Science.gov

Sample records for acid covalently bound

  1. Hydrogen-bond acidic functionalized carbon nanotubes (CNTs) with covalently-bound hexafluoroisopropanol groups

    SciTech Connect

    Fifield, Leonard S.; Grate, Jay W.

    2010-06-01

    Fluorinated hydrogen-bond acidic groups are directly attached to the backbone of single walled carbon nanotubes (SWCNTs) without the introduction of intermediate electron donating surface groups. Hexafluoroalcohol functional groups are exceptionally strong hydrogen bond acids, and are added to the nanotube surface using the aryl diazonium approach to create hydrogen-bond acidic carbon nanotube (CNT) surfaces. These groups can promote strong hydrogen-bonding interactions with matrix materials in composites or with molecular species to be concentrated and sensed. In the latter case, this newly developed material is expected to find useful application in chemical sensors and in CNT-based preconcentrator devices for the detection of pesticides, chemical warfare agents and explosives.

  2. Assessment of methods for covalent binding of nucleic acids to magnetic beads, Dynabeads, and the characteristics of the bound nucleic acids in hybridization reactions.

    PubMed Central

    Lund, V; Schmid, R; Rickwood, D; Hornes, E

    1988-01-01

    Dynabeads are magnetic monosized beads with high stability, high uniformity, unique paramagnetic properties, low particle-particle interaction, and high dispersibility. Different reactive groups; hydroxyl, carboxyl and amino groups can be attached to the surface. Several methods for covalent attachment of DNA or oligonucleotides to the beads were investigated. Best coupling yields were obtained by carbodiimide-mediated end-attachment of 5'-phosphate and 5'-NH2 modified nucleic acids to respectively amino and carboxyl beads. The carboxyl beads showed a low degree of non-specific binding, while a better yield of end-attached nucleic acids was obtained using the amino beads. The DNA-beads worked efficiently in hybridization experiments, and the kinetics of hybridization approach those of solution hybridization. PMID:3205723

  3. Fluoride-mediated capture of a noncovalent bound state of a reversible covalent enzyme inhibitor: X-ray crystallographic analysis of an exceptionally potent α-ketoheterocycle inhibitor of fatty acid amide hydrolase.

    PubMed

    Mileni, Mauro; Garfunkle, Joie; Ezzili, Cyrine; Cravatt, Benjamin F; Stevens, Raymond C; Boger, Dale L

    2011-03-23

    Two cocrystal X-ray structures of the exceptionally potent α-ketoheterocycle inhibitor 1 (K(i) = 290 pM) bound to a humanized variant of rat fatty acid amide hydrolase (FAAH) are disclosed, representing noncovalently and covalently bound states of the same inhibitor with the enzyme. Key to securing the structure of the noncovalently bound state of the inhibitor was the inclusion of fluoride ion in the crystallization conditions that is proposed to bind the oxyanion hole precluding inhibitor covalent adduct formation with stabilization of the tetrahedral hemiketal. This permitted the opportunity to detect important noncovalent interactions stabilizing the binding of the inhibitor within the FAAH active site independent of the covalent reaction. Remarkably, noncovalently bound 1 in the presence of fluoride appears to capture the active site in the same "in action" state with the three catalytic residues Ser241-Ser217-Lys142 occupying essentially identical positions observed in the covalently bound structure of 1, suggesting that this technique of introducing fluoride may have important applications in structural studies beyond inhibiting substrate or inhibitor oxyanion hole binding. Key insights to emerge from the studies include the observations that noncovalently bound 1 binds in its ketone (not gem diol) form, that the terminal phenyl group in the acyl side chain of the inhibitor serves as the key anchoring interaction overriding the intricate polar interactions in the cytosolic port, and that the role of the central activating heterocycle is dominated by its intrinsic electron-withdrawing properties. These two structures are also briefly compared with five X-ray structures of α-ketoheterocycle-based inhibitors bound to FAAH recently disclosed.

  4. Fluoride-Mediated Capture of a Noncovalent Bound State of a Reversible Covalent Enzyme Inhibitor: X-ray Crystallographic Analysis of an Exceptionally Potent α-Ketoheterocycle Inhibitor of Fatty Acid Amide Hydrolase

    PubMed Central

    Mileni, Mauro; Garfunkle, Joie; Ezzili, Cyrine; Cravatt, Benjamin F.; Stevens, Raymond C.; Boger, Dale L.

    2011-01-01

    Two cocrystal X-ray structures of the exceptionally potent α-ketoheterocycle inhibitor 1 (Ki = 290 pM) bound to a humanized variant of rat fatty acid amide hydrolase (FAAH) are disclosed, representing noncovalently and covalently bound states of the same inhibitor with the enzyme. Key to securing the structure of the noncovalently bound state of the inhibitor was the inclusion of fluoride ion in the crystallization conditions that is proposed to bind the oxyanion hole precluding inhibitor covalent adduct formation with stabilization of the tetrahedral hemiketal. This permitted the opportunity to detect important noncovalent interactions stabilizing the binding of the inhibitor within the FAAH active site independent of the covalent reaction. Remarkably, noncovalently bound 1 in the presence of fluoride appears to capture the active site in the same “in action” state with the three catalytic residues Ser241–Ser217–Lys142 occupying essentially identical positions observed in the covalently bound structure of 1, suggesting that this technique of introducing fluoride may have important applications in structural studies beyond inhibiting substrate or inhibitor oxyanion hole binding. Key insights to emerge from the studies include the observations that noncovalently bound 1 binds in its ketone (not gem diol) form, that the terminal phenyl group in the acyl side chain of the inhibitor serves as the key anchoring interaction overriding the intricate polar interactions in the cytosolic port, and that the role of the central activating heterocycle is dominated by its intrinsic electron-withdrawing properties. These two structures are also briefly compared with five X-ray structures of α-ketoheterocycle-based inhibitors bound to FAAH recently disclosed. PMID:21355555

  5. Covalently Bound Nitroxyl Radicals in an Organic Framework

    SciTech Connect

    Hughes, Barbara K.; Braunecker, Wade A.; Bobela, David C.; Nanayakkara, Sanjini U.; Reid, Obadiah G.; Johnson, Justin C.

    2016-09-15

    A series of covalent organic framework (COF) structures is synthesized that possesses a tunable density of covalently bound nitroxyl radicals within the COF pores. The highest density of organic radicals produces an electron paramagnetic resonance (EPR) signal that suggests the majority of radicals strongly interact with other radicals, whereas for smaller loadings the EPR signals indicate the radicals are primarily isolated but with restricted motion. The dielectric loss as determined from microwave absorption of the framework structures compared with an amorphous control suggests that free motion of the radicals is inhibited when more than 25% of available sites are occupied. The ability to tune the mode of radical interactions and the subsequent effect on redox, electrical, and optical characteristics in a porous framework may lead to a class of structures with properties ideal for photoelectrochemistry or energy storage.

  6. Spin Labeling ESR Investigation of Covalently Bound Residues in Soil

    NASA Astrophysics Data System (ADS)

    Aleksandrova, Olga; Steinhoff, Heinz-Juergen; Klasmeier, Joerg; Schulz, Marcus; Matthies, Michael

    2013-04-01

    Organic xenobiotic chemicals, such as pesticides, biocides and veterinary pharmaceuticals, interact with soil, which results in the simultaneous formations of metabolites, mineralization products, and bound or non-extractable residues (NER). Substances or metabolites with reactive functional groups, such as aniline or phenol, have a tendency to give a larger proportion of NER. Despite numerous studies on NER, the majority of their chemical structures is still unknown. Reversible sequestration and irreversible formation of NER were also observed for veterinary antibiotic pharmaceuticals, after their application to soil with and without manure. For this purpose, we hypothesized a key role of specific functional groups of soil contaminants, via which contaminants are covalently bound to soil constituents, and advance a method of spin labeling ESR investigation of reaction products using a membrane method. Spin labels (SL) represent chemically stable paramagnetic molecules used as molecular labels and molecular probes for testing the covalent binding, structural properties, and molecular mobility of different physical, chemical, and biological systems. In the case of covalent binding of SL, their ESR spectra become broadened. We used stable nitroxide radicals (NR) as SL. These radicals modeled organic chemical contaminants and differed only in one functional group. The paramagnetic SL 4-Amino Tempo (4-amino-2,2,6,6-tetramethyl-1-piperidinylox) differed from Tempo (2,2,6,6-Tetramethylpiperidinooxy) in a substituent at the para-position of the piperidine ring, whereas Aniline Tempo (1-Piperidinyloxy, 2,2,6,-tetramethyl, 6-Aniline) differed from Tempo in an Aniline substituting one CH3 functional group. Before experimental analysis, we tested temporal changes in the concentration of both NR incubated with soil and found that the life-times of them in soil exceeded 3 days. We contaminated and labeled soil samples with NR, adding to soil the aqueous solution, which already

  7. Comparative biochemical characterization of peroxidases (class III) tightly bound to the maize root cell walls and modulation of the enzyme properties as a result of covalent binding.

    PubMed

    Hadži-Tašković Šukalović, Vesna; Vuletić, Mirjana; Marković, Ksenija; Cvetić Antić, Tijana; Vučinić, Željko

    2015-01-01

    Comparative biochemical characterization of class III peroxidase activity tightly bound to the cell walls of maize roots was performed. Ionically bound proteins were solubilized from isolated walls by salt washing, and the remaining covalently bound peroxidases were released, either by enzymatic digestion or by a novel alkaline extraction procedure that released covalently bound alkali-resistant peroxidase enzyme. Solubilized fractions, as well as the salt-washed cell wall fragments containing covalently bound proteins, were analyzed for peroxidase activity. Peroxidative and oxidative activities indicated that peroxidase enzymes were predominately associated with walls by ionic interactions, and this fraction differs from the covalently bound one according to molecular weight, isozyme patterns, and biochemical parameters. The effect of covalent binding was evaluated by comparison of the catalytic properties of the enzyme bound to the salt-washed cell wall fragments with the corresponding solubilized and released enzyme. Higher thermal stability, improved resistance to KCN, increased susceptibility to H2O2, stimulated capacity of wall-bound enzyme to oxidize indole-3-acetic acid (IAA) as well as the difference in kinetic parameters between free and bound enzymes point to conformational changes due to covalent binding. Differences in biochemical properties of ionically and covalently bound peroxidases, as well as the modulation of the enzyme properties as a result of covalent binding to the walls, indicate that these two fractions of apoplastic peroxidases play different roles.

  8. Modification of the Lowry assay to measure proteins and phenols in covalently bound complexes.

    PubMed

    Winters, Ana L; Minchin, Frank R

    2005-11-01

    It is well established that phenols interfere with many routine protein assays and a number of protocols have been developed to overcome this. One such method is based on the differences in response obtained with the Lowry assay in the presence and absence of copper. This assumes that the phenol response with the Lowry assay is not affected by copper. However ortho-diphenols such as catechol, methylcatechol, caffeic acid, chlorogenic acid, and phaselic acid show decreased responses in the presence of copper. Three methods of estimating protein were compared for their accuracy in measuring proteins in the presence of covalently bound ortho-diphenols; the Lowry assay, the modified Lowry assay, and a new method including a calculation to take into account differences in ortho-diphenol response in the presence and absence of copper. The ortho-diphenols were caffeic acid and phaselic acid, which were bound to bovine serum albumin and red clover protein either chemically or enzymatically. For all assays, the new method gave values within 4 to 8% of control values for protein (without bound phenols) as determined by the modified Lowry method. Values for the Lowry and modified Lowry methods varied by 20-50% from control protein values. The new method also gave a good approximation of protein-bound phenol content.

  9. Building high-coverage monolayers of covalently bound magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Williams, Mackenzie G.; Teplyakov, Andrew V.

    2016-12-01

    This work presents an approach for producing a high-coverage single monolayer of magnetic nanoparticles using "click chemistry" between complementarily functionalized nanoparticles and a flat substrate. This method highlights essential aspects of the functionalization scheme for substrate surface and nanoparticles to produce exceptionally high surface coverage without sacrificing selectivity or control over the layer produced. The deposition of one single layer of magnetic particles without agglomeration, over a large area, with a nearly 100% coverage is confirmed by electron microscopy. Spectroscopic techniques, supplemented by computational predictions, are used to interrogate the chemistry of the attachment and to confirm covalent binding, rather than attachment through self-assembly or weak van der Waals bonding. Density functional theory calculations for the surface intermediate of this copper-catalyzed process provide mechanistic insight into the effects of the functionalization scheme on surface coverage. Based on this analysis, it appears that steric limitations of the intermediate structure affect nanoparticle coverage on a flat solid substrate; however, this can be overcome by designing a functionalization scheme in such a way that the copper-based intermediate is formed on the spherical nanoparticles instead. This observation can be carried over to other approaches for creating highly controlled single- or multilayered nanostructures of a wide range of materials to result in high coverage and possibly, conformal filling.

  10. Detection of covalent DNA-bound Spo11 and topoisomerase complexes.

    PubMed

    Hartsuiker, Edgar

    2011-01-01

    Topoisomerases can release topological stress and resolve DNA catenanes by a DNA strand breakage and re-ligation mechanism. During the lifetime of the DNA break, the topoisomerase remains covalently linked to the DNA and removes itself when the break is re-ligated. While the lifetime of a covalent topoisomerase-DNA complex is usually short, several clinically important cancer drugs kill cancer cells by inhibiting the removal of covalently linked topoisomerases. The topoisomerase-like protein Spo11 is responsible for meiotic double strand break formation. Spo11 is not able to remove itself and is removed by nucleolytic cleavage. This chapter describes a method which allows the reproducible and quantitative detection of proteins covalently bound to the DNA.

  11. Fibronectin from chicken embryo fibroblasts contains covalently bound phosphate

    PubMed Central

    1979-01-01

    Fibronectin isolated from cultures of chicken embryo fibroblasts (CEF) contains phosphorus linked to serine and threonine by monoester bonds. Normal and Rous sarcoma virus (RSV)-transformed cells were incubated with [32P]orthophosphate, and fibronectin was isolated from the cell surfaces and conditioned media. 32P was stably associated with fibronectin during immunoprecipitation, SDS-polyacrylamide gel electrophoresis, phospholipid solvent extraction, and hot acid but not alkaline treatment. After a limited acid hydrolysis of fibronectin, both phosphoserine and phosphothreonine were found. The specific radioactivity of the 32P-labeled fibronectin from the conditioned medium of normal CEF was higher than that from the cultures of transformed CEF. PMID:457771

  12. Nucleic acid duplexes incorporating a dissociable covalent base pair

    NASA Technical Reports Server (NTRS)

    Gao, K.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1999-01-01

    We have used molecular modeling techniques to design a dissociable covalently bonded base pair that can replace a Watson-Crick base pair in a nucleic acid with minimal distortion of the structure of the double helix. We introduced this base pair into a potential precursor of a nucleic acid double helix by chemical synthesis and have demonstrated efficient nonenzymatic template-directed ligation of the free hydroxyl groups of the base pair with appropriate short oligonucleotides. The nonenzymatic ligation reactions, which are characteristic of base paired nucleic acid structures, are abolished when the covalent base pair is reduced and becomes noncoplanar. This suggests that the covalent base pair linking the two strands in the duplex is compatible with a minimally distorted nucleic acid double-helical structure.

  13. Nucleic Acid Duplexes Incorporating a Dissociable Covalent Base Pair

    NASA Astrophysics Data System (ADS)

    Gao, Kui; Orgel, Leslie E.

    1999-12-01

    We have used molecular modeling techniques to design a dissociable covalently bonded base pair that can replace a Watson-Crick base pair in a nucleic acid with minimal distortion of the structure of the double helix. We introduced this base pair into a potential precursor of a nucleic acid double helix by chemical synthesis and have demonstrated efficient nonenzymatic template-directed ligation of the free hydroxyl groups of the base pair with appropriate short oligonucleotides. The nonenzymatic ligation reactions, which are characteristic of base paired nucleic acid structures, are abolished when the covalent base pair is reduced and becomes noncoplanar. This suggests that the covalent base pair linking the two strands in the duplex is compatible with a minimally distorted nucleic acid double-helical structure.

  14. Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation.

    PubMed

    Qian, Hai-Long; Yang, Cheng-Xiong; Yan, Xiu-Ping

    2016-07-12

    Covalent organic frameworks (COFs) are a novel class of porous materials, and offer great potential for various applications. However, the applications of COFs in chiral separation and chiral catalysis are largely underexplored due to the very limited chiral COFs available and their challenging synthesis. Here we show a bottom-up strategy to construct chiral COFs and an in situ growth approach to fabricate chiral COF-bound capillary columns for chiral gas chromatography. We incorporate the chiral centres into one of the organic ligands for the synthesis of the chiral COFs. We subsequently in situ prepare the COF-bound capillary columns. The prepared chiral COFs and their bound capillary columns give high resolution for the separation of enantiomers with excellent repeatability and reproducibility. The proposed strategy provides a promising platform for the synthesis of chiral COFs and their chiral separation application.

  15. Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation

    NASA Astrophysics Data System (ADS)

    Qian, Hai-Long; Yang, Cheng-Xiong; Yan, Xiu-Ping

    2016-07-01

    Covalent organic frameworks (COFs) are a novel class of porous materials, and offer great potential for various applications. However, the applications of COFs in chiral separation and chiral catalysis are largely underexplored due to the very limited chiral COFs available and their challenging synthesis. Here we show a bottom-up strategy to construct chiral COFs and an in situ growth approach to fabricate chiral COF-bound capillary columns for chiral gas chromatography. We incorporate the chiral centres into one of the organic ligands for the synthesis of the chiral COFs. We subsequently in situ prepare the COF-bound capillary columns. The prepared chiral COFs and their bound capillary columns give high resolution for the separation of enantiomers with excellent repeatability and reproducibility. The proposed strategy provides a promising platform for the synthesis of chiral COFs and their chiral separation application.

  16. Dynamic nuclear polarization of membrane proteins: covalently bound spin-labels at protein-protein interfaces.

    PubMed

    Wylie, Benjamin J; Dzikovski, Boris G; Pawsey, Shane; Caporini, Marc; Rosay, Melanie; Freed, Jack H; McDermott, Ann E

    2015-04-01

    We demonstrate that dynamic nuclear polarization of membrane proteins in lipid bilayers may be achieved using a novel polarizing agent: pairs of spin labels covalently bound to a protein of interest interacting at an intermolecular interaction surface. For gramicidin A, nitroxide tags attached to the N-terminal intermolecular interface region become proximal only when bimolecular channels forms in the membrane. We obtained signal enhancements of sixfold for the dimeric protein. The enhancement effect was comparable to that of a doubly tagged sample of gramicidin C, with intramolecular spin pairs. This approach could be a powerful and selective means for signal enhancement in membrane proteins, and for recognizing intermolecular interfaces.

  17. Identification and characterization of a protein covalently bound to DNA of minute virus of mice.

    PubMed Central

    Chow, M; Bodnar, J W; Polvino-Bodnar, M; Ward, D C

    1986-01-01

    We identified a protein which is covalently linked to a fraction of the DNA synthesized in cells infected with minute virus of mice. This protein is specifically bound to the 5' terminus of the extended terminal conformers of the minute virus of mice replicative-form DNA species and of a variable fraction of single-stranded viral DNA. The chemical stability of the protein-DNA linkage is characteristic of a phosphodiester bond between a tyrosine residue in the protein and the 5' end of the DNA. The terminal protein (TP) bound on all DNA forms has a relative molecular weight of 60,000; it is also seen free in extracts from infected cells. Immunologic comparison of the TP with the other known viral proteins suggests that the TP is not related to the capsid proteins or NS-1. Images PMID:2936897

  18. Dynamic Nuclear Polarization of membrane proteins: covalently bound spin-labels at protein-protein interfaces

    PubMed Central

    Wylie, Benjamin J; Dzikovski, Boris G.; Pawsey, Shane; Caporini, Marc; Rosay, Melanie; Freed, Jack H.; McDermott, Ann E.

    2016-01-01

    We demonstrate that dynamic nuclear polarization (DNP) of membrane proteins in lipid bilayers may be achieved using a novel polarizing agent: pairs of spin labels covalently bound to a protein of interest interacting at an intermolecular interaction surface. For gramicidin A, nitroxide tags attached to the N-terminal intermolecular interface region become proximal only when bimolecular channels forms in the membrane. We obtained signal enhancements of 6-fold for the dimeric protein. The enhancement affect was comparable to that of a doubly tagged sample of gramicidin C, with intramolecular spin pairs. This approach could be a powerful and selective means for signal enhancement in membrane proteins, and for recognizing intermolecular interfaces. PMID:25828256

  19. Microbial bioavailability of covalently bound polymer coatings on model engineered nanomaterials.

    PubMed

    Kirschling, Teresa L; Golas, Patricia L; Unrine, Jason M; Matyjaszewski, Krzysztof; Gregory, Kelvin B; Lowry, Gregory V; Tilton, Robert D

    2011-06-15

    By controlling nanoparticle flocculation and deposition, polymer coatings strongly affect nanoparticle fate, transport, and subsequent biological impact in the environment. Biodegradation is a potential route to coating breakdown, but it is unknown whether surface-bound polymers are bioavailable. Here we demonstrate, for the first time, that polymer coatings covalently bound to nanomaterials are bioavailable. Model poly(ethylene oxide) (PEO) brush-coated nanoparticles (densely cross-linked bottle brush copolymers) with hydrophobic divinyl benzene cross-linked cores and hydrophilic PEO brush shells, having ~ 30 nm hydrodynamic radii, were synthesized to obtain a nanomaterial in which biodegradation was the only available coating breakdown mechanism. PEO-degrading enrichment cultures were supplied with either PEO homopolymer or PEO brush nanoparticles as the sole carbon source, and protein and CO₂ production were monitored as a measure of biological conversion. Protein production after 90 h corresponded to 14% and 8% of the total carbon available in the PEO homopolymer and PEO brush nanoparticle cultures, respectively, and CO₂ production corresponded to 37% and 3.8% of the carbon added to the respective system. These results indicate that the PEO in the brush is bioavailable. Brush biodegradation resulted in particle aggregation, pointing to the need to understand biologically mediated transformations of nanoparticle coatings in order to understand the fate and transport of nanoparticles in the environment.

  20. Covalent and non-covalent curcumin loading in acid-responsive polymeric micellar nanocarriers

    NASA Astrophysics Data System (ADS)

    Gao, Min; Chen, Chao; Fan, Aiping; Zhang, Ju; Kong, Deling; Wang, Zheng; Zhao, Yanjun

    2015-07-01

    Poor aqueous solubility, potential degradation, rapid metabolism and elimination lead to low bioavailability of pleiotropic impotent curcumin. Herein, we report two types of acid-responsive polymeric micelles where curcumin was encapsulated via both covalent and non-covalent modes for enhanced loading capacity and on-demand release. Biodegradable methoxy poly(ethylene glycol)-poly(lactic acid) copolymer (mPEG-PLA) was conjugated with curcumin via a hydrazone linker, generating two conjugates differing in architecture (single-tail versus double-tail) and free curcumin was encapsulated therein. The two micelles exhibited similar hydrodynamic size at 95 ± 3 nm (single-tail) and 96 ± 3 nm (double-tail), but their loading capacities differed significantly at 15.0 ± 0.5% (w/w) (single-tail) and 4.8 ± 0.5% (w/w) (double-tail). Under acidic sink conditions (pH 5.0 and 6.0), curcumin displayed a faster release from the single-tail nanocarrier, which was correlated to a low IC50 of 14.7 ± 1.6 (μg mL-1) compared to the value of double-tail micelle (24.9 ± 1.3 μg mL-1) in HeLa cells. The confocal imaging and flow cytometry analysis demonstrated a superior capability of single-tail micelle for intracellular curcumin delivery, which was a consequence of the higher loading capacity and lower degree of mPEG surface coverage. In conclusion, the dual loading mode is an effective means to increase the drug content in the micellar nanocarriers whose delivery efficiency is highly dependent on its polymer-drug conjugate architecture. This strategy offers an alternative nanoplatform for intracellularly delivering impotent hydrophobic agents (i.e. curcumin) in an efficient stimuli-triggered way, which is valuable for the enhancement of curcumin’s efficacy in managing a diverse range of disorders.

  1. Covalently bound fluorescent probes as reporters for hydroxyl radical penetration into liposomal membranes.

    PubMed

    Fortier, Chanel A; Guan, Bing; Cole, Richard B; Tarr, Matthew A

    2009-05-15

    The ability of hydroxyl radicals to penetrate into liposomal model membranes (dimyristoylphosphatidylcholine) has been demonstrated. Liposomes were prepared and then characterized by digital fluorescence microscopy and dynamic light scattering after extrusion to determine liposomal lamellarity, size, and shape. Hydroxyl radicals were generated in the surrounding aqueous medium using a modified Fenton reagent (hydrogen peroxide and Fe(2+)) with the water-soluble iron chelator EDTA. High and low doses of radical were used, and the low dose was achieved with physiologically relevant iron and peroxide concentrations. Fluorescent probes covalently bound to the membrane phospholipid were used, including two lipophilic pyrenyl probes within the membrane bilayer and one polar probe at the water-membrane interface. Radical reactions with the probes were monitored by following the decrease in fluorescence and by observing oxidation products via matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Differences in the probe position within the membrane were correlated with the reactivity of the probe to assess radical access to the site of the probe. For all probes, reaction rates increased with increasing temperature. Within the membrane bilayer, reaction rates were greater for the probe closest to the membrane-water interface. Cholesterol protected these probes from oxidation. Kinetic models, scavenger studies, and product identification studies indicated that hydroxyl radical reacted directly with the in-membrane probes without the mediation of a secondary radical.

  2. Covalent interaction of chloroacetic and acetic acids with cholesterol.

    PubMed

    Bhat, H K; Ansari, G A

    1989-01-01

    The covalent interaction of chloroacetic acid with rat liver lipids was studied in vivo. Rats were given a single oral dose (8.75 mg/kg, 50 microCi) of 1-[14C]chloroacetic acid and sacrificed after 24 hours. Lipids extracted from the livers were separated into neutral lipids and phospholipids by solid-phase extraction using sep-pak silica cartridges. The neutral lipid fraction was further fractionated by preparative thin-layer chromatography followed by reverse-phase high-performance liquid chromatography. The fraction corresponding to the retention time of standard cholesteryl chloroacetate gave a pseudomolecular ion peak at m/z 480/482 ratio: (3:1) on ammonia chemical ionization mass spectrometry, and the fragmentation pattern was found to be similar to that of the standard sample. Under similar conditions, acetic acid resulted in the formation of cholesteryl acetate. The effect of such conjugation reactions on the cell membrane and their contribution to toxicity is presently unknown.

  3. The covalently bound dimer ion HC dbnd N sbnd C dbnd NH rad + and its neutral counterpart

    NASA Astrophysics Data System (ADS)

    Jobst, Karl J.; Terlouw, Johan K.

    2010-09-01

    Model chemistry calculations (CBS-QB3 and CBS-APNO methods) and tandem mass spectrometry based experiments indicate that dissociative ionization of 2-methoxy-s-triazine (consecutive losses of CH2O and HCN) yields the elusive covalently bound [H,C,N] dimer ion HCdbnd Nsbnd Cdbnd NHrad+, a species of interest in astrochemistry. Neutralization-Reionization Mass Spectrometry (NRMS) experiments indicate that its neutral counterpart, HCdbnd Nsbnd Cdbnd NH, is a kinetically stable molecule in the rarefied gas-phase.

  4. Bound Indoleacetic Acid in Avena Coleoptiles 1

    PubMed Central

    Winter, Alan; Thimann, Kenneth V.

    1966-01-01

    When C14 carboxyl indoleacetic acid (IAA) is transported through Avena coleoptile sections a fraction of the activity becomes bound. The nature of this bound IAA has been investigated. Upon extraction with solvents and chromatography a substance having the RF of IAA in 4 solvents was detected. No evidence could be found for the formation of indoleacetyl conjugates. In pea stem sections subjected to a similar experimental regime good evidence was obtained for the occurrence of conjugates. When IAA was supplied exogenously to coleoptile sections floating in solutions the occurrence of conjugates was shown to be dependent on the presence of the primary leaf. In its absence no conjugates could be detected. On grinding coleoptile sections and subsequent centrifugation at 240 × g the radioactivity was found to be in the tissue fraction as opposed to the supernatant. The radioactivity cannot be removed from the tissue by extraction with water, buffer solution or treatment with ribonuclease. It is readily removed by 10% urea, crystalline trypsin and chymotrypsin. It is therefore concluded that IAA becomes bound to a protein. Bound IAA does not appear to be able to cause growth in Avena coleoptile sections. PMID:16656259

  5. Probing Protein Structure by Amino Acid-Specific Covalent Labeling and Mass Spectrometry

    PubMed Central

    Mendoza, Vanessa Leah; Vachet, Richard W.

    2009-01-01

    For many years, amino acid-specific covalent labeling has been a valuable tool to study protein structure and protein interactions, especially for systems that are difficult to study by other means. These covalent labeling methods typically map protein structure and interactions by measuring the differential reactivity of amino acid side chains. The reactivity of amino acids in proteins generally depends on the accessibility of the side chain to the reagent, the inherent reactivity of the label and the reactivity of the amino acid side chain. Peptide mass mapping with ESI- or MALDI-MS and peptide sequencing with tandem MS are typically employed to identify modification sites to provide site-specific structural information. In this review, we describe the reagents that are most commonly used in these residue-specific modification reactions, details about the proper use of these covalent labeling reagents, and information about the specific biochemical problems that have been addressed with covalent labeling strategies. PMID:19016300

  6. Photophysics and photochemistry of the UV filter kynurenine covalently attached to amino acids and to a model protein.

    PubMed

    Sherin, Peter S; Grilj, Jakob; Kopylova, Lyudmila V; Yanshole, Vadim V; Tsentalovich, Yuri P; Vauthey, Eric

    2010-09-16

    The photophysics and photochemistry of kynurenine (KN) covalently bound to the amino acids lysine, cysteine, and histidine, the antioxidant glutathione, and the protein lysozyme have been studied by optical spectroscopy with femto- and nanosecond time resolution. The fluorescence quantum yield of the adducts of KN to amino acids is approximately 2 times higher than that of the free KN in solution; KN attached to protein exhibits a 7-fold increase in the fluorescence quantum yield. The S(1) state dynamics of KN-modified lysozyme reveals a multiphasic decay with a broad dispersion of time constants from 1 ps to 2 ns. An increase of the triplet yield of KN bound to lysozyme is also observed; the triplet state undergoes fast intramolecular decay. The obtained results reveal an increase of the photochemical activity of KN after its covalent attachment to amino acids and proteins, which may contribute to the development of oxidative stress in the human lenses-the main causative factor for the cataract onset.

  7. Protected Graft Copolymer (PGC) in Imaging and Therapy: A Platform for the Delivery of Covalently and Non-Covalently Bound Drugs

    PubMed Central

    Bogdanov Jr, Alexei A.; Mazzanti, Mary; Castillo, Gerardo; Bolotin, Elijah

    2012-01-01

    Initially developed in 1992 as an MR imaging agent, the family of protected graft copolymers (PGC) is based on a conjugate of polylysine backbone to which methoxypoly(ethylene glycol) (MPEG) chains are covalently linked in a random fasion via N-ε-amino groups. While PGC is relatively simple in terms of its chemcial composition and structure, it has proved to be a versatile platform for in vivo drug delivery. The advantages of poly amino acid backbone grafting include multiple available linking sites for drug and adaptor molecules. The grafting of PEG chains to PGC does not compromise biodegradability and does not result in measurable toxicity or immunogenicity. In fact, the biocompatablility of PGC has resulted in its being one of the few 100% synthetic non-proteinaceous macromolecules that has suceeded in passing the initial safety phase of clinical trials. PGC is capable of long circulation times after injection into the blood stream and as such found use early on as a carrier system for delivery of paramagnetic imaging compounds for angiography. Other PGC types were later developed for use in nuclear medicine and optical imaging applications in vivo. Recent developments in PGC-based drug carrier formulations include the use of zinc as a bridge between the PGC carrier and zinc-binding proteins and re-engineering of the PGC carrier as a covalent amphiphile that is capabe of binding to hydrophobic residues of small proteins and peptides. At present, PGC-based formulations have been developed and tested in various disease models for: 1) MR imaging local blood circulation in stroke, cancer and diabetes; 2) MR and nuclear imaging of blood volume and vascular permeability in inflammation; 3) optical imaging of proteolytic activity in cancer and inflammation; 4) delivery of platinum(II) compounds for treating cancer; 5) delivery of small proteins and peptides for treating diabetes, obesity and myocardial infarction. This review summarizes the experience accumulated by

  8. Fluorescent silica nanoparticles containing covalently bound dyes for reporter, marker, and sensor applications

    NASA Astrophysics Data System (ADS)

    Patonay, Gabor; Henary, Maged; Chapman, Gala; Emer, Kyle; Crow, Sidney

    2016-03-01

    Silica nanoparticles have proven to be useful in many bioanalytical and medical applications and have been used in numerous applications during the last decade. Combining the properties of silica nanoparticles and fluorescent dyes that may be used as chemical probes or labels can be relatively easy by simply soaking porous silica nanoparticles in a solution of the dye of interest. Under proper conditions the entrapped dye can stay inside the silica nanoparticle for several hours resulting in a useful probe. In spite of the relative durability of these probes, leaching can still occur. A much better approach is to synthesize silica nanoparticles that have the fluorescent dye covalently attached to the backbone structure of the silica nanoparticle. This can be achieved by using appropriately modified tetraethyl orthosilicate (TEOS) analogues during the silica nanoparticle synthesis. The molar ratio of TEOS and modified TEOS will determine the fluorescent dye load in the silica nanoparticle. Dependent on the chemical stability of the reporting dye either reverse micellar (RM) or Stöber method can be used for silica nanoparticle synthesis. If dye stability allows RM procedure is preferred as it results in a much easier control of the silica nanoparticle reaction itself. Also controlling the size and uniformity of the silica nanoparticles are much easier using RM method. Dependent on the functional groups present in the reporting dye used in preparation of the modified TEOS, the silica nanoparticles can be utilized in many applications such as pH sensor, metal ion sensors, labels, etc. In addition surface activated silica nanoparticles with reactive moieties are also excellent reporters or they can be used as bright fluorescent labels. Many different fluorescent dyes can be used to synthesize silica nanoparticles including visible and NIR dyes. Several bioanalytical applications are discussed including studying amoeba phagocytosis.

  9. Reversible covalent interactions of β-aminoboronic acids with carbohydrate derivatives.

    PubMed

    Garrett, Graham E; Diaz, Diego B; Yudin, Andrei K; Taylor, Mark S

    2017-02-07

    β-Aminoalkylboronic acids are capable of binding to carbohydrate derivatives through reversible covalent interactions. An anthracene-bearing β-aminoboronic acid has been synthesized, enabling determinations of association constants for binding of sugars by fluorescence spectroscopy. The diol-binding properties of β-aminoboronic acids are also useful in catalysis: one such compound displays remarkably high activity for regioselective O-acylation of a pyranoside derivative.

  10. Major membrane surface proteins of Mycoplasma hyopneumoniae selectively modified by covalently bound lipid

    SciTech Connect

    Wise K.S.; Kim, M.F.

    1987-12-01

    Surface protein antigens of Mycoplasma hyopneumoniae were identified by direct antibody-surface binding or by radioimmunoprecipitation of surface /sup 125/I-labeled proteins with a series of monoclonal antibodies (MAbs). Radioimmunoprecipitation of TX-114-phase proteins from cells labeled with (/sup 35/S) methionine, /sup 14/C-amino acids, or (/sup 3/H) palmitic acid showed that proteins p65, p50, and p44 were abundant and (with one other hydrophobic protein, p60) were selectively labeled with lipid. Alkaline hydroxylamine treatment of labeled proteins indicated linkage of lipids by amide or stable O-linked ester bonds. Proteins p65, p50, and p44 were highly immunogenic in the natural host as measured by immunoblots of TX-114-phase proteins with antisera from swine inoculated with whole organisms. These proteins were antigenically and structurally unrelated, since hyperimmune mouse antibodies to individual gel-purified proteins were monospecific and gave distinct proteolytic epitope maps. Intraspecies size variants of one surface antigen of M. hyopneumoniae were revealed by a MAb to p70 (defined in strain J, ATCC 25934), which recognized a large p73 component on strain VPP11 (ATCC 25617). In addition, MAb to internal, aqueous-phase protein p82 of strain J failed to bind an analogous antigen in strain VPP11.

  11. Rational Design of Fatty Acid Amide Hydrolase Inhibitors that Act by Covalently Bonding to Two Active Site Residues

    PubMed Central

    Otrubova, Katerina; Brown, Monica; McCormick, Michael S.; Han, Gye W.; O’Neal, Scott T.; Cravatt, Benjamin F.; Stevens, Raymond C.; Lichtman, Aron H.; Boger, Dale L.

    2013-01-01

    The design and characterization of α-ketoheterocycle fatty acid amide hydrolase (FAAH) inhibitors are disclosed that additionally and irreversibly target a cysteine (Cys269) found in the enzyme cytosolic port while maintaining the reversible covalent Ser241 attachment responsible for their rapid and initially reversible enzyme inhibition. Two α-ketooxazoles (3 and 4) containing strategically placed electrophiles at the C5 position of the pyridyl substituent of 2 (OL-135) were prepared and examined as inhibitors of FAAH. Consistent with the observed time-dependent non-competitive inhibition, the co-crystal X-ray structure of 3 bound to a humanized variant of rat FAAH revealed that 3 was not only covalently bound to the active site catalytic nucleophile Ser241 as a deprotonated hemiketal, but also to Cys269 through the pyridyl C5-substituent, thus providing an inhibitor with dual covalent attachment in the enzyme active site. In vivo characterization of the prototypical inhibitors in mice demonstrate that they raise endogenous brain levels of FAAH substrates to a greater extent and for a much longer duration (>6 h) than the reversible inhibitor 2, indicating that the inhibitors accumulate and persist in the brain to completely inhibit FAAH for a prolonged period. Consistent with this behavior and the targeted irreversible enzyme inhibition, 3 reversed cold allodynia in the chronic constriction injury model of neuropathic pain in mice for a sustained period (>6 h) beyond that observed with the reversible inhibitor 2, providing effects that were unchanged over the 1–6 h time course monitored. PMID:23581831

  12. Dynamics of human acetylcholinesterase bound to non-covalent and covalent inhibitors shedding light on changes to the water network structure.

    PubMed

    Peters, Judith; Martinez, Nicolas; Trovaslet, Marie; Scannapieco, Kévin; Koza, Michael Marek; Masson, Patrick; Nachon, Florian

    2016-05-14

    We investigated the effects of non-covalent reversible and covalent irreversible inhibitors on human acetylcholinesterase and human butyrylcholinesterase. Remarkably a non-covalent inhibitor, Huperzine A, has almost no effect on the molecular dynamics of the protein, whereas the covalently binding nerve agent soman renders the molecular structure stiffer in its aged form. The modified movements were studied by incoherent neutron scattering on different time scales and they indicate a stabilization and stiffening of aged human acetylcholinesterase. It is not straightforward to understand the forces leading to this strong effect. In addition to the specific interactions of the adduct within the protein, some indications point towards an extensive water structure change for the aged conjugate as water Bragg peaks appeared at cryogenic temperature despite an identical initial hydration state for all samples. Such a change associated to an apparent increase in free water volume upon aging suggests higher ordering of the hydration shell that leads to the stiffening of protein. Thus, several additive contributions seem responsible for the improved flexibility or stiffening effect of the inhibitors rather than a single interaction.

  13. Covalent immobilization of ascorbate oxidase onto polycarbonate strip for L-ascorbic acid detection.

    PubMed

    Kannoujia, Dileep Kumar; Kumar, Saroj; Nahar, Pradip

    2012-10-01

    Herein, a simple and rapid method is described for detection of L-ascorbic acid by ascorbate oxidase immobilized onto polycarbonate strip pre-activated by 1-fluoro-2-nitro-4-azidobenzene in photochemical reaction. Covalent attachment of ascorbate oxidase was confirmed by XPS studies. The immobilized-ascorbate oxidase shows higher pH, thermal and storage stability in comparison to free enzyme.

  14. Participation of the iron-sulphur cluster and of the covalently bound coenzyme of trimethylamine dehydrogenase in catalysis.

    PubMed

    Steenkamp, D J; Singer, T P

    1978-02-01

    Bacterial trimethylamine dehydrogenase contains a novel type of covalently bound flavin mononucleotide and a tetrameric iron-sulphur centre. The dehydrogenase takes up 1.5mol of dithionite/mol of enzyme and is thereby converted into the flavin quinol-reduced (4Fe-4S) form, with the expected bleaching of the visible absorption band of the flavin and the emergence of signals of typical reduced ferredoxin in the electronparamagnetic-resonance spectrum. On reduction with a slight excess of substrate, however, unusual absorption and electron-paramagnetic-resonance spectra appear quite rapidly. The latter is attributed to extensive interaction between the reduced (4Fe-4S) centre and the flavin semiquinone. The species of enzyme arising during the catalytic cycle were studied by a combination of rapid-freeze e.p.r. and stopped-flow spectophotometry. The initial reduction of the flavin to the quinol form is far too rapid to be rate-limiting in catalysis, as is the reoxidation of the substrate-reduced enzyme by phenazine methosulphate. Formation of the spin-spin-interacting species from the dihydroflavin is considerably slower, however, and it may be the rate-limiting step in the catalytic cycle, since its rate of formation agrees reasonably well with the catalytic-centre activity determined in steady-state kinetic assays. In addition to the interacting form, a second form of the enzyme was noted during reduction by trimethylamine, differing in absorption spectrum, the structure of which remains to be determined.

  15. A new tetradentate beta-diketonate--europium chelate that can be covalently bound to proteins for time-resolved fluoroimmunoassay.

    PubMed

    Yuan, J; Matsumoto, K; Kimura, H

    1998-02-01

    A new chlorosulfonylated tetradentate beta-diketone, 4,4'-bis(1",1",1",2",2",3",3"-heptafluoro-4",6"-hexanedion-6 "-yl) chlorosulfo-o-terphenyl (BHHCT), was synthesized as a chelating label for Eu3+. BHHCT can be covalently bound to proteins under mild conditions and forms a strongly fluorescent chelate with Eu3+. Bovine serum albumin (BSA) and streptavidin (SA) were labeled with BHHCH-Eu3+, and the latter was used for time-resolved fluoroimmunoassay of alpha-fetoprotein (AFP) in human sera. A remarkably high sensitivity was obtained, with a detection limit of 4.1 x 10(-3) pg/mL, which corresponds to an improvement of about 4-5 orders of magnitude, compared to those of all conventional immunoassays including fluoroimmunoassay, enzyme immunoassay, and radioimmunoassay. The high sensitivity has been attained both by strong fluorescence of the present label and by the extremely suppressed background level brought about by the direct labeling of proteins with the beta-diketone-Eu3+ complex. A general consideration and ideas are given for designing ideal label ligands for strongly fluorescent Eu3+ complexes.

  16. Structure of the red fluorescent protein from a lancelet (Branchiostoma lanceolatum): a novel GYG chromophore covalently bound to a nearby tyrosine

    SciTech Connect

    Pletnev, Vladimir Z. Pletneva, Nadya V.; Lukyanov, Konstantin A.; Souslova, Ekaterina A.; Fradkov, Arkady F.; Chudakov, Dmitry M.; Chepurnykh, Tatyana; Yampolsky, Ilia V.; Wlodawer, Alexander; Dauter, Zbigniew; Pletnev, Sergei

    2013-09-01

    The crystal structure of the novel red emitting fluorescent protein from lancelet Branchiostoma lanceolatum (Chordata) revealed an unusual five residues cyclic unit comprising Gly58-Tyr59-Gly60 chromophore, the following Phe61 and Tyr62 covalently bound to chromophore Tyr59. A key property of proteins of the green fluorescent protein (GFP) family is their ability to form a chromophore group by post-translational modifications of internal amino acids, e.g. Ser65-Tyr66-Gly67 in GFP from the jellyfish Aequorea victoria (Cnidaria). Numerous structural studies have demonstrated that the green GFP-like chromophore represents the ‘core’ structure, which can be extended in red-shifted proteins owing to modifications of the protein backbone at the first chromophore-forming position. Here, the three-dimensional structures of green laGFP (λ{sub ex}/λ{sub em} = 502/511 nm) and red laRFP (λ{sub ex}/λ{sub em} ≃ 521/592 nm), which are fluorescent proteins (FPs) from the lancelet Branchiostoma lanceolatum (Chordata), were determined together with the structure of a red variant laRFP-ΔS83 (deletion of Ser83) with improved folding. Lancelet FPs are evolutionarily distant and share only ∼20% sequence identity with cnidarian FPs, which have been extensively characterized and widely used as genetically encoded probes. The structure of red-emitting laRFP revealed three exceptional features that have not been observed in wild-type fluorescent proteins from Cnidaria reported to date: (i) an unusual chromophore-forming sequence Gly58-Tyr59-Gly60, (ii) the presence of Gln211 at the position of the conserved catalytic Glu (Glu222 in Aequorea GFP), which proved to be crucial for chromophore formation, and (iii) the absence of modifications typical of known red chromophores and the presence of an extremely unusual covalent bond between the Tyr59 C{sup β} atom and the hydroxyl of the proximal Tyr62. The impact of this covalent bond on the red emission and the large Stokes shift (

  17. Ionic and covalent stabilization of intermediates and transition states in catalysis by solid acids.

    PubMed

    Deshlahra, Prashant; Carr, Robert T; Iglesia, Enrique

    2014-10-29

    Reactivity descriptors describe catalyst properties that determine the stability of kinetically relevant transition states and adsorbed intermediates. Theoretical descriptors, such as deprotonation energies (DPE), rigorously account for Brønsted acid strength for catalytic solids with known structure. Here, mechanistic interpretations of methanol dehydration turnover rates are used to assess how charge reorganization (covalency) and electrostatic interactions determine DPE and how such interactions are recovered when intermediates and transition states interact with the conjugate anion in W and Mo polyoxometalate (POM) clusters and gaseous mineral acids. Turnover rates are lower and kinetically relevant species are less stable on Mo than W POM clusters with similar acid strength, and such species are more stable on mineral acids than that predicted from W-POM DPE-reactivity trends, indicating that DPE and acid strength are essential but incomplete reactivity descriptors. Born-Haber thermochemical cycles indicate that these differences reflect more effective charge reorganization upon deprotonation of Mo than W POM clusters and the much weaker reorganization in mineral acids. Such covalency is disrupted upon deprotonation but cannot be recovered fully upon formation of ion pairs at transition states. Predictive descriptors of reactivity for general classes of acids thus require separate assessments of the covalent and ionic DPE components. Here, we describe methods to estimate electrostatic interactions, which, taken together with energies derived from density functional theory, give the covalent and ionic energy components of protons, intermediates, and transition states. In doing so, we provide a framework to predict the reactive properties of protons for chemical reactions mediated by ion-pair transition states.

  18. Ionic and Covalent Stabilization of Intermediates and Transition States in Catalysis by Solid Acids

    SciTech Connect

    Deshlahra, Prashant; Carr, Robert T.; Iglesia, Enrique

    2014-10-29

    Reactivity descriptors describe catalyst properties that determine the stability of kinetically relevant transition states and adsorbed intermediates. Theoretical descriptors, such as deprotonation energies (DPE), rigorously account for Brønsted acid strength for catalytic solids with known structure. Here, mechanistic interpretations of methanol dehydration turnover rates are used to assess how charge reorganization (covalency) and electrostatic interactions determine DPE and how such interactions are recovered when intermediates and transition states interact with the conjugate anion in W and Mo polyoxometalate (POM) clusters and gaseous mineral acids. Turnover rates are lower and kinetically relevant species are less stable on Mo than W POM clusters with similar acid strength, and such species are more stable on mineral acids than that predicted from W-POM DPE–reactivity trends, indicating that DPE and acid strength are essential but incomplete reactivity descriptors. Born–Haber thermochemical cycles indicate that these differences reflect more effective charge reorganization upon deprotonation of Mo than W POM clusters and the much weaker reorganization in mineral acids. Such covalency is disrupted upon deprotonation but cannot be recovered fully upon formation of ion pairs at transition states. Predictive descriptors of reactivity for general classes of acids thus require separate assessments of the covalent and ionic DPE components. Here, we describe methods to estimate electrostatic interactions, which, taken together with energies derived from density functional theory, give the covalent and ionic energy components of protons, intermediates, and transition states. In doing so, we provide a framework to predict the reactive properties of protons for chemical reactions mediated by ion-pair transition states.

  19. Micropatterned ferrocenyl monolayers covalently bound to hydrogen-terminated silicon surfaces: effects of pattern size on the cyclic voltammetry and capacitance characteristics.

    PubMed

    Fabre, Bruno; Pujari, Sidharam P; Scheres, Luc; Zuilhof, Han

    2014-06-24

    The effect of the size of patterns of micropatterned ferrocene (Fc)-functionalized, oxide-free n-type Si(111) surfaces was systematically investigated by electrochemical methods. Microcontact printing with amine-functionalized Fc derivatives was performed on a homogeneous acid fluoride-terminated alkenyl monolayer covalently bound to n-type H-terminated Si surfaces to give Fc patterns of different sizes (5 × 5, 10 × 10, and 20 × 20 μm(2)), followed by backfilling with n-butylamine. These Fc-micropatterned surfaces were characterized by static water contact angle measurements, ellipsometry, X-ray photoelectron spectroscopy (XPS), infrared reflection-absorption spectroscopy (IRRAS), atomic force microscopy (AFM), and scanning electron microscopy (SEM). The charge-transfer process between the Fc-micropatterned and underlying Si interface was subsequently studied by cyclic voltammetry and capacitance. By electrochemical studies, it is evident that the smallest electroactive ferrocenyl patterns (i.e., 5 × 5 μm(2) squares) show ideal surface electrochemistry, which is characterized by narrow, perfectly symmetric, and intense cyclic voltammetry and capacitance peaks. In this respect, strategies are briefly discussed to further improve the development of photoswitchable charge storage microcells using the produced redox-active monolayers.

  20. Cytotoxic Activity of Salicylic Acid-Containing Drug Models with Ionic and Covalent Binding.

    PubMed

    Egorova, Ksenia S; Seitkalieva, Marina M; Posvyatenko, Alexandra V; Khrustalev, Victor N; Ananikov, Valentine P

    2015-11-12

    Three different types of drug delivery platforms based on imidazolium ionic liquids (ILs) were synthesized in high preparative yields, namely, the models involving (i) ionic binding of drug and IL; (ii) covalent binding of drug and IL; and (iii) dual binding using both ionic and covalent approaches. Seven ionic liquids containing salicylic acid (SA-ILs) in the cation or/and in the anion were prepared, and their cytotoxicity toward the human cell lines CaCo-2 (colorectal adenocarcinoma) and 3215 LS (normal fibroblasts) was evaluated. Cytotoxicity of SA-ILs was significantly higher than that of conventional imidazolium-based ILs and was comparable to the pure salicylic acid. It is important to note that the obtained SA-ILs dissolved in water more readily than salicylic acid, suggesting benefits of possible usage of traditional nonsoluble active pharmaceutical ingredients in an ionic liquid form.

  1. Zein nanoparticles as delivery systems for covalently linked and physically entrapped folic acid

    NASA Astrophysics Data System (ADS)

    Chuacharoen, Thanida; Sabliov, Cristina M.

    2017-02-01

    Zein nanoparticles covalently linked to folic acid were hypothesized to sustain the release of the folic acid in addition to targeting cancer cells overexpressing folate-binding receptors, whereas zein nanoparticles with physically entrapped folic acid would only be able to control the release of the bioactive without targeting of cancer cells. The two types of particles, folic acid covalently linked zein nanoparticles (ZN-FA nps) and zein nanoparticles with entrapped folic acid (ZN(FA) nps), were synthesized and the covalent link between folic acid and zein was assessed by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (1H NMR). Their size, polydispersity index, zeta potential, morphology, and loading capacity were evaluated by dynamic light scattering (DLS), transmission electron microscopy (TEM), and spectrophotometric technique. The release studies of the folic acid preformed in phosphate-buffered saline (PBS) at 37 °C for 7 days concluded that the release of the loaded folic acid was sustained over 7 days for both systems. The cytotoxicity was investigated using a methyl thiazolyl tetrazolium (MTT) assay, and the results showed that zein nanoparticles were biocompatible to HeLa (an overexpressing folate receptor cells) and A549 (a deficient folate receptor cells) cells, which have different levels of folate receptors on surface and both folic acid nanoparticle systems were able to diminish the adverse toxic effect of folic acid to cells. The increased uptake of ZN-FA nps relative to ZN(FA) nps supported the use of ZN-FA nps as targeting nanoagents to cells overexpressing folate receptors.

  2. Bound fatty acids modulate the sensitivity of bovine β-lactoglobulin to chemical and physical denaturation.

    PubMed

    Barbiroli, Alberto; Bonomi, Francesco; Ferranti, Pasquale; Fessas, Dimitrios; Nasi, Antonella; Rasmussen, Patrizia; Iametti, Stefania

    2011-05-25

    Fatty acids are the natural ligands associated with the bovine milk lipocalin, β-lactoglobulin (BLG), and were identified by means of mass spectrometry. The naturally bound ligands were found to contribute to the stability of the proteins toward denaturation by both temperature and chaotropes. To assess the nature of the structural regions involved in this stabilization, the thermodynamic and kinetic aspects of the stability of various structural regions of the proteins were studied in the presence of bound palmitate, which is the most abundant natural ligand. Binding of a single palmitate molecule was found to affect not only the stability of the calyx region, where palmitate is bound, but also that of the region at the hydrophobic interface between the barrel itself and the long helix in the protein structure, where the thiol group of Cys121 is buried. This region is known to be essential for the stability of the BLG dimer and is relevant to the generation of "reactive monomers" that are involved in covalent and noncovalent polymerization of BLG and in the formation of covalent adducts with other milk proteins.

  3. Covalent Surface Modification of Gallium Arsenide Photocathodes for Water Splitting in Highly Acidic Electrolyte.

    PubMed

    Garner, Logan E; Steirer, K Xerxes; Young, James L; Anderson, Nicholas C; Miller, Elisa M; Tinkham, Jonathan S; Deutsch, Todd G; Sellinger, Alan; Turner, John A; Neale, Nathan R

    2017-02-22

    Efficient water splitting using light as the only energy input requires stable semiconductor electrodes with favorable energetics for the water-oxidation and proton-reduction reactions. Strategies to tune electrode potentials using molecular dipoles adsorbed to the semiconductor surface have been pursued for decades but are often based on weak interactions and quickly react to desorb the molecule under conditions relevant to sustained photoelectrolysis. Here, we show that covalent attachment of fluorinated, aromatic molecules to p-GaAs(1 0 0) surfaces can be employed to tune the photocurrent onset potentials of p-GaAs(1 0 0) photocathodes and reduce the external energy required for water splitting. Results indicate that initial photocurrent onset potentials can be shifted by nearly 150 mV in pH -0.5 electrolyte under 1 Sun (1000 W m(-2) ) illumination resulting from the covalently bound surface dipole. Though X-ray photoelectron spectroscopy analysis reveals that the covalent molecular dipole attachment is not robust under extended 50 h photoelectrolysis, the modified surface delays arsenic oxide formation that results in a p-GaAs(1 0 0) photoelectrode operating at a sustained photocurrent density of -20.5 mA cm(-2) within -0.5 V of the reversible hydrogen electrode.

  4. Spin Labeling ESR Investigation of a Role of Humic Acids at Covalent Binding of Xenobiotics to Soil

    NASA Astrophysics Data System (ADS)

    Aleksandrova, Olga

    2014-05-01

    The environmental risk of organic xenobiotic chemicals released into soils is controlled by their sorption and binding processes. However, the molecular mechanisms of reversible and irreversible interactions of xenobiotics with soil constituents and an influence of humic substances on this interaction are only partly understood. New methods and approaches aimed at understanding of molecular mechanisms in the soil environment and a role of humic substances in the sorption and binding processes are today required to manage and keep the quality of soil used and fertilized in agricultural industry. The paper presents a new approach of using stable ESR spin labels to investigate a role of humic substances in the interactions of organic xenobiotic chemicals with constituents of natural soil via the typical functional groups of xenobiotics, such as Amines. At the experiment, the nitroxide spin labels, such as TEMPO (2,2,6,6-Tetramethylpiperidin-1-oxyl), Amino-TEMPO (4-amino-2,2,6,6-Tetramethylpiperidin-1-oxyl) and Aniline spin labels (2,5,5-Trimethyl-2-(3-aminophenyl)pyrrolidin-1-oxyl), were added to samples of different natural soils, such luvisol, cambisol and chernozem. Amino-TEMPO and Aniline spin labels include the aliphatic amino and aromatic amino functional groups, respectively. A significant broadening of the ESR spectrum of Aniline spin labels incubated in different soils indicated a stable effect of covalent binding of the spin labels to soil constituents via the aromatic amino, whereas the ESR spectra of the other two spin labels were not broadened that pointed at the absence of covalent binding of spin labels via the aliphatic amino. As shown, a part of bound spin labels via the aromatic amino increased with increasing of the concentration of humic acids in soil. The same broadened signals were also be detected with the humic acids extracted from the investigated soils. A strong covalent binding of spin labels to humic substances via the aromatic amines was

  5. Coordinate covalent C --> B bonding in phenylborates and latent formation of phenyl anions from phenylboronic Acid.

    PubMed

    Glaser, Rainer; Knotts, Nathan

    2006-02-02

    The results are reported of a theoretical study of the addition of small nucleophiles Nu(-) (HO(-), F(-)) to phenylboronic acid Ph-B(OH)(2) and of the stability of the resulting complexes [Ph-B(OH)(2)Nu](-) with regard to Ph-B heterolysis [Ph-B(OH)(2)Nu](-) --> Ph(-) + B(OH)(2)Nu as well as Nu(-)/Ph(-) substitution [Ph-B(OH)(2)Nu](-) + Nu(-) --> Ph(-) + [B(OH)(2)Nu(2)](-). These reactions are of fundamental importance for the Suzuki-Miyaura cross-coupling reaction and many other processes in chemistry and biology that involve phenylboronic acids. The species were characterized by potential energy surface analysis (B3LYP/6-31+G*), examined by electronic structure analysis (B3LYP/6-311++G**), and reaction energies (CCSD/6-311++G**) and solvation energies (PCM and IPCM, B3LYP/6-311++G*) were determined. It is shown that Ph-B bonding in [Ph-B(OH)(2)Nu](-) is coordinate covalent and rather weak (<50 kcal.mol(-1)). The coordinate covalent bonding is large enough to inhibit unimolecular dissociation and bimolecular nucleophile-assisted phenyl anion liberation is slowed greatly by the negative charge on the borate's periphery. The latter is the major reason for the extraordinary differences in the kinetic stabilities of diazonium ions and borates in nucleophilic substitution reactions despite their rather similar coordinate covalent bond strengths.

  6. Photogeneration of singlet oxygen by the phenothiazine derivatives covalently bound to the surface-modified glassy carbon

    NASA Astrophysics Data System (ADS)

    Blacha-Grzechnik, Agata; Piwowar, Katarzyna; Krukiewicz, Katarzyna; Koscielniak, Piotr; Szuber, Jacek; Zak, Jerzy K.

    2016-05-01

    The selected group of four amine-derivatives of phenothiazine was covalently grafted to the glassy carbon surface in the four-step procedure consisting of the electrochemical reduction of the diazonium salt followed by the electrochemical and chemical post-modification steps. The proposed strategy involves the bonding of linker molecule to which the photosensitizer is attached. The synthesized organic layers were characterized by means of cyclic voltammetry, XPS and Raman Spectroscopy. It was shown that the phenothiazines immobilized via proposed strategy retain their photochemical properties and are able to generate 1O2 when activated by the laser radiation. The effectiveness of in situ singlet oxygen generation by those new solid photoactive materials was determined by means of UVVis spectroscopy. The reported, covalently modified solid surfaces may find their application as the singlet oxygen photogenerators in the fine chemicals' synthesis or in the wastewater treatment.

  7. [E. coli penicillin amidase. Physico-chemical properties of the enzyme covalently bound to the 2-(3'-amino-4'-methoxyphenyl)-sulfonylethyl ester of cellulose].

    PubMed

    Nys, P S; Savitskaia, E M; Voronovich, T N; Bulycheva, M S; Virnik, A D

    1977-11-01

    The effect of the procedure of the enzyme binding with the carrier on the properties of the heterogenous catalyst obtained by covalent binding of penicillinamidase (PA) with cellulose 2-(3'-amino-4'-methoxyphenyl)-sulphonylethyl ether by means of the bifunctional reagent, i.e. glutaric aldehyde was studied. It was shown that the amount of the bound enzyme increased with a rise in the amount of the enzyme taken for the binding, while the binding efficiency characterizing the part of the active enzyme in the total amount of the bound PA decreased practically 2 times. The use of the enzyme preparations with different purify levels for the binding provided differentiation of the effects resulting in the activity loss on immobilization. In other words it provided separate estimation of the inactivation effect of the matrix and the immobilization procedure, as well as the interaction of the enzyme molecules with each other and other protein molecules.

  8. Free and bound fatty acid oxidation products in archaeological ceramic vessels

    PubMed Central

    Regert, M.; Bland, H. A.; Dudd, S. N.; Bergen, P. F. van; Evershed, R. P.

    1998-01-01

    While oxidation products of unsaturated fatty acids, for example dicarboxylic acids (hereafter diacids), must form during the use of unglazed ceramic vessels for the processing of animal and plant products, such components have never been observed during studies of absorbed lipids. Their absence from the extractable lipid fraction is presumed to be the result of their loss from potsherds through groundwater leaching. Lipid oxidation products including short-chain dicarboxylic acids, ω-hydroxy acids and longer-chain hydroxy and dihydroxy acids have now been observed as components probably covalently bound into solvent insoluble residues of potsherds recovered from waterlogged deposits. These components were only revealed following alkaline treatment of the insoluble residues. A similar mixture of diacids was observed in high abundance in the free lipid fraction of vessels recovered from an exceptionally arid deposit where groundwater leaching would never have occurred. These results confirm the formation of oxidation and probable polymerization products of unsaturated fatty acids during vessel use and burial.

  9. Phosphoric acid loaded azo (-N═N-) based covalent organic framework for proton conduction.

    PubMed

    Chandra, Suman; Kundu, Tanay; Kandambeth, Sharath; Babarao, Ravichandar; Marathe, Yogesh; Kunjir, Shrikant M; Banerjee, Rahul

    2014-05-07

    Two new chemically stable functional crystalline covalent organic frameworkds (COFs) (Tp-Azo and Tp-Stb) were synthesized using the Schiff base reaction between triformylphloroglucinol (Tp) and 4,4'-azodianiline (Azo) or 4,4'-diaminostilbene (Stb), respectively. Both COFs show the expected keto-enamine form, and high stability toward boiling water, strong acidic, and basic media. H3PO4 doping in Tp-Azo leads to immobilization of the acid within the porous framework, which facilitates proton conduction in both the hydrous (σ = 9.9 × 10(-4) S cm(-1)) and anhydrous state (σ = 6.7 × 10(-5) S cm(-1)). This report constitutes the first emergence of COFs as proton conducting materials.

  10. Digestibility and supramolecular structural changes of maize starch by non-covalent interactions with gallic acid.

    PubMed

    Chi, Chengdeng; Li, Xiaoxi; Zhang, Yiping; Chen, Ling; Li, Lin; Wang, Zhijiang

    2017-02-22

    The effects of non-covalent interactions between gallic acid (GA) and starch on starch digestibility and supramolecular structural changes (short-range ordered molecular structure, crystalline structure, lamellar structure and fractal structure) were investigated. The results indicated that the digestibility of both starches was substantially reduced in the rapidly digestible starch (RDS) content, but resistant starch (RS) was increased after interacting with GA. The RS content of starch-GA complexes ranged from 17.70 to 50.02%, which is much higher than that of high amylose starch (G50) (11.11%) and normal maize starch (NMS) (4.46%). Compared with native starches, starch-GA complexes possess more ordered and compact structures; furthermore, G50-GA complexes possessed more compact scattering objects, thicker crystalline lamellae and thinner amorphous lamellae than those of NMS-GA complexes. This revealed that more ordered multi-scale structures promote the RS formation. Docking studies were conducted to reveal the mechanism of digestibility variations. It showed that GA would non-covalently interact with starch molecules and contribute to ordered structure formation to somewhat extent; meanwhile, GA had higher binding affinities to α-amylase than to starch chains; during the hydrolytic process, GA could be released from the complex and was more likely to occupy the active sites of Asp197, Asp300, His299 and Glu233 by hydrogen bonds and van der Waals forces, which kept starch out of the active site pocket and reduced starch digestibility. These results demonstrate that the non-covalent interactions between GA and starch could be a promising method of controlling starch structures and starch digestion behaviors.

  11. Poly(vinyl chloride) tubing with covalently bound alkaline phosphatase and alternative approach for investigations of open-tubular bioreactors.

    PubMed

    Rozum, Beata; Gajownik, Kamil; Tymecki, Lukasz; Koncki, Robert

    2010-05-01

    A one-step carbodiimide method was found to allow covalent binding of enzymes to the inner wall of poly(vinyl chloride) (PVC) tubing. The immobilization is performed under mild conditions without laborious pretreatment or activation of reactor surface. In these preliminary studies, alkaline phosphatase (ALP, EC 3.1.3.1) and p-nitrophenyl phosphate (NPP) were applied as a model enzyme and substrate, respectively. The resulting open-tubular bioreactor exhibits satisfactory operational and storage stability. In addition, a novel and very simple instrumental concept for optical monitoring of the biocatalytic process directly inside the microbioreactor using a system of paired emitter-detector diodes is presented.

  12. Covalent complexes of albumin with serotonin, ketanserin and lysergic acid antagonize the activity of serotonin in human platelets

    SciTech Connect

    VanderBerg, S.R.; Gonias, S.L.

    1989-01-01

    Covalent conjugates of bovine serum albumin (BSA) and 5-HT, ketanserin or d-lysergic acid were synthesized and characterized by polyacrylamide gel electrophoresis, whole blood clearance experiments in mice and aggregation studies with human platelets. Using the standard synthesis procedure, each mol of BSA bound 13.4 mol of (/sup 3/H)5-HT. Derivatization did not cause significant protein aggregation as determined by electrophoresis. All three conjugates antagonized the ability of 5-HT to amplify aggregation caused by low concentrations of ADP. The antagonist activity of each conjugate was concentration dependent; 2.6 ..mu..M 5-HT-BSA completely inhibited the aggregation caused by 13 ..mu..M 5-HT. None of the BSA drug conjugates, including 5-HT-BSA, amplified platelet aggregation caused by ADP in the absence of 5-HT. Aggregation by ristocetin, collagen, epinephrine or ADP alone was not significantly affected by the conjugates. Whole blood elimination experiments in mice demonstrated that the three conjugates and underivatized BSA are equally stable in the circulation. These prototypic 5-HT drug-protein conjugates may be useful for probing 5-HT/sub 2/ receptor-ligand interactions in human platelets.

  13. Synthesis and characterization of covalent diphenylalanine nanotube-folic acid conjugates

    NASA Astrophysics Data System (ADS)

    Castillo, John J.; Rindzevicius, Tomas; Wu, Kaiyu; Schmidt, Michael S.; Janik, Katarzyna A.; Boisen, Anja; Svendsen, Winnie; Rozlosnik, Noemi; Castillo-León, Jaime

    2014-07-01

    Herein, we describe the synthesis and characterization of a covalent nanoscale assembly formed between diphenylalanine micro/nanotubes (PNT) and folic acid (FA). The conjugate was obtained via chemical functionalization through coupling of amine groups of PNTs and carboxylic groups of FA. The surface analysis of PNT-FA indicated the presence of FA aggregates on the surface of PNTs. The covalent interaction between FA and self-assembled PNTs was further investigated using fluorescence microscopy, Raman and surface-enhanced Raman scattering (SERS) spectroscopies. The SERS experiments were performed on a large area silver-capped (diameter of 62 nm) silicon nanopillars with an approximate height of 400 nm and a width of 200 nm. The results showed that the PNT-FA synthesis procedure preserves the molecular structure of FA. The PNT-FA conjugate presented in this study is a promising candidate for applications in the detection and diagnosis of cancer or tropical diseases such as leishmaniasis and as a carrier nanosystem delivering drugs to malignant tumors that overexpress folate receptors.

  14. Layer by layer assembly of a biocatalytic packaging film: lactase covalently bound to low-density polyethylene.

    PubMed

    Wong, Dana E; Talbert, Joey N; Goddard, Julie M

    2013-06-01

    Active packaging is utilized to overcome limitations of traditional processing to enhance the health, safety, economics, and shelf life of foods. Active packaging employs active components to interact with food constituents to give a desired effect. Herein we describe the development of an active package in which lactase is covalently attached to low-density polyethylene (LDPE) for in-package production of lactose-free dairy products. The specific goal of this work is to increase the total protein content loading onto LDPE using layer by layer (LbL) deposition, alternating polyethylenimine, glutaraldehyde (GL), and lactase, to enhance the overall activity of covalently attached lactase. The films were successfully oxidized via ultraviolet light, functionalized with polyethylenimine and glutaraldehyde, and layered with immobilized purified lactase. The total protein content increased with each additional layer of conjugated lactase, the 5-layer sample reaching up to 1.3 μg/cm2 . However, the increase in total protein did not lend to an increase in overall lactase activity. Calculated apparent Km indicated the affinity of immobilized lactase to substrate remains unchanged when compared to free lactase. Calculated apparent turnover numbers (kcat ) showed with each layer of attached lactase, a decrease in substrate turnover was experienced when compared to free lactase; with a decrease from 128.43 to 4.76 s(-1) for a 5-layer conjugation. Our results indicate that while LbL attachment of lactase to LDPE successfully increases total protein mass of the bulk material, the adverse impact in enzyme efficiency may limit the application of LbL immobilization chemistry for bioactive packaging use.

  15. Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks.

    PubMed

    Spitler, Eric L; Dichtel, William R

    2010-08-01

    Covalent organic frameworks (COFs) offer a new strategy for assembling organic semiconductors into robust networks with atomic precision and long-range order. General methods for COF synthesis will allow complex building blocks to be incorporated into these emerging materials. Here we report a new Lewis acid-catalysed protocol to form boronate esters directly from protected catechols and arylboronic acids. This transformation also provides crystalline boronate ester-linked COFs from protected polyfunctional catechols and bis(boronic acids). Using this method, we prepared a new COF that features a square lattice composed of phthalocyanine macrocycles joined by phenylene bis(boronic acid) linkers. The phthalocyanines stack in an eclipsed fashion within the COF to form 2.3 nm pores that run parallel to the stacked chromophores. The material's broad absorbance over the solar spectrum, potential for efficient charge transport through the stacked phthalocyanines, good thermal stability and the modular nature of COF synthesis, show strong promise for applications in organic photovoltaic devices.

  16. Size-Controlled 3D Colloidal Crystals Formed in an Aqueous Suspension of Polystyrene/Polyglycidol Microspheres with Covalently Bound l-DOPA.

    PubMed

    Gosecka, Monika; Slomkowski, Stanislaw; Basinska, Teresa; Chehimi, Mohamed M

    2016-12-06

    Stable three-dimensional colloidal crystals were fabricated in an aqueous suspension of Tris buffer at pH > 8. The basic building blocks of the crystals were submicron-sized polystyrene-polyglycidol core-shell particles (Dn(SEM) = 270 ± 18 nm) with covalently bound 3,4-dihydroxyphenylalanine (l-DOPA). The growth of the crystals was triggered by a thermodynamically favorable arrangement of particles leading to their close packing and by the formation of covalent cross-links between the individual particles. Under alkaline conditions, molecules of l-DOPA are oxidized, which allows their participation in cross-linking, necessary for the stabilization of the formed colloidal crystals. The average size of the fabricated colloidal crystals is determined by their weight, density of the suspending medium, and the energy of their Brownian motion. Crystals generated during the suspension of particles fall down after reaching the critical weight. Therefore, crystals of similar dimensions are deposited at the bottom of the vessel. The described system is the first example of the formation of stable colloidal crystals in a suspension.

  17. Study on capillaries covalently bound with phospholipid vesicles for open-tubular capillary electrochromatography and application to on-line open-tubular capillary electrochromatography-mass spectrometry.

    PubMed

    Tiala, Heidi; Riekkola, Marja-Liisa; Wiedmer, Susanne K

    2013-12-01

    Phospholipid vesicles were covalently attached to iminoaldehyde-coated fused silica capillaries and applied to the separation of model steroids by open-tubular CEC (OT-CEC). The effects of reducing the formed Schiff's base with sodium borohydride and of the liposome composition on the stability of the coating were investigated. In addition, the studies were focused on the optimization of running conditions (pH values and composition of BGE solution) when CEC, using capillaries covalently bound with liposome dispersions, was coupled to MS. The effect of cholesterol in the liposome dispersion on the binding of model analytes was studied, using liposome dispersions comprising 80/20 mol% zwitterionic 1-palmitoyl-2-oleyl-sn-glycero-3-phosphocholine (POPC) and the negatively charged phospholipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (POPS) and 40/40/20 mol% POPC/POPS/cholesterol. Cholesterol in liposomes (greatly) enhanced the stability of the capillaries by making the coatings more rigid, resulting in lower retention factors for all the studied model steroids. Although most of the studies were carried out by open tubular CEC-UV Vis, the applicability of the capillaries to on-line CEC-MS was demonstrated as well. On-line CEC-MS studies on model steroids proved the suitability of coated capillaries for analyte-lipid membrane interaction studies, and especially for such analytes that are difficult to detect by conventional on-line UV Vis.

  18. Transfer of a weakly bound electron in collisions of Rydberg atoms with neutral particles. I. Long-range interaction effects in the ionic-covalent coupling

    SciTech Connect

    Lebedev, V. S. Narits, A. A.

    2013-10-15

    Ion-pair formation processes are studied in collisions of Rydberg atoms with neutral particles possessing small electron affinities. Nonadiabatic transitions from a Rydberg covalent term to an ionic term of a quasi-molecule are considered using the modified Landau-Zener theory supplemented with calculation of survival factors of an anion decaying in the Coulomb field of a positive ion core. Using the technique of irreducible tensor operators and the momentum representation of the wavefunction of a highly excited atom, exact expressions are obtained for transition matrix elements and the ionic-covalent coupling parameter. The approach developed in the paper provides the description beyond the scope of a conventional assumption about a small variation of the wavefunction of the Rydberg atom on the range of electron coordinates determined by the characteristic radius of the wavefunction of the anion. This allows one to correctly consider long-range effects of the interaction between a weakly bound electron and the neutral core of a negative ion in processes under study. It is shown by the example of thermal collisions of Xe(nf) atoms with CH{sub 3}CN molecules that this is very important for a reliable quantitative description of anion formation with a low binding energy. The results are compared with experiments and calculations performed within the framework of a number of approximate methods.

  19. Covalent attachment of diamondoid phosphonic acid dichlorides to tungsten oxide surfaces.

    PubMed

    Li, Fei Hua; Fabbri, Jason D; Yurchenko, Raisa I; Mileshkin, Alexander N; Hohman, J Nathan; Yan, Hao; Yuan, Hongyuan; Tran, Ich C; Willey, Trevor M; Bagge-Hansen, Michael; Dahl, Jeremy E P; Carlson, Robert M K; Fokin, Andrey A; Schreiner, Peter R; Shen, Zhi-Xun; Melosh, Nicolas A

    2013-08-06

    Diamondoids (nanometer-sized diamond-like hydrocarbons) are a novel class of carbon nanomaterials that exhibit negative electron affinity (NEA) and strong electron-phonon scattering. Surface-bound diamondoid monolayers exhibit monochromatic photoemission, a unique property that makes them ideal electron sources for electron-beam lithography and high-resolution electron microscopy. However, these applications are limited by the stability of the chemical bonding of diamondoids on surfaces. Here we demonstrate the stable covalent attachment of diamantane phosphonic dichloride on tungsten/tungsten oxide surfaces. X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared (FTIR) spectroscopy revealed that diamondoid-functionalized tungsten oxide films were stable up to 300-350 °C, a substantial improvement over conventional diamondoid thiolate monolayers on gold, which dissociate at 100-200 °C. Extreme ultraviolet (EUV) light stimulated photoemission from these diamondoid phosphonate monolayers exhibited a characteristic monochromatic NEA peak with 0.2 eV full width at half-maximum (fwhm) at room temperature, showing that the unique monochromatization property of diamondoids remained intact after attachment. Our results demonstrate that phosphonic dichloride functionality is a promising approach for forming stable diamondoid monolayers for elevated temperature and high-current applications such as electron emission and coatings in micro/nano electromechanical systems (MEMS/NEMS).

  20. Covalent triazine-based framework: A promising adsorbent for removal of perfluoroalkyl acids from aqueous solution.

    PubMed

    Wang, Bingyu; Lee, Linda S; Wei, Chenhui; Fu, Heyun; Zheng, Shourong; Xu, Zhaoyi; Zhu, Dongqiang

    2016-09-01

    Perfluoroalkyl acids (PFAAs) are highly stable, persistent, and ubiquitous in the environment with significant concerns growing with regards to both human and ecosystem health. Due to the high stability to both biological and chemical attack, the only currently feasible approach for their removal from water is adsorbent technology. The main objective of this study was to assess a covalent triazine-based framework (CTF) adsorbent for removal from aqueous solutions of perfluoro C4, C6, and C8 carboxylates and sulfonates including the two C8s most commonly monitored, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). Adsorption affinity and capacity were quantified and compared to three commonly used sorbents: pulverized microporous activated carbon, single-walled carbon nanotubes, and Amberlite IRA-400 anion-exchange resin. CTF adsorbent exhibited pronouncedly higher adsorption affinity and capacity of PFAAs than other test sorbents. The remarkably strong adsorption to CTF can be attributed to the favored electrostatic interaction between the protonated triazine groups on the inner wall of the hydrophobic CTF pore and the negatively charged head groups of the PFAAs intercalated between the CTF layers. The homogeneous, nanosized pores (1.2 nm) of CTF hindered adsorption of a large-sized dissolved humic acid, thus minimizing the suppression of PFAA adsorption. Additionally, regeneration of CTF was easily accomplished by simply raising pH > 11, which inhibited the electrostatic adsorptive interaction of PFAAs.

  1. Enhanced proton conductivity of Nafion composite membrane by incorporating phosphoric acid-loaded covalent organic framework

    NASA Astrophysics Data System (ADS)

    Yin, Yongheng; Li, Zhen; Yang, Xin; Cao, Li; Wang, Chongbin; Zhang, Bei; Wu, Hong; Jiang, Zhongyi

    2016-11-01

    Design and fabrication of efficient proton transport channels within solid electrolytes is crucial and challenging to new energy-relevant devices such as proton exchange membrane fuel cells (PEMFCs). In this study, the phosphoric acid (H3PO4) molecules are impregnated into SNW-1-type covalent organic frameworks (COFs) via vacuum assisted method. High loading of H3PO4 in SNW-1 and low guest leaching rate are achieved due to the similar diameter between H3PO4 and micropores in SNW-1. Then the COF-based composite membranes are fabricated for the first time with impregnated COFs (H3PO4@SNW-1) and Nafion matrix. For the composite membranes, the acid-base pairs formed between H3PO4@SNW-1 networks and Nafion optimize the interfacial interactions and hydrophilic domains. The acidic -PO3H2 groups in pores of H3PO4@SNW-1 provide abundant proton transfer sites. As a result, the continuous proton transfer channels with low energy barrier are created. At the filler content of 15 wt%, the composite membrane exhibits a superior proton conductivity of 0.0604 S cm-1 at 51% relative humidity and 80 °C. At the same time, the maximum power density of single fuel cell is 60.3% higher than that of the recast Nafion membrane.

  2. Stable protein device platform based on pyridine dicarboxylic acid-bound cubic-nanostructured mesoporous titania films.

    PubMed

    Kim, Hwajeong; Park, Sung Soo; Seo, Jooyeok; Ha, Chang-Sik; Moon, Cheil; Kim, Youngkyoo

    2013-08-14

    Here we shortly report a protein device platform that is extremely stable in a buffer condition similar to human bodies. The protein device platform was fabricated by covalently attaching cytochrome c (cyt c) protein molecules to organic coupler molecules (pyridine dicarboxylic acid, PDA) that were already covalently bound to an electron-transporting substrate. A cubic nanostructured mesoporous titania film was chosen as an electron-transporting substrate because of its large-sized cubic holes (∼7 nm) and highly crystalline cubic titania walls (∼0.4 nm lattice). Binding of PDA molecules to the mesoporous titania surface was achieved by esterification reaction between carboxylic acid groups (PDA) and hydroxyl groups (titania) in the presence of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) mediator, whereas the immobilization of cyt c to the PDA coupler was carried out by the EDC-mediated amidation reaction between carboxylic acid groups (PDA) and amine groups (cyt c). Results showed that the 2,4-position isomer among several PDAs exhibited the highest oxidation and reduction peak currents. The cyt c-immobilized PDA-bound titania substrates showed stable and durable electrochemical performances upon continuous current-voltage cycling for 240 times (the final current change was less than 3%) and could detect superoxide that is a core indicator for various diseases including cancers.

  3. Extreme Activity of Drug Nanocrystals Coated with A Layer of Non-Covalent Polymers from Self-Assembled Boric Acid

    NASA Astrophysics Data System (ADS)

    Zhan, Honglei; Liang, Jun F.

    2016-12-01

    Non-covalent polymers have remarkable advantages over synthetic polymers for wide biomedical applications. In this study, non-covalent polymers from self-assembled boric acid were used as the capping reagent to replace synthetic polymers in drug crystallization. Under acidic pH, boric acid self-assembled on the surface of drug nanocrystals to form polymers with network-like structures held together by hydrogen bonds. Coating driven by boric acid self-assembly had negligible effects on drug crystallinity and structure but resulted in drug nanocrystals with excellent dispersion properties that aided in the formation of a more stable suspension. Boric acid coating improved drug stability dramatically by preventing drug molecules from undergoing water hydrolysis in a neutral environment. More importantly, the specific reactivity of orthoboric groups to diols in cell glycocalyx facilitated a rapid cross-membrane translocation of drug nanocrystals, leading to efficient intracellular drug delivery, especially on cancer cells with highly expressed sialic acids. Boric acid coated nanocrystals of camptothecin, an anticancer drug with poor aqueous solubility and stability, demonstrated extreme cytotoxic activity (IC50 < 5.0 μg/mL) to cancer cells compared to synthetic polymer coated CPT nanocrystals and free CPT. Surface coating using non-covalent polymers from self-assembled boric acid will have wide biomedical applications especially in biomaterials and drug delivery field.

  4. Extreme Activity of Drug Nanocrystals Coated with A Layer of Non-Covalent Polymers from Self-Assembled Boric Acid.

    PubMed

    Zhan, Honglei; Liang, Jun F

    2016-12-09

    Non-covalent polymers have remarkable advantages over synthetic polymers for wide biomedical applications. In this study, non-covalent polymers from self-assembled boric acid were used as the capping reagent to replace synthetic polymers in drug crystallization. Under acidic pH, boric acid self-assembled on the surface of drug nanocrystals to form polymers with network-like structures held together by hydrogen bonds. Coating driven by boric acid self-assembly had negligible effects on drug crystallinity and structure but resulted in drug nanocrystals with excellent dispersion properties that aided in the formation of a more stable suspension. Boric acid coating improved drug stability dramatically by preventing drug molecules from undergoing water hydrolysis in a neutral environment. More importantly, the specific reactivity of orthoboric groups to diols in cell glycocalyx facilitated a rapid cross-membrane translocation of drug nanocrystals, leading to efficient intracellular drug delivery, especially on cancer cells with highly expressed sialic acids. Boric acid coated nanocrystals of camptothecin, an anticancer drug with poor aqueous solubility and stability, demonstrated extreme cytotoxic activity (IC50 < 5.0 μg/mL) to cancer cells compared to synthetic polymer coated CPT nanocrystals and free CPT. Surface coating using non-covalent polymers from self-assembled boric acid will have wide biomedical applications especially in biomaterials and drug delivery field.

  5. Extreme Activity of Drug Nanocrystals Coated with A Layer of Non-Covalent Polymers from Self-Assembled Boric Acid

    PubMed Central

    Zhan, Honglei; Liang, Jun F.

    2016-01-01

    Non-covalent polymers have remarkable advantages over synthetic polymers for wide biomedical applications. In this study, non-covalent polymers from self-assembled boric acid were used as the capping reagent to replace synthetic polymers in drug crystallization. Under acidic pH, boric acid self-assembled on the surface of drug nanocrystals to form polymers with network-like structures held together by hydrogen bonds. Coating driven by boric acid self-assembly had negligible effects on drug crystallinity and structure but resulted in drug nanocrystals with excellent dispersion properties that aided in the formation of a more stable suspension. Boric acid coating improved drug stability dramatically by preventing drug molecules from undergoing water hydrolysis in a neutral environment. More importantly, the specific reactivity of orthoboric groups to diols in cell glycocalyx facilitated a rapid cross-membrane translocation of drug nanocrystals, leading to efficient intracellular drug delivery, especially on cancer cells with highly expressed sialic acids. Boric acid coated nanocrystals of camptothecin, an anticancer drug with poor aqueous solubility and stability, demonstrated extreme cytotoxic activity (IC50 < 5.0 μg/mL) to cancer cells compared to synthetic polymer coated CPT nanocrystals and free CPT. Surface coating using non-covalent polymers from self-assembled boric acid will have wide biomedical applications especially in biomaterials and drug delivery field. PMID:27934922

  6. Triple-helical collagen hydrogels via covalent aromatic functionalization with 1,3-Phenylenediacetic acid.

    PubMed

    Tronci, Giuseppe; Doyle, Amanda; Russell, Stephen J; Wood, David J

    2013-10-28

    Chemical crosslinking of collagen is a general strategy to reproduce macroscale tissue properties in physiological environment. However, simultaneous control of protein conformation, material properties and biofunctionality is highly challenging with current synthetic strategies. Consequently, the potentially-diverse clinical applications of collagen-based biomaterials cannot be fully realised. In order to establish defined biomacromolecular systems for mineralised tissue applications, type I collagen was functionalised with 1,3-Phenylenediacetic acid (Ph) and investigated at the molecular, macroscopic and functional levels. Preserved triple helix conformation was observed in obtained covalent networks via ATR-FTIR (AIII/A1450 ~ 1) and WAXS, while network crosslinking degree (C: 87-99 mol.-%) could be adjusted based on specific reaction conditions. Decreased swelling ratio (SR: 823-1285 wt.-%) and increased thermo-mechanical (Td : 80-88 °C; E: 28-35 kPa; σmax : 6-8 kPa; εb : 53-58 %) properties were observed compared to state-of-the-art carbodiimide (EDC)-crosslinked collagen controls, likely related to the intermolecular covalent incorporation of the aromatic segment. Ph-crosslinked hydrogels displayed nearly intact material integrity and only a slight mass decrease (MR : 5-11 wt. %) following 1-week incubation in either PBS or simulated body fluid (SBF), in contrast to EDC-crosslinked collagen (MR : 33-58 wt. %). Furthermore, FTIR, SEM and EDS revealed deposition of a calcium-phosphate phase on SBF-retrieved samples, whereby an increased calcium phosphate ratio (Ca/P: 0.84-1.41) was observed in hydrogels with higher Ph content. 72-hour material extracts were well tolerated by L929 mouse fibroblasts, whereby cell confluence and metabolic activity (MTS assay) were comparable to those of cells cultured in cell culture medium (positive control). In light of their controlled structure-function properties, these biocompatible collagen hydrogels represent attractive

  7. Non-covalent bonded 2D-3D supramolecular architectures based on 4-dimethylaminopyridine and organic acids

    NASA Astrophysics Data System (ADS)

    Zhang, Huan; Jin, Shouwen; Wen, Xianhong; Liu, Bin; Fang, Yang; Zhang, Yani; Wang, Daqi

    2015-07-01

    Studies concentrating on non-covalent weak interactions between the organic base of 4-dimethylaminopyridine, and acidic derivatives have led to an increased understanding of the role 4-dimethylaminopyridine has in binding with the organic acid derivatives. Here anhydrous and hydrous multicomponent organic acid-base adducts of 4-dimethylaminopyridine have been prepared with organic acids such as 1,3-benzodioxole-5-carboxylic acid, p-aminobenzoic acid, 2,4-dihydroxybenzoic acid, 3,5-dihydroxybenzoic acid, 5-chlorosalicylic acid, 5-bromosalicylic acid, 5-nitrosalicylic acid, and 5-sulfosalicylic acid. The 4-dimethylaminopyridine is only monoprotonated. All compounds are organic salts with the 1:1 ratio of the cation and the anion. For the 5-sulfosalicylic acid only one H is ionized to exhibit the valence number of -1. The eight crystalline complexes were characterized by X-ray diffraction analysis, IR, mp, and elemental analysis. These structures adopted the hetero supramolecular synthons. Analysis of the crystal packing of 1-8 suggests that there are Nsbnd H⋯O, Osbnd H⋯O, and Osbnd H⋯S hydrogen bonds (charge assisted or neutral) between the organic acid and the 4-dimethylaminopyridine moieties in the studied compounds. Except the classical hydrogen bonding interactions, the secondary propagating interactions also play important roles in structure extension. For the synergistic effect of the various non-covalent interactions, the complexes displayed 2D-3D framework structures.

  8. The covalent interaction of 1,4-dibromobenzene with rat and mouse nucleic acids: in vivo and in vitro studies.

    PubMed

    Colacci, A; Bartoli, S; Bonora, B; Mazzullo, M; Niero, A; Perocco, P; Silingardi, P; Grilli, S

    1990-12-01

    1,4-Dibromobenzene (1,4-DBB) was covalently bound to DNA from liver, kidney, lung and stomach of mice after intraperitoneal administration. The covalent binding index (CBI) value (23 in mouse liver) was typical of weak initiators. On the contrary, no interaction with DNA from rat organs was observed (CBI detection limit: 1.3-2.6). The in vitro interaction of 1,4-DBB with calf thymus DNA was mediated mainly by microsomes, especially those from liver of both species and from mouse lung. Mouse subcellular fractions were more active then rat subcellular fractions. Unlike liver cytosol, subcellular cytosolic fractions from lung, kidney and stomach were capable of bioactivating 1,4-DBB, although to a lesser extent than liver microsomes. Both cytochrome P-450 and GSH-transferases are involved in 1,4-DBB bioactivation.

  9. Examination of stability of mutant photosynthetic reaction center of Rhodobacter sphaeroides I(L177)H and determination of location of bacteriochlorophyll covalently bound to the protein.

    PubMed

    Fufina, T Y; Vasilieva, L G; Shuvalov, V A

    2010-02-01

    We demonstrated earlier that as a result of the I(L177)H mutation in the photosynthetic reaction center (RC) of the bacterium Rhodobacter sphaeroides, one of the bacteriochlorophylls (BChl) binds with the L-subunit, simultaneously raising coordination stability of the central magnesium atom of the bacteriochlorophyll associated with the protein. In this study, spectral properties of wild type RC and I(L177)H in the presence of urea and SDS as well as at 48 degrees C were examined. It is shown that the I(L177)H mutation decreases the RC stability. Under denaturing conditions, some changes indicating breakdown of oligomeric structure of the complex and loss of interaction between pigments and their protein environment are observed in I(L177)H RC spectra. In addition, pheophytinization of bacteriochlorophylls occurs in both types of RC in the presence of SDS. However, an 811-nm band is observed in the spectrum of the mutant RC under these conditions, which indicates retention of one of the BChl molecules in the protein binding site and stable coordination of its central magnesium atom. It is shown that in both types of RC, monomeric BChl B(B) can be modified by sodium borohydride treatment and then extracted by acetone-methanol mixture. Spectral properties of the BChl covalently bound with the protein in I(L177)H RC do not change. The results demonstrate that BChl P(A) is the molecule of BChl tightly bound with the L-subunit in mutant RC as it was supposed earlier.

  10. The aberrant cell walls of boron-deficient bean root nodules have no covalently bound hydroxyproline-/proline-rich proteins.

    PubMed Central

    Bonilla, I; Mergold-Villaseñor, C; Campos, M E; Sánchez, N; Pérez, H; López, L; Castrejón, L; Sánchez, F; Cassab, G I

    1997-01-01

    B-deficient bean (Phaseolus vulgaris L.) nodules examined by light microscopy showed dramatic anatomical changes, mainly in the parenchyma region. Western analysis of total nodule extracts examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that one 116-kD polypeptide was recognized by antibodies raised against hydroxyproline-rich glycoproteins (HRGPs) from the soybean (Glycine max) seed coat. A protein with a comparable molecular mass of 116 kD was purified from the cell walls of soybean root nodules. The amino acid composition of this protein is similar to the early nodulin (ENOD2) gene. Immunoprecipitation of the soybean ENOD2 in vitro translation product showed that the soybean seed coat anti-HRGP antibodies recognized this early nodulin. Furthermore, we used these antibodies to localize the ENOD2 homolog in bean nodules. Immunocytochemistry revealed that in B-deficient nodules ENOD2 was absent in the walls of the nodule parenchyma. The absence of ENOD2 in B-deficient nodules was corroborated by performing hydroxyproline assays. Northern analysis showed that ENOD2 mRNA is present in B-deficient nodules; therefore, the accumulation of ENOD2 is not affected by B deficiency, but its assembly into the cell wall is. B-deficient nodules fix much less N2 than control nodules, probably because the nodule parenchyma is no longer an effective O2 barrier. PMID:9414547

  11. Structure of the red fluorescent protein from a lancelet (Branchiostoma lanceolatum): a novel GYG chromophore covalently bound to a nearby tyrosine

    PubMed Central

    Pletnev, Vladimir Z.; Pletneva, Nadya V.; Lukyanov, Konstantin A.; Souslova, Ekaterina A.; Fradkov, Arkady F.; Chudakov, Dmitry M.; Chepurnykh, Tatyana; Yampolsky, Ilia V.; Wlodawer, Alexander; Dauter, Zbigniew; Pletnev, Sergei

    2013-01-01

    A key property of proteins of the green fluorescent protein (GFP) family is their ability to form a chromophore group by post-translational modifications of internal amino acids, e.g. Ser65-Tyr66-Gly67 in GFP from the jellyfish Aequorea victoria (Cnidaria). Numerous structural studies have demonstrated that the green GFP-like chromophore represents the ‘core’ structure, which can be extended in red-shifted proteins owing to modifications of the protein backbone at the first chromophore-forming position. Here, the three-dimensional structures of green laGFP (λex/λem = 502/511 nm) and red laRFP (λex/λem ≃ 521/592 nm), which are fluorescent proteins (FPs) from the lancelet Branchiostoma lanceolatum (Chordata), were determined together with the structure of a red variant laRFP-ΔS83 (deletion of Ser83) with improved folding. Lancelet FPs are evolutionarily distant and share only ∼20% sequence identity with cnidarian FPs, which have been extensively characterized and widely used as genetically encoded probes. The structure of red-emitting laRFP revealed three exceptional features that have not been observed in wild-type fluorescent proteins from Cnidaria reported to date: (i) an unusual chromophore-forming sequence Gly58-Tyr59-Gly60, (ii) the presence of Gln211 at the position of the conserved catalytic Glu (Glu222 in Aequorea GFP), which proved to be crucial for chromophore formation, and (iii) the absence of modifications typical of known red chromophores and the presence of an extremely unusual covalent bond between the Tyr59 Cβ atom and the hydroxyl of the proximal Tyr62. The impact of this covalent bond on the red emission and the large Stokes shift (∼70 nm) of laRFP was verified by extensive structure-based site-directed mutagenesis. PMID:23999308

  12. Structure of the red fluorescent protein from a lancelet (Branchiostoma lanceolatum): a novel GYG chromophore covalently bound to a nearby tyrosine.

    PubMed

    Pletnev, Vladimir Z; Pletneva, Nadya V; Lukyanov, Konstantin A; Souslova, Ekaterina A; Fradkov, Arkady F; Chudakov, Dmitry M; Chepurnykh, Tatyana; Yampolsky, Ilia V; Wlodawer, Alexander; Dauter, Zbigniew; Pletnev, Sergei

    2013-09-01

    A key property of proteins of the green fluorescent protein (GFP) family is their ability to form a chromophore group by post-translational modifications of internal amino acids, e.g. Ser65-Tyr66-Gly67 in GFP from the jellyfish Aequorea victoria (Cnidaria). Numerous structural studies have demonstrated that the green GFP-like chromophore represents the `core' structure, which can be extended in red-shifted proteins owing to modifications of the protein backbone at the first chromophore-forming position. Here, the three-dimensional structures of green laGFP (λex/λem = 502/511 nm) and red laRFP (λex/λem ≃ 521/592 nm), which are fluorescent proteins (FPs) from the lancelet Branchiostoma lanceolatum (Chordata), were determined together with the structure of a red variant laRFP-ΔS83 (deletion of Ser83) with improved folding. Lancelet FPs are evolutionarily distant and share only ∼20% sequence identity with cnidarian FPs, which have been extensively characterized and widely used as genetically encoded probes. The structure of red-emitting laRFP revealed three exceptional features that have not been observed in wild-type fluorescent proteins from Cnidaria reported to date: (i) an unusual chromophore-forming sequence Gly58-Tyr59-Gly60, (ii) the presence of Gln211 at the position of the conserved catalytic Glu (Glu222 in Aequorea GFP), which proved to be crucial for chromophore formation, and (iii) the absence of modifications typical of known red chromophores and the presence of an extremely unusual covalent bond between the Tyr59 C(β) atom and the hydroxyl of the proximal Tyr62. The impact of this covalent bond on the red emission and the large Stokes shift (∼70 nm) of laRFP was verified by extensive structure-based site-directed mutagenesis.

  13. Structural Analysis of Mammalian Cytochrome P450 2B4 Covalently Bound to the Mechanism-Based Inactivator tert-Butylphenylacetylene: Insight into Partial Enzymatic Activity†‡

    PubMed Central

    Gay, Sean C.; Zhang, Haoming; Wilderman, P. Ross; Roberts, Arthur G.; Liu, Tong; Li, Sheng; Lin, Hsia-lien; Zhang, Qinghai; Woods, Virgil L.; Stout, C. David; Hollenberg, Paul F.; Halpert, James R.

    2011-01-01

    A combined structural and computational analysis of rabbit cytochrome P450 2B4 covalently bound to the mechanism-based inactivator tert-butylphenylacetylene (tBPA) has yielded insight into how the enzyme retains partial activity. Since conjugation to tBPA modifies a highly conserved active site residue, the residual activity of tBPA-labeled 2B4 observed in previous studies was puzzling. Here we describe the first crystal structures of a modified mammalian P450, which show an oxygenated metabolite of tBPA conjugated to Thr 302 of helix I. These results are consistent with previous studies that identified Thr 302 as the site of conjugation. In each structure, the core of 2B4 remains unchanged, but the arrangement of plastic regions differs. This results in one structure that is compact and closed. In this conformation, tBPA points toward helix B′, making a 31° angle with the heme plane. This conformation is in agreement with previously performed in silico experiments. However, dimerization of 2B4 in the other structure, which is caused by movement of the B/C loop and helices F through G, alters the position of tBPA. In this case, tBPA lies almost parallel to the heme plane due to the presence of helix F′ of the opposite monomer entering the active site to stabilize the dimer. However, docking experiments using this open form show that tBPA is able to rotate upward to give testosterone and 7-ethoxy-4-trifluoromethylcoumarin access to the heme, which could explain the previously observed partial activity. PMID:21510666

  14. Plasma lipid-bound sialic acid alterations in neoplastic diseases.

    PubMed

    Dwivedi, C; Dixit, M; Hardy, R E

    1990-01-15

    Plasma lipid-bound sialic acid (LSA) was assayed in normal volunteers, patients with non-malignant diseases, and a variety of cancer patients. Mean plasma LSA in 50 normal volunteers, 16 patients with non-malignant diseases, 54 breast cancer, 17 lung cancer, 15 colon cancer, 7 ovarian cancer, 5 prostate cancer, 4 leukemia, 4 gastrointestinal, 3 thyroid cancer, 3 pancreas cancer and 2 adrenal cancer patients were 17.7, 23.2, 58, 85, 56.7, 46.2, 56.7, 53.3, 31.1, 33.2 and 119.5 mg/dl, respectively. None of the normal volunteers had elevated plasma LSA values. Plasma LSA level was not significantly different in male and female volunteers. Two out of 114 different cancer patients had plasma LSA levels within normal range exhibiting 98.2% sensitivity of the assay. Plasma LSA, which is relatively simple to assay, may be used as a tumor marker in wide variety of neoplastic diseases.

  15. Voltammetric Detection of Oxalic Acid by Using Glassy Carbon Electrodes with Covalently Attached Nitrogen-containing Functional Groups.

    PubMed

    Matsuura, Hiroaki; Akabe, Syuhei; Kitamura, Tsubasa; Takahashi, Takuto; Uchiyama, Shunichi

    2015-01-01

    We report on a novel voltammetric detection of oxalic acid by using glassy carbon electrodes with covalently attached nitrogen-containing functional groups prepared by stepwise electrolysis. A glassy carbon electrode electrooxidized in an ammonium carbamate solution was electroreduced at -1.0 V (vs. Ag/AgCl) in 1.0 M sulfuric acid for a long time. We found that the electrocatalytic oxidation wave of oxalic acid obtained by this modified glassy carbon electrode was moved to a more negative potential region than that obtained by a platinum electrode in an acidic medium. A good linearity for the peak current signals was observed in the concentration range from 0.1 to 50 mM.

  16. Synthesis of a Sulfonated Two-Dimensional Covalent Organic Framework as an Efficient Solid Acid Catalyst for Biobased Chemical Conversion.

    PubMed

    Peng, Yongwu; Hu, Zhigang; Gao, Yongjun; Yuan, Daqiang; Kang, Zixi; Qian, Yuhong; Yan, Ning; Zhao, Dan

    2015-10-12

    Because of limited framework stability tolerance, de novo synthesis of sulfonated covalent organic frameworks (COFs) remains challenging and unexplored. Herein, a sulfonated two-dimensional crystalline COF, termed TFP-DABA, was synthesized directly from 1,3,5-triformylphloroglucinol and 2,5-diaminobenzenesulfonic acid through a previously reported Schiff base condensation reaction, followed by irreversible enol-to-keto tautomerization, which strengthened its structural stability. TFP-DABA is a highly efficient solid acid catalyst for fructose conversion with remarkable yields (97 % for 5-hydroxymethylfurfural and 65 % for 2,5-diformylfuran), good chemoselectivity, and good recyclability. The present study sheds light on the de novo synthesis of sulfonated COFs as novel solid acid catalysts for biobased chemical conversion.

  17. Structures of the Michaelis Complex (1.2A) and the Covalent Acyl Intermediate (2.0A ) of Cefamandole Bound in the Active Sites of the Mycobacterium tuberculosis beta-Lactamase K72A and E166A Mutants

    SciTech Connect

    L Tremblay; h Xu; J Blanchard

    2011-12-31

    The genome of Mycobacterium tuberculosis (TB) contains a gene that encodes a highly active {beta}-lactamase, BlaC, that imparts TB with resistance to {beta}-lactam chemotherapy. The structure of covalent BlaC-{beta}-lactam complexes suggests that active site residues K73 and E166 are essential for acylation and deacylation, respectively. We have prepared the K73A and E166A mutant forms of BlaC and have determined the structures of the Michaelis complex of cefamandole and the covalently bound acyl intermediate of cefamandole at resolutions of 1.2 and 2.0 {angstrom}, respectively. These structures provide insight into the details of the catalytic mechanism.

  18. Covalently linked organic networks

    NASA Astrophysics Data System (ADS)

    Tsotsalas, Manuel; Addicoat, Matthew

    2015-02-01

    In this review, we intend to give an overview of the synthesis of well-defined covalently-bound organic network materials such as covalent organic frameworks (COFs), conjugated microporous frameworks (CMPs) and other “ideal polymer networks” and discuss the different approaches in their synthesis and their potential applications. In addition we will describe the common computational approaches and highlight recent achievements in the computational study of their structure and properties. For further information the interested reader is referred to several excellent and more detailed reviews dealing with the synthesis [Dawson 2012; Ding 2013; Feng 2012] and computational aspects [Han 2009; Colón 2014] of the materials presented here.

  19. 15N NMR investigation of the covalent binding of reduced TNT amines to soil humic acid, model compounds, and lignocellulose

    USGS Publications Warehouse

    Thorn, K.A.; Kennedy, K.R.

    2002-01-01

    The five major reductive degradation products of TNT-4ADNT (4-amino-2,6-dinitrotoluene), 2ADNT (2-amino-4,6-dinitrotoluene), 2,4DANT (2,4-diamino-6-nitrotoluene), 2,6DANT (2,6-diamino-4-nitrotoluene), and TAT (2,4,6-triaminotoluene)-labeled with 15N in the amine positions, were reacted with the IHSS soil humic acid and analyzed by 15N NMR spectrometry. In the absence of catalysts, all five amines underwent nucleophilic addition reactions with quinone and other carbonyl groups in the soil humic acid to form both heterocyclic and nonheterocyclic condensation products. Imine formation via 1,2-addition of the amines to quinone groups in the soil humic acid was significant with the diamines and TAT but not the monoamines. Horseradish peroxidase (HRP) catalyzed an increase in the incorporation of all five amines into the humic acid. In the case of the diamines and TAT, HRP also shifted the binding away from heterocyclic condensation product toward imine formation. A comparison of quantitative liquid phase with solid-state CP/MAS 15N NMR indicated that the CP experiment underestimated imine and heterocyclic nitrogens in humic acid, even with contact times optimal for observation of these nitrogens. Covalent binding of the mono- and diamines to 4-methylcatechol, the HRP catalyzed condensation of 4ADNT and 2,4DANT to coniferyl alcohol, and the binding of 2,4DANT to lignocellulose with and without birnessite were also examined.

  20. Breaking the dogma: PCB-derived semiquinone free radicals do not form covalent adducts with DNA, GSH, and amino acids

    PubMed Central

    Wangpradit, Orarat; Rahaman, Asif; Mariappan, S. V. Santhana; Buettner, Garry R.; Robertson, Larry W.; Luthe, Gregor

    2016-01-01

    Covalent bond formations of free radical metabolites with biomolecules like DNA and proteins are thought to constitute a major mechanism of toxicity and carcinogenesis. Glutathione (GSH) is generally accepted as a radical scavenger protecting the cell. In the present study, we investigated a semiquinone radical (SQ•-) metabolite of the semivolatile 4-chlorobiphenyl, using electron paramagnetic resonance spectroscopy, and oxygen consumption. Proton nuclear magnetic resonance (1H NMR) and liquid chromatography–mass spectrometry (LC-MS) were also employed to elucidate the radical interaction with DNA, amino acids, and GSH. We found that DNA and oligonucleotides stabilized SQ•- by electron delocalization in the π-stacking system, resulting in persistent radical intercalated, rather than forming a covalent bond with SQ•-. This finding was strongly supported by the semiempirical calculation of the semioccupied molecular orbital and the linear combination of the atomic orbitals, indicating 9.8 kcal mol−1 energy gain. The insertion of SQ•- into the DNA strand may result in DNA strand breaks and interruption of DNA replication process or even activate radical mediated secondary reactions. The presence of amino acids resulted in a decrease of the electron paramagnetic resonance (EPR) signal of SQ•- and correlated with their isoelectric points. The pH shifts the equilibrium of the dianions of hydroquinone and influenced indirectly the formation of SQ•-. Similar findings were observed with GSH and Cys. GSH and Cys functioned as indirect radical scavengers; their activities depend on their chemical equilibria with the corresponding quinones, and their further reaction via Michael addition. The generally accepted role of GSH as radical scavenger in biological systems should be reconsidered based upon these findings, questioning the generally accepted view of radical interaction of semiquinones with biologically active compounds, like DNA, amino acids, proteins

  1. Ferrocene-terminated monolayers covalently bound to hydrogen-terminated silicon surfaces. Toward the development of charge storage and communication devices.

    PubMed

    Fabre, Bruno

    2010-12-21

    The combination of monocrystalline silicon's well-defined structure and the ability to prepare hydrogen-terminated surfaces (Si-H) easily and reproducibly has made this material a very attractive substrate for immobilizing functional molecules. The functionalization of Si-H using the covalent attachment of organic monolayers has received intense attention due to the numerous potential applications of controlled and robust organic/Si interfaces. Researchers have investigated these materials in diverse fields such as molecular electronics, chemistry, and bioanalytical chemistry. Applications include the preparation of surface insulators, the incorporation of chemical or biochemical functionality at interfaces for use in photovoltaic conversion, and the development of new chemical and biological sensing devices. Unlike those of gold, silicon's electronic properties are tunable, and researchers can directly integrate silicon-based devices within electronic circuitry. Moreover, the technological processes used for the micro- and nanopatterning of silicon are numerous and mature enough for producing highly miniaturized functional electronic components. In this Account, we describe a powerful approach that integrates redox-active molecules, such as ferrocene, onto silicon toward electrically addressable systems devoted to information storage or transfer. Ferrocene exhibits attractive electrochemical characteristics: fast electron-transfer rate, low oxidation potential, and two stable redox states (neutral ferrocene and oxidized ferrocenium). Accordingly, ferrocene-modified silicon surfaces could be used as charge storage components with the bound ferrocene center as the memory element. Upon application of a positive potential to silicon, ferrocene is oxidized to its corresponding ferrocenium form. This redox change is equivalent to the change of a bit of information from the "0" to "1" state. To erase the stored charge and return the device to its initial state, a low

  2. [Bound amino acids in local strains of Trichomonas vaginalis].

    PubMed

    Tsvetkova, A; Osinovski, E; Vasilevska, M

    1990-01-01

    Amino acid composition of water-soluble and water-insoluble proteins of 8 strains of Tr. vaginalis is studied. 17 amino acids are found in both protein hydrolyzates. Despite the complete coincidence of their qualitative compositions there are reliable differences in the quantitative contents of some amino acids. Differences in the contents of main amino acids of water-soluble proteins of different strains reflect the belonging of the latter to different sero-groups. No reliable differences in the quantitative contents of amino acids of both water-soluble and water-insoluble proteins in strains belonging to one sero-group are recognised.

  3. Plasma lipid-bound sialic acid and carcinoembryonic antigen in cancer patients.

    PubMed

    Dnistrian, A M; Schwartz, M K

    1981-10-01

    We evaluated lipid-bound sialic acid as a "marker" in cancer patients and assessed the individual and combined value of lipid-bound sialic acid and carcinoembryonic antigen determinations in these patients. Plasma was sampled from 62 normal subjects and 125 cancer patients. Lipid-bound sialic acid was determined by the resorcinol method after total lipid extraction and isolation of the sialolipid fraction from plasma. Neither marker was increased in many breast cancer patients. Carcinoembryonic antigen was increased more commonly and to a greater degree in colon cancer patients and seems to be the preferred marker. Both markers were increased in lung cancer patients and their combined evaluation improved the rate of detection. Lipid-bound sialic acid was increased in more patients with leukemias, lymphomas, Hodgkin's disease, and melanomas, suggesting that it may be a useful biochemical marker in these types of cancer.

  4. Gas-phase ion/ion reactions of peptides and proteins: acid/base, redox, and covalent chemistries.

    PubMed

    Prentice, Boone M; McLuckey, Scott A

    2013-02-01

    Gas-phase ion/ion reactions are emerging as useful and flexible means for the manipulation and characterization of peptide and protein biopolymers. Acid/base-like chemical reactions (i.e., proton transfer reactions) and reduction/oxidation (redox) reactions (i.e., electron transfer reactions) represent relatively mature classes of gas-phase chemical reactions. Even so, especially in regards to redox chemistry, the widespread utility of these two types of chemistries is undergoing rapid growth and development. Additionally, a relatively new class of gas-phase ion/ion transformations is emerging which involves the selective formation of functional-group-specific covalent bonds. This feature details our current work and perspective on the developments and current capabilities of these three areas of ion/ion chemistry with an eye towards possible future directions of the field.

  5. Gas-phase ion/ion reactions of peptides and proteins: acid/base, redox, and covalent chemistries

    PubMed Central

    Prentice, Boone M.

    2013-01-01

    Gas-phase ion/ion reactions are emerging as useful and flexible means for the manipulation and characterization of peptide and protein biopolymers. Acid/base-like chemical reactions (i.e., proton transfer reactions) and reduction/oxidation (redox) reactions (i.e., electron transfer reactions) represent relatively mature classes of gas-phase chemical reactions. Even so, especially in regards to redox chemistry, the widespread utility of these two types of chemistries is undergoing rapid growth and development. Additionally, a relatively new class of gas-phase ion/ion transformations is emerging which involves the selective formation of functional-group-specific covalent bonds. This feature details our current work and perspective on the developments and current capabilities of these three areas of ion/ion chemistry with an eye towards possible future directions of the field. PMID:23257901

  6. 9-O-Acetylation of sialic acids is catalysed by CASD1 via a covalent acetyl-enzyme intermediate

    PubMed Central

    Baumann, Anna-Maria T.; Bakkers, Mark J. G.; Buettner, Falk F. R.; Hartmann, Maike; Grove, Melanie; Langereis, Martijn A.; de Groot, Raoul J.; Mühlenhoff, Martina

    2015-01-01

    Sialic acids, terminal sugars of glycoproteins and glycolipids, play important roles in development, cellular recognition processes and host–pathogen interactions. A common modification of sialic acids is 9-O-acetylation, which has been implicated in sialoglycan recognition, ganglioside biology, and the survival and drug resistance of acute lymphoblastic leukaemia cells. Despite many functional implications, the molecular basis of 9-O-acetylation has remained elusive thus far. Following cellular approaches, including selective gene knockout by CRISPR/Cas genome editing, we here show that CASD1—a previously identified human candidate gene—is essential for sialic acid 9-O-acetylation. In vitro assays with the purified N-terminal luminal domain of CASD1 demonstrate transfer of acetyl groups from acetyl-coenzyme A to CMP-activated sialic acid and formation of a covalent acetyl-enzyme intermediate. Our study provides direct evidence that CASD1 is a sialate O-acetyltransferase and serves as key enzyme in the biosynthesis of 9-O-acetylated sialoglycans. PMID:26169044

  7. Using spin labels to study molecular processes in soils: Covalent binding of aromatic amines to humic acids of soils

    NASA Astrophysics Data System (ADS)

    Aleksandrova, O. N.; Kholodov, V. A.; Perminova, I. V.

    2015-08-01

    Interactions of aliphatic and aromatic amines with soil and humic acids isolated from it are studied by means of spin labels and electron paramagnetic resonance (EPR) spectroscopy. Nitroxyl radicals containing amino groups are used as spin labels. It is found experimentally that aromatic amines are instantaneously converted to the bound state. It is shown that the microareas of their incorporation are characterized by a significant delay in the reduction of the nitroxyl fragment of spin-label molecules, indicating the formation of condensed structures typical of an oxidative binding mechanism. It is concluded that aliphatic amines do not bind to humic acids. It is noted that the studied process allows elucidating the formation of bound xenobiotic residues in soils.

  8. Surface-functionalized hyperbranched poly(amido acid) magnetic nanocarriers for covalent immobilization of a bacterial γ-glutamyltranspeptidase.

    PubMed

    Juang, Tzong-Yuan; Kan, Shao-Ju; Chen, Yi-Yu; Tsai, Yi-Lin; Lin, Min-Guan; Lin, Long-Liu

    2014-04-22

    In this study, we synthesized water-soluble hyperbranched poly(amido acid)s (HBPAAs) featuring multiple terminal CO2H units and internal tertiary amino and amido moieties and then used them in conjunction with an in situ Fe2+/Fe3+ co-precipitation process to prepare organic/magnetic nanocarriers comprising uniformly small magnetic iron oxide nanoparticles (NP) incorporated within the globular HBPAAs. Transmission electron microscopy revealed that the HBPAA-γ-Fe2O3 NPs had dimensions of 6-11 nm, significantly smaller than those of the pristine γ-Fe2O3 (20-30 nm). Subsequently, we covalently immobilized a bacterial γ-glutamyltranspeptidase (BlGGT) upon the HBPAA-γ-Fe2O3 nanocarriers through the formation of amide linkages in the presence of a coupling agent. Magnetization curves of the HBPAA-γ-Fe2O3/BlGGT composites measured at 300 K suggested superparamagnetic characteristics, with a saturation magnetization of 52 emu g⁻¹. The loading capacity of BlGGT on the HBPAA-γ-Fe2O3 nanocarriers was 16 mg g⁻¹ support; this sample provided a 48% recovery of the initial activity. The immobilized enzyme could be recycled 10 times with 32% retention of the initial activity; it had stability comparable with that of the free enzyme during a storage period of 63 days. The covalent immobilization and stability of the enzyme and the magnetization provided by the HBPAA-γ-Fe2O3 NPs suggests that this approach could be an economical means of depositing bioactive enzymes upon nanocarriers for BlGGT-mediated bio-catalysis.

  9. Bound and unbound humic acids perform different roles in the aggregation and deposition of multi-walled carbon nanotubes.

    PubMed

    Yang, Xuezhi; Wang, Qi; Qu, Xiaolei; Jiang, Wei

    2017-02-12

    Natural organic matter influences the carbon nanotube transport in aqueous environments. The role of bound humic acid (HA) on carbon nanotubes and unbound HA in bulk solution in the aggregation and deposition of carboxylated multi-walled carbon nanotubes (C-MWNTs) was examined in NaCl and CaCl2 electrolyte solution. Time-resolved dynamic light scattering and quartz crystal microbalance with dissipation monitoring were employed to investigate the C-MWNT aggregation and deposition kinetics, respectively. The critical coagulation concentration (CCC) of C-MWNTs is 30mM in NaCl and 3mM in CaCl2. The bound HA results in CCCs of 32mM in NaCl and 2.9mM in CaCl2. However, the existing unbound HA causes much slower aggregation in both NaCl and CaCl2 electrolytes and results in CCCs of 86mM in NaCl and 5.8mM in CaCl2. The HA adsorption experiment confirms the additional adsorption of unbound HA in the presence of cations, which can increase the steric effect between C-MWNTs. The more negative charge of C-MWNTs in the presence of unbound HA also stabilizes the suspension. In contrast, the bound HA on C-MWNTs has a more remarkable effect on the deposition rate on the SiO2 surface than the unbound HA. Bound HA changes the C-MWNT surface functional groups, leading to differences in the interaction between C-MWNTs and the SiO2 surface. Hence, the C-MWNTs dispersed by their covalently bonded oxygen-containing groups on the carbon framework and dispersed by the bound HA show nearly the same aggregation rates but quite different deposition rates. The additional unbound HA adsorption does not change the surface functional groups or the changing trend of the CNT deposition rate. Distinguishing the role of bound and unbound HA in the aggregation and deposition of carbon nanomaterials is important to predict their transport in various natural waters.

  10. Kinetics of rapid covalent bond formation of aniline with humic acid: ESR investigations with nitroxide spin labels

    NASA Astrophysics Data System (ADS)

    Glinka, Kevin; Matthies, Michael; Theiling, Marius; Hideg, Kalman; Steinhoff, Heinz-Jürgen

    2016-04-01

    Sulfonamide antibiotics used in livestock farming are distributed to farmland by application of slurry as fertilizer. Previous work suggests rapid covalent binding of the aniline moiety to humic acids found in soil. In the current work, kinetics of this binding were measured in X-band EPR spectroscopy by incubating Leonardite humic acid (LHA) with a paramagnetic aniline spin label (anilino-NO (2,5,5-Trimethyl-2-(3-aminophenyl)pyrrolidin-1-oxyl)). Binding was detected by a pronounced broadening of the spectral lines after incubation of LHA with anilino-NO. The time evolution of the amplitude of this feature was used for determining the reaction kinetics. Single- and double-exponential models were fitted to the data obtained for modelling one or two first-order reactions. Reaction rates of 0.16 min-1 and 0.012 min-1, were found respectively. Addition of laccase peroxidase did not change the kinetics but significantly enhanced the reacting fraction of anilino-NO. This EPR-based method provides a technically simple and effective method for following rapid binding processes of a xenobiotic substance to humic acids.

  11. X-ray Crystallographic Analysis of α-Ketoheterocycle Inhibitors Bound to a Humanized Variant of Fatty Acid Amide Hydrolase

    PubMed Central

    Mileni, Mauro; Garfunkle, Joie; Ezzili, Cyrine; Kimball, F. Scott; Cravatt, Benjamin F.; Stevens, Raymond C.; Boger, Dale L.

    2009-01-01

    Three cocrystal X-ray structures of the α-ketoheterocycle inhibitors 3–5 bound to a humanized variant of fatty acid amide hydrolase (FAAH) are disclosed and comparatively discussed alongside those of 1 (OL-135) and its isomer 2. These five X-ray structures systematically probe each of the three active site regions key to substrate or inhibitor binding: (1) the conformationally mobile acyl chain-binding pocket and membrane access channel responsible for fatty acid amide substrate and inhibitor acyl chain binding, (2) the atypical active site catalytic residues and surrounding oxyanion hole that covalently binds the core of the α-ketoheterocycle inhibitors captured as deprotonated hemiketals mimicking the tetrahedral intermediate of the enzyme catalyzed reaction, and (3) the cytosolic port and its uniquely important imbedded ordered water molecules and a newly identified anion binding site. The detailed analysis of their key active site interactions and their implications on the interpretation of the available structure–activity relationships are discussed providing important insights for future design. PMID:19924997

  12. Hierarchically structured, hyaluronic acid-based hydrogel matrices via the covalent integration of microgels into macroscopic networks$

    PubMed Central

    Jha, Amit K.; Malik, Manisha S.; Farach-Carson, Mary C.; Duncan, Randall L.; Jia, Xinqiao

    2010-01-01

    We aimed to develop biomimetic hydrogel matrices that not only exhibit structural hierarchy and mechanical integrity, but also present biological cues in a controlled fashion. To this end, photocrosslinkable, hyaluronic acid (HA)-based hydrogel particles (HGPs) were synthesized via an inverse emulsion crosslinking process followed by chemical modification with glycidyl methacrylate (GMA). HA modified with GMA (HA-GMA) was employed as the soluble macromer. Macroscopic hydrogels containing covalently integrated hydrogel particles (HA-c-HGP) were prepared by radical polymerization of HA-GMA in the presence of crosslinkable HGPs. The covalent linkages between the hydrogel particles and the secondary HA matrix resulted in the formation of a diffuse, fibrilar interface around the particles. Compared to the traditional bulk gels synthesized by photocrosslinking of HA-GMA, these hydrogels exhibited a reduced sol fraction and a lower equilibrium swelling ratio. When tested under uniaxial compression, the HA-c-HGP gels were more pliable than the HA-p-HGP gels and fractured at higher strain than the HA-GMA gels. Primary bovine chondrocytes were photoencapsulated in the HA matrices with minimal cell damage. The 3D microenvironment created by HA-GMA and HA HGPs not only maintained the chondrocyte phenotype but also fostered the production of cartilage specific extracellular matrix. To further improve the biological activities of the HA-c-HGP gels, bone morphogenetic protein 2 (BMP-2) was loaded into the immobilized HGPs. BMP-2 was released from the HA-c-HGP gels in a controlled manner with reduced initial burst over prolonged periods of time. The HA-c-HGP gels are promising candidates for use as bioactive matrices for cartilage tissue engineering. PMID:20936090

  13. Synthesis and comprehensive structural studies of a novel amide based carboxylic acid derivative: Non-covalent interactions

    NASA Astrophysics Data System (ADS)

    Chahkandi, Mohammad; Bhatti, Moazzam H.; Yunus, Uzma; Shaheen, Shahida; Nadeem, Muhammad; Tahir, Muhammad Nawaz

    2017-04-01

    The presented work studies the geometric and electronic structures of the crystalline network of a novel amide based carboxylic acid derivative, N-[(4-chlorophenyl)]-4-oxo-4-[oxy] butane amide, C10H10NO3Cl (1), constructed via hydrogen bonds (HBs) and stacking non-covalent interactions. Compound 1 was synthesized and characterized by FTIR, 1H, and 13C NMR, and UV-Vis spectra, X-ray structural, DTA-TG, and EI-MS, analyses. DFT calculations about molecular and related network of 1 were performed at hybrid B3LYP/6-311+G (d, p) level of theory to support the experimental data. The neutral monomeric structures join together via inter-molecular conventional O/Nsbnd H⋯O and non-conventional Csbnd H⋯O HBs and Osbnd H···π and Csbnd O···π stacking interactions to create 2-D architecture of the network. The results of dispersion corrected density functional theory (DFT-D) calculations within the binding energy of the constructive non-covalent interactions demonstrate that HBs, especially conventional Osbnd H⋯O and Nsbnd H⋯O, govern the network formation. The calculated electronic spectrum show six major bands in the range of 180-270 nm which confirm the experimental one within an intense band around 250 nm. These charge transfer bands result from shift of lone pair electron density of phenyl to chlorine or hydroxyl or phenyl functional groups that possess π → π* and π → n characters.

  14. [Oligonucleotide derivatives in the nucleic acid hybridization analysis. I. Covalent immobilization of oligonucleotide probes onto the nylon].

    PubMed

    Dmitrienko, E V; Pyshnaia, I A; Pyshnyĭ, D V

    2010-01-01

    The features of UV-induced immobilization of oligonucleotides on a nylon membranes and the effectiveness of enzymatic labeling of immobilized probes at heterophase detection of nucleic acids are studied. Short terminal oligothymidilate (up to 10 nt) sequences are suggested to attach to the probe via a flexible ethylene glycol based linker. The presence of such fragment enhances the intensity of immobilization and reduces UV-dependent degradation of the targeted (sequence-specific) part of the probe by reducing the dose needed for the immobilization of DNA. The optimum dose of UV-irradiation is determined to be ~0.4 J/cm(2) at the wavelength 254 nm. This dose provides high level of hybridization signal for immobilized probes with various nucleotide composition of the sequence specific moiety. The amide groups of the polyamide are shown to play the key role in the photoinduced immobilization of nucleic acids, whereas the primary amino groups in the structure of PA is not the center responsible for the covalent binding of DNA by UV-irradiation, as previously believed. Various additives in the soaking solution during the membrane of UV-dependent immobilization of probes are shown to influence its effectiveness. The use of alternative to UV-irradiation system of radical generation are shown to provide the immobilization of oligonucleotides onto the nylon membrane.

  15. Preparation and characterization of malonic acid cross-linked chitosan and collagen 3D scaffolds: an approach on non-covalent interactions.

    PubMed

    Mitra, Tapas; Sailakshmi, G; Gnanamani, A; Mandal, A B

    2012-05-01

    The present study emphasizes the influence of non-covalent interactions on the mechanical and thermal properties of the scaffolds of chitosan/collagen origin. Malonic acid (MA), a bifuncitonal diacid was chosen to offer non-covalent cross-linking. Three dimensional scaffolds was prepared using chitosan at 1.0% (w/v) and MA at 0.2% (w/v), similarly collagen 0.5% (w/v) and MA 0.2% (w/v) and characterized. Results on FT-IR, TGA, DSC, SEM and mechanical properties (tensile strength, stiffness, Young's modulus, etc.) assessment demonstrated the existence of non-covalent interaction between MA and chitosan/collagen, which offered flexibility and high strength to the scaffolds suitable for tissue engineering research. Studies using NIH 3T3 fibroblast cells suggested biocompatibility nature of the scaffolds. Docking simulation study further supports the intermolecular hydrogen bonding interactions between MA and chitosan/collagen.

  16. Physicochemical characterisation of β-carotene emulsion stabilised by covalent complexes of α-lactalbumin with (-)-epigallocatechin gallate or chlorogenic acid.

    PubMed

    Wang, Xiaoya; Liu, Fuguo; Liu, Lei; Wei, Zihao; Yuan, Fang; Gao, Yanxiang

    2015-04-15

    In this study the impact of covalent complexes of α-lactalbumin (α-La) with (-)-epigallocatechin gallate (EGCG) or chlorogenic acid (CA) was investigated on the physicochemical properties of β-carotene oil-in-water emulsions. EGCG, or CA, was covalently linked to α-La at pH 8.0, as evidenced by increased total phenolic content and declined fluorescence intensity. Compared with those stabilised by α-La alone and α-La-CA or EGCG mixture, the emulsion stabilised by the α-La-EGCG covalent complex exhibited the least changes in particle size and transmission profiles, using a novel centrifugal sedimentation technique, indicating an improvement in the physical stability. The least degradation of β-carotene occurred in the emulsion stabilised with the α-La-EGCG covalent complex when stored at 25 °C. These results implied that protein-polyphenol covalent complexes were able to enhance the physical stability of β-carotene emulsion and inhibit the degradation of β-carotene in oil-in-water emulsion, and the effect was influenced by the types of the phenolic compounds.

  17. ABS polymer electroless plating through a one-step poly(acrylic acid) covalent grafting.

    PubMed

    Garcia, Alexandre; Berthelot, Thomas; Viel, Pascal; Mesnage, Alice; Jégou, Pascale; Nekelson, Fabien; Roussel, Sébastien; Palacin, Serge

    2010-04-01

    A new, efficient, palladium- and chromium-free process for the electroless plating of acrylonitrile-butadiene-styrene (ABS) polymers has been developed. The process is based on the ion-exchange properties of poly(acrylic acid) (PAA) chemically grafted onto ABS via a simple and one-step method that prevents using classical surface conditioning. Hence, ABS electroless plating can be obtained in three steps, namely: (i) the grafting of PAA onto ABS, (ii) the copper Cu(0) seeding of the ABS surface, and (iii) the nickel or copper metallization using commercial-like electroless plating bath. IR, XPS, and SEM were used to characterize each step of the process, and the Cu loading was quantified by atomic absorption spectroscopy. This process successfully compares with the commercial one based on chromic acid etching and palladium-based seed layer, because the final metallic layer showed excellent adhesion with the ABS substrate.

  18. Quantifying folic acid-functionalized multi-walled carbon nanotubes bound to colorectal cancer cells for improved photothermal ablation

    NASA Astrophysics Data System (ADS)

    Graham, Elizabeth G.; MacNeill, Christopher M.; Levi-Polyachenko, Nicole H.

    2013-05-01

    Peritoneal metastases of colorectal cancer are a significant challenge in the field of medicine today due to poor results of systemic chemotherapy caused by the poor diffusion of drugs across the blood-peritoneal barrier. Multi-walled carbon nanotubes (MWNTs) are a biocompatible nanomaterial that strongly absorb near-infrared light to locally heat the surrounding area. Colorectal cancer is known to overexpress folate receptor; therefore, folic acid (FA) was covalently attached to MWNTs to target colorectal cancer cells. Results from real-time polymerase chain reaction found differing expression of folate receptor-α in two colorectal cancer cell lines, RKO and HCT116, as well as a healthy epithelial cell line, HEPM. A spectrophotometric method was developed to quantify the mass of MWNTs bound to cells, and it was determined that FA-targeted MWNTs resulted in a 400-500 % greater affinity for colorectal cancer cells than untargeted MWNTs. The non-cancerous cell line, HEPM, had higher non-specific MWNT interaction and similar MWNT-FA affinity. Stimulated by 1,064 nm light, FA-functionalized MWNTs caused a 50-60 % decrease in colorectal cancer cell viability compared to a 4-10 % decrease caused by untargeted MWNTs. Our results indicate that FA-targeted MWNTs may increase the therapeutic index of MWNT-induced photothermal therapy.

  19. Structure-based non-canonical amino acid design to covalently crosslink an antibody-antigen complex.

    PubMed

    Xu, Jianqing; Tack, Drew; Hughes, Randall A; Ellington, Andrew D; Gray, Jeffrey J

    2014-02-01

    Engineering antibodies to utilize non-canonical amino acids (NCAA) should greatly expand the utility of an already important biological reagent. In particular, introducing crosslinking reagents into antibody complementarity determining regions (CDRs) should provide a means to covalently crosslink residues at the antibody-antigen interface. Unfortunately, finding the optimum position for crosslinking two proteins is often a matter of iterative guessing, even when the interface is known in atomic detail. Computer-aided antibody design can potentially greatly restrict the number of variants that must be explored in order to identify successful crosslinking sites. We have therefore used Rosetta to guide the introduction of an oxidizable crosslinking NCAA, l-3,4-dihydroxyphenylalanine (l-DOPA), into the CDRs of the anti-protective antigen scFv antibody M18, and have measured crosslinking to its cognate antigen, domain 4 of the anthrax protective antigen. Computed crosslinking distance, solvent accessibility, and interface energetics were three factors considered that could impact the efficiency of l-DOPA-mediated crosslinking. In the end, 10 variants were synthesized, and crosslinking efficiencies were generally 10% or higher, with the best variant crosslinking to 52% of the available antigen. The results suggest that computational analysis can be used in a pipeline for engineering crosslinking antibodies. The rules learned from l-DOPA crosslinking of antibodies may also be generalizable to the formation of other crosslinked interfaces and complexes.

  20. Dynamic Covalent Chemistry-based Sensing: Pyrenyl Derivatives of Phenylboronic Acid for Saccharide and Formaldehyde

    NASA Astrophysics Data System (ADS)

    Chang, Xingmao; Fan, Jiayun; Wang, Min; Wang, Zhaolong; Peng, Haonan; He, Gang; Fang, Yu

    2016-08-01

    We synthesized two specially designed pyrenyl (Py) derivatives of phenylboronic acid, PSNB1 and PSNB2, of which PSNB2 self-assemble to form dynamic aggregate in methanol-water mixture (1:99, v/v) via intermolecular H-bonding and pi-pi stacking. Interestingly, the dynamic aggregate shows smart response to presence of fructose (F) as evidenced by fluorescence color change from green to blue. More interestingly, the fluorescence emission of the resulted PSNB2-F changes from blue to green with the addition of formaldehyde (FA). The reason behind is formation of a PSNB2-F dimer via FA cross-linking. Based upon the reactions as found, sensitive and fast sensing of F and FA in water was realized, of which the experimental DLs could be significantly lower than 10 μM for both analytes, and the response times are less than 1 min. It is believed that not only the materials as created may have the potential to find real-life applications but also the strategy as developed can be adopted to develop other dynamic materials.

  1. Dynamic Covalent Chemistry-based Sensing: Pyrenyl Derivatives of Phenylboronic Acid for Saccharide and Formaldehyde

    PubMed Central

    Chang, Xingmao; Fan, Jiayun; Wang, Min; Wang, Zhaolong; Peng, Haonan; He, Gang; Fang, Yu

    2016-01-01

    We synthesized two specially designed pyrenyl (Py) derivatives of phenylboronic acid, PSNB1 and PSNB2, of which PSNB2 self-assemble to form dynamic aggregate in methanol-water mixture (1:99, v/v) via intermolecular H-bonding and pi-pi stacking. Interestingly, the dynamic aggregate shows smart response to presence of fructose (F) as evidenced by fluorescence color change from green to blue. More interestingly, the fluorescence emission of the resulted PSNB2-F changes from blue to green with the addition of formaldehyde (FA). The reason behind is formation of a PSNB2-F dimer via FA cross-linking. Based upon the reactions as found, sensitive and fast sensing of F and FA in water was realized, of which the experimental DLs could be significantly lower than 10 μM for both analytes, and the response times are less than 1 min. It is believed that not only the materials as created may have the potential to find real-life applications but also the strategy as developed can be adopted to develop other dynamic materials. PMID:27498703

  2. Excited singlet states of covalently bound, cofacial dimers and trimers of perylene-3,4:9,10-bis(dicarboximide)s.

    PubMed

    Giaimo, Jovan M; Lockard, Jenny V; Sinks, Louise E; Scott, Amy M; Wilson, Thea M; Wasielewski, Michael R

    2008-03-20

    Perylene-3,4:9,10-bis(dicarboximide) (PDI) and its derivatives are robust organic dyes that strongly absorb visible light and display a strong tendency to self-assemble into ordered aggregates, having significant interest as photoactive materials in a wide variety of organic electronics. To better understand the nature of the electronics states produced by photoexcitation of such aggregates, the photophysics of a series of covalent, cofacially oriented, pi-stacked dimers and trimers of PDI and 1,7-bis(3',5'-di-t-butylphenoxy)perylene-3,4:9,10-bis(dicarboximide) (PPDI) were characterized using both time-resolved absorption and fluorescence spectroscopy. The covalent linkage between the chromophores was accomplished using 9,9-dimethylxanthene spacers. Placing n-octyl groups on the imide nitrogen atoms at the end of the PDI chromophores not attached to the xanthene spacer results in PDI dimers having near optimal pi-stacking, leading to formation of a low-energy excimer-like state, while substituting the more sterically demanding 12-tricosanyl group on the imides causes deviations from the optimum that result in slower formation of an excimer-like excited state having somewhat higher energy. By comparison, PPDI dimers having terminal n-octyl imide groups have two isomers, whose photophysical properties depend on the ability of the phenoxy groups at the 1,7-positions to modify the pi stacking of the PPDI molecules. In general, disruption of optimal pi-stacking by steric interactions of the phenoxy side groups results in excimer-like states that are higher in energy. The corresponding lowest excited singlet states of the PDI and PPDI trimers are dimer-like in nature and suggest that structural distortions that accompany formation of the trimers are sufficient to confine the electronic interaction on two chromophores within these systems. This further suggests that it may be useful to build into oligomeric PDI and PPDI systems some degree of flexibility that allows the

  3. Acid generation mechanism in anion-bound chemically amplified resists used for extreme ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Komuro, Yoshitaka; Yamamoto, Hiroki; Kobayashi, Kazuo; Ohomori, Katsumi; Kozawa, Takahiro

    2015-03-01

    Extreme ultraviolet (EUV) lithography is the most promising candidate for the high-volume production of semiconductor devices with half-pitches of sub 10nm. An anion-bound polymer(ABP), in which at the anion part of onium salts is polymerized, has attracted much attention from the viewpoint of the control of acid diffusion. In this study, the acid generation mechanism in ABP films was investigated using γ and EUV radiolysis. On the basis of experimental results, the acid generation mechanism in anion-bound chemically amplified resists was proposed. The protons of acids are considered to be mainly generated through the reaction of phenyl radicals with diphenylsulfide radical cations that are produced through the hole transfer to the decomposition products of onium salts.

  4. A FRET-based probe for epidermal growth factor receptor bound non-covalently to a pair of synthetic amphipathic helixes

    SciTech Connect

    Itoh, Reina E.; Kurokawa, Kazuo; Fujioka, Aki; Sharma, Alok; Mayer, Bruce J.; Matsuda, Michiyuki . E-mail: matsudam@biken.osaka-u.ac.jp

    2005-07-01

    Epidermal growth factor (EGF) receptor plays a pivotal role in a variety of cellular functions, such as proliferation, differentiation, and migration. To monitor the EGF receptor (EGFR) activity in living cells, we developed a probe for EGFR activity based on the principle of fluorescence resonance energy transfer (FRET). Previously, we developed a probe designated as Picchu (Phosphorylation indicator of the CrkII chimeric unit), which detects the tyrosine phosphorylation of the CrkII adaptor protein. We used a pair of synthetic amphipathic helixes, WinZipA2 and WinZipB1, to bind Picchu non-covalently to the carboxyl-terminus of the EGFR. Using this modified probe named Picchu-Z, the activity of EGFR was followed in EGF-stimulated Cos7 cells. We found that a high level of tyrosine phosphorylation of Picchu-Z probe remained after endocytosis until the point when the EGFR was translocated to the perinuclear region. These findings are in agreement with the previously reported 'signaling endosome' model. Furthermore, by pulse stimulation with EGF and by acute ablation of EGFR activity with AG1478, it was suggested that the phosphorylation of Picchu-Z probe, and probably the phosphorylation of EGFR also, underwent a rapid equilibrium ({tau} {sub 1/2} < 2 min) between the phosphorylated and dephosphorylated states in the presence of EGF.

  5. Charge Photoinjection in Intercalated and Covalently Bound [Re(CO)3(dppz)(py)]+-DNA Constructs Monitored by Time Resolved Visible and Infrared Spectroscopy

    PubMed Central

    Olmon, Eric D.; Sontz, Pamela A.; Blanco-Rodríguez, Ana María; Towrie, Michael; Clark, Ian P.; Vlček, Antonín; Barton, Jacqueline K.

    2011-01-01

    The complex [Re(CO)3(dppz)(py′-OR)]+ (dppz = dipyrido[3,2-a:2′,3′-c]phenazine; py′-OR = 4-functionalized pyridine) offers IR sensitivity and can oxidize DNA directly from the excited state, making it a promising probe for the study of DNA-mediated charge transport (CT). The behavior of several covalent and noncovalent Re-DNA constructs was monitored by time-resolved IR (TRIR) and UV/visible spectroscopies, as well as biochemical methods, confirming the long-range oxidation of DNA by the excited complex. Optical excitation of the complex leads to population of MLCT and at least two distinct intraligand states. Experimental observations that are consistent with charge injection from these excited states include similarity between long-time TRIR spectra and the reduced state spectrum observed by spectroelectrochemistry, the appearance of a guanine radical signal in TRIR spectra, and the eventual formation of permanent guanine oxidation products. The majority of reactivity occurs on the ultrafast timescale, although processes dependent on slower conformational motions of DNA, such as the accumulation of oxidative damage at guanine, are also observed. The ability to measure events on such disparate timescales, its superior selectivity in comparison to other spectroscopic techniques, and the ability to simultaneously monitor carbonyl ligand and DNA IR absorption bands makes TRIR a valuable tool for the study of CT in DNA. PMID:21827149

  6. A GC-ECD method for estimation of free and bound amino acids, gamma-aminobutyric acid, salicylic acid, and acetyl salicylic acid from Solanum lycopersicum (L.).

    PubMed

    Meher, Hari Charan; Gajbhiye, Vijay T; Singh, Ghanendra

    2011-01-01

    A gas chromatograph with electron capture detection method for estimation of selected metabolites--amino acids (free and bound), gamma-aminobutyric acid (GABA), salicylic acid (SA), and acetyl salicylic acid (ASA) from tomato--is reported. The method is based on nitrophenylation of the metabolites by 1-fluoro-2, 4-dinitrobenzene under aqueous alkaline conditions to form dinitophenyl derivatives. The derivatives were stable under the operating conditions of GC. Analysis of bound amino acids comprised perchloric acid precipitation of protein, alkylation (carboxymethylation) with iodoacetic acid, vapor-phase hydrolysis, and derivatization with 1-fluoro-2,4-dinitrobenzene in that order. The metabolites were resolved in 35 min, using a temperature-programmed run. The method is rapid, sensitive, and precise. It easily measured the typical amino acids (aspartate, asparagine, glutamate, glutamine, alanine, leucine, lysine, and phenylalanine) used for identification and quantification of a protein, resolved amino acids of the same mass (leucine and isoleucine), satisfactorily measured sulfur amino acid (methionine, cystine, and cysteine), and quantified GABA, SA, and ASA, as well. The developed method was validated for specificity, linearity, and precision. It has been applied and recommended for estimation of 25 metabolites from Solanum lycopersicum (L.).

  7. Covalently bonded sulfonic acid magnetic graphene oxide: Fe3O4@GO-Pr-SO3H as a powerful hybrid catalyst for synthesis of indazolophthalazinetriones.

    PubMed

    Doustkhah, Esmail; Rostamnia, Sadegh

    2016-09-15

    Multistep synthesis of covalently sulfonated magnetic graphene oxide was achieved by starting from Hummer's method to produce graphene oxide (GO) from chemical oxidation of graphite. Then, GO nanosheets were applied to support Fe3O4 nanoparticles (Fe3O4@GO) using co-precipitation method in the presence of GO sheets. This strategy led to formation of uniform particles of Fe3O4 on the surface of GO sheets. Then, it was sulfonated (Fe3O4@GO-Pr-SO3H) through modification with 3-mercaptopropyltrimethoxysilane (MPTMS) and subsequent oxidation with hydrogen peroxide (H2O2). In comparison, the covalently bonded propyl sulfonic acid groups were more prevailing rather to sulfonic acids of GO itself. The proposed catalyst was more active and recyclable at least for 11 runs.

  8. Seven supramolecular frameworks constructed from combination of hydrogen-bonds and other non-covalent associations between organic acids and bis-imidazoles

    NASA Astrophysics Data System (ADS)

    Jin, Shouwen; Zhang, Huan; Zhao, Ying; Jin, Li; Ye, Xianghang; Liu, Hui; Wang, Daqi

    2015-11-01

    Seven crystalline organic acid-base adducts derived from bis(N-imidazolyl) and organic acids (2,4,6-trinitrophenol, p-nitrobenzoic acid, 3,5-dinitrobenzoic acid, oxalic acid, m-phthalic acid, and 1,5-naphthalenedisulfonic acid) were prepared and characterized by X-ray diffraction analysis, IR, mp, and elemental analysis. The seven compounds are all organic salts. In salts 1, and 3, the L1 are monoprotonated, while in 4 and 6 the L1 are diprotonated. All supramolecular architectures involve extensive classical hydrogen bonds and C-H⋯O interactions. The role of weak and strong non-covalent interactions in the crystal packing is analyzed. The complexes displayed 2D-3D framework structures for the synergistic effect of the various non-covalent interactions. The results presented herein indicate that the strength and directionality of the N-H⋯N, N-H⋯O, O-H⋯O, O-H⋯N, N-H⋯S, and O-H⋯S hydrogen bonds between the organic acids and the ditopic imidazoles are sufficient to bring about the formation of binary organic salts.

  9. Non-covalent complexes of folic acid and oleic acid conjugated polyethylenimine: An efficient vehicle for antisense oligonucleotide delivery

    PubMed Central

    Yang, Shuang; Yang, Xuewei; Liu, Yan; Zheng, Bin; Meng, Lingjun; Lee, Robert J.; Xie, Jing; Teng, Lesheng

    2016-01-01

    Polyethylenimine (PEI) was conjugated to oleic acid (PEI-OA) and evaluated as a delivery agent for LOR-2501, an antisense oligonucleotide against ribonucleotide reductase R1 subunit. PEI-OA/LOR-2501 complexes were further coated with folic acid (FA/PEI-OA/LOR-2501) and evaluated in tumor cells. The level of cellular uptake of FA/PEI-OA/LOR-2501 was more than double that of PEI/LOR-2501 complexes, and was not affected by the expression level of folate receptor (FR) on the cell surface. Efficient delivery was seen in several cell lines. Furthermore, pathway specific cellular internalization inhibitors and markers were used to reveal the principal mechanism of cellular uptake. FA/PEI-OA/LOR-2501 significantly induced the downregulation of R1 mRNA and R1 protein. This novel formulation of FA/PEI-OA provides a reliable and highly efficient method for delivery of oligonucleotide and warrants further investigation. PMID:26263216

  10. Acid generation mechanism in anion-bound chemically amplified resists used for extreme ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Komuro, Yoshitaka; Yamamoto, Hiroki; Kobayashi, Kazuo; Utsumi, Yoshiyuki; Ohomori, Katsumi; Kozawa, Takahiro

    2014-11-01

    Extreme ultraviolet (EUV) lithography is the most promising candidate for the high-volume production of semiconductor devices with half-pitches of sub-10 nm. An anion-bound polymer (ABP), in which the anion part of onium salts is polymerized, has attracted much attention from the viewpoint of the control of acid diffusion. In this study, the acid generation mechanism in ABP films was investigated using electron (pulse), γ, and EUV radiolyses. On the basis of experimental results, the acid generation mechanism in anion-bound chemically amplified resists was proposed. The major path for proton generation in the absence of effective proton sources is considered to be the reaction of phenyl radicals with diphenylsulfide radical cations that are produced through hole transfer to the decomposition products of onium salts.

  11. Location and binding mechanism of an ESIPT probe 3-hydroxy-2-naphthoic acid in unsaturated fatty acid bound serum albumins.

    PubMed

    Ghorai, Shyamal Kr; Tripathy, Debi Ranjan; Dasgupta, Swagata; Ghosh, Sanjib

    2014-02-05

    The binding site and the binding mechanism of 3-hydroxy-2-naphthoic acid (3HNA) in oleic acid (OA) bound serum albumins (bovine serum albumin (BSA) and human serum albumin (HSA)) have been determined using steady state and time resolved emission of tryptophan residues (Trp) in proteins and the ESIPT emission of 3HNA. Time resolved anisotropy of the probe 3HNA and low temperature phosphorescence of Trp residues of BSA in OA bound BSA at 77K reveals a drastic change of the binding site of 3HNA in the ternary system compared to that in the free protein. 3HNA binds near Trp213 in the ternary system whereas 3HNA binds near Trp134 in the free protein. The structure of OA bound BSA generated using docking methodology exhibits U-bend configuration of all bound OA. The docked pose of 3HNA in the free protein and in OA bound albumins (ternary systems) and the concomitant perturbation of the structure of proteins around the binding region of 3HNA corroborate the enhanced ESIPT emission of 3HNA and the energy transfer efficiency from the donor Trp213 of BSA to 3HNA acceptor in 3HNA-OA-BSA system.

  12. Seasonal and spatial changes of free and bound organic acids in total suspended particles in Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Ma, Shexia; Peng, Ping'an; Song, Jianzhong; Bi, Xinhui; Zhao, Jinping; He, Lulu; Sheng, Guoying; Fu, Jiamo

    2010-12-01

    The concentrations and compositions of free and bound organic acids in total suspended particles from typical urban, suburban and forest park sites of Guangzhou were determined in this study. The free form of organic acids (solvent extractable) in aerosols in Guangzhou varied with site and season. The suburban samples contained the highest contents of alkanoic, alkenoic and dicarboxylic acids. These findings were consistent with a higher supply of hydrocarbons and NOx in the suburban area. However, concentrations of aromatic acids were similar in the urban, suburban and forest park sites. Generally, winter season samples of the acids from anthropogenic sources contained more organic acids than summer season samples due to stronger removal by wet deposition in the summer. For the acids from botanic sources, the summer season samples were higher. In addition to the free acids, bound acids (solvent non-extractable) mainly formed by esterification of free acids were also found in the samples. In general, bound acids were higher than free acids. Esterification is mainly controlled by the pKa of organic acids and the atmospheric pH value. This explains why aromatic and dicarboxylic acids occur mainly as bound forms and why the samples from urban sites contained high levels of bound acids as the pH of rain water can reach 4.53. Concentrations of alkanoic and alkenoic acids in the aerosols of Guangzhou were much higher than those in the other areas studied.

  13. Hydrogels with covalent and noncovalent crosslinks

    NASA Technical Reports Server (NTRS)

    Kilck, Kristi L. (Inventor); Yamaguchi, Nori (Inventor)

    2013-01-01

    A method for targeted delivery of therapeutic compounds from hydrogels is presented. The method involves administering to a cell a hydrogel in which a therapeutic compound is noncovalently bound to heparin. The hydrogel may contain covalent and non-covalent crosslinks.

  14. Heritable and cancer risks of exposures to anticancer drugs: inter-species comparisons of covalent deoxyribonucleic acid-binding agents.

    PubMed

    Vogel, E W; Barbin, A; Nivard, M J; Stack, H F; Waters, M D; Lohman, P H

    1998-05-25

    In the past years, several methodologies were developed for potency ranking of genotoxic carcinogens and germ cell mutagens. In this paper, we analyzed six sub-classes of covalent deoxyribonucleic acid (DNA) binding antineoplastic drugs comprising a total of 37 chemicals and, in addition, four alkyl-epoxides, using four approaches for the ranking of genotoxic agents on a potency scale: the EPA/IARC genetic activity profile (GAP) database, the ICPEMC agent score system, and the analysis of qualitative and quantitative structure-activity and activity-activity relationships (SARs, AARs) between types of DNA modifications and genotoxic endpoints. Considerations of SARs and AARs focused entirely on in vivo data for mutagenicity in male germ cells (mouse, Drosophila), carcinogenicity (TD50s) and acute toxicity (LD50s) in rodents, whereas the former two approaches combined the entire database on in vivo and in vitro mutagenicity tests. The analysis shows that the understanding and prediction of rank positions of individual genotoxic agents requires information on their mechanism of action. Based on SARs and AARs, the covalent DNA binding antineoplastic drugs can be divided into three categories. Category 1 comprises mono-functional alkylating agents that primarily react with N7 and N3 moieties of purines in DNA. Efficient DNA repair is the major protective mechanism for their low and often not measurable genotoxic effects in repair-competent germ cells, and the need of high exposure doses for tumor induction in rodents. Due to cell type related differences in the efficiency of DNA repair, a strong target cell specificity in various species regarding the potency of these agents for adverse effects is found. Three of the four evaluation systems rank category 1 agents lower than those of the other two categories. Category 2 type mutagens produce O-alkyl adducts in DNA in addition to N-alkyl adducts. In general, certain O-alkyl DNA adducts appear to be slowly repaired, or

  15. Extractive and oxidative removal of copper bound to humic acid in soil.

    PubMed

    Hwang, Bo-Ram; Kim, Eun-Jung; Yang, Jung-Seok; Baek, Kitae

    2015-04-01

    Copper (Cu) is often found strongly bound to natural organic matter (NOM) in soil through the formation of strong Cu-NOM complexes. Therefore, in order to successfully remediate Cu-contaminated soils, effective removal of Cu bound to soil organic matter should be considered. In this study, we investigated soil washing methods for Cu removal from a synthetic Cu-contaminated model silica soil coated with humic acid (HA) and from field contaminated soil. Various reagents were studied to extract Cu bound to NOM, which included oxidant (H2O2), base (NaOH), and chelating agents (citric acid and ethylenediaminetetraacetic acid (EDTA)). Among the wash reagents, EDTA extracted Cu most effectively since EDTA formed very strong complexes with Cu, and Cu-HA complexes were transformed into Cu-EDTA complexes. NaOH extracted slightly less Cu compared to EDTA. HA was effectively extracted from the model soil under strongly alkaline conditions with NaOH, which seemed to concurrently release Cu bound to HA. However, chemical oxidation with H2O2 was not effective at destroying Cu-HA complexes. Fourier transform infrared spectroscopy and elemental analysis revealed that chelating agents such as citrate and EDTA were adsorbed onto the model soil via possible complexation between HA and extraction agents. The extraction of Cu from a field contaminated soil sample was effective with chelating agents, while oxidative removal with H2O2 and extractive removal with NaOH separated negligible amounts of Cu from the soil. Based on these results, Cu bound to organic matter in soil could be effectively removed by chelating agents, although remnant agents may remain in the soil.

  16. Prediction of ultra-high ON/OFF ratio nanoelectromechanical switches from covalently bound C60 chains: An ab initio study

    NASA Astrophysics Data System (ADS)

    Kim, Han; Kim, Yong-Hoon

    2013-03-01

    Applying a first-principles computational approach combining density-functional theory and matrix Green's function calculations, we analyze the microscopic origin of the switching behavior experimentally observed for the fullerene C60 chains oligomerized via [2 +2] cycloaddition and propose a scheme to significantly improve the device performance. Considering infinite C60 chains, we first confirm that bound C60 chains with significant orbital hybridizations and band formation should in principle induce a higher conductance state. However, we find that large metal-C60 distances adopted in the scanning tunneling microscope (STM) setup can result in the experimentally observed opposite switching state assignment. The switching ordering and ratio is in fact found to sensitively depend on the STM tip metal species and the associated band bending direction in the C60-STM tip vacuum gap. We demonstrate that a junction configuration in which the C60-STM tip distance is maintained at short distances via nanoelectromechanical tip movement can achieve a metal-independent and drastically improved switching performance based on the intrinsically better electronic connectivity in the oligomerized C60 chains. This work was supported by Basic Science Research Grant (No. 2012R1A1A2044793) and EDISON Program (No. 2012M3C1A6035684) of the NRF of Korea.

  17. Crystal structure of the tumor-promoter okadaic acid bound to protein phosphatase-1.

    PubMed

    Maynes, J T; Bateman, K S; Cherney, M M; Das, A K; Luu, H A; Holmes, C F; James, M N

    2001-11-23

    Protein phosphatase-1 (PP1) plays a key role in dephosphorylation in numerous biological processes such as glycogen metabolism, cell cycle regulation, smooth muscle contraction, and protein synthesis. Microorganisms produce a variety of inhibitors of PP1, which include the microcystin class of inhibitors and okadaic acid, the latter being the major cause of diarrhetic shellfish poisoning and a powerful tumor promoter. We have determined the crystal structure of the molecular complex of okadaic acid bound to PP1 to a resolution of 1.9 A. This structure reveals that the acid binds in a hydrophobic groove adjacent to the active site of the protein and interacts with basic residues within the active site. Okadaic acid exhibits a cyclic structure, which is maintained via an intramolecular hydrogen bond. This is reminiscent of other macrocyclic protein phosphatase inhibitors. The inhibitor-bound enzyme shows very little conformational change when compared with two other PP1 structures, except in the inhibitor-sensitive beta12-beta13 loop region. The selectivity of okadaic acid for protein phosphatases-1 and -2A but not PP-2B (calcineurin) may be reassessed in light of this study.

  18. Intra-albumin migration of bound fatty acid probed by spin label ESR

    SciTech Connect

    Gurachevsky, Andrey . E-mail: a.gurachevsky@medinnovation.de; Shimanovitch, Ekaterina; Gurachevskaya, Tatjana; Muravsky, Vladimir

    2007-09-07

    Conventional ESR spectra of 16-doxyl-stearic acid bound to bovine and human serum albumin were recorded at different temperatures in order to investigate the status of spin-labeled fatty acid in the interior of the protein globule. A computer spectrum simulation of measured spectra, performed by non-linear least-squares fits, clearly showed two components corresponding to strongly and weakly immobilized fatty acid molecules. The two-component model was verified on spectra measured at different pH. Thermodynamic parameters of the spin probe exchange between two spin probe states were analyzed. It was concluded that at physiological conditions, fatty acid molecules permanently migrate in the globule interior between the specific binding sites and a space among albumin domains.

  19. Crystal structure of axolotl (Ambystoma mexicanum) liver bile acid-binding protein bound to cholic and oleic acid.

    PubMed

    Capaldi, Stefano; Guariento, Mara; Perduca, Massimiliano; Di Pietro, Santiago M; Santomé, José A; Monaco, Hugo L

    2006-07-01

    The family of the liver bile acid-binding proteins (L-BABPs), formerly called liver basic fatty acid-binding proteins (Lb-FABPs) shares fold and sequence similarity with the paralogous liver fatty acid-binding proteins (L-FABPs) but has a different stoichiometry and specificity of ligand binding. This article describes the first X-ray structure of a member of the L-BABP family, axolotl (Ambystoma mexicanum) L-BABP, bound to two different ligands: cholic and oleic acid. The protein binds one molecule of oleic acid in a position that is significantly different from that of either of the two molecules that bind to rat liver FABP. The stoichiometry of binding of cholate is of two ligands per protein molecule, as observed in chicken L-BABP. The cholate molecule that binds buried most deeply into the internal cavity overlaps well with the analogous bound to chicken L-BABP, whereas the second molecule, which interacts with the first only through hydrophobic contacts, is more external and exposed to the solvent.

  20. Structure, Energy, and Vibrational Frequencies of Oxygen Allotropes On (n ≤ 6) in the Covalently Bound and van der Waals Forms: Ab Initio Study at the CCSD(T) Level.

    PubMed

    Gadzhiev, Oleg B; Ignatov, Stanislav K; Kulikov, Mikhail Yu; Feigin, Alexander M; Razuvaev, Alexey G; Sennikov, Peter G; Schrems, Otto

    2013-01-08

    Recent experiments on the UV and electron beam irradiation of solid O2 reveals a series of IR features near the valence antisymmetric vibration band of O3 which are frequently interpreted as the formation of unusual On allotropes in the forms of weak complexes or covalently bound molecules. In order to elucidate the question of the nature of the irradiation products, the structure, relative energies, and vibrational frequencies of various forms of On (n = 1-6) in the singlet, triplet, and, in some cases, quintet states were studied using the CCSD(T) method up to the CCSD(T,full)/cc-pCVTZ and CCSD(T,FC)/aug-cc-pVTZ levels. The results of calculations demonstrate the existence of stable highly symmetric structures O4 (D3h), O4 (D2d), and O6 (D3d) as well as the intermolecular complexes O2·O2, O2·O3, and O3·O3 in different conformations. The calculations show that the local minimum corresponding to the O3···O complex is quite shallow and cannot explain the ν3 band features close to 1040 cm(-1), as was proposed previously. For the ozone dimer, a new conformer was found which is more stable than the structure known to date. The effect of the ozone dimer on the registered IR spectra is discussed.

  1. "Stereoscopic" 2D super-microporous phosphazene-based covalent organic framework: Design, synthesis and selective sorption towards uranium at high acidic condition.

    PubMed

    Zhang, Shuang; Zhao, Xiaosheng; Li, Bo; Bai, Chiyao; Li, Yang; Wang, Lei; Wen, Rui; Zhang, Meicheng; Ma, Lijian; Li, Shoujian

    2016-08-15

    So far, only five primary elements (C, H, O, N and B) and two types of spatial configuration (C2-C4, C6 and Td) are reported to build the monomers for synthesis of covalent organic frameworks (COFs), which have partially limited the route selection for accessing COFs with new topological structure and novel properties. Here, we reported the design and synthesis of a new "stereoscopic" 2D super-microporous phosphazene-based covalent organic framework (MPCOF) by using hexachorocyclotriphosphazene (a P-containing monomer in a C3-like spatial configuration) and p-phenylenediamine (a linker). The as-synthesized MPCOF shows high crystallinity, relatively high heat and acid stability and distinctive super-microporous structure with narrow pore-size distributions ranging from 1.0-2.1nm. The results of batch sorption experiments with a multi-ion solution containing 12 co-existing cations show that in the pH range of 1-2.5, MPCOF exhibits excellent separation efficiency for uranium with adsorption capacity more than 71mg/g and selectivity up to record-breaking 92%, and furthermore, an unreported sorption capacity (>50mg/g) and selectivity (>60%) were obtained under strong acidic condition (1M HNO3). Studies on sorption mechanism indicate that the uranium separation by MPCOF in acidic solution is realized mainly through both intra-particle diffusion and size-sieving effect.

  2. Structural Insights into Bound Water in Crystalline Amino Acids: Experimental and Theoretical (17)O NMR.

    PubMed

    Michaelis, Vladimir K; Keeler, Eric G; Ong, Ta-Chung; Craigen, Kimberley N; Penzel, Susanne; Wren, John E C; Kroeker, Scott; Griffin, Robert G

    2015-06-25

    We demonstrate here that the (17)O NMR properties of bound water in a series of amino acids and dipeptides can be determined with a combination of nonspinning and magic-angle spinning experiments using a range of magnetic field strengths from 9.4 to 21.1 T. Furthermore, we propose a (17)O chemical shift fingerprint region for bound water molecules in biological solids that is well outside the previously determined ranges for carbonyl, carboxylic, and hydroxyl oxygens, thereby offering the ability to resolve multiple (17)O environments using rapid one-dimensional NMR techniques. Finally, we compare our experimental data against quantum chemical calculations using GIPAW and hybrid-DFT, finding intriguing discrepancies between the electric field gradients calculated from structures determined by X-ray and neutron diffraction.

  3. Characterization of covalent addition products of chlorogenic acid quinone with amino acid derivatives in model systems and apple juice by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry.

    PubMed

    Schilling, Susanne; Sigolotto, Constance-Isabelle; Carle, Reinhold; Schieber, Andreas

    2008-01-01

    High-performance liquid chromatography (HPLC) coupled to electrospray ionization tandem mass spectrometry (ESI-MS(n)) was used to study the covalent interactions between chlorogenic acid (CQA) quinone and two amino acid derivatives, tert-butyloxycarbonyl-L-lysine and N-acetyl-L-cysteine. In a model system at pH 7.0, the formation of covalent addition products was demonstrated for both derivatives. The addition product of CQA dimer and tert-butyloxycarbonyl-L-lysine was characterized by LC/MS(n) as a benzacridine structure. For N-acetyl-L-cysteine, mono- and diaddition products at the thiol group with CQA quinone were found. In apple juice at pH 3.6, covalent interactions of CQA quinone were observed only with N-acetyl-L-cysteine. Taking together these results and those reported by other groups it can be concluded that covalent interactions of amino side chains with phenolic compounds could contribute to the reduction of the allergenic potential of certain food proteins.

  4. Dynamic Covalent Nanoparticle Building Blocks

    PubMed Central

    2016-01-01

    Abstract Rational and generalisable methods for engineering surface functionality will be crucial to realising the technological potential of nanomaterials. Nanoparticle‐bound dynamic covalent exchange combines the error‐correcting and environment‐responsive features of equilibrium processes with the stability, structural precision, and vast diversity of covalent chemistry, defining a new and powerful approach for manipulating structure, function and properties at nanomaterial surfaces. Dynamic covalent nanoparticle (DCNP) building blocks thus present a whole host of possibilities for constructing adaptive systems, devices and materials that incorporate both nanoscale and molecular functional components. At the same time, DCNPs have the potential to reveal fundamental insights regarding dynamic and complex chemical systems confined to nanoscale interfaces. PMID:27312526

  5. Relevant insight of surface characterization techniques to study covalent grafting of a biopolymer to titanium implant and its acidic resistance

    NASA Astrophysics Data System (ADS)

    D'Almeida, Mélanie; Amalric, Julien; Brunon, Céline; Grosgogeat, Brigitte; Toury, Bérangère

    2015-02-01

    Peri-implant bacterial infections are the main cause of complications in dentistry. Our group has previously proposed the attachment of chitosan on titanium implants via a covalent bond to improve its antibacterial properties while maintaining its biocompatibility. A better knowledge of the coating preparation process allows a better understanding of the bioactive coating in biological conditions. In this work, several relevant characterization techniques were used to assess an implant device during its production phase and its resistance in natural media at different pH. The titanium surface was functionalized with 3-aminopropyltriethoxysilane (APTES) followed by grafting of an organic coupling agent; succinic anhydride, able to form two covalent links, with the substrate through a Ti-O-Si bond and the biopolymer through a peptide bond. Each step of the coating synthesis as well as the presence confirmation of the biopolymer on titanium after saliva immersion was followed by FTIR-ATR, SEM, EDS, 3D profilometry, XPS and ToF-SIMS analyses. Results allowed to highlight the efficiency of each step of the process, and to propose a mechanism occurring during the chitosan coating degradation in saliva media at pH 5 and at pH 3.

  6. Sequential photochemical and microbial degradation of organic molecules bound to humic acid

    SciTech Connect

    Amador, J.A.; Zika, R.G. ); Alexander, M. )

    1989-11-01

    We studied the effects of photochemical processes on the mineralization by soil microorganisms of (2-{sup 14}C)glycine bound to soil humic acid. Microbial mineralization of these complexes in the dark increased inversely with the molecular weight of the complex molecules. Sunlight irradiation of glycine-humic acid complexes resulted in loss of absorbance in the UV range and an increase in the amount of {sup 14}C-labeled low-molecular-weight photoproducts and the rate and extent of mineralization. More than half of the radioactivity in the low-molecular-weight photoproducts appears to be associated with carboxylic acids. Microbial mineralization of the organic carbon increased with solar flux and was proportional to the loss of A{sub 330}. Mineralization was proportional to the percentage of the original complex that was converted to low-molecular-weight photoproducts. Only light at wavelengths below 380 nm had an effect on the molecular weight distribution of the products formed from the glycine-humic acid complexes and on the subsequent microbial mineralization. Our results indicate that photochemical processes generate low-molecular-weight, readily biodegradable molecules from high-molecular-weight complexes of glycine with humic acid.

  7. BMAA detected as neither free nor protein bound amino acid in blue mussels.

    PubMed

    Rosén, Johan; Westerberg, Erik; Schmiedt, Sebastian; Hellenäs, Karl-Erik

    2016-01-01

    The results of this study imply that β-methylamino-alanine (BMAA) obtained from extracts of blue mussels from the Swedish west coast is neither free nor protein bound. The results were obtained by separation (precipitation and ultrafiltration) of low and high molecular weight compounds from neutral extracts of blue mussels, and treatment of these extracts with low and high concentrations of acids, varying time and temperature. The main portion of BMAA was obtained from the low molecular weight fraction, released or formed at 95 °C in dilute acids. The measured amount of BMAA did not increase by strong acid treatment. Lysine was used as reference and was only released at significant amounts when treating the high molecular weight fraction with concentrated acid. The results also indicated that breakage of peptide bonds was not involved in the formation/release of BMAA in these extracts unless any BMAA peptide bond would be significantly more susceptible to dilute acid than e.g. the monitored lysine peptide bond. BMAA was measured using isotope dilution and detection of the underivatized compound by HILIC-UHPLC-MS/MS (Hydrophilic Interaction Liquid Chromatography, Ultra-High Performance Liquid Chromatography, tandem Mass Spectrometry). The findings might add to the understanding of conflicting data in the literature regarding the occurrence of BMAA, and have implications for studies on possible biomagnification of BMAA in the food chain and bioavailability from food.

  8. Total and lipid-bound serum sialic acid as markers for carcinoma of the uterine cervix.

    PubMed

    Vivas, I; Spagnuolo, L; Palacios, P

    1992-08-01

    Concentrations of total sialic acid (TSA) and lipid-bound sialic acid (LSA) were determined in serum samples from 88 patients with squamous cell carcinoma of the cervix, 26 normal subjects, and 44 patients with benign uterine or ovarian disease. TSA concentrations in patients with cervical cancer were found to correlate with advanced-stage disease. LSA concentrations were only increased in stage IV of the disease. Sensitivity of the test for stage IB was zero for TSA and 27% for LSA. The specificity of both markers was about 80% due to a low incidence of false-positive values in the pathologic control group. Measurements of TSA or LSA appear to be of no value for the early detection of cervical cancer or to complement the clinical staging of this tumor.

  9. Crystal structure of a membrane-bound l-amino acid deaminase from Proteus vulgaris.

    PubMed

    Ju, Yingchen; Tong, Shuilong; Gao, Yongxiang; Zhao, Wei; Liu, Qi; Gu, Qiong; Xu, Jun; Niu, Liwen; Teng, Maikun; Zhou, Huihao

    2016-09-01

    l-amino acid oxidases/deaminases (LAAOs/LAADs) are a class of oxidoreductases catalyzing the oxidative deamination of l-amino acids to α-keto acids. They are widely distributed in eukaryotic and prokaryotic organisms, and exhibit diverse substrate specificity, post-translational modifications and cellular localization. While LAAOs isolated from snake venom have been extensively characterized, the structures and functions of LAAOs from other species are largely unknown. Here, we reported crystal structure of a bacterial membrane-bound LAAD from Proteus vulgaris (pvLAAD) in complex with flavin adenine dinucleotide (FAD). We found that the overall fold of pvLAAD does not resemble typical LAAOs. Instead it, is similar to d-amino acid oxidases (DAAOs) with an additional hydrophobic insertion module on protein surface. Structural analysis and liposome-binding assays suggested that the hydrophobic module serves as an extra membrane-binding site for LAADs. Bacteria from genera Proteus and Providencia were found to encode two classes of membrane-bound LAADs. Based on our structure, the key roles of residues Q278 and L317 in substrate selectivity were proposed and biochemically analyzed. While LAADs on the membrane were proposed to transfer electrons to respiratory chain for FAD re-oxidization, we observed that the purified pvLAAD could generate a significant amount of hydrogen peroxide in vitro, suggesting it could use dioxygen to directly re-oxidize FADH2 as what typical LAAOs usually do. These findings provide a novel insights for a better understanding this class of enzymes and will help developing biocatalysts for industrial applications.

  10. 3-Nitropropionic Acid is a Suicide Inhibitor of MitochondrialRespiration that, Upon Oxidation by Complex II, Forms a Covalent AdductWith a Catalytic Base Arginine in the Active Site of the Enzyme

    SciTech Connect

    Huang, Li-shar; Sun, Gang; Cobessi, David; Wang, Andy C.; Shen,John T.; Tung, Eric Y.; Anderson, Vernon E.; Berry, Edward A.

    2005-12-01

    We report three new structures of mitochondrial respiratory Complex II (succinate ubiquinone oxidoreductase, E.C. 1.3.5.1) at up to 2.1 {angstrom} resolution, with various inhibitors. The structures define the conformation of the bound inhibitors and suggest the residues involved in substrate binding and catalysis at the dicarboxylate site. In particular they support the role of Arg297 as a general base catalyst accepting a proton in the dehydrogenation of succinate. The dicarboxylate ligand in oxaloacetate-containing crystals appears to be the same as that reported for Shewanella flavocytochrome c treated with fumarate. The plant and fungal toxin 3-nitropropionic acid, an irreversible inactivator of succinate dehydrogenase, forms a covalent adduct with the side chain of Arg297. The modification eliminates a trypsin cleavage site in the flavoprotein, and tandem mass spectroscopic analysis of the new fragment shows the mass of Arg 297 to be increased by 83 Da and to have potential of losing 44 Da, consistent with decarboxylation, during fragmentation.

  11. The DNA invertase Gin of phage Mu: formation of a covalent complex with DNA via a phosphoserine at amino acid position 9.

    PubMed Central

    Klippel, A; Mertens, G; Patschinsky, T; Kahmann, R

    1988-01-01

    The DNA invertase Gin encoded by bacteriophage Mu catalyses efficient site-specific recombination between inverted repeat sequences (IR) in vivo and in vitro in the presence of the host factor FIS and the recombinational enhancer. We demonstrate that Gin alone is able to introduce single strand breaks into duplex DNA fragments which contain the IR sequence. Strand cleavage is site-specific and can occur on either strand within the IR. Cleaved molecules contain Gin covalently attached to DNA. The covalent complex is formed through linkage of Gin to the 5' DNA phosphate at the site of the break via a phosphoserine. Extensive site-directed mutational analysis showed that all mutants altered at serine position 9 were completely recombination deficient in vivo and in vitro. The mutant proteins bind to DNA but lack topoisomerase activity and are unable to introduce nicks. This holds true even for a conservative amino acid substitution at position 9. We conclude that serine at position 9 is part of the catalytic domain of Gin. The intriguing finding that the DNA invertase Gin has the same catalytic center as the DNA resolvases that promote deletions without recombinational enhancer and host factor FIS is discussed. Images PMID:3042382

  12. Caffeic acid phenethyl ester (CAPE) revisited: Covalent modulation of XPO1/CRM1 activities and implication for its mechanism of action.

    PubMed

    Wu, Sijin; Zhang, Keren; Qin, Hongqiang; Niu, Mingshan; Zhao, Weijie; Ye, Mingliang; Zou, Hanfa; Yang, Yongliang

    2016-11-08

    Caffeic acid phenethyl ester (CAPE) is the bioactive constituent of propolis from honeybee hives and is well known for its anti-inflammatory, anticarcinogenic, antioxidant, and immunomodulatory properties. Herein, we revisited the cellular mechanism underlying the diverse biological effects of CAPE. We demonstrated that XPO1/CRM1, a major nuclear export receptor, is a cellular target of CAPE. Through nuclear export functional assay, we observed a clear shift of XPO1 cargo proteins from a cytoplasmic localization to nucleus when treated with CAPE. In particular, we showed that CAPE could specifically target the non-catalytic and conserved Cys(528) of XPO1 through the means of mass spectrometric analysis. In addition, we demonstrated that the mutation of Cys(528) residue in XPO1 could rescue the nuclear export defects caused by CAPE. Furthermore, we performed position-restraint molecular dynamics simulation to show that the Michael acceptor moiety of CAPE is the warhead to enable covalent binding with Cys(528) residue of XPO1. The covalent modulation of nuclear export by CAPE may explain its diverse biological effects. Our findings may have general implications for further investigation of CAPE and its structural analogs.

  13. Total and lipid-bound serum sialic acid in benign and malignant breast disease.

    PubMed

    Romppanen, J; Eskelinen, M; Tikanoja, S; Mononen, I

    1997-01-01

    Elevation in the total sialic acid (TSA), TSA/total protein (TSA/TP) and lipid-bound sialic acid (LASA) concentration in serum occurs in breast cancer and we have studied the applicability of the assays in classification of undefined breast tumors. Sialic acid was determined by HPLC and the statistical evaluation included the receiver operating characteristic (ROC) and Youden's index analyses. In cancer patients, the serum LASA and TSA concentration was significantly higher (p < 0.05) than in patients with benign breast disease and all the markers were significantly higher (p < 0.0001) than in normal controls. All the markers had a low accuracy (AUCs < 0.75) in differentiating between breast cancer and benign breast disease and at the specificity level of 0.95 the corresponding sensitivities were 0.32 (TSA), 0.14 (TSA/TP) and 0.23 (LASA). The results indicate that both breast cancer and benign breast disease cause elevation of TSA, TSA/TP and LASA values in serum and do not provide reliable classification of undefined breast tumors.

  14. Environmental risk assessment of acid rock drainage under uncertainty: The probability bounds and PHREEQC approach.

    PubMed

    Betrie, Getnet D; Sadiq, Rehan; Nichol, Craig; Morin, Kevin A; Tesfamariam, Solomon

    2016-01-15

    Acid rock drainage (ARD) is a major environmental problem that poses significant environmental risks during and after mining activities. A new methodology for environmental risk assessment based on probability bounds and a geochemical speciation model (PHREEQC) is presented. The methodology provides conservative and non-conservative ways of estimating risk of heavy metals posed to selected endpoints probabilistically, while propagating data and parameter uncertainties throughout the risk assessment steps. The methodology is demonstrated at a minesite located in British Columbia, Canada. The result of the methodology for the case study minesite shows the fate-and-transport of heavy metals is well simulated in the mine environment. In addition, the results of risk characterization for the case study show that there is risk due to transport of heavy metals into the environment.

  15. Serum lipid-bound sialic acid as a marker in breast cancer.

    PubMed

    Dnistrian, A M; Schwartz, M K; Katopodis, N; Fracchia, A A; Stock, C C

    1982-11-01

    The reliability of lipid-bound sialic acid (LSA) as a marker in breast cancer was evaluated in 78 normal subjects, 106 patients with benign breast disease, 64 patients with primary operable breast cancer, and 61 patients with recurrent metastatic breast cancer. LSA levels were determined before and after mastectomy and during chemotherapy in selected patients to determine the value of LSA in monitoring therapy and predicting response. LSA levels greater than 20 mg/dl were not seen in normal subjects but were present in patients with benign breast disease (13%), primary breast cancer (47%) and recurrent metastatic breast cancer (62%). LSA levels decreased after initiation of chemotherapy and remained low in patients clinically disease-free. Recurrences were associated with elevated LSA in patients failing chemotherapy or endocrine ablative surgery. LSA measurements appeared to be of limited value in the detection of breast cancer but serial measurements may be useful in assessing disease progression and identifying patients resistant to therapy.

  16. Covalently Linking Poly(Lactic-co-Glycolic Acid) Nanoparticles to Microbubbles Before Intravenous Injection Improves Their Ultrasound-Targeted Delivery to Skeletal Muscle

    PubMed Central

    Burke, Caitlin W.; Hsiang, Yu-Han J.; Alexander, Eben; Kilbanov, Alexander L.; Price, Richard J.

    2011-01-01

    Intravenously-injected nanoparticles can be delivered to skeletal muscle through capillary pores created by the activation of microbubbles with ultrasound; however, strategies that utilize co-injections of free microbubbles and nanoparticles are limited by nanoparticle dilution in the bloodstream. Here, we tested whether fluorescently-labeled (VT680; far-red fluorophore) nanoparticle [~150nm; poly(lactic-co-glycolic acid)] delivery to skeletal muscle can be improved by covalently linking them to albumin-shelled microbubbles in a composite agent formulation. Studies were performed using an experimental model of peripheral arterial disease, wherein the right and left femoral arteries of BalbC mice were surgically ligated. Four days after arterial ligation, composite agents, co-injected microbubbles and nanoparticles, or nanoparticles alone were administered intravenously and 1 MHz pulsed ultrasound was applied to the left hindlimb. Nanoparticle delivery was assessed at 0, 1, 4, and 24 hrs post-treatment by fluorescence-mediated tomography. Within the co-injection group, as expected, both microbubbles and ultrasound were required for nanoparticle delivery to skeletal muscle. Within the composite agent group, nanoparticle delivery was enhanced 8- to 18-fold over “no ultrasound” controls, depending on the time of measurement. A maximum of 7.2% of initial nanoparticle dose per gram tissue (ID/g) was delivered at 1 hr in the composite agent group, which was significantly greater than in the co-injection group (3.6% ID/g). We conclude that covalently linking 150 nm diameter poly(lactic-co-glycolic acid) nanoparticles to microbubbles before intravenous injection can improve their delivery to skeletal muscle. PMID:21456081

  17. Amino acid residues 1101-1105 of the isotypic region of human C4B is important to the covalent binding activity of complement component C4.

    PubMed

    Reilly, B D; Levine, R P; Skanes, V M

    1991-11-01

    The C4A and C4B isotypes of human C4 show certain functional differences that stem from their relative preference for transacylation to amino (-NH2) vs hydroxyl (-OH) nucleophiles, respectively, on complement-activating surfaces. Comparison of amino acid sequences of the alpha-chain fragment of C4, C4d, has shown C4A- and C4B-specific sequences at residues 1101-1106 are the only consistent structural difference between isotype, i.e., Pro, Cys, Pro, Val, Leu, Asp in C4A and Leu, Ser, Pro, Val Ile, His in C4B. These residues may be responsible either in part or entirely for properties associated with isotype. To examine the functional role of residues 1101-1106 in C4B-mediated hemolysis, whole serum or immunopurified human C4 with allotypes, A3B1, A3, B2B1, or B1 were preincubated in the presence or absence of an antipeptide mAb (BII-1) specific for amino acid residues 1101-1105 of C4B. Sensitized sheep E and C4-deficient guinea pig serum was then added and lysis measured by absorbance at 415 nm. Our results show lysis of antibody-sensitized sheep E is inhibited by antibody and C4B2B1, C4B1, or C4A3B1 but not antibody and C4A3. The interference of hemolysis by BII-1 could not be explained by inhibition of activation of C4B or inhibition of C3 or C5 convertase activity. Furthermore, results from uptake experiments show that BII-1 interferes with the covalent binding activity of C4B, indicating residues 1101-1105 play a role in the covalent binding reaction of C4B to the target E-antibody complex.

  18. Hyaluronic acid-bound letrozole nanoparticles restore sensitivity to letrozole-resistant xenograft tumors in mice.

    PubMed

    Nair, Hareesh B; Huffman, Steven; Veerapaneni, Poornachand; Kirma, Nameer B; Binkley, Peter; Perla, Rao P; Evans, Dean B; Tekmal, Rajeshwar R

    2011-05-01

    Letrozole is a potent aromatase inhibitor and superior to other defined selective estrogen receptor modulators such as tamoxifen in treating hormone-responsive postmenopausal breast cancer patients. Patients who receive this drug may become insensitive to the effects of estrogen deprivation induced by letrozole. Letrozole has known side effects on bone metabolism due to systemic ablation of estrogen production. The purpose of this study was to examine the therapeutic efficacy of hyaluronic acid-bound letrozole nanoparticles (HA-Letr-NPs) in restoring sensitivity to letrozole-resistant (LTLT-Ca) cells. To target letrozole to LTLT-Ca cells, hyaluronic acid-bound letrozole nanoparticles were prepared by nanoprecipitation using biodegradable PLGA-PEG co-polymer. Binding specificity of HA to CD44 on the cell surface was analyzed in vitro using FITC-CD44 Ab and CD44 siRNA by flow cytometry. Effects on in vitro cytotoxicity and aromatase enzymatic activity of HA-Letr-NPs were performed in MCF-7 breast cancer cells, MCF-7 cells over-expressing aromatase (MCF-7/Aro), and LTLT-Ca cells resistant to letrozole. Preclinical efficacy of HA-Letr-NPs was examined in mice using LTLT-Ca xenograft tumors. HA-Letr-NPs were restricted to a maximum size of 100 nm. The in vitro drug release assay showed that the highest released concentration of letrozole occurred after 23 hours at 37 degrees C in phosphate-buffered saline. HA-Letr-NPs on MCF-7/Aro and LTLT-Ca cells showed an IC50 of 2 microM and 5 microM, respectively. HA-Letr-NPs were more efficacious in inhibiting tumor growth, reducing in vitro cellular and in vivo tumor aromatase enzyme activity more than the corresponding Letr-NPs or letrozole. HA-Letr-NPs restored and maintained a prolonged sensitivity and targeted delivery of letrozole in letrozole-resistant tumors in vivo.

  19. Proteolytic processing of the Saccharomyces cerevisiae cell wall protein Scw4 regulates its activity and influences its covalent binding to glucan.

    PubMed

    Grbavac, Antonija; Čanak, Iva; Stuparević, Igor; Teparić, Renata; Mrša, Vladimir

    2017-03-01

    Yeast cell wall contains a number of proteins that are either non-covalently (Scw-proteins), or covalently (Ccw-proteins) bound to β-1,3-glucan, the latter either through GPI-anchors and β-1,6-glucan, or by alkali labile ester linkages between γ-carboxyl groups of glutamic acid and hydroxyl groups of glucoses (Pir-proteins). It was shown that a part of Scw4, previously identified among the non-covalently bound cell wall proteins, was covalently attached to wall polysaccharides by a so far unknown alkali sensitive linkage. Thus Scw4 could be released from cell walls by treatments with hot SDS, mild alkali, or β-1,3-glucanases, respectively. It was further shown that non-covalently bound Scw4 (SDS released) underwent the Kex2 proteolytic processing. In this paper it was demonstrated that Scw4 was also processed by yapsins at a position 9 amino acids downstream of the Kex2 cleavage site. Scw4 cleaved at the yapsin site had a markedly lower potential for covalent attachment to glucan. The overproduction of the fully processed form of Scw4 lead to high mortality, particularly in the stationary phase of growth, and to markedly increased cell size. On the other hand, the overproduction of Scw4 processed only by Kex2 or not processed at all had no apparent change in mortality indicating that only the smallest, completely mature form of Scw4 had the activity leading to observed phenotype changes.

  20. Enzymatic amplification-free nucleic acid hybridisation sensing on nanostructured thick-film electrodes by using covalently attached methylene blue.

    PubMed

    García-González, Raquel; Costa-García, Agustín; Fernández-Abedul, M Teresa

    2015-09-01

    Amplification-free (referring to enzymatic amplification step) detection methodologies are increasing in biosensor development due to the need of faster and simpler protocols. However, for maintaining sensitivity without this step, highly detectable molecules or very sensitive detection techniques are required. The nanostructuration of transducer surfaces with carbon nanotubes (CNTs), gold nanoparticles (AuNPs) or both in nanohybrid configurations has been employed in this work for DNA hybridisation sensing purposes. Methylene blue (MB), covalently attached to single stranded DNA, (ssDNA) was incubated with a complementary sequence immobilized on nanostructured screen-printed electrodes (AuSPEs). Although CNTs can increase notoriously the signal of the marker, adsorptive properties should also be considered when bioassays are performed because non-specific adsorption (NSA) phenomena are magnified. In this work, strategies for decreasing NSA were thoroughly evaluated for the detection of Mycoplasma pneumoniae (MP) on CNTs-nanostructured screen-printed electrodes. Among them, the employ of UV-radiation or long incubation times (72h) allowed obtaining higher signals for the complementary strand with respect to the non-complementary one. The use of CNTs/AuNPs nanohybrids, together with the use of streptavidin-biotin (ST-B) interaction allows the higher differentiation (with a 3.5 ratio) in the genosensing of M. pneumoniae.

  1. Novel characterisation of minor α-linolenic acid isomers in linseed oil by gas chromatography and covalent adduct chemical ionisation tandem mass spectrometry.

    PubMed

    Gómez-Cortés, P; Brenna, J T; Lawrence, P; de la Fuente, M A

    2016-06-01

    Discrimination between polyunsaturated fatty acid isomers with three double bonds is a great challenge, due to structural similarities and similar polarities. In this study, we report the identification of four minor geometrical isomers of α-linolenic acid (ALA) present in linseed oil samples: (9E,12Z,15E)-, (9Z,12Z,15E)-, (9Z,12E,15Z)- and (9E,12Z,15Z)-octadeca-9,12,15-trienoic acids, chromatographically resolved by gas chromatography (GC) using a new and highly polar ionic phase column (SLB-IL111). Gas chromatography-electron ionisation mass spectrometry (GC-EIMS) determined that the four unknown compounds were C18:3 n-3 isomers. The positional 9-12-15 C18:3 configuration was achieved by covalent adduct chemical ionisation tandem mass spectrometry (CACI-MS/MS) while geometrical configuration was established with analytical standards based on relative retention. We hypothesised that these isomers are formed during linseed oil deodorisation and postulate preferred and unfavoured isomerisation pathways of ALA.

  2. Covalent Defects Restrict Supramolecular Self-Assembly of Homopolypeptides: Case Study of β2-Fibrils of Poly-L-Glutamic Acid

    PubMed Central

    Fulara, Aleksandra; Hernik, Agnieszka; Nieznańska, Hanna; Dzwolak, Wojciech

    2014-01-01

    Poly-L-glutamic acid (PLGA) often serves as a model in studies on amyloid fibrils and conformational transitions in proteins, and as a precursor for synthetic biomaterials. Aggregation of PLGA chains and formation of amyloid-like fibrils was shown to continue on higher levels of superstructural self-assembly coinciding with the appearance of so-called β2-sheet conformation manifesting in dramatic redshift of infrared amide I′ band below 1600 cm−1. This spectral hallmark has been attributed to network of bifurcated hydrogen bonds coupling C = O and N-D (N-H) groups of the main chains to glutamate side chains. However, other authors reported that, under essentially identical conditions, PLGA forms the conventional in terms of infrared characteristics β1-sheet structure (exciton-split amide I′ band with peaks at ca. 1616 and 1683 cm−1). Here we attempt to shed light on this discrepancy by studying the effect of increasing concentration of intentionally induced defects in PLGA on the tendency to form β1/β2-type aggregates using infrared spectroscopy. We have employed carbodiimide-mediated covalent modification of Glu side chains with n-butylamine (NBA), as well as electrostatics-driven inclusion of polylysine chains, as two different ways to trigger structural defects in PLGA. Our study depicts a clear correlation between concentration of defects in PLGA and increasing tendency to depart from the β2-structure toward the one less demanding in terms of chemical uniformity of side chains: β1-structure. The varying predisposition to form β1- or β2-type aggregates assessed by infrared absorption was compared with the degree of morphological order observed in electron microscopy images. Our results are discussed in the context of latent covalent defects in homopolypeptides (especially with side chains capable of hydrogen-bonding) that could obscure their actual propensities to adopt different conformations, and limit applications in the field of synthetic

  3. Amino Acid Bound Surfactants: A New Synthetic Family of Polymeric Monoliths Open Up Possibilities for Chiral Separations in Capillary Electrochromatography

    PubMed Central

    He, Jun; Wang, Xiaochun; Morrill, Mike; Shamsi, Shahab A.

    2012-01-01

    By combining a novel chiral amino-acid surfactant containing acryloyl amide tail, carbamate linker and leucine head group of different chain lengths with a conventional cross linker and a polymerization technique, a new “one-pot”, synthesis for the generation of amino-acid based polymeric monolith is realized. The method promises to open up the discovery of amino-acid based polymeric monolith for chiral separations in capillary electrochromatography (CEC). Possibility of enhanced chemoselectivity for simultaneous separation of ephedrine and pseudoephedrine containing multiple chiral centers, and the potential use of this amino-acid surfactant bound column for CEC and CEC coupled to mass spectrometric detection is demonstrated. PMID:22607448

  4. Supramolecular architectures constructed by lanthanum, amino acids and 1,10-phenanthroline via non-covalent bond interactions

    NASA Astrophysics Data System (ADS)

    Zheng, Xiang-Jun; Jin, Lin-Pei

    2003-07-01

    Three supramolecular lanthanum coordination compounds of amino acids, with 1,10-phenanthroline (phen), [La 2(APA) 6(phen) 2(H 2O) 2](ClO 4) 6(phen) 4·2H 2O ( 1), [La 2(ABA) 6(phen) 2(H 2O) 2](ClO 4) 6 (phen) 6·4H 2O ( 2), and [La 2(AHA) 4(phen) 4](ClO 4) 6(phen) 4·2H 2O ( 3) (APA=3-aminopropionic acid; ABA=4-aminobutanoic acid; AHA=6-aminohexanoic acid) were synthesized and characterized by single crystal X-ray diffraction. The results show that the three coordination compounds are all composed of binuclear coordination cations built by metal-ligand coordination. Through hydrogen bonding and π-π stacking interactions, complex 1 forms a two-dimensional supramolecular sheet structure extending in the (001) plane, complex 2 forms a three-dimensional supramolecular network with many cavities occupied by ClO 4- and lattice H 2O molecules, and complex 3 forms a two-dimensional supramolecular lamellar structure in the (100) plane.

  5. Locking GTPases covalently in their functional states.

    PubMed

    Wiegandt, David; Vieweg, Sophie; Hofmann, Frank; Koch, Daniel; Li, Fu; Wu, Yao-Wen; Itzen, Aymelt; Müller, Matthias P; Goody, Roger S

    2015-07-16

    GTPases act as key regulators of many cellular processes by switching between active (GTP-bound) and inactive (GDP-bound) states. In many cases, understanding their mode of action has been aided by artificially stabilizing one of these states either by designing mutant proteins or by complexation with non-hydrolysable GTP analogues. Because of inherent disadvantages in these approaches, we have developed acryl-bearing GTP and GDP derivatives that can be covalently linked with strategically placed cysteines within the GTPase of interest. Binding studies with GTPase-interacting proteins and X-ray crystallography analysis demonstrate that the molecular properties of the covalent GTPase-acryl-nucleotide adducts are a faithful reflection of those of the corresponding native states and are advantageously permanently locked in a defined nucleotide (that is active or inactive) state. In a first application, in vivo experiments using covalently locked Rab5 variants provide new insights into the mechanism of correct intracellular localization of Rab proteins.

  6. Locking GTPases covalently in their functional states

    NASA Astrophysics Data System (ADS)

    Wiegandt, David; Vieweg, Sophie; Hofmann, Frank; Koch, Daniel; Li, Fu; Wu, Yao-Wen; Itzen, Aymelt; Müller, Matthias P.; Goody, Roger S.

    2015-07-01

    GTPases act as key regulators of many cellular processes by switching between active (GTP-bound) and inactive (GDP-bound) states. In many cases, understanding their mode of action has been aided by artificially stabilizing one of these states either by designing mutant proteins or by complexation with non-hydrolysable GTP analogues. Because of inherent disadvantages in these approaches, we have developed acryl-bearing GTP and GDP derivatives that can be covalently linked with strategically placed cysteines within the GTPase of interest. Binding studies with GTPase-interacting proteins and X-ray crystallography analysis demonstrate that the molecular properties of the covalent GTPase-acryl-nucleotide adducts are a faithful reflection of those of the corresponding native states and are advantageously permanently locked in a defined nucleotide (that is active or inactive) state. In a first application, in vivo experiments using covalently locked Rab5 variants provide new insights into the mechanism of correct intracellular localization of Rab proteins.

  7. Identification/quantification of free and bound phenolic acids in peel and pulp of apples (Malus domestica) using high resolution mass spectrometry (HRMS).

    PubMed

    Lee, Jihyun; Chan, Bronte Lee Shan; Mitchell, Alyson E

    2017-01-15

    Free and bound phenolic acids were measured in the pulp and peel of four varieties of apples using high resolution mass spectrometry. Twenty-five phenolic acids were identified and included: 8 hydroxybenzoic acids, 11 hydroxycinnamic acids, 5 hydroxyphenylacetic acids, and 1 hydoxyphenylpropanoic acid. Several phenolics are tentatively identified for the first time in apples and include: methyl gallate, ethyl gallate, hydroxy phenyl acetic acid, three phenylacetic acid isomers, 3-(4-hydroxyphenyl)propionic acid, and homoveratric acid. With exception of chlorogenic and caffeic acid, most phenolic acids were quantified for the first time in apples. Significant varietal differences (p<0.05) were observed in both peel and pulp. The levels of total phenolic acids were higher in the pulp as compared to apple peel (dry weight) in all varieties. Coumaroylquinic, protocatechuic, 4-hydroxybenzoic, vanillic and t-ferulic acids were present in free forms. With exception of chlorogenic acid, all other phenolic acids were present only as bound forms.

  8. Development and Application of Pyrolysis Gas Chromatography/Mass Spectrometry for the Analysis of Bound Trinitrotoluene Residues in Soil

    USGS Publications Warehouse

    Weiss, J.M.; Mckay, A.J.; Derito, C.; Watanabe, C.; Thorn, K.A.; Madsen, E.L.

    2004-01-01

    TNT (trinitrotoluene) is a contaminant of global environmental significance, yet determining its environmental fate has posed longstanding challenges. To date, only differential extraction-based approaches have been able to determine the presence of covalently bound, reduced forms of TNT in field soils. Here, we employed thermal elution, pyrolysis, and gas chromatography/mass spectrometry (GC/MS) to distinguish between covalently bound and noncovalently bound reduced forms of TNT in soil. Model soil organic matter-based matrixes were used to develop an assay in which noncovalently bound (monomeric) aminodinitrotoluene (ADNT) and diaminonitrotoluene (DANT) were desorbed from the matrix and analyzed at a lower temperature than covalently bound forms of these same compounds. A thermal desorption technique, evolved gas analysis, was initially employed to differentiate between covalently bound and added 15N-labeled monomeric compounds. A refined thermal elution procedure, termed "double-shot analysis" (DSA), allowed a sample to be sequentially analyzed in two phases. In phase 1, all of an added 15N-labeled monomeric contaminant was eluted from the sample at relatively low temperature. In phase 2 during high-temperature pyrolysis, the remaining covalently bound contaminants were detected. DSA analysis of soil from the Louisiana Army Ammunition Plant (LAAP; ???5000 ppm TNT) revealed the presence of DANT, ADNT, and TNT. After scrutinizing the DSA data and comparing them to results from solvent-extracted and base/acid-hydrolyzed LAAP soil, we concluded that the TNT was a noncovalently bound "carryover" from phase 1. Thus, the pyrolysis-GC/MS technique successfully defined covalently bound pools of ADNT and DANT in the field soil sample.

  9. Extending the Diffuse Layer Model of Surface Acidity Behavior: III. Estimating Bound Site Activity Coefficients

    EPA Science Inventory

    Although detailed thermodynamic analyses of the 2-pK diffuse layer surface complexation model generally specify bound site activity coefficients for the purpose of accounting for those non-ideal excess free energies contributing to bound site electrochemical potentials, in applic...

  10. Covalent peroxisome proliferator-activated receptor gamma adduction by nitro-fatty acids: selective ligand activity and anti-diabetic signaling actions.

    PubMed

    Schopfer, Francisco J; Cole, Marsha P; Groeger, Alison L; Chen, Chen-Shan; Khoo, Nicholas K H; Woodcock, Steven R; Golin-Bisello, Franca; Motanya, U Nkiru; Li, Yong; Zhang, Jifeng; Garcia-Barrio, Minerva T; Rudolph, Tanja K; Rudolph, Volker; Bonacci, Gustavo; Baker, Paul R S; Xu, H Eric; Batthyany, Carlos I; Chen, Y Eugene; Hallis, Tina M; Freeman, Bruce A

    2010-04-16

    The peroxisome proliferator-activated receptor-gamma (PPARgamma) binds diverse ligands to transcriptionally regulate metabolism and inflammation. Activators of PPARgamma include lipids and anti-hyperglycemic drugs such as thiazolidinediones (TZDs). Recently, TZDs have raised concern after being linked with increased risk of peripheral edema, weight gain, and adverse cardiovascular events. Most reported endogenous PPARgamma ligands are intermediates of lipid metabolism and oxidation that bind PPARgamma with very low affinity. In contrast, nitro derivatives of unsaturated fatty acids (NO(2)-FA) are endogenous products of nitric oxide ((*)NO) and nitrite (NO(2)(-))-mediated redox reactions that activate PPARgamma at nanomolar concentrations. We report that NO(2)-FA act as partial agonists of PPARgamma and covalently bind PPARgamma at Cys-285 via Michael addition. NO(2)-FA show selective PPARgamma modulator characteristics by inducing coregulator protein interactions, PPARgamma-dependent expression of key target genes, and lipid accumulation is distinctively different from responses induced by the TZD rosiglitazone. Administration of this class of signaling mediators to ob/ob mice revealed that NO(2)-FA lower insulin and glucose levels without inducing adverse side effects such as the increased weight gain induced by TZDs.

  11. Fischer carbene mediated covalent grafting of a peptide nucleic acid on gold surfaces and IR optical detection of DNA hybridization with a transition metalcarbonyl label

    NASA Astrophysics Data System (ADS)

    Srivastava, Pratima; Ghasemi, Mahsa; Ray, Namrata; Sarkar, Amitabha; Kocabova, Jana; Lachmanova, Stepanka; Hromadova, Magdalena; Boujday, Souhir; Cauteruccio, Silvia; Thakare, Pramod; Licandro, Emanuela; Fosse, Céline; Salmain, Michèle

    2016-11-01

    Amine-reactive surfaces comprising N-hydroxysuccinimide ester groups as well as much more unusual Fischer alkoxymetallocarbene groups were generated on gold-coated surfaces via self-assembled monolayers of carboxy- and azido-terminated thiolates, respectively. These functions were further used to immobilize homothymine peptide nucleic acid (PNA) decamer in a covalent fashion involving the primary amine located at its N-terminus. These stepwise processes were monitored by polarization modulation reflection - absorption infrared spectroscopy (PM-RAIRS) that gave useful information on the molecular composition of the organic layers. PNA grafting and hybridization with complementary DNA strand were successfully transduced by quartz crystal microbalance (QCM) measurements. Unfortunately, attempts to transduce the hybridization optically by IR in a label-free fashion were inconclusive. Therefore we undertook to introduce an IR reporter group, namely a transition metalcarbonyl (TMC) entity at the 5‧ terminus of complementary DNA. Evidence for the formation of PNA-DNA heteroduplex was brought by the presence of ν(Ctbnd O) bands in the 2000 cm-1 region of the IR spectrum of the gold surface owing to the metalcarbonyl label.

  12. Evaluation of lipid-bound sialic acid (LSA) as a tumor marker.

    PubMed

    López Sáez, J J; Senra-Varela, A

    1995-01-01

    The objective of this study is the evaluation of serum levels of lipid-bound sialic acid (LSA) as a of marker cancer. This is a case-control study, and the levels of LSA were determined with blinded duplicates of cases and controls. Histologic verification of all cancer cases was used to confirm the diagnosis. The study included 135 patients with cancer (breast carcinoma, head and neck squamous cell carcinoma, lung cancer and gastrointestinal cancer) and 95 controls (57 normal subjects and 38 with chronic non-malignant diseases). Marker determination was done by the spectrophotometric procedure of Katopodis with resorcinol. The mean LSA level in the 57 healthy individuals was 15.09 mg/dl(95% C.I., 13.51-16.67), in the entire control group of 95 non-tumoral individuals it was 19.21 mg/dl (17.18-21.24), and in the 135 cancer patients it was 26.64 mg/dl (24.42-28.87). There was a statistically significant difference between patients with chronic non-tumoral diseases and healthy individuals (p < 0.001) and also between cancer patients and healthy individuals (p > 0.001), but not between cancer patients and patients with chronic non-tumoral diseases (p> 0.05). The mean LSA serum values related to tumor site were (mg/dl): breast cancer, 21.49; gastrointestinal tumors, 28.45; head and neck cancer, 28.61 and lung cancer, 32.54. The means according to clinical stage were: complete remission, 18.50 significantly higher than the healthy controls (p< 0.05); local disease, 23.50 (p < 0.01); locoregional disease, (p < 0.05); local disease, 23.50 (p < 0.01); locoregional disease, 27.21 (p < 0.001); metastatic disease, 34.49 (p < 0.001), and relapses, 20.87 (p< 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Inactivation of Matrix-bound MMPs by Cross-linking Agents in Acid Etched Dentin

    PubMed Central

    Scheffel, Débora Lopes Salles; Hebling, Josimeri; Scheffel, Régis Henke; Agee, Kelly A.; Turco, Gianluca; de Souza Costa, Carlos Alberto; Pashley, David H.

    2014-01-01

    Objectives Published TEM analysis of in vivo resin-dentin bonds shows that in 44 months almost 70% of collagen fibrils from the hybrid layer disappear. Matrix metalloproteinases (MMPs) play an important role in that process and are thought to be the main factor responsible for the solubitization of dentin collagen. Therefore, this study aimed to evaluate the inactivation of matrix-bound MMPs by carbodiimide (EDC) or proanthocyanidin (PA) both cross-linking agents, or the MMP-inhibitor, chlorhexidine (CHX), on acid-etched dentin using a simplified MMP assay method. Methods Dentin beams (1×1×6mm) were obtained from mid-coronal dentin of sound third molars and randomly divided into 6 groups (G) according to the dentin treatment: G1: Deionized water (control), G2: 0.1M EDC, G3: 0.5M EDC, G4: 0.5M EDC+35% HEMA, G5: 5% Proanthocyanidin (PA) and G6: 2% CHX. The beams were etched for 15s with 37% phosphoric acid, rinsed and then immersed for 60s in one of the treatment solutions. The total MMP activity of dentin was analyzed for 1 h by colorimetric assay (Sensolyte). Data were submitted to Wilcoxon non-parametric test and Mann-Whitney tests (p>0.05). Results All experimental cross-linking solutions significantly reduced MMP activity compared to control, except 0.1M EDC (53.6% ±16.1). No difference was observed between cross-linking agents and 2% CHX 0.5M EDC + 35% HEMA (92.3% ±8.0) was similar to 0.5M EDC (89.1% ±6.4), 5% PA (100.8% ±10.9) and 2% CHX (83.4% ±10.9). Conclusion Dentin treatment with cross-linking agents is effective to significantly reduce MMP activity. Mixing 0.5M EDC and 35% HEMA did not influence EDC inhibitor potential. PMID:23786610

  14. Covalent modification of Lys19 in the CTP binding site of cytidine 5'-monophosphate N-acetylneuraminic acid synthetase.

    PubMed Central

    Tullius, M. V.; Vann, W. F.; Gibson, B. W.

    1999-01-01

    Periodate oxidized CTP (oCTP) was used to investigate the importance of lysine residues in the CTP binding site of the cytidine 5'-monophosphate N-acetylneuraminic acid (CMP-NeuAc) synthetase (EC 2.7.7.43) from Haemophilus ducreyi. The reaction of oCTP with the enzyme follows pseudo-first-order saturation kinetics, giving a maximum rate of inactivation of 0.6 min(-1) and a K(I) of 6.0 mM at pH 7.1. Mass spectrometric analysis of the modified enzyme provided data that was consistent with beta-elimination of triphosphate after the reaction of oCTP with the enzyme. A fully reduced enzyme-oCTP conjugate, retaining the triphosphate moiety, was obtained by inclusion of NaBH3CN in the reaction solution. The beta-elimination product of oCTP reacted several times more rapidly with the enzyme compared to equivalent concentrations of oCTP. This compound also formed a stable reduced morpholino adduct with CMP-NeuAc synthetase when the reaction was conducted in the presence of NaBH3CN, and was found to be a useful lysine modifying reagent. The substrate CTP was capable of protecting the enzyme to a large degree from inactivation by oCTP and its beta-elimination product. Lys19, a residue conserved in CMP-NeuAc synthetases, was identified as being labeled with the beta-elimination product of oCTP. PMID:10091669

  15. Spermatozoa bound to solid state hyaluronic acid show chromatin structure with high DNA chain integrity: an acridine orange fluorescence study.

    PubMed

    Yagci, Artay; Murk, William; Stronk, Jill; Huszar, Gabor

    2010-01-01

    During human spermiogenesis, the elongated spermatids undergo a plasma membrane remodeling step that facilitates formation of the zona pellucida and hyaluronic acid (HA) binding sites. Various biochemical sperm markers indicated that human sperm bound to HA exhibit attributes similar to that of zona pellucida-bound sperm, including minimal DNA fragmentation, normal shape, and low frequency of chromosomal aneuploidies. In this work, we tested the hypothesis that HA-bound sperm would be enhanced in sperm of high DNA chain integrity and green acridine orange fluorescence (AOF) compared with the original sperm in semen. Sperm DNA integrity in semen and in their respective HA-bound sperm fractions was studied in 50 men tested for fertility. In the semen samples, the proportions of sperm with green AOF (high DNA integrity) and red AOF (DNA breaks) were 54.9% ± 2.0% and 45.0% ± 1.9%, whereas in the HA-bound sperm fraction, the respective proportions were 99% and 1.0%, respectively. The data indeed demonstrated that HA shows a high degree of selectivity for sperm with high DNA integrity. These findings are important from the points of view of human sperm DNA integrity, sperm function, and the potential efficacy of HA-mediated sperm selection for intracytoplasmic sperm injection.

  16. Recognition of core and flanking amino acids of MHC class II-bound peptides by the T cell receptor.

    PubMed

    Sant'Angelo, Derek B; Robinson, Eve; Janeway, Charles A; Denzin, Lisa K

    2002-09-01

    CD4 T cells recognize peptides bound to major histocompatibility complex (MHC) class II molecules. Most MHC class II molecules have four binding pockets occupied by amino acids 1, 4, 6, and 9 of the minimal peptide epitope, while the residues at positions 2, 3, 5, 7, and 8 are available to interact with the T cell receptor (TCR). In addition MHC class II bound peptides have flanking residues situated outside of this peptide core. Here we demonstrate that the flanking residues of the conalbumin peptide bound to I-A(k) have no effect on recognition by the D10 TCR. To study the role of peptide flanks for recognition by a second TCR, we determined the MHC and TCR contacting amino acids of the I-A(b) bound Ealpha peptide. The Ealpha peptide is shown to bind I-A(b) using four alanines as anchor residues. TCR recognition of Ealpha peptides with altered flanking residues again suggested that, in general, no specific interactions occurred with the peptide flanks. However, using an HLA-DM-mediated technique to measure peptide binding to MHC class II molecules, we found that the peptide flanking residues contribute substantially to MHC binding.

  17. Protein-bound carbohydrates in breast cancer. Liquid-chromatographic analysis for mannose, galactose, fucose, and sialic acid in serum.

    PubMed

    Mrochek, J E; Dinsmore, S R; Tormey, D C; Waalkes, T P

    1976-09-01

    We describr high-resolution chromatographic analysis for protein-bound sialic acid in serum, with use of a cerate oxidimetric detector. Values for sera from normal women averaged 680.5 mg/liter, with a coefficient of variation of 23%. Including data obtained by previously developed chromatographic procedures for protein-bound mannose, galactose, and fucsoe, we assessed sera from breast-cancer patients whose malignancy had been categorized as either stable, responsive, or progressive (based on clinical observations spaced from two to five months apart). All of 12 responsive patients had decreases of protein-bound fucose averaging 34.5% (SD, 16.1) and all of 10 patients with progressive disease had increases averaging 38.3% (SD 21.5). Changes in fucose averaged less than 6.7% (SD, 4.9) for eight patients with clinically stable breast cancer. Changes in protein-bound mannose, galactose, and sialic acid did not correlate as well as did fucose with the clinical disease status of the patients.

  18. Toward "stable-on-the-table" enzymes: improving key properties of catalase by covalent conjugation with poly(acrylic acid).

    PubMed

    Riccardi, Caterina M; Cole, Kyle S; Benson, Kyle R; Ward, Jessamyn R; Bassett, Kayla M; Zhang, Yiren; Zore, Omkar V; Stromer, Bobbi; Kasi, Rajeswari M; Kumar, Challa V

    2014-08-20

    Several key properties of catalase such as thermal stability, resistance to protease degradation, and resistance to ascorbate inhibition were improved, while retaining its structure and activity, by conjugation to poly(acrylic acid) (PAA, Mw 8000) via carbodiimide chemistry where the amine groups on the protein are appended to the carboxyl groups of the polymer. Catalase conjugation was examined at three different pH values (pH 5.0, 6.0, and 7.0) and at three distinct mole ratios (1:100, 1:500, and 1:1000) of catalase to PAA at each reaction pH. The corresponding products are labeled as Cat-PAA(x)-y, where x is the protein to polymer mole ratio and y is the pH used for the synthesis. The coupling reaction consumed about 60-70% of the primary amines on the catalase; all samples were completely water-soluble and formed nanogels, as evidenced by gel electrophoresis and electron microscopy. The UV circular dichroism (CD) spectra indicated substantial retention of protein secondary structure for all samples, which increased to 100% with increasing pH of the synthesis and polymer mole fraction. Soret CD bands of all samples indicated loss of ∼50% of band intensities, independent of the reaction pH. Catalytic activities of the conjugates increased with increasing synthesis pH, where 55-80% and 90-100% activity was retained for all samples synthesized at pH 5.0 and pH 7.0, respectively, and the Km or Vmax values of Cat-PAA(100)-7 did not differ significantly from those of the free enzyme. All conjugates synthesized at pH 7.0 were thermally stable even when heated to ∼85-90 °C, while native catalase denatured between 55 and 65 °C. All conjugates retained 40-90% of their original activities even after storing for 10 weeks at 8 °C, while unmodified catalase lost all of its activity within 2 weeks, under similar storage conditions. Interestingly, PAA surrounding catalase limited access to the enzyme from large molecules like proteases and significantly increased

  19. Combination of redox-active ligand and lewis acid for dioxygen reduction with π-bound molybdenum-quinonoid complexes.

    PubMed

    Henthorn, Justin T; Lin, Sibo; Agapie, Theodor

    2015-02-04

    A series of π-bound Mo-quinonoid complexes supported by pendant phosphines have been synthesized. Structural characterization revealed strong metal-arene interactions between Mo and the π system of the quinonoid fragment. The Mo-catechol complex (2a) was found to react within minutes with 0.5 equiv of O(2) to yield a Mo-quinone complex (3), H(2)O, and CO. Si- and B-protected Mo-catecholate complexes also react with O(2) to yield 3 along with (R(2)SiO)n and (ArBO)(3) byproducts, respectively. Formally, the Mo-catecholate fragment provides two electrons, while the elements bound to the catecholate moiety act as acceptors for the O(2) oxygens. Unreactive by itself, the Mo-dimethyl catecholate analogue reduces O(2) in the presence of added Lewis acid, B(C(6)F(5))(3), to generate a Mo(I) species and a bis(borane)-supported peroxide dianion, [[(F(5)C(6))(3)B](2)O(2)(2-)], demonstrating single-electron-transfer chemistry from Mo to the O(2) moiety. The intramolecular combination of a molybdenum center, redox-active ligand, and Lewis acid reduces O(2) with pendant acids weaker than B(C(6)F(5))(3). Overall, the π-bound catecholate moiety acts as a two-electron donor. A mechanism is proposed in which O(2) is reduced through an initial one-electron transfer, coupled with transfer of the Lewis acidic moiety bound to the quinonoid oxygen atoms to the reduced O(2) species.

  20. Covalent Chemistry beyond Molecules.

    PubMed

    Jiang, Juncong; Zhao, Yingbo; Yaghi, Omar M

    2016-03-16

    Linking molecular building units by covalent bonds to make crystalline extended structures has given rise to metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), thus bringing the precision and versatility of covalent chemistry beyond discrete molecules to extended structures. The key advance in this regard has been the development of strategies to overcome the "crystallization problem", which is usually encountered when attempting to link molecular building units into covalent solids. Currently, numerous MOFs and COFs are made as crystalline materials in which the large size of the constituent units provides for open frameworks. The molecular units thus reticulated become part of a new environment where they have (a) lower degrees of freedom because they are fixed into position within the framework; (b) well-defined spatial arrangements where their properties are influenced by the intricacies of the pores; and (c) ordered patterns onto which functional groups can be covalently attached to produce chemical complexity. The notion of covalent chemistry beyond molecules is further strengthened by the fact that covalent reactions can be carried out on such frameworks, with full retention of their crystallinity and porosity. MOFs are exemplars of how this chemistry has led to porosity with designed metrics and functionality, chemically-rich sequences of information within their frameworks, and well-defined mesoscopic constructs in which nanoMOFs enclose inorganic nanocrystals and give them new levels of spatial definition, stability, and functionality.

  1. Oral delivery of zoledronic acid by non-covalent conjugation with lysine-deoxycholic acid: In vitro characterization and in vivo anti-osteoporotic efficacy in ovariectomized rats.

    PubMed

    Jeon, Ok-Cheol; Seo, Dong-Hyun; Kim, Han-Sung; Byun, Youngro; Park, Jin Woo

    2016-01-20

    We assessed the possibility of changing the route of administration of zoledronic acid to an oral dosage form and its therapeutic efficacy in an estrogen-deficient osteoporosis rat model. To enhance oral bioavailability, we formed an ionic complex by electrostatic conjugation of zoledronic acid with lysine-linked deoxycholic acid (Lys-DOCA, an oral absorption enhancer). After forming the complex, the characteristic crystalline features of pure zoledronic acid disappeared completely in the powder X-ray diffractogram and differential scanning calorimetry thermogram, indicating that zoledronic acid existed in an amorphous form in the complex. In vitro permeabilities of zoledronic acid/Lys-DOCA (1:1) (ZD1) and zoledronic acid/Lys-DOCA (1:2) (ZD2) complex across Caco-2 cell monolayers were 2.47- and 4.74-fold higher than that of zoledronic acid, respectively. Upon intra-jejunal administration to rats, the intestinal absorption of zoledronic acid was increased significantly and the resulting oral bioavailability of the ZD2 complex was determined to be 6.76±2.59% (0.548±0.161% for zoledronic acid). Ovariectomized (OVX) rats showed 122% increased bone mineral density versus the OVX control at 12weeks after treatment with once weekly oral administration of ZD2 complex (16μg/kg of zoledronic acid). Furthermore, rats treated with ZD2 complex orally showed significant improvement in the parameters of trabecular microarchitecture and bone strength: 149% higher bone volume fraction (BV/TV), 115% higher trabecular number (Tb.N), and 56% higher mean maximum load (Fmax) than in the OVX group. The trabecular microstructure and bone mechanical properties in the oral zoledronic acid group were not significantly changed compared with the OVX control. Thus, the oral ZD2 complex inhibited osteoporosis progression effectively by promoting osteogenesis and trabecular connectivity. The oral ZD2 complex would be expected to improve patient compliance by replacing the conventional

  2. Heat-treatment method for producing fatty acid-bound alpha-lactalbumin that induces tumor cell death.

    PubMed

    Kamijima, Tatsuro; Ohmura, Ayaka; Sato, Toshiya; Akimoto, Kaoru; Itabashi, Miki; Mizuguchi, Mineyuki; Kamiya, Masakatsu; Kikukawa, Takashi; Aizawa, Tomoyasu; Takahashi, Masayuki; Kawano, Keiichi; Demura, Makoto

    2008-11-07

    HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells), which was identified in human breast milk as an alpha-lactalbumin (LA)-oleic acid complex, kills tumor cells, selectively. Although it may have potential as a therapeutic agent against various tumor cells, only low-volume methods for its production exist. In this study, heat treatment was used to produce complexes from LAs and oleic acid using a simple method. In the case of human LA and oleic acid, heat-treated samples apparently showed much stronger activities than those treated at room temperature, with cytotoxicities equal to that of HAMLET. Furthermore, circular dichroism spectroscopy revealed that heat-treated samples lost their tertiary structure, suggesting a molten globule as oleic acid-bound LA. BLA samples also showed strong activities by heat treatment. Batch production with heat treatment can efficiently convert LAs into tumoricidal complexes.

  3. Covalent polymers of water.

    PubMed

    O'konski, C T

    1970-05-29

    A new covalent structural scheme for water polymers is proposed. The observed properties of "polywater" are related to the structures of the suggested homologous series of molecules. Mechanisms of formation are suggested.

  4. Dynamic covalent polymers

    PubMed Central

    García, Fátima

    2016-01-01

    ABSTRACT This Highlight presents an overview of the rapidly growing field of dynamic covalent polymers. This class of polymers combines intrinsic reversibility with the robustness of covalent bonds, thus enabling formation of mechanically stable, polymer‐based materials that are responsive to external stimuli. It will be discussed how the inherent dynamic nature of the dynamic covalent bonds on the molecular level can be translated to the macroscopic level of the polymer, giving access to a range of applications, such as stimuli‐responsive or self‐healing materials. A primary distinction will be made based on the type of dynamic covalent bond employed, while a secondary distinction will be based on the consideration whether the dynamic covalent bond is used in the main chain of the polymer or whether it is used to allow side chain modification of the polymer. Emphasis will be on the chemistry of the dynamic covalent bonds present in the polymer, in particular in relation to how the specific (dynamic) features of the bond impart functionality to the polymer material, and to the conditions under which this dynamic behavior is manifested. © 2016 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 3551–3577. PMID:27917019

  5. Dynamic covalent polymers.

    PubMed

    García, Fátima; Smulders, Maarten M J

    2016-11-15

    This Highlight presents an overview of the rapidly growing field of dynamic covalent polymers. This class of polymers combines intrinsic reversibility with the robustness of covalent bonds, thus enabling formation of mechanically stable, polymer-based materials that are responsive to external stimuli. It will be discussed how the inherent dynamic nature of the dynamic covalent bonds on the molecular level can be translated to the macroscopic level of the polymer, giving access to a range of applications, such as stimuli-responsive or self-healing materials. A primary distinction will be made based on the type of dynamic covalent bond employed, while a secondary distinction will be based on the consideration whether the dynamic covalent bond is used in the main chain of the polymer or whether it is used to allow side chain modification of the polymer. Emphasis will be on the chemistry of the dynamic covalent bonds present in the polymer, in particular in relation to how the specific (dynamic) features of the bond impart functionality to the polymer material, and to the conditions under which this dynamic behavior is manifested. © 2016 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 3551-3577.

  6. Gibberellic Acid Activates Chromatin-bound DNA-dependent RNA Polymerase in Wounded Potato Tuber Tissue 1

    PubMed Central

    Wielgat, Bernard; Kahl, Günter

    1979-01-01

    Chromatin-bound DNA-dependent RNA polymerases react upon wounding of white potato tuber tissues with an increase in activity, which is additionally enhanced to 300% in the presence of 0.1 micromolar gibberellic acid (GA3). 2,4-Dichlorophenoxyacetic acid is only weakly effective and indoleacetic acid not at all. Wounding and treatment with GA3 affect template availability of chromatin only slightly. The hormone has no effect on chromatin-bound RNA polymerases, if added in vitro. The enzymes from intact, wounded, and hormone-treated tissues possess similar characteristics: their activity is dependent on the presence of all four ribonucleotides and a divalent cation such as Mg2+ or Mn2+. However, the sensitivity of the enzymes from different preparations toward α-amanitin differs. Total RNA polymerase activity of chromatin was inhibited by α-amanitin to about 44% in intact, to about 22% in wounded, and only 15% in GA3-treated tissues. The relative activities of polymerases I and II were estimated by varying the (NH4)2SO4 and α-amanitin concentrations in the assay system. It is evident that GA3 preferentially stimulates polymerase I and hence ribosomal RNA synthesis. RNA polymerase II is but slightly affected by GA3. Nearest neighbor frequency analysis revealed that the RNA synthesized by the enzymes from the intact tuber is different from that of wounded or GA3-treated tissues. PMID:16661071

  7. Assay of urinary protein-bound sialic acid can differentiate steroidsensitive nephrotic syndrome from steroid-resistant cases.

    PubMed

    Gopal, Niranjan; Koner, Bidhan Chandra; Bhattacharjee, Atanu; Bhat, Vishnu

    2016-01-01

    The protein selectivity index as measured from the ratio of urinary immunoglobulin to albumin failed to differentiate between steroid-sensitive (SS) and steroid-resistant (SR) cases of nephrotic syndrome (NS). Sialic acid contributes negative charges to many plasma proteins. The negative charge is a determinant of protein excretion rate. The prognostic significance of assay of urinary excretion of protein-bound sialic acid in NS has not been evaluated. Hence, the present study was designed to evaluate whether measurement of urinary protein bound sialic acid (UPBSA) can be used as a marker to differentiate SS from SR cases of NS. The urine samples of 70 (47 SS and 23 SR) pediatric NS children were assayed for UPBSA by Aminoff's method. The levels were compared and the receiver-operator curve was drawn to determine the optimum cutoff point to differentiate among the groups before starting the therapy. The excretion of UPBSA in SR cases of NS was significantly higher than that of SS cases (P<0.05). The optimum cutoff limit for UPBSA was 2.71 μg/mg of proteins with 75% sensitivity and 75.5% specificity for differentiating SS cases from SR cases (area under the plasma- concentration time curve=0.814, P=0.009). We conclude that UPBSA can differentiate SR cases from SS cases of NS in pediatric patients and may help in predicting the response to steroid therapy.

  8. A covalent antagonist for the human adenosine A2A receptor.

    PubMed

    Yang, Xue; Dong, Guo; Michiels, Thomas J M; Lenselink, Eelke B; Heitman, Laura; Louvel, Julien; IJzerman, Ad P

    2016-12-03

    The structure of the human A2A adenosine receptor has been elucidated by X-ray crystallography with a high affinity non-xanthine antagonist, ZM241385, bound to it. This template molecule served as a starting point for the incorporation of reactive moieties that cause the ligand to covalently bind to the receptor. In particular, we incorporated a fluorosulfonyl moiety onto ZM241385, which yielded LUF7445 (4-((3-((7-amino-2-(furan-2-yl)-[1, 2, 4]triazolo[1,5-a][1, 3, 5]triazin-5-yl)amino)propyl)carbamoyl)benzene sulfonyl fluoride). In a radioligand binding assay, LUF7445 acted as a potent antagonist, with an apparent affinity for the hA2A receptor in the nanomolar range. Its apparent affinity increased with longer incubation time, suggesting an increasing level of covalent binding over time. An in silico A2A-structure-based docking model was used to study the binding mode of LUF7445. This led us to perform site-directed mutagenesis of the A2A receptor to probe and validate the target lysine amino acid K153 for covalent binding. Meanwhile, a functional assay combined with wash-out experiments was set up to investigate the efficacy of covalent binding of LUF7445. All these experiments led us to conclude LUF7445 is a valuable molecular tool for further investigating covalent interactions at this receptor. It may also serve as a prototype for a therapeutic approach in which a covalent antagonist may be needed to counteract prolonged and persistent presence of the endogenous ligand adenosine.

  9. Selective covalent bond formation in polypeptide ions via gas-phase ion/ion reaction chemistry.

    PubMed

    Han, Hongling; McLuckey, Scott A

    2009-09-16

    Primary amines present in protonated polypeptides can be covalently modified via gas-phase ion/ion reactions using bifunctional reagent ions. The use of reagent anions with a charge-bearing site that leads to strong interactions with the polypeptide, such as sulfonic acid, gives rise to the formation of a long-lived adduct. A distinct reactive functional group, an aldehyde in the present case, can then undergo reaction with the peptide. Collisional activation of the adduct ion formed from a reagent with an aldehyde group and a peptide ion with a primary amine gives rise to water loss in conjunction with imine (Schiff base) formation. The covalently bound modification is retained upon subsequent collisional activation. This work demonstrates the ability to selectively modify polypeptide ions in the gas phase within the context of a multistage mass spectrometry experiment.

  10. Ether- and Ester-Bound iso-Diabolic Acid and Other Lipids in Members of Acidobacteria Subdivision 4

    PubMed Central

    Rijpstra, W. Irene C.; Hopmans, Ellen C.; Foesel, Bärbel U.; Wüst, Pia K.; Overmann, Jörg; Tank, Marcus; Bryant, Donald A.; Dunfield, Peter F.; Houghton, Karen; Stott, Matthew B.

    2014-01-01

    Recently, iso-diabolic acid (13,16-dimethyl octacosanedioic acid) has been identified as a major membrane-spanning lipid of subdivisions 1 and 3 of the Acidobacteria, a highly diverse phylum within the Bacteria. This finding pointed to the Acidobacteria as a potential source for the bacterial glycerol dialkyl glycerol tetraethers that occur ubiquitously in peat, soil, lakes, and hot springs. Here, we examined the lipid composition of seven phylogenetically divergent strains of subdivision 4 of the Acidobacteria, a bacterial group that is commonly encountered in soil. Acid hydrolysis of total cell material released iso-diabolic acid derivatives in substantial quantities (11 to 48% of all fatty acids). In contrast to subdivisions 1 and 3 of the Acidobacteria, 6 out of the 7 species of subdivision 4 (excepting “Candidatus Chloracidobacterium thermophilum”) contained iso-diabolic acid ether bound to a glycerol in larger fractional abundance than iso-diabolic acid itself. This is in agreement with the analysis of intact polar lipids (IPLs) by high-performance liquid chromatography-mass spectrometry (HPLC-MS), which showed the dominance of mixed ether-ester glycerides. iso-Diabolic acid-containing IPLs were not identified, because these IPLs are not released with a Bligh-Dyer extraction, as observed before when studying lipid compositions of subdivisions 1 and 3 of the Acidobacteria. The presence of ether bonds in the membrane lipids does not seem to be an adaptation to temperature, because the five mesophilic isolates contained a larger amount of ether lipids than the thermophile “Ca. Chloracidobacterium thermophilum.” Furthermore, experiments with Pyrinomonas methylaliphatogenes did not reveal a major influence of growth temperature over the 50 to 69°C range. PMID:24928878

  11. Synergistic transcriptional enhancement does not depend on the number of acidic activation domains bound to the promoter.

    PubMed Central

    Oliviero, S; Struhl, K

    1991-01-01

    Many eukaryotic transcriptional activator proteins contain a DNA-binding domain that interacts with specific promoter sequences and an acidic activation region that is required to stimulate transcription. Transcriptional enhancement by such activator proteins is often synergistic and promiscuous; promoters containing multiple binding sites for an individual protein or even for unrelated proteins can be 10-100 times more active than promoters with single sites. It has been suggested that such synergy reflects a nonlinear response of the basic transcription machinery to the number and/or quality of acidic activation regions. Here, we determine the transcriptional activity of Jun-Fos heterodimers containing one or two GCN4 acidic activation regions on promoters containing one or two Ap-1 target sites. Surprisingly, heterodimers with one or two acidic regions activate transcription with similar efficiency and are equally synergistic (10- to 15-fold) on promoters containing two target sites. Thus, transcriptional synergy does not depend on the number of acidic activation regions but rather on the number of proteins bound to the promoter. This suggests that synergy is mediated either by cooperative DNA binding or by alternative mechanisms in which the DNA-binding domain plays a more direct role in transcription (e.g., changes in DNA structure, nucleosome displacement, or direct interactions with the transcriptional machinery). Images PMID:1898773

  12. Bathophenanthrolene disulfonic acid and sodium dithionite effectively remove surface-bound iron from Caco-2 cell monolayers.

    PubMed

    Glahn, R P; Gangloff, M B; Van Campen, D R; Miller, D D; Wien, E M; Norvell, W A

    1995-07-01

    Iron uptake by Caco-2 cell monolayers is commonly assessed by incubating the cells under radiolabeled iron solutions, removing the radiolabeled solution, rinsing to stop uptake and measuring the radioactivity retained by the cells. It is therefore essential to differentiate between iron that is nonspecifically bound to the cell surface from that which has been taken up by the cell. We report here on a method for removal of surface-bound iron from Caco-2 cell monolayers. We used a 140 mmol/L NaCl, 10 mmol/L PIPES, pH 6.7 solution containing 5.0 mmol/L sodium dithionite (Na2S2O4) and 5.0 mmol/L bathophenanthroline disulfonic acid to reduce, remove and chelate iron bound to the cell surface. We validated our method by demonstrating the removal of 97% of an insoluble iron complex from the apical surface of Caco-2 cell monolayers. Our data indicate that the removal solution does not damage the apical membrane and thereby does not have access to intracellular iron; thus only surface bound iron is removed. The remaining cell-associated iron represents that which has been transported into the cell. We present data on the uptake and nonspecific binding of iron from iron complexes of both ferrous and ferric forms, and show that iron removal treatment resulted in uptake measurements that agree more closely with accepted principles of iron uptake by intestinal epithelium. The iron removal method used in this study should provide investigators with a valuable tool for accurately determining iron uptake by epithelial cells in culture.

  13. Counting the number of magnesium ions bound to the surface-immobilized thymine oligonucleotides that comprise spherical nucleic acids.

    PubMed

    Walter, Stephanie R; Young, Kaylie L; Holland, Joseph G; Gieseck, Richard L; Mirkin, Chad A; Geiger, Franz M

    2013-11-20

    Label-free studies carried out under aqueous phase conditions quantify the number of Mg(2+) ions binding to surface-immobilized T40 sequences, the subsequent reordering of DNA on the surface, and the consequences of Mg(2+) binding for DNA-DNA interactions. Second harmonic generation measurements indicate that, within error, 18-20 Mg(2+) ions are bound to the T40 strand at saturation and that the metal-DNA interaction is associated with a near 30% length contraction of the strand. Structural reordering, evaluated using vibrational sum frequency generation, atomic force microscopy, and dynamic light scattering, is attributed to increased charge screening as the Mg(2+) ions bind to the negatively charged DNA, reducing repulsive Coulomb forces between nucleotides and allowing the DNA single strands to collapse or coil upon themselves. The impact of Mg(2+) binding on DNA hybridization and duplex stability is assessed with spherical nucleic acid (SNA) gold nanoparticle conjugates in order to determine an optimal working range of Mg(2+) concentrations for DNA-DNA interactions in the absence of NaCl. The findings are consistent with a charge titration effect in which, in the absence of NaCl, (1) hybridization does not occur at room temperature if an average of 17.5 or less Mg(2+) ions are bound per T40 strand, which is not reached until the bulk Mg(2+) concentration approaches 0.5 mM; (2) hybridization proceeds, albeit with low duplex stability having an average Tm of 31(3)°C, if an average of 17.5-18.0 Mg(2+) ions are bound; and (3) highly stable duplexes having a Tm of 64(2)°C form if 18.5-19.0 Mg(2+) ions are bound, corresponding to saturation of the T40 strand.

  14. Chirped Pulse and Cavity FT Microwave Spectroscopy of the Formic Acid - Trimethylamine Weakly Bound Complex

    NASA Astrophysics Data System (ADS)

    Mackenzie, Becca; Dewberry, Chris; Leopold, Ken

    2015-06-01

    Amine-carboxylic acid interactions are important in many biological systems and have recently received attention for their role in the formation of atmospheric aerosols. Here, we study the molecular and electronic structure of the formic acid - trimethylamine complex, using it as a model for amine-carboxylic acid interactions. The microwave spectrum of the complex has been observed using chirped pulse and conventional cavity-type Fourier transform microwave spectroscopy. The degree of proton transfer has been assessed using the 14N nuclear quadrupole hyperfine structure. Experimental results will be compared to DFT calculations.

  15. Covalent immobilization of liposomes on plasma functionalized metallic surfaces.

    PubMed

    Mourtas, S; Kastellorizios, M; Klepetsanis, P; Farsari, E; Amanatides, E; Mataras, D; Pistillo, B R; Favia, P; Sardella, E; d'Agostino, R; Antimisiaris, S G

    2011-05-01

    A method was developed to functionalize biomedical metals with liposomes. The novelty of the method includes the plasma-functionalization of the metal surface with proper chemical groups to be used as anchor sites for the covalent immobilization of the liposomes. Stainless steel (SS-316) disks were processed in radiofrequency glow discharges fed with vapors of acrylic acid to coat them with thin adherent films characterized by surface carboxylic groups, where liposomes were covalently bound through the formation of amide bonds. For this, liposomes decorated with polyethylene glycol molecules bearing terminal amine-groups were prepared. After ensuring that the liposomes remain intact, under the conditions applying for immobilization; different attachment conditions were evaluated (incubation time, concentration of liposome dispersion) for optimization of the technique. Immobilization of calcein-entrapping liposomes was evaluated by monitoring the percent of calcein attached on the surfaces. Best results were obtained when liposome dispersions with 5mg/ml (liposomal lipid) concentration were incubated on each disk for 24h at 37°C. The method is proposed for developing drug-eluting biomedical materials or devices by using liposomes that have appropriate membrane compositions and are loaded with drugs or other bioactive agents.

  16. Covalent organic frameworks: Crossing the channel

    NASA Astrophysics Data System (ADS)

    Xu, Hong; Jiang, Donglin

    2014-07-01

    The ordered one-dimensional nanochannels found in covalent organic frameworks (COFs) could render them able to conduct protons. However, the frameworks' instability in acid has thus far precluded any practical implementations. Now, a strategy to overcome this instability has enabled proton conduction using a COF for the first time.

  17. Comparison of enzymatic and acid hydrolysis of bound flavor compounds in model system and grapes.

    PubMed

    Dziadas, Mariusz; Jeleń, Henryk H

    2016-01-01

    Four synthesized terpenyl-ß-D-glycopyranosides (geranyl, neryl, citronellyl, myrtenyl) were subjected to enzymatic (AR 2000, pH 5.5) and acid (citric buffer, pH 2.5) hydrolysis. Decrease of glycosides was measured by HPLC and the volatiles released--by comprehensive gas chromatography-mass spectrometry (GC × GC-ToF-MS). Enzymatic hydrolysis performed for 21 h yielded 100% degree of hydrolysis for all glycosides but citronellyl (97%). Degree of acid hydrolysis was highly dependent on type of aglycone and the conditions. The highest degree was achieved for geraniol, followed by citronellol and nerol. Myrtenylo-ß-D-glycopyranoside was the most resistant glycoside to hydrolysis. Acid hydrolysis degree was also related to temperature/time combination, the highest being for 100 °C and 2 h. In a result of enzymatic hydrolysis 85-91% of total peak areas was terpene aglycone, whereas for acid hydrolysis the area of released terpene aglycone did not exceed 1.3% of total peak area indicating almost complete decomposition/transformation of terpenyl aglycone.

  18. Kinetic and Thermochemical Studies of Weakly-Bound HO2 Complexes with Carboxylic acids

    NASA Astrophysics Data System (ADS)

    Zhao, Z.; Nicovich, J. M.; McKee, M. L.; Wine, P. H.

    2008-12-01

    Numerous theoretical and experimental studies have suggested that HO2 radicals are able to form strong hydrogen bonds with some closed-shell species, which can potentially influence our understanding of HO2 chemistry in the upper troposphere and lower stratosphere. In this study, a laser flash photolysis-tunable diode laser absorption spectroscopy technique has been employed to study the formation of HO2 complexes with formic and acetic acids. At low temperatures, equilibration kinetics have been observed, allowing adduct formation and dissociation rate coefficients to be obtained and adduct binding enthalpies to be determined. This is the first experimental study of the HO2-carboxylic acid complexes and the binding energies are in good agreement with the most recent theoretical estimates. The potential role of HO2-RC(O)OH adducts in atmospheric chemistry will be discussed.

  19. Locking GTPases covalently in their functional states

    PubMed Central

    Wiegandt, David; Vieweg, Sophie; Hofmann, Frank; Koch, Daniel; Li, Fu; Wu, Yao-Wen; Itzen, Aymelt; Müller, Matthias P.; Goody, Roger S.

    2015-01-01

    GTPases act as key regulators of many cellular processes by switching between active (GTP-bound) and inactive (GDP-bound) states. In many cases, understanding their mode of action has been aided by artificially stabilizing one of these states either by designing mutant proteins or by complexation with non-hydrolysable GTP analogues. Because of inherent disadvantages in these approaches, we have developed acryl-bearing GTP and GDP derivatives that can be covalently linked with strategically placed cysteines within the GTPase of interest. Binding studies with GTPase-interacting proteins and X-ray crystallography analysis demonstrate that the molecular properties of the covalent GTPase–acryl–nucleotide adducts are a faithful reflection of those of the corresponding native states and are advantageously permanently locked in a defined nucleotide (that is active or inactive) state. In a first application, in vivo experiments using covalently locked Rab5 variants provide new insights into the mechanism of correct intracellular localization of Rab proteins. PMID:26178622

  20. Microwave-assisted extraction of bound phenolic acids in bran and flour fractions from sorghum and maize cultivars varying in hardness.

    PubMed

    Chiremba, Constance; Rooney, Lloyd W; Beta, Trust

    2012-05-09

    To release bound phenolic acids, a microwave-assisted extraction procedure was applied to bran and flour fractions obtained from eight sorghum and eight maize cultivars varying in hardness. The procedure was followed by HPLC analysis, and the identities of phenolic acids were confirmed by MS/MS spectra. The extraction of sorghum and maize bound phenolic acids was done for 90 s in 2 M NaOH to release ferulic acid and p-coumaric acid from bran and flour. Two diferulic acids, 8-O-4'- and 8-5'-benzofuran form, were identified and quantitated in sorghum bran, and only the former was found in maize bran. The contents of ferulic acid and diferulic acids in sorghum bran were 416-827 and 25-179 μg/g, respectively, compared to 2193-4779 and 271-819 μg/g in maize. Phenolic acid levels of sorghum were similar between hard and soft cultivars, whereas those of maize differed significantly (p < 0.05) except for ferulic acid in flour. Sorghum phenolic acids were not correlated with grain hardness as measured using a tangential abrasive decortication device. Maize ferulic acid (r = -0.601, p < 0.01), p-coumaric acid (r = -0.668, p < 0.01), and 8-O-4'-diferulic acid (r = -0.629, p < 0.01) were significantly correlated with hardness.

  1. Identification of amino acid residues that determine the substrate specificity of mammalian membrane-bound front-end fatty acid desaturases[S

    PubMed Central

    Watanabe, Kenshi; Ohno, Makoto; Taguchi, Masahiro; Kawamoto, Seiji; Ono, Kazuhisa; Aki, Tsunehiro

    2016-01-01

    Membrane-bound desaturases are physiologically and industrially important enzymes that are involved in the production of diverse fatty acids such as polyunsaturated fatty acids and their derivatives. Here, we identified amino acid residues that determine the substrate specificity of rat Δ6 desaturase (D6d) acting on linoleoyl-CoA by comparing its amino acid sequence with that of Δ5 desaturase (D5d), which converts dihomo-γ-linolenoyl-CoA. The N-terminal cytochrome b5-like domain was excluded as a determinant by domain swapping analysis. Substitution of eight amino acid residues (Ser209, Asn211, Arg216, Ser235, Leu236, Trp244, Gln245, and Val344) of D6d with the corresponding residues of D5d by site-directed mutagenesis switched the substrate specificity from linoleoyl-CoA to dihomo-γ-linolenoyl-CoA. In addition, replacement of Leu323 of D6d with Phe323 on the basis of the amino acid sequence of zebra fish Δ5/6 bifunctional desaturase was found to render D6d bifunctional. Homology modeling of D6d using recent crystal structure data of human stearoyl-CoA (Δ9) desaturase revealed that Arg216, Trp244, Gln245, and Leu323 are located near the substrate-binding pocket. To our knowledge, this is the first report on the structural basis of the substrate specificity of a mammalian front-end fatty acid desaturase, which will aid in efficient production of value-added fatty acids. PMID:26590171

  2. In the TTF-1 homeodomain the contribution of several amino acids to DNA recognition depends on the bound sequence.

    PubMed Central

    Fabbro, D; Tell, G; Leonardi, A; Pellizzari, L; Pucillo, C; Lonigro, R; Formisano, S; Damante, G

    1996-01-01

    The thyroid transcription factor-1 homeodomain (TTF-1HD) shows a peculiar DNA binding specificity, preferentially recognizing sequences containing the 5'-CAAG-3' core motif. Most other homeodomains instead recognize sites containing the 5'-TAAT-3' core motif. Here, we show that TTF-1HD efficiently recognizes another sequence, called D1, devoid of the 5'-CAAG-3' core motif. Different experimental approaches indicate that TTF-1HD contacts the D1 sequence in a manner which is different to that used to interact with sequences containing the 5'-CAAG-3' core motif. The binding activities that mutants of TTF-1HD display with the D1 sequence or with the sequence containing the 5'-CAAG-3' core motif indicate that the role of several DNA-contacting amino acids is different. In particular, during recognition of the D1 sequence, backbone-interacting amino acids not relevant in binding to sequences containing the 5'-CAAG-3' core motif play an important role. In the TTF-1HD, therefore, the contribution of several amino acids to DNA recognition depends on the bound sequence. These data indicate that although a common bonding network exists in all of the HD/DNA complexes, peculiarities important for DNA recognition may occur in single cases. PMID:8811078

  3. Effect of Butanedioic Acid Mono (2,2-Dimethylhydrazide) on the Activity of Membrane-Bound Succinate Dehydrogenase

    PubMed Central

    See, Raymond M.; Foy, Chester L.

    1982-01-01

    Mitochondria isolated from hypocotyls of five-day-old bean (Phaseolus vulgaris L. `Black Valentine') seedlings rapidly oxidized succinate, malate, and NADH. Oxidation rates, respiratory control, and ADP:O ratios obtained with saturating concentrations of all three substrates indicated that the mitochondria were tightly coupled. The mitochondrial preparation was then employed to investigate the respiration-inhibiting effects of butanedioic acid mono (2,2-dimethyl-hydrazide) (daminozide) a plant growth retardant having structural similarity to an endogenous respiratory substrate (succinate). Daminozide markedly inhibited the activity of membrane-bound succinate dehydrogenase. Inhibition was of the competitive type (apparent Ki, 20.2 millimolar) with respect to succinate. Although not excluding other hypotheses, the results support an active role for daminozide in the suppression of respiration as an important metabolic site of its action as a plant growth regulator. PMID:16662493

  4. Uncertainty quantification and integration of machine learning techniques for predicting acid rock drainage chemistry: a probability bounds approach.

    PubMed

    Betrie, Getnet D; Sadiq, Rehan; Morin, Kevin A; Tesfamariam, Solomon

    2014-08-15

    Acid rock drainage (ARD) is a major pollution problem globally that has adversely impacted the environment. Identification and quantification of uncertainties are integral parts of ARD assessment and risk mitigation, however previous studies on predicting ARD drainage chemistry have not fully addressed issues of uncertainties. In this study, artificial neural networks (ANN) and support vector machine (SVM) are used for the prediction of ARD drainage chemistry and their predictive uncertainties are quantified using probability bounds analysis. Furthermore, the predictions of ANN and SVM are integrated using four aggregation methods to improve their individual predictions. The results of this study showed that ANN performed better than SVM in enveloping the observed concentrations. In addition, integrating the prediction of ANN and SVM using the aggregation methods improved the predictions of individual techniques.

  5. Charge transport through dicarboxylic-acid-terminated alkanes bound to graphene-gold nanogap electrodes

    NASA Astrophysics Data System (ADS)

    Liu, Longlong; Zhang, Qian; Tao, Shuhui; Zhao, Cezhou; Almutib, Eman; Al-Galiby, Qusiy; Bailey, Steven W. D.; Grace, Iain; Lambert, Colin J.; Du, Jun; Yang, Li

    2016-07-01

    Graphene-based electrodes are attractive for single-molecule electronics due to their high stability and conductivity and reduced screening compared with metals. In this paper, we use the STM-based matrix isolation I(s) method to measure the performance of graphene in single-molecule junctions with one graphene electrode and one gold electrode. By measuring the length dependence of the electrical conductance of dicarboxylic-acid-terminated alkanes, we find that the transport is consistent with phase-coherent tunneling, but with an attenuation factor of βN = 0.69 per methyl unit, which is lower than the value measured for Au-molecule-Au junctions. Comparison with density-functional-theory calculations of electron transport through graphene-molecule-Au junctions and Au-molecule-Au junctions reveals that this difference is due to the difference in Fermi energies of the two types of junction, relative to the frontier orbitals of the molecules. For most molecules, their electrical conductance in graphene-molecule-Au junctions is higher than that in Au-molecule-Au junctions, which suggests that graphene offers superior electrode performance, when utilizing carboxylic acid anchor groups.Graphene-based electrodes are attractive for single-molecule electronics due to their high stability and conductivity and reduced screening compared with metals. In this paper, we use the STM-based matrix isolation I(s) method to measure the performance of graphene in single-molecule junctions with one graphene electrode and one gold electrode. By measuring the length dependence of the electrical conductance of dicarboxylic-acid-terminated alkanes, we find that the transport is consistent with phase-coherent tunneling, but with an attenuation factor of βN = 0.69 per methyl unit, which is lower than the value measured for Au-molecule-Au junctions. Comparison with density-functional-theory calculations of electron transport through graphene-molecule-Au junctions and Au

  6. Loosely-Bound Diatomic Molecules.

    ERIC Educational Resources Information Center

    Balfour, W. J.

    1979-01-01

    Discusses concept of covalent bonding as related to homonuclear diatomic molecules. Article draws attention to the existence of bound rare gas and alkaline earth diatomic molecules. Summarizes their molecular parameters and offers spectroscopic data. Strength and variation with distance of interatomic attractive forces is given. (Author/SA)

  7. Synergistic salubrious effect of ferulic acid and ascorbic acid on membrane-bound phosphatases and lysosomal hydrolases during experimental myocardial infarction in rats.

    PubMed

    Yogeeta, Surinder Kumar; Gnanapragasam, Arunachalam; Senthilkumar, Subramanian; Subhashini, Rajakannu; Devaki, Thiruvengadam

    2006-12-23

    Altered membrane integrity has been suggested as a major factor in the development of cellular injury during myocardial necrosis. The present study was designed to investigate the effect of the combination of ferulic acid (FA) and ascorbic acid (AA) on lysosomal hydrolases and membrane-bound phosphatases during isoproterenol (ISO) induced myocardial necrosis in rats. Induction of rats with 1SO (150 mg/kg b.wt, i.p.) for 2 days resulted in a significant increase in the activities of lysosomal hydrolases (beta-D-glucuronidase, beta-D-galactosidase, beta-D-N-acetylglucosaminidase, acid phosphatase and cathepsin-D) in the heart and serum. A significant increase in plasma lactate level, cardiac levels of sodium, calcium and a decrease in cardiac level of potassium was also observed, which was paralleled by abnormal activities of membrane-bound phosphatases (Na(+)-K(+) ATPase, Ca(2+) ATPase and Mg(2+) ATPase) in the heart of ISO-administered rats. Pre-co-treatment with the combination of FA (20 mg/kg b.wt) and AA (80 mg/kg b.wt) orally for 6 days significantly attenuated these abnormalities and restored the levels to near normalcy when compared to individual drug treated groups. The combination of FA and AA preserved the membrane integrity by mitigating the oxidative stress and associated cellular damage more effectively when compared to individual treatment groups. In our study, the protection conferred by FA and AA might be through the nitric oxide pathway and by their ability of quenching free radicals. In conclusion, these findings indicate the synergistic modulation of lysosomal hydrolases and membrane phosphatases by the combination of FA and AA.

  8. Investigating the role of mineral-bound humic acid in phenanthrene sorption.

    PubMed

    Feng, Xiaojuan; Simpson, André J; Simpson, Myrna J

    2006-05-15

    Contaminant-soil interaction studies have indicated that physical conformation of organic matter atthe solid-aqueous interface is important in governing hydrophobic organic compound (HOC) sorption. To testthis, organo-clay complexes were constructed by coating montmorillonite and kaolinite with peat humic acid (PHA) in Na+ or Ca2+ dominated solutions with varying pH and ionic strength values. The solution conditions encouraged the dissolved PHA to adopt a "coiled" or "stretched" conformation prior to interacting with the clay mineral surface. Both kaolinite and montmorillonite organo-clay complexes exhibited higher phenanthrene sorption (Koc values) with decreasing pH, indicating that the coiled configuration provided more favorable sorption conditions. Evidence from 1H high-resolution magic angle spinning (HR-MAS) nuclear magnetic resonance (NMR) indicated that polymethylene groups were prevalent at the surface of the organo-clay complexes and may enhance sorptive interactions. Preferential sorption of polymethylene groups on kaolinite and aromatic compounds on montmorillonite may also contribute to the difference in phenanthrene sorption by PHA associated with these two types of clay. This study demonstrates the importance of solution conditions in the sorption of nonionic, hydrophobic organic contaminants and also provides evidence for the indirect role of clay minerals in sorption of contaminants at the soil-water interface.

  9. Enhancement of cell growth and glycolic acid production by overexpression of membrane-bound alcohol dehydrogenase in Gluconobacter oxydans DSM 2003.

    PubMed

    Zhang, Huan; Shi, Lulu; Mao, Xinlei; Lin, Jinping; Wei, Dongzhi

    2016-11-10

    Membrane-bound alcohol dehydrogenase (mADH) was overexpressed in Gluconobacter oxydans DSM 2003, and the effects on cell growth and glycolic acid production were investigated. The transcription levels of two terminal ubiquinol oxidases (bo3 and bd) in the respiratory chain of the engineered strain G. oxydans-adhABS were up-regulated by 13.4- and 3.8-fold, respectively, which effectively enhanced the oxygen uptake rate, resulting in higher resistance to acid. The cell biomass of G. oxydans-adhABS could increase by 26%-33% when cultivated in a 7L bioreactor. The activities of other major membrane-bound dehydrogenases were also increased to some extent, particularly membrane-bound aldehyde dehydrogenase (mALDH), which is involved in the catalytic oxidation of aldehydes to the corresponding acids and was 1.26-fold higher. Relying on the advantages of the above, G. oxydans-adhABS could produce 73.3gl(-1) glycolic acid after 45h of bioconversion with resting cells, with a molar yield 93.5% and a space-time yield of 1.63gl(-1)h(-1). Glycolic acid production could be further improved by fed-batch fermentation. After 45h of culture, 113.8gl(-1) glycolic acid was accumulated, with a molar yield of 92.9% and a space-time yield of 2.53gl(-1)h(-1), which is the highest reported glycolic acid yield to date.

  10. Electronic Communication in Covalently vs. Non-Covalently Bonded Polyfluorene Systems: the Role of the Covalent Linker.

    NASA Astrophysics Data System (ADS)

    Uhler, Brandon; Reilly, Neil J.; Talipov, Marat R.; Ivanov, Maxim; Timerghazin, Qadir; Rathore, Rajendra; Reid, Scott

    2015-06-01

    The covalently linked polyfluorene molecules F1-F6 (see left) are prototypical molecular wires by virtue of their favorable electron/hole transport properties brought about by π-stacking. To understand the role of the covalent linker in facilitating electron transport in these systems, we have investigated several van der Waals (vdW) analogues by resonant mass spectroscopy. Electronic spectra and ion yield curves are reported for jet-cooled vdW clusters containing up to six fluorene units. The near-coincidence of the electronic band origins for the dimer and larger clusters suggests that a structure containing a central dimer chromophore is the predominant conformational motif. As for F1-F6, the threshold ionization potentials extracted from the ion yield measurements decrease linearly with inverse cluster size. Importantly, however, the rate of decrease is significantly smaller in the vdW clusters, indicating more efficient hole stabilization in the covalently bound systems. Results for similar vdW clusters that are locked into specific conformations by steric effects will also be reported.

  11. Assessment of total (free and bound) phenolic compounds in spent coffee extracts.

    PubMed

    Monente, Carmen; Ludwig, Iziar A; Irigoyen, Angel; De Peña, María-Paz; Cid, Concepción

    2015-05-06

    Spent coffee is the main byproduct of the brewing process and a potential source of bioactive compounds, mainly phenolic acids easily extracted with water. Free and bound caffeoylquinic (3-CQA, 4-CQA, 5-CQA), dicaffeoylquinic (3,4-diCQA, 3,5-diCQA, 4,5-diCQA), caffeic, ferulic, p-coumaric, sinapic, and 4-hydroxybenzoic acids were measured by HPLC, after the application of three treatments (alkaline, acid, saline) to spent coffee extracts. Around 2-fold higher content of total phenolics has been estimated in comparison to free compounds. Phenolic compounds with one or more caffeic acid molecules were approximately 54% linked to macromolecules such as melanoidins, mainly by noncovalent interactions (up to 81% of bound phenolic compounds). The rest of the quantitated phenolic acids were mainly attached to other structures by covalent bonds (62-97% of total bound compounds). Alkaline hydrolysis and saline treatment were suitable to estimate total bound and ionically bound phenolic acids, respectively, whereas acid hydrolysis is an inadequate method to quantitate coffee phenolic acids.

  12. Light-induced covalent immobilization of monolayers of magnetic nanoparticles on hydrogen-terminated silicon.

    PubMed

    Leem, Gyu; Zhang, Shishan; Jamison, Andrew C; Galstyan, Eduard; Rusakova, Irene; Lorenz, Bernd; Litvinov, Dmitri; Lee, T Randall

    2010-10-01

    Specifically tailored ω-alkenyl-1-carboxylic acids were synthesized for use as surfactants in the single-step preparation of manganese ferrite (MnFe2O4) nanoparticles (NPs). Monodisperse manganese ferrite NPs terminated with ω-alkenyl moieties were prepared via a one-pot reaction at high temperature without the need of ligand exchange. Using this approach, simple adjustment of the rate of heating allowed precise tuning of the size of the nanoparticles, which were characterized in bulk form by transmission electron microscopy (TEM), Fourier-transform infrared (FT-IR) spectroscopy, and X-ray diffraction (XRD). These surfactant-coated magnetic nanoparticles were then deposited onto hydrogen-terminated silicon(111) wafers and covalently anchored to the surface by UV-initiated covalent bonding. Analysis by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) confirmed that the UV treatment led to covalent immobilization of the NPs on the silicon surface with a consistent packing density across the surface. The magnetic properties of the stable, surface-bound nanoparticle arrays were characterized using a superconducting quantum interference device (SQUID) magnetometer. The materials and methods described here are being developed for use in bit-patterned ultrahigh density magnetic recording media and nanoscale biomagnetic sensing.

  13. Combined measurement and significance of lipid-bound sialic acid and carcinoembryonic antigen in detection of human cancer.

    PubMed

    Munjal, D D; Picken, J; Pritchard, J

    1984-01-01

    We evaluated the clinical usefulness of lipid-bound sialic acid (LSA) as a "tumor marker" and assessed individual and carcinoembryonic antigen (CEA) in cancer patients. Serum LSA and CEA concentrations were measured by the resorcinol method after total lipid extraction and isolation of the sialolipid fraction, and by Abbott enzyme immunoassay procedures, respectively. Results indicate that the frequency of elevation and mean LSA values were highest in patients with lung cancer (318 mg/liter), intermediate in miscellaneous (210 mg/liter) and colorectal cancers (200 mg/liter), and lowest in breast cancer (175 mg/liter); while mean CEA values were highest in colorectal cancer (162.5 micrograms/liter), followed by lung (33.8 micrograms/liter), miscellaneous (30.3 micrograms/liter), and breast cancers (11.6 micrograms/liter). Statistically, LSA and CEA values for cancer patients were significantly (P less than 0.001) higher than for normal subjects. The combined measurement of LSA and CEA in serum provides better detection potential for cancer patients than either of the two markers alone.

  14. Distribution of soil arsenic species, lead and arsenic bound to humic acid molar mass fractions in a contaminated apple orchard.

    PubMed

    Newton, Kimberly; Amarasiriwardena, Dulasiri; Xing, Baoshan

    2006-09-01

    Excessive application of lead arsenate pesticides in apple orchards during the early 1900s has led to the accumulation of lead and arsenic in these soils. Lead and arsenic bound to soil humic acids (HA) and soil arsenic species in a western Massachusetts apple orchard was investigated. The metal-humate binding profiles of Pb and As were analyzed with size exclusion chromatography-inductively coupled plasma mass spectrometry (SEC-ICP-MS). It was observed that both Pb and As bind "tightly" to soil HA molar mass fractions. The surface soils of the apple orchard contained a ratio of about 14:1 of water soluble As (V) to As (III), while mono-methyl (MMA) and di-methyl arsenic (DMA) were not detectable. The control soil contained comparatively very low levels of As (III) and As (V). The analysis of soil core samples demonstrated that As (III) and As (V) species are confined to the top 20 cm of the soil.

  15. Characterization of 19 Genes Encoding Membrane-Bound Fatty Acid Desaturases and their Expression Profiles in Gossypium raimondii Under Low Temperature.

    PubMed

    Liu, Wei; Li, Wei; He, Qiuling; Daud, Muhammad Khan; Chen, Jinhong; Zhu, Shuijin

    2015-01-01

    To produce unsaturated fatty acids, membrane-bound fatty acid desaturases (FADs) can be exploited to introduce double bonds into the acyl chains of fatty acids. In this study, 19 membrane-bound FAD genes were identified in Gossypium raimondii through database searches and were classified into four different subfamilies based on phylogenetic analysis. All 19 membrane-bound FAD proteins shared three highly conserved histidine boxes, except for GrFAD2.1, which lost the third histidine box in the C-terminal region. In the G. raimondii genome, tandem duplication might have led to the increasing size of the FAD2 cluster in the Omega Desaturase subfamily, whereas segmental duplication appeared to be the dominant mechanism for the expansion of the Sphingolipid and Front-end Desaturase subfamilies. Gene expression analysis showed that seven membrane-bound FAD genes were significantly up-regulated and that five genes were greatly suppressed in G. raimondii leaves exposed to low temperature conditions.

  16. Studies on Escherichia coli sex factors: evidence that covalent circles exist within cells and the general problem of isolation of covalent circles.

    PubMed

    Freifelder, D; Folkmanis, A; Kirschner, I

    1971-03-01

    We examined in detail conditions necessary for making reproducible and for maximizing the amount of deoxyribonucleic acid obtained from a sex factor-containing cell as covalent circles. The results argue that under optimal conditions covalent circles are neither created nor lost during the isolation procedure. The causes of the culture-to-culture variation in recovery of covalent circular deoxyribonucleic acid were investigated but an understanding of this is not yet at hand. Some commonly used conditions which drastically reduce the recovery of covalent circles are described.

  17. Studies on Escherichia coli Sex Factors: Evidence That Covalent Circles Exist Within Cells and the General Problem of Isolation of Covalent Circles

    PubMed Central

    Freifelder, David; Folkmanis, Atis; Kirschner, Ilana

    1971-01-01

    We examined in detail conditions necessary for making reproducible and for maximizing the amount of deoxyribonucleic acid obtained from a sex factor-containing cell as covalent circles. The results argue that under optimal conditions covalent circles are neither created nor lost during the isolation procedure. The causes of the culture-to-culture variation in recovery of covalent circular deoxyribonucleic acid were investigated but an understanding of this is not yet at hand. Some commonly used conditions which drastically reduce the recovery of covalent circles are described. PMID:4926680

  18. Reversible Control of Nanoparticle Functionalization and Physicochemical Properties by Dynamic Covalent Exchange.

    PubMed

    Della Sala, Flavio; Kay, Euan R

    2015-03-27

    Existing methods for the covalent functionalization of nanoparticles rely on kinetically controlled reactions, and largely lack the sophistication of the preeminent oligonucleotide-based noncovalent strategies. Here we report the application of dynamic covalent chemistry for the reversible modification of nanoparticle (NP) surface functionality, combining the benefits of non-biomolecular covalent chemistry with the favorable features of equilibrium processes. A homogeneous monolayer of nanoparticle-bound hydrazones can undergo quantitative dynamic covalent exchange. The pseudomolecular nature of the NP system allows for the in situ characterization of surface-bound species, and real-time tracking of the exchange reactions. Furthermore, dynamic covalent exchange offers a simple approach for reversibly switching-and subtly tuning-NP properties such as solvophilicity.

  19. Covalently networked monolayer-protected nanoparticle films.

    PubMed

    Tognarelli, D J; Miller, Robert B; Pompano, Rebecca R; Loftus, Andrew F; Sheibley, Daniel J; Leopold, Michael C

    2005-11-22

    Covalently networked films of nanoparticles can be assembled on various substrates from functionalized monolayer-protected clusters (MPCs) via ester coupling reactions. Exposure of a specifically modified substrate to alternating solutions of 11-mercaptoundecanoic acid exchanged and 11-mercaptoundecanol exchanged MPCs, in the presence of ester coupling reagents, 1,3-dicyclohexylcarbodiimide and 4-(dimethylamino)pyridine, results in the formation of a multilayer film with ester bridges between individual nanoparticles. These films can be grown in a controlled manner to various thicknesses and exhibit certain properties that are consistent with films having other types of interparticle connectivity, including chemical vapor response behavior and quantized double layer charging. Ester coupling of MPCs into assembled films is a straightforward and highly versatile approach that results in robust films that can endure harsher chemical environments than other types of films. The stability of these covalent films is assessed and compared to other more traditional MPC film assemblies.

  20. Covalent immobilization of biomolecules onto polystyrene MicroWells for use in biospecific assays.

    PubMed

    Rasmussen, S E

    1990-01-01

    Modification of polystyrene for higher binding capacity and/or for specific covalent immobilization of biomolecules is discussed. The benefit of covalent coupling of biomolecules onto a new commercially available surface type for covalent immobilization, CovaLink NH, is illustrated. The CovaLink NH solid phase has spacer arms covalently grafted onto the polystyrene solid phase, approximately 10(14) groups/cm2. Coupling procedures for covalent immobilization of biotin and peptides are demonstrated, and the advantage of using carbodiimide for coupling of carboxylic acid containing compounds is shown.

  1. Molecular Biodynamers: Dynamic Covalent Analogues of Biopolymers.

    PubMed

    Liu, Yun; Lehn, Jean-Marie; Hirsch, Anna K H

    2017-02-21

    biodynamers are commonly produced in aqueous media under mild or even physiological conditions to suit their biorelated applications. In contrast to static biopolymers emphasizing structural stability and unity by using irreversible covalent bonds, molecular biodynamers are seeking relative structural adaptability and diversity through the formation of reversible covalent bonds. Based on these considerations, molecular biodynamers are capable of reorganizing their monomers, generating, identifying, and amplifying the fittest structures in response to environmental factors. Hence, molecular biodynamers have received considerable research attention over the past decades. Accordingly, the construction of molecular biodynamers through equilibrium polymerization of nucleobase-, carbohydrate- or amino-acid-based monomers can lead to the fabrication of dynamic analogues of nucleic acids (DyNAs), polysaccharides (glycodynamers), or proteins (dynamic proteoids), respectively. In this Account, we summarize recent advances in developing different types of molecular biodynamers as structural or functional biomimetics of biopolymers, including DyNAs, glycodynamers, and dynamic proteoids. We introduce how chemists utilize various reversible reactions to generate molecular biodynamers with specific sequences and well-ordered structures in aqueous medium. We also discuss and list their potential applications in various research fields, such as drug delivery, drug discovery, gene sensing, cancer diagnosis, and treatment.

  2. Molecular Biodynamers: Dynamic Covalent Analogues of Biopolymers

    PubMed Central

    2017-01-01

    , molecular biodynamers are commonly produced in aqueous media under mild or even physiological conditions to suit their biorelated applications. In contrast to static biopolymers emphasizing structural stability and unity by using irreversible covalent bonds, molecular biodynamers are seeking relative structural adaptability and diversity through the formation of reversible covalent bonds. Based on these considerations, molecular biodynamers are capable of reorganizing their monomers, generating, identifying, and amplifying the fittest structures in response to environmental factors. Hence, molecular biodynamers have received considerable research attention over the past decades. Accordingly, the construction of molecular biodynamers through equilibrium polymerization of nucleobase-, carbohydrate- or amino-acid-based monomers can lead to the fabrication of dynamic analogues of nucleic acids (DyNAs), polysaccharides (glycodynamers), or proteins (dynamic proteoids), respectively. In this Account, we summarize recent advances in developing different types of molecular biodynamers as structural or functional biomimetics of biopolymers, including DyNAs, glycodynamers, and dynamic proteoids. We introduce how chemists utilize various reversible reactions to generate molecular biodynamers with specific sequences and well-ordered structures in aqueous medium. We also discuss and list their potential applications in various research fields, such as drug delivery, drug discovery, gene sensing, cancer diagnosis, and treatment. PMID:28169527

  3. Intrafibrillar mineralization of polyacrylic acid-bound collagen fibrils using a two-dimensional collagen model and Portland cement-based resins.

    PubMed

    Wu, Shiyu; Gu, Lisha; Huang, Zihua; Sun, Qiurong; Chen, Huimin; Ling, Junqi; Mai, Sui

    2017-02-01

    The biomimetic remineralization of apatite-depleted dentin is a potential method for enhancing the durability of resin-dentin bonding. To advance this strategy from its initial proof-of-concept design, we sought to investigate the characteristics of polyacrylic acid (PAA) adsorption to desorption from type I collagen and to test the mineralization ability of PAA-bound collagen. Portland cement and β-tricalcium phosphate (β-TCP) were homogenized with a hydrophilic resin blend to produce experimental resins. The collagen fibrils reconstituted on nickel (Ni) grids were mineralized using different methods: (i) group I consisted of collagen treated with Portland cement-based resin in simulated body fluid (SBF); (ii) group II consisted of PAA-bound collagen treated with Portland cement-based resin in SBF; and (iii) group III consisted of PAA-bound collagen treated with β-TCP-doped Portland cement-based resin in deionized water. Intrafibrillar mineralization was evaluated using transmission electron microscopy. We found that a carbonyl-associated peak at pH 3.0 increased as adsorption time increased, whereas a hydrogen bond-associated peak increased as desorption time increased. The experimental resins maintained an alkaline pH and the continuous release of calcium ions. Apatite was detected within PAA-bound collagen in groups II and III. Our results suggest that PAA-bound type I collagen fibrils can be mineralized using Portland cement-based resins.

  4. Fenofibrate, a PPARα agonist, protect proximal tubular cells from albumin-bound fatty acids induced apoptosis via the activation of NF-kB.

    PubMed

    Zuo, Nan; Zheng, Xiaoyu; Liu, Hanzhe; Ma, Xiaoli

    2015-01-01

    Albumin-bound fatty acids is the main cause of renal damage, PPARα is responsible in the metabolism of fatty acids. Previous study found that PPARα played a protective role in fatty acids overload associated tubular injury. The aim of the present study is to investigate whether fenofibrate, a PPARα ligands, could contribute to the renoprotective action in fatty acids overload proximal tubule epithelial cells. We observed in HK-2 cells that fenofibrate significantly inhibited fatty acids bound albumin (FA-BSA) induced up-regulation of MCP-1 and IL-8. Treatment with fenofibrate attenuated renal oxidative stress induced by FA-BSA as evidenced by decreased MDA level, increased SOD activity and catalase, GPx-1 expression. FA-BSA induced apoptosis of HK-2 cells were also obviously prevented by fenofibrate. Furthermore, fenofibrate significantly increased the expression of PPARα mRNA and protein in FA-BSA treated cells. Finally, the activation of NF-kB induced by FA-BSA was markedly suppressed by fenofibrate. Taken together, our study describes a renoprotective role of fenofibrate in fatty acids associated tubular toxicity, and the transcriptional activation of PPARα and suppression of NF-kB were at least partially involved.

  5. Synthetic Covalent and Non-Covalent 2D Materials.

    PubMed

    Boott, Charlotte E; Nazemi, Ali; Manners, Ian

    2015-11-16

    The creation of synthetic 2D materials represents an attractive challenge that is ultimately driven by their prospective uses in, for example, electronics, biomedicine, catalysis, sensing, and as membranes for separation and filtration. This Review illustrates some recent advances in this diverse field with a focus on covalent and non-covalent 2D polymers and frameworks, and self-assembled 2D materials derived from nanoparticles, homopolymers, and block copolymers.

  6. Colloidal Covalent Organic Frameworks

    PubMed Central

    2017-01-01

    Covalent organic frameworks (COFs) are two- or three-dimensional (2D or 3D) polymer networks with designed topology and chemical functionality, permanent porosity, and high surface areas. These features are potentially useful for a broad range of applications, including catalysis, optoelectronics, and energy storage devices. But current COF syntheses offer poor control over the material’s morphology and final form, generally providing insoluble and unprocessable microcrystalline powder aggregates. COF polymerizations are often performed under conditions in which the monomers are only partially soluble in the reaction solvent, and this heterogeneity has hindered understanding of their polymerization or crystallization processes. Here we report homogeneous polymerization conditions for boronate ester-linked, 2D COFs that inhibit crystallite precipitation, resulting in stable colloidal suspensions of 2D COF nanoparticles. The hexagonal, layered structures of the colloids are confirmed by small-angle and wide-angle X-ray scattering, and kinetic characterization provides insight into the growth process. The colloid size is modulated by solvent conditions, and the technique is demonstrated for four 2D boronate ester-linked COFs. The diameter of individual COF nanoparticles in solution is monitored and quantified during COF growth and stabilization at elevated temperature using in situ variable-temperature liquid cell transmission electron microscopy imaging, a new characterization technique that complements conventional bulk scattering techniques. Solution casting of the colloids yields a free-standing transparent COF film with retained crystallinity and porosity, as well as preferential crystallite orientation. Collectively this structural control provides new opportunities for understanding COF formation and designing morphologies for device applications. PMID:28149954

  7. Covalent binding of aniline to humic substances. 2. 15N NMR studies of nucleophilic addition reactions

    USGS Publications Warehouse

    Thorn, K.A.; Pettigrew, P.J.; Goldenberg, W.S.; Weber, E.J.

    1996-01-01

    Aromatic amines are known to undergo covalent binding with humic substances in the environment. Although previous studies have examined reaction conditions and proposed mechanisms, there has been no direct spectroscopic evidence for the covalent binding of the amines to the functional groups in humic substances. In order to further elucidate the reaction mechanisms, the Suwannee River and IHSS soil fulvic and humic acids were reacted with 15N-labeled aniline at pH 6 and analyzed using 15N NMR spectrometry. Aniline underwent nucleophilic addition reactions with the quinone and other carbonyl groups in the samples and became incorporated in the form of anilinohydroquinone, anilinoquinone, anilide, imine, and heterocyclic nitrogen, the latter comprising 50% or more of the bound amine. The anilide and anilinohydroquinone nitrogens were determined to be susceptible to chemical exchange by ammonia. In the case of Suwannee River fulvic acid, reaction under anoxic conditions and pretreatment with sodium borohydride or hydroxylamine prior to reaction under oxic conditions resulted in a decrease in the proportion of anilinohydroquinone nitrogen incorporated. The relative decrease in the incorporation of anilinohydroquinone nitrogen with respect to anilinoquinone nitrogen under anoxic conditions suggested that inter- or intramolecular redox reactions accompanied the nucleophilic addition reactions.

  8. Inhibition of Mcl-1 through covalent modification of a noncatalytic lysine side chain.

    PubMed

    Akçay, Gizem; Belmonte, Matthew A; Aquila, Brian; Chuaqui, Claudio; Hird, Alexander W; Lamb, Michelle L; Rawlins, Philip B; Su, Nancy; Tentarelli, Sharon; Grimster, Neil P; Su, Qibin

    2016-11-01

    Targeted covalent inhibition of disease-associated proteins has become a powerful methodology in the field of drug discovery, leading to the approval of new therapeutics. Nevertheless, current approaches are often limited owing to their reliance on a cysteine residue to generate the covalent linkage. Here we used aryl boronic acid carbonyl warheads to covalently target a noncatalytic lysine side chain, and generated to our knowledge the first reversible covalent inhibitors for Mcl-1, a protein-protein interaction (PPI) target that has proven difficult to inhibit via traditional medicinal chemistry strategies. These covalent binders exhibited improved potency in comparison to noncovalent congeners, as demonstrated in biochemical and cell-based assays. We identified Lys234 as the residue involved in covalent modification, via point mutation. The covalent binders discovered in this study will serve as useful starting points for the development of Mcl-1 therapeutics and probes to interrogate Mcl-1-dependent biological phenomena.

  9. Nuclear magnetic resonance studies on covalent modification of amino acids thiol and amino residues by monofunctional aryl 13C-isocyanates, models of skin and respiratory sensitizers: transformation of thiocarbamates into urea adducts.

    PubMed

    Fleischel, Olivier; Giménez-Arnau, Elena; Lepoittevin, Jean-Pierre

    2009-06-01

    Exposure to aryl isocyanates, intermediates in the manufacture of polyurethanes, provokes lung sensitization and asthma but also occupational allergic contact dermatitis, sensitization occurring from a single accidental exposure. The initial step in the sensitization process is believed to be the covalent binding of the -N triple bond C triple bond O group with nucleophilic residues on proteins. While a wide knowledge exists on the reactivity of skin sensitizers toward amino acids, little is known about respiratory sensitizers such as aryl isocyanates. (13)C-Labeled monofunctional aryl isocyanates were synthesized, and their reactivities toward nucleophilic amino acids, GSH, and a model peptide were studied by (13)C and [(1)H-(13)C] NMR spectroscopy. An acetonitrile/buffer solution was used as a solvent to avoid the hampering of the follow up of the reactivity by the isocyanate hydrolysis competing reaction. The compounds reacted with thiol groups, through the formation of thiocarbamate bonds and with amino groups to form urea derivatives. The reactivity was confirmed with GSH, containing both free amino and thiol groups, and with a model peptide, particularly in the case of the reaction with lysine. The use of (13)C NMR to follow the aryl isocyanates reversible conjugation with thiol groups is also reported. Particularly, it is shown that thiocarbamate adducts can be converted into adducts of the urea kind by reaction with amino groups. These results confirmed the hypothesis by which thiol-containing peptides/proteins may act as carriers of isocyanates for possible reaction at a later time and/or place with other nucleophiles and confirmed the role of lysine as a good competing nucleophilic amino acid. The reactivity of aryl isocyanates with thiol and amino groups needs thus to be considered in their assigned sensitization processes.

  10. Covalent binding of reduced metabolites of [{sup 15}N{sub 3}]TNT to soil organic matter during a bioremediation process analyzed by {sup 15}N NMR spectroscopy

    SciTech Connect

    Achtnich, C.; Fernandes, E.; Bollag, J.M.; Knackmuss, H.J.; Lenke, H.

    1999-12-15

    Evidence is presented for the covalent binding of biologically reduced metabolites of 2,4,6-{sup 15}N{sub 3}-trinitrotoluene (TNT) to different soil fractions, using liquid {sup 15}N NMR spectroscopy. A silylation procedure was used to release soil organic matter from humin and whole soil for spectroscopic measurements. TNT-contaminated soil was spiked with 2,4,6-{sup 15}N{sub 3}-trinitrotoluene and {sup 14}C-ring labeled TNT, before treatment in a soil slurry reactor. During the anaerobic/aerobic incubation the amount of radioactivity detected in the fulvic and humic acid fractions did not change significantly whereas the radioactivity bound to humin increased to 71%. The {sup 15}N NMR spectra of the fulvic acid samples were dominated by a large peak that corresponded to aliphatic amines or ammonia. In the early stages of incubation, {sup 15}N NMR analysis of the humic acids indicated bound azoxy compounds. The signals arising from nitro and azoxy groups disappeared with further anaerobic treatment. At the end of incubation, the NMR shifts showed that nitrogen was covalently bound to humic acid as substituted amines and amides. The NMR spectra of the silylated humin suggest formation of azoxy compounds and imine linkages. Bound metabolites possessing nitro groups were also detected. Primary amines formed during the anaerobic incubation disappeared during the aerobic treatment. Simultaneously, the amount of amides and tertiary amines increased. Nitro and azoxy groups of bound molecules were still present in humin at the end of the incubation period. Formation of azoxy compounds from partially reduced TNT followed by binding and further reduction appears to be an important mechanism for the immobilization of metabolites of TNT to soil.

  11. Non-covalent interactions in water electrolysis: influence on the activity of Pt(111) and iridium oxide catalysts in acidic media.

    PubMed

    Ganassin, Alberto; Colic, Viktor; Tymoczko, Jakub; Bandarenka, Aliaksandr S; Schuhmann, Wolfgang

    2015-04-07

    Electrolyte components, which are typically not considered to be directly involved in catalytic processes at solid-liquid electrified interfaces, often demonstrate a significant or even drastic influence on the activity, stability and selectivity of electrocatalysts. While there has been certain progress in the understanding of these electrolyte effects, lack of experimental data for various important systems frequently complicates the rational design of new active materials. Modern proton-exchange membrane (PEM) electrolyzers utilize Pt- and Ir-based electrocatalysts, which are among the very few materials that are both active and stable under the extreme conditions of water splitting. We use model Pt(111) and Ir-oxide films grown on Ir(111) electrodes and explore the effect of alkali metal cations and sulfate-anions on the hydrogen evolution and the oxygen evolution reactions in acidic media. We demonstrate that sulfate anions decrease the activity of Ir-oxide towards the oxygen evolution reaction while Rb(+) drastically promotes hydrogen evolution reaction at the Pt(111) electrodes as compared to the reference HClO4 electrolytes. Issues related to the activity benchmarking for these catalysts are discussed.

  12. Non-covalent inclusion of ferulic acid with alpha-cyclodextrin improves photo-stability and delivery: NMR and modeling studies.

    PubMed

    Anselmi, Cecilia; Centini, Marisanna; Maggiore, Maria; Gaggelli, Nicola; Andreassi, Marco; Buonocore, Anna; Beretta, Giangiacomo; Facino, Roberto Maffei

    2008-03-13

    Ferulic acid (FA) is a highly effective antioxidant and photo-protective agent, already approved in Japan as a sunscreen, but it is poorly suited for cosmetic application because of its low physicochemical stability. We prepared the inclusion complex of FA with alpha-cyclodextrin by co-precipitation from an aqueous solution, and used (1)H NMR and molecular dynamics to investigate the most probable structure of the inclusion complex. In rotating frame nuclear Overhouser effect spectroscopy (ROESY) experiments FA penetrated the alpha-CD hydrophobic cavity with the alpha,beta-unsaturated part of the molecule and some of its aromatic skeleton. In proton chemical shift measurements of FA and alpha-cyclodextrins we determined the stoichiometry of the association complex (1:1) by Job's method, and its stability constant (K(1:1) 1162+/-140 M(-1)) and described the molecular dynamics of the complex on the basis of theoretical studies. Encapsulation with alpha-cyclodextrin improves (i) the chemical stability of FA against UVB stress (10 MED [Minimal Erythemal Dose: 1 MED=25 mJ/cm(2) for skin phototype II: 30]), since no degradation products are formed after irradiation, and (ii) the bioavailability of FA on the skin, slowing its delivery (Strainer cell model).

  13. Trapping and partial characterization of an adduct postulated to be the covalent catalytic ternary complex of thymidylate synthetase

    SciTech Connect

    Ahmed, F.; Moore, M.A.; Dunlap, R.B.

    1986-05-01

    The proposed mechanism of action of thymidylate synthetase envisages the formation of a covalent ternary complex of the enzyme via the active site cysteine with dUMP and 5,10-methylenetetrahydrofolate (CH/sub 2/H/sub 4/folate). The authors recent success in using trichloroacetic acid to trap the covalent enzyme-FdUMP binary and ternary (enzyme-FdUMP-CH/sub 2/H/sub 4/folate) complexes led to the use of this technique in attempts to trap the transient covalent catalytic ternary complex. Experiments performed with (2-C/sup 14/)dUMP and /sup 3/H-CH/sub 2/H/sub 4/folate show that both these ligands remained bound to the enzyme after trichloroacetic acid precipitation. The trapped covalent catalytic ternary complex was subjected to CNBr fragmentation, and the peptides were fractionated by HPLC. The isolated active-site peptide was shown to retain the two ligands and was subjected to a limited sequence analysis by the dansyl-Edman procedure. The inhibitory ternary complex formed with /sup 14/C-FdUMP and /sup 3/H-CH/sub 2/ /sub 4/folate served as a control. The active-site peptides isolated from the CNBr treated inhibitory ternary complex and the catalytic complex exhibited identical sequences for the first four N-terminal residues, Ala-Leu-Pro-Pro, and the fifth residue was found to be associated with the labeled ligands. Sequence analysis of the active site peptide derived from the carboxymethylated enzyme confirmed this sequence and the 5th residue was shown to be Cm-Cys.

  14. Mouse Siglec-1 Mediates trans-Infection of Surface-bound Murine Leukemia Virus in a Sialic Acid N-Acyl Side Chain-dependent Manner.

    PubMed

    Erikson, Elina; Wratil, Paul R; Frank, Martin; Ambiel, Ina; Pahnke, Katharina; Pino, Maria; Azadi, Parastoo; Izquierdo-Useros, Nuria; Martinez-Picado, Javier; Meier, Chris; Schnaar, Ronald L; Crocker, Paul R; Reutter, Werner; Keppler, Oliver T

    2015-11-06

    Siglec-1 (sialoadhesin, CD169) is a surface receptor on human cells that mediates trans-enhancement of HIV-1 infection through recognition of sialic acid moieties in virus membrane gangliosides. Here, we demonstrate that mouse Siglec-1, expressed on the surface of primary macrophages in an interferon-α-responsive manner, captures murine leukemia virus (MLV) particles and mediates their transfer to proliferating lymphocytes. The MLV infection of primary B-cells was markedly more efficient than that of primary T-cells. The major structural protein of MLV particles, Gag, frequently co-localized with Siglec-1, and trans-infection, primarily of surface-bound MLV particles, efficiently occurred. To explore the role of sialic acid for MLV trans-infection at a submolecular level, we analyzed the potential of six sialic acid precursor analogs to modulate the sialylated ganglioside-dependent interaction of MLV particles with Siglec-1. Biosynthetically engineered sialic acids were detected in both the glycolipid and glycoprotein fractions of MLV producer cells. MLV released from cells carrying N-acyl-modified sialic acids displayed strikingly different capacities for Siglec-1-mediated capture and trans-infection; N-butanoyl, N-isobutanoyl, N-glycolyl, or N-pentanoyl side chain modifications resulted in up to 92 and 80% reduction of virus particle capture and trans-infection, respectively, whereas N-propanoyl or N-cyclopropylcarbamyl side chains had no effect. In agreement with these functional analyses, molecular modeling indicated reduced binding affinities for non-functional N-acyl modifications. Thus, Siglec-1 is a key receptor for macrophage/lymphocyte trans-infection of surface-bound virions, and the N-acyl side chain of sialic acid is a critical determinant for the Siglec-1/MLV interaction.

  15. Mouse Siglec-1 Mediates trans-Infection of Surface-bound Murine Leukemia Virus in a Sialic Acid N-Acyl Side Chain-dependent Manner*

    PubMed Central

    Erikson, Elina; Wratil, Paul R.; Frank, Martin; Ambiel, Ina; Pahnke, Katharina; Pino, Maria; Azadi, Parastoo; Izquierdo-Useros, Nuria; Martinez-Picado, Javier; Meier, Chris; Schnaar, Ronald L.; Crocker, Paul R.; Reutter, Werner; Keppler, Oliver T.

    2015-01-01

    Siglec-1 (sialoadhesin, CD169) is a surface receptor on human cells that mediates trans-enhancement of HIV-1 infection through recognition of sialic acid moieties in virus membrane gangliosides. Here, we demonstrate that mouse Siglec-1, expressed on the surface of primary macrophages in an interferon-α-responsive manner, captures murine leukemia virus (MLV) particles and mediates their transfer to proliferating lymphocytes. The MLV infection of primary B-cells was markedly more efficient than that of primary T-cells. The major structural protein of MLV particles, Gag, frequently co-localized with Siglec-1, and trans-infection, primarily of surface-bound MLV particles, efficiently occurred. To explore the role of sialic acid for MLV trans-infection at a submolecular level, we analyzed the potential of six sialic acid precursor analogs to modulate the sialylated ganglioside-dependent interaction of MLV particles with Siglec-1. Biosynthetically engineered sialic acids were detected in both the glycolipid and glycoprotein fractions of MLV producer cells. MLV released from cells carrying N-acyl-modified sialic acids displayed strikingly different capacities for Siglec-1-mediated capture and trans-infection; N-butanoyl, N-isobutanoyl, N-glycolyl, or N-pentanoyl side chain modifications resulted in up to 92 and 80% reduction of virus particle capture and trans-infection, respectively, whereas N-propanoyl or N-cyclopropylcarbamyl side chains had no effect. In agreement with these functional analyses, molecular modeling indicated reduced binding affinities for non-functional N-acyl modifications. Thus, Siglec-1 is a key receptor for macrophage/lymphocyte trans-infection of surface-bound virions, and the N-acyl side chain of sialic acid is a critical determinant for the Siglec-1/MLV interaction. PMID:26370074

  16. Revealing Non-Covalent Interactions

    PubMed Central

    Johnson, Erin R.; Keinan, Shahar; Mori-Sánchez, Paula; Contreras-García, Julia; Cohen, Aron J.; Yang, Weitao

    2010-01-01

    Molecular structure does not easily identify the intricate non-covalent interactions that govern many areas of biology and chemistry, including design of new materials and drugs. We develop an approach to detect non-covalent interactions in real space, based on the electron density and its derivatives. Our approach reveals underlying chemistry that compliments the covalent structure. It provides a rich representation of van der Waals interactions, hydrogen bonds, and steric repulsion in small molecules, molecular complexes, and solids. Most importantly, the method, requiring only knowledge of the atomic coordinates, is efficient and applicable to large systems, such as proteins or DNA. Across these applications, a view of non-bonded interactions emerges as continuous surfaces rather than close contacts between atom pairs, offering rich insight into the design of new and improved ligands. PMID:20394428

  17. Phospholpid studies of marine organisms: 2.(1) Phospholipids, phospholipid-bound fatty acids and free sterols of the spongeAplysina fistularis (Pallas) formafulva (Pallas) (=Verongia thiona)(2). Isolation and structure elucidation of unprecedented branched fatty acids.

    PubMed

    Walkup, R D; Jamieson, G C; Ratcliff, M R; Djerassi, C

    1981-09-01

    The free sterols and phospholipids of the demospongeAplysina fistularis were isolated and analyzed. The free sterols consisted mainly of the unusual 26-methylated sterols aplysterol (53%) and 24(28)-dehydroaplysterol (7%) together with 7 commonly occurring sterods. The major phospholipids were phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol, phosphatidylethanolamine, phosphatidylserine and diphosphatidylglycerol. The major fatty acyl components of the phospholipids consisted of 85% C14-C20 acids, including the unprecedented 2,6,10-trimethyl-5-tetradecenoic acid and 11-methyloctadecanoic acid. The remaining 15% were C27-C30 demospongic acids, including 2 novel acids tentatively assigned the structures 5,9,23-octacosatrienoic acid and 5,9,23-nonacosatrienoic acid, and 3 novel acids proven to be 5,9,21-octacosatrienoic acid, Z,Z-20-methyl-5,9-hexacosadienoic acid and Z,Z-22-methyl-5,9-octacosadienoic acid. The biosyntheses of the novel demospongic acids are proposed to occur by chain elongation of monoenoic or branched precursors followed by desaturation. The large quantities of typically bacterial phospholipids and fatty acids found implied the presence of bacteria in the sponge, in agreement with microscopic studies. Analysis of the phospholipid-bound fatty acids in a sponge cell-enriched fraction indicated that the demospongic acids, including the 2 branched structures, were the major acids of the sponge cells. The presence inA. fistularis of demospongic acids containing membrane disordering groups-methyl branches or double bonds-on the ω7 carbon is proposed to be due to the need by the sponge for membranes possessing fluidity near the middle of the phospholipid bilayer. It is also proposed that the C26 methyl group of aplysterol causes disordering of the phospholipid bilayer in the same region, and thus also evolved in response to this need.

  18. Covalent binding of aniline to humic substances. 1. Kinetic studies

    USGS Publications Warehouse

    Weber, E.J.; Spidle, D.L.; Thorn, K.A.

    1996-01-01

    The reaction kinetics for the covalent binding of aniline with reconstituted IHSS humic and fulvic acids, unfractionated DOM isolated from Suwannee River water, and whole samples of Suwannee River water have been investigated. The reaction kinetics in each of these systems can be adequately described by a simple second-order rate expression. The effect of varying the initial concentration of aniline on reaction kinetics suggested that approximately 10% of the covalent binding sites associated with Suwannee River fulvic acid are highly reactive sites that are quickly saturated. Based on the kinetic parameters determined for the binding of aniline with the Suwannee River fulvic and humic acid isolates, it was estimated that 50% of the aniline concentration decrease in a Suwannee River water sample could be attributed to reaction with the fulvic and humic acid components of the whole water sample. Studies with Suwannee River fulvic acid demonstrated that the rate of binding decreased with decreasing pH, which parallels the decrease in the effective concentration of the neutral form, or reactive nucleophilic species of aniline. The covalent binding of aniline with Suwannee River fulvic acid was inhibited by prior treatment of the fulvic acid with hydrogen sulfide, sodium borohydride, or hydroxylamine. These observations are consistent with a reaction pathway involving nucleophilic addition of aniline to carbonyl moieties present in the fulvic acid.

  19. In vitro covalent binding of cismethrin, bioresmethrin, and their common alcohol to hepatic proteins

    SciTech Connect

    Hoellinger, H.; Sonnier, M.; Gray, A.J.; Connors, T.A.; Pichon, J.; Nguyen, H.N.

    1985-01-01

    When (/sup 14/C)Alcohol-labeled cismethrin, bioresmethrin, and 5-benzyl-3-furylmethyl alcohol (BFA) were incubated with rat liver S 9 homogenates or microsomes, a proportion of the radioactive compounds was covalently bound to proteins. The covalent binding was greater with phenobarbital-pretreated rats, and dependent on a NADPH-generating system. When a S 9 homogenate was used, the bound compounds were two times higher for cismethrin than for bioresmethrin and BFA. Inversely, when microsomes were used more covalent binding occurred with bioresmethrin and BFA than with cismethrin. The inhibition of esterases by tetraethyl pyrophosphate (TEPP) in a S 9 homogenate did not alter the amount of covalent binding to the three compounds whereas malathion inhibited this binding. Treatment of a S 9 homogenate with piperonyl butoxide, however, greatly reduced covalent binding. Covalent binding was inhibited when the microsomes were incubated with carbon monoxide or modified by thermal denaturation. It is suggested that oxidative metabolism was responsible for the covalent binding.

  20. Chemistry of Covalent Organic Frameworks.

    PubMed

    Waller, Peter J; Gándara, Felipe; Yaghi, Omar M

    2015-12-15

    Linking organic molecules by covalent bonds into extended solids typically generates amorphous, disordered materials. The ability to develop strategies for obtaining crystals of such solids is of interest because it opens the way for precise control of the geometry and functionality of the extended structure, and the stereochemical orientation of its constituents. Covalent organic frameworks (COFs) are a new class of porous covalent organic structures whose backbone is composed entirely of light elements (B, C, N, O, Si) that represent a successful demonstration of how crystalline materials of covalent solids can be achieved. COFs are made by combination of organic building units covalently linked into extended structures to make crystalline materials. The attainment of crystals is done by several techniques in which a balance is struck between the thermodynamic reversibility of the linking reactions and their kinetics. This success has led to the expansion of COF materials to include organic units linked by these strong covalent bonds: B-O, C-N, B-N, and B-O-Si. Since the organic constituents of COFs, when linked, do not undergo significant change in their overall geometry, it has been possible to predict the structures of the resulting COFs, and this advantage has facilitated their characterization using powder X-ray diffraction (PXRD) techniques. It has also allowed for the synthesis of COF structures by design and for their formation with the desired composition, pore size, and aperture. In practice, the modeled PXRD pattern for a given expected COF is compared with the experimental one, and depending on the quality of the match, this is used as a starting point for solving and then refining the crystal structure of the target COF. These characteristics make COFs an attractive class of new porous materials. Accordingly, they have been used as gas storage materials for energy applications, solid supports for catalysis, and optoelectronic devices. A large and

  1. A Heteromeric Membrane-Bound Prenyltransferase Complex from Hop Catalyzes Three Sequential Aromatic Prenylations in the Bitter Acid Pathway1[OPEN

    PubMed Central

    Li, Haoxun; Ban, Zhaonan; Qin, Hao; Ma, Liya; King, Andrew J.

    2015-01-01

    Bitter acids (α and β types) account for more than 30% of the fresh weight of hop (Humulus lupulus) glandular trichomes and are well known for their contribution to the bitter taste of beer. These multiprenylated chemicals also show diverse biological activities, some of which have potential benefits to human health. The bitter acid biosynthetic pathway has been investigated extensively, and the genes for the early steps of bitter acid synthesis have been cloned and functionally characterized. However, little is known about the enzyme(s) that catalyze three sequential prenylation steps in the β-bitter acid pathway. Here, we employed a yeast (Saccharomyces cerevisiae) system for the functional identification of aromatic prenyltransferase (PT) genes. Two PT genes (HlPT1L and HlPT2) obtained from a hop trichome-specific complementary DNA library were functionally characterized using this yeast system. Coexpression of codon-optimized PT1L and PT2 in yeast, together with upstream genes, led to the production of bitter acids, but no bitter acids were detected when either of the PT genes was expressed by itself. Stepwise mutation of the aspartate-rich motifs in PT1L and PT2 further revealed the prenylation sequence of these two enzymes in β-bitter acid biosynthesis: PT1L catalyzed only the first prenylation step, and PT2 catalyzed the two subsequent prenylation steps. A metabolon formed through interactions between PT1L and PT2 was demonstrated using a yeast two-hybrid system, reciprocal coimmunoprecipitation, and in vitro biochemical assays. These results provide direct evidence of the involvement of a functional metabolon of membrane-bound prenyltransferases in bitter acid biosynthesis in hop. PMID:25564559

  2. The Length of the Bound Fatty Acid Influences the Dynamics of the Acyl Carrier Protein and the Stability of the Thioester Bond†

    PubMed Central

    2009-01-01

    Acyl carrier proteins involved in fatty acid biosynthesis have been shown to exhibit a high degree of conformational flexibility, in that they are able to sequester fatty acid intermediates between 4 and 18 carbons in length. This flexibility has been observed in X-ray and NMR structures of acyl carrier proteins attached to different fatty acids. NMR studies comparing decanoyl-ACP and stearoyl-ACP indicated that ACP exhibits more dynamic motions when bound to longer fatty acids. We have used complementary chemical and NMR methods as an approach to improving our understanding of the effect of fatty acid length on the dynamics of acyl carrier protein. A chemical assay of the accessibility of the acyl thioester to solvent revealed a positive correlation between chain length and rate of hydrolysis. Surprisingly, this linear correlation was biphasic, with accelerated hydrolysis observed for fatty acids longer than 15 carbons. To further understand the motions associated with this acceleration, we collected 15N relaxation dispersion data for 14:0-, 15:0-, and 16:0-ACP. The greatest dispersions were exhibited by residues that form the entrance to the fatty acid binding pocket. In addition, these dispersions were observed to increase with the length of the fatty acid. Because the exchange rates derived from fitting the data to a two-state model varied from residue to residue, a more complex motional model appears to be required to adequately explain the dynamics. Thus, acyl-ACP offers an interesting system for future investigations of complex protein motions on the micro- and millisecond time scales. PMID:20014832

  3. Covalently linked multimers of gold nanoclusters Au102(p-MBA)44 and Au∼250(p-MBA)n.

    PubMed

    Lahtinen, Tanja; Hulkko, Eero; Sokołowska, Karolina; Tero, Tiia-Riikka; Saarnio, Ville; Lindgren, Johan; Pettersson, Mika; Häkkinen, Hannu; Lehtovaara, Lauri

    2016-11-10

    We present the synthesis, separation, and characterization of covalently-bound multimers of para-mercaptobenzoic acid (p-MBA) protected gold nanoclusters. The multimers were synthesized by performing a ligand-exchange reaction of a pre-characterized Au102(p-MBA)44 nanocluster with biphenyl-4,4'-dithiol (BPDT). The reaction products were separated using gel electrophoresis yielding several distinct bands. The bands were analyzed by transmission electron microscopy (TEM) revealing monomer, dimer, and trimer fractions of the nanocluster. TEM analysis of dimers in combination with molecular dynamics simulations suggest that the nanoclusters are covalently bound via a disulfide bridge between BPDT molecules. The linking chemistry is not specific to Au102(p-MBA)44. The same approach yields multimers also for a larger monodisperse p-MBA-protected cluster of approximately 250 gold atoms, Au∼250(p-MBA)n. While the Au102(p-MBA)44 is not plasmonic, the Au∼250(p-MBA)n nanocluster supports localized surface plasmon resonance (LSPR) at 530 nm. Multimers of the Au∼250(p-MBA)n exhibit additional transitions in their UV-vis spectrum at 630 nm and 810 nm, indicating the presence of hybridized LSPR modes. Well-defined structures and relatively small sizes make these systems excellent candidates for connecting ab initio theoretical studies and experimental quantum plasmonics. Moreover, our work opens new possibilities in the controlled synthesis of advanced monodisperse nanocluster superstructures.

  4. Crystal Structure of Fatty Acid Amide Hydrolase Bound to the Carbamate Inhibitor URB597: Discovery of a Deacylating Water Molecule and Insight into Enzyme Inactivation

    SciTech Connect

    Mileni, Mauro; Kamtekar, Satwik; Wood, David C.; Benson, Timothy E.; Cravatt, Benjamin F.; Stevens, Raymond C.

    2010-08-12

    The endocannabinoid system regulates a wide range of physiological processes including pain, inflammation, and cognitive/emotional states. URB597 is one of the best characterized covalent inhibitors of the endocannabinoid-degrading enzyme fatty acid amide hydrolase (FAAH). Here, we report the structure of the FAAH-URB597 complex at 2.3 {angstrom} resolution. The structure provides insights into mechanistic details of enzyme inactivation and experimental evidence of a previously uncharacterized active site water molecule that likely is involved in substrate deacylation. This water molecule is part of an extensive hydrogen-bonding network and is coordinated indirectly to residues lining the cytosolic port of the enzyme. In order to corroborate our hypothesis concerning the role of this water molecule in FAAH's catalytic mechanism, we determined the structure of FAAH conjugated to a urea-based inhibitor, PF-3845, to a higher resolution (2.4 {angstrom}) than previously reported. The higher-resolution structure confirms the presence of the water molecule in a virtually identical location in the active site. Examination of the structures of serine hydrolases that are non-homologous to FAAH, such as elastase, trypsin, or chymotrypsin, shows a similarly positioned hydrolytic water molecule and suggests a functional convergence between the amidase signature enzymes and serine proteases.

  5. Buffered l-ascorbic acid, alone or bound to KMUP-1 or sildenafil, reduces vascular endothelium growth factor and restores endothelium nitric oxide synthase in hypoxic pulmonary artery.

    PubMed

    Wu, Jiunn-Ren; Kao, Li-Pin; Wu, Bin-Nan; Dai, Zen-Kong; Wang, Yi-Ya; Chai, Chee-Yin; Chen, Ing-Jun

    2015-05-01

    Ascorbic acid bound to KMUP-1 and sildenafil were examined for their antioxidant effects on vascular endothelium growth factor (VEGF) and endothelium nitric oxide synthase (eNOS) in hypoxic pulmonary artery (PA). Inhaled KMUP-1 and oral sildenafil released NO from eNOS. The effect of buffered l-ascorbic acid, alone and bound to KMUP-1 or sildenafil, for treating pulmonary arterial hypertension (PAH) is unclear. In this study, the antioxidant capacity of ascorbic acid increased the beneficial effects of KMUP-1 on PAH. KMUP-1A and sildenafil-A (5 mg/kg/d) were administered to hypoxic PAH rats. Pulmonary artery blood pressure, and VEGF, Rho kinase II (ROCK II), eNOS, soluble guanylate cyclase (sGC-α), and protein kinase G expression in lung tissues were measured to link PAH and right ventricular hypertrophy. Hypoxic rats had higher pulmonary artery blood pressure, greater PA medial wall thickness and cardiac weight, and a higher right ventricle/left ventricle + septum [RV/(LV+S)] ratio than normoxic rats. Oral KMUP-1A or sildenafil-A for 21 days in hypoxia prevented the rarefaction of eNOS in immunohistochemistry (IHC), reduced the IHC of VEGF in PAs, restored eNOS/protein kinase G/phosphodiesterase 5A; unaffected sGC-α and inactivated ROCK II expression were also found in lung tissues. In normoxic PA, KMUP-1A/Y27632 (10μM) increased eNOS and reduced ROCK II. ROCK II/reactive oxidative species was increased and eNOS was reduced after long-term hypoxia for 21 days. KMUP-1A or Y27632 blunted ROCK II in short-term hypoxic PA at 24 hours. l-Ascorbic acid + l-sodium ascorbate (40, 80μM) buffer alone directly inhibited the IHC of VEGF in hypoxic PA. Finally, KMUP-1A or sildenafil-A reduced PAH and associated right ventricular hypertrophy.

  6. Structure of malonic acid-based inhibitors bound to human neutrophil collagenase. A new binding mode explains apparently anomalous data.

    PubMed Central

    Brandstetter, H.; Engh, R. A.; Von Roedern, E. G.; Moroder, L.; Huber, R.; Bode, W.; Grams, F.

    1998-01-01

    Matrix metalloproteinases (MMPs) are a family of zinc endopeptidases, which have been implicated in various disease processes. Various classes of MMP inhibitors, including hydroxamic acids, phosphinic acids, and thiols, have been previously described. Most of these mimic peptides, and most likely bind analogous to the corresponding peptide substrates. Among the hydroxamic acids, malonic acid derivatives have been used as MMP inhibitors, although optimization of their inhibition potency was not successful. Here we report the design of malonic acid-based inhibitors using the X-ray structure of a collagenase/inhibitor complex, which revealed a nonsubstrate-like binding mode. The proposed beta-type turn-like conformation for the improved inhibitors was confirmed by X-ray crystallography. The observation of nonsubstrate-like binding confirms the original strategy for structure-based modeling of improved malonic acid inhibitors, and explains kinetic data that are inconsistent with substrate-like binding. Detailed interactions for the improved inhibitors seen in the crystal structure also suggest possibilities for further modifications in cycles of structure based drug design. Indeed, we have designed nonpeptidic inhibitors with approximately 500-fold improved inhibition based on these structures. PMID:9655333

  7. Constructing covalent organic frameworks in water via dynamic covalent bonding

    PubMed Central

    Thote, Jayshri; Barike Aiyappa, Harshitha; Rahul Kumar, Raya; Kandambeth, Sharath; Biswal, Bishnu P.; Balaji Shinde, Digambar; Chaki Roy, Neha; Banerjee, Rahul

    2016-01-01

    The formation of keto-enamine based crystalline, porous polymers in water is investigated for the first time. Facile access to the Schiff base reaction in water has been exploited to synthesize stable porous structures using the principles of Dynamic Covalent Chemistry (DCC). Most credibly, the water-based Covalent Organic Frameworks (COFs) possess chemical as well as physical properties such as crystallinity, surface area and porosity, which is comparable to their solvothermal counterparts. The formation of COFs in water is further investigated by understanding the nature of the monomers formed using hydroxy and non-hydroxy analogues of the aldehyde. This synthetic route paves a new way to synthesize COFs using a viable, greener route by utilization of the DCC principles in conjunction with the keto–enol tautomerism to synthesize useful, stable and porous COFs in water. PMID:27840679

  8. Atomic covalent functionalization of graphene.

    PubMed

    Johns, James E; Hersam, Mark C

    2013-01-15

    Although graphene's physical structure is a single atom thick, two-dimensional, hexagonal crystal of sp(2) bonded carbon, this simple description belies the myriad interesting and complex physical properties attributed to this fascinating material. Because of its unusual electronic structure and superlative properties, graphene serves as a leading candidate for many next generation technologies including high frequency electronics, broadband photodetectors, biological and gas sensors, and transparent conductive coatings. Despite this promise, researchers could apply graphene more routinely in real-world technologies if they could chemically adjust graphene's electronic properties. For example, the covalent modification of graphene to create a band gap comparable to silicon (∼1 eV) would enable its use in digital electronics, and larger band gaps would provide new opportunities for graphene-based photonics. Toward this end, researchers have focused considerable effort on the chemical functionalization of graphene. Due to its high thermodynamic stability and chemical inertness, new methods and techniques are required to create covalent bonds without promoting undesirable side reactions or irreversible damage to the underlying carbon lattice. In this Account, we review and discuss recent theoretical and experimental work studying covalent modifications to graphene using gas phase atomic radicals. Atomic radicals have sufficient energy to overcome the kinetic and thermodynamic barriers associated with covalent reactions on the basal plane of graphene but lack the energy required to break the C-C sigma bonds that would destroy the carbon lattice. Furthermore, because they are atomic species, radicals substantially reduce the likelihood of unwanted side reactions that confound other covalent chemistries. Overall, these methods based on atomic radicals show promise for the homogeneous functionalization of graphene and the production of new classes of two

  9. The Chemistry and Biochemistry of Heme c: Functional Bases for Covalent Attachment

    PubMed Central

    Bowman, Sarah E. J.; Bren, Kara L.

    2009-01-01

    A discussion of the literature concerning the synthesis, function, and activity of heme c-containing proteins is presented. Comparison of the properties of heme c, which is covalently bound to protein, is made to heme b, which is bound noncovalently. A question of interest is why nature uses biochemically expensive heme c in many proteins when its properties are expected to be similar to heme b. Considering the effects of covalent heme attachment on heme conformation and on the proximal histidine interaction with iron, it is proposed that heme attachment influences both heme reduction potential and ligand-iron interactions. PMID:19030605

  10. Stochastic sensing through covalent interactions

    DOEpatents

    Bayley, Hagan; Shin, Seong-Ho; Luchian, Tudor; Cheley, Stephen

    2013-03-26

    A system and method for stochastic sensing in which the analyte covalently bonds to the sensor element or an adaptor element. If such bonding is irreversible, the bond may be broken by a chemical reagent. The sensor element may be a protein, such as the engineered P.sub.SH type or .alpha.HL protein pore. The analyte may be any reactive analyte, including chemical weapons, environmental toxins and pharmaceuticals. The analyte covalently bonds to the sensor element to produce a detectable signal. Possible signals include change in electrical current, change in force, and change in fluorescence. Detection of the signal allows identification of the analyte and determination of its concentration in a sample solution. Multiple analytes present in the same solution may be detected.

  11. Covalent magnetism and magnetic impurities.

    PubMed

    Gruber, C; Bedolla, P O; Mohn, P

    2013-05-08

    We use the model of covalent magnetism and its application to magnetic insulators applied to the case of insulating carbon doped BaTiO3. Since the usual Stoner mechanism is not applicable we study the possibility of the formation of magnetic order based on a mechanism favoring singly occupied orbitals. On the basis of our model parameters we formulate a criterion similar to the Stoner criterion but also valid for insulators. We describe the model of covalent magnetism using a molecular orbital picture and determine the occupation numbers for spin-up and spin-down states. Our model allows a simulation of the results of our ab initio calculations for E(ℳ) which are found to be in very good agreement.

  12. Upward Bound

    ERIC Educational Resources Information Center

    Journal of Aerospace Education, 1976

    1976-01-01

    Describes an Upward Bound program at Embry-Riddle Aeronautical University designed to assist disadvantaged high school juniors and seniors in overcoming academic deficiencies in order to enter and succeed in college. The Saturday program centered on various aspects of aviation, including career opportunities. (MLH)

  13. Outward Bound.

    ERIC Educational Resources Information Center

    Outward Bound, Inc., Andover, MA.

    The Outward Bound concept was developed in Germany and Great Britain with the saving of human life as the ultimate goal. Courses are designed to help students discover their true physical and mental limits through development of skills including emergency medical aid, firefighting, search and rescue, mountaineering, and sailing. Five Outward Bound…

  14. Membrane-bound fatty acid desaturases are inserted co-translationally into the ER and contain different ER retrieval motifs at their carboxy termini.

    PubMed

    McCartney, Andrew W; Dyer, John M; Dhanoa, Preetinder K; Kim, Peter K; Andrews, David W; McNew, James A; Mullen, Robert T

    2004-01-01

    Fatty acid desaturases (FADs) play a prominent role in plant lipid metabolism and are located in various subcellular compartments, including the endoplasmic reticulum (ER). To investigate the biogenesis of ER-localized membrane-bound FADs, we characterized the mechanisms responsible for insertion of Arabidopsis FAD2 and Brassica FAD3 into ER membranes and determined the molecular signals that maintain their ER residency. Using in vitro transcription/translation reactions with ER-derived microsomes, we show that both FAD2 and FAD3 are efficiently integrated into membranes by a co-translational, translocon-mediated pathway. We also demonstrate that while the C-terminus of FAD3 (-KSKIN) contains a functional prototypic dilysine ER retrieval motif, FAD2 contains a novel C-terminal aromatic amino acid-containing sequence (-YNNKL) that is both necessary and sufficient for maintaining localization in the ER. Co-expression of a membrane-bound reporter protein containing the FAD2 C-terminus with a dominant-negative mutant of ADP-ribosylation factor (Arf)1 abolished transient localization of the reporter protein in the Golgi, indicating that the FAD2 peptide signal acts as an ER retrieval motif. Mutational analysis of the FAD2 ER retrieval signal revealed a sequence-specific motif consisting of Phi-X-X-K/R/D/E-Phi-COOH, where -Phi- are large hydrophobic amino acid residues. Interestingly, this aromatic motif was present in a variety of other known and putative ER membrane proteins, including cytochrome P450 and the peroxisomal biogenesis factor Pex10p. Taken together, these data describe the insertion and retrieval mechanisms of FADs and define a new ER localization signal in plants that is responsible for the retrieval of escaped membrane proteins back to the ER.

  15. Organic-skinned inorganic nanoparticles: surface-confined polymerization of 6-(3-thienyl)hexanoic acid bound to nanocrystalline TiO2

    PubMed Central

    2011-01-01

    There are many practical difficulties in direct adsorption of polymers onto nanocrystalline inorganic oxide surface such as Al2O3 and TiO2 mainly due to the insolubility of polymers in solvents or polymer agglomeration during adsorption process. As an alternative approach to the direct polymer adsorption, we propose surface-bound polymerization of pre-adsorbed monomers. 6-(3-Thienyl)hexanoic acid (THA) was used as a monomer for poly[3-(5-carboxypentyl)thiophene-2,5-diyl] (PTHA). PTHA-coated nanocrystalline TiO2/FTO glass electrodes were prepared by immersing THA-adsorbed electrodes in FeCl3 oxidant solution. Characterization by ultraviolet/visible/infrared spectroscopy and thermal analysis showed that the monolayer of regiorandom-structured PTHA was successfully formed from intermolecular bonding between neighbored THA surface-bound to TiO2. The anchoring functional groups (-COOH) of the surface-crawling PTHA were completely utilized for strong bonding to the surface of TiO2. PMID:21888639

  16. VEGF internalization is not required for VEGFR-2 phosphorylation in bioengineered surfaces with covalently linked VEGF

    PubMed Central

    Anderson, Sean M.; Shergill, Bhupinder; Barry, Zachary T.; Manousiouthakis, Eleana; Chen, Tom T.; Botvinick, Elliot; Platt, Manu O.; Iruela-Arispe, M. Luisa; Segura, Tatiana

    2011-01-01

    Vascular endothelial growth factor (VEGF) is known to activate proliferation, migration, and survival pathways in endothelial cells through phosphorylation of VEGF receptor-2 (VEGFR-2). VEGF has been incorporated into biomaterials through encapsulation, electrostatic sequestration, and covalent attachment, but the effect of these immobilization strategies on VEGF signaling has not been thoroughly investigated. Further, although growth factor internalization along with the receptor generally occurs in a physiological setting, whether this internalization is needed for receptor phosphorylation is not entirely clear. Here we show that VEGF covalently bound through a modified heparin molecule elicits an extended response of pVEGFR-2 in human umbilical vein endothelial cells (HUVECs) and that the covalent linkage reduces internalization of the growth factor during receptor endocytosis. Optical tweezer measurements show that the rupture force required to disrupt the heparin-VEGF-VEGFR-2 interaction increases from 3–8 pN to 6–12 pN when a covalent bond is introduced between VEGF and heparin. Importantly, by covalently binding VEGF to a heparin substrate, the stability (half-life) of VEGF is extended over three-fold. Here, mathematical models support the biological conclusions, further suggesting that VEGF internalization is significantly reduced when covalently bound, and indicating that VEGF is available for repeated phosphorylation events. PMID:21826315

  17. Biosynthesis of UDP-xylose. Cloning and characterization of a novel Arabidopsis gene family, UXS, encoding soluble and putative membrane-bound UDP-glucuronic acid decarboxylase isoforms.

    PubMed

    Harper, April D; Bar-Peled, Maor

    2002-12-01

    UDP-xylose (Xyl) is an important sugar donor for the synthesis of glycoproteins, polysaccharides, various metabolites, and oligosaccharides in animals, plants, fungi, and bacteria. UDP-Xyl also feedback inhibits upstream enzymes (UDP-glucose [Glc] dehydrogenase, UDP-Glc pyrophosphorylase, and UDP-GlcA decarboxylase) and is involved in its own synthesis and the synthesis of UDP-arabinose. In plants, biosynthesis of UDP-Xyl is catalyzed by different membrane-bound and soluble UDP-GlcA decarboxylase (UDP-GlcA-DC) isozymes, all of which convert UDP-GlcA to UDP-Xyl. Because synthesis of UDP-Xyl occurs both in the cytosol and in membranes, it is not known which source of UDP-Xyl the different Golgi-localized xylosyltransferases are utilizing. Here, we describe the identification of several distinct Arabidopsis genes (named AtUXS for UDP-Xyl synthase) that encode functional UDP-GlcA-DC isoforms. The Arabidopsis genome contains five UXS genes and their protein products can be subdivided into three isozyme classes (A-C), one soluble and two distinct putative membrane bound. AtUxs from each class, when expressed in Escherichia coli, generate active UDP-GlcA-DC that converts UDP-GlcA to UDP-Xyl. Members of this gene family have a large conserved C-terminal catalytic domain (approximately 300 amino acids long) and an N-terminal variable domain differing in sequence and size (30-120 amino acids long). Isoforms of class A and B appear to encode putative type II membrane proteins with their catalytic domains facing the lumen (like Golgi-glycosyltransferases) and their N-terminal variable domain facing the cytosol. Uxs class C is likely a cytosolic isoform. The characteristics of the plant Uxs support the hypothesis that unique UDP-GlcA-DCs with distinct subcellular localizations are required for specific xylosylation events.

  18. Protein covalent immobilization via its scarce thiol versus abundant amine groups: Effect on orientation, cell binding domain exposure and conformational lability.

    PubMed

    Ba, O M; Hindie, M; Marmey, P; Gallet, O; Anselme, K; Ponche, A; Duncan, A C

    2015-10-01

    Quantity, orientation, conformation and covalent linkage of naturally cell adhesive proteins adsorbed or covalently linked to a surface, are known to influence the preservation of their subsequent long term cell adhesion properties and bioactivity. In the present work, we explore two different strategies for the covalent linking of plasma fibronectin (pFN) - used as a cell adhesive model protein, onto a polystyrene (PS) surface. One is aimed at tethering the protein to the surface in a semi-oriented fashion (via one of the 4 free thiol reactive groups on the protein) with a heterofunctional coupling agent (SSMPB method). The other aims to immobilize the protein in a more random fashion by reaction between the abundant pendant primary amine bearing amino acids of the pFN and activated carboxylic surface functions obtained after glutaric anhydride surface treatment (GA method). The overall goal will be to verify the hypothesis of a correlation between covalent immobilization of a model cell adhesive protein to a PS surface in a semi-oriented configuration (versus randomly oriented) with promotion of enhanced exposure of the protein's cell binding domain. This in turn would lead to enhanced cell adhesion. Ideally the goal is to elaborate substrates exhibiting a long term stable protein monolayer with preserved cell adhesive properties and bioactivity for biomaterial and/or cell adhesion commercial plate applications. However, the initial restrictive objective of this paper is to first quantitatively and qualitatively investigate the reversibly (merely adsorbed) versus covalently irreversibly bound protein to the surface after the immobilization procedure. Although immobilized surface amounts were similar (close to the monolayer range) for all immobilization approaches, covalent grafting showed improved retention and stronger "tethering" of the pFN protein to the surface (roughly 40%) after SDS rinsing compared to that for mere adsorption (0%) suggesting an added value

  19. An improved method for the immunological detection of mineral bound protein using hydrofluoric acid and direct capture.

    PubMed

    Craig, O E; Collins, M J

    2000-03-06

    Immunological detection of proteins adsorbed to mineral and ceramic surfaces has proved not only difficult but controversial. Unlike the immunological detection of proteins associated with carbonate or phosphate minerals (e.g. shells and bones) proteins adsorbed to siliceous minerals cannot readily be removed by dissolution of the mineral phase. We have previously examined alternative extraction methodologies which claim to bring the protein into solution, but found none of these to be effective. Here we report a novel strategy for immuno-detection of proteins adsorbed to siliceous minerals, the Digestion and Capture Immunoassay (DACIA). The method involves the use of cold, concentrated (4M) hydrofluoric acid (HF) with the simultaneous capture of liberated protein onto a solid phase. The combination of low temperatures and surface stabilisation enables us to detect epitopes from even partially degraded proteins. The method may have a wide application in forensic, archaeological, soil and earth sciences.

  20. Removal of protein-bound uraemic toxins by haemodialysis.

    PubMed

    Niwa, Toshimitsu

    2013-01-01

    Accumulating evidence suggests that protein-bound uraemic toxins play an important role in uraemic complications, especially in cardiovascular disease. Notably, protein-bound uraemic toxins such as indoxyl sulphate, p-cresyl sulphate, and 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid (CMPF) have emerged as important targets of therapeutic removal. Indoxyl sulphate stimulates reactive oxygen species production in human umbilical vein endothelial cells (HUVEC) most intensely, followed by CMPF. Indoxyl sulphate and CMPF inhibit cell growth of HUVEC. Haemodialysis (HD) even with a high-flux membrane cannot efficiently remove the protein-bound uraemic toxins because of their high albumin-binding property. Especially, indoxyl sulphate, p-cresyl sulphate, and CMPF showed high protein-binding ratios (more than 95%) and low reduction rates by HD (less than 35%). Removal of indoxyl sulphate and p-cresyl sulphate can be improved to some extent by increasing the diffusion of the free forms with super-flux membrane HD, increasing the dialyzer mass transfer area coefficient and dialysate flow, haemodiafiltration, daily HD, and addition of a sorbent to dialysate. However, CMPF is more strongly bound to albumin (with a binding ratio of 99-100%) than indoxyl sulphate and p-cresyl sulphate, and cannot be removed at all by conventional HD. Uraemic toxins strongly or covalently bound to albumin such that CMPF can be removed by protein-leaking HD. Protein-leaking HD with a polymethylmethacrylate membrane BK-F dialyzer can reduce serum levels of CMPF with improvement of anaemia as well as reduce plasma levels of homocysteine, pentosidine, and inflammatory cytokines.

  1. Biosensor platform based on carbon nanotubes covalently modified with aptamers

    NASA Astrophysics Data System (ADS)

    Komarov, I. A.; Rubtsova, E. I.; Golovin, A. V.; Bobrinetskiy, I. I.

    2016-12-01

    We developed a new platform for biosensing applications. Aptamers as sensitive agents have a great potential and gives us possibility to have highest possible selectivity among other sensing agents like enzymes or antibodies. We covalently bound aptamers to the functional groups of c-CNTs and then put this system on the surface of polymer substrate. Thus we got high sensitive flexible transparent biological sensors. We also suggest that by varying aptamer type we can make set of biosensors for disease detection which can be integrated into self-healthcare systems and gadgets.

  2. A covalent method of gentamicin bonding to silica supports.

    PubMed

    Ginalska, Grazyna; Osińska, Monika; Uryniak, Adam

    2004-04-01

    Results of a novel method of covalent bonding of an antibiotic (gentamicin) to silica bead supports are shown. Gentamicin was immobilized to four types of matrix: silica gel and porous glass beads activated by either silanization (APTES) or by adhesively bound keratin (with immobilization yield ranging from 36.5 to 91%). Gentamicin was immobilized to the supports after opening its carbohydrate ring in the molecule. This method of gentamicin activation before the immobilization process did not inhibit its antibiotic activity. The four gentamicin-containing immobilized preparations were stable, meaning that they did not release the antibiotic into the solution during the 30 days of incubation, not even during shaking experiments.

  3. Isolation of lactic acid bacteria bound to the porcine intestinal mucosa and an analysis of their moonlighting adhesins

    PubMed Central

    KINOSHITA, Hideki; OHUCHI, Satoko; ARAKAWA, Kensuke; WATANABE, Masamichi; KITAZAWA, Haruki; SAITO, Tadao

    2016-01-01

    The adhesion of lactic acid bacteria (LAB) to the intestinal mucosa is one of the criteria in selecting for probiotics. Eighteen LAB were isolated from porcine intestinal mucin (PIM): ten strains of Lactobacillus, six strains of Weissella, and two strains of Streptococcus. Using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) for phosphate-buffered saline (PBS) extracts from the LAB, many bands were detected in half of the samples, while a few and/or no clear bands were detected in the other half. All six of the selected LAB showed adhesion to PIM. L. johnsonii MYU 214 and MYU 221 showed adhesion at more than 10%. W. viridescens MYU 208, L. reuteri MYU 213, L. mucosae MYU 225, and L. agilis MYU 227 showed medium levels of adhesion at 5.9–8.3%. In a comprehensive analysis for the adhesins in the PBS extracts using a receptor overlay analysis, many moonlighting proteins were detected and identified as candidates for adhesins: GroEL, enolase, and elongation factor Tu in MYU 208; peptidase C1, enolase, formyl-CoA transferase, phosphoglyceromutase, triosephosphate isomerase, and phosphofructokinase in MYU 221; and DnaK, enolase, and phosphoglycerate kinase in MYU 227. These proteins in the PBS extracts, which included such things as molecular chaperones and glycolytic enzymes, may play important roles as adhesins. PMID:27867805

  4. Simultaneous covalent and noncovalent hybrid polymerizations

    NASA Astrophysics Data System (ADS)

    Yu, Zhilin; Tantakitti, Faifan; Yu, Tao; Palmer, Liam C.; Schatz, George C.; Stupp, Samuel I.

    2016-01-01

    Covalent and supramolecular polymers are two distinct forms of soft matter, composed of long chains of covalently and noncovalently linked structural units, respectively. We report a hybrid system formed by simultaneous covalent and supramolecular polymerizations of monomers. The process yields cylindrical fibers of uniform diameter that contain covalent and supramolecular compartments, a morphology not observed when the two polymers are formed independently. The covalent polymer has a rigid aromatic imine backbone with helicoidal conformation, and its alkylated peptide side chains are structurally identical to the monomer molecules of supramolecular polymers. In the hybrid system, covalent chains grow to higher average molar mass relative to chains formed via the same polymerization in the absence of a supramolecular compartment. The supramolecular compartments can be reversibly removed and re-formed to reconstitute the hybrid structure, suggesting soft materials with novel delivery or repair functions.

  5. Simultaneous covalent and noncovalent hybrid polymerizations

    SciTech Connect

    Yu, Z.; Tantakitti, F.; Yu, T.; Palmer, L. C.; Schatz, G. C.; Stupp, S. I.

    2016-01-28

    Covalent and supramolecular polymers are two distinct forms of soft matter, composed of long chains of covalently and noncovalently linked structural units, respectively. We report a hybrid system formed by simultaneous covalent and supramolecular polymerizations of monomers. The process yields cylindrical fibers of uniform diameter that contain covalent and supramolecular compartments, a morphology not observed when the two polymers are formed independently. The covalent polymer has a rigid aromatic imine backbone with helicoidal conformation, and its alkylated peptide side chains are structurally identical to the monomer molecules of supramolecular polymers. In the hybrid system, covalent chains grow to higher average molar mass relative to chains formed via the same polymerization in the absence of a supramolecular compartment. The supramolecular compartments can be reversibly removed and re-formed to reconstitute the hybrid structure, suggesting soft materials with novel delivery or repair functions.

  6. Constructing monocrystalline covalent organic networks by polymerization

    NASA Astrophysics Data System (ADS)

    Beaudoin, Daniel; Maris, Thierry; Wuest, James D.

    2013-10-01

    An emerging strategy for making ordered materials is modular construction, which connects preformed molecular subunits to neighbours through interactions of properly selected reactive sites. This strategy has yielded remarkable materials, including metal-organic frameworks joined by coordinative bonds, supramolecular networks linked by strong non-covalent interactions, and covalent organic frameworks in which atoms of carbon and other light elements are bonded covalently. However, the strategy has not yet produced covalently bonded organic materials in the form of large single crystals. Here we show that such materials can result from reversible self-addition polymerizations of suitably designed monomers. In particular, monomers with four tetrahedrally oriented nitroso groups polymerize to form diamondoid azodioxy networks that can be fully characterized by single-crystal X-ray diffraction. This work forges a strong new link between polymer science and supramolecular chemistry by showing how predictably ordered covalent or non-covalent structures can both be built using a single modular strategy.

  7. Cell wall bound anionic peroxidases from asparagus byproducts.

    PubMed

    Jaramillo-Carmona, Sara; López, Sergio; Vazquez-Castilla, Sara; Jimenez-Araujo, Ana; Rodriguez-Arcos, Rocio; Guillen-Bejarano, Rafael

    2014-10-08

    Asparagus byproducts are a good source of cationic soluble peroxidases (CAP) useful for the bioremediation of phenol-contaminated wastewaters. In this study, cell wall bound peroxidases (POD) from the same byproducts have been purified and characterized. The covalent forms of POD represent >90% of the total cell wall bound POD. Isoelectric focusing showed that whereas the covalent fraction is constituted primarily by anionic isoenzymes, the ionic fraction is a mixture of anionic, neutral, and cationic isoenzymes. Covalently bound peroxidases were purified by means of ion exchange chromatography and affinity chromatography. In vitro detoxification studies showed that although CAP are more effective for the removal of 4-CP and 2,4-DCP, anionic asparagus peroxidase (AAP) is a better option for the removal of hydroxytyrosol (HT), the main phenol present in olive mill wastewaters.

  8. Semisynthetic Nanoreactor for Reversible Single-Molecule Covalent Chemistry

    PubMed Central

    2016-01-01

    Protein engineering has been used to remodel pores for applications in biotechnology. For example, the heptameric α-hemolysin pore (αHL) has been engineered to form a nanoreactor to study covalent chemistry at the single-molecule level. Previous work has been confined largely to the chemistry of cysteine side chains or, in one instance, to an irreversible reaction of an unnatural amino acid side chain bearing a terminal alkyne. Here, we present four different αHL pores obtained by coupling either two or three fragments by native chemical ligation (NCL). The synthetic αHL monomers were folded and incorporated into heptameric pores. The functionality of the pores was validated by hemolysis assays and by single-channel current recording. By using NCL to introduce a ketone amino acid, the nanoreactor approach was extended to an investigation of reversible covalent chemistry on an unnatural side chain at the single-molecule level. PMID:27537396

  9. Covalent bonding: the fundamental role of the kinetic energy.

    PubMed

    Bacskay, George B; Nordholm, Sture

    2013-08-22

    This work addresses the continuing disagreement between two prevalent schools of thought concerning the mechanism of covalent bonding. According to Hellmann, Ruedenberg, and Kutzelnigg, a lowering of the kinetic energy associated with electron delocalization is the key stabilization mechanism. The opposing view of Slater, Feynman, and Bader has maintained that the source of stabilization is electrostatic potential energy lowering due to electron density redistribution to binding regions between nuclei. Despite the large body of accurate quantum chemical work on a range of molecules, the debate concerning the origin of bonding continues unabated, even for H2(+), the simplest of covalently bound molecules. We therefore present here a detailed study of H2(+), including its formation, that uses a sequence of computational methods designed to reveal the relevant contributing mechanisms as well as the spatial density distributions of the kinetic and potential energy contributions. We find that the electrostatic mechanism fails to provide real insight or explanation of bonding, while the kinetic energy mechanism is sound and accurate but complex or even paradoxical to those preferring the apparent simplicity of the electrostatic model. We further argue that the underlying mechanism of bonding is in fact of dynamical character, and analyses that focus on energy do not reveal the origin of covalent bonding in full clarity.

  10. Structural and mechanistic insight into covalent substrate binding by Escherichia coli dihydroxyacetone kinase.

    PubMed

    Shi, Rong; McDonald, Laura; Cui, Qizhi; Matte, Allan; Cygler, Miroslaw; Ekiel, Irena

    2011-01-25

    The Escherichia coli dihydroxyacetone (Dha) kinase is an unusual kinase because (i) it uses the phosphoenolpyruvate carbohydrate: phosphotransferase system (PTS) as the source of high-energy phosphate, (ii) the active site is formed by two subunits, and (iii) the substrate is covalently bound to His218(K)* of the DhaK subunit. The PTS transfers phosphate to DhaM, which in turn phosphorylates the permanently bound ADP coenzyme of DhaL. This phosphoryl group is subsequently transferred to the Dha substrate bound to DhaK. Here we report the crystal structure of the E. coli Dha kinase complex, DhaK-DhaL. The structure of the complex reveals that DhaK undergoes significant conformational changes to accommodate binding of DhaL. Combined mutagenesis and enzymatic activity studies of kinase mutants allow us to propose a catalytic mechanism for covalent Dha binding, phosphorylation, and release of the Dha-phosphate product. Our results show that His56(K) is involved in formation of the covalent hemiaminal bond with Dha. The structure of H56N(K) with noncovalently bound substrate reveals a somewhat different positioning of Dha in the binding pocket as compared to covalently bound Dha, showing that the covalent attachment to His218(K) orients the substrate optimally for phosphoryl transfer. Asp109(K) is critical for activity, likely acting as a general base activating the γ-OH of Dha. Our results provide a comprehensive picture of the roles of the highly conserved active site residues of dihydroxyacetone kinases.

  11. Membrane-bound sugar alcohol dehydrogenase in acetic acid bacteria catalyzes L-ribulose formation and NAD-dependent ribitol dehydrogenase is independent of the oxidative fermentation.

    PubMed

    Adachi, O; Fujii, Y; Ano, Y; Moonmangmee, D; Toyama, H; Shinagawa, E; Theeragool, G; Lotong, N; Matsushita, K

    2001-01-01

    To identify the enzyme responsible for pentitol oxidation by acetic acid bacteria, two different ribitol oxidizing enzymes, one in the cytosolic fraction of NAD(P)-dependent and the other in the membrane fraction of NAD(P)-independent enzymes, were examined with respect to oxidative fermentation. The cytoplasmic NAD-dependent ribitol dehydrogenase (EC 1.1.1.56) was crystallized from Gluconobacter suboxydans IFO 12528 and found to be an enzyme having 100 kDa of molecular mass and 5 s as the sedimentation constant, composed of four identical subunits of 25 kDa. The enzyme catalyzed a shuttle reversible oxidoreduction between ribitol and D-ribulose in the presence of NAD and NADH, respectively. Xylitol and L-arabitol were well oxidized by the enzyme with reaction rates comparable to ribitol oxidation. D-Ribulose, L-ribulose, and L-xylulose were well reduced by the enzyme in the presence of NADH as cosubstrates. The optimum pH of pentitol oxidation was found at alkaline pH such as 9.5-10.5 and ketopentose reduction was found at pH 6.0. NAD-Dependent ribitol dehydrogenase seemed to be specific to oxidoreduction between pentitols and ketopentoses and D-sorbitol and D-mannitol were not oxidized by this enzyme. However, no D-ribulose accumulation was observed outside the cells during the growth of the organism on ribitol. L-Ribulose was accumulated in the culture medium instead, as the direct oxidation product catalyzed by a membrane-bound NAD(P)-independent ribitol dehydrogenase. Thus, the physiological role of NAD-dependent ribitol dehydrogenase was accounted to catalyze ribitol oxidation to D-ribulose in cytoplasm, taking D-ribulose to the pentose phosphate pathway after being phosphorylated. L-Ribulose outside the cells would be incorporated into the cytoplasm in several ways when need for carbon and energy sources made it necessary to use L-ribulose for their survival. From a series of simple experiments, membrane-bound sugar alcohol dehydrogenase was concluded to be

  12. Covalent organic/inorganic hybrid proton-conductive membrane with semi-interpenetrating polymer network: Preparation and characterizations

    NASA Astrophysics Data System (ADS)

    Fu, Rong-Qiang; Woo, Jung-Je; Seo, Seok-Jun; Lee, Jae-Suk; Moon, Seung-Hyeon

    2008-05-01

    A series of new covalent organic/inorganic hybrid proton-conductive membranes, each with a semi-interpenetrating polymer network (semi-IPN), for direct methanol fuel cell (DMFC) applications is prepared through the following sequence: (i) copolymerization of impregnated styrene (St), p-vinylbenzyl chloride (VBC) and divinylbenzene (DVB) within a supporting polyvinyl chloride (PVC) film; (ii) reaction of the chloromethyl group with 3-(methylamine)propyl-trimethoxysilane (MAPTMS); (ii) a sol-gel process under acidic conditions; (iv) a sulfonation reaction. The developed membranes are characterized in terms of Fourier transform infrared/attenuated total reflectance (FTIR/ATR), scanning electron microscopy/energy-dispersive X-ray analysis (SEM/EDXA), elemental analysis (EA) and thermogravimetric analysis (TGA), which confirm the formation of the target membranes. The developed copolymer chains are interpenetrating with the PVC matrix to form the semi-IPN structure, and the inorganic silica is covalently bound to the copolymers. These features provide the membranes with high mechanical strength. The effect of silica content is investigated. As the silica content increases, proton conductivity and water content decrease, whereas oxidative stability is improved. In particular, methanol permeability and methanol uptake are reduced largely by the silica. The ratio of proton conductivity to methanol permeability for the hybrid membranes is higher than that of Nafion 117. All these properties make the hybrid membranes a potential candidate for DMFC applications.

  13. Crystal structure analysis, covalent docking and molecular dynamics calculations reveal a conformational switch in PhaZ7 PHB depolymerase.

    PubMed

    Kellici, Tahsin F; Mavromoustakos, Thomas; Jendrossek, Dieter; Papageorgiou, Anastassios C

    2017-04-03

    An open and a closed conformation of a surface loop in PhaZ7 extracellular poly(3-hydroxybutyrate) depolymerase were identified in two high resolution crystal structures of a PhaZ7 Y105E mutant. Molecular dynamics (MD) simulations revealed high root mean square fluctuations (RMSF) of the 281-295 loop, in particular at residue Asp289 (RMSF 7.62 Å). Covalent docking between a 3-hydroxybutyric acid trimer and the catalytic residue Ser136 showed that the binding energy of the substrate is significantly more favourable in the open loop conformation compared to that in the closed loop conformation. MD simulations with the substrate covalently bound depicted 1 Å RMSF higher values for the residues 281-295 in comparison to the apo (substrate-free) form. In addition, the presence of the substrate in the active site enhanced the ability of the loop to adopt a closed form. Taken together, the analysis suggests that the flexible loop 281-295 of PhaZ7 depolymerase can act as a lid domain to control substrate access to the active site of the enzyme. This article is protected by copyright. All rights reserved.

  14. Covalent surface chemistry gradients for presenting bioactive peptides.

    PubMed

    Kipper, Matt J; Kleinman, Hynda K; Wang, Francis W

    2007-04-15

    The activation of surfaces by covalent attachment of bioactive moieties is an important strategy for improving the performance of biomedical materials. Such techniques have also been used as tools to study cellular responses to particular chemistries of interest. The creation of gradients of covalently bound chemistries is a logical extension of this technique. Gradient surfaces may permit the rapid screening of a large range of concentrations in a single experiment. In addition, the biological response to the gradient itself may provide new information on receptor requirements and cell signaling. The current work describes a rapid and flexible technique for the covalent addition of bioactive peptide gradients to a surface or gel and a simple fluorescence technique for assaying the gradient. In this technique, bioactive peptides with a terminal cysteine are bound via a heterobifunctional coupling agent to primary amine-containing surfaces and gels. A gradient in the coupling agent is created on the surfaces or gels by varying the residence time of the coupling agent across the surface or gel, thereby controlling the extent of reaction. We demonstrate this technique using poly(l-lysine)-coated glass surfaces and fibrin gels. Once the surface or gel has been activated by the addition of the coupling agent gradient, the bioactive peptide is added. Quantitation of the gradient is achieved by measuring the reaction kinetics of the coupling agent with the surface or gel of interest. This can be done either by fluorescently labeling the coupling agent (in the case of surfaces) or by spectrophotometrically detecting the release of pyridine-2-thione, which is produced when the thiol-reactive portion of the coupling agent reacts. By these methods, we can obtain reasonably precise estimates for the peptide gradients without using expensive spectroscopic or radiolabeling techniques. Validation with changes in fibroblast cell migration behavior across a bioactive peptide

  15. Dimeric DNA Aptamer Complexes for High-capacity-targeted Drug Delivery Using pH-sensitive Covalent Linkages.

    PubMed

    Boyacioglu, Olcay; Stuart, Christopher H; Kulik, George; Gmeiner, William H

    2013-07-16

    Treatment with doxorubicin (Dox) results in serious systemic toxicities that limit effectiveness for cancer treatment and cause long-term health issues for cancer patients. We identified a new DNA aptamer to prostate-specific membrane antigen (PSMA) using fixed sequences to promote Dox binding and developed dimeric aptamer complexes (DACs) for specific delivery of Dox to PSMA(+) cancer cells. DACs are stable under physiological conditions and are internalized specifically into PSMA(+) C4-2 cells with minimal uptake into PSMA-null PC3 cells. Cellular internalization of DAC was demonstrated by confocal microscopy and flow cytometry. Covalent modification of DAC with Dox (DAC-D) resulted in a complex with stoichiometry ~4:1. Dox was covalently bound in DAC-D using a reversible linker that promotes covalent attachment of Dox to genomic DNA following cell internalization. Dox was released from the DAC-D under physiological conditions with a half-life of 8 hours, sufficient for in vivo targeting. DAC-D was used to selectively deliver Dox to C4-2 cells with endosomal release and nuclear localization of Dox. DAC-D was selectively cytotoxic to C4-2 cells with similar cytotoxicity as the molar equivalent of free-Dox. In contrast, DAC-D displayed minimal cytotoxicity to PC3 cells, demonstrating the complex displays a high degree of selectivity for PSMA(+) cells. DAC-D displays specificity and stability features that may be useful for improved delivery of Dox selectively to malignant tissue in vivo.Molecular Therapy-Nucleic Acids (2013) 2, e107; doi:10.1038/mtna.2013.37; published online 16 July 2013.

  16. Genome-wide identification of membrane-bound fatty acid desaturase genes in Gossypium hirsutum and their expressions during abiotic stress

    PubMed Central

    Feng, Jiyu; Dong, Yating; Liu, Wei; He, Qiuling; Daud, M. K.; Chen, Jinhong; Zhu, Shuijin

    2017-01-01

    Membrane-bound fatty acid desaturases (FADs) are of great importance and play multiple roles in plant growth and development. In the present study, 39 full-length FAD genes, based on database searches, were identified in tetraploid upland cotton (Gossypium hirsutum L.) and were phylogenetically clustered into four subfamilies. Genomic localization revealed that 34 genes were mapped on 22 chromosomes, and five genes were positioned on the scaffold sequences. The FAD genes of G. hirsutum in the same subfamily had similar gene structures. The structures of paralogous genes were considerably conserved in exons number and introns length. It was suggested that the FAD gene families in G. hirsutum might be duplicated mainly by segmental duplication. Moreover, the FAD genes were differentially expressed in different G. hirsutum tissues in response to different levels of salt and cold stresses, as determined by qRT-PCR analysis. The identification and functional analysis of FAD genes in G. hirsutum may provide more candidate genes for genetic modification. PMID:28374822

  17. Synthetic resin-bound truncated Candida antarctica lipase B for production of fatty acid alkyl esters by transesterification of corn and soybean oils with ethanol or butanol.

    PubMed

    Hughes, Stephen R; Moser, Bryan R; Robinson, Samantha; Cox, Elby J; Harmsen, Amanda J; Friesen, Jon A; Bischoff, Kenneth M; Jones, Marjorie A; Pinkelman, Rebecca; Bang, Sookie S; Tasaki, Ken; Doll, Kenneth M; Qureshi, Nasib; Liu, Siqing; Saha, Badal C; Jackson, John S; Cotta, Michael A; Rich, Joseph O; Caimi, Paolo

    2012-05-31

    A gene encoding a synthetic truncated Candida antarctica lipase B (CALB) was generated via automated PCR and expressed in Saccharomyces cerevisiae. Western blot analysis detected five truncated CALB variants, suggesting multiple translation starts from the six in-frame ATG codons. The longest open reading frame, which corresponds to amino acids 35-317 of the mature lipase, appeared to be expressed in the greatest amount. The truncated CALB was immobilized on Sepabeads® EC-EP resin and used to produce ethyl and butyl esters from crude corn oil and refined soybean oil. The yield of ethyl esters was 4-fold greater from corn oil than from soybean oil and was 36% and 50% higher, respectively, when compared to a commercially available lipase resin (Novozym 435) using the same substrates. A 5:1 (v/v) ratio of ethanol to corn oil produced 3.7-fold and 8.4-fold greater yields than ratios of 15:1 and 30:1, respectively. With corn oil, butyl ester production was 56% higher than ethyl ester production. Addition of an ionic catalytic resin step prior to the CALB resin increased yields of ethyl esters from corn oil by 53% compared to CALB resin followed by ionic resin. The results suggest resin-bound truncated CALB has potential application in biodiesel production using biocatalysts.

  18. Electron tunneling through covalent and noncovalent pathways in proteins

    NASA Technical Reports Server (NTRS)

    Beratan, David N.; Onuchic, Jose Nelson; Hopfield, J. J.

    1987-01-01

    A model is presented for electron tunneling in proteins which allows the donor-acceptor interaction to be mediated by the covalent bonds between amino acids and noncovalent contacts between amino acid chains. The important tunneling pathways are predicted to include mostly bonded groups with less favorable nonbonded interactions being important when the through bond pathway is prohibitively long. In some cases, vibrational motion of nonbonded groups along the tunneling pathway strongly influences the temperature dependence of the rate. Quantitative estimates for the sizes of these noncovalent interactions are made and their role in protein mediated electron transport is discussed.

  19. Exceptional ammonia uptake by a covalent organic framework

    NASA Astrophysics Data System (ADS)

    Doonan, Christian J.; Tranchemontagne, David J.; Glover, T. Grant; Hunt, Joseph R.; Yaghi, Omar M.

    2010-03-01

    Covalent organic frameworks (COFs) are porous crystalline materials composed of light elements linked by strong covalent bonds. A number of these materials contain a high density of Lewis acid boron sites that can strongly interact with Lewis basic guests, which makes them ideal for the storage of corrosive chemicals such as ammonia. We found that a member of the covalent organic framework family, COF-10, shows the highest uptake capacity (15 mol kg-1, 298 K, 1 bar) of any porous material, including microporous 13X zeolite (9 mol kg-1), Amberlyst 15 (11 mol kg-1) and mesoporous silica, MCM-41 (7.9 mol kg-1). Notably, ammonia can be removed from the pores of COF-10 by heating samples at 200 °C under vacuum. In addition, repeated adsorption of ammonia into COF-10 causes a shift in the interlayer packing, which reduces its apparent surface area to nitrogen. However, owing to the strong Lewis acid-base interactions, the total uptake capacity of ammonia and the structural integrity of the COF are maintained after several cycles of adsorption/desorption.

  20. Exceptional ammonia uptake by a covalent organic framework.

    PubMed

    Doonan, Christian J; Tranchemontagne, David J; Glover, T Grant; Hunt, Joseph R; Yaghi, Omar M

    2010-03-01

    Covalent organic frameworks (COFs) are porous crystalline materials composed of light elements linked by strong covalent bonds. A number of these materials contain a high density of Lewis acid boron sites that can strongly interact with Lewis basic guests, which makes them ideal for the storage of corrosive chemicals such as ammonia. We found that a member of the covalent organic framework family, COF-10, shows the highest uptake capacity (15 mol kg⁻¹, 298 K, 1 bar) of any porous material, including microporous 13X zeolite (9 mol kg⁻¹), Amberlyst 15 (11 mol kg⁻¹) and mesoporous silica, MCM-41 (7.9 mol kg⁻¹). Notably, ammonia can be removed from the pores of COF-10 by heating samples at 200°C under vacuum. In addition, repeated adsorption of ammonia into COF-10 causes a shift in the interlayer packing, which reduces its apparent surface area to nitrogen. However, owing to the strong Lewis acid-base interactions, the total uptake capacity of ammonia and the structural integrity of the COF are maintained after several cycles of adsorption/desorption.

  1. Self-assembling of cytosine nucleoside into triply-bound dimers in acid media. A comprehensive evaluation of proton-bound pyrimidine nucleosides by electrospray tandem mass spectrometry, X-rays diffractometry, and theoretical calculations.

    PubMed

    Armentano, Donatella; De Munno, Giovanni; Di Donna, Leonardo; Sindona, Giovanni; Giorgi, Gianluca; Salvini, Laura; Napoli, Anna

    2004-02-01

    Electrospray tandem mass spectrometry (ESI-MS/MS) is used to evaluate the assembling of cytosine and thymine nucleosides in the gas phase, through the formation of hydrogen bonded supermolecules. Mixtures of cytidine analogues and homologues deliver in the gas phase proton-bound heterodimers stabilized by multiple interactions, as proven by the kinetics of their dissociation into the corresponding protonated monomers. Theoretical calculations, performed on initial structures of methylcytosine homodimers available in the literature, converged to a minimized structure whereby the two pyrimidine rings interact through the formation of three hydrogen bonds of similar energy. The crystallographic data here reported show the equivalency of the two interacting pyrimidines which is attributable to the presence of an inversion center. Thymine and uracil pyrimidyl nucleosides form, by ESI, gaseous proton-bound dimers. The kinetic of their dissociation into the related protonated monomers shows that the nucleobases are weekly interacting through a single hydrogen bond. The minimized structure of the protonated heterodimer formed by thymine and N-1-methylthymine confirmed the existence of mainly one hydrogen bond which links the two nucleobases through the O4 oxygens. No crystallographic data exists on thymine proton-bound species, nor have we been able to obtain these aggregates in the solid phase. The gaseous phase, under high vacuum conditions, seems therefore a suitable environment where vanishing structures produced by ESI can be studied with a good degree of approximation.

  2. Covalently crosslinked diels-alder polymer networks.

    SciTech Connect

    Bowman, Christopher; Adzima, Brian J.; Anderson, Benjamin John

    2011-09-01

    This project examines the utility of cycloaddition reactions for the synthesis of polymer networks. Cycloaddition reactions are desirable because they produce no unwanted side reactions or small molecules, allowing for the formation of high molecular weight species and glassy crosslinked networks. Both the Diels-Alder reaction and the copper-catalyzed azide-alkyne cycloaddition (CuAAC) were studied. Accomplishments include externally triggered healing of a thermoreversible covalent network via self-limited hysteresis heating, the creation of Diels-Alder based photoresists, and the successful photochemical catalysis of CuAAC as an alternative to the use of ascorbic acid for the generation of Cu(I) in click reactions. An analysis of the results reveals that these new methods offer the promise of efficiently creating robust, high molecular weight species and delicate three dimensional structures that incorporate chemical functionality in the patterned material. This work was performed under a Strategic Partnerships LDRD during FY10 and FY11 as part of a Sandia National Laboratories/University of Colorado-Boulder Excellence in Science and Engineering Fellowship awarded to Brian J. Adzima, a graduate student at UC-Boulder. Benjamin J. Anderson (Org. 1833) was the Sandia National Laboratories point-of-contact for this fellowship.

  3. Characteristics of the active oxygen in covalent binding of the pesticide methoxychlor to hepatic microsomal proteins.

    PubMed

    Kupfer, D; Bulger, W H; Nanni, F J

    1986-08-15

    This study examined the characteristics of the active oxygen species involved in generation of the reactive intermediate of methoxychlor which covalently binds to liver microsomal proteins. The possibility that the active oxygen participating in the above reaction is the superoxide anion (O2-) or a species generated from O2- was examined with the help of superoxide dismutase (SOD) and with an SOD-mimetic agent, CuDIPS [Cu2+(3,5-diisopropylsalicylic acid)2]. It was observed that, whereas CuDIPS inhibited covalent binding of methoxychlor metabolite(s), SOD did not. However, ZnDIPS [Zn2+(3,5-diisopropylsalicylic acid)2], which exhibits no SOD-mimetic activity, did not inhibit covalent binding. Furthermore, both CuDIPS and ZnDIPS had little or no effect on the formation of demethylated (polar) metabolites of methoxychlor, demonstrating that the inhibition of covalent binding by CuDIPS was not merely due to a general inhibition of the hepatic monooxygenase system. These findings suggested that O2- was involved in covalent binding, but was not accessible to SOD. Additional support for O2- involvement stems from the observation that alpha-tocopheryl acid succinate markedly inhibited covalent binding of methoxychlor. The possibility that hydrogen peroxide (H2O2) was involved in covalent binding of methoxychlor appears unlikely. Catalase had no effect on covalent binding when NADPH was the cofactor, and the use of H2O2 in place of NADPH did not yield covalent binding. Certain scavengers of hydroxyl radical (ethanol, t-butanol and benzoate) inhibited, and other known scavengers (DMSO and mannitol) did not inhibit, covalent binding. EDTA stimulated binding, desferal (desferrioxamine) exhibited no effect on binding, and diethylenetriaminepentaacetic acid (DETAPAC) inhibited binding. A possible explanation for this observation is that the Fe2+ needed for generation of X OH is much more easily obtained from Fe3+-EDTA than from Fe3+-desferal, which resists reduction. The

  4. Covalently Linked Tandem Lesions in DNA

    PubMed Central

    Patrzyc, Helen B.; Dawidzik, Jean B.; Budzinski, Edwin E.; Freund, Harold G.; Wilton, John H.; Box, Harold C.

    2013-01-01

    Reactive oxygen species (ROS) generate a type of DNA damage called tandem lesions, two adjacent nucleotides both modified. A subcategory of tandem lesions consists of adjacent nucleotides linked by a covalent bond. Covalently linked tandem lesions generate highly characteristic liquid chromotography-tandem mass spectrometry (LC-MS/MS) elution profiles. We have used this property to comprehensively survey X-irradiated DNA for covalently linked tandem lesions. A total of 15 tandem lesions were detected in DNA irradiated in deoxygenated aqueous solution, five tandem lesions were detected in DNA that was irradiated in oxygenated solution. PMID:23106212

  5. Vertical distributions of bound saturated fatty acids and compound-specific stable carbon isotope compositions in sediments of two lakes in China: implication for the influence of eutrophication.

    PubMed

    Wang, Lifang; Xiong, Yongqiang; Wu, Fengchang; Li, Qiuhua; Lin, Tian; Giesy, John P

    2014-11-01

    Lakes Dianchi (DC) and Bosten (BST) were determined to be at different stages of eutrophication, by use of total organic carbon content, bulk carbon isotopic composition, bulk nitrogen isotopic composition, and bound saturated fatty acid (BSFA) concentrations in sediment cores. A rapid increase in the supply of organic matter (OM) to DC began after the 1950s, while the environment and trophic status of BST remained constant as indicated by characteristics of OM input to sediments. The BSFA ratios of nC14 + nC16 + nC18/nC24 + nC26 + nC28 increase upward from 7 to 13 in the DC core, which are significantly greater than those from BST (2 to 3). This result is consistent with algae or bacteria being the dominant contribution of the OM increase induced by eutrophication in DC. The positive shift of nC16 compound-specific δ (13)C in the upper section might be an indicator of excess algal productivity, which was observed in the two lakes. The positive shifts of compound-specific δ (13)C of other BSFAs were also observed in the upper section of the core only from DC. The observed trends of compound-specific δ(13)C of BSFA originated from different sources became more consistent, which reflected the intensified eutrophication had profoundly affected production and preservation of OM in DC. The results observed for BST indicated that accumulation of algae did not affect the entire aquatic ecosystem until now.

  6. Cellular delivery of quantum dot-bound hybridization probe for detection of intracellular pre-microRNA using chitosan/poly(γ-glutamic acid) complex as a carrier.

    PubMed

    Geng, Yao; Lin, Dajie; Shao, Lijia; Yan, Feng; Ju, Huangxian

    2013-01-01

    A quantum dot (QD)-bound hybridization probe was designed for detection of intracellular pre-miRNA using chitosan (CS)/poly(γ-glutamic acid) (γ-PGA) complex as a gene vector. The probe was prepared by assembling thiolated RNA to gold nanoparticle (Au NP) via Au-S bond and then binding 3'-end amine of the RNA to the carboxy group capped on quantum dot surface. The QD-RNA-Au NP probe was assembled on the vector by mixing with aqueous γ-PGA solution and then CS solution to construct a gene delivery system for highly effective cellular uptake and delivery. After the probe was released from CS/γ-PGA complex to the cytoplasm by electrostatic repulsion at intracellular pH, it hybridized with pre-miRNA precursor as target. The formed product was then cleaved by RNase III Dicer, leading to the separation of QDs from Au NPs and fluorescence emission of QDs, which could be detected by confocal microscopic imaging to monitor the amount of the intracellular pre-miRNA precursor. The in vitro assays revealed that the QD-RNA-Au NP was a robust, sensitive and selective probe for quantitative detection of target pre-miRNA. Using MDA-MB231 and MCF-7 breast cancer cells as models, the relative amount of pre-miRNA let-7a could be successfully compared. Since the amount of miRNA is related to the progress and prognosis of cancer, this strategy could be expected to hold promising application potential in medical research and clinical diagnostics.

  7. Characterization of covalent protein conjugates using solid-state sup 13 C NMR spectroscopy

    SciTech Connect

    Garbow, J.R.; Fujiwara, Hideji; Sharp, C.R.; Logusch, E.W. )

    1991-07-23

    Cross-polarization magic-angle spinning (CPMAS) {sup 13}C NMR spectroscopy has been used to characterize covalent conjugates of alachlor, an {alpha}-chloroacetamide hapten, with glutathione (GSH) and bovine serum albumin (BSA). The solid-state NMR method demonstrates definitively the covalent nature of these conjugates and can also be used to characterize the sites of hapten attachment to proteins. Three different sites of alachlor binding are observed in the BSA system. Accurate quantitation of the amount of hapten covalently bound to GSH and BSA is reported. The solid-state {sup 13}C NMR technique can easily be generalized to study other small molecule/protein conjugates and can be used to assist the development and refinement of synthetic methods needed for the successful formation of such protein alkylation products.

  8. Structure of EstA esterase from psychrotrophic Pseudoalteromonas sp. 643A covalently inhibited by monoethylphosphonate

    SciTech Connect

    Brzuszkiewicz, Anna; Nowak, Elzbieta; Dauter, Zbigniew; Dauter, Miroslawa; Cieslinski, Hubert; Dlugolecka, Anna; Kur, Józef

    2010-10-28

    The crystal structure of the esterase EstA from the cold-adapted bacterium Pseudoalteromonas sp. 643A was determined in a covalently inhibited form at a resolution of 1.35 {angstrom}. The enzyme has a typical SGNH hydrolase structure consisting of a single domain containing a five-stranded {beta}-sheet, with three helices at the convex side and two helices at the concave side of the sheet, and is ornamented with a couple of very short helices at the domain edges. The active site is located in a groove and contains the classic catalytic triad of Ser, His and Asp. In the structure of the crystal soaked in diethyl p-nitrophenyl phosphate (DNP), the catalytic serine is covalently connected to a phosphonate moiety that clearly has only one ethyl group. This is the only example in the Protein Data Bank of a DNP-inhibited enzyme with covalently bound monoethylphosphate.

  9. Breast cancer photothermal therapy based on gold nanorods targeted by covalently-coupled bombesin peptide

    NASA Astrophysics Data System (ADS)

    Heidari, Zahra; Salouti, Mojtaba; Sariri, Reyhaneh

    2015-05-01

    Photothermal therapy, a minimally invasive treatment method for killing cancers cells, has generated a great deal of interest. In an effort to improve treatment efficacy and reduce side effects, better targeting of photoabsorbers to tumors has become a new concept in the battle against cancer. In this study, a bombesin (BBN) analog that can bind to all gastrin-releasing peptide (GRP) receptor subtypes was bound covalently with gold nanorods (GNRs) using Nanothinks acid as a link. The BBN analog was also coated with poly(ethylene glycol) to increase its stability and biocompatibility. The interactions were confirmed by ultraviolet-visible and Fourier transform infrared spectroscopy. A methylthiazol tetrazolium assay showed no cytotoxicity of the PEGylated GNR-BBN conjugate. The cell binding and internalization studies showed high specificity and uptake of the GNR-BBN-PEG conjugate toward breast cancer cells of the T47D cell line. The in vitro study revealed destruction of the T47D cells exposed to the new photothermal agent combined with continuous-wave near-infrared laser irradiation. The biodistribution study showed significant accumulation of the conjugate in the tumor tissue of mice with breast cancer. The in vivo photothermal therapy showed the complete disappearance of xenographted breast tumors in the mouse model.

  10. How Cellulose Stretches: Synergism between Covalent and Hydrogen Bonding

    PubMed Central

    2014-01-01

    Cellulose is the most familiar and most abundant strong biopolymer, but the reasons for its outstanding mechanical performance are not well understood. Each glucose unit in a cellulose chain is joined to the next by a covalent C–O–C linkage flanked by two hydrogen bonds. This geometry suggests some form of cooperativity between covalent and hydrogen bonding. Using infrared spectroscopy and X-ray diffraction, we show that mechanical tension straightens out the zigzag conformation of the cellulose chain, with each glucose unit pivoting around a fulcrum at either end. Straightening the chain leads to a small increase in its length and is resisted by one of the flanking hydrogen bonds. This constitutes a simple form of molecular leverage with the covalent structure providing the fulcrum and gives the hydrogen bond an unexpectedly amplified effect on the tensile stiffness of the chain. The principle of molecular leverage can be directly applied to certain other carbohydrate polymers, including the animal polysaccharide chitin. Related but more complex effects are possible in some proteins and nucleic acids. The stiffening of cellulose by this mechanism is, however, in complete contrast to the way in which hydrogen bonding provides toughness combined with extensibility in protein materials like spider silk. PMID:24568640

  11. Effect of photocurrent enhancement in porphyrin-graphene covalent hybrids.

    PubMed

    Tang, Jianguo; Niu, Lin; Liu, Jixian; Wang, Yao; Huang, Zhen; Xie, Shiqiang; Huang, Linjun; Xu, Qingsong; Wang, Yuan; Belfiore, Laurence A

    2014-01-01

    Graphene oxide (GO) sheets were covalently functionalized with 5-p-aminophenyl-10,15,20-triphenylporphyrin (NH2TPP) by an amidation reaction between the amino group in NH2TPP and carboxyl groups in GO. The Fourier transform infrared spectroscopy, nuclear magnetic resonance, scanning and transmission electron microscopies reveal that NH2TPP covalent bonds form on the double surface of graphene oxide sheets, generating a unique nano-framework, i.e., NH2TPP-graphene-NH2TPP. Its UV-visible spectroscopy reveals that the absorption spectrum is not a linear superposition of the spectra of NH2TPP and graphene oxide, because a 59nm red shift of the strong graphene oxide absorption is observed from 238 to 297nm, with significant spectral broadening between 300 and 700nm. Fluorescence emission spectroscopy indicates efficient quenching of NH2TPP photoluminescence in this hybrid material, suggesting that photo-induced electron transfer occurs at the interface between NH2TPP and GO. A reversible on/off photo-current density of 47mA/cm(2) is observed when NH2TPP-graphene-NH2TPP hybrid sandwiches are subjected to pulsed white-light illumination. Covalently-bound porphyrins decrease the optical HOMO/LUMO band gap of graphene oxide by ≈1eV, according to UV-visible spectroscopy. Cyclic voltammetry predicts a small HOMO/LUMO band gap of 0.84eV for NH2TPP-graphene-NH2TPP hybrid sandwiches, which is consistent with efficient electron transfer and fluorescence quenching.

  12. Prolonged and tunable residence time using reversible covalent kinase inhibitors

    PubMed Central

    Bradshaw, J. Michael; McFarland, Jesse M.; Paavilainen, Ville O.; Bisconte, Angelina; Tam, Danny; Phan, Vernon T.; Romanov, Sergei; Finkle, David; Shu, Jin; Patel, Vaishali; Ton, Tony; Li, Xiaoyan; Loughhead, David G.; Nunn, Philip A.; Karr, Dane E.; Gerritsen, Mary E.; Funk, Jens Oliver; Owens, Timothy D.; Verner, Erik; Brameld, Ken A.; Hill, Ronald J.; Goldstein, David M.; Taunton, Jack

    2015-01-01

    Drugs with prolonged, on-target residence time often show superior efficacy, yet general strategies for optimizing drug-target residence time are lacking. Here, we demonstrate progress toward this elusive goal by targeting a noncatalytic cysteine in Bruton's tyrosine kinase (BTK) with reversible covalent inhibitors. Utilizing an inverted orientation of the cysteine-reactive cyanoacrylamide electrophile, we identified potent and selective BTK inhibitors that demonstrate biochemical residence times spanning from minutes to 7 days. An inverted cyanoacrylamide with prolonged residence time in vivo remained bound to BTK more than 18 hours after clearance from the circulation. The inverted cyanoacrylamide strategy was further utilized to discover fibroblast growth factor receptor (FGFR) kinase inhibitors with residence times of several days, demonstrating generalizability of the approach. Targeting noncatalytic cysteines with inverted cyanoacrylamides may serve as a broadly applicable platform that facilitates “residence time by design”, the ability to modulate and improve the duration of target engagement in vivo. PMID:26006010

  13. Synthesis of Polymers Containing Covalently Bonded NLO Chromophores

    NASA Technical Reports Server (NTRS)

    Denga, Xiao-Hua; Sanghadasa, Mohan; Walton, Connie; Penn, Benjamin B.; Amai, Robert L. S.; Clark, Ronald D.

    1998-01-01

    Polymers containing covalently bonded nonlinear optical (NLO) chromophores are expected to possess special properties such as greater stability, better mechanical processing, and easier film formation than their non-polymeric equivalent. For the present work, polymethylmethacrylate (PMMA) was selected as the basic polymer unit on which to incorporate different NLO chromophores. The NLO components were variations of DIVA {[2-methoxyphenyl methylidene]-propanedinitrile} which we prepared from vanillin derivatives and malononitrile. These were esterified with methacrylic acid and polymerized either directly or with methyl methacrylate to form homopolymers or copolymers respectively. Characterization of the polymers and NLO property studies are underway.

  14. Benchmarking in vitro covalent binding burden as a tool to assess potential toxicity caused by nonspecific covalent binding of covalent drugs.

    PubMed

    Dahal, Upendra P; Obach, R Scott; Gilbert, Adam M

    2013-11-18

    Despite several advantages of covalent inhibitors (such as increased biochemical efficiency, longer duration of action on the target, and lower efficacious doses) over their reversible binding counterparts, there is a reluctance to use covalent inhibitors as a drug design strategy in pharmaceutical research. This reluctance is due to their anticipated reactions with nontargeted macromolecules. We hypothesized that there may be a threshold limit for nonspecific covalent binding, below which a covalent binding drug may be less likely to cause toxicity due to irreversible binding to off-target macromolecules. Estimation of in vivo covalent binding burden from in vitro data has previously been used as an approach to distinguish those agents more likely to cause toxicity (e.g., hepatotoxicity) via metabolic activation to reactive metabolites. We have extended this approach to nine covalent binding drugs to determine in vitro covalent binding burden. In vitro covalent binding burden was determined by incubating radiolabeled drugs with pooled human hepatocytes. These data were scaled to an estimate of in vivo covalent binding burden by combining the in vitro data with daily dose. Scaled in vivo daily covalent binding burden of marketed covalent drugs was found to be under 10 mg/day, which is in agreement with previously reported threshold value for metabolically activated reversible drugs. Covalent binding was also compared to the intrinsic reactivities of the covalent inhibitors assessed using nucleophiles glutathione and N-α-acetyl lysine. The intrinsic reactivity did not correlate with observed in vitro covalent binding, which demonstrated that the intrinsic reactivity of the electrophilic groups of covalent drugs does not exclusively account for the extent of covalent binding. The ramifications of these findings for consideration of using a covalent strategy in drug design are discussed.

  15. Non-covalent interactions of nitrous oxide with aromatic compounds: Spectroscopic and computational evidence for the formation of 1:1 complexes

    SciTech Connect

    Cao, Qian; Gor, Gennady Y.; Krogh-Jespersen, Karsten; Khriachtchev, Leonid

    2014-04-14

    We present the first study of intermolecular interactions between nitrous oxide (N{sub 2}O) and three representative aromatic compounds (ACs): phenol, cresol, and toluene. The infrared spectroscopic experiments were performed in a Ne matrix and were supported by high-level quantum chemical calculations. Comparisons of the calculated and experimental vibrational spectra provide direct identification and characterization of the 1:1 N{sub 2}O-AC complexes. Our results show that N{sub 2}O is capable of forming non-covalently bonded complexes with ACs. Complex formation is dominated by dispersion forces, and the interaction energies are relatively low (about −3 kcal mol{sup −1}); however, the complexes are clearly detected by frequency shifts of the characteristic bands. These results suggest that N{sub 2}O can be bound to the amino-acid residues tyrosine or phenylalanine in the form of π complexes.

  16. Binding of cationic peptides (KX)4K to DPPG bilayers. Increasing the hydrophobicity of the uncharged amino acid X drives formation of membrane bound β-sheets: A DSC and FT-IR study.

    PubMed

    Hädicke, André; Blume, Alfred

    2016-06-01

    The binding of cationic peptides of the sequence (KX)4K to lipid vesicles of negatively charged dipalmitoyl-phosphatidylglycerol (DPPG) was investigated by differential scanning calorimetry (DSC) and temperature dependent Fourier-transformed infrared (FT-IR) spectroscopy. The hydrophobicity of the uncharged amino acid X was changed from G (glycine) over A (alanine), Abu (α-aminobutyric acid), V (valine) to L (leucine). The binding of the peptides caused an increase of the phase transition temperature (Tm) of DPPG by up to 20°C. The shift depended on the charge ratio and on the hydrophobicity of the amino acid X. Unexpectedly, the upward shift of Tm increased with increasing hydrophobicity of X. FT-IR spectroscopy showed a shift of the CH2 stretching vibrations of DPPG to lower frequency, particularly for bilayers in the liquid-crystalline phase, indicating an ordering of the hydrocarbon chains when the peptides were bound. Changes in the lipid C=O vibrational band indicated a dehydration of the lipid headgroup region after peptide binding. (KG)4K was bound in an unordered structure at all temperatures. All other peptides formed intermolecular antiparallel β-sheets, when bound to gel phase DPPG. However, for (KA)4K and (KAbu)4K, the β-sheets converted into an unordered structure above Tm. In contrast, the β-sheet structures of (KV)4K and (KL)4K remained stable even at 80°C when bound to the liquid-crystalline phase of DPPG. Strong aggregation of DPPG vesicles occurred after peptide binding. For the aggregates, we suggest a structure, where aggregated single β-sheets are sandwiched between opposing DPPG bilayers with a dehydrated interfacial region.

  17. Multiple-component covalent organic frameworks

    NASA Astrophysics Data System (ADS)

    Huang, Ning; Zhai, Lipeng; Coupry, Damien E.; Addicoat, Matthew A.; Okushita, Keiko; Nishimura, Katsuyuki; Heine, Thomas; Jiang, Donglin

    2016-07-01

    Covalent organic frameworks are a class of crystalline porous polymers that integrate molecular building blocks into periodic structures and are usually synthesized using two-component [1+1] condensation systems comprised of one knot and one linker. Here we report a general strategy based on multiple-component [1+2] and [1+3] condensation systems that enable the use of one knot and two or three linker units for the synthesis of hexagonal and tetragonal multiple-component covalent organic frameworks. Unlike two-component systems, multiple-component covalent organic frameworks feature asymmetric tiling of organic units into anisotropic skeletons and unusually shaped pores. This strategy not only expands the structural complexity of skeletons and pores but also greatly enhances their structural diversity. This synthetic platform is also widely applicable to multiple-component electron donor-acceptor systems, which lead to electronic properties that are not simply linear summations of those of the conventional [1+1] counterparts.

  18. Enhanced stability of catalase covalently immobilized on functionalized titania submicrospheres.

    PubMed

    Wu, Hong; Liang, Yanpeng; Shi, Jiafu; Wang, Xiaoli; Yang, Dong; Jiang, Zhongyi

    2013-04-01

    In this study, a novel approach combing the chelation and covalent binding was explored for facile and efficient enzyme immobilization. The unique capability of titania to chelate with catecholic derivatives at ambient conditions was utilized for titania surface functionalization. The functionalized titania was then used for enzyme immobilization. Titania submicrospheres (500-600 nm) were synthesized by a modified sol-gel method and functionalized with carboxylic acid groups through a facile chelation method by using 3-(3,4-dihydroxyphenyl) propionic acid as the chelating agent. Then, catalase (CAT) was covalently immobilized on these functionalized titania submicrospheres through 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) coupling reaction. The immobilized CAT retained 65% of its free form activity with a loading capacity of 100-150 mg/g titania. The pH stability, thermostability, recycling stability and storage stability of the immobilized CAT were evaluated. A remarkable enhancement in enzyme stability was achieved. The immobilized CAT retained 90% and 76% of its initial activity after 10 and 16 successive cycles of decomposition of hydrogen peroxide, respectively. Both the Km and the Vmax values of the immobilized CAT (27.4 mM, 13.36 mM/min) were close to those of the free CAT (25.7 mM, 13.46 mM/min).

  19. Covalent bonding of polycations to small polymeric particles

    NASA Technical Reports Server (NTRS)

    Rembaum, A.

    1975-01-01

    Process produces small spherical polymeric particles which have polycations bound to them. In emulsion form, particles present large positively charged surface which is available to absorb polyanions. This properly can be used in removing heparin from blood or bile acids from the digestive tract. Other anions, such as DNA and RNA, can also be removed from aqueous solutions.

  20. Protein-RNA networks revealed through covalent RNA marks

    PubMed Central

    Lapointe, Christopher P.; Wilinski, Daniel; Saunders, Harriet A. J.; Wickens, Marvin

    2015-01-01

    Protein-RNA networks are ubiquitous and central in biological control. We present an approach, termed “RNA Tagging,” that identifies protein-RNA interactions in vivo by analyzing purified cellular RNA, without protein purification or crosslinking. An RNA-binding protein of interest is fused to an enzyme that adds uridines to the end of RNA. RNA targets bound by the chimeric protein in vivo are covalently marked with uridines and subsequently identified from extracted RNA using high-throughput sequencing. We used this approach to identify hundreds of RNAs bound by a Saccharomyces cerevisiae PUF protein, Puf3p. The method revealed that while RNA-binding proteins productively bind specific RNAs to control their function, they also “sample” RNAs without exerting a regulatory effect. We exploited the method to uncover hundreds of new and likely regulated targets for a protein without canonical RNA-binding domains, Bfr1p. The RNA Tagging approach is well-suited to detect and analyze protein-RNA networks in vivo. PMID:26524240

  1. Biophysical properties and cellular toxicity of covalent crosslinked oligomers of α-synuclein formed by photoinduced side-chain tyrosyl radicals.

    PubMed

    Borsarelli, Claudio D; Falomir-Lockhart, Lisandro J; Ostatná, Veronika; Fauerbach, Jonathan A; Hsiao, He-Hsuan; Urlaub, Henning; Paleček, Emil; Jares-Erijman, Elizabeth A; Jovin, Thomas M

    2012-08-15

    Alpha-synuclein (αS), a 140 amino acid presynaptic protein, is the major component of the fibrillar aggregates (Lewy bodies) observed in dopaminergic neurons of patients affected by Parkinson's disease. It is currently believed that noncovalent oligomeric forms of αS, arising as intermediates in its aggregation, may constitute the major neurotoxic species. However, attempts to isolate and characterize such oligomers in vitro, and even more so in living cells, have been hampered by their transient nature, low concentration, polymorphism, and inherent instability. In this work, we describe the preparation and characterization of low molecular weight covalently bound oligomeric species of αS obtained by crosslinking via tyrosyl radicals generated by blue-light photosensitization of the metal coordination complex ruthenium (II) tris-bipyridine in the presence of ammonium persulfate. Numerous analytical techniques were used to characterize the αS oligomers: biochemical (anion-exchange chromatography, SDS-PAGE, and Western blotting); spectroscopic (optical: UV/Vis absorption, steady state, dynamic fluorescence, and dynamic light scattering); mass spectrometry; and electrochemical. Light-controlled protein oligomerization was mediated by formation of Tyr-Tyr (dityrosine) dimers through -C-C- bonds acting as covalent bridges, with a predominant involvement of residue Y39. The diverse oligomeric species exhibited a direct effect on the in vitro aggregation behavior of wild-type monomeric αS, decreasing the total yield of amyloid fibrils in aggregation assays monitored by thioflavin T (ThioT) fluorescence and light scattering, and by atomic force microscopy (AFM). Compared to the unmodified monomer, the photoinduced covalent oligomeric species demonstrated increased toxic effects on differentiated neuronal-like SH-SY5Y cells. The results highlight the importance of protein modification induced by oxidative stress in the initial molecular events leading to Parkinson

  2. Imidazolium-tagged glycan probes for non-covalent labeling of live cells.

    PubMed

    Benito-Alifonso, David; Tremell, Shirley; Sadler, Joanna C; Berry, Monica; Galan, M Carmen

    2016-04-07

    Selective, bioorthogonal and fast labeling of glycoconjugates in living cells is a major challenge for synthetic and cellular biology. Here we report the use imidazolium tagged-mannosamine derivative (ITag-Man) for the non-covalent, rapid and site-specific labeling of sialic acid containing glycoproteins using commercial N-nitrilotriacetate fluorescent reagents in a range of cell lines.

  3. Use of (2-/sup 14/C)mevalonate and saponin-bound (/sup 14/C)-3-hydroxy-3-methylglutaric acid for the biosynthesis of terpenoids in leaves of Dioscorea deltoidea

    SciTech Connect

    Gurielidze, K.G.; Paseshnichenko, V.A.; Vasil'eva, I.S.

    1986-03-20

    After the introduction of (2-/sup 14/C)acetate into leaves of Dioscorea deltoidea, a radioactive furonanalog of deltafolin - protodeltofolin, containing two-thirds of the label in the 3-hydroxy-3-methylglutaryl portion - was isolated from them. Radioactive ..beta..-careotene and sterols were isolated from cut young leaves of Dioscorea 24 h after the introduction of (/sup 14/C) protodeltofolin into them, using chromatography on a column of silica gel and precipitation of sterols in the form of digitonins for this purpose. The incorporation of radioactivity from (/sup 14/C)-3-hydroxy-3-methyl-glutaric acid, bound in the form of a saponin, and ..beta..-carotene came to 0.18-0.80%, while incorporation into sterols came to 0.07-2.86% of the radioactivity of the alcohol extract. Thereby it was shown that 3-hydroxyl-3-methylglutaric acid, bound in the form of the saponin, can be used to form terpenoids in Dioscorea leaves. It was suggested that the binding of hydroxymethylglutaric acid to saponin represents one of the mechanisms of regulation of the rate of terpenoid biosynthesis in Dioscorea leaves.

  4. Sonication mediated covalent cross-linking of DNA to single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Dolash, Bridget D.; Lahiji, Roya R.; Zemlyanov, Dmitry Y.; Drachev, Vladimir P.; Reifenberger, Ronald; Bergstrom, Donald E.

    2013-02-01

    Sonication with nucleic acids has become a standard method for obtaining aqueous dispersions of carbon nanotubes. On the basis of theoretical studies and scanning probe microscopy (SPM) imaging a widely accepted model for DNA association with SWCNT is one in which the DNA binds through non-covalent π-stacking and hydrophobic interactions. Following the standard procedures established by others to prepare DNA associated single-wall carbon nanotubes (SWCNT), we have determined that sonication generates radical intermediates then form covalent anchors between the DNA and SWCNT. In light of this finding, results from studies on DNA associated carbon nanotubes, need to be more carefully interpreted.

  5. Observation by sup 13 C NMR of the EPSP synthase tetrahedral intermediate bound to the enzyme active site

    SciTech Connect

    Anderson, K.S.; Sammons, R.D.; Leo, G.C.; Sikorski, J.A. ); Benesi, A.J.; Johnson, K.A. )

    1990-02-13

    Direct observation of the tetrahedral intermediate in the EPSP synthase reaction pathway was provided by {sup 13}C NMR by examining the species bound to the enzyme active site under internal equilibrium conditions and using (2-{sup 13}C)PEP as a spectroscopic probe. The tetrahedral center of the intermediate bound to the enzyme gave a unique signal appearing at 104 ppm. Separate signals were observed for free EPSP and EPSP bound to the enzyme in a ternary complex with phosphate. These peak assignments account for the quantitation of the species bound to the enzyme and liberated upon quenching with either triethylamine or base. A comparison of quenching with acid, base, or triethylamine was conducted. After long times of incubation during the NMR measurement, a signal at 107 ppm appeared. The compound giving rise to this resonance was isolated and identified as an EPSP ketal. The rate of formation of the EPSP ketal was very slow establishing that it is a side product of the normal enzymatic reaction. To look for additional signals that might arise from a covalent adduct which has been postulated to arise from reaction of enzyme with PEP, and NMR experiment was performed with an analogue of S3P lacking the 4- and 5-hydroxyl groups. All of these results reaffirm identification of the tetrahedral species as the only observable intermediate in the EPSP synthase reaction.

  6. Bound states and the Bekenstein bound

    SciTech Connect

    Bousso, Raphael

    2003-10-16

    We explore the validity of the generalized Bekenstein bound, S<= pi M a. We define the entropy S as the logarithm of the number of states which have energy eigenvalue below M and are localized to a flat space region of width alpha. If boundary conditions that localize field modes are imposed by fiat, then the bound encounters well-known difficulties with negative Casimir energy and large species number, as well as novel problems arising only in the generalized form. In realistic systems, however, finite-size effects contribute additional energy. We study two different models for estimating such contributions. Our analysis suggests that the bound is both valid and nontrivial if interactions are properly included, so that the entropy S counts the bound states of interacting fields.

  7. Redox-Noninnocent Behavior of Tris(2-pyridylmethyl)amine Bound to a Lewis Acidic Rh(III) Ion Induced by C-H Deprotonation.

    PubMed

    Kotani, Hiroaki; Sugiyama, Takumi; Ishizuka, Tomoya; Shiota, Yoshihito; Yoshizawa, Kazunari; Kojima, Takahiko

    2015-09-09

    Rh(III) complexes having tris(2-pyridylmethyl)amine (TPA) and its derivative as tetradentate ligands showed reversible deprotonation at a methylene moiety of the TPA ligands upon addition of a strong base as confirmed by spectroscopic measurements and X-ray crystallography. Deprotonation selectively occurred at the axial methylene moiety rather than equatorial counterparts because of the thermodynamic stability of corresponding deprotonated complexes. One-electron oxidation of the deprotonated Rh(III)-TPA complex afforded a unique TPA radical bound to the Rh(III) center by a ligand-centered oxidation. This is the first example to demonstrate emergence of the redox-noninnocent character of the TPA ligand.

  8. Syntheses of covalently-linked porphyria-quinone complexes. I

    SciTech Connect

    Kong, J.L.Y.; Loach, P.A.

    1980-06-01

    A synthetic route for the preparation of covalently-linked prophyin-quinone and metalloporphyrinquinone complexes as models for the phototrap in bacterial photosynthesis is described. 5(5-Carboxyphenyl)-10,15,20-tritolylporphyrin, prepared by a mixed aldehyde approach, was attached to benzoquinone center with a propanediol bridge by means of ester linkages. The starting point for the benzoquinone moiety was 2,5-dihydroxyphenylacetic acid, whose hydroquinone function was first protected by preparing its dimethyl ether. The spacing between the two centers of the complex could be altered simply by varying the length of the bridging group (a diol) employed. Boron tribomide was used to unmask the quinol derivatives in the final coupled products. The zinc(II) derivative of porphyrin-quinone complex was prepared by addition of a saturated solution of zinc acetate in methanol to a solution of the corresponding prophyrin-hydroqyuinone complex in dichloromethane at room temperature. The structures of these complexes were confirmed by nmr spectroscopy, uv-visible absorption, and mass spectroscopy. Oxidation of the quinol moiety in the covalently-linked complex to its corresponding quinonoid derivative was accomplished by treating a solution of the complex in dichloromethane with a stoichiometric amount of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone, a high potential benzoquinone.

  9. Prevention of sulfide mineral leaching through covalent coating

    SciTech Connect

    K.M. Zaman; C. Chusuei; L.Y. Blue; D.A. Atwood

    2007-09-15

    The use of benzene-1,3-diamidoethanethiol as a covalent surface coating for the prevention of metal leaching was demonstrated with several sulfide minerals including cinnabar (HgS), pyrite (FeS{sub 2}), chalcopyrite (CuFeS{sub 2}), covellite (CuS), galena (PbS), realgar (As{sub 4}S{sub 4}) and sphalerite (ZnS). The minerals were coated with sufficient H2BDT to bind the surface metals in a 1:1 ratio. Leaching at pH 1, 3 and 7 was then conducted on both treated and untreated minerals. ICP and CVAFS (for mercury) analyses revealed that the coated minerals showed a dramatic reduction in metal leaching as compared to uncoated control samples. X-ray photoelectron spectroscopy indicated the formation of covalent bonds between the sulphur of the ligand and the metals from the minerals. Results indicate that it would be possible to prevent acid mine drainage through the binding of the metals in coal. 51 refs., 4 figs., 8 tabs.

  10. Albumin-bound fatty acids but not albumin itself alter redox balance in tubular epithelial cells and induce a peroxide-mediated redox-sensitive apoptosis.

    PubMed

    Ruggiero, Christine; Elks, Carrie M; Kruger, Claudia; Cleland, Ellen; Addison, Kaity; Noland, Robert C; Stadler, Krisztian

    2014-04-15

    Albuminuria is associated with metabolic syndrome and diabetes. It correlates with the progression of chronic kidney disease, particularly with tubular atrophy. The fatty acid load on albumin significantly increases in obesity, presenting a proinflammatory environment to the proximal tubules. However, little is known about changes in the redox milieu during fatty acid overload and how redox-sensitive mechanisms mediate cell death. Here, we show that albumin with fatty acid impurities or conjugated with palmitate but not albumin itself compromised mitochondrial and cell viability, membrane potential and respiration. Fatty acid overload led to a redox imbalance which deactivated the antioxidant protein peroxiredoxin 2 and caused a peroxide-mediated apoptosis through the redox-sensitive pJNK/caspase-3 pathway. Transfection of tubular cells with peroxiredoxin 2 was protective and mitigated apoptosis. Mitochondrial fatty acid entry and ceramide synthesis modulators suggested that mitochondrial β oxidation but not ceramide synthesis may modulate lipotoxic effects on tubular cell survival. These results suggest that albumin overloaded with fatty acids but not albumin itself changes the redox environment in the tubules, inducing a peroxide-mediated redox-sensitive apoptosis. Thus, mitigating circulating fatty acid levels may be an important factor in both preserving redox balance and preventing tubular cell damage in proteinuric diseases.

  11. Covalent immobilization of glucose oxidase onto new modified acrylonitrile copolymer/silica gel hybrid supports.

    PubMed

    Godjevargova, Tzonka; Nenkova, Ruska; Dimova, Nedyalka

    2005-08-12

    New polymer/silica gel hybrid supports were prepared by coating high surface area of silica gel with modified acrylonitrile copolymer. The concentrations of the modifying agent (NaOH) and the modified polymer were varied. GOD was covalently immobilized on these hybrid supports and the relative activity and the amount of bound protein were determined. The highest relative activity and sufficient amount of bound protein of the immobilized GOD were achieved in 10% NaOH and 2% solution of modified acrylonitrile copolymer. The influence of glutaraldehyde concentration and the storage time on enzyme efficiency were examined. Glutaraldehyde concentration of 0.5% is optimal for the immobilized GOD. It was shown that the covalently bound enzyme (using 0.5% glutaraldehyde) had higher relative activity than the activity of the adsorbed enzyme. Covalently immobilized GOD with 0.5% glutaraldehyde was more stable for four months in comparison with the one immobilized on pure silica gel, hybrid support with 10% glutaraldehyde and the free enzyme. The effect of the pore size on the enzyme efficiency was studied on four types of silica gel with different pore size. Silica with large pores (CPC-Silica carrier, 375 A) presented higher relative activity than those with smaller pore size (Silica gel with 4, 40 and 100 A). The amount of bound protein was also reduced with decreasing the pore size. The effect of particle size was studied and it was found out that the smaller the particle size was, the greater the activity and the amount of immobilized enzyme were. The obtained results proved that these new polymer/silica gel hybrid supports were suitable for GOD immobilization.

  12. Non-Covalent Derivatives: Cocrystals and Eutectics.

    PubMed

    Stoler, Emily; Warner, John C

    2015-08-14

    Non-covalent derivatives (NCDs) are formed by incorporating one (or more) coformer molecule(s) into the matrix of a parent molecule via non-covalent forces. These forces can include ionic forces, Van der Waals forces, hydrogen bonding, lipophilic-lipophilic interactions and pi-pi interactions. NCDs, in both cocrystal and eutectic forms, possess properties that are unique to their supramolecular matrix. These properties include critical product performance factors such as solubility, stability and bioavailability. NCDs have been used to tailor materials for a variety of applications and have the potential to be used in an even broader range of materials and processes. NCDs can be prepared using little or no solvent and none of the reagents typical to synthetic modifications. Thus, NCDs represent a powerfully versatile, environmentally-friendly and cost-effective opportunity.

  13. Covalent Sidewall Functionalization of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Chiang, I.W.; Saini, R. K.; Mickelson, E. T.; Billups, W. E.; Hauge, R. H.; Margrave, J. L.

    2001-01-01

    Progress of fluorination of single-wall carbon nanotubes is being reported. Covalent attachment of alkyl groups including methyl, n-butyl and n-hexyl groups to the sidewalls of single wall carbon nanotubes (SWNTs) has been achieved. Quantitative measurement of the alkylation was done by thermal gravimetric analysis. FTIR, Raman and UV-Vis-NIR were used to characterize these alkylated SWNTs. Application of these nanotubes are being investigated-fibers, composites, batteries, lubricants, etc.

  14. Photophysical and theoretical insights on non-covalently linked fullerene-zinc phthalocyanine complexes

    NASA Astrophysics Data System (ADS)

    Ray, A.; Chattopadhyay, S.; Bhattacharya, S.

    2011-09-01

    The photo-physical aspects of non-covalently linked assemblies of a series of fullerenes, namely, C 60, C 70, tert-butyl-(1,2-methanofullerene)-61-carboxylate ( 1) and [6,6]-phenyl C 70 butyric acid methyl ester ( 2) with a designed zinc phthalocyanine (ZnPc), viz., zinc-1,4,8,11,15,18,22,25-octabutoxy-29 H,31 H-phthalocyanine ( 3) in toluene medium are studied employing absorption spectrophotometric, steady state and time resolved fluorescence spectroscopic measurements. Of central interest in these investigations is the preferential binding of various fullerenes with ZnPc in toluene. The ground state interaction between fullerenes and 3 is first evidenced from UV-Vis measurements. Steady state fluorescence experiment reveals efficient quenching of the excited singlet state of 3 in presence of both underivatized and derivatized fullerenes. K values for the complexes of C 60, C 70, 1 and 2 with 3 are determined to be 6500, 22,230, 47,800 and 54,770 dm 3 mol -1, respectively. The magnitude of K suggests that 3 preferentially binds C 70 and derivatized C 70 in comparison to C 60 and 1. Time resolved emission measurements establish that C 70- 3 and 2- 3 complexes are stabilized much more in comparison to C 60- 3 and 1- 3 systems in terms of charge separation process. Semi empirical calculations employing third parametric method substantiate the strong binding of C 70 and its derivative with 3 in terms of heat of formation values of the respective complexes, and at the same time, determine the orientation of bound guest (here fullerenes) with the molecular plane of 3.

  15. Two supramolecular complexes based on polyoxometalates and Co-EDTA units via covalent connection or non-covalent interaction

    NASA Astrophysics Data System (ADS)

    Teng, Chunlin; Xiao, Hanxi; Cai, Qing; Tang, Jianting; Cai, Tiejun; Deng, Qian

    2016-11-01

    Two new 3D network organic-inorganic hybrid supramolecular complexes {[Na6(CoEDTA)2(H2O)13]·(H2SiW12O40)·xH2O}n (1) and [CoH4EDTA(H2O)]2(SiW12O40)·15H2O (2) (H4EDTA=Ethylenediamine tetraacetic acid) have been successfully synthesized by solution method, and characterized by infrared spectrum (IR), thermogravimetric-differential thermal analysis (TG-DTA), cyclic voltammetry (CV) and single-crystal X-ray diffraction (XRD). Both of the complexes are the supramolecules, but with different liking mode, they are two representative models of supramolecule. complex (1) is a 3D infinite network supramolecular coordination polymer with a rare multi-metal sturcture of sodium-cobalt-containing, which is mainly linked through coordinate-covalent bonds. While complex (2) is normal supramolecule, which linked by non-covalent interactions, such as H-bonding interaction, electrostatic interaction and van der waals force. Both of complex (1) and (2) exhibit good catalytic activities for catalytic oxidation of methanol, when the initial concentration of methanol is 3.0 g m-3, flow rate is 10 mL min-1, and the quality of catalyst is 0.2 g, for complex (1) and complex (2) the maximum elimination rates of methanol are 85% (150 °C) and 92% (120 °C), respectively.

  16. Multiple-component covalent organic frameworks

    PubMed Central

    Huang, Ning; Zhai, Lipeng; Coupry, Damien E.; Addicoat, Matthew A.; Okushita, Keiko; Nishimura, Katsuyuki; Heine, Thomas; Jiang, Donglin

    2016-01-01

    Covalent organic frameworks are a class of crystalline porous polymers that integrate molecular building blocks into periodic structures and are usually synthesized using two-component [1+1] condensation systems comprised of one knot and one linker. Here we report a general strategy based on multiple-component [1+2] and [1+3] condensation systems that enable the use of one knot and two or three linker units for the synthesis of hexagonal and tetragonal multiple-component covalent organic frameworks. Unlike two-component systems, multiple-component covalent organic frameworks feature asymmetric tiling of organic units into anisotropic skeletons and unusually shaped pores. This strategy not only expands the structural complexity of skeletons and pores but also greatly enhances their structural diversity. This synthetic platform is also widely applicable to multiple-component electron donor–acceptor systems, which lead to electronic properties that are not simply linear summations of those of the conventional [1+1] counterparts. PMID:27460607

  17. Functional analysis of rat acidic calponin.

    PubMed

    Fujii, Toshihiro; Yabe, Sachiko; Nakamura, Kouta; Koizumi, Youichi

    2002-05-01

    Recombinant acidic calponin, a member of the calponin family, interacted with F-actin, but not with microtubules, desmin filaments, tropomyosin, calmodulin, S100 and phosphatidylserine (PS) vesicles with significant affinity. The bindings of acidic calponin to F-actin occurred in a concentration-dependent manner and were saturated at a molar ratio of about 1 acidic calponin to 1-2 actin molecules. The apparent Kd value of acidic calponin to F-actin was calculated to be 1.6 x 10(5) M(-1). Chemical cross-linking experiments indicated that a 1:1 molar covalent complex of acidic calponin and actin monomer was produced as in the case of basic calponinactin binding. No significant morphologic change of F-actin was observed by the addition of acidic calponin. Acidic calponin had little effect on actomyosin Mg2+-ATPase activity unlike basic calponin. Basic calponin partially competed with acidic calponin for binding to F-actin. Domain mapping with V8 protease revealed that acidic calponin binding site resided within the C-terminal 16 kDa fragment of actin, where the binding of basic calponin also occurs. However, both calponins showed reversal effects on fluorescence intensity of pyrene-labeled F-actin. Fragments of acidic calponin with 30 and 22 kDa, lacking the C-terminal acidic tail, were bound to F-actin. Interestingly, both the fragments became bound to PS vesicles, but not to other components. Circular dichroism studies showed that limited digestion of acidic calponin resulted in about 30% decrease of alpha-helix and beta contents. The present results suggest that acidic calponin is functionally distinct from basic calponin and expresses a novel characteristic after removal of the acidic tail region.

  18. Protein immobilization capacity and covalent binding coverage of pulsed plasma polymer surfaces

    NASA Astrophysics Data System (ADS)

    Yin, Yongbai; Bax, Daniel; McKenzie, David R.; Bilek, Marcela M. M.

    2010-06-01

    Three carbon surfaces were deposited using pulsed plasma enhanced chemical vapour deposition method: a low and a high nitrogen-containing plasma polymer surfaces and a diamond-like carbon surface. The surfaces were analysed using both X-ray photoelectron spectroscopy (XPS) technique and the enzyme-linked immunosorbent assay (ELISA) method combining with sodium dodecyl sulphate (SDS) cleaning to investigate the capacity and covalent binding of the immobilized proteins. A good correlation was found on quantification of remaining protein after SDS cleaning using the ELISA method and the XPS technique. All surfaces had similar initial capacity of protein attachment but with large different resistance to SDS cleaning. The analysis showed that the high nitrogen-containing plasma polymer was the best biocompatible material due to its highest resistance to SDS cleaning, i.e. with the highest quantity (˜80%) of proteins bound covalently.

  19. Effect of solution chemistry on the extent of binding of phenanthrene by a soil humic acid: A comparison of dissolved and clay bound humic

    SciTech Connect

    Jones, K.D.; Tiller, C.L.

    1999-02-15

    The effect of pH, ionic strength, and cation in solution on the binding of phenanthrene by a soil humic acid in the aqueous phase was determined using fluorescence quenching. The phenanthrene binding coefficient with the dissolved soil humic, K{sub oc}, decreased with increasing ionic strength and solution cation valence. At low values of ionic strength, K{sub oc} values for this soil humic acid increased with increasing pH. For this humic sample, the experimental results were consistent with a conformational model of the humic substance in aqueous solution where, depending on solution conditions, some parts of the humic structure may be more open to allow increased PAH access to attachment sites. After sorption onto clays, supernatant solutions of the unadsorbed humic fraction yielded lower K{sub oc} values than the original bulk humic acid, suggesting that the humic substance was fractionating during its sorption onto the clays. Additionally, the extent of phenanthrene binding with the adsorbed humic fraction was lower than the results determined for the bulk humic acid prior to adsorption. The conformation of the humic substance when sorbed onto the inorganic surface appears to be affecting the level of phenanthrene binding by the humic acid.

  20. Covalent immobilization of Pseudomonas cepacia lipase on semiconducting materials

    NASA Astrophysics Data System (ADS)

    Fernandez, Renny Edwin; Bhattacharya, Enakshi; Chadha, Anju

    2008-05-01

    Lipase from Pseudomonas cepacia was covalently immobilized on crystalline silicon, porous silicon and silicon nitride surfaces. The various stages of immobilization were characterized using FTIR (Fourier transform infrared) spectroscopy. The surface topography of the enzyme immobilized surfaces was investigated using scanning electron microscopy (SEM). The quantity of the immobilized active enzyme was estimated by the para-nitrophenyl palmitate (pNPP) assay. The immobilized lipase was used for triglyceride hydrolysis and the acid produced was detected by a pH sensitive silicon nitride surface as a shift in the C- V (capacitance-voltage) characteristics of an electrolyte-insulator-semiconductor capacitor (EISCAP) thus validating the immobilization method for use as a biosensor.

  1. Chirality sensing and size recognition of N-Boc-amino acids by cage-type dimeric lanthanide complexes: chirality detection of N-Boc-aspartate anions via luminescence colour change.

    PubMed

    Ito, Hiroshi; Shinoda, Satoshi

    2015-03-04

    Chiral luminescent lanthanide complexes, characterized by covalently-linked face-to-face octadentate cyclen (tetraaza-12-crown-4) ligands, specifically bound a chiral N-Boc-aspartate among various N-Boc amino acid anions to enhance Eu(III) luminescence intensity at 615 nm. The combination of Tb(III) and Eu(III) complexes enabled naked-eye discrimination of N-Boc-D- and L-aspartates via the luminescence colour change.

  2. Facile Method for the Site-Specific, Covalent Attachment of full-length IgG onto Nanoparticles

    PubMed Central

    Hui, James Zhe; Al Zaki, Ajlan; Cheng, Zhiliang; Popik, Vladimir; Zhang, Hongtao; Luning Prak, Eline T.

    2014-01-01

    Antibodies, most commonly IgGs, have been widely used as targeting ligands in research and therapeutic applications due to their wide array of targets, high specificity and proven efficacy. Many of these applications require antibodies to be conjugated onto surfaces (e.g. nanoparticles and microplates); however, most conventional bioconjugation techniques exhibit low crosslinking efficiencies, reduced functionality due to non-site-specific labeling and random surface orientation, and/or require protein engineering (e.g. cysteine handles), which can be technically challenging. To overcome these limitations, we have recombinantly expressed Protein Z, which binds the Fc region of IgG, with an UV active non-natural amino acid benzoylphenyalanine (BPA) within its binding domain. Upon exposure to long wavelength UV light, the BPA is activated and forms a covalent link between the Protein Z and the bound Fc region of IgG. This technology was combined with expressed protein ligation (EPL), which allowed for the introduction of a fluorophore and click chemistry-compatible azide group onto the C-terminus of Protein Z during the recombinant protein purification step. This enabled crosslinked-Protein Z-IgG complexes to be efficiently and site-specifically attached to aza-dibenzycyclooctyne-modified nanoparticles, via copper-free click chemistry. PMID:24729432

  3. Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors.

    PubMed

    Tan, Li; Wang, Jun; Tanizaki, Junko; Huang, Zhifeng; Aref, Amir R; Rusan, Maria; Zhu, Su-Jie; Zhang, Yiyun; Ercan, Dalia; Liao, Rachel G; Capelletti, Marzia; Zhou, Wenjun; Hur, Wooyoung; Kim, NamDoo; Sim, Taebo; Gaudet, Suzanne; Barbie, David A; Yeh, Jing-Ruey Joanna; Yun, Cai-Hong; Hammerman, Peter S; Mohammadi, Moosa; Jänne, Pasi A; Gray, Nathanael S

    2014-11-11

    The human FGF receptors (FGFRs) play critical roles in various human cancers, and several FGFR inhibitors are currently under clinical investigation. Resistance usually results from selection for mutant kinases that are impervious to the action of the drug or from up-regulation of compensatory signaling pathways. Preclinical studies have demonstrated that resistance to FGFR inhibitors can be acquired through mutations in the FGFR gatekeeper residue, as clinically observed for FGFR4 in embryonal rhabdomyosarcoma and neuroendocrine breast carcinomas. Here we report on the use of a structure-based drug design to develop two selective, next-generation covalent FGFR inhibitors, the FGFR irreversible inhibitors 2 (FIIN-2) and 3 (FIIN-3). To our knowledge, FIIN-2 and FIIN-3 are the first inhibitors that can potently inhibit the proliferation of cells dependent upon the gatekeeper mutants of FGFR1 or FGFR2, which confer resistance to first-generation clinical FGFR inhibitors such as NVP-BGJ398 and AZD4547. Because of the conformational flexibility of the reactive acrylamide substituent, FIIN-3 has the unprecedented ability to inhibit both the EGF receptor (EGFR) and FGFR covalently by targeting two distinct cysteine residues. We report the cocrystal structure of FGFR4 with FIIN-2, which unexpectedly exhibits a "DFG-out" covalent binding mode. The structural basis for dual FGFR and EGFR targeting by FIIN3 also is illustrated by crystal structures of FIIN-3 bound with FGFR4 V550L and EGFR L858R. These results have important implications for the design of covalent FGFR inhibitors that can overcome clinical resistance and provide the first example, to our knowledge, of a kinase inhibitor that covalently targets cysteines located in different positions within the ATP-binding pocket.

  4. Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors

    PubMed Central

    Tan, Li; Wang, Jun; Tanizaki, Junko; Huang, Zhifeng; Aref, Amir R.; Rusan, Maria; Zhu, Su-Jie; Zhang, Yiyun; Ercan, Dalia; Liao, Rachel G.; Capelletti, Marzia; Zhou, Wenjun; Hur, Wooyoung; Kim, NamDoo; Sim, Taebo; Gaudet, Suzanne; Barbie, David A.; Yeh, Jing-Ruey Joanna; Yun, Cai-Hong; Hammerman, Peter S.; Mohammadi, Moosa; Jänne, Pasi A.; Gray, Nathanael S.

    2014-01-01

    The human FGF receptors (FGFRs) play critical roles in various human cancers, and several FGFR inhibitors are currently under clinical investigation. Resistance usually results from selection for mutant kinases that are impervious to the action of the drug or from up-regulation of compensatory signaling pathways. Preclinical studies have demonstrated that resistance to FGFR inhibitors can be acquired through mutations in the FGFR gatekeeper residue, as clinically observed for FGFR4 in embryonal rhabdomyosarcoma and neuroendocrine breast carcinomas. Here we report on the use of a structure-based drug design to develop two selective, next-generation covalent FGFR inhibitors, the FGFR irreversible inhibitors 2 (FIIN-2) and 3 (FIIN-3). To our knowledge, FIIN-2 and FIIN-3 are the first inhibitors that can potently inhibit the proliferation of cells dependent upon the gatekeeper mutants of FGFR1 or FGFR2, which confer resistance to first-generation clinical FGFR inhibitors such as NVP-BGJ398 and AZD4547. Because of the conformational flexibility of the reactive acrylamide substituent, FIIN-3 has the unprecedented ability to inhibit both the EGF receptor (EGFR) and FGFR covalently by targeting two distinct cysteine residues. We report the cocrystal structure of FGFR4 with FIIN-2, which unexpectedly exhibits a “DFG-out” covalent binding mode. The structural basis for dual FGFR and EGFR targeting by FIIN3 also is illustrated by crystal structures of FIIN-3 bound with FGFR4 V550L and EGFR L858R. These results have important implications for the design of covalent FGFR inhibitors that can overcome clinical resistance and provide the first example, to our knowledge, of a kinase inhibitor that covalently targets cysteines located in different positions within the ATP-binding pocket. PMID:25349422

  5. Agaricus meleagris pyranose dehydrogenase: Influence of covalent FAD linkage on catalysis and stability

    PubMed Central

    Krondorfer, Iris; Brugger, Dagmar; Paukner, Regina; Scheiblbrandner, Stefan; Pirker, Katharina F.; Hofbauer, Stefan; Furtmüller, Paul G.; Obinger, Christian; Haltrich, Dietmar; Peterbauer, Clemens K.

    2014-01-01

    Pyranose dehydrogenase (PDH) is a monomeric flavoprotein belonging to the glucose–methanol–choline (GMC) family of oxidoreductases. It catalyzes the oxidation of free, non-phosphorylated sugars to the corresponding keto sugars. The enzyme harbors an FAD cofactor that is covalently attached to histidine 103 via an 8α-N(3) histidyl linkage. Our previous work showed that variant H103Y was still able to bind FAD (non-covalently) and perform catalysis but steady-state kinetic parameters for several substrates were negatively affected. In order to investigate the impact of the covalent FAD attachment in Agaricus meleagris PDH in more detail, pre-steady-state kinetics, reduction potential and stability of the variant H103Y in comparison to the wild-type enzyme were probed. Stopped-flow analysis revealed that the mutation slowed down the reductive half-reaction by around three orders of magnitude whereas the oxidative half-reaction was affected only to a minor degree. This was reflected by a decrease in the standard reduction potential of variant H103Y compared to the wild-type protein. The existence of an anionic semiquinone radical in the resting state of both the wild-type and variant H103Y was demonstrated using electron paramagnetic resonance (EPR) spectroscopy and suggested a higher mobility of the cofactor in the variant H103Y. Unfolding studies showed significant negative effects of the disruption of the covalent bond on thermal and conformational stability. The results are discussed with respect to the role of covalently bound FAD in catalysis and stability. PMID:25043975

  6. Physical Uncertainty Bounds (PUB)

    SciTech Connect

    Vaughan, Diane Elizabeth; Preston, Dean L.

    2015-03-19

    This paper introduces and motivates the need for a new methodology for determining upper bounds on the uncertainties in simulations of engineered systems due to limited fidelity in the composite continuum-level physics models needed to simulate the systems. We show that traditional uncertainty quantification methods provide, at best, a lower bound on this uncertainty. We propose to obtain bounds on the simulation uncertainties by first determining bounds on the physical quantities or processes relevant to system performance. By bounding these physics processes, as opposed to carrying out statistical analyses of the parameter sets of specific physics models or simply switching out the available physics models, one can obtain upper bounds on the uncertainties in simulated quantities of interest.

  7. Selective Inactivation of Functional RNAs by Ribozyme-Catalyzed Covalent Modification.

    PubMed

    Poudyal, Raghav R; Benslimane, Malak; Lokugamage, Melissa P; Callaway, Mackenzie K; Staller, Seth; Burke, Donald H

    2017-03-17

    The diverse functions of RNA provide numerous opportunities for programming biological circuits. We describe a new strategy that uses ribozyme K28min to covalently tag a specific nucleobase within an RNA or DNA target strand to regulate and selectively inactivate those nucleic acids. K28min variants with appropriately reprogrammed internal guide sequences efficiently tagged multiple sites from an mRNA and from aptamer and ribozyme targets. Upon covalent modification by the corresponding K28min variant, an ATP-binding aptamer lost all affinity for ATP, and the fluorogenic Mango aptamer lost its ability to activate fluorescence of its dye ligand. Modifying a hammerhead ribozyme near the catalytic core led to loss of almost all of its substrate-cleaving activity, but modifying the same hammerhead ribozyme within a tertiary stabilizing element that reduces magnesium dependence only impaired substrate cleavage at low magnesium concentration. Thus, ribozyme-mediated covalent modification can be used both to selectively inactivate and to fine-tune the activities of targeted functional RNAs, analogous to the effects of post-translational modifications of proteins. Ribozyme-catalyzed covalent modification could therefore be developed to regulate nucleic acids components of synthetic and natural circuits.

  8. In vitro covalent binding of 3-(/sup 14/C)methylindole metabolites in goat tissues

    SciTech Connect

    Bray, T.M.; Carlson, J.R.; Nocerini, M.R.

    1984-05-01

    Covalent binding of 3-(/sup 14/C)methylindole (3(/sup 14/C)MI) in crude microsomal preparations of goat lung, liver, and kidney was measured to determine if a reactive intermediate was formed during the in vitro metabolism of 3-methylindole (3MI). The bound radioactivity was highest in lung compared to liver and kidney. The amount of bound radioactivity per nanomole of cytochrome P-450 was approximately 10 times higher in the lung compared to the liver. No detectable bound radioactivity was found when 3-(/sup 3/H)methyloxindole was used as the substrate. Cofactor requirements and the effects of inhibitors indicate that a mixed function oxidase (MFO) system is involved in formation of a reactive intermediate. Inhibitors and conjugating agents that are known to reduce the severity of 3MI-induced lung injury such as piperonyl butoxide (MFO inhibitor) and glutathione (conjugating agent) significantly decreased the in vitro binding of 3(/sup 14/C)MI. The results indicate that a reactive intermediate is produced during the metabolism of 3MI by the MFO system. The organ specificity in binding suggests that covalent binding by lung microsomes may be related to the mechanism of 3MI-induced lung injury.

  9. Semiconductor nanocrystals covalently bound to solid inorganic surfaces using self-assembled monolayers

    DOEpatents

    Alivisatos, A.P.; Colvin, V.L.

    1998-05-12

    Methods are described for attaching semiconductor nanocrystals to solid inorganic surfaces, using self-assembled bifunctional organic monolayers as bridge compounds. Two different techniques are presented. One relies on the formation of self-assembled monolayers on these surfaces. When exposed to solutions of nanocrystals, these bridge compounds bind the crystals and anchor them to the surface. The second technique attaches nanocrystals already coated with bridge compounds to the surfaces. Analyses indicate the presence of quantum confined clusters on the surfaces at the nanolayer level. These materials allow electron spectroscopies to be completed on condensed phase clusters, and represent a first step towards synthesis of an organized assembly of clusters. These new products are also disclosed. 10 figs.

  10. Cellular uptake and covalent binding of nitroso-chloramphenicol

    SciTech Connect

    Murray, T.; Yunis, A.A.

    1981-09-01

    A comparative study of the cellular transport of CAP and its nitroso derivative (NO-CAP) was carried out in Raji cells, a transformed human lymphoblastoid cell line. Both agents were concentrated by the cells by a factor of 3 (cellular/extracellular concentration ratio). The cellular uptake of NO-CAP, like that of CAP, was found to be rapid and temperature-independent. Thus the greater cytotoxicity of NO-CAP is apparently not due to an enhanced uptake of the nitroso derivative relative to CAP. In contrast to the similarity of uptake, NO-CAP becomes covalently bound to both Raji cells and freshly isolated human bone marrow cells to a much higher extent (15-fold). Also, cells previously loaded with CAP or NO-CAP retain three times as much of the nitroso compound during a 24 hr dialysis against a drug-free isotonic solution. The increased binding of NO-CAP to human hematopoietic cells attests to the greater reactivity of the p-substituted aromatic nitroso group and is consistent with the postulate that reduction products of the nitro group of CAP may be responsible for CAP-induced aplastic anemia.

  11. Bulk modulus for polar covalent crystals

    PubMed Central

    Xu, Bo; Wang, Qianqian; Tian, Yongjun

    2013-01-01

    A microscopic empirical model of bulk modulus based on atomic-scale parameters is proposed. These parameters include the bond length, the effective bonded valence electron (EBVE) number, and the coordination number product of two bonded atoms, etc. The estimated bulk moduli from our model are in good agreement with experimental values for various polar covalent crystals including ionic crystals. Our current work sheds lights on the nature of bulk modulus, provides useful clues for design of crystals with low compressibility, and is applicable to complex crystals such as minerals of geophysical importance. PMID:24166098

  12. Oleic acid-based gemini surfactants with carboxylic acid headgroups.

    PubMed

    Sakai, Kenichi; Umemoto, Naoki; Matsuda, Wataru; Takamatsu, Yuichiro; Matsumoto, Mutsuyoshi; Sakai, Hideki; Abe, Masahiko

    2011-01-01

    Anionic gemini surfactants with carboxylic acid headgroups have been synthesized from oleic acid. The hydrocarbon chain is covalently bound to the terminal carbonyl group of oleic acid via an ester bond, and the carboxylic acid headgroups are introduced to the cis double bond of oleic acid via disuccinyl units. The surfactants exhibit pH-dependent protonation-deprotonation behavior in aqueous solutions. In alkaline solutions (pH 9 in the presence of 10 mmol dm(-3) NaCl as the background electrolyte), the surfactants can lower the surface tension as well as form molecular assemblies, even in the region of low surfactant concentrations. Under acidic (pH 3) or neutral (pH 6-7) conditions, the surfactants are intrinsically insoluble in aqueous media and form a monolayer at the air/water interface. In this study, we have investigated physicochemical properties such as the function of the hydrocarbon chain length by means of static surface tension, pyrene fluorescence, dynamic light scattering, surface pressure-area isotherms, and infrared external reflection measurements.

  13. Bounding Species Distribution Models

    NASA Technical Reports Server (NTRS)

    Stohlgren, Thomas J.; Jarnevich, Cahterine S.; Morisette, Jeffrey T.; Esaias, Wayne E.

    2011-01-01

    Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5): 642-647, 2011].

  14. Causality and Tsirelson's bounds

    SciTech Connect

    Buhrman, H.; Massar, S.

    2005-11-15

    We study the properties of no-signaling correlations that cannot be reproduced by local measurements on entangled quantum states. We say that such correlations violate Tsirelson bounds. We show that if these correlations are obtained by some reversible unitary quantum evolution U, then U cannot be written in the product form U{sub A}xU{sub B}. This implies that U can be used for signaling and for entanglement generation. This result is completely general and in fact can be viewed as a characterization of Tsirelson bounds. We then show how this result can be used as a tool to study Tsirelson bounds and we illustrate this by rederiving the Tsirelson bound of 2{radical}(2) for the Clauser-Horn-Shimony-Holt inequality, and by deriving a new Tsirelson bound for qutrits.

  15. Bounding species distribution models

    USGS Publications Warehouse

    Stohlgren, T.J.; Jarnevich, C.S.; Esaias, W.E.; Morisette, J.T.

    2011-01-01

    Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used. ?? 2011 Current Zoology.

  16. Sharing in covalent and hydrogen bonds

    NASA Astrophysics Data System (ADS)

    Perhacs, Pablo

    1998-11-01

    The sharing of a single electron between two spatial and spin coordinates ζ and ζsp/prime in a many electron system is discussed in terms of the single particle sharing amplitude, Covalent bonding is distinguished from non-bonding and anti- bonding. Molecules studied are the diatomics of seven of the first nine elements and the hydrides of the first row of eight elements. Analysis is extended to the complex of methane and hydrogen fluoride and to pairs of hydrogen fluoride, water, and ammonia. The behavior of covalent bonding. The ammonia dimer is shown not to be hydrogen bonded.

  17. An azine-linked covalent organic framework.

    PubMed

    Dalapati, Sasanka; Jin, Shangbin; Gao, Jia; Xu, Yanhong; Nagai, Atsushi; Jiang, Donglin

    2013-11-20

    Condensation of hydrazine with 1,3,6,8-tetrakis(4-formylphenyl)pyrene under solvothermal conditions yields highly crystalline two-dimensional covalent organic frameworks. The pyrene units occupy the vertices and the diazabutadiene (-C═N-N═C-) linkers locate the edges of rohmbic-shaped polygon sheets, which further stack in an AA-stacking mode to constitute periodically ordered pyrene columns and one-dimensional microporous channels. The azine-linked frameworks feature permanent porosity with high surface area and exhibit outstanding chemical stability. By virtue of the pyrene columnar ordering, the azine-linked frameworks are highly luminescent, whereas the azine units serve as open docking sites for hydrogen-bonding interactions. These synergestic functions of the vertices and edge units endow the azine-linked pyrene frameworks with extremely high sensitivity and selectivity in chemosensing, for example, the selective detection of 2,4,6-trinitrophenol explosive. We anticipate that the extension of the present azine-linked strategy would not only increase the structural diversity but also expand the scope of functions based on this highly stable class of covalent organic frameworks.

  18. Covalent Organic Frameworks for CO2 Capture.

    PubMed

    Zeng, Yongfei; Zou, Ruqiang; Zhao, Yanli

    2016-04-20

    As an emerging class of porous crystalline materials, covalent organic frameworks (COFs) are excellent candidates for various applications. In particular, they can serve as ideal platforms for capturing CO2 to mitigate the dilemma caused by the greenhouse effect. Recent research achievements using COFs for CO2 capture are highlighted. A background overview is provided, consisting of a brief statement on the current CO2 issue, a summary of representative materials utilized for CO2 capture, and an introduction to COFs. Research progresses on: i) experimental CO2 capture using different COFs synthesized based on different covalent bond formations, and ii) computational simulation results of such porous materials on CO2 capture are summarized. Based on these experimental and theoretical studies, careful analyses and discussions in terms of the COF stability, low- and high-pressure CO2 uptake, CO2 selectivity, breakthrough performance, and CO2 capture conditions are provided. Finally, a perspective and conclusion section of COFs for CO2 capture is presented. Recent advancements in the field are highlighted and the strategies and principals involved are discussed.

  19. Calmodulin-binding proteins in bryophytes: identification of abscisic acid-, cold-, and osmotic stress-induced genes encoding novel membrane-bound transporter-like proteins.

    PubMed

    Takezawa, Daisuke; Minami, Anzu

    2004-04-30

    Plant responses to environmental stresses are mediated in part by signaling processes involving cytosolic Ca2+ and a Ca(2+)-binding protein, calmodulin. Screening with radiolabeled calmodulin of a cDNA library of the moss Physcomitrella patens resulted in identification of genes encoding novel membrane transporter-like proteins, MCamb1 and MCamb2. These proteins each had a central hydrophobic domain with two putative membrane spans and N- and C-terminal hydrophilic domains, and showed sequence similarity to mammalian inward rectifier potassium channels. Calmodulin binds to MCamb1 and MCamb2 via interaction with basic amphiphilic amino acids in the C-terminal domain. Levels of MCamb1 and MCamb2 transcripts increased dramatically following treatment with low temperature, hyperosmotic solutes, and the stress hormone abscisic acid, all of which were previously shown to increase cellular tolerance to freezing stress. These results suggest that calmodulin participates in cellular signaling events leading to enhancement of stress resistance through regulation of novel transporter-like proteins.

  20. Purification and characterization of a 14-kilodalton protein that is bound to the surface of polyhydroxyalkanoic acid granules in Rhodococcus ruber.

    PubMed Central

    Pieper-Fürst, U.; Madkour, M. H.; Mayer, F.; Steinbüchel, A.

    1994-01-01

    The N-terminal amino acid sequence of the polyhydroxyalkanoic acid (PHA) granule-associated M(r)-15,500 protein of Rhodococcus ruber (the GA14 protein) was analyzed. The sequence revealed that the corresponding structural gene is represented by open reading frame 3, encoding a protein with a calculated M(r) of 14,175 which was recently localized downstream of the PHA synthase gene (U. Pieper and A. Steinbüchel, FEMS Microbiol. Lett. 96:73-80, 1992). A recombinant strain of Escherichia coli XL1-Blue carrying the hybrid plasmid (pSKXA10*) with open reading frame 3 overexpressed the GA14 protein. The GA14 protein was subsequently purified in a three-step procedure including chromatography on DEAE-Sephacel, phenyl-Sepharose CL-4B, and Superose 12. Determination of the molecular weight by gel filtration as well as electron microscopic studies indicates that a tetrameric structure of the recombinant, native GA14 protein is most likely. Immunoelectron microscopy demonstrated a localization of the GA14 protein at the periphery of PHA granules as well as close to the cell membrane in R. ruber. Investigations of PHA-leaky and PHA-negative mutants of R. ruber indicated that expression of the GA14 protein depended strongly on PHA synthesis. Images PMID:8021220

  1. Bound Anionic States of Aadenine

    SciTech Connect

    Haranczyk, Maciej; Gutowski, Maciej S.; Li, Xiang; Bowen, Kit H.

    2007-03-20

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Anionic states of nucleic acid bases are involved in DNA damage by low-energy electrons and in charge transfer through DNA. Previous gas phase studies of free, unsolvated nucleic acid base parent anions probed only dipole-bound states, which are not present in condensed phase environments, but did not observe valence anionic states, which for purine bases are thought to be adiabatically unbound. Contrary to this expectation,wehave demonstrated that some thus far ignored tautomers of adenine, which result from enamine-imine transformations, support valence anionic states with electron vertical detachment energies as large as 2.2 eV, and at least one of these anionic tautomers is adiabatically bound. Moreover, we predict that the new anionic tautomers should also dominate in solutions and should be characterized by larger values of electron vertical detachment energy than the canonical valence anion. All of the newfound anionic tautomers might be formed in the course of dissociative electron attachment followed by a hydrogen atom attachment to a carbon atom, and they might affect the structure and properties of DNA and RNA exposed to low-energy electrons. The new valence states observed here, unlike the dipole-bound state, could exist in condensed phases and might be relevant to radiobiological damage. The discovery of these valence anionic states of adenine was facilitated by the development of (i) an experimental method for preparing parent anions of nucleic acid bases for photoelectron experiments, and (ii) a combinatorial/quantum chemical approach for identification of the most stable tautomers of organic molecules.

  2. Bound Anionic States of Adenine

    SciTech Connect

    Haranczyk, Maciej; Gutowski, Maciej S.; Li, Xiang; Bowen, Kit H.

    2007-03-20

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Anionic states of nucleic acid bases are involved in DNA damage by low-energy electrons and in charge transfer through DNA. Previous gas phase studies of free, unsolvated nucleic acid base parent anions probed only dipole-bound states, which are not present in condensed phase environments, but did not observe valence anionic states, which for purine bases are thought to be adiabatically unbound. Contrary to this expectation, we have demonstrated that some thus far ignored tautomers of adenine, which result from enamine-imine transformations, support valence anionic states with electron vertical detachment energies as large as 2.2 eV, and at least one of these anionic tautomers is adiabatically bound. Moreover, we predict that the new anionic tautomers should also dominate in solutions and should be characterized by larger values of electron vertical detachment energy than the canonical valence anion. All of the newfound anionic tautomers might be formed in the course of dissociative electron attachment followed by a hydrogen atom attachment to a carbon atom, and they might affect the structure and properties of DNA and RNA exposed to low-energy electrons. The new valence states observed here, unlike the dipole-bound state, could exist in condensed phases and might be relevant to radiobiological damage. The discovery of these valence anionic states of adenine was facilitated by the development of (i) an experimental method for preparing parent anions of nucleic acid bases for photoelectron experiments, and (it) a combinatorial/quantum chemical approach for identification of the most stable tautomers of organic molecules.

  3. Self-templated chemically stable hollow spherical covalent organic framework

    NASA Astrophysics Data System (ADS)

    Kandambeth, Sharath; Venkatesh, V.; Shinde, Digambar B.; Kumari, Sushma; Halder, Arjun; Verma, Sandeep; Banerjee, Rahul

    2015-04-01

    Covalent organic frameworks are a family of crystalline porous materials with promising applications. Although active research on the design and synthesis of covalent organic frameworks has been ongoing for almost a decade, the mechanisms of formation of covalent organic frameworks crystallites remain poorly understood. Here we report the synthesis of a hollow spherical covalent organic framework with mesoporous walls in a single-step template-free method. A detailed time-dependent study of hollow sphere formation reveals that an inside-out Ostwald ripening process is responsible for the hollow sphere formation. The synthesized covalent organic framework hollow spheres are highly porous (surface area ~1,500 m2 g-1), crystalline and chemically stable, due to the presence of strong intramolecular hydrogen bonding. These mesoporous hollow sphere covalent organic frameworks are used for a trypsin immobilization study, which shows an uptake of 15.5 μmol g-1 of trypsin.

  4. Self-templated chemically stable hollow spherical covalent organic framework.

    PubMed

    Kandambeth, Sharath; Venkatesh, V; Shinde, Digambar B; Kumari, Sushma; Halder, Arjun; Verma, Sandeep; Banerjee, Rahul

    2015-04-10

    Covalent organic frameworks are a family of crystalline porous materials with promising applications. Although active research on the design and synthesis of covalent organic frameworks has been ongoing for almost a decade, the mechanisms of formation of covalent organic frameworks crystallites remain poorly understood. Here we report the synthesis of a hollow spherical covalent organic framework with mesoporous walls in a single-step template-free method. A detailed time-dependent study of hollow sphere formation reveals that an inside-out Ostwald ripening process is responsible for the hollow sphere formation. The synthesized covalent organic framework hollow spheres are highly porous (surface area ∼1,500 m(2 )g(-1)), crystalline and chemically stable, due to the presence of strong intramolecular hydrogen bonding. These mesoporous hollow sphere covalent organic frameworks are used for a trypsin immobilization study, which shows an uptake of 15.5 μmol g(-1) of trypsin.

  5. Plasticizer-free polymer containing a covalently immobilized Ca2+-selective ionophore for potentiometric and optical sensors.

    PubMed

    Qin, Yu; Peper, Shane; Radu, Aleksandar; Ceresa, Alan; Bakker, Eric

    2003-07-01

    A derivative of a known Ca2+-selective ionophore, ETH 129, was synthesized to contain a polymerizable acrylic moiety (AU-1) and covalently grafted into a methyl methacrylate-co-decyl methacrylate polymer matrix. The polymer containing AU-1 was prepared via a simple one-step homogeneous polymerization method. It exhibited mechanical properties suitable for the fabrication of plasticizer-free ion-selective membrane electrodes and bulk optode films by solvent-casting and spin-coating techniques, respectively. The segmented sandwich membrane technique was utilized to assess the binding constant of free and covalently bound ionophores to calcium and to study their diffusion coefficients in the membrane phase. Diffusion was greatly diminished for the bound ionophore. This was confirmed in ion-selective electrode membranes containing no calcium ions in the inner solution, which should normally show apparent super-Nernstian response slopes in dilute calcium solutions. The response slope was Nernstian down to submicromolar concentration levels, indicating slow mass transport of calcium in the membrane. Optical-sensing films with the new copolymer matrix, unblended and blended with PVC-DOS, also confirmed that covalently bound ionophores are fully functional for maintaining selective ion extraction and binding properties of the sensing membrane.

  6. Relativistic four-component potential energy curves for the lowest 23 covalent states of molecular bromine (Br2).

    PubMed

    Gomes, José da Silva; Gargano, Ricardo; Martins, João B L; M de Macedo, Luiz Guilherme

    2014-08-07

    The covalent excited states and ground state of the Br2 molecule has been investigated by using four-component relativistic COSCI and MRCISD methods. These methods were performed for all covalent states in the representation Ω((±)). Calculated potential energy curves (PECs) were obtained at the four-component COSCI level, and spectroscopic constants (R(e), D(e), D0, ω(e), ω(e)x(e), ω(e)y(e), B(e), α(e), γ(e), Te, Dv) for bounded states are reported. The vertical excitations for all covalent states are reported at COSCI, MRCISD, and MRCISD+Q levels. We also present spectroscopic constants for two weakly bounded states (A':(1)2u and B':(1)0(-)u) not yet reported in the literature, as well as accurate analytical curves for all five relativistic molecular bounded sates [the ground state X:0 g(+) and the excited states A:(1)1(u), B:(1)0(u)(+), C:(2)1(u), and B':(1)0(u)(-)] found in this work.

  7. Covalently functionalized carbon nanostructures and methods for their separation

    DOEpatents

    Wang, YuHuang; Brozena, Alexandra H; Deng, Shunliu; Zhang, Yin

    2015-03-17

    The present invention is directed to carbon nanostructures, e.g., carbon nanotubes, methods of covalently functionalizing carbon nanostructures, and methods of separating and isolating covalently functionalized carbon. In some embodiments, carbon nanotubes are reacted with alkylating agents to provide water soluble covalently functionalized carbon nanotubes. In other embodiments, carbon nanotubes are reacted with a thermally-responsive agent and exposed to light in order to separate carbon nanotubes of a specific chirality from a mixture of carbon nanotubes.

  8. Surface engineering of stainless steel materials by covalent collagen immobilization to improve implant biocompatibility.

    PubMed

    Müller, Rainer; Abke, Jochen; Schnell, Edith; Macionczyk, Frank; Gbureck, Uwe; Mehrl, Robert; Ruszczak, Zbigniev; Kujat, Richard; Englert, Carsten; Nerlich, Michael; Angele, Peter

    2005-12-01

    It was shown recently that the deposition of thin films of tantalum and tantalum oxide enhanced the long-term biocompatibility of stainless steel biomaterials due to an increase in their corrosion resistance. In this study, we used this tantalum oxide coating as a basis for covalent immobilization of a collagen layer, which should result in a further improvement of implant tissue integration. Because of the high degradation rate of natural collagen in vivo, covalent immobilization as well as carbodiimide induced cross-linking of the protein was performed. It was found that the combination of the silane-coupling agent aminopropyl triethoxysilane and the linker molecule N,N'-disulphosuccinimidyl suberate was a very effective system for collagen immobilizing. Mechanical and enzymatic stability testing revealed a higher stability of covalent bound collagen layers compared to physically adsorbed collagen layers. The biological response induced by the surface modifications was evaluated by in vitro cell culture with human mesenchymal stem cells as well as by in vivo subcutaneous implantation into nude mice. The presence of collagen clearly improved the cytocompatibility of the stainless steel implants which, nevertheless, significantly depended on the cross-linking degree of the collagen layer.

  9. Covalent binding of single-walled carbon nanotubes to polyamide membranes for antimicrobial surface properties.

    PubMed

    Tiraferri, Alberto; Vecitis, Chad D; Elimelech, Menachem

    2011-08-01

    We propose an innovative approach to impart nanomaterial-specific properties to the surface of thin-film composite membranes. Specifically, biocidal properties were obtained by covalently binding single-walled carbon nanotubes (SWNTs) to the membrane surface. The SWNTs were first modified by purification and ozonolysis to increase their sidewall functionalities, maximize cytotoxic properties, and achieve dispersion in aqueous solution. A tailored reaction protocol was developed to exploit the inherent moieties of hand-cast polyamide membrane surfaces and create covalent amide bonds with the functionalized SWNTs. The reaction is entirely aqueous-based and entails activation of the carboxylate groups of both the membrane and the nanomaterials to maximize reaction with ethylenediamine. The presence of SWNTs was verified after sonication of the membranes, confirming the strength of the bond between the SWNTs and the membrane surface. Characterization of the SWNT-functionalized surfaces demonstrated the attainment of membranes with novel properties that continued to exhibit high performance in water separation processes. The presence of surface-bound antimicrobial SWNTs was confirmed by experiments using E. coli cells that demonstrated an enhanced bacterial cytotoxicity for the SWNT-coated membranes. The SWNT membranes were observed to achieve up to 60% inactivation of bacteria attached to the membrane within 1 h of contact time. Our results suggest the potential of covalently bonded SWNTs to delay the onset of membrane biofouling during operation.

  10. Covalent Polyisobutylene-Paclitaxel Conjugates for Controlled Release from Potential Vascular Stent Coatings.

    PubMed

    Trant, John F; McEachran, Matthew J; Sran, Inderpreet; Turowec, Bethany A; de Bruyn, John R; Gillies, Elizabeth R

    2015-07-08

    The development of covalent polyisobutylene (PIB)-paclitaxel (PTX) conjugates as a potential approach to controlling drug release from vascular stent coatings is described. PIB-PTX materials containing ∼24 and ∼48 wt % PTX, conjugated via ester linkages, were prepared. The PTX release profiles were compared with those of physical mixtures of PTX with carboxylic acid-functionalized PIB and with the triblock copolymer polystyrene-b-PIB-b-polystyrene (SIBS). Covalent conjugation led to significantly slower drug release. Atomic force microscopy imaging of coatings of the materials suggested that the physical mixtures exhibited multiple domains corresponding to phase separation, whereas the materials in which PTX was covalently conjugated appeared homogeneous. Coatings of the conjugated materials on stainless steel surfaces suffered less surface erosion than the physically mixed materials, remained intact, and adhered well to the surface throughout the thirty-five day study. Tensile testing and rheological studies suggested that the incorporation of PTX into the polymer introduces similar physical changes to the PIB as the incorporation of a glassy polystyrene block does in SIBS. Cytotoxicity assays showed that the coatings did not release toxic levels of PTX or other species into a cell culture medium over a 24 h period, yet the levels of PTX in the materials were sufficient to prevent C2C12 cells from adhering to and proliferating on them. Overall, these results indicate that covalent PIB-PTX conjugates have promise as coatings for vascular stents.

  11. Selective Molecular Sieving in Self-Standing Porous Covalent-Organic-Framework Membranes.

    PubMed

    Kandambeth, Sharath; Biswal, Bishnu P; Chaudhari, Harshal D; Rout, Kanhu Charan; Kunjattu H, Shebeeb; Mitra, Shouvik; Karak, Suvendu; Das, Anuja; Mukherjee, Rabibrata; Kharul, Ulhas K; Banerjee, Rahul

    2017-01-01

    Self-standing, flexible, continuous, and crack-free covalent-organic-framework membranes (COMs) are fabricated via a simple, scalable, and highly cost-effective methodology. The COMs show long-term durability, recyclability, and retain their structural integrity in water, organic solvents, and mineral acids. COMs are successfully used in challenging separation applications and recovery of valuable active pharmaceutical ingredients from organic solvents.

  12. Identification of charge transfer transitions related to thiamin-bound intermediates on enzymes provides a plethora of signatures useful in mechanistic studies.

    PubMed

    Patel, Hetalben; Nemeria, Natalia S; Andrews, Forest H; McLeish, Michael J; Jordan, Frank

    2014-04-08

    Identification of enzyme-bound intermediates via their spectroscopic signatures, which then allows direct monitoring of the kinetic fate of these intermediates, poses a continuing challenge. As an electrophilic covalent catalyst, the thiamin diphosphate (ThDP) coenzyme forms a number of noncovalent and covalent intermediates along its reaction pathways, and multiple UV-vis and circular dichroism (CD) bands have been identified at Rutgers pertinent to several among them. These electronic transitions fall into two classes: those for which the conjugated system provides a reasonable guide to the observed λmax and others in which there is no corresponding conjugated system and the observed CD bands are best ascribed to charge transfer (CT) transitions. Herein is reported the reaction of four ThDP enzymes with alternate substrates: (a) acetyl pyruvate, its methyl ester, and fluoropyruvate, these providing the shortest side chains attached at the thiazolium C2 atom and leading to CT bands with λmax values of >390 nm, not pertinent to any on-pathway conjugated systems (estimated λmax values of <330 nm), and (b) (E)-4-(4-chlorophenyl)-2-oxo-3-butenoic acid displaying both a conjugated enamine (430 nm) and a CT transition (480 nm). We suggest that the CT transitions result from an interaction of the π bond on the ThDP C2 side chain as a donor, and the positively charged thiazolium ring as an acceptor, and correspond to covalent ThDP-bound intermediates. Time resolution of these bands allows the rate constants for individual steps to be determined. These CD methods can be applied to the entire ThDP superfamily of enzymes and should find applications with other enzymes.

  13. Thermochemistry of non-covalent ion-molecule interactions.

    PubMed

    Armentrout, P B; Rodgers, M T

    2013-01-01

    The thermochemistry of non-covalent ion-molecule complexes has been examined by measuring quantitative bond dissociation energies using threshold collision-induced dissociation in guided ion beam tandem mass spectrometers (GIBMS). The methods used are briefly reviewed and several examples of the types of information and insight that can be obtained from such thermodynamic information are discussed. The hydration of metal cations, both singly and doubly charged, is reviewed and the trends elucidated, mainly on the basis of electrostatic contributions. The binding of alkali metal cations to amino acids has been examined for a range of systems, with both the overall polarizability of the amino acid and the local dipole moment of heteroatomic side-chains shown to be important contributors. The gas-phase interactions of the 12-crown-4 (12C4) polyether with alkali metal cations, classic molecular recognition systems in solution, have been newly compared to previous GIBMS work. These results validate the previous hypothesis that excited conformers were present for Rb(+)(12C4) and Cs(+)(12C4) and offer clues as to how and why they are formed.

  14. Thermochemistry of Non-Covalent Ion–Molecule Interactions

    PubMed Central

    Armentrout, P. B.; Rodgers, M. T.

    2013-01-01

    The thermochemistry of non-covalent ion–molecule complexes has been examined by measuring quantitative bond dissociation energies using threshold collision-induced dissociation in guided ion beam tandem mass spectrometers (GIBMS). The methods used are briefly reviewed and several examples of the types of information and insight that can be obtained from such thermodynamic information are discussed. The hydration of metal cations, both singly and doubly charged, is reviewed and the trends elucidated, mainly on the basis of electrostatic contributions. The binding of alkali metal cations to amino acids has been examined for a range of systems, with both the overall polarizability of the amino acid and the local dipole moment of heteroatomic side-chains shown to be important contributors. The gas-phase interactions of the 12-crown-4 (12C4) polyether with alkali metal cations, classic molecular recognition systems in solution, have been newly compared to previous GIBMS work. These results validate the previous hypothesis that excited conformers were present for Rb+(12C4) and Cs+(12C4) and offer clues as to how and why they are formed. PMID:24349924

  15. Oriented Thin Films of a Benzodithiophene Covalent Organic Framework

    PubMed Central

    2014-01-01

    A mesoporous electron-donor covalent organic framework based on a benzodithiophene core, BDT-COF, was obtained through condensation of a benzodithiophene-containing diboronic acid and hexahydroxytriphenylene (HHTP). BDT-COF is a highly porous, crystalline, and thermally stable material, which can be handled in air. Highly porous, crystalline oriented thin BDT-COF films were synthesized from solution on different polycrystalline surfaces, indicating the generality of the synthetic strategy. The favorable orientation, crystallinity, porosity, and the growth mode of the thin BDT-COF films were studied by means of X-ray diffraction (XRD), 2D grazing incidence diffraction (GID), transmission and scanning electron microscopy (TEM, SEM), and krypton sorption. The highly porous thin BDT-COF films were infiltrated with soluble fullerene derivatives, such as [6,6]-phenyl C61 butyric acid methyl ester (PCBM), to obtain an interpenetrated electron-donor/acceptor host–guest system. Light-induced charge transfer from the BDT-framework to PCBM acceptor molecules was indicated by efficient photoluminescence quenching. Moreover, we monitored the dynamics of photogenerated hole-polarons via transient absorption spectroscopy. This work represents a combined study of the structural and optical properties of highly oriented mesoporous thin COF films serving as host for the generation of periodic interpenetrated electron-donor and electron-acceptor systems. PMID:24559375

  16. Oriented thin films of a benzodithiophene covalent organic framework.

    PubMed

    Medina, Dana D; Werner, Veronika; Auras, Florian; Tautz, Raphael; Dogru, Mirjam; Schuster, Jörg; Linke, Stephanie; Döblinger, Markus; Feldmann, Jochen; Knochel, Paul; Bein, Thomas

    2014-04-22

    A mesoporous electron-donor covalent organic framework based on a benzodithiophene core, BDT-COF, was obtained through condensation of a benzodithiophene-containing diboronic acid and hexahydroxytriphenylene (HHTP). BDT-COF is a highly porous, crystalline, and thermally stable material, which can be handled in air. Highly porous, crystalline oriented thin BDT-COF films were synthesized from solution on different polycrystalline surfaces, indicating the generality of the synthetic strategy. The favorable orientation, crystallinity, porosity, and the growth mode of the thin BDT-COF films were studied by means of X-ray diffraction (XRD), 2D grazing incidence diffraction (GID), transmission and scanning electron microscopy (TEM, SEM), and krypton sorption. The highly porous thin BDT-COF films were infiltrated with soluble fullerene derivatives, such as [6,6]-phenyl C61 butyric acid methyl ester (PCBM), to obtain an interpenetrated electron-donor/acceptor host-guest system. Light-induced charge transfer from the BDT-framework to PCBM acceptor molecules was indicated by efficient photoluminescence quenching. Moreover, we monitored the dynamics of photogenerated hole-polarons via transient absorption spectroscopy. This work represents a combined study of the structural and optical properties of highly oriented mesoporous thin COF films serving as host for the generation of periodic interpenetrated electron-donor and electron-acceptor systems.

  17. Virial Expansion Bounds

    NASA Astrophysics Data System (ADS)

    Tate, Stephen James

    2013-10-01

    In the 1960s, the technique of using cluster expansion bounds in order to achieve bounds on the virial expansion was developed by Lebowitz and Penrose (J. Math. Phys. 5:841, 1964) and Ruelle (Statistical Mechanics: Rigorous Results. Benjamin, Elmsford, 1969). This technique is generalised to more recent cluster expansion bounds by Poghosyan and Ueltschi (J. Math. Phys. 50:053509, 2009), which are related to the work of Procacci (J. Stat. Phys. 129:171, 2007) and the tree-graph identity, detailed by Brydges (Phénomènes Critiques, Systèmes Aléatoires, Théories de Jauge. Les Houches 1984, pp. 129-183, 1986). The bounds achieved by Lebowitz and Penrose can also be sharpened by doing the actual optimisation and achieving expressions in terms of the Lambert W-function. The different bound from the cluster expansion shows some improvements for bounds on the convergence of the virial expansion in the case of positive potentials, which are allowed to have a hard core.

  18. Covalent modification of DNA regulates memory formation.

    PubMed

    Miller, Courtney A; Sweatt, J David

    2007-03-15

    DNA methylation is a covalent chemical modification of DNA catalyzed by DNA methyltransferases (DNMTs). DNA methylation is associated with transcriptional silencing and has been studied extensively as a lifelong molecular information storage mechanism put in place during development. Here we report that DNMT gene expression is upregulated in the adult rat hippocampus following contextual fear conditioning and that DNMT inhibition blocks memory formation. In addition, fear conditioning is associated with rapid methylation and transcriptional silencing of the memory suppressor gene PP1 and demethylation and transcriptional activation of the synaptic plasticity gene reelin, indicating both methyltransferase and demethylase activity during consolidation. DNMT inhibition prevents the PP1 methylation increase, resulting in aberrant transcription of the gene during the memory-consolidation period. These results demonstrate that DNA methylation is dynamically regulated in the adult nervous system and that this cellular mechanism is a crucial step in memory formation.

  19. Covalent Polymers Containing Discrete Heterocyclic Anion Receptors

    PubMed Central

    Rambo, Brett M.; Silver, Eric S.; Bielawski, Christopher W.; Sessler, Jonathan L.

    2010-01-01

    This chapter covers recent advances in the development of polymeric materials containing discrete heterocyclic anion receptors, and focuses on advances in anion binding and chemosensor chemistry. The development of polymers specific for anionic species is a relatively new and flourishing area of materials chemistry. The incorporation of heterocyclic receptors capable of complexing anions through non-covalent interactions (e.g., hydrogen bonding and electrostatic interactions) provides a route to not only sensitive but also selective polymer materials. Furthermore, these systems have been utilized in the development of polymers capable of extracting anionic species from aqueous environments. These latter materials may lead to advances in water purification and treatment of diseases resulting from surplus ions. PMID:20871791

  20. Cell Signalling Through Covalent Modification and Allostery

    NASA Astrophysics Data System (ADS)

    Johnson, Louise N.

    Phosphorylation plays essential roles in nearly every aspect of cell life. Protein kinases catalyze the transfer of the γ-phosphate of ATP to a serine, threonine or tyrosine residue in protein substrates. This covalent modification allows activation or inhibition of enzyme activity, creates recognition sites for other proteins and promotes order/disorder or disorder/order transitions. These properties regulate ­signalling pathways and cellular processes that mediate metabolism, transcription, cell cycle progression, differentiation, cytoskeleton arrangement and cell movement, apoptosis, intercellular communication, and neuronal and immunological functions. In this lecture I shall review the structural consequences of protein phosphorylation using our work on glycogen phosphorylase and the cell cycle cyclin dependent protein kinases as illustrations. Regulation of protein phosphorylation may be disrupted in the diseased state and protein kinases have become high profile targets for drug development. To date there are 11 compounds that have been approved for clinical use in the treatment of cancer.

  1. Novel hydroxyapatite biomaterial covalently linked to raloxifene.

    PubMed

    Meme, L; Santarelli, A; Marzo, G; Emanuelli, M; Nocini, P F; Bertossi, D; Putignano, A; Dioguardi, M; Lo Muzio, L; Bambini, F

    2014-01-01

    Since raloxifene, a drug used in osteoporosis therapy, inhibits osteoclast, but not osteoblast functions, it has been suggested to improve recovery during implant surgery. The present paper describes an effective method to link raloxifene, through a covalent bond, to a nano-Hydroxyapatite-based biomaterial by interfacing with (3-aminopropyl)-Triethoxysilane as assessed by Infra Red-Fourier Transformed (IR-FT) spectroscopy and Scanning Electron Microscope (SEM). To evaluate the safety of this modified new material, the vitality of osteoblast-like cells cultured with the new biomaterial was then investigated. Raloxifene-conjugated HAbiomaterial has been shown to be a safe material easy to obtain which could be an interesting starting point for the use of a new functional biomaterial suitable in bone regeneration procedures.

  2. A Photoresponsive Smart Covalent Organic Framework.

    PubMed

    Huang, Ning; Ding, Xuesong; Kim, Jangbae; Ihee, Hyotcherl; Jiang, Donglin

    2015-07-20

    Ordered π-columnar structures found in covalent organic frameworks (COFs) render them attractive as smart materials. However, external-stimuli-responsive COFs have not been explored. Here we report the design and synthesis of a photoresponsive COF with anthracene units as the photoresponsive π-building blocks. The COF is switchable upon photoirradiation to yield a concavo-convex polygon skeleton through the interlayer [4π+4π] cycloaddition of anthracene units stacked in the π-columns. This cycloaddition reaction is thermally reversible; heating resets the anthracene layers and regenerates the COF. These external-stimuli-induced structural transformations are accompanied by profound changes in properties, including gas adsorption, π-electronic function, and luminescence. The results suggest that COFs are useful for designing smart porous materials with properties that are controllable by external stimuli.

  3. Design of a covalently bonded glycosphingolipid microarray.

    PubMed

    Arigi, Emma; Blixt, Ola; Buschard, Karsten; Clausen, Henrik; Levery, Steven B

    2012-01-01

    Glycosphingolipids (GSLs) are well known ubiquitous constituents of all eukaryotic cell membranes, yet their normal biological functions are not fully understood. As with other glycoconjugates and saccharides, solid phase display on microarrays potentially provides an effective platform for in vitro study of their functional interactions. However, with few exceptions, the most widely used microarray platforms display only the glycan moiety of GSLs, which not only ignores potential modulating effects of the lipid aglycone, but inherently limits the scope of application, excluding, for example, the major classes of plant and fungal GSLs. In this work, a prototype "universal" GSL-based covalent microarray has been designed, and preliminary evaluation of its potential utility in assaying protein-GSL binding interactions investigated. An essential step in development involved the enzymatic release of the fatty acyl moiety of the ceramide aglycone of selected mammalian GSLs with sphingolipid N-deacylase (SCDase). Derivatization of the free amino group of a typical lyso-GSL, lyso-G(M1), with a prototype linker assembled from succinimidyl-[(N-maleimidopropionamido)-diethyleneglycol] ester and 2-mercaptoethylamine, was also tested. Underivatized or linker-derivatized lyso-GSL were then immobilized on N-hydroxysuccinimide- or epoxide-activated glass microarray slides and probed with carbohydrate binding proteins of known or partially known specificities (i.e., cholera toxin B-chain; peanut agglutinin, a monoclonal antibody to sulfatide, Sulph 1; and a polyclonal antiserum reactive to asialo-G(M2)). Preliminary evaluation of the method indicated successful immobilization of the GSLs, and selective binding of test probes. The potential utility of this methodology for designing covalent microarrays that incorporate GSLs for serodiagnosis is discussed.

  4. DNA Linked To Single Wall Carbon Nanotubes: Covalent Versus Non-Covalent Approach

    NASA Astrophysics Data System (ADS)

    Chung, C.-L.; Nguyen, K.; Lyonnais, S.; Streiff, S.; Campidelli, S.; Goux-Capes, L.; Bourgoin, J.-P.; Filoramo, A.

    2008-10-01

    Nanometer-scale structures represent a novel and intriguing field, where scientists and engineers manipulate materials at the atomic and molecular scale levels to produce innovative materials. Carbon nanotubes constitute a relatively new class of materials exhibiting exceptional mechanical and electronic properties and were found to be promising candidates for molecular electronics, sensing or biomedical applications. Considering the bottom-up strategy in nanotechnology, the combination of the recognition properties of DNA with the electronic properties of single walled carbon nanotubes (SWNTs) seems to be a promising approach for the future of electronics. With the aim to assemble DNA with SWNTs, two complementary strategies have been envisioned: the covalent linkage of DNA on carboxylic groups of SWNTs under classical coupling condition and the non-covalent approach based on biotin-streptavidin molecular recognition properties. Here, we present and compare the results that we obtained with these two different methods; we want to objectively show the advantages and disadvantages of each approach.

  5. In vitro covalent binding of new brain tracer, para-125I-amphetamine, to rat liver and lung microsomes

    SciTech Connect

    Joulin, Y.; Delaforge, M.; Hoellinger, H.; Moretti, J.L.; Sonnier, M.; Cesaro, P. )

    1990-01-01

    p-125I-amphetamine (I-Amp) is retained significantly in liver and lung during brain tomoscintigraphy. To attempt to explain this clinical observation, we have investigated the interaction of I-Amp with rat liver and lung microsomal proteins. Studies using spectral shift technique indicate that low concentration of I-Amp gives a type I complex and high concentration appears very stable type II complex with cytochrome P-450 Fe III. In the presence of NADPH, I-Amp gives rise to a 455 nm absorbing complex with similar properties to the Fe-RNO complexes. This complex formation was greatly enhanced with phenobarbital treated liver microsomes. The in vitro binding study shows that I-Amp and/or its metabolites was covalently bound to macromolecules in the presence of the molecular oxygen and NADPH-generating system. Incubation in the presence of glutathione, cystein and radical scavengers decreases binding. Mixed function oxydase (MFO) inhibitors diminish the amount of covalent binding and alter the extent of metabolite formation. The total covalent binding level increased with liver microsomes from PB pretreated rats as it was observed with the 455nm complex formation. The radioactivity distribution on microsomal proteins was examinated with SDS polyacrylamide gel electrophoresis and autoradiography. This experiment proves that the radiolabelled compounds are bound on the cytochrome P-450. The radioactivity bound increased when the PB induced rat liver microsomes were used. All these results indicate that I-Amp was activated by an oxydative process dependent on the MFO system which suggests a N-oxydation of I-Amp and the formation of reactive entities which covalently bind to proteins.

  6. Covalent Docking Predicts Substrates for Haloalkanoate Dehalogenase Superfamily Phosphatases

    PubMed Central

    2015-01-01

    Enzyme function prediction remains an important open problem. Though structure-based modeling, such as metabolite docking, can identify substrates of some enzymes, it is ill-suited to reactions that progress through a covalent intermediate. Here we investigated the ability of covalent docking to identify substrates that pass through such a covalent intermediate, focusing particularly on the haloalkanoate dehalogenase superfamily. In retrospective assessments, covalent docking recapitulated substrate binding modes of known cocrystal structures and identified experimental substrates from a set of putative phosphorylated metabolites. In comparison, noncovalent docking of high-energy intermediates yielded nonproductive poses. In prospective predictions against seven enzymes, a substrate was identified for five. For one of those cases, a covalent docking prediction, confirmed by empirical screening, and combined with genomic context analysis, suggested the identity of the enzyme that catalyzes the orphan phosphatase reaction in the riboflavin biosynthetic pathway of Bacteroides. PMID:25513739

  7. The atom, the molecule, and the covalent organic framework.

    PubMed

    Diercks, Christian S; Yaghi, Omar M

    2017-03-03

    Just over a century ago, Lewis published his seminal work on what became known as the covalent bond, which has since occupied a central role in the theory of making organic molecules. With the advent of covalent organic frameworks (COFs), the chemistry of the covalent bond was extended to two- and three-dimensional frameworks. Here, organic molecules are linked by covalent bonds to yield crystalline, porous COFs from light elements (boron, carbon, nitrogen, oxygen, and silicon) that are characterized by high architectural and chemical robustness. This discovery paved the way for carrying out chemistry on frameworks without losing their porosity or crystallinity, and in turn achieving designed properties in materials. The recent union of the covalent and the mechanical bond in the COF provides the opportunity for making woven structures that incorporate flexibility and dynamics into frameworks.

  8. Validation of EMP bounds

    SciTech Connect

    Warne, L.K.; Merewether, K.O.; Chen, K.C.; Jorgenson, R.E.; Morris, M.E.; Solberg, J.E.; Lewis, J.G.; Derr, W.

    1996-07-01

    Test data on canonical weapon-like fixtures are used to validate previously developed analytical bounding results. The test fixtures were constructed to simulate (but be slightly worse than) weapon ports of entry but have known geometries (and electrical points of contact). The exterior of the test fixtures exhibited exterior resonant enhancement of the incident fields at the ports of entry with magnitudes equal to those of weapon geometries. The interior consisted of loaded transmission lines adjusted to maximize received energy or voltage but incorporating practical weapon geometrical constraints. New analytical results are also presented for bounding the energies associated with multiple bolt joints and for bounding the exterior resonant enhancement of the exciting fields.

  9. A Photoresponsive Surface Covalent Organic Framework: Surface-Confined Synthesis, Isomerization, and Controlled Guest Capture and Release.

    PubMed

    Liu, Chunhua; Zhang, Wei; Zeng, Qingdao; Lei, Shengbin

    2016-05-10

    By introducing an azobenzene group to the backbone of diboronic acid, we have obtained a surface-confined, photoresponsive single-layer covalent organic framework with long-range order and almost entire surface coverage. Scanning tunneling microscopic characterization indicates that though the covalent linkage provides a significant locking effect, isomerization can still happen under UV irradiation, which causes destruction of the surface COF. Furthermore, the decomposed surface COF can recover upon annealing. This photoinduced decomposition provides a facile approach for the controlled capture and release of targeted objects using these nanoporous surface COFs as a host, which has been demonstrated in this work using copper phthalocyanine as a model guest.

  10. Catalysis based on reversible covalent interactions of organoboron compounds.

    PubMed

    Taylor, Mark S

    2015-02-17

    CONSPECTUS: An Account of the development of organoboron-catalyzed methods for chemo- or regioselective activation of pyruvic acids, diols, and carbohydrate derivatives is presented. These methods are based on reversible, covalent interactions that have been exploited extensively in host-guest chemistry, but were comparatively underutilized in catalysis. Important differences between the established properties of organboron compounds in molecular recognition and their behavior as catalysts emerged over the course of this work: for instance, borinic acids, which have largely been ignored in molecular recognition, proved to be a particularly useful class of catalysts. Nonetheless, the high selectivity that has enabled applications of organoboron compounds in molecular recognition (e.g., the selective binding of cis-1,2-diol groups in carbohydrates) also appears to play a key role in the outcomes of catalytic reactions. This research program began as a modest, narrowly defined project aimed at developing direct aldol reactions based on established interactions between pyruvic acids and boronic acids. While this goal was achieved, it was unexpected observations related to the nature of the nucleophile in this transformation (a putative tetracoordinate boron enolate) that attracted our attention and pointed toward broader applications in the catalyst-controlled, regioselective functionalization of polyols. This line of research proved to be fruitful: diarylborinic-acid-based precatalysts were found to promote efficient monoalkylations, sulfonylations, and alkylations of a range of diol substrates, as well as cis-1,2-diol motifs in pyranoside-derived triols. Extension of this chemistry to glycosyl donors as electrophiles enabled the regioselective, catalyst-controlled synthesis of disaccharides from readily accessible feedstocks, and was also employed to modify the oligosaccharide component of a complex, glycosylated natural product. Mechanistic studies have played an

  11. Modeling the role of covalent enzyme modification in Escherichia coli nitrogen metabolism

    NASA Astrophysics Data System (ADS)

    Kidd, Philip B.; Wingreen, Ned S.

    2010-03-01

    In the bacterium Escherichia coli, the enzyme glutamine synthetase (GS) converts ammonium into the amino acid glutamine. GS is principally active when the cell is experiencing nitrogen limitation, and its activity is regulated by a bicyclic covalent modification cascade. The advantages of this bicyclic-cascade architecture are poorly understood. We analyze a simple model of the GS cascade in comparison to other regulatory schemes and conclude that the bicyclic cascade is suboptimal for maintaining metabolic homeostasis of the free glutamine pool. Instead, we argue that the lag inherent in the covalent modification of GS slows the response to an ammonium shock and thereby allows GS to transiently detoxify the cell, while maintaining homeostasis over longer times.

  12. Proteins tightly bound to DNA: new data and old problems.

    PubMed

    Sjakste, N; Bagdoniene, L; Gutcaits, A; Labeikyte, D; Bielskiene, K; Trapiņa, I; Muižnieks, I; Vassetzky, Y; Sjakste, T

    2010-10-01

    Proteins tightly bound to DNA (TBP) comprise a group of proteins that remain bound to DNA after usual deproteinization procedures such as salting out and treatment with phenol or chloroform. TBP bind to DNA by covalent phosphotriester and noncovalent ionic and hydrogen bonds. Some TBP are conservative, and they are usually covalently bound to DNA. However, the TBP composition is very diverse and significantly different in different tissues and in different organisms. TBP include transcription factors, enzymes of the ubiquitin-proteasome system, phosphatases, protein kinases, serpins, and proteins of retrotransposons. Their distribution within the genome is nonrandom. However, the DNA primary structure or DNA curvatures do not define the affinity of TBP to DNA. But there are repetitive DNA sequences with which TBP interact more often. The TBP distribution within genes and chromosomes depends on a cell's physiological state, differentiation type, and stage of organism development. TBP do not interact with DNA in the sites of its association with nuclear matrix and most likely they are not components of the latter.

  13. The linker-free covalent attachment of collagen to plasma immersion ion implantation treated polytetrafluoroethylene and subsequent cell-binding activity.

    PubMed

    Bax, Daniel V; McKenzie, David R; Weiss, Anthony S; Bilek, Marcela M M

    2010-03-01

    It is desirable that polymers used for the fabrication of prosthetic implants promote biological functions such as cellular adhesion, differentiation and viability. In this study, we have used plasma immersion ion implantation (PIII) to modify the surface of polytetrafluoroethylene (PTFE), thereby modulating the binding mechanism of collagen. The amount of collagen bound to the polymer surface following PIII-treatment was similar to that bound by non-covalent physisorption. In a manner consistent with previous enzyme and tropoelastin binding data, the collagen bound to the PIII-treated PTFE surface was resistant to sodium dodecyl sulfate (SDS) elution whilst collagen bound to the untreated surface was fully removed. This demonstrates the capability of PIII-treated surfaces to covalently attach collagen without employing chemical linking molecules. Only the collagen bound to the PIII-treated PTFE surface supported human dermal fibroblast attachment and spreading. This indicates that collagen on the PIII-treated surface possesses increased adhesive activity as compared to that on the untreated surface. Cell adhesion was inhibited by EDTA when the collagen was bound to PIII-treated PTFE, as expected for integrin involvement. Additionally this adhesion was sensitive to the conformation of the bound collagen. Increased actin cytoskeletal assembly was observed on cells spreading onto collagen-coated PIII-treated PTFE compared to the collagen-coated untreated PTFE. These data demonstrate the retention of collagen's biological properties following its attachment to PIII-treated PTFE, suggesting advantages for tissue engineering and prosthetic design.

  14. X-ray crystallographic analysis of adipocyte fatty acid binding protein (aP2) modified with 4-hydroxy-2-nonenal

    SciTech Connect

    Hellberg, Kristina; Grimsrud, Paul A.; Kruse, Andrew C.; Banaszak, Leonard J.; Ohlendorf, Douglas H.; Bernlohr, David A.

    2012-07-11

    Fatty acid binding proteins (FABP) have been characterized as facilitating the intracellular solubilization and transport of long-chain fatty acyl carboxylates via noncovalent interactions. More recent work has shown that the adipocyte FABP is also covalently modified in vivo on Cys117 with 4-hydroxy-2-nonenal (4-HNE), a bioactive aldehyde linked to oxidative stress and inflammation. To evaluate 4-HNE binding and modification, the crystal structures of adipocyte FABP covalently and noncovalently bound to 4-HNE have been solved to 1.9 {angstrom} and 2.3 {angstrom} resolution, respectively. While the 4-HNE in the noncovalently modified protein is coordinated similarly to a carboxylate of a fatty acid, the covalent form show a novel coordination through a water molecule at the polar end of the lipid. Other defining features between the two structures with 4-HNE and previously solved structures of the protein include a peptide flip between residues Ala36 and Lys37 and the rotation of the side chain of Phe57 into its closed conformation. Representing the first structure of an endogenous target protein covalently modified by 4-HNE, these results define a new class of in vivo ligands for FABPs and extend their physiological substrates to include bioactive aldehydes.

  15. Ionic Covalent Organic Frameworks with Spiroborate Linkage.

    PubMed

    Du, Ya; Yang, Haishen; Whiteley, Justin Michael; Wan, Shun; Jin, Yinghua; Lee, Se-Hee; Zhang, Wei

    2016-01-26

    A novel type of ionic covalent organic framework (ICOF), which contains sp(3)  hybridized boron anionic centers and tunable countercations, was constructed by formation of spiroborate linkages. These ICOFs exhibit high BET surface areas up to 1259 m(2)  g(-1) and adsorb a significant amount of H2 (up to 3.11 wt %, 77 K, 1 bar) and CH4 (up to 4.62 wt %, 273 K, 1 bar). Importantly, the materials show good thermal stabilities and excellent resistance to hydrolysis, remaining nearly intact when immersed in water or basic solution for two days. The presence of permanently immobilized ion centers in ICOFs enables the transportation of lithium ions with room-temperature lithium-ion conductivity of 3.05×10(-5)  S cm(-1) and an average Li(+) transference number value of 0.80±0.02. Our approach thus provides a convenient route to highly stable COFs with ionic linkages, which can potentially serve as absorbents for alternative energy sources such as H2, CH4, and also as solid lithium electrolytes/separators for the next-generation lithium batteries.

  16. Ionic-covalent character of metal and nonmetal oxides.

    PubMed

    Duffy, J A

    2006-12-14

    The acid-base properties of oxidic media are quantified in terms of the optical basicity concept, which serves to correlate many properties with chemical constitution. Optical basicity values, Lambda, have been assigned to 25 oxides such that they relate to Lambda for crystalline CaO being taken as unity. Since Lambda for an oxide is proportional to the degree of negative charge borne by the oxide-(-II) atom or ion, it follows that optical basicity should go hand-in-hand with the ionic/covalent nature of the cation-oxide-(-II) bonding. Unfortunately, this assumption produces many anomalies and trends that do not fit normal inorganic trends. The problem is resolved by adjusting the influence of ionic forms to the bonding by taking into account the heats of formation. In contrast to the (Pauling) electronegativity treatment of oxides, this procedure allows assignment of percentage ionicity to the bonding, and the trends in these in the Periodic Table are as expected for inorganic oxides.

  17. Computing Graphical Confidence Bounds

    NASA Technical Reports Server (NTRS)

    Mezzacappa, M. A.

    1983-01-01

    Approximation for graphical confidence bounds is simple enough to run on programmable calculator. Approximation is used in lieu of numerical tables not always available, and exact calculations, which often require rather sizable computer resources. Approximation verified for collection of up to 50 data points. Method used to analyze tile-strength data on Space Shuttle thermal-protection system.

  18. Strategies to balance covalent and non-covalent biomolecule attachment within collagen-GAG biomaterials.

    PubMed

    Pence, Jacquelyn C; Gonnerman, Emily A; Bailey, Ryan C; Harley, Brendan A C

    2014-09-01

    Strategies to integrate instructive biomolecular signals into a biomaterial are becoming increasingly complex and bioinspired. While a large majority of reports still use repeated treatments with soluble factors, this approach can be prohibitively costly and difficult to translate in vivo for applications where spatial control over signal presentation is necessary. Recent efforts have explored the use of covalent immobilization of biomolecules to the biomaterial, via both bulk (ubiquitous) as well as spatially-selective light-based crosslinking, as a means to both enhance stability and bioactivity. However, little is known about how processing conditions during immobilization impact the degree of unintended non-covalent interactions, or fouling, that takes place between the biomaterial and the biomolecule of interest. Here we demonstrate the impact of processing conditions for bulk carbodiimide (EDC) and photolithography-based benzophenone (BP) crosslinking on specific attachment vs. fouling of a model protein (Concanavalin A, ConA) within collagen-glycosaminoglycan (CG) scaffolds. Collagen source significantly impacts the selectivity of biomolecule immobilization. EDC crosslinking intensity and ligand concentration significantly impacted selective immobilization. For benzophenone photoimmobilization we observed that increased UV exposure time leads to increased ConA immobilization. Immobilization efficiency for both EDC and BP strategies was maximal at physiological pH. Increasing ligand concentration during immobilization process led to enhanced immobilization for EDC chemistry, no impact on BP immobilization, but significant increases in non-specific fouling. Given recent efforts to covalently immobilize biomolecules to a biomaterial surface to enhance bioactivity, improved understanding of the impact of crosslinking conditions on selective attachment versus non-specific fouling will inform the design of instructive biomaterials for applications across tissue

  19. Drug discovery considerations in the development of covalent inhibitors.

    PubMed

    Mah, Robert; Thomas, Jason R; Shafer, Cynthia M

    2014-01-01

    In recent years, the number of drug candidates with a covalent mechanism of action progressing through clinical trials or being approved by the FDA has increased significantly. And as interest in covalent inhibitors has increased, the technical challenges for characterizing and optimizing these inhibitors have become evident. A number of new tools have been developed to aid this process, but these have not gained wide-spread use. This review will highlight a number of methods and tools useful for prosecuting covalent inhibitor drug discovery programs.

  20. Dynamic covalent chemistry approaches toward macrocycles, molecular cages, and polymers.

    PubMed

    Jin, Yinghua; Wang, Qi; Taynton, Philip; Zhang, Wei

    2014-05-20

    The current research in the field of dynamic covalent chemistry includes the study of dynamic covalent reactions, catalysts, and their applications. Unlike noncovalent interactions utilized in supramolecular chemistry, the formation/breakage of covalent bonding has slower kinetics and usually requires the aid of a catalyst. Catalytic systems that enable efficient thermodynamic equilibrium are thus essential. In this Account, we describe the development of efficient catalysts for alkyne metathesis, and discuss the application of dynamic covalent reactions (mainly imine, olefin, and alkyne metathesis) in the development of organic functional materials. Alkyne metathesis is an emerging dynamic covalent reaction that offers robust and linear acetylene linkages. By introducing a podand motif into the catalyst ligand design, we have developed a series of highly active and robust alkyne metathesis catalysts, which, for the first time, enabled the one-step covalent assembly of ethynylene-linked functional molecular cages. Imine chemistry and olefin metathesis are among the most well-established reversible reactions, and have also been our main synthetic tools. Various shape-persistent macrocycles and covalent organic polyhedrons have been efficiently constructed in one-step through dynamic imine chemistry and olefin metathesis. The geometrical features and solubilizing groups of the building blocks as well as the reaction kinetics have significant effect on the outcome of a covalent assembly process. More recently, we explored the orthogonality of imine and olefin metatheses, and successfully synthesized heterosequenced macrocycles and molecular cages through one-pot orthogonal dynamic covalent chemistry. In addition to discrete molecular architectures, functional polymeric materials can also be accessed through dynamic covalent reactions. Defect-free solution-processable conjugated polyaryleneethynylenes and polydiacetylenes have been prepared through alkyne metathesis

  1. Structural and mechanistic analysis of trans-3-chloroacrylic acid dehalogenase activity

    SciTech Connect

    Pegan, Scott D.; Serrano, Hector; Whitman, Christian P.; Mesecar, Andrew D.

    2008-12-01

    The X-ray structure of a noncovalently modified trans-3-chloroacrylic acid dehalogenase with a substrate-homolog acetate bound in the active site has been determined to 1.7 Å resolution. Elucidation of catalytically important water is reported and multiple conformations of the catalytic residue αGlu52 are observed. Trans-3-chloroacrylic acid dehalogenase (CaaD) is a critical enzyme in the trans-1, 3-dichloropropene (DCP) degradation pathway in Pseudomonas pavonaceae 170. This enzyme allows bacteria to use trans-DCP, a common component in commercially produced fumigants, as a carbon source. CaaD specifically catalyzes the fourth step of the pathway by cofactor-independent dehalogenation of a vinyl carbon–halogen bond. Previous studies have reported an X-ray structure of CaaD under acidic conditions with a covalent modification of the catalytic βPro1 residue. Here, the 1.7 Å resolution X-ray structure of CaaD under neutral (pH 6.5) conditions is reported without the presence of the covalent adduct. In this new structure, a substrate-like acetate molecule is bound within the active site in a position analogous to the putative substrate-binding site. Additionally, a catalytically important water molecule was identified, consistent with previously proposed reaction schemes. Finally, flexibility of the catalytically relevant side chain αGlu52 is observed in the structure, supporting its role in the catalytic mechanism.

  2. Mass Spectrometric and Spectrofluorometric Studies of the Interaction of Aristolochic Acids with Proteins

    NASA Astrophysics Data System (ADS)

    Li, Weiwei; Hu, Qin; Chan, Wan

    2015-10-01

    Aristolochic acid (AA) is a potent carcinogen and nephrotoxin and is associated with the development of “Chinese herb nephropathy” and Balkan endemic nephropathy. Despite decades of research, the specific mechanism of the observed nephrotoxicity has remained elusive and the potential effects on proteins due to the observed toxicity of AA are not well-understood. To better understand the pharmacotoxicological features of AA, we investigated the non-covalent interactions of AA with proteins. The protein-binding properties of AA with bovine serum albumin (BSA) and lysozyme were characterized using spectrofluorometric and mass spectrometric (MS) techniques. Moreover, the protein-AA complexes were clearly identified by high-resolution MS analyses. To the best of our knowledge, this is the first direct evidence of non-covalently bound protein-AA complexes. An analysis of the spectrofluorometric data by a modified Stern-Volmer plot model also revealed that both aristolochic acid I (AAI) and aristolochic acid II (AAII) were bound to BSA and lysozyme in 1:1 stoichiometries. A significantly stronger protein binding property was observed in AAII than in AAI as evidenced by the spectrofluorometric and MS analyses, which may explain the observed higher mutagenicity of AAII.

  3. Chloramphenicol Biosynthesis: The Structure of CmlS, a Flavin-Dependent Halogenase Shwing a Covalent Flavin-Aspartate Bond

    SciTech Connect

    Podzelinska, K.; Latimer, R; Bhattacharya, A; Vining, L; Zechel, D; Jia, Z

    2010-01-01

    Chloramphenicol is a halogenated natural product bearing an unusual dichloroacetyl moiety that is critical for its antibiotic activity. The operon for chloramphenicol biosynthesis in Streptomyces venezuelae encodes the chloramphenicol halogenase CmlS, which belongs to the large and diverse family of flavin-dependent halogenases (FDH's). CmlS was previously shown to be essential for the formation of the dichloroacetyl group. Here we report the X-ray crystal structure of CmlS determined at 2.2 {angstrom} resolution, revealing a flavin monooxygenase domain shared by all FDHs, but also a unique 'winged-helix' C-terminal domain that creates a T-shaped tunnel leading to the halogenation active site. Intriguingly, the C-terminal tail of this domain blocks access to the halogenation active site, suggesting a structurally dynamic role during catalysis. The halogenation active site is notably nonpolar and shares nearly identical residues with Chondromyces crocatus tyrosyl halogenase (CndH), including the conserved Lys (K71) that forms the reactive chloramine intermediate. The exception is Y350, which could be used to stabilize enolate formation during substrate halogenation. The strictly conserved residue E44, located near the isoalloxazine ring of the bound flavin adenine dinucleotide (FAD) cofactor, is optimally positioned to function as a remote general acid, through a water-mediated proton relay, which could accelerate the reaction of the chloramine intermediate during substrate halogenation, or the oxidation of chloride by the FAD(C4{alpha})-OOH intermediate. Strikingly, the 8{alpha} carbon of the FAD cofactor is observed to be covalently attached to D277 of CmlS, a residue that is highly conserved in the FDH family. In addition to representing a new type of flavin modification, this has intriguing implications for the mechanism of FDHs. Based on the crystal structure and in analogy to known halogenases, we propose a reaction mechanism for CmlS.

  4. Synthesis and Photophysical Study of a [NiFe] Hydrogenase Biomimetic Compound Covalently Linked to a Re-diimine Photosensitizer

    PubMed Central

    2015-01-01

    The synthesis, photophysics, and photochemistry of a linked dyad ([Re]-[NiFe2]) containing an analogue ([NiFe2]) of the active site of [NiFe] hydrogenase, covalently bound to a Re-diimine photosensitizer ([Re]), are described. Following excitation, the mechanisms of electron transfer involving the [Re] and [NiFe2] centers and the resulting decomposition were investigated. Excitation of the [Re] center results in the population of a diimine-based metal-to-ligand charge transfer excited state. Reductive quenching by NEt3 produces the radically reduced form of [Re], [Re]− (kq = 1.4 ± 0.1 × 107 M–1 s–1). Once formed, [Re]− reduces the [NiFe2] center to [NiFe2]−, and this reduction was followed using time-resolved infrared spectroscopy. The concentration dependence of the electron transfer rate constants suggests that both inter- and intramolecular electron transfer pathways are involved, and the rate constants for these processes have been estimated (kinter = 5.9 ± 0.7 × 108 M–1 s–1, kintra = 1.5 ± 0.1 × 105 s–1). For the analogous bimolecular system, only intermolecular electron transfer could be observed (kinter = 3.8 ± 0.5 × 109 M–1 s–1). Fourier transform infrared spectroscopic studies confirms that decomposition of the dyad occurs upon prolonged photolysis, and this appears to be a major factor for the low activity of the system toward H2 production in acidic conditions. PMID:26605700

  5. Lipid bilayers covalently anchored to carbon nanotubes.

    PubMed

    Dayani, Yasaman; Malmstadt, Noah

    2012-05-29

    The unique physical and electrical properties of carbon nanotubes make them an exciting material for applications in various fields such as bioelectronics and biosensing. Due to the poor water solubility of carbon nanotubes, functionalization for such applications has been a challenge. Of particular need are functionalization methods for integrating carbon nanotubes with biomolecules and constructing novel hybrid nanostructures for bionanoelectronic applications. We present a novel method for the fabrication of dispersible, biocompatible carbon nanotube-based materials. Multiwalled carbon nanotubes (MWCNTs) are covalently modified with primary amine-bearing phospholipids in a carbodiimide-activated reaction. These modified carbon nanotubes have good dispersibility in nonpolar solvents. Fourier transform infrared (FTIR) spectroscopy shows peaks attributable to the formation of amide bonds between lipids and the nanotube surface. Simple sonication of lipid-modified nanotubes with other lipid molecules leads to the formation of a uniform lipid bilayer coating the nanotubes. These bilayer-coated nanotubes are highly dispersible and stable in aqueous solution. Confocal fluorescence microscopy shows labeled lipids on the surface of bilayer-modified nanotubes. Transmission electron microscopy (TEM) shows the morphology of dispersed bilayer-coated MWCNTs. Fluorescence quenching of lipid-coated MWCNTs confirms the bilayer configuration of the lipids on the nanotube surface, and fluorescence anisotropy measurements show that the bilayer is fluid above the gel-to-liquid transition temperature. The membrane protein α-hemolysin spontaneously inserts into the MWCNT-supported bilayer, confirming the biomimetic membrane structure. These biomimetic nanostructures are a promising platform for the integration of carbon nanotube-based materials with biomolecules.

  6. COVALENT BINDING OF REDUCED METABOLITES OF [15N3] TNT TO SOIL ORGANIC MATTER DURING A BIOREMEDIATION PROCESS ANALYZED BY 15N NMR SPECTROSCOPY. (R826646)

    EPA Science Inventory

    Evidence is presented for the covalent binding of
    biologically reduced metabolites of 2,4,6-15N3-trinitrotoluene
    (TNT) to different soil fractions (humic acids, fulvic
    acids, and humin) using liquid 15N NMR spectroscopy. A
    silylation p...

  7. X-ray Crystallography Reveals a Reduced Substrate Complex of UDP-Galactopyranose Mutase Poised for Covalent Catalysis by Flavin

    SciTech Connect

    Gruber, Todd D.; Westler, William M.; Kiessling, Laura L.; Forest, Katrina T.

    2009-11-04

    The flavoenzyme uridine 5'-diphosphate galactopyranose mutase (UGM or Glf) catalyzes the interconversion of UDP-galactopyranose and UDP-galactofuranose. The latter is a key building block for cell wall construction in numerous pathogens, including Mycobacterium tuberculosis. Mechanistic studies of UGM suggested a novel role for the flavin, and we previously provided evidence that the catalytic mechanism proceeds through a covalent flavin-galactose iminium. Here, we describe 2.3 and 2.5 {angstrom} resolution X-ray crystal structures of the substrate-bound enzyme in oxidized and reduced forms, respectively. In the latter, C1 of the substrate is 3.6 {angstrom} from the nucleophilic flavin N5 position. This orientation is consistent with covalent catalysis by flavin.

  8. The single NqrB and NqrC subunits in the Na(+)-translocating NADH: quinone oxidoreductase (Na(+)-NQR) from Vibrio cholerae each carry one covalently attached FMN.

    PubMed

    Casutt, Marco S; Schlosser, Andreas; Buckel, Wolfgang; Steuber, Julia

    2012-10-01

    The Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) is the prototype of a novel class of flavoproteins carrying a riboflavin phosphate bound to serine or threonine by a phosphodiester bond to the ribityl side chain. This membrane-bound, respiratory complex also contains one non-covalently bound FAD, one non-covalently bound riboflavin, ubiquinone-8 and a [2Fe-2S] cluster. Here, we report the quantitative analysis of the full set of flavin cofactors in the Na(+)-NQR and characterize the mode of linkage of the riboflavin phosphate to the membrane-bound NqrB and NqrC subunits. Release of the flavin by β-elimination and analysis of the cofactor demonstrates that the phosphate group is attached at the 5'-position of the ribityl as in authentic FMN and that the Na(+)-NQR contains approximately 1.7mol covalently bound FMN per mol non-covalently bound FAD. Therefore, each of the single NqrB and NqrC subunits in the Na(+)-NQR carries a single FMN. Elimination of the phosphodiester bond yields a dehydro-2-aminobutyrate residue, which is modified with β-mercaptoethanol by Michael addition. Proteolytic digestion followed by mass determination of peptide fragments reveals exclusive modification of threonine residues, which carry FMN in the native enzyme. The described reactions allow quantification and localization of the covalently attached FMNs in the Na(+)-NQR and in related proteins belonging to the Rhodobacter nitrogen fixation (RNF) family of enzymes. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).

  9. Petawatt laser absorption bounded

    PubMed Central

    Levy, Matthew C.; Wilks, Scott C.; Tabak, Max; Libby, Stephen B.; Baring, Matthew G.

    2014-01-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that f exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials. PMID:24938656

  10. Multiplexed detection of fungal nucleic acid signatures.

    PubMed

    Diaz, Mara R; Dunbar, Sherry A; Jacobson, James W

    2008-04-01

    Diagnoses of opportunistic mycotic infections constitute an increasing clinical problem. Conventional diagnostic tests are time consuming and lack specificity and sensitivity for accurate and timely prognoses. This unit provides a comprehensive description of a fungal detection method that combines nucleic acid signatures with flow cytometry. The multiplexed assay, which uses xMAP technology, consists of unique fluorescent microspheres covalently bound to species-specific fungal oligonucleotide probes. In the presence of the complementary target sequence, the probe hybridizes to its biotinylated target. Quantification of the reaction is based on the fluorescence signal of the reporter molecule that binds to the biotin moieties of the target. The assay can be expanded to include other microorganisms and has the capability to simultaneously test 100 different fungal probes per tube/well. The speed, flexibility in design, and high-throughput capability makes this assay an attractive diagnostic tool for fungal infections and other related maladies.

  11. Supramolecular motifs in dynamic covalent PEG-hemiaminal organogels

    PubMed Central

    Fox, Courtney H.; ter Hurrne, Gijs M.; Wojtecki, Rudy J.; Jones, Gavin O.; Horn, Hans W.; Meijer, E. W.; Frank, Curtis W.; Hedrick, James L.; García, Jeannette M.

    2015-01-01

    Dynamic covalent materials are stable materials that possess reversible behaviour triggered by stimuli such as light, redox conditions or temperature; whereas supramolecular crosslinks depend on the equilibrium constant and relative concentrations of crosslinks as a function of temperature. The combination of these two reversible chemistries can allow access to materials with unique properties. Here, we show that this combination of dynamic covalent and supramolecular chemistry can be used to prepare organogels comprising distinct networks. Two materials containing hemiaminal crosslink junctions were synthesized; one material is comprised of dynamic covalent junctions and the other contains hydrogen-bonding bis-hemiaminal moieties. Under specific network synthesis conditions, these materials exhibited self-healing behaviour. This work reports on both the molecular-level detail of hemiaminal crosslink junction formation as well as the macroscopic behaviour of hemiaminal dynamic covalent network (HDCN) elastomeric organogels. These materials have potential applications as elastomeric components in printable materials, cargo carriers and adhesives. PMID:26174864

  12. Progress in the experimental observation of thiamin diphosphate-bound intermediates on enzymes and mechanistic information derived from these observations.

    PubMed

    Jordan, Frank; Nemeria, Natalia S

    2014-12-01

    Thiamin diphosphate (ThDP), the vitamin B1 coenzyme is an excellent representative of coenzymes, which carry out electrophilic catalysis by forming a covalent complex with their substrates. The function of ThDP is to greatly increase the acidity of two carbon acids by stabilizing their conjugate bases, the ylide/carbene/C2-carbanion of the thiazolium ring and the C2α-carbanion/enamine, once the substrate binds to ThDP. In recent years, several ThDP-bound intermediates on such pathways have been characterized by both solution and solid-state methods. Prominent among these advances are X-ray crystallographic results identifying both oxidative and non-oxidative intermediates, rapid chemical quench followed by NMR detection of several intermediates which are stable under acidic conditions, solid-state NMR and circular dichroism detection of the states of ionization and tautomerization of the 4'-aminopyrimidine moiety of ThDP in some of the intermediates. These methods also enabled in some cases determination of the rate-limiting step in the complex series of steps. This review is an update of a review with the same title published by the authors in 2005 in this Journal. Much progress has been made in the intervening decade in the identification of the intermediates and their application to gain additional mechanistic insight.

  13. Covalently functionalized hexagonal boron nitride nanosheets by nitrene addition.

    PubMed

    Sainsbury, Toby; Satti, Amro; May, Peter; O'Neill, Arlene; Nicolosi, Valeria; Gun'ko, Yurii K; Coleman, Jonathan N

    2012-08-27

    The covalent functionalization of exfoliated hexagonal boron nitride (h-BN) nanosheets by nitrene addition is described. Integration of functionalized h-BN nanosheets within a polycarbonate matrix is demonstrated and was found to afford significant increases in mechanical properties. This integration methodology was further extended by the covalent modification of the h-BN nanosheets with polymer chains of a polycarbonate analogue, and the integration of the polymer modified h-BN within the polymer matrix.

  14. Covalent attachment of mechanoresponsive luminescent micelles to glasses and polymers in aqueous conditions.

    PubMed

    Sagara, Yoshimitsu; Komatsu, Toru; Ueno, Tasuku; Hanaoka, Kenjiro; Kato, Takashi; Nagano, Tetsuo

    2014-03-19

    Covalent attachment of mechanoresponsive luminescent organic or organometallic compounds to other materials is a promising approach to develop a wide variety of mechanoresponsive luminescent materials. Here, we report covalently linkable mechanoresponsive micelles that change their photoluminescence from yellow to green in response to mechanical stimulation under aqueous conditions. These micelles are composed of a dumbbell-shaped amphiphilic pyrene derivative having amine groups at the peripheral positions of its dendrons. Using a well-established cross-linker, the micelles were covalently linked via their peripheral amine groups to the surface of glass beads, polylactic acid (PLA) beads, and living cells under aqueous conditions. Vortexing of glass beads bearing the micelles in a glass vial filled with water caused a photoluminescence color change from yellow to green. PLA beads bearing the micelles showed no change in photoluminescence color under the same conditions. We ascribe this result to the lower density and stiffness of the PLA beads, because the color of the PLA beads changed on vortexing in the presence of bare glass beads. HeLa cells and HL-60 cells bearing the micelles showed no obvious photoluminescence color change under vortexing. The structure, photophysical properties, and mechanism of photoluminescence color change of the micellar assemblies were examined.

  15. Covalently linked chlorophyll a dimer: A biomimetic model of special pair chlorophyll

    PubMed Central

    Wasielewski, Michael R.; Studier, Martin H.; Katz, Joseph J.

    1976-01-01

    The synthesis of a covalent dimer of chlorophyll a which possesses properties strikingly similar to those exhibited by P700 special pair chlorophyll in vivo is described. The covalent dimer is characterized by several spectroscopic techniques. Hydrogen bonding nucleophiles, such as water, primary alcohols, and primary thiols, are effective in generating a species from solutions of 10 μM covalent dimer in hydrophobic solvents which absorbs light near 700 nm. Formation of this in vitro special pair is a rapid, spontaneous process at room temperature. The range of nucleophiles which promote this process suggests that amino acid residues may function in a similar fashion to form P700 in chlorophyll-protein complexes. The photochemical properties of this in vitro special pair mimic those of in vivo P700 species. The 697 nm absorption of the in vitro special pair undergoes photo-bleaching rapidly in the presence of iodine that results in the production of a cation radical which exhibits an electron spin resonance signal similar to that of oxidized P700 observed in Chlorella vulgaris. PMID:16592367

  16. Inactivation of the Mycobacterium tuberculosis antigen 85 complex by covalent, allosteric inhibitors.

    PubMed

    Favrot, Lorenza; Lajiness, Daniel H; Ronning, Donald R

    2014-09-05

    The rise of multidrug-resistant and totally drug-resistant tuberculosis and the association with an increasing number of HIV-positive patients developing tuberculosis emphasize the necessity to find new antitubercular targets and drugs. The antigen 85 (Ag85) complex from Mycobacterium tuberculosis plays important roles in the biosynthesis of major components of the mycobacterial cell envelope. For this reason, Ag85 has emerged as an attractive drug target. Recently, ebselen was identified as an effective inhibitor of the Ag85 complex through covalent modification of a cysteine residue proximal to the Ag85 active site and is therefore a covalent, allosteric inhibitor. To expand the understanding of this process, we have solved the x-ray crystal structures of Ag85C covalently modified with ebselen and other thiol-reactive compounds, p-chloromercuribenzoic acid and iodoacetamide, as well as the structure of a cysteine to glycine mutant. All four structures confirm that chemical modification or mutation at this particular cysteine residue leads to the disruption of the active site hydrogen-bonded network essential for Ag85 catalysis. We also describe x-ray crystal structures of Ag85C single mutants within the catalytic triad and show that a mutation of any one of these three residues promotes the same conformational change observed in the cysteine-modified forms. These results provide evidence for active site dynamics that may afford new strategies for the development of selective and potent Ag85 inhibitors.

  17. Covalent dependence of octahedral rotations in orthorhombic perovskite oxides.

    PubMed

    Cammarata, Antonio; Rondinelli, James M

    2014-09-21

    The compositional dependence of metal-oxygen BO6 octahedral distortions, including bond elongations and rotations, is frequently discussed in the ABO3 perovskite literature; structural distortions alleviate internal stresses driven by under- or over-coordinated bond environments. Here we identify the dependence of octahedral rotations from changes in metal-oxygen bond covalency in orthorhombic perovskites. Using density functional theory we formulate a covalency metric, which captures both the real and k-space interactions between the magnitude and sense, i.e., in-phase or out-of-phase, octahedral rotations, to explore the link between the ionic-covalent Fe-O bond and the interoctahedral Fe-O-Fe bond angles in Pbnm ferrates. Our survey finds that the covalency of the metal-oxygen bond is correlated with the rotation amplitude: We find the more covalent the Fe-O bond, the less distorted is the structure and the more important the long-range inter-octahedral (Fe-O-Fe bond angle) interactions. Finally, we show how to indirectly tune the B-O bond covalency by A-cation induced BO6 rotations independent of ionic size, facilitating design of targeted bonding interactions in complex perovskites.

  18. Chemical evidence for covalent linkages of a semi-synthetic glycoconjugate vaccine for Haemophilus influenzae type B disease.

    PubMed

    Seid, R C; Boykins, R A; Liu, D F; Kimbrough, K W; Hsieh, C L; Eby, R

    1989-01-01

    We have defined the nature of the covalent linkages in a Haemophilus influenzae type b oligosaccharide-CRM197 conjugate vaccine, designated HbOC. The conjugate was acid hydrolyzed to release a novel amino-acid derivative, N epsilon-(2-hydroxyethyl)lysine (OHEt-Lys), identifiable with an amino-acid analyzer. This amino-acid derivative was formed by reduction of Schiff bases formed between H. influenzae type b oligosaccharides (HbO) and the lysyl epsilon-amino groups of CRM197 (a non-toxic, cross-reactive variant of diphtheria toxin), followed by acid hydrolysis of HbOC. Quantification of OHEt-Lys per CRM197 molecule allowed the determination of a covalency ratio, a useful parameter for evaluating the stoichiometry and consistency of HbOC preparations. Covalent association between HbO and CRM197 was also demonstrated by the coincidence of immunoreactivity of gel-electrophoresed HbOC on a Western blot probed with anti-CRM197 and anti-saccharide antisera.

  19. Controls on Fe Isotope Fractionation During Organic Complexation: the Importance of Covalent Bonding

    NASA Astrophysics Data System (ADS)

    Domagal-Goldman, S. D.; Kubicki, J. D.

    2007-12-01

    Fe isotopes have been proposed as a tracer of changes to the redox state of the oceans (Rouxel et al., 2005), and for use as a biosignature (e.g., Johnson et al., 1999). Previous modeling work supports this, as they suggest redox fractionations are likely the main control over Fe isotopes.Fe isotopes have been proposed as a tracer of changes to the redox state of the oceans (Rouxel et al., 2005), and for use as a biosignature (e.g., Beard et al., 1999). Previous modeling work (Domagal-Goldman and Kubicki, submitted) that predicts greater equilibrium fractionations for redox reactions than for complexation reactions supports the former application. In this study, we try to ascertain the first-principles chemical drivers of fractionation of Fe isotopes. We do this by using Natural Bond Order (NBO) analyses and isotope fractionation predictions of Fe bound to various organic ligands at different Fe oxidation states and Fe:ligand ratios.NBO analysis re-assigns electrons in molecular orbitals to bond orbitals within a complex; this allows for the examination of the presence and strength of covalent bonding in a complex. By comparing the presence and strength of covalent Fe-O bonds in the studied complexes to other predicted variables such as bond lengths and predicted fractionation factors, we can assess the importance of these bonds to Fe isotope fractionation in nature. Byexamining the effect controlled variables such as Fe oxidation state and the number of Fe-ligand bonds have on the formation of covalent bonds, we will begin to understand what controls bonding for these types of complexes. Ultimately, this work is geared towards driving future research questions related to the isotopicfractionations of Fe and other transition metals.

  20. Role of non-covalent and covalent interactions in cargo loading capacity and stability of polymeric micelles.

    PubMed

    Ke, Xiyu; Ng, Victor Wee Lin; Ono, Robert J; Chan, Julian M W; Krishnamurthy, Sangeetha; Wang, Ying; Hedrick, James L; Yang, Yi Yan

    2014-11-10

    Polymeric micelles self-assembled from biodegradable amphiphilic block copolymers have been proven to be effective drug delivery carriers that reduce the toxicity and enhance the therapeutic efficacy of free drugs. Several reviews have been reported in the literature to discuss the importance of size/size distribution, stability and drug loading capacity of polymeric micelles for successful in vivo drug delivery. This review is focused on non-covalent and covalent interactions that are employed to enhance cargo loading capacity and in vivo stability, and to achieve nanosize with narrow size distribution. In particular, this review analyzes various non-covalent and covalent interactions and chemistry applied to introduce these interactions to the micellar drug delivery systems, as well as the effects of these interactions on micelle stability, drug loading capacity and release kinetics. Moreover, the factors that influence these interactions and the future research directions of polymeric micelles are discussed.

  1. Covalent Functionalization of NiTi Surfaces with Bioactive Peptide Amphiphile Nanofibers

    PubMed Central

    Sargeant, Timothy D.; Rao, Mukti S.; Koh, Chung-Yan

    2009-01-01

    Surface modification enables the creation of bioactive implants using traditional material substrates without altering the mechanical properties of the bulk material. For applications such as bone plates and stents, it is desirable to modify the surface of metal alloy substrates to facilitate cellular attachment, proliferation, and possibly differentiation. In this work we present a general strategy for altering the surface chemistry of nickel-titanium shape memory alloy (NiTi) in order to covalently attach self-assembled peptide amphiphile (PA) nanofibers with bioactive functions. Bioactivity in the systems studied here includes biological adhesion and proliferation of osteoblast and endothelial cell types. The optimized surface treatment creates a uniform TiO2 layer with low levels of Ni on the NiTi surface, which is subsequently covered with an aminopropylsilane coating using a novel, lower temperature vapor deposition method. This method produces an aminated surface suitable for covalent attachment of PA molecules containing terminal carboxylic acid groups. The functionalized NiTi surfaces have been characterized by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectroscopy (ToF-SIMS), and atomic force microscopy (AFM). These techniques offer evidence that the treated metal surfaces consist primarily of TiO2 with very little Ni, and also confirm the presence of the aminopropylsilane overlayer. Self-assembled PA nanofibers presenting the biological peptide adhesion sequence Arg-Gly-Asp-Ser are capable of covalently anchoring to the treated substrate, as demonstrated by spectrofluorimetry and AFM. Cell culture and scanning electron microscopy (SEM) demonstrate cellular adhesion, spreading, and proliferation on these functionalized metal surfaces. Furthermore, these experiments demonstrate that covalent attachment is crucial for creating robust PA nanofiber coatings, leading to confluent cell monolayers. PMID:18083225

  2. Universal bounds on current fluctuations

    NASA Astrophysics Data System (ADS)

    Pietzonka, Patrick; Barato, Andre C.; Seifert, Udo

    2016-05-01

    For current fluctuations in nonequilibrium steady states of Markovian processes, we derive four different universal bounds valid beyond the Gaussian regime. Different variants of these bounds apply to either the entropy change or any individual current, e.g., the rate of substrate consumption in a chemical reaction or the electron current in an electronic device. The bounds vary with respect to their degree of universality and tightness. A universal parabolic bound on the generating function of an arbitrary current depends solely on the average entropy production. A second, stronger bound requires knowledge both of the thermodynamic forces that drive the system and of the topology of the network of states. These two bounds are conjectures based on extensive numerics. An exponential bound that depends only on the average entropy production and the average number of transitions per time is rigorously proved. This bound has no obvious relation to the parabolic bound but it is typically tighter further away from equilibrium. An asymptotic bound that depends on the specific transition rates and becomes tight for large fluctuations is also derived. This bound allows for the prediction of the asymptotic growth of the generating function. Even though our results are restricted to networks with a finite number of states, we show that the parabolic bound is also valid for three paradigmatic examples of driven diffusive systems for which the generating function can be calculated using the additivity principle. Our bounds provide a general class of constraints for nonequilibrium systems.

  3. A designed P1 cysteine mimetic for covalent and non-covalent inhibitors of HCV NS3 protease.

    PubMed

    Narjes, Frank; Koehler, Konrad F; Koch, Uwe; Gerlach, Benjamin; Colarusso, Stefania; Steinkühler, Christian; Brunetti, Mirko; Altamura, Sergio; De Francesco, Raffaele; Matassa, Victor G

    2002-02-25

    The difluoromethyl group was designed by computational chemistry methods as a mimetic of the canonical P1 cysteine thiol for inhibitors of the hepatitis C virus NS3 protease. This modification led to the development of competitive, non-covalent inhibitor 4 (K(i) 30 nM) and reversible covalent inhibitors (6, K(i) 0.5 nM; and 8 K*(i) 10 pM).

  4. Bound anionic states of adenine

    SciTech Connect

    Haranczyk, Maciej; Gutowski, Maciej S; Li, Xiang; Bowen, Kit H

    2007-03-20

    Anionic states of nucleic acid bases are involved in DNA damage by low-energy electrons and in charge transfer through DNA. Previous gas phase studies of free, unsolvated nucleic acid base parent anions probed only dipole-bound states, which are not present in condensed phase environments, but did not observe valence anionic states, which for purine bases, are thought to be adiabatically unbound. Contrary to this expectation, we have demonstrated that some thus far ignored tautomers of adenine, which result from enamine-imine transformations, support valence anionic states with electron vertical detachment energies as large as 2.2 eV, and at least one of these anionic tautomers is adiabatically bound. Moreover, we predict that the new anionic tautomers should also dominate in solutions and should be characterized by larger values of electron vertical detachment energy than the canonical valence anion. All of the new-found anionic tautomers might be formed in the course of dissociative electron attachment followed by a hydrogen atom attachment to a carbon atom, and they might affect the structure and properties of DNA and RNA exposed to low-energy electrons. The discovery of these valence anionic states of adenine was facilitated by the development of: (i) a new experimental method for preparing parent anions of nucleic acid bases for photoelectron experiments, and (ii) a new combinatorial/ quantum chemical approach for identification of the most stable tautomers of organic molecules. The computational portion of this work was supported by the: (i) Polish State Committee for Scientific Research (KBN) Grants: DS/8000-4-0140-7 (M.G.) and N204 127 31/2963 (M.H.), (ii) European Social Funds (EFS) ZPORR/2.22/II/2.6/ARP/U/2/05 (M.H.), and (iii) US DOE Office of Biological and Environmental Research, Low Dose Radiation Research Program (M.G.). M.H. holds the Foundation for Polish Science (FNP) award for young scientists. The calculations were performed at the Academic

  5. Effective scheme for partitioning covalent bonds in density-functional embedding theory: From molecules to extended covalent systems

    NASA Astrophysics Data System (ADS)

    Huang, Chen; Muñoz-García, Ana Belén; Pavone, Michele

    2016-12-01

    Density-functional embedding theory provides a general way to perform multi-physics quantum mechanics simulations of large-scale materials by dividing the total system's electron density into a cluster's density and its environment's density. It is then possible to compute the accurate local electronic structures and energetics of the embedded cluster with high-level methods, meanwhile retaining a low-level description of the environment. The prerequisite step in the density-functional embedding theory is the cluster definition. In covalent systems, cutting across the covalent bonds that connect the cluster and its environment leads to dangling bonds (unpaired electrons). These represent a major obstacle for the application of density-functional embedding theory to study extended covalent systems. In this work, we developed a simple scheme to define the cluster in covalent systems. Instead of cutting covalent bonds, we directly split the boundary atoms for maintaining the valency of the cluster. With this new covalent embedding scheme, we compute the dehydrogenation energies of several different molecules, as well as the binding energy of a cobalt atom on graphene. Well localized cluster densities are observed, which can facilitate the use of localized basis sets in high-level calculations. The results are found to converge faster with the embedding method than the other multi-physics approach ONIOM. This work paves the way to perform the density-functional embedding simulations of heterogeneous systems in which different types of chemical bonds are present.

  6. Effective scheme for partitioning covalent bonds in density-functional embedding theory: From molecules to extended covalent systems.

    PubMed

    Huang, Chen; Muñoz-García, Ana Belén; Pavone, Michele

    2016-12-28

    Density-functional embedding theory provides a general way to perform multi-physics quantum mechanics simulations of large-scale materials by dividing the total system's electron density into a cluster's density and its environment's density. It is then possible to compute the accurate local electronic structures and energetics of the embedded cluster with high-level methods, meanwhile retaining a low-level description of the environment. The prerequisite step in the density-functional embedding theory is the cluster definition. In covalent systems, cutting across the covalent bonds that connect the cluster and its environment leads to dangling bonds (unpaired electrons). These represent a major obstacle for the application of density-functional embedding theory to study extended covalent systems. In this work, we developed a simple scheme to define the cluster in covalent systems. Instead of cutting covalent bonds, we directly split the boundary atoms for maintaining the valency of the cluster. With this new covalent embedding scheme, we compute the dehydrogenation energies of several different molecules, as well as the binding energy of a cobalt atom on graphene. Well localized cluster densities are observed, which can facilitate the use of localized basis sets in high-level calculations. The results are found to converge faster with the embedding method than the other multi-physics approach ONIOM. This work paves the way to perform the density-functional embedding simulations of heterogeneous systems in which different types of chemical bonds are present.

  7. Stimulus-responsive Controlled Release System by Covalent Immobilization of an Enzyme into Mesoporous Silica Nanoparticles

    PubMed Central

    Méndez, Jessica; Monteagudo, Alina; Griebenow, Kai

    2012-01-01

    Mesoporous silica nanoparticles (MSN) have emerged as an attractive class of drug delivery carriers for therapeutic agents. Herein, we explored the covalent immobilization of proteins into MSN to generate a stimulus-responsive controlled release system. First, MSN were functionalized with thiol groups using (mercaptopropyl)-trimethoxysilane (MPTMS). Functionalization was verified by X-ray photoelectron spectroscopy (XP), Fourier-transform infrared (FTIR) spectroscopy, and dynamic light scattering. The model enzyme carbonic anhydrase (CA) was coupled to sulfosuccinimidyl 6-[3'(2-pyridyldithio)-propionamido]hexanoate (Sulfo-LC-SPDP) at a low ratio of 1:1 to prevent enzyme inactivation and subsequently covalently immobilized into MSN via thiol-disulfide interchange. The enzyme could be released from MSN with 10 mM glutathione which represents intra-cellular redox conditions while it remained bound to the MSN at extra-cellular redox conditions represented by 1 μM glutathione. The activity of the released enzyme was >80% demonstrating that the enzyme was still largely functional and active after immobilization and release. Human cervical cancer (HeLa) cells were incubated with the MSN-CA bioconjugates at various concentrations for 24 h and the data show good biocompatibility. In summary, we demonstrate the potential of MSN as potential drug delivery systems for proteins. PMID:22375899

  8. Covalent modification of mushroom tyrosinase with different amphiphic polymers for pharmaceutical and biocatalysis applications

    SciTech Connect

    Morpurgo, M.; Schiavon, O.; Caliceti, P.

    1996-01-01

    Two different poly(ethylene glycol) derivatives (linear, mol wt 5000 and a branched form, mol wt 10000) and a new polymer (poly-[acryloylmorfoline], mol wt 5500) were covalently bound to the enzyme tyrosinase. The polymer-protein conjugates were studied with a view to their potential pharmaceutical application and to their use for the bioconversion of phenolic substrates in organic solvents. V{sub max} and K{sub m} for the dopa-dopaquinone conversion, thermostability, stability toward inactivation by dopa oxidation products, half-life in blood circulation, and behavior in organic solvents for the different adducts were investigated. Arrhenius plots for the dopa-dopaquinone conversion were also obtained in order to study the effects of temperature on the different enzyme forms. Covalent attachment of the polymers increased enzyme stability in aqueous solution and the solubility in organic solvents. However, organic solvent solubilization brought about loss of enzyme conformation as assessed by CD measurements, which is accompanied by a nonreversible loss of catalytic activity. 30 refs., 4 figs., 4 tabs.

  9. Covalent linkage of nanodiamond-paclitaxel for drug delivery and cancer therapy

    NASA Astrophysics Data System (ADS)

    Liu, Kuang-Kai; Zheng, Wen-Wei; Wang, Chi-Ching; Chiu, Yu-Chung; Cheng, Chia-Liang; Lo, Yu-Shiu; Chen, Chinpiao; Chao, Jui-I.

    2010-08-01

    A nanoparticle-conjugated cancer drug provides a novel strategy for cancer therapy. In this study, we manipulated nanodiamond (ND), a carbon nanomaterial, to covalently link paclitaxel for cancer drug delivery and therapy. Paclitaxel was bound to the surface of 3-5 nm sized ND through a succession of chemical modifications. The ND-paclitaxel conjugation was measured by atomic force microscope and nuclear magnetic resonance spectroscopy, and confirmed with infrared spectroscopy by the detection of deuterated paclitaxel. Treatment with 0.1-50 µg ml - 1 ND-paclitaxel for 48 h significantly reduced the cell viability in the A549 human lung carcinoma cells. ND-paclitaxel induced both mitotic arrest and apoptosis in A549 cells. However, ND alone or denatured ND-paclitaxel (after treatment with strong alkaline solution, 1 M NaOH) did not induce the damage effects on A549 cells. ND-paclitaxel was taken into lung cancer cells in a concentration-dependent manner using flow cytometer analysis. The ND-paclitaxel particles were located in the microtubules and cytoplasm of A549 cells observed by confocal microscopy. Furthermore, ND-paclitaxel markedly blocked the tumor growth and formation of lung cancer cells in xenograft SCID mice. Together, we provide a functional covalent conjugation of ND-paclitaxel, which can be delivered into lung carcinoma cells and preserves the anticancer activities on the induction of mitotic blockage, apoptosis and anti-tumorigenesis.

  10. Stabilization of alpha-chymotrypsin by covalent immobilization on amine-functionalized superparamagnetic nanogel.

    PubMed

    Hong, Jun; Gong, Peijun; Xu, Dongmei; Dong, Li; Yao, Side

    2007-02-20

    Stabilization of alpha-chymotrypsin (CT) by covalent immobilization on the amine-functionalized magnetic nanogel was studied. The amino groups containing superparamagnetic nanogel was obtained by Hoffman degradation of the polyacrylamide (PAM)-coated Fe(3)O(4) nanoparticles prepared by facile photochemical in situ polymerization. CT was then covalently bound to the magnetic nanogel with reactive amino groups by using 1-ethyl-3-(3-dimethylaminepropyl) carbodiimide as coupling reagent. The binding capacity was determined to be 61mg enzyme/g nanogel by BCA protein assay. Specific activity of the immobilized CT was measured to be 0.93U/(mgmin), 59.3% as that of free CT. The obtained immobilized enzyme had better resistance to temperature and pH inactivation in comparison to free enzyme and thus widened the ranges of reaction pH and temperature. The immobilized enzyme exhibited good thermostability, storage stability and reusability. Kinetic parameters were determined for both the immobilized and free enzyme. The value of K(m) of the immobilized enzyme was larger than did the free form, whereas the V(max) was smaller for the immobilized enzyme.

  11. A Small Covalent Allosteric Inhibitor of Human Cytomegalovirus DNA Polymerase Subunit Interactions.

    PubMed

    Chen, Han; Coseno, Molly; Ficarro, Scott B; Mansueto, My Sam; Komazin-Meredith, Gloria; Boissel, Sandrine; Filman, David J; Marto, Jarrod A; Hogle, James M; Coen, Donald M

    2017-02-10

    Human cytomegalovirus DNA polymerase comprises a catalytic subunit, UL54, and an accessory subunit, UL44, the interaction of which may serve as a target for the development of new antiviral drugs. Using a high-throughput screen, we identified a small molecule, (5-((dimethylamino)methylene-3-(methylthio)-6,7-dihydrobenzo[c]thiophen-4(5H)-one), that selectively inhibits the interaction of UL44 with a UL54-derived peptide in a time-dependent manner, full-length UL54, and UL44-dependent long-chain DNA synthesis. A crystal structure of the compound bound to UL44 revealed a covalent reaction with lysine residue 60 and additional noncovalent interactions that cause steric conflicts that would prevent the UL44 connector loop from interacting with UL54. Analyses of the reaction of the compound with model substrates supported a resonance-stabilized conjugation mechanism, and substitution of the lysine reduced the ability of the compound to inhibit UL44-UL54 peptide interactions. This novel covalent inhibitor of polymerase subunit interactions may serve as a starting point for new, needed drugs to treat human cytomegalovirus infections.

  12. Characterizing the Covalent Targets of a Small Molecule Inhibitor of the Lysine Acetyltransferase P300

    PubMed Central

    2015-01-01

    C646 inhibits the lysine acetyltransferases (KATs) p300 and CBP and represents the most potent and selective small molecule KAT inhibitor identified to date. To gain insights into the cellular activity of this epigenetic probe, we applied chemoproteomics to identify covalent targets of the C646 chemotype. Modeling and synthetic derivatization was used to develop a clickable analogue (C646-yne) that inhibits p300 similarly to the parent compound and enables enrichment of bound proteins. LC–MS/MS identified the major covalent targets of C646-yne as highly abundant cysteine-containing proteins, and follow-up studies found that C646 can inhibit tubulin polymerization in vitro. Finally, we provide evidence that thiol reactivity of C646 may limit its ability to antagonize acetylation in cells. These findings should enable a more precise interpretation of studies utilizing C646 as a chemical probe of KAT activity and suggest that an underappreciated liability of electrophile-containing inhibitors is a reduction in their cellular potency due to consumption by abundant protein and metabolite thiol sinks. PMID:26985290

  13. Covalent modification of calcium hydroxyapatite surface by grafting phenyl phosphonate moieties

    SciTech Connect

    Aissa, Abdallah; Debbabi, Mongi; Gruselle, Michel Thouvenot, Rene; Gredin, Patrick; Traksmaa, Rainer; Tonsuaadu, Kaia

    2007-08-15

    The reaction between phenyl phosphonic dichloride (C{sub 6}H{sub 5}P(O)Cl{sub 2}) and synthetic calcium hydroxy- and fluorapatite has been investigated. The presence of mono- or polymeric (C{sub 6}H{sub 5}PO) fragment bound to hydroxyapatite was evidenced by IR, and solid-state {sup 31}P NMR spectroscopy. X-ray powder analysis has shown that the apatitic structure remains unchanged during the reaction. In contrast, no reaction was found using fluorapatite. According to the results found for these two different apatites a mechanism was proposed for the formation of covalent P-O-P bonds as the result of a reaction between the C{sub 6}H{sub 5}P(O)Cl{sub 2} organic reagent and (HPO{sub 4}){sup -} and/or OH{sup -} ions of the hydroxyapatite. - Graphical abstract: Representation of the first step of the reaction between the phenyl phosphonic dichloride and the hydroxyl groups on the surface of the apatite, leading to covalent P-O-P bond with elimination of HCl.

  14. Stimulus-responsive controlled release system by covalent immobilization of an enzyme into mesoporous silica nanoparticles.

    PubMed

    Méndez, Jessica; Monteagudo, Alina; Griebenow, Kai

    2012-04-18

    Mesoporous silica nanoparticles (MSN) have emerged as an attractive class of drug delivery carriers for therapeutic agents. Herein, we explored the covalent immobilization of proteins into MSN to generate a stimulus-responsive controlled release system. First, MSN were functionalized with thiol groups using (mercaptopropyl)-trimethoxysilane (MPTMS). Functionalization was verified by X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared (FTIR) spectroscopy, and dynamic light scattering. The model enzyme carbonic anhydrase (CA) was coupled to sulfosuccinimidyl 6-[3'(2-pyridyldithio)-propionamido]hexanoate (Sulfo-LC-SPDP) at a low ratio of 1:1 to prevent enzyme inactivation and subsequently covalently immobilized into MSN via thiol-disulfide interchange. The enzyme could be released from MSN with 10 mM glutathione, which represents intracellular redox conditions, while it remained bound to the MSN at extracellular redox conditions represented by 1 μM glutathione. The activity of the released enzyme was >80% demonstrating that the enzyme was still largely functional and active after immobilization and release. Human cervical cancer (HeLa) cells were incubated with the MSN-CA bioconjugates at various concentrations for 24 h and the data show good biocompatibility. In summary, we demonstrate the potential of MSN as drug delivery systems for proteins.

  15. Surface functionalization of silica-coated magnetic nanoparticles for covalent attachment of cholesterol oxidase

    NASA Astrophysics Data System (ADS)

    Šulek, Franja; Drofenik, Miha; Habulin, Maja; Knez, Željko

    2010-01-01

    A systematic approach towards the fabrication of highly functionalized silica shell magnetic nanoparticles, presently used for enzyme immobilization, is herein fully presented. The synthesis of bare maghemite (γ-Fe 2O 3) nanoparticles was accomplished by thermal co-precipitation of iron ions in ammonia alkaline solution at harsh reaction conditions, respectively. Primary surface engineering of maghemite nanoparticles was successfully performed by the proper deposition of silica onto nanoparticles surface under strictly regulated reaction conditions. Next, the secondary surface functionalization of the particles was achieved by coating the particles with organosilane followed by glutaraldehyde activation in order to enhance protein immobilization. Covalent immobilization of cholesterol oxidase was attempted afterwards. The structural and magnetic properties of magnetic silica nanocomposites were characterized by TEM and vibrating sample magnetometer (VSM) instruments. X-ray diffraction measurements confirmed the spinel structure and average size of uncoated maghemite nanoparticles to be around 20 nm in diameter. SEM-EDS spectra indicated a strong signal for Si, implying the coating procedure of silica onto the particles surface to be successfully accomplished. Fourier transform infrared (FT-IR) spectra analysis confirmed the binding of amino silane molecules onto the surface of the maghemite nanoparticles mediated Si-O-Si chemical bonds. Compared to the free enzyme, the covalently bound cholesterol oxidase retained 50% of its activity. Binding of enzyme onto chemically modified magnetic nanoparticles via glutaraldehyde activation is a promising method for developing biosensing components in biomedicine.

  16. Surface modification of polydimethylsiloxane with a covalent antithrombin-heparin complex to prevent thrombosis.

    PubMed

    Leung, Jennifer M; Berry, Leslie R; Chan, Anthony K C; Brash, John L

    2014-01-01

    To prevent coagulation in contact with blood, polydimethylsiloxane (PDMS) was modified with an antithrombin-heparin (ATH) covalent complex using polyethylene glycol (PEG) as a linker/spacer. Using NHS chemistry, ATH was attached covalently to the distal chain end of the immobilized PEG linker. Surfaces were characterized by contact angle and X-ray photoelectron spectroscopy; attachment was confirmed by decrease in contact angles and an increase in nitrogen content as determined by X-ray photoelectron spectroscopy. Protein interactions in plasma were investigated using radiolabeled proteins added to plasma as tracers, and by immunoblotting of eluted proteins. Modification of PDMS with PEG alone was effective in reducing non-specific protein adsorption; attachment of ATH at the distal end of the PEG chains did not significantly affect protein resistance. It was shown that surfaces modified with ATH bound antithrombin selectively from plasma through the pentasaccharide sequence on the heparin moiety of ATH, indicating the ability of the ATH-modified surfaces to inhibit coagulation. Using thromboelastography, the effect of ATH modification on plasma coagulation was evaluated directly. It was found that initiation of coagulation was delayed and the time to clot was prolonged on PDMS modified with ATH/PEG compared to controls. For comparison, surfaces modified in a similar way with heparin were prepared and investigated using the same methods. The data suggest that the ATH-modified surfaces have superior anticoagulant properties compared to those modified with heparin.

  17. Blog life: Entropy Bound

    NASA Astrophysics Data System (ADS)

    Steinberg, Peter

    2008-06-01

    Who is the blog written by? Peter Steinberg is a nuclear physicist at the Brookhaven National Laboratory in New York, US. He is acting project manager of the PHOBOS experiment, which used Brookhaven's Relativistic Heavy Ion Collider (RHIC) to search for unusual events produced during collisions between gold nuclei. He is also involved with the PHENIX experiment, which seeks to discover a new state of matter known as the quark-gluon plasma. In addition to his own blog Entropy Bound, Steinberg is currently blogging on a website that was set up last year to publicize the involvement of US scientists with the Large Hadron Collider (LHC) at CERN.

  18. Antimicrobial peptide coatings for hydroxyapatite: electrostatic and covalent attachment of antimicrobial peptides to surfaces.

    PubMed

    Townsend, Leigh; Williams, Richard L; Anuforom, Olachi; Berwick, Matthew R; Halstead, Fenella; Hughes, Erik; Stamboulis, Artemis; Oppenheim, Beryl; Gough, Julie; Grover, Liam; Scott, Robert A H; Webber, Mark; Peacock, Anna F A; Belli, Antonio; Logan, Ann; de Cogan, Felicity

    2017-01-01

    The interface between implanted devices and their host tissue is complex and is often optimized for maximal integration and cell adhesion. However, this also gives a surface suitable for bacterial colonization. We have developed a novel method of modifying the surface at the material-tissue interface with an antimicrobial peptide (AMP) coating to allow cell attachment while inhibiting bacterial colonization. The technology reported here is a dual AMP coating. The dual coating consists of AMPs covalently bonded to the hydroxyapatite surface, followed by deposition of electrostatically bound AMPs. The dual approach gives an efficacious coating which is stable for over 12 months and can prevent colonization of the surface by both Gram-positive and Gram-negative bacteria.

  19. Non-covalent nanodiamond-polymer dispersions and electrostatic immobilization of bovine serum albumin protein

    NASA Astrophysics Data System (ADS)

    Skaltsas, T.; Pispas, S.; Tagmatarchis, N.

    2015-11-01

    Nanodiamonds (NDs) lack efficient dispersion, not only in solvents but also in aqueous media. The latter is of great importance, considering the inherent biocompatibility of NDs and the plethora of suitable strategies for immobilizing functional biomolecules. In this work, a series of polymers was non-covalently interacted with NDs, forming ND-polymer ensembles, and their dispersibility and stability was examined. Dynamic light scattering gave valuable information regarding the size of the ensembles in liquid phase, while their morphology was further examined by high-resolution transmission electron microscopy imaging. In addition, thermal analysis measurements were applied to collect information on the thermal behavior of NDs and their ensembles and to calculate the amount of polymer interacting with the NDs, as well as the dispersibility values of the ND-polymer ensembles. Finally, the bovine serum albumin protein was electrostatically bound to a ND-polymer ensemble in which the polymeric moiety was carrying quaternized pyridine units.

  20. Crystalline fibres of a covalent organic framework through bottom-up microfluidic synthesis.

    PubMed

    Rodríguez-San-Miguel, David; Abrishamkar, Afshin; Navarro, Jorge A R; Rodriguez-Trujillo, Romen; Amabilino, David B; Mas-Ballesté, Ruben; Zamora, Félix; Puigmartí-Luis, Josep

    2016-07-28

    A microfluidic chip has been used to prepare fibres of a porous polymer with high structural order, setting a precedent for the generation of a wide variety of materials using this reagent mixing approach that provides unique materials not accessible easily through bulk processes. The reaction between 1,3,5-tris(4-aminophenyl)benzene and 1,3,5-benzenetricarbaldehyde in acetic acid under continuous microfluidic flow conditions leads to the formation of a highly crystalline and porous covalent organic framework (hereafter denoted as MF-COF-1), consisting of fibrillar micro-structures, which have mechanical stability that allows for direct drawing of objects on a surface.

  1. Multifunctions of bounded variation

    NASA Astrophysics Data System (ADS)

    Vinter, R. B.

    2016-02-01

    Consider control systems described by a differential equation with a control term or, more generally, by a differential inclusion with velocity set F (t , x). Certain properties of state trajectories can be derived when it is assumed that F (t , x) is merely measurable w.r.t. the time variable t. But sometimes a refined analysis requires the imposition of stronger hypotheses regarding the time dependence. Stronger forms of necessary conditions for minimizing state trajectories can be derived, for example, when F (t , x) is Lipschitz continuous w.r.t. time. It has recently become apparent that significant addition properties of state trajectories can still be derived, when the Lipschitz continuity hypothesis is replaced by the weaker requirement that F (t , x) has bounded variation w.r.t. time. This paper introduces a new concept of multifunctions F (t , x) that have bounded variation w.r.t. time near a given state trajectory, of special relevance to control. We provide an application to sensitivity analysis.

  2. Short-chain PEG molecules strongly bound to magnetic nanoparticle for MRI long circulating agents.

    PubMed

    Ruiz, A; Salas, G; Calero, M; Hernández, Y; Villanueva, A; Herranz, F; Veintemillas-Verdaguer, S; Martínez, E; Barber, D F; Morales, M P

    2013-05-01

    This study developed an approach for the synthesis of magnetic nanoparticles coated with three different polyethylene glycol (PEG)-derived molecules. The influence of the coating on different properties of the nanoparticles was studied. Magnetite nanoparticles (7 and 12 nm in diameter) were obtained via thermal decomposition of a coordination complex as an iron precursor to ensure nanoparticle homogeneity in size and shape. Particles were first coated with meso-2,3-dimercaptosuccinic acid by a ligand exchange process to remove oleic acid, followed by modification with three distinct short-chain PEG polymers, which were covalently bound to the nanoparticle surface via 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride activation of the carboxylic acids. In all cases, colloidal suspensions had hydrodynamic sizes <100 nm and low surface charge, demonstrating the effect of PEG coating on the aggregation properties and steric stabilization of the magnetic nanoparticles. The internalization and biocompatibility of these materials in the HeLa human cervical carcinoma cell line were tested. Cells preincubated with PEG-coated iron nanoparticles were visualized outside the cells, and their biocompatibility at high Fe concentrations was demonstrated using a standard 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Finally, relaxivity parameters (r1 and r2) were used to evaluate the efficiency of suspensions as magnetic resonance imaging contrast agents; the r2 value was similar to that for Resovist and up to four times higher than that for Sinerem, probably due to the larger nanoparticle size. The time of residence in blood of the nanoparticles measured from the relaxivity values, and the Fe content in blood was doubled for rats and rabbits due to the PEG on the nanoparticle surface. The results suggest that this PEGylation strategy for large magnetic nanoparticles (>10nm) holds promise for biomedical applications.

  3. Fatty acid binding sites of human and bovine albumins: Differences observed by spin probe ESR

    NASA Astrophysics Data System (ADS)

    Muravsky, Vladimir; Gurachevskaya, Tatjana; Berezenko, Stephen; Schnurr, Kerstin; Gurachevsky, Andrey

    2009-09-01

    Bovine and human serum albumins and recombinant human albumin, all non-covalently complexed with 5- and 16-doxyl stearic acids, were investigated by ESR spectroscopy in solution over a range of pH values (5.5-8.0) and temperatures (25-50 °C), with respect to the allocation and mobility of fatty acid (FA) molecules bound to the proteins and conformation of the binding sites. In all proteins bound FA undergo a permanent intra-albumin migration between the binding sites and inter-domain residence. Nature identity of the recombinant human albumin to its serum-derived analog was observed. However, the binding sites of bovine albumin appeared shorter in length and wider in diameter than those of human albumin. Presumably, less tightly folded domains in bovine albumin allow better penetration of water molecules in the interior of the globule that resulted in higher activation energy of FA dissociation from the binding site. Thus, the sensitive technique based on ESR non-covalent spin labeling allowed quantitative analysis and reliable comparison of the fine features of binding proteins.

  4. Covalent attachment of lactase to low-density polyethylene films.

    PubMed

    Goddard, J M; Talbert, J N; Hotchkiss, J H

    2007-01-01

    Polymer films to which bioactive compounds such as enzymes are covalently attached offer potential for in-package processing of food. Beta-galactosidase (lactase) was covalently attached to surface-functionalized low-density polyethylene films. A two-step wet chemical functionalization introduced 15.7 nmol/cm2 primary amines to the film surface. Contact angle, dye assays, X-ray photoelectron spectroscopy, and appropriate protein assays were used to characterize changes in film surface chemistry after each step in the process of attachment. Glutaraldehyde was used to covalently attach lactase to the surface at a density of 6.0 microg protein per cm2 via reductive amination. The bond between the covalently attached lactase and the functionalized polyethylene withstood heat treatment in the presence of an ionic denaturant with 74% enzyme retention, suggesting that migration of the enzyme into the food product would be unlikely. The resulting polyethylene had an enzyme activity of 0.020 lactase units (LU)/cm2 (approximately 4500 LU/g). These data suggest that enzymes that may have applications in foods can be covalently attached to inert polymer surfaces, retain significant activity, and thus have potential as a nonmigratory active packaging materials.

  5. Covalent agonists for studying G protein-coupled receptor activation

    PubMed Central

    Weichert, Dietmar; Kruse, Andrew C.; Manglik, Aashish; Hiller, Christine; Zhang, Cheng; Hübner, Harald; Kobilka, Brian K.; Gmeiner, Peter

    2014-01-01

    Structural studies on G protein-coupled receptors (GPCRs) provide important insights into the architecture and function of these important drug targets. However, the crystallization of GPCRs in active states is particularly challenging, requiring the formation of stable and conformationally homogeneous ligand-receptor complexes. Native hormones, neurotransmitters, and synthetic agonists that bind with low affinity are ineffective at stabilizing an active state for crystallogenesis. To promote structural studies on the pharmacologically highly relevant class of aminergic GPCRs, we here present the development of covalently binding molecular tools activating Gs-, Gi-, and Gq-coupled receptors. The covalent agonists are derived from the monoamine neurotransmitters noradrenaline, dopamine, serotonin, and histamine, and they were accessed using a general and versatile synthetic strategy. We demonstrate that the tool compounds presented herein display an efficient covalent binding mode and that the respective covalent ligand-receptor complexes activate G proteins comparable to the natural neurotransmitters. A crystal structure of the β2-adrenoreceptor in complex with a covalent noradrenaline analog and a conformationally selective antibody (nanobody) verified that these agonists can be used to facilitate crystallogenesis. PMID:25006259

  6. Culture-bound syndromes.

    PubMed

    Levine, R E; Gaw, A C

    1995-09-01

    Since its inception, scholars have struggled with the concept of CBSs. This struggle is reflected in the continuing use of a term that is confusing and inaccurate. Most authors would agree that the term "culture-bound syndrome" was intended to describe forms of otherwise common mental illness that are rendered unusual because of the pathoplastic influence of culture. It was intended not only to describe specific syndromes, but also meanings of illness and non-Western notions of disease causation. The term has become an anachronism, for the word, "syndrome," implies specific disease entities, not illnesses of attribution of idioms of distress. Furthermore, the word "bound" implies that the entities described are restricted to a single culture. Close examination reveals that many of the so-called "culture-bound" syndromes are found in multiple cultures that have in common only that they are "non-Western." It may be unreasonable to expect one term to describe these different concepts. The most accurate of the designations offered might be "folk diagnostic categories." Perhaps the most difficult question remaining is "How can we understand (and classify) these phenomena in such a way that highlights their uniqueness but does not dismiss them as too rare and exotic to warrant attention?" The first step is to recognize that the CBSs are a heterogeneous group of conditions. We must next acknowledge that the concepts represented may be difficult for the average Western clinician to recognize but, in their respective cultures, are neither rare nor unusual. With 80% of our increasingly shrinking world coming from "non-Western" cultures, a familiarity with non-Western notions of disease causation is particularly important for modern clinicians. Many authors have recommended that those CBSs that are "true" syndromes be classified together with their Western counterparts. In order to do this, the folk labels need to be put aside and the fundamental components of each disorder

  7. Optical and electrochemical responses of an anthrax biomarker based on single-walled carbon nanotubes covalently loaded with terbium complexes.

    PubMed

    Tan, Chaoliang; Wang, Qianming; Zhang, Cheng Cheng

    2011-12-14

    An effective single-walled carbon nanotube (SWNT) covalently loaded with unsaturated terbium emissive material was designed for specific and rapid (2-3 s) detection of calcium dipicolinate (CaDPA) (detection limit 1 μM). The nanoprobe was successfully assembled onto electrodes and its sensing abilities were investigated through electrochemical measurement. Cyclic voltammetry curves were selectively responsive to calcium dipicolinate compared with benzoic acid, o-phthalic acid and m-phthalic acid. This novel material provides dual opto-electrochemical recognition of the anthrax biomarker CaDPA.

  8. Theory and applications of covalent docking in drug discovery: merits and pitfalls.

    PubMed

    Kumalo, Hezekiel Mathambo; Bhakat, Soumendranath; Soliman, Mahmoud E S

    2015-01-27

    he present art of drug discovery and design of new drugs is based on suicidal irreversible inhibitors. Covalent inhibition is the strategy that is used to achieve irreversible inhibition. Irreversible inhibitors interact with their targets in a time-dependent fashion, and the reaction proceeds to completion rather than to equilibrium. Covalent inhibitors possessed some significant advantages over non-covalent inhibitors such as covalent warheads can target rare, non-conserved residue of a particular target protein and thus led to development of highly selective inhibitors, covalent inhibitors can be effective in targeting proteins with shallow binding cleavage which will led to development of novel inhibitors with increased potency than non-covalent inhibitors. Several computational approaches have been developed to simulate covalent interactions; however, this is still a challenging area to explore. Covalent molecular docking has been recently implemented in the computer-aided drug design workflows to describe covalent interactions between inhibitors and biological targets. In this review we highlight: (i) covalent interactions in biomolecular systems; (ii) the mathematical framework of covalent molecular docking; (iii) implementation of covalent docking protocol in drug design workflows; (iv) applications covalent docking: case studies and (v) shortcomings and future perspectives of covalent docking. To the best of our knowledge; this review is the first account that highlights different aspects of covalent docking with its merits and pitfalls. We believe that the method and applications highlighted in this study will help future efforts towards the design of irreversible inhibitors.

  9. Increased Protein Structural Resolution from Diethylpyrocarbonate-based Covalent Labeling and Mass Spectrometric Detection

    NASA Astrophysics Data System (ADS)

    Zhou, Yuping; Vachet, Richard W.

    2012-04-01

    Covalent labeling and mass spectrometry are seeing increased use together as a way to obtain insight into the 3-dimensional structure of proteins and protein complexes. Several amino acid specific (e.g., diethylpyrocarbonate) and non-specific (e.g., hydroxyl radicals) labeling reagents are available for this purpose. Diethylpyrocarbonate (DEPC) is a promising labeling reagent because it can potentially probe up to 30% of the residues in the average protein and gives only one reaction product, thereby facilitating mass spectrometric analysis. It was recently reported, though, that DEPC modifications are labile for some amino acids. Here, we show that label loss is more significant and widespread than previously thought, especially for Ser, Thr, Tyr, and His residues, when relatively long protein digestion times are used. Such label loss ultimately decreases the amount of protein structural information that is obtainable with this reagent. We find, however, that the number of DEPC modified residues and, thus, protein structural information, can be significantly increased by decreasing the time between the covalent labeling reaction and the mass spectrometric analysis. This is most effectively accomplished using short (e.g., 2 h) proteolytic digestions with enzymes such as immobilized chymotrypsin or Glu-C rather than using methods (e.g., microwave or ultrasonic irradiation) that accelerate proteolysis in other ways. Using short digestion times, we show that the percentage of solvent accessible residues that can be modified by DEPC increases from 44% to 67% for cytochrome c, 35% to 81% for myoglobin, and 76% to 95% for β-2-microglobulin. In effect, these increased numbers of modified residues improve the protein structural resolution available from this covalent labeling method. Compared with typical overnight digestion conditions, the short digestion times decrease the average distance between modified residues from 11 to 7 Å for myoglobin, 13 to 10 Å for

  10. In vivo covalent binding of organic chemicals to DNA as a quantitative indicator in the process of chemical carcinogenesis.

    PubMed

    Lutz, W K

    1979-12-01

    The covalent binding of chemical carcinogens to DNA of mammalian organs is expressed per unit dose, and a 'Covalent-Binding Index', CBI, is defined. CBI for various carcinogens span over 6 orders of magnitude. A similar range is observed for the carcinogenic potency in long-term bioassays on carcinogenicity. For the assessment of a risk from exposure to a carcinogen, the total DNA dmaage can be estimated if the actual dose is also accounted for. A detailed description is given for planning and performing a DNA-binding assay. A complete literature survey on DNA binding in vivo (83 compounds) is given with a calculation of CBI, where possible, 153 compounds are listed where a covalent binding to any biological macromolecule has been shown in vivo or in vitro. Recent, so far unpublished findings with aflatoxin M1, macromolecule-bound aflatoxin B1, diethylstilbestrol, and 1,2-epithiobutyronitrile are included. A comparison of CBI for rat-liver DNA with hepatocarcinogenic potency reveals a surprisingly good quantitative correlation. Refinements for a DNA-binding assay are proposed. Possibilites and limitations in the use of DNA binding in chemical carcinogenesis are discussed extensively.

  11. Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering.

    PubMed

    Voiry, Damien; Goswami, Anandarup; Kappera, Rajesh; e Silva, Cecilia de Carvalho Castro; Kaplan, Daniel; Fujita, Takeshi; Chen, Mingwei; Asefa, Tewodros; Chhowalla, Manish

    2015-01-01

    Chemical functionalization of low-dimensional materials such as nanotubes, nanowires and graphene leads to profound changes in their properties and is essential for solubilizing them in common solvents. Covalent attachment of functional groups is generally achieved at defect sites, which facilitate electron transfer. Here, we describe a simple and general method for covalent functionalization of two-dimensional transition metal dichalcogenide nanosheets (MoS₂, WS₂ and MoSe₂), which does not rely on defect engineering. The functionalization reaction is instead facilitated by electron transfer between the electron-rich metallic 1T phase and an organohalide reactant, resulting in functional groups that are covalently attached to the chalcogen atoms of the transition metal dichalcogenide. The attachment of functional groups leads to dramatic changes in the optoelectronic properties of the material. For example, we show that it renders the metallic 1T phase semiconducting, and gives it strong and tunable photoluminescence and gate modulation in field-effect transistors.

  12. A comparison of covalent and non-covalent imprinting strategies for the synthesis of stigmasterol imprinted polymers.

    PubMed

    Hashim, Shima N N S; Boysen, Reinhard I; Schwarz, Lachlan J; Danylec, Basil; Hearn, Milton T W

    2014-09-12

    Non-covalent and covalent imprinting strategies have been investigated for the synthesis of stigmasterol imprinted polymers. The synthesized molecularly imprinted polymers (MIPs) were then evaluated for their recognition and selectivity towards stigmasterol via static and dynamic batch-binding assays and their performance measured against control non-imprinted polymers (NIPs). MIPs prepared using the conventional non-covalent imprinting method displayed little to no binding affinity for stigmasterol under various conditions. In contrast, the application of a covalent imprinting approach using the novel post-synthetically cleavable monomer-template composite stigmasteryl-3-O-methacrylate resulted in the fabrication of a MIP that successfully recognized stigmasterol in both organic and partially aqueous environments. The affinity and selectivity of the covalently prepared MIP was enhanced when undertaken in a partially aqueous environment consisting of an acetonitrile/water (9:1, v/v) solvent mixture. These features have been exploited in a molecularly imprinted solid-phase extraction (MISPE) format, wherein the preferential retention of stigmasterol (with an imprint factor of 12) was demonstrated with 99% recovery in comparison to cholesterol (imprint factor of 6) and ergosterol (imprint factor of 4) while in the presence of several closely related steryl analogues.

  13. Covalent bonds in AlMnSi icosahedral quasicrystalline approximant

    PubMed

    Kirihara; Nakata; Takata; Kubota; Nishibori; Kimura; Sakata

    2000-10-16

    Electron density distributions were obtained using the maximum entropy method with synchrotron radiation powder data. In the metallic Al12Re, metallic bonding was observed for the icosahedral Al12 cluster with central Re atom. In the nonmetallic alpha-AlMnSi 1/1 approximant, covalent bonds were found in the electron density distribution of the Mackay icosahedral cluster without central atom. Rather than the Hume-Rothery mechanism, the covalency of Al (Si) icosahedron and that between Al (Si) and Mn atoms is considered to be the origin of the pseudogap and nonmetallic behavior of alpha-AlMnSi.

  14. Constructing covalent interface in rubber/clay nanocomposite by combining structural modification and interlamellar silylation of montmorillonite.

    PubMed

    Zha, Chao; Wang, Wencai; Lu, Yonglai; Zhang, Liqun

    2014-11-12

    Strong interfacial interaction and nanodispersion are necessary for polymer nanocomposites with expectations on mechanical performance. In this work, montmorillonite (MMT) was first structurally modified by acid treatment to produce more silanol groups on the layer surface. This was followed by chemical modification of γ-methacryloxy propyl trimethoxysilane molecule (KH570) through covalent grafting with the silanol groups. (29)Si and (27)Al magic angle spinning (MAS) NMR results revealed the microstructural changes of MMT after acid treatment and confirmed the increase of silanol groups on acid-treated MMT surfaces. Thermogravimetric analysis indicated an increase in the grafted amount of organosilane on the MMT surface. X-ray diffraction (XRD) showed that the functionalization process changed the highly ordered stacking structure of the MMT mineral into a highly disordered structure, indicating successful grafting of organosilane to the interlayer surface of the crystalline sheets. The styrene-butadiene rubber (SBR)/MMT nanocomposites were further prepared by co-coagulating with SBR latex and grafted-MMT aqueous suspension. During vulcanization, a covalent interface between modified MMT and rubber was established through peroxide-radical-initiated reactions, and layer aggregation was effectively prevented. The SBR/MMT nanocomposites had highly and uniformly dispersed MMT layers, and the covalent interfacial interaction was finally achieved and exhibited high performance.

  15. Covalent docking of selected boron-based serine beta-lactamase inhibitors

    NASA Astrophysics Data System (ADS)

    Sgrignani, Jacopo; Novati, Beatrice; Colombo, Giorgio; Grazioso, Giovanni

    2015-05-01

    AmpC β-lactamase is a hydrolytic enzyme conferring resistance to β-lactam antibiotics in multiple Gram-negative bacteria. Therefore, identification of non-β-lactam compounds able to inhibit the enzyme is crucial for the development of novel antibacterial therapies. In general, AmpC inhibitors have to engage the highly solvent-exposed catalytic site of the enzyme. Therefore, understanding the implications of ligand-protein induced-fit and water-mediated interactions behind the inhibitor-enzyme recognition process is fundamental for undertaking structure-based drug design process. Here, we focus on boronic acids, a promising class of beta-lactamase covalent inhibitors. First, we optimized a docking protocol able to reproduce the experimentally determined binding mode of AmpC inhibitors bearing a boronic group. This goal was pursued (1) performing rigid and flexible docking calculations aiming to establish the role of the side chain conformations; and (2) investigating the role of specific water molecules in shaping the enzyme active site and mediating ligand protein interactions. Our calculations showed that some water molecules, conserved in the majority of the considered X-ray structures, are needed to correctly predict the binding pose of known covalent AmpC inhibitors. On this basis, we formalized our findings in a docking and scoring protocol that could be useful for the structure-based design of new boronic acid AmpC inhibitors.

  16. Clustering of carboxylated magnetite nanoparticles through polyethylenimine: Covalent versus electrostatic approach

    NASA Astrophysics Data System (ADS)

    Tóth, Ildikó Y.; Nesztor, Dániel; Novák, Levente; Illés, Erzsébet; Szekeres, Márta; Szabó, Tamás; Tombácz, Etelka

    2017-04-01

    Carboxylated magnetite nanoparticles (MNPs) are frequently used to develop materials with enhanced properties for MRI and hyperthermia. The controlled clustering of MNPs via covalent or electrostatic approaches provides opportunity to prepare high quality materials. MNPs were prepared by co-precipitation and coated by poly(acrylic acid-co-maleic acid) (PAM@MNP). The clusters were synthesized from purified PAM@MNPs and polyethylenimine (PEI) solution via electrostatic interaction and covalent bond formation (ES-cluster and CB-cluster, respectively). The electrostatic adhesion (-NH3+ and -COO-) and the formed amide bond were confirmed by ATR-FTIR. The averaged area of CB-clusters was about twice as large as that of ES-cluster, based on TEM. The SAXS results showed that the surface of MNPs was smooth and the nanoparticles were close packed in both clusters. The pH-dependent aggregation state and zeta potential of clusters were characterized by DLS and electrophoresis measurements, the clusters were colloidally stable at pH>5. In hyperthermia experiments, the values of SAR were about two times larger for the chemically bonded cluster. The MRI studies showed exceptionally high transversion relaxivities, the r2 values are 457 mM-1 s-1 and 691 mM-1 s-1 for ES-cluster and CB-cluster, respectively. Based on these results, the chemically clustered product shows greater potential for feasible biomedical applications.

  17. Bound Rationality and Organizational Learning.

    DTIC Science & Technology

    1989-09-23

    8217 . 90 0 8 0.. O 4 BOUNDED RATIONALITY AND ORGANIZATIONAL LEARNING Technical Report AlP - 107 Herbert A. Simon Department of Psychology Carnegie Mellon...ACCESSION No N/A N/A N/A N/A 1 1 TITLE (include Security Classificarnon) Bounded rationality and organizational learning 12 PERSONAL AUTHOR(S) HretA io 13a...organizations organizational psychology organizational learning bounded rationality cognitive psychology 𔄃 ABSTRACT (Continue on reverse if necessary

  18. Direct electrochemistry of Phanerochaete chrysosporium cellobiose dehydrogenase covalently attached onto gold nanoparticle modified solid gold electrodes.

    PubMed

    Matsumura, Hirotoshi; Ortiz, Roberto; Ludwig, Roland; Igarashi, Kiyohiko; Samejima, Masahiro; Gorton, Lo

    2012-07-24

    Achieving efficient electrochemical communication between redox enzymes and various electrode materials is one of the main challenges in bioelectrochemistry and is of great importance for developing electronic applications. Cellobiose dehydrogenase (CDH) is an extracellular flavocytochrome composed of a catalytic FAD containing dehydrogenase domain (DH(CDH)), a heme b containing cytochrome domain (CYT(CDH)), and a flexible linker region connecting the two domains. Efficient direct electron transfer (DET) of CDH from the basidiomycete Phanerochaete chrysosporium (PcCDH) covalently attached to mixed self-assembled monolayer (SAM) modified gold nanoparticle (AuNP) electrode is presented. The thiols used were as follows: 4-aminothiophenol (4-ATP), 4-mercaptobenzoic acid (4-MBA), 4-mercaptophenol (4-MP), 11-mercapto-1-undecanamine (MUNH(2)), 11-mercapto-1-undecanoic acid (MUCOOH), and 11-mercapto-1-undecanol (MUOH). A covalent linkage between PcCDH and 4-ATP or MUNH(2) in the mixed SAMs was formed using glutaraldehyde as cross-linker. The covalent immobilization and the surface coverage of PcCDH were confirmed with surface plasmon resonance (SPR). To improve current density, AuNPs were cast on the top of polycrystalline gold electrodes. For all the immobilized PcCDH modified AuNPs electrodes, cyclic voltammetry exhibited clear electrochemical responses of the CYT(CDH) with fast electron transfer (ET) rates in the absence of substrate (lactose), and the formal potential was evaluated to be +162 mV vs NHE at pH 4.50. The standard ET rate constant (k(s)) was estimated for the first time for CDH and was found to be 52.1, 59.8, 112, and 154 s(-1) for 4-ATP/4-MBA, 4-ATP/4-MP, MUNH(2)/MUCOOH, and MUNH(2)/MUOH modified electrodes, respectively. At all the mixed SAM modified AuNP electrodes, PcCDH showed DET only via the CYT(CDH). No DET communication between the DH(CDH) domain and the electrode was found. The current density for lactose oxidation was remarkably increased by

  19. 1,4-alpha-Glucan phosphorylase form Klebsiella pneumoniae covalently couple on porous glass.

    PubMed

    Wengenmayer, F; Linder, D; Wallenfels, K

    1977-09-01

    A simplified procedure for the preparation of 1,4-alpha-glucan phosphorylase from Klebsiella pneumoniae is described. An 80-fold purification is achieved in two steps with an overall yield of about 50%. The specific activity of the homogeneous enzyme protein is 17.7 units/mg. Compared with glycogen phosphorylase from rabbit muscle the enzyme from K. pneumoniae shows a markedly higher stability against deforming and chaotropic agents. The 1,4-alpha-glucan phosphorylase was covalently bound to porous glass particles by three different methods. Coupling with glutaraldehyde gave the highest specific activity, i.e., 5.6 units/mg of bound protein or 133 units/g of glass with maltodextrin as substrate. This corresponds to about 30% of the specific activity of the soluble enzyme. With substrates of higher molecular weight, such as glycogen or amylopectin, lower relative activity was observed. The immobilized enzyme preparations showed pH activity profiles which were slightly displaced to higher values and exhibited an increased temperature stability.

  20. Capillary Electrophoresis of Covalently Functionalized Single-Chirality Carbon Nanotubes.

    PubMed

    He, Pingli; Meany, Brendan; Wang, Chunyan; Piao, Yanmei; Kwon, Hyejin; Deng, Shunliu; Wang, YuHuang

    2017-03-30

    We demonstrate the separation of chirality-enriched single-walled carbon nanotubes (SWCNTs) by degree of surface functionalization using high performance capillary electrophoresis. Controlled amounts of negatively- and positively-charged functional groups were attached to the sidewall of chirality-enriched SWCNTs through covalent functionalization using 4-carboxybenzenediazonium tetrafluoroborate or 4-diazo-N,N-diethylaniline tetrafluoroborate, respectively. Surfactant- and pH-dependent studies confirmed that under conditions that minimized ionic screening effects, separation of these functionalized SWCNTs was strongly dependent on the surface charge density introduced through covalent surface chemistry. For both heterogeneous mixtures and single chirality-enriched samples, covalently functionalized SWCNTs showed substantially increased peak width in electropherogram spectra compared to non-functionalized SWCNTs, which can be attributed to a distribution of surface charges along the functionalized nanotubes. Successful separation of functionalized single-chirality SWCNTs by functional density was confirmed with UV-Vis-NIR absorption and Raman scattering spectroscopies of fraction collected samples. These results suggest a high-degree of structural heterogeneity in covalently functionalized SWCNTs, even for chirality enriched samples, and show the feasibility of applying capillary electrophoresis for high performance separation of nanomaterials based on differences in surface functional density. This article is protected by copyright. All rights reserved.

  1. Valence, Covalence, Hypervalence, Oxidation State, and Coordination Number

    ERIC Educational Resources Information Center

    Smith, Derek W.

    2005-01-01

    Valence as a numerical measure of an atom's combining power, expressed by the number of bonds it forms in a molecular formulation of the compound in question, was unable to cope with coordination compounds. The covalence of an atom is the nearest model equivalent, but is subject to ambiguity since it often depends on which bonding model is being…

  2. Covalently Binding the Photosystem I to Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Kaniber, S.; Frolov, L.; Simmel, F. C.; Holleitner, A. W.; Carmeli, C.; Carmeli, I.

    2010-01-01

    We present a chemical route to covalently couple the photosystem I (PS I) to carbon nanotubes (CNTs). Small linker molecules are used to connect the PS I to the CNTs. Hybrid systems, consisting of CNTs and the PS I, promise new photo-induced transport phenomena due to the outstanding electro-optical properties of the robust cyanobacteria membrane protein PS I.

  3. Towards design rules for covalent nanostructures on metal surfaces.

    PubMed

    Björk, Jonas; Hanke, Felix

    2014-01-20

    The covalent molecular assembly on metal surfaces is explored, outlining the different types of applicable reactions. Density functional calculations for on-surface reactions are shown to yield valuable insights into specific reaction mechanisms and trends across the periodic table. Finally, it is shown how design rules could be derived for nanostructures on metal surfaces.

  4. Side-on bound diazene and hydrazine complexes of ruthenium.

    PubMed

    Field, Leslie D; Li, Hsiu L; Dalgarno, Scott J

    2010-07-05

    The reaction of cis-[RuCl(2)(PP)(2)] (PP = depe, dmpe) with hydrazine afforded end-on bound ruthenium(II) hydrazine complexes. Treatment of the hydrazine complexes with strong base afforded the side-on bound ruthenium(0) diazene complexes cis-[Ru(eta(2)-NH=NH)(PP)(2)]. Treatment of cis-[Ru(eta(2)-NH=NH)(depe)(2)] with weak acid under chloride-free conditions afforded the side-on bound hydrazine complex cis-[Ru(eta(2)-N(2)H(4))(depe)(2)](2+). These are the first reported side-on bound diazene and hydrazine complexes of ruthenium, and they have been characterized by NMR spectroscopy ((1)H, (31)P, (15)N) and by X-ray crystallography. The interconversion between the ruthenium diazene and the ruthenium hydrazine by acid-base treatment was reversible.

  5. Polystyrene bound oxidovanadium(IV) and dioxidovanadium(V) complexes of histamine derived ligand for the oxidation of methyl phenyl sulfide, diphenyl sulfide and benzoin.

    PubMed

    Maurya, Mannar R; Arya, Aarti; Kumar, Amit; Pessoa, João Costa

    2009-03-28

    Ligand Hsal-his (I) derived from salicylaldehyde and histamine has been covalently bound to chloromethylated polystyrene cross-linked with 5% divinylbenzene. Upon treatment with [VO(acac)(2)] in DMF, the polystyrene-bound ligand (abbreviated as PS-Hsal-his, II) gave the stable polystyrene-bound oxidovanadium(iv) complex PS-[V(IV)O(sal-his)(acac)] , which upon oxidation yielded the dioxidovanadium(v) PS-[V(V)O(2)(sal-his)] complex. The corresponding non polymer-bound complexes [V(IV)O(sal-his)(acac)] and [V(V)O(2)(sal-his)] have also been obtained. These complexes have been characterised by IR, electronic, (51)V NMR and EPR spectral studies, and thermal as well as scanning electron micrograph studies. Complexes and have been used as a catalyst for the oxidation of methyl phenyl sulfide, diphenyl sulfide and benzoin with 30% H(2)O(2) as oxidant. Under the optimised reaction conditions, a maximum of 93.8% conversion of methyl phenyl sulfide with 63.7% selectivity towards methyl phenyl sulfoxide and 36.3% towards methyl phenyl sulfone has been achieved in 2 h with 2 . Under similar conditions, diphenyl sulfide gave 83.4% conversion where selectivity of reaction products varied in the order: diphenyl sulfoxide (71.8%) > diphenyl sulfone (28.2%). A maximum of 91.2% conversion of benzoin has been achieved within 6 h, and the selectivities of reaction products are: methylbenzoate (37.0%) > benzil (30.5%) > benzaldehyde-dimethylacetal (22.5%) > benzoic acid (8.1%). The PS-bound complex, 1 exhibits very comparable catalytic potential. These polymer-anchored heterogeneous catalysts do not leach during catalytic action, are recyclable and show higher catalytic activity and turnover frequency than the corresponding non polymer-bound complexes. EPR and (51)V NMR spectroscopy was used to characterise methanolic solutions of 3 and 4 and to identify species formed upon addition of H(2)O(2) and/or acid and/or methyl phenyl sulfide.

  6. NCIPLOT: a program for plotting non-covalent interaction regions

    PubMed Central

    Contreras-García, Julia; Johnson, Erin R.; Keinan, Shahar; Chaudret, Robin; Piquemal, Jean-Philip; Beratan, David N.; Yang, Weitao

    2011-01-01

    Non-covalent interactions hold the key to understanding many chemical, biological, and technological problems. Describing these non-covalent interactions accurately, including their positions in real space, constitutes a first step in the process of decoupling the complex balance of forces that define non-covalent interactions. Because of the size of macromolecules, the most common approach has been to assign van der Waals interactions (vdW), steric clashes (SC), and hydrogen bonds (HBs) based on pairwise distances between atoms according to their van der Waals radii. We recently developed an alternative perspective, derived from the electronic density: the Non-Covalent Interactions (NCI) index [J. Am. Chem. Soc. 2010, 132, 6498]. This index has the dual advantages of being generally transferable to diverse chemical applications and being very fast to compute, since it can be calculated from promolecular densities. Thus, NCI analysis is applicable to large systems, including proteins and DNA, where analysis of non-covalent interactions is of great potential value. Here, we describe the NCI computational algorithms and their implementation for the analysis and visualization of weak interactions, using both self-consistent fully quantum-mechanical, as well as promolecular, densities. A wide range of options for tuning the range of interactions to be plotted is also presented. To demonstrate the capabilities of our approach, several examples are given from organic, inorganic, solid state, and macromolecular chemistry, including cases where NCI analysis gives insight into unconventional chemical bonding. The NCI code and its manual are available for download at http://www.chem.duke.edu/~yang/software.htm PMID:21516178

  7. Evaluation of structural and functional properties of chitosan-chlorogenic acid complexes.

    PubMed

    Wei, Zihao; Gao, Yanxiang

    2016-05-01

    The objectives of the present study were to first synthesize chitosan-chlorogenic acid (CA) covalent complex and then compare structural and functional properties between chitosan-CA covalent complex and physical complex. First, chitosan-CA covalent complex was synthesized and its total phenolic content was as high as 276.5 ± 6.2 mg/g. Then structural and functional properties of chitosan-CA covalent and physical complexes were analyzed. The covalent reaction induced formation of both amide and ester bonds in chitosan. Data of X-ray diffraction (XRD) and scanning electron microscopy (SEM) indicated that the complexations of CA changed crystallinity and morphology of chitosan, and covalent complexation induced a larger change of physical structure than physical complexation. In terms of functional properties, chitosan-CA covalent complex exhibited better thermal stability than physical complex in terms of antioxidant activity, and the viscosity of chitosan was significantly increased by covalent modification.

  8. Northwest Outward Bound Instructor's Manual.

    ERIC Educational Resources Information Center

    Northwest Outward Bound School, Portland, OR.

    Instructor responsibilities, procedures for completing activities safely, and instructional methods and techniques are outlined to assist instructors in the Northwest Outward Bound School (Portland, Oregon) as they strive for teaching excellence. Information is organized into six chapters addressing: history and philosophy of Outward Bound; course…

  9. Fractional diffusion on bounded domains

    DOE PAGES

    Defterli, Ozlem; D'Elia, Marta; Du, Qiang; ...

    2015-03-13

    We found that the mathematically correct specification of a fractional differential equation on a bounded domain requires specification of appropriate boundary conditions, or their fractional analogue. In this paper we discuss the application of nonlocal diffusion theory to specify well-posed fractional diffusion equations on bounded domains.

  10. Bounds for Asian basket options

    NASA Astrophysics Data System (ADS)

    Deelstra, Griselda; Diallo, Ibrahima; Vanmaele, Michèle

    2008-09-01

    In this paper we propose pricing bounds for European-style discrete arithmetic Asian basket options in a Black and Scholes framework. We start from methods used for basket options and Asian options. First, we use the general approach for deriving upper and lower bounds for stop-loss premia of sums of non-independent random variables as in Kaas et al. [Upper and lower bounds for sums of random variables, Insurance Math. Econom. 27 (2000) 151-168] or Dhaene et al. [The concept of comonotonicity in actuarial science and finance: theory, Insurance Math. Econom. 31(1) (2002) 3-33]. We generalize the methods in Deelstra et al. [Pricing of arithmetic basket options by conditioning, Insurance Math. Econom. 34 (2004) 55-57] and Vanmaele et al. [Bounds for the price of discrete sampled arithmetic Asian options, J. Comput. Appl. Math. 185(1) (2006) 51-90]. Afterwards we show how to derive an analytical closed-form expression for a lower bound in the non-comonotonic case. Finally, we derive upper bounds for Asian basket options by applying techniques as in Thompson [Fast narrow bounds on the value of Asian options, Working Paper, University of Cambridge, 1999] and Lord [Partially exact and bounded approximations for arithmetic Asian options, J. Comput. Finance 10 (2) (2006) 1-52]. Numerical results are included and on the basis of our numerical tests, we explain which method we recommend depending on moneyness and time-to-maturity.

  11. Metabolism of organically bound tritium

    SciTech Connect

    Travis, C.C.

    1984-01-01

    The classic methodology for estimating dose to man from environmental tritium ignores the fact that organically bound tritium in foodstuffs may be directly assimilated in the bound compartment of tissues without previous oxidation. We propose a four-compartment model consisting of a free body water compartment, two organic compartments, and a small, rapidly metabolizing compartment. The utility of this model lies in the ability to input organically bound tritium in foodstuffs directly into the organic compartments of the model. We found that organically bound tritium in foodstuffs can increase cumulative total body dose by a factor of 1.7 to 4.5 times the free body water dose alone, depending on the bound-to-loose ratio of tritium in the diet. Model predictions are compared with empirical measurements of tritium in human urine and tissue samples, and appear to be in close agreement. 10 references, 4 figures, 3 tables.

  12. Model of early self-replication based on covalent complementarity for a copolymer of glycerate-3-phosphate and glycerol-3-phosphate

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    1989-01-01

    Glyceraldehyde-3-phosphate acts as the substrate in a model of early self-replication of a phosphodiester copolymer of glycerate-3-phosphate and glycerol-3-phosphate. This model of self-replication is based on covalent complementarity in which information transfer is mediated by a single covalent bond, in contrast to multiple weak interactions that establish complementarity in nucleic acid replication. This replication model is connected to contemporary biochemistry through its use of glyceraldehyde-3-phosphate, a central metabolite of glycolysis and photosynthesis.

  13. Chitin biosynthesis: does it involve a lipid-bound intermediate

    SciTech Connect

    Bade, M.L.

    1983-01-01

    In plants and animals, mechanical support is provided by insoluble extracellular fibers of high molecular weight which, in many invertebrates and fungi, consist in part of the nitrogen-containing carbohydrate chitin. At least in animals, chitin may be covalently bonded to protein. This possibility has given rise to the persistent search for a lipid-bound intermediate in chitin biosynthesis, since for certain glycoproteins such involvement is well established. Cell-free chitin synthetase systems from yeasts have been prepared, purified, and to some extent characterized. For such systems, in the cases where the product has been unequivocally identified as chitin, involvement of a lipid-bound intermediate is most unlikely. Chitin synthesis by particulate cell-free preparations has been claimed for both crustaceans and insects. Careful inspection of the evidence in the latter instances reveals either that the synthetase is probably of microorganismic origin, or that the available results do not convincingly support the conclusions drawn from them. Semi-in vitro work involving short- or longer-term culture of epithelial cells synthesizing chitin has been done successfully in a number of laboratories. In cases where the question of lipid-bound intermediates has been addressed, the evidence has tended to militate against such involvement in insects and for it in crustaceans, but the evidence is as yet inconclusive. Further work is needed.

  14. COVALENT BINDING OF TRICHLOROETHYLENE TO PROTEINS IN HUMAN AND RAT HEPATOCYTES. (R826409)

    EPA Science Inventory

    The environmental contaminant and occupational solvent trichloroethylene is metabolized to a reactive intermediate that covalently binds to specific hepatic proteins in exposed mice and rats. In order to compare covalent binding between humans and rodents, primary hepatocyte c...

  15. Characterization of a tannase from Emericella nidulans immobilized on ionic and covalent supports for propyl gallate synthesis.

    PubMed

    Gonçalves, Heloísa Bressan; Jorge, João Atílio; Pessela, Benevides Costa; Lorente, Glória Fernandez; Guisán, José Manuel; Guimarães, Luis Henrique Souza

    2013-04-01

    The extracellular tannase from Emericela nidulans was immobilized on different ionic and covalent supports. The derivatives obtained using DEAE-Sepharose and Q-Sepharose were thermally stable from 60 to 75 °C, with a half life (t50) >24 h at 80 °C at pH 5.0. The glyoxyl-agarose and amino-glyoxyl derivatives showed a thermal stability which was lower than that observed for ionic supports. However, when the stability to pH was considered, the derivatives obtained from covalent supports were more stable than those obtained from ionic supports. DEAE-Sepharose and Q-Sepharose derivatives as well as the free enzyme were stable in 30 and 50 % (v/v) 1-propanol. The CNBr-agarose derivative catalyzed complete tannic acid hydrolysis, whereas the Q-Sepharose derivative catalyzed the transesterification reaction to produce propyl gallate (88 % recovery), which is an important antioxidant.

  16. Protein-bound uremic retention solutes.

    PubMed

    Brunet, Philippe; Dou, Laetitia; Cerini, Claire; Berland, Yvon

    2003-10-01

    Protein-bound uremic retention solutes are molecules with low molecular weight (MW) but should be considered middle or high MW substances. This article describes the best known substances of this group, which include p-cresol, indoxyl sulfate, hippuric acid, 3-carboxy-4-methyl-5-propyl-2-furan-propionic acid (CMPF), and homocysteine. At concentrations encountered during uremia, p-cresol inhibits phagocyte function and decreases leukocyte adhesion to cytokine-stimulated endothelial cells. CMPF has been implicated in anemia and neurologic abnormalities of uremia. CMPF could alter the metabolism of drugs of inhibiting their binding to albumin and their tubular excretion. Indoxyl sulfate administrated to uremic rats increases the rate of progression of renal failure. Hippuric acid inhibits glucose utilization in the muscle, and its serum concentration is correlated with neurologic symptoms of uremia. Homocysteine predisposes uremic patients to cardiovascular disease through impairment of endothelial and smooth muscle cell functions. The removal of protein-bound compounds by conventional hemodialysis is low. Other strategies to decrease their concentrations include increase in dialyze pore size, daily hemodialysis, peritoneal dialysis, reduction of production or acceleration of degradation, and preservation of residual renal function.

  17. Ions colliding with clusters of fullerenes—Decay pathways and covalent bond formations

    NASA Astrophysics Data System (ADS)

    Seitz, F.; Zettergren, H.; Rousseau, P.; Wang, Y.; Chen, T.; Gatchell, M.; Alexander, J. D.; Stockett, M. H.; Rangama, J.; Chesnel, J. Y.; Capron, M.; Poully, J. C.; Domaracka, A.; Méry, A.; Maclot, S.; Vizcaino, V.; Schmidt, H. T.; Adoui, L.; Alcamí, M.; Tielens, A. G. G. M.; Martín, F.; Huber, B. A.; Cederquist, H.

    2013-07-01

    We report experimental results for the ionization and fragmentation of weakly bound van der Waals clusters of n C60 molecules following collisions with Ar2 +, He2 +, and Xe20 + at laboratory kinetic energies of 13 keV, 22.5 keV, and 300 keV, respectively. Intact singly charged C60 monomers are the dominant reaction products in all three cases and this is accounted for by means of Monte Carlo calculations of energy transfer processes and a simple Arrhenius-type [C_{60}]_n^+ → C_{60}+ + (n-1)C_{60} evaporation model. Excitation energies in the range of only ˜0.7 eV per C60 molecule in a [C_{60}]_{13}^+ cluster are sufficient for complete evaporation and such low energies correspond to ion trajectories far outside the clusters. Still we observe singly and even doubly charged intact cluster ions which stem from even more distant collisions. For penetrating collisions the clusters become multiply charged and some of the individual molecules may be promptly fragmented in direct knock-out processes leading to efficient formations of new covalent systems. For Ar2 + and He2 + collisions, we observe very efficient C_{119}+ and C_{118}+ formation and molecular dynamics simulations suggest that they are covalent dumb-bell systems due to bonding between C_{59}+ or C_{58}+ and C60 during cluster fragmentation. In the Ar2 + case, it is possible to form even smaller C_{120-2m}+ molecules (m = 2-7), while no molecular fusion reactions are observed for the present Xe20 + collisions.

  18. Covalent attachment of functionalized lipid bilayers to planar waveguides for measuring protein binding to biomimetic membranes.

    PubMed Central

    Heyse, S.; Vogel, H.; Sänger, M.; Sigrist, H.

    1995-01-01

    A new method is presented for measuring sensitively the interactions between ligands and their membrane-bound receptors in situ using integrated optics, thus avoiding the need for additional labels. Phospholipid bilayers were attached covalently to waveguides by a novel protocol, which can in principle be used with any glass-like surface. In a first step, phospholipids carrying head-group thiols were covalently immobilized onto SiO2-TiO2 waveguide surfaces. This was accomplished by acylation of aminated waveguides with the heterobifunctional crosslinker N-succinimidyl-3-maleimidopropionate, followed by the formation of thioethers between the surface-grafted maleimides and the synthetic thiolipids. The surface-attached thiolipids served as hydrophobic templates and anchors for the deposition of a complete lipid bilayer either by fusion of lipid vesicles or by lipid self-assembly from mixed lipid/detergent micelles. The step-by-step lipid bilayer formation on the waveguide surface was monitored in situ by an integrated optics technique, allowing the simultaneous determination of optical thickness and one of the two refractive indices of the adsorbed organic layers. Surface coverages of 50-60% were calculated for thiolipid layers. Subsequent deposition of POPC resulted in an overall lipid layer thickness of 45-50 A, which corresponds to the thickness of a fluid bilayer membrane. Specific recognition reactions occurring at cell membrane surfaces were modeled by the incorporation of lipid-anchored receptor molecules into the supported bilayer membranes. (1) The outer POPC layer was doped with biotinylated phosphatidylethanolamine. Subsequent specific binding of streptavidin was optically monitored. (2) A lipopeptide was incorporated in the outer POPC monolayer. Membrane binding of monoclonal antibodies, which were directed against the peptide moiety of the lipopeptide, was optically detected. The specific antibody binding correlated well with the lipopepitde

  19. Contribution of flavin covalent linkage with histidine 99 to the reaction catalyzed by choline oxidase.

    PubMed

    Quaye, Osbourne; Cowins, Sharonda; Gadda, Giovanni

    2009-06-19

    The FAD-dependent choline oxidase has a flavin cofactor covalently attached to the protein via histidine 99 through an 8alpha-N(3)-histidyl linkage. The enzyme catalyzes the four-electron oxidation of choline to glycine betaine, forming betaine aldehyde as an enzyme-bound intermediate. The variant form of choline oxidase in which the histidine residue has been replaced with asparagine was used to investigate the contribution of the 8alpha-N(3)-histidyl linkage of FAD to the protein toward the reaction catalyzed by the enzyme. Decreases of 10-fold and 30-fold in the k(cat)/K(m) and k(cat) values were observed as compared with wild-type choline oxidase at pH 10 and 25 degrees C, with no significant effect on k(cat)/K(O) using choline as substrate. Both the k(cat)/K(m) and k(cat) values increased with increasing pH to limiting values at high pH consistent with the participation of an unprotonated group in the reductive half-reaction and the overall turnover of the enzyme. The pH independence of both (D)(k(cat)/K(m)) and (D)k(cat), with average values of 9.2 +/- 3.3 and 7.4 +/- 0.5, respectively, is consistent with absence of external forward and reverse commitments to catalysis, and the chemical step of CH bond cleavage being rate-limiting for both the reductive half-reaction and the overall enzyme turnover. The temperature dependence of the (D)k(red) values suggests disruption of the preorganization in the asparagine variant enzyme. Altogether, the data presented in this study are consistent with the FAD-histidyl covalent linkage being important for the optimal positioning of the hydride ion donor and acceptor in the tunneling reaction catalyzed by choline oxidase.

  20. The mitochondrial acyl carrier protein (ACP) coordinates mitochondrial fatty acid synthesis with iron sulfur cluster biogenesis

    PubMed Central

    Van Vranken, Jonathan G; Jeong, Mi-Young; Wei, Peng; Chen, Yu-Chan; Gygi, Steven P; Winge, Dennis R; Rutter, Jared

    2016-01-01

    Mitochondrial fatty acid synthesis (FASII) and iron sulfur cluster (FeS) biogenesis are both vital biosynthetic processes within mitochondria. In this study, we demonstrate that the mitochondrial acyl carrier protein (ACP), which has a well-known role in FASII, plays an unexpected and evolutionarily conserved role in FeS biogenesis. ACP is a stable and essential subunit of the eukaryotic FeS biogenesis complex. In the absence of ACP, the complex is destabilized resulting in a profound depletion of FeS throughout the cell. This role of ACP depends upon its covalently bound 4’-phosphopantetheine (4-PP)-conjugated acyl chain to support maximal cysteine desulfurase activity. Thus, it is likely that ACP is not simply an obligate subunit but also exploits the 4-PP-conjugated acyl chain to coordinate mitochondrial fatty acid and FeS biogenesis. DOI: http://dx.doi.org/10.7554/eLife.17828.001 PMID:27540631

  1. Kinetics study of invertase covalently linked to a new functional nanogel.

    PubMed

    Raj, Lok; Chauhan, Ghanshyam S; Azmi, Wamik; Ahn, J-H; Manuel, James

    2011-02-01

    Nanogels are promising materials as supports for enzyme immobilization. A new hydrogel comprising of methacrylic acid (MAAc) and N-vinyl pyrrolidone (N-VP) and ethyleneglycol dimethacrylate (EGDMA) was synthesized and converted to nanogel by an emulsification method. Nanogel was further functionalized by Curtius azide reaction for use as support for the covalent immobilization of invertase (Saccharomyces cerevisiae). As-prepared or invertase-immobilized nanogel was characterized by FTIR, XRD, TEM and nitrogen analysis. The characterization of both free and the immobilized-invertase were performed using a spectrophotometric method at 540 nm. The values of V(max), maximum reaction rate, (0.123 unit/mg), k(m), Michaelis constant (7.429 mol/L) and E(a), energy of activation (3.511 kj/mol) for the immobilized-invertase are comparable with those of the free invertase at optimum conditions (time 70 min, pH 6.0 and temperature 45°C). The covalent immobilization enhanced the pH and thermal stability of invertase. The immobilized biocatalyst was efficiently reused up to eight cycles.

  2. A Covalent Linker Allows for Membrane Targeting of An Oxylipin Biosynthetic Complex

    SciTech Connect

    Gilbert, N.C.; Niebuhr, M.; Tsuruta, H.; Bordelon, T.; Ridderbusch, O.; Dassey, A.; Brash, A.R.; Bartlett, S.G.; Newcomer, M.E.

    2009-05-18

    A naturally occurring bifunctional protein from Plexaura homomalla links sequential catalytic activities in an oxylipin biosynthetic pathway. The C-terminal lipoxygenase (LOX) portion of the molecule catalyzes the transformation of arachidonic acid (AA) to the corresponding 8R-hydroperoxide, and the N-terminal allene oxide synthase (AOS) domain promotes the conversion of the hydroperoxide intermediate to the product allene oxide (AO). Small-angle X-ray scattering data indicate that in the absence of a covalent linkage the two catalytic domains that transform AA to AO associate to form a complex that recapitulates the structure of the bifunctional protein. The SAXS data also support a model for LOX and AOS domain orientation in the fusion protein inferred from a low-resolution crystal structure. However, results of membrane binding experiments indicate that covalent linkage of the domains is required for Ca2+-dependent membrane targeting of the sequential activities, despite the noncovalent domain association. Furthermore, membrane targeting is accompanied by a conformational change as monitored by specific proteolysis of the linker that joins the AOS and LOX domains. Our data are consistent with a model in which Ca2+-dependent membrane binding relieves the noncovalent interactions between the AOS and LOX domains and suggests that the C2-like domain of LOX mediates both protein-protein and protein-membrane interactions.

  3. Covalent immobilization of lysozyme on ethylene vinyl alcohol films for nonmigrating antimicrobial packaging applications.

    PubMed

    Muriel-Galet, V; Talbert, J N; Hernandez-Munoz, P; Gavara, R; Goddard, J M

    2013-07-10

    The objective of this study was to develop a new antimicrobial film, in which lysozyme was covalently attached onto two different ethylene vinyl alcohol copolymers (EVOH 29 and EVOH 44). The EVOH surface was modified with UV irradiation treatment to generate carboxylic acid groups, and lysozyme was covalently attached to the functionalized polymer surface. Surface characterization of control and modified films was performed using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and dye assay. The value of protein loading after attachment on the surface was 8.49 μg protein/cm(2) and 5.74 μg protein/cm(2) for EVOH 29 and EVOH 44, respectively, after 10 min UV irradiation and bioconjugation. The efficacy of the EVOH-lysozyme films was assessed using Micrococcus lysodeikticus. The antimicrobial activity of the films was tested against Listeria monocytogenes and was similar to an equivalent amount of free enzyme. The reduction was 1.08 log for EVOH 29-lysozyme, 0.95 log for EVOH 44-lysozyme, and 1.34 log for free lysozyme. This work confirmed the successful use of lysozyme immobilization on the EVOH surface for antimicrobial packaging.

  4. Modification of the adhesive properties of collagen by covalent grafting with RGD peptides.

    PubMed

    Myles, J L; Burgess, B T; Dickinson, R B

    2000-01-01

    Collagen, either alone or in combination with other materials, is an important natural biomaterial that is used in a variety of tissue-engineering applications. Cell adhesion and migration of cells within collagen-based biomaterials may be controlled by modifying the adhesive properties of collagen. Furthermore, spatially controlling the adhesiveness of the collagen may allow controlled localization or redistribution of cells. A method is presented for covalently coupling peptides that contain the well-characterized arginine-glycine-aspartic acid adhesion sequence directly to type I collagen monomers prior to fibrillogenesis. A heterobifunctional coupling agent was used to create stable amide and disulfide bonds with the lysine residues of the collagen monomers and the cysteine termini of the peptide molecules, respectively. The degree of conjugation could be controlled by changing the reaction conditions (ratios of reactants added and the length of incubation). The microstructure and gelation times of gels composed of covalently modified collagen were similar to those of unmodified gels. Cell adhesion on adsorbed monolayers of modified collagen was quantified using a well-established clonal cell line (K1735 murine melanoma). Cell adhesion was found to increase with both increasing degree of conjugation and increasing ratio of modified to unmodified collagen.

  5. Targeted Drug Delivery in Covalent Organic Nanosheets (CONs) via Sequential Postsynthetic Modification.

    PubMed

    Mitra, Shouvik; Sasmal, Himadri Sekhar; Kundu, Tanay; Kandambeth, Sharath; Illath, Kavya; Díaz Díaz, David; Banerjee, Rahul

    2017-03-29

    Covalent organic nanosheets (CONs) have emerged as a new class of functional two-dimensional (2D) porous organic polymeric materials with a high accessible surface, diverse functionality, and chemical stability. They could become versatile candidates for targeted drug delivery. Despite their many advantages, there are limitations to their use for target specific drug delivery. We anticipated that these drawbacks could be overturned by judicious postsynthetic modification steps to use CONs for targeted drug delivery. The postsynthetic modification would not only produce the desired functionality, it would also help to exfoliate to CONs as well. In order to meet this requirement, we have developed a facile, salt-mediated synthesis of covalent organic frameworks (COFs) in the presence of p-toluenesulfonic acid (PTSA). The COFs were subjected to sequential postsynthetic modifications to yield functionalized targeted CONs for targeted delivery of 5-fluorouracil to breast cancer cells. This postsynthetic modification resulted in simultaneous chemical delamination and functionalization to targeted CONs. Targeted CONs showed sustained release of the drug to the cancer cells through receptor-mediated endocytosis, which led to cancer cell death via apoptosis. Considering the easy and facile COF synthesis, functionality based postsynthetic modifications, and chemical delamination to CONs for potential advantageous targeted drug delivery, this process can have a significant impact in biomedical applications.

  6. Covalent-bonded immobilization of lipase on poly(phenylene sulfide) dendrimers and their hydrolysis ability.

    PubMed

    Yemul, Omprakash; Imae, Toyoko

    2005-01-01

    Covalent-bonded immobilization of lipase from burkholderia cepacia onto two poly(phenylene sulfide) (PPS) dendrimers with different generations (two and three) was achieved using carbodiimide as a coupling reagent. The hydrolysis activity of olive oil to fatty acid was studied on enzyme-immobilized PPS dendrimers. Enzyme activity was proportional to the enzyme loading, and highest recovered activity was obtained at the medium enzyme loading for both G2 and G3 dendrimers. The immobilization improved the optimum pH and caused the temperature range to widen. Immobilization of enzyme has enhanced the thermal stability of enzyme activity in comparison with free enzyme. The immobilized enzyme as a biocatalyst for batch hydrolysis of olive oil retained 80 approximately 90% activity even after 20 times of recycling. This retention of activity after recycle is very valuable and powerful in enzyme technology. The present noteworthy and vital availability on enzyme reaction of the covalently bonded immobilized lipase on dendrimer came from the structure of dendrimer with a large number of functional terminal groups, which are easily available for immobilization of many lipases at the situation keeping reactive enzymes on the surface of dendrimer.

  7. Reagent Cluster Anions for Multiple Gas-phase Covalent Modifications of Peptide and Protein Cations

    PubMed Central

    Prentice, Boone M.; Stutzman, John R.; McLuckey, Scott A.

    2013-01-01

    Multiple gas phase ion/ion covalent modifications of peptide and protein ions are demonstrated here using cluster-type reagent anions of N-hydroxysulfosuccinimide acetate (sulfo-NHS acetate) and 2-formyl-benzenesulfonic acid (FBMSA). These reagents are used here to selectively modify unprotonated primary amine functionalities of peptides and proteins. Multiple reactive reagent molecules can be present in a single cluster ion, which allows for multiple covalent modifications to be achieved in a single ion/ion encounter and at the ‘cost’ of only a single analyte charge. Multiple derivatizations are demonstrated when the number of available reactive sites on the analyte cation exceeds the number of reagent molecules in the anionic cluster (e.g., data shown here for reactions between the polypeptide [K10+3H]3+ and the reagent cluster [5R5Na-Na]−). This type of gas phase ion chemistry is also applicable to whole protein ions. Here, ubiquitin was successfully modified using an FBMSA cluster anions which, upon collisional activation, produced fragment ions with various numbers of modifications. Data for the pentamer cluster are included here as illustrative of the results obtained for the clusters comprised of 2–6 reagent molecules. PMID:23702708

  8. Shear-Thinning Supramolecular Hydrogels with Secondary Autonomous Covalent Crosslinking to Modulate Viscoelastic Properties In Vivo

    PubMed Central

    Rodell, Christopher B.; MacArthur, John W.; Dorsey, Shauna M.; Wade, Ryan J.; Wang, Leo L.; Woo, Y. Joseph

    2015-01-01

    Clinical percutaneous delivery of synthetically engineered hydrogels remains limited due to challenges posed by crosslinking kinetics – too fast leads to delivery failure, too slow limits material retention. To overcome this challenge, we exploit supramolecular assembly to localize hydrogels at the injection site and introduce subsequent covalent crosslinking to control final material properties. Supramolecular gels were designed through the separate pendant modifications of hyaluronic acid (HA) by the guest-host pair cyclodextrin and adamantane, enabling shear-thinning injection and high target site retention (>98%). Secondary covalent crosslinking occurred via addition of thiols and Michael-acceptors (i.e., methacrylates, acrylates, vinyl sulfones) on HA and increased hydrogel moduli (E=25.0±4.5kPa) and stability (>3.5 fold in vivo at 28 days). Application of the dual-crosslinking hydrogel to a myocardial infarct model showed improved outcomes relative to untreated and supramolecular hydrogel alone controls, demonstrating its potential in a range of applications where the precise delivery of hydrogels with tunable properties is desired. PMID:26526097

  9. Coordination Covalent Frameworks: A New Route for Synthesis and Expansion of Functional Porous Materials

    SciTech Connect

    Elsaidi, Sameh K.; Mohamed, Mona H.; Loring, John S.; McGrail, Bernard. Pete; Thallapally, Praveen K.

    2016-10-26

    The synthetic approaches for fine-tuning the structural properties of coordination polymers or metal organic frameworks have exponentially grown during the last decade. This is due to the control over the properties of the resulting structures such as stability, pore size, pore chemis-try and surface area for myriad possible applications. Herein, we present a new class of porous materials called Covalent Coordination Frameworks (CCFs) that were designed and effectively synthesized using a two-step reticular chemistry approach. During the first step, trigonal prismatic molecular building block was isolated using 4-aminobenazoic acid and Cr (III) salt, subsequently in the second step the polymerization of the isolated molecular building blocks (MBBs) takes place by the formation of strong covalent bonds where small organic molecules can connect the MBBs forming extended porous CCF materials. All the isolated CCFs were found to be permanently porous while the discrete MBB were non-porous. This approach would inevitably open a feasible path for the applications of reticular chemistry and the synthesis of novel porous materials with various topologies under ambient conditions using simple organic molecules and versatile MBBs with different functionalities which would not be possible using the traditional one step approach

  10. Covalent Anchoring of Chloroperoxidase and Glucose Oxidase on the Mesoporous Molecular Sieve SBA-15

    PubMed Central

    Jung, Dirk; Streb, Carsten; Hartmann, Martin

    2010-01-01

    Functionalization of porous solids plays an important role in many areas, including heterogeneous catalysis and enzyme immobilization. In this study, large-pore ordered mesoporous SBA-15 molecular sieves were synthesized with tetraethyl orthosilicate (TEOS) in the presence of the non-ionic triblock co-polymer Pluronic P123 under acidic conditions. These materials were grafted with 3-aminopropyltrimethoxysilane (ATS), 3-glycidoxypropyltrimethoxysilane (GTS) and with 3-aminopropyltrimethoxysilane and glutaraldehyde (GA-ATS) in order to provide covalent anchoring points for enzymes. The samples were characterized by nitrogen adsorption, powder X-ray diffraction, solid-state NMR spectroscopy, elemental analysis, diffuse reflectance fourier transform infrared spectroscopy and diffuse reflectance UV/Vis spectroscopy. The obtained grafted materials were then used for the immobilization of chloroperoxidase (CPO) and glucose oxidase (GOx) and the resulting biocatalysts were tested in the oxidation of indole. It is found that enzymes anchored to the mesoporous host by the organic moieties can be stored for weeks without losing their activity. Furthermore, the covalently linked enzymes are shown to be less prone to leaching than the physically adsorbed enzymes, as tested in a fixed-bed reactor under continuous operation conditions. PMID:20386667

  11. The alternative strategy for designing covalent drugs through kinetic effects of pi-stacking on the self-assembled nanoparticles: a model study with antibiotics

    NASA Astrophysics Data System (ADS)

    Du, Libo; Suo, Siqingaowa; Zhang, Han; Jia, Hongying; Liu, Ke Jian; Zhang, Xue Ji; Liu, Yang

    2016-11-01

    It is still a huge challenge to find a new strategy for rationally designing covalent drugs because most of them are discovered by serendipity. Considering that the effect of covalent drugs is closely associated with the kinetics of the reaction between drug molecule and its target protein, here we first demonstrate an example of the kinetic effect of pi-stacking of drug molecules on covalent antimicrobial drug design. When PEGylated 7-aminocephalosporanic acid (PEG-ACA) is used as a substrate drug, pi-stacking of the ACA group via the self-assembly of PEG-ACA on the surface of gold nanoparticles (i.e. Au@ACA) exhibits antibacterial activity against E. coli fourfold higher than a PEG-ACA monomer does. The reason can be reasonably attributed to the kinetic rate enhancement for the covalent reaction between Au@ACA and penicillin binding proteins. We believe that the self-assembly of functional groups onto the surface of gold nanoparticles represents a new strategy for covalent drug design.

  12. Reactivity of Metal Ions Bound to Water-Soluble Polymers

    SciTech Connect

    Sauer, N.N.; Watkins, J.G.; Lin, M.; Birnbaum, E.R.; Robison, T.W.; Smith, B.F.; Gohdes, J.W.; McDonald, J.G.

    1999-06-29

    The intent of this work is to determine the effectiveness of catalysts covalently bound to polymers and to understand the consequences of supporting the catalysts on catalyst efficiency and selectivity. Rhodium phosphine complexes with functional groups for coupling to polymers were prepared. These catalyst precursors were characterized using standard techniques including IR, NMR, and elemental analysis. Studies on the modified catalysts showed that they were still active hydrogenation catalysts. However, tethering of the catalysts to polyamines gave systems with low hydrogenation activity. Analogous biphasic systems were also explored. Phosphine ligands with a surfactant-like structure have been synthesized and used to prepare catalytically active complexes of palladium. The palladium complexes were utilized in Heck-type coupling reactions (e.g. coupling of iodobenzene and ethyl acrylate to produce ethyl cinnamate) under vigorously stirred biphasic reaction conditions, and were found to offer superior performance over a standard water-soluble palladium catalyst under analogous conditions.

  13. Tight and uniform layer of covalently bound aminoethylophenyl groups perpendicular to gold surface for attachment of biomolecules.

    PubMed

    Fau, Michal; Kowalczyk, Agata; Olejnik, Piotr; Nowicka, Anna M

    2011-12-15

    Strongly adhered layers of the compound with the primary amino group directed toward the solution were obtained at the gold surface by chronoamperometric electroreduction of 4-aminoethylobenzenodiazonium salt (AEBD) in acetonitrile solution at appropriately selected potential. The used techniques (EQCM, AFM, EIS, PM, IRRAS) showed that the nature and thickness of formed aminoethylophenyl layer strongly depend on the potential applied to the electrode. Electroreduction of AEBD salt at a potential more negative than -0.6 V (vs Ag/AgCl) leads to about monolayer on the gold surface. Additionally, such a layer was very tight and uniform. The electrochemical measurements indicate that the efficient and precise attachment of biomolecules to the aminoethylophenyl layer is only possible when this layer is formed at appropriate potential. This was shown for ss- and dsDNA.

  14. The covalently bound HNC dimer ion HN dbnd C dbnd C dbnd NH rad + has a kinetically stable neutral counterpart

    NASA Astrophysics Data System (ADS)

    Jobst, Karl J.; Ruzni Hanifa, M.; Terlouw, Johan K.

    2008-09-01

    Neutralization-reionization mass spectrometry (NRMS) and computational chemistry (CBS-QB3/APNO methods) have been used to show that HN dbnd C dbnd C dbnd NH (ethenediimine) and its isomer H 2N-C-C tbnd N (aminocyanocarbene) are generated as kinetically stable molecules in the rarefied gas-phase by one electron reduction of their ionic precursors. One route to the very stable ion HN dbnd C dbnd C dbnd NH involves loss of HC tbnd N from the hydrogen-bridged radical cation [HN tbnd C ⋯HN-C-C tbnd N ] via a remarkable quid-pro-quo catalysis in which both the ion and the neutral undergo isomerization.

  15. SYNTHESIS AND CHARACTERIZATION OF LIX-84 NON-COVALENTLY BOUND SILICA SORBENTS FOR METAL-ION RECOVERY

    EPA Science Inventory

    Mesoporous silica particles were modified with LIX-84: (2-hydroxy-5-nonylacetophenome oxime). The LIX-84: was attached to the surface of silica via non-covelent forces. The effects of silica particle size, temperature, and pH on metal ion adsorption properties were studied and co...

  16. Poly(ethylene glycol) (PEG)-lactic acid nanocarrier-based degradable hydrogels for restoring the vaginal microenvironment.

    PubMed

    Sundara Rajan, Sujata; Turovskiy, Yevgeniy; Singh, Yashveer; Chikindas, Michael L; Sinko, Patrick J

    2014-11-28

    Women with bacterial vaginosis (BV) display reduced vaginal acidity, which make them susceptible to associated infections such as HIV. In the current study, poly(ethylene glycol) (PEG) nanocarrier-based degradable hydrogels were developed for the controlled release of lactic acid in the vagina of BV-infected women. PEG-lactic acid (PEG-LA) nanocarriers were prepared by covalently attaching lactic acid to 8-arm PEG-SH via cleavable thioester bonds. PEG-LA nanocarriers with 4 copies of lactic acid per molecule provided controlled release of lactic acid with a maximum release of 23% and 47% bound lactic acid in phosphate buffered saline (PBS, pH7.4) and acetate buffer (AB, pH4.3), respectively. The PEG nanocarrier-based hydrogels were formed by cross-linking the PEG-LA nanocarriers with 4-arm PEG-NHS via degradable thioester bonds. The nanocarrier-based hydrogels formed within 20 min under ambient conditions and exhibited an elastic modulus that was 100-fold higher than the viscous modulus. The nanocarrier-based degradable hydrogels provided controlled release of lactic acid for several hours; however, a maximum release of only 10%-14% bound lactic acid was observed possibly due to steric hindrance of the polymer chains in the cross-linked hydrogel. In contrast, hydrogels with passively entrapped lactic acid showed burst release with complete release within 30 min. Lactic acid showed antimicrobial activity against the primary BV pathogen Gardnerella vaginalis with a minimum inhibitory concentration (MIC) of 3.6 mg/ml. In addition, the hydrogels with passively entrapped lactic acid showed retained antimicrobial activity with complete inhibition G. vaginalis growth within 48 h. The results of the current study collectively demonstrate the potential of PEG nanocarrier-based hydrogels for vaginal administration of lactic acid for preventing and treating BV.

  17. A Structure-guided Approach to Creating Covalent FGFR Inhibitors

    PubMed Central

    Zhou, Wenjun; Hur, Wooyoung; McDermott, Ultan; Dutt, Amit; Xian, Wa; Picarro, Scott B.; Zhang, Jianming; Sharma, Sreenath V.; Brugge, Joan; Meyerson, Matthew; Settleman, Jeffrey; Gray, Nathanael S.

    2010-01-01

    Summary The fibroblast growth factor receptor tyrosine kinases (FGFR1, 2, 3, and 4) represent promising therapeutic targets in a number of cancers. We have developed the first potent and selective irreversible inhibitor of FGFR1, 2, 3, and 4 which we named FIIN-1 that forms a covalent bond with cysteine 486 located in the P-loop of the FGFR1 ATP-binding site. We demonstrate that the inhibitor potently inhibits Tel-FGFR1 transformed Ba/F3 cells (EC50 = 14 nM) as well as numerous FGFR-dependent cancer cell lines. A biotin-derivatized version of the inhibitor, FIIN-1-biotin, was shown to covalently label FGFR1 at Cys486. FIIN-1 is a useful probe of FGFR-dependent cellular phenomena and may provide a starting point of the development of therapeutically relevant irreversible inhibitors of wild-type and drug-resistant forms of FGFR kinases. PMID:20338520

  18. Anisotropic covalent bonding and photopolymerization of C[sub 70

    SciTech Connect

    Menon, M. ); Rao, A.M. ); Subbaswamy, K.R. ); Eklund, P.C. )

    1995-01-01

    We report theoretical and experimental results demonstrating covalent bonding between C[sub 70] molecules. Experimental results indicating the transformation of C[sub 70] films upon exposure to visible or ultraviolet radiation into a strongly bonded solid phase, similar to the transformation observed in solid C[sub 60] films are presented. Unlike C[sub 60] molecules, however, the covalent bonding between C[sub 70] molecules is found to be highly directional, strongly favoring certain relative intermolecular orientations. This theoretical finding is consistent with recent laser desorption mass spectroscopy results for visible or UV light irradiated C[sub 70] films which find the cross section for the phototransformation to a new toluene-insoluble solid phase to be considerably smaller than observed for solid C[sub 60]. The combined results suggest that the photochemical 2+2 cycloaddition reaction is responsible for the transformation.

  19. Covalent sequestration of the nitrogen mustard mechlorethamine by metallothionein.

    PubMed

    Antoine, M; Fabris, D; Fenselau, C

    1998-09-01

    The research reported here demonstrates covalent binding to the metal-binding protein metallothionein (MT) by the therapeutic nitrogen mustard mechlorethamine. The most surprising aspect of this interaction is the selectivity of the alkylating agent for specific residues of MT. A combination of MS and proteolytic and enzymatic methods was used to deduce specific locations of mechlorethamine alkylation. These experiments indicated that alkylation occurs predominantly in the carboxyl domain of MT, with one molecule of mechlorethamine covalently cross-linking two cysteine residues. Electrospray MS revealed the retention of all seven metal ions in the cross-linked MT/mechlorethamine adducts, highlighting the uniqueness of this protein. Computerized docking experiments supported the hypothesis that selective binding precedes selective alkylation, and the structure of the drug indicates the minimal structural requirements for this binding. These results support the idea that MT overexpressed in tumor cells contributes to the inactivation of anticancer drugs.

  20. Chemically Delaminated Free-Standing Ultrathin Covalent Organic Nanosheets.

    PubMed

    Khayum, M Abdul; Kandambeth, Sharath; Mitra, Shouvik; Nair, Sanoop B; Das, Anuja; Nagane, Samadhan S; Mukherjee, Rabibrata; Banerjee, Rahul

    2016-12-12

    Covalent organic nanosheets (CONs) are a new class of porous thin two-dimensional (2D) nanostructures that can be easily designed and functionalized and could be useful for separation applications. Poor dispersion, layer restacking, and difficult postsynthetic modifications are the major hurdles that need to be overcome to fabricate scalable CON thin films. Herein, we present a unique approach for the chemical exfoliation of an anthracene-based covalent organic framework (COF) to N-hexylmaleimide-functionalized CONs, to yield centimeter-sized free-standing thin films through layer-by-layer CON assembly at the air-water interface. The thin-layer fabrication technique presented here is simple, scalable, and does not require any surfactants or stabilizing agents.

  1. The stabilizing effects of immobilization in D-amino acid oxidase from Trigonopsis variabilis

    PubMed Central

    Dib, Iskandar; Nidetzky, Bernd

    2008-01-01

    Background Immobilization of Trigonopsis variabilis D-amino acid oxidase (TvDAO) on solid support is the key to a reasonably stable performance of this enzyme in the industrial process for the conversion of cephalosporin C as well as in other biocatalytic applications. Results To provide a mechanistic basis for the stabilization of the carrier-bound oxidase we analyzed the stabilizing effects of immobilization in TvDAO exposed to the stress of elevated temperature and operational conditions. Two different strategies of immobilization were used: multi-point covalent binding to epoxy-activated Sepabeads EC-EP; and non-covalent oriented immobilization of the enzyme through affinity of its N-terminal Strep-tag to Strep-Tactin coated on insoluble particles. At 50°C, the oriented immobilizate was not stabilized as compared to the free enzyme. The structure of TvDAO was stabilized via covalent attachment to Sepabeads EC-EP but concomitantly, binding of the FAD cofactor was weakened. FAD release from the enzyme into solution markedly reduced the positive effect of immobilization on the overall stability of TvDAO. Under conditions of substrate conversion in a bubble-aerated stirred tank reactor, both immobilization techniques as well as the addition of the surfactant Pluronic F-68 stabilized TvDAO by protecting the enzyme from the deleterious effect of gas-liquid interfaces. Immobilization of TvDAO on Sepabeads EC-EP however stabilized the enzyme beyond this effect and led to a biocatalyst that could be re-used in multiple cycles of substrate conversion. Conclusion Multi-point covalent attachment of TvDAO on an isoluble porous carrier provides stabilization against the denaturing effects of high temperature and exposure to a gas-liquid interface. Improvement of binding of the FAD cofactor, probably by using methods of protein engineering, would further enhance the stability of the immobilized enzyme. PMID:18798979

  2. Design Principles for Covalent Organic Frameworks in Energy Storage Applications.

    PubMed

    Alahakoon, Sampath B; Thompson, Christina M; Occhialini, Gino; Smaldone, Ronald Alexander

    2017-03-16

    Covalent organic frameworks (COFs) are an exciting class of microporous materials that have been explored as energy storage materials for more than a decade. This review will discusses the efforts to develop these materials for applications in gas and electrical power storage. This review will also discuss some of the design strategies for developing the gas sorption properties of COFs and mechanistic studies on their formation.

  3. Covalent intermolecular interaction of the nitric oxide dimer (NO)2

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Zheng, Gui-Li; Lv, Gang; Geng, Yi-Zhao; Ji, Qing

    2015-09-01

    Covalent bonds arise from the overlap of the electronic clouds in the internucleus region, which is a pure quantum effect and cannot be obtained in any classical way. If the intermolecular interaction is of covalent character, the result from direct applications of classical simulation methods to the molecular system would be questionable. Here, we analyze the special intermolecular interaction between two NO molecules based on quantum chemical calculation. This weak intermolecular interaction, which is of covalent character, is responsible for the formation of the NO dimer, (NO)2, in its most stable conformation, a cis conformation. The natural bond orbital (NBO) analysis gives an intuitive illustration of the formation of the dimer bonding and antibonding orbitals concomitant with the breaking of the π bonds with bond order 0.5 of the monomers. The dimer bonding is counteracted by partially filling the antibonding dimer orbital and the repulsion between those fully or nearly fully occupied nonbonding dimer orbitals that make the dimer binding rather weak. The direct molecular mechanics (MM) calculation with the UFF force fields predicts a trans conformation as the most stable state, which contradicts the result of quantum mechanics (QM). The lesson from the investigation of this special system is that for the case where intermolecular interaction is of covalent character, a specific modification of the force fields of the molecular simulation method is necessary. Project supported by the National Natural Science Foundation of China (Grant Nos. 90403007 and 10975044), the Key Subject Construction Project of Hebei Provincial Universities, China, the Research Project of Hebei Education Department, China (Grant Nos. Z2012067 and Z2011133), the National Natural Science Foundation of China (Grant No. 11147103), and the Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (Grant No. Y5

  4. Editorial - Proceedings on Basic Research on Ionic-Covalent Materials

    NASA Astrophysics Data System (ADS)

    2016-05-01

    The third symposium on Basic Research on Ionic-Covalent Materials for Nuclear Applications, originally initiated at the EMRS in Nice (May 2011), attracted 80 registered participants. During 4 days, 54 oral talks and 22 posters were presented. The overall high quality of the majority of the contributions was appreciated, in particular the great efforts of the invited speakers to convey their expertise in an excellent tutorial way.

  5. An azine-linked hexaphenylbenzene based covalent organic framework.

    PubMed

    Alahakoon, Sampath B; Thompson, Christina M; Nguyen, Amy X; Occhialini, Gino; McCandless, Gregory T; Smaldone, Ronald A

    2016-02-14

    In this communication, we report an azine linked covalent organic framework based on a six-fold symmetric hexphenylbenzene (HEX) monomer functionalized with aldehyde groups. HEX-COF 1 has an average pore size of 1 nm, a surface area in excess of 1200 m(2) g(-1) and shows excellent sorption capability for carbon dioxide (20 wt%) and methane (2.3 wt%) at 273 K and 1 atm.

  6. Role of lipid structure in the humoral immune response in mice to covalent lipid-peptides from the membrane proximal region of HIV-1 gp41

    PubMed Central

    Watson, Douglas S.; Szoka, Francis C.

    2009-01-01

    The membrane proximal region (MPR) of HIV-1 gp41 is a desirable target for development of a vaccine that elicits neutralizing antibodies since the patient-derived monoclonal antibodies, 2F5 and 4E10, bind to the MPR and neutralize primary HIV isolates. The 2F5 and 4E10 antibodies cross-react with lipids and structural studies suggest that MPR immunogens may be presented in a membrane environment. We hypothesized that covalent attachment of lipid anchors would enhance the humoral immune response to MPR-derived peptides presented in liposomal bilayers. In a comparison of eight lipids conjugated to an extended 2F5 epitope peptide, a sterol, cholesterol hemisuccinate (CHEMS), was found to promote the strongest anti-peptide IgG titers (6.4 × 104) in sera of BALB/C mice. Two lipid anchors, palmitic acid and phosphatidylcholine, failed to elicit a detectable serum anti-peptide IgG response. Association with the liposomal vehicle contributed to the ability of a lipopeptide to elicit anti-peptide antibodies, but no other single factor, such as position of the lipid anchor, peptide helical content, lipopeptide partition coefficient, or presence of phosphate on the anchor clearly determined lipopeptide potency. Conjugation to CHEMS also rendered a 4E10 epitope peptide immunogenic (5.6 × 102 IgG titer in serum). Finally, attachment of CHEMS to a peptide spanning both the 2F5 and 4E10 epitopes elicited serum IgG antibodies that bound to each of the individual epitopes as well as to recombinant gp140. Further research into the mechanism of how structure influences the immune response to the MPR may lead to immunogens that could be useful in prime-boost regimens for focusing the immune response in an HIV vaccine. PMID:19520200

  7. Bound states in string nets

    NASA Astrophysics Data System (ADS)

    Schulz, Marc Daniel; Dusuel, Sébastien; Vidal, Julien

    2016-11-01

    We discuss the emergence of bound states in the low-energy spectrum of the string-net Hamiltonian in the presence of a string tension. In the ladder geometry, we show that a single bound state arises either for a finite tension or in the zero-tension limit depending on the theory considered. In the latter case, we perturbatively compute the binding energy as a function of the total quantum dimension. We also address this issue in the honeycomb lattice where the number of bound states in the topological phase depends on the total quantum dimension. Finally, the internal structure of these bound states is analyzed in the zero-tension limit.

  8. Proteome-wide covalent ligand discovery in native biological systems

    PubMed Central

    Backus, Keriann M.; Correia, Bruno E.; Lum, Kenneth M.; Forli, Stefano; Horning, Benjamin D.; González-Páez, Gonzalo E.; Chatterjee, Sandip; Lanning, Bryan R.; Teijaro, John R.; Olson, Arthur J.; Wolan, Dennis W.; Cravatt, Benjamin F.

    2016-01-01

    Small molecules are powerful tools for investigating protein function and can serve as leads for new therapeutics. Most human proteins, however, lack small-molecule ligands, and entire protein classes are considered “undruggable” 1,2. Fragment-based ligand discovery (FBLD) can identify small-molecule probes for proteins that have proven difficult to target using high-throughput screening of complex compound libraries 1,3. Although reversibly binding ligands are commonly pursued, covalent fragments provide an alternative route to small-molecule probes 4–10, including those that can access regions of proteins that are difficult to access through binding affinity alone 5,10,11. In this manuscript, we report a quantitative analysis of cysteine-reactive small-molecule fragments screened against thousands of proteins. Covalent ligands were identified for >700 cysteines found in both druggable proteins and proteins deficient in chemical probes, including transcription factors, adaptor/scaffolding proteins, and uncharacterized proteins. Among the atypical ligand-protein interactions discovered were compounds that react preferentially with pro- (inactive) caspases. We used these ligands to distinguish extrinsic apoptosis pathways in human cell lines versus primary human T-cells, showing that the former is largely mediated by caspase-8 while the latter depends on both caspase-8 and −10. Fragment-based covalent ligand discovery provides a greatly expanded portrait of the ligandable proteome and furnishes compounds that can illuminate protein functions in native biological systems. PMID:27309814

  9. Ionic complexation as a non-covalent approach for the design of folate anchored rifampicin Gantrez nanoparticles.

    PubMed

    Date, Praveen V; Patel, Mitesh D; Majee, Sharmila B; Samad, Abdul; Devarajan, Padma V

    2013-05-01

    The present study discloses the design of folate anchored Rifampicin-Poly methylvinylether maleic anhydride copolymer (Gantrez AN-119, Gantrez) nanoparticles (RFMGzFa) by ionic complexation. Folic acid was anchored to the preformed drug loaded nanoparticles. Folic acid was anchored in different concentration by simply varying the amount of folic acid added during preparation. RFMGzFa nanoparticles were prepared by emulsion solvent diffusion method. Gantrez AN-119 rapidly hydrolyzes in aqueous medium releasing carboxylic acid groups, to create an acidic environment. This facilitates protonation and subsequent ionic complexation of folic acid with the carboxylic groups, to enable anchoring. FTIR spectra confirmed this interaction. Infrared imaging revealed distribution of folic acid across the nanoparticle surface. Nanoparticles were obtained in the size range 350-450 nm with RFM loading of 12-14% w/w. Zeta potential confirmed colloidal stability. TEM/SEM revealed spherical morphology. RFMGzFa nanoparticles exhibited sustained release of RFM and folic acid. Folic acid showed sustained release upto 12 h, which was ion exchange mediated. A 480% enhancement in RFM uptake with RFMGzFa nanoparticles compared to 300% with RFMGz nanoparticles in-vitro, in human macrophage cell line U-937, suggested the role of folic acid in folate receptor mediated uptake. Ionic complexation represents a simple non-covalent approach for anchoring folic acid on polymeric nanoparticles of Gantrez.

  10. Distribution of glycolipid and unsaturated fatty acids in human hair.

    PubMed

    Takahashi, Toshie; Yoshida, Satoshi

    2014-09-01

    It has been recognized that human hair lipids play crucial roles in the integrity of cells and matrices, while the details of distribution and structure of the minor lipids are hardly known. Here we investigated the lipids at the hair surface, at the interface between cuticle and cortex and in the interior of hair (cortex, medulla and melanin granules). Hair lipids and fatty acids and their metabolites were detected and characterized by using infrared spectroscopy and several mass spectrometry techniques (FTIR, ToF-SIMS, GCMS, and ESI-MS). As a result, it was found that unsaturated fatty acids were present more in the cortex of hair than at the hair surface. At the interface between cuticle and cortex, it is suggested that steryl glycoside-like lipids containing N-acetylglucosamine were present, and contributing to the adhesion between the cuticle and cortex of hair. Oxidative metabolites derived from integral fatty acids such as linoleic and alpha-linolenic acids were found in the hair bulb and melanin granules. Especially the oxidative metabolites of alpha-linolenic acid were integrated into the lipids non-covalently and tightly bound to melanin granules (namely, melanin lipids) and suggested as being involved in the biosynthetic processes of melanosome.

  11. Robustness and modularity properties of a non-covalent DNA catalytic reaction

    PubMed Central

    Zhang, David Yu

    2010-01-01

    The biophysics of nucleic acid hybridization and strand displacement have been used for the rational design of a number of nanoscale structures and functions. Recently, molecular amplification methods have been developed in the form of non-covalent DNA catalytic reactions, in which single-stranded DNA (ssDNA) molecules catalyze the release of ssDNA product molecules from multi-stranded complexes. Here, we characterize the robustness and specificity of one such strand displacement-based catalytic reaction. We show that the designed reaction is simultaneously sensitive to sequence mutations in the catalyst and robust to a variety of impurities and molecular noise. These properties facilitate the incorporation of strand displacement-based DNA components in synthetic chemical and biological reaction networks. PMID:20194118

  12. Multiply fully recyclable carbon fibre reinforced heat-resistant covalent thermosetting advanced composites

    PubMed Central

    Yuan, Yanchao; Sun, Yanxiao; Yan, Shijing; Zhao, Jianqing; Liu, Shumei; Zhang, Mingqiu; Zheng, Xiaoxing; Jia, Lei

    2017-01-01

    Nondestructive retrieval of expensive carbon fibres (CFs) from CF-reinforced thermosetting advanced composites widely applied in high-tech fields has remained inaccessible as the harsh conditions required to recycle high-performance resin matrices unavoidably damage the structure and properties of CFs. Degradable thermosetting resins with stable covalent structures offer a potential solution to this conflict. Here we design a new synthesis scheme and prepare a recyclable CF-reinforced poly(hexahydrotriazine) resin matrix advanced composite. The multiple recycling experiments and characterization data establish that this composite demonstrates performance comparable to those of its commercial counterparts, and more importantly, it realizes multiple intact recoveries of CFs and near-total recycling of the principal raw materials through gentle depolymerization in certain dilute acid solution. To our best knowledge, this study demonstrates for the first time a feasible and environment-friendly preparation-recycle-regeneration strategy for multiple CF-recycling from CF-reinforced advanced composites. PMID:28251985

  13. Covalent grafting of carbon nanotubes with a biomimetic heme model compound to enhance oxygen reduction reactions.

    PubMed

    Wei, Ping-Jie; Yu, Guo-Qiang; Naruta, Yoshinori; Liu, Jin-Gang

    2014-06-23

    The oxygen reduction reaction (ORR) is one of the most important reactions in both life processes and energy conversion systems. The replacement of noble-metal Pt-based ORR electrocatalysts by nonprecious-metal catalysts is crucial for the large-scale commercialization of automotive fuel cells. Inspired by the mechanisms of dioxygen activation by metalloenzymes, herein we report a structurally well-defined, bio-inspired ORR catalyst that consists of a biomimetic model compound-an axial imidazole-coordinated porphyrin-covalently attached to multiwalled carbon nanotubes. Without pyrolysis, this bio-inspired electrocatalyst demonstrates superior ORR activity and stability compared to those of the state-of-the-art Pt/C catalyst in both acidic and alkaline solutions, thus making it a promising alternative as an ORR electrocatalyst for application in fuel-cell technology.

  14. Nonlinear behavior of ionically and covalently cross-linked alginate hydrogels

    NASA Astrophysics Data System (ADS)

    Hashemnejad, Seyedmeysam; Zabet, Mahla; Kundu, Santanu

    2015-03-01

    Gels deform differently under applied load and the deformation behavior is related to their network structures and environmental conditions, specifically, strength and density of crosslinking, polymer concentration, applied load, and temperature. Here, we investigate the mechanical behavior of both ionically and covalent cross-linked alginate hydrogel using large amplitude oscillatory shear (LAOS) and cavitation experiments. Ionically-bonded alginate gels were obtained by using divalent calcium. Alginate volume fraction and alginate to calcium ratio were varied to obtain gels with different mechanical properties. Chemical gels were synthesized using adipic acid dihdrazide (AAD) as a cross-linker. The non-linear rheological parameters are estimated from the stress responses to elucidate the strain softening behavior of these gels. Fracture initiation and propagation mechanism during shear rheology and cavitation experiments will be presented. Our results provide a better understanding on the deformation mechanism of alginate gel under large-deformation.

  15. Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts

    NASA Astrophysics Data System (ADS)

    Xu, Hong; Gao, Jia; Jiang, Donglin

    2015-11-01

    The periodic layers and ordered nanochannels of covalent organic frameworks (COFs) make these materials viable open catalytic nanoreactors, but their low stability has precluded their practical implementation. Here we report the synthesis of a crystalline porous COF that is stable against water, strong acids and strong bases, and we demonstrate its utility as a material platform for structural design and functional development. We endowed a crystalline and porous imine-based COF with stability by incorporating methoxy groups into its pore walls to reinforce interlayer interactions. We subsequently converted the resulting achiral material into two distinct chiral organocatalysts, with the high crystallinity and porosity retained, by appending chiral centres and catalytically active sites on its channel walls. The COFs thus prepared combine catalytic activity, enantioselectivity and recyclability, which are attractive in heterogeneous organocatalysis, and were shown to promote asymmetric C-C bond formation in water under ambient conditions.

  16. Multiply fully recyclable carbon fibre reinforced heat-resistant covalent thermosetting advanced composites

    NASA Astrophysics Data System (ADS)

    Yuan, Yanchao; Sun, Yanxiao; Yan, Shijing; Zhao, Jianqing; Liu, Shumei; Zhang, Mingqiu; Zheng, Xiaoxing; Jia, Lei

    2017-03-01

    Nondestructive retrieval of expensive carbon fibres (CFs) from CF-reinforced thermosetting advanced composites widely applied in high-tech fields has remained inaccessible as the harsh conditions required to recycle high-performance resin matrices unavoidably damage the structure and properties of CFs. Degradable thermosetting resins with stable covalent structures offer a potential solution to this conflict. Here we design a new synthesis scheme and prepare a recyclable CF-reinforced poly(hexahydrotriazine) resin matrix advanced composite. The multiple recycling experiments and characterization data establish that this composite demonstrates performance comparable to those of its commercial counterparts, and more importantly, it realizes multiple intact recoveries of CFs and near-total recycling of the principal raw materials through gentle depolymerization in certain dilute acid solution. To our best knowledge, this study demonstrates for the first time a feasible and environment-friendly preparation-recycle-regeneration strategy for multiple CF-recycling from CF-reinforced advanced composites.

  17. Stable Covalent Organic Frameworks for Exceptional Mercury Removal from Aqueous Solutions.

    PubMed

    Huang, Ning; Zhai, Lipeng; Xu, Hong; Jiang, Donglin

    2017-02-15

    The pre-designable porous structures found in covalent organic frameworks (COFs) render them attractive as a molecular platform for addressing environmental issues such as removal of toxic heavy metal ions from water. However, a rational structural design of COFs in this aspect has not been explored. Here we report the rational design of stable COFs for Hg(II) removal through elaborate structural design and control over skeleton, pore size, and pore walls. The resulting framework is stable under strong acid and base conditions, possesses high surface area, has large mesopores, and contains dense sulfide functional termini on the pore walls. These structural features work together in removing Hg(II) from water and achieve a benchmark system that combines capacity, efficiency, effectivity, applicability, selectivity, and reusability. These results suggest that COFs offer a powerful platform for tailor-made structural design to cope with various types of pollution.

  18. Polyvinylamine-graft-TEMPO adsorbs onto, oxidizes, and covalently bonds to wet cellulose.

    PubMed

    Pelton, Robert; Ren, Pengchao; Liu, Jieyi; Mijolovic, Darijo

    2011-04-11

    Described is a new, greener approach to increasing adhesion between wet cellulose surfaces. Polyvinylamine (PVAm) with grafted TEMPO spontaneously adsorbs onto cellulose and oxidizes the C6 hydroxyl to aldehyde groups that react to form covalent bonds with primary amines on PVAm. Grafted TEMPO offers two important advantages over solutions of low-molecular-weight water-soluble TEMPO derivatives. First, the oxidation of porous cellulose wood fibers is restricted to the exterior surfaces accessible to high-molecular-weight PVAm. Thus, fibers are not weakened by excessive oxidation of the interior fiber wall surfaces. The second advantage of tethered TEMPO is that the total dose of TEMPO required to oxidize dilute fiber suspensions is much less than that required by water-soluble TEMPO derivatives. PVAm-TEMPO is stable under oxidizing conditions. The oxidation activity of the immobilized TEMPO was demonstrated by the conversion of methylglyoxal to pyruvic acid.

  19. Determination of the solution-bound conformation of an amino acid binding protein by NMR paramagnetic relaxation enhancement: use of a single flexible paramagnetic probe with improved estimation of its sampling space.

    PubMed

    Bermejo, Guillermo A; Strub, Marie-Paule; Ho, Chien; Tjandra, Nico

    2009-07-15

    We demonstrate the feasibility of elucidating the bound ("closed") conformation of a periplasmic binding protein, the glutamine-binding protein (GlnBP), in solution, using paramagnetic relaxation enhancements (PREs) arising from a single paramagnetic group. GlnBP consists of two globular domains connected by a hinge. Using the ligand-free ("open") conformation as a starting point, conjoined rigid-body/torsion-angle simulated annealing calculations were performed using backbone (1)H(N)-PREs as a major source of distance information. Paramagnetic probe flexibility was accounted for via a multiple-conformer representation. A conventional approach where the entire PRE data set is enforced at once during simulated annealing yielded poor results due to inappropriate conformational sampling of the probe. On the other hand, significant improvements in coordinate accuracy were obtained by estimating the probe sampling space prior to structure calculation. Such sampling is achieved by refining the ensemble of probe conformers with intradomain PREs only, keeping the protein backbone fixed in the open form. Subsequently, while constraining the probe to the previously found conformations, the domains are allowed to move relative to each other under the influence of the non-intradomain PREs, giving the hinge region torsional degrees of freedom. Thus, by partitioning the protocol into "probe sampling" and "backbone sampling" stages, structures significantly closer to the X-ray structure of ligand-bound GlnBP were obtained.

  20. Characterization of ellagitannins, gallotannins, and bound proanthocyanidins from California almond (Prunus dulcis) varieties.

    PubMed

    Xie, Liyang; Roto, Anna V; Bolling, Bradley W

    2012-12-12

    Extractable and bound proanthocyanidins and hydrolyzable tannins were characterized in Nonpareil, Carmel, and Butte almond varieties from California, with n = 3 samples/variety. Bound proanthocyanidins were recovered from extracted defatted almond residue by hydrolysis with 4 N sodium hydroxide and represented 3-21% of the total proanthocyanidin content among varieties. The bound proanthocyanidins were recovered primarily as monomers and dimers. In contrast, acid hydrolysis of extracted almond residue did not yield bound proanthocyanidins. Hydrolyzable tannins were characterized in aqueous acetone extracts of defatted almond using two-dimensional TLC and further quantitated by HPLC following acid hydrolysis. Almond hydrolyzable tannin content was 54.7 ± 2.3 mg ellagic acid and 27.4 ± 7.3 mg gallic acid per 100 g almond among varieties. The tannin contents of Nonpareil, Carmel, and Butte almond varieties were not significantly different. Thus, bound proanthocyanidins and hydrolyzable tannins significantly contribute to almond polyphenol content.

  1. Activation of a Covalent Enzyme-Substrate Bond by Noncovalent Interaction with an Effector

    PubMed Central

    Malhotra, O. P.; Bernhard, Sidney A.

    1973-01-01

    The absorption spectrum of an activesite specific chromophoric acyl enzyme, sturgeon β-(2-furyl)-acryloyl-glyceraldehyde-3-phosphate dehydrogenase, is reported. This acyl enzyme undergoes all of the catalyzed reactions characteristic of the intermediate of the physiological acyl enzyme, 3-phospho-D-glyceroyl-glyceraldehyde-3-phosphate dehydrogenease. The rates of reactions of both these acyl enzymes depend strongly on the extent of interaction of the acyl enzyme with the oxidized coenzyme, NAD+, even where the “redox” properties of the coenzyme are not required. Likewise, the spectral properties of chromophoric acyl enzyme are affected by the extent of bound NAD. Under the pseudophysiological conditions reported herein, there is a stoichiometric limitation of two furylacryloyl-acyl groups per enzyme molecule containing four covalently-equivalent subunits. The binding of NAD both to the apoenzyme and to the diacyl enzyme is heterogeneous: at low extents of NAD occupancy, NAD binding is stronger. The binding to acyl enzyme can be quantitatively described by an enzyme model involving a tetramer with 2-fold symmetry, and consequently containing equal numbers of two classes of sites. NAD binding to difurylacryloyl-enzyme occurs virtually discretely, first to the two unmodified (tight-binding) sites, followed by looser binding to the two acyl-sites. NAD occupancy at these latter sites transforms the chromophoric acyl spectrum from that characteristic of a model furylacryloyl-thiol ester in H2O to a highly perturbed furylacryloyl spectrum characteristic of monomeric native “active-thiol” furylacryloyl-enzymes. Likewise the acyl reactivity towards arsenolysis depends on the extent of NAD bound to the loose sites. Elimination of the tight binding of NAD to the difurylacryloyl enzyme tetramer by alkylation of the remaining two free SH groups with iodoacetate has no apparent influence on the NAD-dependent furylacryloyl-spectral perturbation at the “two equivalent

  2. Detection of bound residues in soils by sandwich-immunoassay

    NASA Astrophysics Data System (ADS)

    Dosch, M.; Weller, Michael G.; Niessner, Reinhard

    1995-10-01

    Immunoassays are useful analytical instruments for the detection of many environmental compounds. This method is now introduced for the detection of non-extractable compounds in soil. So-called 'bound residues' consist of a soil component, e.g. humic acids, and an irreversibly bound pollutant. Because of the complexity of those macromolecules conventional analytical methods in general do not work. Enzyme immunoassays, in contrast, seem to have a large potential for applications and further developments in this field. The use of antibodies with high affinity to the analytes makes a selective detection of environmental pollutants possible. With the development of an enzyme-labeled sandwich-immunoassay polycyclic aromatic hydrocarbons (PAHs), irreversibly bound to humic acids, were determined for the first time.

  3. A silica nanoparticle-based sensor for selective fluorescent detection of homocysteine via interaction differences between thiols and particle-surface-bound polymers

    NASA Astrophysics Data System (ADS)

    Yu, Changmin; Zeng, Fang; Luo, Ming; Wu, Shuizhu

    2012-08-01

    Biothiols play crucial roles in maintaining biological systems; among them, homocysteine (Hcy) has received increasing attention since elevated levels of Hcy have been implicated as an independent risk factor for cardiovascular disease. Hence, the selective detection of this specific biothiol, which is a disease-associated biomarker, is very important. In this paper, we demonstrate a new mesoporous silica nanoparticle-based sensor for selective detection of homocysteine from biothiols and other common amino acids. In this fluorescent sensing system, an anthracene nitroolefin compound was placed inside the mesopores of mesoporous silica nanoparticles (MSNs) and used as a probe for thiols. The hydrophilic polyethylene glycol (PEG 5000) molecules were covalently bound to the MSN surface and used as a selective barrier for Hcy detection via different interactions between biothiols and the PEG polymer chains. The sensor can discriminate Hcy from the two low-molecular mass biothiols (GSH and Cys) and other common amino acids in totally aqueous media as well as in serum, with a detection limit of 0.1 μM. This strategy may offer an approach for designing other MSN-based sensing systems by using polymers as diffusion regulators in sensing assays for other analytes.

  4. Gluing together metallic and covalent layers to form Ru2C under ambient conditions.

    PubMed

    Sun, Weiwei; Li, Yunguo; Zhu, Li; Ma, Yanming; Di Marco, Igor; Johansson, Börje; Korzhavyi, Pavel

    2015-04-21

    Ru2C has recently been synthesised at high pressure and high temperature, and was assumed to have a structure with space group P3̅m1. However, subsequent theoretical work has revealed that this structure is unstable under ambient conditions, which motivated us to look for the stable structure. In this work, we explore the structures of Ru2C by using an unbiased swarm structure searching algorithm. The structures with R3m and R3̅m symmetries have been found to be lower in energy than the P3̅m1 structure, at the same time being dynamically stable under ambient conditions. These layered structures consist of alternating Ru bilayers and C monolayers in the R3m structure, and alternating Ru tetra-layers and C bilayers in the R3̅m structure. The C layers are more evenly distributed and more covalently bound to the Ru layers in the R3m structure than in the R3̅m structure. Instead, in the R3̅m structure there exists more Ru-Ru metallic bonding, which has a crucial role in diminishing the hardness of this material. Our findings should stimulate further explorations of the structures and properties of the heavy transition metal carbides and nitrides, potentially leading to industrial applications.

  5. Covalent protein-oligonucleotide conjugates by copper-free click reaction.

    PubMed

    Khatwani, Santoshkumar L; Kang, Jun Sung; Mullen, Daniel G; Hast, Michael A; Beese, Lorena S; Distefano, Mark D; Taton, T Andrew

    2012-07-15

    Covalent protein-oligodeoxynucleotide (protein-ODN) conjugates are useful in a number of biological applications, but synthesizing discrete conjugates-where the connection between the two components is at a defined location in both the protein and the ODN-under mild conditions with significant yield can be a challenge. In this article, we demonstrate a strategy for synthesizing discrete protein-ODN conjugates using strain-promoted azide-alkyne [3+2] cycloaddition (SPAAC, a copper-free 'click' reaction). Azide-functionalized proteins, prepared by enzymatic prenylation of C-terminal CVIA tags with synthetic azidoprenyl diphosphates, were 'clicked' to ODNs that had been modified with a strained dibenzocyclooctyne (DIBO-ODN). The resulting protein-ODN conjugates were purified and characterized by size-exclusion chromatography and gel electrophoresis. We find that the yields and reaction times of the SPAAC bioconjugation reactions are comparable to those previously reported for copper-catalyzed azide-alkyne [3+2] cycloaddition (CuAAC) bioconjugation, but require no catalyst. The same SPAAC chemistry was used to immobilize azide-modified proteins onto surfaces, using surface-bound DIBO-ODN as a heterobifunctional linker. Cu-free click bioconjugation of proteins to ODNs is a simple and versatile alternative to Cu-catalyzed click methods.

  6. Covalent protein-oligonucleotide conjugates by copper-free click reaction

    PubMed Central

    Khatwani, Santoshkumar L.; Mullen, Daniel G.; Hast, Michael A.; Beese, Lorena S.; Distefano, Mark D.; Taton, T. Andrew

    2013-01-01

    Covalent protein-oligodeoxynucleotide (protein-ODN) conjugates are useful in a number of biological applications, but synthesizing discrete conjugates—where the connection between the two components is at a defined location in both the protein and the ODN—under mild conditions with significant yield can be a challenge. In this article, we demonstrate a strategy for synthesizing discrete protein-ODN conjugates using strain-promoted azide-alkyne [3+2] cycloaddition (SPAAC, a copper-free “click” reaction). Azide-functionalized proteins, prepared by enzymatic prenylation of C-terminal CVIA tags with synthetic azidoprenyl diphosphates, were “clicked” to ODNs that had been modified with a strained