the possibility of organic modification and obtain a new functional nanomaterial. All of the nanophosphors synthesized exhibited intense green luminescence under UV light irradiation. Based on TEM (transmission electron microscopy) measurements, the diameters of the cores (≈12 nm) and core/shell particles (≈50 nm) were determined. To evaluate the cytotoxic activity of the nanomaterials obtained, their effect on human erythrocytes was investigated. LnF3 nanoparticles were bound to the erythrocyte membrane, without inducing any cytotoxic effects. After coating with silica, the nanoparticles revealed significant cytotoxicity. However, further functionalization of the nanomaterial with -NH2 groups as well as conjugation with 4-ethoxybenzoic acid entailed a decrease in cytotoxicity of the core/shell nanoparticles.

  5. Adsorption of volatile organic compounds by pecan shell- and almond shell-based granular activated carbons.

    PubMed

    Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J

    2003-11-01

    The objective of this research was to determine the effectiveness of using pecan and almond shell-based granular activated carbons (GACs) in the adsorption of volatile organic compounds (VOCs) of health concern and known toxic compounds (such as bromo-dichloromethane, benzene, carbon tetrachloride, 1,1,1-trichloromethane, chloroform, and 1,1-dichloromethane) compared to the adsorption efficiency of commercially used carbons (such as Filtrasorb 200, Calgon GRC-20, and Waterlinks 206C AW) in simulated test medium. The pecan shell-based GACs were activated using steam, carbon dioxide or phosphoric acid. An almond shell-based GAC was activated with phosphoric acid. Our results indicated that steam- or carbon dioxide-activated pecan shell carbons were superior in total VOC adsorption to phosphoric acid-activated pecan shell or almond shell carbons, inferring that the method of activation selected for the preparation of activated carbons affected the adsorption of VOCs and hence are factors to be considered in any adsorption process. The steam-activated, pecan shell carbon adsorbed more total VOCs than the other experimental carbons and had an adsorption profile similar to the two coconut shell-based commercial carbons, but had greater adsorption than the coal-based commercial carbon. All the carbons studied adsorbed benzene more effectively than the other organics. Pecan shell, steam-activated and acid-activated GACs showed higher adsorption of 1,1,1-trichloroethane than the other carbons studied. Multivariate analysis was conducted to group experimental carbons and commercial carbons based on their physical, chemical, and adsorptive properties. The results of the analysis conclude that steam-activated and acid-activated pecan shell carbons clustered together with coal-based and coconut shell-based commercial carbons, thus inferring that these experimental carbons could potentially be used as alternative sources for VOC adsorption in an aqueous environment.

  6. Macromolecular Systems with MSA-Capped CdTe and CdTe/ZnS Core/Shell Quantum Dots as Superselective and Ultrasensitive Optical Sensors for Picric Acid Explosive.

    PubMed

    Dutta, Priyanka; Saikia, Dilip; Adhikary, Nirab Chandra; Sarma, Neelotpal Sen

    2015-11-11

    This work reports the development of highly fluorescent materials for the selective and efficient detection of picric acid explosive in the nanomolar range by fluorescence quenching phenomenon. Poly(vinyl alcohol) grafted polyaniline (PPA) and its nanocomposites with 2-mercaptosuccinic acid (MSA)-capped CdTe quantum dots (PPA-Q) and with MSA-capped CdTe/ZnS core/shell quantum dots (PPA-CSQ) are synthesized in a single step free radical polymerization reaction. The thermal stability and photo stability of the polymer increases in the order of PPA < PPA-Q < PPA-CSQ. The polymers show remarkably high selectivity and efficient sensitivity toward picric acid, and the quenching efficiency for PPA-CSQ reaches up to 99%. The detection limits of PPA, PPA-Q, and PPA-CSQ for picric acid are found to be 23, 1.6, and 0.65 nM, respectively, which are remarkably low. The mechanism operating in the quenching phenomenon is proposed to be a combination of a strong inner filter effect and ground state electrostatic interaction between the polymers and picric acid. A portable and cost-effective electronic device for the visual detection of picric acid by the sensory system is successfully fabricated. The device is further employed for quantitative detection of picric acid in real water samples.

  7. Preparation of nanofiber polythiophene layered on Ba x Sr1- x Fe12O19/Fe3O4/polyacrylic acid core-shell structure and its microwave absorption investigation

    NASA Astrophysics Data System (ADS)

    Hosseini, Seyed Hossein; Moloudi, Maryam

    2015-09-01

    Ba x Sr1- x Fe12O19/Fe3O4/polyacrylic acid/polythiophene (Ba x Sr1- x Fe12O19/Fe3O4/PAA/PTh) nanocomposites with multi-core-shell structure were successfully synthesized by four steps. The samples were characterized by FTIR, X-ray diffraction (XRD), transmission electron microscope (TEM), vibrating sample magnetometer, and radar absorbing material reflectivity far-field radar cross-section method, respectively. XRD and TEM results indicated that the obtained nanoparticles have multi-core-shell morphology. The magnetic properties and microwave absorption analyses reveal that there are interphase interactions at the interface of Ba x Sr1- x Fe12O19, Fe3O4, PAA, and PTh, which can affect the magnetic properties and microwave absorption properties of the samples. The microwave-absorbing properties of nanocomposites were investigated at 8-14 GHz. A typical layer absorber exhibited an excellent microwave absorption with a -26 dB maximum absorption at 14 GHz. Compared with core material, the coercivity and saturation magnetization of multi-core-shell nanocomposites decrease obviously, but the microwave absorption properties of nanocomposites are improved greatly. The results show that these composite could be used as advancing absorption and shielding materials due to their favorable microwave-absorbing properties.

  8. Preparation of thermoresponsive Fe3O4/P(acrylic acid-methyl methacrylate-N-isopropylacrylamide) magnetic composite microspheres with controlled shell thickness and its releasing property for phenolphthalein.

    PubMed

    Zhang, Baoliang; Zhang, Hepeng; Fan, Xinlong; Li, Xiangjie; Yin, Dezhong; Zhang, Qiuyu

    2013-05-15

    In this work, Fe3O4/P(acrylic acid-methyl methacrylate-N-isopropylacrylamide) (Fe3O4/P(AA-MMA-NIPAm)) thermoresponsive magnetic composite microspheres have been prepared by controlled radical polymerization in the presence of 1,1-diphenylethene (DPE). The shell thickness of thermosensitive polymer (PNIPAm), which was on the surface of the microspheres, can be controlled by using DPE method. The morphology and thermosensitive properties of the composite microspheres, polymerization mechanism of the shell were characterized by TEM, FTIR, VSM, Laser Particle Sizer, TGA, NMR, and GPC. The microspheres with narrow particle size distribution show high saturation magnetization and superparamagnetism. The thermosensitive properties of the composite microspheres can be adjusted indirectly via controlling the addition amount of monomer (NIPAm) in the second step during controlled radical polymerization. Phenolphthalein was chosen as a model drug to investigate drug release behavior of the thermoresponsive magnetic composite microspheres with different shell thickness. Controlled drug release testing reveals that the release behavior depends on the thickness of polymer on the surface of the microspheres.

  9. Multiple shells in IRC+10216: shell properties

    NASA Astrophysics Data System (ADS)

    Mauron, N.; Huggins, P. J.

    2000-07-01

    We report on the properties of the multiple shells in the circumstellar envelope of IRC+10216, using deep optical imaging, including data from the Hubble Space Telescope. The intensity profiles confirm the presence of thin ( ~ 0farcs5 -3'' ec), limb-brightened shells in the envelope, seen in stellar and ambient Galactic light scattered by dust. The shells are spaced at irregular intervals of ~ 5'' ec-20'' ec, corresponding to time scales of 200-800 yr, although intervals as short as ~ 1'' ec (40 yr) are seen close to the star. The location of the main shells shows a good correlation with high-resolution, molecular line maps of the inner envelope, indicating that the dust and gas are well coupled. The shell/intershell density contrast is typically ~ 3, and we find that the shells form the dominant mass component of the circumstellar envelope. The shells exhibit important evolutionary effects: the thickness increases with increasing radius, with an effective dispersion velocity of 0.7 km s-1 and there is evidence for shell interactions. Despite the presence of bipolar structure close to the star, the global shell pattern favors a roughly isotropic, episodic mass loss mechanism, with a range of time scales. Based on observations made with the Canada-France-Hawaii telescope, operated by CNRS, NRCC and UH, and on dearchived observations made with the NASA/ESA Hubble Space Telescope, operated by AURA Inc., under NASA contract NAS5-26555

  10. Biomineralisation in Mollusc shells

    NASA Astrophysics Data System (ADS)

    Dauphin, Y.; Cuif, J. P.; Salomé, M.; Williams, C. T.

    2009-04-01

    and polysaccharides, with a large range of molecular weights. Proteins are rich in acidic aminoacids (aspartic and glutamic acids). Sugars are usually sulphated, and very acidic. Several hundreds of proteins and sugars are present in the SOM. The compositions of IOM and SOM are characteristic for each layer present in a shell. Topographical relationships of mineral and organic components are visible at different scales of observation. SEM images of etched surfaces display the growth line rhythmicity and concordance between adjacent microstructural units. EPMA maps show similar chemical growth lines in various structures. Whatever the taxa, the average thickness of growth lines is about 2-3 µm, indicating an inner biological rhythm, not dependant on the environmental conditions. Such growth lines are observed in deep sea molluscs at depth where diurnal changes in light and temperature are absent. However, the role of the environment is shown by larger periodicities. Sulphur deserves a special interest, because it is associated with the organic matrices. Electrophoretic data have shown that acidic sulphated sugars are abundant in some layers. XANES analyses confirm these results. New microscopic techniques allow us to obtain images at a submicrometer scale. AFM images show that all the microstructural units (i.e. tablets, prisms etc.), calcite or aragonite, are composed of small sub-spherical granules with a diameter typically of about 50 nm. These granules are surrounded by a thin cortex (about 8 nm) of organic and/or amorphous material, and are organo-composite material as shown by phase images. They do not have crystalline shapes, despite the fact that the units they build are often monocrystalline. Molecular biology and genetic studies confirm that the control of the biomineralisation process is exerted at the scale of the whole organism: the expression of genes encoding major shell matrix proteins clearly indicates a regular separation of calcite and aragonite

  11. Hierarchical inorganic-organic multi-shell nanospheres for intervention and treatment of lead-contaminated blood

    NASA Astrophysics Data System (ADS)

    Khairy, Mohamed; El-Safty, Sherif A.; Shenashen, Mohamed. A.; Elshehy, Emad A.

    2013-08-01

    The highly toxic properties, bioavailability, and adverse effects of Pb2+ species on the environment and living organisms necessitate periodic monitoring and removal whenever possible of Pb2+ concentrations in the environment. In this study, we designed a novel optical multi-shell nanosphere sensor that enables selective recognition, unrestrained accessibility, continuous monitoring, and efficient removal (on the order of minutes) of Pb2+ ions from water and human blood, i.e., red blood cells (RBCs). The consequent decoration of the mesoporous core/double-shell silica nanospheres through a chemically responsive azo-chromophore with a long hydrophobic tail enabled us to create a unique hierarchical multi-shell sensor. We examined the efficiency of the multi-shell sensor in removing lead ions from the blood to ascertain the potential use of the sensor in medical applications. The lead-induced hemolysis of RBCs in the sensing/capture assay was inhibited by the ability of the hierarchical sensor to remove lead ions from blood. The results suggest the higher flux and diffusion of Pb2+ ions into the mesopores of the core/multi-shell sensor than into the RBC membranes. These findings indicate that the sensor could be used in the prevention of health risks associated with elevated blood lead levels such as anemia.The highly toxic properties, bioavailability, and adverse effects of Pb2+ species on the environment and living organisms necessitate periodic monitoring and removal whenever possible of Pb2+ concentrations in the environment. In this study, we designed a novel optical multi-shell nanosphere sensor that enables selective recognition, unrestrained accessibility, continuous monitoring, and efficient removal (on the order of minutes) of Pb2+ ions from water and human blood, i.e., red blood cells (RBCs). The consequent decoration of the mesoporous core/double-shell silica nanospheres through a chemically responsive azo-chromophore with a long hydrophobic tail enabled

  12. Classification Shell Game.

    ERIC Educational Resources Information Center

    Etzold, Carol

    1983-01-01

    Discusses shell classification exercises. Through keying students advanced from the "I know what a shell looks like" stage to become involved in the classification process: observing, labeling, making decisions about categories, and identifying marine animals. (Author/JN)

  13. Shell Worlds: The Question of Shell Stability

    NASA Astrophysics Data System (ADS)

    Roy, K. L.; Kennedy, R. G., III; Fields, D. E.

    The initial idea of shell worlds was first proposed in the January 2009 edition of JBIS. In that paper the stability of the shell around a central world was not discussed at any length except to say that it was stable due to forces induced by gravity. This paper demonstrates in a qualitative and quantitative manner that a material shell supported by atmospheric pressure around a moon or small planet is indeed stable and does not require active measures to remain centered, provided that the central body is large enough. The minimal size of the central body to provide this stability is discussed.

  14. Metal-organic framework UiO-66 modified magnetite@silica core-shell magnetic microspheres for magnetic solid-phase extraction of domoic acid from shellfish samples.

    PubMed

    Zhang, Wenmin; Yan, Zhiming; Gao, Jia; Tong, Ping; Liu, Wei; Zhang, Lan

    2015-06-26

    Fe3O4@SiO2@UiO-66 core-shell magnetic microspheres were synthesized and characterized by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectrometry, vibrating sample magnetometry, nitrogen adsorption porosimetry and zeta potential analyzer. The synthesized Fe3O4@SiO2@UiO-66 microspheres were first used for magnetic solid-phase extraction (MSPE) of domoic acid (DA) in shellfish samples. Combined with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), a fast, simple and sensitive method for the determination of DA was established successfully. Under the optimized conditions, the developed method showed short analysis time, good linearity (r(2) = 0.9990), low limit of detection (1.45 pg mL(-1); S/N = 3:1), low limit of quantification (4.82 pg mL(-1); S/N = 10:1), and good extraction repeatability (RSD ≤ 5.0%; n = 5). Real shellfish samples were processed using the developed method, and trace level of DA was detected. The results demonstrate that Fe3O4@SiO2@UiO-66 core-shell magnetic microspheres are the promising sorbents for rapid and efficient extraction of polar analytes from complex biological samples.

  15. Fluctuating shells under pressure

    PubMed Central

    Paulose, Jayson; Vliegenthart, Gerard A.; Gompper, Gerhard; Nelson, David R.

    2012-01-01

    Thermal fluctuations strongly modify the large length-scale elastic behavior of cross-linked membranes, giving rise to scale-dependent elastic moduli. Whereas thermal effects in flat membranes are well understood, many natural and artificial microstructures are modeled as thin elastic shells. Shells are distinguished from flat membranes by their nonzero curvature, which provides a size-dependent coupling between the in-plane stretching modes and the out-of-plane undulations. In addition, a shell can support a pressure difference between its interior and its exterior. Little is known about the effect of thermal fluctuations on the elastic properties of shells. Here, we study the statistical mechanics of shape fluctuations in a pressurized spherical shell, using perturbation theory and Monte Carlo computer simulations, explicitly including the effects of curvature and an inward pressure. We predict novel properties of fluctuating thin shells under point indentations and pressure-induced deformations. The contribution due to thermal fluctuations increases with increasing ratio of shell radius to thickness and dominates the response when the product of this ratio and the thermal energy becomes large compared with the bending rigidity of the shell. Thermal effects are enhanced when a large uniform inward pressure acts on the shell and diverge as this pressure approaches the classical buckling transition of the shell. Our results are relevant for the elasticity and osmotic collapse of microcapsules. PMID:23150558

  16. Multiple shell fusion targets

    DOEpatents

    Lindl, J.D.; Bangerter, R.O.

    1975-10-31

    Multiple shell fusion targets for use with electron beam and ion beam implosion systems are described. The multiple shell targets are of the low-power type and use a separate relatively low Z, low density ablator at large radius for the outer shell, which reduces the focusing and power requirements of the implosion system while maintaining reasonable aspect ratios. The targets use a high Z, high density pusher shell placed at a much smaller radius in order to obtain an aspect ratio small enough to protect against fluid instability. Velocity multiplication between these shells further lowers the power requirements. Careful tuning of the power profile and intershell density results in a low entropy implosion which allows breakeven at low powers. For example, with ion beams as a power source, breakeven at 10-20 Terrawatts with 10 MeV alpha particles for imploding a multiple shell target can be accomplished.

  17. Imperfection Insensitive Thin Shells

    NASA Astrophysics Data System (ADS)

    Ning, Xin

    The buckling of axially compressed cylindrical shells and externally pressurized spherical shells is extremely sensitive to even very small geometric imperfections. In practice this issue is addressed by either using overly conservative knockdown factors, while keeping perfect axial or spherical symmetry, or adding closely and equally spaced stiffeners on shell surface. The influence of imperfection-sensitivity is mitigated, but the shells designed from these approaches are either too heavy or very expensive and are still sensitive to imperfections. Despite their drawbacks, these approaches have been used for more than half a century. This thesis proposes a novel method to design imperfection-insensitive cylindrical shells subject to axial compression. Instead of following the classical paths, focused on axially symmetric or high-order rotationally symmetric cross-sections, the method in this thesis adopts optimal symmetry-breaking wavy cross-sections (wavy shells). The avoidance of imperfection sensitivity is achieved by searching with an evolutionary algorithm for smooth cross-sectional shapes that maximize the minimum among the buckling loads of geometrically perfect and imperfect wavy shells. It is found that the shells designed through this approach can achieve higher critical stresses and knockdown factors than any previously known monocoque cylindrical shells. It is also found that these shells have superior mass efficiency to almost all previously reported stiffened shells. Experimental studies on a design of composite wavy shell obtained through the proposed method are presented in this thesis. A method of making composite wavy shells and a photogrametry technique of measuring full-field geometric imperfections have been developed. Numerical predictions based on the measured geometric imperfections match remarkably well with the experiments. Experimental results confirm that the wavy shells are not sensitive to imperfections and can carry axial compression

  18. Kinetic, equilibrium isotherm and thermodynamic studies of Cr(VI) adsorption onto low-cost adsorbent developed from peanut shell activated with phosphoric acid.

    PubMed

    ALOthman, Zeid A; Naushad, Mu; Ali, Rahmat

    2013-05-01

    A particular agricultural waste, peanut shell, has been used as precursor for activated carbon production by chemical activation with H₃PO₄. Unoxidized activated carbon was prepared in nitrogen atmosphere which was then heated in air at a desired temperature to get oxidized activated carbon. The prepared carbons were characterized for surface area, surface morphology, and pore volume and utilized for the removal of Cr(VI) from aqueous solution. Batch mode experiments were conducted to study the effects of pH, contact time, particle size, adsorbent dose, initial concentration of adsorbate, and temperature on the adsorption of Cr(VI). Cr(VI) adsorption was significantly dependent on solution pH, and the optimum adsorption was observed at pH 2. Pseudo-first-order, pseudo-second-order, and intraparticle diffusion models were used to analyze the kinetic data obtained at different initial Cr(VI) concentrations. The adsorption kinetic data were described very well by the pseudo-second-order model. Equilibrium isotherm data were analyzed by the Langmuir, Freundlich, and Temkin models. The results showed that the Langmuir adsorption isotherm model fitted the data better in the temperature range studied. The adsorption capacity which was found to increase with temperature showed the endothermic nature of Cr(VI) adsorption. The thermodynamic parameters, such as Gibb's Free energy change (ΔG°), standard enthalpy change (ΔH°), and standard entropy change (ΔS°) were evaluated.

  19. A highly selective photoelectrochemical biosensor for uric acid based on core-shell Fe3O4@C nanoparticle and molecularly imprinted TiO2.

    PubMed

    Zhang, Chunjing; Si, Shihui; Yang, Zhengpeng

    2015-03-15

    Combining the surface modification and molecular imprinting technique, a novel photoelectrochemical sensing platform with excellent photochemical catalysis and molecular recognition capabilities was established for the detection of uric acid based on the magnetic immobilization of Fe3O4@C nanoparticles onto magnetic glassy carbon electrode (MGCE) and modification of molecularly imprinted TiO2 film on Fe3O4@C. The developed biosensor was highly sensitive to uric acid in solutions, with a linear range from 0.3 to 34µM and a limit of detection of 0.02μM. Furthermore, the biosensor exhibited outstanding selectivity while used in coexisting systems containing various interferents with high concentration. The practical application of the biosensor was also realized for the selective detection of uric acid in spiked samples. The study made a successful attempt in the development of highly selective and sensitive photoelectrochemical biosensor for urine monitoring.

  20. Controlling the Mesostructure Formation within the Shell of Novel Cubic/Hexagonal Phase Cetyltrimethylammonium Bromide-Poly(acrylamide-acrylic acid) Capsules for pH Stimulated Release.

    PubMed

    Tangso, Kristian J; Patel, Hetika; Lindberg, Seth; Hartley, Patrick G; Knott, Robert; Spicer, Patrick T; Boyd, Ben J

    2015-11-11

    The self-assembly of ordered structures in mixtures of oppositely charged surfactant and polymer systems has been exploited in various cleaning and pharmaceutical applications and continue to attract much interest since their discovery in the late twentieth century. The ability to control the electrostatic and hydrophobic interactions that dictate the formation of liquid crystalline phases in these systems is advantageous in manipulation of structure and rendering them responsive to external stimuli. Nanostructured capsules comprised of the cationic surfactant, cetyltrimethylammonium bromide (CTAB), and the diblock copolymer poly(acrylamide-acrylic acid) (PAAm-AA) were prepared to assess their potential as pH responsive nanomaterials. Crossed-polarizing light microscopy (CPLM) and small-angle X-ray scattering (SAXS) identified coexisting Pm3n cubic and hexagonal phases at the surfactant-polymer interface. The hydrophobic and electrostatic interactions between the oppositely charged components were studied by varying temperature and solution pH, respectively, and were found to influence the liquid crystalline nanostructure formed. The lattice parameter of the mesophases and the fraction of cubic phase in the system decreased upon heating. Acidic conditions resulted in the loss of the highly ordered structures due to protonation of the carboxylic acid group, and subsequent reduction of attractive forces previously present between the oppositely charged molecules. The rate of release of the model hydrophilic drug, Rhodamine B (RhB), from nanostructured macro-sized capsules significantly increased when the pH of the solution was adjusted from pH 7 to pH 2. This allowed for immediate release of the compound of interest "on demand", opening new options for structured materials with increased functionality over typical layer-by-layer capsules.

  1. Gold decorated NaYF4:Yb,Er/NaYF4/silica (core/shell/shell) upconversion nanoparticles for photothermal destruction of BE(2)-C neuroblastoma cells

    NASA Astrophysics Data System (ADS)

    Qian, Li Peng; Zhou, Li Han; Too, Heng-Phon; Chow, Gan-Moog

    2011-02-01

    Gold decorated NaYF4:Yb,Er/NaYF4/silica (core/shell/shell) upconversion (UC) nanoparticles ( 70-80 nm) were synthesized using tetraethyl orthosilicate and chloroauric acid in a one-step reverse microemulsion method. Gold nanoparticles ( 6 nm) were deposited on the surface of silica shell of these core/shell/shell nanoparticles. The total upconversion emission intensity (green, red, and blue) of the core/shell/shell nanoparticles decreased by 31% after Au was deposited on the surface of silica shell. The upconverted green light was coupled with the surface plasmon of Au leading to rapid heat conversion. These UC/silica/Au nanoparticles were very efficient to destroy BE(2)-C cancer cells and showed strong potential in photothermal therapy.

  2. Hollow spherical shell manufacture

    DOEpatents

    O'Holleran, Thomas P.

    1991-01-01

    A process for making a hollow spherical shell of silicate glass composition in which an aqueous suspension of silicate glass particles and an immiscible liquid blowing agent is placed within the hollow spherical cavity of a porous mold. The mold is spun to reduce effective gravity to zero and to center the blowing agent, while being heated so as to vaporize the immiscible liquid and urge the water carrier of the aqueous suspension to migrate into the body of the mold, leaving a green shell compact deposited around the mold cavity. The green shell compact is then removed from the cavity, and is sintered for a time and a temperature sufficient to form a silicate glass shell of substantially homogeneous composition and uniform geometry.

  3. Hollow spherical shell manufacture

    DOEpatents

    O'Holleran, T.P.

    1991-11-26

    A process is disclosed for making a hollow spherical shell of silicate glass composition in which an aqueous suspension of silicate glass particles and an immiscible liquid blowing agent is placed within the hollow spherical cavity of a porous mold. The mold is spun to reduce effective gravity to zero and to center the blowing agent, while being heated so as to vaporize the immiscible liquid and urge the water carrier of the aqueous suspension to migrate into the body of the mold, leaving a green shell compact deposited around the mold cavity. The green shell compact is then removed from the cavity, and is sintered for a time and a temperature sufficient to form a silicate glass shell of substantially homogeneous composition and uniform geometry. 3 figures.

  4. Preparation of core-shell structure Fe3 O4 @SiO2 superparamagnetic microspheres immoblized with iminodiacetic acid as immobilized metal ion affinity adsorbents for His-tag protein purification.

    PubMed

    Ni, Qian; Chen, Bing; Dong, Shaohua; Tian, Lei; Bai, Quan

    2016-04-01

    The core-shell structure Fe3 O4 /SiO2 magnetic microspheres were prepared by a sol-gel method, and immobiled with iminodiacetic acid (IDA) as metal ion affinity ligands for protein adsorption. The size, morphology, magnetic properties and surface modification of magnetic silica nanospheres were characterized by various modern analytical instruments. It was shown that the magnetic silica nanospheres exhibited superparamagnetism with saturation magnetization values of up to 58.1 emu/g. Three divalent metal ions, Cu(2+) , Ni(2+) and Zn(2+) , were chelated on the Fe3 O4 @SiO2 -IDA magnetic microspheres to adsorb lysozyme. The results indicated that Ni(2+) -chelating magnetic microspheres had the maximum adsorption capacity for lysozyme of 51.0 mg/g, adsorption equilibrium could be achieved within 60 min and the adsorbed protein could be easily eluted. Furthermore, the synthesized Fe3 O4 @SiO2 -IDA-Ni(2+) magnetic microspheres were successfully applied for selective enrichment lysozyme from egg white and His-tag recombinant Homer 1a from the inclusion extraction expressed in Escherichia coli. The result indicated that the magnetic microspheres showed unique characteristics of high selective separation behavior of protein mixture, low nonspecific adsorption, and easy handling. This demonstrates that the magnetic silica microspheres can be used efficiently in protein separation or purification and show great potential in the pretreatment of the biological sample.

  5. Shell forming system

    NASA Technical Reports Server (NTRS)

    Kendall, Jr., James M. (Inventor); Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor)

    1990-01-01

    Hollow shells of high uniformity are formed by emitting liquid through an outer nozzle and gas through an inner nozzle, to form a hollow extrusion, by flowing the gas at a velocity between about 1.3 and 10 times the liquid velocity. The natural breakup rate of the extrusion can be increased to decrease shell size by applying periodic perturbations to one of the materials prior to exiting the nozzles, to a nozzle, or to the extrusion.

  6. Shells and Patterns

    ERIC Educational Resources Information Center

    Sutley, Jane

    2009-01-01

    "Shells and Patterns" was a project the author felt would easily put smiles on the faces of her fifth-graders, and teach them about unity and the use of watercolor pencils as well. It was thrilling to see the excitement in her students as they made their line drawings of shells come to life. For the most part, they quickly got the hang of…

  7. Off-shell CHY amplitudes

    NASA Astrophysics Data System (ADS)

    Lam, C. S.; Yao, York-Peng

    2016-06-01

    The Cachazo-He-Yuan (CHY) formula for on-shell scattering amplitudes is extended off-shell. The off-shell amplitudes (amputated Green's functions) are Möbius invariant, and have the same momentum poles as the on-shell amplitudes. The working principles which drive the modifications to the scattering equations are mainly Möbius covariance and energy momentum conservation in off-shell kinematics. The same technique is also used to obtain off-shell massive scalars. A simple off-shell extension of the CHY gauge formula which is Möbius invariant is proposed, but its true nature awaits further study.

  8. Magnetic behavior of core shell particles

    NASA Astrophysics Data System (ADS)

    Lin, Chun-Rong; Wang, Cheng-Chien; Chen, I.-Han

    2006-09-01

    We have prepared composite magnetic core-shell particles using the process of soap-free emulsion polymerization and the co-precipitation method. The shell of the synthesized composite sphere is cobalt ferrite (CoFe 2O 4) nanoparticles and the core consists of poly(styrene-co-methacrylic acid) polymer. The mean crystallite sizes of the coated CoFe 2O 4 nanoparticles were controlled in the range of 2.4-6.7 nm by the concentration of [NH 4+] and heated temperature. The magnetic properties of the core-shell spherical particles can go from superparamagnetic to ferromagnetic behavior depending on the crystalline sizes of CoFe 2O 4.

  9. Hollow Pollen Shells to Enhance Drug Delivery

    PubMed Central

    Diego-Taboada, Alberto; Beckett, Stephen T.; Atkin, Stephen L.; Mackenzie, Grahame

    2014-01-01

    Pollen grain and spore shells are natural microcapsules designed to protect the genetic material of the plant from external damage. The shell is made up of two layers, the inner layer (intine), made largely of cellulose, and the outer layer (exine), composed mainly of sporopollenin. The relative proportion of each varies according to the plant species. The structure of sporopollenin has not been fully characterised but different studies suggest the presence of conjugated phenols, which provide antioxidant properties to the microcapsule and UV (ultraviolet) protection to the material inside it. These microcapsule shells have many advantageous properties, such as homogeneity in size, resilience to both alkalis and acids, and the ability to withstand temperatures up to 250 °C. These hollow microcapsules have the ability to encapsulate and release actives in a controlled manner. Their mucoadhesion to intestinal tissues may contribute to the extended contact of the sporopollenin with the intestinal mucosa leading to an increased efficiency of delivery of nutraceuticals and drugs. The hollow microcapsules can be filled with a solution of the active or active in a liquid form by simply mixing both together, and in some cases operating a vacuum. The active payload can be released in the human body depending on pressure on the microcapsule, solubility and/or pH factors. Active release can be controlled by adding a coating on the shell, or co-encapsulation with the active inside the shell. PMID:24638098

  10. Multi-Shell Hollow Nanogels with Responsive Shell Permeability

    PubMed Central

    Schmid, Andreas J.; Dubbert, Janine; Rudov, Andrey A.; Pedersen, Jan Skov; Lindner, Peter; Karg, Matthias; Potemkin, Igor I.; Richtering, Walter

    2016-01-01

    We report on hollow shell-shell nanogels with two polymer shells that have different volume phase transition temperatures. By means of small angle neutron scattering (SANS) employing contrast variation and molecular dynamics (MD) simulations we show that hollow shell-shell nanocontainers are ideal systems for controlled drug delivery: The temperature responsive swelling of the inner shell controls the uptake and release, while the thermoresponsive swelling of the outer shell controls the size of the void and the colloidal stability. At temperatures between 32 °C < T < 42 °C, the hollow nanocontainers provide a significant void, which is even larger than the initial core size of the template, and they possess a high colloidal stability due to the steric stabilization of the swollen outer shell. Computer simulations showed, that temperature induced switching of the permeability of the inner shell allows for the encapsulation in and release of molecules from the cavity. PMID:26984478

  11. Can Shells be Biomonitor of Contaminants in the Environment: an Investigation Study of Perfluorinated Compounds in Bivalve Shells of China

    NASA Astrophysics Data System (ADS)

    Wang, Lei

    2010-05-01

    To assess the feasibility of using biominerals to biomonitor the extent of persistent contaminants in the environment, concentrations of perfluorinated compounds (PFCs), including perfluorinated carboxylic acids (PFCAs) and perfluorinated alkylsulfonates (PFASs), in the bivalve shells of clams, razor clams, oysters and mussels sampled from 8 sampling sites along China coast were analyzed. Concentrations of these contaminants in the waters and sediments of the sampling sites, as well as in the soft tissues of clams were also determined. Results show that though the concentrations of most PFCs in shells were lower than in soft tissues, the amount of contaminants in shells and soft tissues of bivalves are comparable, due to the larger dry-weight of shells than soft tissues of these animals. Concentrations of some PFCs in shells primarily correlate to concentrations in sediments, while concentrations in the soft tissues seems to be more related to those in water samples. We suggested that shells uptake PFCs by adsorption or passive deposition of the target chemicals to the shell organic matrix followed by a biomineralisation process. Therefore, contaminants bound to the organic matrix in the shell microstructure are sequestrated and hard to release. Like soft tissues, biominerals, e.g. shells, might also be considered as biomonitoring matrix for some contaminants in environments, because (i) the individual differences of contaminants concentrations among shell samples were smaller than soft tissue samples; (ii) secondary pollution is less likely to affect shell samples during sampling and transportation; and (iii) the shells was hypothesized to "record" past exposure to contaminants according to their annual growth ring. (This study was supported by National Science Foundation for Natural Science, China (No. 20807024) & Research Fund for the Doctoral Program of Higher Education of China (No. 200800551051))

  12. Chemical Component and Proteomic Study of the Amphibalanus (= Balanus) amphitrite Shell

    PubMed Central

    Zhang, Gen; He, Li-sheng; Wong, Yue-Him; Xu, Ying; Zhang, Yu; Qian, Pei-yuan

    2015-01-01

    As typical biofoulers, barnacles possess hard shells and cause serious biofouling problems. In this study, we analyzed the protein component of the barnacle Amphibalanus (= Balanus) amphitrite shell using gel-based proteomics. The results revealed 52 proteins in the A. Amphitrite shell. Among them, 40 proteins were categorized into 11 functional groups based on KOG database, and the remaining 12 proteins were unknown. Besides the known proteins in barnacle shell (SIPC, carbonic anhydrase and acidic acid matrix protein), we also identified chorion peroxidase, C-type lectin-like domains, serine proteases and proteinase inhibitor proteins in the A. Amphitrite shell. The sequences of these proteins were characterized and their potential functions were discussed. Histology and DAPI staining revealed living cells in the shell, which might secrete the shell proteins identified in this study. PMID:26222041

  13. Chemical Component and Proteomic Study of the Amphibalanus (= Balanus) amphitrite Shell.

    PubMed

    Zhang, Gen; He, Li-Sheng; Wong, Yue-Him; Xu, Ying; Zhang, Yu; Qian, Pei-Yuan

    2015-01-01

    As typical biofoulers, barnacles possess hard shells and cause serious biofouling problems. In this study, we analyzed the protein component of the barnacle Amphibalanus (= Balanus) amphitrite shell using gel-based proteomics. The results revealed 52 proteins in the A. Amphitrite shell. Among them, 40 proteins were categorized into 11 functional groups based on KOG database, and the remaining 12 proteins were unknown. Besides the known proteins in barnacle shell (SIPC, carbonic anhydrase and acidic acid matrix protein), we also identified chorion peroxidase, C-type lectin-like domains, serine proteases and proteinase inhibitor proteins in the A. Amphitrite shell. The sequences of these proteins were characterized and their potential functions were discussed. Histology and DAPI staining revealed living cells in the shell, which might secrete the shell proteins identified in this study.

  14. Shell Biorefinery: Dream or Reality?

    PubMed

    Chen, Xi; Yang, Huiying; Yan, Ning

    2016-09-12

    Shell biorefinery, referring to the fractionation of crustacean shells into their major components and the transformation of each component into value-added chemicals and materials, has attracted growing attention in recent years. Since the large quantities of waste shells remain underexploited, their valorization can potentially bring both ecological and economic benefits. This Review provides an overview of the current status of shell biorefinery. It first describes the structural features of crustacean shells, including their composition and their interactions. Then, various fractionation methods for the shells are introduced. The last section is dedicated to the valorization of chitin and its derivatives for chemicals, porous carbon materials and functional polymers.

  15. Sensational spherical shells

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Kendall, J. M., Jr.; Bahrami, P. A.; Wang, T. G.

    1986-01-01

    Fluid-dynamic and capillary forces can be used to form nearly perfect, very small spherical shells when a liquid that can solidify is passed through an annular die to form an annular jet. Gravity and certain properties of even the most ideal materials, however, can cause slight asymmetries. The primary objective of the present work is the control of this shell formation process in earth laboratories rather than space microgravity, through the development of facilities and methods that minimize the deleterious effects of gravity, aerodynamic drag, and uncontrolled cooling. The spherical shells thus produced can be used in insulation, recyclable filter materials, fire retardants, explosives, heat transport slurries, shock-absorbing armor, and solid rocket motors.

  16. Fabrication of diamond shells

    SciTech Connect

    Hamza, Alex V.; Biener, Juergen; Wild, Christoph; Woerner, Eckhard

    2016-11-01

    A novel method for fabricating diamond shells is introduced. The fabrication of such shells is a multi-step process, which involves diamond chemical vapor deposition on predetermined mandrels followed by polishing, microfabrication of holes, and removal of the mandrel by an etch process. The resultant shells of the present invention can be configured with a surface roughness at the nanometer level (e.g., on the order of down to about 10 nm RMS) on a mm length scale, and exhibit excellent hardness/strength, and good transparency in the both the infra-red and visible. Specifically, a novel process is disclosed herein, which allows coating of spherical substrates with optical-quality diamond films or nanocrystalline diamond films.

  17. The shell organic matrix of the crossed lamellar queen conch shell (Strombus gigas).

    PubMed

    Osuna-Mascaró, Antonio; Cruz-Bustos, Teresa; Benhamada, Sana; Guichard, Nathalie; Marie, Benjamin; Plasseraud, Laurent; Corneillat, Marion; Alcaraz, Gérard; Checa, Antonio; Marin, Frédéric

    2014-02-01

    In molluscs, the shell organic matrix comprises a large set of biomineral-occluded proteins, glycoproteins and polysaccharides that are secreted by the calcifying mantle epithelium, and are supposed to display several functions related to the synthesis of the shell. In the present paper, we have characterized biochemically the shell matrix associated to the crossed-lamellar structure of the giant queen conch Strombus gigas. The acid-soluble (ASM) and acid-insoluble (AIM) matrices represent an extremely minor fraction of the shell. Both are constituted of polydisperse and of few discrete proteins among which three fractions, obtained by preparative SDS-PAGE and named 1P3, 2P3 and 3P3, are dominant and were further characterized. Compared to other matrices, the acid-soluble matrix is weakly glycosylated (3%) and among the discrete components, only 3P3 seems noticeably glycosylated. The monosaccharide composition of the ASM shows that mannose represents the main monosaccharide. To our knowledge, this is the first report of a high ratio of this sugar in a skeletal matrix. Furthermore, the ASM interacts with the in vitro crystallization of calcium carbonate, but this interaction is moderate. It differs from that of the isolated 1P3 fraction but is similar to that of the 2P3 and 3P3 fractions. At last, antibodies developed from the 3P3 fraction were used to localize this fraction within the shell by immunogold. This study is the first one aiming at characterizing the organic matrix associated to the crossed-lamellar structure of the queen conch shell.

  18. Oyster shell conveyor used to lift shells from the dock ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Oyster shell conveyor used to lift shells from the dock into the receiving room housed in the 1965 concrete block addition. - J.C. Lore Oyster House, 14430 Solomons Island Road, Solomons, Calvert County, MD

  19. Effects of fatty acid amide hydrolase inhibition on neuronal responses to nicotine, cocaine and morphine in the nucleus accumbens shell and ventral tegmental area: involvement of PPAR-alpha nuclear receptors.

    PubMed

    Luchicchi, Antonio; Lecca, Salvatore; Carta, Stefano; Pillolla, Giuliano; Muntoni, Anna L; Yasar, Sevil; Goldberg, Steven R; Pistis, Marco

    2010-07-01

    The endocannabinoid system regulates neurotransmission in brain regions relevant to neurobiological and behavioral actions of addicting drugs. We recently demonstrated that inhibition by URB597 of fatty acid amide hydrolase (FAAH), the main enzyme that degrades the endogenous cannabinoid N-acylethanolamine (NAE) anandamide and the endogenous non-cannabinoid NAEs oleoylethanolamide and palmitoylethanolamide, blocks nicotine-induced excitation of ventral tegmental area (VTA) dopamine (DA) neurons and DA release in the shell of the nucleus accumbens (ShNAc), as well as nicotine-induced drug self-administration, conditioned place preference and relapse in rats. Here, we studied whether effects of FAAH inhibition on nicotine-induced changes in activity of VTA DA neurons were specific for nicotine or extended to two drugs of abuse acting through different mechanisms, cocaine and morphine. We also evaluated whether FAAH inhibition affects nicotine-, cocaine- or morphine-induced actions in the ShNAc. Experiments involved single-unit electrophysiological recordings from DA neurons in the VTA and medium spiny neurons in the ShNAc in anesthetized rats. We found that URB597 blocked effects of nicotine and cocaine in the ShNAc through activation of both surface cannabinoid CB1-receptors and alpha-type peroxisome proliferator-activated nuclear receptor. URB597 did not alter the effects of either cocaine or morphine on VTA DA neurons. These results show that the blockade of nicotine-induced excitation of VTA DA neurons, which we previously described, is selective for nicotine and indicate novel mechanisms recruited to regulate the effects of addicting drugs within the ShNAc of the brain reward system.

  20. Molecular and isotopic composition of lipids in modern and fossil bivalve shells: Records of paleoenvironmental change?

    SciTech Connect

    CoBabe, E.A.

    1995-12-31

    Suites of lipids residing in situ in modern and fossil bivalve shells offer new possibilities for the study of paleoecology and paleoclimatology. Distributions of carbon isotopic compositions of modem shell lipids suggests that many of these compounds, including alkanes, sterols, fatty acids, ketones and phytadienes, are derived from the bivalves and not directly from the surrounding environment. The occurrence of fatty acids in modem and fossil shell material opens up the possibility that saturation levels of these compounds may be used as paleothermometers. To date, the utility of fatty acids in paleoclimate studies has been limited because of the swift breakdown of these compounds in sediment. However, initial results indicate that fatty acids in bivalve shells retain their original structure for at least several million years. Comparison of modem bivalve shell fatty acids from tropical, temperate and polar nearshore marine systems will be presented, along with analogous fossil data.

  1. The adsorption of rare earth ions using carbonized polydopamine nano shells

    SciTech Connect

    Sun, Xiaoqi; Luo, Huimin; Mahurin, Shannon Mark; Dai, Sheng; Liu, Rui; Hou, Xisen; Dai, Sheng

    2016-01-07

    Herein we report the structure effects of nano carbon shells prepared by carbonized polydopamine for rare earth elements (REEs) adsorption for the first time. The solid carbon sphere, 60 nm carbon shell and 500 nm carbon shell were prepared and investigated for adsorption and desorption of REEs. The adsorption of carbon shells for REEs was found to be better than the solid carbon sphere. The effect of acidities on the adsorption and desorption properties was discussed in this study. The good adsorption performance of carbon shells can be attributed to their porous structure, large specific surface area, amine group and carbonyl group of dopamine.

  2. The adsorption of rare earth ions using carbonized polydopamine nano shells

    DOE PAGES

    Sun, Xiaoqi; Luo, Huimin; Mahurin, Shannon Mark; ...

    2016-01-07

    Herein we report the structure effects of nano carbon shells prepared by carbonized polydopamine for rare earth elements (REEs) adsorption for the first time. The solid carbon sphere, 60 nm carbon shell and 500 nm carbon shell were prepared and investigated for adsorption and desorption of REEs. The adsorption of carbon shells for REEs was found to be better than the solid carbon sphere. The effect of acidities on the adsorption and desorption properties was discussed in this study. The good adsorption performance of carbon shells can be attributed to their porous structure, large specific surface area, amine group andmore » carbonyl group of dopamine.« less

  3. Shell Higher Olefins Process.

    ERIC Educational Resources Information Center

    Lutz, E. F.

    1986-01-01

    Shows how olefin isomerization and the exotic olefin metathesis reaction can be harnessed in industrial processes. Indicates that the Shell Higher Olefins Process makes use of organometallic catalysts to manufacture alpha-olefins and internal carbon-11 through carbon-14 alkenes in a flexible fashion that can be adjusted to market needs. (JN)

  4. Shell Creek Summers

    ERIC Educational Resources Information Center

    Seier, Mark; Goedeken, Suzy

    2005-01-01

    In 2002 Shell Creek Watershed Improvement Group turned to the Newman Grove Public Schools' science department to help educate the public on water quality in the watershed and to establish a monitoring system that would be used to improve surface and groundwater quality in the creek's watershed. Nebraska Department of Environmental Quality provided…

  5. Snail Shell Science.

    ERIC Educational Resources Information Center

    Matthews, Catherine

    1992-01-01

    Presents three inquiry-based lessons to develop the science process skills of observation, identification, and classification. Activities use whelk eggs and snail shells as the focus of the students' inquiries. Provides a list of 19 facts about whelks and snails. (MDH)

  6. Proteomic strategy for identifying mollusc shell proteins using mild chemical degradation and trypsin digestion of insoluble organic shell matrix: a pilot study on Haliotis tuberculata.

    PubMed

    Bédouet, Laurent; Marie, Arul; Berland, Sophie; Marie, Benjamin; Auzoux-Bordenave, Stéphanie; Marin, Frédéric; Milet, Christian

    2012-08-01

    A successful strategy for the identification of shell proteins is based on proteomic analyses where soluble and insoluble fractions isolated from organic shell matrix are digested with trypsin with the aim of generating peptides, which are used to identify novel shell proteins contained in databases. However, using trypsin as a sole degradative agent is limited by the enzyme's cleavage specificity and is dependent upon the occurrence of lysine and arginine in the shell protein sequence. To bypass this limitation, we investigated the ability of trifluoroacetic acid (TFA), a low-specificity chemical degradative agent, to generate clusters of analyzable peptides from organic shell matrix, suitable for database annotation. Acetic acid-insoluble fractions from Haliotis tuberculata shell were processed by trypsin followed by TFA digestion. The hydrolysates were used to annotate an expressed sequence tag library constructed from the mantle tissue of Haliotis asinina, a tropical abalone species. The characterization of sequences with repeat motifs featured in some of the shell matrix proteins benefited from TFA-induced serial cutting, which can result in peptide ladder series. Using the degradative specificities of TFA and trypsin, we were able to identify five novel shell proteins. This pilot study indicates that a mild chemical digestion of organic shell matrix combined with trypsin generates peptides suitable for proteomic analysis for better characterization of mollusc shell matrix proteins.

  7. Multi-shell effective interactions

    NASA Astrophysics Data System (ADS)

    Tsunoda, Naofumi; Takayanagi, Kazuo; Hjorth-Jensen, Morten; Otsuka, Takaharu

    2014-02-01

    Background: Effective interactions, either derived from microscopic theories or based on fitting selected properties of nuclei in specific mass regions, are widely used inputs to shell-model studies of nuclei. The commonly used unperturbed basis functions are given by the harmonic oscillator. Until recently, most shell-model calculations have been confined to a single oscillator shell like the sd shell or the pf shell. Recent interest in nuclei away from the stability line requires, however, larger shell-model spaces. Because the derivation of microscopic effective interactions has been limited to degenerate models spaces, there are both conceptual and practical limits to present shell-model calculations that utilize such interactions. Purpose: The aim of this work is to present a novel microscopic method to calculate effective nucleon-nucleon interactions for the nuclear shell model. Its main difference from existing theories is that it can be applied not only to degenerate model spaces but also to nondegenerate model spaces. This has important consequences, in particular for intershell matrix elements of effective interactions. Methods: The formalism is presented in the form of a many-body perturbation theory based on the recently developed extended Kuo-Krenciglowa method. Our method enables us to microscopically construct effective interactions not only in one oscillator shell but also for several oscillator shells. Results: We present numerical results using effective interactions within (i) a single oscillator shell (a so-called degenerate model space) like the sd shell or the pf shell and (ii) two major shells (nondegenerate model space) like the sdf7p3 shell or the pfg9 shell. We also present energy levels of several nuclei that have two valence nucleons on top of a given closed-shell core. Conclusions: Our results show that the present method works excellently in shell-model spaces that comprise several oscillator shells, as well as in a single oscillator

  8. Arsenic, chromium and mercury removal using mussel shell ash or a sludge/ashes waste mixture.

    PubMed

    Seco-Reigosa, Natalia; Peña-Rodríguez, Susana; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel; Fernández-Sanjurjo, María J; Alvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino

    2013-04-01

    Different batches of valued mussel shell and waste mussel shell ash are characterised. Shell ash has pH > 12 and high electrical conductivities (between 16.01 and 27.27 dS m(-1)), while calcined shell shows pH values up to 10.7 and electrical conductivities between 1.19 and 3.55 dS m(-1). X-ray fluorescence, nitric acid digestion and water extractions show higher concentrations in shell ash for most parameters. Calcite is the dominant crystalline compound in this ash (95.6%), followed by aragonite. Adsorption/desorption trials were performed for mussel shell ash and for a waste mixture including shell ash, sewage sludge and wood ash, showing the following percentage adsorptions: Hg(II) >94%, As(V) >96% and Cr(VI) between 11 and 30% for shell ash; Hg(II) >98%, As(V) >88% and Cr(VI) between 30 and 88% for the waste mixture. Hg and As desorption was <5% for both shell ash and the waste mixture, while Cr desorption was between 92 and 45% for shell ash, and between 19 and 0% for the mixture. In view of that, mussel shell ash and the mixture including shell ash, sewage sludge and wood ash could be useful for Hg(II) and As(V) removal.

  9. Biomechanics of turtle shells: how whole shells fail in compression.

    PubMed

    Magwene, Paul M; Socha, John J

    2013-02-01

    Turtle shells are a form of armor that provides varying degrees of protection against predation. Although this function of the shell as armor is widely appreciated, the mechanical limits of protection and the modes of failure when subjected to breaking stresses have not been well explored. We studied the mechanical properties of whole shells and of isolated bony tissues and sutures in four species of turtles (Trachemys scripta, Malaclemys terrapin, Chrysemys picta, and Terrapene carolina) using a combination of structural and mechanical tests. Structural properties were evaluated by subjecting whole shells to compressive and point loads in order to quantify maximum load, work to failure, and relative shell deformations. The mechanical properties of bone and sutures from the plastral region of the shell were evaluated using three-point bending experiments. Analysis of whole shell structural properties suggests that small shells undergo relatively greater deformations before failure than do large shells and similar amounts of energy are required to induce failure under both point and compressive loads. Location of failures occurred far more often at sulci than at sutures (representing the margins of the epidermal scutes and the underlying bones, respectively), suggesting that the small grooves in the bone created by the sulci introduce zones of weakness in the shell. Values for bending strength, ultimate bending strain, Young's modulus, and energy absorption, calculated from the three-point bending data, indicate that sutures are relatively weaker than the surrounding bone, but are able to absorb similar amounts of energy due to higher ultimate strain values.

  10. Shell funds chair

    NASA Astrophysics Data System (ADS)

    The Shell Companies Foundation, Inc., of Houston, Tex., has given $750,000 to the University of Texas at Austin to establish the Shell Distinguished Chair in Geophysics. The 5-year, $150,000-per-year grant will support the studies of John G. Sclater. Sclater, currently a professor at the Massachusetts Institute of Technology, has accepted a joint position that begins July 1 in the geological sciences department and in the Institute for Geophysics at UT Austin.Sclater's research into the formation of ocean basins has applications for understanding the way petroleum deposits mature. He has studied the reconstruction of movements of the continents and the subsidence of ocean basins. He is considered an expert in the interpretation of geothermal and seismic data.

  11. Shell deposition of CdSe nano dots and rods

    NASA Astrophysics Data System (ADS)

    Yang, Ping; Chen, Hsueh Shin; Zhang, Qiang; Shi, Ruixia; Wang, Junpeng; Che, Quande

    2014-08-01

    To investigate the shell deposited kinetics, CdSe quantum dots (QDs) and nanorods (NRs) with a maximum length of 17 nm were fabricated via organic synthesis routes. CdSe with a hexagonal crystal structure (wurtzite) favors epitaxial growth on the {002} surfaces when well-controlled conditions were used. The morphologies and sizes of CdSe samples depended strongly on chemicals and temperature. In the case of 320 °C, CdSe NRs with adjusted length of 7-17 nm were obtained from trioctylphosphine oxide (TOPO) and tetradecylphosphonic acid (TDPA). In contrast, short CdSe NRs (less than 10 nm) were created from octadecylphosphonic acid (ODPA) and trioctylamine (TOA). Spherical CdSe QDs were further fabricated using stearic acid (SA) and TOPO at 300 °C. CdSe cores were coated with Cd0.5Zn0.5S and CdTe shells. Anisotropic growth occurred during shell deposition because CdS shells grown preferentially on the {001} facet of the CdSe core. In the case of CdSe core prepared from TOPO and TDPA, CdSe/Cd0.5Zn0.5S core/shell samples prepared from long CdSe NRs (more than 10 nm) revealed a peanut morphology while the core/shell samples created from short ones (less than 10 nm) exhibited a spherical morphology. All of the CdSe/Cd0.5Zn0.5S core/shell samples revealed a similar length to that of the CdSe cores. This phenomenon was also observed for the core/shell samples fabricated using CdSe NRs prepared by ODPA and TOA. This is ascribed to the well-developed crystal structure of CdSe NRs fabricated using an organic synthesis at high temperature. In contrast, this anisotropic growth did not occur when spherical CdSe QDs prepared from SA and TOPO and the shell (Cd0.5Zn0.5S) coating carried out using SA and TOA. To indicate the shell depositing process, CdSe NRs fabricated using TDPA and TOPO were coated with a CdTe shell. CdTe monomers were deposited on the middle and tip parts of the CdSe NRs to form a tetrapod-like morphology at 220 °C. This is ascribed to the large difference of

  12. Shell model calculations of 109Sb in the sdgh shell

    NASA Astrophysics Data System (ADS)

    Dikmen, E.; Novoselsky, A.; Vallieres, M.

    2001-12-01

    The energy spectra of the antimony isotope 109Sb in the sdgh shell are calculated in the nuclear shell model approach by using the CD-Bonn nucleon-nucleon interaction. The modified Drexel University parallel shell model code (DUPSM) was used for the calculations with maximum Hamiltonian dimension of 762 253 of 5.14% sparsity. The energy levels are compared to the recent experimental results. The calculations were done on the Cyborg Parallel Cluster System at Drexel University.

  13. Synthesis of triangular Au core-Ag shell nanoparticles

    SciTech Connect

    Rai, Akhilesh; Chaudhary, Minakshi; Ahmad, Absar; Bhargava, Suresh; Sastry, Murali . E-mail: msastry@tatachemicals.com

    2007-07-03

    In this paper, we demonstrate a simple and reproducible method for the synthesis of triangular Au core-Ag shell nanoparticles. The triangular gold core is obtained by the reduction of gold ions by lemongrass extract. Utilizing the negative charge on the gold nanotriangles, silver ions are bound to their surface and thereafter reduced by ascorbic acid under alkaline conditions. The thickness of the silver shell may be modulated by varying the pH of the reaction medium. The formation of the Au core-Ag shell triangular nanostructures has been followed by UV-vis-NIR Spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy (TEM) and atomic force microscopy (AFM) measurements. The sharp vertices of the triangles coupled with the core-shell structure is expected to have potential for application in surface enhanced Raman spectroscopy and in the sensitive detection of biomolecules.

  14. A novel silk-like shell matrix gene is expressed in the mantle edge of the Pacific oyster prior to shell regeneration.

    PubMed

    Takahashi, Jun; Takagi, Masaya; Okihana, Yumiko; Takeo, Kei; Ueda, Takahisa; Touhata, Ken; Maegawa, Shingo; Toyohara, Haruhiko

    2012-05-10

    During shell formation, little is known about the functions of organic matrices, especially about the biomineralization of shell prismatic layer. We identified a novel gene, shelk2, from the Pacific oyster presumed to be involved in the shell biosynthesis. The Pacific oyster has multiple copies of shelk2. Shelk2 mRNA is specifically expressed on the mantle edge and is induced during shell regeneration, thereby suggesting that Shelk2 is involved in shell biosynthesis. To our surprise, the database search revealed that it encodes a spider silk-like alanine-rich protein. Interestingly, most of the Shelk2 primary structure is composed of two kinds of poly-alanine motifs-GXNA(n)(S) and GSA(n)(S)-where X denotes Gln, Arg or no amino acid. Occurrence of common motifs of Shelk2 and spider silk led us to the assumption that shell and silk are constructed under similar strategies despite of their living environments.

  15. Synthesis of stiffened conical shells.

    NASA Technical Reports Server (NTRS)

    Thornton, W. A.

    1972-01-01

    The development of a method to effect the automated minimum weight design of ring and stringer stiffened shells is presented. Membrane theory is used for the shell prebuckling analysis. The buckling analysis is based upon an arbitrary shell of revolution computer program. The structural analysis includes both buckling and yielding modes of failure. The synthesis involves the coupling of an exterior penalty function with a method for the unconstrained minimization of a function comprised of a sum of squares. Results of the application of the method to the design of the Viking Aeroshell cone are presented. The least weight Viking Aeroshell appears to be an all magnesium shell with ring stiffeners of hollow circular cross section. Because the method incorporates a general shell of revolution buckling analysis, it can be readily modified and applied to the design of any axisymmetrically loaded uniformly stiffened shell of revolution for which a membrane prebuckling solution exists.

  16. Ultrasonic scattering from anisotropic shells

    NASA Astrophysics Data System (ADS)

    Mittleman, John; Thompson, R. B.; Roberts, R.

    The exact differential equations for elastic wave scattering from spherical shells with spherically orthotropic properties are presently shown to be separable; the angular equations are satisfied by Legendre polynomials that are independent of material properties. The results thus obtained have been validated by exact solutions for the case with vanishing shell thickness, and that of isotropic elastic constants. Excellent agreement is thus obtained over a wide range of shell thicknesses and wave numbers.

  17. Reduced molybenum-oxide-based core-shell hybrids: "blue" electrons are delocalized on the shell.

    PubMed

    Todea, Ana Maria; Szakács, Julia; Konar, Sanjit; Bögge, Hartmut; Crans, Debbie C; Glaser, Thorsten; Rousselière, Hélène; Thouvenot, René; Gouzerh, Pierre; Müller, Achim

    2011-06-06

    The present study refers to a variety of reduced metal-oxide core-shell hybrids, which are unique with regard to their electronic structure, their geometry, and their formation. They contain spherical {Mo72Fe30} Keplerate-type shells encapsulating Keggin-type polyoxomolybdates based on very weak interactions. Studies on the encapsulation of molybdosilicate as well as on the earlier reported molybdophosphate, coupled with the use of several physical methods for the characterization led to unprecedented results (see title). Upon standing in air at room temperature, acidified aqueous solutions obtained by dissolving sodium molybdate, iron(II) chloride, acetic acid, and molybdosilicic acid led to the precipitation of monoclinic greenish crystals (1). A rhombohedral variant (2) has also been observed. Upon drying at room temperature, compound 3 with a layer structure was obtained from 1 in a solid-state reaction based on cross-linking of the shells. The compounds 1, 2, and 3 have been characterized by a combination of methods including single-crystal X-ray crystallography, magnetic studies, as well as IR, Mössbauer, (resonance) Raman, and electronic absorption spectroscopy. In connection with detailed studies of the guest-free two-electron-reduced {Mo72Fe30}-type Keplerate (4) and of the previously reported molybdophosphate-based hybrids (including 31P NMR spectroscopy results), it is unambiguously proved that 1, 2, and 3 contain non-reduced Keggin ion cores and reduced {Mo72Fe30}-type shells. The results are discussed in terms of redox considerations (the shell as well as the core can be reduced) including those related to the reduction of "molybdates" by FeII being of interdisciplinary including catalytic interest (the MoVI/MoV and FeIII/FeII couples have very close redox potentials!), while also referring to the special formation of the hybrids based on chemical Darwinism.

  18. The structure of circumstellar shells

    NASA Technical Reports Server (NTRS)

    Fix, John D.

    1993-01-01

    This document provides a report on research activities carried out with the support of NASA grant NAG 5-1174, the Structure of Circumstellar Shells, funded under the Astrophysics Data Program. The research carried out with the support of this grant is a study of the properties of circumstellar dust shells for which spectra are available through IRAS low resolution spectrometry (LRS). This research consisted of the development and application of models of axisymmetric circumstellar shells and a preliminary survey of the applicability of neural nets for analysis of the IRAS LRS spectra of circumstellar dust shells.

  19. Shell Analysis Manual

    DTIC Science & Technology

    1968-04-01

    plane strains o 0 0 el, e 2 , el2 Components of nonlinear in-plane middle surface strains; also, strains corresponding to equilibrium configuration el...plates) in the treatment of shell problems. This theory, often referred to as Love’s first approximation, has since occupied a position of prominence...Materials such as wood and synthetic fiberboard possess this property. For this case, the generalized Hooke’s Law reduces to oII = El Fl + E 2 p 2 1

  20. Automated shell theory for rotating structures (ASTROS)

    NASA Technical Reports Server (NTRS)

    Foster, B. J.; Thomas, J. M.

    1971-01-01

    A computer program for analyzing axisymmetric shells with inertial forces caused by rotation about the shell axis is developed by revising the STARS II shell program. The basic capabilities of the STARS II shell program, such as the treatment of the branched shells, stiffened wall construction, and thermal gradients, are retained.

  1. Rh(0)/Rh(iii) core-shell nanoparticles as heterogeneous catalysts for cyclic carbonate synthesis.

    PubMed

    Jung, Younjae; Shin, Taeil; Kim, Kiseong; Byun, Hyeeun; Cho, Sung June; Kim, Hyunwoo; Song, Hyunjoon

    2016-12-22

    Rh(0)/Rh(iii) core-shell nanoparticles were prepared by surface oxidation of Rh nanoparticles with N-bromosuccinimide. They were employed as heterogeneous catalysts for cyclic carbonate synthesis from propylene oxide and CO2, and exhibited high activity and excellent recyclability due to Lewis acidic Rh(iii) species on the shells.

  2. Development of antimicrobial coatings for improving the microbiological safety and quality of shell eggs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to develop antimicrobial coatings to decontaminate and prevent cross- contamination of shell eggs. Egg shells were inoculated with nalidixic acid resistant Salmonella enterica Enteritidis strains OB030832, OB040159, and C405, and then treated with antimicrobial coatings. Pol...

  3. Double-shelled tremella-like NiO@Co3O4@MnO2 as a high-performance cathode material for alkaline supercapacitors

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Ren, Qian; Brett, Dan J. L.; He, Guanjie; Wang, Rongfang; Key, Julian; Ji, Shan

    2017-03-01

    Tremella-like NiO@Co3O4@MnO2 particles of core-double-shelled structure were synthesized by a three-step hydrothermal route and thermal treatment. The hierarchical layered porous structure of the particles has a BET surface area of 179.2 m2 g-1. Galvanostatic cycling in 6.0 M KOH aqueous solution produced capacitance over an ideal cathode potential cycling range. At a high current density of 2 A g-1, NiO@Co3O4@MnO2 has a high specific capacitance of 792.5 F g-1 with > 90% capacity retention over 1000 cycles, and a high rate capability of 68.9% of its initial capacitance was also maintained over a 0.2-4 A g-1 current density increase. We conclude that NiO@Co3O4@MnO2 offers a promising high rate, high specific capacitance cathode material for alkaline supercapacitors, which owes both to its porous architecture and its synergistic mixed oxide core-shell-shell composition.

  4. Cadmium Telluride, Cadmium Telluride/Cadmium Sulfide Core/Shell, and Cadmium Telluride/Cadmium Sulfide/Zinc Sulfide Core/Shell/Shell Quantum Dots Study

    NASA Astrophysics Data System (ADS)

    Yan, Yueran

    CdTe, CdTe/CdS core/shell, and CdTe/CdS/ZnS core/shell/shell quantum dots (QDs) are potential candidates for bio-imaging and solar cell applications because of some special physical properties in these nano materials. For example, the band gap energy of the bulk CdTe is about 1.5 eV, so that principally they can emit 790 nm light, which is in the near-infrared range (also called biological window). Moreover, theoretically hot exciton generated by QDs is possible to be caught since the exciton relaxation process in QDs is slower than in bulk materials due to the large intraband energy gap in QDs. In this dissertation, we have synthesized the CdTe and CdTe/CdS core/shell QDs, characterized their structure, and analyzed their photophysical properties. We used organometallic methods to synthesize the CdTe QDs in a noncoordinating solvent. To avoid being quenched by air, ligands, solvent, or other compounds, CdS shell was successfully deposited on the CdTe QDs by different methods, including the slow injection method, the successive ion layer adsorption and reaction (SILAR) method, and thermal-cycling coupled single precursor method (TC-SP). Our final product, quasi-type- II CdTe/CdS core/shell QDs were able to emit at 770 nm with a fluorescence quantum yield as high as 70%. We also tried to deposit a second shell ZnS on CdTe/CdS core/shell QDs since some compounds can quench CdTe/CdS core/shell QDs. Even though different methods were used to deposit ZnS shell on the CdTe/CdS core/shell QDs, CdTe/CdS/ZnS core/shell/shell QDs still can be quenched. Furthermore, the CdTe/CdS core/shell and CdTe/CdS/ZnS core/shell/shell QDs were transferred into aqueous phase, phosphate buffered saline or deionized water, by switching the hydrophilic ligands (thiol or PEG ligands). The thioglycolic acid (TGA)-capped CdTe/CdS core/shell QDs can be kept in aqueous phase with high fluorescence quantum yield (60%--70%) for more than two months. However, some other compounds in organic or

  5. Hi shells, supershells, shell-like objects, and ''worms''

    SciTech Connect

    Heiles, C.

    1984-08-01

    We present photographic representations of the combination of two Hi surveys, so as to eliminate the survey boundaries at Vertical BarbVertical Bar = 10/sup 0/. We also present high-contrast photographs for particular velocities to exhibit weak Hi features. All of these photographs were used to prepare a new list of Hi shells, supershells, and shell-like objects. We discuss the structure of three shell-like objects that are associated with high-velocity gas, and with gas at all velocities that is associated with radio continuum loops I, II, and III. We use spatial filtering to find wiggly gas filaments: ''worms'': crawling away from the galactic plane in the inner Galaxy. The ''worms'' are probably parts of shells that are open at the top; such shells should be good sources of hot gas for the galactic halo.

  6. Microscopic Shell Model Calculations for sd-Shell Nuclei

    NASA Astrophysics Data System (ADS)

    Barrett, Bruce R.; Dikmen, Erdal; Maris, Pieter; Shirokov, Andrey M.; Smirnova, Nadya A.; Vary, James P.

    Several techniques now exist for performing detailed and accurate calculations of the structure of light nuclei, i.e., A ≤ 16. Going to heavier nuclei requires new techniques or extensions of old ones. One of these is the so-called No Core Shell Model (NCSM) with a Core approach, which involves an Okubo-Lee-Suzuki (OLS) transformation of a converged NCSM result into a single major shell, such as the sd-shell. The obtained effective two-body matrix elements can be separated into core and single-particle (s.p.) energies plus residual two-body interactions, which can be used for performing standard shell-model (SSM) calculations. As an example, an application of this procedure will be given for nuclei at the beginning ofthe sd-shell.

  7. Foam shell cryogenic ICF target

    DOEpatents

    Darling, Dale H.

    1987-01-01

    A uniform cryogenic layer of DT fuel is maintained in a fusion target having a low density, small pore size, low Z rigid foam shell saturated with liquid DT fuel. Capillary action prevents gravitational slumping of the fuel layer. The saturated shell may be cooled to produce a solid fuel layer.

  8. Multifunctional magnetic and fluorescent core-shell nanoparticles for bioimaging.

    PubMed

    Lu, Yanjiao; He, Bicheng; Shen, Jie; Li, Jie; Yang, Wantai; Yin, Meizhen

    2015-02-07

    Novel magnetic and fluorescent core-shell nanoparticles have been fabricated, which exhibit superparamagnetic behavior and emit strong near-infrared fluorescence. The nanoparticles are highly biocompatible and can be internalized into cells with nucleic accumulation via strong interaction with nucleic acids, implying potential applications in the biomedical field.

  9. The template-assisted synthesis of polypyrrole hollow microspheres with a double-shelled structure.

    PubMed

    Niu, Chunyu; Zou, Bingfang; Wang, Yongqiang; Chen, Lin; Zheng, Haihong; Zhou, Shaomin

    2015-03-25

    Double-shelled polypyrrole hollow microspheres were synthesized via a novel template-assisted concept, using iron oxide hollow microspheres as both the sacrificial template and initiator in acidic solution.

  10. Shell forming apparatus

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Granett, Dan (Inventor); Akutagawa, Wesley M. (Inventor)

    1987-01-01

    A nozzle assembly is described for use in a system that forms small gas-filled shells, which avoids the need for holding a miniature inner nozzle precisely concentric with a miniature outer nozzle. The outer nozzle has a diameter which is less than about 0.7 millimeter, which results in fluid passing through the nozzle having a progressively greater velocity at locations progressively further from the walls of the outer nozzle across most of the nozzle. This highly variable velocity profile automatically forces gas to the center of the outer nozzle. The end of the inner nozzle, which emits gas, is spaced upstream from the tip of the outer nozzle, to provide a distance along which to center the gas. This self-centering characteristic permits the inner nozzle to be positioned so its axis is not concentric with the axis of the outer nozzle.

  11. Composite shell spacecraft seat

    NASA Technical Reports Server (NTRS)

    Barackman, Victor J. (Inventor); Pulley, John K. (Inventor); Simon, Xavier D. (Inventor); McKee, Sandra D. (Inventor)

    2008-01-01

    A two-part seat (10) providing full body support that is specific for each crew member (30) on an individual basis. The two-part construction for the seat (10) can accommodate many sizes and shapes for crewmembers (30) because it is reconfigurable and therefore reusable for subsequent flights. The first component of the two-part seat construction is a composite shell (12) that surrounds the crewmember's entire body and is generically fitted to their general size in height and weight. The second component of the two-part seat (10) is a cushion (20) that conforms exactly to the specific crewmember's entire body and gives total body support in more complex environment.

  12. Crack problems in cylindrical and spherical shells

    NASA Technical Reports Server (NTRS)

    Erdogan, F.

    1976-01-01

    Standard plate or shell theories were used as a starting point to study the fracture problems in thin-walled cylindrical and spherical shells, assuming that the plane of the crack is perpendicular to the surface of the sheet. Since recent studies have shown that local shell curvatures may have a rather considerable effect on the stress intensity factor, the crack problem was considered in conjunction with a shell rather than a plate theory. The material was assumed to be isotropic and homogeneous, so that approximate solutions may be obtained by approximating the local shell crack geometry with an ideal shell which has a solution, namely a spherical shell with a meridional crack, a cylindrical shell with a circumferential crack, or a cylindrical shell with an axial crack. A method of solution for the specially orthotropic shells containing a crack was described; symmetric and skew-symmetric problems are considered in cylindrical shells with an axial crack.

  13. Glass shell manufacturing in space

    NASA Technical Reports Server (NTRS)

    Downs, R. L.; Ebner, M. A.; Nolen, R. L., Jr.

    1981-01-01

    Highly-uniform, hollow glass spheres (shells), which are used for inertial confinement fusion targets, were formed from metal-organic gel powder feedstock in a vertical furnace. As a result of the rapid pyrolysis caused by the furnace, the gel is transformed to a shell in five distinct stages: (a) surface closure of the porous gel; (b) generation of a closed-cell foam structure in the gel; (c) spheridization of the gel and further expansion of the foam; (d) coalescence of the closed-cell foam to a single-void shell; and (e) fining of the glass shell. The heat transfer from the furnace to the falling gel particle was modeled to determine the effective heating rate of the gel. The model predicts the temperature history for a particle as a function of mass, dimensions, specific heat, and absorptance as well as furnace temperature profile and thermal conductivity of the furnace gas. A model was developed that predicts the gravity-induced degradation of shell concentricity in falling molten shells as a function of shell characteristics and time.

  14. Optimum rotationally symmetric shells for flywheel rotors

    DOEpatents

    Blake, Henry W.

    2000-01-01

    A flywheel rim support formed from two shell halves. Each of the shell halves has a disc connected to the central shaft. A first shell element connects to the disc at an interface. A second shell element connects to the first shell element. The second shell element has a plurality of meridional slits. A cylindrical shell element connects to the second shell element. The cylindrical shell element connects to the inner surface of the flywheel rim. A flywheel rim support having a disc connected an outer diameter of a shaft. Two optimally shaped shell elements connect to the optimally shaped disc at an interface. The interface defines a discontinuity in a meridional slope of said support. A cylindrical shell element connects to the two shell elements. The cylindrical shell element has an outer surface for connecting to the inner surface of the flywheel rim. A flywheel rim casing includes an annular shell connected to the central shaft. The annular shell connects to the flywheel rim. A composite shell surrounds the shaft, annular shell and flywheel rim.

  15. MicroShell Minimalist Shell for Xilinx Microprocessors

    NASA Technical Reports Server (NTRS)

    Werne, Thomas A.

    2011-01-01

    MicroShell is a lightweight shell environment for engineers and software developers working with embedded microprocessors in Xilinx FPGAs. (MicroShell has also been successfully ported to run on ARM Cortex-M1 microprocessors in Actel ProASIC3 FPGAs, but without project-integration support.) Micro Shell decreases the time spent performing initial tests of field-programmable gate array (FPGA) designs, simplifies running customizable one-time-only experiments, and provides a familiar-feeling command-line interface. The program comes with a collection of useful functions and enables the designer to add an unlimited number of custom commands, which are callable from the command-line. The commands are parameterizable (using the C-based command-line parameter idiom), so the designer can use one function to exercise hardware with different values. Also, since many hardware peripherals instantiated in FPGAs have reasonably simple register-mapped I/O interfaces, the engineer can edit and view hardware parameter settings at any time without stopping the processor. MicroShell comes with a set of support scripts that interface seamlessly with Xilinx's EDK tool. Adding an instance of MicroShell to a project is as simple as marking a check box in a library configuration dialog box and specifying a software project directory. The support scripts then examine the hardware design, build design-specific functions, conditionally include processor-specific functions, and complete the compilation process. For code-size constrained designs, most of the stock functionality can be excluded from the compiled library. When all of the configurable options are removed from the binary, MicroShell has an unoptimized memory footprint of about 4.8 kB and a size-optimized footprint of about 2.3 kB. Since MicroShell allows unfettered access to all processor-accessible memory locations, it is possible to perform live patching on a running system. This can be useful, for instance, if a bug is

  16. Comparative study of shell swab and shell crush methods for the recovery of Salmonella from shell eggs.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Swabbing (SW) is the standard methodology for the recovery of resident microorganisms from shell eggs in Japan. A comparative study of shell swab (SW) and a shell crush (CR) technique was performed to recover the laboratory-inoculated Salmonella from shell eggs. It was found that the recovery of ...

  17. Recovery of Salmonella from commercial shell eggs by shell rinse and shell crush methodologies.

    PubMed

    Musgrove, M T; Jones, D R; Northcutt, J K; Harrison, M A; Cox, N A; Ingram, K D; Hinton, A J

    2005-12-01

    Salmonella is the most important human pathogen associated with shell eggs. Salmonella Enteritidis is the serotype most often implicated in outbreaks, although other serotypes have been recovered from eggs and from the commercial shell egg washing environment. Many sample methods are used to recover microorganisms from eggshells and membranes. A shell rinse and modified shell-and-membrane crush method for recovery of Salmonella were compared. Eggs were collected from 3 commercial shell-washing facilities (X, Y, and Z) during 3 visits. Twelve eggs were collected from each of 10 to 12 locations along the egg processing chain. After being transported back to the laboratory, each egg was sampled first by a shell rinse method and then by a shell crush method. For each technique (rinse or crush), 2 pools of 5 eggs per location sampled were selectively enriched for the recovery of Salmonella. Presumptive samples positive for Salmonella were confirmed serologically. Overall, there were 10.1% (40/396) Salmonella-positive pooled samples. Salmonella were recovered by the shell rinse and shell crush techniques (4.8 vs. 5.3%, respectively). Plant X yielded 21.5% Salmonella positives, whereas less than 5% of samples from plants Y and Z were found to be contaminated with the organism (4.2 and 4.5%, respectively). Salmonella was recovered more often from unwashed eggs (15.8%) than from washed eggs (8.3%). For some eggs, Salmonella was only recovered by one of the methods. Use of both approaches in the same experiment increased sampling sensitivity, although in most cases, crushing provided more sensitive Salmonella recovery.

  18. 7 CFR 996.19 - Shelled peanuts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Shelled peanuts. 996.19 Section 996.19 Agriculture... STANDARDS FOR DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Definitions § 996.19 Shelled peanuts. Shelled peanuts means the kernels or portions of kernels of peanuts after the shells are removed....

  19. 7 CFR 996.19 - Shelled peanuts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Shelled peanuts. 996.19 Section 996.19 Agriculture... STANDARDS FOR DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Definitions § 996.19 Shelled peanuts. Shelled peanuts means the kernels or portions of kernels of peanuts after the shells are removed....

  20. 7 CFR 996.19 - Shelled peanuts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Shelled peanuts. 996.19 Section 996.19 Agriculture... STANDARDS FOR DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Definitions § 996.19 Shelled peanuts. Shelled peanuts means the kernels or portions of kernels of peanuts after the shells are removed....

  1. 7 CFR 996.19 - Shelled peanuts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Shelled peanuts. 996.19 Section 996.19 Agriculture... STANDARDS FOR DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Definitions § 996.19 Shelled peanuts. Shelled peanuts means the kernels or portions of kernels of peanuts after the shells are removed....

  2. 7 CFR 996.19 - Shelled peanuts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Shelled peanuts. 996.19 Section 996.19 Agriculture... STANDARDS FOR DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Definitions § 996.19 Shelled peanuts. Shelled peanuts means the kernels or portions of kernels of peanuts after the shells are removed....

  3. Insulative laser shell coupler

    DOEpatents

    Arnold, Phillip A.; Anderson, Andrew T.; Alger, Terry W.

    1994-01-01

    A segmented coaxial laser shell assembly having at least two water jacket sections, two pairs of interconnection half rings, a dialectric break ring, and a pair of threaded ring sections. Each water jacket section with an inner tubular section that defines an inner laser cavity with water paths adjacent to at least a portion of the exterior of the inner tubular section, and mating faces at the end of the water jacket section through which the inner laser cavity opens and which defines at least one water port therethrough in communication with the water jackets. The water paths also define in their external surface a circumferential notch set back from and in close proximity to the mating face. The dielectric break ring has selected thickness and is placed between, and in coaxial alignment with, the mating faces of two of the adjacent water jacket sections. The break ring also defines an inner laser cavity of the same size and shape as the inner laser cavity of the water jacket sections and at least one water passage through the break ring to communicate with at least one water port through the mating faces of the water jacket sections.

  4. Insulative laser shell coupler

    DOEpatents

    Arnold, P.A.; Anderson, A.T.; Alger, T.W.

    1994-09-20

    A segmented coaxial laser shell assembly having at least two water jacket sections, two pairs of interconnection half rings, a dielectric break ring, and a pair of threaded ring sections is disclosed. Each water jacket section with an inner tubular section that defines an inner laser cavity with water paths adjacent to at least a portion of the exterior of the inner tubular section, and mating faces at the end of the water jacket section through which the inner laser cavity opens and which defines at least one water port therethrough in communication with the water jackets. The water paths also define in their external surface a circumferential notch set back from and in close proximity to the mating face. The dielectric break ring has selected thickness and is placed between, and in coaxial alignment with, the mating faces of two of the adjacent water jacket sections. The break ring also defines an inner laser cavity of the same size and shape as the inner laser cavity of the water jacket sections and at least one water passage through the break ring to communicate with at least one water port through the mating faces of the water jacket sections. 4 figs.

  5. Rapid microwave synthesis and photoluminescence properties of rare earth-based coordination polymer core-shell particles

    NASA Astrophysics Data System (ADS)

    Huang, Shuang; Xu, Hualan; Wang, Mengya; Zhong, Shengliang; Zeng, Chenghui

    2016-12-01

    Coordination polymer (CP) core-shell particles, with Eu-based CP as the core and La-based CP as the shell, were prepared using a facile microwave heating method. Pyridine-2, 5-dicarboxylic acid (PDA) was selected as the organic building blo, and DMF was used as the solvent. SEM and TEM images show that the resultant cores are nanospheres with diameters of 200-400 nm. Products with different shell thickness were prepared. The luminescence properties of the core-shell structures were studied and the influence of the La-based CP shell on the photoluminescence properties of the core were investigated. The fluorescence intensity and lifetime of the Eu-based CP core were varied with the addition of shell thickness. Both of them increases at first and then decreases with the increase of shell thickness.

  6. Evaluation of sanitizers for inactivating Salmonella on in-shell pecans and pecan nutmeats.

    PubMed

    Beuchat, Larry R; Mann, David A; Alali, Walid Q

    2012-11-01

    Chlorine, organic acids, and water extracts of inedible pecan components were tested for effectiveness in killing Salmonella on pecans. In-shell pecans and nutmeats (U.S. Department of Agriculture medium pieces) were immersion inoculated with a mixture of five Salmonella serotypes, dried to 3.7% moisture, and stored at 4°C for 3 to 6 weeks. In-shell nuts were immersed in chlorinated water (200, 400, and 1,000 μg/ml), lactic acid (0.5, 1, and 2%), and levulinic acid (0.5, 1, and 2%) with and without 0.05% sodium dodecyl sulfate (SDS), and a mixed peroxyacid sanitizer (Tsunami 200, 40 μg/ml) for up to 20 min at 21°C. The rate of reduction of free chlorine in conditioning water decreased as the ratio of in-shell nuts/water was increased. The rate of reduction was more rapid when nuts were not precleaned before treatment. The initial population of Salmonella on in-shell nuts (5.9 to 6.3 log CFU/g) was reduced by 2.8 log CFU/g after treating with chlorinated water (1,000 μg/ml). Treatment with 2% lactic acid plus SDS or 2% levulinic acid plus SDS reduced the pathogen by 3.7 and 3.4 log CFU/g, respectively. Lactic and levulinic acids (2%) without SDS were less effective (3.3- and 2.1-log CFU/g reductions, respectively) than acids with SDS. Treatment with Tsunami 200 resulted in a 2.4-log CFU/g reduction. In-shell nuts and nutmeats were immersed in water extracts of ground pecan shucks (hulls), shells, a mixture of shells and pith, and pith. The general order of lethality of extracts to Salmonella was shuck < shell-pith ≤ shell ≤ pith < chlorine (400 μg/ml) and shuck < shell ≤ pith = shell-pith < chlorine (400 μg/ml). Results emphasize the importance of removing soil and dust on in-shell pecans before conditioning in chlorinated water and the need for sanitizers with increased effectiveness in killing Salmonella on pecans.

  7. Computerized Buckling Analysis of Shells

    DTIC Science & Technology

    1981-06-01

    bl block nurmber) Shells Composites Buckl ing Stiffened Numerical Methods Elastic-Plastic Nonlinear Survey 20 AES’RACT (Con’inue on re, ense Ride If...Contract F33615-76-C-3105. The work was completed under Task 2307NI, "Basic Research in Behavior of Metallic and Composite Components of Airframe Struc...and Internal Pressure ....... ................. ... 134 Stiffened Cylindrical Shells Under Combined Loading .... ........ 136 - Buckling of Composite

  8. Rotating thin-shell wormhole

    NASA Astrophysics Data System (ADS)

    Ovgun, A.

    2016-11-01

    We construct a rotating thin-shell wormhole using a Myers-Perry black hole in five dimensions, using the Darmois-Israel junction conditions. The stability of the wormhole is analyzed under perturbations. We find that exotic matter is required at the throat of the wormhole to keep it stable. Our analysis shows that stability of the rotating thin-shell wormhole is possible if suitable parameter values are chosen.

  9. Nematic textures in spherical shells

    NASA Astrophysics Data System (ADS)

    Vitelli, V.; Nelson, D. R.

    2006-08-01

    The equilibrium texture of nematic shells is studied as a function of their thickness. For ultrathin shells the ground state has four short (1)/(2) disclination lines but, as the thickness of the film increases, a three-dimensional escaped configuration composed of two pairs of half-hedgehogs becomes energetically favorable. We derive an exact solution for the nematic ground state in the one Frank constant approximation and study the stability of the corresponding texture against thermal fluctuations.

  10. Multistage process for the production of bioethanol from almond shell.

    PubMed

    Kacem, Imen; Koubaa, Mohamed; Maktouf, Sameh; Chaari, Fatma; Najar, Taha; Chaabouni, Moncef; Ettis, Nadia; Ellouz Chaabouni, Semia

    2016-07-01

    This work describes the feasibility of using almond shell as feedstock for bioethanol production. A pre-treatment step was carried out using 4% NaOH for 60min at 121°C followed by 1% sulfuric acid for 60min at 121°C. Enzymatic saccharification of the pre-treated almond shell was performed using Penicillium occitanis enzymes. The process was optimized using a hybrid design with four parameters including the incubation time, temperature, enzyme loads, and polyethylene glycol (PEG) concentration. The optimum hydrolysis conditions led to a sugar yield of 13.5%. A detoxification step of the enzymatic hydrolysate was carried out at pH 5 using 1U/ml of laccase enzyme produced by Polyporus ciliatus. Fermenting efficiency of the hydrolysates was greatly improved by laccase treatment, increasing the ethanol yield from 30% to 84%. These results demonstrated the efficiency of using almond shell as a promising source for bioethanol production.

  11. Waste shells of mollusk and egg as biodiesel production catalysts.

    PubMed

    Viriya-Empikul, N; Krasae, P; Puttasawat, B; Yoosuk, B; Chollacoop, N; Faungnawakij, K

    2010-05-01

    The solid oxide catalysts derived from waste shells of egg, golden apple snail, and meretrix venus were employed to produce biodiesel from transesterification of palm olein oil. The shell materials were calcined in air at 800 degrees C with optimum time of 2-4h to transform calcium species in the shells into active CaO catalysts. All catalysts showed the high biodiesel production activity over 90% fatty acid methyl ester (FAME) in 2h, whilst the eggshell-derived catalyst showed comparable activity to the one derived from commercial CaCO(3). The catalytic activity was in accordance with the surface area of and the Ca content in the catalysts.

  12. Red ochre and shells: clues to human evolution.

    PubMed

    Duarte, Carlos M

    2014-10-01

    The 200-kiloannus (ka) use of red ochre and shells by humans is interpreted as a simple clue of symbolic thinking. Integration of multiple lines of evidence supports the opinion that the use of red ochre and shells might have had direct significance for human evolution. Use of seafood and red ochre supplies docosahexaenoic acid (DHA), possibly iron, and other essential nutrients for brain development and reproductive health, improving human fitness and triggering brain growth. The fitness advantages to humans of using shells, and possibly red ochre, might have selected for artistic and symbolic expression, and, thereby, lead to social cohesion. Current global health syndromes show that an adequate supply of seafood and iron continues to play a fundamental role in human health.

  13. Triton shells of intact erythrocytes.

    PubMed

    Sheetz, M P; Sawyer, D

    1978-01-01

    About 40% of human erythrocyte membrane protein is resistant to solubilization in 0.5% Triton X-114. These components comprise a structure called a Triton shell roughly similar in size and shape to the original erythrocyte and thus constitute a cytoskeleton. With increasing concentrations of Triton the lipid content of the Triton shell decreases dramatically, whereas the majority of the protein components remain constant. Exceptions to this rule include proteins contained in band 3, the presumed anion channel, and in band 4 which decrease with increasing Triton concentration. The Triton-insoluble complex includes spectrin (bands 1 and 2), actin (band 5), and bands 3' and 7. Component 3' has an apparent molecular weight of 88,000 daltons as does 3; but unlike 3, it is insensitive to protease treatment of the intact cell, has a low extinction coefficient at 280 nm, and is solubilized from the shells in alkaline water solutions. Component 7 also has a low extinction coefficient at 280 nm. Spectrin alone is solubilized from the Triton shells in isotonic media. The solubilized spectrin contains no bound Triton and coelectrophoreses with spectrin eluted in hypotonic solutions from ghosts. Electron micrographs of fixed Triton shells stained with uranyl acetate show the presence of numerous filaments which appear beaded and are 80--120 A in diameter. The filaments cannot be composed mainly af actin, but enough spectrin is present to form the filaments. Triton shells may provide an excellent source of material useful in the investigation of the erythrocyte cytoskeleton.

  14. Phenolic compounds and antioxidant activity of kernels and shells of Mexican pecan (Carya illinoinensis).

    PubMed

    de la Rosa, Laura A; Alvarez-Parrilla, Emilio; Shahidi, Fereidoon

    2011-01-12

    The phenolic composition and antioxidant activity of pecan kernels and shells cultivated in three regions of the state of Chihuahua, Mexico, were analyzed. High concentrations of total extractable phenolics, flavonoids, and proanthocyanidins were found in kernels, and 5-20-fold higher concentrations were found in shells. Their concentrations were significantly affected by the growing region. Antioxidant activity was evaluated by ORAC, DPPH•, HO•, and ABTS•-- scavenging (TAC) methods. Antioxidant activity was strongly correlated with the concentrations of phenolic compounds. A strong correlation existed among the results obtained using these four methods. Five individual phenolic compounds were positively identified and quantified in kernels: ellagic, gallic, protocatechuic, and p-hydroxybenzoic acids and catechin. Only ellagic and gallic acids could be identified in shells. Seven phenolic compounds were tentatively identified in kernels by means of MS and UV spectral comparison, namely, protocatechuic aldehyde, (epi)gallocatechin, one gallic acid-glucose conjugate, three ellagic acid derivatives, and valoneic acid dilactone.

  15. Adsorption of metal ions by pecan shell-based granular activated carbons.

    PubMed

    Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J

    2003-09-01

    The present investigation was undertaken to evaluate the adsorption effectiveness of pecan shell-based granular activated carbons (GACs) in removing metal ions (Cu(2+), Pb(2+), Zn(2+)) commonly found in municipal and industrial wastewater. Pecan shells were activated by phosphoric acid, steam or carbon dioxide activation methods. Metal ion adsorption of shell-based GACs was compared to the metal ion adsorption of a commercial carbon, namely, Calgon's Filtrasorb 200. Adsorption experiments were conducted using solutions containing all three metal ions in order to investigate the competitive effects of the metal ions as would occur in contaminated wastewater. The results obtained from this study showed that acid-activated pecan shell carbon adsorbed more lead ion and zinc ion than any of the other carbons, especially at carbon doses of 0.2-1.0%. However, steam-activated pecan shell carbon adsorbed more copper ion than the other carbons, particularly using carbon doses above 0.2%. In general, Filtrasorb 200 and carbon dioxide-activated pecan shell carbons were poor metal ion adsorbents. The results indicate that acid- and steam-activated pecan shell-based GACs are effective metal ion adsorbents and can potentially replace typical coal-based GACs in treatment of metal contaminated wastewater.

  16. Tunable construction of multi-shelled hollow carbonate nanospheres and their potential applications

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoming; Zhang, Xiaoting; Yang, Lin; Wang, Ge; Jiang, Kai; Wu, Geoffrey; Cui, Weigang; Wei, Zipeng

    2016-04-01

    The development of multi-shelled hollow carbonate nanospheres (MHCN) for biomedical applications is challenging, and has not been reported. In this study, a facile approach is firstly reported to synthesize hierarchically porous MHCN with controllable shell numbers using a novel strategy called layer-by-layer thermal decomposition of organic acid salts and templates. The choice of organic acid salts as the reactants is innovative and crucial. The shell numbers of porous MHCN can be easily controlled and tuned through adjusting the adsorption temperature of organic acid salts and/or the adsorption ability of the template. The synthetic method can not only open a window to prepare the multi-shelled carbonates but also provide a new strategy to synthesise other multi-shelled inorganic salts. Notably, the hierarchically porous multi-shelled hollow structures empower the carbonates with not only a large specific surface area but also good porosity and permeability, showing great potential for future applications. Herein, our in vitro/vivo evaluations show that CaCO3 MHCN possess a high drug loading capacity and a sustained-release drug profile. It is highly expected that this novel synthetic strategy for MHCN and novel MHCN platform have the potential for biomedical applications in the near future.The development of multi-shelled hollow carbonate nanospheres (MHCN) for biomedical applications is challenging, and has not been reported. In this study, a facile approach is firstly reported to synthesize hierarchically porous MHCN with controllable shell numbers using a novel strategy called layer-by-layer thermal decomposition of organic acid salts and templates. The choice of organic acid salts as the reactants is innovative and crucial. The shell numbers of porous MHCN can be easily controlled and tuned through adjusting the adsorption temperature of organic acid salts and/or the adsorption ability of the template. The synthetic method can not only open a window to

  17. Semiclassical environment of collapsing shells

    SciTech Connect

    Banerjee, Kinjal; Paranjape, Aseem

    2009-12-15

    We explore in detail the semiclassical environment of collapsing shells of matter, and determine the semiclassical flux measured by a variety of observers. This study is a preliminary step in a broader investigation of thermodynamic properties of the geometry of collapsing objects. Specifically, in this paper we consider spherically symmetric null and timelike collapsing shells which form an event horizon, and calculate the flux measured by observers both inside and outside the shell, and both inside and outside the event horizon, and find nontrivial results in most of the cases. Additionally, we also investigate the environment of a shell which collapses but does not form a horizon, halting at some radius larger than the Schwarzschild radius, and find that such an object generically gives rise to a pulse of radiation which is sharply peaked as it travels inwards and is reflected at the origin, and eventually emerges from the shell in a thermalized form. Our results have potential consequences in addressing questions pertaining, e.g. to black hole entropy and backreaction.

  18. Shell models of magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Plunian, Franck; Stepanov, Rodion; Frick, Peter

    2013-02-01

    Shell models of hydrodynamic turbulence originated in the seventies. Their main aim was to describe the statistics of homogeneous and isotropic turbulence in spectral space, using a simple set of ordinary differential equations. In the eighties, shell models of magnetohydrodynamic (MHD) turbulence emerged based on the same principles as their hydrodynamic counter-part but also incorporating interactions between magnetic and velocity fields. In recent years, significant improvements have been made such as the inclusion of non-local interactions and appropriate definitions for helicities. Though shell models cannot account for the spatial complexity of MHD turbulence, their dynamics are not over simplified and do reflect those of real MHD turbulence including intermittency or chaotic reversals of large-scale modes. Furthermore, these models use realistic values for dimensionless parameters (high kinetic and magnetic Reynolds numbers, low or high magnetic Prandtl number) allowing extended inertial range and accurate dissipation rate. Using modern computers it is difficult to attain an inertial range of three decades with direct numerical simulations, whereas eight are possible using shell models. In this review we set up a general mathematical framework allowing the description of any MHD shell model. The variety of the latter, with their advantages and weaknesses, is introduced. Finally we consider a number of applications, dealing with free-decaying MHD turbulence, dynamo action, Alfvén waves and the Hall effect.

  19. Foam shell project: Progress report

    SciTech Connect

    Overturf, G.; Reibold, B.; Cook, B.; Schroen-Carey, D.

    1994-03-25

    The authors report on their work to produce a foam shell target for two possible applications: (1) as liquid-layered cryogenic target on Omega Upgrade, and (2) as a back-up design for the NIF. This target consists of a roughly 1 mm diameter and 100 {mu}m thick spherical low-density foam shell surrounding a central void. The foam will be slightly overfilled with liquid D{sub 2} or DT, the overfilled excess being symmetrically distributed on the inside of the shell and supported by thermal gradient techniques. The outside of the foam is overcoated with full density polymer which must be topologically smooth. The technology for manufacturing this style of foam shell involves microencapsulation techniques and has been developed by the Japanese at ILE. Their goal is to determine whether this technology can be successfully adapted to meet US ICF objectives. To this end a program of foam shell development has been initiated at LLNL in collaboration with both the General Atomics DOE Target Fabrication Contract Corporation and the Target Fabrication Group at LLE.

  20. Comparing Fluid and Elastic Block Copolymer Shells

    NASA Astrophysics Data System (ADS)

    Rozairo, Damith; Croll, Andrew B.

    2014-03-01

    Emulsions can be stabilized with the addition of an amphiphilic diblock copolymer, resulting in droplets surrounded and protected by a polymer monolayer. Such droplets show considerable promise as advanced cargo carriers in pharmaceuticals or cosmetics due to their strength and responsiveness. Diblock copolymer interfaces remain mostly fluid and may not be able to attain the mechanical performance desired by industry. To strengthen block copolymer emulsion droplets we have developed a novel method for creating thin elastic shells using polystyrene-b-poly(acrylic acid)-b-polystyrene (PS-PAA-PS). Characterization of the fluid filled elastic shells is difficult with traditional means which lead us to develop a new and general method of mechanical measurement. Specifically, we use laser scanning confocal microscopy to achieve a high resolution measure of the deformation of soft spheres under the influence of gravity. To prove the resilience of the technique we examine both a polystyrene-b-poly(ethylene oxide) (PS-PEO) stabilized emulsion and the PS-PAA-PS emulsion. The mechanical measurement allows the physics of the polymer at the interface to be examined, which will ultimately lead to the rational development of these technologies.

  1. Closed-shell and open-shell 2D nanographenes.

    PubMed

    Sun, Zhe; Wu, Jishan

    2014-01-01

    This chapter describes a series of two-dimensional (2D) expanded arene networks, also known as nanographenes, with either closed-shell or open-shell electronic structure in the ground state. These systems are further categorized into three classes on a basis of different edge structures: those with zigzag edges only, those with armchair edges only, and those possessing both. Distinctive physical properties of these 2D aromatic systems are closely related to their structural characteristics and provide great potential for them as materials for different applications.

  2. Pd@Pt Core–Shell Nanoparticles with Branched Dandelion-like Morphology as Highly Efficient Catalysts for Olefin Reduction

    EPA Science Inventory

    A facile synthesis based on the addition of ascorbic acid to a mixture of Na2PdCl4, K2PtCl6, and Pluronic P123 results in highly branched core–shell nanoparticles (NPs) with a micro–mesoporous dandelion-like morphology comprising Pd core and Pt shell. The slow reduction kinetics ...

  3. Design and synthesis of highly luminescent near-infrared-emitting water-soluble CdTe/CdSe/ZnS core/shell/shell quantum dots.

    PubMed

    Zhang, Wenjin; Chen, Guanjiao; Wang, Jian; Ye, Bang-Ce; Zhong, Xinhua

    2009-10-19

    Applications of water-dispersible near-infrared (NIR)-emitting quantum dots (QDs) have been hampered by their instability and low photoluminescence (PL) efficiencies. In this paper, water-soluble highly luminescent NIR-emitting QDs were developed through constructing CdTe/CdSe/ZnS core/shell/shell nanostructure. The CdTe/CdSe type-II structure yields the QDs with NIR emission. By varying the size of CdTe cores and the thickness of the CdSe shell, the emission wavelength of the obtained nanostructure can span from 540 to 825 nm. In addition, the passivation of the ZnS shell with a substantially wide bandgap confines the excitons within the CdTe/CdSe interface and isolates them from the solution environment and consequently improves the stability of the nanostructure, especially in aqueous media. An effective shell-coating route was developed for the preparation of CdTe/CdSe core/shell nanostructures by selecting capping reagents with a strong coordinating capacity and adopting a low temperature for shell deposition. An additional ZnS shell was deposited around the outer layer of CdTe/CdSe QDs to form the core/shell/shell nanostructure through the decomposition of single molecular precursor zinc diethyldithiocarbamate in the crude CdTe/CdSe reaction solution. The water solubilization of the initially oil-soluble CdTe/CdSe/ZnS QDs was achieved through ligand replacement by 3-mercaptopropionic acid. The as-prepared water-soluble CdTe/CdSe/ZnS QDs possess PL quantum yields as high as 84% in aqueous media, which is one of the best results for the luminescent semiconductor nanocrystals.

  4. Plastic buckling of cylindrical shells

    SciTech Connect

    Bandyopadhyay, K.; Xu, J.; Shteyngart, S.; Eckert, H.

    1994-05-01

    Cylindrical shells exhibit buckling under axial loads at stresses much less than the respective theoretical critical stresses. This is due primarily to the presence of geometrical imperfections even through such imperfections could be very small (e.g., comparable to thickness). Under internal pressure, the shell regains some of its buckling strength. For a relatively large radius-to-tickness ratio and low internal pressure, the effect can be reasonably estimated by an elastic analysis. However, for low radius-to-thickness ratios and greater pressures, the elastic-plastic collapse controls the failure load. In order to quantify the elastic-plastic buckling capacity of cylindrical shells, an analysis program was carried out by use of the computer code BOSOR5 developed by Bushnell of Lockheed Missiles and Space company. The analysis was performed for various radius-to- thickness ratios and imperfection amplitudes. The analysis results are presented in this paper.

  5. Asymptotic safety goes on shell

    NASA Astrophysics Data System (ADS)

    Benedetti, Dario

    2012-01-01

    It is well known in quantum field theory that the off-shell effective action depends on the gauge choice and field parametrization used in calculating it. Nevertheless, the typical scheme in which the scenario of asymptotically safe gravity is investigated is an off-shell version of the functional renormalization group equation. Working with the Einstein-Hilbert truncation as a test bed, we develop a new scheme for the analysis of asymptotically safe gravity in which the on-shell part of the effective action is singled out and we show that the beta function for the essential coupling has no explicit gauge dependence. In order to reach our goal, we introduce several technical novelties, including a different decomposition of the metric fluctuations, a new implementation of the ghost sector and a new cut-off scheme. We find a nontrivial fixed point, with a value of the cosmological constant that is independent of the gauge-fixing parameters.

  6. Microfluidic synthesis of Ag@Cu2O core-shell nanoparticles with enhanced photocatalytic activity.

    PubMed

    Tao, Sha; Yang, Mei; Chen, Huihui; Ren, Mingyue; Chen, Guangwen

    2017-01-15

    A microfluidic-based method for the continuous synthesis of Ag@Cu2O core-shell nanoparticles (NPs) has been developed. It only took 32s to obtain Ag@Cu2O core-shell NPs, indicating a high efficiency of this microfluidic-based method. Triangular Ag nanoprisms were employed as the cores for the overgrowth of Cu2O through the reduction of Cu(OH)4(2-) with ascorbic acid. The as-synthesized samples were characterized by XRD, TEM, SEM, HAADF-STEM, EDX, HRTEM, UV-vis spectra and N2 adsorption-desorption. The characterization results revealed that the as-synthesized Ag@Cu2O core-shell NPs exhibited a well-defined core-shell nanostructure with a polycrystalline shell, which was composed of numbers of Cu2O domains epitaxially growing on the triangular Ag nanoprism. It was concluded that the synthesis parameters such as the molar ratio of trisodium citrate to AgNO3, H2O2 to AgNO3, NaOH to CuSO4, ascorbic acid to CuSO4 and AgNO3 to CuSO4 had significant effect on the synthesis of Ag@Cu2O core-shell NPs. Moreover, Ag@Cu2O core-shell NPs exhibited superior catalytic activity in comparison with pristine Cu2O NPs towards the visible light-driven degradation of methyl orange. This enhanced photocatalytic activity of Ag@Cu2O core-shell NPs was attributed to the larger BET surface area and improved charge separation efficiency. The trapping experiment indicated that holes and superoxide anion radicals were the major reactive species in the photodegradation of methyl orange over Ag@Cu2O core-shell NPs. In addition, Ag@Cu2O core-shell NPs showed no obvious deactivation in the cyclic test.

  7. Glass shell manufacturing in space

    NASA Technical Reports Server (NTRS)

    Nolen, R. L., Jr.; Ebner, M. A.; Downs, R. L.

    1980-01-01

    A heat transfer model was developed that mathematically describes the heating and calculates the thermal history of a gel particle in free-fall through the furnace. The model parameters that greatly affect the calculations were found to be gel particle mass, geometry, specific heat, and furnace gas. Empirical testing of the model has commenced. The code calculations and the initial empirical testing results both indicate that the gel-to-shell transformation occurs early and rapidly in the thermal history of the gel particle, and that for current work the heat transfer rate is not a limitation in shell production.

  8. On Closed Shells in Nuclei

    DOE R&D Accomplishments Database

    Mayer, M. G.

    1948-02-01

    It has been suggested in the past that special numbers of neutrons or protons in the nucleus form a particularly stable configuration.{sup1} The complete evidence for this has never been summarized, nor is it generally recognized how convincing this evidence is. That 20 neutrons or protons (Ca{sup40}) form a closed shell is predicted by the Hartree model. A number of calculations support this fact.{sup2} These considerations will not be repeated here. In this paper, the experimental facts indicating a particular stability of shells of 50 and 82 protons and of 50, 82, and 126 neutrons will be listed.

  9. Shell may expand detergent alcohols

    SciTech Connect

    1996-10-23

    Shell Chemical is studying plans to expand detergent alcohols capacity in the US, CW has learned. The company is considering adding capacity for about 80 million lbs/year. If the project is approved, it would be implemented at the company`s Geismar, LA site. Shell will make a final decision on whether to proceed with the project within six months. It has been rumored to be considering a capacity addition as a result of tightening supply of natural and synthetic detergent alcohols.

  10. Encapsulation of Bacterial Spores in Nanoorganized Polyelectrolyte Shells (Postprint)

    DTIC Science & Technology

    2009-05-27

    features using in vitro self-assembly methods. Shell formation was based on layer-by-layer electrostatic assembly via the alternate adsorption of...small-angle neutron scattering. LbL assembly of natural polyelectrolytes ( chitosan , alginate, and hyaluronic acid) also allowed the encapsulation of...the spore dispersion and held for 15 min for adsorption completion. Polycations and poly- anions were adsorbed sequentially and washed with 1 mL of DI

  11. Multifunctional yolk-in-shell nanoparticles for pH-triggered drug release and imaging

    PubMed Central

    Chen, Hongyu; Qi, Bin; Moore, Thomas; Wang, Fenglin; Colvin, Daniel C.; Sanjeewa, Liurukara D.; Gore, John C.; Hwu, Shiou-Jyh; Mefford, O. Thompson; Alexis, Frank; Anker, Jeffrey N.

    2015-01-01

    Multifunctional nanoparticles are synthesized for both pH-triggered drug release and imaging with radioluminescence, upconversion luminescent, and magnetic resonance imaging (MRI). The particles have a yolk-in-shell morphology, with a radioluminescent core, an upconverting shell, and a hollow region between the core and shell for loading drugs. They are synthesized by controlled encapsulation of a radioluminescent nanophosphor yolk in a silica shell, partial etching of the yolk in acid, and encapsulation of the silica with an upconverting luminescent shell. Metroxantrone, a chemotherapy drug, was loaded into the hollow space between X-ray phosphor yolk and up-conversion phosphor shell through pores in the shell. To encapsulate the drug and control the release rate, the nanoparticles are coated with pH-responsive biocompatible polyelectrolyte layers of charged hyaluronic acid sodium salt and chitosan. The nanophosphors display bright luminescence under X-ray, blue light (480 nm), and infrared light (980 nm). They also served as T1 and T2 MRI contrast agents with relaxivities of 3.5 mM−1 s−1 (r1) and 64 mM−1s−1 (r2). These multifunctional nanocapsules have applications in controlled drug delivery and multimodal imaging. PMID:24753264

  12. Proteomic analysis of the organic matrix of the abalone Haliotis asinina calcified shell

    PubMed Central

    2010-01-01

    Background The formation of the molluscan shell is regulated to a large extent by a matrix of extracellular macromolecules that are secreted by the shell forming tissue, the mantle. This so called "calcifying matrix" is a complex mixture of proteins and glycoproteins that is assembled and occluded within the mineral phase during the calcification process. While the importance of the calcifying matrix to shell formation has long been appreciated, most of its protein components remain uncharacterised. Results Recent expressed sequence tag (EST) investigations of the mantle tissue from the tropical abalone (Haliotis asinina) provide an opportunity to further characterise the proteins in the shell by a proteomic approach. In this study, we have identified a total of 14 proteins from distinct calcified layers of the shell. Only two of these proteins have been previously characterised from abalone shells. Among the novel proteins are several glutamine- and methionine-rich motifs and hydrophobic glycine-, alanine- and acidic aspartate-rich domains. In addition, two of the new proteins contained Kunitz-like and WAP (whey acidic protein) protease inhibitor domains. Conclusion This is one of the first comprehensive proteomic study of a molluscan shell, and should provide a platform for further characterization of matrix protein functions and interactions. PMID:21050442

  13. Au/Au@polythiophene core/shell nanospheres for heterogeneous catalysis of nitroarenes.

    PubMed

    Shin, Hye-Seon; Huh, Seong

    2012-11-01

    Monodisperse Au/Au@polythiophene core/shell nanospheres were facilely prepared through the reduction of gold precursor, AuCl₄⁻, by 2-thiopheneacetonitrile in an aqueous solution. Concomitantly, 2-thiopheneacetonitrile polymerized during this redox process. As a result, Au nanoparticle was encapsulated by conductive polymer shell to afford novel core/shell nanospheres. Interestingly, the shell was composed of very tiny Au nanoparticles surrounded with thiophene polymers. Thus, the new material is best described as Au/Au@polythiophene core/shell nanospheres. FT-IR spectroscopy revealed that the Au nanoparticles were coordinated by the C≡N groups of the polythiophene shell. Some of the C≡N groups were partially hydrolyzed into COOH groups during the redox process because of the acidic reaction condition. The shell was conductive based on the typical ohmic behavior found in electrical measurement. The Au/Au@polythiophene core/shell nanospheres were found to be very active catalysts for the hydrogenation of various nitroarene compounds into corresponding aminoarene compounds in the presence of NaBH₄. Both hydrophilic and hydrophobic nitroarenes were efficiently hydrogenated under mild conditions.

  14. Shell Games: Uncovering Periodic Properties.

    ERIC Educational Resources Information Center

    Lamb, William G.

    1983-01-01

    Describes activities (demonstrations/experiments) used to introduce history of periodic properties--without electrons, orbitals, filling shells, or any conception of atoms beyond Dalton's model. Activities supplement first chapter in a currently available chemistry text. Indicates potential danger of experiments if proper safety precautions are…

  15. Finite element shell instability analysis

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Formulation procedures and the associated computer program for finite element thin shell instability analysis are discussed. Data cover: (1) formulation of basic element relationships, (2) construction of solution algorithms on both the conceptual and algorithmic levels, and (3) conduction of numerical analyses to verify the accuracy and efficiency of the theory and related programs therein are described.

  16. Recent advances in shell theory. [application of asymptotic approach to thin walled shells

    NASA Technical Reports Server (NTRS)

    Simmonds, J. G.

    1976-01-01

    The results reviewed are divided into two categories: those that relate two-dimensional shell theory to three-dimensional elasticity theory and those concerned with shell theory per se. In the second category results for general elastic systems that carry over, by specialization or analogy, to shells and results that are unique to shell theory itself are considered.

  17. 7 CFR 981.6 - Shelled almonds.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Shelled almonds. 981.6 Section 981.6 Agriculture... AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 981.6 Shelled almonds. Shelled almonds mean raw or roasted almonds...

  18. 7 CFR 981.6 - Shelled almonds.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Shelled almonds. 981.6 Section 981.6 Agriculture... AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 981.6 Shelled almonds. Shelled almonds mean raw or roasted almonds...

  19. 7 CFR 981.6 - Shelled almonds.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Shelled almonds. 981.6 Section 981.6 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 981.6 Shelled almonds. Shelled almonds mean raw or roasted almonds...

  20. 7 CFR 981.6 - Shelled almonds.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Shelled almonds. 981.6 Section 981.6 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 981.6 Shelled almonds. Shelled almonds mean raw or roasted almonds...

  1. 7 CFR 981.6 - Shelled almonds.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Shelled almonds. 981.6 Section 981.6 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 981.6 Shelled almonds. Shelled almonds mean raw or roasted almonds...

  2. Protein profiles of hatchery egg shell membrane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Eggshells, which consist largely of calcareous outer shell and shell membranes, constitute a significant part of poultry hatchery waste. The shell membranes (ESM) not only contain proteins that originate from egg whites but also from the developing embryos and different contaminants of m...

  3. 7 CFR 983.29 - Shelled pistachios.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Shelled pistachios. 983.29 Section 983.29 Agriculture... AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE PISTACHIOS GROWN IN CALIFORNIA, ARIZONA, AND NEW MEXICO Definitions § 983.29 Shelled pistachios. Shelled pistachios means...

  4. 7 CFR 983.29 - Shelled pistachios.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Shelled pistachios. 983.29 Section 983.29 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE PISTACHIOS GROWN IN CALIFORNIA, ARIZONA, AND NEW MEXICO Definitions § 983.29 Shelled pistachios. Shelled pistachios means...

  5. 7 CFR 983.29 - Shelled pistachios.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Shelled pistachios. 983.29 Section 983.29 Agriculture... AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE PISTACHIOS GROWN IN CALIFORNIA, ARIZONA, AND NEW MEXICO Definitions § 983.29 Shelled pistachios. Shelled pistachios means...

  6. Thin-shell wormholes in dilaton gravity

    SciTech Connect

    Eiroa, Ernesto F.; Simeone, Claudio

    2005-06-15

    In this work we construct charged thin-shell Lorentzian wormholes in dilaton gravity. The exotic matter required for the construction is localized in the shell and the energy conditions are satisfied outside the shell. The total amount of exotic matter is calculated and its dependence with the parameters of the model is analyzed.

  7. Developments in Cylindrical Shell Stability Analysis

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Starnes, James H., Jr.

    1998-01-01

    Today high-performance computing systems and new analytical and numerical techniques enable engineers to explore the use of advanced materials for shell design. This paper reviews some of the historical developments of shell buckling analysis and design. The paper concludes by identifying key research directions for reliable and robust methods development in shell stability analysis and design.

  8. 7 CFR 984.10 - Shelled walnuts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Shelled walnuts. 984.10 Section 984.10 Agriculture... AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE WALNUTS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 984.10 Shelled walnuts. Shelled walnuts means walnut kernels after...

  9. 7 CFR 984.10 - Shelled walnuts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Shelled walnuts. 984.10 Section 984.10 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE WALNUTS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 984.10 Shelled walnuts. Shelled walnuts means walnut kernels after...

  10. 7 CFR 984.10 - Shelled walnuts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Shelled walnuts. 984.10 Section 984.10 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE WALNUTS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 984.10 Shelled walnuts. Shelled walnuts means walnut kernels after...

  11. 7 CFR 984.10 - Shelled walnuts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Shelled walnuts. 984.10 Section 984.10 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE WALNUTS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 984.10 Shelled walnuts. Shelled walnuts means walnut kernels after...

  12. 7 CFR 984.10 - Shelled walnuts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Shelled walnuts. 984.10 Section 984.10 Agriculture... AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE WALNUTS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 984.10 Shelled walnuts. Shelled walnuts means walnut kernels after...

  13. Cacao bean shell poisoning in a dog.

    PubMed

    Drolet, R; Arendt, T D; Stowe, C M

    1984-10-15

    Cacao bean shells contain potentially toxic quantities of theobromine, a xanthine compound similar in effects to caffeine and theophylline. A dog, which ingested a lethal quantity of garden mulch made from cacao bean shells, developed severe convulsions and died 17 hours later. Analysis of the stomach contents and the ingested cacao bean shells revealed the presence of lethal amounts of theobromine.

  14. Vibrations of cantilevered circular cylindrical shells Shallow versus deep shell theory

    NASA Technical Reports Server (NTRS)

    Lee, J. K.; Leissa, A. W.; Wang, A. J.

    1983-01-01

    Free vibrations of cantilevered circular cylindrical shells having rectangular planforms are studied in this paper by means of the Ritz method. The deep shell theory of Novozhilov and Goldenveizer is used and compared with the usual shallow shell theory for a wide range of shell parameters. A thorough convergence study is presented along with comparisons to previously published finite element solutions and experimental results. Accurately computed frequency parameters and mode shapes for various shell configurations are presented. The present paper appears to be the first comprehensive study presenting rigorous comparisons between the two shell theories in dealing with free vibrations of cantilevered cylindrical shells.

  15. X-ray fluorescence microtomography of SiC shells

    SciTech Connect

    Ice, G.E.; Chung, J.S.; Nagedolfeizi, M.

    1997-04-01

    TRISCO coated fuel particles contain a small kernel of nuclear fuel encapsulated by alternating layers of C and SiC. The TRISCO coated fuel particle is used in an advanced fuel designed for passive containment of the radioactive isotopes. The SiC layer provides the primary barrier for radioactive elements in the kernel. The effectiveness of this barrier layer under adverse conditions is critical to containment. The authors have begun the study of SiC shells from TRISCO fuel. They are using the fluorescent microprobe beamline 10.3.1. The shells under evaluation include some which have been cycled through a simulated core melt-down. The C buffer layers and nuclear kernels of the coated fuel have been removed by laser drilling through the SiC and then exposing the particle to acid. Elements of interest include Ru, Sb, Cs, Ce and Eu. The radial distribution of these elements in the SiC shells can be attributed to diffusion of elements in the kernel during the melt-down. Other elements in the shells originate during the fabrication of the TRISCO particles.

  16. Optimization of Method to Extract Collagen from "Emperor" Tissue of Soft-shelled Turtles.

    PubMed

    Yamamoto, Tetsushi; Uemura, Kentaro; Sawashi, Yuki; Mitamura, Kuniko; Taga, Atsushi

    2016-01-01

    Soft-shelled turtles (Pelodiscus sinensis) are widely distributed in some Asian countries, and parts of this turtle contain abundant collagen. In this study, we optimized a method for extracting collagen from the soft-shelled turtle. We used three types of solvent and four extraction conditions to determine an effective collagen extraction method, which was extraction at 37°C with acetic acid after hydrochloric acid pretreatment. Next, we extracted collagen from three regions in the soft-shelled turtle: muscle, skin, and an area of soft tissue in the periphery of the turtle shell known in Japan and China as the "emperor." We determined that emperor tissue yielded the highest concentration and purity of collagen. We then optimized the pretreatment method for extraction from emperor tissue by using formic acid instead of hydrochloric acid, and the amount of extracted collagen increased by approximately 1.3-fold. Finally, we identified the optimal solvent out of four types of organic acid for collagen extraction from emperor tissue; the amount of extracted collagen from emperor tissue increased approximately 3-fold when citric acid was used as the extraction solvent instead of acetic acid. Emperor tissue can regenerate; thus, it is possible to obtain collagen from the emperor repeatedly without killing the turtle. Our findings suggest that the emperor tissue of softshelled turtles may be a good source of collagen for pharmaceutical and cosmetic applications.

  17. High-resolution nitrogen stable isotope sclerochronology of bivalve shell carbonate-bound organics

    NASA Astrophysics Data System (ADS)

    Gillikin, David P.; Lorrain, Anne; Jolivet, Aurélie; Kelemen, Zita; Chauvaud, Laurent; Bouillon, Steven

    2017-03-01

    Nitrogen stable isotope ratios (δ15N) of organic material have successfully been used to track food-web dynamics, nitrogen baselines, pollution, and nitrogen cycling. Extending the δ15N record back in time has not been straightforward due to a lack of suitable substrates in which δ15N records are faithfully preserved, thus sparking interest in utilizing skeletal carbonate-bound organic matter (CBOM) in mollusks, corals, and foraminifera. Here we test if calcite Pecten maximus shells from the Bay of Brest and the French continental shelf can be used as an archive of δ15N values over a large environmental gradient and at a high temporal resolution (approximately weekly). Bulk CBOM δ15N values from the growing tip of shells collected over a large nitrogen isotope gradient were strongly correlated with adductor muscle tissue δ15N values (R2 = 0.99, n = 6, p < 0.0001). We were able to achieve weekly resolution (on average) over the growing season from sclerochronological profiles of three shells, which showed large seasonal variations up to 3.4‰. However, there were also large inter-specimen differences (up to 2.5‰) between shells growing at the same time and location. Generally, high-resolution shell δ15N values follow soft-tissue δ15N values, but soft-tissues integrate more time, hence soft-tissue data are more time-averaged and smoothed. Museum-archived shells from the 1950s, 1965, and 1970s do not show a large difference in δ15N values through time despite expected increasing N loading to the Bay over this time, which could be due to anthropogenic N sources with contrasting values. Compiling shell CBOM δ15N data from several studies suggests that the offset between soft-tissue and shell δ15N values (Δtissue-shell) differs between calcite and aragonite shells. We hypothesize that this difference is caused by differences in amino acids used in constructing the different minerals, which should be specific to the CaCO3 polymorph being constructed. Future

  18. Shell Model Depiction of Isospin Mixing in sd Shell

    SciTech Connect

    Lam, Yi Hua; Smirnova, Nadya A.; Caurier, Etienne

    2011-11-30

    We constructed a new empirical isospin-symmetry breaking (ISB) Hamiltonian in the sd(1s{sub 1/2}, 0d{sub 5/2} and 0d{sub 3/2}) shell-model space. In this contribution, we present its application to two important case studies: (i){beta}-delayed proton emission from {sup 22}Al and (ii) isospin-mixing correction to superallowed 0{sup +}{yields}0{sup +}{beta}-decay ft-values.

  19. Comparison of protoporphyrin IX content and related gene expression in the tissues of chickens laying brown-shelled eggs.

    PubMed

    Li, Guangqi; Chen, Sirui; Duan, Zhongyi; Qu, Lujiang; Xu, Guiyun; Yang, Ning

    2013-12-01

    Protoporphyrin IX (PpIX), an immediate precursor of heme, is the main pigment resulting in the brown coloration of eggshell. The brownness and uniformity of the eggshell are important marketing considerations. In this study, 9 chickens laying darker brown shelled eggs and 9 chickens laying lighter brown shelled eggs were selected from 464 individually caged layers in a Rhode Island Red pureline. The PpIX contents were measured with a Microplate Reader at the wavelength of 412 nm and were compared in different tissues of the 2 groups. Although no significant difference in serum, bile, and excreta was found between the 2 groups, PpIX content in the shell gland and eggshell of the darker group was higher than in those of the lighter group, suggesting that PpIX was synthesized in the shell gland. We further determined the expression levels of 8 genes encoding enzymes involved in the heme synthesis and transport in the liver and shell gland at 6 h postoviposition by quantitative PCR. The results showed that expression of aminolevulinic acid synthase-1 (ALAS1) was higher in the liver of hens laying darker brown shelled eggs, whereas in the shell gland the expression levels of ALAS1, coproporphyrinogen oxidase (CPOX), ATP-binding cassette family members ABCB7 and ABCG2, and receptor for feline leukemia virus, subgroup C (FLVCR) were significantly higher in the hens laying darker brown shelled eggs. Our results demonstrated that hens laying darker brown shelled eggs could deposit more PpIX onto the eggshell and the brownness of the eggshell was dependent on the total quantity of PpIX in the eggshell. More heme was synthesized in the liver and shell gland of hens laying darker brown shelled eggs than those of hens laying lighter brown shelled eggs. High expression level of ABCG2 might facilitate the accumulation of PpIX in the shell gland.

  20. Pressure Shell Approach to Integrated Environmental Protection

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.

    2011-01-01

    The next generation of exploration mission human systems will require environmental protection such as radiation protection that is effective and efficient. In order to continue human exploration, habitat systems will require special shells to protect astronauts from hostile environments. The Pressure Shell Approach to integrated environmental (radiation) protection is a multi-layer shell that can be used for multifunctional environmental protection. Self-healing, self-repairing nano technologies and sensors are incorporated into the shell. This shell consists of multiple layers that can be tailored for specific environmental protection needs. Mainly, this innovation focuses on protecting crew from exposure to micrometeorites, thermal, solar flares, and galactic cosmic ray (GCR) radiation. The Pressure Shell Approach consists of a micrometeoroid and secondary ejecta protection layer; a thin, composite shell placed in between two layers that is non-structural; an open cavity layer that can be filled with water, regolith, or polyethylene foam; a thicker composite shell that is a structural load bearing that is placed between two layers; and a bladder coating on the interior composite shell. This multi-layer shell creates an effective radiation protection system. Most of its layers can be designed with the materials necessary for specific environments. In situ materials such as water or regolith can be added to the shell design for supplemental radiation protection.

  1. Shell Model Approach to Nuclear Level Density

    NASA Astrophysics Data System (ADS)

    Horoi, Mihai

    2000-04-01

    Nuclear level densities (NLD) are traditionally estimated using variations of Fermi Gas Formula (FGF) or combinatoric techniques. Recent investigations using Monte Carlo Shell Model (MCSM) techniques indicate that a shell model description of NLD may be an accurate and stable approach. Full shell model calculations of NLD are very difficult. We calculated the NLD for all nuclei in the sd shell and show that the results can be described by a single particle combinatoric model, which depends on two parameters similar to FGF. We further investigated other models and find that a sum of gaussians with means and variances given by French and Ratcliff averages (Phys. Rev. C 3, 94(1971)) is able to accurately describe shell model NLD, even when shell effects are present. The contribution of the spurious center-of-mass motion to the shell model NLD is also discussed.

  2. Turbine blade with spar and shell

    SciTech Connect

    Davies, Daniel O; Peterson, Ross H

    2012-04-24

    A turbine blade with a spar and shell construction in which the spar and the shell are both secured within two platform halves. The spar and the shell each include outward extending ledges on the bottom ends that fit within grooves formed on the inner sides of the platform halves to secure the spar and the shell against radial movement when the two platform halves are joined. The shell is also secured to the spar by hooks extending from the shell that slide into grooves formed on the outer surface of the spar. The hooks form a serpentine flow cooling passage between the shell and the spar. The spar includes cooling holes on the lower end in the leading edge region to discharge cooling air supplied through the platform root and into the leading edge cooling channel.

  3. Inner-shell excitation spectroscopy of peroxides

    NASA Astrophysics Data System (ADS)

    Harding, K. L.; Kalirai, S.; Hayes, R.; Ju, V.; Cooper, G.; Hitchcock, A. P.; Thompson, M. R.

    2015-11-01

    O 1s inner-shell excitation spectra of a number of vapor phase molecules containing peroxide bonds - hydrogen peroxide (H2O2), di-t-butylperoxide (tBuOtBu), benzoyl peroxide, ((C6H5(CO)O)2), luperox-F [1,3(4)-bis(tertbutylperoxyisopropyl) benzene], and analogous, non-peroxide compounds - water, t-butanol and benzoic acid have been measured. C 1s spectra are also reported. O 1s spectra of solid benzoic acid, di-t-butylperoxide and luperox-F recorded using a scanning transmission X-ray microscope, are also reported, and compared to the corresponding gaseous spectra. Spectral interpretation was aided by comparing the spectra of the peroxide and non-peroxide counterparts and with ab initio calculations. A characteristic O 1s → σ∗O-O transition at 533.0(3) eV is identified in each peroxide species, which is absent in the corresponding non-peroxide counterpart species. The energy and intensity of the 533 eV peroxide feature is stable and thus useful for analysis of peroxides in mixtures, such as tracking residual peroxide initiators, or peroxides produced in fuel cells.

  4. The shell coal gasification process

    SciTech Connect

    Koenders, L.O.M.; Zuideveld, P.O.

    1995-12-01

    Future Integrated Coal Gasification Combined Cycle (ICGCC) power plants will have superior environmental performance and efficiency. The Shell Coal Gasification Process (SCGP) is a clean coal technology, which can convert a wide range of coals into clean syngas for high efficiency electricity generation in an ICGCC plant. SCGP flexibility has been demonstrated for high-rank bituminous coals to low rank lignites and petroleum coke, and the process is well suited for combined cycle power generation, resulting in efficiencies of 42 to 46% (LHV), depending on choice of coal and gas turbine efficiency. In the Netherlands, a 250 MWe coal gasification combined cycle plant based on Shell technology has been built by Demkolec, a development partnership of the Dutch Electricity Generating Board (N.V. Sep). The construction of the unit was completed end 1993 and is now followed by start-up and a 3 year demonstration period, after that the plant will be part of the Dutch electricity generating system.

  5. Glass shell manufacturing in space

    NASA Technical Reports Server (NTRS)

    Nolen, R. L.; Downs, R. L.; Ebner, M. A.

    1982-01-01

    Highly-uniform, hollow glass spheres, which are used for inertial-confinement fusion targets, are formed from metal-organic gel powder feedstock in a drop-tower furnace. The modelling of this gel-to-sphere transformation has consisted of three phases: gel thermochemistry, furnance-to-gel heat transfer, and gravity-driven degradation of the concentricity of the molten shell. The heat transfer from the furnace to the free-falling gel particle was modelled with forced convection. The gel mass, dimensions, and specific heat as well as furnace temperature profile and furnace gas conductivity, were controlled variables. This model has been experimentally verified. In the third phase, a mathematical model was developed to describe the gravity-driven degradation of concentricity in molten glass shells.

  6. Density Measurements of Be Shells

    SciTech Connect

    Cook, R C

    2005-02-15

    The purpose of this memo is to lay out the uncertainties associated with the measurement of density of Be ablators by the weigh and volume method. I am counting on the readers to point out any faulty assumptions about the techniques or uncertainties associated with them. Based on the analysis presented below we should expect that 30 {micro}m thick shells will have an uncertainty in the measured density of about 2% of the value, coming more or less equally from the mass and volume measurement. The uncertainty is roughly inversely proportional to the coating thickness, thus a 60 {micro}m walled shell would result in a 1% uncertainty in the density.

  7. Shell Evolutions and Nuclear Forces

    NASA Astrophysics Data System (ADS)

    Sorlin, O.

    2014-03-01

    During the last 30 years, and more specifically during the last 10 years, many experiments have been carried out worldwide using different techniques to study the shell evolution of nuclei far from stability. What seemed not conceivable some decades ago became rather common: all known magic numbers that are present in the valley of stability disappear far from stability and are replaced by new ones at the drip line. By gathering selected experimental results, beautifully consistent pictures emerge, that very likely take root in the properties of the nuclear forces.The present manuscript describes some of these discoveries and proposes an intuitive understanding of these shell evolutions derived from observations. Extrapolations to yet unstudied regions, as where the explosive r-process nucleosynthesis occurs, are proposed. Some remaining challenges and puzzling questions are also addressed.

  8. Buckling of spherical shells revisited

    NASA Astrophysics Data System (ADS)

    Hutchinson, John W.

    2016-11-01

    A study is presented of the post-buckling behaviour and imperfection sensitivity of complete spherical shells subject to uniform external pressure. The study builds on and extends the major contribution to spherical shell buckling by Koiter in the 1960s. Numerical results are presented for the axisymmetric large deflection behaviour of perfect spheres followed by an extensive analysis of the role axisymmetric imperfections play in reducing the buckling pressure. Several types of middle surface imperfections are considered including dimple-shaped undulations and sinusoidal-shaped equatorial undulations. Buckling occurs either as the attainment of a maximum pressure in the axisymmetric state or as a non-axisymmetric bifurcation from the axisymmetric state. Several new findings emerge: the abrupt mode localization that occurs immediately after the onset of buckling, the existence of an apparent lower limit to the buckling pressure for realistically large imperfections, and comparable reductions of the buckling pressure for dimple and sinusoidal equatorial imperfections.

  9. Shell's Middle Distillate Synthesis process

    SciTech Connect

    Voetter, H.; VanDerBurgt, M.J. B.V., The Hague )

    1988-01-01

    The basis of the Shell Middle Distillate Synthesis (SMDS) process is the classic Fischer-Tropsch synthesis. For the case of middle distillate production from natural gas the procedure has been developed to commercial maturity, making use of tailored line-up for synthesis gas production and of proprietary modern catalysts in synthesis. Development work over the last years has in particular lead to improvement of the economy of the process altogether via catalyst performance, reactor sizing and syngas manufacturing line-up.

  10. Corrosion inhibition property of polyester-groundnut shell biodegradable composite.

    PubMed

    Sounthari, P; Kiruthika, A; Saranya, J; Parameswari, K; Chitra, S

    2016-12-01

    The use of natural fibers as reinforcing materials in thermoplastics and thermoset matrix composites provide optimistic environmental profits with regard to ultimate disposability and better use of raw materials. The present work is focused on the corrosion inhibition property of a polymer matrix composite produced by the use of groundnut shell (GNS) waste. Polyester (PE) was synthesized by condensation polymerization of symmetrical 1,3,4-oxadiazole and pimelic acid using sodium lauryl sulfate as surfactant. The polyester-groundnut shell composite (PEGNS) was prepared by ultrasonication method. The synthesized polyester-groundnut shell composite was characterized by FT-IR, TGA and XRD analysis. The corrosion inhibitory effect of PEGNS on mild steel in 1M H2SO4 was investigated using gravimetric method, electrochemical impedance spectroscopy, potentiodynamic polarization, atomic absorption spectroscopy and scanning electron microscopy. The results showed that PEGNS inhibited mild steel corrosion in acid solution and indicated that the inhibition efficiency increased with increasing inhibitor concentration and decrease with increasing temperature. The composite inhibited the corrosion of mild steel through adsorption following the Langmuir adsorption isotherm. Changes in the impedance parameters Rt, Cdl, Icorr, Ecorr, ba and bc suggested the adsorption of PEGNS onto the mild steel surface, leading to the formation of protective film.

  11. Vibration Control of Shallow Shell Structures Using a Shell-Type Dynamic Vibration Absorber

    NASA Astrophysics Data System (ADS)

    Aida, T.; Aso, T.; Nakamoto, K.; Kawazoe, K.

    1998-11-01

    In this study, a new shell-type dynamic vibration absorber is presented for suppressing several modes of vibration of the shallow shell (main shell) under harmonic load. It consists of a shallow shell (the dynamic absorbing shell), under the same boundary condition and with the same shape as those of the main shell, with connecting springs and dampers in the vertical direction between the main and dynamic absorbing shells. Formulae for an approximate tuning method for the shell-type dynamic absorber are also presented using the optimum tuning method for a dynamic absorber in the two-degree-of-freedom system, obtained by the Den Hartog method. Subsequently, numerical calculations are presented which demonstrate the usefulness of the shell-type dynamic vibration absorbers.

  12. Atomic inner-shell transitions

    NASA Technical Reports Server (NTRS)

    Crasemann, B.; Chen, M. H.; Mark, H.

    1984-01-01

    Atomic inner-shell processes have quite different characteristics, in several important aspects, from processes in the optical regime. Energies are large, e.g., the 1s binding energy reaches 100 keV at Z = 87; relativistic and quantum-electrodynamic effects therefore are strong. Radiationless transitions vastly dominate over photon emission in most cases. Isolated inner-shell vacancies have pronounced single-particle character, with correlations generally contributing only approximately 1 eV to the 1s and 2p binding energies; the structure of such systems is thus well tractable by independent-particle self-consistent-field atomic models. For systems containing multiple deep inner-shell vacancies, or for highly stripped ions, the importance of relativistic intermediate coupling and configuration interaction becomes pronounced. Cancellation of the Coulomb interaction can lead to strong manifestations of the Breit interaction in such phenomena as multiplet splitting and hypersatellite X-ray shifts. Unique opportunities arise for the test of theory.

  13. Fabrication of polyimide shells by vapor phase deposition for use as ICF targets

    SciTech Connect

    Alfonso, E.L.; Tsai, F.Y.; Chen, S.H.; Gram, R.Q.; Harding, D.R.

    1999-03-01

    Hollow polyimide shells, for use as ICF targets, were fabricated by co-depositing monomer precursors from the vapor phase onto bounced spherical mandrels. The process involved two stages: first, the deposited monomers (pyromellitic dianhydride and 4,4{prime}-oxydianiline) reacted on the mandrel surface to form polyamic acid; second, the mandrel was heated to 300 C to imidize the polyamic acid and to decompose the mandrel. During this latter process the decomposed mandrel diffused through the thermally stable coating, leaving a polyimide shell. Depositions were performed under low ({approximately}10{sup {minus}3} Torr) and high ({approximately}10{sup {minus}6} Torr) vacuum. Also, flat witness films of polyimide deposited on Si wafers and NaCl allowed the mechanical properties and chemical composition of the film during the heating cycle to be measured. Polyimide shells with diameters ranging from 700 to 950 {micro}m and wall thicknesses ranging from 2 to 13 {micro}m were produced. The shell`s sphericity was greater than 99%. Burst and buckle pressure tests on these shells yielded the estimated mechanical strength properties. The elastic modulus and tensile strength were {approximately}15 GPa and {approximately}300 MPa, respectively. The permeability of D{sub 2} through polyamic acid at 25 C was 7.4 {times} 10{sup {minus}17} mol{center_dot}m/m{sup 2}{center_dot}Pa{center_dot}s and increased to 6.4 {times} 10{sup {minus}16} mol{center_dot}m/m{sup 2}{center_dot}Pa{center_dot}s at 25 C upon curing the shell to 150 C. The permeability of D{sub 2} at 25 C through vapor-deposited polyimide flat films was measured to be 240 times greater than through the as-deposited polyamic acid, and about 7 times greater than through commercially available solution-cast Kapton.

  14. Controlled protein release from monodisperse biodegradable double-wall microspheres of controllable shell thickness

    PubMed Central

    Xia, Yujie; Ribeiro, Pedro F.; Pack, Daniel W.

    2013-01-01

    Biodegradable polymer microparticles are promising delivery depots for protein therapeutics due to their relatively simple fabrication and facile administration. Double-wall microspheres (DWMS) comprising a core and shell made of two distinct polymers may provide enhanced control of the drug release profiles. Using precision particle fabrication (PPF) technology, monodisperse DWMS were fabricated with model protein bovine serum albumin (BSA)-loaded poly(lactide-co-glycolide) (PLG) core and drug-free poly(d,l-lactic acid) (PDLL) shell of uniform thickness. Monolithic single-wall microspheres were also fabricated to mimic the BSA-loaded PLG core. Using ethyl acetate and dichloromethane as shell- and core-phase solvents, respectively, BSA was encapsulated selectively in the core region within DWMS with higher loading and encapsulation efficiency compared to using dichloromethane as core and shell solvents. BSA in vitro release rates were retarded by the presence of the drug-free PDLL shell. Moreover, increasing PDLL shell thickness resulted in decreasing BSA release rate. With a 14-µm thick PDLL shell, an extended period of constant-rate release was achieved. PMID:23954731

  15. In vitro hyperthermia with improved colloidal stability and enhanced SAR of magnetic core/shell nanostructures.

    PubMed

    Patil, R M; Thorat, N D; Shete, P B; Otari, S V; Tiwale, B M; Pawar, S H

    2016-02-01

    Magnetic core/shell nanostructures of Fe3O4 nanoparticles coated with oleic acid and betaine-HCl were studied for their possible use in magnetic fluid hyperthermia (MFH). Their colloidal stability and heat induction ability were studied in different media viz. phosphate buffer solution (PBS), saline solution and glucose solution with different physiological conditions and in human serum. The results showed enhanced colloidal stability in these media owing to their high zeta potential values. Heat induction studies showed that specific absorption rates (SAR) of core/shells were 82-94W/g at different pH of PBS and concentrations of NaCl and glucose. Interestingly, core/shells showed 78.45±3.90W/g SAR in human serum. The cytotoxicity of core/shells done on L929 and HeLa cell lines using 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl tetrazolium bromide and trypan blue dye exclusion assays showed >89% and >80% cell viability for 24 and 48h respectively. Core/shell structures were also found to be very efficient for in vitro MFH on cancer cell line. About 95% cell death was occurred in 90min after hyperthermia treatment. The mechanism of cell death was found to be elevated ROS generation in cells after exposure to core/shells in external magnetic field. This study showed that these core/shells have a great potential to be used in in vivo MFH.

  16. Synthesis of zirconium tungstate-zirconia core-shell composite particles

    SciTech Connect

    Khazeni, Nasser; Mavis, Bora; Guenduez, Guengoer; Colak, Uner

    2011-11-15

    Highlights: {yields} ZrW{sub 2}O{sub 8}-ZrO{sub 2} core-shell particles to offer solutions for sintering problems. {yields} Core synthesis by a precursor based on tungstic acid and zirconium acetate. {yields} Shell phase by urea hydrolysis in the presence of zirconium ions. {yields} [Urea]/[ZrOCl{sub 2}] ratio controls the rate of shell precursor precipitation. -- Abstract: In this work, ZrW{sub 2}O{sub 8}-ZrO{sub 2} core-shell composite particles were synthesized. ZrW{sub 2}O{sub 8} that was used in the core is a material with negative coefficient of thermal expansion, and it was synthesized from a high-pH precursor based on use of tungstic acid and zirconium acetate. Shell layer was composed of ZrO{sub 2} nanocrystallites and precipitated from an aqueous solution by urea hydrolysis. While volume of the shell was effectively controlled by the initial zirconium ion concentration in the solutions, the rate of precipitation was a function of the ratio of initial concentrations of urea to zirconium ions. It is hypothesized that isolation of the ZrW{sub 2}O{sub 8} within a layer of ZrO{sub 2}, will be a key element in solving problems associated with reactivity of ZrW{sub 2}O{sub 8} towards other components in sintering of ceramic-ceramic composites with tuned or zero thermal expansion coefficient.

  17. The second-shell metal ligands of human arginase affect coordination of the nucleophile and substrate.

    PubMed

    Stone, Everett M; Chantranupong, Lynne; Georgiou, George

    2010-12-14

    The active sites of eukaryotic arginase enzymes are strictly conserved, especially the first- and second-shell ligands that coordinate the two divalent metal cations that generate a hydroxide molecule for nucleophilic attack on the guanidinium carbon of l-arginine and the subsequent production of urea and l-ornithine. Here by using comprehensive pairwise saturation mutagenesis of the first- and second-shell metal ligands in human arginase I, we demonstrate that several metal binding ligands are actually quite tolerant to amino acid substitutions. Of >2800 double mutants of first- and second-shell residues analyzed, we found more than 80 unique amino acid substitutions, of which four were in first-shell residues. Remarkably, certain second-shell mutations could modulate the binding of both the nucleophilic water/hydroxide molecule and substrate or product ligands, resulting in activity greater than that of the wild-type enzyme. The data presented here constitute the first comprehensive saturation mutagenesis analysis of a metallohydrolase active site and reveal that the strict conservation of the second-shell metal binding residues in eukaryotic arginases does not reflect kinetic optimization of the enzyme during the course of evolution.

  18. Challenges to the Application of δ15N measurements of the organic fraction of archaeological and fossil mollusk shells to assess paleoenvironmental change.

    NASA Astrophysics Data System (ADS)

    Andrus, C. F. T.

    2015-12-01

    Nitrogen isotope analysis of the organic fraction of mollusk shells is beginning to be applied to questions of past anthropogenic and natural environmental variation using samples from archaeological and fossil deposits. Fairly extensive proxy validation research has been conducted in the past decade, documenting the relationship between the δ15N of ambient particulate organic matter, mollusk soft tissues, and shell organic matrix. However, comparatively little research has addressed the potential effects of taphonomy and diagenesis on these proxy records. Assessing archaeological samples are especially complex in that humans may have transported and/or cooked shell prior to deposition. Shell δ15N data will be presented from modern and archaeological oyster (Crassostrea virginica) and clam shell (Mercenaria spp.) of various late Holocene ages and late Cretaceous Crassatellites vadosus shells. Archaeological shells show some loss of organic matter over time, yet some Cretaceous shells retain enough matrix to permit δ15N analysis. The Cretaceous samples required concentration of the remaining organic matrix by removing carbonate via acid pretreatment prior to EA-IRMS analysis, but modern and archaeological shells had sufficient organic matrix to permit analysis without acid pretreatment. The δ15N data from the archaeological shells do not display obvious alteration from the loss of organic matrix. The results of cooking experiments performed on modern oyster shells also indicate little alteration of δ15N values, unless the shell was heated to the point of disintegration. While these experiments indicate promise for the application of δ15N analysis of shell organic matter, the results are incomplete and lack ideal control over initial δ15N values in ancient samples used for comparisons. Future research, perhaps focused on compound-specific δ15N analysis and additional controlled experiments on moderns shells, may improve this assessment.

  19. Thermal and catalytic slow pyrolysis of Calophyllum inophyllum fruit shell.

    PubMed

    Alagu, R M; Sundaram, E Ganapathy; Natarajan, E

    2015-10-01

    Pyrolysis of Calophyllum inophyllum shell was performed in a fixed bed pyrolyser to produce pyrolytic oil. Both thermal (without catalysts) and catalytic pyrolysis process were conducted to investigate the effect of catalysts on pyrolysis yield and pyrolysis oil characteristics. The yield of pyrolytic oil through thermal pyrolysis was maximum (41% wt) at 425 °C for particle size of 1.18 mm and heating rate of 40 °C/min. In catalytic pyrolysis the pyrolytic oil yield was maximum (45% wt) with both zeolite and kaolin catalysts followed by Al2O3 catalyst (44% wt). The functional groups and chemical components present in the pyrolytic oil are identified by Fourier Transform Infrared Spectroscopy (FT-IR) and Gas Chromatography-Mass Spectrometry (GC-MS) techniques. This study found that C. inophyllum shell is a potential new green energy source and that the catalytic pyrolysis process using zeolite catalyst improves the calorific value and acidity of the pyrolytic oil.

  20. Rigid shells enhance survival of gekkotan eggs.

    PubMed

    Andrews, Robin M

    2015-11-01

    The majority of lizards and snakes produce permeable parchment-shelled eggs that require high moisture conditions for successful embryonic development. One clade of gekkotan lizards is an exception; females produce relatively impermeable rigid-shelled eggs that normally incubate successfully under low moisture conditions. I tested the hypothesis that the rigid-shell increases egg survival during incubation, but only under low moisture conditions. To test this hypothesis, I incubated rigid-shelled eggs of Chondrodactylus turneri under low and under high moisture conditions. Eggs were incubated with parchment-shelled eggs of Eublepharis macularius to insure that incubation conditions were suitable for parchment-shelled eggs. Chondrodactylus turneri eggs had very high survival (>90%) when they were incubated under low moisture conditions. In contrast, eggs incubated under high moisture conditions had low survival overall, and lower survival than those of the parchment-shelled eggs of E. macularius. Mortality of C. turneri and E. macularius eggs incubated under high moisture conditions was the result of fungal infection, a common source of egg mortality for squamates under laboratory and field conditions. These observations document high survival of rigid-shelled eggs under low moisture conditions because eggs escape from fungal infection. Highly mineralized rigid shells also make egg survival independent of moisture availability and may also provide protection from small invertebrates in nature. Enhanced egg survival could thus compensate for the low reproductive output of gekkotans that produce rigid-shelled eggs.

  1. Electrosprayed core-shell polymer-lipid nanoparticles for active component delivery.

    PubMed

    Eltayeb, Megdi; Stride, Eleanor; Edirisinghe, Mohan

    2013-11-22

    A key challenge in the production of multicomponent nanoparticles for healthcare applications is obtaining reproducible monodisperse nanoparticles with the minimum number of preparation steps. This paper focus on the use of electrohydrodynamic (EHD) techniques to produce core-shell polymer-lipid structures with a narrow size distribution in a single step process. These nanoparticles are composed of a hydrophilic core for active component encapsulation and a lipid shell. It was found that core-shell nanoparticles with a tunable size range between 30 and 90 nm and a narrow size distribution could be reproducibly manufactured. The results indicate that the lipid component (stearic acid) stabilizes the nanoparticles against collapse and aggregation and improves entrapment of active components, in this case vanillin, ethylmaltol and maltol. The overall structure of the nanoparticles produced was examined by multiple methods, including transmission electron microscopy and differential scanning calorimetry, to confirm that they were of core-shell form.

  2. Electrosprayed core-shell polymer-lipid nanoparticles for active component delivery

    NASA Astrophysics Data System (ADS)

    Eltayeb, Megdi; Stride, Eleanor; Edirisinghe, Mohan

    2013-11-01

    A key challenge in the production of multicomponent nanoparticles for healthcare applications is obtaining reproducible monodisperse nanoparticles with the minimum number of preparation steps. This paper focus on the use of electrohydrodynamic (EHD) techniques to produce core-shell polymer-lipid structures with a narrow size distribution in a single step process. These nanoparticles are composed of a hydrophilic core for active component encapsulation and a lipid shell. It was found that core-shell nanoparticles with a tunable size range between 30 and 90 nm and a narrow size distribution could be reproducibly manufactured. The results indicate that the lipid component (stearic acid) stabilizes the nanoparticles against collapse and aggregation and improves entrapment of active components, in this case vanillin, ethylmaltol and maltol. The overall structure of the nanoparticles produced was examined by multiple methods, including transmission electron microscopy and differential scanning calorimetry, to confirm that they were of core-shell form.

  3. Transesterification of soybean oil using combusted oyster shell waste as a catalyst.

    PubMed

    Nakatani, Nobutake; Takamori, Hitoshi; Takeda, Kazuhiko; Sakugawa, Hiroshi

    2009-02-01

    Transesterification of soybean oil catalyzed by combusted oyster shell, which is waste material from shellfish farms, was examined. Powdered oyster shell combusted at a temperature above 700 degrees C, at which point the calcium carbonate of oyster shell transformed to calcium oxide, acted as a catalyst in the transesterification of soybean oil. On the basis of factorial design, the reaction conditions of catalyst concentration and reaction time were optimized in terms of the fatty acid methyl ester concentration expressed as biodiesel purity. Under the optimized reaction conditions of a catalyst concentration and reaction time of 25wt.%. and 5h, respectively, the biodiesel yield, expressed relative to the amount of soybean oil poured into the reaction vial, was more than 70% with high biodiesel purity. These results indicate oyster shell waste combusted at high temperature can be reused in biodiesel production as a catalyst.

  4. Zeolitic Core@Shell Adsorbents for the Selective Removal of Free Glycerol from Crude Biodiesel.

    PubMed

    Masoumifard, Nima; Arnal, Pablo M; Kaliaguine, Serge; Kleitz, Freddy

    2015-06-22

    Selective adsorption of free glycerol from crude biodiesel was investigated by using mesoporous silica spheres coated with a thin shell of microporous silicalite-1. A polycrystalline silicalite-1 shell was formed upon first covering the external surfaces of various core templates with discrete silicalite-1 nanocrystals, and this was followed by short hydrothermal treatment to ensure shell uniformity. Batch glycerol adsorption experiments were conducted to evaluate the ability of the sorbents to remove free glycerol selectively from crude biodiesel mixtures at various temperatures, also in comparison to that of conventional sorbents, for example, bare mesoporous silica gel spheres and zeolites. The silicalite-1 shell provided a microporous membrane that hindered the diffusion of fatty acid methyl esters into the mesopores of the composite sorbent, whereas the large pore volume of the mesoporous core enabled multilayer glycerol adsorption; this ultimately substantially enhanced the performance in terms of purification yield and adsorption capacity.

  5. Cracked shells under skew-symmetric loading

    NASA Technical Reports Server (NTRS)

    Lelale, F.

    1982-01-01

    A shell containing a through crack in one of the principal planes of curvature and under general skew-symmetric loading is considered. By employing a Reissner type shell theory which takes into account the effect of transverse shear strains, all boundary conditions on the crack surfaces are satisfied separately. Consequently, unlike those obtained from the classical shell theory, the angular distributions of the stress components around the crack tips are shown to be identical to the distributions obtained from the plane and antiplane elasticity solutions. Extensive results are given for axially and circumferentially cracked cylindrical shells, spherical shells, and toroidal shells under uniform inplane shearing, out of plane shearing, and torsion. The effect of orthotropy on the results is also studied.

  6. SPSM and its application in cylindrical shells

    NASA Astrophysics Data System (ADS)

    Nie, Wu; Zhou, Su-Lian; Peng, Hui

    2008-03-01

    In naval architectures, the structure of prismatic shell is used widely. But there is no suitable method to analyze this kind of structure. Stiffened prismatic shell method (SPSM) presented in this paper, is one of the harmonic semi-analytic methods. Theoretically, strong stiffened structure can be analyzed economically and accurately. SPSM is based on the analytical solution of the governing differential equations for orthotropic cylindrical shells. In these differential equations, the torsional stiffness, bending stiffness and the exact position of each stiffener are taken into account with the Heaviside singular function. An algorithm is introduced, in which the actions of stiffeners on shells are replaced by external loads at each stiffener position. Stiffened shells can be computed as non-stiffened shells. Eventually, the displacement solution of the equations is acquired by the introduction of Green function. The stresses in a corrugated transverse bulkhead without pier base of an oil tanker are computed by using SPSM.

  7. Flow past a porous approximate spherical shell

    NASA Astrophysics Data System (ADS)

    Srinivasacharya, D.

    2007-07-01

    In this paper, the creeping flow of an incompressible viscous liquid past a porous approximate spherical shell is considered. The flow in the free fluid region outside the shell and in the cavity region of the shell is governed by the Navier Stokes equation. The flow within the porous annulus region of the shell is governed by Darcy’s Law. The boundary conditions used at the interface are continuity of the normal velocity, continuity of the pressure and Beavers and Joseph slip condition. An exact solution for the problem is obtained. An expression for the drag on the porous approximate spherical shell is obtained. The drag experienced by the shell is evaluated numerically for several values of the parameters governing the flow.

  8. Uptake and release of anionic surfactant into and from cationic core-shell microgel particles.

    PubMed

    Bradley, Melanie; Vincent, Brian; Burnett, Gary

    2007-08-28

    Core-shell microgel particles, in the colloidal size range, have been prepared and characterized, where the core and the shell are both copolymers, based on N-isopropylacrylamide, but where the core and shell contain different pH-responsive groups having widely separated acid dissociation constants (pKa). The core contains vinylpyridine (VP), which has a pKa value of 4.92, and the shell contains 2-(dimethylamino)ethyl methacrylate (DMAEM), which has a pKa value of 8.4. The dispersion properties, and the uptake and release of an anionic surfactant, sodium dodecylbenzenesulfonate (SDBS), have been studied for both the core and the core-shell microgel particles as a function of pH changes. Both the core and the core-shell particles have been shown to swell as the pH decreases over the range from 7 to 3. However, despite the large differences in the pKa values of the VP and DMEAM groups, no distinct steps in the swelling ratio-pH curve for the core-shell particles were observed, and it is postulated that the boundary between the core and shell regions may be somewhat extended, rather than sharp. The uptake of the anionic surfactant SDBS has been shown to depend on two distinct attractive interactions between the surfactant molecules and the microgel particles: electrostatic and hydrophobic. A reasonable correlation between the minimum in the particle diameter, for both the core and the core-shell particles, and the point of charge neutralization, in the presence of SDBS, has been established.

  9. Adaptive finite element strategies for shell structures

    NASA Technical Reports Server (NTRS)

    Stanley, G.; Levit, I.; Stehlin, B.; Hurlbut, B.

    1992-01-01

    The present paper extends existing finite element adaptive refinement (AR) techniques to shell structures, which have heretofore been neglected in the AR literature. Specific challenges in applying AR to shell structures include: (1) physical discontinuities (e.g., stiffener intersections); (2) boundary layers; (3) sensitivity to geometric imperfections; (4) the sensitivity of most shell elements to mesh distortion, constraint definition and/or thinness; and (5) intrinsic geometric nonlinearity. All of these challenges but (5) are addressed here.

  10. Advances in shell side condensation for refrigerants

    NASA Astrophysics Data System (ADS)

    Webb, Ralph L.

    The design of shell and tube condensers used in air conditioning and refrigeration applications is discussed. The geometry of interest involves condensation on the shell side of a horizontal tube bundle. Enhanced heat transfer geometries are typically used for condensation on the shell side. The heat transfer is removed by water on the tube side, which typically have tube side enhancement. Single tube and row effect condensation data are presented. Thermal design methods for sizing of the condenser are outlined.

  11. Integrable structure in discrete shell membrane theory

    PubMed Central

    Schief, W. K.

    2014-01-01

    We present natural discrete analogues of two integrable classes of shell membranes. By construction, these discrete shell membranes are in equilibrium with respect to suitably chosen internal stresses and external forces. The integrability of the underlying equilibrium equations is proved by relating the geometry of the discrete shell membranes to discrete O surface theory. We establish connections with generalized barycentric coordinates and nine-point centres and identify a discrete version of the classical Gauss equation of surface theory. PMID:24808755

  12. Boson shells harboring charged black holes

    SciTech Connect

    Kleihaus, Burkhard; Kunz, Jutta; Laemmerzahl, Claus; List, Meike

    2010-11-15

    We consider boson shells in scalar electrodynamics coupled to Einstein gravity. The interior of the shells can be empty space, or harbor a black hole or a naked singularity. We analyze the properties of these types of solutions and determine their domains of existence. We investigate the energy conditions and present mass formulae for the composite black hole-boson shell systems. We demonstrate that these types of solutions violate black hole uniqueness.

  13. Single Shell Tank (SST) Retrieval Sequence & Double Shell Tank (DST) Space Evaluation

    SciTech Connect

    HOHL, T.M.

    2001-09-20

    This document describes the baseline single-shell tank (SST) waste retrieval sequence for the River Protection Project updated for Fiscal Year 2002. The double-shell tank (DST) space evaluation presents projected DST needs for Hanford for additional DSTs.

  14. Single Shell Tank (SST) Retrieval Sequence & Double Shell Tank (DST) Space Evaluation

    SciTech Connect

    STRODE, J.N.

    2002-09-23

    This document describes the baseline single-shell tank (SST) waste retrieval sequence for the River Protection Project updated for Fiscal Year 2002. The double-shell tank (DST) space evaluation presents projected DST needs for Hanford for additional DSTs.

  15. Single Shell Tank (SST) Retrieval Sequence and Double Shell Tank (DST) Space Evaluation

    SciTech Connect

    KIRCH, N.W.

    2003-09-23

    This document describes the baseline single-shell tank (SST) waste retrieval sequence for the River Protection Project updated for Fiscal Year 2002. The double-shell tank (DST) space evaluation presents projected DST needs for Hanford for additional DSTs.

  16. Cell-in-Shell Hybrids: Chemical Nanoencapsulation of Individual Cells.

    PubMed

    Park, Ji Hun; Hong, Daewha; Lee, Juno; Choi, Insung S

    2016-05-17

    structures found in nature, for example, bacterial endospores. Bioinspired silicification and phenolics-based coatings are, so far, the main approaches to the formation of cytoprotective cell-in-shell hybrids, because they ensure cell viability during encapsulations and also generate durable nanoshells on cell surfaces. The resulting cell-in-shell hybrids extrinsically possess enhanced resistance to external aggressors, and more intriguingly, the encapsulation alters their metabolic activity, exemplified by retarded or suppressed cell cycle progression. In addition, recent developments in the field have further advanced the synthetic tools available to the stage of chemical sporulation and germination of mammalian cells, where cytoprotective shells are formed on labile mammalian cells and broken apart on demand. For example, individual HeLa cells are coated with a metal-organic complex of ferric ion and tannic acid, and cellular adherence and proliferation are controlled by the programmed shell formation and degradation. Based on these demonstrations, the (degradable) cell-in-shell hybrids are anticipated to find their applications in various biomedical and bionanotechnological areas, such as cytotherapeutics, high-throughput screening, sensors, and biocatalysis, as well as providing a versatile research platform for single-cell biology.

  17. Alternating current dielectrophoresis of core-shell nanoparticles: Experiments and comparison with theory

    NASA Astrophysics Data System (ADS)

    Yang, Chungja

    3D particle-assemblies. Chitosan (amino sugar) and poly-L-lysine (amino acid, PLL) CSnp shell materials were custom synthesized around a hollow (gas) core by utilizing a phospholipid micelle around a volatile fluid templating for the shell material; this approach proves to be novel and distinct from conventional core-shell models wherein a conductive core is coated with an insulative shell. Experiments were conducted within a 100 nl chamber housing 100 um wide Ti/Au quadrapole electrodes spaced 25 um apart. Frequencies from 100kHz to 80MHz at fixed local field of 5Vpp were tested with 10-5 and 10-3 S/m medium conductivities for 25 seconds. Dielectrophoretic responses of ~220 and 340(or ~400) nm chitosan or PLL CSnp were compiled as a function of medium conductivity, size and shell material. Experiments further examined shell thickness and particle concentration (chapter 6) dependencies on ~530 nm CSnp dielectrophoretic and electrorotational responses with ~30nm and ~80 nm shell thicknesses and at particle concentration count rates of 5000 +/- 500, 10000 +/- 500, and 15000 +/- 500 counts per second. Using similar experimental conditions, both dielectrophoretic and electrorotational CSnp responses were compiled versus frequency, shell thickness, and particle concentration. Knowledge gained from this study includes a unique resonance-like dielectrophoretic and electrorotational spectrum, which is significantly distinct from other cells and particles. CSnp dielectric properties were then calculated by parametrically fitting parameters to an existing core-shell model. The optimum conductivity and relative permittivity for the core and the shell are 1E-15 S/m, 1, 0.6 S/m, and 90, respectively. These properties can be exploited to rapidly assemble these unique core-shell particles for future structural color production in fabrics, vehicle, and wall painting.

  18. Shell boosts recovery at Kernridge

    SciTech Connect

    Moore, S.

    1984-01-01

    Since acquiring the Kernridge property in December 1979, Shell Oil Co. has drilled more than 1,800 wells and steadily increased production from 42,000 to 89,000 b/d of oil. Currently, the Kernridge Production Division of Shell California Production Inc. (SCPI), a newly formed subsidiary of Shell Oil Co., is operator for the property. The property covers approximately 35,000 mostly contiguous net acres, with production concentrated mainly on about 5,500 net acres. SCPI's four major fields in the area are the North and South Belridge, Lost Hills, and Antelope Hills. Most of the production comes from the North and South Belridge fields, which were previously held by the Belridge Oil Co. Productive horizons in the fields are the Tulare, Diatomite, Brown Shale, Antelope Shale, 64 Zone, and Agua sand. The Tulare and Diatomite are the two major reservoirs SCPI is developing. The Tulare, encountered between 400 and 1,300 ft, is made up of fine- to coarse-grained, unconsolidated sands with interbedded shales and silt stones and contains 13 /sup 0/ API oil. Using steam drive as the main recovery method, SCPI estimates an ultimate recovery from the Tulare formation of about 60% of the original 1 billion barrels in place. The Diatomite horizon, found between 800 and 3,500 ft and containing light, 28 /sup 0/ API oil, has high porosity (more than 60%), low permeability (less than 1 md), and natural fractures. Because of the Diatomite's low permeability, fracture stimulation is being used to increase well productivity. SCPI anticipates that approximately 5% of the almost 2 billion barrels of oil originally in place will be recovered by primary production.

  19. Material with core-shell structure

    DOEpatents

    Luhrs, Claudia [Rio Rancho, NM; Richard, Monique N [Ann Arbor, MI; Dehne, Aaron [Maumee, OH; Phillips, Jonathan [Rio Rancho, NM; Stamm, Kimber L [Ann Arbor, MI; Fanson, Paul T [Brighton, MI

    2011-11-15

    Disclosed is a material having a composite particle, the composite particle including an outer shell and a core. The core is made from a lithium alloying material and the outer shell has an inner volume that is greater in size than the core of the lithium alloying material. In some instances, the outer mean diameter of the outer shell is less than 500 nanometers and the core occupies between 5 and 99% of the inner volume. In addition, the outer shell can have an average wall thickness of less than 100 nanometers.

  20. Fracture Mitigation Strategies in Gastropod Shells

    NASA Astrophysics Data System (ADS)

    Salinas, Christopher; Kisailus, David

    2013-04-01

    For hundreds of millions of years, gastropods have been evolving, modifying their external calcified shells for defense against shell-breaking and drilling predators. They have evolved primarily to use two different aragonitic microstructures: the evolutionary older Nacre (mother of pearl) structure and the more recently developed crossed-lamellar structure. By using both of these structures, gastropods are able to produce shells that are significantly tougher then geologic aragonite. However, the crossed-lamellar structure allows for a wider variety of shell morphologies, ensuring its increasing presence since the Mesozoic Marine Revolution more than 200 million years ago.

  1. Thermal buckling of laminated composite shells

    SciTech Connect

    Thangaratnam, R.K.; Palaninathan, R.; Ramachandran, J. )

    1990-05-01

    The linear buckling analysis of laminated composite cylindrical and conical shells under thermal load using the finite element method is reported here. Critical temperatures are presented for various cases of cross-ply and angly-ply laminated shells. The effects of radius/thickness ratio, number of layers, ratio of coefficients of thermal expansion, and the angle of fiber orientation have been studied. The results indicate that the buckling behavior of laminated shell under thermal load is different from that of mechanically loaded shell with respect to the angle of fiber orientation. 6 refs.

  2. Hydrate Shell Growth Measured Using NMR.

    PubMed

    Haber, Agnes; Akhfash, Masoumeh; Loh, Charles K; Aman, Zachary M; Fridjonsson, Einar O; May, Eric F; Johns, Michael L

    2015-08-18

    Benchtop nuclear magnetic resonance (NMR) pulsed field gradient (PFG) and relaxation measurements were used to monitor the clathrate hydrate shell growth occurring in water droplets dispersed in a continuous cyclopentane phase. These techniques allowed the growth of hydrate inside the opaque exterior shell to be monitored and, hence, information about the evolution of the shell's morphology to be deduced. NMR relaxation measurements were primarily used to monitor the hydrate shell growth kinetics, while PFG NMR diffusion experiments were used to determine the nominal droplet size distribution (DSD) of the unconverted water inside the shell core. A comparison of mean droplet sizes obtained directly via PFG NMR and independently deduced from relaxation measurements showed that the assumption of the shell model-a perfect spherical core of unconverted water-for these hydrate droplet systems is correct, but only after approximately 24 h of shell growth. Initially, hydrate growth is faster and heat-transfer-limited, leading to porous shells with surface areas larger than that of spheres with equivalent volumes. Subsequently, the hydrate growth rate becomes mass-transfer-limited, and the shells become thicker, spherical, and less porous.

  3. Core/shell colloidal semiconductor nanoplatelets.

    PubMed

    Mahler, Benoit; Nadal, Brice; Bouet, Cecile; Patriarche, Gilles; Dubertret, Benoit

    2012-11-14

    We have recently synthesized atomically flat semiconductor colloidal nanoplatelets with quasi 2D geometry. Here, we show that core/shell nanoplatelets can be obtained with a 2D geometry that is conserved. The epitaxial growth of the shell semiconductor is performed at room temperature. We report the detailed synthesis of CdSe/CdS and CdSe/CdZnS structures with different shell thicknesses. The shell growth is characterized both spectroscopically and structurally. In particular, the core/shell structure appears very clearly on high-resolution, high-angle annular dark-field transmission electron microscope images, thanks to the difference of atomic density between the core and the shell. When the nanoplatelets stand on their edge, we can precisely count the number of atomic planes forming the core and the shell. This provides a direct measurement, with atomic precision, of the core nanoplatelets thickness. The constraints exerted by the shell growth on the core is analyzed using global phase analysis. The core/shell nanoplatelets we obtained have narrow emission spectra with full-width at half-maximum close to 20 nm, and quantum yield that can reach 60%.

  4. Carbon isotopes in mollusk shell carbonates

    NASA Astrophysics Data System (ADS)

    McConnaughey, Ted A.; Gillikin, David Paul

    2008-10-01

    Mollusk shells contain many isotopic clues about calcification physiology and environmental conditions at the time of shell formation. In this review, we use both published and unpublished data to discuss carbon isotopes in both bivalve and gastropod shell carbonates. Land snails construct their shells mainly from respired CO2, and shell δ13C reflects the local mix of C3 and C4 plants consumed. Shell δ13C is typically >10‰ heavier than diet, probably because respiratory gas exchange discards CO2, and retains the isotopically heavier HCO3 -. Respired CO2 contributes less to the shells of aquatic mollusks, because CO2/O2 ratios are usually higher in water than in air, leading to more replacement of respired CO2 by environmental CO2. Fluid exchange with the environment also brings additional dissolved inorganic carbon (DIC) into the calcification site. Shell δ13C is typically a few ‰ lower than ambient DIC, and often decreases with age. Shell δ13C retains clues about processes such as ecosystem metabolism and estuarine mixing. Ca2+ ATPase-based models of calcification physiology developed for corals and algae likely apply to mollusks, too, but lower pH and carbonic anhydrase at the calcification site probably suppress kinetic isotope effects. Carbon isotopes in biogenic carbonates are clearly complex, but cautious interpretation can provide a wealth of information, especially after vital effects are better understood.

  5. Electron Shell as a Resonator

    NASA Astrophysics Data System (ADS)

    Karpeshin, F. F.

    2002-11-01

    Main principles of the resonance effect arising in the electron shells in interaction of the nuclei with electromagnetic radiation are analyzed and presented in the historical aspect. Principles of NEET are considered from a more general position, as compared to how this is usually presented. Characteristic features of NEET and its reverse, TEEN, as internal conversion processes are analyzed, and ways are offered of inducing them by laser radiation. The ambivalent role of the Pauli exclusion principles in NEET and TEEN processes is investigated.

  6. Composted oyster shell as lime fertilizer is more effective than fresh oyster shell.

    PubMed

    Lee, Young Han; Islam, Shah Md Asraful; Hong, Sun Joo; Cho, Kye Man; Math, Renukaradhya K; Heo, Jae Young; Kim, Hoon; Yun, Han Dae

    2010-01-01

    Physio-chemical changes in oyster shell were examined, and fresh and composted oyster shell meals were compared as lime fertilizers in soybean cultivation. Structural changes in oyster shell were observed by AFM and FE-SEM. We found that grains of the oyster shell surface became smoother and smaller over time. FT-IR analysis indicated the degradation of a chitin-like compound of oyster shell. In chemical analysis, pH (12.3+/-0.24), electrical conductivity (4.1+/-0.24 dS m(-1)), and alkaline powder (53.3+/-1.12%) were highest in commercial lime. Besides, pH was higher in composted oyster shell meal (9.9+/-0.53) than in fresh oyster shell meal (8.4+/-0.32). The highest organic matter (1.1+/-0.08%), NaCl (0.54+/-0.03%), and moisture (15.1+/-1.95%) contents were found in fresh oyster shell meal. A significant higher yield of soybean (1.33 t ha(-1)) was obtained by applying composted oyster shell meal (a 21% higher yield than with fresh oyster shell meal). Thus composting of oyster shell increases the utility of oyster shell as a liming material for crop cultivation.

  7. Apparatus and methods for installing, removing and adjusting an inner turbine shell section relative to an outer turbine shell section

    DOEpatents

    Leach, David; Bergendahl, Peter Allen; Waldo, Stuart Forrest; Smith, Robert Leroy; Phelps, Robert Kim

    2001-01-01

    A turbine includes upper and lower inner shell sections mounting the nozzles and shrouds and which inner shell is supported by pins secured to a surrounding outer shell. To disassemble the turbine for access to the inner shell sections and rotor, an alignment fixture is secured to the lower outer shell section and has pins engaging the inner shell section. To disassemble the turbine, the inner shell weight is transferred to the lower outer shell section via the alignment fixture and cradle pins. Roller assemblies are inserted through access openings vacated by support pins to permit rotation of the lower inner shell section out of and into the lower outer shell section during disassembly and assembly. The alignment fixture includes adjusting rods for adjusting the inner shell axially, vertically, laterally and about a lateral axis. A roller over-cage is provided to rotate the inner shell and a dummy shell to facilitate assembly and disassembly in the field.

  8. The ultimate step towards a tailored engineering of core@shell and core@shell@shell nanoparticles.

    PubMed

    Llamosa, D; Ruano, M; Martínez, L; Mayoral, A; Roman, E; García-Hernández, M; Huttel, Y

    2014-11-21

    Complex core@shell and core@shell@shell nanoparticles are systems that combine the functionalities of the inner core and outer shell materials together with new physico-chemical properties originated by their low (nano) dimensionality. Such nanoparticles are of prime importance in the fast growing field of nanotechnology as building blocks for more sophisticated systems and a plethora of applications. Here, it is shown that although conceptually simple a modified gas aggregation approach allows the one-step generation of well-controlled complex nanoparticles. In particular, it is demonstrated that the atoms of the core and the shell of the nanoparticles can be easily inverted, avoiding intrinsic constraints of chemical methods.

  9. Radiocarbon dating late Quaternary loess deposits using small terrestrial gastropod shells

    USGS Publications Warehouse

    Pigati, Jeff S.; McGeehin, John P.; Muhs, Daniel R.; Bettis, E. Arthur

    2013-01-01

    Constraining the ages and mass accumulation rates of late Quaternary loess deposits is often difficult because of the paucity of organic material typically available for 14C dating and the inherent limitations of luminescence techniques. Radiocarbon dating of small terrestrial gastropod shells may provide an alternative to these methods as fossil shells are common in loess and contain ∼12% carbon by weight. Terrestrial gastropod assemblages in loess have been used extensively to reconstruct past environmental conditions but have been largely ignored for dating purposes. Here, we present the results of a multi-faceted approach to understanding the potential for using small terrestrial gastropod shells to date loess deposits in North America. First, we compare highly resolved 14C ages of well-preserved wood and gastropod shells (Succineidae) recovered from a Holocene loess section in Alaska. Radiocarbon ages derived from the shells are nearly identical to wood and plant macrofossil ages throughout the section, which suggests that the shells behaved as closed systems with respect to carbon for at least the last 10 ka (thousands of calibrated 14C years before present). Second, we apply 14C dating of gastropod shells to late Pleistocene loess deposits in the Great Plains using stratigraphy and independent chronologies for comparison. The new shell ages require less interpretation than humic acid radiocarbon ages that are commonly used in loess studies, provide additional stratigraphic coverage to previous dating efforts, and are in correct stratigraphic order more often than their luminescence counterparts. Third, we show that Succineidae shells recovered from historic loess in the Matanuska River Valley, Alaska captured the 20th century 14C bomb spike, which suggests that the shells can be used to date late Holocene and historic-aged loess. Finally, results from Nebraska and western Iowa suggest that, similar to other materials, shell ages approaching ∼40 ka should

  10. Cellulose nanocrystals/cellulose core-in-shell nanocomposite assemblies.

    PubMed

    Magalhães, Washington Luiz Esteves; Cao, Xiaodong; Lucia, Lucian A

    2009-11-17

    We report herein for the first time how a co-electrospinning technique can be used to overcome the issue of orienting cellulose nanocrystals within a neat cellulose matrix. A home-built co-electrospinning apparatus was fabricated that was comprised of a high-voltage power supply, two concentric capillary needles, and one screw-type pump syringe. Eucalyptus-derived cellulose was dissolved in N-methylmorpholine oxide (NMMO) at 120 degrees C and diluted with dimethyl sulfoxide (DMSO) which was used in the external concentric capillary needle as the shell solution. A cellulose nanocrystal suspension obtained by the sulfuric acid hydrolysis of bleached sisal and cotton fibers was used as the core liquid in the internal concentric capillary needle. Three flow rate ratios between the shell and core, four flow rates for the shell dope solution, and four high voltages were tested. The resultant co-electrospun composite fibers were collected onto a grounded metal screen immersed in cold water. Micrometer and submicrometer cellulose fiber assemblies were obtained which were reinforced with cellulose nanocrystals and characterized by FESEM, FTIR, TGA, and XRD. Surprisingly, it was determined that the physical properties for the cellulose controls are superior to the composites; in addition, the crystallinity of the controls was slightly greater.

  11. A honeycomb composite of mollusca shell matrix and calcium alginate.

    PubMed

    You, Hua-jian; Li, Jin; Zhou, Chan; Liu, Bin; Zhang, Yao-guang

    2016-03-01

    A honeycomb composite is useful to carry cells for application in bone, cartilage, skin, and soft tissue regenerative therapies. To fabricate a composite, and expand the application of mollusca shells as well as improve preparing methods of calcium alginate in tissue engineering research, Anodonta woodiana shell powder was mixed with sodium alginate at varying mass ratios to obtain a gel mixture. The mixture was frozen and treated with dilute hydrochloric acid to generate a shell matrix/calcium alginate composite. Calcium carbonate served as the control. The composite was transplanted subcutaneously into rats. At 7, 14, 42, and 70 days after transplantation, frozen sections were stained with hematoxylin and eosin, followed by DAPI, β-actin, and collagen type-I immunofluorescence staining, and observed using laser confocal microscopy. The composite featured a honeycomb structure. The control and composite samples displayed significantly different mechanical properties. The water absorption rate of the composite and control group were respectively 205-496% and 417-586%. The composite (mass ratio of 5:5) showed good biological safety over a 70-day period; the subcutaneous structure of the samples was maintained and the degradation rate was lower than that of the control samples. Freezing the gel mixture afforded control over chemical reaction rates. Given these results, the composite is a promising honeycomb scaffold for tissue engineering.

  12. Layzer type models for pressure driven shells

    SciTech Connect

    Hurricane, O A

    2004-09-16

    Models for the nonlinear instability of finite thickness shells driven by pressure are constructed in the style of Layzer. Equations for both Cartesian and cylindrically convergent/divergent geometries are derived. The resulting equations are appropriate for incompressible shells with unity Atwood number. Predictions from the equations compare well with two-dimensional simulations.

  13. A Geometric Theory of Nonlinear Morphoelastic Shells

    NASA Astrophysics Data System (ADS)

    Sadik, Souhayl; Angoshtari, Arzhang; Goriely, Alain; Yavari, Arash

    2016-08-01

    Many thin three-dimensional elastic bodies can be reduced to elastic shells: two-dimensional elastic bodies whose reference shape is not necessarily flat. More generally, morphoelastic shells are elastic shells that can remodel and grow in time. These idealized objects are suitable models for many physical, engineering, and biological systems. Here, we formulate a general geometric theory of nonlinear morphoelastic shells that describes both the evolution of the body shape, viewed as an orientable surface, as well as its intrinsic material properties such as its reference curvatures. In this geometric theory, bulk growth is modeled using an evolving referential configuration for the shell, the so-called material manifold. Geometric quantities attached to the surface, such as the first and second fundamental forms, are obtained from the metric of the three-dimensional body and its evolution. The governing dynamical equations for the body are obtained from variational consideration by assuming that both fundamental forms on the material manifold are dynamical variables in a Lagrangian field theory. In the case where growth can be modeled by a Rayleigh potential, we also obtain the governing equations for growth in the form of kinetic equations coupling the evolution of the first and the second fundamental forms with the state of stress of the shell. We apply these ideas to obtain stress-free growth fields of a planar sheet, the time evolution of a morphoelastic circular cylindrical shell subject to time-dependent internal pressure, and the residual stress of a morphoelastic planar circular shell.

  14. Isothermal Circumstellar Dust Shell Model for Teaching

    ERIC Educational Resources Information Center

    Robinson, G.; Towers, I. N.; Jovanoski, Z.

    2009-01-01

    We introduce a model of radiative transfer in circumstellar dust shells. By assuming that the shell is both isothermal and its thickness is small compared to its radius, the model is simple enough for students to grasp and yet still provides a quantitative description of the relevant physical features. The isothermal model can be used in a…

  15. Statistical Mechanics of Thin Spherical Shells

    NASA Astrophysics Data System (ADS)

    Košmrlj, Andrej; Nelson, David R.

    2017-01-01

    We explore how thermal fluctuations affect the mechanics of thin amorphous spherical shells. In flat membranes with a shear modulus, thermal fluctuations increase the bending rigidity and reduce the in-plane elastic moduli in a scale-dependent fashion. This is still true for spherical shells. However, the additional coupling between the shell curvature, the local in-plane stretching modes, and the local out-of-plane undulations leads to novel phenomena. In spherical shells, thermal fluctuations produce a radius-dependent negative effective surface tension, equivalent to applying an inward external pressure. By adapting renormalization group calculations to allow for a spherical background curvature, we show that while small spherical shells are stable, sufficiently large shells are crushed by this thermally generated "pressure." Such shells can be stabilized by an outward osmotic pressure, but the effective shell size grows nonlinearly with increasing outward pressure, with the same universal power-law exponent that characterizes the response of fluctuating flat membranes to a uniform tension.

  16. Thick-shell nanocrystal quantum dots

    DOEpatents

    Hollingsworth, Jennifer A.; Chen, Yongfen; Klimov, Victor I.; Htoon, Han; Vela, Javier

    2011-05-03

    Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm and an outer shell, where said outer shell comprises multiple monolayers, wherein at least 30% of the quantum dots have an on-time fraction of 0.80 or greater under continuous excitation conditions for a period of time of at least 10 minutes.

  17. A Well-Defined Bipolar Outflow Shell

    NASA Astrophysics Data System (ADS)

    Xie, Taoling; Goldsmith, Paul F.; Patel, Nimesh

    1992-12-01

    A well-defined "eggplant-shaped" thin shell is revealed in the Mon R2 central core region by CO and (13) CO J=1-0 maps obtained with QUARRY. This thin shell outlines the extended blue lobe of the massive bipolar outflow. The projected length and width of the shell are about 5.7 pc and 2.5 pc respectively, and the averaged projected thickness of the shell is ~ 0.3 pc. The shape of this shell can be satisfactorily accounted for quantitatively in terms of limb-brightening within the framework of the Shu et al shell model with radially directed wind, although the model seems to be oversimplified with respect to the complexity that our data reveal. The outflow shell's symmetry axis is estimated to be inclined by ~ 70(deg) with respect to the line of sight. We suggest that the coincident blue- and red-shifted emission and the bending of the red-shifted lobe are the result of the red-shifted shell being compressed, rather than having a second bipolar outflow aligned roughly perpendicular to the axis of the first bipolar outflow.

  18. Layzer type models for pressure driven shells

    SciTech Connect

    Hurricane, O.A.

    2005-05-01

    Models for the nonlinear instability of finite thickness shells driven by pressure are constructed in the style of Layzer. Equations for both Cartesian and cylindrically convergent/divergent geometries are derived. The resulting equations are appropriate for incompressible shells with unity Atwood number. Predictions from the equations compare well with two-dimensional simulations.

  19. Cargo-shell and cargo-cargo couplings govern the mechanics of artificially loaded virus-derived cages

    NASA Astrophysics Data System (ADS)

    Llauró, Aida; Luque, Daniel; Edwards, Ethan; Trus, Benes L.; Avera, John; Reguera, David; Douglas, Trevor; Pablo, Pedro J. De; Castón, José R.

    2016-04-01

    Nucleic acids are the natural cargo of viruses and key determinants that affect viral shell stability. In some cases the genome structurally reinforces the shell, whereas in others genome packaging causes internal pressure that can induce destabilization. Although it is possible to pack heterologous cargoes inside virus-derived shells, little is known about the physical determinants of these artificial nanocontainers' stability. Atomic force and three-dimensional cryo-electron microscopy provided mechanical and structural information about the physical mechanisms of viral cage stabilization beyond the mere presence/absence of cargos. We analyzed the effects of cargo-shell and cargo-cargo interactions on shell stability after encapsulating two types of proteinaceous payloads. While bound cargo to the inner capsid surface mechanically reinforced the capsid in a structural manner, unbound cargo diffusing freely within the shell cavity pressurized the cages up to ~30 atm due to steric effects. Strong cargo-cargo coupling reduces the resilience of these nanocompartments in ~20% when bound to the shell. Understanding the stability of artificially loaded nanocages will help to design more robust and durable molecular nanocontainers.Nucleic acids are the natural cargo of viruses and key determinants that affect viral shell stability. In some cases the genome structurally reinforces the shell, whereas in others genome packaging causes internal pressure that can induce destabilization. Although it is possible to pack heterologous cargoes inside virus-derived shells, little is known about the physical determinants of these artificial nanocontainers' stability. Atomic force and three-dimensional cryo-electron microscopy provided mechanical and structural information about the physical mechanisms of viral cage stabilization beyond the mere presence/absence of cargos. We analyzed the effects of cargo-shell and cargo-cargo interactions on shell stability after encapsulating two

  20. A GREENER SYNTHESIS OF CORE (FE, CU)-SHELL (AU, PT, PD AND AG) NANOCRYSTALS USING AQUEOUS VITAMIN C

    EPA Science Inventory

    A greener method to fabricate the novel core (Fe and Cu)-shell (noble metals) metal nanocrystals using aqueous ascorbic acid (vitamin C) is described. Transition metal salts such as Cu and Fe were reduced using ascorbic acid, a benign naturally available antioxidant, and then add...

  1. Surface design of core-shell superparamagnetic iron oxide nanoparticles drives record relaxivity values in functional MRI contrast agents.

    PubMed

    Maity, Dipak; Zoppellaro, Giorgio; Sedenkova, Veronika; Tucek, Jiri; Safarova, Klara; Polakova, Katerina; Tomankova, Katerina; Diwoky, Clemens; Stollberger, Rudolf; Machala, Libor; Zboril, Radek

    2012-12-04

    Core-shell hydrophilic superparamagnetic iron oxide (SPIO) nanoparticles, surface functionalized with either terephthalic acid or 2-amino terephthalic acid, showed large negative MRI contrast ability, validating the advantage of using low molecular weight and π-conjugated canopies for engineering functional nanostructures with superior performances.

  2. Production of biodiesel from Chlorella sp. enriched with oyster shell extracts.

    PubMed

    Choi, Cheol Soon; Choi, Woon Yong; Kang, Do Hyung; Lee, Hyeon Yong

    2014-01-01

    This study investigated the cultivation of the marine microalga Chlorella sp. without supplying an inorganic carbon source, but instead with enriching the media with extracts of oyster shells pretreated by a high-pressure homogenization process. The pretreated oyster shells were extracted by a weak acid, acetic acid, that typically has harmful effects on cell growth and also poses environmental issues. The concentration of the residual dissolved carbon dioxide in the medium was sufficient to maintain cell growth at 32 ppm and pH 6.5 by only adding 5% (v/v) of oyster shell extracts. Under this condition, the maximum cell density observed was 2.74 g dry wt./L after 27 days of cultivation. The total lipid content was also measured as 18.1 (%, w/w), and this value was lower than the 23.6 (%, w/w) observed under nitrogen deficient conditions or autotrophic conditions. The fatty acid compositions of the lipids were also measured as 10.9% of C16:1 and 16.4% of C18:1 for the major fatty acids, which indicates that the biodiesel from this culture process should be a suitable biofuel. These results suggest that oyster shells, environmental waste from the food industry, can be used as a nutrient and carbon source with seawater, and this reused material should be important for easily scaling up the process for an outdoor culture system.

  3. Production of Biodiesel from Chlorella sp. Enriched with Oyster Shell Extracts

    PubMed Central

    Choi, Woon Yong; Kang, Do Hyung; Lee, Hyeon Yong

    2014-01-01

    This study investigated the cultivation of the marine microalga Chlorella sp. without supplying an inorganic carbon source, but instead with enriching the media with extracts of oyster shells pretreated by a high-pressure homogenization process. The pretreated oyster shells were extracted by a weak acid, acetic acid, that typically has harmful effects on cell growth and also poses environmental issues. The concentration of the residual dissolved carbon dioxide in the medium was sufficient to maintain cell growth at 32 ppm and pH 6.5 by only adding 5% (v/v) of oyster shell extracts. Under this condition, the maximum cell density observed was 2.74 g dry wt./L after 27 days of cultivation. The total lipid content was also measured as 18.1 (%, w/w), and this value was lower than the 23.6 (%, w/w) observed under nitrogen deficient conditions or autotrophic conditions. The fatty acid compositions of the lipids were also measured as 10.9% of C16:1 and 16.4% of C18:1 for the major fatty acids, which indicates that the biodiesel from this culture process should be a suitable biofuel. These results suggest that oyster shells, environmental waste from the food industry, can be used as a nutrient and carbon source with seawater, and this reused material should be important for easily scaling up the process for an outdoor culture system. PMID:24696841

  4. NMR and ESR characterization of activated carbons produced from pecan shells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A large number of solid-state NMR and ESR experiments were explored as potential tools to study chemical structure, mobility, and pore volume of activated carbon. We used a model system where pecan shells were activated with phosphoric acid, and carbonized at 450ºC for 4 h with varying amounts of ai...

  5. 129Xe NMR studies of pecan shell-based biochar and structure-process correlations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pecan shell-based biochar is being utilized as filtration medium, sequestrant for metallic ions, soil conditioner, and other applications. One process involves the use of phosphoric acid at high temperature in a partial oxygen atmosphere to produce a highly porous carbonaceous material. In this work...

  6. Use of Walnut Shell Powder to Inhibit Expression of Fe2+-Oxidizing Genes of Acidithiobacillus Ferrooxidans

    PubMed Central

    Li, Yuhui; Liu, Yehao; Tan, Huifang; Zhang, Yifeng; Yue, Mei

    2016-01-01

    Acidithiobacillus ferrooxidans is a Gram-negative bacterium that obtains energy by oxidizing Fe2+ or reduced sulfur compounds. This bacterium contributes to the formation of acid mine drainage (AMD). This study determined whether walnut shell powder inhibits the growth of A. ferrooxidans. First, the effects of walnut shell powder on Fe2+ oxidization and H+ production were evaluated. Second, the chemical constituents of walnut shell were isolated to determine the active ingredient(s). Third, the expression of Fe2+-oxidizing genes and rus operon genes was investigated using real-time polymerase chain reaction. Finally, growth curves were plotted, and a bioleaching experiment was performed to confirm the active ingredient(s) in walnut shells. The results indicated that both walnut shell powder and the phenolic fraction exert high inhibitory effects on Fe2+ oxidation and H+ production by A. ferrooxidans cultured in standard 9K medium. The phenolic components exert their inhibitory effects by down-regulating the expression of Fe2+-oxidizing genes and rus operon genes, which significantly decreased the growth of A. ferrooxidans. This study revealed walnut shell powder to be a promising substance for controlling AMD. PMID:27144574

  7. Factors affecting the yield of bio-oil from the pyrolysis of coconut shell.

    PubMed

    Gao, Yun; Yang, Yi; Qin, Zhanbin; Sun, Yi

    2016-01-01

    Coconut is a high-quality agricultural product of the Asia-Pacific region. In this paper, coconut shell which mainly composed of cellulose, hemicellulose, lignin was used as a raw material for coconut shell oil from coconut shell pyrolysis. The influence of the pyrolysis temperature, heating rate and particle size on coconut oil yield was investigated, and the effect of heating rate on coconut oil components was discussed. Experimental results show that the maximum oil yield of 75.74 wt% (including water) were obtained under the conditions that the final pyrolysis temperature 575 °C, heating rate 20 °C/min, coconut shell diameter about 5 mm. Thermal gravimetric analysis was used and it can be seen that coconut shell pyrolysis process can be divided into three stages: water loss, pyrolysis and pyrocondensation. The main components of coconut-shell oil are water (about 50 wt%), aromatic, phenolic, acid, ketone and ether containing compounds.

  8. Phenolic profile and antioxidant activity from non-toxic Mexican Jatropha curcas L. shell methanolic extracts.

    PubMed

    Perea-Domínguez, Xiomara Patricia; Espinosa-Alonso, Laura Gabriela; Hosseinian, Farah; HadiNezhad, Mehri; Valdez-Morales, Maribel; Medina-Godoy, Sergio

    2017-03-01

    Jatropha curcas seed shells are the by-product obtained during oil extraction process. Recently, its chemical composition has gained attention since its potential applications. The aim of this study was to identify phenolic compounds profile from a non-toxic J. curcas shell from Mexico, besides, evaluate J. curcas shell methanolic extract (JcSME) antioxidant activity. Free, conjugate and bound phenolics were fractionated and quantified (606.7, 193.32 and 909.59 μg/g shell, respectively) and 13 individual phenolic compounds were detected by HPLC. The radical-scavenging activity of JcSME was similar to Trolox and ascorbic acid by DPPH assay while by ABTS assay it was similar to BHT. Effective antioxidant capacity by ORAC was found (426.44 ± 53.39 μmol Trolox equivalents/g shell). The Mexican non-toxic J. curcas shell is rich in phenolic compounds with high antioxidant activity; hence, it could be considerate as a good source of natural antioxidants.

  9. The Shell of the Invasive Bivalve Species Dreissena polymorpha: Biochemical, Elemental and Textural Investigations.

    PubMed

    Immel, Françoise; Broussard, Cédric; Catherinet, Bastien; Plasseraud, Laurent; Alcaraz, Gérard; Bundeleva, Irina; Marin, Frédéric

    2016-01-01

    The zebra mussel Dreissena polymorpha is a well-established invasive model organism. Although extensively used in environmental sciences, virtually nothing is known of the molecular process of its shell calcification. By describing the microstructure, geochemistry and biochemistry/proteomics of the shell, the present study aims at promoting this species as a model organism in biomineralization studies, in order to establish a bridge with ecotoxicology, while sketching evolutionary conclusions. The shell of D. polymorpha exhibits the classical crossed-lamellar/complex crossed lamellar combination found in several heterodont bivalves, in addition to an external thin layer, the characteristics of which differ from what was described in earlier publication. We show that the shell selectively concentrates some heavy metals, in particular uranium, which predisposes D. polymorpha to local bioremediation of this pollutant. We establish the biochemical signature of the shell matrix, demonstrating that it interacts with the in vitro precipitation of calcium carbonate and inhibits calcium carbonate crystal formation, but these two properties are not strongly expressed. This matrix, although overall weakly glycosylated, contains a set of putatively calcium-binding proteins and a set of acidic sulphated proteins. 2D-gels reveal more than fifty proteins, twenty of which we identify by MS-MS analysis. We tentatively link the shell protein profile of D. polymorpha and the peculiar recent evolution of this invasive species of Ponto-Caspian origin, which has spread all across Europe in the last three centuries.

  10. The Shell of the Invasive Bivalve Species Dreissena polymorpha: Biochemical, Elemental and Textural Investigations

    PubMed Central

    Broussard, Cédric; Catherinet, Bastien; Plasseraud, Laurent; Alcaraz, Gérard; Bundeleva, Irina; Marin, Frédéric

    2016-01-01

    The zebra mussel Dreissena polymorpha is a well-established invasive model organism. Although extensively used in environmental sciences, virtually nothing is known of the molecular process of its shell calcification. By describing the microstructure, geochemistry and biochemistry/proteomics of the shell, the present study aims at promoting this species as a model organism in biomineralization studies, in order to establish a bridge with ecotoxicology, while sketching evolutionary conclusions. The shell of D. polymorpha exhibits the classical crossed-lamellar/complex crossed lamellar combination found in several heterodont bivalves, in addition to an external thin layer, the characteristics of which differ from what was described in earlier publication. We show that the shell selectively concentrates some heavy metals, in particular uranium, which predisposes D. polymorpha to local bioremediation of this pollutant. We establish the biochemical signature of the shell matrix, demonstrating that it interacts with the in vitro precipitation of calcium carbonate and inhibits calcium carbonate crystal formation, but these two properties are not strongly expressed. This matrix, although overall weakly glycosylated, contains a set of putatively calcium-binding proteins and a set of acidic sulphated proteins. 2D-gels reveal more than fifty proteins, twenty of which we identify by MS-MS analysis. We tentatively link the shell protein profile of D. polymorpha and the peculiar recent evolution of this invasive species of Ponto-Caspian origin, which has spread all across Europe in the last three centuries. PMID:27213644

  11. Semiclassical shell structure in rotating Fermi systems

    SciTech Connect

    Magner, A. G.; Sitdikov, A. S.; Khamzin, A. A.; Bartel, J.

    2010-06-15

    The collective moment of inertia is derived analytically within the cranking model for any rotational frequency of the harmonic-oscillator potential well and at a finite temperature. Semiclassical shell-structure components of the collective moment of inertia are obtained for any potential by using the periodic-orbit theory. We found semiclassically their relation to the free-energy shell corrections through the shell-structure components of the rigid-body moment of inertia of the statistically equilibrium rotation in terms of short periodic orbits. The shell effects in the moment of inertia exponentially disappear with increasing temperature. For the case of the harmonic-oscillator potential, one observes a perfect agreement of the semiclassical and quantum shell-structure components of the free energy and the moment of inertia for several critical bifurcation deformations and several temperatures.

  12. Ecology and shell chemistry of Loxoconcha matagordensis

    USGS Publications Warehouse

    Cronin, T. M.; Kamiya, T.; Dwyer, G.S.; Belkin, H.; Vann, C.D.; Schwede, S.; Wagner, R.

    2005-01-01

    Studies of the seasonal ecology and shell chemistry of the ostracode Loxoconcha matagordensis and related species of Loxoconcha from regions off eastern North America reveal that shell size and trace elemental (Mg/Ca ratio) composition are useful in paleothermometry using fossil populations. Seasonal sampling of populations from Chesapeake Bay, augmented by samples from Florida Bay, indicate that shell size is inversely proportional to water temperature and that Mg/Ca ratios are positively correlated with the water temperature in which the adult carapace was secreted. Microprobe analyses of sectioned valves reveal intra-shell variability in Mg/Ca ratios but this does not strongly influence the utility of whole shell Mg/Ca analyses for paleoclimate application.

  13. Engineered Magnetic Core-Shell Structures.

    PubMed

    Alavi Nikje, Mir Mohammad; Vakili, Maryam

    2015-01-01

    In recent years, engineered magnetic core-shell structures are playing an important role in the wide range of various applications. These magnetic core-shell structures have attracted considerable attention because of their unique properties and various applications. Also, the synthesis of engineered magnetic core-shell structures has attracted practical interest because of potential applications in areas such as ferrofluids, medical imaging, drug targeting and delivery, cancer therapy, separations, and catalysis. So far a large number of engineered magnetic core-shell structures have been successfully synthesized. This review article focuses on the recent progress in synthesis and characterization of engineered magnetic core-shell structures. Also, this review gives a brief description of the various application of these structures. It is hoped that this review will play some small part in helping future developments in important field.

  14. Buckling of axially compressed conical shells

    NASA Technical Reports Server (NTRS)

    Chang, C.-H.; Katz, L.

    1980-01-01

    The buckling of a truncated elastic conical shell subjected to an axial compression is a classical problem in shell structures. The paper reinvestigates the buckling of an axially compressed truncated conical shell with rigid bulkheads. Two improvements are achieved. First, the condition that the total horizontal displacement must vanish due to rigid bulkhead and axisymmetry is treated as a constraint. This constraint is incorporated into the system through the use of the Lagrange multiplier; then the variational method is used to derive a complete set of boundary conditions for conical shells. Second, the stability is evaluated in the deformed state using the asymptotic solutions of the pair of Donnell-type equations for axisymmetric configuration. The results indicate that the buckling strength of conical shells depends mainly on the condition of the smaller end. In addition to the vertex angle, the distance ratio plays, at least, an equally important role.

  15. Shell explores a cheaper route to MMA

    SciTech Connect

    Rotman, D.

    1993-02-17

    A novel methyl methacrylate (MMA) technology developed by Shell Research (Amsterdam) could be simpler and far cheaper than existing MMA manufacturing processes, according to a recent analysis by SRI International (Menlo Park, CA). The Shell palladium-catalyzed process makes MMA from methyl acetylene, avoiding the classic acetone cyanohydrin route. And, says Robert Schwaar, a senior SRI consultant, while availability of methyl acetylene feedstock may limit plant sizes, the Shell technology could make MMA for 44 cts/lb in a 100-million lbs/yr unit. Other commercial and developmental processes, he says, produce MMA at roughly 47 cts-58cts/lb in a 250-million lbs/yr plant. Shell-which is not an MMA producer-has not yet decided the technology's fate. The key question about Shell's process is whether producers can get enough cheap methyl acetylene. The technology calls for separating the methyl acetylene from the mixed C[sub 3] by-product stream.

  16. Variability in shell models of GRBs

    NASA Technical Reports Server (NTRS)

    Sumner, M. C.; Fenimore, E. E.

    1997-01-01

    Many cosmological models of gamma-ray bursts (GRBs) assume that a single relativistic shell carries kinetic energy away from the source and later converts it into gamma rays, perhaps by interactions with the interstellar medium or by internal shocks within the shell. Although such models are able to reproduce general trends in GRB time histories, it is difficult to reproduce the high degree of variability often seen in GRBs. The authors investigate methods of achieving this variability using a simplified external shock model. Since the model emphasizes geometric and statistical considerations, rather than the detailed physics of the shell, it is applicable to any theory that relies on relativistic shells. They find that the variability in GRBs gives strong clues to the efficiency with which the shell converts its kinetic energy into gamma rays.

  17. Faraday Wave Turbulence on a Spherical Liquid Shell

    NASA Technical Reports Server (NTRS)

    Holt, R. Glynn; Trinh, Eugene H.

    1996-01-01

    Millimeter-radius liquid shells are acoustically levitated in an ultrasonic field. Capillary waves are observed on the shells. At low energies (minimal acoustic amplitude, thick shell) a resonance is observed between the symmetric and antisymmetric thin film oscillation modes. At high energies (high acoustic pressure, thin shell) the shell becomes fully covered with high-amplitude waves. Temporal spectra of scattered light from the shell in this regime exhibit a power-law decay indicative of turbulence.

  18. Suzuki cross-coupling reactions on the surface of carbon-coated cobalt: expanding the applicability of core-shell nano-magnets.

    PubMed

    Tan, Chun Ghee; Grass, Robert N

    2008-09-28

    To develop magnetic nanomaterials applicable to organic synthesis, the Suzuki cross-coupling method was adapted to attach a range of functional groups to carbon-coated core-shell materials via commercially-available substituted arylboronic acids.

  19. Taphonomic trade-offs in tropical marine death assemblages: Differential time averaging, shell loss, and probable bias in siliciclastic vs. carbonate facies

    NASA Astrophysics Data System (ADS)

    Kidwell, Susan M.; Best, Mairi M. R.; Kaufman, Darrell S.

    2005-09-01

    Radiocarbon-calibrated amino-acid racemization ages of individually dated bivalve mollusk shells from Caribbean reef, nonreefal carbonate, and siliciclastic sediments in Panama indicate that siliciclastic sands and muds contain significantly older shells (median 375 yr, range up to ˜5400 yr) than nearby carbonate seafloors (median 72 yr, range up to ˜2900 yr; maximum shell ages differ significantly at p < 0.02 using extreme-value statistics). The implied difference in shell loss rates is contrary to physicochemical expectations but is consistent with observed differences in shell condition (greater bioerosion and dissolution in carbonates). Higher rates of shell loss in carbonate sediments should lead to greater compositional bias in surviving skeletal material, resulting in taphonomic trade-offs: less time averaging but probably higher taxonomic bias in pure carbonate sediments, and lower bias but greater time averaging in siliciclastic sediments from humid-weathered accretionary arc terrains, which are a widespread setting of tropical sedimentation.

  20. In-situ Liquid Phase Epitaxy: Another Strategy to Synthesize Heterostructured Core-shell Composites

    PubMed Central

    Wen, Zhongsheng; Wang, Guanqin

    2016-01-01

    Core-shell Nb2O5/TiO2 composite with hierarchical heterostructure is successfully synthesized In-situ by a facile template-free and acid-free solvothermal method based on the mechanism of liquid phase epitaxy. The chemical circumstance change induced by the alcoholysis of NbCl5 is utilized tactically to trigger core-shell assembling In-situ. The tentative mechanism for the self-assembling of core-shell structure and hierarchical structure is explored. The microstructure and morphology changes during synthesis process are investigated systematically by using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and transmission electron microscopy. The dramatic alcoholysis of NbCl5 has been demonstrated to be the fundamental factor for the formation of the spherical core, which changes the acid circumstance of the solution and induces the co-precipitation of TiO2. The homogeneous co-existence of Nb2O5/TiO2 in the core and the co-existence of Nb/Ti ions in the reaction solution facilitate the In-situ nucleation and epitaxial growth of the crystalline shell with the same composition as the core. In-situ liquid phase epitaxy can offer a different strategy for the core-shell assembling for oxide materials. PMID:27121200

  1. Gravity on-shell diagrams

    NASA Astrophysics Data System (ADS)

    Herrmann, Enrico; Trnka, Jaroslav

    2016-11-01

    We study on-shell diagrams for gravity theories with any number of super-symmetries and find a compact Grassmannian formula in terms of edge variables of the graphs. Unlike in gauge theory where the analogous form involves only d log-factors, in gravity there is a non-trivial numerator as well as higher degree poles in the edge variables. Based on the structure of the Grassmannian formula for {N}=8 supergravity we conjecture that gravity loop amplitudes also possess similar properties. In particular, we find that there are only logarithmic singularities on cuts with finite loop momentum and that poles at infinity are present, in complete agreement with the conjecture presented in [1].

  2. The structure of circumstellar shells

    NASA Technical Reports Server (NTRS)

    Fix, John D.; Cobb, Michael L.

    1988-01-01

    Speckle-interferometric measurements are reported for the brightness distributions of the OH/IR stars OH 26.5 + 0.6 and IRC + 10420 at wavelengths which are near the center of and just outside the 10-micron absorption/emission feature produced by circumstellar dust. For OH 26.5 + 0.6, the angular size within the absorption feature is 0.50 + or - 0.02 arcsec, while the angular size outside the feature is less than 0.2 arcsec. For IRC + 10420, the angular sizes inside and outside the emission feature are both 0.42 + or - 0.02 arcsec. Simple models of the circumstellar shells are calculated which can account for the measured angular sizes and flux distributions of the objects. The models give the wavelength dependence of the opacity of the circumstellar material, which is quite different for the two objects.

  3. Micromechanical measurements of the effect of surfactants on cyclopentane hydrate shell properties.

    PubMed

    Brown, Erika P; Koh, Carolyn A

    2016-01-07

    Investigating the effect of surfactants on clathrate hydrate growth and morphology, especially particle shell strength and cohesion force, is critical to advancing new strategies to mitigate hydrate plug formation. In this study, dodecylbenzenesulfonic acid and polysorbate 80 surfactants were included during the growth of cyclopentane hydrates at several concentrations above and below the critical micelle concentration. A novel micromechanical method was applied to determine the force required to puncture the hydrate shell using a glass cantilever (with and without surfactants), with annealing times ranging from immediately after the hydrate nucleated to 90 minutes after formation. It was shown that the puncture force was decreased by the addition of both surfactants up to a maximum of 79%. Over the entire range of annealing times (0-90 minutes), the thickness of the hydrate shell was also measured. However, there was no clear change in shell thickness with the addition of surfactants. The growth rate of the hydrate shell was found to vary less than 15% with the addition of surfactants. The cohesive force between two hydrate particles was measured for each surfactant and found to be reduced by 28% to 78%. Interfacial tension measurements were also performed. Based on these results, microscopic changes to the hydrate shell morphology (due to the presence of surfactants) were proposed to cause the decrease in the force required to break the hydrate shell, since no macroscopic morphology changes were observed. Understanding the hydrate shell strength can be critical to reducing the capillary bridge interaction between hydrate particles or controlling the release of unconverted water from the interior of the hydrate particle, which can cause rapid hydrate conversion.

  4. Effects of pretreatment methods for hazelnut shell hydrolysate fermentation with Pichia Stipitis to ethanol.

    PubMed

    Arslan, Yeşim; Eken-Saraçoğlu, Nurdan

    2010-11-01

    In this study, we investigated the use of hazelnut shell as a renewable and low cost lignocellulosic material for bioethanol production for the first time. High lignin content of hazelnut shell is an important obstacle for such a biotransformation. Biomass hydrolysis with acids yields reducing sugar with several inhibitors which limit the fermentability of sugars. The various conditioning methods for biomass and hydrolysate were performed to overcome the toxicity and their effects on the subsequent fermentation of hazelnut shell hydrolysate by Pichia stipitis were evaluated with shaking flasks experiments. Hazelnut shells hydrolysis with 0.7M H(2)SO(4) yielded 49 gl(-1) total reducing sugars and fermentation inhibitors in untreated hydrolysate. First, it was shown that several hydrolysate detoxification methods were solely inefficient in achieving cell growth and ethanol production in the fermentation of hazelnut shell hydrolysates derived from non-delignified biomass. Next, different pretreatments of hazelnut shells were considered for delignification and employed before hydrolysis in conjunction with hydrolysate detoxification to improve alcohol fermentation. Among six delignification methods, the most effective pretreatment regarding to ethanol concentration includes the treatment of shells with 3% (w/v) NaOH at room temperature, which was integrated with sequential hydrolysate detoxification by overliming and then treatment with charcoal twice at 60 degrees C. This treatment brought about a total reduction of 97% in furans and 88.4% in phenolics. Almost all trialed treatments caused significant sugar loss. Under the best assayed conditions, ethanol concentration of 16.79gl(-1) was reached from a hazelnut shell hyrolysate containing initial 50g total reducing sugar l(-1) after partial synthetic xylose supplementation. This value is equal to 91.25% of ethanol concentration that was obtained from synthetic d-xylose under same conditions. The present study

  5. Smart micelle@polydopamine core-shell nanoparticles for highly effective chemo-photothermal combination therapy

    NASA Astrophysics Data System (ADS)

    Zhang, Ruirui; Su, Shishuai; Hu, Kelei; Shao, Leihou; Deng, Xiongwei; Sheng, Wang; Wu, Yan

    2015-11-01

    In this investigation, we have designed and synthesized a novel core-shell polymer nanoparticle system for highly effective chemo-photothermal combination therapy. A nanoscale DSPE-PEG micelle encapsulating doxorubicin (Dox-M) was designed as a core, and then modified by a polydopamine (PDA) shell for photothermal therapy and bortezomib (Btz) administration (Dox-M@PDA-Btz). The facile conjugation of Btz to the catechol-containing PDA shell can form a reversible pH-sensitive boronic acid-catechol conjugate to create a stimuli-responsive drug carrier system. As expected, the micelle@PDA core-shell nanoparticles exhibited satisfactory photothermal efficiency, which has potential for thermal ablation of malignant tissues. In addition, on account of the PDA modification, both Dox and Btz release processes were pH-dependent and NIR-dependent. Both in vitro and in vivo studies illustrated that the Dox-M@PDA-Btz nanoparticles coupled with laser irradiation could enhance the cytotoxicity, and thus combinational therapy efficacy was achieved when integrating Dox, Btz, and PDA into a single nanoplatform. Altogether, our current study indicated that the micelle@polydopamine core-shell nanoparticles could be applied for NIR/pH-responsive sustained-release and synergized chemo-photothermal therapy for breast cancer.In this investigation, we have designed and synthesized a novel core-shell polymer nanoparticle system for highly effective chemo-photothermal combination therapy. A nanoscale DSPE-PEG micelle encapsulating doxorubicin (Dox-M) was designed as a core, and then modified by a polydopamine (PDA) shell for photothermal therapy and bortezomib (Btz) administration (Dox-M@PDA-Btz). The facile conjugation of Btz to the catechol-containing PDA shell can form a reversible pH-sensitive boronic acid-catechol conjugate to create a stimuli-responsive drug carrier system. As expected, the micelle@PDA core-shell nanoparticles exhibited satisfactory photothermal efficiency, which has

  6. Multifunctional Core–Shell Nanoparticles: Discovery of Previously Invisible Biomarkers

    PubMed Central

    2011-01-01

    Many low-abundance biomarkers for early detection of cancer and other diseases are invisible to mass spectrometry because they exist in body fluids in very low concentrations, are masked by high-abundance proteins such as albumin and immunoglobulins, and are very labile. To overcome these barriers, we created porous, buoyant, core–shell hydrogel nanoparticles containing novel high affinity reactive chemical baits for protein and peptide harvesting, concentration, and preservation in body fluids. Poly(N-isopropylacrylamide-co-acrylic acid) nanoparticles were functionalized with amino-containing dyes via zero-length cross-linking amidation reactions. Nanoparticles functionalized in the core with 17 different (12 chemically novel) molecular baits showed preferential high affinities (KD < 10–11 M) for specific low-abundance protein analytes. A poly(N-isopropylacrylamide-co-vinylsulfonic acid) shell was added to the core particles. This shell chemistry selectively prevented unwanted entry of all size peptides derived from albumin without hindering the penetration of non-albumin small proteins and peptides. Proteins and peptides entered the core to be captured with high affinity by baits immobilized in the core. Nanoparticles effectively protected interleukin-6 from enzymatic degradation in sweat and increased the effective detection sensitivity of human growth hormone in human urine using multiple reaction monitoring analysis. Used in whole blood as a one-step, in-solution preprocessing step, the nanoparticles greatly enriched the concentration of low-molecular weight proteins and peptides while excluding albumin and other proteins above 30 kDa; this achieved a 10,000-fold effective amplification of the analyte concentration, enabling mass spectrometry (MS) discovery of candidate biomarkers that were previously undetectable. PMID:21999289

  7. Multifunctional core-shell nanoparticles: discovery of previously invisible biomarkers.

    PubMed

    Tamburro, Davide; Fredolini, Claudia; Espina, Virginia; Douglas, Temple A; Ranganathan, Adarsh; Ilag, Leopold; Zhou, Weidong; Russo, Paul; Espina, Benjamin H; Muto, Giovanni; Petricoin, Emanuel F; Liotta, Lance A; Luchini, Alessandra

    2011-11-30

    Many low-abundance biomarkers for early detection of cancer and other diseases are invisible to mass spectrometry because they exist in body fluids in very low concentrations, are masked by high-abundance proteins such as albumin and immunoglobulins, and are very labile. To overcome these barriers, we created porous, buoyant, core-shell hydrogel nanoparticles containing novel high affinity reactive chemical baits for protein and peptide harvesting, concentration, and preservation in body fluids. Poly(N-isopropylacrylamide-co-acrylic acid) nanoparticles were functionalized with amino-containing dyes via zero-length cross-linking amidation reactions. Nanoparticles functionalized in the core with 17 different (12 chemically novel) molecular baits showed preferential high affinities (K(D) < 10(-11) M) for specific low-abundance protein analytes. A poly(N-isopropylacrylamide-co-vinylsulfonic acid) shell was added to the core particles. This shell chemistry selectively prevented unwanted entry of all size peptides derived from albumin without hindering the penetration of non-albumin small proteins and peptides. Proteins and peptides entered the core to be captured with high affinity by baits immobilized in the core. Nanoparticles effectively protected interleukin-6 from enzymatic degradation in sweat and increased the effective detection sensitivity of human growth hormone in human urine using multiple reaction monitoring analysis. Used in whole blood as a one-step, in-solution preprocessing step, the nanoparticles greatly enriched the concentration of low-molecular weight proteins and peptides while excluding albumin and other proteins above 30 kDa; this achieved a 10,000-fold effective amplification of the analyte concentration, enabling mass spectrometry (MS) discovery of candidate biomarkers that were previously undetectable.

  8. Heat conduction in plates and shells with emphasis on a conical shell

    NASA Astrophysics Data System (ADS)

    Rubin, M. B.

    This paper is concerned with analyzing heat conduction in rigid shell-like bodies. The thermal equations of the theory of a Cosserat surface are used to calculate the average (through-the-thickness) temperature and temperature gradient directly, without resorting to integration of three-dimensional results. Specific attention is focused on a conical shell. The conical shell is particularly interesting because it has a converging geometry, so that the shell near its tip is 'thick' even though the shell near its base may be 'thin'. Generalized constitutive equations are developed here in a consistent manner which include certain geometrical features of shells. These equations are tested by considering a number of problems of plates, circular cylindrical shells and spherical shells, and comparing the results with exact solutions. In all cases, satisfactory results are predicted even in the thick-shell limit. Finally, a problem of transient heat conduction in a conical shell is solved. It is shown that the thermal bending moment produced by the average temperature gradient is quite severe near the tip, and it attains its maximum value in a relatively short time.

  9. Double Shell Plans and First Results from Outer Shell Keyhole Experiments

    NASA Astrophysics Data System (ADS)

    Montgomery, D. S.; Merritt, E. C.; Daughton, W. S.; Loomis, E. N.; Wilson, D. C.; Dodd, E. S.; Kline, J. L.; Batha, S. H.; Robey, H. F.

    2016-10-01

    Double-shells are an alternative approach to achieving indirect drive ignition on NIF. These targets consist of a low-Z ablatively-driven outer shell that impacts a high-Z inner shell filled with DT fuel. In contrast to single-shell designs, double-shell targets burn the fuel via volume ignition, albeit with a lower gain. While double-shell capsules are complicated to fabricate, their design includes several beneficial metrics such as a low convergence pusher (C.R. < 10), low implosion speed (250 km/s), a simple few-ns laser drive in a vacuum hohlraum, less sensitivity to hohlraum asymmetries, and low expected laser-plasma instabilities. We describe plans for developing double shell capsule implosions on NIF, and discuss challenges as well as uncertainties and trade-offs in the physics issues compared to single-shells, such as sensitivity to hard x-ray preheat of the inner shell. First experimental results measuring hard x-ray preheat, shock breakout and shock symmetry from outer-shell experiments using the NIF Keyhole platform will be presented. Work performed under the auspices of DOE by LANL under contract DE-AC52-06NA25396.

  10. A comparison of shell theories for large-amplitude vibrations of circular cylindrical shells: Lagrangian approach

    NASA Astrophysics Data System (ADS)

    Amabili, M.

    2003-07-01

    Large-amplitude (geometrically non-linear) vibrations of circular cylindrical shells subjected to radial harmonic excitation in the spectral neighbourhood of the lowest resonances are investigated. The Lagrange equations of motion are obtained by an energy approach, retaining damping through Rayleigh's dissipation function. Four different non-linear thin shell theories, namely Donnell's, Sanders-Koiter, Flügge-Lur'e-Byrne and Novozhilov's theories, which neglect rotary inertia and shear deformation, are used to calculate the elastic strain energy. The formulation is also valid for orthotropic and symmetric cross-ply laminated composite shells. The large-amplitude response of perfect and imperfect, simply supported circular cylindrical shells to harmonic excitation in the spectral neighbourhood of the lowest natural frequency is computed for all these shell theories. Numerical responses obtained by using these four non-linear shell theories are also compared to results obtained by using the Donnell's non-linear shallow-shell equation of motion. A validation of calculations by comparison with experimental results is also performed. Both empty and fluid-filled shells are investigated by using a potential fluid model. The effects of radial pressure and axial load are also studied. Boundary conditions for simply supported shells are exactly satisfied. Different expansions involving from 14 to 48 generalized co-ordinates, associated with natural modes of simply supported shells, are used. The non-linear equations of motion are studied by using a code based on an arclength continuation method allowing bifurcation analysis.

  11. Large ultrathin shelled drops produced via non-confined microfluidics.

    PubMed

    Chaurasia, Ankur S; Josephides, Dimitris N; Sajjadi, Shahriar

    2015-02-02

    We present a facile approach for producing large and monodisperse core-shell drops with ultrathin shells using a single-step process. A biphasic compound jet is introduced into a quiescent third (outer) phase that ruptures to form core-shell drops. Ultrathin shelled drops could only be produced within a certain range of surfactant concentrations and flow rates, highlighting the effect of interfacial tension in engulfing the core in a thin shell. An increase in surfactant concentrations initially resulted in drops with thinner shells. However, the drops with thinnest shells were obtained at an optimum surfactant concentration, and a further increase in the surfactant concentrations increased the shell thickness. Highly monodisperse (coefficient of variation smaller than 3 %) core-shell drops with diameter of ∼200 μm-2 mm with shell thickness as small as ∼2 μm were produced. The resulting drops were stable enough to undergo polymerisation and produce ultrathin shelled capsules.

  12. Probabilistic Dynamic Buckling of Smart Composite Shells

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Abumeri, Galib H.

    2007-01-01

    A computational simulation method is presented to evaluate the deterministic and nondeterministic dynamic buckling of smart composite shells. The combined use of intraply hybrid composite mechanics, finite element computer codes, and probabilistic analysis enable the effective assessment of the dynamic buckling load of smart composite shells. A universal plot is generated to estimate the dynamic buckling load of composite shells at various load rates and probabilities. The shell structure is also evaluated with smart fibers embedded in the plies right next to the outer plies. The results show that, on the average, the use of smart fibers improved the shell buckling resistance by about 10% at different probabilities and delayed the buckling occurrence time. The probabilistic sensitivities results indicate that uncertainties in the fiber volume ratio and ply thickness have major effects on the buckling load while uncertainties in the electric field strength and smart material volume fraction have moderate effects. For the specific shell considered in this evaluation, the use of smart composite material is not recommended because the shell buckling resistance can be improved by simply re-arranging the orientation of the outer plies, as shown in the dynamic buckling analysis results presented in this report.

  13. Probabilistic Dynamic Buckling of Smart Composite Shells

    NASA Technical Reports Server (NTRS)

    Abumeri, Galib H.; Chamis, Christos C.

    2003-01-01

    A computational simulation method is presented to evaluate the deterministic and nondeterministic dynamic buckling of smart composite shells. The combined use of composite mechanics, finite element computer codes, and probabilistic analysis enable the effective assessment of the dynamic buckling load of smart composite shells. A universal plot is generated to estimate the dynamic buckling load of composite shells at various load rates and probabilities. The shell structure is also evaluated with smart fibers embedded in the plies right below the outer plies. The results show that, on the average, the use of smart fibers improved the shell buckling resistance by about 10 percent at different probabilities and delayed the buckling occurrence time. The probabilistic sensitivities results indicate that uncertainties in the fiber volume ratio and ply thickness have major effects on the buckling load while uncertainties in the electric field strength and smart material volume fraction have moderate effects. For the specific shell considered in this evaluation, the use of smart composite material is not recommended because the shell buckling resistance can be improved by simply re-arranging the orientation of the outer plies, as shown in the dynamic buckling analysis results presented in this report.

  14. Stability of core-shell nanowires in selected model solutions

    NASA Astrophysics Data System (ADS)

    Kalska-Szostko, B.; Wykowska, U.; Basa, A.; Zambrzycka, E.

    2015-03-01

    This paper presents the studies of stability of magnetic core-shell nanowires prepared by electrochemical deposition from an acidic solution containing iron in the core and modified surface layer. The obtained nanowires were tested according to their durability in distilled water, 0.01 M citric acid, 0.9% NaCl, and commercial white wine (12% alcohol). The proposed solutions were chosen in such a way as to mimic food related environment due to a possible application of nanowires as additives to, for example, packages. After 1, 2 and 3 weeks wetting in the solutions, nanoparticles were tested by Infrared Spectroscopy, Atomic Absorption Spectroscopy, Transmission Electron Microscopy and X-ray diffraction methods.

  15. Laminated anisotropic reinforced plastic plates and shells

    NASA Technical Reports Server (NTRS)

    Korolev, V. I.

    1981-01-01

    Basic technical theories and engineering calculation equations for anisotropic plates and shells made of rigid reinforced plastics, mainly laminated fiberglass, are presented and discussed. Solutions are given for many problems of design of structural plates and shells, including curved sections and tanks, as well as two chapters on selection of the optimum materials, are given. Accounting for interlayer shearing and transverse separation, which are new engineering properties, are discussed. Application of the results obtained to thin three ply plates and shells wth a light elastic filler is presented and discussed.

  16. Core/shell nanoparticles in biomedical applications.

    PubMed

    Chatterjee, Krishnendu; Sarkar, Sreerupa; Jagajjanani Rao, K; Paria, Santanu

    2014-07-01

    Nanoparticles have several exciting applications in different areas and biomedial field is not an exception of that because of their exciting performance in bioimaging, targeted drug and gene delivery, sensors, and so on. It has been found that among several classes of nanoparticles core/shell is most promising for different biomedical applications because of several advantages over simple nanoparticles. This review highlights the development of core/shell nanoparticles-based biomedical research during approximately past two decades. Applications of different types of core/shell nanoparticles are classified in terms of five major aspects such as bioimaging, biosensor, targeted drug delivery, DNA/RNA interaction, and targeted gene delivery.

  17. Thermoelastic bending of locally heated orthotropic shells

    NASA Astrophysics Data System (ADS)

    Shevchenko, V. P.; Gol'tsev, A. S.

    2007-03-01

    The thermoelastic bending of locally heated orthotropic shells is studied using the classical theory of thermoelasticity of thin shallow orthotropic shells and the method of fundamental solutions. Linear distribution of temperature over thickness and the Newton's law of cooling are assumed. Numerical analysis is carried out for orthotropic shells of arbitrary Gaussian curvature made of a strongly anisotropic material. The behavior of thermal forces and moments near the zone of local heating is studied for two areas of thermal effect: along a coordinate axis and along a circle of unit radius. Generalized conclusions are drawn

  18. Photon propagator in light-shell gauge

    NASA Astrophysics Data System (ADS)

    Georgi, Howard; Kestin, Greg; Sajjad, Aqil

    2016-05-01

    We derive the photon propagator in light-shell gauge (LSG) vμAμ=0 , where vμ=(1,r ^ ) μ . This gauge is an important ingredient of the light-shell effective theory—an effective theory for describing high energy jet processes on a 2-dimensional spherical shell expanding at the speed of light around the point of the initial collision producing the jets. Since LSG is a noncovariant gauge, we cannot calculate the LSG propagator by using the standard procedure for covariant gauges. We therefore employ a new technique for computing the propagator, which we hope may be of relevance in other gauges as well.

  19. Advances in shell side boiling of refrigerants

    NASA Astrophysics Data System (ADS)

    Webb, Ralph L.

    The design of shell and tube evaporators used in air conditioning and refrigeration applications is discussed. The heat exchanger geometry of interest involves evaporation or condensation on the shell side of a horizontal tube bundle. Enhanced heat transfer geometries are typically used for shell side evaporation and for forced convection to water on the tube side. Refrigerant boiling data and forced convection refrigerant boiling correlations are described. The refrigerants of interest include R-11, 12, 22, 123, and 134a. Thermal design methods for sizing of the evaporator and condenser are outlined. A computer model for prediction of the evaporator performance is described.

  20. Synthesis of stiffened shells of revolution

    NASA Technical Reports Server (NTRS)

    Thornton, W. A.

    1974-01-01

    Computer programs for the synthesis of shells of various configurations were developed. The conditions considered are: (1) uniform shells (mainly cones) using a membrane buckling analysis, (2) completely uniform shells (cones, spheres, toroidal segments) using linear bending prebuckling analysis, and (3) revision of second design process to reduce the number of design variables to about 30 by considering piecewise uniform designs. A perturbation formula was derived and this allows exact derivatives of the general buckling load to be computed with little additional computer time.

  1. Effective Interactions from No Core Shell Model

    SciTech Connect

    Dikmen, E.; Lisetskiy, A. F.; Barrett, B. R.; Navratil, P.; Vary, J. P.

    2008-11-11

    We construct the many-body effective Hamiltonian for pf-shell by carrying out 2({Dirac_h}/2{pi}){omega}. NCSM calculations at the 2-body cluster level. We demonstrate how the effective Hamiltonian derived from realistic nucleon-nucleon (NN) potentials for the 2({Dirac_h}/2{pi}){omega} NCSM space should be modified to properly account for the many-body correlations produced by truncating to the major pf-shell. We obtain two-body effective interactions for the pf-shell by using direct projection and use them to reproduce the results of large scale NCSM for other light Ca isotopes.

  2. THE PYTHON SHELL FOR THE ORBIT CODE

    SciTech Connect

    Shishlo, Andrei P; Gorlov, Timofey V; Holmes, Jeffrey A

    2009-01-01

    A development of a Python driver shell for the ORBIT simulation code is presented. The original ORBIT code uses the SuperCode shell to organize accelerator-related simulations. It is outdated, unsupported, and it is an obstacle to future code development. The necessity and consequences of replacing the old shell language are discussed. A set of core modules and extensions that are currently in PyORBIT are presented. They include particle containers, parsers for MAD and SAD lattice files, a Python wrapper for MPI libraries, space charge calculators, TEAPOT trackers, and a laser stripping extension module.

  3. Thin shells joining local cosmic string geometries

    NASA Astrophysics Data System (ADS)

    Eiroa, Ernesto F.; Rubín de Celis, Emilio; Simeone, Claudio

    2016-10-01

    In this article we present a theoretical construction of spacetimes with a thin shell that joins two different local cosmic string geometries. We study two types of global manifolds, one representing spacetimes with a thin shell surrounding a cosmic string or an empty region with Minkowski metric, and the other corresponding to wormholes which are not symmetric across the throat located at the shell. We analyze the stability of the static configurations under perturbations preserving the cylindrical symmetry. For both types of geometries we find that the static configurations can be stable for suitable values of the parameters.

  4. On the vibration of axisymmetric shells

    NASA Astrophysics Data System (ADS)

    Heppler, G. R.; Wahl, L.

    1989-05-01

    The application of nonconventional basis functions to the linear vibration problem is explored. By employing shell coordinates the elements allow the exact geometrical modelling of shells of revolution with arbitrary meridians and the elements are able to reproduce strain free states under an arbitrary rigid body motion due to the use of these special basis functions. A generalization of the Reissner Mindlin plate theories is used because they have a broader range of applicability than the usual thin/shallow shell theories and also the trial functions need only be of class C(sup 0). The geometry treated is a hyperbola of revolution, in two configurations.

  5. Vibration of fluid loaded conical shells.

    PubMed

    Caresta, Mauro; Kessissoglou, Nicole J

    2008-10-01

    An analytical model is presented to describe the vibration of a truncated conical shell with fluid loading in the low frequency range. The solution for the dynamic response of the shell is presented in the form of a power series. Fluid loading is taken into account by dividing the shell into narrow strips which are considered to be locally cylindrical. Analytical results are presented for different boundary conditions and have been compared with the computational results from a boundary element model. Limitations of the model to the low frequency range are discussed.

  6. Gross shell structure of moments of inertia

    SciTech Connect

    Deleplanque, M.A.; Frauendorf, S.; Pashkevich, V.V.; Chu, S.Y.; Unzhakova, A.

    2002-07-01

    Average yrast moments of inertia at high spins, where the pairing correlations are expected to be largely absent, were found to deviate from the rigid-body values. This indicates that shell effects contribute to the moment of inertia. We discuss the gross dependence of moments of inertia and shell energies on the neutron number in terms of the semiclassical periodic orbit theory. We show that the ground-state shell energies, nuclear deformations and deviations from rigid-body moments of inertia are all due to the same periodic orbits.

  7. An Integrated Approach to the Taxonomic Identification of Prehistoric Shell Ornaments

    PubMed Central

    Demarchi, Beatrice; O'Connor, Sonia; de Lima Ponzoni, Andre; de Almeida Rocha Ponzoni, Raquel; Sheridan, Alison; Penkman, Kirsty; Hancock, Y.; Wilson, Julie

    2014-01-01

    Shell beads appear to have been one of the earliest examples of personal adornments. Marine shells identified far from the shore evidence long-distance transport and imply networks of exchange and negotiation. However, worked beads lose taxonomic clues to identification, and this may be compounded by taphonomic alteration. Consequently, the significance of this key early artefact may be underestimated. We report the use of bulk amino acid composition of the stable intra-crystalline proteins preserved in shell biominerals and the application of pattern recognition methods to a large dataset (777 samples) to demonstrate that taxonomic identification can be achieved at genus level. Amino acid analyses are fast (<2 hours per sample) and micro-destructive (sample size <2 mg). Their integration with non-destructive techniques provides a valuable and affordable tool, which can be used by archaeologists and museum curators to gain insight into early exploitation of natural resources by humans. Here we combine amino acid analyses, macro- and microstructural observations (by light microscopy and scanning electron microscopy) and Raman spectroscopy to try to identify the raw material used for beads discovered at the Early Bronze Age site of Great Cornard (UK). Our results show that at least two shell taxa were used and we hypothesise that these were sourced locally. PMID:24936797

  8. An integrated approach to the Taxonomic identification of prehistoric shell ornaments

    USGS Publications Warehouse

    Demarchi, Beatrice; O'Connor, Sonia; Ponzoni, Andre de Lima; Ponzoni, Raquel de Almeida Roch; Sheridan, Alison; Penkman, Kirsty; Hancock, Y.; Wilson, Julie

    2014-01-01

    Shell beads appear to have been one of the earliest examples of personal adornments. Marine shells identified far from the shore evidence long-distance transport and imply networks of exchange and negotiation. However, worked beads lose taxonomic clues to identification, and this may be compounded by taphonomic alteration. Consequently, the significance of this key early artefact may be underestimated. We report the use of bulk amino acid composition of the stable intra-crystalline proteins preserved in shell biominerals and the application of pattern recognition methods to a large dataset (777 samples) to demonstrate that taxonomic identification can be achieved at genus level. Amino acid analyses are fast (<2 hours per sample) and micro-destructive (sample size <2 mg). Their integration with non-destructive techniques provides a valuable and affordable tool, which can be used by archaeologists and museum curators to gain insight into early exploitation of natural resources by humans. Here we combine amino acid analyses, macro- and microstructural observations (by light microscopy and scanning electron microscopy) and Raman spectroscopy to try to identify the raw material used for beads discovered at the Early Bronze Age site of Great Cornard (UK). Our results show that at least two shell taxa were used and we hypothesise that these were sourced locally.

  9. An integrated approach to the taxonomic identification of prehistoric shell ornaments.

    PubMed

    Demarchi, Beatrice; O'Connor, Sonia; de Lima Ponzoni, Andre; de Almeida Rocha Ponzoni, Raquel; Sheridan, Alison; Penkman, Kirsty; Hancock, Y; Wilson, Julie

    2014-01-01

    Shell beads appear to have been one of the earliest examples of personal adornments. Marine shells identified far from the shore evidence long-distance transport and imply networks of exchange and negotiation. However, worked beads lose taxonomic clues to identification, and this may be compounded by taphonomic alteration. Consequently, the significance of this key early artefact may be underestimated. We report the use of bulk amino acid composition of the stable intra-crystalline proteins preserved in shell biominerals and the application of pattern recognition methods to a large dataset (777 samples) to demonstrate that taxonomic identification can be achieved at genus level. Amino acid analyses are fast (<2 hours per sample) and micro-destructive (sample size <2 mg). Their integration with non-destructive techniques provides a valuable and affordable tool, which can be used by archaeologists and museum curators to gain insight into early exploitation of natural resources by humans. Here we combine amino acid analyses, macro- and microstructural observations (by light microscopy and scanning electron microscopy) and Raman spectroscopy to try to identify the raw material used for beads discovered at the Early Bronze Age site of Great Cornard (UK). Our results show that at least two shell taxa were used and we hypothesise that these were sourced locally.

  10. Comparison on pore development of activated carbon produced from palm shell and coconut shell.

    PubMed

    Daud, Wan Mohd Ashri Wan; Ali, Wan Shabuddin Wan

    2004-05-01

    A series of experiments were conducted to compare the pore development in palm-shell and coconut-shell-based activated carbons produced under identical experimental conditions. Carbonization and activation processes were carried out at 850 degrees C using a fluidized bed reactor. Within the range of burn-off studied, at any burn-off, the micropore and mesopore volumes created in palm-shell-based activated carbon were always higher than those of coconut-shell-based activated carbon. On macropore volume, for palm-shell-based activated carbon, the volume increased with increase in burn-off up to 30% and then decreased. However, for coconut-shell-based activated carbon, the change in macropore volume with burn-off was almost negligible but the absolute macropore volume decreased with burn-off.

  11. Synthesis of core-shell structured magnetic nanoparticles with a carbide shell

    NASA Astrophysics Data System (ADS)

    Hou, Shushan; Chi, Yue; Zhao, Zhankui

    2017-03-01

    Core-shell structured materials combining the functionalities of the core and shell have great application potential in many fields. In this work, by combining solvothermal, polymerization and the high temperature carbonization, we have successfully developed a facile method to generate core-shell structured nanoparticles which possess an internal magnetic nanoparticle with a carbide shell. The thickness of resorcinol formaldehyde resin as intermediate transition shell could be easily adjusted by changing the concentration of the RF precursor. The resulting nanoparticles possess well-defined structure, uniform size and high magnetization. The unique nanostructure of the magnetic core-shell structured nanoparticles could lead to many promising applications in areas ranging from drug delivery to the purifyication of sewage.

  12. One-pot aqueous-phase synthesis of ultra-small CdSe/CdS/CdZnS core-shell-shell quantum dots with high-luminescent efficiency and good stability

    NASA Astrophysics Data System (ADS)

    Zhan, Hongju; Zhou, Peijiang; Pan, Keliang; He, Ting; He, Xuan; Zhou, Chuanyun; He, Yuning

    2013-06-01

    We describe the preparation and structural characterization of ultra-small water-dispersible CdSe semiconductor nanocrystal quantum dots (QDs), which are covered by a double-shell structure from CdS and CdZnS through a one-pot microwave-assisted synthesis technique. Because of the radial increase of the respective valence- and conduction-band offsets, the resulting core-shell-shell CdSe/CdS/CdZnS QDs are well electronically passivated, which endows them with high-fluorescence quantum yield of 90 % and high crystallinity, as was investigated by optical characterization, X-ray diffraction, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy. Also, due to the stepwise adjustment of the lattice parameters in the radial direction, the obtained QDs display remarkable photostability, acid stability, and oxidation stability both in the aqueous solutions and the intracellular environment. The cytotoxicity experiment further substantiates the good biocompatibility of the core-shell-shell particles, though the size of the obtained QDs was very small (about 3.2 nm). This implied that the CdSe/CdS/CdZnS core-shell-shell QDs can be used as a promising candidate for fluorescent QDs-based biological applications.

  13. A circumferential crack in a cylindrical shell under tension.

    NASA Technical Reports Server (NTRS)

    Duncan-Fama, M. E.; Sanders, J. L., Jr.

    1972-01-01

    A closed cylindrical shell under uniform internal pressure has a slit around a portion of its circumference. Linear shallow shell theory predicts inverse square-root-type singularities in certain of the stresses at the crack tips. This paper reports the computed strength of these singularities for different values of a dimensionless parameter based on crack length, shell radius and shell thickness.

  14. Theory of conformational transitions of viral shells

    NASA Astrophysics Data System (ADS)

    Guérin, Thomas; Bruinsma, Robijn

    2007-12-01

    We propose a continuum theory for the conformational transitions of viral shells. Conformational transitions of viral shells, as encountered during viral maturation, are associated with a soft mode instability of the capsid proteins [F. Tama and C. L. Brooks, J. Mol. Biol. 345(2), 299 (2005)]. The continuum theory presented here is an adaptation of the Ginzburg-Landau theory of soft-mode structural phase transitions of solids to viral shells. The theory predicts that the conformational transitions are characterized by a pronounced softening of the shell elasticity in the critical region. We demonstrate that the thermodynamics of the conformational transition can be probed quantitatively by a micromechanical atomic force microscope study. The external force can drive a capsid into a state of phase coexistence characterized by a highly nonlinear force deformation curve.

  15. Shell deformation studies using holographic interferometry

    NASA Technical Reports Server (NTRS)

    Parmerter, R. R.

    1974-01-01

    The buckling of shallow spherical shells under pressure has been the subject of many theoretical and experimental papers. Experimental data above the theoretical buckling load of Huang have given rise to speculation that shallow shell theory may not adequately predict the stability of nonsymmetric modes in higher-rise shells which are normally classified as shallow by the Reissner criterion. This article considers holographic interferometry as a noncontact, high-resolution method of measuring prebuckling deformations. Prebuckling deformations of a lambda = 9, h/b = 0.038 shell are Fourier-analyzed. Buckling is found to occur in an N = 5 mode as predicted by Huang's theory. The N = 4 mode was unusually stable, suggesting that even at this low value of h/b, stabilizing effects may be at work.

  16. On the Calculation of Shallow Shells

    NASA Technical Reports Server (NTRS)

    Ambartsumyan, S. A.

    1956-01-01

    This paper considers a sufficiently thin shallow shell of nonzero Gaussian curvature. It also presents a system of symmetrically constructed differential equations, constructed by the mixed method through the stress function and the displpacement function.

  17. The photoproduction of circumstellar OH maser shells

    NASA Technical Reports Server (NTRS)

    Huggins, P. J.; Glassgold, A. E.

    1982-01-01

    The structure of OH shells formed from the photodestruction of H2O by ambient UV photons in the thick, expanding envelopes around cool evolved stars is investigated. The properties of the shells are governed mainly by the envelope shielding which in turn is primarily controlled by the mass-loss rate M. The peak OH densities and column densities through the shells are, respectively, slowly decreasing and increasing functions of M. The characteristic radii of the shells also depend on M, increasing from about 4(15) cm for M = 1(-6) solar mass/yr to about 1(17) cm for M = 1(-4) solar mass/yr; this dependence is well matched by recent observational data, and lends support to the OH photoproduction mechanism.

  18. Wireless energy transfer between anisotropic metamaterials shells

    SciTech Connect

    Díaz-Rubio, Ana; Carbonell, Jorge; Sánchez-Dehesa, José

    2014-06-15

    The behavior of strongly coupled Radial Photonic Crystals shells is investigated as a potential alternative to transfer electromagnetic energy wirelessly. These sub-wavelength resonant microstructures, which are based on anisotropic metamaterials, can produce efficient coupling phenomena due to their high quality factor. A configuration of selected constitutive parameters (permittivity and permeability) is analyzed in terms of its resonant characteristics. The coupling to loss ratio between two coupled resonators is calculated as a function of distance, the maximum (in excess of 300) is obtained when the shells are separated by three times their radius. Under practical conditions an 83% of maximum power transfer has been also estimated. -- Highlights: •Anisotropic metamaterial shells exhibit high quality factors and sub-wavelength size. •Exchange of electromagnetic energy between shells with high efficiency is analyzed. •Strong coupling is supported with high wireless transfer efficiency. •End-to-end energy transfer efficiencies higher than 83% can be predicted.

  19. Hawking radiation from a collapsing quantum shell

    NASA Astrophysics Data System (ADS)

    Pullin, Jorge; Eyheralde, Rodrigo; Gambini, Rodolfo

    2017-01-01

    We study Hawking radiation from a collapsing shell with uncertainty in its position and momentum. We see there are deviations from the usual spectrum early on in the evolution, tending asymptotically to the usual spectrum plus small corrections.

  20. Indentation of pressurized viscoplastic polymer spherical shells

    NASA Astrophysics Data System (ADS)

    Tvergaard, V.; Needleman, A.

    2016-08-01

    The indentation response of polymer spherical shells is investigated. Finite deformation analyses are carried out with the polymer characterized as a viscoelastic/viscoplastic solid. Both pressurized and unpressurized shells are considered. Attention is restricted to axisymmetric deformations with a conical indenter. The response is analyzed for various values of the shell thickness to radius ratio and various values of the internal pressure. Two sets of material parameters are considered: one set having network stiffening at a moderate strain and the other having no network stiffening until very large strains are attained. The transition from an indentation type mode of deformation to a structural mode of deformation involving bending that occurs as the indentation depth increases is studied. The results show the effects of shell thickness, internal pressure and polymer constitutive characterization on this transition and on the deformation modes in each of these regimes.

  1. Expanding and collapsing scalar field thin shell

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Abbas, G.

    2012-09-01

    This paper deals with the dynamics of scalar field thin shell in the Reissner-Nordstr öm geometry. The Israel junction conditions between Reissner-Nordstr öm spacetimes are derived, which lead to the equation of motion of scalar field shell and Klien-Gordon equation. These equations are solved numerically by taking scalar field model with the quadratic scalar potential. It is found that solution represents the expanding and collapsing scalar field shell. For the better understanding of this problem, we investigate the case of massless scalar field (by taking the scalar field potential zero). Also, we evaluate the scalar field potential when p is an explicit function of R. We conclude that both massless as well as massive scalar field shell can expand to infinity at constant rate or collapse to zero size forming a curvature singularity or bounce under suitable conditions.

  2. Shell Eggs from Farm to Table

    MedlinePlus

    ... and stored and transported under refrigeration and ambient temperature of no greater than 45 °F. USDA also ... transported under refrigeration at an ambient (surrounding) air temperature not to exceed 45 °F; All packed shell ...

  3. Single Shell Tank (SST) Program Plan

    SciTech Connect

    HAASS, C.C.

    2000-03-21

    This document provides an initial program plan for retrieval of the single-shell tank waste. Requirements, technical approach, schedule, organization, management, and cost and funding are discussed. The program plan will be refined and updated in fiscal year 2000.

  4. Magnetotelluric Sounding of Europa's Ice Shell

    NASA Astrophysics Data System (ADS)

    Grimm, R. E.; Delory, G. T.; Espley, J. R.; Stillman, D. E.

    2016-10-01

    A magnetometer alone in insufficient to determine thicknesses of water layers in the ice shell because electromagnetic souce geometry is indeterminate at the "high" frequencies ( 1 Hz) needed for adequate resolution.

  5. Double Shell Tank (DST) Transfer Valving Specification

    SciTech Connect

    GRAVES, C.E.

    2001-01-17

    This specification establishes the performance requirements and provides references to the requisite codes and standards to be applied during design of the Double-Shell Tank (DST) Transfer Valving Subsystem that supports the first phase of Waste Feed Delivery.

  6. Nuclear Quadrupole Moments and Nuclear Shell Structure

    DOE R&D Accomplishments Database

    Townes, C. H.; Foley, H. M.; Low, W.

    1950-06-23

    Describes a simple model, based on nuclear shell considerations, which leads to the proper behavior of known nuclear quadrupole moments, although predictions of the magnitudes of some quadrupole moments are seriously in error.

  7. Membrane Shell Reflector Segment Antenna

    NASA Technical Reports Server (NTRS)

    Fang, Houfei; Im, Eastwood; Lin, John; Moore, James

    2012-01-01

    The mesh reflector is the only type of large, in-space deployable antenna that has successfully flown in space. However, state-of-the-art large deployable mesh antenna systems are RF-frequency-limited by both global shape accuracy and local surface quality. The limitations of mesh reflectors stem from two factors. First, at higher frequencies, the porosity and surface roughness of the mesh results in loss and scattering of the signal. Second, the mesh material does not have any bending stiffness and thus cannot be formed into true parabolic (or other desired) shapes. To advance the deployable reflector technology at high RF frequencies from the current state-of-the-art, significant improvements need to be made in three major aspects: a high-stability and highprecision deployable truss; a continuously curved RF reflecting surface (the function of the surface as well as its first derivative are both continuous); and the RF reflecting surface should be made of a continuous material. To meet these three requirements, the Membrane Shell Reflector Segment (MSRS) antenna was developed.

  8. Experimental study of upper sd shell nuclei and evolution of sd-fp shell gap

    SciTech Connect

    Sarkar, M. Saha

    2012-06-27

    The intruder orbitals from the fp shell play important role in the structure of nuclei around the line of stability in the upper sd shell. Experimentally we have studied {sup 35}Cl, {sup 30}P, {sup 36}Cl, {sup 37}Ar and {sup 34}Cl in this mass region using the INGA setup. Large basis cross-shell shell model calculations have indicated the need for change of the sd-fp energy gap for reliable reproduction of negative parity and high spin positive parity states. Indication of population of states of large deformation has been found in our data. Theoretical interpretation of these states has been discussed.

  9. Au/SiO2/QD core/shell/shell nanostructures with plasmonic-enhanced photoluminescence

    NASA Astrophysics Data System (ADS)

    Yang, Ping; Kawasaki, Kazunori; Ando, Masanori; Murase, Norio

    2012-09-01

    A sol-gel method has been developed to fabricate Au/SiO2/quantum dot (QD) core-shell-shell nanostructures with plasmonic-enhanced photoluminescence (PL). Au nanoparticle (NP) was homogeneously coated with a SiO2 shell with adjusted thickness through a Stöber synthesis. When the toluene solution of hydrophobic CdSe/ZnS QDs was mixed with partially hydrolyzed 3-aminopropyltrimethoxysilane (APS) sol, the ligands on the QDs were replaced by a thin functional SiO2 layer because the amino group in partially hydrolyzed APS has strong binding interaction with the QDs. Partially hydrolyzed APS plays an important role as a thin functional layer for the transfers of QDs to water phase and the subsequent connection to aqueous SiO2-coated Au NPs. Although Au NPs were demonstrated as efficient PL quenchers when the SiO2 shell on the Au NPs is thin (less than 5 nm), we found that precise control of the spacing between the Au NP core and the QD shell resulted in QDs with an enhancement of 30 % of PL efficiency. The Au/SiO2/QD core/shell/shell nanostructures also reveal strong surface plasmon scattering, which makes the Au/SiO/QD core-shell-shell nanostructures an excellent dual-modality imaging probe. This technology can serve as a general route for encapsulating a variety of discrete nanomaterials because monodispersed nanostructures often have a similar surface chemistry.

  10. Silica shell/gold core nanoparticles: correlating shell thickness with the plasmonic red shift upon aggregation.

    PubMed

    Vanderkooy, Alan; Chen, Yang; Gonzaga, Ferdinand; Brook, Michael A

    2011-10-01

    Differences in the wavelengths of the surface plasmon band of gold nanoparticles (AuNP)--before and after particle aggregation--are widely used in bioanalytical assays. However, the gold surfaces in such bioassays can suffer from exchange and desorption of noncovalently bound ligands and from nonspecific adsorption of biomolecules. Silica shells on the surfaces of the gold can extend the available surface chemistries for bioconjugation and potentially avoid these issues. Therefore, silica was grown on gold surfaces using either hydrolysis/condensation of tetraethyl orthosilicate 1 under basic conditions or diglyceroxysilane 2 at neutral pH. The former precursor permitted slow, controlled growth of shells from about 1.7 to 4.3 nm thickness. By contrast, 3-4 nm thick silica shells formed within an hour using diglyceroxysilane; thinner or thicker shells were not readily available. Within the range of shell thicknesses synthesized, the presence of a silica shell on the gold nanoparticle did not significantly affect the absorbance maximum (~5 nm) of unaggregated particles. However, the change in absorbance wavelength upon aggregation of the particles was highly dependent on the thickness of the shell. With silica shells coating the AuNP, there was a significant decrease in the absorbance maximum of the aggregated particles, from ~578 to ~536 nm, as the shell thicknesses increased from ~1.7 to ~4.3 nm, because of increased distance between adjacent gold cores. These studies provide guidance for the development of colorimetric assays using silica-coated AuNP.

  11. Trapping of intense light in hollow shell

    SciTech Connect

    Luan, Shixia; Yu, Wei; Yu, M. Y.; Weng, Suming; Wang, Jingwei; Xu, Han; Zhuo, Hongbin; Wong, A. Y.

    2015-09-15

    A small hollow shell for trapping laser light is proposed. Two-dimensional particle-in-cell simulation shows that under appropriate laser and plasma conditions a part of the radiation fields of an intense short laser pulse can enter the cavity of a small shell through an over-critical density plasma in an adjacent guide channel and become trapped. The trapped light evolves into a circulating radial wave pattern until its energy is dissipated.

  12. Kramers' Restricted Closed Shell CCSD Theory

    NASA Technical Reports Server (NTRS)

    Visscher, Lucas; Dyall, Kenneth G.; Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    A Kramers' restricted version of the closed shell coupled cluster singles doubles theory is presented. The theory may be used in conjunction with 2 or 4-component relativistic reference wavefunctions. The intrinsic treatment of the spin-orbit coupling doubles the number of independent quantities (amplitudes and integrals) relative to a spin-independent formalism. The number of operations required to evaluate the equations is four times larger than in the optimal spin-independent closed shell formalism.

  13. Shell model for buoyancy-driven turbulence.

    PubMed

    Kumar, Abhishek; Verma, Mahendra K

    2015-04-01

    In this paper we present a unified shell model for stably stratified and convective turbulence. Numerical simulation of this model for stably stratified flow shows Bolgiano-Obukhbov scaling in which the kinetic energy spectrum varies as k(-11/5). The shell model of convective turbulence yields Kolmogorov's spectrum. These results are consistent with the energy flux and energy feed due to buoyancy, and are in good agreement with direct numerical simulations of Kumar et al. [Phys. Rev. E 90, 023016 (2014)].

  14. Double shell tank waste analysis plan

    SciTech Connect

    Mulkey, C.H.; Jones, J.M.

    1994-12-15

    Waste analysis plan for the double shell tanks. SD-WM-EV-053 is Superseding SD-WM-EV-057.This document provides the plan for obtaining information needed for the safe waste handling and storage of waste in the Double Shell Tank Systems. In Particular it addresses analysis necessary to manage waste according to Washington Administrative Code 173-303 and Title 40, parts 264 and 265 of the Code of Federal Regulations.

  15. Complete Exchange of the Hydrophobic Dispersant Shell on Monodisperse Superparamagnetic Iron Oxide Nanoparticles

    PubMed Central

    2015-01-01

    High-temperature synthesized monodisperse superparamagnetic iron oxide nanoparticles are obtained with a strongly bound ligand shell of oleic acid and its decomposition products. Most applications require a stable presentation of a defined surface chemistry; therefore, the native shell has to be completely exchanged for dispersants with irreversible affinity to the nanoparticle surface. We evaluate by attenuated total reflectance−Fourier transform infrared spectroscopy (ATR−FTIR) and thermogravimetric analysis/differential scanning calorimetry (TGA/DSC) the limitations of commonly used approaches. A mechanism and multiple exchange scheme that attains the goal of complete and irreversible ligand replacement on monodisperse nanoparticles of various sizes is presented. The obtained hydrophobic nanoparticles are ideally suited for magnetically controlled drug delivery and membrane applications and for the investigation of fundamental interfacial properties of ultrasmall core–shell architectures. PMID:26226071

  16. New developments of the nuclear shell model

    NASA Astrophysics Data System (ADS)

    Poves, Alfredo

    2002-04-01

    More than fifty years ago, the independent particle model of the nucleus was proposed by M. Goeppert-Mayer and H. Jensen. The label "shell model" has since changed meaning and nowadays it applies mainly to the description of the nucleus that results of the mixing of many Slater determinants by an effective "in medium" interaction, usually limited to one and two-body terms. The advent of efficient new algorithms to solve the secular problem, together with the increase in speed and storage capacity of modern computers, has brought into the reach of large scale shell model calculations entire regions of nuclei and of nuclear phenomena traditionally considered to be out of the shell model realm. This enormous extension of its field of practical applications has occurred simultaneously with a regain of experimental interest in the nuclear spectroscopy, in particular in very neutron rich and N=Z nuclei. The shell model work in large model spaces demands a very complete understanding of the effective nuclear interaction, a basic goal of the nuclear theory. Besides, the huge increase of dimensionality that occurs when many valence orbits and valence particles are involved, is a formidable challenge for both the direct diagonalization shell model codes and for the many different approximations, based most often in physically guided truncations of the full shell model basis. In this talk I aim to transmit the effervescence of the field by highlighting the most important recent advances and applications.

  17. Experiments on shells under base excitation

    NASA Astrophysics Data System (ADS)

    Pellicano, Francesco; Barbieri, Marco; Zippo, Antonio; Strozzi, Matteo

    2016-05-01

    The aim of the present paper is a deep experimental investigation of the nonlinear dynamics of circular cylindrical shells. The specific problem regards the response of circular cylindrical shells subjected to base excitation. The shells are mounted on a shaking table that furnishes a vertical vibration parallel to the cylinder axis; a heavy rigid disk is mounted on the top of the shells. The base vibration induces a rigid body motion, which mainly causes huge inertia forces exerted by the top disk to the shell. In-plane stresses due to the aforementioned inertias give rise to impressively large vibration on the shell. An extremely violent dynamic phenomenon suddenly appears as the excitation frequency varies up and down close to the linear resonant frequency of the first axisymmetric mode. The dynamics are deeply investigated by varying excitation level and frequency. Moreover, in order to generalise the investigation, two different geometries are analysed. The paper furnishes a complete dynamic scenario by means of: (i) amplitude frequency diagrams, (ii) bifurcation diagrams, (iii) time histories and spectra, (iv) phase portraits and Poincaré maps. It is to be stressed that all the results presented here are experimental.

  18. Physics Considerations for Double-Shell Capsules

    NASA Astrophysics Data System (ADS)

    Daughton, W.; Montgomery, D. S.; Wilson, D.; Simakov, A.; Dodd, E.; Merritt, L.; Cardenas, T.; Kline, J. L.; Batha, S.

    2016-10-01

    Double-shell capsules offer an alternative approach for achieving burn on the National Ignition Facility. These capsules consist of a low-Z ablatively driven outer shell that converges a factor of 3 before colliding with a high-Z inner shell filled with liquid DT. Such targets permit short simple laser pulses using near vacuum hohlraum conditions, which have been shown to eliminate laser plasma instabilities, resulting in good coupling efficiency. The adiabat of the fuel is set predominantly by a single strong shock, followed by the nearly adiabatic compression of the fuel volume by a convergence ratio of 9 . In this talk, we present some key physics consideration for double-shell targets, including design constraints for optimizing the kinetic energy transfer to the inner shell. These basics considerations are confirmed by a series of 1D simulations, resulting in several optimized point designs. Two-dimensional simulations are employed to evaluate the influence of low-mode asymmetries, as well as the stability of both the outer and inner shells as the implosion proceeds.

  19. Buckling of conical shell with local imperfections

    NASA Technical Reports Server (NTRS)

    Cooper, P. A.; Dexter, C. B.

    1974-01-01

    Small geometric imperfections in thin-walled shell structures can cause large reductions in buckling strength. Most imperfections found in structures are neither axisymmetric nor have the shape of buckling modes but rather occur locally. This report presents the results of a study of the effect of local imperfections on the critical buckling load of a specific axially compressed thin-walled conical shell. The buckling calculations were performed by using a two-dimensional shell analysis program referred to as the STAGS (Structural Analysis of General Shells) computer code, which has no axisymmetry restrictions. Results show that the buckling load found from a bifurcation buckling analysis is highly dependent on the circumferential arc length of the imperfection type studied. As the circumferential arc length of the imperfection is increased, a reduction of up to 50 percent of the critical load of the perfect shell can occur. The buckling load of the cone with an axisymmetric imperfections is nearly equal to the buckling load of imperfections which extended 60 deg or more around the circumference, but would give a highly conservative estimate of the buckling load of a shell with an imperfection of a more local nature.

  20. Distributed neural signals on parabolic cylindrical shells

    NASA Astrophysics Data System (ADS)

    Hu, S. D.; Li, H.; Tzou, H. S.

    2013-06-01

    Parabolic cylindrical shells are commonly used as key components in communication antennas, space telescopes, solar collectors, etc. This study focuses on distributed modal neural sensing signals on a flexible simply-supported parabolic cylindrical shell panel. The parabolic cylindrical shell is fully laminated with a piezoelectric layer on its outer surface and the piezoelectric layer is segmented into infinitesimal elements (neurons) to investigate the microscopic distributed neural sensing signals. Since the dominant vibration component of the shell is usually the transverse oscillation, a new transverse mode shape function is defined. Two shell cases, i.e., the ratio of the meridian height to the half span distance of a parabola at 1:4 (shallow) and 1:1 (deep), are studied to reveal the curvature effect to the neural sensing signals. Studies suggest that the membrane signal component dominates for lower natural modes and the bending signal component dominates for higher natural modes. The meridional membrane and bending signal components are mostly concentrated on the high-curvature areas, while the longitudinal bending component is mostly concentrated on the relatively flat areas. The concentration behavior becomes more prominent as the parabolic cylindrical shell deepens, primarily resulting from the enhanced membrane effect due to the increased curvature.

  1. Controllable self-assembly of amphiphilic macrocycles into closed-shell and open-shell vesicles, nanotubes, and fibers.

    PubMed

    Mitra, Atanu; Panda, Dillip K; Corson, Lucas J; Saha, Sourav

    2013-05-21

    Depending on functional groups, amphiphilic hexaamide macrocycles self-assemble into closed-shell and open-shell vesicles in polar solvents. In the presence of water, open-shell vesicles morph into closed-shell vesicles, whereas acidification of the medium transforms vesicles into nanotubes and fibers.

  2. Uranyl peroxide oxalate cage and core-shell clusters containing 50 and 120 uranyl ions.

    PubMed

    Ling, Jie; Qiu, Jie; Burns, Peter C

    2012-02-20

    Cage clusters built from uranyl hexagonal bipyramids and oxalate ligands crystallize from slightly acidic aqueous solution under ambient conditions, facilitating structure analysis. Each cluster contains uranyl ions coordinated by peroxo ligands in a bidentate configuration. Uranyl ions are bridged by shared peroxo ligands, oxalate ligands, or through hydroxyl groups. U(50)Ox(20) contains 50 uranyl ions and 20 oxalate groups and is a topological derivative of the U(50) cage cluster that has a fullerene topology. U(120)Ox(90) contains 120 uranyl ions and 90 oxalate groups and is the largest and highest mass cluster containing uranyl ions that has been reported. It has a core-shell structure, in which the inner shell (core) consists of a cluster of 60 uranyl ions and 30 oxalate groups, identical to U(60)Ox(30), with a fullerene topology. The outer shell contains 12 identical units that each consist of five uranyl hexagonal bipyramids that are linked to form a ring (topological pentagon), with each uranyl ion also coordinated by a side-on nonbridging oxalate group. The five-membered rings of the inner and outer shells (the topological pentagons) are in correspondence and are linked through K cations. The inner shell topology has therefore templated the location of the outer shell rings, and the K counterions assume a structure-directing role. Small-angle X-ray scattering data demonstrated U(50)Ox(20) remains intact in aqueous solution upon dissolution. In the case of clusters of U(120)Ox(90), the scattering data for dissolved crystals indicates the U(60)Ox(30) core persists in solution, although the outer rings of uranyl bipyramids contained in the U(120)Ox(90) core-shell cluster appear to detach from the cluster when crystals are dissolved in water.

  3. Cadmium-free aqueous synthesis of ZnSe and ZnSe@ZnS core-shell quantum dots and their differential bioanalyte sensing potential

    NASA Astrophysics Data System (ADS)

    Mir, Irshad Ahmad; Rawat, Kamla; Bohidar, H. B.

    2016-10-01

    Herein we report a facile and cadmium-free approach to prepare water-soluble fluorescent ZnSe@ZnS core-shell quantum dots (QDs), using thioglycolic acid (TGA) ligand as a stabilizer and thiourea as a sulfur source. The optical properties and morphology of the obtained core-shell QDs were characterized by UV-vis and fluorescence spectroscopy, transmission electron microscopy (TEM), energy-dispersive x-ray analysis (EDX), x-ray diffraction (XRD), electrophoresis and dynamic light scattering (DLS) techniques. TEM analysis, and electrophoresis data showed that ZnSe core had an average size of 3.60 ± 0.12 nm and zeta potential of -38 mV; and for ZnSe@ZnS QDs, the mean size was 4.80 ± 0.20 nm and zeta potential was -45 mV. Compared to the core ZnSe QDs, the quantum yield of these core-shell structures was higher (13% versus 32%). These were interacted with five common bioanalytes such as, ascorbic acid, citric acid, oxalic acid, glucose and cholesterol which revealed fluorescence quenching due to concentration dependent binding of analytes to the core only, and core-shell QDs. The binding pattern followed the sequence: cholesterol < glucose < ascorbic acid < oxalic acid < citric acid for ZnSe, and cholesterol < glucose < oxalic acid < ascorbic acid < citric acid for core-shell QDs. Thus, enhanced binding was noticed for the analyte citric acid which may facilitate development of a fluorescence-based sensor based on the ZnSe core-only quantum dot platform. Further, the hydrophilic core-shell structure may find use in cell imaging applications.

  4. Sediment mixing and stratigraphic disorder revealed by the age-structure of Tellina shells in Great Barrier Reef sediment

    NASA Astrophysics Data System (ADS)

    Kosnik, Matthew A.; Hua, Quan; Jacobsen, Geraldine E.; Kaufman, Darrell S.; Wüst, Raphael A.

    2007-09-01

    Radiocarbon-calibrated amino acid racemization ages of 250 individually dated Tellina shells from two sediment cores are used to quantify molluscan time averaging with increasing burial depth in the shallow-water carbonate lagoon of Rib Reef, central Great Barrier Reef, Australia. The top 20 cm of sediment contain a distinct, essentially modern assemblage with a median age of only 5 yr. Sediment between 20 and 125 cm are age-homogeneous and significantly older than the surface sediment (median age 189 yr). Shell age distributions within layers indicate that the top 125 cm of lagoonal sediment is thoroughly mixed on a subcentennial scale. Shell size is an important correlate of shell half-life and an important determinant of the inferred age of sedimentary layers. These results illustrate the importance of bioturbation in these environments, indicate that age estimates in this depositional setting are sensitive to specimen choice, and document a size-dependent bias in death assemblage formation.

  5. Sound Transmission through Two Concentric Cylindrical Sandwich Shells

    NASA Technical Reports Server (NTRS)

    Tang, Yvette Y.; Silcox, Richard J.; Robinson, Jay H.

    1996-01-01

    This paper solves the problem of sound transmission through a system of two infinite concentric cylindrical sandwich shells. The shells are surrounded by external and internal fluid media and there is fluid (air) in the annular space between them. An oblique plane sound wave is incident upon the surface of the outer shell. A uniform flow is moving with a constant velocity in the external fluid medium. Classical thin shell theory is applied to the inner shell and first-order shear deformation theory is applied to the outer shell. A closed form for transmission loss is derived based on modal analysis. Investigations have been made for the impedance of both shells and the transmission loss through the shells from the exterior into the interior. Results are compared for double sandwich shells and single sandwich shells. This study shows that: (1) the impedance of the inner shell is much smaller than that of the outer shell so that the transmission loss is almost the same in both the annular space and the interior cavity of the shells; (2) the two concentric sandwich shells can produce an appreciable increase of transmission loss over single sandwich shells especially in the high frequency range; and (3) design guidelines may be derived with respect to the noise reduction requirement and the pressure in the annular space at a mid-frequency range.

  6. Adaptation from restricted geometries: the shell inclination of terrestrial gastropods.

    PubMed

    Okajima, Ryoko; Chiba, Satoshi

    2013-02-01

    The adaptations that occur for support and protection can be studied with regard to the optimal structure that balances these objectives with any imposed constraints. The shell inclination of terrestrial gastropods is an appropriate model to address this problem. In this study, we examined how gastropods improve shell angles to well-balanced ones from geometrically constrained shapes. Our geometric analysis and physical analysis showed that constantly coiled shells are constrained from adopting a well-balanced angle; the shell angle of such basic shells tends to increase as the spire index (shell height/width) increases, although the optimum angle for stability is 90° for flat shells and 0° for tall shells. Furthermore, we estimated the influences of the geometric rule and the functional demands on actual shells by measuring the shell angles of both resting and active snails. We found that terrestrial gastropods have shell angles that are suited for balance. The growth lines of the shells indicated that this adaptation depends on the deflection of the last whorl: the apertures of flat shells are deflected downward, whereas those of tall shells are deflected upward. Our observations of active snails demonstrated that the animals hold their shells at better balanced angles than inactive snails.

  7. Thin Shell Manufacturing for large Wavefront correctors

    NASA Astrophysics Data System (ADS)

    Ruch, Eric; Poutriquet, Florence

    2011-09-01

    One of the major key elements in large adaptive optical systems is the thin shell, used as a deformable mirror. Although the optical prescriptions are relaxed with respect to a passive mirror, especially in the low spatial frequency domain, other requirements, such as the cosmetic defects (scratch & dig), the tight control of the thickness uniformity and of course the fragility of the piece having an aspect ratio up to 1000:1, generate new problems during the manufacturing, testing and handling of such optics. Moreover, the optical surface has to be tested in two different ways: a classical optical test bench allows us to create a surface map of the mirror. This map is then computed to determine the force required by the actuators to flatten the mirror and this becomes also a specification for polishing and implies a good interaction with the voice coil manufacturer. More than twenty years ago Sagem - Reosc developed the first meter class thin shell for early adaptive optics experiments. Since then, large thin shell have been used as the optical part in composite mirrors and more recently the aspheric shell for the VLT Deformable Secondary Mirror has been polished and prototypes, up to scale 1, of the E-ELT M4 Adaptive Mirror have been delivered to ESO in 2010. This paper will present some recent results in the manufacturing and testing technologies of large this shell, especially focusing on the development of the 1,1 meter convex aspherical shell for the VLT M2 mirror and on the results obtained on the largest thin shell produced so far (2,5 meter in diameter) developed as a demonstrator for the future E-ELT M4.

  8. Comparisons of Backscattering from Cylindrical Shells Described by Thin Shell and Elasticity Theories.

    DTIC Science & Technology

    1991-03-04

    term that describes inextensional motion. The first equation represents the normal stress at the midsurface of the shell, which is equal to the...that the normal velocity at the midsurface of the shell is proportional to the normal derivative of the total pressw e. The scattered pressure ps can

  9. Simplified dispersion curves for circular cylindrical shells using shallow shell theory

    NASA Astrophysics Data System (ADS)

    Sarkar, Abhijit; Sonti, Venkata R.

    2009-04-01

    An alternative derivation of the dispersion relation for the transverse vibration of a circular cylindrical shell is presented. The use of the shallow shell theory model leads to a simpler derivation of the same result. Further, the applicability of the dispersion relation is extended to the axisymmetric mode and the high frequency beam mode.

  10. Shell thickness determination of polymer-shelled microbubbles using transmission electron microscopy.

    PubMed

    Härmark, Johan; Hebert, Hans; Koeck, Philip J B

    2016-06-01

    Intravenously injected microbubbles (MBs) can be utilized as ultrasound contrast agent (CA) resulting in enhanced image quality. A novel CA, consisting of air filled MBs stabilized with a shell of polyvinyl alcohol (PVA) has been developed. These spherical MBs have been decorated with superparamagnetic iron oxide nanoparticles (SPIONs) in order to serve as both ultrasound and magnetic resonance imaging (MRI) CA. In this study, a mathematical model was introduced that determined the shell thickness of two types of SPIONs decorated MBs (Type A and Type B). The shell thickness of MBs is important to determine, as it affects the acoustical properties. In order to investigate the shell thickness, thin sections of plastic embedded MBs were prepared and imaged using transmission electron microscopy (TEM). However, the sections were cut at random distances from the MB center, which affected the observed shell thickness. Hence, the model determined the average shell thickness of the MBs from corrected mean values of the outer and inner radii observed in the TEM sections. The model was validated using simulated slices of MBs with known shell thickness and radius. The average shell thickness of Type A and Type B MBs were 651nm and 637nm, respectively.

  11. Comparative study of the shell development of hard- and soft-shelled turtles.

    PubMed

    Nagashima, Hiroshi; Shibata, Masahiro; Taniguchi, Mari; Ueno, Shintaro; Kamezaki, Naoki; Sato, Noboru

    2014-07-01

    The turtle shell provides a fascinating model for the investigation of the evolutionary modifications of developmental mechanisms. Different conclusions have been put forth for its development, and it is suggested that one of the causes of the disagreement could be the differences in the species of the turtles used - the differences between hard-shelled turtles and soft-shelled turtles. To elucidate the cause of the difference, we compared the turtle shell development in the two groups of turtle. In the dorsal shell development, these two turtle groups shared the gene expression profile that is required for formation, and shared similar spatial organization of the anatomical elements during development. Thus, both turtles formed the dorsal shell through a folding of the lateral body wall, and the Wnt signaling pathway appears to have been involved in the development. The ventral portion of the shell, on the other hand, contains massive dermal bones. Although expression of HNK-1 epitope has suggested that the trunk neural crest contributed to the dermal bones in the hard-shelled turtles, it was not expressed in the initial anlage of the skeletons in either of the types of turtle. Hence, no evidence was found that would support a neural crest origin.

  12. Cluster aspects of p-shell and sd-shell nuclei

    SciTech Connect

    Kanada-En'yo, Y.; Kobayashi, F.; Suhara, T.; Kimura, M.; Taniguchi, Y.

    2011-05-06

    We report some topics on cluster structures studied by using a theoretical method of antisymmetrized molecular dynamics(AMD). Cluster features of p-shell and sd-shell nuclei are discussed. In particular, three alpha cluster structures in the excited states of {sup 12}C and {sup 14}C are focused. Dineutron correlations in neutron-rich nuclei are also discussed.

  13. Supercooling Self-Assembly of Magnetic Shelled Core/Shell Supraparticles.

    PubMed

    Zheng, Xiaotong; Yan, Bingyun; Wu, Fengluan; Zhang, Jinlong; Qu, Shuxin; Zhou, Shaobing; Weng, Jie

    2016-09-14

    Molecular self-assembly has emerged as a powerful technique for controlling the structure and properties of core/shell structured supraparticles. However, drug-loading capacities and therapeutic effects of self-assembled magnetic core/shell nanocarriers with magnetic nanoparticles in the core are limited by the intervention of the outer organic or inorganic shell, the aggregation of superparamagnetic nanoparticles, the narrowed inner cavity, etc. Here, we present a self-assembly approach based on rebalancing hydrogen bonds between components under a supercooling process to form a new core/shell nanoscale supraparticle with magnetic nanoparticles as the shell and a polysaccharide as a core. Compared with conventional iron oxide nanoparticles, this magnetic shelled core/shell nanoparticle possesses an optimized inner cavity and a loss-free outer magnetic property. Furthermore, we find that the drug-loaded magnetic shelled nanocarriers showed interesting in vitro release behaviors at different pH conditions, including "swelling-broken", "dissociating-broken", and "bursting-broken" modes. Our experiments demonstrate the novel design of the multifunctional hybrid nanostructure and provide a considerable potential for the biomedical applications.

  14. Revisiting chameleon gravity: Thin-shell and no-shell fields with appropriate boundary conditions

    SciTech Connect

    Tamaki, Takashi; Tsujikawa, Shinji

    2008-10-15

    We derive analytic solutions of a chameleon scalar field {phi} that couples to a nonrelativistic matter in the weak gravitational background of a spherically symmetric body, paying particular attention to a field mass m{sub A} inside of the body. The standard thin-shell field profile is recovered by taking the limit m{sub A}r{sub c}{yields}{infinity}, where r{sub c} is a radius of the body. We show the existence of 'no-shell' solutions where the field is nearly frozen in the whole interior of the body, which does not necessarily correspond to the 'zero-shell' limit of thin-shell solutions. In the no-shell case, under the condition m{sub A}r{sub c}>>1, the effective coupling of {phi} with matter takes the same asymptotic form as that in the thin-shell case. We study experimental bounds coming from the violation of equivalence principle as well as solar-system tests for a number of models including f(R) gravity and find that the field is in either the thin-shell or the no-shell regime under such constraints, depending on the shape of scalar-field potentials. We also show that, for the consistency with local gravity constraints, the field at the center of the body needs to be extremely close to the value {phi}{sub A} at the extremum of an effective potential induced by the matter coupling.

  15. SHELLS: A thin-shell program for modeling neotectonics of regional or global lithosphere with faults

    SciTech Connect

    Kong, X.; Bird, P.

    1995-11-10

    This report discusses a geophysical computer program called SHELLS, which model neotectonics of regional or global lithosphere with faults. This model is based on spherical shell elements which uses isostacy and vertical integration of lithospheric strength to reduce this to a two-dimensional problem.

  16. Surface-state-mediated charge-transfer dynamics in CdTe/CdSe core-shell quantum dots.

    PubMed

    Rawalekar, Sachin; Kaniyankandy, Sreejith; Verma, Sandeep; Ghosh, Hirendra N

    2011-06-20

    Herein, we report the synthesis of aqueous CdTe/CdSe type-II core-shell quantum dots (QDs) in which 3-mercaptopropionic acid is used as the capping agent. The CdTe QDs and CdTe/CdSe core-shell QDs are characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), steady-state absorption, and emission spectroscopy. A red shift in the steady-state absorption and emission bands is observed with increasing CdSe shell thickness over CdTe QDs. The XRD pattern indicates that the peaks are shifted to higher angles after growth of the CdSe shell on the CdTe QDs. HR-TEM images of both CdTe and CdTe/CdSe QDs indicate that the particles are spherical, with a good shape homogeneity, and that the particle size increases by about 2 nm after shell formation. In the time-resolved emission studies, we observe that the average emission lifetime (τ(av)) increases to 23.5 ns for CdTe/CdSe (for the thickest shell) as compared to CdTe QDs (τ(av) =12 ns). The twofold increment in the average emission lifetime indicates an efficient charge separation in type-II CdTe/CdSe core-shell QDs. Transient absorption studies suggest that both the carrier cooling and the charge-transfer dynamics are affected by the presence of traps in the CdTe QDs and CdTe/CdSe core-shell QDs. Carrier quenching experiments indicate that hole traps strongly affect the carrier cooling dynamics in CdTe/CdSe core-shell QDs.

  17. Preparation of novel ferrocene-based shell cross-linked thermoresponsive hybrid micelles with antitumor efficacy.

    PubMed

    Wei, Hua; Quan, Chang-Yun; Chang, Cong; Zhang, Xian-Zheng; Zhuo, Ren-Xi

    2010-04-29

    The shell cross-linked (SCL) thermoresponsive hybrid poly(N-isopropylacrylamide-co-aminoethyl methacrylate)-b-polymethyl methacrylate (P(NIPAAm-co-AMA)-b-PMMA) micelle consisting of a cross-linked thermoresponsive hybrid shell and a hydrophobic core domain was fabricated via a two-step process: micellization of P(NIPAAm-co-AMA)-b-PMMA in aqueous solution followed by cross-linking of the hydrophilic shell layer via the amidation reaction between the amine groups of AMA units and the carboxylic acid functions of 1,1'-ferrocenedicarboxylic acid. The SCL micelle showed reversible dispersion/aggregation in response to the temperature cycles through the lower critical solution temperature (LCST) of the thermoresponsive hybrid shell at around 36 degrees C, observed by turbidity measurements and dynamic light scattering (DLS). Besides the usage as an inorganic difunctional cross-linker, the inorganic ferrocene segment further endowed the SCL hybrid micelle with the antitumor efficacy, namely, the resulting SCL micelle exhibited a remarkable cytotoxic effect for HeLa cells with a very low IC50. The results showed that the SCL hybrid micelle developed in this study could be potentially used as an antitumor agent, which is unique compared to the conventional tumor therapy by using the antitumor drug loaded in the micellar core.

  18. Lithography-free shell-substrate isolation for core-shell GaAs nanowires.

    PubMed

    Haggren, Tuomas; Perros, Alexander Pyymaki; Jiang, Hua; Huhtio, Teppo; Kakko, Joona-Pekko; Dhaka, Veer; Kauppinen, Esko; Lipsanen, Harri

    2016-07-08

    A facile and scalable lithography-free technique(5) for the rapid construction of GaAs core-shell nanowires incorporating shell isolation from the substrate is reported. The process is based on interrupting NW growth and applying a thin spin-on-glass (SOG) layer to the base of the NWs and resuming core-shell NW growth. NW growth occurred in an atmospheric pressure metalorganic vapour phase epitaxy (MOVPE) system with gold nanoparticles used as catalysts for the vapour-liquid-solid growth. It is shown that NW axial core growth and radial shell growth can be resumed after interruption and even exposure to air. The SOG residues and native oxide layer that forms on the NW surface are shown to prevent or perturb resumption of epitaxial NW growth if not removed. Both HF etching and in situ annealing of the air-exposed NWs in the MOVPE were shown to remove the SOG residues and native oxide layer. While both procedures are shown capable of removing the native oxide and enabling resumption of epitaxial NW growth, in situ annealing produced the best results and allowed construction of pristine core-shell NWs. No growth occurred on SOG and it was observed that axial NW growth was more rapid when a SOG layer covered the substrate. The fabricated p-core/n-shell NWs exhibited diode behaviour upon electrical testing. The isolation of the NW shells from the substrate was confirmed by scanning electron microscopy and electrical measurements. The crystal quality of the regrown core-shell NWs was verified with a high resolution transmission electron microscope. The reported technique potentially provides a pathway using MOVPE for scalable and high-throughput production of shell-substrate isolated core-shell NWs on an industrial scale.

  19. Lithography-free shell-substrate isolation for core-shell GaAs nanowires

    NASA Astrophysics Data System (ADS)

    Haggren, Tuomas; Pyymaki Perros, Alexander; Jiang, Hua; Huhtio, Teppo; Kakko, Joona-Pekko; Dhaka, Veer; Kauppinen, Esko; Lipsanen, Harri

    2016-07-01

    A facile and scalable lithography-free technique5 for the rapid construction of GaAs core-shell nanowires incorporating shell isolation from the substrate is reported. The process is based on interrupting NW growth and applying a thin spin-on-glass (SOG) layer to the base of the NWs and resuming core-shell NW growth. NW growth occurred in an atmospheric pressure metalorganic vapour phase epitaxy (MOVPE) system with gold nanoparticles used as catalysts for the vapour-liquid-solid growth. It is shown that NW axial core growth and radial shell growth can be resumed after interruption and even exposure to air. The SOG residues and native oxide layer that forms on the NW surface are shown to prevent or perturb resumption of epitaxial NW growth if not removed. Both HF etching and in situ annealing of the air-exposed NWs in the MOVPE were shown to remove the SOG residues and native oxide layer. While both procedures are shown capable of removing the native oxide and enabling resumption of epitaxial NW growth, in situ annealing produced the best results and allowed construction of pristine core-shell NWs. No growth occurred on SOG and it was observed that axial NW growth was more rapid when a SOG layer covered the substrate. The fabricated p-core/n-shell NWs exhibited diode behaviour upon electrical testing. The isolation of the NW shells from the substrate was confirmed by scanning electron microscopy and electrical measurements. The crystal quality of the regrown core-shell NWs was verified with a high resolution transmission electron microscope. The reported technique potentially provides a pathway using MOVPE for scalable and high-throughput production of shell-substrate isolated core-shell NWs on an industrial scale.

  20. Structural Assessment of Advanced Composite Tow-Steered Shells

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Stanford, Bret K.; Hrinda, Glenn A.; Wang, Zhuosong; Martin, Robert a.; Kim, H. Alicia

    2013-01-01

    The structural performance of two advanced composite tow-steered shells, manufactured using a fiber placement system, is assessed using both experimental and analytical methods. The fiber orientation angles vary continuously around the shell circumference from 10 degrees on the shell crown and keel, to 45 degrees on the shell sides. The two shells differ in that one shell has the full 24-tow course applied during each pass of the fiber placement system, while the second shell uses the fiber placement system s tow drop/add capability to achieve a more uniform shell wall thickness. The shells are tested in axial compression, and estimates of their prebuckling axial stiffnesses and bifurcation buckling loads are predicted using linear finite element analyses. These preliminary predictions compare well with the test results, with an average agreement of approximately 10 percent.

  1. Removable inner turbine shell with bucket tip clearance control

    DOEpatents

    Sexton, Brendan F.; Knuijt, Hans M.; Eldrid, Sacheverel Q.; Myers, Albert; Coneybeer, Kyle E.; Johnson, David Martin; Kellock, Iain R.

    2000-01-01

    A turbine includes a plurality of inner shell sections mounting first and second stage nozzle and shroud portions. The inner shell sections are pinned to an outer containment shell formed of sections to preclude circumferential movement of the inner shell relative to the outer shell and enable thermal expansion and contraction of the inner shell relative to the outer shell. Positive bucket tip clearance control is afforded by passing a thermal medium about the inner shell in heat transfer relation with the shrouds about the first and second stage bucket tips, the thermal medium being provided from a source of heating/cooling fluid independent of the turbine. Access is provided to the rotor and turbine buckets by removing the outer and inner shell sections.

  2. Novel highly ordered core–shell nanoparticles

    SciTech Connect

    Dey, Sonal; Hossain, Mohammad D.; Mayanovic, Robert A.; Wirth, Richard; Gordon, Robert A.

    2016-10-26

    Core–shell nanoparticles have potential for a wide range of applications due to the tunability of their magnetic, catalytic, electronic, optical, and other physicochemical properties. A frequent drawback in the design of core–shell nanoparticles and nanocrystals is the lack of control over an extensive, disordered, and compositionally distinct interface that occurs due to the dissimilarity of structural and compositional phases of the core and shell. In this work, we demonstrate a new hydrothermal nanophase epitaxy (HNE) technique to synthesize highly structurally ordered α-Cr2O3@α-Co0.38Cr1.62O2.92 inverted core–shell nanoparticles (CSNs) with evidence for the nanoscale growth of corundum structure beginning from the core and extending completely into the shell of the CSNs with minimal defects at the interface. The high-resolution TEM results show a sharp interface exhibiting epitaxial atomic registry of shell atoms over highly ordered core atoms. The XPS and Co K-edge XANES analyses indicate the +2 oxidation state of cobalt is incorporated in the shell of the CSNs. Our XPS and EXAFS results are consistent with oxygen vacancy formation in order to maintain charge neutrality upon substitution of the Co2+ ion for the Cr3+ ion in the α-Co0.38Cr1.62O2.92 shell. Furthermore, the CSNs exhibit the magnetic exchange bias effect, which is attributed to the exchange anisotropy at the interface made possible by the nanophase epitaxial growth of the α-Co0.38Cr1.62O2.92 shell on the α-Cr2O3 core of the nanoparticles. The combination of a well-structured, sharp interface and novel nanophase characteristics is highly desirable for nanostructures having enhanced magnetic properties.

  3. Do freshwater mussel shells record road-salt pollution?

    PubMed Central

    O'Neil, Dane D.; Gillikin, David P.

    2014-01-01

    Road-salt pollution in streams in the Northeastern United States has become a major concern, but historical data are scarce. Freshwater bivalve shells have the ability to record past environmental information, and may act as archives of road-salt pollution. We sampled Elliptio complanata shells from four streams, as well as specimens collected in 1877. Average [Na/Ca]shell was highest in modern shells from the stream with the highest sodium concentrations, and low in shells collected from this same stream in 1877 as well as in the shells from other streams, suggesting that [Na/Ca]shell serves as a proxy for road-salt pollution. We expected higher [Na/Ca]shell in winter and spring. However, high-resolution [Na/Ca]shell analyses along the growth axis of one shell did not reveal any clear subannual patterns, which could be the result of shell growth cessation in winter and/or during periods of high stream sodium concentrations. Therefore, bulk [Na/Ca]shell analysis from multiple shells can be used as a proxy of large changes in stream sodium concentrations, but high-resolution variations in stream sodium concentrations do not seem to be recorded in the shells. PMID:25418687

  4. Do freshwater mussel shells record road-salt pollution?

    PubMed

    O'Neil, Dane D; Gillikin, David P

    2014-11-24

    Road-salt pollution in streams in the Northeastern United States has become a major concern, but historical data are scarce. Freshwater bivalve shells have the ability to record past environmental information, and may act as archives of road-salt pollution. We sampled Elliptio complanata shells from four streams, as well as specimens collected in 1877. Average [Na/Ca]shell was highest in modern shells from the stream with the highest sodium concentrations, and low in shells collected from this same stream in 1877 as well as in the shells from other streams, suggesting that [Na/Ca]shell serves as a proxy for road-salt pollution. We expected higher [Na/Ca]shell in winter and spring. However, high-resolution [Na/Ca]shell analyses along the growth axis of one shell did not reveal any clear subannual patterns, which could be the result of shell growth cessation in winter and/or during periods of high stream sodium concentrations. Therefore, bulk [Na/Ca]shell analysis from multiple shells can be used as a proxy of large changes in stream sodium concentrations, but high-resolution variations in stream sodium concentrations do not seem to be recorded in the shells.

  5. Core-shell silicon nanowire solar cells.

    PubMed

    Adachi, M M; Anantram, M P; Karim, K S

    2013-01-01

    Silicon nanowires can enhance broadband optical absorption and reduce radial carrier collection distances in solar cell devices. Arrays of disordered nanowires grown by vapor-liquid-solid method are attractive because they can be grown on low-cost substrates such as glass, and are large area compatible. Here, we experimentally demonstrate that an array of disordered silicon nanowires surrounded by a thin transparent conductive oxide has both low diffuse and specular reflection with total values as low as < 4% over a broad wavelength range of 400 nm < λ < 650 nm. These anti-reflective properties together with enhanced infrared absorption in the core-shell nanowire facilitates enhancement in external quantum efficiency using two different active shell materials: amorphous silicon and nanocrystalline silicon. As a result, the core-shell nanowire device exhibits a short-circuit current enhancement of 15% with an amorphous Si shell and 26% with a nanocrystalline Si shell compared to their corresponding planar devices.

  6. Thick or Thin Ice Shell on Europa?

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Scientists are all but certain that Europa has an ocean underneath its icy surface, but they do not know how thick this ice might be. This artist concept illustrates two possible cut-away views through Europa's ice shell. In both, heat escapes, possibly volcanically, from Europa's rocky mantle and is carried upward by buoyant oceanic currents. If the heat from below is intense and the ice shell is thin enough (left), the ice shell can directly melt, causing what are called 'chaos' on Europa, regions of what appear to be broken, rotated and tilted ice blocks. On the other hand, if the ice shell is sufficiently thick (right), the less intense interior heat will be transferred to the warmer ice at the bottom of the shell, and additional heat is generated by tidal squeezing of the warmer ice. This warmer ice will slowly rise, flowing as glaciers do on Earth, and the slow but steady motion may also disrupt the extremely cold, brittle ice at the surface. Europa is no larger than Earth's moon, and its internal heating stems from its eccentric orbit about Jupiter, seen in the distance. As tides raised by Jupiter in Europa's ocean rise and fall, they may cause cracking, additional heating and even venting of water vapor into the airless sky above Europa's icy surface. (Artwork by Michael Carroll.)

  7. Folding of non-Euclidean curved shells

    NASA Astrophysics Data System (ADS)

    Bende, Nakul; Evans, Arthur; Innes-Gold, Sarah; Marin, Luis; Cohen, Itai; Santangelo, Christian; Hayward, Ryan

    2015-03-01

    Origami-based folding of 2D sheets has been of recent interest for a variety of applications ranging from deployable structures to self-folding robots. Though folding of planar sheets follows well-established principles, folding of curved shells involves an added level of complexity due to the inherent influence of curvature on mechanics. In this study, we use principles from differential geometry and thin shell mechanics to establish fundamental rules that govern folding of prototypical creased shells. In particular, we show how the normal curvature of a crease line controls whether the deformation is smooth or discontinuous, and investigate the influence of shell thickness and boundary conditions. We show that snap-folding of shells provides a route to rapid actuation on time-scales dictated by the speed of sound. The simple geometric design principles developed can be applied at any length-scale, offering potential for bio-inspired soft actuators for tunable optics, microfluidics, and robotics. This work was funded by the National Science Foundation through EFRI ODISSEI-1240441 with additional support to S.I.-G. through the UMass MRSEC DMR-0820506 REU program.

  8. Supramolecular core-shell nanoparticles for photoconductive device applications

    NASA Astrophysics Data System (ADS)

    Cheng, Chih-Chia; Chen, Jem-Kun; Shieh, Yeong-Tarng; Lee, Duu-Jong

    2016-08-01

    We report a breakthrough discovery involving supramolecular-based strategies to construct novel core-shell heterojunction nanoparticles with hydrophilic adenine-functionalized polythiophene (PAT) as the core and hydrophobic phenyl-C61-butyric acid methyl ester (PCBM) as the shell, which enables the conception of new functional supramolecular assemblies for constructing functional nanomaterials for applications in optoelectronic devices. The generated nanoparticles exhibit uniform spherical shape, well-controlled tuning of particle size with narrow size distributions, and excellent electrochemical stability in solution and the solid state owing to highly efficient energy transfer from PAT to PCBM. When the PAT/PCBM nanoparticles were fabricated into a photoconducting layer in an electronic device, the resulting device showed excellent electric conduction characteristics, including an electrically-tunable voltage-controlled switch, and high short-circuit current and open-circuit voltage. These observations demonstrate how the self-assembly of PAT/PCBM into specific nanostructures may help to promote efficient charge generation and transport processes, suggesting potential for a wide variety of applications as a promising candidate material for bulk heterojunction polymer devices.

  9. Submicron magnetic core conducting polypyrrole polymer shell: Preparation and characterization.

    PubMed

    Tenório-Neto, Ernandes Taveira; Baraket, Abdoullatif; Kabbaj, Dounia; Zine, Nadia; Errachid, Abdelhamid; Fessi, Hatem; Kunita, Marcos Hiroiuqui; Elaissari, Abdelhamid

    2016-04-01

    Magnetic particles are of great interest in various biomedical applications, such as, sample preparation, in vitro biomedical diagnosis, and both in vivo diagnosis and therapy. For in vitro applications and especially in labs-on-a-chip, microfluidics, microsystems, or biosensors, the needed magnetic dispersion should answer various criteria, for instance, submicron size in order to avoid a rapid sedimentation rate, fast separations under an applied magnetic field, and appreciable colloidal stability (stable dispersion under shearing process). Then, the aim of this work was to prepare highly magnetic particles with a magnetic core and conducting polymer shell particles in order to be used not only as a carrier, but also for the in vitro detection step. The prepared magnetic seed dispersions were functionalized using pyrrole and pyrrole-2-carboxylic acid. The obtained core-shell particles were characterized in terms of particle size, size distribution, magnetization properties, FTIR analysis, surface morphology, chemical composition, and finally, the conducting property of those particles were evaluated by cyclic voltammetry. The obtained functional submicron highly magnetic particles are found to be conducting material bearing function carboxylic group on the surface. These promising conducting magnetic particles can be used for both transport and lab-on-a-chip detection.

  10. Single Step Sintered Calcium Phosphate Fibers from Avian EGG Shell

    NASA Astrophysics Data System (ADS)

    Dadhich, Prabhash; Das, Bodhisatwa; Dhara, Santanu

    2013-11-01

    Different forms of calcium-phosphate (Hydoxyapatite, α-TCP, β-TCP, CDHA) minerals are found to be major component of bone tissue. Development of calcium-phosphate (CaP) based fibrous microstructures is of significant research interest worldwide owing to its improved mechanical properties and higher interconnectivity. Here we represent a method for single step sintered wet-spun Fibers of calcium phosphate from avian egg shells for biomedical applications. Raw egg shell powder was mixed with chitosan solution and Phosphoric acid. The mixture is milled in a ball mill overnight and then filtered. The slurry was de-aired using 100 microliter 1-octanol per 100 ml of slurry as antifoaming and wet spun in coagulation bath. Fiber was dried overnight and sintered at different temperatures for microstructure and phase analysis. Both green and sintered Fibers were physico-chemical characterized by SEM, EDX, XRD, TGA, DSC, FTIR, and stereo-zoom microscopy. The fibers obtained in this procedure are found to have highly porous interconnected structures which can provide good cell adhesion and therefore can be used for bioactive scaffold making.

  11. DECam Observations of the Tidal Shells Around NGC 3923

    NASA Astrophysics Data System (ADS)

    Miller, Bryan; Grooms, Connor; Puzia, Thomas H.; Matthew, Taylor; Graeme, Candlish; McGaugh, Stacy S.; Mihos, Chris; Smith, Rory; Schirmer, Mischa

    2016-01-01

    Stellar shells around elliptical galaxies are thought to be the results of near-radial mergers with low mass companions. Thus, the shell systems contain information about the merger history and gravitational potential of the elliptical galaxy. We present a preliminary census of the shell system of NGC 3923 from extremely deep g and i-band DECam imaging. NGC 3923 has the largest know shell system, with different studies finding between 27 and 42 shells. We present an overview of the DECam data reduction and an initial analysis of the shell system.

  12. Inner shell radial pin geometry and mounting arrangement

    DOEpatents

    Leach, David; Bergendahl, Peter Allen

    2002-01-01

    Circumferentially spaced arrays of support pins are disposed through access openings in an outer turbine shell and have projections received in recesses in forward and aft sections of an inner turbine shell supported from the outer shell. The projections have arcuate sides in a circumferential direction affording line contacts with the side walls of the recesses and are spaced from end faces of the recesses, enabling radial and axial expansion and contraction of the inner shell relative to the outer shell. All loads are taken up in a tangential direction by the outer shell with the support pins taking no radial loadings.

  13. Estimation of past intermittent methane seep activity using radiocarbon dating of Calyptogena shells in the eastern Nankai subduction zone

    NASA Astrophysics Data System (ADS)

    Yagasaki, K.; Ashi, J.; Yokoyama, Y.; Miyairi, Y.; Kuramoto, S.

    2013-12-01

    Radioisotope carbon dating samples from the deep ocean has always been a difficult phenomenon due to the carbon offset present. This research presents a way of utilizing such method to date shell samples in order to study past fault activities. The research presented will be based on the preliminary data collected thus far. The Nankai and the Tokai regions are common areas for cold seeps, where seepage of hydrogen sulfide and methane rich fluid occurs. These various substances encourage the growth of Calyptogena colonies to flourish at these sites. Cold seeps generally occur at tectonically active continental margins and are mostly ephemeral. This suggests that the cold seep events are possibly influenced by the tectonic activity during the plate divergence. In 1997, a submersible dive by Shinkai 2000 discovered an unusually large Calyptogena colony ranging over 200 m2 off Daini Tenryu Knoll. Majority of the shells were fossilized with few live shells remaining. It is assumed that past tectonic events in the region may have caused a high flux of methane fluid or gas to be released, making it possible to support such a vast scale colony to survive until their eventual death. Previous attempt to reconstruct the cold seep activity history through amino acid racemisation dating revealed two different age grouped shells. Further data using a different method is required to prove its reliability, as acid racemization dating technique can easily be affected by seawater temperature changes and microbial activity. This consequently alters the protein structure of the sample and its overall age. As 14C radioisotope dating is not affected by temperature change, it will provide additional information to the accuracy of the acid racemisation dating of the shell. However, the possibility of contamination is likely due to the shells incorporating older carbon from the sediments during their early stages of growth. The old carbon value can be calculated by subtracting the formerly

  14. Expulsion of ions from hydrophobic hydration shells.

    PubMed

    Rankin, Blake M; Ben-Amotz, Dor

    2013-06-19

    Raman spectroscopy is combined with multivariate curve resolution to quantify interactions between ions and molecular hydrophobic groups in water. The molecular solutes in this study all have similar structures, with a trimethyl hydrophobic domain and a polar or charged headgroup. Our results imply that aqueous sodium and fluoride ions are strongly expelled from the first hydration shells of the hydrophobic (methyl) groups, while iodide ions are found to enter the hydrophobic hydration shell, to an extent that depends on the methyl group partial charge. However, our quantitative estimates of the corresponding ion binding equilibrium constants indicate that the iodide concentration in the first hydrophobic hydration shell is generally lower than that in the surrounding bulk water, and so an iodide ion cannot be viewed as having a true affinity for the molecular hydrophobic interface, but rather is less strongly expelled from such an interface than fluoride.

  15. Shell model response analysis of buried pipelines

    SciTech Connect

    Takada, Shiro; Katagiri, Shin; Shinmi, Tatsuhiko

    1995-12-31

    A shell model analysis can calculate the cross-sectional deformation and hoop stress of buried pipelines. This paper proposes an analytical method to calculate the response of buried straight and bent pipelines modeled as cylindrical shell structures. A modified transfer matrix method is employed instead of a stiffness matrix method to avoid the problem of computational memory caused by huge matrixes. Results calculated by the developed program are compared with experimental ones obtained by a pipe bending test of straight and bent pipe segments. In addition, several differences of the pipe response between the beam model and the shell model are examined through response simulations of straight and bent pipelines subjected to ground subsidence.

  16. Spherical shell model description of rotational motion

    NASA Astrophysics Data System (ADS)

    Zuker, A. P.; Retamosa, J.; Poves, A.; Caurier, E.

    1995-10-01

    Exact diagonalizations with a realistic interaction show that configurations with four neutrons in a major shell and four protons in another-or the same-major shell, behave systematically as backbending rotors. The dominance of the q.q component of the interaction is related to an approximate ``quasi-SU3'' symmetry. It is suggested that the onset of rotational motion in the rare earth nuclei is due to the promotion of the eight particle blocks to the major shells above the ones currently filling. Assuming a ``pseudo-SU3'' coupling for the particles in the lower orbits, it is possible to account remarkably well for the observed B(E2) rates at the beginning of the region.

  17. FInal Report - Investment Casting Shell Cracking

    SciTech Connect

    Von Richards

    2003-12-01

    This project made a significant contribution to the understanding of the investment casting shell cracking problem. The effects of wax properties on the occurrence of shell cracking were demonstrated and can be measured. The properties measured include coefficient of thermal expansion, heating rate and crystallinity of the structure. The important features of production molds and materials properties have been indicated by case study analysis and fractography of low strength test bars. It was found that stress risers in shell cavity design were important and that typical critical flaws were either oversize particles or large pores just behind the prime coat. It was also found that the true effect of fugitive polymer fibers was not permeability increase, but rather a toughening mechanism due to crack deflection.

  18. Shape-changing shell-like structures.

    PubMed

    Pagitz, M; Bold, J

    2013-03-01

    Plants such as Dionaea muscipula (Venus Flytrap) can change the shape of their shell-like leaves by actively altering the cell pressures. These leaves are hydraulic actuators that do not require any complex controls and that possess an energy efficiency that is unmatched by natural or artificial muscles (Huber et al 1997 Proc. R. Soc. A 453 2185-205). We extend our previous work (Pagitz et al 2012 Bioinspir. Biomim. 7 016007) on pressure-actuated cellular structures by introducing a concept for shape-changing shell-like structures that can significantly alter their Gaussian curvature. The potential of this concept is demonstrated by a hemispherical shell that can reversibly change the sign of its Gaussian curvature. Furthermore, it is shown that a snap-through behaviour, similar to the one known from Dionaea muscipula, can be achieved by lowering the pressure in a single layer of cells.

  19. Shell nebulae around luminous evolved stars

    NASA Technical Reports Server (NTRS)

    Dufour, Reginald J.

    1989-01-01

    Shell nebulae around luminous Population I Wolf-Rayet, Of, and P-Cygni stars are astrophysically interesting since they are indicators of pre-supernova mass loss and how such massive stars prepare their surrounding interstellar medium prior to explosion. Some twenty-odd such nebulae are known, for which detailed study of their morphological and spectroscopic characteristics have only begun in this decade. In this paper, some of these characteristics are reviewed in general, and new observations are reported. Emphasis has been placed on several 'prototype 'objects (NGC 7635, NGC 2359, NGC 6888, and the Eta Carinae condensations) to illustrate the varied massive-star mass-loss, the physics of their winds and shell ejecta, and related nucleosynthesis effects in the compositions of the winds and shells.

  20. Spectrophotometry of the shell around AG Carinae

    NASA Technical Reports Server (NTRS)

    Mitra, P. Mila; Dufour, Reginald J.

    1990-01-01

    Spatially-resolved long-slit spectrophotometry are presented for two regions of the shell nebula around the P-Cygni variable star AG Carinae. The spectra cover the 3700-6800 A wavelength range. Emission-line diagnostics are used to derive extinction, electron temperatures, and densities for various positions in the nebula. The chemical abundances and ionization structure are calculated and compared with other types of planetary nebulae and shells around other luminous stars. It is found that the N/O and N/S ratios of Ag Car are high compared to solar neighborhood ISM values. The O/H depletion found for the AG Car shell approaches that found in the condensations of the Eta Car system.

  1. Spline Approximation of Thin Shell Dynamics

    NASA Technical Reports Server (NTRS)

    delRosario, R. C. H.; Smith, R. C.

    1996-01-01

    A spline-based method for approximating thin shell dynamics is presented here. While the method is developed in the context of the Donnell-Mushtari thin shell equations, it can be easily extended to the Byrne-Flugge-Lur'ye equations or other models for shells of revolution as warranted by applications. The primary requirements for the method include accuracy, flexibility and efficiency in smart material applications. To accomplish this, the method was designed to be flexible with regard to boundary conditions, material nonhomogeneities due to sensors and actuators, and inputs from smart material actuators such as piezoceramic patches. The accuracy of the method was also of primary concern, both to guarantee full resolution of structural dynamics and to facilitate the development of PDE-based controllers which ultimately require real-time implementation. Several numerical examples provide initial evidence demonstrating the efficacy of the method.

  2. Damage Tolerance of Large Shell Structures

    NASA Technical Reports Server (NTRS)

    Minnetyan, L.; Chamis, C. C.

    1999-01-01

    Progressive damage and fracture of large shell structures is investigated. A computer model is used for the assessment of structural response, progressive fracture resistance, and defect/damage tolerance characteristics. Critical locations of a stiffened conical shell segment are identified. Defective and defect-free computer models are simulated to evaluate structural damage/defect tolerance. Safe pressurization levels are assessed for the retention of structural integrity at the presence of damage/ defects. Damage initiation, growth, accumulation, and propagation to fracture are included in the simulations. Damage propagation and burst pressures for defective and defect-free shells are compared to evaluate damage tolerance. Design implications with regard to defect and damage tolerance of a large steel pressure vessel are examined.

  3. Regularity of inviscid shell models of turbulence

    NASA Astrophysics Data System (ADS)

    Constantin, Peter; Levant, Boris; Titi, Edriss S.

    2007-01-01

    In this paper we continue the analytical study of the sabra shell model of energy turbulent cascade. We prove the global existence of weak solutions of the inviscid sabra shell model, and show that these solutions are unique for some short interval of time. In addition, we prove that the solutions conserve energy, provided that the components of the solution satisfy ∣un∣≤Ckn-1/3[nlog(n+1)]-1 for some positive absolute constant C , which is the analog of the Onsager’s conjecture for the Euler’s equations. Moreover, we give a Beal-Kato-Majda type criterion for the blow-up of solutions of the inviscid sabra shell model and show the global regularity of the solutions in the “two-dimensional” parameters regime.

  4. Stresses in rotating composite cylindrical shells

    NASA Astrophysics Data System (ADS)

    Wang, James T.-S.; Lin, Chien-Chang

    Stresses in composite cylindrical shells rotating with a constant speed about their longitudinal axis are analyzed. Each ply or ply group is treated as a separate thin layer of homogeneous and orthotropic material under the interfacial stresses as surface loading. There is no limitation on the total thickness of the shell. The circumferential stress, motivated by the conventional thin shell theory, is assumed to vary linearly through the thickness of the layer. The radial stress is determined in terms of the circumferential stress through the equilibrium condition, and an average compatibility condition through the thickness of the thin layer is used. Numerical results using the present analysis show nearly perfect agreement with the exact solution for homogeneous and isotropic cylinders. Some results for cylinders having orthotropic layers are presented for illustrative purposes.

  5. Working and Net Available Shell Storage Capacity

    EIA Publications

    2016-01-01

    Working and Net Available Shell Storage Capacity is the U.S. Energy Information Administration’s (EIA) report containing storage capacity data for crude oil, petroleum products, and selected biofuels. The report includes tables detailing working and net available shell storage capacity by type of facility, product, and Petroleum Administration for Defense District (PAD District). Net available shell storage capacity is broken down further to show the percent for exclusive use by facility operators and the percent leased to others. Crude oil storage capacity data are also provided for Cushing, Oklahoma, an important crude oil market center. Data are released twice each year near the end of May (data for March 31) and near the end of November (data for September 30).

  6. Triggered Snap-Through of Bistable Shells

    NASA Astrophysics Data System (ADS)

    Cai, Yijie; Huang, Shicheng; Trase, Ian; Hu, Nan; Chen, Zi

    Elastic bistable shells are common structures in nature and engineering, such as the lobes of the Venus flytrap or the surface of a toy jumping poppers. Despite their ubiquity, the parameters that control the bistability of such structures are not well understood. In this study, we explore how the geometrical features of radially symmetric elastic shells affect the shape and potential energy of a shell's stable states, and how to tune certain parameters in order to generate a snap-through transition from a convex semi-stable state to concave stable state. We fabricated a series of elastic shells with varying geometric parameters out of silicone rubber and measured the resulting potential energy in the semi-stable state. Finite element simulations were also conducted in order to determine the deformation and stress in the shells during snap-through. It was found that the energy of the semi-stable state is controlled by only two geometric parameters and a dimensionless ratio. We also noted two distinct transitions during snap-through, one between monostability and semi-bistability (the state a popper toy is in before it snaps-through and jumps), and a second transition between semi-bistability and true bistability. This work shows that it is possible to use a set of simple parameters to tailor the energy landscape of an elastic shell in order to generate complex trigger motions for their potential use in smart applications. Z.C. acknowledge support from Society in Science-Branco Weiss Fellowship, administered by ETH Zurich.

  7. Liquefaction of bamboo shoot shell for the production of polyols.

    PubMed

    Ye, Liyi; Zhang, Jingmiao; Zhao, Jie; Tu, Song

    2014-02-01

    Bamboo (Dendrocalamus latiflorus Munro) shoot shell (BSS) was liquefied in polyethylene glycol 400 (PEG400) and ethylene glycol (EG) catalyzed by sulfuric acid under atmospheric pressure. The effects of liquefaction conditions such as liquid-solid ratio, temperature, time, catalyst, solvents ratio, and material size on the liquefaction yield of BSS have been investigated. Methods including Elemental analysis, Thermogravimetric analysis, Fourier transform infrared spectroscopy, nuclear magnetic resonance and gas chromatography-mass spectrometry were selected to analyze the characteristics of products in three fractions: an aqueous fraction (AQ), an acetone-soluble fraction (AS) and a residue (RS), respectively. Results showed that the highest liquefaction percentage was 99.79% under the optimal conditions (liquid-solid ratio 6:1; temperature 150°C; reaction time 80min; raw size more than 40 mesh; catalyst mass percentage of solvent 4%; solvent volume ratio 3:1). Polyols could be obtained effectively by the liquefaction of BSS, an agricultural by-product.

  8. What's in a Shell? - Interactions of Chemistry and Structure at Submicron Levels in Bivalve Shells

    NASA Astrophysics Data System (ADS)

    Jacob, D. E.; Piazolo, S.; Trimby, P.

    2014-12-01

    The wide geographical distribution of bivalve shells makes them much favoured paleoclimate proxy archives. However, they are amongst the materials most affected by physiological effects, making the correct deciphering of these archives a challenging task. Shell building plans are usually hierarchic, thus optimizing mechanical properties. However, different structures common to certain bivalve families, such as the prism-nacre or the crossed-lamellar structures, are assembled from very different building blocks. These structural differences coincide with chemical and crystallographic differences suggesting critically different formation mechanisms within the bivalve class. Most importantly some bivalves form their shells from amorphous calcium carbonate that crystallizes in situ once assembled into the shell. We present new correlated multi-scale structural and compositional data for different shell bivalve shell structures such as nacre-prism, cross-lamellar intermediate structures. Data are obtained using EBSD, FIB-assisted TEM and Transmission Kikuchi Diffraction combined with Nano-SIMS and Raman Microspectrometry and suggest that formation from amorphous phases is widespread and results in different calcium carbonate polymorphs to be present in the shell with distinct chemical compositions. The results highlight the complex nature of the biomaterials, which has consequences for the precision and accuracy of paleotemperature calculations.

  9. Theoretical spectroscopy and the fp shell

    NASA Astrophysics Data System (ADS)

    Poves, A.; Zuker, A.

    1981-04-01

    The recently developed quasiconfiguration method is applied to fp shell nuclei. Second order degenerate perturbation theory is shown to be sufficient to produce, for low lying states, the same results as large diagonalizations in the full ( f{7}/{2}p{3}/{2}p{1}/{2}f{5}/{2}) n space, due to the operation of linked cluster mechanisms. Realistic interactions with minimal monopole changes are shown to be successful in reproducing spectra, binding energies, quadrupole moments and transition rates. Large shell model spaces are seen to exhibit typical many body behaviour. Quasiconfigurations allow insight into the underlying coupling schemes.

  10. On the elastic stability of shells

    NASA Technical Reports Server (NTRS)

    Horton, W. H.

    1976-01-01

    A synopsis of a series of investigations into the instability of axially compressed cylindrical shells is given. The objective of the research, which was made with models, was to devise a technique of nondestructive evaluation. The results show that, with models at any rate, success was achieved. Probing methods which can be used to determine the locations of weakness and the pertinent instability load levels were devised. The research on large scale shells was undertaken to determine the critical loads under as uniform a circumferential distribution of axial compressive force as possible. It is clear from the results presented that this objective was met.

  11. Shell model for buoyancy-driven turbulence

    NASA Astrophysics Data System (ADS)

    Kumar, Abhishek; Verma, Mahendra K.

    2015-04-01

    In this paper we present a unified shell model for stably stratified and convective turbulence. Numerical simulation of this model for stably stratified flow shows Bolgiano-Obukhbov scaling in which the kinetic energy spectrum varies as k-11 /5. The shell model of convective turbulence yields Kolmogorov's spectrum. These results are consistent with the energy flux and energy feed due to buoyancy, and are in good agreement with direct numerical simulations of Kumar et al. [Phys. Rev. E 90, 023016 (2014), 10.1103/PhysRevE.90.023016].

  12. Transient analysis using conical shell elements

    NASA Technical Reports Server (NTRS)

    Yang, J. C. S.; Goeller, J. E.; Messick, W. T.

    1973-01-01

    The use of the NASTRAN conical shell element in static, eigenvalue, and direct transient analyses is demonstrated. The results of a NASTRAN static solution of an externally pressurized ring-stiffened cylinder agree well with a theoretical discontinuity analysis. Good agreement is also obtained between the NASTRAN direct transient response of a uniform cylinder to a dynamic end load and one-dimensional solutions obtained using a method of characteristics stress wave code and a standing wave solution. Finally, a NASTRAN eigenvalue analysis is performed on a hydroballistic model idealized with conical shell elements.

  13. Shell hoop prestress generated by welding

    SciTech Connect

    Meuser, R.B.

    1991-03-01

    For some magnet designs it is desirable to generate a prestress, approaching the yield strength, in the shell surrounding the yoke. If that prestress can be generated by weld shrinkage, then more expensive methods of prestressing can be avoided. Shell-to-yoke friction can reduce the prestress, so it is desirable to minimize it. A quick-and-dirty test was performed to address these matters. While the scatter of the data was large, it appears that weld shrinkage can indeed generate the required prestress. The scatter was too large to give any information about the friction, however. The experiment raised more questions than it answered. 1 fig., 4 tabs.

  14. Single Bump on a Shell Fabrication

    SciTech Connect

    Cook, R C

    2004-02-17

    At this morning's fill-tube surrogate working group meeting we tentatively decided on a single bump on a shell for the single March shot. This memo shows the calculations needed as background to fabricate such a bump by depositing an appropriate sized drop of polystyrene solution (i.e. the glue) to a shell as discussed in this mornings meeting. While writing this I had another idea for fabricating a bump, which I quickly outlined at the end of this memo. I am distributing this calculation primarily so that group members can quickly check the calculations and ideas and if without error to provide a framework for initial fabrication efforts.

  15. Computation of Thin-Walled Prismatic Shells

    NASA Technical Reports Server (NTRS)

    Vlasov, V. Z.

    1949-01-01

    We consider a prismatic shell consisting of a finite number of narrow rectangular plates and having in the cross-section a finite number of closed contours (fig. 1(a)). We shall assume that the rectangular plates composing the shell are rigidly joined so that there is no motion of any kind of one plate relative to the others meeting at a given connecting line. The position of a point on the middle prismatic surface is considered to be defined by the coordinate z, the distance to a certain initial cross-section z = O, end the coordinate s determining its position on the contour of the cross-section.

  16. Cosmic Shell-Seekers Find a Beauty

    NASA Astrophysics Data System (ADS)

    2005-04-01

    Two scientists have discovered a distinctive shell of hot gas around the site of a distant supernova explosion by combining 150 hours of archived data collected by NASA's Chandra X-ray Observatory. This discovery is a significant step forward in solving a decades-old puzzle as to why some stellar explosions display shells and others do not. "The likely answer is that the explosion of every massive star sends a sonic boom rumbling through interstellar space," said Samar Safi-Harb of the University of Manitoba in Winnipeg, Canada, who is a coauthor with Heather Matheson on a paper describing the research that appears in the journal Advances in Space Research. "It's just that, some of the shells are harder to find than others because of the environment where the explosion occurs." The shell marks a sonic boom, or shock wave, generated by the supernova. Gas is heated to millions of degrees by the shock wave and produces X-rays, but little visible light. By examining the properties of the shell with an X-ray telescope, astronomers can work back to deduce the age (a few thousand years), and energy of the explosion, as well as information about the state of the star a million years before it exploded. Animation of a Supernova Explosion Animation of a Supernova Explosion It is likely that the star that produced the supernova remnant and shell was about 10 times as massive as the Sun. The absence of a detectable shell around this and similar supernova remnants had led astronomers to speculate that another, weaker type of explosion had occurred there. Now this hypothesis seems unlikely. Although many supernovas leave behind bright shells, others do not. This supernova remnant, identified as G21.5-0.9 by radio astronomers 30 years ago, was considered to be one that had no shell. A diffuse cloud of X-rays around the source was detected about 5 years ago by another group of astronomers and independently by Safi-Harb and colleagues using Chandra, but it took the careful

  17. The organic-mineral interaction in mollusk shell

    NASA Astrophysics Data System (ADS)

    Metzler, Rebecca A.

    Macromolecules are a minority but important component of the minerals formed by living organisms, or biominerals. While many proteins from the nacre and prismatic layers of mollusk shells have been identified and sequenced, the molecular interaction, organization, and rearrangements of proteins upon organic-mineral bond formation, and the effect of this interaction on crystal formation, deformation, and orientation are poorly understood. To examine the organic-mineral interaction in mollusk shells, we prepared model systems consisting of calcium carbonate grown in the presence of synthetic mollusk shell polypeptides. X-ray absorption near-edge structure (XANES) spectroscopy and x-ray photoelectron emission microscopy (X-PEEM) were used to examine the electronic structure and bonding environment of both the surface and bulk of model biomineral crystals, thereby determining that the organic-mineral interaction is a series of events starting with bond formation and ending with the fully formed mineral. XANES spectra acquired from the model biomineral systems showed that upon organic-mineral bond formation both the crystal and the polypeptides exhibit bond and molecular structure alterations. We acquired XANES spectra from the surface of calcium carbonate crystals grown in the presence of six synthetic polypeptides sequenced after mollusk nacre proteins: AP7N, AP24N, N16N, asp1, asp2, and ACCN. All of these model biominerals gave similar results, namely the disruption of CO bonds in calcite and enhancement of the peaks associated with C-H bonds bonds in peptides, indicating disordering of the calcite crystal and ordering of the peptides upon binding. We also show that these changes do not occur when the acidic amino acids, Asp and Glu, are replaced in the N16N sequence with Asn and Gln, respectively, demonstrating the importance of carboxyl groups in organic-mineral bond formation. We examined the bulk crystal structure of crystals grown in the presence of N16N and asp

  18. Synthesis of 4H/fcc-Au@M (M = Ir, Os, IrOs) Core-Shell Nanoribbons For Electrocatalytic Oxygen Evolution Reaction.

    PubMed

    Fan, Zhanxi; Luo, Zhimin; Chen, Ye; Wang, Jie; Li, Bing; Zong, Yun; Zhang, Hua

    2016-08-01

    The high-yield synthesis of 4H/face-centered cubic (fcc)-Au@Ir core-shell nanoribbons (NRBs) is achieved via the direct growth of Ir on 4H Au NRBs under ambient conditions. Importantly, this method can be used to synthesize 4H/fcc-Au@Os and 4H/fcc-Au@IrOs core-shell NRBs. Significantly, the obtained 4H/fcc-Au@Ir core-shell NRBs demonstrate an exceptional electrocatalytic activity toward the oxygen evolution reaction under acidic condition, which is much higher than that of the commercial Ir/C catalyst.

  19. Engineering and Design of Polymeric Shells: Inwards Interweaving Polymers as Multilayer Nanofilm, Immobilization Matrix, or Chromatography Resins.

    PubMed

    Pan, Houwen Matthew; Yu, Han; Guigas, Gernot; Fery, Andreas; Weiss, Matthias; Patzel, Volker; Trau, Dieter

    2017-02-15

    Hydrogels with complex internal structures are required for advanced drug delivery systems and tissue engineering or used as inks for 3D printing. However, hydrogels lack the tunability and diversity of polymeric shells and require complicated postsynthesis steps to alter its structure or properties. We report on the first integrated approach to assemble and design polymeric shells to take on various complex structures and functions such as multilayer nanofilms, multidensity immobilization matrix, or multiadhesive chromatography resins via the tuning of four assembly parameters: (a) poly(allylamine) (PA) concentration, (b) number of poly(allylamine)/poly(styrenesulfonic acid) (PA/PSSA) incubations, (c) poly(allylamine) (PA) to poly(ethylene glycol) (PEG) grafting ratio, and (d) % H2O present during assembly. Our approach combines the complex 3D structures of hydrogels with the versatility of self-assembled polymeric layers. Polymeric shells produced from our method have a highly uniform material distribution and well-defined shell boundaries. Shell thickness, density, and adhesive properties are easily tunable. By virtue of such unique material features, we demonstrate that polymeric shells can be designed to expand beyond its conventional function as thin films and serve as immobilization matrix, chromatography resins, or even reaction compartments. This technique could also uncover interesting perspectives in the development of novel multimaterials for 3D printing to synthesize scaffolds at a higher order of complexity.

  20. Identification of a unique Fe-S cluster binding site in a glycyl-radical type microcompartment shell protein.

    PubMed

    Thompson, Michael C; Wheatley, Nicole M; Jorda, Julien; Sawaya, Michael R; Gidaniyan, Soheil D; Ahmed, Hoda; Yang, Zhongyu; McCarty, Krystal N; Whitelegge, Julian P; Yeates, Todd O

    2014-09-23

    Recently, progress has been made toward understanding the functional diversity of bacterial microcompartment (MCP) systems, which serve as protein-based metabolic organelles in diverse microbes. New types of MCPs have been identified, including the glycyl-radical propanediol (Grp) MCP. Within these elaborate protein complexes, BMC-domain shell proteins [bacterial microcompartment (in reference to the shell protein domain)] assemble to form a polyhedral barrier that encapsulates the enzymatic contents of the MCP. Interestingly, the Grp MCP contains a number of shell proteins with unusual sequence features. GrpU is one such shell protein whose amino acid sequence is particularly divergent from other members of the BMC-domain superfamily of proteins that effectively defines all MCPs. Expression, purification, and subsequent characterization of the protein showed, unexpectedly, that it binds an iron-sulfur cluster. We determined X-ray crystal structures of two GrpU orthologs, providing the first structural insight into the homohexameric BMC-domain shell proteins of the Grp system. The X-ray structures of GrpU, both obtained in the apo form, combined with spectroscopic analyses and computational modeling, show that the metal cluster resides in the central pore of the BMC shell protein at a position of broken 6-fold symmetry. The result is a structurally polymorphic iron-sulfur cluster binding site that appears to be unique among metalloproteins studied to date.

  1. Effect of sub- and supercritical water treatments on the physicochemical properties of crab shell chitin and its enzymatic degradation.

    PubMed

    Osada, Mitsumasa; Miura, Chika; Nakagawa, Yuko S; Kaihara, Mikio; Nikaido, Mitsuru; Totani, Kazuhide

    2015-12-10

    This study examined the effects of sub- and supercritical water pretreatments on the physicochemical properties of crab shell α-chitin and its enzymatic degradation to obtain N,N'-diacetylchitobiose (GlcNAc)2. Following sub- and supercritical water pretreatments, the protein in the crab shell was removed and the residue of crab shell contained α-chitin and CaCO3. Prolonged pretreatment led to α-chitin decomposition. The reaction of pure α-chitin in sub- and supercritical water pretreatments was investigated separately; we observed lower mean molecular weight and weaker hydrogen bonds compared with untreated α-chitin. (GlcNAc)2 yields from enzymatic degradation of subcritical (350 °C, 7 min) and supercritical water (400 °C, 2.5 min) pretreated crab shell were 8% and 6%, compared with 0% without any pretreatment. This study shows that sub- and supercritical water pretreatments of crab shell provide to an alternative method to the use of acid and base for decalcification and deproteinization of crab shell required for (GlcNAc)2 production.

  2. Vibrations of moderately thick shallow spherical shells at large amplitudes

    NASA Astrophysics Data System (ADS)

    Sathyamoorthy, M.

    1994-04-01

    A shallow shell theory is presented for the geometrically nonlinear analysis of moderately thick isotropic spherical shells. Effects of transverse shear deformation and rotatory inertia are included in the governing equations of motion by means of tracing constants. When these effects are ignored, the governing equations readily reduce to those applicable for thin shallow spherical shells. Solutions to the system of thick shell equations are obtained by means of Galerkin's method and the numerical Runge-Kutta procedure. Numerical results are presented for certain cases of shallow spherical shells considering different geometric shell parameters. Transverse shear and rotatory inertia effects are found to be important in linear as well as nonlinear responses of shallow spherical shells. The nonlinear frequency-amplitude behavior is of the softening type for shallow spherical shells and of the hardening type for circular plates. Frequency ratios are lower at any given amplitude when the effects of transverse shear and rotatory inertia are included in the analysis.

  3. 3. General view showing north elevation of Shell Interlocking Tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. General view showing north elevation of Shell Interlocking Tower and electric relay station. - New York, New Haven, & Hartford Railroad, Shell Interlocking Tower, New Haven Milepost 16, approximately 100 feel east of New Rochelle Junction, New Rochelle, Westchester County, NY

  4. A Glycoprotein in Shells of Conspecifics Induces Larval Settlement of the Pacific Oyster Crassostrea gigas

    PubMed Central

    Vasquez, Hebert Ely; Hashimoto, Kyotaro; Yoshida, Asami; Hara, Kenji; Imai, Chisato Chris; Kitamura, Hitoshi; Satuito, Cyril Glenn

    2013-01-01

    Settlement of larvae of Crassostrea gigas on shell chips (SC) prepared from shells of 11 different species of mollusks was investigated. Furthermore, the settlement inducing compound in the shell of C. gigas was extracted and subjected to various treatments to characterize the chemical cue. C. gigas larvae settled on SC of all species tested except on Patinopecten yessoensis and Atrina pinnata. In SC of species that induced C. gigas larvae to settle, settlement was proportionate to the amount of SC supplied to the larvae. When compared to C. gigas SC, all species except Crassostrea nippona showed lower settlement inducing activities, suggesting that the cue may be more abundant or in a more available form to the larvae in shells of conspecific and C. nippona than in other species. The settlement inducing activity of C. gigas SC remained intact after antibiotic treatment. Extraction of C. gigas SC with diethyl ether (Et2O-ex), ethanol (EtOH-ex), and water (Aq-ex) did not induce larval settlement of C. gigas larvae. However, extraction of C. gigas SC with 2N of hydrochloric acid (HCl-ex) induced larval settlement that was at the same level as the SC. The settlement inducing compound in the HCl-ex was stable at 100°C but was destroyed or degraded after pepsin, trypsin, PNGase F and trifluoromethanesulfonic acid treatments. This chemical cue eluted between the molecular mass range of 45 and 150 kDa after gel filtration and revealed a major band at 55 kDa on the SDS-PAGE gel after staining with Stains-all. Thus, a 55 kDa glycoprotein component in the organic matrix of C. gigas shells is hypothesized to be the chemical basis of larval settlement on conspecifics. PMID:24349261

  5. A glycoprotein in shells of conspecifics induces larval settlement of the Pacific oyster Crassostrea gigas.

    PubMed

    Vasquez, Hebert Ely; Hashimoto, Kyotaro; Yoshida, Asami; Hara, Kenji; Imai, Chisato Chris; Kitamura, Hitoshi; Satuito, Cyril Glenn

    2013-01-01

    Settlement of larvae of Crassostrea gigas on shell chips (SC) prepared from shells of 11 different species of mollusks was investigated. Furthermore, the settlement inducing compound in the shell of C. gigas was extracted and subjected to various treatments to characterize the chemical cue. C. gigas larvae settled on SC of all species tested except on Patinopecten yessoensis and Atrina pinnata. In SC of species that induced C. gigas larvae to settle, settlement was proportionate to the amount of SC supplied to the larvae. When compared to C. gigas SC, all species except Crassostrea nippona showed lower settlement inducing activities, suggesting that the cue may be more abundant or in a more available form to the larvae in shells of conspecific and C. nippona than in other species. The settlement inducing activity of C. gigas SC remained intact after antibiotic treatment. Extraction of C. gigas SC with diethyl ether (Et2O-ex), ethanol (EtOH-ex), and water (Aq-ex) did not induce larval settlement of C. gigas larvae. However, extraction of C. gigas SC with 2N of hydrochloric acid (HCl-ex) induced larval settlement that was at the same level as the SC. The settlement inducing compound in the HCl-ex was stable at 100°C but was destroyed or degraded after pepsin, trypsin, PNGase F and trifluoromethanesulfonic acid treatments. This chemical cue eluted between the molecular mass range of 45 and 150 kDa after gel filtration and revealed a major band at 55 kDa on the SDS-PAGE gel after staining with Stains-all. Thus, a 55 kDa glycoprotein component in the organic matrix of C. gigas shells is hypothesized to be the chemical basis of larval settlement on conspecifics.

  6. Evolution of nacre: biochemistry and proteomics of the shell organic matrix of the cephalopod Nautilus macromphalus.

    PubMed

    Marie, Benjamin; Marin, Frédéric; Marie, Arul; Bédouet, Laurent; Dubost, Lionel; Alcaraz, Gérard; Milet, Christian; Luquet, Gilles

    2009-06-15

    In mollusks, one of the most widely studied shell textures is nacre, the lustrous aragonitic layer that constitutes the internal components of the shells of several bivalves, a few gastropods,and one cephalopod: the nautilus. Nacre contains a minor organic fraction, which displays a wide range of functions in relation to the biomineralization process. Here, we have biochemically characterized the nacre matrix of the cephalopod Nautilus macromphalus. The acid-soluble matrix contains a mixture of polydisperse and discrete proteins and glycoproteins, which interact with the formation of calcite crystals. In addition, a few bind calcium ions. Furthermore, we have used a proteomic approach,which was applied to the acetic acid-soluble and -insoluble shell matrices, as well as to spots obtained after 2D gel electrophoresis. Our data demonstrate that the insoluble and soluble matrices, although different in their bulk monosaccharide and amino acid compositions, contain numerous shared peptides. Strikingly, most of the obtained partial sequences are entirely new. A few only partly match with bivalvian nacre proteins.Our findings have implications for knowledge of the long-term evolution of molluskan nacre matrices.

  7. Spherical shell model description of deformation and superdeformation

    NASA Astrophysics Data System (ADS)

    Poves, A.; Caurier, E.; Nowacki, F.; Zuker, A.

    2003-04-01

    Large-scale shell model calculations give at present a very accurate and comprehensive description of light and medium-light nuclei, specially when 0hbar ω spaces are adequate. The full pf-shell calculations have made it possible to describe many collective features in an spherical shell model context. Calculations including two major oscillator shells have proven able to describe also superdeformed bands.

  8. Monte Carlo Methods and Applications for the Nuclear Shell Model

    SciTech Connect

    Dean, D.J.; White, J.A.

    1998-08-10

    The shell-model Monte Carlo (SMMC) technique transforms the traditional nuclear shell-model problem into a path-integral over auxiliary fields. We describe below the method and its applications to four physics issues: calculations of sd-pf-shell nuclei, a discussion of electron-capture rates in pf-shell nuclei, exploration of pairing correlations in unstable nuclei, and level densities in rare earth systems.

  9. Method to produce large, uniform hollow spherical shells

    DOEpatents

    Hendricks, Charles D.

    1985-01-01

    Large, uniform hollow spherical shells are produced by forming uniform size drops of heat decomposable or vaporizable material, evaporating the drops to form dried particles, coating the dried particles with a layer of shell forming material, and heating the composite particles to melt the outer layer and decompose or vaporize the inner particle to form an expanding inner gas bubble which expands the outer layer. By cycling the temperature and pressure on the hollow shells, spherical shells with uniform walls are produced.

  10. The 'shell effect': music from environmental noise

    NASA Astrophysics Data System (ADS)

    Diodati, Paolo

    2005-02-01

    The 'shell effect' can be used to play music with a pleasant and characteristic timbre. If you place a sensitive microphone at the rim of pipes of suitable length and diameter to obtain resonance frequencies, ambient noise will produce musical notes. The corresponding optical effect, i.e. extracting visible light from ambient radiation considered dark by the human eye, is also discussed.

  11. Palaeontology: pterosaur egg with a leathery shell.

    PubMed

    Ji, Qiang; Ji, Shu-An; Cheng, Yen-Nien; You, Hai-Lu; Lü, Jun-Chang; Liu, Yong-Qing; Yuan, Chong-Xi

    2004-12-02

    The recent discovery of a pterosaur egg with embryonic skeleton and soft tissues from the Yixian Formation confirmed that the flying pterosaurs were oviparous. Here we describe another pterosaur egg whose exquisite preservation indicates that the shell structure was soft and leathery.

  12. Polarimetry of nacre in iridescent shells

    NASA Astrophysics Data System (ADS)

    Metzler, R. A.; Burgess, C.; Regan, B.; Spano, S.; Galvez, E. J.

    2014-09-01

    We investigate the light transmitted or reflected from nacre (mother of pearl) taken from the iridescent shell of the bivalve Pinctad a fucata. These nacre surfaces have a rich structure, composed of aragonite crystals arranged as tablets or bricks, 5 μm wide and 400-500 nm thick, surrounded by 30nm thick organic mortar. The light reflected from these shell surfaces, or transmitted through thin polished layers, is rich in its polarization content, exhibiting a space dependent variation in the state of polarization with a high density of polarization singularities. Our goal is to use the polarization information to infer the structure of the biominerals and the role of the organic layer in determining the orientation of the crystals. In the experiments we send the light from a laser with a uniform state of polarization onto the shell, and analyze the light that is either transmitted or reflected, depending on the type of experiment, imaging it after its passage through polarization filters. We use the images from distinct filters to obtain the Stokes parameters, and hence the state of polarization, of each image point. We also construct the Mueller matrix for each imaged point, via 36 measurements. We do this for distinct physical and chemical treatments of the shell sample. Preliminary data shows that the organic layer may be responsible for organizing a multi-crystalline arrangement of aragonite tablets.

  13. On the Theory of Thin Shallow Shells

    NASA Technical Reports Server (NTRS)

    Nazarov, A. A.

    1956-01-01

    This report is concerned with the theory of thin shallow shells. It does not employ the lines of curvature as the coordinate system, but employs "almost cartesian coordinates" or the coordinates obtained by cutting the surface into two mutually orthogonal systems of parallel planes.

  14. Alternative Storage Environments for Shelled Peanuts.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alternative Storage Environments for Shelled Peanuts. C. L. BUTTS1, K. HORM2, S. POWELL3, B. ANTHONY2, J. BENNETT2, D. COWART3, and M.C. LAMB1. 1USDA, ARS, National Peanut Research Laboratory, Dawson, GA, 2Mars Chocolate NA, Elizabethtown, PA,3 Birdsong Peanuts, Blakely, GA Small chamber studies w...

  15. MPISH : a parallel shell for MPI programs.

    SciTech Connect

    Desai, M.; Lusk, A.; Bradshaw, R.; Lusk, E.

    2006-01-01

    While previous work has shown MPI to provide capabilities for system software, actual adoption has not widely occurred. We discuss process management shortcomings in MPI implementations and their impact on MPI usability for system software and management tasks. We introduce MPISH, a parallel shell designed to address these issues.

  16. On-Shell Methods in Perturbative QCD

    SciTech Connect

    Bern, Zvi; Dixon, Lance J.; Kosower, David A.

    2007-04-25

    We review on-shell methods for computing multi-parton scattering amplitudes in perturbative QCD, utilizing their unitarity and factorization properties. We focus on aspects which are useful for the construction of one-loop amplitudes needed for phenomenological studies at the Large Hadron Collider.

  17. 7 CFR 983.29 - Shelled pistachios.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Shelled pistachios. 983.29 Section 983.29 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE PISTACHIOS GROWN IN...

  18. 7 CFR 983.29 - Shelled pistachios.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Shelled pistachios. 983.29 Section 983.29 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE PISTACHIOS GROWN IN...

  19. Torrefaction of pomaces and nut shells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technical: Apple, grape, olive, and tomato pomaces as well as almond and walnut shells were torrefied at different temperatures and times in a muffle furnace. The fiber content and thermal stability of the raw byproducts were examined using fiber analysis and thermogravimetric analysis (TGA), respec...

  20. Quality and Composition of Retail Shell Eggs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consumers are becoming more aware of their food choices. As part of this movement, sourcing and production information is often desired for agricultural products. Furthermore, products associated with added health benefits are also becoming more common in the marketplace. The US shell egg industr...

  1. BOWOOSS: bionic optimized wood shells with sustainability

    NASA Astrophysics Data System (ADS)

    Pohl, Göran

    2011-04-01

    In architecture, shell construction is used for the most efficient, large spatial structures. Until now the use of wood rather played a marginal role, implementing those examples of architecture, although this material offers manifold advantages, especially against the background of accelerating shortage of resources and increasing requirements concerning the energy balance. Regarding the implementation of shells, nature offers a wide range of suggestions. The focus of the examinations is on the shells of marine plankton, especially of diatoms, whose richness in species promises the discovery of entirely new construction principles. The project is targeting at transferring advantageous features of these organisms on industrial produced, modular wood shell structures. Currently a transfer of these structures in CAD - models is taking place, helping to perform stress analysis by computational methods. Micro as well as macro structures are the subject of diverse consideration, allowing to draw the necessary conclusions for an architectural design. The insights of these tests are the basis for the development of physical models on different scales, which are used to verify the different approaches. Another important aim which is promoted in the project is to enhance the competitiveness of timber construction. Downsizing of the prefabricated structural elements leads to considerable lower transportation costs as abnormal loads can be avoided as far as possible and means of transportation can be loaded with higher efficiency so that an important contribution to the sustainability in the field of architecture can also be made.

  2. Double Shell Tank (DST) Utilities Specification

    SciTech Connect

    GRAVES, C.E.

    2001-01-18

    This specification establishes the performance requirements and provides references to the requisite codes and standards to be applied to the Double-Shell Tank (DST) Utilities (electrical, raw water, potable water, service air and instrument air), which supports the first phase of Waste Feed Delivery.

  3. New method for calculating shell correction

    SciTech Connect

    Salamon, P.; Kruppa, A. T.; Vertse, T.

    2010-06-15

    A new method is presented for the calculation of the shell correction with the inclusion of the continuum part of the spectrum. The smoothing function used has a finite energy range in contrast to the Gaussian shape of the Strutinski method. The new method is especially useful for light nuclei where the generalized Strutinski procedure cannot be applied.

  4. Double-shell tank emergency pumping guide

    SciTech Connect

    BROWN, M.H.

    1999-02-24

    This Double-Shell Tank Emergency Pumping Guide provides the preplanning necessary to expeditiously remove any waste that may leak from the primary tank to the secondary tank for Hanford's 28 DSTS. The strategy is described, applicable emergency procedures are referenced, and transfer routes and pumping equipment for each tank are identified.

  5. A polymer-protein core-shell nanomedicine for inhibiting cancer migration followed by photo-triggered killing.

    PubMed

    Ramachandran, Ranjith; Malarvizhi, Giridharan Loghanathan; Chandran, Parwathy; Gupta, Neha; Menon, Deepthy; Panikar, Dilip; Nair, Shantikumar; Koyakutty, Manzoor

    2014-08-01

    Migratory capacity of cancer plays a critical role in the process of metastasis. Aberrant focal adhesions activated by the phosphorylation of Src kinase enables cancer cells to anchor on its micro-environment and migrate towards biochemically favorable niche, causing metastasis. Effective blocking of the migratory capacity of cancer cells by inhibiting protein kinases and subsequent application of cytotoxic stress may provide better therapeutic outcome. Here, we report a novel core-shell nanomedicine that inhibits cancer migration by nano-shell and impart reactive oxygen stress by laser assisted photosensitization of nano-core. For this, we have optimized a polymer-protein nanoconstruct where a photosensitizer (5,10,15, 20-tetrakis(meso-hydroxyphenyl)porphyrin (mTHPP) is loaded into poly(lactic-co-glycolic acid) (PLGA) nano-core and Src kinase inhibitor (dasatinib) is loaded into albumin nano-shell. The polymer-core was prepared by electrospray technique and albumin-shell was formed by alcohol coacervation. Transmission electron microscopy studies revealed the formation of - 80 nm sized nano-core decorated with - 10 nm size nano-shell. Successful incorporation of monomeric mTHPP in nano-core resulted improved photo-physical properties and singlet oxygen release under physiological conditions compared to free-mTHPP. Core-shell nanomedicine also showed dose and time dependent cellular uptake in U87MG glioma cells. Dasatinib released from nano-shell caused down regulation of phospho-Src leading to significant impairment of cancer migration and subsequent laser assisted photosensitization of nano-core resulted in the release of reactive oxygen stress leading to apoptosis of spatially confined cancer cells. In vivo studies on Wistar rats indicated the absence of any significant toxicity caused by the intravenous administration of nanomedicine. These results clearly show the advantage of core-shell nanomedicine mediated combinatorial approach for inhibiting important

  6. Direct probing of micromechanical properties of hydrogen-bonded layer-by-layer microcapsule shells with different chemical compositions.

    PubMed

    Lisunova, Milana O; Drachuk, Irina; Shchepelina, Olga A; Anderson, Kyle D; Tsukruk, Vladimir V

    2011-09-06

    The mechanical properties of hydrogen-bonded layer-by-layer (LbL) microcapsule shells constructed from tannic acid (TA) and poly(vinylpyrrolidone) (PVPON) components have been studied in both the dry and swollen states. In the dry state, the value of the elastic modulus was measured to be within 0.6-0.7 GPa, which is lower than the typical elastic modulus for electrostatically assembled LbL shells. Threefold swelling of the LbL shells in water results in a significant reduction of the elastic modulus to values well below 1 MPa, which is typical value seen for highly compliant gel materials. The increase of the molecular weight of the PVPON component from 55 to 1300 kDa promotes chain entanglements and causes a stiffening of the LbL shells with a more than 2-fold increase in elastic modulus value. Moreover, adding a polyethylenimine prime layer to the LbL shell affects the growth of hydrogen-bonded multilayers which consequently results in dramatically stiffer, thicker, and rougher LbL shells with the elastic modulus increasing by more than an order of magnitude, up to 4.3 MPa. An alternation of the elastic properties of very compliant hydrogen-bonded shells by variation of molecular weight is a characteristic feature of weakly bonded LbL shells. Such an ability to alter the elastic modulus in a wide range is critically important for the design of highly compliant microcapsules with tunable mechanical stability, loading ability, and permeability.

  7. Survival of the 1%: Consequences of a Two-Phase Dynamic of Aragonitic Shell Loss and Stabilization for the Temporal Resolution of Proxy Data

    NASA Astrophysics Data System (ADS)

    Kidwell, S. M.; Tomasovych, A.; Alexander, C. R., Jr.; Kaufman, D. S.; leonard-Pingel, J.

    2014-12-01

    The strongly time-averaged nature of molluscan and other biogenic carbonate skeletons in seabeds is an under-appreciated uncertainty in paleoenvironmental inference using geochemical proxies. An extensive shell-dating program on the southern California shelf using AMS-calibrated amino-acid racemization corroborates the strongly right-skewed "L-shape" of shell-age frequency distributions (AFDs) found elsewhere. In California, the median age of aragonitic bivalve shells (2-7 mm, no size effect detected) is generally <100 y (5 of 8 assemblages have medians <50 y), and maximum measured ages are ~2550 to ~11,900 y. Modeling reveals that shells undergo an initial high disintegration rate λ1 (~decadal half-lives) but shift abruptly, within the first ~500 y postmortem, to a 100-fold lower disintegration rate λ2 (~ millennial half-lives) at sequestration rate τ (burial and/or diagenetic stabilization). This drop permits accrual of a long tail of very old shells even when sequestration is very slow, allowing only a minority (<1%) of shells to survive the first phase (Tomasovych et al. 2014 Geology). We suspect that permanent diagenetic stabilization may be necessary to ensure that shells do not revert to λ1 after temporary sequestration in favorable pockets within the mixed layer. Preliminary SEM shows significant coarsening of inner shell-layer crystallites, consistent with Ostwald ripening. New cores from 50-m water depth document such L-shaped AFDs in each 2-cm increment within the upper ~25 cm of the seabed, the local penetration depth of callianassid shrimp, indicating both upward and downward advection of shells. AFDs from deeper core increments, cut off from the input of new shells, have flat (uniform) shapes with millennial-scale median ages; shells at these depths represent the 1% that survive λ1 and are then almost impervious to further destruction. The importance of sequestration (stabilization) to the prolonged persistence of shells and the likely remodeling

  8. Breakup of finite thickness viscous shell microbubbles by ultrasound: A simplified zero-thickness shell model

    PubMed Central

    Hsiao, Chao-Tsung; Chahine, Georges L.

    2013-01-01

    A simplified three-dimensional (3-D) zero-thickness shell model was developed to recover the non-spherical response of thick-shelled encapsulated microbubbles subjected to ultrasound excitation. The model was validated by comparison with previously developed models and was then used to study the mechanism of bubble break-up during non-spherical deformations resulting from the presence of a nearby rigid boundary. The effects of the shell thickness and the bubble standoff distance from the solid wall on the bubble break-up were studied parametrically for a fixed insonification frequency and amplitude. A diagram of bubble shapes versus the normalized shell thickness and wall standoff was derived, and the potential bubble shapes at break-up from reentrant jets were categorized resulting in four distinct zones. PMID:23556560

  9. Lightweight Grid Shell Pavilion - Design, Manufacture and Erection of Full Scale Grid Shell Prototypes

    NASA Astrophysics Data System (ADS)

    Vaněk, Aleš

    2016-12-01

    The main goal of author's research is to design and construct grid shell structures, which are subsequently realized as experimental structures in full scale. These structures should make the place suitable for various events and also a friendly, pleasant, relaxing and free time space. By thinking about how such structure should look like and what materials and structure types are suitable, there were many kinds of lightweight structures considered. The most logical solution is to create a grid shell structure combining with a single layer membrane that would fulfill all aspects of elegant remarkable lightweight structure using some original details and workflow advancements. These grid shell projects should demonstrate another possibility to build and think about unconventional structures and provoke a deeper interest in these unique structures. The goal of this project was to create a feasible design of a grid shell structure and to build up the structures while being capable to understand the core of such an interesting phenomenon.

  10. An effective theory on the light shell

    NASA Astrophysics Data System (ADS)

    Sajjad, Aqil

    We describe work on the construction of an effective field theory on a spherical light shell. The motivation arises from classical electromagnetism: If a collision produces charged particles with zero net charge emerging simultaneously from a point and instantaneously accelerating to the speed of light, then the electromagnetic fields due to these charges lie entirely on a spherical shell expanding at the speed of light. We show that this also applies to classical color radiation from high-energy collisions that produce colored particles. Specifically, the color fields produced in such a process are associated with a non-linear sigma-model on the 2D light shell with specific symmetry-breaking terms. The quantum version of such a picture exhibits asymptotic freedom and should therefore be a useful starting point for a light-shell effective theory for QCD. We start in the simplified context of zero-flavor scalar quantum electrodynamics. Our effective theory has 3 major ingredients: breaking down the fields into soft and hard sectors with the large energy of the hard fields in the radial direction scaled out, a special gauge called light-shell gauge in which the picture simplifies, and a gauge-invariant source defined on a spherical light shell having infinitesimal radius. We match the fields between the effective theory and the full theory, meaning zero-flavor scalar QED. This allows us to compute the amplitude for the production of any number of scalars from the gauge-invariant source. We then find the tree-level amplitude for the emission of a photon using our effective theory and show that our result agrees with the full theory. To calculate loop effects in our effective theory, we need the photon propagator in light-shell gauge. We derive this propagator and use it to calculate the 1-loop correction to the amplitude for the production of a scalar and anti-scalar pair arising from virtual photon effects. This reduces to a pair of purely angular integrals in the

  11. Wave propagation in laminated orthotropic circular cylindrical shells

    NASA Technical Reports Server (NTRS)

    Srinivas, S.

    1976-01-01

    An exact three-dimensional analysis of wave propagation in laminated orthotropic circular cylindrical-shells is developed. Numerical results are presented for three-ply shells, and for various axial wave lengths, circumferential wave numbers, and thicknesses. Results from a thin shell theory and a refined approximate theory are compared with the exact results.

  12. Mollusc evolution: seven shells on the sea shore.

    PubMed

    Telford, Maximilian J

    2013-11-04

    Recent phylogenies unite two seemingly very different groups of mollusc: the Polyplacophora with multiple shells and the shell-less Aplacophora. The finding of seven muscle rows in larvae of both classes suggests that polyplacophoran-like shell rows have been lost in adult Aplacophora.

  13. Leathery Hull Peanuts – Effect on Shelling Performance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When shelling peanuts from the 2012 peanut crop, various shellers experienced diminished shelling plant throughput when shelling peanuts harvested from isolated geographical regions. Shellers reported a reduction of 25-30% throughput of the first stage sheller bank with significant increases in spli...

  14. Shells. Modified Primary. Revised. Anchorage School District Elementary Science Program.

    ERIC Educational Resources Information Center

    Defendorf, Jean, Ed.

    This publication provides information and activities for teaching about seashells and process skills including observing, classifying, collecting and interpreting data, inferring, measuring, and predicting. There are 10 lessons. Lessons 1 through 5 deal with an introduction to shells, why animals have shells, observing and classifying shells, the…

  15. Pseudo-Symmetry and Majorana Operators in pf-Shell

    SciTech Connect

    Valencia, J. P.; Wu, H. C.

    2007-10-26

    The Majorana operator of the pseudo ds-shell preserves the SU-tilde(4) symmetry, and in a unified manner it reproduces reasonably well the ground state energies of the nine nuclei in this shell. The study of {beta} decay in the same shell provides further support for the SU-tilde(4) symmetry.

  16. Imperfection sensitivity of pressured buckling of biopolymer spherical shells

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Ru, C. Q.

    2016-06-01

    Imperfection sensitivity is essential for mechanical behavior of biopolymer shells [such as ultrasound contrast agents (UCAs) and spherical viruses] characterized by high geometric heterogeneity. In this work, an imperfection sensitivity analysis is conducted based on a refined shell model recently developed for spherical biopolymer shells of high structural heterogeneity and thickness nonuniformity. The influence of related parameters (including the ratio of radius to average shell thickness, the ratio of transverse shear modulus to in-plane shear modulus, and the ratio of effective bending thickness to average shell thickness) on imperfection sensitivity is examined for pressured buckling. Our results show that the ratio of effective bending thickness to average shell thickness has a major effect on the imperfection sensitivity, while the effect of the ratio of transverse shear modulus to in-plane shear modulus is usually negligible. For example, with physically realistic parameters for typical imperfect spherical biopolymer shells, the present model predicts that actual maximum external pressure could be reduced to as low as 60% of that of a perfect UCA spherical shell or 55%-65% of that of a perfect spherical virus shell, respectively. The moderate imperfection sensitivity of spherical biopolymer shells with physically realistic imperfection is largely attributed to the fact that biopolymer shells are relatively thicker (defined by smaller radius-to-thickness ratio) and therefore practically realistic imperfection amplitude normalized by thickness is very small as compared to that of classical elastic thin shells which have much larger radius-to-thickness ratio.

  17. Imperfection sensitivity of pressured buckling of biopolymer spherical shells.

    PubMed

    Zhang, Lei; Ru, C Q

    2016-06-01

    Imperfection sensitivity is essential for mechanical behavior of biopolymer shells [such as ultrasound contrast agents (UCAs) and spherical viruses] characterized by high geometric heterogeneity. In this work, an imperfection sensitivity analysis is conducted based on a refined shell model recently developed for spherical biopolymer shells of high structural heterogeneity and thickness nonuniformity. The influence of related parameters (including the ratio of radius to average shell thickness, the ratio of transverse shear modulus to in-plane shear modulus, and the ratio of effective bending thickness to average shell thickness) on imperfection sensitivity is examined for pressured buckling. Our results show that the ratio of effective bending thickness to average shell thickness has a major effect on the imperfection sensitivity, while the effect of the ratio of transverse shear modulus to in-plane shear modulus is usually negligible. For example, with physically realistic parameters for typical imperfect spherical biopolymer shells, the present model predicts that actual maximum external pressure could be reduced to as low as 60% of that of a perfect UCA spherical shell or 55%-65% of that of a perfect spherical virus shell, respectively. The moderate imperfection sensitivity of spherical biopolymer shells with physically realistic imperfection is largely attributed to the fact that biopolymer shells are relatively thicker (defined by smaller radius-to-thickness ratio) and therefore practically realistic imperfection amplitude normalized by thickness is very small as compared to that of classical elastic thin shells which have much larger radius-to-thickness ratio.

  18. 7 CFR 982.101 - Grade requirements for shelled hazelnuts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Grade requirements for shelled hazelnuts. 982.101... HAZELNUTS GROWN IN OREGON AND WASHINGTON Grade and Size Regulation § 982.101 Grade requirements for shelled hazelnuts. (a) Pursuant to § 982.45(a), no handler shall handle any shelled hazelnuts unless such...

  19. 7 CFR 982.101 - Grade requirements for shelled hazelnuts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Grade requirements for shelled hazelnuts. 982.101... HAZELNUTS GROWN IN OREGON AND WASHINGTON Grade and Size Regulation § 982.101 Grade requirements for shelled hazelnuts. (a) Pursuant to § 982.45(a), no handler shall handle any shelled hazelnuts unless such...

  20. 7 CFR 982.101 - Grade requirements for shelled hazelnuts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Grade requirements for shelled hazelnuts. 982.101... HAZELNUTS GROWN IN OREGON AND WASHINGTON Grade and Size Regulation § 982.101 Grade requirements for shelled hazelnuts. (a) Pursuant to § 982.45(a), no handler shall handle any shelled hazelnuts unless such...

  1. 7 CFR 982.101 - Grade requirements for shelled hazelnuts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Grade requirements for shelled hazelnuts. 982.101... HAZELNUTS GROWN IN OREGON AND WASHINGTON Grade and Size Regulation § 982.101 Grade requirements for shelled hazelnuts. (a) Pursuant to § 982.45(a), no handler shall handle any shelled hazelnuts unless such...

  2. Core-shell to yolk-shell nanostructure transformation by a novel sacrificial template-free strategy.

    PubMed

    Han, Jie; Chen, Rong; Wang, Minggui; Lu, Song; Guo, Rong

    2013-12-21

    Au-conducting polymer core-shell nanostructures have been transformed into yolk-shell nanostructures with enhanced catalytic activity through facile swelling-evaporation processes without any sacrificial template.

  3. Constraints for system specifications for the double-shell and single-shell tank systems

    SciTech Connect

    SHAW, C.P.

    1999-05-18

    This is a supporting document for the Level 1 Double-Shell and Single-Shell System Specifications. The rationale for selection of specific regulatory constraining documents cited in the two system specifications is provided. many of the regulations have been implemented by the Project Hanford Management Contract procedures (HNF-PROs) and as such noted and traced back to their origins in State and Federal regulations.

  4. Defects in liquid crystal nematic shells

    NASA Astrophysics Data System (ADS)

    Fernandez-Nieves, A.; Utada, A. S.; Vitelli, V.; Link, D. R.; Nelson, D. R.; Weitz, D. A.

    2006-03-01

    We generate water/liquid crystal (LC)/water double emulsions via recent micro-capillary fluidic devices [A. S. Utada, et.al. Science 308, 537 (2005)]. The resultant objects are stabilized against coalescence by using surfactants or adequate polymers; these also fix the boundary conditions for the director field n. We use 4-pentyl-4-cyanobiphenyl (5CB) and impose tangential boundary conditions at both water/LC interfaces by having polyvinyl alcohol (PVA) dispersed in the inner and outer water phases. We confirm recent predictions [D. R. Nelson, NanoLetters 2, 1125 (2002)] and find that four strength s=+1/2 defects are present; this is in contrast to the two s=+1 defect bipolar configuration observed for bulk spheres [A. Fernandez-Nieves, et.al. Phys. Rev. Lett. 92, 105503 (2004)]. However, these defects do not lie in the vertices of a tetrahedron but are pushed towards each other until certain equilibration distance is reached. In addition to the four defect shells, we observe shells with two s=+1 defects and even with three defects, a s=+1 and two s=+1/2. We argue these configurations arise from nematic bulk distortions that become important as the shell thickness increases. Finally, by adding a different surfactant, sodium dodecyl sulphate (SDS), to the outer phase, we can change the director boundary conditions at the outermost interface from parallel to homeotropic, to induce coalescing of the two pair of defects in the four defect shell configuration to yield two defect bipolar shells.

  5. Searching for nova shells around cataclysmic variables

    NASA Astrophysics Data System (ADS)

    Sahman, D. I.; Dhillon, V. S.; Knigge, C.; Marsh, T. R.

    2015-08-01

    We present the results of a search for nova shells around 101 cataclysmic variables (CVs), using H α images taken with the 4.2-m William Herschel Telescope (WHT) and the 2.5-m Isaac Newton Telescope Photometric H α Survey of the Northern Galactic Plane (IPHAS). Both telescopes are located on La Palma. We concentrated our WHT search on nova-like variables, whilst our IPHAS search covered all CVs in the IPHAS footprint. We found one shell out of the 24 nova-like variables we examined. The newly discovered shell is around V1315 Aql and has a radius of ˜2.5 arcmin, indicative of a nova eruption approximately 120 yr ago. This result is consistent with the idea that the high mass-transfer rate exhibited by nova-like variables is due to enhanced irradiation of the secondary by the hot white dwarf following a recent nova eruption. The implications of our observations for the lifetime of the nova-like variable phase are discussed. We also examined four asynchronous polars, but found no new shells around any of them, so we are unable to confirm that a recent nova eruption is the cause of the asynchronicity in the white dwarf spin. We find tentative evidence of a faint shell around the dwarf nova V1363 Cyg. In addition, we find evidence for a light echo around the nova V2275 Cyg, which erupted in 2001, indicative of an earlier nova eruption ˜300 yr ago, making V2275 Cyg a possible recurrent nova.

  6. Glass shell manufacturing in space. [residual gases in spherical shells made from metal-organic gels

    NASA Technical Reports Server (NTRS)

    Nolen, R. J.; Ebner, M. A.; Downs, R. L.

    1980-01-01

    Residual gases always found in glass shells are CO2, O2 and N2. In those cases where high water vapor pressure is maintained in the furnace, water is also found in the shells. Other evidence for the existence of water in shells is the presence of water-induced surface weathering of the interior shell surface. Water and CO2 are the predominant volatiles generated by the pyrolysis of both inorganic and hydrolyzed metal-organic gels. The pyrolysates of unhydrolyzed metal-organic gels also contain, in addition to water and CO2, significant levels of organic volatiles, such as ethanol and some hydrocarbons; on complete oxidation, these produce CO2 and water as well. Water is most likely the initial blowing agent, it is produced copiously during the initial stages of heating. In the later stages, CO2 becomes the dominant gas as H2O is lost at increasing rates. Water in the shell arises mainly from gel dehydration, CO2 by sodium bicarbonate/carbonate decomposition and carbon oxidation, and O2 and N2 by permeation of the ambient furnace air through the molten shell wall.

  7. Optimised photocatalytic hydrogen production using core-shell AuPd promoters with controlled shell thickness.

    PubMed

    Jones, Wilm; Su, Ren; Wells, Peter P; Shen, Yanbin; Dimitratos, Nikolaos; Bowker, Michael; Morgan, David; Iversen, Bo B; Chutia, Arunabhiram; Besenbacher, Flemming; Hutchings, Graham

    2014-12-28

    The development of efficient photocatalytic routines for producing hydrogen is of great importance as society moves away from energy sources derived from fossil fuels. Recent studies have identified that the addition of metal nanoparticles to TiO2 greatly enhances the photocatalytic performance of these materials towards the reforming of alcohols for hydrogen production. The core-shell structured Au-Pd bimetallic nanoparticle supported on TiO2 has being of interest as it exhibited extremely high quantum efficiencies for hydrogen production. However, the effect of shell composition and thickness on photocatalytic performance remains unclear. Here we report the synthesis of core-shell structured AuPd NPs with the controlled deposition of one and two monolayers (ML) equivalent of Pd onto Au NPs by colloidal and photodeposition methods. We have determined the shell composition and thickness of the nanoparticles by a combination of X-ray absorption fine structure and X-ray photoelectron spectroscopy. Photocatalytic ethanol reforming showed that the core-shell structured Au-Pd promoters supported on TiO2 exhibit enhanced activity compared to that of monometallic Au and Pd as promoters, whilst the core-shell Au-Pd promoters containing one ML equivalent Pd provide the optimum reactivity.

  8. Synthesis and characterisation of core-shell structures for orthopaedic surgery.

    PubMed

    Rusen, Edina; Zaharia, Cătălin; Zecheru, Teodora; Mărculescu, Bogdan; Filmon, Robert; Chappard, Daniel; Bădulescu, Roxana; Cincu, Corneliu

    2007-01-01

    This paperwork deals with the obtaining and characterisation of new acrylic cements for bone surgery. The final mixture of cement contains derivatives of methacryloyloxyethyl phosphate, methacrylic acid or 2-acrylamido-2-methyl-1-propane sulphonic acid. The idea of using these monomers is sustained by their ability to form ionic bonds with barium, which is responsible for X-ray reflection and by the biocompatibility of these structures. The strategy consists in the obtaining of core-shell structures through heterogeneous polymerisation, which are used for final cement's manufacture. The orthopaedic cements were characterised by SEM, EDX, compression resistance and cytotoxicity assays.

  9. Hematite Core Nanoparticles with Carbon Shell: Potential for Environmentally Friendly Production from Iron Mining Sludge

    NASA Astrophysics Data System (ADS)

    Stević, Dragana; Mihajlović, Dijana; Kukobat, Radovan; Hattori, Yoshiyuki; Sagisaka, Kento; Kaneko, Katsumi; Atlagić, Suzana Gotovac

    2016-08-01

    Hematite nanoparticles with amorphous, yet relatively uniform carbon shell, were produced based exclusively on the waste sludge from the iron mine as the raw material. The procedure for acid digestion-based purification of the sludge with the full recovery of acid vapors and the remaining non-toxic rubble is described. Synthesis of the hematite nanoparticles was performed by the arrested precipitation method with cationic surfactant. The particles were thoroughly characterized and the potential of their economical production for the battery industry is indicated.

  10. Selective Removal of Hemoglobin from Blood Using Hierarchical Copper Shells Anchored to Magnetic Nanoparticles

    PubMed Central

    Wang, Yaokun; Yan, Mingyang

    2017-01-01

    Hierarchical copper shells anchored on magnetic nanoparticles were designed and fabricated to selectively deplete hemoglobin from human blood by immobilized metal affinity chromatography. Briefly, CoFe2O4 nanoparticles coated with polyacrylic acid were first synthesized by a one-pot solvothermal method. Hierarchical copper shells were then deposited by immobilizing Cu2+ on nanoparticles and subsequently by reducing between the solid CoFe2O4@COOH and copper solution with NaBH4. The resulting nanoparticles were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy, and vibrating sample magnetometry. The particles were also tested against purified bovine hemoglobin over a range of pH, contact time, and initial protein concentration. Hemoglobin adsorption followed pseudo-second-order kinetics and reached equilibrium in 90 min. Isothermal data also fit the Langmuir model well, with calculated maximum adsorption capacity 666 mg g−1. Due to the high density of Cu2+ on the shell, the nanoparticles efficiently and selectively deplete hemoglobin from human blood. Taken together, the results demonstrate that the particles with hierarchical copper shells effectively remove abundant, histidine-rich proteins, such as hemoglobin from human blood, and thereby minimize interference in diagnostic and other assays. PMID:28316987

  11. Bacteriophage HK97 structure: wholesale covalent cross-linking between the major head shell subunits.

    PubMed Central

    Popa, M P; McKelvey, T A; Hempel, J; Hendrix, R W

    1991-01-01

    We describe initial genetic and structural characterizations of HK97, a temperate bacteriophage of Escherichia coli. We isolated 28 amber mutants, characterized them with respect to what phage-related structures they make, and mapped many of them to restriction fragments of genomic DNA. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of HK97 virions revealed nine different protein species plus a substantial amount of material that failed to enter the gel, apparently because it is too large. Five proteins are tail components and are assigned functions as tail fiber subunit, tail length template, and major shaft subunit (two and possibly three species). The four remaining proteins and the material that did not enter the gel are head components. One of these proteins is assigned as the portal subunit, and the remaining three head proteins in the gel and the material that did not enter the gel are components of the head shell. All of the head shell protein species have apparent molecular masses well in excess of 100 kDa; they share amino acid sequence with each other and also with a 42-kDa protein that is found in infected lysates and as the major component of prohead structures that accumulate in infections by one of the amber mutants. We propose that all of the head shell species found in mature heads are covalently cross-linked oligomers derived from the 42-kDa precursor during head shell maturation. Images PMID:1709700

  12. Core-shell structured PEO-chitosan nanofibers by coaxial electrospinning.

    PubMed

    Pakravan, Mehdi; Heuzey, Marie-Claude; Ajji, Abdellah

    2012-02-13

    Core-shell structured PEO-chitosan nanofibers have been produced using a coaxial electrospinning setup. PEO and chitosan solutions, both in an aqueous acetic acid solvent, were used as the inner (core) and outer (shell) layer, respectively. Uniform-sized defect-free nanofibers of 150-190 nm diameter were produced. In addition, hollow nanofibers could be obtained subsequent to PEO washing of the membranes. The core-shell nanostructure and existence of chitosan on the shell layer were confirmed by TEM images obtained before and after washing the PEO content with water. The presence of chitosan on the surface of the composite nanofibers was further supported by XPS studies. The chitosan and PEO compositions in the nanofibrous mats were determined by TGA analysis, which were similar to their ratio in the feed solutions. The local compositional homogeneity of the membranes and the efficiency of the washing step to remove PEO were also verified by FTIR. In addition, DSC and XRD were used to characterize the crystalline structure and morphology of the co-electrospun nonwoven mats. The prepared coaxial nanofibers (hollow and solid) have several potential applications due to the presence of chitosan on their outer surfaces.

  13. Quality Evaluation of Shelled and Unshelled Macadamia Nuts by Means of Near-Infrared Spectroscopy (NIR).

    PubMed

    Canneddu, Giovanna; Júnior, Luis Carlos Cunha; de Almeida Teixeira, Gustavo Henrique

    2016-07-01

    The quality of shelled and unshelled macadamia nuts was assessed by means of Fourier transformed near-infrared (FT-NIR) spectroscopy. Shelled macadamia nuts were sorted as sound nuts; nuts infected by Ecdytolopha aurantiana and Leucopteara coffeella; and cracked nuts caused by germination. Unshelled nuts were sorted as intact nuts (<10% half nuts, 2014); half nuts (March, 2013; November, 2013); and crushed nuts (2014). Peroxide value (PV) and acidity index (AI) were determined according to AOAC. PCA-LDA shelled macadamia nuts classification resulted in 93.2% accurate classification. PLS PV prediction model resulted in a square error of prediction (SEP) of 3.45 meq/kg, and a prediction coefficient determination value (Rp (2) ) of 0.72. The AI PLS prediction model was better (SEP = 0.14%, Rp (2) = 0.80). Although adequate classification was possible (93.2%), shelled nuts must not contain live insects, therefore the classification accuracy was not satisfactory. FT-NIR spectroscopy can be successfully used to predict PV and AI in unshelled macadamia nuts, though.

  14. Effects of oyster shell on soil chemical and biological properties and cabbage productivity as a liming materials.

    PubMed

    Lee, Chang Hoon; Lee, Do Kyoung; Ali, Muhammad Aslam; Kim, Pil Joo

    2008-12-01

    Oyster shell, a byproduct of shellfish-farming in Korea and containing a high amount of CaCO(3), has a high potential to be used as a liming material in agriculture. However, the agricultural utilization of oyster shell is limited due to its high concentration NaCl. The oyster-shell meal collected had a low concentration of water soluble NaCl (mean 2.7 g kg(-1)), which might be a result of stacking the material for 6 months in the open field. It has a very similar liming potential with calcium carbonate, with 3.4 and 3.8 Mg ha(-1) for silt loam (SiL, pH 6.2) and sandy loam (SL, pH 5.8) to bring the soil pH to 6.5, respectively. To determine the effect of crushed oyster-shell meal on improving soil chemical and biological properties and crop plant productivity, oyster-shell meal was applied at rates of 0, 4, 8, 12, and 16 Mg ha(-1) before transplanting Chinese cabbage (Brassica campestris L.) in the two soils mentioned above. Soil pH was significantly increased to 6.9 and 7.4 by 16 Mg ha(-1) shell meal application (4 times higher level than the recommendation) in SiL and SL, respectively, at harvesting stage. The effect of liming was found higher in SL compared to SiL soil, probably due to the different buffering capacity of the two soils. The concentration of NaCl and EC value of soils were found slightly increased with shell meal applications, but no salt damage was observed. Oyster-shell meal application increased soil organic matter, available P, and exchangeable cations concentrations. The improved soil pH and nutrient status significantly increased the microbial biomass C and N concentrations and stimulated soil enzyme activities. With the exception of acid phosphomonoesterase (PMEase) activity, which decreased with increasing soil pH in SL but slightly increased in SiL, the activities of urease and alkali PMEase increased markedly with increasing soil pH by shell meal application. The improved soil chemical and biological properties resulted in increased crop

  15. Environmental salinity modulates the effects of elevated CO2 levels on juvenile hard-shell clams, Mercenaria mercenaria.

    PubMed

    Dickinson, Gary H; Matoo, Omera B; Tourek, Robert T; Sokolova, Inna M; Beniash, Elia

    2013-07-15

    Ocean acidification due to increasing atmospheric CO2 concentrations results in a decrease in seawater pH and shifts in the carbonate chemistry that can negatively affect marine organisms. Marine bivalves such as the hard-shell clam, Mercenaria mercenaria, serve as ecosystem engineers in estuaries and coastal zones of the western Atlantic and, as for many marine calcifiers, are sensitive to the impacts of ocean acidification. In estuaries, the effects of ocean acidification can be exacerbated by low buffering capacity of brackish waters, acidic inputs from freshwaters and land, and/or the negative effects of salinity on the physiology of organisms. We determined the interactive effects of 21 weeks of exposure to different levels of CO2 (~395, 800 and 1500 μatm corresponding to pH of 8.2, 8.1 and 7.7, respectively) and salinity (32 versus 16) on biomineralization, shell properties and energy metabolism of juvenile hard-shell clams. Low salinity had profound effects on survival, energy metabolism and biomineralization of hard-shell clams and modulated their responses to elevated PCO2. Negative effects of low salinity in juvenile clams were mostly due to the strongly elevated basal energy demand, indicating energy deficiency, that led to reduced growth, elevated mortality and impaired shell maintenance (evidenced by the extensive damage to the periostracum). The effects of elevated PCO2 on physiology and biomineralization of hard-shell clams were more complex. Elevated PCO2 (~800-1500 μatm) had no significant effects on standard metabolic rates (indicative of the basal energy demand), but affected growth and shell mechanical properties in juvenile clams. Moderate hypercapnia (~800 μatm PCO2) increased shell and tissue growth and reduced mortality of juvenile clams in high salinity exposures; however, these effects were abolished under the low salinity conditions or at high PCO2 (~1500 μatm). Mechanical properties of the shell (measured as microhardness and

  16. How long does oyster shell last on an oyster reef?

    NASA Astrophysics Data System (ADS)

    Powell, Eric N.; Kraeuter, John N.; Ashton-Alcox, Kathryn A.

    2006-09-01

    A reduction in population abundance, brought on by an unprecedented 6 years of low recruitment, has reduced shell input through natural mortality on Delaware Bay oyster beds. Quantitative stock surveys provide an estimate of surficial shell over the same time period, permitting the reconstruction of the time history of shell since 1998 and estimation of the rates of shell addition and loss. Shell loss rates were unexpectedly high. In most cases, half of the shell added to an oyster bed in Delaware Bay in a given year is lost over a subsequent period of 2-10 years. Unexpectedly, the shortest half-lives, typically two to three years, are at intermediate salinities. Half-lives increase upbay into lower salinity and downbay into higher salinity to about 10 years. Minimal shell doubling times were calculated under the assumption of no shell loss, a maximum accretion rate. Minimal doubling times vary from somewhat less than a decade to more than a score of years. Doubling times of decadal scale emphasize that shell has the potential to accumulate rapidly on human time scales. The rarity of definitive documentation of shell accumulation, in terms of reef vertical accretion or lateral expansion, can only be explained if most shell produced yearly does not long remain recognizably intact. Doubling times are not rapid on the scale of oyster generation time, however. Management of essential fish habitat in the estuarine realm must include management of the shell budget and management of commercial shell-producing species must include the provision of animals as carbonate producers for habitat maintenance. Shell, at least in estuarine habitats, may have low preservational potential, even in areas that, when preserved, will appear to be shellbeds. The biases in the fossil record may not be minimized in shell-rich environments of preservation because shelliness does not imply good preservability.

  17. 76 FR 36954 - Public Notice for Waiver of Aeronautical Land-Use Assurance; Shell Lake Municipal Airport, Shell...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-23

    ... Federal Aviation Administration Public Notice for Waiver of Aeronautical Land-Use Assurance; Shell Lake Municipal Airport, Shell Lake, WI AGENCY: Federal Aviation Administration, DOT ACTION: Notice of intent of... to authorize the release of 0.101 acres of the airport property at the ] Shell Lake Municipal...

  18. Chemical and colloidal stability of carboxylated core-shell magnetite nanoparticles designed for biomedical applications.

    PubMed

    Szekeres, Márta; Tóth, Ildikó Y; Illés, Erzsébet; Hajdú, Angéla; Zupkó, István; Farkas, Katalin; Oszlánczi, Gábor; Tiszlavicz, László; Tombácz, Etelka

    2013-07-12

    Despite the large efforts to prepare super paramagnetic iron oxide nanoparticles (MNPs) for biomedical applications, the number of FDA or EMA approved formulations is few. It is not known commonly that the approved formulations in many instances have already been withdrawn or discontinued by the producers; at present, hardly any approved formulations are produced and marketed. Literature survey reveals that there is a lack for a commonly accepted physicochemical practice in designing and qualifying formulations before they enter in vitro and in vivo biological testing. Such a standard procedure would exclude inadequate formulations from clinical trials thus improving their outcome. Here we present a straightforward route to assess eligibility of carboxylated MNPs for biomedical tests applied for a series of our core-shell products, i.e., citric acid, gallic acid, poly(acrylic acid) and poly(acrylic acid-co-maleic acid) coated MNPs. The discussion is based on physicochemical studies (carboxylate adsorption/desorption, FTIR-ATR, iron dissolution, zeta potential, particle size, coagulation kinetics and magnetization measurements) and involves in vitro and in vivo tests. Our procedure can serve as an example to construct adequate physico-chemical selection strategies for preparation of other types of core-shell nanoparticles as well.

  19. Accurate stress resultants equations for laminated composite deep thick shells

    SciTech Connect

    Qatu, M.S.

    1995-11-01

    This paper derives accurate equations for the normal and shear force as well as bending and twisting moment resultants for laminated composite deep, thick shells. The stress resultant equations for laminated composite thick shells are shown to be different from those of plates. This is due to the fact the stresses over the thickness of the shell have to be integrated on a trapezoidal-like shell element to obtain the stress resultants. Numerical results are obtained and showed that accurate stress resultants are needed for laminated composite deep thick shells, especially if the curvature is not spherical.

  20. Method of fabricating nested shells and resulting product

    DOEpatents

    Henderson, Timothy M.; Kool, Lawrence B.

    1982-01-01

    A multiple shell structure and a method of manufacturing such structure wherein a hollow glass microsphere is surface treated in an organosilane solution so as to render the shell outer surface hydrophobic. The surface treated glass shell is then suspended in the oil phase of an oil-aqueous phase dispersion. The oil phase includes an organic film-forming monomer, a polymerization initiator and a blowing agent. A polymeric film forms at each phase boundary of the dispersion and is then expanded in a blowing operation so as to form an outer homogeneously integral monocellular substantially spherical thermoplastic shell encapsulating an inner glass shell of lesser diameter.