Science.gov

Sample records for acid cycle activity

  1. Sex-dependent activity of the spinal excitatory amino acid transporter: Role of estrous cycle.

    PubMed

    Sajjad, Jahangir; Felice, Valeria D; Golubeva, Anna V; Cryan, John F; O'Mahony, Siobhain M

    2016-10-01

    Females are more likely to experience visceral pain than males, yet mechanisms underlying this sex bias are not fully elucidated. Moreover, pain sensitivity can change throughout the menstrual cycle. Alterations in the glutamatergic system have been implicated in several pain-disorders; however, whether these are sex-dependent is unclear. Thus, we aimed to investigate sex differences in the spinal cord glutamate uptake and how it varies across the estrous cycle. The activity of the glutamate transporters, excitatory amino acid transporters (EAATs) was assessed using an ex vivo aspartate radioactive uptake assay in the lumbosacral spinal cord in Sprague-Dawley male and female rats. The gene expression of EAATs, glutamate receptor subunits NR1 and NR2B and the estrogen receptors ERα & ERβ in the spinal cord were also analyzed. EAAT activity was lower in females, particularly during the estrus phase, and this was the only cycle stage that was responsive to the pharmacological effects of the EAATs activator riluzole. Interestingly, EAAT1 mRNA expression was lower in high-estrogen and high-ERα states compared to diestrus in females. We conclude that the Spinal EAAT activity in females is different to that in males, and varies across the estrous cycle. Furthermore, the expression levels of estrogen receptors also showed a cycle-dependent pattern that may affect EAATs function and expression. PMID:27471194

  2. Lipotoxicity in steatohepatitis occurs despite an increase in tricarboxylic acid cycle activity.

    PubMed

    Patterson, Rainey E; Kalavalapalli, Srilaxmi; Williams, Caroline M; Nautiyal, Manisha; Mathew, Justin T; Martinez, Janie; Reinhard, Mary K; McDougall, Danielle J; Rocca, James R; Yost, Richard A; Cusi, Kenneth; Garrett, Timothy J; Sunny, Nishanth E

    2016-04-01

    The hepatic tricarboxylic acid (TCA) cycle is central to integrating macronutrient metabolism and is closely coupled to cellular respiration, free radical generation, and inflammation. Oxidative flux through the TCA cycle is induced during hepatic insulin resistance, in mice and humans with simple steatosis, reflecting early compensatory remodeling of mitochondrial energetics. We hypothesized that progressive severity of hepatic insulin resistance and the onset of nonalcoholic steatohepatitis (NASH) would impair oxidative flux through the hepatic TCA cycle. Mice (C57/BL6) were fed a high-trans-fat high-fructose diet (TFD) for 8 wk to induce simple steatosis and NASH by 24 wk. In vivo fasting hepatic mitochondrial fluxes were determined by(13)C-nuclear magnetic resonance (NMR)-based isotopomer analysis. Hepatic metabolic intermediates were quantified using mass spectrometry-based targeted metabolomics. Hepatic triglyceride accumulation and insulin resistance preceded alterations in mitochondrial metabolism, since TCA cycle fluxes remained normal during simple steatosis. However, mice with NASH had a twofold induction (P< 0.05) of mitochondrial fluxes (μmol/min) through the TCA cycle (2.6 ± 0.5 vs. 5.4 ± 0.6), anaplerosis (9.1 ± 1.2 vs. 16.9 ± 2.2), and pyruvate cycling (4.9 ± 1.0 vs. 11.1 ± 1.9) compared with their age-matched controls. Induction of the TCA cycle activity during NASH was concurrent with blunted ketogenesis and accumulation of hepatic diacylglycerols (DAGs), ceramides (Cer), and long-chain acylcarnitines, suggesting inefficient oxidation and disposal of excess free fatty acids (FFA). Sustained induction of mitochondrial TCA cycle failed to prevent accretion of "lipotoxic" metabolites in the liver and could hasten inflammation and the metabolic transition to NASH. PMID:26814015

  3. Regulation of pyruvate dehydrogenase activity and citric acid cycle intermediates during high cardiac power generation

    PubMed Central

    Sharma, Naveen; Okere, Isidore C; Brunengraber, Daniel Z; McElfresh, Tracy A; King, Kristen L; Sterk, Joseph P; Huang, Hazel; Chandler, Margaret P; Stanley, William C

    2005-01-01

    A high rate of cardiac work increases citric acid cycle (CAC) turnover and flux through pyruvate dehydrogenase (PDH); however, the mechanisms for these effects are poorly understood. We tested the hypotheses that an increase in cardiac energy expenditure: (1) activates PDH and reduces the product/substrate ratios ([NADH]/[NAD+] and [acetyl-CoA]/[CoA-SH]); and (2) increases the content of CAC intermediates. Measurements were made in anaesthetized pigs under control conditions and during 15 min of a high cardiac workload induced by dobutamine (Dob). A third group was made hyperglycaemic (14 mm) to stimulate flux through PDH during the high work state (Dob + Glu). Glucose and fatty acid oxidation were measured with 14C-glucose and 3H-oleate. Compared with control, the high workload groups had a similar increase in myocardial oxygen consumption ( and cardiac power. Dob increased PDH activity and glucose oxidation above control, but did not reduce the [NADH]/[NAD+] and [acetyl-CoA]/[CoA-SH] ratios, and there were no differences between the Dob and Dob + Glu groups. An additional group was treated with Dob + Glu and oxfenicine (Oxf) to inhibit fatty acid oxidation: this increased [CoA-SH] and glucose oxidation compared with Dob; however, there was no further activation of PDH or decrease in the [NADH]/[NAD+] ratio. Content of the 4-carbon CAC intermediates succinate, fumarate and malate increased 3-fold with Dob, but there was no change in citrate content, and the Dob + Glu and Dob + Glu + Oxf groups were not different from Dob. In conclusion, compared with normal conditions, at high myocardial energy expenditure (1) the increase in flux through PDH is regulated by activation of the enzyme complex and continues to be partially controlled through inhibition by fatty acid oxidation, and (2) there is expansion of the CAC pool size at the level of 4-carbon intermediates that is largely independent of myocardial fatty acid oxidation. PMID:15550462

  4. Aristolochic acid-induced apoptosis and G2 cell cycle arrest depends on ROS generation and MAP kinases activation.

    PubMed

    Romanov, Victor; Whyard, Terry C; Waltzer, Wayne C; Grollman, Arthur P; Rosenquist, Thomas

    2015-01-01

    Ingestion of aristolochic acids (AAs) contained in herbal remedies results in a renal disease and, frequently, urothelial malignancy. The genotoxicity of AA in renal cells, including mutagenic DNA adducts formation, is well documented. However, the mechanisms of AA-induced tubular atrophy and renal fibrosis are largely unknown. To better elucidate some aspects of this process, we studied cell cycle distribution and cell survival of renal epithelial cells treated with AAI at low and high doses. A low dose of AA induces cell cycle arrest in G2/M phase via activation of DNA damage checkpoint pathway ATM-Chk2-p53-p21. DNA damage signaling pathway is activated more likely via increased production of reactive oxygen species (ROS) caused by AA treatment then via DNA damage induced directly by AA. Higher AA concentration induced cell death partly via apoptosis. Since mitogen-activated protein kinases play an important role in cell survival, death and cell cycle progression, we assayed their function in AA-treated renal tubular epithelial cells. ERK1/2 and p38 but not JNK were activated in cells treated with AA. In addition, pharmacological inhibition of ERK1/2 and p38 as well as suppression of ROS generation with N-acetyl-L-cysteine resulted in the partial relief of cells from G2/M checkpoint and a decline of apoptosis level. Cell cycle arrest may be a mechanism for DNA repair, cell survival and reprogramming of epithelial cells to the fibroblast type. An apoptosis of renal epithelial cells at higher AA dose might be necessary to provide space for newly reprogrammed fibrotic cells. PMID:24792323

  5. Sulfur amino acid deficiency upregulates intestinal methionine cycle activity and suppresses epithelial growth in neonatal pigs.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We recently showed that the developing gut is a significant site of methionine transmethylation to homocysteine and transsulfuration to cysteine. We hypothesized that sulfur amino acid (SAA) deficiency would preferentially reduce mucosal growth and antioxidant function in neonatal pigs. Neonatal pi...

  6. Acute Carnosine Administration Increases Respiratory Chain Complexes and Citric Acid Cycle Enzyme Activities in Cerebral Cortex of Young Rats.

    PubMed

    Macedo, Levy W; Cararo, José H; Maravai, Soliany G; Gonçalves, Cinara L; Oliveira, Giovanna M T; Kist, Luiza W; Guerra Martinez, Camila; Kurtenbach, Eleonora; Bogo, Maurício R; Hipkiss, Alan R; Streck, Emilio L; Schuck, Patrícia F; Ferreira, Gustavo C

    2016-10-01

    Carnosine (β-alanyl-L-histidine) is an imidazole dipeptide synthesized in excitable tissues of many animals, whose biochemical properties include carbonyl scavenger, anti-oxidant, bivalent metal ion chelator, proton buffer, and immunomodulating agent, although its precise physiological role(s) in skeletal muscle and brain tissues in vivo remain unclear. The aim of the present study was to investigate the in vivo effects of acute carnosine administration on various aspects of brain bioenergetics of young Wistar rats. The activity of mitochondrial enzymes in cerebral cortex was assessed using a spectrophotometer, and it was found that there was an increase in the activities of complexes I-III and II-III and succinate dehydrogenase in carnosine-treated rats, as compared to vehicle-treated animals. However, quantitative real-time RT-PCR (RT-qPCR) data on mRNA levels of mitochondrial biogenesis-related proteins (nuclear respiratory factor 1 (Nrf1), peroxisome proliferator-activated receptor-γ coactivator 1-α (Ppargc1α), and mitochondrial transcription factor A (Tfam)) were not altered significantly and therefore suggest that short-term carnosine administration does not affect mitochondrial biogenesis. It was in agreement with the finding that immunocontent of respiratory chain complexes was not altered in animals receiving carnosine. These observations indicate that acute carnosine administration increases the respiratory chain and citric acid cycle enzyme activities in cerebral cortex of young rats, substantiating, at least in part, a neuroprotector effect assigned to carnosine against oxidative-driven disorders. PMID:26476839

  7. Solar activity secular cycles

    NASA Astrophysics Data System (ADS)

    Kramynin, A. P.; Mordvinov, A. V.

    2013-12-01

    Long-term variations in solar activity secular cycles have been studied using a method for the expansion of reconstructed sunspot number series Sn( t) for 11400 years in terms of natural orthogonal functions. It has been established that three expansion components describe more than 98% of all Sn( t) variations. In this case, the contribution of the first expansion component is about 92%. The averaged form of the 88year secular cycle has been determined based on the form of the first expansion coordinate function. The quasi-periodicities modulating the secular cycle have been revealed based on the time function conjugate to the first function. The quasi-periodicities modulating the secular cycle coincide with those observed in the Sn( t) series spectrum. A change in the secular cycle form and the time variations in this form are described by the second and third expansion components, the contributions of which are about 4 and 2%, respectively. The variations in the steepness of the secular cycle branches are more pronounced in the 200-year cycle, and the secular cycle amplitude varies more evidently in the 2300-year cycle.

  8. Anticancer and apoptotic activities of oleanolic acid are mediated through cell cycle arrest and disruption of mitochondrial membrane potential in HepG2 human hepatocellular carcinoma cells.

    PubMed

    Zhu, Yue-Yong; Huang, Hong-Yan; Wu, Yin-Lian

    2015-10-01

    Hepatocellular carcinoma (HCC) is an aggressive form of cancer, with high rates of morbidity and mortality, a poor prognosis and limited therapeutic options. The objective of the present study was to demonstrate the anticancer activity of oleanolic acid in HepG2 human HCC cells. Cell viability was evaluated using an MTT assay, following administration of various doses of oleanolic acid. The effect of oleanolic acid on cell cycle phase distribution and mitochondrial membrane potential was evaluated using flow cytometry with propidium iodide and rhodamine‑123 DNA‑binding cationic fluorescent dyes. Fluorescence microscopy was employed to detect morphological changes in HepG2 cells following oleanolic acid treatment. The results revealed that oleanolic acid induced a dose‑dependent, as well as time‑dependent inhibition in the growth of HepG2 cancer cells. Following acridine orange and ethidium bromide staining, treatment with various doses (0, 5, 25 and 50 µM) of oleanolic acid induced typical morphological changes associated with apoptosis, including cell shrinkage, membrane blebbing, nuclear condensation and apoptotic body formation. Cell cycle analysis revealed that oleanolic acid induced cell cycle arrest in HepG2 cells at the sub‑G1 (apoptotic) phase of the cell cycle, in a dose‑dependent manner. Staining with Annexin V‑fluorescein isothiocyanate and propidium iodide revealed that apoptosis occurred early in these cells. Oleanolic acid treatment also resulted in fragmentation of nuclear DNA in a dose‑dependent manner, producing the typical features of DNA laddering on an agarose gel. The results also demonstrated that oleanolic acid treatment resulted in a potent loss of mitochondrial membrane potential, which also occurred in a dose‑dependent manner. Therefore, oleanolic acid may be used as a therapeutic agent in the treatment of human HCC. PMID:26151733

  9. Activity Cycles in Stars

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    2009-01-01

    Starspots and stellar activity can be detected in other stars using high precision photometric and spectrometric measurements. These observations have provided some surprises (starspots at the poles - sunspots are rarely seen poleward of 40 degrees) but more importantly they reveal behaviors that constrain our models of solar-stellar magnetic dynamos. The observations reveal variations in cycle characteristics that depend upon the stellar structure, convection zone dynamics, and rotation rate. In general, the more rapidly rotating stars are more active. However, for stars like the Sun, some are found to be inactive while nearly identical stars are found to be very active indicating that periods like the Sun's Maunder Minimum (an inactive period from 1645 to 1715) are characteristic of Sun-like stars.

  10. Regulation of Life Cycle Checkpoints and Developmental Activation of Infective Larvae in Strongyloides stercoralis by Dafachronic Acid

    PubMed Central

    Pilgrim, Adeiye A.; Nolan, Thomas J.; Wang, Zhu; Kliewer, Steven A.; Mangelsdorf, David J.; Lok, James B.

    2016-01-01

    The complex life cycle of the parasitic nematode Strongyloides stercoralis leads to either developmental arrest of infectious third-stage larvae (iL3) or growth to reproductive adults. In the free-living nematode Caenorhabditis elegans, analogous determination between dauer arrest and reproductive growth is governed by dafachronic acids (DAs), a class of steroid hormones that are ligands for the nuclear hormone receptor DAF-12. Biosynthesis of DAs requires the cytochrome P450 (CYP) DAF-9. We tested the hypothesis that DAs also regulate S. stercoralis development via DAF-12 signaling at three points. First, we found that 1 μM Δ7-DA stimulated 100% of post-parasitic first-stage larvae (L1s) to develop to free-living adults instead of iL3 at 37°C, while 69.4±12.0% (SD) of post-parasitic L1s developed to iL3 in controls. Second, we found that 1 μM Δ7-DA prevented post-free-living iL3 arrest and stimulated 85.2±16.9% of larvae to develop to free-living rhabditiform third- and fourth-stages, compared to 0% in the control. This induction required 24–48 hours of Δ7-DA exposure. Third, we found that the CYP inhibitor ketoconazole prevented iL3 feeding in host-like conditions, with only 5.6±2.9% of iL3 feeding in 40 μM ketoconazole, compared to 98.8±0.4% in the positive control. This inhibition was partially rescued by Δ7-DA, with 71.2±16.4% of iL3 feeding in 400 nM Δ7-DA and 35 μM ketoconazole, providing the first evidence of endogenous DA production in S. stercoralis. We then characterized the 26 CYP-encoding genes in S. stercoralis and identified a homolog with sequence and developmental regulation similar to DAF-9. Overall, these data demonstrate that DAF-12 signaling regulates S. stercoralis development, showing that in the post-parasitic generation, loss of DAF-12 signaling favors iL3 arrest, while increased DAF-12 signaling favors reproductive development; that in the post-free-living generation, absence of DAF-12 signaling is crucial for iL3 arrest

  11. Regulation of Life Cycle Checkpoints and Developmental Activation of Infective Larvae in Strongyloides stercoralis by Dafachronic Acid.

    PubMed

    Albarqi, Mennatallah M Y; Stoltzfus, Jonathan D; Pilgrim, Adeiye A; Nolan, Thomas J; Wang, Zhu; Kliewer, Steven A; Mangelsdorf, David J; Lok, James B

    2016-01-01

    The complex life cycle of the parasitic nematode Strongyloides stercoralis leads to either developmental arrest of infectious third-stage larvae (iL3) or growth to reproductive adults. In the free-living nematode Caenorhabditis elegans, analogous determination between dauer arrest and reproductive growth is governed by dafachronic acids (DAs), a class of steroid hormones that are ligands for the nuclear hormone receptor DAF-12. Biosynthesis of DAs requires the cytochrome P450 (CYP) DAF-9. We tested the hypothesis that DAs also regulate S. stercoralis development via DAF-12 signaling at three points. First, we found that 1 μM Δ7-DA stimulated 100% of post-parasitic first-stage larvae (L1s) to develop to free-living adults instead of iL3 at 37°C, while 69.4±12.0% (SD) of post-parasitic L1s developed to iL3 in controls. Second, we found that 1 μM Δ7-DA prevented post-free-living iL3 arrest and stimulated 85.2±16.9% of larvae to develop to free-living rhabditiform third- and fourth-stages, compared to 0% in the control. This induction required 24-48 hours of Δ7-DA exposure. Third, we found that the CYP inhibitor ketoconazole prevented iL3 feeding in host-like conditions, with only 5.6±2.9% of iL3 feeding in 40 μM ketoconazole, compared to 98.8±0.4% in the positive control. This inhibition was partially rescued by Δ7-DA, with 71.2±16.4% of iL3 feeding in 400 nM Δ7-DA and 35 μM ketoconazole, providing the first evidence of endogenous DA production in S. stercoralis. We then characterized the 26 CYP-encoding genes in S. stercoralis and identified a homolog with sequence and developmental regulation similar to DAF-9. Overall, these data demonstrate that DAF-12 signaling regulates S. stercoralis development, showing that in the post-parasitic generation, loss of DAF-12 signaling favors iL3 arrest, while increased DAF-12 signaling favors reproductive development; that in the post-free-living generation, absence of DAF-12 signaling is crucial for iL3 arrest

  12. Catabolite Control Protein E (CcpE) Is a LysR-type Transcriptional Regulator of Tricarboxylic Acid Cycle Activity in Staphylococcus aureus*

    PubMed Central

    Hartmann, Torsten; Zhang, Bo; Baronian, Grégory; Schulthess, Bettina; Homerova, Dagmar; Grubmüller, Stephanie; Kutzner, Erika; Gaupp, Rosmarie; Bertram, Ralph; Powers, Robert; Eisenreich, Wolfgang; Kormanec, Jan; Herrmann, Mathias; Molle, Virginie; Somerville, Greg A.; Bischoff, Markus

    2013-01-01

    The tricarboxylic acid cycle (TCA cycle) is a central metabolic pathway that provides energy, reducing potential, and biosynthetic intermediates. In Staphylococcus aureus, TCA cycle activity is controlled by several regulators (e.g. CcpA, CodY, and RpiRc) in response to the availability of sugars, amino acids, and environmental stress. Developing a bioinformatic search for additional carbon catabolite-responsive regulators in S. aureus, we identified a LysR-type regulator, catabolite control protein E (CcpE), with homology to the Bacillus subtilis CcpC regulator. Inactivation of ccpE in S. aureus strain Newman revealed that CcpE is a positive transcriptional effector of the first two enzymes of the TCA cycle, aconitase (citB) and to a lesser extent citrate synthase (citZ). Consistent with the transcriptional data, aconitase activity dramatically decreased in the ccpE mutant relative to the wild-type strain. The effect of ccpE inactivation on citB transcription and the lesser effect on citZ transcription were also reflected in electrophoretic mobility shift assays where CcpE bound to the citB promoter but not the citZ promoter. Metabolomic studies showed that inactivation of ccpE resulted in increased intracellular concentrations of acetate, citrate, lactate, and alanine, consistent with a redirection of carbon away from the TCA cycle. Taken together, our data suggest that CcpE is a major direct positive regulator of the TCA cycle gene citB. PMID:24194525

  13. Flux control exerted by mitochondrial outer membrane carnitine palmitoyltransferase over beta-oxidation, ketogenesis and tricarboxylic acid cycle activity in hepatocytes isolated from rats in different metabolic states.

    PubMed Central

    Drynan, L; Quant, P A; Zammit, V A

    1996-01-01

    The Flux Control Coefficients of mitochondrial outer membrane carnitine palmitoyltransferase (CPT I) with respect to the overall rates of beta-oxidation, ketogenesis and tricarboxylic acid cycle activity were measured in hepatocytes isolated from rats in different metabolic states (fed, 24 h-starved, starved-refed and starved/insulin-treated). These conditions were chosen because there is controversy as to whether, when significant control ceases to be exerted by CPT I over the rate of fatty oxidation [Moir and Zammit (1994) Trends Biochem. Sci. 19, 313-317], this is transferred to one or more steps proximal to acylcarnitine synthesis (e.g. decreased delivery of fatty acids to the liver) or to the reaction catalysed by mitochondrial 3-hydroxy-3-methyl-glutaryl-CoA synthase [Hegardt (1995) Biochem. Soc. Trans. 23, 486-490]. Therefore isolated hepatocytes were used in the present study to exclude the involvement of changes in the rate of delivery of non-esterified fatty acids (NEFA) to the liver, such as occur in vivo, and to ascertain whether, under conditions of constant supply of NEFA, CPT I retains control over the relevant fluxes of fatty acid oxidation to ketones and carbon dioxide, or whether control is transferred to another (intrahepatocytic) site. The results clearly show that the Flux Control Coefficients of CPT I with respect to overall beta-oxidation and ketogenesis are very high under all conditions investigated, indicating that control is not lost to another intrahepatic site during the metabolic transitions studied. The control of CPT I over tricarboxylic acid cycle activity was always very low. The significance of these findings for the integration of fatty acid and carbohydrate metabolism in the liver is discussed. PMID:8760364

  14. Changes in urinary amino acids excretion in relationship with muscle activity markers over a professional cycling stage race: in search of fatigue markers.

    PubMed

    Corsetti, Roberto; Barassi, Alessandra; Perego, Silvia; Sansoni, Veronica; Rossi, Alessandra; Damele, Clara Anna Linda; Melzi D'Eril, Gianlodovico; Banfi, Giuseppe; Lombardi, Giovanni

    2016-01-01

    The aim of this study was to identify the relationship between metabolic effort, muscular damage/activity indices, and urinary amino acids profile over the course of a strenuous prolonged endurance activity, as a cycling stage race is, in order to identify possible fatigue markers. Nine professional cyclists belonging to a single team, competing in the Giro d'Italia cycling stage race, were anthropometrically characterized and sampled for blood and urine the day before the race started, and on days 12 and 23 of the race. Diet was kept the same over the race, and power output and energy expenditure were recorded. Sera were assayed for muscle markers (lactate dehydrogenase, aspartate aminotransferase, and creatine kinase activities, and blood urea nitrogen), and creatinine, all corrected for plasma volume changes. Urines were profiled for amino acid concentrations, normalized on creatinine excretion. Renal function, in terms of glomerular filtration rate, was monitored by MDRD equation corrected on body surface area. Creatine kinase activity and blood urea were increased during the race as did serum creatinine while kidney function remained stable. Among the amino acids, taurine, glycine, cysteine, leucine, carnosine, 1-methyl histidine, and 3-methyl histidine showed a net decreased, while homocysteine was increased. Taurine and the dipeptide carnosine (β-alanyl-L-histidine) were significantly correlated with the muscle activity markers and the indices of effort. In conclusion, the metabolic profile is modified strikingly due to the effort. Urinary taurine and carnosine seem useful tools to evaluate the muscle damage and possibly the fatigue status on a long-term basis. PMID:26306846

  15. THIN-LAYER SEPARATION OF CITRIC ACID CYCLE INTERMEDIATES, LACTIC ACID, AND THE AMINO ACID TAURINE

    EPA Science Inventory

    This paper describes a two-dimensional mixed-layer method for separating citric acid cycle intermediates, lactic acid and the amino acid taurine. The method cleanly separates all citric acid cycle intermediates tested, excepting citric acid and isocitric acid. The solvents are in...

  16. [Effect of heavy metals on activity of key enzymes of glyoxylate cycle and content of thiobarbituric acid reactive substances in the germinating soybean Glicine max L.seeds].

    PubMed

    Bezdudnaia, E F; Kaliman, P A

    2008-01-01

    The influence of CoCl2 and CdCl2 on the activity of isocytrate lyase, malate synthase and NAD-malate dehydrogenase in the seed lobes and the composition of malondialdehyde products at early stages of germinating of soybean seeds: after first 24-hours, 72 hours and 96 hours are investigated. It is shown that when germinating in the medium containing no metal salts, isocytrate lyase activity is greatly increased during 96 h and malate synthase is increased after 72 h and is decreased after 96 h of germination period. CoCl2 activated isocytrate lyase activity after 72 hours and decreased malate synthase activity after 96 hours. The lengthening of the primary root under such conditions is noted. CdCl2 inhibited isocytrate lyase activity during first 24 hours and suppressed malate synthase activity after 96 hours. During this process the germ growth is suppressed. CoCl2 increased the composition of malondialdehyde products during each period of germination, and CdCl2 increased malondialdehyde content after 72 and 96 hours. The role of glyoxylate cycle enzymes in transforming fatty acids into carbohydrates and in forming the primary root under the process of germination of seed lobes of soybean is discussed. PMID:18710031

  17. Properties of stellar activity cycles

    NASA Astrophysics Data System (ADS)

    Korhonen, Heidi

    2015-08-01

    The current photometric datasets, that span decades, allow for studying long-term magentic cycles on active stars. Complementary Ca H&K observations give information also on the cycles of normal solar-like stars, which have significantly smaller, and less easily detectable, spots. In recent years, high precision space-based observations, for example from the Kepler satellite, have allowed also to study the sunspot-like spot sizes in other stars. In this talk I will review what is known about the properties of the cyclic stellar activity in other stars than our Sun, and also discuss the future prospects in this field.

  18. Activity cycles of M dwarfs

    NASA Astrophysics Data System (ADS)

    Savanov, I. S.

    2012-09-01

    We have determined activity cycles for coolest M dwarfs using photometry from the ASAS survey. The time scales of brightness variations were determined for the program stars using calculated amplitude power spectra and wavelet spectra. Most of ther program stars display periodicities in their light-curve variations, with periods from hundreds of days to years. Analysis of diagrams plotting P cyc/ P rot versus 1/ P rot in logarithmic coordinates shows that the data for all our program objects fit the general relation quite well. No differences in the activity cycles are found for our sample stars, which have different masses and thus internal structures, some having convective envelopes and others being totally convective. Our analysis indicates that the slope i of this relation is close to unity, regardless of whether it is determined from all data, from data for the shortest cycles, or from data for the longest cycles. This value of i differs from values in the literature for stars of other spectral types. Our analysis of the P cyc- P rot relation indicates that the activity cycles for the studied sample of M dwarfs do not depend on the rotation periods of these objects. The data for the studied objects do not agree with any of the relations for relatively young (active) stars or older (less active) stars. The studied M dwarfs probably form another branch of low-mass stars that display more random, irregular magnetic activity on their surfaces, which is generated and supported by the distributed dynamo mechanism or a small-scale dynamo mechanism.

  19. Inhibition of akt phosphorylation diminishes mitochondrial biogenesis regulators, tricarboxylic acid cycle activity and exacerbates recognition memory deficit in rat model of Alzheimer's disease.

    PubMed

    Shaerzadeh, Fatemeh; Motamedi, Fereshteh; Khodagholi, Fariba

    2014-11-01

    3-Methyladenine (3-MA), as a PI3K inhibitor, is widely used for inhibition of autophagy. Inhibition of PI3K class I leads to inhibition of Akt phosphorylation, a central molecule involved in diverse arrays of intracellular cascades in nervous system. Accordingly, in the present study, we aimed to determine the alterations of specific mitochondrial biogenesis markers and mitochondrial function in 3-MA-injected rats following amyloid beta (Aβ) insult. Our data revealed that inhibition of Akt phosphorylation downregulates master regulator of mitochondrial biogenesis, peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Our data also showed that decrease in PGC-1α level presumably is due to decrease in the phosphorylation of cAMP-response element binding and AMP-activated kinase, two upstream activators of PGC-1α. As a consequence, the level of some mitochondrial biogenesis factors including nuclear respiratory factor-1, mitochondrial transcription factor A, and Cytochrome c decreased significantly. Also, activities of tricarboxylic acid cycle (TCA) enzymes such as Aconitase, a-ketoglutarate dehydrogenase, and malate dehydrogenase reduced in the presence of 3-MA with or without Aβ insult. Decrease in mitochondrial biogenesis factors and TCA enzyme activity in the rats receiving 3-MA and Aβ were more compared to the rats that received either alone; indicating the additive destructive effects of these two agents. In agreement with our molecular results, data obtained from behavioral test (using novel objective recognition test) indicated that inhibition of Akt phosphorylation with or without Aβ injection impaired novel recognition (non-spatial) memory. Our results suggest that 3-MA amplified deleterious effects of Aβ by targeting central molecule Akt. PMID:25135709

  20. Sulfuric acid-sulfur heat storage cycle

    DOEpatents

    Norman, John H.

    1983-12-20

    A method of storing heat is provided utilizing a chemical cycle which interconverts sulfuric acid and sulfur. The method can be used to levelize the energy obtained from intermittent heat sources, such as solar collectors. Dilute sulfuric acid is concentrated by evaporation of water, and the concentrated sulfuric acid is boiled and decomposed using intense heat from the heat source, forming sulfur dioxide and oxygen. The sulfur dioxide is reacted with water in a disproportionation reaction yielding dilute sulfuric acid, which is recycled, and elemental sulfur. The sulfur has substantial potential chemical energy and represents the storage of a significant portion of the energy obtained from the heat source. The sulfur is burned whenever required to release the stored energy. A particularly advantageous use of the heat storage method is in conjunction with a solar-powered facility which uses the Bunsen reaction in a water-splitting process. The energy storage method is used to levelize the availability of solar energy while some of the sulfur dioxide produced in the heat storage reactions is converted to sulfuric acid in the Bunsen reaction.

  1. Stellar activity cycles and asteroseismology

    NASA Astrophysics Data System (ADS)

    Salabert, D.

    2011-12-01

    The success of helioseismology is due to its capability to accurately measure the p-mode parameters of the solar eigenmode spectrum, which allow us to infer unique information about the internal structure and dynamics of the Sun from its surface all the way down to the core. It has contributed greatly to a clearer understanding of the Sun and provided insights into the complex solar magnetism, by means for instance of the variability of the characteristics of the p-mode spectrum. Indeed, variations in the mean strength of the solar magnetic field lead to significant shifts in the frequencies of even the lowest-degree p modes with high levels of correlation with solar surface activity proxies. These frequency shifts are explained to arise from structural changes in the outer layers of the Sun during the 11-year activity cycle, which is understood to be driven by a dynamo process. However, clear differences between p-mode frequencies and solar surface activity during the unusually extended minimum of cycle 23 were observed. The origin of the p-mode variability is thus far from being properly understood and a better comprehension of its relationship with solar and stellar activity cycles will help us in our understanding of the dynamo processes. Spectroscopic measurements of Ca H and K emission lines revealed magnetic activity variations in a large sample of solar-type stars with timescales ranging from 2.5 and 25 years. This broad range of cycle periods is thought to reflect differences in the rotational properties and the depths of the surface convection zones with various masses and ages. However, spectroscopic measurements are only good proxies of surface magnetic fields. The recent discovery of variations with magnetic activity in the p-mode oscillation frequencies of the solar-like star HD 49933 observed by CoRoT, with a frequency dependence comparable in shape to the one observed in the Sun, opens a new era in the study of the physical phenomena involved in the

  2. The Pyruvate-Tricarboxylic Acid Cycle Node

    PubMed Central

    Bücker, René; Heroven, Ann Kathrin; Becker, Judith; Dersch, Petra; Wittmann, Christoph

    2014-01-01

    Despite our increasing knowledge of the specific pathogenicity factors in bacteria, the contribution of metabolic processes to virulence is largely unknown. Here, we elucidate a tight connection between pathogenicity and core metabolism in the enteric pathogen Yersinia pseudotuberculosis by integrated transcriptome and [13C]fluxome analysis of the wild type and virulence-regulator mutants. During aerobic growth on glucose, Y. pseudotuberculosis reveals an unusual flux distribution with a high level of secreted pyruvate. The absence of the transcriptional and post-transcriptional regulators RovA, CsrA, and Crp strongly perturbs the fluxes of carbon core metabolism at the level of pyruvate metabolism and the tricarboxylic acid (TCA) cycle, and these perturbations are accompanied by transcriptional changes in the corresponding enzymes. Knock-outs of regulators of this metabolic branch point and of its central enzyme, pyruvate kinase (ΔpykF), result in mutants with significantly reduced virulence in an oral mouse infection model. In summary, our work identifies the pyruvate-TCA cycle node as a focal point for controlling the host colonization and virulence of Yersinia. PMID:25164818

  3. Characterization of lead (Ⅱ)-containing activated carbon and its excellent performance of extending lead-acid battery cycle life for high-rate partial-state-of-charge operation

    NASA Astrophysics Data System (ADS)

    Tong, Pengyang; Zhao, Ruirui; Zhang, Rongbo; Yi, Fenyun; Shi, Guang; Li, Aiju; Chen, Hongyu

    2015-07-01

    In this work, lead (Ⅱ)-containing activated carbon (Pb@C) is prepared as the additive of negative active mass (NAM), aiming to enhance the electrochemical characteristics of the lead-acid battery. The characters of the Pb@C materials and their electrochemical properties are characterized by XRD, SEM, back-scattering electron image (BESI) and electrochemical methods. The lead (Ⅱ) ions disperse well in the carbon bulk of the obtained Pb@C materials as observed, and these materials exhibit remarkable higher specific capacitance and higher hydrogen evolution over-potential compared with original carbons. Many 2 V lead-acid batteries are assembled manually in our lab, and then the batteries are disassembled after formation and high-rate-partial-state-of-charge (HRPSoC) cycling. Results manifest that the Pb@C additives exhibit high affinity to lead and act as a porous-skeleton in the formation process as well as under HRPSoC cycling conditions, leading to the small and fine formation of PbSO4 particles and accordingly higher active material utilization rate more than 50%, better cycling performance and charging acceptance. Besides, excellent cycle performances of these batteries have great relationship with the dazzling hydrogen evolution performance of Pb@C materials. A possible working mechanism is also proposed based on the testing data in this paper.

  4. Fatty acid biosynthesis during the life cycle of Debaryomyces etchellsii.

    PubMed

    Arous, Fatma; Mechichi, Tahar; Nasri, Moncef; Aggelis, George

    2016-07-01

    Fatty acid biosynthesis during the life cycle of the ascomycetous yeast Debaryomyces etchellsii cultivated on a non-fermentable substrate, i.e. glycerol, in nitrogen rich media (NRM) and nitrogen limited media (NLM) has been studied. Although considerable activities of key lipogenic enzymes, such as ATP citrate lyase (ACL) and malic enzyme (ME), were detected in vegetative cells during asexual proliferation (which occurred in the first growth stages in both NRM and NLM), lipid accumulation was restricted due to the high activities of NAD+-isocitrate dehydrogenase (NAD+-ICDH). A similar enzymatic profile has been found in ascii and free ascospores produced in NRM; thus lipid accumulation was low. On the contrary, very high activities of both ACL and ME and low activities of NAD+-ICDH were detected in ascii and free ascospores produced in NLM resulting in lipid accumulation. Neutral lipids (NL) were the predominant fraction of cellular lipids produced in vegetative cells and ascospores in both NRM and NLM. On the other hand, phospholipids (P) were the major polar lipids while glycolipids (G) were synthesized in low proportions. During transition from asexual to sexual phase, the percentage of NL increased with a significant decrease of P and, to a lesser extent, of G. High quantities of linoleic acid were found esterified in polar lipids, especially in P, during the vegetative stage of growth, while, with a few exceptions, during transition from asexual to sexual stage, linoleic acid concentration decreased markedly, mainly in P, while oleic acid concentration increased. PMID:27129978

  5. Cell cycle nucleic acids, polypeptides and uses thereof

    DOEpatents

    Gordon-Kamm, William J.; Lowe, Keith S.; Larkins, Brian A.; Dilkes, Brian R.; Sun, Yuejin

    2007-08-14

    The invention provides isolated nucleic acids and their encoded proteins that are involved in cell cycle regulation. The invention further provides recombinant expression cassettes, host cells, transgenic plants, and antibody compositions. The present invention provides methods and compositions relating to altering cell cycle protein content, cell cycle progression, cell number and/or composition of plants.

  6. Microbial Iron Cycling in Acidic Geothermal Springs of Yellowstone National Park: Integrating Molecular Surveys, Geochemical Processes, and Isolation of Novel Fe-Active Microorganisms

    PubMed Central

    Kozubal, Mark A.; Macur, Richard E.; Jay, Zackary J.; Beam, Jacob P.; Malfatti, Stephanie A.; Tringe, Susannah G.; Kocar, Benjamin D.; Borch, Thomas; Inskeep, William P.

    2012-01-01

    Geochemical, molecular, and physiological analyses of microbial isolates were combined to study the geomicrobiology of acidic iron oxide mats in Yellowstone National Park. Nineteen sampling locations from 11 geothermal springs were studied ranging in temperature from 53 to 88°C and pH 2.4 to 3.6. All iron oxide mats exhibited high diversity of crenarchaeal sequences from the Sulfolobales, Thermoproteales, and Desulfurococcales. The predominant Sulfolobales sequences were highly similar to Metallosphaera yellowstonensis str. MK1, previously isolated from one of these sites. Other groups of archaea were consistently associated with different types of iron oxide mats, including undescribed members of the phyla Thaumarchaeota and Euryarchaeota. Bacterial sequences were dominated by relatives of Hydrogenobaculum spp. above 65–70°C, but increased in diversity below 60°C. Cultivation of relevant iron-oxidizing and iron-reducing microbial isolates included Sulfolobus str. MK3, Sulfobacillus str. MK2, Acidicaldus str. MK6, and a new candidate genus in the Sulfolobales referred to as Sulfolobales str. MK5. Strains MK3 and MK5 are capable of oxidizing ferrous iron autotrophically, while strain MK2 oxidizes iron mixotrophically. Similar rates of iron oxidation were measured for M. yellowstonensis str. MK1 and Sulfolobales str. MK5. Biomineralized phases of ferric iron varied among cultures and field sites, and included ferric oxyhydroxides, K-jarosite, goethite, hematite, and scorodite depending on geochemical conditions. Strains MK5 and MK6 are capable of reducing ferric iron under anaerobic conditions with complex carbon sources. The combination of geochemical and molecular data as well as physiological observations of isolates suggests that the community structure of acidic Fe mats is linked with Fe cycling across temperatures ranging from 53 to 88°C. PMID:22470372

  7. Microbial iron cycling in acidic geothermal springs of yellowstone national park: integrating molecular surveys, geochemical processes, and isolation of novel fe-active microorganisms.

    PubMed

    Kozubal, Mark A; Macur, Richard E; Jay, Zackary J; Beam, Jacob P; Malfatti, Stephanie A; Tringe, Susannah G; Kocar, Benjamin D; Borch, Thomas; Inskeep, William P

    2012-01-01

    Geochemical, molecular, and physiological analyses of microbial isolates were combined to study the geomicrobiology of acidic iron oxide mats in Yellowstone National Park. Nineteen sampling locations from 11 geothermal springs were studied ranging in temperature from 53 to 88°C and pH 2.4 to 3.6. All iron oxide mats exhibited high diversity of crenarchaeal sequences from the Sulfolobales, Thermoproteales, and Desulfurococcales. The predominant Sulfolobales sequences were highly similar to Metallosphaera yellowstonensis str. MK1, previously isolated from one of these sites. Other groups of archaea were consistently associated with different types of iron oxide mats, including undescribed members of the phyla Thaumarchaeota and Euryarchaeota. Bacterial sequences were dominated by relatives of Hydrogenobaculum spp. above 65-70°C, but increased in diversity below 60°C. Cultivation of relevant iron-oxidizing and iron-reducing microbial isolates included Sulfolobus str. MK3, Sulfobacillus str. MK2, Acidicaldus str. MK6, and a new candidate genus in the Sulfolobales referred to as Sulfolobales str. MK5. Strains MK3 and MK5 are capable of oxidizing ferrous iron autotrophically, while strain MK2 oxidizes iron mixotrophically. Similar rates of iron oxidation were measured for M. yellowstonensis str. MK1 and Sulfolobales str. MK5. Biomineralized phases of ferric iron varied among cultures and field sites, and included ferric oxyhydroxides, K-jarosite, goethite, hematite, and scorodite depending on geochemical conditions. Strains MK5 and MK6 are capable of reducing ferric iron under anaerobic conditions with complex carbon sources. The combination of geochemical and molecular data as well as physiological observations of isolates suggests that the community structure of acidic Fe mats is linked with Fe cycling across temperatures ranging from 53 to 88°C. PMID:22470372

  8. Titer of trastuzumab produced by a Chinese hamster ovary cell line is associated with tricarboxylic acid cycle activity rather than lactate metabolism.

    PubMed

    Ishii, Yoichi; Imamoto, Yasufumi; Yamamoto, Rie; Tsukahara, Masayoshi; Wakamatsu, Kaori

    2015-04-01

    Achieving high productivity and quality is the final goal of therapeutic antibody development, but the productivity and quality of antibodies are known to be substantially dependent on the nature of the cell lines expressing the antibodies. We characterized two contrasting cell lines that produce trastuzumab, namely cell line A with a high titer and a low aggregate content and cell line B with a low titer and a high aggregate content to identify the causes of the differences. We observed the following differences: cell growth (A > B), proportion of defucosylated oligosaccharides on antibodies (A < B), and proportion of covalent antibody aggregates (A > B). Our results suggest that the high monoclonal antibody (mAb) titers in cell line A is associated with the high proliferation and is not caused by the lactate metabolism shift (switching from lactate production to net lactate consumption). Rather, these differences can be accounted for by the following: levels of tricarboxylic acid cycle intermediates (A > B), ammonium ion levels (A ≤ B), and oxidative stress (A > B). PMID:25449760

  9. Metabolism: Part II. The Tricarboxylic Acid (TCA), Citric Acid, or Krebs Cycle.

    ERIC Educational Resources Information Center

    Bodner, George M.

    1986-01-01

    Differentiates the tricarboxylic acid (TCA) cycle (or Krebs cycle) from glycolysis, and describes the bridge between the two as being the conversion of pyruvate into acetyl coenzyme A. Discusses the eight steps in the TCA cycle, the results of isotopic labeling experiments, and the net effects of the TCA cycle. (TW)

  10. Phosphorus constrains accelerated nitrogen cycling in limed acidic forests

    NASA Astrophysics Data System (ADS)

    Deforest, J. L.; Shaw, A. N.; Kluber, L. A.; Burke, D. J.; Carrino-Kyker, S. R.; Smemo, K. A.

    2011-12-01

    Anthropogenic deposition can increase phosphorus (P) limitation by abiotic and biotic means. Soil acidification can remove P from available pools and nitrogen (N) deposition can increase the demand for P. We reason that chronic acidic deposition is promoting P limitation in acidic hardwood forests and thereby altering N cycling. The objectives of this study were to investigate the interactive influence of P availability and soil pH on N and P cycling and availability to determine if the response varies between two physiographic regions experiencing similar chronic acidic deposition. We addressed these objectives by experimentally manipulating soil pH, P, or both in strongly acidic glaciated and unglaciated hardwood forests in eastern Ohio, USA. Our results suggest complex interactions between P, soil pH, and the N cycle. Glaciated soils were found to be more N-saturated with nitrification rates 18 times greater than in unglaciated soils. Elevating pH, with or without added P, doubled nitrification rates in glaciated soils. For unglaciated soils, raising pH increased nitrification 10-fold, but increased nitrification only 5-fold in combination with P. This result suggests raising soil pH lowered the demand of soil N, or directly stimulated nitrifying activity, and that increasing P availability could limit N availability. To various degrees, readily available P was geochemically or biologically immobilized in all treatments, suggesting chronic P deficiency in these ecosystems. Phosphorus immobilization decreased as soil pH was elevated, but elevated P either had no effect (glaciated) or doubled P immobilization rates (unglaciated). These results suggest that raising soil pH reduces microbial P limitation for phosphate, whereas adding P appears to make phosphate scarcer. We suggest that P plays an important role in N transformations and cycling, but appears more important in unglaciated soils than in glaciated soils. Chronic soil acidification may have a greater

  11. Effects of intermediate metabolite carboxylic acids of TCA cycle on Microcystis with overproduction of phycocyanin.

    PubMed

    Bai, Shijie; Dai, Jingcheng; Xia, Ming; Ruan, Jing; Wei, Hehong; Yu, Dianzhen; Li, Ronghui; Jing, Hongmei; Tian, Chunyuan; Song, Lirong; Qiu, Dongru

    2015-04-01

    Toxic Microcystis species are the main bloom-forming cyanobacteria in freshwaters. It is imperative to develop efficient techniques to control these notorious harmful algal blooms (HABs). Here, we present a simple, efficient, and environmentally safe algicidal way to control Microcystis blooms, by using intermediate carboxylic acids from the tricarboxylic acid (TCA) cycle. The citric acid, alpha-ketoglutaric acid, succinic acid, fumaric acid, and malic acid all exhibited strong algicidal effects, and particularly succinic acid could cause the rapid lysis of Microcystis in a few hours. It is revealed that the Microcystis-lysing activity of succinic acid and other carboxylic acids was due to their strong acidic activity. Interestingly, the acid-lysed Microcystis cells released large amounts of phycocyanin, about 27-fold higher than those of the control. On the other hand, the transcription of mcyA and mcyD of the microcystin biosynthesis operon was not upregulated by addition of alpha-ketoglutaric acid and other carboxylic acids. Consider the environmental safety of intermediate carboxylic acids. We propose that administration of TCA cycle organic acids may not only provide an algicidal method with high efficiency and environmental safety but also serve as an applicable way to produce and extract phycocyanin from cyanobacterial biomass. PMID:25342454

  12. Sulfuric acid on Europa and the radiolytic sulfur cycle

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.; Johnson, R. E.; Anderson, M. S.

    1999-01-01

    A comparison of laboratory spectra with Galileo data indicates that hydrated sulfuric acid is present and is a major component of Europa's surface. In addition, this moon's visually dark surface material, which spatially correlates with the sulfuric acid concentration, is identified as radiolytically altered sulfur polymers. Radiolysis of the surface by magnetospheric plasma bombardment continuously cycles sulfur between three forms: sulfuric acid, sulfur dioxide, and sulfur polymers, with sulfuric acid being about 50 times as abundant as the other forms. Enhanced sulfuric acid concentrations are found in Europa's geologically young terrains, suggesting that low-temperature, liquid sulfuric acid may influence geological processes.

  13. The Hydrologic Cycle Distributed Active Archive Center

    NASA Technical Reports Server (NTRS)

    Hardin, Danny M.; Goodman, H. Michael

    1995-01-01

    The Marshall Space Flight Center Distributed Active Archive Center in Huntsville, Alabama supports the acquisition, production, archival and dissemination of data relevant to the study of the global hydrologic cycle. This paper describes the Hydrologic Cycle DAAC, surveys its principle data holdings, addresses future growth, and gives information for accessing the data sets.

  14. A new electrolyte formulation for low cost cycling lead acid batteries

    NASA Astrophysics Data System (ADS)

    Torcheux, L.; Lailler, P.

    This paper is devoted to the development of a new lead acid battery electrolyte formulation for cycling applications, especially for renewable energy markets in developing countries. These emerging markets, such as solar home systems, require lead acid batteries at very low prices and improved performances compared to automotive batteries produced locally. The new acid formulation developed is a mixture of sulphuric acid, liquid colloidal silica and other additives including phosphoric acid. The colloidal silica is used at a low concentration in order to decrease the acid stratification process during cycling at high depth of discharge. Phosphoric acid is used for the improvement of the textural evolution of the positive active material during cycling. After a description of the markets and of the additives used in the new acid formulation, this paper presents the results obtained with normalised photovoltaic cycle testing on low cost automotive batteries modified by the new electrolyte formulation. It is shown that the cycling life of such batteries is much increased in the presence of the new formulation. These results are explained by the improved evolution of positive active mass softening parameters (specific surface and β-PbO 2 crystallite size) and also by a more homogeneous sulphating process on both plates.

  15. Discrimination in the dark. Resolving the interplay between metabolic and physical constraints to phosphoenolpyruvate carboxylase activity during the crassulacean acid metabolism cycle.

    PubMed

    Griffiths, Howard; Cousins, Asaph B; Badger, Murray R; von Caemmerer, Susanne

    2007-02-01

    A model defining carbon isotope discrimination (delta13C) for crassulacean acid metabolism (CAM) plants was experimentally validated using Kalanchoe daigremontiana. Simultaneous measurements of gas exchange and instantaneous CO2 discrimination (for 13C and 18O) were made from late photoperiod (phase IV of CAM), throughout the dark period (phase I), and into the light (phase II). Measurements of CO2 response curves throughout the dark period revealed changing phosphoenolpyruvate carboxylase (PEPC) capacity. These systematic changes in PEPC capacity were tracked by net CO2 uptake, stomatal conductance, and online delta13C signal; all declined at the start of the dark period, then increased to a maximum 2 h before dawn. Measurements of delta13C were higher than predicted from the ratio of intercellular to external CO2 (p(i)/p(a)) and fractionation associated with CO2 hydration and PEPC carboxylations alone, such that the dark period mesophyll conductance, g(i), was 0.044 mol m(-2) s(-1) bar(-1). A higher estimate of g(i) (0.085 mol m(-2) s(-1) bar(-1)) was needed to account for the modeled and measured delta18O discrimination throughout the dark period. The differences in estimates of g(i) from the two isotope measurements, and an offset of -5.5 per thousand between the 18O content of source and transpired water, suggest spatial variations in either CO2 diffusion path length and/or carbonic anhydrase activity, either within individual cells or across a succulent leaf. Our measurements support the model predictions to show that internal CO2 diffusion limitations within CAM leaves increase delta13C discrimination during nighttime CO2 fixation while reducing delta13C during phase IV. When evaluating the phylogenetic distribution of CAM, carbon isotope composition will reflect these diffusive limitations as well as relative contributions from C3 and C4 biochemistry. PMID:17142488

  16. A possible activity cycle in Proxima Centauri

    NASA Astrophysics Data System (ADS)

    Cincunegui, C.; Díaz, R. F.; Mauas, P. J. D.

    2007-01-01

    Context: Several late-type stars present activity cycles resembling the Solar one. This fact has been observed mostly in stars ranging from F to K, i.e., in stars with a radiative core and an outer convective layer. Aims: This work aims at studying whether an activity cycle can be detected in the dM5.5e star Proxima Centauri, which is supposed to be completely convective. Methods: We present periodical medium-resolution echelle observations covering the complete visual range, which were taken at the CASLEO Argentinean Observatory. These observations are distributed over 7 years. We discarded the spectra that present flare activity, and analyze the remaining activity levels using four different statistical techniques to look for a period of activity. Results: We find strong evidence of a cyclic activity, with a period of ~442 days. We also estimate that the Ca ~II S index varies around 130% due to activity variations outside of flares.

  17. Plasma Acylcarnitine Profiles Suggest Incomplete Fatty Acid ß-Oxidation and Altered Tricarboxylic Cycle Activity in Type 2 Diabetic African-American Women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inefficient muscle long-chain fatty acid (LCFA) combustion is associated with insulin resistance, but molecular links between mitochondrial fat catabolism and insulin action remain controversial. We hypothesized that plasma acylcarnitine profiling would identify distinct metabolite patterns reflect...

  18. A possible activity cycle in Proxima Centauri

    NASA Astrophysics Data System (ADS)

    Cincunegui, C.; Díaz, R. F.; Mauas, P. J. D.

    Several late-type stars (stars with a radiative core and an outer convective layer) present activity cycles resembling the Solar one. This work aims at studying whether an activity cycle can be detected in the dM5.5e star Proxima Centauri, which is supposed to be completely convective. We present periodical medium-resolution echelle observations covering the complete visual range, which were taken at the CASLEO Argentinean Observatory. These observations are distributed along 7 years. We analize the activity levels to look for a period of activity. We find strong evidence of a cyclic activity, with a period of ˜442 days. We also estimated that the Ca II S index varies around 130% due to activity variations outside of flares.

  19. Global water cycle and solar activity variations

    NASA Astrophysics Data System (ADS)

    Al-Tameemi, Muthanna A.; Chukin, Vladimir V.

    2016-05-01

    The water cycle is the most active and most important component in the circulation of global mass and energy in the Earth system. Furthermore, water cycle parameters such as evaporation, precipitation, and precipitable water vapour play a major role in global climate change. In this work, we attempt to determine the impact of solar activity on the global water cycle by analyzing the global monthly values of precipitable water vapour, precipitation, and the Solar Modulation Potential in 1983-2008. The first object of this study was to calculate global evaporation for the period 1983-2008. For this purpose, we determined the water cycle rate from satellite data, and precipitation/evaporation relationship from 10 years of Planet Simulator model data. The second object of our study was to investigate the relationship between the Solar Modulation Potential (solar activity index) and the evaporation for the period 1983-2008. The results showed that there is a relationship between the solar modulation potential and the evaporation values for the period of study. Therefore, we can assume that the solar activity has an impact on the global water cycle.

  20. A Functional Tricarboxylic Acid Cycle Operates during Growth of Bordetella pertussis on Amino Acid Mixtures as Sole Carbon Substrates

    PubMed Central

    Garnier, Dominique; Speck, Denis

    2015-01-01

    It has been claimed that citrate synthase, aconitase and isocitrate dehydrogenase activities are non-functional in Bordetella pertussis and that this might explain why this bacterium’s growth is sometimes associated with accumulation of polyhydroxybutyrate (PHB) and/or free fatty acids. However, the sequenced genome includes the entire citric acid pathway genes. Furthermore, these genes were expressed and the corresponding enzyme activities detected at high levels for the pathway when grown on a defined medium imitating the amino acid content of complex media often used for growth of this pathogenic microorganism. In addition, no significant PHB or fatty acids could be detected. Analysis of the carbon balance and stoichiometric flux analysis based on specific rates of amino acid consumption, and estimated biomass requirements coherent with the observed growth rate, clearly indicate that a fully functional tricarboxylic acid cycle operates in contrast to previous reports. PMID:26684737

  1. How active was solar cycle 22?

    NASA Technical Reports Server (NTRS)

    Hoegy, W. R.; Pesnell, W. D.; Woods, T. N.; Rottman, G. J.

    1993-01-01

    Solar EUV observations from the Langmuir probe on Pioneer Venus Orbiter suggest that at EUV wavelengths solar cycle 22 was more active than solar cycle 21. The Langmuir probe, acting as a photodiode, measured the integrated solar EUV flux over a 13 1/2 year period from January 1979 to June 1992, the longest continuous solar EUV measurement. The Ipe EUV flux correlated very well with the SME measurement of L-alpha during the lifetime of SME and with the UARS SOLSTICE L-alpha from October 1991 to June 1992 when the Ipe measurement ceased. Starting with the peak of solar cycle 21, there was good general agreement of Ipe EUV with the 10.7 cm, Ca K, and He 10830 solar indices, until the onset of solar cycle 22. From 1989 to the start of 1992, the 10.7 cm flux exhibited a broad maximum consisting of two peaks of nearly equal magnitude, whereas Ipe EUV exhibited a strong increase during this time period making the second peak significantly higher than the first. The only solar index that exhibits the same increase in solar activity as Ipe EUV and L-alpha during the cycle 22 peak is the total magnetic flux. The case for high activity during this peak is also supported by the presence of very high solar flare intensity.

  2. Nonfunctional tricarboxylic acid cycle and the mechanism of glutamate biosynthesis in Acetobacter suboxydans.

    PubMed

    Greenfield, S; Claus, G W

    1972-12-01

    Acetobacter suboxydans does not contain an active tricarboxylic acid cycle, yet two pathways have been suggested for glutamate synthesis from acetate catalyzed by cell extracts: a partial tricarboxylic acid cycle following an initial condensation of oxalacetate and acetyl coenzyme A. and the citramalate-mesaconate pathway following an initial condensation of pyruvate and acetyl coenzyme A. To determine which pathway functions in growing cells, acetate-1-(14)C was added to a culture growing in minimal medium. After growth had ceased, cells were recovered and fractionated. Radioactive glutamate was isolated from the cellular protein fraction, and the position of the radioactive label was determined. Decarboxylation of the C5 carbon removed 100% of the radioactivity found in the purified glutamate fraction. These experiments establish that growing cells synthesize glutamate via a partial tricarboxylic acid cycle. Aspartate isolated from these hydrolysates was not radioactive, thus providing further evidence for the lack of a complete tricarboxylic acid cycle. When cell extracts were analyzed, activity of all tricarboxylic acid cycle enzymes, except succinate dehydrogenase, was demonstrated. PMID:4640504

  3. PHARMACOLOGICAL ACTIVITIES OF PROTOCATECHUIC ACID.

    PubMed

    Khan, Abida Kalsoom; Rashid, Rehana; Fatima, Nighat; Mahmood, Sadaf; Mir, Sadullah; Khan, Sara; Jabeen, Nyla; Murtaza, Ghulam

    2015-01-01

    Protocatechuic acid (3,4-dihydroxybenzoic acid, PCA) is a simple phenolic acid. It is found in a large variety of edible plants and possesses various pharmacological activities. This article aims to review the modern trends in phytochemical isolation and extraction of PCA from plants and other natural resources. Moreover, this article also encompasses pharmacological and biological activities of PCA. It is well known to have anti-inflammatory, antioxidant, anti-hyperglycemia, antibacterial, anticancer, anti-ageing, anti-athro- genic, anti-tumoral, anti-asthma, antiulcer, antispasmodic and neurological properties. PMID:26647619

  4. POSSIBLE CHROMOSPHERIC ACTIVITY CYCLES IN AD LEO

    SciTech Connect

    Buccino, Andrea P.; Petrucci, Romina; Mauas, Pablo J. D.; Jofré, Emiliano

    2014-01-20

    AD Leo (GJ 388) is an active dM3 flare star that has been extensively observed both in the quiescent and flaring states. Since this active star is near the fully convective boundary, studying its long-term chromospheric activity in detail could be an appreciable contribution to dynamo theory. Here, using the Lomb-Scargle periodogram, we analyze the Ca II K line-core fluxes derived from CASLEO spectra obtained between 2001 and 2013 and the V magnitude from the ASAS database between 2004 and 2010. From both of these totally independent time series, we obtain a possible activity cycle with a period of approximately seven years and a less significant shorter cycle of approximately two years. A tentative interpretation is that a dynamo operating near the surface could be generating the longer cycle, while a second dynamo operating in the deep convection zone could be responsible for the shorter one. Based on the long duration of our observing program at CASLEO and the fact that we observe different spectral features simultaneously, we also analyze the relation between simultaneous measurements of the Na I index (R{sub D}{sup ′}), Hα, and Ca II K fluxes at different activity levels of AD Leo, including flares.

  5. The Heliosphere Through the Solar Activity Cycle

    NASA Technical Reports Server (NTRS)

    Balogh, A.; Lanzerotti, L. J.; Suess, S. T.

    2006-01-01

    Understanding how the Sun changes though its 11-year sunspot cycle and how these changes affect the vast space around the Sun the heliosphere has been one of the principal objectives of space research since the advent of the space age. This book presents the evolution of the heliosphere through an entire solar activity cycle. The last solar cycle (cycle 23) has been the best observed from both the Earth and from a fleet of spacecraft. Of these, the joint ESA-NASA Ulysses probe has provided continuous observations of the state of the heliosphere since 1990 from a unique vantage point, that of a nearly polar orbit around the Sun. Ulysses results affect our understanding of the heliosphere from the interior of the Sun to the interstellar medium - beyond the outer boundary of the heliosphere. Written by scientists closely associated with the Ulysses mission, the book describes and explains the many different aspects of changes in the heliosphere in response to solar activity. In particular, the authors describe the rise in solar ESA and NASA have now unamiously agreed a third extension to operate the highly successful Ulysses spacecraft until March 2008 and, in 2007 and 2008, the European-built space probe will fly over the poles of the Sun for a third time. This will enable Ulysses to add an important chapter to its survey of the high-latitude heliosphere and this additional material would be included in a 2nd edition of this book.

  6. Interactive enhancements of ascorbic acid and iron in hydroxyl radical generation in quinone redox cycling.

    PubMed

    Li, Yi; Zhu, Tong; Zhao, Jincai; Xu, Bingye

    2012-09-18

    Quinones are toxicological substances in inhalable particulate matter (PM). The mechanisms by which quinones cause hazardous effects can be complex. Quinones are highly active redox molecules that can go through a redox cycle with their semiquinone radicals, leading to formation of reactive oxygen species. Electron spin resonance spectra have been reported for semiquinone radicals in PM, indicating the importance of ascorbic acid and iron in quinone redox cycling. However, these findings are insufficient for understanding the toxicity associated with quinone exposure. Herein, we investigated the interactions among anthraquinone (AQ), ascorbic acid, and iron in hydroxyl radical (·OH) generation through the AQ redox cycling process in a physiological buffer. We measured ·OH concentration and analyzed the free radical process. Our results showed that AQ, ascorbic acid, and iron have synergistic effects on ·OH generation in quinone redox cycling; i.e., ascorbyl radical oxidized AQ to semiquinone radical and started the redox cycling, iron accelerated this oxidation and enhanced ·OH generation through Fenton reactions, while ascorbic acid and AQ could help iron to release from quartz surface and enhance its bioavailability. Our findings provide direct evidence for the redox cycling hypothesis about airborne particle surface quinone in lung fluid. PMID:22891791

  7. Recent Advances in GEO Water Cycle Activities

    NASA Astrophysics Data System (ADS)

    Lawford, R. G.

    2009-12-01

    Over the past few years GEO (Group on Earth Observations) efforts within the Water Societal Benefit Area (SBA) have been coordinated by the Science Committee of the former Integrated Global Observing Strategy Partnership (IGOS-P) IGWCO (Integrated Global Water Cycle Observations) theme. Within this framework a number of projects related to data system design, product development, and capacity building are being carried out. GEO has recently consolidated the Water SBA activities into three tasks, namely Droughts, Floods and Water Resource Management; Capacity Building for Water Resource Management (in Asia, Africa and the Americas); and Integrated Products for Water Resource Management and Research. In order to strengthen interactions with the GEO and its User Interface Committee, a Water Cycle Community of Practice (COP) was initiated. In addition, within the past year, the IGWCO Science Committee has decided to also function as a Community of Practice in collaboration with the existing Water Cycle COP. This overview will provide background and an update on the GEO Water SBA activities with an emphasis of the way in which these activities are being integrated within the three tasks. It will also describe activities that are planned for 2010 to facilitate this integration. Recent advances related to drought monitoring, capacity and network building, and observational and data systems will be highlighted. New water-related activities arising from collaborations between US GEO and Canada GEO, and through activities within the GEO Architecture and Data Committee, will also be described. This presentation will conclude with a longer-term outlook for water within the GEO framework and provide some guidance for interested experts on how they can become involved in helping to implement these plans.

  8. Blood metabolomics analysis identifies abnormalities in the citric acid cycle, urea cycle, and amino acid metabolism in bipolar disorder

    PubMed Central

    Yoshimi, Noriko; Futamura, Takashi; Kakumoto, Keiji; Salehi, Alireza M.; Sellgren, Carl M.; Holmén-Larsson, Jessica; Jakobsson, Joel; Pålsson, Erik; Landén, Mikael; Hashimoto, Kenji

    2016-01-01

    Background Bipolar disorder (BD) is a severe and debilitating psychiatric disorder. However, the precise biological basis remains unknown, hampering the search for novel biomarkers. We performed a metabolomics analysis to discover novel peripheral biomarkers for BD. Methods We quantified serum levels of 116 metabolites in mood-stabilized male BD patients (n = 54) and age-matched male healthy controls (n = 39). Results After multivariate logistic regression, serum levels of pyruvate, N-acetylglutamic acid, α-ketoglutarate, and arginine were significantly higher in BD patients than in healthy controls. Conversely, serum levels of β-alanine, and serine were significantly lower in BD patients than in healthy controls. Chronic (4-weeks) administration of lithium or valproic acid to adult male rats did not alter serum levels of pyruvate, N-acetylglutamic acid, β-alanine, serine, or arginine, but lithium administration significantly increased serum levels of α-ketoglutarate. Conclusions The metabolomics analysis demonstrated altered serum levels of pyruvate, N-acetylglutamic acid, β-alanine, serine, and arginine in BD patients. General significance The present findings suggest that abnormalities in the citric acid cycle, urea cycle, and amino acid metabolism play a role in the pathogenesis of BD. PMID:27114925

  9. Commercial Alloys for Sulfuric Acid Vaporization in Thermochemical Hydrogen Cycles

    SciTech Connect

    Thomas M. Lillo; Karen M. Delezene-Briggs

    2005-10-01

    Most thermochemical cycles being considered for producing hydrogen include a processing stream in which dilute sulfuric acid is concentrated, vaporized and then decomposed over a catalyst. The sulfuric acid vaporizer is exposed to highly aggressive conditions. Liquid sulfuric acid will be present at a concentration of >96 wt% (>90 mol %) H2SO4 and temperatures exceeding 400oC [Brown, et. al, 2003]. The system will also be pressurized, 0.7-3.5 MPa, to keep the sulfuric acid in the liquid state at this temperature and acid concentration. These conditions far exceed those found in the commercial sulfuric acid generation, regeneration and handling industries. Exotic materials, e.g. ceramics, precious metals, clad materials, etc., have been proposed for this application [Wong, et. al., 2005]. However, development time, costs, reliability, safety concerns and/or certification issues plague such solutions and should be considered as relatively long-term, optimum solutions. A more cost-effective (and relatively near-term) solution would be to use commercially-available metallic alloys to demonstrate the cycle and study process variables. However, the corrosion behavior of commercial alloys in sulfuric acid is rarely characterized above the natural boiling point of concentrated sulfuric acid (~250oC at 1 atm). Therefore a screening study was undertaken to evaluate the suitability of various commercial alloys for concentration and vaporization of high-temperature sulfuric acid. Initially alloys were subjected to static corrosion tests in concentrated sulfuric acid (~95-97% H2SO4) at temperatures and exposure times up to 200oC and 480 hours, respectively. Alloys with a corrosion rate of less than 5 mm/year were then subjected to static corrosion tests at a pressure of 1.4 MPa and temperatures up to 375oC. Exposure times were shorter due to safety concerns and ranged from as short as 5 hours up to 144 hours. The materials evaluated included nickel-, iron- and cobalt

  10. Stochastic cycle selection in active flow networks.

    PubMed

    Woodhouse, Francis G; Forrow, Aden; Fawcett, Joanna B; Dunkel, Jörn

    2016-07-19

    Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such nonequilibrium networks. Here we connect concepts from lattice field theory, graph theory, and transition rate theory to understand how topology controls dynamics in a generic model for actively driven flow on a network. Our combined theoretical and numerical analysis identifies symmetry-based rules that make it possible to classify and predict the selection statistics of complex flow cycles from the network topology. The conceptual framework developed here is applicable to a broad class of biological and nonbiological far-from-equilibrium networks, including actively controlled information flows, and establishes a correspondence between active flow networks and generalized ice-type models. PMID:27382186

  11. Influence of cycling current and power profiles on the cycle life of lead/acid batteries

    NASA Astrophysics Data System (ADS)

    Papazov, G.; Pavlov, D.

    Batteries are assembled with positive plates of the novel strap grid tubular (SGTP) design described in a previous paper [1]. These batteries are subjected to four tests: (i) Peukert dependence determinations; (ii) classical galvanostatic cycling (5 h charge and 1 h discharge); (iii) EV-SFUDS, and (iv) EV-ECE-15 cycling tests. It has been established that the Peukert dependence curve of SGTP batteries is very close in profile to that for SLI batteries. This guarantees SGTP's batteries high power performance. These batteries endure over 950 cycles on galvanostatic cycling. When cycled according to the SFUDS power profile under a current load of 320 A/kg positive active mass during the 15th SFUDS step, SGTP batteries exhibit a cycle life of 350-450 cycles. If the current density during the 15th step is 190 A/kg PAM, the batteries endure over 600 charge/discharge cycles. The life of positive SGT plates is limited by power loss, but not by capacity. Similar results have also been obtained from ECE-15 cycle-life tests. On cycling SGTP batteries with a current load of 210 A/kg PAM during the 23rd ECE-15 step (the step during which maximum power output is demanded from the battery), they endure between 550 and 650 charge/discharge cycles. A summary of the test results obtained for two batches of experimental batteries indicates that there is a direct dependence between the SGTP battery cycle life and the maximum current density on discharge. Increasing the discharge current density decreases the battery life. It has also been established that the capacity on SFUDS (ECE-15) discharge declines gradually on cycling in favour of the residual galvanostatic capacity at 5 h rate of discharge (100% depth-of-discharge) which increases. This implies that two types of structures are formed in the positive plates on cycling: the first type ensuring high power output and the second type yielding low power but long cycle life. The higher the power delivered by the positive plate, the

  12. Glyoxylate cycle and metabolism of organic acids in the scutellum of barley seeds during germination.

    PubMed

    Ma, Zhenguo; Marsolais, Frédéric; Bernards, Mark A; Sumarah, Mark W; Bykova, Natalia V; Igamberdiev, Abir U

    2016-07-01

    During the developmental processes from dry seeds to seedling establishment, the glyoxylate cycle becomes active in the mobilization of stored oils in the scutellum of barley (Hordeum vulgare L.) seeds, as indicated by the activities of isocitrate lyase and malate synthase. The succinate produced is converted to carbohydrates via phosphoenolpyruvate carboxykinase and to amino acids via aminotransferases, while free organic acids may participate in acidifying the endosperm tissue, releasing stored starch into metabolism. The abundant organic acid in the scutellum was citrate, while malate concentration declined during the first three days of germination, and succinate concentration was low both in scutellum and endosperm. Malate was more abundant in endosperm tissue during the first three days of germination; before citrate became predominant, indicating that malate may be the main acid acidifying the endosperm. The operation of the glyoxylate cycle coincided with an increase in the ATP/ADP ratio, a buildup of H2O2 and changes in the redox state of ascorbate and glutathione. It is concluded that operation of the glyoxylate cycle in the scutellum of cereals may be important not only for conversion of fatty acids to carbohydrates, but also for the acidification of endosperm and amino acid synthesis. PMID:27181945

  13. [Glucose-fatty acids cycle in cobalt chloride-induced oxidative stress in rats].

    PubMed

    Kaliman, P A; Okhrimenko, S M

    2005-01-01

    It was found that the glucose-fatty acids cycle functioned under the oxidative stress, caused by injection of cobalt chloride solution in albino rats. This cycle promoted the adaptation of metabolism and rehabilitated the homeostasis under extreme conditions. Its functioning was regulated by prolonged (during 2-24 hours) rise in activity of amino acids catabolism enzymes (e.g. tyrosine aminotransferase, arginase) and activation of glyconeogenesis after the mobilisation of liver glycogen. This contributed to increase in glucose and free fatty acids contents in blood. The latter is additionally provided by lipid mobilisation under stress. Tyrosine aminotransferase activation occurred both on the transcription level and by enabling of other mechanisms, which probably concerned the stabilisation of this enzyme. Preliminary injection of alpha-tocopherol in vivo significantly decreased the rise in tyrosine aminotransferase and arginase activities and the rate of erythrocyte hemolysis but did not disable them in full. This made evident that in regulation of the glucose-fatty acids cycle not only active metabolites of oxygen but also Co ions were directly enabled. PMID:16335249

  14. GEO Water Cycle Activities and Plans

    NASA Astrophysics Data System (ADS)

    Lawford, R.; Koike, T.; Ishida, C.; Grabs, W.

    2008-12-01

    The Group on Earth Observations (GEO) consists of more than 70 countries and 40 international organizations which are working together to develop the Global Earth Observation System of Systems (GEOSS). Since its launch in 2004, GEO has stimulated a wide range of activities related to data systems and their architecture, the development of science and technology to support observational programs, user interactions and interfaces, and capacity building. GEO tasks directed at Water Resources Management, one of the nine GEO Societal Benefit areas, are an integral part of these developments. They draw heavily upon the activities of the Integrated Global Water Cycle Observations (IGWCO) theme and on the activities and infrastructure provided through GEO and its committees. Within the GEO framework the water related activities have been focused on four specific tasks namely integrated data set development; information for floods, droughts and water management; water quality, and capacity building. Currently these efforts are being facilitated by the IGWCO theme that was formed under the former Integrated Global Observing Strategy Partnership (IGOS-P). With the dissolution of this partnership, other mechanisms, including the GEO Water Cycle Community of Practice, are being considered as new opportunitites for coordinating the work of the theme and the water-related GEO tasks. This talk provides a description of the GEO water tasks and reviews the progress that has been made in addressing them. It also provides a perspective on new opportunities and briefly describes some of the mechanisms, such as the Water Cycle Community of Practice, that could be expanded to coordinate a more comprehensive set of water tasks and greater community involvement.

  15. Coronal Activity and Extended Solar Cycles

    NASA Astrophysics Data System (ADS)

    Altrock, R. C.

    2012-12-01

    Wilson et al. (1988, Nature 333, 748) discussed a number of solar parameters, which appear at high latitudes and gradually migrate towards the equator, merging with the sunspot "butterfly diagram". They found that this concept had been identified by earlier investigators extending back to 1957. They named this process the "Extended Solar Cycle" (ESC). Altrock (1997, Solar Phys. 170, 411) found that this process continued in Fe XIV 530.3 nm emission features. In cycles 21 - 23 solar maximum occurred when the number of Fe XIV emission regions per day > 0.19 (averaged over 365 days and both hemispheres) first reached latitudes 18°, 21° and 21°, for an average of 20° ± 1.7°. Other recent studies have shown that Torsional Oscillation (TO) negative-shear zones are co-located with the ESC from at least 50° down to the equator and also in the zones where the Rush to the Poles occur. These phenomena indicate that coronal activity occurring up to 50° and higher latitudes is related to TO shear zones, another indicator that the ESC is an important solar process. Another high-latitude process, which appears to be connected with the ESC, is the "Rush to the Poles" ("Rush") of polar crown prominences and their associated coronal emission, including Fe XIV. The Rush is is a harbinger of solar maximum (cf. Altrock, 2003, Solar Phys. 216, 343). Solar maximum in cycles 21 - 23 occurred when the center line of the Rush reached a critical latitude. These latitudes were 76°, 74° and 78°, respectively, for an average of 76° ± 2°. Applying the above conclusions to Cycle 24 is difficult due to the unusual nature of this cycle. Cycle 24 displays an intermittent "Rush" that is only well-defined in the northern hemisphere. In 2009 an initial slope of 4.6°/yr was found in the north, compared to an average of 9.4 ± 1.7 °/yr in the previous three cycles. This early fit to the Rush would have reached 76° at 2014.6. However, in 2010 the slope increased to 7.5°/yr (an increase

  16. Bioluminescence regenerative cycle (BRC) system for nucleic acid quantification assays

    NASA Astrophysics Data System (ADS)

    Hassibi, Arjang; Lee, Thomas H.; Davis, Ronald W.; Pourmand, Nader

    2003-07-01

    A new label-free methodology for nucleic acid quantification has been developed where the number of pyrophosphate molecules (PPi) released during polymerization of the target nucleic acid is counted and correlated to DNA copy number. The technique uses the enzymatic complex of ATP-sulfurylase and firefly luciferase to generate photons from PPi. An enzymatic unity gain positive feedback is also implemented to regenerate the photon generation process and compensate any decay in light intensity by self regulation. Due to this positive feedback, the total number of photons generated by the bioluminescence regenerative cycle (BRC) can potentially be orders of magnitude higher than typical chemiluminescent processes. A system level kinetic model that incorporates the effects of contaminations and detector noise was used to show that the photon generation process is in fact steady and also proportional to the nucleic acid quantity. Here we show that BRC is capable of detecting quantities of DNA as low as 1 amol (10-18 mole) in 40μlit aqueous solutions, and this enzymatic assay has a controllable dynamic range of 5 orders of magnitude. The sensitivity of this technology, due to the excess number of photons generated by the regenerative cycle, is not constrained by detector performance, but rather by possible PPi or ATP (adenosine triphosphate) contamination, or background bioluminescence of the enzymatic complex.

  17. Suppression of tricarboxylic acid cycle in Escherichia coli exposed to sub-MICs of aminoglycosides.

    PubMed Central

    Cavallero, A; Eftimiadi, C; Radin, L; Schito, G C

    1990-01-01

    The metabolic activity of Escherichia coli ATCC 25922 challenged with sub-MICs of aminoglycosides was analyzed with a batch calorimeter. High-performance and gas-liquid chromatographic techniques were utilized to evaluate the concentrations of metabolic reactants, intermediates, and end products. The data reported indicate that aminoglycosides inhibit or delay bacterial catabolism of carboxylic acids, with the following relative degrees of activity: amikacin greater than gentamicin greater than sisomicin greater than netilmicin greater than kanamycin. The decrease in total biomass production was proportional to the degree of tricarboxylic acid cycle inhibition. PMID:2183717

  18. The response of amino acid cycling to global change across multiple biomes: Feedbacks on soil nitrogen availability

    NASA Astrophysics Data System (ADS)

    Brzostek, E. R.; Finzi, A. C.

    2010-12-01

    The cycling of organic nitrogen (N) in soil links soil organic matter decomposition to ecosystem productivity. Amino acids are a key pool of organic N in the soil, whose cycling is sensitive to alterations in microbial demand for carbon and N. Further, the amino acids released from the breakdown of protein by proteolytic enzymes are an important source of N that supports terrestrial productivity. The objective of this study was to measure changes in amino acid cycling in response to experimental alterations of precipitation and temperature in twelve global change experiments during the 2009 growing season. The study sites ranged from arctic tundra to xeric grasslands. The treatments experimentally increased temperature, increased or decreased precipitation, or some combination of both factors. The response of amino acid cycling to temperature and precipitation manipulations tended to be site specific, but the responses could be placed into a common framework. Changes in soil moisture drove a large response in amino acid cycling. Precipitation augmentation in xeric and mesic sites increased both amino acid pool sizes and production. However, treatments that decreased precipitation drove decreases in amino acid cycling in xeric sites, but led to increases in amino acid cycling in more mesic sites. Across sites, the response to soil warming was horizon specific. Amino acid cycling in organic rich horizons responded positively to warming, while negative responses were exhibited in lower mineral soil horizons. The variable response likely reflects a higher availability of protein substrate to sustain high rates of proteolytic enzyme activity in organic rich horizons. Overall, these results suggest that soil moisture and the availability of protein substrate may be important factors that mediate the response of amino acid cycling to predicted increases in soil temperatures.

  19. Flip-flop cycles in solar and stellar activity

    NASA Astrophysics Data System (ADS)

    Berdyugina, S. V.

    2006-08-01

    Doppler images and long time series of photometric observations of cool active stars reveal permanent active longitudes on their surfaces. They are found to alternate their dominant activity quasi-periodically which indicates a new type of the activity cycles, flip-flop cycles. In this talk I will review properties of active longitudes and flip-flop cycles on different types of active stars including the Sun.

  20. Metabolic effects of intestinal absorption and enterohepatic cycling of bile acids.

    PubMed

    Ferrebee, Courtney B; Dawson, Paul A

    2015-03-01

    The classical functions of bile acids include acting as detergents to facilitate the digestion and absorption of nutrients in the gut. In addition, bile acids also act as signaling molecules to regulate glucose homeostasis, lipid metabolism and energy expenditure. The signaling potential of bile acids in compartments such as the systemic circulation is regulated in part by an efficient enterohepatic circulation that functions to conserve and channel the pool of bile acids within the intestinal and hepatobiliary compartments. Changes in hepatobiliary and intestinal bile acid transport can alter the composition, size, and distribution of the bile acid pool. These alterations in turn can have significant effects on bile acid signaling and their downstream metabolic targets. This review discusses recent advances in our understanding of the inter-relationship between the enterohepatic cycling of bile acids and the metabolic consequences of signaling via bile acid-activated receptors, such as farnesoid X nuclear receptor (FXR) and the G-protein-coupled bile acid receptor (TGR5). PMID:26579438

  1. Activity Cycles in the Hyades and Praesepe

    NASA Astrophysics Data System (ADS)

    Baliunas, Sallie L.

    The giant stars in the Hyades present a well-studied group of stars of spectral type KO III. Their optical properties are quite similar, if not identical. All rotate with the same, slow period. Yet their chromospheric and coronal emission is different one from another, by as much as a factor of ten. We conjecture that this disparity results from sampling during different phases of long-term activity cycles which are present among dwarf stars. Some variation on a three-year timescale has been observed, as well as during phases of rotation modulation, however, at levels too small to explain the discrepancy of the emission strengths between the stars. We propose to investigate the range of chromospheric activity from these giants which are similar in the visible three ways: (a) reobserve the Hyades to search for variability on at least a seven-year timescale; (b) reobserve another young cluster, Praesepe, with four KO III stars similar to those in the Hyades to search for variability on a five-year timescale; (c) extend the sampling to four Hyades moving group stars with similar photospheric properties. The ultraviolet spectra provided by IUE represent the longest time frame, seven years, over which to search for long-term activity variations.

  2. Acetaminophen Toxicity and 5-Oxoproline (Pyroglutamic Acid): A Tale of Two Cycles, One an ATP-Depleting Futile Cycle and the Other a Useful Cycle

    PubMed Central

    2014-01-01

    Summary The acquired form of 5-oxoproline (pyroglutamic acid) metabolic acidosis was first described in 1989 and its relationship to chronic acetaminophen ingestion was proposed the next year. Since then, this cause of chronic anion gap metabolic acidosis has been increasingly recognized. Many cases go unrecognized because an assay for 5-oxoproline is not widely available. Most cases occur in malnourished, chronically ill women with a history of chronic acetaminophen ingestion. Acetaminophen levels are very rarely in the toxic range; rather, they are usually therapeutic or low. The disorder generally resolves with cessation of acetaminophen and administration of intravenous fluids. Methionine or N-acetyl cysteine may accelerate resolution and methionine is protective in a rodent model. The disorder has been attributed to glutathione depletion and activation of a key enzyme in the γ-glutamyl cycle. However, the specific metabolic derangements that cause the 5-oxoproline accumulation remain unclear. An ATP-depleting futile 5-oxoproline cycle can explain the accumulation of 5-oxoproline after chronic acetaminophen ingestion. This cycle is activated by the depletion of both glutathione and cysteine. This explanation contributes to our understanding of acetaminophen-induced 5-oxoproline metabolic acidosis and the beneficial role of N-acetyl cysteine therapy. The ATP-depleting futile 5-oxoproline cycle may also play a role in the energy depletions that occur in other acetaminophen-related toxic syndromes. PMID:24235282

  3. Regulation of leukocyte tricarboxylic acid cycle in drug-naïve Bipolar Disorder.

    PubMed

    de Sousa, Rafael T; Streck, Emilio L; Forlenza, Orestes V; Brunoni, Andre R; Zanetti, Marcus V; Ferreira, Gabriela K; Diniz, Breno S; Portela, Luis V; Carvalho, André F; Zarate, Carlos A; Gattaz, Wagner F; Machado-Vieira, Rodrigo

    2015-09-25

    Several lines of evidence suggest a role for mitochondrial dysfunction in the pathophysiology of bipolar disorder (BD). The tricarboxylic acid cycle (TCA cycle) is fundamental for mitochondrial energy production and produces substrates used in oxidative phosphorylation by the mitochondrial electron transport chain. The activity of the key TCA cycle enzymes citrate synthase, malate dehydrogenase, and succinate dehydrogenase has never been evaluated in BD. In the present study, these enzymes were assayed from leukocytes of drug-naïve BD patients in a major depressive episode (n=18) and compared to 24 age-matched healthy controls. Drug-naïve BD patients did not show differences in activities of citrate synthase (p=0.79), malate dehydrogenase (p=0.17), and succinate dehydrogenase (p=0.35) compared with healthy controls. No correlation between any TCA cycle enzyme activity and severity of depressive symptoms was observed. Overall, these data suggest that the activities of the TCA cycle enzymes are not altered in major depressive episodes of recent-onset BD, which may support the concept of illness staging and neuroprogression in BD. PMID:26297865

  4. Inorganic Nitrogen Cycling in an Extreme Acid Mine Drainage Site

    NASA Astrophysics Data System (ADS)

    Kalnejais, L. H.; Smith, R. L.; Nordstrom, D. K.; Banfield, J. F.

    2006-12-01

    Weathering of the massive sulfide ore body at Iron Mountain, northern California has generated sulfuric acid solutions with pH values ranging from 0.5 to 1, temperatures up to 50°C and high concentrations of toxic metals. Communities of microorganisms catalyze the oxidation of iron and sulfur that generates this extreme environment. The nitrogen requirements of these organisms and the nitrogen cycling within these waters are not understood. By adapting the chemiluminescence detection method of Baeseman (2004) we have constrained the stability of nitrate and nitrite species in acidic, high ferrous iron solutions and have measured a time series of the nitrate concentrations at sites within Iron Mountain. The half-life of nitrite is less than an hour due to reactions with ferrous ions, while nitrate is found at concentrations of up to 10 μM within the mine. By coupling this information with geochemical and microbial community information at each site together with culture enrichment studies using various nitrogen sources we hope to gain insight into the pathways of nitrogen utilization in this extreme environment. References Baeseman, J.L. (2004) Denitrification in acid-impacted mountain stream sediments. Ph.D. Dissertation, University of Colorado, Department of Civil, Environmental, and Architectural Engineering.

  5. A decrease in solar and geomagnetic activity from cycle 19 to cycle 24

    NASA Astrophysics Data System (ADS)

    Gvishiani, A. D.; Starostenko, V. I.; Sumaruk, Yu. P.; Soloviev, A. A.; Legostaeva, O. V.

    2015-05-01

    Variations in the solar and geomagnetic activity from cycle 19 to cycle 24 were considered based on data from the magnetic observatories of the Russian-Ukrainian INTERMAGNET segment and international centers of data on solar-terrestrial physics. It has been indicated that activity decreases over the course of time. This is especially evident during the cycle 24 growth phase. The possible causes and consequences of a decrease in geomagnetic activity were analyzed.

  6. A prediction of geomagnetic activity for solar cycle 23

    NASA Astrophysics Data System (ADS)

    Cliver, E. W.; Ling, A. G.; Wise, J. E.; Lanzerotti, L. J.

    1999-04-01

    Using a database of 13 solar cycles of geomagnetic aa data, we obtained correlations between cycle averages of geomagnetic activity (and sunspot number) and the numbers of days with disturbance levels above certain aa thresholds. We then used a precursor-type relation to predict an average aa index of 23.1 nT for cycle 23 and inserted this average aa value into the above correlations to forecast the integral size distribution of geomagnetic activity for the new cycle. The predicted size distribution is similar to that observed for cycles 21 and 22 but most closely resembles that of solar cycle 18 (1944-1954), which was slightly smaller than cycles 21 and 22. Our prediction agrees reasonably well with the ``climatology-based'' forecast made by the intergovernmental panel tasked to predict geomagnetic activity for the coming solar cycle and is significantly different from their ``precursor-based'' prediction.

  7. Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: Advances and prospects.

    PubMed

    Yin, Xian; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Liu, Long; Chen, Jian

    2015-11-01

    Organic acids, which are chemically synthesized, are also natural intermediates in the metabolic pathways of microorganisms, among which the tricarboxylic acid (TCA) cycle is the most crucial route existing in almost all living organisms. Organic acids in the TCA cycle include citric acid, α-ketoglutaric acid, succinic acid, fumaric acid, l-malic acid, and oxaloacetate, which are building-block chemicals with wide applications and huge markets. In this review, we summarize the synthesis pathways of these organic acids and review recent advances in metabolic engineering strategies that enhance organic acid production. We also propose further improvements for the production of organic acids with systems and synthetic biology-guided metabolic engineering strategies. PMID:25902192

  8. Acid wash of second cycle solvent in the recovery of uranium from phosphate rock

    SciTech Connect

    York, W.R.

    1984-02-07

    Entrainment of contaminated water in the organic phase and poor phase disengagement is prevented in the second cycle scrubber, in a two cycle-uranium recovery process, by washing the organic solvent stream containing entrained H/sub 3/PO/sub 4/ from the second cycle extractor, with a dilute aqueous sulfuric or nitric acid solution in an acid scrubber, prior to passing the solvent stream into the second cycle stripper.

  9. Effect of Docosahexaenoic Acid on Cell Cycle Pathways in Breast Cell Lines With Different Transformation Degree.

    PubMed

    Rescigno, Tania; Capasso, Anna; Tecce, Mario Felice

    2016-06-01

    n-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), abundant in fish, have been shown to affect development and progression of some types of cancer, including breast cancer. The aim of our study was to further analyze and clarify the effects of these nutrients on the molecular mechanisms underlying breast cancer. Following treatments with DHA we examined cell viability, death, cell cycle, and some molecular effects in breast cell lines with different transformation, phenotypic, and biochemical characteristics (MCF-10A, MCF-7, SK-BR-3, ZR-75-1). These investigations showed that DHA is able to affect cell viability, proliferation, and cell cycle progression in a different way in each assayed breast cell line. The activation of ERK1/2 and STAT3 pathways and the expression and/or activation of molecules involved in cell cycle regulation such as p21(Waf1/Cip1) and p53, are very differently regulated by DHA treatments in each cell model. DHA selectively: (i) arrests non tumoral MCF-10A breast cells in G0 /G1 cycle phase, activating p21(Waf1/Cip1) , and p53, (ii) induces to death highly transformed breast cells SK-BR-3, reducing ERK1/2 and STAT3 phosphorylation and (iii) only slightly affects each analyzed process in MCF-7 breast cell line with transformation degree lower than SK-BR-3 cells. These findings suggest a more relevant inhibitory role of DHA within early development and late progression of breast cancer cell transformation and a variable effect in the other phases, depending on individual molecular properties and degree of malignancy of each clinical case. J. Cell. Physiol. 231: 1226-1236, 2016. © 2015 Wiley Periodicals, Inc. PMID:26480024

  10. Meridional Flow Variations in Cycles 23 and 24: Active Latitude Control of Sunspot Cycle Amplitudes

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Upton, Lisa

    2013-01-01

    We have measured the meridional motions of magnetic elements observed in the photosphere over sunspot cycles 23 and 24 using magnetograms from SOHO/MDI and SDO/HMI. Our measurements confirm the finding of Komm, Howard, and Harvey (1993) that the poleward meridional flow weakens at cycle maxima. Our high spatial and temporal resolution analyses show that this variation is in the form of a superimposed inflow toward the active latitudes. This inflow is weaker in cycle 24 when compared to the inflow in 23, the stronger cycle. This systematic modulation of the meridional flow can modulate the amplitude of the following sunspot cycle through its influence on the Sun's polar fields.

  11. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction.

    PubMed

    Hallows, William C; Yu, Wei; Smith, Brian C; Devries, Mark K; Devires, Mark K; Ellinger, James J; Someya, Shinichi; Shortreed, Michael R; Prolla, Tomas; Markley, John L; Smith, Lloyd M; Zhao, Shimin; Guan, Kun-Liang; Denu, John M

    2011-01-21

    Emerging evidence suggests that protein acetylation is a broad-ranging regulatory mechanism. Here we utilize acetyl-peptide arrays and metabolomic analyses to identify substrates of mitochondrial deacetylase Sirt3. We identified ornithine transcarbamoylase (OTC) from the urea cycle, and enzymes involved in β-oxidation. Metabolomic analyses of fasted mice lacking Sirt3 (sirt3(-/-)) revealed alterations in β-oxidation and the urea cycle. Biochemical analysis demonstrated that Sirt3 directly deacetylates OTC and stimulates its activity. Mice under caloric restriction (CR) increased Sirt3 protein levels, leading to deacetylation and stimulation of OTC activity. In contrast, sirt3(-/-) mice failed to deacetylate OTC in response to CR. Inability to stimulate OTC under CR led to a failure to reduce orotic acid levels, a known outcome of OTC deficiency. Thus, Sirt3 directly regulates OTC activity and promotes the urea cycle during CR, and the results suggest that under low energy input, Sirt3 modulates mitochondria by promoting amino acid catabolism and β-oxidation. PMID:21255725

  12. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction

    PubMed Central

    Hallows, William C.; Yu, Wei; Smith, Brian C.; Devries, Mark K.; Ellinger, James J.; Someya, Shinichi; Shortreed, Michael R.; Prolla, Tomas; Markley, John L.; Smith, Lloyd M.; Zhao, Shimin; Guan, Kun-Liang; Denu, John M.

    2011-01-01

    Summary Emerging evidence suggests that protein acetylation is a broad-ranging regulatory mechanism. Here we utilize acetyl-peptide arrays and metabolomic analyses to identify substrates of mitochondrial deacetylase Sirt3. We identified ornithine transcarbamoylase (OTC) from the urea cycle, and enzymes involved in β-oxidation. Metabolomic analyses of fasted mice lacking Sirt3 (sirt3−/−) revealed alterations in β-oxidation and the urea cycle. Biochemical analysis demonstrated that Sirt3 directly deacetylates OTC and stimulates its activity. Mice under caloric restriction (CR) increased Sirt3 protein levels, leading to deacetylation and stimulation of OTC activity. In contrast, sirt3−/− mice failed to deacetylate OTC in response to CR. Inability to stimulate OTC under CR led to a failure to reduce orotic acid levels, a known outcome of OTC deficiency. Thus, Sirt3 directly regulates OTC activity and promotes the urea cycle during CR, and the results suggest that under low energy input, Sirt3 modulates mitochondria by promoting amino-acid catabolism and β-oxidation. PMID:21255725

  13. Materials study supporting thermochemical hydrogen cycle sulfuric acid decomposer design

    NASA Astrophysics Data System (ADS)

    Peck, Michael S.

    Increasing global climate change has been driven by greenhouse gases emissions originating from the combustion of fossil fuels. Clean burning hydrogen has the potential to replace much of the fossil fuels used today reducing the amount of greenhouse gases released into the atmosphere. The sulfur iodine and hybrid sulfur thermochemical cycles coupled with high temperature heat from advanced nuclear reactors have shown promise for economical large-scale hydrogen fuel stock production. Both of these cycles employ a step to decompose sulfuric acid to sulfur dioxide. This decomposition step occurs at high temperatures in the range of 825°C to 926°C dependent on the catalysis used. Successful commercial implementation of these technologies is dependent upon the development of suitable materials for use in the highly corrosive environments created by the decomposition products. Boron treated diamond film was a potential candidate for use in decomposer process equipment based on earlier studies concluding good oxidation resistance at elevated temperatures. However, little information was available relating the interactions of diamond and diamond films with sulfuric acid at temperatures greater than 350°C. A laboratory scale sulfuric acid decomposer simulator was constructed at the Nuclear Science and Engineering Institute at the University of Missouri-Columbia. The simulator was capable of producing the temperatures and corrosive environments that process equipment would be exposed to for industrialization of the sulfur iodide or hybrid sulfur thermochemical cycles. A series of boron treated synthetic diamonds were tested in the simulator to determine corrosion resistances and suitability for use in thermochemical process equipment. These studies were performed at twenty four hour durations at temperatures between 600°C to 926°C. Other materials, including natural diamond, synthetic diamond treated with titanium, silicon carbide, quartz, aluminum nitride, and Inconel

  14. An ATP and oxalate generating variant tricarboxylic acid cycle counters aluminum toxicity in Pseudomonas fluorescens.

    PubMed

    Singh, Ranji; Lemire, Joseph; Mailloux, Ryan J; Chénier, Daniel; Hamel, Robert; Appanna, Vasu D

    2009-01-01

    Although the tricarboxylic acid (TCA) cycle is essential in almost all aerobic organisms, its precise modulation and integration in global cellular metabolism is not fully understood. Here, we report on an alternative TCA cycle uniquely aimed at generating ATP and oxalate, two metabolites critical for the survival of Pseudomonas fluorescens. The upregulation of isocitrate lyase (ICL) and acylating glyoxylate dehydrogenase (AGODH) led to the enhanced synthesis of oxalate, a dicarboxylic acid involved in the immobilization of aluminum (Al). The increased activity of succinyl-CoA synthetase (SCS) and oxalate CoA-transferase (OCT) in the Al-stressed cells afforded an effective route to ATP synthesis from oxalyl-CoA via substrate level phosphorylation. This modified TCA cycle with diminished efficacy in NADH production and decreased CO(2)-evolving capacity, orchestrates the synthesis of oxalate, NADPH, and ATP, ingredients pivotal to the survival of P. fluorescens in an Al environment. The channeling of succinyl-CoA towards ATP formation may be an important function of the TCA cycle during anaerobiosis, Fe starvation and O(2)-limited conditions. PMID:19809498

  15. Crassulacean acid metabolism-cycling in Euphorbia milii

    PubMed Central

    Herrera, Ana

    2013-01-01

    Crassulacean acid metabolism (CAM) occurs in many Euphorbiaceae, particularly Euphorbia, a genus with C3 and C4 species as well. With the aim of contributing to our knowledge of the evolution of CAM in this genus, this study examined the possible occurrence of CAM in Euphorbia milii, a species with leaf succulence and drought tolerance suggestive of this carbon fixation pathway. Leaf anatomy consisted of a palisade parenchyma, a spongy parenchyma and a bundle sheath with chloroplasts, which indicates the possible functioning of C2 photosynthesis. No evidence of nocturnal CO2 fixation was found in plants of E. milii either watered or under drought; watered plants had a low nocturnal respiration rate (R). After 12 days without watering, the photosynthetic rate (PN) decreased 85 % and nocturnal R was nearly zero. Nocturnal H+ accumulation (ΔH+) in watered plants was 18 ± 2 (corresponding to malate) and 18 ± 4 (citrate) μmol H+ (g fresh mass)−1. Respiratory CO2 recycling through acid synthesis contributed to a night-time water saving of 2 and 86 % in watered plants and plants under drought, respectively. Carbon isotopic composition (δ13C) was −25.2 ± 0.7 ‰ in leaves and −24.7 ± 0.1 ‰ in stems. Evidence was found for the operation of weak CAM in E. milii, with statistically significant ΔH+, no nocturnal CO2 uptake and values of δ13C intermediate between C3 and constitutive CAM plants; ΔH+ was apparently attributable to both malate and citrate. The results suggest that daily malate accumulation results from recycling of part of the nocturnal respiratory CO2, which helps explain the occurrence of an intermediate value of leaf δ13C. Euphorbia milii can be considered as a CAM-cycling species. The significance of the operation of CAM-cycling in E. milii lies in water conservation, rather than carbon acquisition. The possible occurrence of C2 photosynthesis merits research. PMID:23596548

  16. Crassulacean acid metabolism-cycling in Euphorbia milii.

    PubMed

    Herrera, Ana

    2013-01-01

    Crassulacean acid metabolism (CAM) occurs in many Euphorbiaceae, particularly Euphorbia, a genus with C3 and C4 species as well. With the aim of contributing to our knowledge of the evolution of CAM in this genus, this study examined the possible occurrence of CAM in Euphorbia milii, a species with leaf succulence and drought tolerance suggestive of this carbon fixation pathway. Leaf anatomy consisted of a palisade parenchyma, a spongy parenchyma and a bundle sheath with chloroplasts, which indicates the possible functioning of C2 photosynthesis. No evidence of nocturnal CO2 fixation was found in plants of E. milii either watered or under drought; watered plants had a low nocturnal respiration rate (R). After 12 days without watering, the photosynthetic rate (P N) decreased 85 % and nocturnal R was nearly zero. Nocturnal H(+) accumulation (ΔH(+)) in watered plants was 18 ± 2 (corresponding to malate) and 18 ± 4 (citrate) μmol H(+) (g fresh mass)(-1). Respiratory CO2 recycling through acid synthesis contributed to a night-time water saving of 2 and 86 % in watered plants and plants under drought, respectively. Carbon isotopic composition (δ(13)C) was -25.2 ± 0.7 ‰ in leaves and -24.7 ± 0.1 ‰ in stems. Evidence was found for the operation of weak CAM in E. milii, with statistically significant ΔH(+), no nocturnal CO2 uptake and values of δ(13)C intermediate between C3 and constitutive CAM plants; ΔH(+) was apparently attributable to both malate and citrate. The results suggest that daily malate accumulation results from recycling of part of the nocturnal respiratory CO2, which helps explain the occurrence of an intermediate value of leaf δ(13)C. Euphorbia milii can be considered as a CAM-cycling species. The significance of the operation of CAM-cycling in E. milii lies in water conservation, rather than carbon acquisition. The possible occurrence of C2 photosynthesis merits research. PMID:23596548

  17. Rest-Activity Cycles in Childhood and Adolescent Depression.

    ERIC Educational Resources Information Center

    Armitage, Roseanne; Hoffmann, Robert; Emslie, Graham; Rintelman, Jeanne; Moore, Jarrette; Lewis, Kelly

    2004-01-01

    Objective: To quantify circadian rhythms in rest-activity cycles in depressed children and adolescents. Method: Restactivity cycles were evaluated by actigraphy over five consecutive 24-hour periods in 100 children and adolescents, including 59 outpatients with major depressive disorder (MDD) and 41 healthy normal controls. Total activity, total…

  18. Geomagnetic Activity Indicates Large Amplitude for Sunspot Cycle 24

    NASA Technical Reports Server (NTRS)

    Hathaway, D. H.; Wilson, R. M.

    2006-01-01

    The level of geomagnetic activity near the time of solar activity minimum has been shown to be a reliable indicator for the amplitude of the following solar activity maximum. The geomagnetic activity index aa can be split into two components: one associated with solar flares, prominence eruptions, and coronal mass ejections which follows the solar activity cycle and a second component associated with recurrent high speed solar wind streams which is out of phase with the solar activity cycle. This second component often peaks before solar activity minimum and has been one of the most reliable indicators for the amplitude of the following maximum. The size of the recent maximum in this second component indicates that solar activity cycle 24 will be much higher than average - similar in size to cycles 21 and 22.

  19. New low-antimony alloy for straps and cycling service in lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Prengaman, R. David

    Lead-antimony alloys used for the positive grids in lead-acid batteries for cycling service have generally used antimony contents of 4.5 wt.% and above. Tubular batteries for cycling service that impart high compression of the active material to the grid surface via gauntlet use alloys with antimony contents as low as 1.5 wt.%. These batteries are generally employed in less-severe cycling service. Value-regulated lead-acid (VRLA) batteries can give good cycling service without lead-antimony in the positive grid, but require a high tin content and high compression. The change in automotive battery positive grid alloys to lead-calcium-tin and the tin contents of VRLA positive grids and straps have dramatically increased the tin content of the recycled grid and strap lead in the USA, Europe, and Australia. The higher tin contents can contaminate the lead used for lead-antimony battery grids and generally must be removed to low levels to meet the specifications. This study describes a low-antimony alloy that contains a substantial amount of tin. The high tin content reduces the rate of corrosion of low-antimony positive grid alloys, improves conductivity, increases the bond between the grid and the active material, and cycles as well as the traditional 5-6 wt.% antimony alloys employed in conventional flat-plate batteries. The alloy is also used as a corrosion-resistant cast-on strap alloy for automotive batteries for high temperature service, as well as for posts, bushings, and connectors for all wet batteries.

  20. Acid Rain: Activities for Science Teachers.

    ERIC Educational Resources Information Center

    Johnson, Eric; And Others

    1983-01-01

    Seven complete secondary/college level acid rain activities are provided. Activities include overview; background information and societal implications; major concepts; student objectives; vocabulary/material lists; procedures; instructional strategies; and questions/discussion and extension suggestions. Activities consider effects of acid rain on…

  1. Physical interactions between tricarboxylic acid cycle enzymes in Bacillus subtilis: evidence for a metabolon.

    PubMed

    Meyer, Frederik M; Gerwig, Jan; Hammer, Elke; Herzberg, Christina; Commichau, Fabian M; Völker, Uwe; Stülke, Jörg

    2011-01-01

    The majority of all proteins of a living cell is active in complexes rather than in an isolated way. These protein-protein interactions are of high relevance for many biological functions. In addition to many well established protein complexes an increasing number of protein-protein interactions, which form rather transient complexes has recently been discovered. The formation of such complexes seems to be a common feature especially for metabolic pathways. In the Gram-positive model organism Bacillus subtilis, we identified a protein complex of three citric acid cycle enzymes. This complex consists of the citrate synthase, the isocitrate dehydrogenase, and the malate dehydrogenase. Moreover, fumarase and aconitase interact with malate dehydrogenase and with each other. These five enzymes catalyze sequential reaction of the TCA cycle. Thus, this interaction might be important for a direct transfer of intermediates of the TCA cycle and thus for elevated metabolic fluxes via substrate channeling. In addition, we discovered a link between the TCA cycle and gluconeogenesis through a flexible interaction of two proteins: the association between the malate dehydrogenase and phosphoenolpyruvate carboxykinase is directly controlled by the metabolic flux. The phosphoenolpyruvate carboxykinase links the TCA cycle with gluconeogenesis and is essential for B. subtilis growing on gluconeogenic carbon sources. Only under gluconeogenic growth conditions an interaction of these two proteins is detectable and disappears under glycolytic growth conditions. PMID:20933603

  2. Inferences on Stellar Activity and Stellar Cycles from Asteroseismology

    NASA Astrophysics Data System (ADS)

    Chaplin, William J.; Basu, Sarbani

    2014-12-01

    The solar activity cycle can be studied using many different types of observations, such as counting sunspots, measuring emission in the Ca II H&K lines, magnetograms, radio emissions, etc. One of the more recent ways of studying solar activity is to use the changing properties of solar oscillations. Stellar activity cycles are generally studied using the Ca II lines, or sometimes using photometry. Asteroseismology is potentially an exciting means of studying these cycles. In this article we examine whether or not asteroseismic data can be used for this purpose, and what the asteroseismic signatures of stellar activity are. We also examine how asteroseismology may help in more indirect ways.

  3. Stability of Supported Platinum Sulfuric Acid Decomposition Catalysts for use in Thermochemical Water Splitting Cycles

    SciTech Connect

    Daniel M. Ginosar; Lucia M. Petkovic; Anne W. Glenn; Kyle C. Burch

    2007-03-01

    The activity and stability of several metal oxide supported platinum catalysts were explored for the sulfuric acid decomposition reaction. The acid decomposition reaction is common to several sulfur based thermochemical water splitting cycles. Reactions were carried out using a feed of concentrated liquid sulfuric acid (96 wt%) at atmospheric pressure at temperatures between 800 and 850 °C and a weight hour space velocity of 52 g acid/g catalyst/hr. Reactions were run at these high space velocities such that variations in kinetics were not masked by surplus catalyst. The influence of exposure to reaction conditions was explored for three catalysts; 0.1-0.2 wt% Pt supported on alumina, zirconia and titania. The higher surface area Pt/Al2O3 and Pt/ZrO2 catalysts were found to have the highest activity but deactivated rapidly. A low surface area Pt/TiO2 catalyst was found to have good stability in short term tests, but slowly lost activity for over 200 hours of continuous operation.

  4. The effect of propionic acid and valeric acid on the cell cycle in root meristems of Pisum sativum

    SciTech Connect

    Tramontano, W.A.; Yang, Shauyu; Delillo, A.R. )

    1990-01-01

    Propionic acid and valeric acid at 1mM reduced the mitotic index of root meristem cells of Pisum sativum to < 1% after 12 hr in aerated White's medium. This effect varied with different acid concentrations. After a 12 hr exposure to either acid, seedlings transferred to fresh medium without either acid, resumed their normal mitotic index after 12 hr, with a burst of mitosis 8 hr post-transfer. Exposure of root meristem cells to either acid also inhibited ({sup 3}H)-TdR incorporation. Neither acid significantly altered the distribution of meristematic cells in G1 and G2 after 12 hr. The incorporation of ({sup 3}H) - uridine was also unaltered by the addition of either acid. This information suggests that propionic acid and valeric acid, limit progression through the cell cycle by inhibiting DNA synthesis and arresting cells in G1 and G2. These results were consistent with previous data which utilized butyric acid.

  5. Thioredoxin, a master regulator of the tricarboxylic acid cycle in plant mitochondria

    PubMed Central

    Daloso, Danilo M.; Müller, Karolin; Obata, Toshihiro; Florian, Alexandra; Tohge, Takayuki; Bottcher, Alexandra; Riondet, Christophe; Bariat, Laetitia; Carrari, Fernando; Nunes-Nesi, Adriano; Buchanan, Bob B.; Reichheld, Jean-Philippe; Araújo, Wagner L.; Fernie, Alisdair R.

    2015-01-01

    Plant mitochondria have a fully operational tricarboxylic acid (TCA) cycle that plays a central role in generating ATP and providing carbon skeletons for a range of biosynthetic processes in both heterotrophic and photosynthetic tissues. The cycle enzyme-encoding genes have been well characterized in terms of transcriptional and effector-mediated regulation and have also been subjected to reverse genetic analysis. However, despite this wealth of attention, a central question remains unanswered: “What regulates flux through this pathway in vivo?” Previous proteomic experiments with Arabidopsis discussed below have revealed that a number of mitochondrial enzymes, including members of the TCA cycle and affiliated pathways, harbor thioredoxin (TRX)-binding sites and are potentially redox-regulated. We have followed up on this possibility and found TRX to be a redox-sensitive mediator of TCA cycle flux. In this investigation, we first characterized, at the enzyme and metabolite levels, mutants of the mitochondrial TRX pathway in Arabidopsis: the NADP-TRX reductase a and b double mutant (ntra ntrb) and the mitochondrially located thioredoxin o1 (trxo1) mutant. These studies were followed by a comparative evaluation of the redistribution of isotopes when 13C-glucose, 13C-malate, or 13C-pyruvate was provided as a substrate to leaves of mutant or WT plants. In a complementary approach, we evaluated the in vitro activities of a range of TCA cycle and associated enzymes under varying redox states. The combined dataset suggests that TRX may deactivate both mitochondrial succinate dehydrogenase and fumarase and activate the cytosolic ATP-citrate lyase in vivo, acting as a direct regulator of carbon flow through the TCA cycle and providing a mechanism for the coordination of cellular function. PMID:25646482

  6. Acid-Tolerant Sulfate-Reducing Bacteria Play a Major Role in Iron Cycling in Acidic Iron Rich Sediments

    NASA Astrophysics Data System (ADS)

    Enright, K. A.; Moreau, J. W.

    2008-12-01

    Climate change drives drying and acidification of many rivers and lakes. Abundant sedimentary iron in these systems oxidizes chemically and biologically to form iron-ox(yhydrox)ide crusts and "hardpans". Given generally high sulfate concentrations, the mobilization and cycling of iron in these environments can be strongly influenced by bacterial sulfate reduction. Sulfate-reducing bacteria (SRB) induce reductive dissolution of oxidized iron phases by producing the reductant bisulfide as a metabolic product. These environmentally ubiquitous microbes also recycle much of the fixed carbon in sediment-hosted microbial mat communities. With prevalent drying, the buffering capacity for protons liberated from iron oxidation is exceeded, and the activity of sulfate-reducers is restricted to those species capable of tolerating low pH (and generally highly saline, i.e. sulfate-rich) conditions. These species will sustain the recycling of iron from more crystalline phases to more bioavailable species, as well as act as the only source of bisulfide for photosynthesizing microbial communities. The phylogeny and physiology of acid-tolerant SRB is therefore important to Fe, S and C cycling in iron-rich sedimentary environments, particularly those on a geochemical trajectory towards acidification. Previous studies have shown that these SRB species tend to be highly novel. We studied two distinct environments along a geochemical continuum towards acidification. In both settings, iron redox transformations exert a major, if not controlling, influence on reduction potential. An acidified, iron- rich tidal marsh receiving acid-mine drainage (San Francisco Bay, CA, USA) contained abundant textural evidence for reductive dissolution of Fe(III) in sediments with pH values varying from 2.4 - 3.8. From these sediments, full-length novel dsrAB gene sequences from acid-tolerant SRB were recovered, and sulfur isotope profiles reflected biological fractionation of sulfur under even the most

  7. Salicylic acid antagonizes abscisic acid inhibition of shoot growth and cell cycle progression in rice

    NASA Astrophysics Data System (ADS)

    Meguro, Ayano; Sato, Yutaka

    2014-04-01

    We analysed effects of abscisic acid (ABA, a negative regulatory hormone), alone and in combination with positive or neutral hormones, including salicylic acid (SA), on rice growth and expression of cell cycle-related genes. ABA significantly inhibited shoot growth and induced expression of OsKRP4, OsKRP5, and OsKRP6. A yeast two-hybrid assay showed that OsKRP4, OsKRP5, and OsKRP6 interacted with OsCDKA;1 and/or OsCDKA;2. When SA was simultaneously supplied with ABA, the antagonistic effect of SA completely blocked ABA inhibition. SA also blocked ABA inhibition of DNA replication and thymidine incorporation in the shoot apical meristem. These results suggest that ABA arrests cell cycle progression by inducing expression of OsKRP4, OsKRP5, and OsKRP6, which inhibit the G1/S transition, and that SA antagonizes ABA by blocking expression of OsKRP genes.

  8. Functional activity of sphingomyelin cycle in rat liver in chronic toxic hepatitis.

    PubMed

    Serebrov, V Yu; Kuzmenko, D I; Burov, P G; Novitsky, S V

    2008-12-01

    Activities of sphingomyelinase and ceramidase decreased in the liver in chronic toxic hepatitis and the balance between the levels of proapoptotic ceramide and antiapoptotic sphyngosine-1-phosphate shifts towards the latter substance. Pronounced changes in the qualitative and quantitative composition of fatty acids in the sphingomyelin cycle effector molecules were revealed. PMID:19513367

  9. Forecasting the Peak of the Present Solar Activity Cycle

    NASA Astrophysics Data System (ADS)

    Hamid, Rabab; Marzouk, Beshir

    2016-07-01

    Solar forecasting of the level of sun Activity is very important subject for all space programs. Most predictions are based on the physical conditions prevailing at or before the solar cycle minimum preceding the maximum in question. Our aim is to predict the maximum peak of cycle 24 using precursor techniques in particular those using spotless event, geomagnetic aa min. index and solar flux F10.7. Also prediction of exact date of the maximum (Tr) is taken in consideration. A study of variation over previous spotless event for cycles 7-23 and that for even cycles (8-22) are carried out for the prediction. Linear correlation between RM and spotless event around the preceding minimum gives RM24t = 101.9with rise time Tr = 4.5 Y. For the even cycles RM24e = 108.3 with rise time Tr = 3.9 Y. Based on the average aa min. index for the year of sunspot minimum cycles (13 - 23), we estimate the expected amplitude for cycle 24 to be RMaa = 116.5 for both the total and even cycles. Application of the data of solar flux F10.7 which cover only cycles (19-23) was taken in consideration and gives predicted maximum amplitude R24 10.7 = 146, which are over estimation. Our result indicating a somewhat weaker cycle 24 as compared to cycles 21-23.

  10. A solar cycle timing predictor - The latitude of active regions

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1990-01-01

    A 'Spoerer butterfly' method is used to examine solar cycle 22. It is shown from the latitude of active regions that the cycle can now be expected to peak near November 1989 + or - 8 months, basically near the latter half of 1989.

  11. The connection between stellar activity cycles and magnetic field topology

    NASA Astrophysics Data System (ADS)

    See, V.; Jardine, M.; Vidotto, A. A.; Donati, J.-F.; Boro Saikia, S.; Bouvier, J.; Fares, R.; Folsom, C. P.; Gregory, S. G.; Hussain, G.; Jeffers, S. V.; Marsden, S. C.; Morin, J.; Moutou, C.; do Nascimento, J. D.; Petit, P.; Waite, I. A.

    2016-08-01

    Zeeman Doppler imaging has successfully mapped the large-scale magnetic fields of stars over a large range of spectral types, rotation periods and ages. When observed over multiple epochs, some stars show polarity reversals in their global magnetic fields. On the Sun, polarity reversals are a feature of its activity cycle. In this paper, we examine the magnetic properties of stars with existing chromospherically determined cycle periods. Previous authors have suggested that cycle periods lie on multiple branches, either in the cycle period-Rossby number plane or the cycle period-rotation period plane. We find some evidence that stars along the active branch show significant average toroidal fields that exhibit large temporal variations while stars exclusively on the inactive branch remain dominantly poloidal throughout their entire cycle. This lends credence to the idea that different shear layers are in operation along each branch. There is also evidence that the short magnetic polarity switches observed on some stars are characteristic of the inactive branch while the longer chromospherically determined periods are characteristic of the active branch. This may explain the discrepancy between the magnetic and chromospheric cycle periods found on some stars. These results represent a first attempt at linking global magnetic field properties obtained form ZDI and activity cycles.

  12. Influenza pandemics, solar activity cycles, and vitamin D.

    PubMed

    Hayes, Daniel P

    2010-05-01

    There is historic evidence that influenza pandemics are associated with solar activity cycles (the Schwabe-cycle of about 11-years periodicity). The hypothesis is presented and developed that influenza pandemics are associated with solar control of vitamin D levels in humans which waxes and wanes in concert with solar cycle dependent ultraviolet radiation. It is proposed that this solar cycle dependence arises both directly from cyclic control of the amount of ultraviolet radiation as well as indirectly through cyclic control of atmospheric circulation and dynamics. PMID:20056531

  13. Lipoxygenase inhibitory activity of anacardic acids.

    PubMed

    Ha, Tae Joung; Kubo, Isao

    2005-06-01

    6[8'(Z)-pentadecenyl]salicylic acid, otherwise known as anacardic acid (C15:1), inhibited the linoleic acid peroxidation catalyzed by soybean lipoxygenase-1 (EC 1.13.11.12, type 1) with an IC50 of 6.8 microM. The inhibition of the enzyme by anacardic acid (C15:1) is a slow and reversible reaction without residual activity. The inhibition kinetics analyzed by Dixon plots indicates that anacardic acid (C15:1) is a competitive inhibitor and the inhibition constant, KI, was obtained as 2.8 microM. Although anacardic acid (C15:1) inhibited the linoleic acid peroxidation without being oxidized, 6[8'(Z),11'(Z)-pentadecadienyl]salicylic acid, otherwise known as anacardic acid (C15:2), was dioxygenated at low concentrations as a substrate. In addition, anacardic acid (C15:2) was also found to exhibit time-dependent inhibition of lipoxygenase-1. The alk(en)yl side chain of anacardic acids is essential to elicit the inhibitory activity. However, the hydrophobic interaction alone is not enough because cardanol (C15:1), which possesses the same side chain as anacardic acid (C15:1), acted neither as a substrate nor as an inhibitor. PMID:15913294

  14. Butterfly Diagram and Activity Cycles in HR 1099

    NASA Astrophysics Data System (ADS)

    Berdyugina, Svetlana V.; Henry, Gregory W.

    2007-04-01

    We analyze photometric data of the active RS CVn-type star HR 1099 for the years 1975-2006 with an inversion technique and reveal the nature of two activity cycles of 15-16 yr and 5.3+/-0.1 yr duration. The 16 yr cycle is related to variations of the total spot area and is coupled with the differential rotation, while the 5.3 yr cycle is caused by the symmetric redistribution of the spotted area between the opposite stellar hemispheres (flip-flop cycle). We recover long-lived active regions comprising two active longitudes that migrate in the orbital reference frame with a variable rate because of the differential rotation along with changes in the mean spot latitudes. The migration pattern is periodic with the 16 yr cycle. Combining the longitudinal migration of the active regions with a previously measured differential rotation law, we recover the first stellar butterfly diagram without an assumption about spot shapes. We find that mean latitudes of active regions at opposite longitudes change antisymmetrically in the course of the 16 yr cycle: while one active region migrates to the pole, the other approaches the equator. This suggests a precession of the global magnetic field with respect to the stellar rotational axis.

  15. Meridional Flow Variations in Cycles 23 and 24: Active Latitude Control of Sunspot Cycle Amplitudes

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Upton, Lisa

    2013-01-01

    We have measured the meridional motions of magnetic elements observed in the photosphere over sunspot cycles 23 and 24 using magnetograms from SOHO/MDI and SDO/HMI. Our measurements confirm the finding of Komm, Howard, and Harvey (1993) that the poleward meridional flow weakens at cycle maxima. Our high spatial and temporal resolution analyses show that this variation is in the form of a superimposed inflow toward the active latitudes. This inflow is weaker in cycle 24 when compared to the inflow in 23, the stronger cycle. This systematic modulation of the meridional flow should also modulate the amplitude of the following sunspot cycle through its influence on the Sun's polar fields. The observational evidence and the theoretical consequences (similar to those of Cameron and Schussler (2012)) will be described.

  16. Meridional Flow Variations in Cycles 23 and 24: Active Latitude Control of Sunspot Cycle Amplitudes

    NASA Astrophysics Data System (ADS)

    Hathaway, David H.; Upton, L.

    2013-07-01

    We have measured the meridional motions of magnetic elements observed in the photosphere over sunspot cycles 23 and 24 using magnetograms from SOHO/MDI and SDO/HMI. Our measurements confirm the finding of Komm, Howard, and Harvey (1993) that the poleward meridional flow weakens at cycle maxima. Our high spatial and temporal resolution analyses show that this variation is in the form of a superimposed inflow toward the active latitudes. This inflow is weaker in cycle 24 when compared to the inflow in 23, the stronger cycle. This systematic modulation of the meridional flow should also modulate the amplitude of the following sunspot cycle through its influence on the Sun’s polar fields. The observational evidence and the theoretical consequences (similar to those of Cameron and Schussler (2012)) will be described. Komm, Howard, and Harvey (1993) Solar Phys. 147, 207. Cameron and Schussler (2012) Astron. Astrophys. 548, A57.

  17. TERATOGENIC ACTIVITY OF TRICHLOROACETIC ACID

    EPA Science Inventory

    Trichloroacetic acid (TCA)is a by-product of the chlorine disinfection of water containing natural organic material. It is detectable finished drinking water at levels comparable to the trihalomethanes (30-60). TCA is also formed in vivo after ingestion of hypochlorite and has be...

  18. Fatty acid activation of peroxisome proliferator-activated receptor (PPAR).

    PubMed

    Bocos, C; Göttlicher, M; Gearing, K; Banner, C; Enmark, E; Teboul, M; Crickmore, A; Gustafsson, J A

    1995-06-01

    Peroxisome proliferators such as clofibric acid, nafenopin, and WY-14,643 have been shown to activate peroxisome proliferator-activated receptor (PPAR), a member of the steroid nuclear receptor superfamily. We have cloned the cDNA from rat that is homologous to that from mouse, which encodes a 97% similar protein. To search for physiologically occurring activators, we established a transcriptional transactivation assay by stably expressing in CHO cells a chimera of rat PPAR and the human glucocorticoid receptor that activates expression of the placental alkaline phosphatase reporter gene under the control of the mouse mammary tumor virus promoter. 150 microM concentrations of arachidonic or linoleic acid but not of dehydroepiandrosterone, cholesterol, or 25-hydroxy-cholesterol, activated the receptor chimera. In addition, saturated fatty acids induced the reporter gene. Shortening the chain length to n = 6 or introduction of an omega-terminal carboxylic group abolished the activation potential of the fatty acid. To test whether a common PPAR binding metabolite might be formed from free fatty acids we tested the effects of differentially beta-oxidizable fatty acids and inhibitors of fatty acid metabolism. The peroxisomal proliferation-inducing, non-beta-oxidizable, tetradecylthioacetic acid activated PPAR to the same extent as the strong peroxisomal proliferator WY-14,643, whereas the homologous beta-oxidizable tetradecylthiopropionic acid was only as potent as a non-substituted fatty acid. Cyclooxygenase inhibitors, radical scavengers or cytochrome P450 inhibitors did not affect activation of PPAR. In conclusion, beta-oxidation is apparently not required for the formation of the PPAR-activating molecule and this moiety might be a fatty acid, its ester with CoA, or a further derivative of the activated fatty acid prior to beta-oxidation of the acyl-CoA ester. PMID:7626496

  19. Triheptanoin partially restores levels of tricarboxylic acid cycle intermediates in the mouse pilocarpine model of epilepsy.

    PubMed

    Hadera, Mussie G; Smeland, Olav B; McDonald, Tanya S; Tan, Kah Ni; Sonnewald, Ursula; Borges, Karin

    2014-04-01

    Triheptanoin, the triglyceride of heptanoate, is anticonvulsant in various epilepsy models. It is thought to improve energy metabolism in the epileptic brain by re-filling the tricarboxylic acid (TCA) cycle with C4-intermediates (anaplerosis). Here, we injected mice with [1,2-(13) C]glucose 3.5-4 weeks after pilocarpine-induced status epilepticus (SE) fed either a control or triheptanoin diet. Amounts of metabolites and incorporations of (13) C were determined in extracts of cerebral cortices and hippocampal formation and enzyme activity and mRNA expression were quantified. The percentage enrichment with two (13) C atoms in malate, citrate, succinate, and GABA was reduced in hippocampal formation of control-fed SE compared with control mice. Except for succinate, these reductions were not found in triheptanoin-fed SE mice, indicating that triheptanoin prevented a decrease of TCA cycle capacity. Compared to those on control diet, triheptanoin-fed SE mice showed few changes in most other metabolite levels and their (13) C labeling. Reduced pyruvate carboxylase mRNA and enzyme activity in forebrains and decreased [2,3-(13) C]aspartate amounts in cortex suggest a pyruvate carboxylation independent source of C-4 TCA cycle intermediates. Most likely anaplerosis was kept unchanged by carboxylation of propionyl-CoA derived from heptanoate. Further studies are proposed to fully understand triheptanoin's effects on neuroglial metabolism and interaction. PMID:24236946

  20. Closed cycle ion exchange method for regenerating acids, bases and salts

    DOEpatents

    Dreyfuss, Robert M.

    1976-01-01

    A method for conducting a chemical reaction in acidic, basic, or neutral solution as required and then regenerating the acid, base, or salt by means of ion exchange in a closed cycle reaction sequence which comprises contacting the spent acid, base, or salt with an ion exchanger, preferably a synthetic organic ion-exchange resin, so selected that the counter ions thereof are ions also produced as a by-product in the closed reaction cycle, and then regenerating the spent ion exchanger by contact with the by-product counter ions. The method is particularly applicable to closed cycle processes for the thermochemical production of hydrogen.

  1. Methylcitrate cycle defines the bactericidal essentiality of isocitrate lyase for survival of Mycobacterium tuberculosis on fatty acids

    PubMed Central

    Eoh, Hyungjin; Rhee, Kyu Y.

    2014-01-01

    Few mutations attenuate Mycobacterium tuberculosis (Mtb) more profoundly than deletion of its isocitrate lyases (ICLs). However, the basis for this attenuation remains incompletely defined. Mtb’s ICLs are catalytically bifunctional isocitrate and methylisocitrate lyases required for growth on even and odd chain fatty acids. Here, we report that Mtb’s ICLs are essential for survival on both acetate and propionate because of its methylisocitrate lyase (MCL) activity. Lack of MCL activity converts Mtb’s methylcitrate cycle into a “dead end” pathway that sequesters tricarboxylic acid (TCA) cycle intermediates into methylcitrate cycle intermediates, depletes gluconeogenic precursors, and results in defects of membrane potential and intrabacterial pH. Activation of an alternative vitamin B12-dependent pathway of propionate metabolism led to selective corrections of TCA cycle activity, membrane potential, and intrabacterial pH that specifically restored survival, but not growth, of ICL-deficient Mtb metabolizing acetate or propionate. These results thus resolve the biochemical basis of essentiality for Mtb’s ICLs and survival on fatty acids. PMID:24639517

  2. Tricarboxylic acid cycle intermediate pool size: functional importance for oxidative metabolism in exercising human skeletal muscle.

    PubMed

    Bowtell, Joanna L; Marwood, Simon; Bruce, Mark; Constantin-Teodosiu, Dumitru; Greenhaff, Paul L

    2007-01-01

    The tricarboxylic acid (TCA) cycle is the major final common pathway for oxidation of carbohydrates, lipids and some amino acids, which produces reducing equivalents in the form of nicotinamide adenine dinucleotide and flavin adenine dinucleotide that result in production of large amounts of adenosine triphosphate (ATP) via oxidative phosphorylation. Although regulated primarily by the products of ATP hydrolysis, in particular adenosine diphosphate, the rate of delivery of reducing equivalents to the electron transport chain is also a potential regulatory step of oxidative phosphorylation. The TCA cycle is responsible for the generation of approximately 67% of all reducing equivalents per molecule of glucose, hence factors that influence TCA cycle flux will be of critical importance for oxidative phosphorylation. TCA cycle flux is dependent upon the supply of acetyl units, activation of the three non-equilibrium reactions within the TCA cycle, and it has been suggested that an increase in the total concentration of the TCA cycle intermediates (TCAi) is also necessary to augment and maintain TCA cycle flux during exercise. This article reviews the evidence of the functional importance of the TCAi pool size for oxidative metabolism in exercising human skeletal muscle. In parallel with increased oxidative metabolism and TCA cycle flux during exercise, there is an exercise intensity-dependent 4- to 5-fold increase in the concentration of the TCAi. TCAi concentration reaches a peak after 10-15 minutes of exercise, and thereafter tends to decline. This seems to support the suggestion that the concentration of TCAi may be of functional importance for oxidative phosphorylation. However, researchers have been able to induce dissociations between TCAi pool size and oxidative energy provision using a variety of nutritional, pharmacological and exercise interventions. Brief periods of endurance training (5 days or 7 weeks) have been found to result in reduced TCAi pool

  3. Geothermal activity helps life survive glacial cycles.

    PubMed

    Fraser, Ceridwen I; Terauds, Aleks; Smellie, John; Convey, Peter; Chown, Steven L

    2014-04-15

    Climate change has played a critical role in the evolution and structure of Earth's biodiversity. Geothermal activity, which can maintain ice-free terrain in glaciated regions, provides a tantalizing solution to the question of how diverse life can survive glaciations. No comprehensive assessment of this "geothermal glacial refugia" hypothesis has yet been undertaken, but Antarctica provides a unique setting for doing so. The continent has experienced repeated glaciations that most models indicate blanketed the continent in ice, yet many Antarctic species appear to have evolved in almost total isolation for millions of years, and hence must have persisted in situ throughout. How could terrestrial species have survived extreme glaciation events on the continent? Under a hypothesis of geothermal glacial refugia and subsequent recolonization of nongeothermal regions, we would expect to find greater contemporary diversity close to geothermal sites than in nongeothermal regions, and significant nestedness by distance of this diversity. We used spatial modeling approaches and the most comprehensive, validated terrestrial biodiversity dataset yet created for Antarctica to assess spatial patterns of diversity on the continent. Models clearly support our hypothesis, indicating that geothermally active regions have played a key role in structuring biodiversity patterns in Antarctica. These results provide critical insights into the evolutionary importance of geothermal refugia and the history of Antarctic species. PMID:24616489

  4. Geothermal activity helps life survive glacial cycles

    PubMed Central

    Fraser, Ceridwen I.; Terauds, Aleks; Smellie, John; Convey, Peter; Chown, Steven L.

    2014-01-01

    Climate change has played a critical role in the evolution and structure of Earth’s biodiversity. Geothermal activity, which can maintain ice-free terrain in glaciated regions, provides a tantalizing solution to the question of how diverse life can survive glaciations. No comprehensive assessment of this “geothermal glacial refugia” hypothesis has yet been undertaken, but Antarctica provides a unique setting for doing so. The continent has experienced repeated glaciations that most models indicate blanketed the continent in ice, yet many Antarctic species appear to have evolved in almost total isolation for millions of years, and hence must have persisted in situ throughout. How could terrestrial species have survived extreme glaciation events on the continent? Under a hypothesis of geothermal glacial refugia and subsequent recolonization of nongeothermal regions, we would expect to find greater contemporary diversity close to geothermal sites than in nongeothermal regions, and significant nestedness by distance of this diversity. We used spatial modeling approaches and the most comprehensive, validated terrestrial biodiversity dataset yet created for Antarctica to assess spatial patterns of diversity on the continent. Models clearly support our hypothesis, indicating that geothermally active regions have played a key role in structuring biodiversity patterns in Antarctica. These results provide critical insights into the evolutionary importance of geothermal refugia and the history of Antarctic species. PMID:24616489

  5. Microbial Dissimilatory Sulfur Cycle in Acid Mine Water

    PubMed Central

    Tuttle, Jon H.; Dugan, Patrick R.; Macmillan, Carol B.; Randles, Chester I.

    1969-01-01

    Ferric, sulfate, and hydrogen ions are produced from pyritic minerals associated with coal as a result of autotrophic bacterial metabolism. Water carrying these ions accumulated behind a porous dam composed of wood dust originating at a log-cutting mill. As water seeped through the porous dam, it was enriched in organic nutrients which then supported growth and metabolism of heterotrophic bacteria in the water downstream from the dam. The heterotrophic microflora within and below the sawdust dam included dissimilatory sulfate-reducing anaerobic bacteria which reduce sulfate to sulfide. The sulfide produced caused the chemical reduction of ferric to ferrous ion, and black FeS precipitate was deposited on the pond bottom. A net increase in the pH of the lower pond water was observed when compared to the upper pond water. Microbial activity in the wood dust was demonstrated, and a sequence of cellulose degradation processes was inferred on the basis of sugar accumulation in mixed cultures in the laboratory, ultimately yielding fermentation products which serve as nutrients for sulfate-reducing bacteria. Some of the microorganisms were isolated and characterized. The biochemical and growth characteristics of pure culture isolates were generally consistent with observed reactions in the acidic environment, with the exception of sulfate-reducing bacteria. Mixed cultures which contained sulfate-reducing bacteria reduced sulfate at pH 3.0 in the laboratory with sawdust as the only nutrient. Pure cultures of sulfate-reducing bacteria isolated from the mixed cultures did not reduce sulfate below pH 5.5. PMID:5773013

  6. A Dysfunctional Tricarboxylic Acid Cycle Enhances Fitness of Staphylococcus epidermidis During β-Lactam Stress

    PubMed Central

    Chittezham Thomas, Vinai; Kinkead, Lauren C.; Janssen, Ashley; Schaeffer, Carolyn R.; Woods, Keith M.; Lindgren, Jill K.; Peaster, Jonathan M.; Chaudhari, Sujata S.; Sadykov, Marat; Jones, Joselyn; Mohamadi AbdelGhani, Sameh M.; Zimmerman, Matthew C.; Bayles, Kenneth W.; Somerville, Greg A.; Fey, Paul D.

    2013-01-01

    ABSTRACT A recent controversial hypothesis suggested that the bactericidal action of antibiotics is due to the generation of endogenous reactive oxygen species (ROS), a process requiring the citric acid cycle (tricarboxylic acid [TCA] cycle). To test this hypothesis, we assessed the ability of oxacillin to induce ROS production and cell death in Staphylococcus epidermidis strain 1457 and an isogenic citric acid cycle mutant. Our results confirm a contributory role for TCA-dependent ROS in enhancing susceptibility of S. epidermidis toward β-lactam antibiotics and also revealed a propensity for clinical isolates to accumulate TCA cycle dysfunctions presumably as a way to tolerate these antibiotics. The increased protection from β-lactam antibiotics could result from pleiotropic effects of a dysfunctional TCA cycle, including increased resistance to oxidative stress, reduced susceptibility to autolysis, and a more positively charged cell surface. PMID:23963176

  7. Crystal structures of a purple acid phosphatase, representing different steps of this enzyme's catalytic cycle

    PubMed Central

    Schenk, Gerhard; Elliott, Tristan W; Leung, Eleanor; Carrington, Lyle E; Mitić, Nataša; Gahan, Lawrence R; Guddat, Luke W

    2008-01-01

    Background Purple acid phosphatases belong to the family of binuclear metallohydrolases and are involved in a multitude of biological functions, ranging from bacterial killing and bone metabolism in animals to phosphate uptake in plants. Due to its role in bone resorption purple acid phosphatase has evolved into a promising target for the development of anti-osteoporotic chemotherapeutics. The design of specific and potent inhibitors for this enzyme is aided by detailed knowledge of its reaction mechanism. However, despite considerable effort in the last 10 years various aspects of the basic molecular mechanism of action are still not fully understood. Results Red kidney bean purple acid phosphatase is a heterovalent enzyme with an Fe(III)Zn(II) center in the active site. Two new structures with bound sulfate (2.4 Å) and fluoride (2.2 Å) provide insight into the pre-catalytic phase of its reaction cycle and phosphorolysis. The sulfate-bound structure illustrates the significance of an extensive hydrogen bonding network in the second coordination sphere in initial substrate binding and orientation prior to hydrolysis. Importantly, both metal ions are five-coordinate in this structure, with only one nucleophilic μ-hydroxide present in the metal-bridging position. The fluoride-bound structure provides visual support for an activation mechanism for this μ-hydroxide whereby substrate binding induces a shift of this bridging ligand towards the divalent metal ion, thus increasing its nucleophilicity. Conclusion In combination with kinetic, crystallographic and spectroscopic data these structures of red kidney bean purple acid phosphatase facilitate the proposal of a comprehensive eight-step model for the catalytic mechanism of purple acid phosphatases in general. PMID:18234116

  8. Stoichiometry of Reducing Equivalents and Splitting of Water in the Citric Acid Cycle.

    ERIC Educational Resources Information Center

    Madeira, Vitor M. C.

    1988-01-01

    Presents a solution to the problem of finding the source of extra reducing equivalents, and accomplishing the stoichiometry of glucose oxidation reactions. Discusses the citric acid cycle and glycolysis. (CW)

  9. Hydrogen Storage in the Carbon Dioxide - Formic Acid Cycle.

    PubMed

    Fink, Cornel; Montandon-Clerc, Mickael; Laurenczy, Gabor

    2015-01-01

    This year Mankind will release about 39 Gt carbon dioxide into the earth's atmosphere, where it acts as a greenhouse gas. The chemical transformation of carbon dioxide into useful products becomes increasingly important, as the CO(2) concentration in the atmosphere has reached 400 ppm. One approach to contribute to the decrease of this hazardous emission is to recycle CO(2), for example reducing it to formic acid. The hydrogenation of CO(2) can be achieved with a series of catalysts under basic and acidic conditions, in wide variety of solvents. To realize a hydrogen-based charge-discharge device ('hydrogen battery'), one also needs efficient catalysts for the reverse reaction, the dehydrogenation of formic acid. Despite of the fact that the overwhelming majority of these reactions are carried out using precious metals-based catalysts (mainly Ru), we review here developments for catalytic hydrogen evolution from formic acid with iron-based complexes. PMID:26842324

  10. Identification of rhythmic subsystems in the circadian cycle of crassulacean acid metabolism under thermoperiodic perturbations.

    PubMed

    Bohn, Andreas; Hinderlich, Sven; Hütt, Marc-Thorsten; Kaiser, Friedemann; Lüttge, Ulrich

    2003-05-01

    Leaves of the Crassulacean acid metabolism (CAM) plant Kalanchoë daigremontiana Hamet et Perrier de la Bâthie show overt circadian rhythms in net CO2 uptake, leaf conductance to water and intercellular CO2 concentration, which are entrained by periodic temperature cycles. To probe their sensitivity to thermoperiodic perturbations, intact leaves were exposed to continuous light intensity and temperature cycles with a period of 16 h, applying a set of different baseline temperatures and thermodriver amplitudes. All three overt rhythms were analyzed with respect to their frequency spectra and their phase relations with the thermodriver. For most stimulation protocols, stomatal conductance and net CO2 change were fully or partially entrained by the temperature pulses, while the internal CO2 concentration remained dominated by oscillations in the circadian range. Prolonged time series recorded for up to 22 d in continuous light underline the robustness of these circadian oscillations. This suggests that the overt circadian rhythm of net CO2 uptake in CAM results from the interaction of two coupled original systems: (i) an endogenous cycle of CO2 fixation in the mesophyll, showing very robust periodic activity, and (ii) stomatal movements that respond to environmental stimuli independently of rhythmic processes in the mesophyll, and thus modulate the gas exchange amplitude. PMID:12817468

  11. A quest for activity cycles in low-mass stars

    NASA Astrophysics Data System (ADS)

    Vida, K.; Kriskovics, L.; Oláh, K.

    2013-11-01

    Long-term photometric measurements in a sample of ultrashort-period (P≈0.5 days or less) single and binary stars of different interior structures are analysed. A loose correlation exists between the rotational rate and cycle lengths of active stars, regardless of their evolutionary state and the corresponding physical parameters. The shortest cycles are expected for the fastest rotators of the order of 1-2 years, which is reported in this paper.

  12. Elimination and replenishment of tricarboxylic acid-cycle intermediates in myocardium.

    PubMed Central

    Nuutinen, E M; Peuhkurinen, K J; Pietiläinen, E P; Hiltunen, J K; Hassinen, I E

    1981-01-01

    1. The contribution of Co2 fixation to the anaplerotic mechanisms in the myocardium was investigated in isolated perfused rat hearts. 2. K+-induced arrest of the heart was used to elicit a transition in the concentrations of the intermediates of the tricarboxylic acid cycle. 3. Incorporation of 14C from [14]bicarbonate into tricarboxylic acid-cycle intermediates was measured and the rates of the reactions of the cycle were estimated by means of a linear optimization program which solves the differential equations describing a simulation model of the tricarboxylic acid cycle and related reactions. 4. The results showed that the rate of CO2 fixation is dependent on the metabolic state of the myocardium. Upon a sudden diminution of cellular ATP consumption, the pool size of the tricarboxylic acid-cycle metabolites increased and the rate of label incorporation from [14C]bicarbonate into the cycle metabolites increased simultaneously. The computer model was necessary to separate the rapid equilibration between bicarbonate and some metabolites from the potentially anaplerotic reactions. The main route of anaplerosis during metabolite accumulation was through malate + oxaloacetate. Under steady-state conditions there was a constant net outward flow from the tricarboxylic acid cycle via the malate + oxaloacetate pool, with a concomitant anaplerotic flow from metabolites forming succinyl-CoA (3-carboxypropionyl-CoA). PMID:6796067

  13. Uncertainty of Prebiotic Scenarios: The Case of the Non-Enzymatic Reverse Tricarboxylic Acid Cycle

    PubMed Central

    Zubarev, Dmitry Yu; Rappoport, Dmitrij; Aspuru-Guzik, Alán

    2015-01-01

    We consider the hypothesis of the primordial nature of the non-enzymatic reverse tricarboxylic acid (rTCA) cycle and describe a modeling approach to quantify the uncertainty of this hypothesis due to the combinatorial aspect of the constituent chemical transformations. Our results suggest that a) rTCA cycle belongs to a degenerate optimum of auto-catalytic cycles, and b) the set of targets for investigations of the origin of the common metabolic core should be significantly extended. PMID:25620471

  14. Uncertainty of prebiotic scenarios: the case of the non-enzymatic reverse tricarboxylic acid cycle.

    PubMed

    Zubarev, Dmitry Yu; Rappoport, Dmitrij; Aspuru-Guzik, Alán

    2015-01-01

    We consider the hypothesis of the primordial nature of the non-enzymatic reverse tricarboxylic acid (rTCA) cycle and describe a modeling approach to quantify the uncertainty of this hypothesis due to the combinatorial aspect of the constituent chemical transformations. Our results suggest that a) rTCA cycle belongs to a degenerate optimum of auto-catalytic cycles, and b) the set of targets for investigations of the origin of the common metabolic core should be significantly extended. PMID:25620471

  15. Uncertainty of Prebiotic Scenarios: The Case of the Non-Enzymatic Reverse Tricarboxylic Acid Cycle

    NASA Astrophysics Data System (ADS)

    Zubarev, Dmitry Yu; Rappoport, Dmitrij; Aspuru-Guzik, Alán

    2015-01-01

    We consider the hypothesis of the primordial nature of the non-enzymatic reverse tricarboxylic acid (rTCA) cycle and describe a modeling approach to quantify the uncertainty of this hypothesis due to the combinatorial aspect of the constituent chemical transformations. Our results suggest that a) rTCA cycle belongs to a degenerate optimum of auto-catalytic cycles, and b) the set of targets for investigations of the origin of the common metabolic core should be significantly extended.

  16. Lead acid battery performance and cycle life increased through addition of discrete carbon nanotubes to both electrodes

    NASA Astrophysics Data System (ADS)

    Sugumaran, Nanjan; Everill, Paul; Swogger, Steven W.; Dubey, D. P.

    2015-04-01

    Contemporary applications are changing the failure mechanisms of lead acid batteries. Sulfation at the negative electrode, acid stratification, and dendrite formation now precede positive electrode failures such as grid corrosion and active material shedding. To attenuate these failures, carbon has been explored as a negative electrode additive to increase charge acceptance, eliminate sulfation, and extend cycle life. Frequently, however, carbon incorporation decreases paste density and hinders manufacturability. Discrete carbon nanotubes (dCNT), also known as Molecular Rebar®, are lead acid battery additives which can be stably incorporated into either electrode to increase charge acceptance and cycle life with no change to paste density and without impeding the manufacturing process. Here, full-scale automotive batteries containing dCNT in the negative electrode or both negative and positive electrodes are compared to control batteries. dCNT batteries show little change to Reserve Capacity, improved Cold Cranking, increased charge acceptance, and enhanced overall system efficiency. Life cycle tests show >60% increases when dCNT are incorporated into the negative electrode (HRPSoC/SBA) and up to 500% when incorporated into both electrodes (SBA), with water loss per cycle reduced >20%. Failure modes of cycled batteries are discussed and a hypothesis of dCNT action is introduced: the dCNT/Had Overcharge Reaction Mechanism.

  17. Radio Imaging Observations of Solar Activity Cycle and Its Anomaly

    NASA Astrophysics Data System (ADS)

    Shibasaki, K.

    2011-12-01

    The 24th solar activity cycle has started and relative sunspot numbers are increasing. However, their rate of increase is rather slow compared to previous cycles. Active region sizes are small, lifetime is short, and big (X-class) flares are rare so far. We study this anomalous situation using data from Nobeyama Radioheliograph (NoRH). Radio imaging observations have been done by NoRH since 1992. Nearly 20 years of daily radio images of the Sun at 17 GHz are used to synthesize a radio butterfly diagram. Due to stable operation of the instrument and a robust calibration method, uniform datasets are available covering the whole period of observation. The radio butterfly diagram shows bright features corresponding to active region belts and their migration toward low latitude as the solar cycle progresses. In the present solar activity cycle (24), increase of radio brightness is delayed and slow. There are also bright features around both poles (polar brightening). Their brightness show solar cycle dependence but peaks around solar minimum. Comparison between the last minimum and the previous one shows decrease of its brightness. This corresponds to weakening of polar magnetic field activity between them. In the northern pole, polar brightening is already weakened in 2011, which means it is close to solar maximum in the northern hemisphere. Southern pole does not show such feature yet. Slow rise of activity in active region belt, weakening of polar activity during the minimum, and large north-south asymmetry in polar activity imply that global solar activity and its synchronization are weakening.

  18. Forecast for solar cycle 23 activity: a progress report

    NASA Astrophysics Data System (ADS)

    Ahluwalia, H. S.

    2001-08-01

    At the 25th International Cosmic Ray Conference (ICRC) at Durban, South Africa, I announced the discovery of a three cycle quasi-periodicity in the ion chamber data string assembled by me, for the 1937 to 1994 period (Conf. Pap., v. 2, p. 109, 1997). It corresponded in time with a similar quasi-periodicity observed in the dataset for the planetary index Ap. At the 26th ICRC at Salt Lake City, UT, I reported on our analysis of the Ap data to forecast the amplitude of solar cycle 23 activity (Conf. Pap., v. 2, pl. 260, 1999). I predicted that cycle 23 will be moderate (a la cycle 17), notwithstanding the early exuberant forecasts of some solar astronomers that cycle 23, "may be one of the greatest cycles in recent times, if not the greatest." Sunspot number data up to April 2001 indicate that our forecast appears to be right on the mark. We review the solar, interplanetary and geophysical data and describe the important lessons learned from this experience. 1. Introduction Ohl (1971) was the first to realize that Sun may be sending us a subliminal message as to its intent for its activity (Sunspot Numbers, SSN) in the next cycle. He posited that the message was embedded in the geomagnetic activity (given by sum Kp). Schatten at al (1978) suggested that Ohl hypothesis could be understood on the basis of the model proposed by Babcock (1961) who suggested that the high latitude solar poloidal fields, near a minimum, emerge as the toroidal fields on opposite sides of the solar equator. This is known as the Solar Dynamo Model. One can speculate that the precursor poloidal solar field is entrained in the high speed solar wind streams (HSSWS) from the coronal holes which are observed at Earth's orbit during the descending phase of the previous cycle. The interaction

  19. Cycle Length Dependence of Stellar Magnetic Activity and Solar Cycle 23

    NASA Astrophysics Data System (ADS)

    Choi, Hwajin; Lee, Jeongwoo; Oh, Suyeon; Kim, Bogyeong; Kim, Hoonkyu; Yi, Yu

    2015-03-01

    Solar cycle (SC) 23 was extraordinarily long with remarkably low magnetic activity. We have investigated whether this is a common behavior of solar-type stars. From the Ca ii H and K line intensities of 111 stars observed at Mount Wilson Observatory from 1966 to 1991, we have retrieved data of all 23 G-type stars and recalculated their cycle lengths using the damped least-squares method for the chromospheric activity index S as a function of time. A regression analysis was performed to find relations between the derived cycle length, Pavg, and the index for excess chromospheric emission, RHK\\prime . As a noteworthy result, we found a segregation between young and old solar-type stars in the cycle length-activity correlation. We incorporated the relation for the solar-type stars into the previously known rule for stellar chromospheric activity and brightness to estimate the variation of solar brightness from SC 22 to SC 23 as (0.12 ± 0.06)%, much higher than the actual variation of total solar irradiance (TSI) ≤0.02%. We have then examined solar spectral irradiance (SSI) to find a good phase correlation with a sunspot number in the wavelength range of 170-260 nm, which is close to the spectral range effective in heating the Earth’s atmosphere. Therefore, it appears that SSI rather than TSI is a good indicator of the chromospheric activity, and its cycle length dependent variation would be more relevant to the possible role of the Sun in the cyclic variation of the Earth’s atmosphere.

  20. Variation of Meteor Heights and Solar-Cycle Activity

    NASA Astrophysics Data System (ADS)

    Porubcan, Vladimír; Bucek, Marek; Cevolani, Giordano; Zigo, Pavel

    2012-08-01

    Photographic meteor observations of the Perseid meteoroid stream compiled from the IAU Meteor Data Center catalogue are analyzed from the viewpoint of possible long-term variation of meteor heights with the solar-cycle activity, which was previously reported from radio observations. The observed beginning and end-point heights of the Perseids, normalized for the geocentric velocity and the absolute photographic magnitude, do not show a variation consistent with the solar-cycle activity. This result is valid for the mass range of larger meteoroids observed by photographic techniques, and must be still verified also for the range of smaller meteoroids observed by TV and radio methods.

  1. Effects of the oestrous cycle on the metabolism of arachidonic acid in rat isolated lung.

    PubMed Central

    Bakhle, Y S; Zakrzewski, J T

    1982-01-01

    1. The metabolism of exogenous arachidonic acid perfused through the pulmonary circulation was investigated in lungs taken from rats at different stages of the oestrous cycle. 2. Following perfusion with [14C]arachidonic acid there was more radioactivity associated with cyclo-oxygenase products in general at pro-oestrus than at any other stage of the cycle. 3. Production of 6-oxo-prostaglandin F1 alpha and hence of prostacyclin (PGI2) was also highest at pro-oestrus. 4. Production of thromboxane B2 was highest at pro-oestrus although it was never greater than PGI2 production at any stage. 5. Radioactivity retained in lung tissue was mostly present in phospholipid and free fatty acid fractions with the distribution at pro-oestrus being different from the other stages. 6. Following perfusion with [14C]oleic acid (which is not a substrate for cyclooxygenase), variations in the distribution of label in radioactivity in lung were also observed. However, these were not related to the stages of the oestrous cycle in the same way as those associated with arachidonic acid. 7. We conclude that both pathways of arachidonic acid metabolism in lung--oxidation via cyclo-oxygenase and incorporation into phospholipid - are affected by the progress of the oestrous cycle. 8. Altered arachidonate metabolism appeared to be associated chiefly with pro-oestrus and may be linked to those hormones involved in this stage of the oestrous cycle. PMID:6809935

  2. A Study of Krebs Citric Acid Cycle Enzymes in Rice Larvae (Corcyrace phalonica St) During Mycotoxicosis

    PubMed Central

    Hegde, Umashashi C.; Shanmugasundaram, E. R. B.

    1967-01-01

    Krebs citric acid cycle enzymes have been studied in rice moth larvae (Corcyra cephalonica St) reared in groundnut meal control and contaminated with A. flavus, wheat bran control and wheat bran contaminated with A. flavus and also wheat bran containing aflatoxin. It was observed that the activity of enzymes other than succinic oxidase, succinic dehydrogenase and isocitric dehydrogenase were reduced significantly in larvae reared in contaminated groundnut meal when compared with the control. In the case of larvae reared in contaminated wheat bran all the enzymes except succinic oxidase were inhibited when compared to the control larvae. It was also observed that the inhibition of these enzymes is greater in the case of larvae reared in contaminated wheat bran than in contaminated groundnut meal. The higher toxicity of wheat bran has been discussed. PMID:4229935

  3. MAGNETIC ACTIVITY CYCLES IN THE EXOPLANET HOST STAR {epsilon} ERIDANI

    SciTech Connect

    Metcalfe, T. S.; Mathur, S.; Buccino, A. P.; Mauas, P. J. D.; Petrucci, R.; Brown, B. P.; Soderblom, D. R.; Henry, T. J.; Hall, J. C.; Basu, S.

    2013-02-01

    The active K2 dwarf {epsilon} Eri has been extensively characterized both as a young solar analog and more recently as an exoplanet host star. As one of the nearest and brightest stars in the sky, it provides an unparalleled opportunity to constrain stellar dynamo theory beyond the Sun. We confirm and document the 3-year magnetic activity cycle in {epsilon} Eri originally reported by Hatzes and coworkers, and we examine the archival data from previous observations spanning 45 years. The data show coexisting 3-year and 13-year periods leading into a broad activity minimum that resembles a Maunder minimum-like state, followed by the resurgence of a coherent 3-year cycle. The nearly continuous activity record suggests the simultaneous operation of two stellar dynamos with cycle periods of 2.95 {+-} 0.03 years and 12.7 {+-} 0.3 years, which, by analogy with the solar case, suggests a revised identification of the dynamo mechanisms that are responsible for the so-called 'active' and 'inactive' sequences as proposed by Boehm-Vitense. Finally, based on the observed properties of {epsilon} Eri, we argue that the rotational history of the Sun is what makes it an outlier in the context of magnetic cycles observed in other stars (as also suggested by its Li depletion), and that a Jovian-mass companion cannot be the universal explanation for the solar peculiarities.

  4. Simultaneous analysis of biologically active aminoalkanephosphonic acids.

    PubMed

    Kudzin, Zbigniew H; Gralak, Dorota K; Andrijewski, Grzegorz; Drabowicz, Józef; Luczak, Jerzy

    2003-05-23

    A new approach for simultaneous analysis of biologically active aminoalkanephosphonic acids, namely glyphosate, phosphonoglycine, phosphonosarcosine, phosphonoalanine, phosphono-beta-alanine, phosphonohomoalanine, phosphono-gamma-homoalanine and glufosinate, is presented. This includes a preliminary 31p NMR analysis of these amino acids, their further derivatization to volatile phosphonates (phosphinates) by means of trifluoroacetic acid-trifluoroacetic anhydride-trimethyl orthoacetate reagent and subsequent analysis of derivatization products using MS and/or GC-MS (chemical ionization and/or electron impact ionization). PMID:12862383

  5. p21 induction plays a dual role in anti-cancer activity of ursolic acid.

    PubMed

    Zhang, Xudong; Song, Xinhua; Yin, Shutao; Zhao, Chong; Fan, Lihong; Hu, Hongbo

    2016-03-01

    Previous studies have shown that induction of G1 arrest and apoptosis by ursolic acid is associated with up-regulation of cyclin-dependent kinase inhibitor (CDKI) protein p21 in multiple types of cancer cells. However, the functional role of p21 induction in G1 cell cycle arrest and apoptosis, and the mechanisms of p21 induction by ursolic acid have not been critically addressed. In the current study, we demonstrated that p21 played a mediator role in G1 cell cycle arrest by ursolic acid, whereas p21-mediated up-regulation of Mcl-1 compromised apoptotic effect of ursolic acid. These results suggest that p21 induction plays a dual role in the anti-cancer activity of ursolic acid in terms of cell cycle and apoptosis regulation. p21 induction by ursolic acid was attributed to p53 transcriptional activation. Moreover, we found that ursolic acid was able to inhibit murine double minute-2 protein (MDM2) and T-LAK cell-originated protein kinase (TOPK), the two negative regulator of p53, which in turn contributed to ursolic acid-induced p53 activation. Our findings provided novel insights into understanding of the mechanisms involved in cell cycle arrest and apoptosis induction in response to ursolic acid exposure. PMID:26582056

  6. Enantioselective CuH-Catalyzed Reductive Coupling of Aryl Alkenes and Activated Carboxylic Acids.

    PubMed

    Bandar, Jeffrey S; Ascic, Erhad; Buchwald, Stephen L

    2016-05-11

    A new method for the enantioselective reductive coupling of aryl alkenes with activated carboxylic acid derivatives via copper hydride catalysis is described. Dual catalytic cycles are proposed, with a relatively fast enantioselective hydroacylation cycle followed by a slower diastereoselective ketone reduction cycle. Symmetrical aryl carboxyclic anhydrides provide access to enantioenriched α-substituted ketones or alcohols with excellent stereoselectivity and functional group tolerance. PMID:27121395

  7. The Solar Non-activity Cycle of Polar Coronal Holes

    NASA Astrophysics Data System (ADS)

    Kirk, M. S.; Pesnell, W. D.; Young, C. A.

    2015-12-01

    After the unusually extended minimum in 2008 and 2009, solar cycle 24 continues to be an exceptionally weak cycle both in sunspot number and number of large magnetic storms. Coronal holes offer a direct measurement of the non-activity solar cycle, a missing link in our understanding of solar cycle progression. They are prevalent during solar minimum, non-axisymmetric, and are stable. Polar coronal holes are regularly observed capping the northern and southern solar poles in EUV images of the corona and are understood as the primary source of the fast solar wind. We make measurements of these features from 1996 through 2015 using four different NASA imagers: SOHO EIT, STEREO A and B EUVI, and SDO AIA. A measurement of the axial symmetry of the polar holes is seen to have clear solar cycle dependence. Polar coronal holes are aligned with the solar rotation axis during minimum and have a maximum asymmetry between holes of about 14 degrees in the declining phase of the current solar cycle.

  8. Periods of activity cycles in late-type stars

    NASA Technical Reports Server (NTRS)

    Kliorin, N. I.; Ruzmaykin, A. A.; Sokolov, D. D.

    1983-01-01

    The mean magnetic field dynamo theory is utilized to obtain the qualitative dependence of the period of activity on the angular velocity of rotation for stars with sufficiently extensive convective shells. The dependence of the cycle period on the spectral class is also discussed.

  9. A cycling workstation to facilitate physical activity in office settings.

    PubMed

    Elmer, Steven J; Martin, James C

    2014-07-01

    Facilitating physical activity during the workday may help desk-bound workers reduce risks associated with sedentary behavior. We 1) evaluated the efficacy of a cycling workstation to increase energy expenditure while performing a typing task and 2) fabricated a power measurement system to determine the accuracy and reliability of an exercise cycle. Ten individuals performed 10 min trials of sitting while typing (SIT type) and pedaling while typing (PED type). Expired gases were recorded and typing performance was assessed. Metabolic cost during PED type was ∼ 2.5 × greater compared to SIT type (255 ± 14 vs. 100 ± 11 kcal h(-1), P < 0.01). Typing time and number of typing errors did not differ between PED type and SIT type (7.7 ± 1.5 vs. 7.6 ± 1.6 min, P = 0.51, 3.3 ± 4.6 vs. 3.8 ± 2.7 errors, P = 0.80). The exercise cycle overestimated power by 14-138% compared to actual power but actual power was reliable (r = 0.998, P < 0.01). A cycling workstation can facilitate physical activity without compromising typing performance. The exercise cycle's inaccuracy could be misleading to users. PMID:24681071

  10. Photoreduction fuels biogeochemical cycling of iron in Spain's acid rivers

    USGS Publications Warehouse

    Gammons, C.H.; Nimick, D.A.; Parker, S.R.; Snyder, D.M.; McCleskey, R.B.; Amils, R.; Poulson, S.R.

    2008-01-01

    A number of investigations have shown that photoreduction of Fe(III) causes midday accumulations of dissolved Fe(II) in rivers and lakes, leading to large diel (24-h) fluctuations in the concentration and speciation of total dissolved iron. Less well appreciated is the importance of photoreduction in providing chemical energy for bacteria to thrive in low pH waters. Diel variations in water chemistry from the highly acidic (pH 2.3 to 3.1) Ri??o Tinto, Ri??o Odiel, and Ri??o Agrio of southwestern Spain (Iberian Pyrite Belt) resulted in daytime increases in Fe(II) concentration of 15 to 66????M at four diel sampling locations. Dissolved Fe(II) concentrations increased with solar radiation, and one of the stream sites showed an antithetic relationship between dissolved Fe(II) and Fe(III) concentrations; both results are consistent with photoreduction. The diel data were used to estimate rates of microbially catalyzed Fe(II) oxidation (1 to 3??nmol L- 1 s- 1) and maximum rates of Fe(III) photoreduction (1.7 to 4.3??nmol L- 1 s- 1). Bioenergetic calculations indicate that the latter rates are sufficient to build up a population of Fe-oxidizing bacteria to the levels observed in the Ri??o Tinto in about 30??days. We conclude that photoreduction plays an important role in the bioenergetics of the bacterial communities of these acidic rivers, which have previously been shown to be dominated by autotrophic Fe(II)-oxidizers such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans. Given the possibility of the previous existence of acidic, Fe(III)-rich water on Mars, photoreduction may be an important process on other planets, a fact that could have implications to astrobiological research. ?? 2008 Elsevier B.V. All rights reserved.

  11. An alternative mechanism for guanidinoacetic acid to affect methylation cycle.

    PubMed

    Ostojic, Sergej M

    2014-12-01

    Guanidinoacetic acid (also known as glycocyamine; GAA) is an endogenous substance which occurs in humans and plays a central role in the biosynthesis of creatine. The formation of creatine from GAA consumes methyl groups, and increases production of homocysteine. GAA may have the potential to stimulate insulin secretion. Insulin reduces plasma homocysteine and raises methyl group supply. It is possible that the ability of GAA to trigger the insulin secretion modulates methyl group metabolism, and comparatively counterbalance for the direct effect of GAA on increased methylation demand. Possible insulinotropic effect of GAA may contribute to total in vivo methylation demand during biotransformation. PMID:25468046

  12. Activity Cycles in Stars with Highly Active Chromospheres

    NASA Astrophysics Data System (ADS)

    Guinan, Edward F.

    The extended lifetime of the IUE satellite has provided an unique and unanticipated opportunity to examine the long-term evolution of magnetic activity on active chromospheric stars. We propose to obtain further IUE observations of the highly active RS CVn stars V711 Tauri, lambda Andromedae, II Pegasi, and UX Arietis in conjunction with groundbased optical and radio observations, and possibly ROSAT X-ray observations. In addition we would continue IUE observations of the unusual rapidly rotating early G giant, FK Comae, which, although not in the RS CVn category, shares a similarly high level of magnetic activity. These five stars have the most extensive IUE archival coverage for stars of their type and have almost continuous ground-based photometric coverage from about 1975 onward. We aim to trace the long-term development of magnetic activity on these stars: a detailed study of the UV emission-like fluxes will enable us to follow the variations in chromospheric and transition-region activity over an interval of 12-16 years. Optical observations reveal variations in photospheric (starspot) activity: the starspot regions are large (up to 30% of the stellar surface) and vary significantly with time. The main aim of the proposed research is to examine the relationship between chromospheric, transition-region, and photospheric active regions. Elucidation of the role of white-light faculae vis-a-vis spots in effecting stellar irradiance changes is also desirable.

  13. Halogenated methanesulfonic acids: A new class of organic micropollutants in the water cycle.

    PubMed

    Zahn, Daniel; Frömel, Tobias; Knepper, Thomas P

    2016-09-15

    Mobile and persistent organic micropollutants may impact raw and drinking waters and are thus of concern for human health. To identify such possible substances of concern nineteen water samples from five European countries (France, Switzerland, The Netherlands, Spain and Germany) and different compartments of the water cycle (urban effluent, surface water, ground water and drinking water) were enriched with mixed-mode solid phase extraction. Hydrophilic interaction liquid chromatography - high resolution mass spectrometry non-target screening of these samples led to the detection and structural elucidation of seven novel organic micropollutants. One structure could already be confirmed by a reference standard (trifluoromethanesulfonic acid) and six were tentatively identified based on experimental evidence (chloromethanesulfonic acid, dichloromethanesulfonic acid, trichloromethanesulfonic acid, bromomethanesulfonic acid, dibromomethanesulfonic acid and bromochloromethanesulfonic acid). Approximated concentrations for these substances show that trifluoromethanesulfonic acid, a chemical registered under the European Union regulation REACH with a production volume of more than 100 t/a, is able to spread along the water cycle and may be present in concentrations up to the μg/L range. Chlorinated and brominated methanesulfonic acids were predominantly detected together which indicates a common source and first experimental evidence points towards water disinfection as a potential origin. Halogenated methanesulfonic acids were detected in drinking waters and thus may be new substances of concern. PMID:27267477

  14. The evolution and orientation of early cycle 22 active regions

    NASA Technical Reports Server (NTRS)

    Cannon, Anne T.; Marquette, William H.

    1991-01-01

    The evolution of six major active regions which appeared during the first phase of the present solar cycle (cycle 22) has been studied. It was found that the northern hemisphere regions exhibited a broad range of evolutionary behavior in which the commonly accepted 'normal pattern' (whereby the follower flux moves preferentially polewards ahead of the leader flux) is represented at one end of the range. At the other end of the range, the leader flux is displaced polewards of the follower flux. In the latter cases equatorward extensions of the polar coronal hole are noted.

  15. Pt/TiO2 (Rutile) Catalysts for Sulfuric Acid Decomposition in Sulfur-Based Thermochemical Water-Splitting Cycles

    SciTech Connect

    L. M. Petkovic; D. M. Ginosar; H. W. Rollins; K. C. Burch; P. J. Pinhero; H. H. Farrell

    2008-04-01

    Thermochemical cycles consist of a series of chemical reactions to produce hydrogen from water at lower temperatures than by direct thermal decomposition. All the sulfur-based cycles for water splitting employ the sulfuric acid decomposition reaction. This work reports the studies performed on platinum supported on titania (rutile) catalysts to investigate the causes of catalyst deactivation under sulfuric acid decomposition reaction conditions. Samples of 1 wt% Pt/TiO2 (rutile) catalysts were submitted to flowing concentrated sulfuric acid at 1123 K and atmospheric pressure for different times on stream (TOS) between 0 and 548 h. Post-operation analyses of the spent catalyst samples showed that Pt oxidation and sintering occurred under reaction conditions and some Pt was lost by volatilization. Pt loss rate was higher at initial times but total loss appeared to be independent of the gaseous environment. Catalyst activity showed an initial decrease that lasted for about 66 h, followed by a slight recovery of activity between 66 and 102 h TOS, and a period of slower deactivation after 102 h TOS. Catalyst sulfation did not seem to be detrimental to catalyst activity and the activity profile suggested that a complex dynamical situation involving platinum sintering, volatilization, and oxidation, along with TiO2 morphological changes affected catalyst activity in a non-monotonic way.

  16. The active RS Canum Venaticorum binary II Pegasi. IV. The SPOT activity cycle

    NASA Astrophysics Data System (ADS)

    Berdyugina, S. V.; Berdyugin, A. V.; Ilyin, I.; Tuominen, I.

    1999-10-01

    A total of 6 new surface images of II Peg obtained for the years 1997 and 1998 confirms the recently revealed permanent active longitude structure. The lower limit of the active longitudes' lifetime is now extended up to 25 years. A new ``flip-flop'' phenomenon, redefined as a switch of the activity between the active longitudes, has started in summer of 1998. It coincides reasonably well with the moment predicted from the activity cycle of the star. This confirms definitely the cyclic behaviour of the activity of II Peg we recently discovered. Therefore, we assign numbers to the cycles of 4.65 yr since the earliest photoelectric observations of II Peg and define the active longitudes as ``odd'' and ``even'' corresponding to odd and even numbers of cycles. With such a definition, in late 1998 the 7th cycle began and the ``odd'' active longitude became more active. From the analysis of the spot area evolution within the active longitudes we conclude that the activity cycle is developed as a rearrangement of the nearly constant amount of the spot area between the active longitudes. We discuss the ``flip-flop'' phenomenon as a tracer of stellar activity and the role of the unseen secondary in establishing the cycle. Based on observations collected at the Nordic Optical Telescope (NOT), La Palma, Spain; the 1.25m telescope of the Crimean Astrophysical Observatory, Ukraine; the Phoenix 10 robotic telescope, APT Observatory, Arizona, USA.}

  17. The effects of climate change on the nitrogen cycle and acid deposition

    SciTech Connect

    Penner, J.E.; Walton, J.J. ); Graboske, B.C. )

    1990-09-01

    Increases in greenhouse gases are expected to lead to a number of changes to the atmosphere which may impact regional and global chemical cycles. With the increasing awareness of climate change and the possibility of global chemical changes to the atmosphere, it becomes important to ask whether these changes to global climate and chemical cycles might benefit or hinder control programs aimed at reducing acid deposition. In the following, we review several possible changes to climate that may be expected to impact the global cycle of reactive nitrogen. We then use our global model of the reactive nitrogen cycle to estimate the effects of several of the more important changes on the continental-scale deposition of nitric acid. 7 refs., 1 tab.

  18. Antidepressant activity of aspartic acid derivatives.

    PubMed

    Petrov, V I; Sergeev, V S; Onishchenko, N V; Piotrovskii, L B

    2001-04-01

    Antidepressant activity of N-phenyl(benzyl)amino derivatives of aspartic acid was studied on various experimental models of depression. IEM-1770 (30 mg/kg) and IEM-1944 (20 mg/kg) exhibited antidepressant activity after single injection in the forced swimming and tail suspension tests. Antidepressant effect of 14-day administration of these compounds and reference drugs maprotiline (10 mg/kg) and citalopram (10 mg/kg) was confirmed on the model of learned helplessness. PMID:11550022

  19. SOLAR ROTATION RATE DURING THE CYCLE 24 MINIMUM IN ACTIVITY

    SciTech Connect

    Antia, H. M.; Basu, Sarbani E-mail: sarbani.basu@yale.ed

    2010-09-01

    The minimum of solar cycle 24 is significantly different from most other minima in terms of its duration as well as its abnormally low levels of activity. Using available helioseismic data that cover epochs from the minimum of cycle 23 to now, we study the differences in the nature of the solar rotation between the minima of cycles 23 and 24. We find that there are significant differences between the rotation rates during the two minima. There are differences in the zonal-flow pattern too. We find that the band of fast rotating region close to the equator bifurcated around 2005 and recombined by 2008. This behavior is different from that during the cycle 23 minimum. By autocorrelating the zonal-flow pattern with a time shift, we find that in terms of solar dynamics, solar cycle 23 lasted for a period of 11.7 years, consistent with the result of Howe et al. (2009). The autocorrelation coefficient also confirms that the zonal-flow pattern penetrates through the convection zone.

  20. Glutamate Utilization Couples Oxidative Stress Defense and the Tricarboxylic Acid Cycle in Francisella Phagosomal Escape

    PubMed Central

    Ramond, Elodie; Gesbert, Gael; Rigard, Mélanie; Dairou, Julien; Dupuis, Marion; Dubail, Iharilalao; Meibom, Karin; Henry, Thomas; Barel, Monique; Charbit, Alain

    2014-01-01

    Intracellular bacterial pathogens have developed a variety of strategies to avoid degradation by the host innate immune defense mechanisms triggered upon phagocytocis. Upon infection of mammalian host cells, the intracellular pathogen Francisella replicates exclusively in the cytosolic compartment. Hence, its ability to escape rapidly from the phagosomal compartment is critical for its pathogenicity. Here, we show for the first time that a glutamate transporter of Francisella (here designated GadC) is critical for oxidative stress defense in the phagosome, thus impairing intra-macrophage multiplication and virulence in the mouse model. The gadC mutant failed to efficiently neutralize the production of reactive oxygen species. Remarkably, virulence of the gadC mutant was partially restored in mice defective in NADPH oxidase activity. The data presented highlight links between glutamate uptake, oxidative stress defense, the tricarboxylic acid cycle and phagosomal escape. This is the first report establishing the role of an amino acid transporter in the early stage of the Francisella intracellular lifecycle. PMID:24453979

  1. c-Myc activates multiple metabolic networks to generate substrates for cell-cycle entry.

    SciTech Connect

    Morrish, Fionnuala M.; Isern, Nancy; Sadilek, Martin; Jeffrey, Mark; Hockenbery, David M.

    2009-05-18

    Cell proliferation requires the coordinated activity of cytosolic and mitochondrial metabolic pathways to provide ATP and building blocks for DNA, RNA, and protein synthesis. Many metabolic pathway genes are targets of the c-myc oncogene and cell cycle regulator. However, the contribution of c-Myc to the activation of cytosolic and mitochondrial metabolic networks during cell cycle entry is unknown. Here, we report the metabolic fates of [U-13C] glucose in serum-stimulated myc-/- and myc+/+ fibroblasts by 13C isotopomer NMR analysis. We demonstrate that endogenous c-myc increased 13C-labeling of ribose sugars, purines, and amino acids, indicating partitioning of glucose carbons into C1/folate and pentose phosphate pathways, and increased tricarboxylic acid cycle turnover at the expense of anaplerotic flux. Myc expression also increased global O-linked GlcNAc protein modification, and inhibition of hexosamine biosynthesis selectively reduced growth of Myc-expressing cells, suggesting its importance in Myc-induced proliferation. These data reveal a central organizing role for the Myc oncogene in the metabolism of cycling cells. The pervasive deregulation of this oncogene in human cancers may be explained by its role in directing metabolic networks required for cell proliferation.

  2. Activity Scratchpad Prototype: Simplifying the Rover Activity Planning Cycle

    NASA Technical Reports Server (NTRS)

    Abramyan, Lucy

    2005-01-01

    The Mars Exploration Rover mission depends on the Science Activity Planner as its primary interface to the Spirit and Opportunity Rovers. Scientists alternate between a series of mouse clicks and keyboard inputs to create a set of instructions for the rovers. To accelerate planning by minimizing mouse usage, a rover planning editor should receive the majority of inputted commands from the keyboard. Thorough investigation of the Eclipse platform's Java editor has provided the understanding of the base model for the Activity Scratchpad. Desirable Eclipse features can be mapped to specific rover planning commands, such as auto-completion for activity titles and content assist for target names. A custom editor imitating the Java editor's features was created with an XML parser for experimenting purposes. The prototype editor minimized effort for redundant tasks and significantly improved the visual representation of XML syntax by highlighting keywords, coloring rules, folding projections, and providing hover assist, templates and an outline view of the code.

  3. Contribution of the tricarboxylic acid (TCA) cycle and the glyoxylate shunt in Saccharomyces cerevisiae to succinic acid production during dough fermentation.

    PubMed

    Rezaei, Mohammad N; Aslankoohi, Elham; Verstrepen, Kevin J; Courtin, Christophe M

    2015-07-01

    Succinic acid produced by yeast during bread dough fermentation can significantly affect the rheological properties of the dough. By introducing mutations in the model S288C yeast strain, we show that the oxidative pathway of the TCA cycle and the glyoxylate shunt contribute significantly to succinic acid production during dough fermentation. More specifically, deletion of ACO1 and double deletion of ACO1 and ICL1 resulted in a 36 and 77% decrease in succinic acid levels in fermented dough, respectively. Similarly, double deletion of IDH1 and IDP1 decreased succinic acid production by 85%, while also affecting the fermentation rate. By contrast, double deletion of SDH1 and SDH2 resulted in a two-fold higher succinic acid accumulation compared to the wild-type. Deletion of fumarate reductase activity (FRD1 and OSM1) in the reductive pathway of the TCA cycle did not affect the fermentation rate and succinic acid production. The changes in the levels of succinic acid produced by mutants Δidh1Δidp1 (low level) and Δsdh1Δsdh2 (high level) in fermented dough only resulted in small pH differences, reflecting the buffering capacity of dough at a pH of around 5.1. Moreover, Rheofermentometer analysis using these mutants revealed no difference in maximum dough height and gas retention capacity with the dough prepared with S288C. The impact of the changed succinic acid profile on the organoleptic or antimicrobial properties of bread remains to be demonstrated. PMID:25828707

  4. On the anticonvulsant activity of kaurenic acid.

    PubMed

    Daló, Nelson L; Sosa-Sequera, Miriam C; Usubillaga, Alfredo

    2007-09-01

    Kaurenic acid [(-)-kaur-16-en-19-oic acid] is a diterpene isolated from the aerial parts of Espeletia semiglobulata, one of 85 species of Espeletiinae found in Venezuela. Its anticonvulsive activity was studied using two different models of experimental seizures: spinal seizures induced by sudden cooling (SSSC) in amphibians and seizures induced by pentylenetetrazol (PTZ) in mice. In SSSC, kaurenic acid (KA) inhibited the tonic hind-limb extension with an ED50 of 2.5 mg/kg. It was 4-fold more potent than known anticonvulsant drugs such as carbamazepine and phenytoin and 100-fold more potent than valproic acid. However, KA as well as valproic acid were ineffective against the clonic phase of SSSC. In the PTZ-induced seizures, KA at doses of 0.625 and 1.25 mg/kg increased the latency of seizure onset and protected against generalized clonic-tonic seizures by 45% and 65%, respectively. The sedative effects of KA had an ED50 of 8.5 mg/kg in mice and 75 mg/kg in amphibians. This work provides experimental evidence supporting the potential value of kaurenic acid as an anticonvulsive drug. PMID:17853794

  5. NHI-Acid Concentration Membranes -- Membrane Recommendations for the S-I Cycle

    SciTech Connect

    Frederick F Stewart

    2007-03-01

    Scope: The purpose of this draft report is to make recommendations concerning the applicability of specific membrane materials for acid concentration processes to the Sulfur-Iodine (S-I) thermochemical cycle integrated laboratory scale (ILS) demonstration. Introduction Acid concentration membrane processes have been studied for possible inclusion in the Sulfur-Iodine integrated laboratory scale (S-I ILS) demonstration. The need for this technology is driven by the chemical processes required for economical water splitting using the S-I cycle. Of the chemical processes inherent to the S-I cycle that have been identified as targets for deployment of membrane technology, three have been studied during the past three fiscal years as a part of the DOE Nuclear Hydrogen Initiative. First, the ability to concentrate hydriodic acid (HI) and iodine mixtures was sought as a method for aiding in the isolation of HI away from water and iodine. Isolated HI would then be delivered to the HI decomposition process for liberation of product hydrogen. Second, an extension of this technology to sulfuric acid was proposed to benefit sulfuric acid decomposition recycle. Third, decomposition of HI to form hydrogen is equilibrium limited. Removal of hydrogen, utilizing Le Chatelier’s principle, will increase to overall conversion and thus increasing the efficiency of the S-I cycle.

  6. SURFACE DEGRADATION OF COMPOSITE RESINS BY ACIDIC MEDICINES AND pH-CYCLING

    PubMed Central

    Valinoti, Ana Carolina; Neves, Beatriz Gonçalves; da Silva, Eduardo Moreira; Maia, Lucianne Cople

    2008-01-01

    This study evaluated the effects of acidic medicines (Dimetapp® and Claritin®), under pH-cycling conditions, on the surface degradation of four composite resins (microhybrid: TPH, Concept, Opallis and Nanofilled: Supreme). Thirty disc-shaped specimens (Ø = 5.0 mm / thickness = 2.0 mm) of each composite were randomly assigned to 3 groups (n = 10): a control and two experimental groups, according to the acidic medicines evaluated. The specimens were finished and polished with aluminum oxide discs, and the surface roughness was measured by using a profilometer. After the specimens were submitted to a pH-cycling regimen and immersion in acidic medicines for 12 days, the surface roughness was measured again. Two specimens for each material and group were analyzed by scanning electron microscopy (SEM) before and after pH-cycling. Data were analyzed by the Student's-t test, ANOVA, Duncan's multiple range test and paired t-test (α=0.05). Significant increase in roughness was found only for TPH in the control group and TPH and Supreme immersed in Claritin® (p<0.05). SEM analyses showed that the 4 composite resins underwent erosion and surface degradation after being subjected to the experimental conditions. In conclusion, although the roughness was slightly affected, the pH-cycling and acidic medicines caused surface degradation of the composite resins evaluated. Titratable acidity seemed to play a more crucial role on surface degradation of composite resins than pH. PMID:19089257

  7. Uncertainty of Prebiotic Scenarios: The Case of the Non-Enzymatic Reverse Tricarboxylic Acid Cycle

    NASA Astrophysics Data System (ADS)

    Zubarev, Dmitry; Rappoport, Dmitrij; Aspuru-Guzik, Alan

    2015-03-01

    We consider the much discussed hypothesis of the primordial nature of the non-enzymatic reverse tricarboxylic acid (rTCA) cycle and describe a modeling approach that quantifies the uncertainty of this hypothesis due to the combinatorial aspect of the constituent chemical transformations. Our results suggest that a) rTCA cycle belongs to a degenerate optimum of auto-catalytic cycles, and b) the set of targets for the investigations of the origin of the common metabolic core should be significantly extended. This work was supported by a grant from the Simons Foundation (SCOL 291937, Dmitry Zubarev).

  8. Results of chopper-controlled discharge life cycling studies on lead acid batteries

    NASA Technical Reports Server (NTRS)

    Ewashinka, J. G.; Sidik, S. M.

    1982-01-01

    A group of 108 state of the art nominally 6 volt lead acid batteries were tested in a program of one charge/discharge cycle per day for over two years or to ultimate battery failure. The primary objective was to determine battery cycle life as a function of depth of discharge (25 to 75 percent), chopper frequency (100 to 1000 Hz), duty cycle (25 to 87.5 percent), and average discharge current (20 to 260 A). The secondary objective was to determine the types of battery failure modes, if any, were due to the above parameters. The four parameters above were incorporated in a statistically designed test program.

  9. Chopper-controlled discharge life cycling studies on lead-acid batteries

    NASA Technical Reports Server (NTRS)

    Kraml, J. J.; Ames, E. P.

    1982-01-01

    State-of-the-art 6 volt lead-acid golf car batteries were tested. A daily charge/discharge cycling to failure points under various chopper controlled pulsed dc and continuous current load conditions was undertaken. The cycle life and failure modes were investigated for depth of discharge, average current chopper frequency, and chopper duty cycle. It is shown that battery life is primarily and inversely related to depth of discharge and discharge current. Failure mode is characterized by a gradual capacity loss with consistent evidence of cell element aging.

  10. Integrated gasification combined-cycle research development and demonstration activities

    SciTech Connect

    Ness, H.M.; Reuther, R.B.

    1995-12-01

    The United States Department of Energy (DOE) has selected six integrated gasification combined-cycle (IGCC) advanced power systems for demonstration in the Clean Coal Technology (CCT) Program. DOE`s Office of Fossil Energy, Morgantown Energy Technology Center, is managing a research development and demonstration (RD&D) program that supports the CCT program, and addresses long-term improvements in support of IGCC technology. This overview briefly describes the CCT projects and the supporting RD&D activities.

  11. Relationship between extracellular enzymes and cell growth during the cell cycle of the fission yeast Schizosaccharomyces pombe: acid phosphatase.

    PubMed Central

    Miyata, M; Miyata, H

    1978-01-01

    By using the intact cells of the fission yeast Schizosaccharomyces pombe, the activity of acid phosphatase (EC 3.1.3.2) was compared through the cell cycle with the growth in cell length as a measure of cell growth. The cells of a growing asynchronous culture increased exponentially in number and in total enzyme activity, but remained constant in average length and in specific activity, In a synchronous culture prepared by selection or by induction, the specific activity was periodic in parallel with the increase in average cell length. When hydroxyurea was added to an asynchronous or a synchronous culture by selection, both specific and total activity followed the same continuous pattern as the growth in cell length after the stoppage of cell division. When oversized cells produced by a hydroxyurea pulse treatment to the culture previously syndronized by selection were transferred to a poor medium, they divided synchronously but could hardly grow in the total cell length. In this experimental situation, the total enzyme activity also scarcely increased through three division cycles. These results suggested that the increase in acid phosphatase in dependent on cell elongation. PMID:711673

  12. The activity of Krebs cycle enzymes in the visual analyzer of rats in the norm and under stress.

    PubMed

    Lutsenko, N S; Yakushev, V S

    1993-01-01

    Higher activity of the NAD-dependent dehydrogenases of the tricarboxylic acid cycle (TAC) is observed in the optic retina, and of FAD-dependent dehydrogenases in the occipital lobes of the brain, in the visual analyzer of intact rats. The influence of stress using Desiderato's method induces a compensatory increase in the activity of succinate dehydrogenase. Acute stress induces a change in the regulation of the activity of the TAC dehydrogenases, assessed on the basis of the reaction to functional load. The animals' remaining in the dark following stress promotes the restoration of the activity of the TAC cycle to the normal level. PMID:8413911

  13. Effects of turbulent pumping on stellar activity cycles

    NASA Astrophysics Data System (ADS)

    Do Cao, O.; Brun, A. S.

    2011-12-01

    Stellar magnetic activity of solar like stars is thought to be due to an internal dynamo. While the Sun has been the subject of intense research for refining dynamo models, observations of magnetic cyclic activity in solar type stars have become more and more available, opening a new path to understand the underlying physics behind stellar cycles. For instance, it is key to understand how stellar rotation rate influences magnetic cycle period P_cyc. Recent numerical simulations of advection-dominated Babcock Leighton models have demonstrated that it is difficult to explain this observed trend given a) the strong influence of the cycle period to the meridional circulation amplitude and b) the fact that 3D models indicate that meridional flows become weaker as the rotation rate increases. In this paper, we introduce the turbulent pumping mechanism as another advective process capable also of transporting the magnetic fields. We found that this model is now able to reproduce the observations under the assumption that this effect increases as \\Omega2. The turbulent pumping becomes indeed another major player able to circumvent the meridional circulation. However, for high rotation rates (\\Omega ≃ 5 \\Omega_⊙), its effects dominate those of the meridional circulation, entering a new class of regime dominated by the advection of turbulent pumping and thus leading to a cyclic activity qualitatively different from that of the Sun.

  14. Magnetic Cloud Polarity and Geomagnetic Activities over Three Solar Cycles

    NASA Astrophysics Data System (ADS)

    Li, Y.; Luhmann, J.

    2006-12-01

    Interplanetary coronal mass ejections (ICMEs) that show fluxrope magnetic structures are named magnetic clouds (MCs). Majority of the MCs exhibit bipolar signature in their north-south component (Bz) in IMF measurements. The Bz component of a bipolar cloud is either NS (north first then turning south as the MC traverses the spacecraft) or SN. Studies show that the occurrence of these two types of MCs has some solar cycle dependence. However it appears to be a complex relationship as the switch between the two types of MCs is not concurrent with either the solar polar reversal or the time of the sunspot minimum when the new cycle sunspots start to appear. In this paper, we use ACE solar wind and IMF observations to obtain the most updated MC signatures and their temporal variation. In combination with our previously published results, we analyze MC polarity variations over the three solar cycles of 21, 22 and 23. Interpretations in terms of their solar sources will be attempted. On the other hand, the geomagnetic activities over the same solar cycles will be studied using geomagnetic indices. The geoeffectiveness of the MC will be evaluated in the aid of Dst indices.

  15. Estrus cycle effect on muscle tyrosine kinase activity in bitches.

    PubMed

    Gomes Pöppl, Álan; Costa Valle, Sandra; Hilário Díaz González, Félix; de Castro Beck, Carlos Afonso; Kucharski, Luiz Carlos; Silveira Martins Da Silva, Roselis

    2012-03-01

    Estrus cycle is a well recognized cause of insulin resistance in bitches. The insulin receptor (IR) as well as the insulin-like growth factor-I receptor belong to the same subfamily of tyrosine kinase (TK) receptors. The objective of this study was to evaluate basal TK activity in muscle tissue of bitches during the estrus cycle. Twenty-four bitches were used in the study (7 in anestrus, 7 in estrus, and 10 in diestrus). Muscle samples, taken after spaying surgery to determine TK activity, were immediately frozen in liquid nitrogen and then stored at -80°C until the membranes were prepared by sequential centrifugation after being homogenized. TK activity was determined by Poly (Glu 4:Tyr 1) phosphorylation and expressed in cpm/μg of protein. TK activity was significantly lower (P < 0.001) in the animals in estrus (104.5 ± 11.9 cpm/μg of protein) and diestrus (94.5 ± 16.9 cpm/μg of protein) when compared with bitches in anestrus (183.2 ± 39.2 cpm/μg of protein). These results demonstrate, for the first time, lower basal TK activity in the muscle tissue of female dogs during estrus and diestrus, which may represent lower insulin signaling capacity, opening a new field of investigation into the molecular mechanisms of insulin resistance in dogs. PMID:22139063

  16. Activated sludge degradation of adipic acid esters.

    PubMed Central

    Saeger, V W; Kalley, R G; Hicks, O; Tucker, E S; Mieure, J P

    1976-01-01

    The biodegradability of three aliphatic adipic acid diesters and a 1,3-butylene glycol adipic acid polyester was determined in acclimated, activated sludge systems. Rapid primary biodegradation from 67 to 99+% was observed at 3- and 13-mg/liter feed levels for di-n-hexyl adipate, di(2-ethylhexyl) adipate, and di(heptyl, nonyl) adipate in 24 h. When acclimated, activated sludge microorganisms were employed as the seed for two carbon dioxide evolution procedures, greater than 75% of the theoretical carbon dioxide was evolved for the three diesters and the polyester in a 35-day test period. The essentially complete biodegradation observed in these studies suggests that these esters would not persist when exposed to similar mixed microbial populations in the environment. PMID:1275494

  17. The Cell Cycle: An Activity Using Paper Plates to Represent Time Spent in Phases of the Cell Cycle

    ERIC Educational Resources Information Center

    Scherer, Yvette D.

    2014-01-01

    In this activity, students are given the opportunity to combine skills in math and geometry for a biology lesson in the cell cycle. Students utilize the data they collect and analyze from an online onion-root-tip activity to create a paper-plate time clock representing a 24-hour cell cycle. By dividing the paper plate into appropriate phases of…

  18. Thermochemical cycles

    NASA Technical Reports Server (NTRS)

    Funk, J. E.; Soliman, M. A.; Carty, R. H.; Conger, W. L.; Cox, K. E.; Lawson, D.

    1975-01-01

    The thermochemical production of hydrogen is described along with the HYDRGN computer program which attempts to rate the various thermochemical cycles. Specific thermochemical cycles discussed include: iron sulfur cycle; iron chloride cycle; and hybrid sulfuric acid cycle.

  19. Prebiotic Metabolism: Production by Mineral Photoelectrochemistry of α-Ketocarboxylic Acids in the Reductive Tricarboxylic Acid Cycle

    NASA Astrophysics Data System (ADS)

    Guzman, Marcelo I.; Martin, Scot T.

    2009-11-01

    A reductive tricarboxylic acid (rTCA) cycle could have fixed carbon dioxide as bio chemically useful energy-storage molecules on early Earth. Nonenzymatic chemical pathways for some steps of the rTCA cycle, however, such as the production of the α-ketocarboxylic acids pyruvate and α-ketoglutarate, remain a challenging problem for the viability of the proposed prebiotic cycle. As a class of compounds, α-ketocarboxylic acids have high free energies of formation that disfavor their production. We report herein the production of pyruvate from lactate and of α-ketoglutarate from pyruvate in the millimolar concentration range as promoted by ZnS mineral photoelectrochemistry. Pyruvate is produced from the photooxidation of lactate with 70% yield and a quantum efficiency of 0.009 at 15°C across the wavelength range of 200-400 nm. The produced pyruvate undergoes photoreductive back reaction to lactate at a 30% yield and with a quantum efficiency of 0.0024. Pyruvate alternatively continues in photooxidative forward reaction to α-ketoglutarate with a 50% yield and a quantum efficiency of 0.0036. The remaining 20% of the carbon follows side reactions that produce isocitrate, glutarate, and succinate. Small amounts of acetate are also produced. The results of this study suggest that α-ketocarboxylic acids produced by mineral photoelectrochemistry could have participated in a viable enzyme-free cycle for carbon fixation in an environment where light, sulfide minerals, carbon dioxide, and other organic compounds interacted on prebiotic Earth.

  20. Changes in the activity budget of cycling female chimpanzees.

    PubMed

    Matsumoto-Oda, A; Oda, R

    1998-01-01

    This study is a preliminary report on the time allocated to various activities by female wild chimpanzees (Pan troglodytes schweinfurthii) during their sexual cycle. Cycling females with maximal tumescence (estrous females) tended to spend more time moving than cycling females with quiescent sexual skin (anestrous females). Although there was no statistically significant decrease in any specific activity that corresponded to the increase in time spent moving, feeding time did decrease in four of the five females. The frequency of approach by females toward males and the frequency of approach by males toward females significantly increased when females were in estrus. Direct aggression by males occurred more frequently toward estrous females than toward anestrous females. The copulation frequency and the frequency of approach to males was not significantly correlated with the increase in time spent moving. There was a high but not significant correlation between the time spent moving and the frequency of direct aggression by males toward females. Mating effort, feeding competition, male aggression, and other possible reasons that might explain the increase in moving time are discussed. PMID:9773678

  1. Solar Activity in the Green Corona Over Cycle 23

    NASA Astrophysics Data System (ADS)

    Rušin, V.

    2006-12-01

    The intensity of the green coronal line (5303Å, Fe {\\sc xiv), which is directly proportional to the electron density as well as the temperature of the corona, is a good and sensitive indicator of the reflection of the photospheric activity in the emission corona, mapping also the evolution of the magnetic fields in the active regions on the solar surface. In cycle 23 (1996 -2007), the average intensity of the green corona was of about 30% less when compared with that of the preceding cycle; this, however, does not necessarily imply a lower temperature of the corona, but rather a smaller number of active regions and/or smaller strength of local magnetic fields in the latter. The maximum of the intensity of the green corona was observed in August 2001, preceding for about one and a half year that of sunspot number. Moreover, the increased intensities were not observed continuously in time and heliographic latitude, but rather in particular latitudes, with a slight time-lag between the north and south hemispheres. It is well known that a time-latitudinal distribution of the intensity of the green corona features two kinds of large-scale motions. The first is the so-called polar branch, which separates from the "main flow" in the middle latitudes in the cycle minimum, lasts for about 3 -4 years and disappears at the time of the maxima of solar activity near the poles. The other is the equatorial (or principal) branch, which after separation in middle-latitudes moves first towards the poles, then roughly 2 years after the polar branch reached the poles makes a U-turn at upper heliographic latitudes of ±70 degrees, and migrates towards the equator where it disappears in the next minimum; the life-time of this branch is about 18 years. Given the time of the splitting of the two branches, we can guess the time of the maximum and minimum of the forthcoming cycle - cycle 24: the corresponding numbers are 2011 and 2012.5 for the time of the "double" maximum and 2019 for

  2. The variations of prominence activities during solar cycle

    NASA Astrophysics Data System (ADS)

    Shimojo, Masumi

    The prominence activities (prominence eruption/disappearance) in the solar atmosphere closely relate with the CMEs that cause great influences on heliosphere and magnetosphere. Gopal-swarmy et al. (2003) reported that 72 The Nobeyama Radioheliograph (NoRH) is observing Sun in microwave (17 GHz) since 1992. At a flare, the main component of the microwave from Sun is emitted from non-thermal electrons that are accelerated by flare. On the other hand, the main component of the microwave is thermal emission when Sun is quiet, and a prominence is clearly observed in microwave because there is the prominence on the limb. We developed the automatic prominence activity detection program based on 17 GHz images observed by NoRH, and investigated the variation of the properties of the prominence activities that oc-curred from 1992 to the end of 2009. We found the following results. 1. The variation in the number of prominence activities is similar to that of sunspots during one solar cycle but there are differences between the peak times of prominence activities and sunspots. 2. The frequency distribution as a function of the magnitude of the prominence activities the size of activated prominences at each phase shows a power-law distribution. The power-law index of the distribution does not change except around the solar minimum. 3. The number of promi-nence activities has a dependence on the latitude On the other hand the average magnitude is independent of the latitude. In the paper, we will also discuss the relationship the other properties of prominence eruptions, solar cycle and the photospheric magnetic field.

  3. Effects of solar cycle 24 activity on WAAS navigation

    NASA Astrophysics Data System (ADS)

    Datta-Barua, Seebany; Walter, Todd; Bust, Gary S.; Wanner, William

    2014-01-01

    This paper reviews the effects of geomagnetic activity of solar cycle 24 from 2011 through mid-2013 on the Federal Aviation Administration's Wide Area Augmentation System (WAAS) navigation service in the U.S., to identify (a) major impacts and their severity compared with the previous cycle and (b) effects in new service regions of North America added since last solar cycle. We examine two cases: a storm that reduced service coverage for several hours and ionospheric scintillation that led to anomalous receiver tracking. Using the 24-25 October 2011 storm as an example, we examine WAAS operational system coverage for the conterminous U.S. (CONUS). The WAAS algorithm upgrade to ionospheric estimation, in effect since late 2011, is able to mitigate the daytime coverage loss but not the nighttime loss. We correlate WAAS availability to maps of the storm plasma generated with the data assimilative model Ionospheric Data Assimilation 4-D, which show a local nighttime corotating persistent plume of plasma extending from Florida across central CONUS. We study the effect of scintillation on 9 October 2012 on the WAAS reference station at Fairbanks, Alaska. Data from a nearby scintillation monitor in Gakona and all-sky imaging of aurora at Poker Flat corroborate the event. Anomalous receiver processing triggered by scintillation reduces accuracy at Fairbanks for a few minutes. Users experiencing similar effects would have their confidence bounds inflated, possibly trading off service continuity for safety. The activity to date in solar cycle 24 has had minor effects on WAAS service coverage, mainly occurring in Alaska and Canada.

  4. Apoptosis and modulation of cell cycle control by bile acids in human leukemia T cells.

    PubMed

    Fimognari, Carmela; Lenzi, Monia; Cantelli-Forti, Giorgio; Hrelia, Patrizia

    2009-08-01

    Depending on the nature of chemical structures, different bile acids exhibit distinct biological effects. Their therapeutic efficacy has been widely demonstrated in various liver diseases, suggesting that they might protect hepatocytes against common mechanisms of liver damage. Although it has been shown to prevent apoptotic cell death in certain cell lines, bile acids significantly inhibited cell growth and induced apoptosis in cancer cells. To better understand the pharmacological potential of bile acids in cancer cells, we investigated and compared the effects of deoxycholic acid (DCA), ursodeoxycholic acid (UDCA), and their taurine-derivatives [taurodeoxycholic acid (TDCA) and tauroursodeoxycholic acid (TUDCA), respectively] on the induction of apoptosis and inhibition of cell proliferation of a human T leukemia cell line (Jurkat cells). All the bile acids tested induced a delay in cell cycle progression. Moreover, DCA markedly increased the fraction of apoptotic cells. The effects of TDCA, UDCA, and TUDCA were different from those observed for DCA. Their primary effect was the induction of necrosis. These distinctive features suggest that the hydrophobic properties of DCA play a role in its cytotoxic potential and indicate that it is possible to create new drugs useful for cancer therapy from bile acid derivatives as lead compounds. PMID:19723064

  5. Evolution and Functional Implications of the Tricarboxylic Acid Cycle as Revealed by Phylogenetic Analysis

    PubMed Central

    Cavalcanti, João Henrique Frota; Esteves-Ferreira, Alberto A.; Quinhones, Carla G.S.; Pereira-Lima, Italo A.; Nunes-Nesi, Adriano; Fernie, Alisdair R.; Araújo, Wagner L.

    2014-01-01

    The tricarboxylic acid (TCA) cycle, a crucial component of respiratory metabolism, is composed of a set of eight enzymes present in the mitochondrial matrix. However, most of the TCA cycle enzymes are encoded in the nucleus in higher eukaryotes. In addition, evidence has accumulated demonstrating that nuclear genes were acquired from the mitochondrial genome during the course of evolution. For this reason, we here analyzed the evolutionary history of all TCA cycle enzymes in attempt to better understand the origin of these nuclear-encoded proteins. Our results indicate that prior to endosymbiotic events the TCA cycle seemed to operate only as isolated steps in both the host (eubacterial cell) and mitochondria (alphaproteobacteria). The origin of isoforms present in different cell compartments might be associated either with gene-transfer events which did not result in proper targeting of the protein to mitochondrion or with duplication events. Further in silico analyses allow us to suggest new insights into the possible roles of TCA cycle enzymes in different tissues. Finally, we performed coexpression analysis using mitochondrial TCA cycle genes revealing close connections among these genes most likely related to the higher efficiency of oxidative phosphorylation in this specialized organelle. Moreover, these analyses allowed us to identify further candidate genes which might be used for metabolic engineering purposes given the importance of the TCA cycle during development and/or stress situations. PMID:25274566

  6. A new simple dynamo model for solar activity cycle

    NASA Astrophysics Data System (ADS)

    Yokoi, Nobumitsu; Schmitt, Dieter

    2015-04-01

    The solar magnetic activity cycle has been investigated in an elaborated manner with several types of dynamo models [1]. In most of the current mean-field approaches, the inhomogeneity of the large-scale flow is treated as an essential ingredient in the mean magnetic field equation whereas it is completely neglected in the turbulence equation. In this work, a new simple model for the solar activity cycle is proposed. The present model differs from the previous ones mainly in two points. First, in addition to the helicity coefficient α, we consider a term related to the cross helicity, which represents the effect of the inhomogeneous mean flow, in the turbulent electromotive force [2, 3]. Second, this transport coefficient (γ) is not treated as an adjustable parameter, but the evolution equation for γ is simultaneously solved. The basic scenario for the solar activity cycle in this approach is as follows: The toroidal field is induced by the toroidal rotation in mediation by the turbulent cross helicity. Then due to the α or helicity effect, the poloidal field is generated from the toroidal field. The poloidal field induced by the α effect produces a turbulent cross helicity whose sign is opposite to the original one (negative cross-helicity production). The cross helicity with this opposite sign induces a reversed toroidal field. Results of the eigenvalue analysis of the model equations are shown, which confirm the above scenario. References [1] Charbonneau, Living Rev. Solar Phys. 7, 3 (2010). [2] Yoshizawa, A. Phys. Fluids B 2, 1589 (1990). [3] Yokoi, N. Geophys. Astrophys. Fluid Dyn. 107, 114 (2013).

  7. Sunspot Activity Near Cycle Minimum and What it Might Suggest for Cycle 24, the Next Sunspot Cycle

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2009-01-01

    In late 2008, 12-month moving averages of sunspot number, number of spotless days, number of groups, area of sunspots, and area per group were reflective of sunspot cycle minimum conditions for cycle 24, these values being of or near record value. The first spotless day occurred in January 2004 and the first new-cycle, high-latitude spot was reported in January 2008, although old-cycle, low-latitude spots have continued to be seen through April 2009, yielding an overlap of old and new cycle spots of at least 16 mo. New-cycle spots first became dominant over old-cycle spots in September 2008. The minimum value of the weighted mean latitude of sunspots occurred in May 2007, measuring 6.6 deg, and the minimum value of the highest-latitude spot followed in June 2007, measuring 11.7 deg. A cycle length of at least 150 mo is inferred for cycle 23, making it the longest cycle of the modern era. Based on both the maximum-minimum and amplitude-period relationships, cycle 24 is expected to be only of average to below-average size, peaking probably in late 2012 to early 2013, unless it proves to be a statistical outlier.

  8. Sources of solar wind over the solar activity cycle.

    PubMed

    Poletto, Giannina

    2013-05-01

    Fast solar wind has been recognized, about 40 years ago, to originate in polar coronal holes (CHs), that, since then, have been identified with sources of recurrent high speed wind streams. As of today, however, there is no general consensus about whether there are, within CHs, preferential locations where the solar wind is accelerated. Knowledge of slow wind sources is far from complete as well. Slow wind observed in situ can be traced back to its solar source by backward extrapolation of magnetic fields whose field lines are streamlines of the outflowing plasma. However, this technique often has not the necessary precision for an indisputable identification of the region where wind originates. As the Sun progresses through its activity cycle, different wind sources prevail and contribute to filling the heliosphere. Our present knowledge of different wind sources is here summarized. Also, a Section addresses the problem of wind acceleration in the low corona, as inferred from an analysis of UV data, and illustrates changes between fast and slow wind profiles and possible signatures of changes along the solar cycle. A brief reference to recent work about the deep roots of solar wind and their changes over different solar cycles concludes the review. PMID:25685421

  9. High temperature abatement of acid gases from waste incineration. Part II: Comparative life cycle assessment study.

    PubMed

    Biganzoli, Laura; Racanella, Gaia; Marras, Roberto; Rigamonti, Lucia

    2015-01-01

    The performances of a new dolomitic sorbent, named Depurcal®MG, to be directly injected at high temperature in the combustion chamber of Waste-To-Energy (WTE) plants as a preliminary stage of deacidification, were experimentally tested during full-scale commercial operation. Results of the experimentations were promising, and have been extensively described in Biganzoli et al. (2014). This paper reports the Life Cycle Assessment (LCA) study performed to compare the traditional operation of the plants, based on the sole sodium bicarbonate feeding at low temperature, with the new one, where the dolomitic sorbent is injected at high temperature. In the latter the sodium bicarbonate is still used, but at lower rate because of the decreased load of acid gases entering the flue gas treatment line. The major goal of the LCA was to make sure that a burden shifting was not taking place somewhere in the life cycle stages, as it might be the case when a new material is used in substitution of another one. According to the comparative approach, only the processes which differ between the two operational modes were included in the system boundaries. They are the production of the two reactants and the treatment of the corresponding solid residues arising from the neutralisation of acid gases. The additional CO2 emission at the stack of the WTE plant due to the activation of the sodium bicarbonate was also included in the calculation. Data used in the modelling of the foreground system are primary, derived from the experimental tests described in Biganzoli et al. (2014) and from the dolomitic sorbent production plant. The results of the LCA show minor changes in the potential impacts between the two operational modes of the plants. These differences are for 8 impact categories in favour of the new operational mode based on the addition of the dolomitic sorbent, and for 7 impact categories in favour of the traditional operation. A final evaluation was conducted on the potential

  10. 5-ASA Affects Cell Cycle Progression in Colorectal Cells by Reversibly Activating a Replication Checkpoint

    PubMed Central

    LUCIANI, M. GLORIA; CAMPREGHER, CHRISTOPH; FORTUNE, JOHN M.; KUNKEL, THOMAS A.; GASCHE, CHRISTOPH

    2007-01-01

    Background & Aims Individuals with inflammatory bowel disease are at risk of developing colorectal cancer (CRC). Epidemiologic, animal, and laboratory studies suggest that 5-amino-salicylic acid (5-ASA) protects from the development of CRC by altering cell cycle progression and by inducing apoptosis. Our previous results indicate that 5-ASA improves replication fidelity in colorectal cells, an effect that is active in reducing mutations. In this study, we hypothesized that 5-ASA restrains cell cycle progression by activating checkpoint pathways in colorectal cell lines, which would prevent tumor development and improve genomic stability. Methods CRC cells with different genetic backgrounds such as HT29, HCT116, HCT116p53−/−, HCT116+chr3, and LoVo were treated with 5-ASA for 2–96 hours. Cell cycle progression, phosphorylation, and DNA binding of cell cycle checkpoint proteins were analyzed. Results We found that 5-ASA at concentrations between 10 and 40 mmol/L affects cell cycle progression by inducing cells to accumulate in the S phase. This effect was independent of the hMLH1, hMSH2, and p53 status because it was observed to a similar extent in all cell lines under investigation. Moreover, wash-out experiments demonstrated reversibility within 48 hours. Although p53 did not have a causative role, p53 Ser15 was strongly phosphorylated. Proteins involved in the ATM-and-Rad3-related kinase (ATR)-dependent S-phase checkpoint response (Chk1 and Rad17) were also phosphorylated but not ataxia telengectasia mutated kinase. Conclusions Our data demonstrate that 5-ASA causes cells to reversibly accumulate in S phase and activate an ATR-dependent checkpoint. The activation of replication checkpoint may slow down DNA replication and improve DNA replication fidelity, which increases the maintenance of genomic stability and counteracts carcinogenesis. PMID:17241873

  11. Regulation of the yeast metabolic cycle by transcription factors with periodic activities

    PubMed Central

    2011-01-01

    Background When growing budding yeast under continuous, nutrient-limited conditions, over half of yeast genes exhibit periodic expression patterns. Periodicity can also be observed in respiration, in the timing of cell division, as well as in various metabolite levels. Knowing the transcription factors involved in the yeast metabolic cycle is helpful for determining the cascade of regulatory events that cause these patterns. Results Transcription factor activities were estimated by linear regression using time series and genome-wide transcription factor binding data. Time-translation matrices were estimated using least squares and were used to model the interactions between the most significant transcription factors. The top transcription factors have functions involving respiration, cell cycle events, amino acid metabolism and glycolysis. Key regulators of transitions between phases of the yeast metabolic cycle appear to be Hap1, Hap4, Gcn4, Msn4, Swi6 and Adr1. Conclusions Analysis of the phases at which transcription factor activities peak supports previous findings suggesting that the various cellular functions occur during specific phases of the yeast metabolic cycle. PMID:21992532

  12. Gas-aerosol cycling of ammonia and nitric acid in The Netherlands

    NASA Astrophysics Data System (ADS)

    Roelofs, Geert-Jan; Derksen, Jeroen

    2010-05-01

    Atmospheric ammonia and nitric acid are present over NW Europe in large abundance. Observations made during the IMPACT measurement campaign (May 2008, Cabauw, The Netherlands) show a pronounced diurnal cycle of aerosol ammonium and nitrate on relatively dry days. Simultaneously, AERONET data show a distinct diurnal cycle in aerosol optical thickness (AOT). We used a global aerosol-climate model (ECHAM5-HAM) and a detailed aerosol-cloud column model to help analyse the observations from this period. The study shows that the diurnal cycle in AOT is partly associated with particle number concentration, with distinct peaks in the morning and evening. More important is relative humidity (RH). RH maximizes in the night and early morning, decreases during the morning and increases again in the evening. The particle wet radius, and therefore AOT, changes accordingly. In addition, the RH variability also influences chemistry associated with ammonia and nitric acid (formation of ammonium nitrate, dissolution in aerosol water), resulting in the observed diurnal cycle of aerosol ammonium and nitrate. The additional aerosol matter increases the hygroscopicity of the particles, and this leads to further swelling by water vapor condensation and a further increase of AOT. During the day, as RH decreases and the particles shrink, aerosol ammonium and nitrate are again partly expelled to the gas phase. This behaviour contributes significantly to the observed diurnal cycle in AOT, and it illustrates the complexity of using AOT as a proxy for aerosol concentrations in aerosol climate studies in the case of heavily polluted areas.

  13. Temperature effects on sealed lead acid batteries and charging techniques to prolong cycle life.

    SciTech Connect

    Hutchinson, Ronda

    2004-06-01

    Sealed lead acid cells are used in many projects in Sandia National Laboratories Department 2660 Telemetry and Instrumentation systems. The importance of these cells in battery packs for powering electronics to remotely conduct tests is significant. Since many tests are carried out in flight or launched, temperature is a major factor. It is also important that the battery packs are properly charged so that the test is completed before the pack cannot supply sufficient power. Department 2665 conducted research and studies to determine the effects of temperature on cycle time as well as charging techniques to maximize cycle life and cycle times on sealed lead acid cells. The studies proved that both temperature and charging techniques are very important for battery life to support successful field testing and expensive flight and launched tests. This report demonstrates the effects of temperature on cycle time for SLA cells as well as proper charging techniques to get the most life and cycle time out of SLA cells in battery packs.

  14. Endometrial phospholipase A2 activity during the oestrous cycle and early pregnancy in mares.

    PubMed

    Ababneh, M M; Troedsson, M H T

    2013-02-01

    The aim of this study was to determine phospholipase A2 (PLA2) kinetics and activity in the mare's endometrium during the oestrous cycle and early pregnancy. Phospholipase A2 is responsible for the liberation of arachidonic acid from phospholipids, which is the first limiting step in prostaglandins synthesis. Phospholipase A2 activity was measured using an assay based on the liberation of oleic acid from 1-palmitoyl-2-[(14) C] oleoyl phosphatidylcholine. The enzyme was shown to be calcium dependent, to have an optimum pH of 8 and an apparent Michaelis constant of 127 μM. Enzyme activity was low in the endometrium of early luteal phase tissue but increased significantly (p < 0.001) during the late luteal phase (5.39 ± 0.16; 3.48 ± 0.33, 6.85 ± 0.59, and 9.96 ± 1.23 nmol oleic acid released/mg protein at oestrus, and Days 3, 8 and 14 after ovulation, respectively). The mean PLA2 activity in endometrial tissue from pregnant mares (4.23 ± 0.74) was significantly lower (p < 0.01) than from cyclic animals during late dioestrus (9.96 ± 1.23). The results indicate that PLA2 activity in equine endometrium changes with the stage of the oestrous cycle and thus may be influenced by systemic hormone concentrations. The inhibitory effects of conceptus products on secretion of prostaglandin during early pregnancy were associated with a competitive inhibitor that decreased endometrial PLA2 activity. PMID:22486770

  15. Simultaneous determination of tricarboxylic acid cycle metabolites by high-performance liquid chromatography with ultraviolet detection.

    PubMed

    Shurubor, Yevgeniya I; Cooper, Arthur J L; Isakova, Elena P; Deryabina, Yulia I; Beal, M Flint; Krasnikov, Boris F

    2016-06-15

    Here we describe a simple high-performance liquid chromatography (HPLC) procedure for the simultaneous detection and quantitation in standard solutions of 13 important metabolites of cellular energy metabolism, including 9 tricarboxylic acid (TCA) cycle components and 4 additional metabolites. The metabolites are detected by their absorbance at 210 nm. The procedure does not require prior derivatization, and an analysis can be carried out at ambient temperature within 15 min. The significance of the current work is that the current HPLC procedure should motivate the development of simplified TCA cycle enzyme assays, isotopomer analysis, and determination of selected TCA metabolite levels in plasma/tissues. PMID:27001310

  16. Cardiovascular responses to active and passive cycling movements.

    PubMed

    Nóbrega, A C; Williamson, J W; Friedman, D B; Araújo, C G; Mitchell, J H

    1994-06-01

    Ten healthy subjects were evaluated at rest and at 5 min of unloaded active (AC) and passive (PC) cycling. Passive limb movements were accomplished using a tandem bicycle with a second rider performing the movements. We measured heart rate (HR), mean arterial pressure (MAP), cardiac output (CO), oxygen uptake (VO2), rating of perceived exertion (RPE), and electrical activity (EMG) of lower limbs muscles. Values for stroke volume (SV) and peripheral vascular resistance (PVR) were calculated. EMG, RPE, and VO2 were higher during AC than during PC (P < 0.001). CO increased during both modes of cycling, but during AC it resulted from a HR acceleration (73 +/- 2 at rest to 82 +/- 2 beats.min-1 at 60 rpm; P < 0.001) with no change in SV whereas during PC, SV increased from rest (65 +/- 4 at rest to 71 +/- 3 ml at 60 rpm; P = 0.003) along with no change in HR. PVR remained constant during PC, but decreased by 13% during AC (P < 0.001) and MAP increased only during PC (93 +/- 2 at rest to 107 +/- 2 mm Hg at 60 rpm). These results supports the concept that central command determines the HR response to dynamic exercise. The increase in SV and consequently in MAP during PC was probably due to increased venous return and/or to muscle mechanoreceptor-evoked increased myocardial contractility. PMID:8052111

  17. Chromospheric and coronal variation across stellar activity cycles

    NASA Astrophysics Data System (ADS)

    Hagen, Cedric; Miller, Brendan P.; Gallo, Elena; Wright, Jason; Isaacson, Howard T.; Henry, Gregory W.

    2015-01-01

    We investigate cyclic chromospheric and coronal activity in main-sequence stars, using Ca II H and K core emission and X-ray luminosities, respectively. From a sample of 244 nearby stars with high-cadence Keck optical spectroscopy spanning up to 17 years (obtained for the California Planet Search program), we use automated sinusoid modeling and goodness-of-fit criteria to identify 33 stars with highly significant cyclic R'HK variability. The cycle periods are refined using mmag APT optical photometry. We also construct a comparison sample of 23 stars that show virtually no R'HK variability. The cyclic and flat stars have similar B-V and absolute magnitude distributions but the cyclic stars tend to be more active, with greater median R'HK values. We present new Swift/XRT observations of 10 cyclic stars and 1 flat star, totaling 32.6 ks; 5/11 are detected in this snapshot pilot survey. A comparison of their current-epoch X-ray luminosities to archival ROSAT values shows variation by a factor of 2-3 is common on decade-long timescales. Several stars also show suggestive evidence for X-ray variability on much shorter timescales, perhaps related to stellar rotation and coronal inhomogeneity or to small flares. We use the chromospheric activity cycles to calculate the phase of each X-ray observation. Additional Swift observations are ongoing and with this larger dataset we will measure the typical amplitude of cyclic X-ray variation. We discuss our initial results in the context of magnetic dynamo activity and consider the implications for exoplanet atmosphere heating and evaporation.

  18. The Sequence of Learning Cycle Activities in High School Chemistry.

    ERIC Educational Resources Information Center

    Abraham, Michael R.; Renner, John W.

    1986-01-01

    Different learning cycle sequences were investigated to determine factors accounting for success of the cycle, compared learning with conventional instruction, and examined relationships between Piaget's theory and learning cycles. Results show that the normal learning cycle sequence is the optimum sequence for achievement of content knowledge in…

  19. Effect on combined cycle efficiency of stack gas temperature constraints to avoid acid corrosion

    NASA Technical Reports Server (NTRS)

    Nainiger, J. J.

    1980-01-01

    To avoid condensation of sulfuric acid in the gas turbine exhaust when burning fuel oils contaning sulfur, the exhaust stack temperature and cold-end heat exchanger surfaces must be kept above the condensation temperature. Raising the exhaust stack temperature, however, results in lower combined cycle efficiency compared to that achievable by a combined cycle burning a sulfur-free fuel. The maximum difference in efficiency between the use of sulfur-free and fuels containing 0.8 percent sulfur is found to be less than one percentage point. The effect of using a ceramic thermal barrier coating (TBC) and a fuel containing sulfur is also evaluated. The combined-cycle efficiency gain using a TBC with a fuel containing sulfur compared to a sulfur-free fuel without TBC is 0.6 to 1.0 percentage points with air-cooled gas turbines and 1.6 to 1.8 percentage points with water-cooled gas turbines.

  20. rre37 Overexpression Alters Gene Expression Related to the Tricarboxylic Acid Cycle and Pyruvate Metabolism in Synechocystis sp. PCC 6803

    PubMed Central

    Iijima, Hiroko; Watanabe, Atsuko; Takanobu, Junko; Hirai, Masami Yokota; Osanai, Takashi

    2014-01-01

    The tricarboxylic acid (TCA) cycle and pyruvate metabolism of cyanobacteria are unique and important from the perspectives of biology and biotechnology research. Rre37, a response regulator induced by nitrogen depletion, activates gene expression related to sugar catabolism. Our previous microarray analysis has suggested that Rre37 controls the transcription of genes involved in sugar catabolism, pyruvate metabolism, and the TCA cycle. In this study, quantitative real-time PCR was used to measure the transcript levels of 12 TCA cycle genes and 13 pyruvate metabolism genes. The transcripts of 6 genes (acnB, icd, ppc, pyk1, me, and pta) increased after 4 h of nitrogen depletion in the wild-type GT strain but the induction was abolished by rre37 overexpression. The repression of gene expression of fumC, ddh, and ackA caused by nitrogen depletion was abolished by rre37 overexpression. The expression of me was differently affected by rre37 overexpression, compared to the other 24 genes. These results indicate that Rre37 differently controls the genes of the TCA cycle and pyruvate metabolism, implying the key reaction of the primary in this unicellular cyanobacterium. PMID:25614900

  1. The role of the cell cycle in the cellular uptake of folate-modified poly(l-amino acid) micelles in a cell population

    NASA Astrophysics Data System (ADS)

    Tang, Jihui; Liu, Ziwei; Ji, Fenqi; Li, Yao; Liu, Junjie; Song, Jian; Li, Jun; Zhou, Jianping

    2015-12-01

    Nanoparticles are widely recognized as a vehicle for tumor-targeted therapies. There are many factors that can influence the uptake of nanoparticles, such as the size of the nanoparticles, and/or their shape, elasticity, surface charge and even the cell cycle phase. However, the influence of the cell cycle on the active targeting of a drug delivery system has been unknown until now. In this study, we initially investigated the folate receptor α (FR-α) expression in different phases of HeLa cells by flow cytometric and immunocytochemical methods. The results obtained showed that FR-α expression was cell cycle-dependent, i.e. the S cells' folate receptor expression was the highest as the cell progressed through its cycle. Then, we used folate modified poly(l-amino acid) micelles (FA-PM) as an example to investigate the influence of the cell cycle on the active targeting drug delivery system. The results obtained indicated that the uptake of FA-PM by cells was influenced by the cell cycle phase, and the S cells took up the greatest number of folate conjugated nanoparticles. Our findings suggest that future studies on ligand-mediated active targeting preparations should consider the cell cycle, especially when this system is used for a cell cycle-specific drug.

  2. Functionalised carboxylic acids in atmospheric particles: An annual cycle revealing seasonal trends and possible sources

    NASA Astrophysics Data System (ADS)

    Teich, Monique; van Pinxteren, Dominik; Herrmann, Hartmut

    2013-04-01

    Carboxylic acids represent a major fraction of the water soluble organic carbon (WSOC) in atmospheric particles. Among the particle phase carboxylic acids, straight-chain monocarboxylic acids (MCA) and dicarboxylic acids (DCA) with 2-10 carbon atoms have extensively been studied in the past. However, only a few studies exist dealing with functionalised carboxylic acids, i.e. having additional hydroxyl-, oxo- or nitro-groups. Regarding atmospheric chemistry, these functionalised carboxylic acids are of particular interest as they are supposed to be formed during atmospheric oxidation processes, e.g. through radical reactions. Therefore they can provide insights into the tropospheric multiphase chemistry. During this work 28 carboxylic acids (4 functionalised aliphatic MCAs, 5 aromatic MCAs, 3 nitroaromatic MCAs, 6 aliphatic DCAs, 6 functionalised aliphatic DCAs, 4 aromatic DCAs) were quantitatively determined in 256 filter samples taken at the rural research station Melpitz (Saxony, Germany) with a PM10 Digitel DHA-80 filter sampler. All samples were taken in 2010 covering a whole annual cycle. The resulting dataset was examined for a possible seasonal dependency of the acid concentrations. Furthermore the influence of the air mass origin on the acid concentrations was studied based on a simple two-sector classification (western or eastern sector) using a back trajectory analysis. Regarding the annual average, adipic acid was found to be the most abundant compound with a mean concentration of 7.8 ng m-3 followed by 4-oxopimelic acid with 6.1 ng m-3. The sum of all acid concentrations showed two maxima during the seasonal cycle; one in summer and one in winter, whereas the highest overall acid concentrations were found in summer. In general the target acids could be divided into two different groups, where one group has its maximum concentration in summer and the other group during winter. The first group contains all investigated aliphatic mono- and dicarboxylic

  3. Effects of Low Activity Solar Cycle on Orbital Debris Lifetime

    NASA Technical Reports Server (NTRS)

    Cable, Samual B.; Sutton, Eric K.; Lin, chin S.; Liou, J.-C.

    2011-01-01

    Long duration of low solar activity in the last solar minimum has an undesirable consequence of extending the lifetime of orbital debris. The AFRL TacSat-2 satellite decommissioned in 2008 has finally re-entered into the atmosphere on February 5th after more than one year overdue. Concerning its demise we have monitored its orbital decay and monthly forecasted Tacsat-2 re-entry since September 2010 by using the Orbital Element Prediction (OEP) model developed by the AFRL Orbital Drag Environment program. The model combines estimates of future solar activity with neutral density models, drag coefficient models, and an orbit propagator to predict satellite lifetime. We run the OEP model with solar indices forecast by the NASA Marshall Solar Activity Future Estimation model, and neutral density forecast by the MSIS-00 neutral density model. Based on the two line elements in 2010 up to mid September, we estimated at a 50% confidence level TacSat-2's re-entry time to be in early February 2011, which turned out to be in good agreement with Tacsat-2's actual re-entry date. The potential space weather effects of the coming low activity solar cycle on satellite lifetime and orbital debris population are examined. The NASA long-term orbital debris evolutionary model, LEGEND, is used to quantify the effects of solar flux on the orbital debris population in the 200-600 km altitude environment. The results are discussed for developing satellite orbital drag application product.

  4. Genipin as a novel chemical activator of EBV lytic cycle.

    PubMed

    Son, Myoungki; Lee, Minjung; Ryu, Eunhyun; Moon, Aree; Jeong, Choon-Sik; Jung, Yong Woo; Park, Gyu Hwan; Sung, Gi-Ho; Cho, Hyosun; Kang, Hyojeung

    2015-02-01

    Epstein-Barr virus (EBV) is a ubiquitous gammaherpesvirus that causes acute infection and establishes life-long latency. EBV causes several human cancers, including Burkitt's lymphoma, nasopharyngeal and gastric carcinoma. Antiviral agents can be categorized as virucides, antiviral chemotherapeutic agents, and immunomodulators. Most antiviral agents affect actively replicating viruses, but not their latent forms. Novel antiviral agents must be active on both the replicating and the latent forms of the virus. Gardenia jasminoides is an evergreen flowering plant belonging to the Rubiaceae family and is most commonly found growing wild in Vietnam, Southern China, Taiwan, Japan, Myanmar, and India. Genipin is an aglycone derived from an iridoid glycoside called geniposide, which is present in large quantities in the fruit of G. jasminoides. In this study, genipin was evaluated for its role as an antitumor and antiviral agent that produces inhibitory effects against EBV and EBV associated gastric carcinoma (EBVaGC). In SNU719 cells, one of EBVaGCs, genipin caused significant cytotoxicity (70 μM), induced methylation on EBV C promoter and tumor suppressor gene BCL7A, arrested cell-cycle progress (S phases), upregulated EBV latent/lytic genes in a dose-dependent manner, stimulated EBV progeny production, activated EBV F promoter for EBV lytic activation, and suppressed EBV infection. These results indicated that genipin could be a promising candidate for antiviral and antitumor agents against EBV and EBVaGC. PMID:25626372

  5. Global changes in biogeochemical cycles in response to human activities

    NASA Technical Reports Server (NTRS)

    Moore, Berrien, III; Melillo, Jerry

    1994-01-01

    The main objective of our research was to characterize biogeochemical cycles at continental and global scales in both terrestrial and aquatic ecosystems. This characterization applied to both natural ecosystems and those disturbed by human activity. The primary elements of interest were carbon and nitrogen and the analysis sought to quantify standing stocks and dynamic cycling processes. The translocation of major nutrients from the terrestrial landscape to the atmosphere (via trace gases) and to fluvial systems (via leaching, erosional losses, and point source pollution) were of particular importance to this study. Our aim was to develop the first generation of Earth System Models. Our research was organized around the construction and testing of component biogeochemical models which treated terrestrial ecosystem processes, aquatic nutrient transport through drainage basins, and trace gas exchanges at the continental and global scale. A suite of three complementary models were defined within this construct. The models were organized to operate at a 1/2 degree latitude by longitude level of spatial resolution and to execute at a monthly time step. This discretization afforded us the opportunity to understand the dynamics of the biosphere down to subregional scales, while simultaneously placing these dynamics into a global context.

  6. Residential construction demonstration project, Cycle II: Active ventilation

    SciTech Connect

    Not Available

    1991-01-01

    This report documents the analysis of the performance of natural and mechanical ventilation in Pacific Northwest homes. The analysis was part of Cycle II of the Residential Construction Demonstration Project, sponsored by Bonneville Power Administration (BPA). Since 1986, the Residential Construction Demonstration Project (RCDP) has sponsored the collection of data on energy efficient homes in the Pacific Northwest that comply with these new standards and requirements. Cycle II of RCDP was conducted between September 1987 and April 1990. It concentrated on energy innovations in homes built to the Super Good Cents specification. All of the test homes have electric heat and mechanical ventilation systems. Seven different types of active ventilation systems are represented in the homes. Three of these system types are equipped with heat recovery devices, and are represented in approximately a quarter of the test homes. The potential for both natural and mechanical ventilation was measured. Potential structural leakage was measured by blower door testing. Flow rate and operating time of mechanical ventilation systems were measured with flow hoods and hour meters. Actual ventilation was measured by using a passive tracer gas technique for several weeks during the heating season and at times of normal occupancy.

  7. Residential construction demonstration project, Cycle II: Active ventilation

    SciTech Connect

    Not Available

    1991-12-31

    This report documents the analysis of the performance of natural and mechanical ventilation in Pacific Northwest homes. The analysis was part of Cycle II of the Residential Construction Demonstration Project, sponsored by Bonneville Power Administration (BPA). Since 1986, the Residential Construction Demonstration Project (RCDP) has sponsored the collection of data on energy efficient homes in the Pacific Northwest that comply with these new standards and requirements. Cycle II of RCDP was conducted between September 1987 and April 1990. It concentrated on energy innovations in homes built to the Super Good Cents specification. All of the test homes have electric heat and mechanical ventilation systems. Seven different types of active ventilation systems are represented in the homes. Three of these system types are equipped with heat recovery devices, and are represented in approximately a quarter of the test homes. The potential for both natural and mechanical ventilation was measured. Potential structural leakage was measured by blower door testing. Flow rate and operating time of mechanical ventilation systems were measured with flow hoods and hour meters. Actual ventilation was measured by using a passive tracer gas technique for several weeks during the heating season and at times of normal occupancy.

  8. Diurnal cycle of convective activity over ocean in the Tropics

    NASA Astrophysics Data System (ADS)

    Hara, Masayuki; Takahashi, Hiroshi; Fujita, Mikiko

    2015-04-01

    In this study, the influence of land mass on the diurnal cycle of convective activity is analyzed. 17-year observation of Tropical Rainfall Measuring Mission (TRMM) 2A25 V7 (1998-2014) Estimated Surface Rain (ESR) is used as a precipitation data. We rasterized the ESR data into 0.1x0.1 degree mesh for each local solar time (LST) of observation. U. S. Geological Survey Global Land Cover Characterization (USGS GLCC) Version 2 data is used for determining the shoreline. As the many studies indicated, the precipitation peak time is about 3 LST over the Tropical ocean near the coastline, and about 15 LST over the Tropical land. Although the total precipitation amount strongly depends on the distance from the shoreline, The phase of the diurnal cycle over the ocean is not dependent on the distance from the nearest shoreline. We also performed a series of ideal experiments with a quasi-three dimensional domain using non-hydrostatic atmospheric model to elucidate the detailed feature of the relationship between land-sea contrast and local convection systems.

  9. Intertwined arbovirus transmission activity: reassessing the transmission cycle paradigm

    PubMed Central

    Diaz, Luis A.; Flores, Fernando S.; Quaglia, Agustín; Contigiani, Marta S.

    2013-01-01

    Arboviruses are emerging/reemerging infectious agents worldwide. The factors within this scenario include vector and host population fluctuations, climatic changes, anthropogenic activities that disturb ecosystems, an increase in international flights, human mobility, and genetic mutations that allow spill-over phenomenon. Arboviruses are maintained by biologic transmission among vectors and hosts. Sometimes this biological transmission is specific and includes one vector and host species such as Chikungunya (CHIKV), Dengue (DENV), and urban Yellow Fever (YFV). However, most of the arboviruses are generalist and they use many vectors and hosts species. From this perspective, arboviruses are maintained through a transmission network rather than a transmission cycle. This allows us to understand the complexity and dynamics of the transmission and maintenance of arboviruses in the ecosystems. The old perspective that arboviruses are maintained in close and stable transmission cycles should be modified by a new more integrative and dynamic idea, representing the real scenario where biological interactions have a much broader representation, indicating the constant adaptability of the biological entities. PMID:23335900

  10. Prevention of cardiolipin oxidation and fatty acid cycling as two antioxidant mechanisms of cationic derivatives of plastoquinone (SkQs).

    PubMed

    Skulachev, Vladimir P; Antonenko, Yury N; Cherepanov, Dmitry A; Chernyak, Boris V; Izyumov, Denis S; Khailova, Ludmila S; Klishin, Sergey S; Korshunova, Galina A; Lyamzaev, Konstantin G; Pletjushkina, Olga Yu; Roginsky, Vitaly A; Rokitskaya, Tatiana I; Severin, Fedor F; Severina, Inna I; Simonyan, Ruben A; Skulachev, Maxim V; Sumbatyan, Natalia V; Sukhanova, Evgeniya I; Tashlitsky, Vadim N; Trendeleva, Tatyana A; Vyssokikh, Mikhail Yu; Zvyagilskaya, Renata A

    2010-01-01

    The present state of the art in studies on the mechanisms of antioxidant activities of mitochondria-targeted cationic plastoquinone derivatives (SkQs) is reviewed. Our experiments showed that these compounds can operate as antioxidants in two quite different ways, i.e. (i) by preventing peroxidation of cardiolipin [Antonenko et al., Biochemistry (Moscow) 73 (2008) 1273-1287] and (ii) by fatty acid cycling resulting in mild uncoupling that inhibits the formation of reactive oxygen species (ROS) in mitochondrial State 4 [Severin et al. Proc. Natl. Acad. Sci. USA 107 (2009), 663-668]. The quinol and cationic moieties of SkQ are involved in cases (i) and (ii), respectively. In case (i) SkQH2 interrupts propagation of chain reactions involved in peroxidation of unsaturated fatty acid residues in cardiolipin, the formed SkQ- being reduced back to SkQH2 by heme bH of complex III in an antimycin-sensitive way. Molecular dynamics simulation showed that there are two stable conformations of SkQ1 with the quinol residue localized near peroxyl radicals at C9 or C13 of the linoleate residue in cardiolipin. In mechanism (ii), fatty acid cycling mediated by the cationic SkQ moiety is involved. It consists of (a) transmembrane movement of the fatty acid anion/SkQ cation pair and (b) back flows of free SkQ cation and protonated fatty acid. The cycling results in a protonophorous effect that was demonstrated in planar phospholipid membranes and liposomes. In mitochondria, the cycling gives rise to mild uncoupling, thereby decreasing membrane potential and ROS generation coupled to reverse electron transport in the respiratory chain. In yeast cells, dodecyltriphenylphosphonium (capital ES, Cyrillic12TPP), the cationic part of SkQ1, induces uncoupling that is mitochondria-targeted since capital ES, Cyrillic12TPP is specifically accumulated in mitochondria and increases the H+ conductance of their inner membrane. The conductance of the outer cell membrane is not affected by capital ES

  11. High temperature abatement of acid gases from waste incineration. Part II: Comparative life cycle assessment study

    SciTech Connect

    Biganzoli, Laura; Racanella, Gaia; Marras, Roberto; Rigamonti, Lucia

    2015-01-15

    Highlights: • Two scenarios of acid gases removal in WTE plants were compared in an LCA study. • A detailed inventory based on primary data has been reported for the production of the new dolomitic sorbent. • Results show that the comparison between the two scenarios does not show systematic differences. • The potential impacts are reduced only if there is an increase in the energy efficiency of the WTE plant. - Abstract: The performances of a new dolomitic sorbent, named Depurcal®MG, to be directly injected at high temperature in the combustion chamber of Waste-To-Energy (WTE) plants as a preliminary stage of deacidification, were experimentally tested during full-scale commercial operation. Results of the experimentations were promising, and have been extensively described in Biganzoli et al. (2014). This paper reports the Life Cycle Assessment (LCA) study performed to compare the traditional operation of the plants, based on the sole sodium bicarbonate feeding at low temperature, with the new one, where the dolomitic sorbent is injected at high temperature. In the latter the sodium bicarbonate is still used, but at lower rate because of the decreased load of acid gases entering the flue gas treatment line. The major goal of the LCA was to make sure that a burden shifting was not taking place somewhere in the life cycle stages, as it might be the case when a new material is used in substitution of another one. According to the comparative approach, only the processes which differ between the two operational modes were included in the system boundaries. They are the production of the two reactants and the treatment of the corresponding solid residues arising from the neutralisation of acid gases. The additional CO{sub 2} emission at the stack of the WTE plant due to the activation of the sodium bicarbonate was also included in the calculation. Data used in the modelling of the foreground system are primary, derived from the experimental tests described in

  12. Viral activities and life cycles in deep subseafloor sediments.

    PubMed

    Engelhardt, Tim; Orsi, William D; Jørgensen, Bo Barker

    2015-12-01

    Viruses are highly abundant in marine subsurface sediments and can even exceed the number of prokaryotes. However, their activity and quantitative impact on microbial populations are still poorly understood. Here, we use gene expression data from published continental margin subseafloor metatranscriptomes to qualitatively assess viral diversity and activity in sediments up to 159 metres below seafloor (mbsf). Mining of the metatranscriptomic data revealed 4651 representative viral homologues (RVHs), representing 2.2% of all metatranscriptome sequence reads, which have close translated homology (average 77%, range 60-97% amino acid identity) to viral proteins. Archaea-infecting RVHs are exclusively detected in the upper 30 mbsf, whereas RVHs for filamentous inoviruses predominate in the deepest sediment layers. RVHs indicative of lysogenic phage-host interactions and lytic activity, notably cell lysis, are detected at all analysed depths and suggest a dynamic virus-host association in the marine deep biosphere studied here. Ongoing lytic viral activity is further indicated by the expression of clustered, regularly interspaced, short palindromic repeat-associated cascade genes involved in cellular defence against viral attacks. The data indicate the activity of viruses in subsurface sediment of the Peruvian margin and suggest that viruses indeed cause cell mortality and may play an important role in the turnover of subseafloor microbial biomass. PMID:26109514

  13. Metallo-beta-lactamase inhibitory activity of phthalic acid derivatives.

    PubMed

    Hiraiwa, Yukiko; Morinaka, Akihiro; Fukushima, Takayoshi; Kudo, Toshiaki

    2009-09-01

    4-Butyl-3-methylphthalic acid was recognized as a metallo-beta-lactamase inhibitor. The structure-activity relationship study of substituted phthalic acids afforded 3-phenylphthalic acid derivatives as potent IMP-1 inhibitors. On the other hand, 3-substituted with 4-hydroxyphenyl phthalic acid derivative displayed a potent combination effect with biapenem (BIPM) against Pseudomonas aeruginosa that produce IMP-1. PMID:19632114

  14. Dietary Deficiency of Essential Amino Acids Rapidly Induces Cessation of the Rat Estrous Cycle

    PubMed Central

    Bannai, Makoto; Ichimaru, Toru; Nakano, Sayako; Murata, Takuya; Higuchi, Takashi; Takahashi, Michio

    2011-01-01

    Reproductive functions are regulated by the sophisticated coordination between the neuronal and endocrine systems and are sustained by a proper nutritional environment. Female reproductive function is vulnerable to effects from dietary restrictions, suggesting a transient adaptation that prioritizes individual survival over reproduction until a possible future opportunity for satiation. This adaptation could also partially explain the existence of amenorrhea in women with anorexia nervosa. Because amino acid nutritional conditions other than caloric restriction uniquely alters amino acid metabolism and affect the hormonal levels of organisms, we hypothesized that the supply of essential amino acids in the diet plays a pivotal role in the maintenance of the female reproductive system. To test this hypothesis, we examined ovulatory cyclicity in female rats under diets that were deficient in threonine, lysine, tryptophan, methionine or valine. Ovulatory cyclicity was monitored by daily cytological evaluations of vaginal smears. After continuous feeding of the deficient diet, a persistent diestrus or anovulatory state was induced most quickly by the valine-deficient diet and most slowly by the lysine-deficient diet. A decline in the systemic insulin-like growth factor 1 level was associated with a dietary amino acid deficiency. Furthermore, a paired group of rats that were fed an isocaloric diet with balanced amino acids maintained normal estrous cyclicity. These disturbances of the estrous cycle by amino acid deficiency were quickly reversed by the consumption of a normal diet. The continuous anovulatory state in this study is not attributable to a decrease in caloric intake but to an imbalance in the dietary amino acid composition. With a shortage of well-balanced amino acid sources, reproduction becomes risky for both the mother and the fetus. It could be viewed as an adaptation to the diet, diverting resources away from reproduction and reallocating them to

  15. A New Simple Dynamo Model for Stellar Activity Cycle

    NASA Astrophysics Data System (ADS)

    Yokoi, N.; Schmitt, D.; Pipin, V.; Hamba, F.

    2016-06-01

    A new simple dynamo model for stellar activity cycle is proposed. By considering an inhomogeneous flow effect on turbulence, it is shown that turbulent cross helicity (velocity–magnetic-field correlation) enters the expression of turbulent electromotive force as the coupling coefficient for the mean absolute vorticity. This makes the present model different from the current α–Ω-type models in two main ways. First, in addition to the usual helicity (α) and turbulent magnetic diffusivity (β) effects, we consider the cross-helicity effect as a key ingredient of the dynamo process. Second, the spatiotemporal evolution of cross helicity is solved simultaneously with the mean magnetic fields. The basic scenario is as follows. In the presence of turbulent cross helicity, the toroidal field is induced by the toroidal rotation. Then, as in usual models, the α effect generates the poloidal field from the toroidal one. This induced poloidal field produces a turbulent cross helicity whose sign is opposite to the original one (negative production). With this cross helicity of the reversed sign, a reversal in field configuration starts. Eigenvalue analyses of the simplest possible model give a butterfly diagram, which confirms the above scenario and the equatorward migrations, the phase relationship between the cross helicity and magnetic fields. These results suggest that the oscillation of the turbulent cross helicity is a key for the activity cycle. The reversal of the cross helicity is not the result of the magnetic-field reversal, but the cause of the latter. This new model is expected to open up the possibility of the mean-field or turbulence closure dynamo approaches.

  16. Micelles Protect and Concentrate Activated Acetic Acid

    NASA Astrophysics Data System (ADS)

    Todd, Zoe; House, C.

    2014-01-01

    As more and more exoplanets are discovered and the habitability of such planets is considered, one can turn to searching for the origin of life on Earth in order to better understand what makes a habitable planet. Activated acetic acid, or methyl thioacetate, has been proposed to be central to the origin of life on Earth, and also as an important energy currency molecule in early cellular evolution. We have investigated the hydrolysis of methyl thioacetate under various conditions. Its uncatalyzed rate of hydrolysis is about three orders of magnitude faster (K = 0.00663 s^-1; 100°C, pH 7.5, concentration = 0.33mM) than published rates for its catalyzed production making it unlikely to accumulate under prebiotic conditions. However, we also observed that methyl thioacetate was protected from hydrolysis when inside its own hydrophobic droplets. We found that methyl thioacetate protection from hydrolysis was also possible in droplets of hexane and in the membranes of nonanoic acid micelles. Thus, the hydrophobic regions of prebiotic micelles and early cell membranes could have offered a refuge for this energetic molecule increasing its lifetime in close proximity to the reactions for which it would be needed. Methyl thioacetate could thus be important for the origin of life on Earth and perhaps for better understanding the potential habitability of other planets.

  17. Modulation of fatty acid metabolism and tricarboxylic acid cycle to enhance the lipstatin production through medium engineering in Streptomyces toxytricini.

    PubMed

    Kumar, Punit; Dubey, Kashyap Kumar

    2016-08-01

    This work investigated the potential of medium engineering to obtain maximum biomass, non-conventional carbon sources for lipstatin production and modulation of tricarboxylic acid (TCA) cycle to promote lipstatin synthesis. It was found that 2:3 carbon and nitrogen ratio, produced maximum biomass of 7.9g/L in growth medium and 6.6g/L in pre-seed medium. Among the studied non-conventional carbon sources i.e., soya flour 40g/L and sesame oil 30mL/L were found producing 1109.37mg/L (1.24-fold of control) and 1196.75mg/L (1.34-fold of control) lipstatin respectively. Supplementation of TCA cycle intermediates revealed that NADH and succinic acid showed lipstatin production to 1132.99mg/L and 1171.10mg/L respectively. Experimental outcome was validated in 7L bioreactor and produced 2242.63mg/L lipstatin which was ∼14% higher than shake flask. PMID:26897471

  18. C-Myc Induced Compensated Cardiac Hypertrophy Increases Free Fatty Acid Utilization for the Citric Acid Cycle

    SciTech Connect

    Olson, Aaron; Ledee, Dolena; Iwamoto, Kate; Kajimoto, Masaki; O'Kelly-Priddy, Colleen M.; Isern, Nancy G.; Portman, Michael A.

    2013-02-01

    The protooncogene C-Myc (Myc) regulates cardiac hypertrophy. Myc promotes compensated cardiac function, suggesting that the operative mechanisms differ from those leading to heart failure. Myc regulation of substrate metabolism is a reasonable target, as Myc alters metabolism in other tissues. We hypothesize that Myc-induced shifts in substrate utilization signal and promote compensated hypertrophy. We used cardiac specific Myc-inducible C57/BL6 male mice between 4-6 months old that develop hypertrophy with tamoxifen (tam). Isolated working hearts and 13Carbon (13C )-NMR were used to measure function and fractional contributions (Fc) to the citric acid cycle by using perfusate containing 13C-labeled free fatty acids, acetoacetate, lactate, unlabeled glucose and insulin. Studies were performed at pre-hypertrophy (3-days tam, 3dMyc), established hypertrophy (7-days tam, 7dMyc) or vehicle control (cont). Non-transgenic siblings (NTG) received 7-days tam or vehicle to assess drug effect. Hypertrophy was confirmed by echocardiograms and heart weights. Western blots were performed on key metabolic enzymes. Hypertrophy occurred in 7dMyc only. Cardiac function did not differ between groups. Tam alone did not affect substrate contribution in NTG. Substrate utilization was not significantly altered in 3dMyc versus cont. The free fatty acid FC was significantly greater in 7dMyc vs cont with decreased unlabeled Fc, which is predominately exogenous glucose. Free fatty acid flux to the citric acid cycle increased while lactate flux was diminished in 7dMyc compared to cont. Total protein levels of a panel of key metabolic enzymes were unchanged; however total protein O-GlcNAcylation was increased in 7dMyc. Substrate utilization changes did not precede hypertrophy; therefore they are not the primary signal for cardiac growth in this model. Free fatty acid utilization and oxidation increase at established hypertrophy. Understanding the mechanisms whereby this change maintained

  19. Lead-acid battery with improved cycle life and increased efficiency for lead leveling application and electric road vehicles

    NASA Astrophysics Data System (ADS)

    Winsel, A.; Schulz, J.; Guetlich, K. F.

    1983-11-01

    Lifetime and efficiency of lead acid batteries are discussed. A gas lift pump was used to prevent acid stratification and to reduce the charging factor (down to 1.03 to 1.05). A re-expansion method was applied and an expander depot and a compound separation were built in. Cycle life is increased from 700 cycles to 1690 cycles. Efficiency is increased by energy and time saving due to the reduced charging factor and by the use of a recombination stopper and a charge indicator with remote control. It is suggested that the lead acid system is still one of the best possibilities for electric road vehicle applications.

  20. Synthesis and anticancer activity of novel fluorinated asiatic acid derivatives.

    PubMed

    Gonçalves, Bruno M F; Salvador, Jorge A R; Marín, Silvia; Cascante, Marta

    2016-05-23

    A series of novel fluorinated Asiatic Acid (AA) derivatives were successfully synthesized, tested for their antiproliferative activity against HeLa and HT-29 cell lines, and their structure activity relationships were evaluated. The great majority of fluorinated derivatives showed stronger antiproliferative activity than AA in a concentration dependent manner. The most active compounds have a pentameric A-ring containing an α,β-unsaturated carbonyl group. The compounds with better cytotoxic activity were then evaluated against MCF-7, Jurkat, PC-3, A375, MIA PaCa-2 and BJ cell lines. Derivative 14 proved to be the most active compound among all tested derivatives and its mechanism of action was further investigated in HeLa cell line. The results showed that compound 14 induced cell cycle arrest in G0/G1 stage as a consequence of up-regulation of p21(cip1/waf1) and p27(kip1) and down-regulation of cyclin D3 and Cyclin E. Furthermore, compound 14 was found to induce caspase driven-apoptosis with activation of caspases-8 and caspase-3 and the cleavage of PARP. The cleavage of Bid into t-Bid, the up-regulation of Bax and the down-regulation of Bcl-2 were also observed after treatment of HeLa cells with compound 14. Taken together, these mechanistic studies revealed the involvement of extrinsic and intrinsic pathways in the apoptotic process induced by compound 14. Importantly, the antiproliferative activity of this compound on the non-tumor BJ human fibroblast cell line is weaker than in the tested cancer cell lines. The enhanced potency (between 45 and 90-fold more active than AA in a panel of cancer cell lines) and selectivity of this new AA derivative warrant further preclinical evaluation. PMID:26974379

  1. "JCE" Classroom Activity #109: My Acid Can Beat Up Your Acid!

    ERIC Educational Resources Information Center

    Putti, Alice

    2011-01-01

    In this guided-inquiry activity, students investigate the ionization of strong and weak acids. Bead models are used to study acid ionization on a particulate level. Students analyze seven strong and weak acid models and make generalizations about the relationship between acid strength and dissociation. (Contains 1 table and 2 figures.)

  2. Factors Affecting the Pathways of Glucose Catabolism and the Tricarboxylic Acid Cycle in Pseudomonas natriegens

    PubMed Central

    Cho, H. W.; Eagon, R. G.

    1967-01-01

    Less than 50% of theoretical oxygen uptake was observed when glucose was dissimilated by resting cells of Pseudomonas natriegens. Low oxygen uptakes were also observed when a variety of other substrates were dissimilated. When uniformly labeled glucose-14C was used as substrate, 56% of the label was shown to accumulate in these resting cells. This material consisted, in part, of a polysaccharide which, although it did not give typical glycogen reactions, yielded glucose after its hydrolysis. Resting cells previously cultivated on media containing glucose completely catabolized glucose and formed a large amount of pyruvate within 30 min. Resting cells cultivated in the absence of glucose catabolized glucose more slowly and produced little pyruvate. Pyruvate disappeared after further incubation. In this latter case, experimental results suggested (i) that pyruvate was converted to other acidic products (e.g., acetate and lactate) and (ii) that pyruvate was further catabolized via the tricarboxylic acid cycle. Growth on glucose repressed the level of key enzymes of the tricarboxylic acid cycle and of lactic dehydrogenase. Growth on glycerol stimulated the level of these enzymes. A low level of isocitratase, but not malate synthetase, was noted in extracts of glucose-grown cells. Isocitric dehydrogenase was shown to require nicotinamide adenine dinucleotide phosphate (NADP) as cofactor. Previous experiments have shown that reduced NADP (NADPH2) cannot be readily oxidized and that pyridine nucleotide transhydrogenase could not be detected in extracts. It was concluded that acetate, lactate, and pyruvate accumulate under growing conditions when P. natriegens is cultivated on glucose (i) because of a rapid initial catabolism of glucose via an aerobic glycolytic pathway and (ii) because of a sluggishly functioning tricarboxylic acid cycle due to the accumulation of NADPH2 and to repressed levels of key enzymes. PMID:4381634

  3. An acidic sphingomyelinase Type C activity from Mycobacterium tuberculosis.

    PubMed

    Castro-Garza, Jorge; González-Salazar, Francisco; Quinn, Frederick D; Karls, Russell K; De La Garza-Salinas, Laura Hermila; Guzmán-de la Garza, Francisco J; Vargas-Villarreal, Javier

    2016-01-01

    Sphingomyelinases (SMases) catalyze the hydrolysis of sphingomyelin to ceramide and phosphorylcholine. Sphingolipids are recognized as diverse and dynamic regulators of a multitude of cellular processes mediating cell cycle control, differentiation, stress response, cell migration, adhesion, and apoptosis. Bacterial SMases are virulence factors for several species of pathogens. Whole cell extracts of Mycobacterium tuberculosis strains H37Rv and CDC1551 were assayed using [N-methyl-(14)C]-sphingomyelin as substrate. Acidic Zn(2+)-dependent SMase activity was identified in both strains. Peak SMase activity was observed at pH 5.5. Interestingly, overall SMase activity levels from CDC1551 extracts are approximately 1/3 of those of H37Rv. The presence of exogenous SMase produced by M. tuberculosis during infection may interfere with the normal host inflammatory response thus allowing the establishment of infection and disease development. This Type C activity is different from previously identified M. tuberculosis SMases. Defining the biochemical characteristics of M. tuberculosis SMases helps to elucidate the roles that these enzymes play during infection and disease. PMID:26948102

  4. Antioxidant and antimicrobial activities of cinnamic acid derivatives.

    PubMed

    Sova, M

    2012-07-01

    Cinnamic acid is an organic acid occurring naturally in plants that has low toxicity and a broad spectrum of biological activities. In the search for novel pharmacologically active compounds, cinnamic acid derivatives are important and promising compounds with high potential for development into drugs. Many cinnamic acid derivatives, especially those with the phenolic hydroxyl group, are well-known antioxidants and are supposed to have several health benefits due to their strong free radical scavenging properties. It is also well known that cinnamic acid has antimicrobial activity. Cinnamic acid derivatives, both isolated from plant material and synthesized, have been reported to have antibacterial, antiviral and antifungal properties. Acids, esters, amides, hydrazides and related derivatives of cinnamic acid with such activities are here reviewed. PMID:22512578

  5. Sodium phenylbutyrate decreases plasma branched-chain amino acids in patients with urea cycle disorders.

    PubMed

    Burrage, Lindsay C; Jain, Mahim; Gandolfo, Laura; Lee, Brendan H; Nagamani, Sandesh C S

    2014-01-01

    Sodium phenylbutyrate (NaPBA) is a commonly used medication for the treatment of patients with urea cycle disorders (UCDs). Previous reports involving small numbers of patients with UCDs have shown that NaPBA treatment can result in lower plasma levels of the branched-chain amino acids (BCAA) but this has not been studied systematically. From a large cohort of patients (n=553) with UCDs enrolled in the Longitudinal Study of Urea Cycle Disorders, a collaborative multicenter study of the Urea Cycle Disorders Consortium, we evaluated whether treatment with NaPBA leads to a decrease in plasma BCAA levels. Our analysis shows that NaPBA use independently affects the plasma BCAA levels even after accounting for multiple confounding covariates. Moreover, NaPBA use increases the risk for BCAA deficiency. This effect of NaPBA seems specific to plasma BCAA levels, as levels of other essential amino acids are not altered by its use. Our study, in an unselected population of UCD subjects, is the largest to analyze the effects of NaPBA on BCAA metabolism and potentially has significant clinical implications. Our results indicate that plasma BCAA levels should to be monitored in patients treated with NaPBA since patients taking the medication are at increased risk for BCAA deficiency. On a broader scale, these findings could open avenues to explore NaPBA as a therapy in maple syrup urine disease and other common complex disorders with dysregulation of BCAA metabolism. PMID:25042691

  6. Exercise, physical activity, and exertion over the business cycle.

    PubMed

    Colman, Gregory; Dave, Dhaval

    2013-09-01

    Shifts in time and income constraints over economic expansions and contractions would be expected to affect individuals' behaviors. We explore the impact of the business cycle on individuals' exercise, time use, and total physical exertion, utilizing information on 112,000 individual records from the 2003-2010 American Time Use Surveys. In doing so, we test a key causal link that has been hypothesized in the relation between unemployment and health, but not heretofore assessed. Using more precise measures of exercise (and other activities) than previous studies, we find that as work-time decreases during a recession, recreational exercise, TV-watching, sleeping, childcare, and housework increase. This, however, does not compensate for the decrease in work-related exertion due to job-loss, and total physical exertion declines. These effects are strongest among low-educated men, which is validating given that employment in the Great Recession has declined most within manufacturing, mining, and construction. We also find evidence of intra-household spillover effects, wherein individuals respond to shifts in spousal employment conditional on their own labor supply. The decrease in total physical activity during recessions is especially problematic for vulnerable populations concentrated in boom-and-bust industries, and may have longer-term effects on obesity and related health outcomes. PMID:23906116

  7. Perillyl alcohol and perillic acid induced cell cycle arrest and apoptosis in non small cell lung cancer cells.

    PubMed

    Yeruva, Laxmi; Pierre, Keon J; Elegbede, Abiodun; Wang, Robert C; Carper, Stephen W

    2007-11-18

    Plant products such as perillyl alcohol have been reported to possess anti-tumor activities against a number of human cancers though the mechanism of action has not yet been elucidated. The effects of perillyl alcohol (POH) and its metabolite perillic acid (PA) on the proliferation of non small cell lung cancer (NSCLC, A549, and H520) cells were investigated. Both POH and PA elicited dose-dependent cytotoxicity, induced cell cycle arrest and apoptosis with increasing expression of bax, p21 and caspase-3 activity in both the cell lines. Combination studies revealed that exposing the cells to an IC50 concentration of POH or PA sensitized the cells to cisplatin and radiation in a dose-dependent manner. These results indicate that POH and PA in combination therapy may have chemotherapeutic value against NSCLC. PMID:17888568

  8. Acaricidal activity of usnic acid and sodium usnic acid against Psoroptes cuniculi in vitro.

    PubMed

    Shang, Xiaofei; Miao, Xiaolou; Lv, Huiping; Wang, Dongsheng; Zhang, Jiqin; He, Hua; Yang, Zhiqiang; Pan, Hu

    2014-06-01

    Usnic acid, a major active compound in lichens, was first isolated in 1884. Since then, usnic acid and its sodium salt (sodium usnic acid) have been used in medicine, perfumery, cosmetics, and other industries due to its extensive biological activities. However, its acaricidal activity has not been studied. In this paper, we investigated the acaricidal activity of usnic acid and sodium usnic acid against Psoroptes cuniculi in vitro. After evaluating the acaricidal activity and toxicity of usnic acid and sodium usnic acid in vitro, the results showed that at doses of 250, 125, and 62.5 mg/ml, usnic acid and sodium usnic acid can kill mites with 91.67, 85.00, and 55.00% and 100, 100, and 60.00% mortality after treatment 24 h. The LT50 values were 4.208, 8.249, and 16.950 h and 3.712, 7.339, and 15.773 h for usnic acid and sodium usnic acid, respectively. Sodium usnic acid has a higher acaricidal activity than usnic acid, which may be related to the difference in their structures. PMID:24770718

  9. Ecophysiology of Fe-Cycling Bacteria in Acidic Sediments ▿ †

    PubMed Central

    Lu, Shipeng; Gischkat, Stefan; Reiche, Marco; Akob, Denise M.; Hallberg, Kevin B.; Küsel, Kirsten

    2010-01-01

    Using a combination of cultivation-dependent and -independent methods, this study aimed to elucidate the diversity of microorganisms involved in iron cycling and to resolve their in situ functional links in sediments of an acidic lignite mine lake. Using six different media with pH values ranging from 2.5 to 4.3, 117 isolates were obtained that grouped into 38 different strains, including 27 putative new species with respect to the closest characterized strains. Among the isolated strains, 22 strains were able to oxidize Fe(II), 34 were able to reduce Fe(III) in schwertmannite, the dominant iron oxide in this lake, and 21 could do both. All isolates falling into the Gammaproteobacteria (an unknown Dyella-like genus and Acidithiobacillus-related strains) were obtained from the top acidic sediment zones (pH 2.8). Firmicutes strains (related to Bacillus and Alicyclobacillus) were only isolated from deep, moderately acidic sediment zones (pH 4 to 5). Of the Alphaproteobacteria, Acidocella-related strains were only isolated from acidic zones, whereas Acidiphilium-related strains were isolated from all sediment depths. Bacterial clone libraries generally supported and complemented these patterns. Geobacter-related clone sequences were only obtained from deep sediment zones, and Geobacter-specific quantitative PCR yielded 8 × 105 gene copy numbers. Isolates related to the Acidobacterium, Acidocella, and Alicyclobacillus genera and to the unknown Dyella-like genus showed a broad pH tolerance, ranging from 2.5 to 5.0, and preferred schwertmannite to goethite for Fe(III) reduction. This study highlighted the variety of acidophilic microorganisms that are responsible for iron cycling in acidic environments, extending the results of recent laboratory-based studies that showed this trait to be widespread among acidophiles. PMID:20971876

  10. Deciphering Carbamoylpolyoxamic Acid Biosynthesis Reveals Unusual Acetylation Cycle Associated with Tandem Reduction and Sequential Hydroxylation.

    PubMed

    Qi, Jianzhao; Wan, Dan; Ma, Hongmin; Liu, Yuanzhen; Gong, Rong; Qu, Xudong; Sun, Yuhui; Deng, Zixin; Chen, Wenqing

    2016-08-18

    Polyoxin, produced by Streptomcyes cacaoi var. asoensis and Streptomyces aureochromogenes, contains two non-proteinogenic amino acids, carbamoylpolyoxamic acid (CPOAA) and polyoximic acid. Although the CPOAA moiety is highly unusual, its biosynthetic logic has remained enigmatic for decades. Here, we address CPOAA biosynthesis by reconstitution of its pathway. We demonstrated that its biosynthesis is initiated by a versatile N-acetyltransferase, PolN, catalyzing L-glutamate (1) to N-acetyl glutamate (2). Remarkably, we verified that PolM, a previously annotated dehydrogenase, catalyzes an unprecedented tandem reduction of acyl-phosphate to aldehyde, and subsequently to alcohol. We also unveiled a distinctive acetylation cycle catalyzed by PolN to synthesize α-amino-δ-hydroxyvaleric acid (6). Finally, we report that PolL is capable of converting a rare sequential hydroxylation of α-amino-δ-carbamoylhydroxyvaleric acid (7) to CPOAA. PolL represents an intriguing family of Fe(II)-dependent α-ketoglutarate dioxygenase with a cupin fold. These data illustrate several novel enzymatic reactions, and also set a foundation for rational pathway engineering for polyoxin production. PMID:27541195

  11. THE REGENERATIVE CYCLE OF MOTONEURONS, WITH SPECIAL REFERENCE TO PHOSPHATASE ACTIVITY

    PubMed Central

    Bodian, David; Mellors, Robert C.

    1945-01-01

    1. The regenerative cycle of motoneurons after axon amputation is described, and an attempt made to correlate morphological and chemical events in cell bodies with the growth requirements of regenerating axons. 2. The "normal" pattern of Nissl material in the cell is considered to be the resultant of a steady state in cytoplasmic nucleoprotein. Chromatol is then interpreted as a shift of the balance of nucleoprotein turnover in fa of degradation. The rapid early depletion of Nissl substance in chromatolysis is ascribed to the increased growth requirements created by the active early sprouting of the regenerating axon. Acid phosphatase activity begins to increase above normal levels during this period in the region of nucleopro degradation. 3. The recovery period of chromatolysis due to axon section coincide in time with the phase of gradual lengthening of the regenerating axon, and is thought to represent a gradual restoration of the balance of nucleoprotein degradation and synthesis. During this period acid phosphatase activity is at its height in the region of transformation of Nissl substance, later declines to normal levels when the original pattern of Nissl bodie is restored. 4. The transformation of cytoplasmic nucleoprotein which occurs in chromatolysis after axon section, with the probable liberation (46), and depletion (44), of nucleotides, associated with acid phosphatase activity, suggests the hypothesis that liberated nucleotides or nucleotide compounds may pass down the axon in which they take part in enzymatic activity associated with growth and organization of the newly formed axon. This type of activity would not be incompatible with the ideas previously expressed (30, 81) of a continual function of Nissl substance in maintaining the integrity of the large volume of cytoplasm represented by the axon, as well perhaps as the associated myelin sheath. PMID:19871470

  12. Acid phosphatase and protease activities in immobilized rat skeletal muscles

    NASA Technical Reports Server (NTRS)

    Witzmann, F. A.; Troup, J. P.; Fitts, R. H.

    1982-01-01

    The effect of hind-limb immobilization on selected Iysosomal enzyme activities was studied in rat hing-limb muscles composed primarily of type 1. 2A, or 2B fibers. Following immobilization, acid protease and acid phosphatase both exhibited signifcant increases in their activity per unit weight in all three fiber types. Acid phosphatase activity increased at day 14 of immobilization in the three muscles and returned to control levels by day 21. Acid protease activity also changed biphasically, displaying a higher and earlier rise than acid phosphatase. The pattern of change in acid protease, but not acid phosphatase, closely parallels observed muscle wasting. The present data therefore demonstrate enhanced proteolytic capacity of all three fiber types early during muscular atrophy. In addition, the data suggest a dependence of basal hydrolytic and proteolytic activities and their adaptive response to immobilization on muscle fiber composition.

  13. Long-Range Solar Activity Predictions: A Reprieve from Cycle #24's Activity

    NASA Technical Reports Server (NTRS)

    Richon, K.; Schatten, K.

    2003-01-01

    We discuss the field of long-range solar activity predictions and provide an outlook into future solar activity. Orbital predictions for satellites in Low Earth Orbit (LEO) depend strongly on exospheric densities. Solar activity forecasting is important in this regard, as the solar ultra-violet (UV) and extreme ultraviolet (EUV) radiations inflate the upper atmospheric layers of the Earth, forming the exosphere in which satellites orbit. Rather than concentrate on statistical, or numerical methods, we utilize a class of techniques (precursor methods) which is founded in physical theory. The geomagnetic precursor method was originally developed by the Russian geophysicist, Ohl, using geomagnetic observations to predict future solar activity. It was later extended to solar observations, and placed within the context of physical theory, namely the workings of the Sun s Babcock dynamo. We later expanded the prediction methods with a SOlar Dynamo Amplitude (SODA) index. The SODA index is a measure of the buried solar magnetic flux, using toroidal and poloidal field components. It allows one to predict future solar activity during any phase of the solar cycle, whereas previously, one was restricted to making predictions only at solar minimum. We are encouraged that solar cycle #23's behavior fell closely along our predicted curve, peaking near 192, comparable to the Schatten, Myers and Sofia (1996) forecast of 182+/-30. Cycle #23 extends from 1996 through approximately 2006 or 2007, with cycle #24 starting thereafter. We discuss the current forecast of solar cycle #24, (2006-2016), with a predicted smoothed F10.7 radio flux of 142+/-28 (1-sigma errors). This, we believe, represents a reprieve, in terms of reduced fuel costs, etc., for new satellites to be launched or old satellites (requiring reboosting) which have been placed in LEO. By monitoring the Sun s most deeply rooted magnetic fields; long-range solar activity can be predicted. Although a degree of uncertainty

  14. Commercial Activated Carbon for the Catalytic Production of Hydrogen via the Sulfur-Iodine Thermochemical Water Splitting Cycle

    SciTech Connect

    Daniel M. Ginosar; Lucia M. Petkovic; Kyle C. Burch

    2011-07-01

    Eight activated carbon catalysts were examined for their catalytic activity to decompose hydroiodic acid (HI) to produce hydrogen; a key reaction in the sulfur-iodine (S-I) thermochemical water splitting cycle. Activity was examined under a temperature ramp from 473 to 773 K. No statistically significant correlation was found between catalyst sample properties and catalytic activity. Four of the eight samples were examined for one week of continuous operation at 723 K. All samples appeared to be stable over the period of examination.

  15. The partial state-of-charge cycle performance of lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Takeuchi, Taisuke; Sawai, Ken; Tsuboi, Yuichi; Shiota, Masashi; Ishimoto, Shinji; Hirai, Nobumitsu; Osumi, Shigeharu

    Negative plate lugs of flooded lead-acid battery were corroded during partial state-of-charge (PSoC) pattern cycle life tests simulated from stop and go vehicle driving. Potential step was applied to Pb-Ca-Sn alloy electrode at various potential and time regimes, and the electrode surface was observed by in situ electrochemical atomic force microscope (EC-AFM) to investigate the corrosion mechanisms during the potential step cycles. It was found out that the severe corrosion occurs when the oxidation of Pb to PbSO 4 and partial reduction of passive layer of PbSO 4 take turns many times. It was also found out that the periodic full charge, the optimization of the alloy composition, addition of the material that may make the reaction mechanism change to electrolyte were effective to suppress the corrosion rate.

  16. Transport and cycling of iron and hydrogen peroxide in a freshwater stream: Influence of organic acids

    USGS Publications Warehouse

    Scott, D.T.; Runkel, R.L.; McKnight, Diane M.; Voelker, B.M.; Kimball, B.A.; Carraway, E.R.

    2003-01-01

    An in-stream injection of two dissolved organic acids (phthalic and aspartic acids) was performed in an acidic mountain stream to assess the effects of organic acids on Fe photoreduction and H2O2 cycling. Results indicate that the fate of Fe is dependent on a net balance of oxidative and reductive processes, which can vary over a distance of several meters due to changes in incident light and other factors. Solution phase photoreduction rates were high in sunlit reaches and were enhanced by the organic acid addition but were also limited by the amount of ferric iron present in the water column. Fe oxide photoreduction from the streambed and colloids within the water column resulted in an increase in the diurnal load of total filterable Fe within the experimental reach, which also responded to increases in light and organic acids. Our results also suggest that Fe(II) oxidation increased in response to the organic acids, with the result of offsetting the increase in Fe(II) from photoreductive processes. Fe(II) was rapidly oxidized to Fe(III) after sunset and during the day within a well-shaded reach, presumably through microbial oxidation. H2O 2, a product of dissolved organic matter photolysis, increased downstream to maximum concentrations of 0.25 ??M midday. Kinetic calculations show that the buildup of H2O2 is controlled by reaction with Fe(III), but this has only a small effect on Fe(II) because of the small formation rates of H2O2 compared to those of Fe(II). The results demonstrate the importance of incorporating the effects of light and dissolved organic carbon into Fe reactive transport models to further our understanding of the fate of Fe in streams and lakes.

  17. Gluconeogenesis is associated with high rates of tricarboxylic acid and pyruvate cycling in fasting northern elephant seals.

    PubMed

    Champagne, Cory D; Houser, Dorian S; Fowler, Melinda A; Costa, Daniel P; Crocker, Daniel E

    2012-08-01

    Animals that endure prolonged periods of food deprivation preserve vital organ function by sparing protein from catabolism. Much of this protein sparing is achieved by reducing metabolic rate and suppressing gluconeogenesis while fasting. Northern elephant seals (Mirounga angustirostris) endure prolonged fasts of up to 3 mo at multiple life stages. During these fasts, elephant seals maintain high levels of activity and energy expenditure associated with breeding, reproduction, lactation, and development while maintaining rates of glucose production typical of a postabsorptive mammal. Therefore, we investigated how fasting elephant seals meet the requirements of glucose-dependent tissues while suppressing protein catabolism by measuring the contribution of glycogenolysis, glycerol, and phosphoenolpyruvate (PEP) to endogenous glucose production (EGP) during their natural 2-mo postweaning fast. Additionally, pathway flux rates associated with the tricarboxylic acid (TCA) cycle were measured specifically, flux through phosphoenolpyruvate carboxykinase (PEPCK) and pyruvate cycling. The rate of glucose production decreased during the fast (F(1,13) = 5.7, P = 0.04) but remained similar to that of postabsorptive mammals. The fractional contributions of glycogen, glycerol, and PEP did not change with fasting; PEP was the primary gluconeogenic precursor and accounted for ∼95% of EGP. This large contribution of PEP to glucose production occurred without substantial protein loss. Fluxes through the TCA cycle, PEPCK, and pyruvate cycling were higher than reported in other species and were the most energetically costly component of hepatic carbohydrate metabolism. The active pyruvate recycling fluxes detected in elephant seals may serve to rectify gluconeogeneic PEP production during restricted anaplerotic inflow in these fasting-adapted animals. PMID:22673783

  18. A Krebs Cycle Component Limits Caspase Activation Rate through Mitochondrial Surface Restriction of CRL Activation.

    PubMed

    Aram, Lior; Braun, Tslil; Braverman, Carmel; Kaplan, Yosef; Ravid, Liat; Levin-Zaidman, Smadar; Arama, Eli

    2016-04-01

    How cells avoid excessive caspase activity and unwanted cell death during apoptotic caspase-mediated removal of large cellular structures is poorly understood. We investigate caspase-mediated extrusion of spermatid cytoplasmic contents in Drosophila during spermatid individualization. We show that a Krebs cycle component, the ATP-specific form of the succinyl-CoA synthetase β subunit (A-Sβ), binds to and activates the Cullin-3-based ubiquitin ligase (CRL3) complex required for caspase activation in spermatids. In vitro and in vivo evidence suggests that this interaction occurs on the mitochondrial surface, thereby limiting the source of CRL3 complex activation to the vicinity of this organelle and reducing the potential rate of caspase activation by at least 60%. Domain swapping between A-Sβ and the GTP-specific SCSβ (G-Sβ), which functions redundantly in the Krebs cycle, show that the metabolic and structural roles of A-Sβ in spermatids can be uncoupled, highlighting a moonlighting function of this Krebs cycle component in CRL activation. PMID:27052834

  19. Therapeutic inhibition of fatty acid oxidation in right ventricular hypertrophy: exploiting Randle’s cycle

    PubMed Central

    Fang, Yong-Hu; Piao, Lin; Hong, Zhigang; Toth, Peter T.; Marsboom, Glenn; Bache-Wiig, Peter; Rehman, Jalees

    2011-01-01

    Right ventricular hypertrophy (RVH) and RV failure are major determinants of prognosis in pulmonary hypertension and congenital heart disease. In RVH, there is a metabolic shift from glucose oxidation (GO) to glycolysis. Directly increasing GO improves RV function, demonstrating the susceptibility of RVH to metabolic intervention. However, the effects of RVH on fatty acid oxidation (FAO), the main energy source in adult myocardium, are unknown. We hypothesized that partial inhibitors of FAO (pFOXi) would indirectly increase GO and improve RV function by exploiting the reciprocal relationship between FAO and GO (Randle’s cycle). RVH was induced in adult Sprague-Dawley rats by pulmonary artery banding (PAB). pFOXi were administered orally to prevent (trimetazidine, 0.7 g/L for 8 weeks) or regress (ranolazine 20 mg/day or trimetazidine for 1 week, beginning 3 weeks post-PAB) RVH. Metabolic, hemodynamic, molecular, electrophysiologic, and functional comparisons with sham rats were performed 4 or 8 weeks post-PAB. Metabolism was quantified in RV working hearts, using a dual-isotope technique, and in isolated RV myocytes, using a Seahorse Analyzer. PAB-induced RVH did not cause death but reduced cardiac output and treadmill walking distance and elevated plasma epinephrine levels. Increased RV FAO in PAB was accompanied by increased carnitine palmitoyl-transferase expression; conversely, GO and pyruvate dehydrogenase (PDH) activity were decreased. pFOXi decreased FAO and restored PDH activity and GO in PAB, thereby increasing ATP levels. pFOXi reduced the elevated RV glycogen levels in RVH. Trimetazidine and ranolazine increased cardiac output and exercise capacity and attenuated exertional lactic acidemia in PAB. RV monophasic action potential duration and QTc interval prolongation in RVH normalized with trimetazidine. pFOXi also decreased the mild RV fibrosis seen in PAB. Maladaptive increases in FAO reduce RV function in PAB-induced RVH. pFOXi inhibit FAO, which

  20. Corrosive Resistant Diamond Coatings for the Acid Based Thermo-Chemical Hydrogen Cycles

    SciTech Connect

    Mark A. Prelas

    2009-06-25

    This project was designed to test diamond, diamond-like and related materials in environments that are expected in thermochemical cycles. Our goals were to build a High Temperature Corrosion Resistance (HTCR) test stand and begin testing the corrosive properties of barious materials in a high temperature acidic environment in the first year. Overall, we planned to test 54 samples each of diamond and diamond-like films (of 1 cm x 1 cm area). In addition we use a corrosion acceleration method by treating the samples at a temperature much larger than the expected operating temperature. Half of the samples will be treated with boron using the FEDOA process.

  1. A Summary of Closed Brayton Cycle Development Activities at NASA

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2009-01-01

    NASA has been involved in the development of Closed Brayton Cycle (CBC) power conversion technology since the 1960's. CBC systems can be coupled to reactor, isotope, or solar heat sources and offer the potential for high efficiency, long life, and scalability to high power. In the 1960's and 1970's, NASA and industry developed the 10 kW Brayton Rotating Unit (BRU) and the 2 kW mini-BRU demonstrating technical feasibility and performance, In the 1980's, a 25 kW CBC Solar Dynamic (SD) power system option was developed for Space Station Freedom and the technology was demonstrated in the 1990's as part of the 2 kW SO Ground Test Demonstration (GTD). Since the early 2000's, NASA has been pursuing CBC technology for space reactor applications. Before it was cancelled, the Jupiter Icy Moons Orbiter (HMO) mission was considering a 100 kWclass CBC system coupled to a gas-cooled fission reactor. Currently, CBC technology is being explored for Fission Surface Power (FSP) systems to provide base power on the moon and Mars. These recent activities have resulted in several CBC-related technology development projects including a 50 kW Alternator Test Unit, a 20 kW Dual Brayton Test Loop, a 2 kW Direct Drive Gas Brayton Test Loop, and a 12 kW FSP Power Conversion Unit design.

  2. Quantifying promoter activity during the developmental cycle of Chlamydia trachomatis

    PubMed Central

    Cong, Yanguang; Gao, Leiqiong; Zhang, Yan; Xian, Yuqi; Hua, Ziyu; Elaasar, Hiba; Shen, Li

    2016-01-01

    Chlamydia trachomatis is an important human pathogen that undergoes a characteristic development cycle correlating with stage-specific gene expression profiles. Taking advantage of recent developments in the genetic transformation in C. trachomatis, we constructed a versatile green fluorescent protein (GFP) reporter system to study the development-dependent function of C. trachomatis promoters in an attempt to elucidate the mechanism that controls C. trachomatis adaptability. We validated the use of the GFP reporter system by visualizing the activity of an early euo gene promoter. Additionally, we uncovered a new ompA promoter, which we named P3, utilizing the GFP reporter system combined with 5′ rapid amplification of cDNA ends (RACE), in vitro transcription assays, real-time quantitative RT-PCR (RT-qPCR), and flow cytometry. Mutagenesis of the P3 region verifies that P3 is a new class of C. trachomatis σ66-dependent promoter, which requires an extended −10 TGn motif for transcription. These results corroborate complex developmentally controlled ompA expression in C. trachomatis. The exploitation of genetically labeled C. trachomatis organisms with P3-driven GFP allows for the observation of changes in ompA expression in response to developmental signals. The results of this study could be used to complement previous findings and to advance understanding of C. trachomatis genetic expression. PMID:27263495

  3. Quantifying promoter activity during the developmental cycle of Chlamydia trachomatis.

    PubMed

    Cong, Yanguang; Gao, Leiqiong; Zhang, Yan; Xian, Yuqi; Hua, Ziyu; Elaasar, Hiba; Shen, Li

    2016-01-01

    Chlamydia trachomatis is an important human pathogen that undergoes a characteristic development cycle correlating with stage-specific gene expression profiles. Taking advantage of recent developments in the genetic transformation in C. trachomatis, we constructed a versatile green fluorescent protein (GFP) reporter system to study the development-dependent function of C. trachomatis promoters in an attempt to elucidate the mechanism that controls C. trachomatis adaptability. We validated the use of the GFP reporter system by visualizing the activity of an early euo gene promoter. Additionally, we uncovered a new ompA promoter, which we named P3, utilizing the GFP reporter system combined with 5' rapid amplification of cDNA ends (RACE), in vitro transcription assays, real-time quantitative RT-PCR (RT-qPCR), and flow cytometry. Mutagenesis of the P3 region verifies that P3 is a new class of C. trachomatis σ(66)-dependent promoter, which requires an extended -10 TGn motif for transcription. These results corroborate complex developmentally controlled ompA expression in C. trachomatis. The exploitation of genetically labeled C. trachomatis organisms with P3-driven GFP allows for the observation of changes in ompA expression in response to developmental signals. The results of this study could be used to complement previous findings and to advance understanding of C. trachomatis genetic expression. PMID:27263495

  4. A Solar Cycle Dependence of Nonlinearity in Magnetospheric Activity

    SciTech Connect

    Johnson, Jay R; Wing, Simon

    2005-03-08

    The nonlinear dependencies inherent to the historical K(sub)p data stream (1932-2003) are examined using mutual information and cumulant based cost as discriminating statistics. The discriminating statistics are compared with surrogate data streams that are constructed using the corrected amplitude adjustment Fourier transform (CAAFT) method and capture the linear properties of the original K(sub)p data. Differences are regularly seen in the discriminating statistics a few years prior to solar minima, while no differences are apparent at the time of solar maximum. These results suggest that the dynamics of the magnetosphere tend to be more linear at solar maximum than at solar minimum. The strong nonlinear dependencies tend to peak on a timescale around 40-50 hours and are statistically significant up to one week. Because the solar wind driver variables, VB(sub)s and dynamical pressure exhibit a much shorter decorrelation time for nonlinearities, the results seem to indicate that the nonlinearity is related to internal magnetospheric dynamics. Moreover, the timescales for the nonlinearity seem to be on the same order as that for storm/ring current relaxation. We suggest that the strong solar wind driving that occurs around solar maximum dominates the magnetospheric dynamics suppressing the internal magnetospheric nonlinearity. On the other hand, in the descending phase of the solar cycle just prior to solar minimum, when magnetospheric activity is weaker, the dynamics exhibit a significant nonlinear internal magnetospheric response that may be related to increased solar wind speed.

  5. Solar Activity in Cycle 24 - What do Acoustic Oscillations tell us?

    NASA Astrophysics Data System (ADS)

    Jain, Kiran; Tripathy, Sushant; Simoniello, Rosaria; Hill, Frank

    2016-05-01

    Solar Cycle 24 is the weakest cycle in modern era of space- and ground-based observations. The number of sunspots visible on solar disk and other measures of magnetic activity have significantly decreased from the last cycle. It was also preceeded by an extended phase of low activity, a period that raised questions on our understanding of the solar activity cycle and its origin. This unusual behavior was not only limited to the visible features in Sun's atmosphere, the helioseismic observations also revealed peculiar behavior in the interior. It was suggested that the changes in magnetic activity were confined to shallower layers only, as a result low-degree mode frequencies were found to be anti-correlated with solar activity. Here we present results on the progression of Cycle 24 by analyzing the uninterrupted helioseismic data from GONG and SDO/HMI, and discuss differences and similarity between cycles 23 and 24 in relation to the solar activity.

  6. Alternative reactions at the interface of glycolysis and citric acid cycle in Saccharomyces cerevisiae.

    PubMed

    van Rossum, Harmen M; Kozak, Barbara U; Niemeijer, Matthijs S; Duine, Hendrik J; Luttik, Marijke A H; Boer, Viktor M; Kötter, Peter; Daran, Jean-Marc G; van Maris, Antonius J A; Pronk, Jack T

    2016-05-01

    Pyruvate and acetyl-coenzyme A, located at the interface between glycolysis and TCA cycle, are important intermediates in yeast metabolism and key precursors for industrially relevant products. Rational engineering of their supply requires knowledge of compensatory reactions that replace predominant pathways when these are inactivated. This study investigates effects of individual and combined mutations that inactivate the mitochondrial pyruvate-dehydrogenase (PDH) complex, extramitochondrial citrate synthase (Cit2) and mitochondrial CoA-transferase (Ach1) in Saccharomyces cerevisiae. Additionally, strains with a constitutively expressed carnitine shuttle were constructed and analyzed. A predominant role of the PDH complex in linking glycolysis and TCA cycle in glucose-grown batch cultures could be functionally replaced by the combined activity of the cytosolic PDH bypass and Cit2. Strongly impaired growth and a high incidence of respiratory deficiency in pda1Δ ach1Δ strains showed that synthesis of intramitochondrial acetyl-CoA as a metabolic precursor requires activity of either the PDH complex or Ach1. Constitutive overexpression of AGP2, HNM1, YAT2, YAT1, CRC1 and CAT2 enabled the carnitine shuttle to efficiently link glycolysis and TCA cycle in l-carnitine-supplemented, glucose-grown batch cultures. Strains in which all known reactions at the glycolysis-TCA cycle interface were inactivated still grew slowly on glucose, indicating additional flexibility at this key metabolic junction. PMID:26895788

  7. DIBROMOACETIC ACID-INDUCED ELEVATIONS OF ESTRADIOL IN THE CYCLING AND OVARIECTOMOZED/ESTRADIOL-IMPLANTED FEMALE RAT

    EPA Science Inventory

    Goldman, JM and Murr, AS. Dibromoacetic Acid-induced Elevations of Estradiol in Both Cycling and Ovariectomized / Estradiol-implanted Female Rats

    ABSTRACT
    Haloacetic acids are one of the principal classes of disinfection by-products generated by the chlorination of mun...

  8. Seasonal changes in nitrogen-cycle gene abundances and in bacterial communities in acidic forest soils.

    PubMed

    Jung, Jaejoon; Yeom, Jinki; Han, Jiwon; Kim, Jisun; Park, Woojun

    2012-06-01

    The abundance of genes related to the nitrogen biogeochemical cycle and the microbial community in forest soils (bacteria, archaea, fungi) were quantitatively analyzed via real-time PCR using 11 sets of specific primers amplifying nifH, bacterial amoA, archaeal amoA, narG, nirS, nirK, norB, nosZ, bacterial 16S rRNA gene, archaeal 16S rRNA gene, and the ITS sequence of fungi. Soils were sampled from Bukhan Mountain from September of 2010 to July of 2011 (7 times). Bacteria were the predominant microbial community in all samples. However, the abundance of archaeal amoA was greater than bacterial amoA throughout the year. The abundances of nifH, nirS, nirK, and norB genes changed in a similar pattern, while narG and nosZ appeared in sensitive to the environmental changes. Clone libraries of bacterial 16S rRNA genes were constructed from summer and winter soil samples and these revealed that Acidobacteria was the most predominant phylum in acidic forest soil environments in both samples. Although a specific correlation of environmental factor and gene abundance was not verified by principle component analysis, our data suggested that the combination of biological, physical, and chemical characteristics of forest soils created distinct conditions favoring the nitrogen biogeochemical cycle and that bacterial communities in undisturbed acidic forest soils were quite stable during seasonal change. PMID:22752898

  9. Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape.

    PubMed

    Xu, Hui-Juan; Wang, Xiao-Hui; Li, Hu; Yao, Huai-Ying; Su, Jian-Qiang; Zhu, Yong-Guan

    2014-08-19

    Biochar has been suggested to improve acidic soils and to mitigate greenhouse gas emissions. However, little has been done on the role of biochar in ameliorating acidified soils induced by overuse of nitrogen fertilizers. In this study, we designed a pot trial with an acidic soil (pH 4.48) in a greenhouse to study the interconnections between microbial community, soil chemical property changes, and N2O emissions after biochar application. The results showed that biochar increased plant growth, soil pH, total carbon, total nitrogen, C/N ratio, and soil cation exchange capacity. The results of high-throughput sequencing showed that biochar application increased α-diversity significantly and changed the relative abundances of some microbes that are related with carbon and nitrogen cycling at the family level. Biochar amendment stimulated both nitrification and denitrification processes, while reducing N2O emissions overall. Results of redundancy analysis indicated biochar could shift the soil microbial community by changing soil chemical properties, which modulate N-cycling processes and soil N2O emissions. The significantly increased nosZ transcription suggests that biochar decreased soil N2O emissions by enhancing its further reduction to N2. PMID:25054835

  10. Lactic Acid Bacteria in Durum Wheat Flour Are Endophytic Components of the Plant during Its Entire Life Cycle

    PubMed Central

    Minervini, Fabio; Celano, Giuseppe; Lattanzi, Anna; Tedone, Luigi; De Mastro, Giuseppe; De Angelis, Maria

    2015-01-01

    This study aimed at assessing the dynamics of lactic acid bacteria and other Firmicutes associated with durum wheat organs and processed products. 16S rRNA gene-based high-throughput sequencing showed that Lactobacillus, Streptococcus, Enterococcus, and Lactococcus were the main epiphytic and endophytic genera among lactic acid bacteria. Bacillus, Exiguobacterium, Paenibacillus, and Staphylococcus completed the picture of the core genus microbiome. The relative abundance of each lactic acid bacterium genus was affected by cultivars, phenological stages, other Firmicutes genera, environmental temperature, and water activity (aw) of plant organs. Lactobacilli, showing the highest sensitivity to aw, markedly decreased during milk development (Odisseo) and physiological maturity (Saragolla). At these stages, Lactobacillus was mainly replaced by Streptococcus, Lactococcus, and Enterococcus. However, a key sourdough species, Lactobacillus plantarum, was associated with plant organs during the life cycle of Odisseo and Saragolla wheat. The composition of the sourdough microbiota and the overall quality of leavened baked goods are also determined throughout the phenological stages of wheat cultivation, with variations depending on environmental and agronomic factors. PMID:26187970

  11. Lactic Acid Bacteria in Durum Wheat Flour Are Endophytic Components of the Plant during Its Entire Life Cycle.

    PubMed

    Minervini, Fabio; Celano, Giuseppe; Lattanzi, Anna; Tedone, Luigi; De Mastro, Giuseppe; Gobbetti, Marco; De Angelis, Maria

    2015-10-01

    This study aimed at assessing the dynamics of lactic acid bacteria and other Firmicutes associated with durum wheat organs and processed products. 16S rRNA gene-based high-throughput sequencing showed that Lactobacillus, Streptococcus, Enterococcus, and Lactococcus were the main epiphytic and endophytic genera among lactic acid bacteria. Bacillus, Exiguobacterium, Paenibacillus, and Staphylococcus completed the picture of the core genus microbiome. The relative abundance of each lactic acid bacterium genus was affected by cultivars, phenological stages, other Firmicutes genera, environmental temperature, and water activity (aw) of plant organs. Lactobacilli, showing the highest sensitivity to aw, markedly decreased during milk development (Odisseo) and physiological maturity (Saragolla). At these stages, Lactobacillus was mainly replaced by Streptococcus, Lactococcus, and Enterococcus. However, a key sourdough species, Lactobacillus plantarum, was associated with plant organs during the life cycle of Odisseo and Saragolla wheat. The composition of the sourdough microbiota and the overall quality of leavened baked goods are also determined throughout the phenological stages of wheat cultivation, with variations depending on environmental and agronomic factors. PMID:26187970

  12. Seasonal and diurnal cycles of ammonia, nitrous acid and nitric acid at a forest site in Finland

    NASA Astrophysics Data System (ADS)

    Virkkula, A.; Makkonen, U.; Mäntykenttä, J.; Hakola, H.

    2012-04-01

    Background In July - August 2010 a large campaign "Hyytiälä United Measurements of Photochemistry and Particles in Air - Comprehensive Organic Precursor Emission Concentration 2010 (HUMPPA - COPEC-10)", was conducted in a boreal forest at the SMEAR II station in Hyytiälä, southwestern central Finland. The general goal was to study links between gas phase oxidation chemistry and particle properties and processes. The Finnish Meteorological Institute contributed to the campaign with an on-line analyzer MARGA 2S (Ten Brink et al., 2007) for semi-continuous (1-hr time resolution) measurement of water-soluble gases and ions. Concentrations of gases (HCl, HNO3, HNO2, NH3, SO2) and major ions in particles (Cl, NO3, SO4, NH4, Na, K, Mg, Ca) were measured in two size fractions: PM2.5 and PM10. The MARGA was kept running at SMEAR II also after the campaign. Here we discuss data collected until 30 April, 2011, and restrict the analysis to the nitrogen-containing gases. Ammonia plays a key role in neutralizing acidic atmospheric compounds and in aerosol formation. The concentration of semi-volatile aerosol species such as ammonium nitrate and ammonium chloride is strongly dependent on the gas phase precursors, NH3, HNO3 and HCl. HONO is of atmospheric importance due to its expected significant contribution to the production of OH radicals. Results and discussion The median concentrations of ammonia (NH3), nitrous acid (HONO) and nitric acid (HNO3) during whole period of 21 June 2010 - 30 April 2011 were 85, 54, and 57 ppt, respectively. The seasonal cycle was such that in summer the concentrations of all of these gases were the highest, the respective medians were 356, 70, and 81 ppt in June 21 - August 12, and lowest in winter (December - February), the respective medians were 38, 54, and 52 ppt. A very clear diurnal cycle of all these gases was observed, especially in July. In December there were no cyclic diurnal variation of these but in spring, especially in April the

  13. Physiological activities of hydroxyl fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the search of value-added products from surplus soybean oil, we produced many new hydroxy fatty acids through microbial bioconversion. Hydroxy fatty acids are used in a wide range of industrial products, such as resins, waxes, nylons plastics, lubricants, cosmetics, and additives in coatings and...

  14. THE EFFECT OF ANOLYTE PRODUCT ACID CONCENTRATION ON HYBRID SULFUR CYCLE PERFORMANCE

    SciTech Connect

    Gorensek, M.; Summers, W.

    2010-03-24

    The Hybrid Sulfur (HyS) cycle (Fig. 1) is one of the simplest, all-fluids thermochemical cycles that has been devised for splitting water with a high-temperature nuclear or solar heat source. It was originally patented by Brecher and Wu in 1975 and extensively developed by Westinghouse in the late 1970s and early 1980s. As its name suggests, the only element used besides hydrogen and oxygen is sulfur, which is cycled between the +4 and +6 oxidation states. HyS comprises two steps. One is the thermochemical (>800 C) decomposition of sulfuric acid (H{sub 2}SO{sub 4}) to sulfur dioxide (SO{sub 2}), oxygen (O{sub 2}), and water. H{sub 2}SO{sub 4} = SO{sub 2} + 1/2 O{sub 2} + H{sub 2}O. The other is the SO{sub 2}-depolarized electrolysis of water to H{sub 2}SO{sub 4} and hydrogen (H{sub 2}), SO{sub 2} + 2 H{sub 2}O = H{sub 2}SO{sub 4} + H{sub 2}, E{sup o} = -0.156 V, explaining the 'hybrid' designation. These two steps taken together split water into H{sub 2} and O{sub 2} using heat and electricity. Researchers at the Savannah River National Laboratory (SRNL) and at the University of South Carolina (USC) have successfully demonstrated the use of proton exchange membrane (PEM) electrolyzers (Fig. 2) for the SO{sub 2}-depolarized electrolysis (sulfur oxidation) step, while Sandia National Laboratories (SNL) successfully demonstrated the high-temperature sulfuric acid decomposition (sulfur reduction) step using a bayonet-type reactor (Fig. 3). This latter work was performed as part of the Sulfur-Iodine (SI) cycle Integrated Laboratory Scale demonstration at General Atomics (GA). The combination of these two operations results in a simple process that will be more efficient and cost-effective for the massive production of hydrogen than alkaline electrolysis. Recent developments suggest that the use of PEMs other than Nafion will allow sulfuric acid to be produced at higher concentrations (>60 wt%), offering the possibility of net thermal efficiencies around 50% (HHV basis

  15. The tricarboxylic acid cycle in Shewanella oneidensis is independent of Fur and RyhB control

    SciTech Connect

    Yang, Yunfeng; McCue, Lee Ann; Parsons, Andrea; Feng, Sheng; Zhou, Jizhong

    2010-01-01

    Background: It is well established in E. coli and Vibrio cholerae that strains harboring mutations in the ferric uptake regulator gene (fur) are unable to utilize tricarboxylic acid (TCA) compounds, due to the down-regulation of key TCA cycle enzymes, such as AcnA and SdhABCD. This down-regulation is mediated by a Fur-regulated small regulatory RNA named RyhB. It is unclear in the g-proteobacterium S. oneidensis whether TCA is also regulated by Fur and RyhB. Results: In the present study, we showed that a fur deletion mutant of S. oneidensis could utilize TCA compounds. Consistently, expression of the TCA cycle genes acnA and sdhA was not down-regulated in the mutant. To explore this observation further, we identified a ryhB gene in Shewanella species and experimentally demonstrated the gene expression. Further experiments suggested that RyhB was up-regulated in fur mutant, but that AcnA and SdhA were not controlled by RyhB. Conclusions: These cumulative results delineate an important difference of the Fur-RyhB regulatory cycle between S. oneidensis and other g-proteobacteria. This work represents a step forward for understanding the unique regulation in S. oneidensis.

  16. The tricarboxylic acid cycle in Shewanella oneidensis is independent of Fur and RyhB control

    SciTech Connect

    Yang, Yunfeng; McCue, Lee Ann; Parsons, Andrea B.; Feng, Sheng; Zhou, Jizhong

    2010-10-26

    It is well established in E. coli and Vibrio cholerae that strains harboring mutations in the ferric uptake regulator gene (fur) are unable to utilize tricarboxylic acid (TCA) compounds, due to the down-regulation of key TCA cycle enzymes, such as AcnA and SdhABCD. This down-regulation is mediated by a Fur-regulated small regulatory RNA named RyhB. In this study, we showed that a fur deletion mutant of the γ-proteobacterium S. oneidensis could utilize TCA compounds. In addition, expression of the TCA cycle genes acnA and sdhA was not down-regulated in the mutant. To explore this observation further, we identified a ryhB gene in Shewanella species and demonstrated its expression experimentally. Further experiments suggested that RyhB was up-regulated in fur mutant, but that AcnA and SdhA were not controlled by RyhB. This work delineates an important difference of the Fur-RyhB regulatory cycle between S. oneidensis and other γ-proteobacteria.

  17. Croconaine rotaxane for acid activated photothermal heating and ratiometric photoacoustic imaging of acidic pH.

    PubMed

    Guha, Samit; Shaw, Gillian Karen; Mitcham, Trevor M; Bouchard, Richard R; Smith, Bradley D

    2016-01-01

    Absorption of 808 nm laser light by liposomes containing a pH sensitive, near-infrared croconaine rotaxane dye increases dramatically in weak acid. A stealth liposome composition permits acid activated, photothermal heating and also acts as an effective nanoparticle probe for ratiometric photoacoustic imaging of acidic pH in deep sample locations, including a living mouse. PMID:26502996

  18. Proton activity of the Sun in current solar cycle 24

    NASA Astrophysics Data System (ADS)

    Li, Chuan; Miroshnichenko, Leonty I.; Fang, Cheng

    2015-07-01

    We present a study of seven large solar proton events in the current solar cycle 24 (from 2009 January up to the current date). They were recorded by the GOES spacecraft with the highest proton fluxes being over 200 pfu for energies >10 MeV. In situ particle measurements show that: (1) The profiles of the proton fluxes are highly dependent on the locations of their solar sources, namely flares or coronal mass ejections (CMEs), which confirms the “heliolongitude rules” associated with solar energetic particle fluxes; (2) The solar particle release (SPR) times fall in the decay phase of the flare emission, and are in accordance with the times when the CMEs travel to an average height of 7.9 solar radii; and (3) The time differences between the SPR and the flare peak are also dependent on the locations of the solar active regions. The results tend to support the scenario of proton acceleration by the CME-driven shock, even though there exists a possibility of particle acceleration at the flare site, with subsequent perpendicular diffusion of accelerated particles in the interplanetary magnetic field. We derive the integral time-of-maximum spectra of solar protons in two forms: a single power-law distribution and a power law roll-over with an exponential tail. It is found that the unique ground level enhancement that occurred in the event on 2012 May 17 displays the hardest spectrum and the largest roll-over energy which may explain why this event could extend to relativistic energies. Supported by the National Natural Science Foundation of China.

  19. Clinical benefit using sperm hyaluronic acid binding technique in ICSI cycles: a systematic review and meta-analysis.

    PubMed

    Beck-Fruchter, Ronit; Shalev, Eliezer; Weiss, Amir

    2016-03-01

    The human oocyte is surrounded by hyaluronic acid, which acts as a natural selector of spermatozoa. Human sperm that express hyaluronic acid receptors and bind to hyaluronic acid have normal shape, minimal DNA fragmentation and low frequency of chromosomal aneuploidies. Use of hyaluronic acid binding assays in intracytoplasmic sperm injection (ICSI) cycles to improve clinical outcomes has been studied, although none of these studies had sufficient statistical power. In this systematic review and meta-analysis, electronic databases were searched up to June 2015 to identify studies of ICSI cycles in which spermatozoa able to bind hyaluronic acid was selected. The main outcomes were fertilization rate and clinical pregnancy rate. Secondary outcomes included cleavage rate, embryo quality, implantation rate, spontaneous abortion and live birth rate. Seven studies and 1437 cycles were included. Use of hyaluronic acid binding sperm selection technique yielded no improvement in fertilization and pregnancy rates. A meta-analysis of all available studies showed an improvement in embryo quality and implantation rate; an analysis of prospective studies only showed an improvement in embryo quality. Evidence does not support routine use of hyaluronic acid binding assays in all ICSI cycles. Identification of patients that might benefit from this technique needs further study. PMID:26776822

  20. Quantifying Rates of Complete Microbial Iron Redox Cycling in Acidic Hot Springs

    NASA Astrophysics Data System (ADS)

    St Clair, B.; Pottenger, J. W.; Shock, E.

    2013-12-01

    concentrations of ferrous iron. Experimental design allowed us to measure biological and abiological rates independently. Results indicate a relatively consistent rate of biological iron oxidation between 20-100 ng Fe2+(gm wet sediment)-1 (second)-1 where oxide accumulations occur. Abiological oxidation rates increase significantly with increasing pH, and greatly limit soluble ferrous iron above a pH of 3.5 at high temperatures. Rates of biological iron reduction are typically comparable to oxidation, and can often double oxidation rates when supplemented with organic carbon. Abiological iron reduction rates are inconsequential when the pH is greater than 2, but increase sharply below this point. Results indicate that comparable rates of microbial oxidation and reduction are common in springs where biogenic iron oxide accumulates. It appears that the interplay of temperature, oxygen availability, and supply of organic carbon determines the extent and history of iron oxide accumulation. Taken together, our results show that complete microbial iron redox cycles are active in acidic hot springs wherever biogenic iron oxides accumulate.

  1. Environmental Life Cycle Assessment of Diets with Improved Omega-3 Fatty Acid Profiles.

    PubMed

    Coelho, Carla R V; Pernollet, Franck; van der Werf, Hayo M G

    2016-01-01

    A high incidence of cardiovascular disease is observed worldwide, and dietary habits are one of the risk factors for these diseases. Omega-3 polyunsaturated fatty acids in the diet help to prevent cardiovascular disease. We used life cycle assessment to analyse the potential of two strategies to improve the nutritional and environmental characteristics of French diets: 1) modifying diets by changing the quantities and proportions of foods and 2) increasing the omega-3 contents in diets by replacing mainly animal foods with equivalent animal foods having higher omega-3 contents. We also investigated other possibilities for reducing environmental impacts. Our results showed that a diet compliant with nutritional recommendations for macronutrients had fewer environmental impacts than the current average French diet. Moving from an omnivorous to a vegetarian diet further reduced environmental impacts. Increasing the omega-3 contents in animal rations increased Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) in animal food products. Providing these enriched animal foods in human diets increased their EPA and DHA contents without affecting their environmental impacts. However, in diets that did not contain fish, EPA and DHA contents were well below the levels recommended by health authorities, despite the inclusion of animal products enriched in EPA and DHA. Reducing meat consumption and avoidable waste at home are two main avenues for reducing environmental impacts of diets. PMID:27504959

  2. Environmental Life Cycle Assessment of Diets with Improved Omega-3 Fatty Acid Profiles

    PubMed Central

    Coelho, Carla R. V.; Pernollet, Franck; van der Werf, Hayo M. G.

    2016-01-01

    A high incidence of cardiovascular disease is observed worldwide, and dietary habits are one of the risk factors for these diseases. Omega-3 polyunsaturated fatty acids in the diet help to prevent cardiovascular disease. We used life cycle assessment to analyse the potential of two strategies to improve the nutritional and environmental characteristics of French diets: 1) modifying diets by changing the quantities and proportions of foods and 2) increasing the omega-3 contents in diets by replacing mainly animal foods with equivalent animal foods having higher omega-3 contents. We also investigated other possibilities for reducing environmental impacts. Our results showed that a diet compliant with nutritional recommendations for macronutrients had fewer environmental impacts than the current average French diet. Moving from an omnivorous to a vegetarian diet further reduced environmental impacts. Increasing the omega-3 contents in animal rations increased Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) in animal food products. Providing these enriched animal foods in human diets increased their EPA and DHA contents without affecting their environmental impacts. However, in diets that did not contain fish, EPA and DHA contents were well below the levels recommended by health authorities, despite the inclusion of animal products enriched in EPA and DHA. Reducing meat consumption and avoidable waste at home are two main avenues for reducing environmental impacts of diets. PMID:27504959

  3. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity.

    PubMed

    Guzman, Juan David

    2014-01-01

    Antimicrobial natural preparations involving cinnamon, storax and propolis have been long used topically for treating infections. Cinnamic acids and related molecules are partly responsible for the therapeutic effects observed in these preparations. Most of the cinnamic acids, their esters, amides, aldehydes and alcohols, show significant growth inhibition against one or several bacterial and fungal species. Of particular interest is the potent antitubercular activity observed for some of these cinnamic derivatives, which may be amenable as future drugs for treating tuberculosis. This review intends to summarize the literature data on the antimicrobial activity of the natural cinnamic acids and related derivatives. In addition, selected hybrids between cinnamic acids and biologically active scaffolds with antimicrobial activity were also included. A comprehensive literature search was performed collating the minimum inhibitory concentration (MIC) of each cinnamic acid or derivative against the reported microorganisms. The MIC data allows the relative comparison between series of molecules and the derivation of structure-activity relationships. PMID:25429559

  4. Activated Carbon Catalysts for the Production of Hydrogen for the Sulfur-Iodine Thermochemical Water Splitting Cycle

    SciTech Connect

    Lucia M. Petkovic; Daniel M. Ginosar; Harry W. Rollins; Kyle C Burch; Cristina Deiana; Hugo S. Silva; Maria F. Sardella; Dolly Granados

    2009-05-01

    Seven activated carbon catalysts obtained from a variety of raw material sources and preparation methods were examined for their catalytic activity to decompose hydroiodic acid (HI) to produce hydrogen; a key reaction in the sulfur-iodine (S-I) thermochemical water splitting cycle. Activity was examined under a temperature ramp from 473 to 773 K. Within the group of ligno-cellulosic steam-activated carbon catalysts, activity increased with surface area. However, both a mineral-based steam-activated carbon and a ligno-cellulosic chemically-activated carbon displayed activities lower than expected based on their higher surface areas. In general, ash content was detrimental to catalytic activity while total acid sites, as determined by Bohem’s titrations, seemed to favor higher catalytic activity within the group of steam-activated carbons. These results suggest, one more time, that activated carbon raw materials and preparation methods may have played a significant role in the development of surface characteristics that eventually dictated catalyst activity and stability as well.

  5. Advances in Acid Concentration Membrane Technology for the Sulfur-Iodine Thermochemical Cycle

    SciTech Connect

    Frederick F. Stewart; Christopher J. Orme

    2006-11-01

    One of the most promising cycles for the thermochemical generation of hydrogen is the Sulfur-Iodine (S-I) process, where aqueous HI is thermochemically decomposed into H2 and I2 at approximately 350 degrees Celsius. Regeneration of HI is accomplished by the Bunsen reaction (reaction of SO2, water, and iodine to generate H2SO4 and HI). Furthermore, SO2 is regenerated from the decomposition of H2SO4 at 850 degrees Celsius yielding the SO2 as well as O2. Thus, the cycle actually consists of two concurrent oxidation-reduction loops. As HI is regenerated, co-produced H2SO4 must be separated so that each may be decomposed. Current flowsheets employ a large amount (~83 mol% of the entire mixture) of elemental I2 to cause the HI and the H2SO4 to separate into two phases. To aid in the isolation of HI, which is directly decomposed into hydrogen, water and iodine must be removed. Separation of iodine is facilitated by removal of water. Sulfuric acid concentration is also required to facilitate feed recycling to the sulfuric acid decomposer. Decomposition of the sulfuric acid is an equilibrium limited process that leaves a substantial portion of the acid requiring recycle. Distillation of water from sulfuric acid involves significant corrosion issues at the liquid-vapor interface. Thus, it is desirable to concentrate the acid without boiling. Recent efforts at the INL have concentrated on applying pervaporation through Nafion-117, Nafion-112, and sulfonated poly(etheretherketone) (S-PEEK) membranes for the removal of water from HI/water and HI/Iodine/water feedstreams. In pervaporation, a feed is circulated at low pressure across the upstream side of the membrane, while a vacuum is applied downstream. Selected permeants sorb into the membrane, transport through it, and are vaporized from the backside. Thus, a concentration gradient is established, which provides the driving force for transport. In this work, membrane separations have been performed at temperatures as high as

  6. Life cycle assessment of active and passive groundwater remediation technologies

    NASA Astrophysics Data System (ADS)

    Bayer, Peter; Finkel, Michael

    2006-02-01

    Groundwater remediation technologies, such as pump-and-treat (PTS) and funnel-and-gate systems (FGS), aim at reducing locally appearing contaminations. Therefore, these methodologies are basically evaluated with respect to their capability to yield local improvements of an environmental situation, commonly neglecting that their application is also associated with secondary impacts. Life cycle assessment (LCA) represents a widely accepted method of assessing the environmental aspects and potential impacts related to a product, process or service. This study presents the set-up of a LCA framework in order to compare the secondary impacts caused by two conceptually different technologies at the site of a former manufactured gas plant in the city of Karlsruhe, Germany. As a FGS is already operating at this site, a hypothetical PTS of the same functionality is adopted. During the LCA, the remediation systems are evaluated by focusing on the main technical elements and their significance with respect to resource depletion and potential adverse effects on ecological quality, as well as on human health. Seven impact categories are distinguished to address a broad spectrum of possible environmental loads. A main point of discussion is the reliability of technical assumptions and performance predictions for the future. It is obvious that a high uncertainty exists when estimating impact specific indicator values over operation times of decades. An uncertainty analysis is conducted to include the imprecision of the underlying emission and consumption data and a scenario analysis is utilised to contrast various possible technological variants. Though the results of the study are highly site-specific, a generalised relative evaluation of potential impacts and their main sources is the principle objective rather than a discussion of the calculated absolute impacts. A crucial finding that can be applied to any other site is the central role of steel, which particularly derogates

  7. Staphylococcal Enterotoxin O Exhibits Cell Cycle Modulating Activity

    PubMed Central

    Hodille, Elisabeth; Alekseeva, Ludmila; Berkova, Nadia; Serrier, Asma; Badiou, Cedric; Gilquin, Benoit; Brun, Virginie; Vandenesch, François; Terman, David S.; Lina, Gerard

    2016-01-01

    Maintenance of an intact epithelial barrier constitutes a pivotal defense mechanism against infections. Staphylococcus aureus is a versatile pathogen that produces multiple factors including exotoxins that promote tissue alterations. The aim of the present study is to investigate the cytopathic effect of staphylococcal exotoxins SEA, SEG, SEI, SElM, SElN and SElO on the cell cycle of various human cell lines. Among all tested exotoxins only SEIO inhibited the proliferation of a broad panel of human tumor cell lines in vitro. Evaluation of a LDH release and a DNA fragmentation of host cells exposed to SEIO revealed that the toxin does not induce necrosis or apoptosis. Analysis of the DNA content of tumor cells synchronized by serum starvation after exposure to SEIO showed G0/G1 cell cycle delay. The cell cycle modulating feature of SEIO was confirmed by the flow cytometry analysis of synchronized cells exposed to supernatants of isogenic S. aureus strains wherein only supernatant of the SElO producing strain induced G0/G1 phase delay. The results of yeast-two-hybrid analysis indicated that SEIO’s potential partner is cullin-3, involved in the transition from G1 to S phase. In conclusion, we provide evidence that SEIO inhibits cell proliferation without inducing cell death, by delaying host cell entry into the G0/G1 phase of the cell cycle. We speculate that this unique cell cycle modulating feature allows SEIO producing bacteria to gain advantage by arresting the cell cycle of target cells as part of a broader invasive strategy. PMID:27148168

  8. Staphylococcal Enterotoxin O Exhibits Cell Cycle Modulating Activity.

    PubMed

    Hodille, Elisabeth; Alekseeva, Ludmila; Berkova, Nadia; Serrier, Asma; Badiou, Cedric; Gilquin, Benoit; Brun, Virginie; Vandenesch, François; Terman, David S; Lina, Gerard

    2016-01-01

    Maintenance of an intact epithelial barrier constitutes a pivotal defense mechanism against infections. Staphylococcus aureus is a versatile pathogen that produces multiple factors including exotoxins that promote tissue alterations. The aim of the present study is to investigate the cytopathic effect of staphylococcal exotoxins SEA, SEG, SEI, SElM, SElN and SElO on the cell cycle of various human cell lines. Among all tested exotoxins only SEIO inhibited the proliferation of a broad panel of human tumor cell lines in vitro. Evaluation of a LDH release and a DNA fragmentation of host cells exposed to SEIO revealed that the toxin does not induce necrosis or apoptosis. Analysis of the DNA content of tumor cells synchronized by serum starvation after exposure to SEIO showed G0/G1 cell cycle delay. The cell cycle modulating feature of SEIO was confirmed by the flow cytometry analysis of synchronized cells exposed to supernatants of isogenic S. aureus strains wherein only supernatant of the SElO producing strain induced G0/G1 phase delay. The results of yeast-two-hybrid analysis indicated that SEIO's potential partner is cullin-3, involved in the transition from G1 to S phase. In conclusion, we provide evidence that SEIO inhibits cell proliferation without inducing cell death, by delaying host cell entry into the G0/G1 phase of the cell cycle. We speculate that this unique cell cycle modulating feature allows SEIO producing bacteria to gain advantage by arresting the cell cycle of target cells as part of a broader invasive strategy. PMID:27148168

  9. Nitrogen cycling in s subarctic Alaskan watershed: the role of lichens and the potential effects of acid deposition

    SciTech Connect

    Gunther, A.J.

    1987-01-01

    It has been hypothesized that the loss of nitrogen-fixing lichens due to stress from air pollution could have adverse effects upon nitrogen availability, and thus primary productivity, in some ecosystems. There is general agreement, however, that the ecological role of these lichens has not been sufficiently well defined to determine whether they are keystone species. The objectives of this study were: (1) to examine the importance of nitrogen-fixing lichens to the nitrogen cycle in the drainage of Brooks Lake, Alaska, a nitrogen-limited nursery lake for the commercially important sockeye salmon (Oncorhychus nerka); and (2) to investigate the sensitivity of nitrogen fixation by lichens in this ecosystem to acid deposition. Biological nitrogen fixation was found to be the major source of new nitrogen to the Brooks Lake drainage. The rate of fixation is approximately 3 kg N/ha-yr, which compares to 0.3 kg N/ha-yr in precipitation and only 0.02 kg N/ha-yr in returning adult salmon. Cyanophillic lichens contribute about 0.21 kg N/ha-yr. The low levels of nitrogen in precipitation, combined with a lack of nitrogen-fixation activity in open lake waters, indicates that nitrogen in tributary streams is the major source of new nitrogen for Brooks Lake. The measurements of nitrogen inputs, along with estimates of other stocks and flows of nitrogen, were used to construct a steady-state box model of the nitrogen cycle in the drainage.

  10. Prediction of positional isotopomers of the citric acid cycle: the syntactic approach.

    PubMed

    Cohen, D M; Bergman, R N

    1994-03-01

    We propose a syntactic approach to modeling of biochemical fluxes that combines a rule-based description of atomic transfer in chemical reactions with a structurally oriented, stochastic model of chemical reaction kinetics. This approach avoids the use of differential equations to describe the production and disappearance of each molecule. The computer simulation predicts the changes over time in the abundance of each positional isotopomer of every metabolic intermediate in the citric acid cycle of heart cells, subsequent to administration of [2-13C]acetate (including natural abundance of 13C). (Positional isotopomers are isomers that differ in the positions of isotopes within the molecule.) The 32 positional isotopomers of glutamate fell into four groups with similar intragroup dynamics but with very different amplitudes. From the relative abundance of each isotopomer of glutamate, we calculate the relative area of multiplets of the nuclear magnetic resonance spectrum. PMID:7909408

  11. Genetic Evidence for Bacterial Chemolithoautotrophy Based on the Reductive Tricarboxylic Acid Cycle in Groundwater Systems

    PubMed Central

    Alfreider, Albin; Vogt, Carsten

    2012-01-01

    Geologically and chemically distinct aquifers were screened for the presence of two genes coding for key enzymes of the reverse tricarboxylic acid (rTCA) cycle in autotrophic bacteria, 2-oxoglutarate : ferredoxin oxidoreductase (oorA) and the beta subunit of ATP citrate lyase enzymes (aclB). From 42 samples investigated, aclB genes were detected in two and oorA genes in six samples retrieved from polluted and sulfidic aquifers. aclB genes were represented by a single phylotype of almost identical sequences closely affiliated with chemolithoautotrophic Sulfurimonas species. In contrast, sequences analysis of oorA genes revealed diverse phylotypes mainly related to sequences from cultivation-independent studies. PMID:22791056

  12. Antiproliferative Effect of Ascorbic Acid Is Associated with the Inhibition of Genes Necessary to Cell Cycle Progression

    PubMed Central

    Belin, Sophie; Kaya, Ferdinand; Duisit, Ghislaine; Giacometti, Sarah; Ciccolini, Joseph; Fontés, Michel

    2009-01-01

    Background Ascorbic acid (AA), or Vitamin C, is most well known as a nutritional supplement with antioxidant properties. Recently, we demonstrated that high concentrations of AA act on PMP22 gene expression and partially correct the Charcot-Marie-Tooth disease phenotype in a mouse model. This is due to the capacity of AA, but not other antioxidants, to down-modulate cAMP intracellular concentration by a competitive inhibition of the adenylate cyclase enzymatic activity. Because of the critical role of cAMP in intracellular signalling, we decided to explore the possibility that ascorbic acid could modulate the expression of other genes. Methods and Findings Using human pangenomic microarrays, we found that AA inhibited the expression of two categories of genes necessary for cell cycle progression, tRNA synthetases and translation initiation factor subunits. In in vitro assays, we demonstrated that AA induced the S-phase arrest of proliferative normal and tumor cells. Highest concentrations of AA leaded to necrotic cell death. However, quiescent cells were not susceptible to AA toxicity, suggesting the blockage of protein synthesis was mainly detrimental in metabolically-active cells. Using animal models, we found that high concentrations of AA inhibited tumor progression in nude mice grafted with HT29 cells (derived from human colon carcinoma). Consistently, expression of tRNA synthetases and ieF2 appeared to be specifically decreased in tumors upon AA treatment. Conclusions AA has an antiproliferative activity, at elevated concentration that could be obtained using IV injection. This activity has been observed in vitro as well in vivo and likely results from the inhibition of expression of genes involved in protein synthesis. Implications for a clinical use in anticancer therapies will be discussed. PMID:19197388

  13. Design, Synthesis, and Antimycobacterial Activity of Novel Theophylline-7-Acetic Acid Derivatives With Amino Acid Moieties.

    PubMed

    Stavrakov, Georgi; Valcheva, Violeta; Voynikov, Yulian; Philipova, Irena; Atanasova, Mariyana; Konstantinov, Spiro; Peikov, Plamen; Doytchinova, Irini

    2016-03-01

    The theophylline-7-acetic acid (7-TAA) scaffold is a promising novel lead compound for antimycobacterial activity. Here, we derive a model for antitubercular activity prediction based on 14 7-TAA derivatives with amino acid moieties and their methyl esters. The model is applied to a combinatorial library, consisting of 40 amino acid and methyl ester derivatives of 7-TAA. The best three predicted compounds are synthesized and tested against Mycobacterium tuberculosis H37Rv. All of them are stable, non-toxic against human cells and show antimycobacterial activity in the nanomolar range being 60 times more active than ethambutol. PMID:26502828

  14. Microbial Fe cycling and mineralization in sediments of an acidic, hypersaline lake (Lake Tyrell, Victoria, Australia)

    NASA Astrophysics Data System (ADS)

    Roden, E. E.; Blöthe, M.; Shelobolina, E.

    2009-12-01

    Lake Tyrrell is a variably acidic, hypersaline, Fe-rich lake located in Victoria, Australia. Terrestrial acid saline lakes like Lake Tyrrell may be analogs for ancient Martian surface environments, as well as possible extant subsurface environments. To investigate the potential for microbial Fe cycling under acidic conditions and high salt concentration, we collected sediment core samples during three field trips between 2006 and 2008 from the southern, acidic edge of the lake. Materials from the cores were used for chemical and mineralogical analyses, as well as for molecular (16S rRNA genes) and culture-based microbiological studies. Near-surface (< 1 m depth) pore fluids contained low but detectable dissolved oxygen (ca. 50 uM), significant dissolved Fe(II) (ca. 500 uM), and nearly constant pH of around 4 - conditions conducive to enzymatic Fe(II) oxidation. High concentrations of Fe(III) oxides begin accumulate at a depth of ca. 10 cm, and may reflect the starting point for formation of massive iron concretions that are evident at and beneath the sediment surface. MPN analyses revealed low (10-100 cells/mL) but detectable populations of aerobic, halophilic Fe(II)-oxidizing organisms on the sediment surface and in the near-surface ground water. With culture-dependent methods at least three different halotolerant lithoautotrophic cultures growing on Fe(II), thiosulfate, or tetrathionate from different acidic sites were obtained. Analysis of 16S rRNA gene sequences revealed that these organisms are similar to previous described gamma proteobacteria Thiobacillus prosperus (95%), Halothiobacillus kellyi (99%), Salinisphaera shabanense (95%) and a Marinobacter species. (98%). 16S rRNA gene pyrosequencing data from two different sites with a pH range between 3 and 4.5 revealed a dominance of gamma proteobacteria. 16S rRNA gene pyrosequencing libraries from both cores were dominated by sequences related to the Ectothiorhodospiraceae family, which includes the taxa

  15. Application of acid-activated Bauxsol for wastewater treatment with high phosphate concentration: Characterization, adsorption optimization, and desorption behaviors.

    PubMed

    Ye, Jie; Cong, Xiangna; Zhang, Panyue; Zeng, Guangming; Hoffmann, Erhard; Liu, Yang; Wu, Yan; Zhang, Haibo; Fang, Wei; Hahn, Hermann H

    2016-02-01

    Acid-activated Bauxsol was applied to treat wastewater with high phosphate concentration in a batch adsorption system in this paper. The effect of acid activation on the change of Bauxsol structure was systematically investigated. The mineralogical inhomogeneity and intensity of Bauxsol decreased after acid activation, and FeCl3·2H2O and Al(OH)3 became the dominant phases of acid-activated Bauxsol adsorption. Moreover, the BET surface area and total pore volume of Bauxsol increased after acid activation. Interaction of initial solution pH and adsorption temperature on phosphate adsorption onto acid-activated Bauxsol was investigated by using response surface methodology with central composite design. The maximum phosphate adsorption capacity of 192.94 mg g(-1) was achieved with an initial solution pH of 4.19 and an adsorption temperature of 52.18 °C, which increased by 7.61 times compared with that of Bauxsol (22.40 mg g(-1)), and was higher than other adsorbents. Furthermore, the desorption studies demonstrated that the acid-activated Bauxsol was successfully regenerated with 0.5 mol L(-1) HCl solution. The adsorption capacity and desorption efficiency of acid-activated Bauxsol maintained at 80.48% and 93.02% in the fifth adsorption-desorption cycle, respectively, suggesting that the acid-activated Bauxsol could be repeatedly used in wastewater treatment with high phosphate concentration. PMID:26606195

  16. The gamma-aminobutyric acid shunt contributes to closing the tricarboxylic acid cycle in Synechocystis sp PCC 6803

    SciTech Connect

    Xiong, W; Brune, D; Vermaas, WFJ

    2014-07-16

    A traditional 2-oxoglutarate dehydrogenase complex is missing in the cyanobacterial tricarboxylic acid cycle. To determine pathways that convert 2-oxoglutarate into succinate in the cyanobacterium Synechocystis sp. PCC 6803, a series of mutant strains, Delta sll1981, Delta slr0370, Delta slr1022 and combinations thereof, deficient in 2-oxoglutarate decarboxylase (Sll1981), succinate semialdehyde dehydrogenase (Slr0370), and/or in gamma-aminobutyrate metabolism (Slr1022) were constructed. Like in Pseudomonas aeruginosa, N-acetylornithine aminotransferase, encoded by slr1022, was shown to also function as gamma-aminobutyrate aminotransferase, catalysing gamma-aminobutyrate conversion to succinic semialdehyde. As succinic semialdehyde dehydrogenase converts succinic semialdehyde to succinate, an intact gamma-aminobutyrate shunt is present in Synechocystis. The Delta sll1981 strain, lacking 2-oxoglutarate decarboxylase, exhibited a succinate level that was 60% of that in wild type. However, the succinate level in the Delta slr1022 and Delta slr0370 strains and the Delta sll1981/Delta slr1022 and Delta sll1981/Delta slr0370 double mutants was reduced to 20-40% of that in wild type, suggesting that the gamma-aminobutyrate shunt has a larger impact on metabolite flux to succinate than the pathway via 2-oxoglutarate decarboxylase. C-13-stable isotope analysis indicated that the gamma-aminobutyrate shunt catalysed conversion of glutamate to succinate. Independent of the 2-oxoglutarate decarboxylase bypass, the gamma-aminobutyrate shunt is a major contributor to flux from 2-oxoglutarate and glutamate to succinate in Synechocystis sp. PCC 6803.

  17. The Viability of a Nonenzymatic Reductive Citric Acid Cycle Kinetics and Thermochemistry

    NASA Astrophysics Data System (ADS)

    Ross, David S.

    2007-02-01

    The likelihood of a functioning nonenzymatic reductive citric acid cycle, recently proposed as the precursor to biosynthesis on early Earth, is examined on the basis of the kinetics and thermochemistry of the acetate → pyruvate → oxaloacetate → malate sequence. Using data derived from studies of the Pd-catalyzed phosphinate reduction of carbonyl functions it is shown that the rate of conversion of pyruvate to malate with that system would have been much too slow to have played a role in the early chemistry of life, while naturally occurring reduction systems such as the fayalite magnetite quartz and pyrrhotite pyrite magnetite mineral assemblages would have provided even slower conversions. It is also shown that the production of pyruvate from acetate is too highly endoergic to be driven by a naturally occurring energy source such as pyrophosphate. It is thus highly doubtful that the cycle can operate at suitable rates without enzymes, and most unlikely that it could have participated in the chemistry leading to life.

  18. The viability of a nonenzymatic reductive citric acid cycle - Kinetics and thermochemistry

    USGS Publications Warehouse

    Ross, D.S.

    2007-01-01

    The likelihood of a functioning nonenzymatic reductive citric acid cycle, recently proposed as the precursor to biosynthesis on early Earth, is examined on the basis of the kinetics and thermochemistry of the acetate ??? pyruvate ??? oxaloacetate ??? malate sequence. Using data derived from studies of the Pd-catalyzed phosphinate reduction of carbonyl functions it is shown that the rate of conversion of pyruvate to malate with that system would have been much too slow to have played a role in the early chemistry of life, while naturally occurring reduction systems such as the fayalite-magnetite-quartz and pyrrhotite-pyrite-magnetite mineral assemblages would have provided even slower conversions. It is also shown that the production of pyruvate from acetate is too highly endoergic to be driven by a naturally occurring energy source such as pyrophosphate. It is thus highly doubtful that the cycle can operate at suitable rates without enzymes, and most unlikely that it could have participated in the chemistry leading to life. ?? 2006 Springer Science + Business Media B.V.

  19. The viability of a nonenzymatic reductive citric acid cycle--kinetics and thermochemistry.

    PubMed

    Ross, David S

    2007-02-01

    The likelihood of a functioning nonenzymatic reductive citric acid cycle, recently proposed as the precursor to biosynthesis on early Earth, is examined on the basis of the kinetics and thermochemistry of the acetate --> pyruvate --> oxaloacetate --> malate sequence. Using data derived from studies of the Pd-catalyzed phosphinate reduction of carbonyl functions it is shown that the rate of conversion of pyruvate to malate with that system would have been much too slow to have played a role in the early chemistry of life, while naturally occurring reduction systems such as the fayalite-magnetite-quartz and pyrrhotite-pyrite-magnetite mineral assemblages would have provided even slower conversions. It is also shown that the production of pyruvate from acetate is too highly endoergic to be driven by a naturally occurring energy source such as pyrophosphate. It is thus highly doubtful that the cycle can operate at suitable rates without enzymes, and most unlikely that it could have participated in the chemistry leading to life. PMID:17136437

  20. Lipoic acid - biological activity and therapeutic potential.

    PubMed

    Gorąca, Anna; Huk-Kolega, Halina; Piechota, Aleksandra; Kleniewska, Paulina; Ciejka, Elżbieta; Skibska, Beata

    2011-01-01

    α-Lipoic acid (LA; 5-(1,2-dithiolan-3-yl)pentanoic acid) was originally isolated from bovine liver by Reed et al. in 1951. LA was once considered a vitamin. Subsequently, it was found that LA is not a vitamin and is synthesized by plants and animals. LA is covalently bound to the ε-amino group of lysine residues and functions as a cofactor for mitochondrial enzymes by catalyzing the oxidative decarboxylation of pyruvate, α-ketoglutarate and branched-chain α-keto acids. LA and its reduced form - dihydrolipoic acid (DHLA), meet all the criteria for an ideal antioxidant because they can easily quench radicals, can chelate metals, have an amphiphlic character and they do not exhibit any serious side effects. They interact with other antioxidants and can regenerate them. For this reason, LA is called an antioxidant of antioxidants. LA has an influence on the second messenger nuclear factor κB (NF-κB) and attenuates the release of free radicals and cytotoxic cytokines. The therapeutic action of LA is based on its antioxidant properties. Current studies support its use in the ancillary treatment of many diseases, such as diabetes, cardiovascular, neurodegenerative, autoimmune diseases, cancer and AIDS. This review was undertaken to gather the most recent information regarding the therapeutic properties of LA and its possible utility in disease treatment. PMID:22001972

  1. Perfluoroalkyl acids : Recent activities and research progress

    EPA Science Inventory

    The perfluoroalkyl acids (PFAAs) are a family of man-made fluorinated organic chemicals consisting of a carbon backbone typically of four to fourteen in length and a charged functional moiety (primarily carboxylate, sulfonate or phosphonate). The two most widely known PFAAs are ...

  2. Capacitive carbon and electrochemical lead electrode systems at the negative plates of lead-acid batteries and elementary processes on cycling

    NASA Astrophysics Data System (ADS)

    Pavlov, D.; Nikolov, P.

    2013-11-01

    Batteries in hybrid electric vehicles operate in High-Rate Partial-State-of-Charge (HRPSoC) cycling duty. To make lead-acid batteries suitable for this duty, carbon is added to the negative active material. As a result of this technological change, two electrical systems form at the negative plates: (a) a capacitive carbon system comprising high-rate charging and discharging of the electric double layer; low Ah capacity, and (b) a lead electrochemical system, comprising oxidation of Pb to PbSO4 during discharge and vice versa during charge; this system is slow to accept charge, but has high Ah capacity. Through cycling lead-acid cells under HRPSoC conditions with short current pulses of various durations we have established that the processes involved in the capacitive system proceed highly reversibly and complete hundreds of thousands HRPSoC cycles. The number of cycles achieved by the electrochemical system is limited to tens of thousands and lead to progressive sulfation. Carbon added to the negative active material changes the latter's structure. The specific surface of NAM increases and the median pore radius decreases. Some carbon additives may reduce the radius of the pores in NAM to membrane sizes, which may change the chemistry of the electrochemical system.

  3. Computational Simulation of the Activation Cycle of Gα Subunit in the G Protein Cycle Using an Elastic Network Model

    PubMed Central

    Kim, Min Hyeok; Kim, Young Jin; Kim, Hee Ryung; Jeon, Tae-Joon; Choi, Jae Boong; Chung, Ka Young; Kim, Moon Ki

    2016-01-01

    Agonist-activated G protein-coupled receptors (GPCRs) interact with GDP-bound G protein heterotrimers (Gαβγ) promoting GDP/GTP exchange, which results in dissociation of Gα from the receptor and Gβγ. The GTPase activity of Gα hydrolyzes GTP to GDP, and the GDP-bound Gα interacts with Gβγ, forming a GDP-bound G protein heterotrimer. The G protein cycle is allosterically modulated by conformational changes of the Gα subunit. Although biochemical and biophysical methods have elucidated the structure and dynamics of Gα, the precise conformational mechanisms underlying the G protein cycle are not fully understood yet. Simulation methods could help to provide additional details to gain further insight into G protein signal transduction mechanisms. In this study, using the available X-ray crystal structures of Gα, we simulated the entire G protein cycle and described not only the steric features of the Gα structure, but also conformational changes at each step. Each reference structure in the G protein cycle was modeled as an elastic network model and subjected to normal mode analysis. Our simulation data suggests that activated receptors trigger conformational changes of the Gα subunit that are thermodynamically favorable for opening of the nucleotide-binding pocket and GDP release. Furthermore, the effects of GTP binding and hydrolysis on mobility changes of the C and N termini and switch regions are elucidated. In summary, our simulation results enabled us to provide detailed descriptions of the structural and dynamic features of the G protein cycle. PMID:27483005

  4. Heteromeric amino acid transporters. In search of the molecular bases of transport cycle mechanisms.

    PubMed

    Palacín, Manuel; Errasti-Murugarren, Ekaitz; Rosell, Albert

    2016-06-15

    Heteromeric amino acid transporters (HATs) are relevant targets for structural studies. On the one hand, HATs are involved in inherited and acquired human pathologies. On the other hand, these molecules are the only known examples of solute transporters composed of two subunits (heavy and light) linked by a disulfide bridge. Unfortunately, structural knowledge of HATs is scarce and limited to the atomic structure of the ectodomain of a heavy subunit (human 4F2hc-ED) and distant prokaryotic homologues of the light subunits that share a LeuT-fold. Recent data on human 4F2hc/LAT2 at nanometer resolution revealed 4F2hc-ED positioned on top of the external loops of the light subunit LAT2. Improved resolution of the structure of HATs, combined with conformational studies, is essential to establish the structural bases for light subunit recognition and to evaluate the functional relevance of heavy and light subunit interactions for the amino acid transport cycle. PMID:27284037

  5. Artificial Autopolyploidization Modifies the Tricarboxylic Acid Cycle and GABA Shunt in Arabidopsis thaliana Col-0

    NASA Astrophysics Data System (ADS)

    Vergara, Fredd; Kikuchi, Jun; Breuer, Christian

    2016-05-01

    Autopolyploidy is a process whereby the chromosome set is multiplied and it is a common phenomenon in angiosperms. Autopolyploidy is thought to be an important evolutionary force that has led to the formation of new plant species. Despite its relevance, the consequences of autopolyploidy in plant metabolism are poorly understood. This study compares the metabolic profiles of natural diploids and artificial autotetraploids of Arabidopsis thaliana Col-0. Different physiological parameters are compared between diploids and autotetraploids using nuclear magnetic resonance (NMR), elemental analysis (carbon:nitrogen balance) and quantitative real-time PCR (qRT-PCR). The main difference between diploid and autotetraploid A. thaliana Col-0 is observed in the concentration of metabolites related to the tricarboxylic acid cycle (TCA) and γ-amino butyric acid (GABA) shunt, as shown by multivariate statistical analysis of NMR spectra. qRT-PCR shows that genes related to the TCA and GABA shunt are also differentially expressed between diploids and autotetraploids following similar trends as their corresponding metabolites. Solid evidence is presented to demonstrate that autopolyploidy influences core plant metabolic processes.

  6. Artificial Autopolyploidization Modifies the Tricarboxylic Acid Cycle and GABA Shunt in Arabidopsis thaliana Col-0

    PubMed Central

    Vergara, Fredd; Kikuchi, Jun; Breuer, Christian

    2016-01-01

    Autopolyploidy is a process whereby the chromosome set is multiplied and it is a common phenomenon in angiosperms. Autopolyploidy is thought to be an important evolutionary force that has led to the formation of new plant species. Despite its relevance, the consequences of autopolyploidy in plant metabolism are poorly understood. This study compares the metabolic profiles of natural diploids and artificial autotetraploids of Arabidopsis thaliana Col-0. Different physiological parameters are compared between diploids and autotetraploids using nuclear magnetic resonance (NMR), elemental analysis (carbon:nitrogen balance) and quantitative real-time PCR (qRT-PCR). The main difference between diploid and autotetraploid A. thaliana Col-0 is observed in the concentration of metabolites related to the tricarboxylic acid cycle (TCA) and γ-amino butyric acid (GABA) shunt, as shown by multivariate statistical analysis of NMR spectra. qRT-PCR shows that genes related to the TCA and GABA shunt are also differentially expressed between diploids and autotetraploids following similar trends as their corresponding metabolites. Solid evidence is presented to demonstrate that autopolyploidy influences core plant metabolic processes. PMID:27212081

  7. Developments in absorptive glass mat separators for cycling applications and 36 V lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Toniazzo, V.; Lambert, U.

    The major markets for valve-regulated lead-acid (VRLA) batteries are undergoing a radical upheaval. In particular, the telecommunications industry requires more reliable power supplies, and the familiar 12 V electrical system in cars will probably be soon replaced by a 36/42 V system, or by other electrical systems if part of the automotive market is taken over by hybrid electrical vehicles (HEVs). In order to meet these new challenges and enable VRLA batteries to provide a satisfactory life in float and cycling applications in the telecommunication field, or in the high-rate-partial-state-of-charge service required by both 36/42 V automobiles and HEVs, the lead-acid battery industry has to improve substantially the quality of present VRLA batteries based on absorptive glass mat (AGM) technology. Therefore, manufacturing steps and cell components have to be optimized, especially AGM separators as these are key components for better production yields and battery performance. This paper shows how the optimal segregation of the coarse and fine fibres in an AGM separator structure can improve greatly the properties of the material. The superior capillarity, springiness and mechanical properties of the 100% glass Amerglass multilayer separator compared with commercial monolayer counterparts with the same specific surface-area is highlighted.

  8. Artificial Autopolyploidization Modifies the Tricarboxylic Acid Cycle and GABA Shunt in Arabidopsis thaliana Col-0.

    PubMed

    Vergara, Fredd; Kikuchi, Jun; Breuer, Christian

    2016-01-01

    Autopolyploidy is a process whereby the chromosome set is multiplied and it is a common phenomenon in angiosperms. Autopolyploidy is thought to be an important evolutionary force that has led to the formation of new plant species. Despite its relevance, the consequences of autopolyploidy in plant metabolism are poorly understood. This study compares the metabolic profiles of natural diploids and artificial autotetraploids of Arabidopsis thaliana Col-0. Different physiological parameters are compared between diploids and autotetraploids using nuclear magnetic resonance (NMR), elemental analysis (carbon:nitrogen balance) and quantitative real-time PCR (qRT-PCR). The main difference between diploid and autotetraploid A. thaliana Col-0 is observed in the concentration of metabolites related to the tricarboxylic acid cycle (TCA) and γ-amino butyric acid (GABA) shunt, as shown by multivariate statistical analysis of NMR spectra. qRT-PCR shows that genes related to the TCA and GABA shunt are also differentially expressed between diploids and autotetraploids following similar trends as their corresponding metabolites. Solid evidence is presented to demonstrate that autopolyploidy influences core plant metabolic processes. PMID:27212081

  9. Acute effect of ascorbic acid on fibrinolytic activity.

    PubMed

    Bordia, A; Paliwal, D K; Jain, K; Kothari, L K

    1978-08-01

    The acute effect of 1 g oral ascorbic acid on serum fibrinolytic activity was studied in 40 adult males. In Group I (healthy adults) administration of ascorbic acid raised the serum level by about 71%, while the fibrinolytic activity increased to a peak of 137% at 6 h. In patients with CAD (Group II) an essentially similar increase in FA was observed. In Group III, simultaneous administration of ascorbic acid with 100 g fat effectively prevented a fall in fibrinolytic activity and actually raised it by 64% above the fasting level. PMID:568476

  10. A microbial arsenic cycle in sediments of an acidic mine impoundment: Herman Pit, Clear Lake, California

    USGS Publications Warehouse

    Blum, Jodi S.; McCann, Shelley; Bennett, S.; Miller, Laurence G.; Stolz, J. R.; Stoneburner, B.; Saltikov, C.; Oremland, Ronald S.

    2015-01-01

    The involvement of prokaryotes in the redox reactions of arsenic occurring between its +5 [arsenate; As(V)] and +3 [arsenite; As(III)] oxidation states has been well established. Most research to date has focused upon circum-neutral pH environments (e.g., freshwater or estuarine sediments) or arsenic-rich “extreme” environments like hot springs and soda lakes. In contrast, relatively little work has been conducted in acidic environments. With this in mind we conducted experiments with sediments taken from the Herman Pit, an acid mine drainage impoundment of a former mercury (cinnabar) mine. Due to the large adsorptive capacity of the abundant Fe(III)-rich minerals, we were unable to initially detect in solution either As(V) or As(III) added to the aqueous phase of live sediment slurries or autoclaved controls, although the former consumed added electron donors (i.e., lactate, acetate, hydrogen), while the latter did not. This prompted us to conduct further experiments with diluted slurries using the live materials from the first incubation as inoculum. In these experiments we observed reduction of As(V) to As(III) under anoxic conditions and reduction rates were enhanced by addition of electron donors. We also observed oxidation of As(III) to As(V) in oxic slurries as well as in anoxic slurries amended with nitrate. We noted an acid-tolerant trend for sediment slurries in the cases of As(III) oxidation (aerobic and anaerobic) as well as for anaerobic As(V) reduction. These observations indicate the presence of a viable microbial arsenic redox cycle in the sediments of this extreme environment, a result reinforced by the successful amplification of arsenic functional genes (aioA, and arrA) from these materials.

  11. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    SciTech Connect

    Chang, Binbin Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng

    2015-01-15

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl{sub 2} using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl{sub 2} at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of –SO{sub 3}H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N{sub 2} adsorption–desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of –SO{sub 3}H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of –SO{sub 3}H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and –SO{sub 3}H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles. - Graphical abstract: Sulfonated porous carbon nanospheres with high surface area and superior catalytic performance were prepared by a facile chemical activation route. - Highlights: • Porous carbon spheres solid acid prepared by a facile chemical activation. • It owns high surface area, superior porosity and uniform spherical morphology. • It possesses

  12. Performance improvement: an active life cycle product management

    NASA Astrophysics Data System (ADS)

    Cucchiella, Federica; Gastaldi, Massimo; Lenny Koh, S. C.

    2010-03-01

    The management of the supply chain has gained importance in many manufacturing firms. Operational flexibility can be considered a crucial weapon to increase competitiveness in a turbulent marketplace. It reflects the ability of a firm to properly and rapidly respond to a variable and dynamic environment. For the firm operating in a fashion sector, the management of the supply chain is even more complex because the product life cycle is shorter than that of the firm operating in a non-fashion sector. The increase of firm flexibility level can be reached through the application of the real option theory inside the firm network. In fact, real option may increase the project value by allowing managers to more efficiently direct the production. The real option application usually analysed in literature does not take into account that the demands of products are well-defined by the product life cycle. Working on a fashion sector, the life cycle pattern is even more relevant because of an expected demand that grows according to a constant rate that does not capture the demand dynamics of the underlying fashion goods. Thus, the primary research objective of this article is to develop a model useful for the management of investments in a supply chain operating in a fashion sector where the system complexity is increased by the low level of unpredictability and stability that is proper of the mood phenomenon. Moreover, unlike the traditional model, a real option framework is presented here that considers fashion product characterised by uncertain stages of the production cycle.

  13. Cdk1 activity acts as a quantitative platform for coordinating cell cycle progression with periodic transcription

    PubMed Central

    Banyai, Gabor; Baïdi, Feriel; Coudreuse, Damien; Szilagyi, Zsolt

    2016-01-01

    Cell proliferation is regulated by cyclin-dependent kinases (Cdks) and requires the periodic expression of particular gene clusters in different cell cycle phases. However, the interplay between the networks that generate these transcriptional oscillations and the core cell cycle machinery remains largely unexplored. In this work, we use a synthetic regulable Cdk1 module to demonstrate that periodic expression is governed by quantitative changes in Cdk1 activity, with different clusters directly responding to specific activity levels. We further establish that cell cycle events neither participate in nor interfere with the Cdk1-driven transcriptional program, provided that cells are exposed to the appropriate Cdk1 activities. These findings contrast with current models that propose self-sustained and Cdk1-independent transcriptional oscillations. Our work therefore supports a model in which Cdk1 activity serves as a quantitative platform for coordinating cell cycle transitions with the expression of critical genes to bring about proper cell cycle progression. PMID:27045731

  14. Enteric pathogens deploy cell cycle inhibiting factors to block the bactericidal activity of Perforin-2

    PubMed Central

    McCormack, Ryan M; Lyapichev, Kirill; Olsson, Melissa L; Podack, Eckhard R; Munson, George P

    2015-01-01

    Perforin-2 (MPEG1) is an effector of the innate immune system that limits the proliferation and spread of medically relevant Gram-negative, -positive, and acid fast bacteria. We show here that a cullin-RING E3 ubiquitin ligase (CRL) complex containing cullin-1 and βTrCP monoubiquitylates Perforin-2 in response to pathogen associated molecular patterns such as LPS. Ubiquitylation triggers a rapid redistribution of Perforin-2 and is essential for its bactericidal activity. Enteric pathogens such as Yersinia pseudotuberculosis and enteropathogenic Escherichia coli disarm host cells by injecting cell cycle inhibiting factors (Cifs) into mammalian cells to deamidate the ubiquitin-like protein NEDD8. Because CRL activity is dependent upon NEDD8, Cif blocks ubiquitin dependent trafficking of Perforin-2 and thus, its bactericidal activity. Collectively, these studies further underscore the biological significance of Perforin-2 and elucidate critical molecular events that culminate in Perforin-2-dependent killing of both intracellular and extracellular, cell-adherent bacteria. DOI: http://dx.doi.org/10.7554/eLife.06505.001 PMID:26418746

  15. Chlorogenic Acid Inhibits Human Platelet Activation and Thrombus Formation

    PubMed Central

    Fuentes, Eduardo; Caballero, Julio; Alarcón, Marcelo; Rojas, Armando; Palomo, Iván

    2014-01-01

    Background Chlorogenic acid is a potent phenolic antioxidant. However, its effect on platelet aggregation, a critical factor in arterial thrombosis, remains unclear. Consequently, chlorogenic acid-action mechanisms in preventing platelet activation and thrombus formation were examined. Methods and Results Chlorogenic acid in a dose-dependent manner (0.1 to 1 mmol/L) inhibited platelet secretion and aggregation induced by ADP, collagen, arachidonic acid and TRAP-6, and diminished platelet firm adhesion/aggregation and platelet-leukocyte interactions under flow conditions. At these concentrations chlorogenic acid significantly decreased platelet inflammatory mediators (sP-selectin, sCD40L, CCL5 and IL-1β) and increased intraplatelet cAMP levels/PKA activation. Interestingly, SQ22536 (an adenylate cyclase inhibitor) and ZM241385 (a potent A2A receptor antagonist) attenuated the antiplatelet effect of chlorogenic acid. Chlorogenic acid is compatible to the active site of the adenosine A2A receptor as revealed through molecular modeling. In addition, chlorogenic acid had a significantly lower effect on mouse bleeding time when compared to the same dose of aspirin. Conclusions Antiplatelet and antithrombotic effects of chlorogenic acid are associated with the A2A receptor/adenylate cyclase/cAMP/PKA signaling pathway. PMID:24598787

  16. Radical scavenging activity and cytotoxicity of ferulic acid.

    PubMed

    Ogiwara, Takako; Satoh, Kazue; Kadoma, Yoshinori; Murakami, Yukio; Unten, Senwa; Atsumi, Toshiko; Sakagami, Hiroshi; Fujisawa, Seiichiro

    2002-01-01

    Ferulic acid and eugenol were examined for their superoxide (O2-), hydroxyl radical (.OH) and nitric oxide (NO)-scavenging ability, using ESR spectroscopy with spin trap agents DMPO and carboxy-PTIO/NOC-7. Ferulic acid more efficiently scavenged .OH and NO than eugenol. The O2- scavenging activity of ferulic acid was comparable with that of eugenol. Ferulic acid significantly reduced the NO production by lipopolysaccharide (LPS)-stimulated mouse macrophage-like cells (Raw 264.7 cells) compared to eugenol. The cytotoxic activity of ferulic acid against Raw 264.7 cells was comparable with that against human submandibular gland carcinoma (HSG) cells and the cytotoxicity of ferulic acid was about 10-fold smaller than that of eugenol. The stoichiometric factor (n) (number of moles of peroxy radical trapped by moles of the relevant phenol) of ferulic acid and eugenol was investigated, using the induction period methods of the methyl methacrylate polymerization system. The n-value of ferulic acid (1.5) was higher than that of eugenol (1.0) and was similar to that of 2, 6-di-t-butyl-4-methylphenol (BHT). Ferulic acid as well as eugenol may produce a dimer during the induction period due to an n-value less than 2. These results suggested that ferulic acid may be useful for preventing cell damage perhaps caused by O2-, and in particular by .OH and NO, in living systems. PMID:12529986

  17. Prediction of solar activity from solar background magnetic field variations in cycles 21-23

    SciTech Connect

    Shepherd, Simon J.; Zharkov, Sergei I.; Zharkova, Valentina V. E-mail: s.zharkov@hull.ac.uk

    2014-11-01

    A comprehensive spectral analysis of both the solar background magnetic field (SBMF) in cycles 21-23 and the sunspot magnetic field in cycle 23 reported in our recent paper showed the presence of two principal components (PCs) of SBMF having opposite polarity, e.g., originating in the northern and southern hemispheres, respectively. Over a duration of one solar cycle, both waves are found to travel with an increasing phase shift toward the northern hemisphere in odd cycles 21 and 23 and to the southern hemisphere in even cycle 22. These waves were linked to solar dynamo waves assumed to form in different layers of the solar interior. In this paper, for the first time, the PCs of SBMF in cycles 21-23 are analyzed with the symbolic regression technique using Hamiltonian principles, allowing us to uncover the underlying mathematical laws governing these complex waves in the SBMF presented by PCs and to extrapolate these PCs to cycles 24-26. The PCs predicted for cycle 24 very closely fit (with an accuracy better than 98%) the PCs derived from the SBMF observations in this cycle. This approach also predicts a strong reduction of the SBMF in cycles 25 and 26 and, thus, a reduction of the resulting solar activity. This decrease is accompanied by an increasing phase shift between the two predicted PCs (magnetic waves) in cycle 25 leading to their full separation into the opposite hemispheres in cycle 26. The variations of the modulus summary of the two PCs in SBMF reveals a remarkable resemblance to the average number of sunspots in cycles 21-24 and to predictions of reduced sunspot numbers compared to cycle 24: 80% in cycle 25 and 40% in cycle 26.

  18. The Bile Acid Chenodeoxycholic Acid Increases Human Brown Adipose Tissue Activity.

    PubMed

    Broeders, Evie P M; Nascimento, Emmani B M; Havekes, Bas; Brans, Boudewijn; Roumans, Kay H M; Tailleux, Anne; Schaart, Gert; Kouach, Mostafa; Charton, Julie; Deprez, Benoit; Bouvy, Nicole D; Mottaghy, Felix; Staels, Bart; van Marken Lichtenbelt, Wouter D; Schrauwen, Patrick

    2015-09-01

    The interest in brown adipose tissue (BAT) as a target to combat metabolic disease has recently been renewed with the discovery of functional BAT in humans. In rodents, BAT can be activated by bile acids, which activate type 2 iodothyronine deiodinase (D2) in BAT via the G-coupled protein receptor TGR5, resulting in increased oxygen consumption and energy expenditure. Here we examined the effects of oral supplementation of the bile acid chenodeoxycholic acid (CDCA) on human BAT activity. Treatment of 12 healthy female subjects with CDCA for 2 days resulted in increased BAT activity. Whole-body energy expenditure was also increased upon CDCA treatment. In vitro treatment of primary human brown adipocytes derived with CDCA or specific TGR5 agonists increased mitochondrial uncoupling and D2 expression, an effect that was absent in human primary white adipocytes. These findings identify bile acids as a target to activate BAT in humans. PMID:26235421

  19. Altered lower leg muscle activation patterns in patients with cerebral palsy during cycling on an ergometer

    PubMed Central

    Alves-Pinto, Ana; Blumenstein, Tobias; Turova, Varvara; Lampe, Renée

    2016-01-01

    Objective Cycling on a recumbent ergometer constitutes one of the most popular rehabilitation exercises in cerebral palsy (CP). However, no control is performed on how muscles are being used during training. Given that patients with CP present altered muscular activity patterns during cycling or walking, it is possible that an incorrect pattern of muscle activation is being promoted during rehabilitation cycling. This study investigated patterns of muscular activation during cycling on a recumbent ergometer in patients with CP and whether those patterns are determined by the degree of spasticity and of mobility. Methods Electromyographic (EMG) recordings of lower leg muscle activation during cycling on a recumbent ergometer were performed in 14 adult patients diagnosed with CP and five adult healthy participants. EMG recordings were done with an eight-channel EMG system built in the laboratory. The activity of the following muscles was recorded: Musculus rectus femoris, Musculus biceps femoris, Musculus tibialis anterior, and Musculus gastrocnemius. The degree of muscle spasticity and mobility was assessed using the Modified Ashworth Scale and the Gross Motor Function Classification System, respectively. Muscle activation patterns were described in terms of onset and duration of activation as well as duration of cocontractions. Results Muscle activation in CP was characterized by earlier onsets, longer periods of activation, a higher occurrence of agonist–antagonist cocontractions, and a more variable cycling tempo in comparison to healthy participants. The degree of altered muscle activation pattern correlated significantly with the degree of spasticity. Conclusion This study confirmed the occurrence of altered lower leg muscle activation patterns in patients with CP during cycling on a recumbent ergometer. There is a need to develop feedback systems that can inform patients and therapists of an incorrect muscle activation during cycling and support the training

  20. Surface-active properties of humic and sulfochlorohumic acids

    SciTech Connect

    Ryabova, I.N.; Mustafina, G.A.; Akkulova, Z.G.; Satymbaeva, A.S.

    2009-10-15

    The surface tension of alkaline solutions of humic acids and their sulfochloroderivatives, which are synthesized by sulfonation of chlorohumic acids isolated from coal chlorinated by the electrochemical method, is investigated. It is established that humic compounds possess weak surface activity. Basic adsorption parameters are calculated.

  1. New nalidixic acid resistance mutations related to deoxyribonucleic acid gyrase activity.

    PubMed Central

    Yamagishi, J; Furutani, Y; Inoue, S; Ohue, T; Nakamura, S; Shimizu, M

    1981-01-01

    In Escherichia coli K-12 mutants which had a new nalidixic acid resistance mutation at about 82 min on the chromosome map, cell growth was resistant to or hypersusceptible to nalidixic acid, oxolinic acid, piromidic acid, pipemidic acid, and novobiocin. Deoxyribonucleic acid gyrase activity as tested by supercoiling of lambda phage deoxyribonucleic acid inside the mutants was similarly resistant or hypersusceptible to the compounds. The drug concentrations required for gyrase inhibition were much higher than those for cell growth inhibition but similar to those for inhibition of lambda phage multiplication. Transduction analysis with lambda phages carrying the chromosomal fragment of the tnaA-gyrB region suggested that one of the mutations, nal-31, was located on the gyrB gene. PMID:6271730

  2. Pleiotropic activity of lysophosphatidic acid in bone metastasis.

    PubMed

    Peyruchaud, Olivier; Leblanc, Raphael; David, Marion

    2013-01-01

    Bone is a common metastatic site for solid cancers. Bone homeostasis is tightly regulated by intimate cross-talks between osteoblast (bone forming cells) and osteoclasts (bone resorbing cells). Once in the bone microenvironment, metastatic cells do not alter bone directly but instead perturb the physiological balance of the bone remodeling process controlled by bone cells. Tumor cells produce growth factors and cytokines stimulating either osteoclast activity leading to osteolytic lesions or osteoblast function resulting in osteoblastic metastases. Growth factors, released from the resorbed bone matrix or throughout osteoblastic bone formation, sustain tumor growth. Therefore, bone metastases are the sites of vicious cycles wherein tumor growth and bone metabolism sustain each other. Lysophosphatidic acid (LPA) promotes the growth of primary tumors and metastatic dissemination of cancer cells. We have shown that by acting on cancer cells via the contribution of blood platelets and the LPA-producing enzyme Autotaxin (ATX), LPA promotes the progression of osteolytic bone metastases in animal models. In the light of recent reports it would appear that the role of LPA in the context of bone metastases is complex involving multiple sources of lipid combined with direct and indirect effects on target cells. This review will present our current knowledge on the LPA/ATX axis involvement in osteolytic and osteoblastic skeletal metastases and will discuss the potential activity of LPA upstream and downstream metastasis seeding of cancer cells to bone as well as its implication in cancer induced bone pain. This article is part of a Special Issue entitled Advances in Lysophospholipid Research. PMID:22710393

  3. Effects of precipitation on soil acid phosphatase activity in three successional forests in Southern China

    NASA Astrophysics Data System (ADS)

    Huang, W.; Liu, J.; Zhou, G.; Zhang, D.; Deng, Q.

    2011-01-01

    Phosphorus (P) is often a limiting nutrient for plant growth in tropical and subtropical forests. Global climate change has led to alterations in precipitation in the recent years, which inevitably influences P cycling. Soil acid phosphatase plays a vital role in controlling P mineralization, and its activity reflects the capacity of P supply to ecosystems. In order to study the effects of precipitation on soil acid phosphatase activity, an experiment of precipitation treatments (no precipitation, natural precipitation and doubled precipitation) in three forests of early-, mid- and advanced-successional stages in Southern China was carried out. Results showed that driven by seasonality of precipitation, changes in soil acid phosphatase activities coincided with the seasonal climate pattern, with significantly higher values in the wet season than in the dry season. Soil acid phosphatase activities were closely linked to forest successional stages, with enhanced values in the later stages of forest succession. In the dry season, soil acid phosphatase activities in the three forests showed a rising trend with increasing precipitation treatments. In the wet season, no precipitation treatment depressed soil acid phosphatase activity, while doubled precipitation treatment exerted no positive effects on it, and even significantly lowered it in the advanced forest. These indicate the potential transformation rate of organic P might be more dependent on water in the dry season than in the wet season. The negative responses of soil acid phosphatase activity to precipitation suggest that P supply in subtropical ecosystems might be reduced if there was a drought in a whole year or more rainfall in the wet season in the future. NP, no precipitation; Control, natural precipitation; DP, double precipitation.

  4. ANALYSIS OF ARACHIDONIC ACID METABOLITE AND PLATELET ACTIVATING FACTOR PRODUCTION

    EPA Science Inventory

    Metabolites of arachidonic acid ("eicosanoids") and platelet activating factor are important bioactive lipids that may be involved in the pathobiological alterations in animals induced by pollutant exposure. nalysis of these substances in biological tissue and fluids is important...

  5. Respiratory Muscle Activity During Simultaneous Stationary Cycling and Inspiratory Muscle Training.

    PubMed

    Hellyer, Nathan J; Folsom, Ian A; Gaz, Dan V; Kakuk, Alynn C; Mack, Jessica L; Ver Mulm, Jacyln A

    2015-12-01

    Inspiratory muscle training (IMT) strengthens the muscles of respiration, improves breathing efficiency, and increases fitness. The IMT is generally performed independently of aerobic exercise; however, it is not clear whether there is added benefit of performing the IMT while simultaneously performing aerobic exercise in terms of activating and strengthening inspiratory muscles. The purpose of our study was to determine the effect of IMT on respiratory muscle electromyography (EMG) activity during stationary cycling in the upright and drops postures as compared with that when the IMT was performed alone. Diaphragm and sternocleidomastoid EMG activity was measured under different resting and cycling postures, with and without the use of the IMT at 40% maximal inspiratory pressure (n = 10; mean age 37). Cycling in an upright posture while simultaneously performing the IMT resulted in a significantly greater diaphragm EMG activity than while performing the IMT at rest in upright or drops postures (p ≤ 0.05). Cycling in drops postures while performing the IMT had a significantly greater diaphragm EMG activity than when performing the IMT at rest in either upright or drops postures (p ≤ 0.05). Sternocleidomastoid muscle activity increased with both cycling and IMT, although posture had little effect. These results support our hypothesis in that the IMT while cycling increases respiratory EMG activity to a significantly greater extent than when performing the IMT solely at rest, suggesting that the combination of IMT and cycling may provide an additive training effect. PMID:26584054

  6. Unusual Migration of Prominence Activities in the Southern Hemisphere during Cycles 23-24

    NASA Astrophysics Data System (ADS)

    Shimojo, Masumi

    2013-12-01

    The solar activity in Cycles 23-24 shows differences from the previous cycles that were observed with modern instruments, e.g., long cycle duration and a small number of sunspots. To appreciate the anomalies further, we investigated the prominence eruptions and disappearances observed with the Nobeyama Radioheliograph for over 20 years. Consequently, we found that the occurrence of prominence activities in the northern hemisphere is normal because the period of the number variation is 11 years, and the migration of the producing region of the prominence activities traces the migration of 11 years ago. On the other hand, the migration in the southern hemisphere significantly differs from that in the northern hemisphere and the previous cycles. The prominence activities occurred over -50° latitude in spite of the late decay phase of Cycle 23, and the number of prominence activities in the higher latitude region (over -65°) is very small, even near the solar maximum of Cycle 24. The results suggest that the anomalies of the global magnetic field distribution started at the solar maximum of Cycle 23. A comparison of the butterfly diagram of the prominence activities with the magnetic butterfly diagram indicates that the timing of "the rush to the pole" and the polar magnetic field closely relates to unusual migration. Considering that the rush to the pole is made of the sunspots, the hemispheric asymmetry of the sunspots and the strength of the polar magnetic fields are essential for understanding the anomalies of the prominence activities.

  7. The Life Cycle of Active Region Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Cheung, M. C. M.; van Driel-Gesztelyi, L.; Martínez Pillet, V.; Thompson, M. J.

    2016-08-01

    We present a contemporary view of how solar active region magnetic fields are understood to be generated, transported and dispersed. Empirical trends of active region properties that guide model development are discussed. Physical principles considered important for active region evolution are introduced and advances in modeling are reviewed.

  8. The cellular and compartmental profile of mouse retinal glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and ~P transferring kinases

    PubMed Central

    Rueda, Elda M.; Johnson, Jerry E.; Giddabasappa, Anand; Swaroop, Anand; Brooks, Matthew J.; Sigel, Irena; Chaney, Shawnta Y.

    2016-01-01

    Purpose The homeostatic regulation of cellular ATP is achieved by the coordinated activity of ATP utilization, synthesis, and buffering. Glucose is the major substrate for ATP synthesis through glycolysis and oxidative phosphorylation (OXPHOS), whereas intermediary metabolism through the tricarboxylic acid (TCA) cycle utilizes non-glucose-derived monocarboxylates, amino acids, and alpha ketoacids to support mitochondrial ATP and GTP synthesis. Cellular ATP is buffered by specialized equilibrium-driven high-energy phosphate (~P) transferring kinases. Our goals were twofold: 1) to characterize the gene expression, protein expression, and activity of key synthesizing and regulating enzymes of energy metabolism in the whole mouse retina, retinal compartments, and/or cells and 2) to provide an integrative analysis of the results related to function. Methods mRNA expression data of energy-related genes were extracted from our whole retinal Affymetrix microarray data. Fixed-frozen retinas from adult C57BL/6N mice were used for immunohistochemistry, laser scanning confocal microscopy, and enzymatic histochemistry. The immunoreactivity levels of well-characterized antibodies, for all major retinal cells and their compartments, were obtained using our established semiquantitative confocal and imaging techniques. Quantitative cytochrome oxidase (COX) and lactate dehydrogenase (LDH) activity was determined histochemically. Results The Affymetrix data revealed varied gene expression patterns of the ATP synthesizing and regulating enzymes found in the muscle, liver, and brain. Confocal studies showed differential cellular and compartmental distribution of isozymes involved in glucose, glutamate, glutamine, lactate, and creatine metabolism. The pattern and intensity of the antibodies and of the COX and LDH activity showed the high capacity of photoreceptors for aerobic glycolysis and OXPHOS. Competition assays with pyruvate revealed that LDH-5 was localized in the photoreceptor

  9. Bioconversion of volatile fatty acids derived from waste activated sludge into lipids by Cryptococcus curvatus.

    PubMed

    Liu, Jia; Liu, Jia-Nan; Yuan, Ming; Shen, Zi-Heng; Peng, Kai-Ming; Lu, Li-Jun; Huang, Xiang-Feng

    2016-07-01

    Pure volatile fatty acid (VFA) solution derived from waste activated sludge (WAS) was used to produce microbial lipids as culture medium in this study, which aimed to realize the resource recovery of WAS and provide low-cost feedstock for biodiesel production simultaneously. Cryptococcus curvatus was selected among three oleaginous yeast to produce lipids with VFAs derived from WAS. In batch cultivation, lipid contents increased from 10.2% to 16.8% when carbon to nitrogen ratio increased from about 3.5 to 165 after removal of ammonia nitrogen by struvite precipitation. The lipid content further increased to 39.6% and the biomass increased from 1.56g/L to 4.53g/L after cultivation for five cycles using sequencing batch culture (SBC) strategy. The lipids produced from WAS-derived VFA solution contained nearly 50% of monounsaturated fatty acids, including palmitic acid, heptadecanoic acid, ginkgolic acid, stearic acid, oleic acid, and linoleic acid, which showed the adequacy of biodiesel production. PMID:27038264

  10. Effects of sex and site on amino acid metabolism enzyme gene expression and activity in rat white adipose tissue

    PubMed Central

    Arriarán, Sofía; Agnelli, Silvia; Remesar, Xavier; Fernández-López, José Antonio

    2015-01-01

    Background and Objectives. White adipose tissue (WAT) shows marked sex- and diet-dependent differences. However, our metabolic knowledge of WAT, especially on amino acid metabolism, is considerably limited. In the present study, we compared the influence of sex on the amino acid metabolism profile of the four main WAT sites, focused on the paths related to ammonium handling and the urea cycle, as a way to estimate the extent of WAT implication on body amino-nitrogen metabolism. Experimental Design. Adult female and male rats were maintained, undisturbed, under standard conditions for one month. After killing them under isoflurane anesthesia. WAT sites were dissected and weighed. Subcutaneous, perigonadal, retroperitoneal and mesenteric WAT were analyzed for amino acid metabolism gene expression and enzyme activities. Results. There was a considerable stability of the urea cycle activities and expressions, irrespective of sex, and with only limited influence of site. Urea cycle was more resilient to change than other site-specialized metabolic pathways. The control of WAT urea cycle was probably related to the provision of arginine/citrulline, as deduced from the enzyme activity profiles. These data support a generalized role of WAT in overall amino-N handling. In contrast, sex markedly affected WAT ammonium-centered amino acid metabolism in a site-related way, with relatively higher emphasis in males’ subcutaneous WAT. Conclusions. We found that WAT has an active amino acid metabolism. Its gene expressions were lower than those of glucose-lipid interactions, but the differences were quantitatively less important than usually reported. The effects of sex on urea cycle enzymes expression and activity were limited, in contrast with the wider variations observed in other metabolic pathways. The results agree with a centralized control of urea cycle operation affecting the adipose organ as a whole. PMID:26587356

  11. Effects of sex and site on amino acid metabolism enzyme gene expression and activity in rat white adipose tissue.

    PubMed

    Arriarán, Sofía; Agnelli, Silvia; Remesar, Xavier; Fernández-López, José Antonio; Alemany, Marià

    2015-01-01

    Background and Objectives. White adipose tissue (WAT) shows marked sex- and diet-dependent differences. However, our metabolic knowledge of WAT, especially on amino acid metabolism, is considerably limited. In the present study, we compared the influence of sex on the amino acid metabolism profile of the four main WAT sites, focused on the paths related to ammonium handling and the urea cycle, as a way to estimate the extent of WAT implication on body amino-nitrogen metabolism. Experimental Design. Adult female and male rats were maintained, undisturbed, under standard conditions for one month. After killing them under isoflurane anesthesia. WAT sites were dissected and weighed. Subcutaneous, perigonadal, retroperitoneal and mesenteric WAT were analyzed for amino acid metabolism gene expression and enzyme activities. Results. There was a considerable stability of the urea cycle activities and expressions, irrespective of sex, and with only limited influence of site. Urea cycle was more resilient to change than other site-specialized metabolic pathways. The control of WAT urea cycle was probably related to the provision of arginine/citrulline, as deduced from the enzyme activity profiles. These data support a generalized role of WAT in overall amino-N handling. In contrast, sex markedly affected WAT ammonium-centered amino acid metabolism in a site-related way, with relatively higher emphasis in males' subcutaneous WAT. Conclusions. We found that WAT has an active amino acid metabolism. Its gene expressions were lower than those of glucose-lipid interactions, but the differences were quantitatively less important than usually reported. The effects of sex on urea cycle enzymes expression and activity were limited, in contrast with the wider variations observed in other metabolic pathways. The results agree with a centralized control of urea cycle operation affecting the adipose organ as a whole. PMID:26587356

  12. Depletion of arachidonic acid from GH3 cells. Effects on inositol phospholipid turnover and cellular activation.

    PubMed Central

    Dudley, D T; Macfarlane, D E; Spector, A A

    1987-01-01

    We have adapted rat pituitary GH3 cells to grow in delipidated culture medium. In response, esterfied linoleic acid and arachidonic acid become essentially undetectable, whereas eicosa-5,8,11-trienoic acid accumulates and oleic acid increases markedly. These changes occur in all phospholipid classes, but are particularly pronounced in inositol phospholipids, where the usual stearate/arachidonate profile is replaced with oleate/eicosatrienoate (n - 9) and stearate/eicosatrienoate (n - 9). Incubation of arachidonate-depleted cells with 10 microM-arachidonic acid for only 24 h results in extensive remodelling of phospholipid fatty acids, such that close-to-normal compositions and arachidonic acid content are achieved for the inositol phospholipids. In comparison studies with arachidonic acid-depleted or -repleted cells, it was found that the arachidonate content does not affect thyrotropin-releasing-hormone (TRH)-stimulated responses measured at long time points, including [32P]Pi labelling of phosphatidylinositol and phosphatidic acid, stimulation of protein phosphorylation, and basal or TRH-stimulated prolactin release. However, transient events such as stimulated breakdown of inositol phospholipids and an initial rise in diacylglycerol are enhanced by the presence of arachidonate. These results show that arachidonic acid itself is not required for operation of the phosphatidylinositol cycle and is not an obligatory intermediate in TRH-mediated GH3 cell activation. It is possible that any structural or functional role of arachidonic acid in these processes is largely met by replacement with eicosatrienoate (n - 9). However, since arachidonate in inositol phospholipids facilitates their hydrolysis upon stimulation by TRH, arachidonic acid apparently may have a specific role in the recognition of these lipids by phospholipase C. Images Fig. 4. PMID:3120699

  13. Structural Requirements for the Procoagulant Activity of Nucleic Acids

    PubMed Central

    Gansler, Julia; Jaax, Miriam; Leiting, Silke; Appel, Bettina; Greinacher, Andreas; Fischer, Silvia; Preissner, Klaus T.

    2012-01-01

    Nucleic acids, especially extracellular RNA, are exposed following tissue- or vessel damage and have previously been shown to activate the intrinsic blood coagulation pathway in vitro and in vivo. Yet, no information on structural requirements for the procoagulant activity of nucleic acids is available. A comparison of linear and hairpin-forming RNA- and DNA-oligomers revealed that all tested oligomers forming a stable hairpin structure were protected from degradation in human plasma. In contrast to linear nucleic acids, hairpin forming compounds demonstrated highest procoagulant activities based on the analysis of clotting time in human plasma and in a prekallikrein activation assay. Moreover, the procoagulant activities of the DNA-oligomers correlated well with their binding affinity to high molecular weight kininogen, whereas the binding affinity of all tested oligomers to prekallikrein was low. Furthermore, four DNA-aptamers directed against thrombin, activated protein C, vascular endothelial growth factor and nucleolin as well as the naturally occurring small nucleolar RNA U6snRNA were identified as effective cofactors for prekallikrein auto-activation. Together, we conclude that hairpin-forming nucleic acids are most effective in promoting procoagulant activities, largely mediated by their specific binding to kininogen. Thus, in vivo application of therapeutic nucleic acids like aptamers might have undesired prothrombotic or proinflammatory side effects. PMID:23226277

  14. Rhinosporidium seeberi Nuclear Cycle Activities Using Confocal Microscopy.

    PubMed

    Delfino, Darly; Mendoza, Leonel; Vilela, Raquel

    2016-02-01

    Rhinosporidium seeberi is an uncultivated Ichthyosporean infecting animals, including humans. Recent studies suggested R. seeberi undergoes synchronized nuclear division without cytokinesis. We used confocal microscopy to investigate R. seeberi nuclear division cycles in formalin-fixed tissues stained with DAPI and phalloidin. We report that R. seeberi nuclei in juvenile and intermediary sporangia synchronously divided without cytokinesis. Intermediary sporangia display numerous 3-4 μm nuclei at different mitotic stages as well as a thick inner layer with strong affinity for phalloidin. Mature sporangia showed numerous 5-12 μm cell-walled endospores, each containing a 2-4 μm in diameter nucleus. Phalloidin did not bind to the inner layers of mature sporangia or endospores. The development of a "germinative zone" in the inner layer of mature sporangia containing hundreds of nuclei was also confirmed. This study establishes that during the R. seeberi life cycle synchronous nuclear divisions without cytokinesis takes place, resulting in the formation of thousands of nuclei. Cytokinesis, on the other hand, is a 1-time event and occurs in the latest stages of intermediate sporangia, after the formation of thousands of nuclei and just before mature sporangia development. PMID:26461427

  15. Antiproliferative activity of synthetic fatty acid amides from renewable resources.

    PubMed

    dos Santos, Daiane S; Piovesan, Luciana A; D'Oca, Caroline R Montes; Hack, Carolina R Lopes; Treptow, Tamara G M; Rodrigues, Marieli O; Vendramini-Costa, Débora B; Ruiz, Ana Lucia T G; de Carvalho, João Ernesto; D'Oca, Marcelo G Montes

    2015-01-15

    In the work, the in vitro antiproliferative activity of a series of synthetic fatty acid amides were investigated in seven cancer cell lines. The study revealed that most of the compounds showed antiproliferative activity against tested tumor cell lines, mainly on human glioma cells (U251) and human ovarian cancer cells with a multiple drug-resistant phenotype (NCI-ADR/RES). In addition, the fatty methyl benzylamide derived from ricinoleic acid (with the fatty acid obtained from castor oil, a renewable resource) showed a high selectivity with potent growth inhibition and cell death for the glioma cell line-the most aggressive CNS cancer. PMID:25510639

  16. Biological Activities of Oleanolic Acid Derivatives from Calendula officinalis Seeds.

    PubMed

    Zaki, Ahmed; Ashour, Ahmed; Mira, Amira; Kishikawa, Asuka; Nakagawa, Toshinori; Zhu, Qinchang; Shimizu, Kuniyoshi

    2016-05-01

    Phytochemical examination of butanol fraction of Calendula officinalis seeds led to the isolation of two compounds identified as 28-O-β-D-glucopyranosyl-oleanolic acid 3-O-β-D-glucopyranosyl (1→3)-β-D-glucopyranosiduronic acid (CS1) and oleanolic acid 3-O-β-D-glucopyranosyl (1→3)-β-D-glucopyranosiduronic acid (CS2). Biological evaluation was carried out for these two compounds such as melanin biosynthesis inhibitory, hyaluronic acid production activities, anti obesity using lipase inhibition and adipocyte differentiation as well as evaluation of the protective effect against hydrogen peroxide induced neurotoxicity in neuro-2A cells. The results showed that, compound CS2 has a melanin biosynthesis stimulatory activity; however, compound CS1 has a potent stimulatory effect for the production of hyaluronic acid on normal human dermal fibroblast from adult (NHDF-Ad). Both compounds did not show any inhibitory effect on both lipase and adipocyte differentiation. Compound CS2 could protect neuro-2A cells and increased cell viability against H2 O2 . These activities (melanin biosynthesis stimulatory and protective effect against H2 O2 of CS2 and hyaluronic acid productive activities of these triterpene derivatives) have been reported for the first time. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26887328

  17. Hydrogen Peroxide Cycling in Acidic Geothermal Environments and Potential Implications for Oxidative Stress

    NASA Astrophysics Data System (ADS)

    Mesle, M.; Beam, J.; Jay, Z.; Bodle, B.; Bogenschutz, E.; Inskeep, W.

    2014-12-01

    Hydrogen peroxide (H2O2) may be produced in natural waters via photochemical reactions between dissolved oxygen, organic carbon and light. Other reactive oxygen species (ROS) such as superoxide and hydroxyl radicals are potentially formed in environments with high concentrations of ferrous iron (Fe(II), ~10-100 μM) by reaction between H2O2 and Fe(II) (i.e., Fenton chemistry). Thermophilic archaea and bacteria inhabiting acidic iron-oxide mats have defense mechanisms against both extracellular and intracellular peroxide, such as peroxiredoxins (which can degrade H2O2) and against other ROS, such as superoxide dismutases. Biological cycling of H2O2 is not well understood in geothermal ecosystems, and geochemical measurements combined with molecular investigations will contribute to our understanding of microbial response to oxidative stress. We measured H2O2 and other dissolved compounds (Fe(II), Fe(III), H2S, O2), as well as photon flux, pH and temperature, over time in surface geothermal waters of several acidic springs in Norris Geyser Basin, Yellowstone National Park, WY (Beowulf Spring and One Hundred Spring Plain). Iron-oxide mats were sampled in Beowulf Spring for on-going analysis of metatranscriptomes and RT-qPCR assays of specific stress-response gene transcription (e.g., superoxide dismutases, peroxiredoxins, thioredoxins, and peroxidases). In situ analyses show that H2O2 concentrations are lowest in the source waters of sulfidic systems (ca. 1 μM), and increase by two-fold in oxygenated waters corresponding to Fe(III)-oxide mat formation (ca. 2 - 3 μM). Channel transects confirm increases in H2O2 as a function of oxygenation (distance). The temporal dynamics of H2O2, O2, Fe(II), and H2S in Beowulf geothermal waters were also measured during a diel cycle, and increases in H2O2 were observed during peak photon flux. These results suggest that photochemical reactions may contribute to changes in H2O2. We hypothesize that increases in H2O2 and O2

  18. Fatty acid alcohol ester-synthesizing activity of lipoprotein lipase.

    PubMed

    Tsujita, T; Sumiyoshi, M; Okuda, H

    1999-12-01

    The fatty acid alcohol ester-synthesizing activity of lipoprotein lipase (LPL) was characterized using bovine milk LPL. Synthesizing activities were determined in an aqueous medium using oleic acid or trioleylglycerol as the acyl donor and equimolar amounts of long-chain alcohols as the acyl acceptor. When oleic acid and hexadecanol emulsified with gum arabic were incubated with LPL, palmityl oleate was synthesized, in a time- and dose-dependent manner. Apo-very low density lipoprotein (apoVLDL) stimulated LPL-catalyzed palmityl oleate synthesis. The apparent equilibrium ratio of fatty acid alcohol ester/oleic acid was estimated using a high concentration of LPL and a long (20 h) incubation period. The equilibrium ratio was affected by the incubation pH and the alcohol chain length. When the incubation pH was below pH 7.0 and long chain fatty acyl alcohols were used as substrates, the fatty acid alcohol ester/free fatty acid equilibrium ratio favored ester formation, with an apparent equilibrium ratio of fatty acid alcohol ester/fatty acid of about 0.9/0.1. The equilibrium ratio decreased sharply at alkaline pH (above pH 8.0). The ratio also decreased when fatty alcohols with acyl chains shorter than dodecanol were used. When a trioleoylglycerol/fatty acyl alcohol emulsion was incubated with LPL, fatty acid alcohol esters were synthesized in a dose- and time-dependent fashion. Fatty acid alcohol esters were easily synthesized from trioleoylglycerol when fatty alcohols with acyl chains longer than dodecanol were used, but synthesis was decreased with fatty alcohols with acyl chain lengths shorter than decanol, and little synthesizing activity was detected with shorter-chain fatty alcohols such as butanol or ethanol. PMID:10578059

  19. Cycling for Students with ASD: Self-Regulation Promotes Sustained Physical Activity

    ERIC Educational Resources Information Center

    Todd, Teri; Reid, Greg; Butler-Kisber, Lynn

    2010-01-01

    Individuals with autism often lack motivation to engage in sustained physical activity. Three adolescents with severe autism participated in a 16-week program and each regularly completed 30 min of cycling at the end of program. This study investigated the effect of a self-regulation instructional strategy on sustained cycling, which included…

  20. Lipoteichoic Acid in Streptomyces hygroscopicus: Structural Model and Immunomodulatory Activities

    PubMed Central

    Cot, Marlène; Ray, Aurélie; Gilleron, Martine; Vercellone, Alain; Larrouy-Maumus, Gérald; Armau, Elise; Gauthier, Sophie; Tiraby, Gérard; Puzo, Germain; Nigou, Jérôme

    2011-01-01

    Gram positive bacteria produce cell envelope macroamphiphile glycopolymers, i.e. lipoteichoic acids or lipoglycans, whose functions and biosynthesis are not yet fully understood. We report for the first time a detailed structure of lipoteichoic acid isolated from a Streptomyces species, i.e. Streptomyces hygroscopicus subsp. hygroscopicus NRRL 2387T. Chemical, MS and NMR analyses revealed a polyglycerolphosphate backbone substituted with α-glucosaminyl and α-N-acetyl-glucosaminyl residues but devoid of any amino-acid substituent. This structure is very close, if not identical, to that of the wall teichoic acid of this organism. These data not only contribute to the growing recognition that lipoteichoic acid is a cell envelope component of Gram positive Actinobacteria but also strongly support the recently proposed hypothesis of an overlap between the pathways of lipoteichoic acid and wall teichoic acid synthesis in these bacteria. S. hygroscopicus lipoteichoic acid induced signalling by human innate immune receptor TLR2, confirming its role as a microbe-associated molecular pattern. Its activity was partially dependant on TLR1, TLR6 and CD14. Moreover, it stimulated TNF-α and IL-6 production by a human macrophage cell line to an extent similar to that of Staphylococcus aureus lipoteichoic acid. These results provide new clues on lipoteichoic acid structure/function relationships, most particularly on the role of the polyglycerolphosphate backbone substituents. PMID:22028855

  1. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    NASA Astrophysics Data System (ADS)

    Chang, Binbin; Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng

    2015-01-01

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl2 using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl2 at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of -SO3H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N2 adsorption-desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of -SO3H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of -SO3H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and -SO3H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles.

  2. SAURER REGEN, EINE FOLGE DER STOERUNG HYDROGEOCHEMISCHER KREISLAEUFE (ACID RAIN, A CONSEQUENCE OF MAN'S ALTERATION OF HYDROGEOCHEMICAL CYCLES)

    EPA Science Inventory

    The occurrence of acid precipitation in regions of the northern hemisphere results from the anthropogenic disturbance of cycles that couple land, water and atmosphere. The oxidation of C, S and N resulting mostly from fossil fuel burning rivals oxidation processes induced by phot...

  3. DIBROMOACETIC ACID-INDUCED ELEVATIONS IN CIRCULATING ESTRADIOL: EFFECTS IN BOTH CYCLING AND OVARIECTOMIZED/STEROID-PRIMED FEMALE RATS

    EPA Science Inventory

    RTD-03-031
    Goldman, JM and Murr, AS. Dibromoacetic Acid-induced Elevations in Circulating Estradiol: Effects in Both Cycling and Ovariectomized/Steroid-primed Female Rats. Reproductive Toxicology (in press).

    Abstract

    Oral exposures to high concentrations of th...

  4. Triglyceride accumulation and fatty acid profile changes in Chlorella (Chlorophyta) during high pH-induced cell cycle inhibition

    SciTech Connect

    Guckert, J.B.; Cooksey, K.E. )

    1990-03-01

    Alkaline pH stress resulted in triglyceride (TG) accumulation in Chlorella CHLOR1 and was independent of medium nitrogen or carbon levels. Based on morphological observations, alkaline pH inhibited autospore release, thus increasing the time for cell cycle completion. Autospore release has been postulated to coincide with TG utilization within the microalgal cell division cycle. The alkaline pH stress affected lipid accumulation by inhibiting the cell division cycle prior to autospore release and, therefore, prior to TG utilization. Cells inhibited in this manner showed an increase in TG accumulation but a decrease in both membrane lipid classes (glycolipid and polar lipid). Unlike TG fatty acid profiles, membrane lipid fatty acid profiles were not stable during TG accumulation. The membrane profiles became similar to the TG, i.e. less unsaturated than in the membrane lipids of unstressed control cells.

  5. An Oral Load of [13C3]Glycerol and Blood NMR Analysis Detect Fatty Acid Esterification, Pentose Phosphate Pathway, and Glycerol Metabolism through the Tricarboxylic Acid Cycle in Human Liver.

    PubMed

    Jin, Eunsook S; Sherry, A Dean; Malloy, Craig R

    2016-09-01

    Drugs and other interventions for high impact hepatic diseases often target biochemical pathways such as gluconeogenesis, lipogenesis, or the metabolic response to oxidative stress. However, traditional liver function tests do not provide quantitative data about these pathways. In this study, we developed a simple method to evaluate these processes by NMR analysis of plasma metabolites. Healthy subjects ingested [U-(13)C3]glycerol, and blood was drawn at multiple times. Each subject completed three visits under differing nutritional states. High resolution (13)C NMR spectra of plasma triacylglycerols and glucose provided new insights into a number of hepatic processes including fatty acid esterification, the pentose phosphate pathway, and gluconeogenesis through the tricarboxylic acid cycle. Fasting stimulated pentose phosphate pathway activity and metabolism of [U-(13)C3]glycerol in the tricarboxylic acid cycle prior to gluconeogenesis or glyceroneogenesis. Fatty acid esterification was transient in the fasted state but continuous under fed conditions. We conclude that a simple NMR analysis of blood metabolites provides an important biomarker of pentose phosphate pathway activity, triacylglycerol synthesis, and flux through anaplerotic pathways in mitochondria of human liver. PMID:27432878

  6. Spectroscopic studies on the antioxidant activity of ellagic acid.

    PubMed

    Kilic, Ismail; Yeşiloğlu, Yeşim; Bayrak, Yüksel

    2014-09-15

    Ellagic acid (EA, C14H6O8) is a natural dietary polyphenol whose benefits in a variety of diseases shown in epidemiological and experimental studies involve anti-inflammation, anti-proliferation, anti-angiogenesis, anticarcinogenesis and anti-oxidation properties. In vitro radical scavenging and antioxidant capacity of EA were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe2+) chelating activity and ferric ions (Fe3+) reducing ability. EA inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45 μg/mL concentration. On the other hand, butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), α-tocopherol and ascorbic acid displayed 69.8%, 66.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, EA had an effective DPPH• scavenging, ABTS+ scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power and ferrous ions (Fe2+) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that EA can be used in the pharmacological, food industry and medicine because of these properties. PMID:24813273

  7. Spectroscopic studies on the antioxidant activity of ellagic acid

    NASA Astrophysics Data System (ADS)

    Kilic, Ismail; Yeşiloğlu, Yeşim; Bayrak, Yüksel

    2014-09-01

    Ellagic acid (EA, C14H6O8) is a natural dietary polyphenol whose benefits in a variety of diseases shown in epidemiological and experimental studies involve anti-inflammation, anti-proliferation, anti-angiogenesis, anticarcinogenesis and anti-oxidation properties. In vitro radical scavenging and antioxidant capacity of EA were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2‧-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe2+) chelating activity and ferric ions (Fe3+) reducing ability. EA inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45 μg/mL concentration. On the other hand, butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), α-tocopherol and ascorbic acid displayed 69.8%, 66.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, EA had an effective DPPH• scavenging, ABTSrad + scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power and ferrous ions (Fe2+) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that EA can be used in the pharmacological, food industry and medicine because of these properties.

  8. Low-temperature Storage of Cucumbers Induces Changes in the Organic Acid Content and in Citrate Synthase Activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To elucidate the cause of reported pyruvate accumulation in chilled stored cucumbers (Cucumis sativus L.) cv. ‘Toppugurin’, we have examined differences in the extent of incorporation of acetate-1,2-14C into the tricarboxylic acid (TCA) cycle and the specific activity of the enzyme citrate synthase ...

  9. Amygdala/hippocampal activation during the menstrual cycle: evidence for lateralization of effects across different tasks.

    PubMed

    Lisofsky, Nina; Lindenberger, Ulman; Kühn, Simone

    2015-01-01

    Variations in hormonal levels between the follicular and the luteal phase of the female menstrual cycle are associated with variations in emotional and cognitive aspects of behavior. The functional neural correlates of these cycle-related variations have been explored in previous neuroimaging studies. We summarize the existing findings of functional magnetic resonance imaging (fMRI) studies to identify regions of increased brain activation in the follicular or luteal phases of the cycle that are concordant across studies. Eleven fMRI studies reporting coordinates of higher brain activation in one of the two main cycle phases were included in the analysis. Activation likelihood estimation was used to determine concordance. We found higher left amygdala/hippocampal activation during the luteal phase and higher right amygdala/hippocampal activation during the follicular phase. Additionally, the anterior cingulate cortex and temporal pole showed increased activation during the luteal phase and the superior temporal gyrus during the follicular phase. The observed pattern of cycle-dependent functional lateralization of the amygdala/hippocampal complex is consistent with findings on cycle-related behavioral variations and on sex differences in lateralization of activity in amygdala and hippocampus. PMID:25496966

  10. Diurnal cycles in serotonin acetyltransferase activity and cyclic GMP content of cultured chick pineal glands.

    PubMed

    Wainwright, S D

    1980-06-12

    Levels of serotonin N-acetyltransferase (NAT: acetul CoA:arylamine N-acetyltransferase; EC 2.1.1.5.) activity in the chick pineal gland exhibit a marked diurnal variation in birds kept under a diurnal cycle of ilumination. Activity begins to rise rapidly at the start of the dark phase of the cycle and reaches maximum levels at mid-dark phase about 25-fold greater than the minimum basal level at mid-light phase. Thereafter, the level of activity declines to the basal level about the start of the light phase. This diurnal cycle in chick pineal NAT activity found in vivo has recently been reproduced in vitro with intact glands incubated in organ culture. The mechanism of the 'biological clock' which regulates these variations in level of chick pineal NAT activity is unknown. However, I now report that chick pineal glands cultured under a diurnal cycle of illumination exhibit a diurnal cycle in content of cyclic GMP which roughly parallels the cycles in NAT activity. In contrast, there was no correlation between variations in pineal content of cyclic AMP and in level of NAT activity. PMID:6250035

  11. Possible chromospheric activity cycles in II Peg, UX Ari and V711 Tau

    NASA Astrophysics Data System (ADS)

    Buccino, Andrea P.; Mauas, Pablo J. D.

    2009-02-01

    We study the Mount Wilson indices we obtained indirectly from IUE high and low resolution spectra of the RS CVn-type systems II Peg (K2IV), UX Ari (K0IV+G5V) and V711 Tau (K1IV+G5V), extensively observed by IUE from 1978 to 1996. We analyze the activity signatures, which correspond to the primary star, with the Lomb-Scargle periodogram. From the analysis of V711 Tau data, we found a possible chromospheric cycle with a period of 18 years and a shorter ~3 year cycle, which could be associated to a chromospheric flip-flop cycle. The data of II Peg also suggest a chromospheric cycle of ~21 years and a flip-flop cycle of ~9 years. Finally, we obtained a possible chromospheric cycle of ~6 years for UX Ari.

  12. Martian induced magnetosphere variations with solar activity cycle

    NASA Astrophysics Data System (ADS)

    Fedorov, Andrey; Ronan, Modolo; Jarninen, Riku; Mazelle, Christian; Barabash, Stas

    2014-05-01

    During the last 6 years of ESA Mars Express mission we have accumulated plasma data taken inside and around the Martian induced magnetosphere corresponding to the increasing branch of solar activity. This data allows to make an enhanced study of the magnetosphere variations as a response of the solar activity level. Since Mars Express has no onboard magnetometer, we used the hybrid models of the Martian plasma environment to get a proper frame to make an adequate statistics of the magnetospheric response. In this paper we present a spatial distribution of the planetary plasma in the planetary wake as well as the ionsospheric escape as a function of the solar activity.

  13. Does crustacean ethoxyresorufin O-deethylase activity vary during the molting cycle?

    PubMed

    Hotard, Kate; Zou, Enmin

    2013-10-01

    The authors examined fluctuation in microsomal ethoxyresorufin O-deethylase (EROD) activity in the hepatopancreas during the molting cycle of the fiddler crab, Uca pugilator. Results showed that microsomal EROD activity fluctuates significantly during the molting cycle, with the lowest enzymatic activity occurring in the late premolt stage. These results clearly show that molting physiology influences crustacean EROD activity, suggesting that when using crustacean EROD assays in evaluating pollution, only individuals from the same molt stage should be used. The authors propose that the high level of EROD activity in postmolt and intermolt stages is an additional mechanism crustaceans use to prevent any untimely rise in ecdysteroid levels. PMID:23843096

  14. Notch stimulates growth by direct regulation of genes involved in the control of glycolysis and the tricarboxylic acid cycle.

    PubMed

    Slaninova, Vera; Krafcikova, Michaela; Perez-Gomez, Raquel; Steffal, Pavel; Trantirek, Lukas; Bray, Sarah J; Krejci, Alena

    2016-02-01

    Glycolytic shift is a characteristic feature of rapidly proliferating cells, such as cells during development and during immune response or cancer cells, as well as of stem cells. It results in increased glycolysis uncoupled from mitochondrial respiration, also known as the Warburg effect. Notch signalling is active in contexts where cells undergo glycolytic shift. We decided to test whether metabolic genes are direct transcriptional targets of Notch signalling and whether upregulation of metabolic genes can help Notch to induce tissue growth under physiological conditions and in conditions of Notch-induced hyperplasia. We show that genes mediating cellular metabolic changes towards the Warburg effect are direct transcriptional targets of Notch signalling. They include genes encoding proteins involved in glucose uptake, glycolysis, lactate to pyruvate conversion and repression of the tricarboxylic acid cycle. The direct transcriptional upregulation of metabolic genes is PI3K/Akt independent and occurs not only in cells with overactivated Notch but also in cells with endogenous levels of Notch signalling and in vivo. Even a short pulse of Notch activity is able to elicit long-lasting metabolic changes resembling the Warburg effect. Loss of Notch signalling in Drosophila wing discs as well as in human microvascular cells leads to downregulation of glycolytic genes. Notch-driven tissue overgrowth can be rescued by downregulation of genes for glucose metabolism. Notch activity is able to support growth of wing during nutrient-deprivation conditions, independent of the growth of the rest of the body. Notch is active in situations that involve metabolic reprogramming, and the direct regulation of metabolic genes may be a common mechanism that helps Notch to exert its effects in target tissues. PMID:26887408

  15. Notch stimulates growth by direct regulation of genes involved in the control of glycolysis and the tricarboxylic acid cycle

    PubMed Central

    Slaninova, Vera; Krafcikova, Michaela; Perez-Gomez, Raquel; Steffal, Pavel; Trantirek, Lukas; Bray, Sarah J.

    2016-01-01

    Glycolytic shift is a characteristic feature of rapidly proliferating cells, such as cells during development and during immune response or cancer cells, as well as of stem cells. It results in increased glycolysis uncoupled from mitochondrial respiration, also known as the Warburg effect. Notch signalling is active in contexts where cells undergo glycolytic shift. We decided to test whether metabolic genes are direct transcriptional targets of Notch signalling and whether upregulation of metabolic genes can help Notch to induce tissue growth under physiological conditions and in conditions of Notch-induced hyperplasia. We show that genes mediating cellular metabolic changes towards the Warburg effect are direct transcriptional targets of Notch signalling. They include genes encoding proteins involved in glucose uptake, glycolysis, lactate to pyruvate conversion and repression of the tricarboxylic acid cycle. The direct transcriptional upregulation of metabolic genes is PI3K/Akt independent and occurs not only in cells with overactivated Notch but also in cells with endogenous levels of Notch signalling and in vivo. Even a short pulse of Notch activity is able to elicit long-lasting metabolic changes resembling the Warburg effect. Loss of Notch signalling in Drosophila wing discs as well as in human microvascular cells leads to downregulation of glycolytic genes. Notch-driven tissue overgrowth can be rescued by downregulation of genes for glucose metabolism. Notch activity is able to support growth of wing during nutrient-deprivation conditions, independent of the growth of the rest of the body. Notch is active in situations that involve metabolic reprogramming, and the direct regulation of metabolic genes may be a common mechanism that helps Notch to exert its effects in target tissues. PMID:26887408

  16. Functions of the Membrane-Associated and Cytoplasmic Malate Dehydrogenases in the Citric Acid Cycle of Corynebacterium glutamicum

    PubMed Central

    Molenaar, Douwe; van der Rest, Michel E.; Drysch, André; Yücel, Raif

    2000-01-01

    Like many other bacteria, Corynebacterium glutamicum possesses two types of l-malate dehydrogenase, a membrane-associated malate:quinone oxidoreductase (MQO; EC 1.1.99.16) and a cytoplasmic malate dehydrogenase (MDH; EC 1.1.1.37) The regulation of MDH and of the three membrane-associated dehydrogenases MQO, succinate dehydrogenase (SDH), and NADH dehydrogenase was investigated. MQO, MDH, and SDH activities are regulated coordinately in response to the carbon and energy source for growth. Compared to growth on glucose, these activities are increased during growth on lactate, pyruvate, or acetate, substrates which require high citric acid cycle activity to sustain growth. The simultaneous presence of high activities of both malate dehydrogenases is puzzling. MQO is the most important malate dehydrogenase in the physiology of C. glutamicum. A mutant with a site-directed deletion in the mqo gene does not grow on minimal medium. Growth can be partially restored in this mutant by addition of the vitamin nicotinamide. In contrast, a double mutant lacking MQO and MDH does not grow even in the presence of nicotinamide. Apparently, MDH is able to take over the function of MQO in an mqo mutant, but this requires the presence of nicotinamide in the growth medium. It is shown that addition of nicotinamide leads to a higher intracellular pyridine nucleotide concentration, which probably enables MDH to catalyze malate oxidation. Purified MDH from C. glutamicum catalyzes oxaloacetate reduction much more readily than malate oxidation at physiological pH. In a reconstituted system with isolated membranes and purified MDH, MQO and MDH catalyze the cyclic conversion of malate and oxaloacetate, leading to a net oxidation of NADH. Evidence is presented that this cyclic reaction also takes place in vivo. As yet, no phenotype of an mdh deletion alone was observed, which leaves a physiological function for MDH in C. glutamicum obscure. PMID:11092846

  17. Replication of Simian Virus 40 Deoxyribonucleic Acid: Analysis of the One-Step Growth Cycle

    PubMed Central

    Manteuil, Simone; Pages, Jacqueline; Stehelin, Dominique; Girard, Marc

    1973-01-01

    The time course of replication of simian virus 40 deoxyribonucleic acid (DNA) was investigated in growing monolayer cultures of subcloned CV1 cells. At multiplicities of infection of 30 to 60 plaque-forming units (PFU)/cell, first progeny DNA molecules (component 1) were detected by 10 hr after infection. During the following 10 to 12 hr, accumulation of virus DNA proceeded at ever increasing rates, albeit in a non-exponential fashion. The rate of synthesis then remained constant, until approximately the 40th hour postinfection, when DNA replication stopped. Under these conditions, the duration of the virus growth cycle was approximately 50 hr. The time needed for the synthesis of one DNA molecule was found to be approximately 15 min. At multiplicities of infection of 1 or less than 1 PFU/cell, the onset of the linear phase of DNA accumulation was delayed, but the final rate of DNA synthesis was the same, independent of the input multiplicity. This was taken as a proof that templates for the synthesis of viral DNA multiply in the cell during the early phase of replication. However, the probability for every replicated DNA molecule to become in turn replicative decreased constantly during that phase. This could be accounted for by assuming a limited number of replication sites in the infected cell. PMID:4346282

  18. Nitric oxide participates in the regulation of the ascorbate-glutathione cycle by exogenous jasmonic acid in the leaves of wheat seedlings under drought stress.

    PubMed

    Shan, Changjuan; Zhou, Yan; Liu, Mingjiu

    2015-09-01

    In this paper, we investigated whether nitric oxide (NO) participated in the regulation of the ascorbate-glutathione (AsA-GSH) cycle by exogenous jasmonic acid (JA) in the leaves of wheat seedlings under drought stress. The findings of our study showed that drought stress significantly enhanced the AsA-GSH cycle by upregulating the activities of ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), and dehydroascorbate reductase (DHAR). Drought stress also markedly increased electrolyte leakage (EL), malondialdehyde (MDA) content, NO content, and significantly reduced the ratios of reduced ascorbate/dehydroascorbic acid (AsA/DHA) and reduced glutathione/oxidized glutathione (GSH/GSSG) compared with control. Exogenous JA significantly increased the above indicators, compared with drought stress alone. All these effects of JA were inhibited by pretreatment with NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO). Meanwhile, exogenous JA markedly decreased MDA content and electrolyte leakage of wheat leaves under drought stress. Pretreatment with cPTIO reversed the above effects of exogenous JA. Our findings indicated that NO induced by exogenous JA upregulated the activity of the AsA-GSH cycle and had important role in drought tolerance. PMID:25577230

  19. Antiviral activity of carnosic acid against respiratory syncytial virus

    PubMed Central

    2013-01-01

    Background Human respiratory syncytial virus (hRSV) is a leading cause of severe lower respiratory infection and a major public health threat worldwide. To date, no vaccine or effective therapeutic agent has been developed. In a screen for potential therapeutic agents against hRSV, we discovered that an extract of Rosmarinus officinalis exerted a strong inhibitory effect against hRSV infection. Subsequent studies identified carnosic acid as a bioactive constituent responsible for anti-hRSV activity. Carnosic acid has been shown to exhibit potent antioxidant and anti-cancer activities. Anti-RSV activity of carnosic acid was further investigated in this study. Methods Effects of extracts from various plants and subfractions from R. officinalis on hRSV replication were determined by microneutralization assay and plaque assay. Several constituents were isolated from ethyl acetate fraction of R. officinalis and their anti-RSV activities were assessed by plaque assay as well as reverse-transcription quantitative PCR to determine the synthesis of viral RNAs. Results Among the tested bioactive constituents of R. officinalis, carnosic acid displayed the most potent anti-hRSV activity and was effective against both A- and B-type viruses. Carnosic acid efficiently suppressed the replication of hRSV in a concentration-dependent manner. Carnosic acid effectively suppressed viral gene expression without inducing type-I interferon production or affecting cell viability, suggesting that it may directly affect viral factors. A time course analysis showed that addition of carnosic acid 8 hours after infection still effectively blocked the expression of hRSV genes, further suggesting that carnosic acid directly inhibited the replication of hRSV. Conclusions The current study demonstrates that carnosic acid, a natural compound that has already been shown to be safe for human consumption, has anti-viral activity against hRSV, efficiently blocking the replication of this virus. Carnosic

  20. [Effect of tricarboxylic acid cycle intermediates on nitric oxide system during acute hypoxia].

    PubMed

    Kurhaliuk, N M

    2002-01-01

    Effects Crebs Cycle of exogenous intermediates sodium succinate (50 mg/kg) and sodium alpha-ketoglutarate (200 mg/kg) on processes of mitochondrial ADP-stimulated respiration (using as substrates of oxidation 0.35 mM succinate, 1 mM alpha-ketoglutarate), production of nitric oxide under NO2-, NO3-, as well as carbamide, putrescyne content and processes of lipid peroxidation in the rats liver under acute hypoxia (7% O2 in N2, 30 min) have been studied. It was shown, that the exogenous sodium alpha-ketoglutarate increases nitric oxide content, aminotransferase activation, inhibition of succinatedehydrogenase simultaneously more than exogenous sodium succinate. It correlates with decreasing of processes lipid peroxidation in liver. PMID:14964867

  1. Catalytic Ethanol Dehydration over Different Acid-activated Montmorillonite Clays.

    PubMed

    Krutpijit, Chadaporn; Jongsomjit, Bunjerd

    2016-01-01

    In the present study, the catalytic dehydration of ethanol to obtain ethylene over montmorillonite clays (MMT) with mineral acid activation including H2SO4 (SA-MMT), HCl (HA-MMT) and HNO3 (NA-MMT) was investigated at temperature range of 200 to 400°C. It revealed that HA-MMT exhibited the highest catalytic activity. Ethanol conversion and ethylene selectivity were found to increase with increased reaction temperature. At 400°C, the HA-MMT yielded 82% of ethanol conversion having 78% of ethylene yield. At lower temperature (i.e. 200 to 300°C), diethyl ether (DEE) was a major product. The highest activity obtained from HA-MMT can be attributed to an increase of weak acid sites and acid density by the activation of MMT with HCl. It can be also proven by various characterization techniques that in most case, the main structure of MMT did not alter by acid activation (excepted for NA-MMT). Upon the stability test for 72 h during the reaction, the MMT and HA-MMT showed only slight deactivation due to carbon deposition. Hence, the acid activation of MMT by HCl is promising to enhance the catalytic dehydration of ethanol. PMID:27041515

  2. Synthesis and antihyperlipidemic activity of piperic acid derivatives.

    PubMed

    A, Rong; Bao, Narisu; Sun, Zhaorigetu; Borjihan, Gereltu; Qiao, Yanjiang; Jin, Zhuang

    2015-02-01

    A series of piperic acid derivatives were designed and synthesized from piperine/piperlonguminine, and their antihyperlipidemic activities evaluated in diet-induced hyperlipidemic rats with respect to simvastatin. Two promising analogues 3 and 10 were discovered and their antihyperlipidemic activities were comparable to or better than those of simvastatin. PMID:25920263

  3. Frowning and Jaw Clenching Muscle Activity Reflects the Perception of Effort During Incremental Workload Cycling

    PubMed Central

    Huang, Ding-Hau; Chou, Shih-Wei; Chen, Yi-Lang; Chiou, Wen-Ko

    2014-01-01

    The present study aimed to investigate whether facial electromyography (EMG) recordings reflect the perception of effort and primary active lower limb muscle activity during incremental workload cycling. The effects of exercise intensity on EMG activity of the corrugator supercilii (CS), masseter and vastus lateralis (VL) muscles, heart rate (HR) and the rating of perceived exertion (RPE) were investigated, and the correlations among these parameters were determined. Eighteen males and 15 females performed continuous incremental workload cycling exercise until exhaustion. CS, masseter and VL muscle activities were continuously recorded using EMG during exercise. HR was also continuously monitored during the test. During the final 30 s of each stage of cycle ergometer exercise, participants were asked to report their feeling of exertion on the adult OMNI-Cycle RPE. HR and EMG activity of the facial muscles and the primary active lower limb muscle were strongly correlated with RPE; they increased with power output. Furthermore, facial muscle activity increased significantly during high-intensity exercise. Masseter muscle activity was strongly and positively correlated with HR, RPE and VL activity. The present investigation supports the view that facial EMG activity reflects the perception of effort. The jaw clenching facial expression can be considered an important factor for improving the reporting of perceived effort during high-intensity exercise in males and females. Key points Frowning and jaw clenching muscle activity reflects the perception of effort during incremental workload cycling. EMG activity of the masseter muscle was strongly and positively correlated with RPE, HR and lower limb EMG activity during incremental workload cycling. The jaw clenching facial expression can be considered an important factor for estimating the intensity of effort. PMID:25435786

  4. Valeric acid induces cell cycle arrest at G1 phase in CHO cell cultures and improves recombinant antibody productivity.

    PubMed

    Park, Jin Hyoung; Noh, Soo Min; Woo, Ju Rang; Kim, Jong Won; Lee, Gyun Min

    2016-03-01

    To find a more effective chemical reagent for improved monoclonal antibody (mAb) production, eight chemical reagents (curcumin, quercein, DL-sulforaphane, thymidine, valeric acid, phenyl butyrate, valproic acid, and lithium chloride) known to induce cell cycle arrest were examined individually as chemical additives to recombinant CHO (rCHO) cell cultures producing mAb. Among these chemical additives, valeric acid showed the best production performance. Valeric acid decreased specific growth rate (μ), but increased culture longevity and specific mAb productivity (qmAb ) in a dose-dependent manner. The beneficial effect of valeric acid on culture longevity and qmAb outweighed its detrimental effect on μ, resulting in 2.9-fold increase in the maximum mAb concentration when 1.5 mM valeric acid was added to the cultures. Furthermore, valeric acid did not negatively affect the mAb quality attributes with regard to aggregation, charge variation, and galactosylation. Unexpectedly, galactosylation of the mAb increased by the 1.5 mM valeric acid addition. Taken together, the results obtained here demonstrate that valeric acid is an effective chemical reagent to increase mAb production in rCHO cells. PMID:26663903

  5. A cell cycle-controlled redox switch regulates the topoisomerase IV activity

    PubMed Central

    Narayanan, Sharath; Janakiraman, Balaganesh; Kumar, Lokesh

    2015-01-01

    Topoisomerase IV (topo IV), an essential factor during chromosome segregation, resolves the catenated chromosomes at the end of each replication cycle. How the decatenating activity of the topo IV is regulated during the early stages of the chromosome cycle despite being in continuous association with the chromosome remains poorly understood. Here we report a novel cell cycle-regulated protein in Caulobacter crescentus, NstA (negative switch for topo IV decatenation activity), that inhibits the decatenation activity of the topo IV during early stages of the cell cycle. We demonstrate that in C. crescentus, NstA acts by binding to the ParC DNA-binding subunit of topo IV. Most importantly, we uncover a dynamic oscillation of the intracellular redox state during the cell cycle, which correlates with and controls NstA activity. Thus, we propose that predetermined dynamic intracellular redox fluctuations may act as a global regulatory switch to control cellular development and cell cycle progression and may help retain pathogens in a suitable cell cycle state when encountering redox stress from the host immune response. PMID:26063575

  6. Synthesis and antimicrobial activities of new higher amino acid Schiff base derivatives of 6-aminopenicillanic acid and 7-aminocephalosporanic acid

    NASA Astrophysics Data System (ADS)

    Özdemir (nee Güngör), Özlem; Gürkan, Perihan; Özçelik, Berrin; Oyardı, Özlem

    2016-02-01

    Novel β-lactam derivatives (1c-3c) (1d-3d) were produced by using 6-aminopenicillanic acid (6-APA), 7-aminocephalosporanic acid (7-ACA) and the higher amino acid Schiff bases. The synthesized compounds were characterized by elemental analysis, IR, 1H/13C NMR and UV-vis spectra. Antibacterial activities of all the higher amino acid Schiff bases (1a-3a) (1b-3b) and β-lactam derivatives were screened against three gram negative bacteria (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Acinetobacter baumannii RSKK 02026), three gram positive bacteria (Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 07005, Bacillus subtilis ATCC 6633) and their drug-resistant isolates by using broth microdilution method. Two fungi (Candida albicans and Candida krusei) were used for antifungal activity.

  7. BACE1 activity impairs neuronal glucose oxidation: rescue by beta-hydroxybutyrate and lipoic acid

    PubMed Central

    Findlay, John A.; Hamilton, David L.; Ashford, Michael L. J.

    2015-01-01

    Glucose hypometabolism and impaired mitochondrial function in neurons have been suggested to play early and perhaps causative roles in Alzheimer's disease (AD) pathogenesis. Activity of the aspartic acid protease, beta-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1), responsible for beta amyloid peptide generation, has recently been demonstrated to modify glucose metabolism. We therefore examined, using a human neuroblastoma (SH-SY5Y) cell line, whether increased BACE1 activity is responsible for a reduction in cellular glucose metabolism. Overexpression of active BACE1, but not a protease-dead mutant BACE1, protein in SH-SY5Y cells reduced glucose oxidation and the basal oxygen consumption rate, which was associated with a compensatory increase in glycolysis. Increased BACE1 activity had no effect on the mitochondrial electron transfer process but was found to diminish substrate delivery to the mitochondria by inhibition of key mitochondrial decarboxylation reaction enzymes. This BACE1 activity-dependent deficit in glucose oxidation was alleviated by the presence of beta hydroxybutyrate or α-lipoic acid. Consequently our data indicate that raised cellular BACE1 activity drives reduced glucose oxidation in a human neuronal cell line through impairments in the activity of specific tricarboxylic acid cycle enzymes. Because this bioenergetic deficit is recoverable by neutraceutical compounds we suggest that such agents, perhaps in conjunction with BACE1 inhibitors, may be an effective therapeutic strategy in the early-stage management or treatment of AD. PMID:26483636

  8. Effects of precipitation on soil acid phosphatase activity in three successional forests in southern China

    NASA Astrophysics Data System (ADS)

    Huang, W.; Liu, J.; Zhou, G.; Zhang, D.; Deng, Q.

    2011-07-01

    Phosphorus (P) is often a limiting nutrient for plant growth in tropical and subtropical forests. Global climate change has led to alterations in precipitation in the recent years, which inevitably influences P cycling. Soil acid phosphatase plays a vital role in controlling P mineralization, and its activity reflects the capacity of organic P mineralization potential in soils. In order to study the effects of precipitation on soil acid phosphatase activity, an experiment with precipitation treatments (no precipitation, natural precipitation and doubled precipitation) in three successional forests in southern China was carried out. The three forests include Masson pine forest (MPF), coniferous and broad-leaved mixed forest (MF) and monsoon evergreen broad-leaved forest (MEBF). Results showed that driven by seasonality of precipitation, changes in soil acid phosphatase activities coincided with the seasonal climate pattern, with significantly higher values in the wet season than in the dry season. Soil acid phosphatase activities were closely linked to forest successional stages, with enhanced values in the later stages of forest succession. In the dry season, soil acid phosphatase activities in the three forests showed a rising trend with increasing precipitation treatments. In the wet season, soil acid phosphatase activity was depressed by no precipitation treatment in the three forests. However, doubled precipitation treatment exerted a significantly negative effect on it only in MEBF. These results indicate that the potential transformation rate of organic P might be more dependent on water in the dry season than in the wet season. A decrease in organic P turnover would occur in the three forests if there was a drought in a whole year in the future. More rainfall in the wet season would also be adverse to organic P turnover in MEBF due to its high soil moisture.

  9. Improvement in electrochemical capacitance of activated carbon from scrap tires by nitric acid treatment

    NASA Astrophysics Data System (ADS)

    Han, Yan; Zhao, Ping-Ping; Dong, Xiao-Ting; Zhang, Cui; Liu, Shuang-Xi

    2014-12-01

    Activated carbon (AC) obtained from the industrial pyrolytic tire char is treated by concentrated nitric acid (AC-HNO3) and then used as the electrode material for supercapacitors. Surface properties and electrochemical capacitances of AC and ACHNO3 are studied. It is found that the morphology and the porous texture for AC and AC-HNO3 have little difference, while the oxygen content increases and functional groups change after the acid treatment. Electrochemical results demonstrate that the AC-HNO3 electrode displays higher specific capacitance, better stability and cycling performance, and lower equivalent series resistance, indicating that AC obtained from the industrial pyrolytic tire char treated by concentrated nitric acid is applicable for supercapacitors.

  10. Design and characterization of an acid-activated antimicrobial peptide.

    PubMed

    Li, Lina; He, Jian; Eckert, Randal; Yarbrough, Daniel; Lux, Renate; Anderson, Maxwell; Shi, Wenyuan

    2010-01-01

    Dental caries is a microbial biofilm infection in which the metabolic activities of plaque bacteria result in a dramatic pH decrease and shift the demineralization/remineralization equilibrium on the tooth surface towards demineralization. In addition to causing a net loss in tooth minerals, creation of an acidic environment favors growth of acid-enduring and acid-generating species, which causes further reduction in the plaque pH. In this study, we developed a prototype antimicrobial peptide capable of achieving high activity exclusively at low environmental pH to target bacterial species like Streptococcus mutans that produce acid and thrive under the low pH conditions detrimental for tooth integrity. The features of clavanin A, a naturally occurring peptide rich in histidine and phenylalanine residues with pH-dependent antimicrobial activity, served as a design basis for these prototype 'acid-activated peptides' (AAPs). Employing the major cariogenic species S. mutans as a model system, the two AAPs characterized in this study exhibited a striking pH-dependent antimicrobial activity, which correlated well with the calculated charge distribution. This type of peptide represents a potential new way to combat dental caries. PMID:19878192

  11. Phragmites australis response to Cu in terms of low molecular weight organic acids (LMWOAs) exudation: Influence of the physiological cycle

    NASA Astrophysics Data System (ADS)

    Rocha, A. Cristina S.; Almeida, C. Marisa R.; Basto, M. Clara P.; Vasconcelos, M. Teresa S. D.

    2014-06-01

    Plant roots have the ability to produce and secrete substances, such as aliphatic low molecular weight organic acids (ALMWOAs), into the rhizosphere for several purposes, including in response to metal contamination. Despite this, little is yet known about the exudation of such substances from marsh plants roots in response to metal exposure. This work aimed at assessing the influence of the physiological cycle of marsh plants on the exudation of ALMWOAs in response to Cu contamination. In vitro experiments were carried out with Phragmites australis specimens, collected in different seasons. Plant roots were exposed to freshwater contaminated with two different Cu concentrations (67 μg/L and 6.9 mg/L), being the ALMWOAs released by the roots measured. Significant differences (both qualitative and quantitative) were observed during the Phragmites australis life cycle. At growing stage, Cu stimulated the exudation of oxalic and formic acids but no significant stimulation was observed for citric acid. At developing stage, exposure to Cu caused inhibition of oxalic acid exudation whereas citric acid liberation was stimulated but only in the media spiked with the lowest Cu concentration tested. At the decaying stage, no significant variation on oxalic acid was observed, whereas the citric and formic acids release increased as a consequence of the plant exposure to Cu. The physiological cycle of Phragmites australis, and probably also of other marsh plants, is therefore an important feature conditioning plants response to Cu contamination, in terms of ALMWOAs exudation. Hence this aspect should be considered when conducting studies on rhizodeposition involving marsh plants exposed to metals and in the event of using marsh plants for phytoremediation purposes in contaminated estuarine areas.

  12. Tandem dissolution of UO3 in amide-based acidic ionic liquid and in situ electrodeposition of UO2 with regeneration of the ionic liquid: a closed cycle.

    PubMed

    Wanigasekara, Eranda; Freiderich, John W; Sun, Xiao-Guang; Meisner, Roberta A; Luo, Huimin; Delmau, Lætitia H; Dai, Sheng; Moyer, Bruce A

    2016-06-21

    A closed cycle is demonstrated for the tandem dissolution and electroreduction of UO3 to UO2 with regeneration of the acidic ionic liquid. The dissolution is achieved by use of the acidic ionic liquid [DMAH][NTf2] in [EMIM][NTf2] serving as the diluent. A sequential dissolution, electroreduction, and regeneration cycle is presented. PMID:27255672

  13. Life Cycle of the Salmon. Ocean Related Curriculum Activities.

    ERIC Educational Resources Information Center

    Tarabochia, Kathy

    The ocean affects all of our lives. Therefore, awareness of and information about the interconnections between humans and oceans are prerequisites to making sound decisions for the future. Project ORCA (Ocean Related Curriculum Activities) has developed interdisciplinary curriculum materials designed to meet the needs of students and teachers…

  14. First total synthesis of prasinic acid and its anticancer activity.

    PubMed

    Chakor, Narayan; Patil, Ganesh; Writer, Diana; Periyasamy, Giridharan; Sharma, Rajiv; Roychowdhury, Abhijit; Mishra, Prabhu Dutt

    2012-11-01

    The first total synthesis of prasinic acid is being reported along with its biological evaluation. The ten step synthesis involved readily available and cheap starting materials and can easily be transposed to large scale manufacturing. The crucial steps of the synthesis included the formation of two different aromatic units (7 and 9) and their coupling reaction. The synthetic prasinic acid exhibited moderate antitumor activity (IC(50) 4.3-9.1 μM) in different lines of cancer cells. PMID:23031589

  15. Inhibition of urease activity by dipeptidyl hydroxamic acids.

    PubMed

    Odake, S; Nakahashi, K; Morikawa, T; Takebe, S; Kobashi, K

    1992-10-01

    A series of dipeptidyl hydroxamic acids (H-X-Gly-NHOH: X = amino acid residues) was synthesized, and the inhibitory activity against Jack bean and Proteus mirabilis ureases [EC 3.5.1.5] was examined. A number of H-X-Gly-NHOH inhibited Jack bean urease with an I50 of the order of 10(-6) M and inhibited Proteus mirabilis urease with an I50 of the order of 10(-5) M. The inhibition against Jack bean urease was more potent than that with the corresponding aminoacyl hydroxamic acids (H-X-NHOH). PMID:1464106

  16. Do Male And Female Cyclists' Cortical Activity Differ Before and During Cycling Exercise?

    PubMed

    Ludyga, Sebastian; Gronwald, Thomas; Hottenrott, Kuno

    2015-12-01

    Although men and women are suggested to vary in resistance to fatigue, possible sex difference in its central component have rarely been investigated via electroencephalography (EEG). Therefore, we examined differences in cortical activity between male and female cyclists (n = 26) during cycling exercise. Participants performed an incremental test to derive the anaerobic threshold from the lactate power curve. In addition, cyclists' cortical activity was recorded with EEG before and during cycling exercise. Whereas women showed higher frontal alpha and beta activity at rest, no sex-specific differences of relative EEG spectral power occurred during cycling at higher intensity. Women and men's brains respond similarly during submaximal cycling, as both sexes show an inverted U-shaped curve of alpha power. Therefore, sex differences observable at rest vanish after the onset of exercise. PMID:26866769

  17. Looking for activity cycles in late-type Kepler stars using time-frequency analysis

    NASA Astrophysics Data System (ADS)

    Vida, K.; Oláh, K.; Szabó, R.

    2014-07-01

    We analyse light curves covering four years of 39 fast-rotating (Prot ≲ 1 d) late-type active stars from the Kepler data base. Using time-frequency analysis (short-term Fourier transform), we find hints for activity cycles of 300-900 d at nine targets from the changing typical latitude of the starspots, which with the differential rotation of the stellar surface change the observed rotation period over the activity cycle. We also give a lowest estimation for the shear parameter of the differential rotation, which is ≈0.001 for the cycling targets. These results populate the less studied, short-period end of the rotation-cycle length relation.

  18. Contextualizing Solar Cycle 24: Report on the Development of a Homogenous Database of Bipolar Active Regions Spanning Four Cycles

    NASA Astrophysics Data System (ADS)

    Munoz-Jaramillo, A.; Werginz, Z. A.; DeLuca, M. D.; Vargas-Acosta, J. P.; Longcope, D. W.; Harvey, J. W.; Martens, P.; Zhang, J.; Vargas-Dominguez, S.; DeForest, C. E.; Lamb, D. A.

    2015-12-01

    The solar cycle can be understood as a process that alternates the large-scale magnetic field of the Sun between poloidal and toroidal configurations. Although the process that transitions the solar cycle between toroidal and poloidal phases is still not fully understood, theoretical studies, and observational evidence, suggest that this process is driven by the emergence and decay of bipolar magnetic regions (BMRs) at the photosphere. Furthermore, the emergence of BMRs at the photosphere is the main driver behind solar variability and solar activity in general; making the study of their properties doubly important for heliospheric physics. However, in spite of their critical role, there is still no unified catalog of BMRs spanning multiple instruments and covering the entire period of systematic measurement of the solar magnetic field (i.e. 1975 to present).In this presentation we discuss an ongoing project to address this deficiency by applying our Bipolar Active Region Detection (BARD) code on full disk magnetograms measured by the 512 (1975-1993) and SPMG (1992-2003) instruments at the Kitt Peak Vacuum Telescope (KPVT), SOHO/MDI (1996-2011) and SDO/HMI (2010-present). First we will discuss the results of our revitalization of 512 and SPMG KPVT data, then we will discuss how our BARD code operates, and finally report the results of our cross-callibration.The corrected and improved KPVT magnetograms will be made available through the National Solar Observatory (NSO) and Virtual Solar Observatory (VSO), including updated synoptic maps produced by running the corrected KPVT magnetograms though the SOLIS pipeline. The homogeneous active region database will be made public by the end of 2017 once it has reached a satisfactory level of quality and maturity. The Figure shows all bipolar active regions present in our database (as of Aug 2015) colored according to the sign of their leading polarity. Marker size is indicative of the total active region flux. Anti

  19. Antiparasitic activity of prenylated benzoic acid derivatives from Piper species.

    PubMed

    Flores, Ninoska; Jiménez, Ignacio A; Giménez, Alberto; Ruiz, Grace; Gutiérrez, David; Bourdy, Genevieve; Bazzocchi, Isabel L

    2009-03-01

    Fractionation of dichloromethane extracts from the leaves of Piper heterophyllum and P. aduncum afforded three prenylated hydroxybenzoic acids, 3-[(2E,6E,10E)-11-carboxy-3,7,15-trimethyl-2,6,10,14-hexadecatetraenyl)-4,5-dihydroxybenzoic acid, 3-[(2E,6E,10E)-11-carboxy-13-hydroxy-3,7,15-trimethyl-2,6,10,14-hexadecatetraenyl]-4,5-dihydroxybenzoic acid and 3-[(2E,6E,10E)-11-carboxy-14-hydroxy-3,7,15-trimethyl-2,6,10,15-hexadecatetraenyl]-4,5-dihydroxybenzoic acid, along with the known compounds, 4,5-dihydroxy-3-(E,E,E-11-formyl-3,7,15-trimethyl-hexadeca-2,6,10,14-tetraenyl)benzoic acid (arieianal), 3,4-dihydroxy-5-(E,E,E-3,7,11,15-tetramethyl-hexadeca-2,6,10,14-tetraenyl)benzoic acid, 4-hydroxy-3-(E,E,E-3,7,11,15-tetramethyl-hexadeca-2,6,10,14-tetraenyl)benzoic acid, 3-(3,7-dimethyl-2,6-octadienyl)-4-methoxy-benzoic acid, 4-hydroxy-3-(3,7-dimethyl-2,6-octadienyl)benzoic acid and 4-hydroxy-3-(3-methyl-1-oxo-2-butenyl)-5-(3-methyl-2-butenyl)benzoic acid. Their structures were elucidated on the basis of spectroscopic data, including homo- and heteronuclear correlation NMR experiments (COSY, HSQC and HMBC) and comparison with data reported in the literature. Riguera ester reactions and optical rotation measurements established the compounds as racemates. The antiparasitic activity of the compounds were tested against three strains of Leishmania spp., Trypanosoma cruzi and Plasmodium falciparum. The results showed that 3-(3,7-dimethyl-2,6-octadienyl)-4-methoxy-benzoic acid exhibited potent and selective activity against L. braziliensis (IC(50) 6.5 microg/ml), higher that pentamidine used as control. Moreover, 3-[(2E,6E,10E)-11-carboxy-3,7,15-trimethyl- 2,6,10,14-hexadecatetraenyl)-4,5-dihydroxybenzoic acid and 4-hydroxy-3-(3-methyl-1-oxo-2-butenyl)-5-(3-methyl-2-butenyl)benzoic acid showed moderate antiplasmodial (IC(50) 3.2 microg/ml) and trypanocidal (16.5 microg/ml) activities, respectively. PMID:19361822

  20. Peroxide bond strength of antimalarial drugs containing an endoperoxide cycle. Relation with biological activity.

    PubMed

    Fernández, Israel; Robert, Anne

    2011-06-01

    Several endoperoxide compounds are very efficient antimalarial analogues of the natural drug artemisinin. Quantum chemical calculations have been used to correlate the computed free energies of the O-O bond with respect to the total number of oxygen atoms contained in the cycle, and with the size/strain of the cycle (5- or 6-membered cycles). The gas-phase homolysis of the O-O bond has been studied for five- and six-membered oxygenated cycles which are models of the "real" drugs. Our results indicate that, in 6-membered cycles, the stability order is the following: 1,2-dioxane > 1,2,4-trioxane > 1,2,4,5-tetraoxane. In cycles containing 3 oxygen atoms, the 5-membered cycle 1,2,4-trioxolane was found much less stable than its 6-membered counterpart 1,2,4-trioxane. This feature indicates the possible role of the cycle strain for the O-O bond stability, and may also explain the high antimalarial activity of some trioxolane derivatives. Similar trends in the O-O bond strength have been found for the real antimalarial drugs. However, the O-O bond stability is not in itself a decisive argument to anticipate the antimalarial activity of drugs. PMID:21487624

  1. Application of citrate as a tricarboxylic acid (TCA) cycle intermediate, prevents diabetic-induced heart damages in mice

    PubMed Central

    Liang, Qianqian; Wang, Baoyu; Pang, Lingxia; Wang, Youpei; Zheng, Meiqin; Wang, Qing; Yan, Jingbin; Xu, Jinzhong

    2016-01-01

    Objective(s): Higher cellular reactive oxygen species (ROS) levels is important in reducing cellular energy charge (EC) by increasing the levels of key metabolic protein, and nitrosative modifications, and have been shown to damage the cardiac tissue of diabetic mice. However, the relation between energy production and heart function is unclear. Materials and Methods: Streptozotocin (STZ, 150 mg/kg body weight) was injected intraperitoneally once to mice that had been fasted overnight for induction of diabetes. After diabetic induction, mice received citrate (5 µg/kg) through intraperitoneal injection every other day for 5 weeks. The caspase-3, plasminogen activator inhibitor 1 (PAI1), protein kinase B (PKB), commonly known as AKT and phosphorylated-AKT (p-AKT) proteins were examined to elucidate inflammation and apoptosis in the heart. For histological analysis, heart samples were fixed with 10% formalin and stained with hematoxylin-eosin (HE) and Sirius red to assess pathological changes and fibrosis. The expression levels[AGA1] of marker proteins, tyrosine nitration, activity of ATP synthase and succinyl-CoA3-ketoacid coenzyme A transferase-1 (SCOT), and EC were measured. Results: Intraperitoneal injection of citrate significantly reduced caspase-3 and PAI-1 protein levels and increased p-AKT level on the 5th week; EC in the heart was found to be increased as well. Further, the expression level, activity, and tyrosine nitration of ATP synthase and SCOT were not affected after induction of diabetes. Conclusion: Results indicate that application of citrate, a tricarboxylic acid (TCA) cycle intermediate, might alleviate cardiac dysfunction by reducing cardiac inflammation, apoptosis, and increasing cardiac EC. PMID:27096063

  2. Environmental impact associated with activated carbon preparation from olive-waste cake via life cycle assessment.

    PubMed

    Hjaila, K; Baccar, R; Sarrà, M; Gasol, C M; Blánquez, P

    2013-11-30

    The life cycle assessment (LCA) environmental tool was implemented to quantify the potential environmental impacts associated with the activated carbon (AC) production process from olive-waste cakes in Tunisia. On the basis of laboratory investigations for AC preparation, a flowchart was developed and the environmental impacts were determined. The LCA functional unit chosen was the production of 1 kg of AC from by-product olive-waste cakes. The results showed that impregnation using H3PO4 presented the highest environmental impacts for the majority of the indicators tested: acidification potential (62%), eutrophication (96%), ozone depletion potential (44%), human toxicity (64%), fresh water aquatic ecotoxicity (90%) and terrestrial ecotoxicity (92%). One of the highest impacts was found to be the global warming potential (11.096 kg CO2 eq/kg AC), which was equally weighted between the steps involving impregnation, pyrolysis, and drying the washed AC. The cumulative energy demand of the AC production process from the by-product olive-waste cakes was 167.63 MJ contributed by impregnation, pyrolysis, and drying the washed AC steps. The use of phosphoric acid and electricity in the AC production were the main factors responsible for the majority of the impacts. If certain modifications are incorporated into the AC production, such as implementing synthesis gas recovery and reusing it as an energy source and recovery of phosphoric acid after AC washing, additional savings could be realized, and environmental impacts could be minimized. PMID:24091159

  3. Pathways of acid mine drainage to Clear Lake: implications for mercury cycling.

    PubMed

    Shipp, William G; Zierenberg, Robert A

    2008-12-01

    Pore fluids from Clear Lake sediments collected near the abandoned Sulphur Bank Mercury Mine have low pH (locally <4) and elevated sulfate (> or =197 mmol/L), aluminum (> or =52 mmol/L), and iron (> or =28 mmol/L) contents derived from oxidation of sulfide minerals at the mine site. Acid mine drainage (AMD) is entering Clear Lake by advective subsurface flow nearest the mine and by diffusion at greater distances. Oxygen and hydrogen isotope ratios, combined with pore fluid compositions, constrain the sources and pathways of contaminated fluids. Sediment cores taken nearest the mine have the highest concentrations of dissolved sulfate, aluminum, and iron, which are contributed by direct subsurface flow of AMD from sulfide-bearing waste rock. Sediment cores as far as 100 m west of the Clear Lake shoreline show the presence of AMD that originated in the acidic lake that occupies the abandoned Herman Pit at the mine site. High sulfate content in the AMD has the potential to promote the activity of sulfate-reducing bacteria in the organic-rich lake sediments, which leads to methylation of Hg+2, making it both more toxic and bioavailable. Quantitative depletion of pore water sulfate at depth and sulfur isotope values of diagenetic pyrite near 0 per thousand indicate that sulfate availability limits the extent of sulfate reduction in the lake sediments away from the mine. Profiles of pore water sulfate in the sediments near the mine show that excess sulfate is available to support the activity of sulfate-reducing bacteria near the mine site. Enriched isotope values of dissolved sulfate (as high as 17.1 per thousand) and highly depleted isotope values for diagenetic pyrite (as low as -22.6 per thousand) indicate active bacterial sulfate reduction in the AMD-contaminated sediments. Sulfate- and iron-rich acid mine drainage entering Clear Lake by shallow subsurface flow likely needs to be controlled in order to lower the environmental impacts of Hg in the Clear Lake

  4. Recovery of rhenium from sulfuric acid solutions with activated coals

    SciTech Connect

    Troshkina, I.D.; Naing, K.Z.; Ushanova, O.N.; P'o, V.; Abdusalomov, A.A.

    2006-09-15

    Equilibrium and kinetic characteristics of rhenium sorption from sulfuric acid solutions (pH 2) by activated coals produced from coal raw materials (China) were studied. Constants of the Henry equation describing isotherms of rhenium sorption by activated coals were calculated. The effective diffusion coefficients of rhenium in the coals were determined. The dynamic characteristics of rhenium sorption and desorption were determined for the activated coal with the best capacity and kinetic characteristics.

  5. Is the Valles caldera entering a new cycle of activity?

    SciTech Connect

    Wolff, J.A.; Gardner, J.N.

    1995-05-01

    The Valles caldera formed during two major rhyolitic ignimbrite eruptive episodes (the Bandelier Tuff) at 1.61 and 1.22 Ma, after some 12 m.y. of activity in the Jemez Mountains volcanic field, New Mexico. Several subsequent eruptions between 1.22 and 0.52 Ma produced dominantly high-silica rhyolite lava domes and tephras within the caldera. These were followed by a dormancy of 0.46 m.y. prior to the most recent intracaldera activity, the longest hiatus since the inception of the Bandelier magma system at approximately 1.8 Ma. The youngest volcanic activity at approximately 60 ka produced the SW moat rhyolites, a series of lavas and tuffs that display abundant petrologic evidence of being newly generated melts. Petrographic textures conform closely to published predictions for silicic magmas generated by intrusion of basaltic magma into continental crust. The Valles caldera may currently be the site of renewed silicic magma generation, induced by intrusion of mafic magma at depth. Recent seismic investigations revealed the presence of a large low-velocity anomaly in the lower crust beneath the caldera. The generally aseismic character of the caldera, despite abundant regional seismicity, may be attributed to a heated crustal column, the local effect of 13 m.y. of magmatism and emplacement of mid-crustal plutons. 24 refs., 3 figs.

  6. Cell cycle-dependent regulation of RNA polymerase II basal transcription activity.

    PubMed Central

    Yonaha, M; Chibazakura, T; Kitajima, S; Yasukochi, Y

    1995-01-01

    Regulation of transcription by RNA polymerase II (pol II) in eukaryotic cells requires both basal and regulatory transcription factors. In this report we have investigated in vitro pol II basal transcription activity during the cell cycle by using nuclear extracts from synchronized HeLa cells. It is shown that pol II basal transcription activity is low in the S and G2 phases and high in early G1 phase and TFIID is the rate limiting component of pol II basal transcription activity during the cell cycle. Further analyses reveal that TFIID exists as a less active form in the S and G2 phases and nuclear extracts from S and G2 phase cells contain a heat-sensitive repressor(s) of TATA box binding protein (TBP). These results suggest that pol II basal transcription activity is regulated by a qualitative change in the TFIID complex, which could involve repression of TBP, during the cell cycle. Images PMID:7479063

  7. Microbial ecology of a novel sulphur cycling consortia from AMD: implications for acid generation

    NASA Astrophysics Data System (ADS)

    Loiselle, L. M.; Norlund, K. L.; Hitchcock, A. P.; Warren, L. A.

    2009-05-01

    Recent work1 identified a novel microbial consortia consisting of two bacterial strains common to acid mine drainage (AMD) environments (autotrophic sulphur oxidizer Acidithiobacillus ferrooxidans and heterotrophic Acidiphilium spp.) in an environmental enrichment from a mine tailings lake. The two strains showed a specific spatial arrangement within an EPS macrostructure or "pod" allowing linked metabolic redox cycling of sulphur. Sulphur species characterisation of the pods using scanning transmission X-ray microscopy (STXM) indicated that autotrophic tetrathionate disproportionation by A. ferrooxidans producing colloidal elemental sulphur (S0) is coupled to heterotrophic S0 reduction by Acidiphilium spp. Geochemical modelling of the microbial sulphur reactions indicated that if they are widespread in AMD environments, then global AMD-driven CO2 liberation from mineral weathering have been overestimated by 40-90%1. Given the common co-occurrence of these two bacteria in AMD settings, the purpose of this study was to evaluate if these pods could be induced in the laboratory by pure strains and if so, whether their combined sulphur geochemistry mimicked the previous findings. Laboratory batch experiments assessed the development of pods with pure strain type cultures (A. ferrooxidans ATCC 19859 with mixotroph Acidiphilium acidophilum ATCC 738 or strict heterotroph Acp. cryptum ATCC 2158) using fluorescent in situ hybridization (FISH) imaging. The microbial sulphur geochemistry was characterized under autotrophic conditions identical to those used with the environmental AMD enrichment in which the pods were discovered. Results showed that the combined pure strain A. ferrooxidans and Acp. acidophilum form pods identical in structure to the AMD enrichment. To test the hypothesis that these pods form for mutual metabolic benefit, experiments were performed amending pure strain and AMD enrichment bacterial treatments with organic carbon and/or additional sulphur to

  8. The activity cycle of 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Snodgrass, C.; Barrera, L.; Boehnhardt, H.; Guilbert-Lepoutre, A.; Hainaut, O.; Hutsemékers, D.; Jehin, E.; Meech, K.; Opitom, C.; Schulz, R.; Tozzi, G.; Tubiana, C.

    2014-07-01

    We present ground-based observations of comet 67P/Churyumov-Gerasimenko, target of the Rosetta mission, and an assessment on its activity levels. Based on imaging in the R-band, we measure the brightness of the coma within various apertures and use this to assess the amount of dust in the coma. We find that the comet begins to show detectable activity at a pre-perihelion distance from the Sun of 4.3 au, and then shows a smooth increase in production to a peak around one month after perihelion passage. The behaviour of the comet is consistent from one orbit to another, based on archival images taken over three apparitions, and we therefore use the heliocentric lightcurve to make predictions for the 2014/5 period while Rosetta is operating at the comet. We find that the Afρ parameter, measured within an aperture of radius 10,000 km at the comet, is proportional to r^{-3.2}, pre-perihelion [1]. We also attempt to make predictions on the gas production rate by fitting a model to the observed brightness values. This is done by assuming various parameters about the nucleus and dust, many of which are reasonably well constrained for 67P, and solving an energy balance equation that gives the sublimation rate of various ices as a function of solar illumination [2]. The model then links the gas production rate to the total amount of dust in the coma, and its brightness. We find that only a small fraction of the surface area (1.4 %) needs to be active for water sublimation, with an extra peak (up to 4 %) for a month either side of perihelion, while an even smaller area is producing CO_2 (0.04-0.09 %) [1]. The predictions can now be tested against new observations, and we will present the latest results from our 2014 monitoring of 67P. We are performing regular R-band imaging on the comet using the VLT, and early indications in March 2014 indicate that the comet does appear to have returned to activity as expected. By the time of the ACM meeting we will have around 4 months

  9. IDH1 Mutations Alter Citric Acid Cycle Metabolism and Increase Dependence on Oxidative Mitochondrial Metabolism

    PubMed Central

    Grassian, Alexandra R.; Parker, Seth J.; Davidson, Shawn M.; Divakarun, Ajit S.; Green, Courtney R.; Zhang, Xiamei; Slocum, Kelly L.; Pu, Minying; Lin, Fallon; Vickers, Chad; Joud-Caldwell, Carol; Chung, Franklin; Yin, Hong; Handly, Erika D.; Straub, Christopher; Growney, Joseph D.; Vander Heiden, Matthew G.; Murphy, Anne N.; Pagliarini, Raymond; Metallo, Christian M.

    2016-01-01

    Oncogenic mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) occur in several types of cancer, but the metabolic consequences of these genetic changes are not fully understood. In this study, we performed 13C metabolic flux analysis on a panel of isogenic cell lines containing heterozygous IDH1/2 mutations. We observed that under hypoxic conditions, IDH1-mutant cells exhibited increased oxidative tricarboxylic acid metabolism along with decreased reductive glutamine metabolism, but not IDH2-mutant cells. However, selective inhibition of mutant IDH1 enzyme function could not reverse the defect in reductive carboxylation activity. Furthermore, this metabolic reprogramming increased the sensitivity of IDH1-mutant cells to hypoxia or electron transport chain inhibition in vitro. Lastly, IDH1-mutant cells also grew poorly as subcutaneous xenografts within a hypoxic in vivo microenvironment. Together, our results suggest therapeutic opportunities to exploit the metabolic vulnerabilities specific to IDH1 mutation. PMID:24755473

  10. Oleanolic acid and ursolic acid: novel hepatitis C virus antivirals that inhibit NS5B activity.

    PubMed

    Kong, Lingbao; Li, Shanshan; Liao, Qingjiao; Zhang, Yanni; Sun, Ruina; Zhu, Xiangdong; Zhang, Qinghua; Wang, Jun; Wu, Xiaoyu; Fang, Xiaonan; Zhu, Ying

    2013-04-01

    Hepatitis C virus (HCV) infects up to 170 million people worldwide and causes significant morbidity and mortality. Unfortunately, current therapy is only curative in approximately 50% of HCV patients and has adverse side effects, which warrants the need to develop novel and effective antivirals against HCV. We have previously reported that the Chinese herb Fructus Ligustri Lucidi (FLL) directly inhibited HCV NS5B RNA-dependent RNA polymerase (RdRp) activity (Kong et al., 2007). In this study, we found that the FLL aqueous extract strongly suppressed HCV replication. Further high-performance liquid chromatography (HPLC) analysis combined with inhibitory assays indicates that oleanolic acid and ursolic acid are two antiviral components within FLL aqueous extract that significantly suppressed the replication of HCV genotype 1b replicon and HCV genotype 2a JFH1 virus. Moreover, oleanolic acid and ursolic acid exhibited anti-HCV activity at least partly through suppressing HCV NS5B RdRp activity as noncompetitive inhibitors. Therefore, our results for the first time demonstrated that natural products oleanolic acid and ursolic acid could be used as potential HCV antivirals that can be applied to clinic trials either as monotherapy or in combination with other HCV antivirals. PMID:23422646

  11. The Immunomodulatory Activity of Jacaric Acid, a Conjugated Linolenic Acid Isomer, on Murine Peritoneal Macrophages

    PubMed Central

    Liu, Wai Nam; Leung, Kwok Nam

    2015-01-01

    This study aims at demonstrating the immunomodulatory property of jacaric acid, a conjugated linolenic acid (CLNA) isomer that is present in jacaranda seed oil, on murine peritoneal macrophages. Our results showed that jacaric acid exhibited no significant cytotoxicity on the thioglycollate-elicited murine peritoneal macrophages as revealed by the neutral red uptake assay, but markedly increased their cytostatic activity on the T-cell lymphoma MBL-2 cells as measured by the fluorometric CyQuant® NF Cell Proliferation Assay Kit. Flow cytometric analysis indicated that jacaric acid could enhance the endocytic activity of macrophages and elevated their intracellular production of superoxide anion. Moreover, jacaric acid-treated macrophages showed an increase in the production of nitric oxide which was accompanied by an increase in the expression level of inducible nitric oxide synthase protein. In addition, the secretion of several pro-inflammatory cytokines, including interferon-γ, interleukin-1β and tumor necrosis factor-α, was up-regulated. Collectively, our results indicated that the naturally-occurring CLNA isomer, jacaric acid, could exhibit immunomodulating activity on the murine peritoneal macrophages in vitro, suggesting that this CLNA isomer may act as an immunopotentiator which can be exploited for the treatment of some immunological disorders with minimal toxicity and fewer side effects. PMID:26629697

  12. On the existence of the 11-year cycle in solar activity before the Maunder minimum

    SciTech Connect

    Attolini, M.R.; Cecchini, S.; Cini Castagnoli, G.; Galli, M.; Nanni, T.

    1988-11-01

    The existence of the 11-year cycle in solar activity before the Maunder minimum is clearly demonstrated with cosmogenic /sup 10/Be in polar ice during 1180--1500 A.D. For that interval a periodicity of 11.4 +- 0.2 years is found with a high significance level. Indication of a cyclicity that resembles the Hale magnetic cycle is also observed at a lower significance level. A highly variable cyclicity in the band 9.5--11.5 years is also found in the record of historical aurorae which appears to be well correlated with the /sup 10/Be cyclicity for the same time interval. It is concluded that the Schwabe, or 11-year, cycle and the Hale magnetic cycle were present before and after the Maunder minimum, even though it is not possible to understand the variability of the cycle. copyright American Geophysical Union 1988

  13. A combined experimental and DFT study of active structures and self-cycle mechanisms of mononuclear tungsten peroxo complexes in oxidation reactions

    NASA Astrophysics Data System (ADS)

    Jin, Peng; Wei, Donghui; Wen, Yiqiang; Luo, Mengfei; Wang, Xiangyu; Tang, Mingsheng

    2011-04-01

    Tungsten peroxo complexes have been widely used in olefin epoxidation, alcohol oxidation, Baeyer-Villiger oxidation and other oxidation reactions, however, there is still not a unanimous viewpoint for the active structure of mononuclear tungsten peroxo complex by now. In this paper, the catalysis of mononuclear tungsten peroxo complexes 0- 5 with or without acidic ligands for the green oxidation of cyclohexene to adipic acid in the absence of organic solvent and phase-transfer catalyst has been researched in experiment. Then we have suggested two possible kinds of active structures of mononuclear tungsten peroxo complexes including peroxo ring ( nA, n = 0-1) and hydroperoxo ( nB, n = 0-1) structures, which have been investigated using density functional theory (DFT). Moreover, the calculations on self-cycle mechanisms involving the two types of active structures of tungsten peroxo complexes with and without oxalic acid ligand have also been carried out at the B3LYP/[LANL2DZ/6-31G(d, p)] level. The highest energy barrier are 26.17 kcal/mol ( 0A, peroxo ring structure without oxalic acid ligand), 23.91 kcal/mol ( 1A, peroxo ring structure with oxalic acid ligand), 18.19 kcal/mol ( 0B, hydroperoxo structure without oxalic acid ligand) and 13.10 kcal/mol ( 1B, hydroperoxo structure with oxalic acid ligand) in the four potential energy profiles, respectively. The results indicate that both the energy barriers of active structure self-cycle processes with oxalic acid ligands are lower than those without oxalic acid ligands, so the active structures with oxalic acid ligands should be easier to recycle, which is in good agreement with our experimental results. However, due to the higher energy of product than that of the reactant, the energy profile of the self-cycle process of 1B shows that the recycle of 1B could not occur at all in theory. Moreover, the crystal data of peroxo ring structure with oxalic acid ligand could be found in some experimental references. Thus

  14. Solar Wind and Magnetic Storms in 24-th Cycle of Solar Activity

    NASA Astrophysics Data System (ADS)

    Val'chuk, T. E.

    2013-01-01

    Slow growth of 24-th solar cycle allows adding of this cycle to the type of low cycles. Geomagnetic activity is not expensive too - strong geomagnetic storms were absent in the beginning of growth branch of this cycle. Very prolonged minimum was lasting about 4 years. We may remember that century minimum of solar activity was proposed after XX century high strong cycles. It may be - we look this situation now in 2012. Our work is connected with sporadic phenomena in 24-th cycle. These more or less intensive variations of solar activity are not predicted, they are caused by flowing up of new magnetic fields of spots, the excitement of flares, intensive plasma flows, coronal mass ejections (CME) and filament eruptions. Now two last versions (CME and filaments) are primary. Geomagnetic activity on a descending phase of solar cycle depends on quality of coronal holes providing the recurrent geomagnetic storms. Sporadic phenomena, which generated geomagnetic storms in Earth magnetosphere if flare flows reached the Earth magnetosphere and transferred it the energy are more interesting for us - they are the valuable characteristics of 24-th cycle. The disturbed period of several geomagnetic storms was generated by solar active region N11429. It is one sample only, this case is difficult and indicative. Replacing each other scenarios describe geomagnetic variations at the beginning of March 2012. Detailed consideration of this interval revealed its communication with sporadic events on the Sun. The structural configuration of plasma in flare flows was defined by means fractal dimension calculations of solar plasma parameters: velocity Vx and density N in flare streams.

  15. Periods of Highly Synchronous, Non-Reentrant Endocardial Activation Cycles Occur During Long Duration Ventricular Fibrillation

    PubMed Central

    Robichaux, Robert P.; Dosdall, Derek J.; Osorio, Jose; Garner, Nicholas W.; Li, Li; Huang, Jian; Ideker, Raymond E.

    2010-01-01

    Background Little is known about long-duration ventricular fibrillation (LDVF), lasting 1-10 minutes when resuscitation is still possible. Methods and Results To determine global LV endocardial activation during LDVF, 6 canines (9.5±0.8 kg) received a 64-electrode basket catheter in the left ventricle (LV), a right ventricular (RV) catheter, and a 12-lead ECG. Activation sequences of 15 successive cycles after initiation and after 1, 2, 3, 5, 7, and 10 minutes of LDVF were determined. Early during VF, LV endocardial activation was complex and present throughout most (78.0±9.7%) of each cycle consistent with reentry. After 3-7 min of LDVF in 5 animals, endocardial activation became highly synchronized and present for only a small percentage of each cycle (18.2±7.7%), indicating that LV endocardial reentry was no longer present. During this synchronization, activations arose focally in Purkinje fibers and spread as large wavefronts to excite the Purkinje system followed by the subendocardial working myocardium. During this synchronization, the ECG continued to appear irregular, consistent with VF, and LV cycle length (183±29 ms) was significantly different than RV cycle length (144±14 ms) and significantly different than the LV cycle length when synchronization was not present (130±11 ms). Conclusion After 3-7 minutes of LDVF, a highly organized, synchronous, focal LV endocardial activation pattern frequently occurs that is not consistent with reentry but is consistent with triggered activity or abnormal automaticity in Purkinje fibers. The ECG continues to appear irregular during this period, partially because of differences in LV and RV cycle lengths. PMID:20487123

  16. Acid activation of bentonites and polymer-clay nanocomposites.

    SciTech Connect

    Carrado, K. A.; Komadel, P.; Center for Nanoscale Materials; Slovak Academy of Sciences

    2009-04-01

    Modified bentonites are of widespread technological importance. Common modifications include acid activation and organic treatment. Acid activation has been used for decades to prepare bleaching earths for adsorbing impurities from edible and industrial oils. Organic treatment has sparked an explosive interest in a class of materials called polymer-clay nanocomposites (PCNs). The most commonly used clay mineral in PCNs is montmorillonite, which is the main constituent of bentonite. PCN materials are used for structural reinforcement and mechanical strength, for gas permeability barriers, as flame retardants, and to minimize surface erosion (ablation). Other specialty applications include use as conducting nanocomposites and bionanocomposites.

  17. Active vibration and balance system for closed cycle thermodynamic machines

    NASA Technical Reports Server (NTRS)

    Qiu, Songgang (Inventor); Augenblick, John E. (Inventor); Peterson, Allen A. (Inventor); White, Maurice A. (Inventor)

    2004-01-01

    An active balance system is provided for counterbalancing vibrations of an axially reciprocating machine. The balance system includes a support member, a flexure assembly, a counterbalance mass, and a linear motor or an actuator. The support member is configured for attachment to the machine. The flexure assembly includes at least one flat spring having connections along a central portion and an outer peripheral portion. One of the central portion and the outer peripheral portion is fixedly mounted to the support member. The counterbalance mass is fixedly carried by the flexure assembly along another of the central portion and the outer peripheral portion. The linear motor has one of a stator and a mover fixedly mounted to the support member and another of the stator and the mover fixedly mounted to the counterbalance mass. The linear motor is operative to axially reciprocate the counterbalance mass. A method is also provided.

  18. Characterization of nano-lead-doped active carbon and its application in lead-acid battery

    NASA Astrophysics Data System (ADS)

    Hong, Bo; Jiang, Liangxing; Xue, Haitao; Liu, Fangyang; Jia, Ming; Li, Jie; Liu, Yexiang

    2014-12-01

    In this paper, nano-lead-doped active carbon (nano-Pb/AC) composite with low hydrogen evolution current for lead-acid battery was prepared by ultrasonic-absorption and chemical-precipitate method. The nano-Pb/AC composite was characterized by SEM, EDS and TEM. The electrochemical characterizations are performed by linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) in a three-electrode system. Since intermediate adsorption is the rate-determining step, the hydrogen evolution reaction (HER) is markedly inhibited as the intermediate adsorption impedance of nano-Pb/AC increased. Meanwhile, the working potential of nano-Pb/AC is widened to the whole potential region of Pb negative plate (from -1.36 V to -0.86 V vs. Hg/HgSO4) in lead-acid battery. In addition, nano-Pb can improve the interfacial compatibility between AC and Pb paste, accordingly relieve the symptoms of carbon floatation. Finally, 2.0 V single-cell flooded lead-acid batteries with 1.0 wt.% nano-Pb/AC or 1.0 wt.% AC addition in negative active materials are assembled. The cell performances test results show that the 3 h rate capacity, quick charging performance, high current discharging performance and cycling performance of nano-Pb/AC modified battery are all improved compared with regular lead-acid battery and AC modified lead-acid battery.

  19. TGEV nucleocapsid protein induces cell cycle arrest and apoptosis through activation of p53 signaling

    SciTech Connect

    Ding, Li; Huang, Yong; Du, Qian; Dong, Feng; Zhao, Xiaomin; Zhang, Wenlong; Xu, Xingang; Tong, Dewen

    2014-03-07

    Highlights: • TGEV N protein reduces cell viability by inducing cell cycle arrest and apoptosis. • TGEV N protein induces cell cycle arrest and apoptosis by regulating p53 signaling. • TGEV N protein plays important roles in TGEV-induced cell cycle arrest and apoptosis. - Abstract: Our previous studies showed that TGEV infection could induce cell cycle arrest and apoptosis via activation of p53 signaling in cultured host cells. However, it is unclear which viral gene causes these effects. In this study, we investigated the effects of TGEV nucleocapsid (N) protein on PK-15 cells. We found that TGEV N protein suppressed cell proliferation by causing cell cycle arrest at the S and G2/M phases and apoptosis. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that the expression of N gene resulted in an accumulation of p53 and p21, which suppressed cyclin B1, cdc2 and cdk2 expression. Moreover, the expression of TGEV N gene promoted translocation of Bax to mitochondria, which in turn caused the release of cytochrome c, followed by activation of caspase-3, resulting in cell apoptosis in the transfected PK-15 cells following cell cycle arrest. Further studies showed that p53 inhibitor attenuated TGEV N protein induced cell cycle arrest at S and G2/M phases and apoptosis through reversing the expression changes of cdc2, cdk2 and cyclin B1 and the translocation changes of Bax and cytochrome c induced by TGEV N protein. Taken together, these results demonstrated that TGEV N protein might play an important role in TGEV infection-induced p53 activation and cell cycle arrest at the S and G2/M phases and apoptosis occurrence.

  20. OECD/NEA Ongoing activities related to the nuclear fuel cycle

    SciTech Connect

    Cornet, S.M.; McCarthy, K.; Chauvin, N.

    2013-07-01

    As part of its role in encouraging international collaboration, the OECD Nuclear Energy Agency is coordinating a series of projects related to the Nuclear Fuel Cycle. The Nuclear Science Committee (NSC) Working Party on Scientific Issues of the Nuclear Fuel Cycle (WPFC) comprises five different expert groups covering all aspects of the fuel cycle from front to back-end. Activities related to fuels, materials, physics, separation chemistry, and fuel cycles scenarios are being undertaken. By publishing state-of-the-art reports and organizing workshops, the groups are able to disseminate recent research advancements to the international community. Current activities mainly focus on advanced nuclear systems, and experts are working on analyzing results and establishing challenges associated to the adoption of new materials and fuels. By comparing different codes, the Expert Group on Advanced Fuel Cycle Scenarios is aiming at gaining further understanding of the scientific issues and specific national needs associated with the implementation of advanced fuel cycles. At the back end of the fuel cycle, separation technologies (aqueous and pyrochemical processing) are being assessed. Current and future activities comprise studies on minor actinides separation and post Fukushima studies. Regular workshops are also organized to discuss recent developments on Partitioning and Transmutation. In addition, the Nuclear Development Committee (NDC) focuses on the analysis of the economics of nuclear power across the fuel cycle in the context of changes of electricity markets, social acceptance and technological advances and assesses the availability of the nuclear fuel and infrastructure required for the deployment of existing and future nuclear power. The Expert Group on the Economics of the Back End of the Nuclear Fuel Cycle (EBENFC), in particular, is looking at assessing economic and financial issues related to the long term management of spent nuclear fuel. (authors)

  1. Decreased glycolytic and tricarboxylic acid cycle intermediates coincide with peripheral nervous system oxidative stress in a murine model of type 2 diabetes

    PubMed Central

    Hinder, Lucy M.; Vivekanandan-Giri, Anuradha; McLean, Lisa L.; Pennathur, Subramaniam; Feldman, Eva L.

    2013-01-01

    Diabetic neuropathy (DN) is the most common complication of diabetes and is characterized by distal-to-proximal loss of peripheral nerve axons. The idea of tissue-specific pathological alterations in energy metabolism in diabetic complications-prone tissues is emerging. Altered nerve metabolism in type 1 diabetes models is observed; however, therapeutic strategies based on these models offer limited efficacy to type 2 diabetic patients with DN. Therefore, understanding how peripheral nerves metabolically adapt to the unique type 2 diabetic environment is critical to develop disease-modifying treatments. In the current study, we utilized targeted LC/MS/MS to characterize the glycolytic and tricarboxylic acid (TCA) cycle metabolomes in sural nerve, sciatic nerve and dorsal root ganglia (DRG) from male type 2 diabetic mice (BKS.Cg-m+/+Leprdb; db/db) and controls (db/+). We report depletion of glycolytic intermediates in diabetic sural nerve and sciatic nerve (glucose-6-phosphate, fructose-6-phosphate, fructose-1,6-bisphosphate (sural nerve only), 3-phosphoglycerate, 2-phosphoglycerate, phosphoenolpyruvate, lactate), with no significant changes in DRG. Citrate and isocitrate TCA cycle intermediates were decreased in sural nerve, sciatic nerve and DRG from diabetic mice. Utilizing LC/ESI/MS/MS and HPLC methods, we also observed increased protein and lipid oxidation (nitrotyrosine; hydroxyoctadecadienoic acids, HODEs) in db/db tissue, with a proximal-to-distal increase in oxidative stress, with associated decreased aconitase enzyme activity. We propose a preliminary model, whereby the greater change in metabolomic profile, increase in oxidative stress, and decrease in TCA cycle enzyme activity may cause distal peripheral nerve to rely on truncated TCA cycle metabolism in the type 2 diabetes environment. PMID:23086140

  2. The effect of cadence on timing of muscle activation and mechanical output in cycling: on the activation dynamics hypothesis.

    PubMed

    McGhie, David; Ettema, Gertjan

    2011-02-01

    The purpose of this study was to examine the activation dynamics hypothesis, which states that, in cycling, the pattern between muscle activity and crank position shifts in regard to its angle in the crank cycle with increasing cadence to maintain invariant positioning of the mechanical output. We measured surface EMG of six muscles, and by means of force measurements at the crank and inverse dynamics calculated hip, knee, and ankle joint dynamics during cycling at five cadences (60-100 rpm) at 75% of maximal power in trained cyclists. The joint dynamics (net muscle moment and power) showed a consistent positive phase shift with increasing cadence. The phase shift in muscle activation patterns was highly variable amongst subjects and was, on average, close to zero. Our results are in contradiction with the activation dynamics hypothesis. PMID:20594872

  3. Finding year-long activity cycles in ground-based and space-borne photometry

    NASA Astrophysics Data System (ADS)

    Vida, Krisztián; Oláh, Katalin; Szabó, Róbert

    2015-08-01

    Using long­term ground­based photometry of fast­rotating M­-dwarfs (EY Dra, V405 And, GSC 3377­0296 and V374 Peg), all with rotational periods near 0.5 day, but with different internal structures, we found activity cycles in the form of long-­term brightness changes, on the time scales of about one year. Using the cycling stars as templates, we searched for similar, fast rotating (P < 1d), active, late­-type targets in the Kepler Input Catalogue. Analysing the light curves of these 39 stars, we found hints of 300­-900 day­-long cycles in 9 cases detecting small variations in the rotation periods caused by differential rotation and the changing spot emergence latitudes over the cycle (i.e., the butterfly diagram).

  4. The solar cycle variation of the rates of CMEs and related activity

    NASA Technical Reports Server (NTRS)

    Webb, David F.

    1991-01-01

    Coronal mass ejections (CMEs) are an important aspect of the physics of the corona and heliosphere. This paper presents results of a study of occurrence frequencies of CMEs and related activity tracers over more than a complete solar activity cycle. To properly estimate occurrence rates, observed CME rates must be corrected for instrument duty cycles, detection efficiencies away from the skyplane, mass detection thresholds, and geometrical considerations. These corrections are evaluated using CME data from 1976-1989 obtained with the Skylab, SMM and SOLWIND coronagraphs and the Helios-2 photometers. The major results are: (1) the occurrence rate of CMEs tends to track the activity cycle in both amplitude and phase; (2) the corrected rates from different instruments are reasonably consistent; and (3) over the long term, no one class of solar activity tracer is better correlated with CME rate than any other (with the possible exception of type II bursts).

  5. Dietary Fatty Acids from Leaves of Clerodendrum Volubile Induce Cell Cycle Arrest, Downregulate Matrix Metalloproteinase-9 Expression, and Modulate Redox Status in Human Breast Cancer.

    PubMed

    Erukainure, Ochuko L; Zaruwa, Moses Z; Choudhary, M Iqbal; Naqvi, S Asma; Ashraf, Nadia; Hafizur, Rahman M; Muhammad, Aliyu; Ebuehi, Osaretin A T; Elemo, Gloria N

    2016-01-01

    The antiproliferative effect of the fatty acid components of Clerodendrum volubile leaves as well as its antioxidant effect on MCF-7 and MDA-MB-231 human breast cancer cell lines were investigated. Fatty acids extracted from C. volubile leaf oil were subjected to gas chromatography mass spectrometry (GCMS) analysis. The cells were cultured and treated with the fatty acids for 48 h, after which the antiproliferation effect was ascertained via MTT assay and cell viability analysis using BD fluorescence activated cells sorting (FACS) Calibur. Cell cycle was analyzed by flow cytometry on FACS Calibur. Western blotting was used in determining expression of proteins in the cell lines. The treated cell lines were assessed for reduced glutathione level, catalase, superoxide dismutase, and lipid peroxidation. The fatty acids significantly inhibited cell proliferation, arrested G0/G1 phase, downregulated the expression of MMP-9, and attenuated oxidative stress in of MCF-7 cell lines but had little or no effect on MDA-MB-231 cell lines. These results indicate the therapeutic potential of the fatty acids components of the leaves of C. volubile on human breast cancer, which may be explored further in drug development. PMID:27043182

  6. Relationship between skin temperature and muscle activation during incremental cycle exercise.

    PubMed

    Priego Quesada, Jose I; Carpes, Felipe P; Bini, Rodrigo R; Salvador Palmer, Rosario; Pérez-Soriano, Pedro; Cibrián Ortiz de Anda, Rosa M

    2015-02-01

    While different studies showed that better fitness level adds to the efficiency of the thermoregulatory system, the relationship between muscular effort and skin temperature is still unknown. Therefore, the present study assessed the relationship between neuromuscular activation and skin temperature during cycle exercise. Ten physically active participants performed an incremental workload cycling test to exhaustion while neuromuscular activations were recorded (via surface electromyography - EMG) from rectus femoris, vastus lateralis, biceps femoris and gastrocnemius medialis. Thermographic images were recorded before, immediately after and 10 min after finishing the cycling test, at four body regions of interest corresponding to the muscles where neuromuscular activations were monitored. Frequency band analysis was conducted to assess spectral properties of EMG signals in order to infer on priority in recruitment of motor units. Significant inverse relationship between changes in skin temperature and changes in overall neuromuscular activation for vastus lateralis was observed (r<-0.5 and p<0.04). Significant positive relationship was observed between skin temperature and low frequency components of neuromuscular activation from vastus lateralis (r>0.7 and p<0.01). Participants with larger overall activation and reduced low frequency component for vastus lateralis activation presented a better adaptive response of their thermoregulatory system by showing fewer changes in skin temperature after incremental cycling test. PMID:25660627

  7. A Comparison Between Global Proxies of the Sun's Magnetic Activity Cycle: Inferences from Helioseismology

    NASA Astrophysics Data System (ADS)

    Broomhall, A.-M.; Nakariakov, V. M.

    2015-11-01

    The last solar minimum was, by recent standards, unusually deep and long. We are now close to the maximum of the subsequent solar cycle, which is relatively weak. In this article we make comparisons between different global (unresolved) measures of the Sun's magnetic activity to investigate how they are responding to this weak-activity epoch. We focus on helioseismic data, which are sensitive to conditions, including the characteristics of the magnetic field, in the solar interior. Also considered are measures of the magnetic field in the photosphere (sunspot number and sunspot area), the chromosphere and corona (10.7 cm radio flux and 530.3 nm green coronal index), and two measures of the Sun's magnetic activity closer to Earth (the interplanetary magnetic field and the galactic cosmic-ray intensity). Scaled versions of the activity proxies diverge from the helioseismic data around 2000, indicating a change in relationship between the proxies. The degree of divergence varies from proxy to proxy, with sunspot area and 10.7 cm flux showing only small deviations, while sunspot number, coronal index, and the two interplanetary proxies show much larger departures. In Cycle 24 the deviations in the solar proxies and the helioseismic data decrease, raising the possibility that the deviations observed in Cycle 23 are just symptomatic of a 22-year Hale cycle. However, the deviations in the helioseismic data and the interplanetary proxies increase in Cycle 24. Interestingly, the divergence in the solar proxies and the helioseismic data are not reflected in the shorter-term variations (often referred to as quasi-biennial oscillations) observed on top of the dominant 11-year solar cycle. However, despite being highly correlated in Cycle 22, the short-term variations in the interplanetary proxies show very little correlation with the helioseismic data during Cycles 23 and 24.

  8. Cdc2 H1 kinase is negatively regulated by a type 2A phosphatase in the Xenopus early embryonic cell cycle: evidence from the effects of okadaic acid.

    PubMed Central

    Félix, M A; Cohen, P; Karsenti, E

    1990-01-01

    In Xenopus embryos, the cell cycle is abbreviated to a rapid alternation between interphase and mitosis. The onset of each M phase is induced by the periodic activation of the cdc2 kinase which is triggered by a threshold level of cyclins and apparently involves dephosphorylation of p34cdc2. We have prepared post-ribosomal supernatants from eggs sampled during interphase (interphase extracts) and just before the first mitosis of the early embryonic cell cycle (prophase extracts). In 'interphase extracts', the cdc2 kinase never activates spontaneously upon incubation at room temperature whereas in 'prophase extracts' it does. We show here that in 'interphase extracts', specific inhibition of type 2A phosphatase by okadaic acid induces cdc2 kinase activation. This requires a subthreshold level of cyclin and the presence of a particulate factor in the extract. Inhibition of type 1 phosphatases by inhibitor 1 and inhibitor 2 never results in cdc2 kinase activation. These results demonstrate that during the period of cyclin accumulation, cdc2 kinase activation is inhibited by a type 2A phosphatase. In 'prophase extracts', spontaneous activation of the cdc2 kinase is inhibited by beta-glycerophosphate and NaF, but not by okadaic acid, inhibitor 1 and inhibitor 2 or divalent cation chelation. This demonstrates that when enough cyclin has accumulated, cdc2 kinase activation involves a protein phosphatase which must be distinct from the type 1 and 2A phosphatases, and from the calcium-dependent (type 2B) and magnesium-dependent (type 2C) phosphatases. Images Fig. 4. PMID:2155777

  9. Body temperature and physical activity correlates of the menstrual cycle in Chacma Baboons (Papio hamadryas ursinus).

    PubMed

    Nyakudya, Trevor T; Fuller, Andrea; Meyer, Leith C R; Maloney, Shane K; Mitchell, Duncan

    2012-12-01

    We investigated the temporal relationship between abdominal temperature, physical activity, perineal swelling, and urinary progesterone and estradiol concentrations over the menstrual cycle in unrestrained captive baboons. Using a miniature temperature-sensitive data logger surgically implanted in the abdominal cavity and an activity data logger implanted subcutaneously on the trunk, we measured, continuously over 6 months at 10-min intervals, abdominal temperature and physical activity patterns in four female adult baboons Papio hamadryas ursinus (12.9-19.9 kg), in cages in an indoor animal facility (22-25°C). We monitored menstrual bleeding and perineal swelling changes, and measured urinary progesterone and estradiol concentrations, daily for up to 6 months, to ascertain the stage and length of the menstrual cycle. The menstrual cycle was 36 ± 2 days (mean ± SD) long and the baboons exhibited cyclic changes in perineal swellings, abdominal temperature, physical activity, urinary progesterone, and estradiol concentrations over the cycle. Mean 24-hr abdominal temperature during the luteal phase was significantly higher than during the periovulatory phase (ANOVA, F((2, 9)) = 4.7; P = 0.04), but not different to that during the proliferative phase. Physical activity followed a similar pattern, with mean 24-hr physical activity almost twice as high in the luteal than in the periovulatory phase (ANOVA, P = 0.58; F((2, 12)) = 5.8). We have characterized correlates of the menstrual cycle in baboons and shown, for the first time, a rhythm of physical activity and abdominal temperature over the menstrual cycle, with a nadir of temperature and activity at ovulation. PMID:22930453

  10. Tubulin dynamics during the cytoplasmic cohesiveness cycle in artificially activated sea urchin eggs.

    PubMed

    Coffe, G; Foucault, G; Raymond, M N; Pudles, J

    1983-12-01

    Sedimentation studies and [3H]colchicine-binding assays have demonstrated a relationship between the cytoplasmic cohesiveness cycles and the changes in tubulin organization in Paracentrotus lividus eggs activated by 2.5 mM procaine. The same amount of tubulin (20-25% of the total egg tubulin) is involved in these cyclic process and appears to undergo polymerization and depolymerization cycles. Electron microscopy studies reveal that the microtubules formed during these cytoplasmic cohesiveness cycles are under a particulate form which is sedimentable at low speed. Activation experiments carried out in the presence of cytochalasin B (CB) show that the increase in the cytoplasmic cohesiveness is highly reduced while tubulin polymerization and depolymerization cycles and pronuclear centration are not affected. Although tubulin or actin polymerization can be independently triggered in procaine-activated eggs, the increase in cytoplasmic cohesiveness requires the polymerization of both proteins. However, the cytoplasmic cohesiveness cycles appear to be regulated by tubulin polymerization and depolymerization cycles. PMID:6641809

  11. Synthesis and biological activity of tetralone abscisic acid analogues.

    PubMed

    Nyangulu, James M; Nelson, Ken M; Rose, Patricia A; Gai, Yuanzhu; Loewen, Mary; Lougheed, Brenda; Quail, J Wilson; Cutler, Adrian J; Abrams, Suzanne R

    2006-04-01

    Bicyclic analogues of the plant hormone abscisic acid (ABA) were designed to incorporate the structural elements and functional groups of the parent molecule that are required for biological activity. The resulting tetralone analogues were predicted to have enhanced biological activity in plants, in part because oxidized products would not cyclize to forms corresponding to the inactive catabolite phaseic acid. The tetralone analogues were synthesized in seven steps from 1-tetralone and a range of analogues were accessible through a second route starting with 2-methyl-1-naphthol. Tetralone ABA 8 was found to have greater activity than ABA in two bioassays. The absolute configuration of (+)-8 was established by X-ray crystallography of a RAMP hydrazone derivative. The hydroxymethyl compounds 10 and 11, analogues for studying the roles of 8- and 9-hydroxy ABA 3 and 6, were also synthesized and found to be active. PMID:16557330

  12. Development of amino acid uptake activity in Neurospora.

    PubMed

    Railey, R M; Kinsey, J A

    1976-02-01

    During the germination and growth of Neurospora conidia, amino acid permease systems I (neutral) and II (general) increase in specific activity. System III (basic) decreases in specific activity with the onset of germination. System I shows two peaks of activity during the logarithmic phase of growth. One peak occurs at 6 h, the other at 12 h of growth. Both peaks are abolished in the mtr mutant. Both peaks have a Km for phenylalanine of 40 muM. The peaks of system I activity appear to correlate with morphological changes. PMID:4208

  13. Discovery of an activity cycle in the solar analog HD 45184. Exploring Balmer and metallic lines as activity proxy candidates

    NASA Astrophysics Data System (ADS)

    Flores, M.; González, J. F.; Jaque Arancibia, M.; Buccino, A.; Saffe, C.

    2016-05-01

    Context. Most stellar activity cycles similar to that found in the Sun have been detected by using the chromospheric Ca ii H&K lines as stellar activity proxies. However, it is unclear whether such activity cycles can be identified using other optical lines. Aims: We aim to detect activity cycles in solar-analog stars and determine whether they can be identified through other optical lines, such as Fe II and Balmer lines. We study the solar-analog star HD 45184 using HARPS spectra. The temporal coverage and high quality of the spectra allow us to detect both long- and short-term activity variations. Methods: We analysed the activity signatures of HD 45184 by using 291 HARPS spectra obtained between 2003 and 2014. To search for line-core flux variations, we focused on Ca ii H&K and Balmer Hα and Hβ lines, which are typically used as optical chromospheric activity indicators. We calculated the HARPS-S index from Ca ii H&K lines and converted it into the Mount Wilson scale. In addition, we also considered the equivalent widths of Balmer lines as activity indicators. Moreover, we analysed the possible variability of Fe ii and other metallic lines in the optical spectra. The spectral variations were analysed for periodicity using the Lomb-Scargle periodogram. Results: We report for the first time a long-term 5.14-yr activity cycle in the solar-analog star HD 45184 derived from Mount Wilson S index. This makes HD 45184 one of most similar stars to the Sun with a known activity cycle. The variation is also evident in the first lines of the Balmer series, which do not always show a correlation with activity in solar-type stars. Notably, unlike the solar case, we also found that the equivalent widths of the high photospheric Fe ii lines (4924 Å, 5018 Å and 5169 Å) are modulated (±2 mÅ) by the chromospheric cycle of the star. These metallic lines show variations above 4σ in the rms spectrum, while some Ba ii and Ti ii lines present variations at 3σ level, which

  14. Pivotal role of dihydrofolate reductase knockdown in the anticancer activity of 2-hydroxyoleic acid

    PubMed Central

    Lladó, Victoria; Terés, Silvia; Higuera, Mónica; Álvarez, Rafael; Noguera-Salva, Maria Antònia; Halver, John E.; Escribá, Pablo V.; Busquets, Xavier

    2009-01-01

    α-Hydroxy-9-cis-octadecenoic acid, a synthetic fatty acid that modifies the composition and structure of lipid membranes. 2-Hydroxyoleic acid (HOA) generated interest due to its potent, yet nontoxic, anticancer activity. It induces cell cycle arrest in human lung cancer (A549) cells and apoptosis in human leukemia (Jurkat) cells. These two pathways may explain how HOA induces regression of a variety of cancers. We showed that HOA repressed the expression of dihydrofolate reductase (DHFR), the enzyme responsible for tetrahydrofolate (THF) synthesis. Folinic acid, which readily produces THF without the participation of DHFR, reverses the antitumor effects of HOA in A549 and Jurkat cells, as well as the inhibitory influence on cyclin D and cdk2 in A549 cells, and on DNA and PARP degradation in Jurkat cells. This effect was very specific, because either elaidic acid (an analog of HOA) or other lipids, failed to alter A549 or Jurkat cell growth. THF is a cofactor necessary for DNA synthesis. Thus, impairment of DNA synthesis appears to be a common mechanism involved in the different responses elicited by cancer cells following treatment with HOA, namely cell cycle arrest or apoptosis. Compared with other antifolates, such as methotrexate, HOA did not directly inhibit DHFR but rather, it repressed its expression, a mode of action that offers certain therapeutic advantages. These results not only demonstrate the effect of a fatty acid on the expression of DHFR, but also emphasize the potential of HOA to be used as a wide-spectrum drug against cancer. PMID:19666584

  15. Effects of valproic acid and pioglitazone on cell cycle progression and proliferation of T-cell acute lymphoblastic leukemia Jurkat cells

    PubMed Central

    Jazi, Marie Saghaeian; Mohammadi, Saeed; Yazdani, Yaghoub; Sedighi, Sima; Memarian, Ali; Aghaei, Mehrdad

    2016-01-01

    Objective(s): T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignant tumor. Administration of chemical compounds influencing apoptosis and T cell development has been discussed as promising novel therapeutic strategies. Valproic acid (VPA) as a recently emerged anti-neoplastic histone deacetylase (HDAC) inhibitor and pioglitazone (PGZ) as a high-affinity peroxisome proliferator-activated receptor-gamma (PPARγ) agonist have been shown to induce apoptosis and cell cycle arrest in different studies. Here, we aimed to investigate the underlying molecular mechanisms involved in anti-proliferative effects of these compounds on human Jurkat cells. Materials and Methods: Treated cells were evaluated for cell cycle progression and apoptosis using flowcytometry and MTT viability assay. Real-time RT-PCR was carried out to measure the alterations in key genes associated with cell death and cell cycle arrest. Results: Our findings illustrated that both VPA and PGZ can inhibit Jurkat E6.1 cells in vitro after 24 hr; however, PGZ 400 μM presents the most anti-proliferative effect. Interestingly, treated cells have been arrested in G2/M with deregulated cell division cycle 25A (Cdc25A) phosphatase and cyclin-dependent kinase inhibitor 1B (CDKN1B or p27) expression. Expression of cyclin D1 gene was inhibited when DNA synthesis entry was declined. Cell cycle deregulation in PGZ and VPA-exposed cells generated an increase in the proportion of aneuploid cell population, which has not reported before. Conclusion: These findings define that anti-proliferative effects of PGZ and VPA on Jurkat cell line are mediated by cell cycle deregulation. Thus, we suggest PGZ and VPA may relieve potential therapeutic application against apoptosis-resistant malignancies.

  16. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    DOEpatents

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2016-08-09

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  17. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    SciTech Connect

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2014-09-30

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  18. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    SciTech Connect

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2012-10-16

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  19. Teacher's Resource Guide on Acidic Precipitation with Laboratory Activities.

    ERIC Educational Resources Information Center

    Barrow, Lloyd H.

    The purpose of this teacher's resource guide is to help science teachers incorporate the topic of acidic precipitation into their curricula. A survey of recent junior high school science textbooks found a maximum of one paragraph devoted to the subject; in addition, none of these books had any related laboratory activities. It was on the basis of…

  20. Fungicidal Activities of Dihydroferulic Acid Alkyl Ester Analogues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The natural product dihydroferulic acid (DFA, 1) and the synthesized DFA methyl (4a), ethyl (4b), propyl (4c), hexyl (4d), octyl (4e), and decyl (4f) esters were examined for antifungal activity. Test fungi included Saccharomyces cerevisiae (wild type, and deletion mutants slt2delta and bck1delta), ...

  1. Zoosporicidal activities of anacardic acids against Aphanomyces cochlioides.

    PubMed

    Begum, Parvin; Hashidoko, Yasuyuki; Islam, Md Tofazzal; Ogawa, Yuko; Tahara, Satoshi

    2002-01-01

    The EtOAc soluble constituents of the unripe fruits of Ginkgo biloba showed motility inhibition followed by lysis of zoospores of the phytopathogenic Aphanomyces cochlioides. We purified 22:1-omega7-anacardic acid (1), 24:1-omega9-anacardic acid (2) and 22:0-anacardic acid (3), together with other related compounds, 21:1-omega7-cardol (4) and 21:1-omega7-cardanol (5) from the crude extracts of Ginkgo fruits. Amongst them, compound 1 was a major active agent in quality and quantity, and showed potent motility inhibition (98% in 30 min) followed by lysis (55% in 3 h) of the zoospores at 1 x 10(-7) M. The 2-O-methyl derivative (1-c) of 1 displayed antibacterial activity against Bacillus subtilis, but practically inactive to Escherichia coli. A brief study on structure-activity relationships revealed that a carboxyl group on the aromatic ring and an unsaturated side chain in the anacardic acid derivative are important for strong motility inhibitory and lytic activities against the zoospore. PMID:12440727

  2. Fungicidal Activities of Dihydroferulic Acid Alkyl Ester Analogs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The natural product dihydroferulic acid (DFA, 1) and the synthesized DFA methyl (4a), ethyl (4b), propyl (4c), hexyl (4d), octyl (4e), and decyl (4f) esters were examined for antifungal activity. Test fungi included Saccharomyces cerevisiae (wild type, and deletion mutants slt2' and bck1'), Aspergil...

  3. ACID RAIN AND SOIL MICROBIAL ACTIVITY: EFFECTS AND THEIR MECHANISMS

    EPA Science Inventory

    In the investigation, our aim was to determine if acid rain affects soil microbial activity and to identify possible mechanisms of observed effects. A Sierran forest soil (pH 6.4) planted with Ponderosa pine seedlings was exposed to simulated rain (pH 2.0, 3.0, 4.0 and 5.6) with ...

  4. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, potently activates PPARγ and stimulates adipogenesis

    SciTech Connect

    Goto, Tsuyoshi; Kim, Young-Il; Furuzono, Tomoya; Takahashi, Nobuyuki; Yamakuni, Kanae; Yang, Ha-Eun; Li, Yongjia; Ohue, Ryuji; Nomura, Wataru; Sugawara, Tatsuya; Yu, Rina; Kitamura, Nahoko; and others

    2015-04-17

    Our previous study has shown that gut lactic acid bacteria generate various kinds of fatty acids from polyunsaturated fatty acids such as linoleic acid (LA). In this study, we investigated the effects of LA and LA-derived fatty acids on the activation of peroxisome proliferator-activated receptors (PPARs) which regulate whole-body energy metabolism. None of the fatty acids activated PPARδ, whereas almost all activated PPARα in luciferase assays. Two fatty acids potently activated PPARγ, a master regulator of adipocyte differentiation, with 10-oxo-12(Z)-octadecenoic acid (KetoA) having the most potency. In 3T3-L1 cells, KetoA induced adipocyte differentiation via the activation of PPARγ, and increased adiponectin production and insulin-stimulated glucose uptake. These findings suggest that fatty acids, including KetoA, generated in gut by lactic acid bacteria may be involved in the regulation of host energy metabolism. - Highlights: • Most LA-derived fatty acids from gut lactic acid bacteria potently activated PPARα. • Among tested fatty acids, KetoA and KetoC significantly activated PPARγ. • KetoA induced adipocyte differentiation via the activation of PPARγ. • KetoA enhanced adiponectin production and glucose uptake during adipogenesis.

  5. Quercetin, a Natural Flavonoid Interacts with DNA, Arrests Cell Cycle and Causes Tumor Regression by Activating Mitochondrial Pathway of Apoptosis

    PubMed Central

    Srivastava, Shikha; Somasagara, Ranganatha R.; Hegde, Mahesh; Nishana, Mayilaadumveettil; Tadi, Satish Kumar; Srivastava, Mrinal; Choudhary, Bibha; Raghavan, Sathees C.

    2016-01-01

    Naturally occurring compounds are considered as attractive candidates for cancer treatment and prevention. Quercetin and ellagic acid are naturally occurring flavonoids abundantly seen in several fruits and vegetables. In the present study, we evaluate and compare antitumor efficacies of quercetin and ellagic acid in animal models and cancer cell lines in a comprehensive manner. We found that quercetin induced cytotoxicity in leukemic cells in a dose-dependent manner, while ellagic acid showed only limited toxicity. Besides leukemic cells, quercetin also induced cytotoxicity in breast cancer cells, however, its effect on normal cells was limited or none. Further, quercetin caused S phase arrest during cell cycle progression in tested cancer cells. Quercetin induced tumor regression in mice at a concentration 3-fold lower than ellagic acid. Importantly, administration of quercetin lead to ~5 fold increase in the life span in tumor bearing mice compared to that of untreated controls. Further, we found that quercetin interacts with DNA directly, and could be one of the mechanisms for inducing apoptosis in both, cancer cell lines and tumor tissues by activating the intrinsic pathway. Thus, our data suggests that quercetin can be further explored for its potential to be used in cancer therapeutics and combination therapy. PMID:27068577

  6. Amphipathic β2,2-Amino Acid Derivatives Suppress Infectivity and Disrupt the Intracellular Replication Cycle of Chlamydia pneumoniae

    PubMed Central

    Tiirola, Terttu M.; Strøm, Morten B.; Vuorela, Pia M.

    2016-01-01

    We demonstrate in the current work that small cationic antimicrobial β2,2-amino acid derivatives (Mw < 500 Da) are highly potent against Chlamydia pneumoniae at clinical relevant concentrations (< 5 μM, i.e. < 3.4 μg/mL). C. pneumoniae is an atypical respiratory pathogen associated with frequent treatment failures and persistent infections. This gram-negative bacterium has a biphasic life cycle as infectious elementary bodies and proliferating reticulate bodies, and efficient treatment is challenging because of its long and obligate intracellular replication cycle within specialized inclusion vacuoles. Chlamydicidal effect of the β2,2-amino acid derivatives in infected human epithelial cells was confirmed by transmission electron microscopy. Images of infected host cells treated with our lead derivative A2 revealed affected chlamydial inclusion vacuoles 24 hours post infection. Only remnants of elementary and reticulate bodies were detected at later time points. Neither the EM studies nor resazurin-based cell viability assays showed toxic effects on uninfected host cells or cell organelles after A2 treatment. Besides the effects on early intracellular inclusion vacuoles, the ability of these β2,2-amino acid derivatives to suppress Chlamydia pneumoniae infectivity upon treatment of elementary bodies suggested also a direct interaction with bacterial membranes. Synthetic β2,2-amino acid derivatives that target C. pneumoniae represent promising lead molecules for development of antimicrobial agents against this hard-to-treat intracellular pathogen. PMID:27280777

  7. Inhibition of bacterial activity in acid mine drainage

    NASA Astrophysics Data System (ADS)

    Singh, Gurdeep; Bhatnagar, Miss Mridula

    1988-12-01

    Acid mine drainage water give rise to rapid growth and activity of an iron- and sulphur- oxidizing bacterium Thiobacillus ferrooxidians which greatly accelerate acid producing reactions by oxidation of pyrite material associated with coal and adjoining strata. The role of this bacterium in production of acid mine drainage is described. This study presents the data which demonstrate the inhibitory effect of certain organic acids, sodium benzoate, sodium lauryl sulphate, quarternary ammonium compounds on the growth of the acidophilic aerobic autotroph Thiobacillus ferrooxidians. In each experiment, 10 milli-litres of laboratory developed culture of Thiobacillus ferrooxidians was added to 250 milli-litres Erlenmeyer flask containing 90 milli-litres of 9-k media supplemented with FeSO4 7H2O and organic compounds at various concentrations. Control experiments were also carried out. The treated and untreated (control) samples analysed at various time intervals for Ferrous Iron and pH levels. Results from this investigation showed that some organic acids, sodium benzoate, sodium lauryl sulphate and quarternary ammonium compounds at low concentration (10-2 M, 10-50 ppm concentration levels) are effective bactericides and able to inhibit and reduce the Ferrous Iron oxidation and acidity formation by inhibiting the growth of Thiobacillus ferrooxidians is also discussed and presented

  8. Low-intensity cycling affects the muscle activation pattern of consequent countermovement jumps.

    PubMed

    Marquez, Gonzalo J; Mon, Javier; Acero, Rafael M; Sanchez, Jose A; Fernandez-del-Olmo, Miguel

    2009-08-01

    Players (eg, basketball, soccer, and football) often use a static bicycle during a game to maintain warming. However, the effectiveness of this procedure has not been addressed in the literature. Thus, it remains unknown whether low-intensity cycling movement can affect explosive movement performance. In this study, 10 male subjects performed countermovement jumps before and after a 15-minutes cycling bout at 35% of their maximal power output. Three sessions were tested for 3 different cadences of cycling: freely chosen cadence, 20% lower than freely chosen cadence (FCC-20%), and 20% higher than freely chosen cadence (FCC+20%). Jump height, kinematics, and electromyogram were recorded simultaneously during the countermovement jumps. The results showed a significant decreasing in the height of countermovement jump after cycling at freely chosen cadence and FCC-20% (p = 0.03 and p = 0.04, respectively), but not for FCC+20% cadences. The electromyographic parameters suggest that changes in the countermovement jump after cycling can be attributed to alteration of the pattern of activation and may be modulated by the preceding cycling cadence. Our study indicates that to avoid a possible negative effect of the cycling in the subsequent explosive movements, a cadence 20% higher than the preferred cadence must be used. PMID:19620918

  9. White adipose tissue urea cycle activity is not affected by one-month treatment with a hyperlipidic diet in female rats.

    PubMed

    Arriarán, Sofía; Agnelli, Silvia; Remesar, Xavier; Alemany, Marià; Fernández-López, José Antonio

    2016-03-01

    Under high-energy diets, amino acid N is difficult to dispose of, as a consequence of the availability of alternative substrates. We found, recently, that WAT contains a complete functional urea cycle, we analyzed the possible overall changes in the WAT urea cycle (and other-related amino acid metabolism gene expressions) in rats subjected to a cafeteria diet. Adult female Wistar rats were fed control or simplified cafeteria diets. Samples of WAT sites: mesenteric, periovaric, retroperitoneal and subcutaneous, were used for the estimation of all urea cycle enzyme activities and gene expressions. Other key amino acid metabolism gene expressions, and lactate dehydrogenase were also measured. Subcutaneous WAT showed a differentiated amino acid metabolism profile, since its cumulative (whole site) activity for most enzymes was higher than the activities of the other sites studied. After one month of eating an energy-rich cafeteria diet, and in spite of doubling the size of WAT, the transforming capacity of most amino acid metabolism enzymes remained practically unchanged in the tissue. This was not only due to limited changes in the overall enzyme activity, but also a consequence of a relative decrease in the expression of the corresponding genes. Overall, the results of this study support the consideration of WAT as an organ, disperse but under uniform control. The metabolic peculiarities between its different sites, and their ability to adapt to different energy availability conditions only add to the variable nature of adipose tissue. We have presented additional evidence of the significant role of WAT in amino acid metabolism. PMID:26901686

  10. The effect of physical activity across the menstrual cycle on reproductive function

    PubMed Central

    Ahrens, Katherine A.; Vladutiu, Catherine J.; Mumford, Sunni L.; Schliep, Karen C.; Perkins, Neil J.; Wactawski-Wende, Jean; Schisterman, Enrique F.

    2013-01-01

    Purpose To evaluate the association between physical activity (PA) across the menstrual cycle and reproductive function. Methods The BioCycle Study (2005–2007) followed 259, healthy premenopausal women not using hormonal contraceptives for up to two menstrual cycles (N=509 cycles). Serum leptin, estradiol, progesterone, luteinizing hormone, follicle-stimulating hormone, and testosterone were measured five to eight times per cycle. Linear mixed models were used to estimate the effect of past-week PA (measured four times during each cycle) on hormone levels. Past-week PA was categorized into tertiles based on metabolic equivalent [MET]-h/week (cut-points were 15.3 and 35.7). Risk ratios for sporadic anovulation were estimated using generalized linear models. Analyses adjusted for habitual PA (assessed at baseline), body mass index, race, age, and perceived stress. Linear mixed models used inverse probability weights to control for concurrent reproductive hormones and caloric intake. Results High past-week PA was inversely associated with leptin (−6.6%, 95% confidence interval [−10.6, −2.5]) and luteal phase progesterone (−22.1% [−36.2, −4.7]) as compared with low past-week PA. High past-week PA was not significantly associated with sporadic anovulation (adjusted risk ratio=1.5 [0.6, 3.4]). Conclusions High levels of PA were modestly associated with changes in select hormones, but not sporadic anovulation among moderate to highly active premenopausal women. PMID:24345590

  11. Activity of earthworm in Latosol under simulated acid rain stress.

    PubMed

    Zhang, Jia-En; Yu, Jiayu; Ouyang, Ying

    2015-01-01

    Acid rain is still an issue of environmental concerns. This study investigated the impacts of simulated acid rain (SAR) upon earthworm activity from the Latosol (acidic red soil). Laboratory experiment was performed by leaching the soil columns grown with earthworms (Eisenia fetida) at the SAR pH levels ranged from 2.0 to 6.5 over a 34-day period. Results showed that earthworms tended to escape from the soil and eventually died for the SAR at pH = 2.0 as a result of acid toxicity. The catalase activity in the earthworms decreased with the SAR pH levels, whereas the superoxide dismutases activity in the earthworms showed a fluctuate pattern: decreasing from pH 6.5 to 5.0 and increasing from pH 5.0 to 4.0. Results implied that the growth of earthworms was retarded at the SAR pH ≤ 3.0. PMID:25351717

  12. Impairment of NFkappaB activity by unsaturated fatty acids.

    PubMed

    Schumann, Julia; Fuhrmann, Herbert

    2010-08-01

    Using a luciferase reporter gene assay, we identified polyunsaturated fatty acids (PUFA) to impair NF kappaB signaling. Furthermore, we could demonstrate the PUFA ability to derogate NF kappaB activity to be independent from the family the fatty acid belongs to. Instead, we found a relation between the number of bis-allyl-methylene positions of the PUFA added and the NF kappaB activity of stimulated, long-term supplemented cells. The data presented provide new insights into the biological mechanisms PUFA exert their anti-inflammatory effects. Since suppression of NF kappaB activity could be of benefit in a number of inflammatory diseases as well as cancer, our findings are of clinical implication. According to our data dietary supplementation with PUFA-containing oils is likely to provide an at least palliative therapy for disorders linked to inappropriate NF kappaB signaling. PMID:20580946

  13. Interconnection between tricarboxylic acid cycle and energy generation in microbial fuel cell performed by desulfuromonas acetoxidans IMV B-7384

    NASA Astrophysics Data System (ADS)

    Vasyliv, Oresta M.; Maslovska, Olga D.; Ferensovych, Yaroslav P.; Bilyy, Oleksandr I.; Hnatush, Svitlana O.

    2015-05-01

    Desulfuromonas acetoxidans IMV B-7384 is exoelectrogenic obligate anaerobic sulfur-reducing bacterium. Its one of the first described electrogenic bacterium that performs complete oxidation of an organic substrate with electron transfer directly to the electrode in microbial fuel cell (MFC). This bacterium is very promising for MFC development because of inexpensive cultivation medium, high survival rate and selective resistance to various heavy metal ions. The size of D. acetoxidans IMV B-7384 cells is comparatively small (0.4-0.8×1-2 μm) that is highly beneficial while application of porous anode material because of complete bacterial cover of an electrode area with further significant improvement of the effectiveness of its usage. The interconnection between functioning of reductive stage of tricarboxylic acid (TCA) cycle under anaerobic conditions, and MFC performance was established. Malic, pyruvic, fumaric and succinic acids in concentration 42 mM were separately added into the anode chamber of MFC as the redox agents. Application of malic acid caused the most stabile and the highest power generation in comparison with other investigated organic acids. Its maximum equaled 10.07±0.17mW/m2 on 136 hour of bacterial cultivation. Under addition of pyruvic, succinic and fumaric acids into the anode chamber of MFC the maximal power values equaled 5.80±0.25 mW/m2; 3.2±0.11 mW/m2, and 2.14±0.19 mW/m2 respectively on 40, 56 and 32 hour of bacterial cultivation. Hence the malic acid conversion via reductive stage of TCA cycle is shown to be the most efficient process in terms of electricity generation by D. acetoxidans IMV B-7384 in MFC under anaerobic conditions.

  14. Tandem dissolution of UO 3 in amide-based acidic ionic liquid and in situ electrodeposition of UO 2 with regeneration of the ionic liquid: a closed cycle

    DOE PAGESBeta

    Wanigasekara, Eranda; Freiderich, John W.; Sun, Xiao-Guang; Meisner, Roberta A.; Luo, Huimin; Delmau, Lætitia H.; Dai, Sheng; Moyer, Bruce A.

    2016-05-19

    A closed cycle is demonstrated for the tandem dissolution and electroreduction of UO3 to UO2 with regeneration of the acidic ionic liquid. The dissolution is achieved by use of the acidic ionic liquid N,N-dimethylacetimidium bis(trifluoromethanesulfonimide) in 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonimide) serving as the diluent. Bulk electrolysis performed at 1.0 V vs. Ag reference yields a dark brown-black uranium deposit (UO2) on the cathode. Anodic oxidation of water in the presence of dimethylacetamide regenerates the acidic ionic liquid. We have demonstrated the individual steps in the cycle together with a sequential dissolution, electroreduction, and regeneration cycle.

  15. Activities of enzymes related to NADPH generation and amino acid metabolism in the ruminal mucosa of sheep.

    PubMed

    Weekes, T E

    1984-09-01

    Experiments were performed with growing lambs to investigate dietary influences on enzymes involved in the metabolism of propionate, amino acids and NADPH in the ruminal mucosa. Glutamate dehydrogenase (GDH) was the only enzyme assayed that was consistently affected by diet. First, lambs were fed either rolled barley, resulting in epithelial hyperkeratosis, or whole unprocessed barley, resulting in keratin aplasia and reduced GDH activity. Secondly, lambs were fed isonitrogenous diets containing either fish meal or urea. GDH activity was greater when fish meal was fed. NADP-isocitrate dehydrogenase was more active than other NADPH-generating enzymes in ruminal mucosa and several other lamb tissues, but the operation of the isocitrate cycle in rumen epithelium may be restricted by a low activity of aconitate hydratase. These results suggest that enzyme activities in ruminal mucosa are generally unresponsive to diet and that adaptations in GDH are related to changes in rumen morphology, rather than to isocitrate cycle activity or ammonia assimilation. PMID:6470829

  16. Effects of physical activity on pupil cycle time (PCT) in healthy Indian male.

    PubMed

    Ghosh, Suparna; Avadhany, Sandhya T

    2014-01-01

    Globally, physical inactivity is an important risk factor for the development of non-communicable disease consisting of coronary artery disease, as well as, other diseases including hypertension, diabetes, obesity, osteoporosis, and certain types of cancers. Parasympathetic nervous system (PNS) activity in the eye is determined by the pupil cycle time (PCT) can be comparable with cardiac parasympathetic response and thereby determine the morbidity and mortality among individuals. The PCT is measured by throwing white light on the edge of the pupil. Pupil cycling is a feature of pupillary reflex arc. The aim of this study is to establish the effect of physical activity on the PCT. The counting of PCT was done for 90 cycles and average one count is considered a single PCT. The physical activity level (PAL) was determined by administering a physical activity level questionnaire developed in the Division of Nutrition, St. John's Medical College, Bangalore. The PAL is classified as < 1.4 as sedentary, 1.55 to 1.75 moderately active, and > 1.75 heavily active. Thirty healthy male volunteers in the age group of 18-50 years and with BMI of 18.5 kg/m2-30 kg/m2 were studied. We obtained PCT of 962.00 ± 105.72 msec in sedentary, 896.77 ± 85.88 msec in moderately active and 889.45 ± 68.71 msec in heavily active individuals. Linear regression analysis shows there is statistically significant difference between the three different groups of physical activity level with a b value of 0 and R2 being 0.19. Increase in physical activity led to decrease in the PCT i.e. increase in the parasympathetic tone in the eye. Pupil cycle time (PCT) is a simple noninvasive tool to assess and differentiate the PNS function in different activity level of individual. PMID:25906609

  17. Impact of New Transport Infrastructure on Walking, Cycling, and Physical Activity

    PubMed Central

    Panter, Jenna; Heinen, Eva; Mackett, Roger; Ogilvie, David

    2016-01-01

    Introduction Walking and cycling bring health and environmental benefits, but there is little robust evidence that changing the built environment promotes these activities in populations. This study evaluated the effects of new transport infrastructure on active commuting and physical activity. Study design Quasi-experimental analysis nested within a cohort study. Setting/participants Four hundred and sixty-nine adult commuters, recruited through a predominantly workplace-based strategy, who lived within 30 kilometers of Cambridge, United Kingdom and worked in areas of the city to be served by the new transport infrastructure. Intervention The Cambridgeshire Guided Busway opened in 2011 and comprised a new bus network and a traffic-free walking and cycling route. Exposure to the intervention was defined using the shortest distance from each participant’s home to the busway. Main outcome measures Change in weekly time spent in active commuting between 2009 and 2012, measured by validated 7-day recall instrument. Secondary outcomes were changes in total weekly time spent walking and cycling and in recreational and overall physical activity, measured using the validated Recent Physical Activity Questionnaire. Data were analyzed in 2014. Results In multivariable multinomial regression models—adjusted for potential sociodemographic, geographic, health, and workplace confounders; baseline active commuting; and home or work relocation—exposure to the busway was associated with a significantly greater likelihood of an increase in weekly cycle commuting time (relative risk ratio=1.34, 95% CI=1.03, 1.76) and with an increase in overall time spent in active commuting among the least active commuters at baseline (relative risk ratio=1.76, 95% CI=1.16, 2.67). The study found no evidence of changes in recreational or overall physical activity. Conclusions Providing new sustainable transport infrastructure was effective in promoting an increase in active commuting. These

  18. Cytotoxic activity of an octadecenoic acid extract from Euphorbia kansui (Euphorbiaceae) on human tumour cell strains.

    PubMed

    Yu, Farong; Lu, Shunqing; Yu, Fahong; Shi, Junnian; McGuire, Peter M; Wang, Rui

    2008-02-01

    We have investigated the cytotoxic and antitumour activity of an octadecenoic acid extract, mainly containing oleic and linoleic acids, from Euphorbia kansui on human gastric (SGC-7901), hepatocellular carcinoma (BEL-7402), and leukaemia (HL-60) tumour cell strains. Significant and dose-dependent antiproliferation effects were observed on tumour cells from the dose of 3.2 microg mL(-1), which were comparable with or better than those of the common antitumour agent 5-fluorouracil. Results from the clone formation assay and flow cytometry indicated that the mixture of octadecenoic acids resulted in a dose-dependent reduction in the number of tumour cells and significantly inhibited cell proliferation, with induced apoptosis and G(0)/G(1) phase cell cycle arrest. Also, the octadecenoic acids could not only cause cell apoptosis/necrosis but also functionally and structurally damage the tumour cell membrane and cell ultra-structures. These observations encourage further clinical evaluation of the inhibitory effects of octadecenoic acids on various forms of cancer. PMID:18237474

  19. Glycerol Ester Hydrolase Activity of Lactic Acid Bacteria

    PubMed Central

    Oterholm, Anders; Ordal, Z. John; Witter, Lloyd D.

    1968-01-01

    Seventeen strains of lactic acid bacteria were assayed for their glycerol ester hydrolase activity by using an improved agar-well technique, and eight strains by determining the activity in cell-free extracts using a pH-stat procedure. All cultures tested showed activity and hydrolyzed tributyrin more actively than they did tricaproin. The cell extract studies demonstrated that the cells contained intracellular esterases and lipases. The culture supernatant fluid was without activity. The lipase and the esterase differed in their relative activity to each other in the different extracts and in the ease by which they could be freed from the cellular debris. It is suggested that the lipase of these organisms is an endoenzyme and the esterase an ectoenzyme. PMID:5649866

  20. A potential plant-derived antifungal acetylenic acid mediates its activity by interfering with fatty acid homeostasis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    6-Nonadecynoic acid (6-NDA), a plant-derived acetylenic acid, exhibits strong inhibitory activity against the human fungal pathogens Candida albicans, Aspergillus fumigatus, and Trichophyton mentagrophytes. In the present study, transcriptional profiling coupled with mutant and biochemical analyses...

  1. [The development of the activity-rest cycle in the rabbit fetus].

    PubMed

    Belich, A I; Nazarova, L A

    1988-01-01

    On 25-30-day rabbit foetuses, in chronic experiments using constant synchronous recording of the motor activity and heart rate, studies have been made of temporal organization of the activity-rest cycle. Already in 25-day foetus, three functional conditions may be distinguished: active, intermediate and resting ones, the duration of the latter increasing to the end of gestation up to 8-10 min, whereas the duration of the intermediate phase decreases, reaching its minimum to the 30th day if not being completely reduced. Cyclic pattern of active and resting phases is observed in 28-day foetuses; to the 29th-30th day, these phases from a unique activity-rest cycle, its duration reaching 20-30 min to the end of intrauterine period. It is suggested that the resting phase in foetal rabbits serves as a basis for the development of polyphasic sleep in adult animals. PMID:3414220

  2. Menstrual cycle phase does not affect sympathetic neural activity in women with postural orthostatic tachycardia syndrome

    PubMed Central

    Stickford, Abigail SL; VanGundy, Tiffany B; Levine, Benjamin D; Fu, Qi

    2015-01-01

    Abstract Patients with the postural orthostatic tachycardia syndrome (POTS) are primarily premenopausal women, which may be attributed to female sex hormones. We tested the hypothesis that hormonal fluctuations of the menstrual cycle alter sympathetic neural activity and orthostatic tolerance in POTS women. Ten POTS women were studied during the early follicular (EF) and mid-luteal (ML) phases of the menstrual cycle. Haemodynamics and muscle sympathetic nerve activity (MSNA) were measured when supine, during 60 deg upright tilt for 45 min or until presyncope, and during the cold pressor test (CPT) and Valsalva manoeuvres. Blood pressure and total peripheral resistance were higher during rest and tilting in the ML than EF phase; however, heart rate, stroke volume and cardiac output were similar between phases. There were no mean ± SD differences in MSNA burst frequency (8 ± 8 EF phase vs. 10 ± 10 bursts min–1 ML phase at rest; 34 ± 15 EF phase vs. 36 ± 16 bursts min–1 ML phase at 5 min tilt), burst incidence or total activity, nor any differences in the cardiovagal and sympathetic baroreflex sensitivities between phases under any condition. The incidence of presyncope was also the same between phases. There were no differences in haemodynamic or sympathetic responses to CPT or Valsalva. These results suggest that the menstrual cycle does not affect sympathetic neural activity but modulates blood pressure and vasoconstriction in POTS women during tilting. Thus, factors other than sympathetic neural activity are probably responsible for the symptoms of orthostatic intolerance across the menstrual cycle in women with POTS. Key points Women with the postural orthostatic tachycardia syndrome (POTS) report fluctuations in orthostatic tolerance throughout the menstrual cycle. The mechanism(s) underlying blood pressure control across the menstrual cycle in women with POTS are unknown. The findings of the present study indicate that the menstrual

  3. Jasmonic acid and salicylic acid activate a common defense system in rice

    PubMed Central

    Tamaoki, Daisuke; Seo, Shigemi; Yamada, Shoko; Kano, Akihito; Miyamoto, Ayumi; Shishido, Hodaka; Miyoshi, Seika; Taniguchi, Shiduku; Akimitsu, Kazuya; Gomi, Kenji

    2013-01-01

    Jasmonic acid (JA) and salicylic acid (SA) play important roles in plant defense systems. JA and SA signaling pathways interact antagonistically in dicotyledonous plants, but, the status of crosstalk between JA and SA signaling is unknown in monocots. Our rice microarray analysis showed that more than half of the genes upregulated by the SA analog BTH are also upregulated by JA, suggesting that a major portion of the SA-upregulated genes are regulated by JA-dependent signaling in rice. A common defense system that is activated by both JA and SA is thus proposed which plays an important role in pathogen defense responses in rice. PMID:23518581

  4. Solar Magnetic Activity Cycles, Coronal Potential Field Models and Eruption Rates

    NASA Astrophysics Data System (ADS)

    Petrie, G. J. D.

    2013-05-01

    We study the evolution of the observed photospheric magnetic field and the modeled global coronal magnetic field during the past 3 1/2 solar activity cycles observed since the mid-1970s. We use synoptic magnetograms and extrapolated potential-field models based on longitudinal full-disk photospheric magnetograms from the National Solar Observatory's three magnetographs at Kitt Peak, the Synoptic Optical Long-term Investigations of the Sun vector spectro-magnetograph, the spectro-magnetograph and the 512-channel magnetograph instruments, and from Stanford University's Wilcox Solar Observatory. The associated multipole field components are used to study the dominant length scales and symmetries of the coronal field. Polar field changes are found to be well correlated with active fields over most of the period studied, except between 2003 and 2006 when the active fields did not produce significant polar field changes. Of the axisymmetric multipoles, only the dipole and octupole follow the poles whereas the higher orders follow the activity cycle. All non-axisymmetric multipole strengths are well correlated with the activity cycle. The tilt of the solar dipole is therefore almost entirely due to active-region fields. The axial dipole and octupole are the largest contributors to the global field except while the polar fields are reversing. This influence of the polar fields extends to modulating eruption rates. According to the Computer Aided CME Tracking, Solar Eruptive Event Detection System, and Nobeyama radioheliograph prominence eruption catalogs, the rate of solar eruptions is found to be systematically higher for active years between 2003 and 2012 than for those between 1997 and 2002. This behavior appears to be connected with the weakness of the late-cycle 23 polar fields as suggested by Luhmann. We see evidence that the process of cycle 24 field reversal is well advanced at both poles.

  5. Reconciling Ligase Ribozyme Activity with Fatty Acid Vesicle Stability

    PubMed Central

    Anella, Fabrizio; Danelon, Christophe

    2014-01-01

    The “RNA world” and the “Lipid world” theories for the origin of cellular life are often considered incompatible due to the differences in the environmental conditions at which they can emerge. One obstacle resides in the conflicting requirements for divalent metal ions, in particular Mg2+, with respect to optimal ribozyme activity, fatty acid vesicle stability and protection against RNA strand cleavage. Here, we report on the activity of a short L1 ligase ribozyme in the presence of myristoleic acid (MA) vesicles at varying concentrations of Mg2+. The ligation rate is significantly lower at low-Mg2+ conditions. However, the loss of activity is overcompensated by the increased stability of RNA leading to a larger amount of intact ligated substrate after long reaction periods. Combining RNA ligation assays with fatty acid vesicles we found that MA vesicles made of 5 mM amphiphile are stable and do not impair ligase ribozyme activity in the presence of approximately 2 mM Mg2+. These results provide a scenario in which catalytic RNA and primordial membrane assembly can coexist in the same environment. PMID:25513761

  6. Estradiol levels modulate brain activity and negative responses to psychosocial stress across the menstrual cycle.

    PubMed

    Albert, Kimberly; Pruessner, Jens; Newhouse, Paul

    2015-09-01

    Although ovarian hormones are thought to have a potential role in the well-known sex difference in mood and anxiety disorders, the mechanisms through which ovarian hormone changes contribute to stress regulation are not well understood. One mechanism by which ovarian hormones might impact mood regulation is by mediating the effect of psychosocial stress, which often precedes depressive episodes and may have mood consequences that are particularly relevant in women. In the current study, brain activity and mood response to psychosocial stress was examined in healthy, normally cycling women at either the high or low estradiol phase of the menstrual cycle. Twenty eight women were exposed to the Montreal Imaging Stress Task (MIST), with brain activity determined through functional magnetic resonance imaging, and behavioral response assessed with subjective mood and stress measures. Brain activity responses to psychosocial stress differed between women in the low versus high estrogen phase of the menstrual cycle: women with high estradiol levels showed significantly less deactivation in limbic regions during psychosocial stress compared to women with low estradiol levels. Additionally, women with higher estradiol levels also had less subjective distress in response to the MIST than women with lower estradiol levels. The results of this study suggest that, in normally cycling premenopausal women, high estradiol levels attenuate the brain activation changes and negative mood response to psychosocial stress. Normal ovarian hormone fluctuations may alter the impact of psychosocially stressful events by presenting periods of increased vulnerability to psychosocial stress during low estradiol phases of the menstrual cycle. This menstrual cycle-related fluctuation in stress vulnerability may be relevant to the greater risk for affective disorder or post-traumatic stress disorder in women. PMID:26123902

  7. Corticospinal contributions to lower limb muscle activity during cycling in humans.

    PubMed

    Sidhu, Simranjit K; Hoffman, Ben W; Cresswell, Andrew G; Carroll, Timothy J

    2012-01-01

    The purpose of the current study was to investigate corticospinal contributions to locomotor drive to leg muscles involved in cycling. We studied 1) if activation of inhibitory interneurons in the cortex via subthreshold transcranial magnetic stimulation (TMS) caused a suppression of EMG and 2) how the responses to stimulation of the motor cortex via TMS and cervicomedullary stimulation (CMS) were modulated across the locomotor cycle. TMS at intensities subthreshold for activation of the corticospinal tract elicited suppression of EMG for approximately one-half of the subjects and muscles during cycling, and in matched static contractions in vastus lateralis. There was also significant modulation in the size of motor-evoked potentials (MEPs) elicited by TMS across the locomotor cycle (P < 0.001) that was strongly related to variation in background EMG in all muscles (r > 0.86; P < 0.05). When MEP and CMEP amplitudes were normalized to background EMG, they were relatively larger prior to the main EMG burst and smaller when background EMG was maximum. Since the pattern of modulation of normalized MEP and CMEP responses was similar, the data suggest that phase-dependent modulation of corticospinal responses during cycling in humans is driven mainly by spinal mechanisms. However, there were subtle differences in the degree to which normalized MEP and CMEP responses were facilitated prior to EMG burst, which might reflect small increases in cortical excitability prior to maximum muscle activation. The data demonstrate that the motor cortex contributes actively to locomotor drive, and that spinal factors dominate phase-dependent modulation of corticospinal excitability during cycling in humans. PMID:22013236

  8. Short-chain fatty acid-initiated cell cycle arrest and apoptosis of colonic epithelial cells is linked to mitochondrial function.

    PubMed

    Heerdt, B G; Houston, M A; Augenlicht, L H

    1997-05-01

    Butyrate, a short-chain fatty acid produced during microbial fermentation of fiber, induces growth arrest, differentiation, and apoptosis of colonic epithelial cells in vitro, and our prior work has shown that this induction is tightly linked to mitochondrial activity. Here we demonstrate that 12 h following induction, SW620 human colonic carcinoma cells accumulate simultaneously in G0-G1 and G2-M of the cell cycle. Four h later, during this G0-G1 to G2-M arrest, cells begin to undergo apoptosis. Using a series of unrelated agents that modulate mitochondrial functions, we demonstrate that mitochondrial electron transport and membrane potential are critical in initiation of this butyrate-mediated growth arrest and apoptosis. Colonic tumorigenesis is characterized by abnormalities in proliferation, apoptosis, and mitochondrial activities. Thus, butyrate may reduce risk for colon cancer by inducing a pathway that enhances mitochondrial function, ultimately resulting in initiation of growth arrest and apoptosis of colonic epithelial cells. PMID:9149903

  9. Metabolomics approach to assessing plasma 13- and 9-hydroxy-octadecadienoic acid and linoleic acid metabolite responses to 75-km cycling.

    PubMed

    Nieman, David C; Shanely, R Andrew; Luo, Beibei; Meaney, Mary Pat; Dew, Dustin A; Pappan, Kirk L

    2014-07-01

    Bioactive oxidized linoleic acid metabolites (OXLAMs) include 13- and 9-hydroxy-octadecadienoic acid (13-HODE + 9-HODE) and have been linked to oxidative stress, inflammation, and numerous pathological and physiological states. The purpose of this study was to measure changes in plasma 13-HODE + 9-HODE following a 75-km cycling bout and identify potential linkages to linoleate metabolism and established biomarkers of oxidative stress (F2-isoprostanes) and inflammation (cytokines) using a metabolomics approach. Trained male cyclists (N = 19, age 38.0 ± 1.6 yr, wattsmax 304 ± 10.5) engaged in a 75-km cycling time trial on their own bicycles using electromagnetically braked cycling ergometers (2.71 ± 0.07 h). Blood samples were collected preexercise, immediately post-, 1.5 h post-, and 21 h postexercise, and analyzed for plasma cytokines (IL-6, IL-8, IL-10, tumor necrosis factor-α, monocyte chemoattractant protein-1, granulocyte colony-stimulating factor), F2-isoprostanes, and shifts in metabolites using global metabolomics procedures with gas chromatography mass spectrometry (GC-MS) and liquid chromatography mass spectrometry (LC-MS). 13-HODE + 9-HODE increased 3.1-fold and 1.7-fold immediately post- and 1.5 h postexercise (both P < 0.001) and returned to preexercise levels by 21-h postexercise. Post-75-km cycling plasma levels of 13-HODE + 9-HODE were not significantly correlated with increases in plasma cytokines but were positively correlated with postexercise F2-isoprostanes (r = 0.75, P < 0.001), linoleate (r = 0.54, P = 0.016), arachidate (r = 0.77, P < 0.001), 12,13-dihydroxy-9Z-octadecenoate (12,13-DiHOME) (r = 0.60, P = 0.006), dihomo-linolenate (r = 0.57, P = 0.011), and adrenate (r = 0.56, P = 0.013). These findings indicate that prolonged and intensive exercise caused a transient, 3.1-fold increase in the stable linoleic acid oxidation product 13-HODE + 9-HODE and was related to increases in F2-isoprostanes, linoleate, and fatty acids in the linoleate

  10. Fatty acid transport and activation and the expression patterns of genes involved in fatty acid trafficking.

    PubMed

    Sandoval, Angel; Fraisl, Peter; Arias-Barrau, Elsa; Dirusso, Concetta C; Singer, Diane; Sealls, Whitney; Black, Paul N

    2008-09-15

    These studies defined the expression patterns of genes involved in fatty acid transport, activation and trafficking using quantitative PCR (qPCR) and established the kinetic constants of fatty acid transport in an effort to define whether vectorial acylation represents a common mechanism in different cell types (3T3-L1 fibroblasts and adipocytes, Caco-2 and HepG2 cells and three endothelial cell lines (b-END3, HAEC, and HMEC)). As expected, fatty acid transport protein (FATP)1 and long-chain acyl CoA synthetase (Acsl)1 were the predominant isoforms expressed in adipocytes consistent with their roles in the transport and activation of exogenous fatty acids destined for storage in the form of triglycerides. In cells involved in fatty acid processing including Caco-2 (intestinal-like) and HepG2 (liver-like), FATP2 was the predominant isoform. The patterns of Acsl expression were distinct between these two cell types with Acsl3 and Acsl5 being predominant in Caco-2 cells and Acsl4 in HepG2 cells. In the endothelial lines, FATP1 and FATP4 were the most highly expressed isoforms; the expression patterns for the different Acsl isoforms were highly variable between the different endothelial cell lines. The transport of the fluorescent long-chain fatty acid C(1)-BODIPY-C(12) in 3T3-L1 fibroblasts and 3T3-L1 adipocytes followed typical Michaelis-Menten kinetics; the apparent efficiency (k(cat)/K(T)) of this process increases over 2-fold (2.1 x 10(6)-4.5 x 10(6)s(-1)M(-1)) upon adipocyte differentiation. The V(max) values for fatty acid transport in Caco-2 and HepG2 cells were essentially the same, yet the efficiency was 55% higher in Caco-2 cells (2.3 x 10(6)s(-1)M(-1) versus 1.5 x 10(6)s(-1)M(-1)). The kinetic parameters for fatty acid transport in three endothelial cell types demonstrated they were the least efficient cell types for this process giving V(max) values that were nearly 4-fold lower than those defined form 3T3-L1 adipocytes, Caco-2 cells and HepG2 cells. The

  11. Fatty Acid-Elongating Activity in Rapidly Expanding Leek Epidermis.

    PubMed Central

    Evenson, K. J.; Post-Beittenmiller, D.

    1995-01-01

    A microsomal fatty acid elongase activity measured in epidermis of rapidly expanding leek (Allium porrum L.) was 10-fold higher in specific activity than preparations from store-bought leek. These preparations elongated acyl chains effectively using endogenous or supplied primers. Elongation of C20:0 was specifically inhibited by 2 [mu]M cerulenin, and labeling experiments with [3H]cerulenin labeled two polypeptides (65 and 88 kD). ATP was required for maximal elongase activity in expanding leaves but was lost in nonexpanding tissues. Both [14C]stearoyl-coenzyme A (CoA) and [14C]stearate were maximally elongated in the presence of ATP. Addition of fully reduced CoA, however, inhibited [14C]stearate elongation, suggesting that stearoyl-CoA synthesis was not a prerequisite for elongation. Furthermore, microsomes preincubated with [14C]stearoyl-CoA plus ATP resulted in loss of radiolabel from the acyl-CoA pool without a corresponding loss in elongating activity. The lack of correlation between elongating activity and the label retained in the putative acyl-CoA substrate pool suggests that acyl-CoAs may not be the immediate precursors for elongation and that ATP plays a critical, yet undefined, role in the elongation process. We propose that an ATP-dependent elongating activity may generate the long-chain fatty acids required for wax biosynthesis. PMID:12228624

  12. Adsorption of naphthenic acids on high surface area activated carbons.

    PubMed

    Iranmanesh, Sobhan; Harding, Thomas; Abedi, Jalal; Seyedeyn-Azad, Fakhry; Layzell, David B

    2014-01-01

    In oil sands mining extraction, water is an essential component; however, the processed water becomes contaminated through contact with the bitumen at high temperature, and a portion of it cannot be recycled and ends up in tailing ponds. The removal of naphthenic acids (NAs) from tailing pond water is crucial, as they are corrosive and toxic and provide a substrate for microbial activity that can give rise to methane, which is a potent greenhouse gas. In this study, the conversion of sawdust into an activated carbon (AC) that could be used to remove NAs from tailings water was studied. After producing biochar from sawdust by a slow-pyrolysis process, the biochar was physically activated using carbon dioxide (CO2) over a range of temperatures or prior to producing biochar, and the sawdust was chemically activated using phosphoric acid (H3PO4). The physically activated carbon had a lower surface area per gram than the chemically activated carbon. The physically produced ACs had a lower surface area per gram than chemically produced AC. In the adsorption tests with NAs, up to 35 mg of NAs was removed from the water per gram of AC. The chemically treated ACs showed better uptake, which can be attributed to its higher surface area and increased mesopore size when compared with the physically treated AC. Both the chemically produced and physically produced AC provided better uptake than the commercially AC. PMID:24766592

  13. Trichloroacetic acid cycling in Sitka spruce saplings and effects on sapling health following long term exposure.

    PubMed

    Dickey, C A; Heal, K V; Stidson, R T; Koren, R; Schröder, P; Cape, J N; Heal, M R

    2004-07-01

    Trichloroacetic acid (TCA, CCl(3)COOH) has been associated with forest damage but the source of TCA to trees is poorly characterised. To investigate the routes and effects of TCA uptake in conifers, 120 Sitka spruce (Picea sitchensis (Bong.) Carr) saplings were exposed to control, 10 or 100 microg l(-1) solutions of TCA applied twice weekly to foliage only or soil only over two consecutive 5-month growing seasons. At the end of each growing season similar elevated TCA concentrations (approximate range 200-300 ng g(-1) dwt) were detected in both foliage and soil-dosed saplings exposed to 100 microg l(-1) TCA solutions showing that TCA uptake can occur from both exposure routes. Higher TCA concentrations in branchwood of foliage-dosed saplings suggest that atmospheric TCA in solution is taken up indirectly into conifer needles via branch and stemwood. TCA concentrations in needles declined slowly by only 25-30% over 6 months of winter without dosing. No effect of TCA exposure on sapling growth was measured during the experiment. However at the end of the first growing season needles of saplings exposed to 10 or 100 microg l(-1) foliage-applied TCA showed significantly more visible damage, higher activities of some detoxifying enzymes, lower protein contents and poorer water control than needles of saplings dosed with the same TCA concentrations to the soil. At the end of each growing season the combined TCA storage in needles, stemwood, branchwood and soil of each sapling was <6% of TCA applied. Even with an estimated half-life of tens of days for within-sapling elimination of TCA during the growing season, this indicates that TCA is eliminated rapidly before uptake or accumulates in another compartment. Although TCA stored in sapling needles accounted for only a small proportion of TCA stored in the sapling/soil system it appears to significantly affect some measures of sapling health. PMID:15158031

  14. Maintenance carbon cycle in crassulacean Acid metabolism plant leaves : source and compartmentation of carbon for nocturnal malate synthesis.

    PubMed

    Kenyon, W H; Severson, R F; Black, C C

    1985-01-01

    The reciprocal relationship between diurnal changes in organic acid and storage carbohydrate was examined in the leaves of three Crassulacean acid metabolism plants. It was found that depletion of leaf hexoses at night was sufficient to account quantitatively for increase in malate in Ananas comosus but not in Sedum telephium or Kalanchoë daigremontiana. Fructose and to a lesser extent glucose underwent the largest changes. Glucose levels in S. telephium leaves oscillated diurnally but were not reciprocally related to malate fluctuations.Analysis of isolated protoplasts and vacuoles from leaves of A. comosus and S. telephium revealed that vacuoles contain a large percentage (>50%) of the protoplast glucose, fructose and malate, citrate, isocitrate, ascorbate and succinate. Sucrose, a major constituent of intact leaves, was not detectable or was at extremely low levels in protoplasts and vacuoles from both plants.In isolated vacuoles from both A. comosus and S. telephium, hexose levels decreased at night at the same time malate increased. Only in A. comosus, however, could hexose metabolism account for a significant amount of the nocturnal increase in malate. We conclude that, in A. comosus, soluble sugars are part of the daily maintenance carbon cycle and that the vacuole plays a dynamic role in the diurnal carbon assimilation cycle of this Crassulacean acid metabolism plant. PMID:16664005

  15. Acid Is Key to the Radical-Trapping Antioxidant Activity of Nitroxides.

    PubMed

    Haidasz, Evan A; Meng, Derek; Amorati, Riccardo; Baschieri, Andrea; Ingold, Keith U; Valgimigli, Luca; Pratt, Derek A

    2016-04-27

    Persistent dialkylnitroxides (e.g., 2,2,6,6-tetramethylpiperidin-1-oxyl, TEMPO) play a central role in the activity of hindered amine light stabilizers (HALS)-additives that inhibit the (photo)oxidative degradation of consumer and industrial products. The accepted mechanism of HALS comprises a catalytic cycle involving the rapid combination of a nitroxide with an alkyl radical to yield an alkoxyamine that subsequently reacts with a peroxyl radical to eventually re-form the nitroxide. Herein, we offer evidence in favor of an alternative reaction mechanism involving the acid-catalyzed reaction of a nitroxide with a peroxyl radical to yield an oxoammonium ion followed by electron transfer from an alkyl radical to the oxoammonium ion to re-form the nitroxide. In preliminary work, we showed that TEMPO reacts with peroxyl radicals at diffusion-controlled rates in the presence of acids. Now, we show that TEMPO can be regenerated from its oxoammonium ion by reaction with alkyl radicals. We have determined that this reaction, which has been proposed to be a key step in TEMPO-catalyzed synthetic transformations, occurs with k ∼ 1-3 × 10(10) M(-1) s(-1), thereby enabling it to compete with O2 for alkyl radicals. The addition of weak acids facilitates this reaction, whereas the addition of strong acids slows it by enabling back electron transfer. The chemistry is shown to occur in hydrocarbon autoxidations at elevated temperatures without added acid due to the in situ formation of carboxylic acids, accounting for the long-known catalytic radical-trapping antioxidant activity of TEMPO that prompted the development of HALS. PMID:27023326

  16. Immune Activation in the Liver by Nucleic Acids

    PubMed Central

    Sun, Qian; Wang, Qingde; Scott, Melanie J.; Billiar, Timothy R.

    2016-01-01

    Abstract Viral infection in the liver, including hepatitis B virus (HBV) and hepatitis C virus (HCV) infection, is a major health problem worldwide, especially in developing countries. The infection triggers a pro-inflammatory response in patients that is crucial for host defense. Recent studies have identified multiple transmembrane and cytosolic receptors that recognize pathogen-derived nucleic acids, and these receptors are essential for driving immune activation in the liver. In addition to sensing DNA/RNA from pathogens, these intracellular receptors can be activated by nucleic acids of host origin in response to sterile injuries. In this review, we discuss the expanding roles of these receptors in both immune and nonimmune cells in the liver. PMID:27350945

  17. Synthesis and antifungal activity of bile acid-derived oxazoles.

    PubMed

    Fernández, Lucía R; Svetaz, Laura; Butassi, Estefanía; Zacchino, Susana A; Palermo, Jorge A; Sánchez, Marianela

    2016-04-01

    Peracetylated bile acids (1a-g) were used as starting materials for the preparation of fourteen new derivatives bearing an oxazole moiety in their side chain (6a-g, 8a-g). The key step for the synthetic path was a Dakin-West reaction followed by a Robinson-Gabriel cyclodehydration. A simpler model oxazole (12) was also synthesized. The antifungal activity of the new compounds (6a-g) as well as their starting bile acids (1a-g) was tested against Candida albicans. Compounds 6e and 6g showed the highest percentages of inhibition (63.84% and 61.40% at 250 μg/mL respectively). Deacetylation of compounds 6a-g, led to compounds 8a-g which showed lower activities than the acetylated derivatives. PMID:26827629

  18. Geomagnetic activity during 10 - 11 solar cycles that has been observed by old Russian observatories.

    NASA Astrophysics Data System (ADS)

    Seredyn, Tomasz; Wysokinski, Arkadiusz; Kobylinski, Zbigniew; Bialy, Jerzy

    2016-07-01

    A good knowledge of solar-terrestrial relations during past solar activity cycles could give the appropriate tools for a correct space weather forecast. The paper focuses on the analysis of the historical collections of the ground based magnetic observations and their operational indices from the period of two sunspot solar cycles 10 - 11, period 1856 - 1878 (Bartels rotations 324 - 635). We use hourly observations of H and D geomagnetic field components registered at Russian stations: St. Petersburg - Pavlovsk, Barnaul, Ekaterinburg, Nertshinsk, Sitka, and compare them to the data obtained from the Helsinki observatory. We compare directly these records and also calculated from the data of the every above mentioned station IHV indices introduced by Svalgaard (2003), which have been used for further comparisons in epochs of assumed different polarity of the heliospheric magnetic field. We used also local index C9 derived by Zosimovich (1981) from St. Petersburg - Pavlovsk data. Solar activity is represented by sunspot numbers. The correlative and continuous wavelet analyses are applied for estimation of the correctness of records from different magnetic stations. We have specially regard to magnetic storms in the investigated period and the special Carrington event of 1-2 Sep 1859. Generally studied magnetic time series correctly show variability of the geomagnetic activity. Geomagnetic activity presents some delay in relation to solar one as it is seen especially during descending and minimum phase of the even 11-year cycle. This pattern looks similarly in the case of 16 - 17 solar cycles.

  19. US Activities in Making Life Cycle Inventory Data More Available to Users

    EPA Science Inventory

    The demand for LCA studies continues to grow, although, the lack of reliable, transparent Life Cycle Inventory (LCI) data is hampering the wide-spread application of LCA. This paper will present activities related to the development and accessibility of process LCI data in the U...

  20. The Development of a New Practical Activity: Using Microorganisms to Model Gas Cycling

    ERIC Educational Resources Information Center

    Redfern, James; Burdass, Dariel; Verran, Joanna

    2014-01-01

    For many in the school science classroom, the term "microbiology" has become synonymous with "bacteriology". By overlooking other microbes, teachers may miss out on powerful practical tools. This article describes the development of an activity that uses algae and yeast to demonstrate gas cycling, and presents full instructions…

  1. Solar activity cycle and the incidence of foetal chromosome abnormalities detected at prenatal diagnosis

    NASA Astrophysics Data System (ADS)

    Halpern, Gabrielle J.; Stoupel, Eliahu G.; Barkai, Gad; Chaki, Rina; Legum, Cyril; Fejgin, Moshe D.; Shohat, Mordechai

    1995-06-01

    We studied 2001 foetuses during the period of minimal solar activity of solar cycle 21 and 2265 foetuses during the period of maximal solar activity of solar cycle 22, in all women aged 37 years and over who underwent free prenatal diagnosis in four hospitals in the greater Tel Aviv area. There were no significant differences in the total incidence of chromosomal abnormalities or of trisomy between the two periods (2.15% and 1.8% versus 2.34% and 2.12%, respectively). However, the trend of excessive incidence of chromosomal abnormalities in the period of maximal solar activity suggests that a prospective study in a large population would be required to rule out any possible effect of extreme solar activity.

  2. Analytical Study of Geomagnetic and Solar Activities During Solar Cycle 23

    NASA Astrophysics Data System (ADS)

    Hady, A. A.

    The data of amplitude and phase of most common indicators of geomagnetic activities (especially aa index, A? index) have been analyzed and compared with the solar ac- tivities in the time of solar cycle 23(started from 1996 to 2007). The data taken from NOAA space environment center (SES), USA. during the period starting April 1996 Until Dec. 2001, have been analyzed by power spectrum method. The prediction until year 2007 of geomagnetic activities were studied according to the whole of behavior of solar cycle 23. The results show a good indication of the effects of solar activities on changes of earth climate and weather forecasting. The results are important to various techniques including the operation of low earth orbiting satellites. The climatologi- cal approach makes use of the secular trend since year 1900 until now, by about 15 nanotesla. This indication was recorded too, in solar activity changes during the last century.

  3. In Vivo Antioxidant Activity of Deacetylasperulosidic Acid in Noni

    PubMed Central

    Ma, De-Lu; Chen, Mai; Su, Chen X.; West, Brett J.

    2013-01-01

    Deacetylasperulosidic acid (DAA) is a major phytochemical constituent of Morinda citrifolia (noni) fruit. Noni juice has demonstrated antioxidant activity in vivo and in human trials. To evaluate the role of DAA in this antioxidant activity, Wistar rats were fed 0 (control group), 15, 30, or 60 mg/kg body weight per day for 7 days. Afterwards, serum malondialdehyde concentration and superoxide dismutase and glutathione peroxidase activities were measured and compared among groups. A dose-dependent reduction in malondialdehyde was evident as well as a dose-dependent increase in superoxide dismutase activity. DAA ingestion did not influence serum glutathione peroxidase activity. These results suggest that DAA contributes to the antioxidant activity of noni juice by increasing superoxide dismutase activity. The fact that malondialdehyde concentrations declined with increased DAA dose, despite the lack of glutathione peroxidase-inducing activity, suggests that DAA may also increase catalase activity. It has been previously reported that noni juice increases catalase activity in vivo but additional research is required to confirm the effect of DAA on catalase. Even so, the current findings do explain a possible mechanism of action for the antioxidant properties of noni juice that have been observed in human clinical trials. PMID:24371540

  4. In vivo antioxidant activity of deacetylasperulosidic Acid in noni.

    PubMed

    Ma, De-Lu; Chen, Mai; Su, Chen X; West, Brett J

    2013-01-01

    Deacetylasperulosidic acid (DAA) is a major phytochemical constituent of Morinda citrifolia (noni) fruit. Noni juice has demonstrated antioxidant activity in vivo and in human trials. To evaluate the role of DAA in this antioxidant activity, Wistar rats were fed 0 (control group), 15, 30, or 60 mg/kg body weight per day for 7 days. Afterwards, serum malondialdehyde concentration and superoxide dismutase and glutathione peroxidase activities were measured and compared among groups. A dose-dependent reduction in malondialdehyde was evident as well as a dose-dependent increase in superoxide dismutase activity. DAA ingestion did not influence serum glutathione peroxidase activity. These results suggest that DAA contributes to the antioxidant activity of noni juice by increasing superoxide dismutase activity. The fact that malondialdehyde concentrations declined with increased DAA dose, despite the lack of glutathione peroxidase-inducing activity, suggests that DAA may also increase catalase activity. It has been previously reported that noni juice increases catalase activity in vivo but additional research is required to confirm the effect of DAA on catalase. Even so, the current findings do explain a possible mechanism of action for the antioxidant properties of noni juice that have been observed in human clinical trials. PMID:24371540

  5. Bactericidal Activity of the Human Skin Fatty Acid cis-6-Hexadecanoic Acid on Staphylococcus aureus

    PubMed Central

    Cartron, Michaël L.; England, Simon R.; Chiriac, Alina Iulia; Josten, Michaele; Turner, Robert; Rauter, Yvonne; Hurd, Alexander; Sahl, Hans-Georg; Jones, Simon

    2014-01-01

    Human skin fatty acids are a potent aspect of our innate defenses, giving surface protection against potentially invasive organisms. They provide an important parameter in determining the ecology of the skin microflora, and alterations can lead to increased colonization by pathogens such as Staphylococcus aureus. Harnessing skin fatty acids may also give a new avenue of exploration in the generation of control measures against drug-resistant organisms. Despite their importance, the mechanism(s) whereby skin fatty acids kill bacteria has remained largely elusive. Here, we describe an analysis of the bactericidal effects of the major human skin fatty acid cis-6-hexadecenoic acid (C6H) on the human commensal and pathogen S. aureus. Several C6H concentration-dependent mechanisms were found. At high concentrations, C6H swiftly kills cells associated with a general loss of membrane integrity. However, C6H still kills at lower concentrations, acting through disruption of the proton motive force, an increase in membrane fluidity, and its effects on electron transfer. The design of analogues with altered bactericidal effects has begun to determine the structural constraints on activity and paves the way for the rational design of new antistaphylococcal agents. PMID:24709265

  6. Toxocara canis: Larvicidal activity of fatty acid amides.

    PubMed

    Mata-Santos, Taís; D'Oca, Caroline da Ros Montes; Mata-Santos, Hílton Antônio; Fenalti, Juliana; Pinto, Nitza; Coelho, Tatiane; Berne, Maria Elisabeth; da Silva, Pedro Eduardo Almeida; D'Oca, Marcelo Gonçalves Montes; Scaini, Carlos James

    2016-02-01

    Considering the therapeutic potential of fatty acid amides, the present study aimed to evaluate their in vitro activity against Toxocara canis larvae and their cytotoxicity for the first time. Linoleylpyrrolidilamide was the most potent, with a minimal larvicidal concentration (MLC) of 0.05 mg/mL and 27% cytotoxicity against murine peritoneal macrophages C57BL/6 mice, as assessed by the MTT assay. PMID:26783180

  7. Limit cycle analysis of active disturbance rejection control system with two nonlinearities.

    PubMed

    Wu, Dan; Chen, Ken

    2014-07-01

    Introduction of nonlinearities to active disturbance rejection control algorithm might have high control efficiency in some situations, but makes the systems with complex nonlinearity. Limit cycle is a typical phenomenon that can be observed in the nonlinear systems, usually causing failure or danger of the systems. This paper approaches the problem of the existence of limit cycles of a second-order fast tool servo system using active disturbance rejection control algorithm with two fal nonlinearities. A frequency domain approach is presented by using describing function technique and transfer function representation to characterize the nonlinear system. The derivations of the describing functions for fal nonlinearities and treatment of two nonlinearities connected in series are given to facilitate the limit cycles analysis. The effects of the parameters of both the nonlinearity and the controller on the limit cycles are presented, indicating that the limit cycles caused by the nonlinearities can be easily suppressed if the parameters are chosen carefully. Simulations in the time domain are performed to assess the prediction accuracy based on the describing function. PMID:24795034

  8. Microbial activities and phosphorus cycling: An application of oxygen isotope ratios in phosphate

    NASA Astrophysics Data System (ADS)

    Stout, Lisa M.; Joshi, Sunendra R.; Kana, Todd M.; Jaisi, Deb P.

    2014-08-01

    Microorganisms carry out biochemical transformations of nutrients that make up their cells. Therefore, understanding how these nutrients are transformed or cycled in natural environments requires knowledge of microbial activity. Commonly used indicators for microbial activity typically include determining microbial respiration by O2/CO2 measurements, cell counts, and measurement of enzyme activities. However, coupled studies on nutrient cycling and microbial activity are not given enough emphasis. Here we apply phosphate oxygen isotope ratios (δ18OP) as a tool for measurement of microbial activity and compare the rate of isotope exchange with methods of measuring microbial activities that are more commonly applied in environmental studies including respiration, dehydrogenase activity, alkaline phosphatase activity, and cell counts. Our results show that different bacteria may have different strategies for P uptake, storage and release, their respiration and consequently expression of DHA and APase activities, but in general the trend of their enzyme activities are comparable. Phosphate δ18OP values correlated well with these other parameters used to measure microbial activity with the strongest linear relationships between δ18OP and CO2 evolution (r = -0.99). Even though the rate of isotope exchange for each microorganism used in this study is different, the rate per unit CO2 respiration showed one general trend, where δ18OP values move towards equilibrium while CO2 is generated. While this suggests that P cycling among microorganisms used in this study can be generalized, further research is needed to determine whether the microorganism-specific isotope exchange trend may occur in natural environments. In summary, phosphate oxygen isotope measurements may offer an alternative for use as a tracer to measure microbial activity in soils, sediments, and many other natural environments.

  9. N-Amino acid linoleoyl conjugates: anti-inflammatory activities.

    PubMed

    Burstein, Sumner; McQuain, Catherine; Salmonsen, Rebecca; Seicol, Benjamin

    2012-01-15

    Several N-linked amino acid-linoleic acid conjugates were studied for their potential as anti inflammatory agents. The parent molecule, N-linoleoylglycine was tested in an in vivo model, the mouse peritonitis assay where it showed activity in reducing leukocyte migration at doses as low as 0.3mg/kg when administered by mouth in safflower oil. Harvested peritoneal cells produced elevated levels of the inflammation-resolving eicosanoid 15-deoxy-Δ(13,14)-PGJ(2). These results are similar to those obtained in earlier studies with N-arachidonoylglycine. An in vitro model using mouse macrophage RAW cells was used to evaluate a small group of structural analogs for their ability to stimulate 15-deoxy-Δ(13,14)-PGJ(2) production. The d-alanine derivative was the most active while the d-phenylalanine showed almost no response. A high degree of stereo specificity was observed comparing the d and l alanine isomers; the latter being the less active. It was concluded that linoleic acid conjugates could provide suitable templates in a drug discovery program leading to novel agents for promoting the resolution of chronic inflammation. PMID:22217875

  10. Intraluminal acid activates esophageal nodose C fibers after mast cell activation.

    PubMed

    Zhang, Shizhong; Liu, Zhenyu; Heldsinger, Andrea; Owyang, Chung; Yu, Shaoyong

    2014-02-01

    Acid reflux in the esophagus can induce esophageal painful sensations such as heartburn and noncardiac chest pain. The mechanisms underlying acid-induced esophageal nociception are not clearly understood. In our previous studies, we characterized esophageal vagal nociceptive afferents and defined their responses to noxious mechanical and chemical stimulation. In the present study, we aim to determine their responses to intraluminal acid infusion. Extracellular single-unit recordings were performed in nodose ganglion neurons with intact nerve endings in the esophagus using ex vivo esophageal-vagal preparations. Action potentials evoked by esophageal intraluminal acid perfusion were compared in naive and ovalbumin (OVA)-challenged animals, followed by measurements of transepithelial electrical resistance (TEER) and the expression of tight junction proteins (zona occludens-1 and occludin). In naive guinea pigs, intraluminal infusion with either acid (pH = 2-3) or capsaicin did not evoke an action potential discharge in esophageal nodose C fibers. In OVA-sensitized animals, following esophageal mast cell activation by in vivo OVA inhalation, intraluminal acid infusion for about 20 min started to evoke action potential discharges. This effect is further confirmed by selective mast cell activation using in vitro tissue OVA challenge in esophageal-vagal preparations. OVA inhalation leads to decreased TEER and zona occludens-1 expression, suggesting an impaired esophageal epithelial barrier function after mast cell activation. These data for the first time provide direct evidence of intraluminal acid-induced activation of esophageal nociceptive C fibers and suggest that mast cell activation may make esophageal epithelium more permeable to acid, which subsequently may increase esophageal vagal nociceptive C fiber activation. PMID:24264049

  11. Promoted degradation of perfluorooctanic acid by persulfate when adding activated carbon.

    PubMed

    Lee, Yu-Chi; Lo, Shang-Lien; Kuo, Jeff; Huang, Chin-Pao

    2013-10-15

    Treatment of persistent perfluorooctanoic acid (PFOA) in water using persulfate (PS) oxidation typically requires an elevated temperature or UV irradiation, which is energy-consuming. Under relatively low temperatures of 25-45°C, activated carbon (AC) activated PS oxidation of PFOA was evaluated for its potential of practical applications. With presence of AC in PS oxidation, PFOA removal efficiency at 25°C reached 682% with a high defluorination efficiency of 549% after 12h and few intermediates of short-chain perfluorinated carboxylic acids (PFCAs) were found. The removal and defluorination rates with the combined AC/PS system were approximately 12 and 19 times higher than those of the PS-only system, respectively. Activated carbon not only removes PFOA through adsorption, but also activates PS to form sulfate radicals that accelerate the decomposition and mineralization of PFOA. The activation energy for PS oxidation of PFOA was reduced from 668 to 261kJ/mol by the catalytic effect of AC, which implies a lower reaction temperature and a shorter reaction time would suffice. A 2-cycle schematic reaction mechanism was used to describe PS oxidation of PFOA with the generation of various intermediates and end-products. PMID:23978721

  12. SdhE-dependent formation of a functional Acetobacter pasteurianus succinate dehydrogenase in Gluconobacter oxydans--a first step toward a complete tricarboxylic acid cycle.

    PubMed

    Kiefler, Ines; Bringer, Stephanie; Bott, Michael

    2015-11-01

    The obligatory aerobic α-proteobacterium Gluconobacter oxydans 621H possesses an unusual metabolism in which the majority of the carbohydrate substrates are incompletely oxidized in the periplasm and only a small fraction is metabolized in the cytoplasm. The cytoplasmic oxidation capabilities are limited due to an incomplete tricarboxylic acid (TCA) cycle caused by the lack of succinate dehydrogenase (Sdh) and succinyl-CoA synthetase. As a first step to test the consequences of a functional TCA cycle for growth, metabolism, and bioenergetics of G. oxydans, we attempted to establish a heterologous Sdh in this species. Expression of Acetobacter pasteurianus sdhCDAB in G. oxydans did not yield an active succinate dehydrogenase. Co-expression of a putative sdhE gene from A. pasteurianus, which was assumed to encode an assembly factor for covalent attachment of flavin adenine dinucleotide (FAD) to SdhA, stimulated Sdh activity up to 400-fold to 4.0 ± 0.4 U (mg membrane protein)(‒1). The succinate/oxygen reductase activity of membranes was 0.68 ± 0.04 U (mg membrane protein)(‒1), indicating the formation of functional Sdh complex capable of transferring electrons from succinate to ubiquinone. A. pasteurianus SdhE could be functionally replaced by SdhE from the γ-proteobacterium Serratia sp. According to these results, the accessory protein SdhE was necessary and sufficient for heterologous synthesis of an active A. pasteurianus Sdh in G. oxydans. Studies with the Sdh-positive G. oxydans strain provided evidence for a limited functionality of the TCA cycle despite the absence of succinyl-CoA synthetase. PMID:26399411

  13. Biological Activity of Aminophosphonic Acids and Their Short Peptides

    NASA Astrophysics Data System (ADS)

    Lejczak, Barbara; Kafarski, Pawel

    The biological activity and natural occurrence of the aminophosphonic acids were described half a century ago. Since then the chemistry and biology of this class of compounds have developed into the separate field of phosphorus chemistry. Today it is well acknowledged that these compounds possess a wide variety of promising, and in some cases commercially useful, physiological activities. Thus, they have found applications ranging from agrochemical (with the herbicides glyphosate and bialaphos being the most prominent examples) to medicinal (with the potent antihypertensive fosinopril and antiosteoporetic bisphosphonates being examples).

  14. Incomplete tricarboxylic acid cycle in a type I methylotroph, Methylococcus capsulatus.

    PubMed Central

    Patel, R; Hoare, L; Hoare, D S; Taylor, B F

    1975-01-01

    Alpha-Ketoglutaratedehydrogenase was undetectable in extracts of Methylococcus capsulatus. Cells incorporated [1-14-C] acetate into only four protein amino acids (glutamate, proline, arginine, and leucine) and the C5, but not C1, of glutamate. PMID:806581

  15. ENERGY EFFICIENCY LIMITS FOR A RECUPERATIVE BAYONET SULFURIC ACID DECOMPOSITION REACTOR FOR SULFUR CYCLE THERMOCHEMICAL HYDROGEN PRODUCTION

    SciTech Connect

    Gorensek, M.; Edwards, T.

    2009-06-11

    A recuperative bayonet reactor design for the high-temperature sulfuric acid decomposition step in sulfur-based thermochemical hydrogen cycles was evaluated using pinch analysis in conjunction with statistical methods. The objective was to establish the minimum energy requirement. Taking hydrogen production via alkaline electrolysis with nuclear power as the benchmark, the acid decomposition step can consume no more than 450 kJ/mol SO{sub 2} for sulfur cycles to be competitive. The lowest value of the minimum heating target, 320.9 kJ/mol SO{sub 2}, was found at the highest pressure (90 bar) and peak process temperature (900 C) considered, and at a feed concentration of 42.5 mol% H{sub 2}SO{sub 4}. This should be low enough for a practical water-splitting process, even including the additional energy required to concentrate the acid feed. Lower temperatures consistently gave higher minimum heating targets. The lowest peak process temperature that could meet the 450-kJ/mol SO{sub 2} benchmark was 750 C. If the decomposition reactor were to be heated indirectly by an advanced gas-cooled reactor heat source (50 C temperature difference between primary and secondary coolants, 25 C minimum temperature difference between the secondary coolant and the process), then sulfur cycles using this concept could be competitive with alkaline electrolysis provided the primary heat source temperature is at least 825 C. The bayonet design will not be practical if the (primary heat source) reactor outlet temperature is below 825 C.

  16. Male prairie voles display cardiovascular dipping associated with an ultradian activity cycle.

    PubMed

    Lewis, Robert; Curtis, J Thomas

    2016-03-15

    Mammals typically display alternating active and resting phases and, in most species, these rhythms follow a circadian pattern. The active and resting phases often are accompanied by corresponding physiological changes. In humans, blood pressure decreases during the resting phase of the activity cycle, and the magnitude of that "nocturnal dipping" has been used to stratify patients according to the risk for cardiovascular disease. However, in contrast to most mammals, prairie voles (Microtus ochrogaster) have periods of activity and rest that follow an ultradian rhythm with period lengths significantly <24h. While rhythmic changes in blood pressure across a circadian activity cycle have been well-documented, blood pressure patterns in species that display ultradian rhythms in activity are less well-studied. In the current study, we implanted pressure-sensitive radiotelemetry devices in male prairie voles and recorded activity, mean arterial pressure (MAP), and heart rate (HR) continuously for 3days. Visualization of the ultradian rhythms was enhanced using a 1h running average to filter the dataset. Positive correlations were found between activity and MAP and between activity and HR. During the inactive period of the ultradian cycle, blood pressure decreased by about 15%, which parallels the nocturnal dipping pattern seen in healthy humans. Further, the duration of inactivity did not affect any of the cardiovascular measures, so the differences in blood pressure values between the active and inactive periods are likely driven by ultradian oscillations in hormones and autonomic function. Finally, specific behavioral patterns also were examined. Both the instrumented animal and his non-instrumented cagemate appeared to show synchronized activity patterns, with both animals displaying sleep-like behavior for more than 90% of the inactive period. We propose that the prairie vole ultradian rhythm in blood pressure is an analogue for circadian blood pressure variability

  17. Sulfation mediates activity of zosteric acid against biofilm formation.

    PubMed

    Kurth, Caroline; Cavas, Levent; Pohnert, Georg

    2015-01-01

    Zosteric acid (ZA), a metabolite from the marine sea grass Zostera marina, has attracted much attention due to its attributed antifouling (AF) activity. However, recent results on dynamic transformations of aromatic sulfates in marine phototrophic organisms suggest potential enzymatic desulfation of metabolites like ZA. The activity of ZA was thus re-investigated using biofilm assays and simultaneous analytical monitoring by liquid chromatography/mass spectrometry (LC/MS). Comparison of ZA and its non-sulfated form para-coumaric acid (CA) revealed that the active substance was in all cases the non-sulfated CA while ZA was virtually inactive. CA exhibited a strong biofilm inhibiting activity against Escherichia coli and Vibrio natriegens. The LC/MS data revealed that the apparent biofilm inhibiting effects of ZA on V. natriegens can be entirely attributed to CA released from ZA by sulfatase activity. In the light of various potential applications, the (a)biotic transformation of ZA to CA has thus to be considered in future AF formulations. PMID:25915112

  18. Study of intensive solar flares in the rise phase of solar cycle 23 and 24 and other activities

    NASA Astrophysics Data System (ADS)

    Subramanian, S. Prasanna; Shanmugaraju, A.

    2016-02-01

    We present a statistical study and comparison on the properties of intensive solar flares (>M5.0 X-ray flare), decameter-hectometric (DH) wavelength [frequency, 1-14 MHz] type II radio bursts and solar energetic particle (SEP) events during the rising phase of solar cycles 23 and 24. The period of study is May 1996-November 2000 for solar cycle 23 and December 2008-June 2013 for solar cycle 24. Apart from reported weakness of solar cycle 24 compared to the cycle 23, we noted the following differences between the two cycles on the properties of these activities associated with intensive flares: (i) The reduction in the number of intensive flares (>M5.0 class) in cycle 24 is ˜34 %, similar to the reduction in sunspot number reported by Gopalswamy et al. (2014a); (ii) The slightly higher mean starting-frequency (4.15 MHz) and lower ending frequency (0.58 MHz) in cycle 24 compared to those of cycle 23 (2.63 and 0.89 MHz, respectively) indicate that the radio emission of this cycle started closer to the Sun and the CME-shock travelled farther away from the Sun in cycle 24; (iv) Cycle 23 produced a nearly equal number of SEP events as cycle 24 during the rising phase. The correlation between SEP intensity and CME speed is more prominent in cycle 23 (CC=0.7) than in cycle 24 (CC=0.3).

  19. p38α Activates Purine Metabolism to Initiate Hematopoietic Stem/Progenitor Cell Cycling in Response to Stress.

    PubMed

    Karigane, Daiki; Kobayashi, Hiroshi; Morikawa, Takayuki; Ootomo, Yukako; Sakai, Mashito; Nagamatsu, Go; Kubota, Yoshiaki; Goda, Nobuhito; Matsumoto, Michihiro; Nishimura, Emi K; Soga, Tomoyoshi; Otsu, Kinya; Suematsu, Makoto; Okamoto, Shinichiro; Suda, Toshio; Takubo, Keiyo

    2016-08-01

    Hematopoietic stem cells (HSCs) maintain quiescence by activating specific metabolic pathways, including glycolysis. We do not yet have a clear understanding of how this metabolic activity changes during stress hematopoiesis, such as bone marrow transplantation. Here, we report a critical role for the p38MAPK family isoform p38α in initiating hematopoietic stem and progenitor cell (HSPC) proliferation during stress hematopoiesis in mice. We found that p38MAPK is immediately phosphorylated in HSPCs after a hematological stress, preceding increased HSPC cycling. Conditional deletion of p38α led to defective recovery from hematological stress and a delay in initiation of HSPC proliferation. Mechanistically, p38α signaling increases expression of inosine-5'-monophosphate dehydrogenase 2 in HSPCs, leading to altered levels of amino acids and purine-related metabolites and changes in cell-cycle progression in vitro and in vivo. Our studies have therefore uncovered a p38α-mediated pathway that alters HSPC metabolism to respond to stress and promote recovery. PMID:27345838

  20. The sunspot cycle no. 24 in relation to long term solar activity variation

    PubMed Central

    Komitov, Boris; Kaftan, Vladimir

    2013-01-01

    The solar minimum between solar cycles 23 and 24 during the period 2007–2009 has been the longest and deepest one at least since for the last 100 years. We suggest that the Sun is going to his next supercenturial minimum. The main aim of this paper is to tell about arguments concerning this statement. They are based on series of studies, which have been provided during the period since 1997 up to 2010. The progress of solar cycle 24 since its minimum at the end of 2008 up to the end of October 2011 in the light of long term solar activity dynamics is analyzed. PMID:25685429

  1. The sunspot cycle no. 24 in relation to long term solar activity variation.

    PubMed

    Komitov, Boris; Kaftan, Vladimir

    2013-05-01

    The solar minimum between solar cycles 23 and 24 during the period 2007-2009 has been the longest and deepest one at least since for the last 100 years. We suggest that the Sun is going to his next supercenturial minimum. The main aim of this paper is to tell about arguments concerning this statement. They are based on series of studies, which have been provided during the period since 1997 up to 2010. The progress of solar cycle 24 since its minimum at the end of 2008 up to the end of October 2011 in the light of long term solar activity dynamics is analyzed. PMID:25685429

  2. Recent new additives for electric vehicle lead-acid batteries for extending the cycle life and capacity

    SciTech Connect

    Kozawa, A.; Sato, A.; Fujita, K.; Brodd, D.

    1997-12-01

    An electrochemically prepared colloidal graphite was found to be an excellent additive for lead-acid batteries. The new additive extends the capacity and cycle life of new and old batteries and can regenerate old, almost dead, batteries. The colloidal graphite is stable in aqueous solution and the extremely fine particles are adsorbed mainly on the positive electrode. This additive has been given the name, {alpha}-Pholon. The amount required is very small: only 6% to 10% of volume of the {alpha}-Pholon solution (about 2% colloidal graphite in water solution). The beneficial effect of the new additive was demonstrated with motorcycle batteries and forklift batteries.

  3. Partial Life-Cycle and Acute Toxicity of Perfluoroalkyl Acids to Freshwater Mussels

    EPA Science Inventory

    Freshwater mussels are among the most sensitive aquatic organisms to many contaminants and have complex life-cycles that include several distinct life stages with unique contaminant exposure pathways. Standard acute (24–96 h) and chronic (28 d) toxicity tests with free larva (glo...

  4. Non-acidic activation of pain-related Acid-Sensing Ion Channel 3 by lipids.

    PubMed

    Marra, Sébastien; Ferru-Clément, Romain; Breuil, Véronique; Delaunay, Anne; Christin, Marine; Friend, Valérie; Sebille, Stéphane; Cognard, Christian; Ferreira, Thierry; Roux, Christian; Euller-Ziegler, Liana; Noel, Jacques; Lingueglia, Eric; Deval, Emmanuel

    2016-02-15

    Extracellular pH variations are seen as the principal endogenous signal that triggers activation of Acid-Sensing Ion Channels (ASICs), which are basically considered as proton sensors, and are involved in various processes associated with tissue acidification. Here, we show that human painful inflammatory exudates, displaying non-acidic pH, induce a slow constitutive activation of human ASIC3 channels. This effect is largely driven by lipids, and we identify lysophosphatidylcholine (LPC) and arachidonic acid (AA) as endogenous activators of ASIC3 in the absence of any extracellular acidification. The combination of LPC and AA evokes robust depolarizing current in DRG neurons at physiological pH 7.4, increases nociceptive C-fiber firing, and induces pain behavior in rats, effects that are all prevented by ASIC3 blockers. Lipid-induced pain is also significantly reduced in ASIC3 knockout mice. These findings open new perspectives on the roles of ASIC3 in the absence of tissue pH variation, as well as on the contribution of those channels to lipid-mediated signaling. PMID:26772186

  5. Study of Distribution and Asymmetry of Solar Active Prominences during Solar Cycle 23

    NASA Astrophysics Data System (ADS)

    Joshi, Navin Chandra; Bankoti, Neeraj Singh; Pande, Seema; Pande, Bimal; Pandey, Kavita

    2009-12-01

    In this article we present the results of a study of the spatial distribution and asymmetry of solar active prominences (SAP) for the period 1996 through 2007 (solar cycle 23). For more meaningful statistical analysis we analyzed the distribution and asymmetry of SAP in two subdivisions viz. Group1 (ADF, APR, DSF, CRN, CAP) and Group2 (AFS, ASR, BSD, BSL, DSD, SPY, LPS). The North - South (N - S) latitudinal distribution shows that the SAP events are most prolific in the 21° to 30° slice in the Northern and Southern Hemispheres; the East - West (E - W) longitudinal distribution study shows that the SAP events are most prolific (best observable) in the 81° to 90° slice in the Eastern and Western Hemispheres. It was found that the SAP activity during this cycle is low compared to previous solar cycles. The present study indicates that during the rising phase of the cycle the number of SAP events are roughly equal in the Northern and Southern Hemispheres. However, activity in the Southern Hemisphere has been dominant since 1999. Our statistical study shows that the N - S asymmetry is more significant then the E - W asymmetry.

  6. Stellar activity cycles from long-term data by robotic telescopes

    NASA Astrophysics Data System (ADS)

    Oláh, K.

    2014-03-01

    All results about stellar activity cycles stem from decades-long systematic observations that were done by small telescopes. Without these equipments we would not know much, if anything, about stellar activity cycles, like those we see and observe easily on the nearest star, the Sun. In the early 80's of the last century systematic photometric monitoring of active stars began with automated photometric telescopes (APTs), some of which continue the observations to date. The Vienna-Potsdam APT now works for about two decades (Strassmeier et al. 1997), similarly to the 4-College Consortium APT (Dukes et al. 1995), while the Catania APT (Rodono et al. 2001) was closed down a few years ago. These small tools with the same setups for decades do not cost much and are relatively cheap to maintain. The longest continuous photometric datasets of a few objects from APTs span now over 30 years, which, together with earlier, manually-obtained data allow to study those activity cycles of stars which are in the order of 10 years or shorter: to be sure in the timescale of a cycle it should be observed repeatedly at least 2-3 times. The spectroscopic automated telescope STELLA (Strassmeier et al. 2004), built in the first decade of this century, measured already a few dozens of radial velocity curves for long-period binary stars and measured their activity levels (Strassmeier et al. 2012); these results can be gathered only by robotic telescopes. Only with STELLA it is possible to study the decades-long behavior of starspots on active giants with long rotational periods via Doppler Imaging. As the databases were growing it became clear that stars, just as the Sun, had multiple cycles. It was also found that stellar cycles showed systematic changes and that the cycle lengths correlated with the rotational periods of the stars. Extensive summaries of stellar activity cycles are found in Baliunas et al. (1995) using the Mt. Wilson Ca-index survey, and Oláh et al. (2009) based on

  7. Studies on the increase in serum concentrations of urea cycle amino acids among subjects exposed to cadmium

    SciTech Connect

    Nishino, H.; Shiroishi, K. ); Kagamimori, S.; Naruse, Y. ); Watanabe, M. )

    1988-05-01

    Itai-itai disease (I disease) is a combination of renal tubular damage and osteomalacia accompanied by osteoporosis among subjects exposed to cadmium (Cd). When the renal tubular damage progresses, the excretion of amino acids, especially, threonine, hydroxyproline, proline, citrulline, ornithine, arginine, etc. increase in urine. It was reported that the increase in urinary excretion of citrulline, arginine and ornithine may be associated with an inhibition of urea synthesis in the urea cycle. The authors have found that serum citrulline, arginine and ornithine also increased in I disease patients. In order to investigate the mechanism of the increase in these serum amino acids, comparative studies were performed using both healthy subjects and patients with renal disease as control groups.

  8. Studies on the increase in serum concentrations of urea cycle amino acids among subjects exposed to cadmium

    SciTech Connect

    Nishino, H.; Shiroishi, K.; Kagamimori, S.; Naruse, Y.; Watanabe, M.

    1988-04-01

    Itai-itai disease (I disease) is a combination of renal tubular damage and osteomalacia accompanied by osteoporosis among subjects exposed to cadmium (Cd). When the renal tubular damage progresses, the excretion of amino acids, especially, threonine, hydroxyproline, proline, citrulline, ornithine, arginine increased in urine. It has been reported that the increase in urinary excretion of citrulline, arginine and ornithine may be associated with an inhibition of urea synthesis in the urea cycle. The authors have found that serum citrulline, arginine and ornithine also increased in I disease patients. In order to investigate the mechanism of the increase in these serum amino acids, comparative studies were performed using both healthy subjects and patients with renal disease as control groups.

  9. Improved In Vitro Antileukemic Activity of All-Trans Retinoic Acid Loaded in Cholesteryl Butyrate Solid Lipid Nanoparticles.

    PubMed

    Silva, Elton Luiz; Lima, Flávia Alves; Carneiro, Guilherme; Ramos Jonas Periera; Gomes, Dawidson Assis; de Souza-Fagundes, Elaine Maria; Ferreira, Lucas Antônio Miranda

    2016-02-01

    All-trans retinoic acid, a hydrophobic drug, has become one of the most successful examples of differentiation agents used for treatment of acute promyelocytic leukemia. On the other hand, histone deacetylase inhibitors, such as cholesteryl butyrate, present differentiating activity and.can potentiate action of drugs such as all-trans retinoic acid. Solid lipid nanoparticles represent a promising alternative for administration of hydrophobic drugs such as ATRA. This study aimed to develop, characterize, and evaluate the cytotoxicity of all-trans retinoic acid-loaded solid lipid nanoparticles for leukemia treatment. The influence of in situ formation of an ion pairing between all-trans retinoic acid and lipophilic amines on the characteristics of the particles (size, zeta potential, encapsulation efficiency) was evaluated. Cholesteryl butyrate, a butyric acid donor, was used as a component of the lipid matrix. In vitro activity on cell viability and distribution of cell cycle phases were evaluated for HL-60, Jurkat, and THP-1 cell lines. The encapsulation efficiency of all-trans retinoic acid in cholesteryl butyrate-solid lipid nanoparticles was significantly increased by the presence of the amine. Inhibition of cell viability by all-trans retinoic acid-loaded solid lipid nanoparticles was more pronounced than the free drug. Analysis of the distribution of cell cycle phases also showed increased activity for all-trans retinoic acid-loaded cholesteryl butyrate-solid lipid nanoparticles, with a clear increase in subdiploid DNA content. The ion pair formation in SLN containing cholesteryl butyrate can be explored as a simple and inexpensive strategy to improve the efficacy and bioavail-ability of ATRA in the treatment of the cancer and metabolic diseases in which this retinoid plays an important role. PMID:27433579

  10. Influence of ethylenediamine-n,n’-disuccinic acid (EDDS) concentration on the bactericidal activity of fatty acids in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The antibacterial activity of mixtures of ethylenediamine-N,N’-disuccinic acid (EDDS) and antibacterial fatty acids (FA) was examined using the agar diffusion assay. Solutions of caproic, caprylic, capric, and lauric acids dissolved in potassium hydroxide (KOH) were supplemented with 0, 5, or 10 mM ...

  11. Induction of renal cytochrome P450 arachidonic acid epoxygenase activity by dietary gamma-linolenic acid.

    PubMed

    Yu, Zhigang; Ng, Valerie Y; Su, Ping; Engler, Marguerite M; Engler, Mary B; Huang, Yong; Lin, Emil; Kroetz, Deanna L

    2006-05-01

    Dietary gamma-linolenic acid (GLA), a omega-6 polyunsaturated fatty acid found in borage oil (BOR), lowers systolic blood pressure in spontaneously hypertensive rats (SHRs). GLA is converted into arachidonic acid (AA) by elongation and desaturation steps. Epoxyeicosatrienoic acids (EETs) and 20-hydroxyeicosatetraenoic acid (20-HETE) are cytochrome P450 (P450)-derived AA eicosanoids with important roles in regulating blood pressure. This study tested the hypothesis that the blood pressure-lowering effect of a GLA-enriched diet involves alteration of P450-catalyzed AA metabolism. Microsomes and RNA were isolated from the renal cortex of male SHRs fed a basal fat-free diet for 5 weeks to which 11% by weight of sesame oil (SES) or BOR was added. There was a 2.6- to 3.5-fold increase in P450 epoxygenase activity in renal microsomes isolated from the BOR-fed SHRs compared with the SES-fed rats. Epoxygenase activity accounted for 58% of the total AA metabolism in the BOR-treated kidney microsomes compared with 33% in the SES-treated rats. More importantly, renal 14,15- and 8,9-EET levels increased 1.6- to 2.5-fold after dietary BOR treatment. The increase in EET formation is consistent with increases in CYP2C23, CYP2C11, and CYP2J protein levels. There were no differences in the level of renal P450 epoxygenase mRNA between the SES- and BOR-treated rats. Enhanced synthesis of the vasodilatory EETs and decreased formation of the vasoconstrictive 20-HETE suggests that changes in P450-mediated AA metabolism may contribute, at least in part, to the blood pressure-lowering effect of a BOR-enriched diet. PMID:16421287

  12. [Activity of the sphingomyelin cycle enzymes and concentration of products of sphingomyelin degradation in the rat liver in the course of acute toxic hepatitis].

    PubMed

    Serebrov, V Iu; Kuz'menko, D I; Burov, P G; Sapugol'tseva, O B

    2010-01-01

    Activity of key enzymes of a sphingomyelin cycle and the maintenance of its components (sphingomyelin, ceramide and sphingosine-1-phosphate) have been studied in livers of rats in dynamics of the acute toxic hepatitis caused by hypodermic introduction of an oil solution of CCl4. Sphingomyelinase activity significally increased already on early terms and remained increased over the whole period of observation. Activity of ceramidase insignificantly differed from the control level. The levels of sphingomyelin and sphingosine-1-phosphate did not undergo marked changes while ceramide content significally increased. Thus, balance between liver content of ceramide (proapoptotic) and the sphingosine-1-phosphate, being the antiapoptotic factor, was shifted towards ceramide. In sphingomyelin molecules there was a significant decrease in the content of fatty acids C18: and C22:2, while in ceramide molecules and sphingosine-1-phosphate only fatty acid C22:2 changed. In spite of significant decrease in content of some unsaturated fatty acids, calculated unsaturation coefficients of the fatty acid component of the sphingomyelin cycle metabolites. Thus, our results together with literature data suggests involvement of ceramide-mediated apoptosis in the pathogenesis of acute toxic hepatitis. Elimination of damaged hepatocytes facilitates realization of repair processes and optimization of cellular community of a liver. PMID:21341516

  13. Solar magnetic activity cycles, coronal potential field models and eruption rates

    NASA Astrophysics Data System (ADS)

    Petrie, Gordon

    2013-07-01

    We study the evolution of the observed photospheric magnetic field and the modeled global coronal magnetic field during the past 3 1/2 solar activity cycles observed since the mid-1970s. We use synoptic magnetograms and extrapolated potential-field models based on longitudinal full-disk photospheric magnetograms from the NSO's three magnetographs at Kitt Peak, the Synoptic Optical Long-term Investigations of the Sun (SOLIS) vector spectro-magnetograph (VSM), the spectro-magnetograph and the 512-channel magnetograph instruments, and from the U. Stanford's Wilcox Solar Observatory. The associated multipole field components are used to study the dominant length scales and symmetries of the coronal field. Of the axisymmetric multipoles, only the dipole and octupole follow the poles whereas the higher orders follow the activity cycle. All non-axisymmetric multipole strengths are well correlated with the activity cycle. The axial dipole and octupole are the largest contributors to the global field except while the polar fields are reversing. This influence of the polar fields extends to modulating eruption rates. According to the Computer Aided CME Tracking (CACTus), Solar Eruptive Event Detection System (SEEDS), and Nobeyama radioheliograph prominence eruption catalogs, the rate of solar eruptions is found to be systematically higher for active years between 2003-2012 than for those between 1997-2002. This behavior appears to be connected with the weakness of the late-cycle 23 polar fields as suggested by Luhmann. We see evidence that the process of cycle 24 field reversal is well advanced at both poles.

  14. Luteinizing hormone-releasing hormone fusion protein vaccines block estrous cycle activity in beef heifers.

    PubMed

    Stevens, J D; Sosa, J M; deAvila, D M; Oatley, J M; Bertrand, K P; Gaskins, C T; Reeves, J J

    2005-01-01

    Two LHRH fusion proteins, thioredoxin and ovalbumin, each containing seven LHRH inserts were tested for their ability to inhibit estrous cycle activity. The objective was to evaluate immune and biological responses from alternating the two fusion proteins in an immunization schedule. One hundred ten heifers were divided equally into 11 groups. Two control groups consisted of either spayed or intact, untreated heifers. Heifers in the other nine groups were immunized on wk 0, 4, and 9. Treatments were immunizations of the same protein throughout or alternating the proteins in different booster sequences. Blood was collected weekly for 22 wk, and serum was assayed for concentrations of progesterone and titers of anti-LHRH. At slaughter, reproductive tracts were removed from each heifer and weighed. Heifers with >or=1 ng/mL of progesterone were considered to have a functional corpus luteum and thus to have estrous cycle activity. All LHRH-immunized groups of heifers had a smaller (P < 0.05) proportion of heifers showing estrous cycle activity after 6 wk than the intact, untreated control group. There was no difference in number of heifers cycling between the immunized groups and the spayed heifers during wk 9 to 22. Anti-LHRH did not differ among immunized groups during wk 1 to 9. Starting at wk 10 and continuing through the conclusion of the study, there was an overall difference among treatment groups for anti-LHRH (P < 0.05). Uterine weights differed among treatments (P < 0.05), with intact control animals having heavier uteri than all other groups (P < 0.05). Uterine weights were negatively correlated with maximum LHRH antibody binding (r = -0.44). In summary, the LHRH fusion proteins were as effective as surgical spaying in suppression of estrous cycle activity, but alternating the two proteins in an immunization schedule did not enhance the immunological or biological effectiveness of the vaccine. PMID:15583055

  15. Effects of Space Weather on Biomedical Parameters during the Solar Activity Cycles 23-24.

    PubMed

    Ragul'skaya, M V; Rudenchik, E A; Chibisov, S M; Gromozova, E N

    2015-06-01

    The results of long-term (1998-2012) biomedical monitoring of the biotropic effects of space weather are discussed. A drastic change in statistical distribution parameters in the middle of 2005 was revealed that did not conform to usual sinusoidal distribution of the biomedical data reflecting changes in the number of solar spots over a solar activity cycle. The dynamics of space weather of 2001-2012 is analyzed. The authors hypothesize that the actual change in statistical distributions corresponds to the adaptation reaction of the biosphere to nonstandard geophysical characteristics of the 24th solar activity cycle and the probable long-term decrease in solar activity up to 2067. PMID:26085362

  16. Extremely low geomagnetic activity during the recent deep solar cycle minimum

    NASA Astrophysics Data System (ADS)

    Echer, E.; Tsurutani, B. T.; Gonzalez, W. D.

    2012-07-01

    The recent solar minimum (2008-2009) was extreme in several aspects: the sunspot number, R z , interplanetary magnetic field (IMF) magnitude B o and solar wind speed V sw were the lowest during the space era. Furthermore, the variance of the IMF southward B z component was low. As a consequence of these exceedingly low solar wind parameters, there was a minimum in the energy transfer from solar wind to the magnetosphere, and the geomagnetic activity ap index reached extremely low levels. The minimum in geomagnetic activity was delayed in relation to sunspot cycle minimum. We compare the solar wind and geomagnetic activity observed in this recent minimum with previous solar cycle values during the space era (1964-2010). Moreover, the geomagnetic activity conditions during the current minimum are compared with long term variability during the period of available geomagnetic observations. The extremely low geomagnetic activity observed in this solar minimum was previously recorded only at the end of XIX century and at the beginning of the XX century, and this might be related to the Gleissberg (80-100 years) solar cycle.

  17. PKC theta and p38 MAPK activate the EBV lytic cycle through autophagy induction.

    PubMed

    Gonnella, Roberta; Granato, Marisa; Farina, Antonella; Santarelli, Roberta; Faggioni, Alberto; Cirone, Mara

    2015-07-01

    PKC activation by combining TPA with sodium butyrate (T/B) represents the most effective and widely used strategy to induce the Epstein-Barr virus (EBV) lytic cycle. The results obtained in this study show that novel PKCθ is involved in such process and that it acts through the activation of p38 MAPK and autophagy induction. Autophagy, a mechanism of cellular defense in stressful conditions, is manipulated by EBV to enhance viral replication. Besides promoting the EBV lytic cycle, the activation of p38 and autophagy resulted in a pro-survival effect, as indicated by p38 or ATG5 knocking down experiments. However, this pro-survival role was counteracted by a pro-death activity of PKCθ, due to the dephosphorylation of AKT. In conclusion, this study reports, for the first time, that T/B activates a PKCθ-p38 MAPK axis in EBV infected B cells, that promotes the viral lytic cycle and cell survival and dephosphorylates AKT, balancing cell life and cell death. PMID:25827954

  18. Daytime spikes in dopaminergic activity drive rapid mood-cycling in mice.

    PubMed

    Sidor, M M; Spencer, S M; Dzirasa, K; Parekh, P K; Tye, K M; Warden, M R; Arey, R N; Enwright, J F; Jacobsen, J P R; Kumar, S; Remillard, E M; Caron, M G; Deisseroth, K; McClung, C A

    2015-11-01

    Disruptions in circadian rhythms and dopaminergic activity are involved in the pathophysiology of bipolar disorder, though their interaction remains unclear. Moreover, a lack of animal models that display spontaneous cycling between mood states has hindered our mechanistic understanding of mood switching. Here, we find that mice with a mutation in the circadian Clock gene (ClockΔ19) exhibit rapid mood-cycling, with a profound manic-like phenotype emerging during the day following a period of euthymia at night. Mood-cycling coincides with abnormal daytime spikes in ventral tegmental area (VTA) dopaminergic activity, tyrosine hydroxylase (TH) levels and dopamine synthesis. To determine the significance of daytime increases in VTA dopamine activity to manic behaviors, we developed a novel optogenetic stimulation paradigm that produces a sustained increase in dopamine neuronal activity and find that this induces a manic-like behavioral state. Time-dependent dampening of TH activity during the day reverses manic-related behaviors in ClockΔ19 mice. Finally, we show that CLOCK acts as a negative regulator of TH transcription, revealing a novel molecular mechanism underlying cyclic changes in mood-related behavior. Taken together, these studies have identified a mechanistic connection between circadian gene disruption and the precipitation of manic episodes in bipolar disorder. PMID:25560763

  19. Daytime spikes in dopaminergic activity drive rapid mood-cycling in mice

    PubMed Central

    Sidor, Michelle M.; Spencer, Sade M.; Dzirasa, Kafui; Parekh, Puja K.; Tye, Kay M.; Warden, Melissa R.; Arey, Rachel N.; Enwright, John F; Jacobsen, Jacob PR; Kumar, Sunil; Remillard, Erin M; Caron, Marc G.; Deisseroth, Karl; McClung, Colleen A

    2014-01-01

    Disruptions in circadian rhythms and dopaminergic activity are involved in the pathophysiology of bipolar disorder, though their interaction remains unclear. Moreover, a lack of animal models that display spontaneous cycling between mood states has hindered our mechanistic understanding of mood switching. Here we find that mice with a mutation in the circadian Clock gene (ClockΔ19) exhibit rapid mood-cycling, with a profound manic-like phenotype emerging during the day following a period of euthymia at night. Mood cycling coincides with abnormal daytime spikes in ventral tegmental area (VTA) dopaminergic activity, tyrosine hydroxylase (TH) levels, and dopamine synthesis. To determine the significance of daytime increases in VTA dopamine activity to manic behaviors, we developed a novel optogenetic stimulation paradigm that produces a sustained increase in dopamine neuronal activity and find that this induces a manic-like behavioral state. Time-dependent dampening of TH activity during the day reverses manic-related behaviours in ClockΔ19 mice. Finally, we show that CLOCK acts as a negative regulator of TH transcription, revealing a novel molecular mechanism underlying cyclic changes in mood-related behaviour. Taken together, these studies have identified a mechanistic connection between circadian gene disruption and the precipitation of manic episodes in bipolar disorder. PMID:25560763

  20. Activation of peroxisome proliferator-activated receptor-{alpha} enhances fatty acid oxidation in human adipocytes

    SciTech Connect

    Lee, Joo-Young; Hashizaki, Hikari; Goto, Tsuyoshi; Sakamoto, Tomoya; Takahashi, Nobuyuki; Kawada, Teruo

    2011-04-22

    Highlights: {yields} PPAR{alpha} activation increased mRNA expression levels of adipocyte differentiation marker genes and GPDH activity in human adipocytes. {yields} PPAR{alpha} activation also increased insulin-dependent glucose uptake in human adipocytes. {yields} PPAR{alpha} activation did not affect lipid accumulation in human adipocytes. {yields} PPAR{alpha} activation increased fatty acid oxidation through induction of fatty acid oxidation-related genes in human adipocytes. -- Abstract: Peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPAR{alpha} in adipocytes have been unclarified. We examined the functions of PPAR{alpha} using human multipotent adipose tissue-derived stem cells as a human adipocyte model. Activation of PPAR{alpha} by GW7647, a potent PPAR{alpha} agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPAR{gamma}, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPAR{alpha} activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPAR{gamma} is activated. On the other hand, PPAR{alpha} activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPAR{alpha}-dependent manner. Moreover, PPAR{alpha} activation increased the production of CO{sub 2} and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPAR{alpha} stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPAR{alpha} agonists could improve insulin resistance without lipid accumulation in adipocytes. The expected

  1. Composite Mg II solar activity index for solar cycles 21 and 22

    NASA Technical Reports Server (NTRS)

    Deland, Matthew T.; Cebula, Richard P.

    1993-01-01

    On the basis of version 1.0 of the composite MG II solar activity index data set, it is shown that the change in the 27-day running average of the Mg II index from solar maximum to solar minimum is about 8 percent for solar cycle 21 and about 9 percent for solar cycle 22 through January 1992. Scaling factors based on the short-term variations in the Mg II index and solar irradiance data sets are developed for each instrument to estimate solar variability at mid-UV and near-UV wavelengths. A set of composite scale factors are derived for use with the present composite MG index. Near 205 cm, where solar irradiance variations are important for stratospheric chemistry, the estimated change in irradiance during solar cycle 22 is about 10 +/- 1 percent using the composite Mg II index (version 1.0) and scale factors.

  2. Magnetic activity of red secondaries: clues from the outburst cycle variations of dwarf novae

    NASA Astrophysics Data System (ADS)

    Chinarova, L. L.

    Photometric variations of 6 dwarf novae stars are studied based on the photographic observations from the Odessa, Moscow and Sonneberg plate collections and published visual monitoring data from the AFOEV database (Schweitzer E.: 1993, Bull. AFOEV, 64, 14). The moments of maxima are determined by using the "running parabola" fit (Andronov I.L., 1990, Kinematika Fizika Nebesn. Tel., v.6,,N 6, 87) with automatically determined filter half-width (Andronov I.L., 1997, As.Ap. Suppl., in press). All investigated stars exhibit significant changes not only from cycle-to-cycle, but from season-to-season as well. Secondary decade-scale cycles of smooth variations (Bianchini A., 1990, AJ 99, 1941) and abrupt switchings (Andronov I.L., Shakun L.I., 1990, ASS 169, 237) were interpreted by a solar-type activity of the red dwarf secondary in a binary system and may argue for existence of two different subgroups of the dwarf novae.

  3. Surface flux transport simulations. Inflows towards active regions and the modulation of the solar cycle.

    NASA Astrophysics Data System (ADS)

    Martin-Belda, David; Cameron, Robert

    2016-07-01

    Aims. We investigate the way near-surface converging flows towards active regions affect the build-up of magnetic field at the Sun's polar caps. In the Babcock-Leighton dynamo framework, this modulation of the polar fields could explain the variability of the solar cycle. Methods. We develop a surface flux transport code incorporating a parametrized model of the inflows and run simulations spanning several cycles. We carry out a parameter study to test how the strength and extension of the inflows affect the amplitude of the polar fields. Results. Inflows are seen to play an important role in the build-up of the polar fields, and can act as the non-linearity feedback mechanism required to limit the strength of the solar cycles in the Babcock-Leighton dynamo framework.

  4. Creatinyl amino acids: new hybrid compounds with neuroprotective activity.

    PubMed

    Burov, Sergey; Leko, Maria; Dorosh, Marina; Dobrodumov, Anatoliy; Veselkina, Olga

    2011-09-01

    Prolonged oral creatine administration resulted in remarkable neuroprotection in experimental models of brain stroke. However, because of its polar nature creatine has poor ability to penetrate the blood-brain barrier (BBB) without specific creatine transporter (CRT). Thus, synthesis of hydrophobic derivatives capable of crossing the BBB by alternative pathway is of great importance for the treatment of acute and chronic neurological diseases including stroke, traumatic brain injury and hereditary CRT deficiency. Here we describe synthesis of new hybrid compounds-creatinyl amino acids, their neuroprotective activity in vivo and stability to degradation in different media. The title compounds were synthesized by guanidinylation of corresponding sarcosyl peptides or direct creatine attachment using isobutyl chloroformate method. Addition of lipophilic counterion (p-toluenesulfonate) ensures efficient creatine dissolution in DMF with simultaneous protection of guanidino group towards intramolecular cyclization. It excludes the application of expensive guanidinylating reagents, permits to simplify synthetic procedure and adapt it to large-scale production. The biological activity of creatinyl amino acids was tested in vivo on ischemic stroke and NaNO(2) -induced hypoxia models. One of the most effective compounds-creatinyl-glycine ethyl ester increases life span of experimental animals more than two times in hypoxia model and has neuroprotective action in brain stroke model when applied both before and after ischemia. These data evidenced that creatinyl amino acids can represent promising candidates for the development of new drugs useful in stroke treatment. PMID:21644247

  5. Activated Persulfate Oxidation of Perfluorooctanoic Acid (PFOA) in Groundwater under Acidic Conditions.

    PubMed

    Yin, Penghua; Hu, Zhihao; Song, Xin; Liu, Jianguo; Lin, Na

    2016-01-01

    Perfluorooctanoic acid (PFOA) is an emerging contaminant of concern due to its toxicity for human health and ecosystems. However, successful degradation of PFOA in aqueous solutions with a cost-effective method remains a challenge, especially for groundwater. In this study, the degradation of PFOA using activated persulfate under mild conditions was investigated. The impact of different factors on persulfate activity, including pH, temperature (25 °C-50 °C), persulfate dosage and reaction time, was evaluated under different experimental conditions. Contrary to the traditional alkaline-activated persulfate oxidation, it was found that PFOA can be effectively degraded using activated persulfate under acidic conditions, with the degradation kinetics following the pseudo-first-order decay model. Higher temperature, higher persulfate dosage and increased reaction time generally result in higher PFOA degradation efficiency. Experimental results show that a PFOA degradation efficiency of 89.9% can be achieved by activated persulfate at pH of 2.0, with the reaction temperature of 50 °C, molar ratio of PFOA to persulfate as 1:100, and a reaction time of 100 h. The corresponding defluorination ratio under these conditions was 23.9%, indicating that not all PFOA decomposed via fluorine removal. The electron paramagnetic resonance spectrometer analysis results indicate that both SO₄(-)• and •OH contribute to the decomposition of PFOA. It is proposed that PFOA degradation occurs via a decarboxylation reaction triggered by SO₄(-)•, followed by a HF elimination process aided by •OH, which produces one-CF₂-unit-shortened perfluoroalkyl carboxylic acids (PFCAs, Cn-1F2n-1COOH). The decarboxylation and HF elimination processes would repeat and eventually lead to the complete mineralization all PFCAs. PMID:27322298

  6. Activated Persulfate Oxidation of Perfluorooctanoic Acid (PFOA) in Groundwater under Acidic Conditions

    PubMed Central

    Yin, Penghua; Hu, Zhihao; Song, Xin; Liu, Jianguo; Lin, Na

    2016-01-01

    Perfluorooctanoic acid (PFOA) is an emerging contaminant of concern due to its toxicity for human health and ecosystems. However, successful degradation of PFOA in aqueous solutions with a cost-effective method remains a challenge, especially for groundwater. In this study, the degradation of PFOA using activated persulfate under mild conditions was investigated. The impact of different factors on persulfate activity, including pH, temperature (25 °C–50 °C), persulfate dosage and reaction time, was evaluated under different experimental conditions. Contrary to the traditional alkaline-activated persulfate oxidation, it was found that PFOA can be effectively degraded using activated persulfate under acidic conditions, with the degradation kinetics following the pseudo-first-order decay model. Higher temperature, higher persulfate dosage and increased reaction time generally result in higher PFOA degradation efficiency. Experimental results show that a PFOA degradation efficiency of 89.9% can be achieved by activated persulfate at pH of 2.0, with the reaction temperature of 50 °C, molar ratio of PFOA to persulfate as 1:100, and a reaction time of 100 h. The corresponding defluorination ratio under these conditions was 23.9%, indicating that not all PFOA decomposed via fluorine removal. The electron paramagnetic resonance spectrometer analysis results indicate that both SO4−• and •OH contribute to the decomposition of PFOA. It is proposed that PFOA degradation occurs via a decarboxylation reaction triggered by SO4−•, followed by a HF elimination process aided by •OH, which produces one-CF2-unit-shortened perfluoroalkyl carboxylic acids (PFCAs, Cn−1F2n−1COOH). The decarboxylation and HF elimination processes would repeat and eventually lead to the complete mineralization all PFCAs. PMID:27322298

  7. The sleep-wake cycle and motor activity, but not temperature, are disrupted over the light-dark cycle in mice genetically depleted of serotonin

    PubMed Central

    Solarewicz, Julia Z.; Angoa-Perez, Mariana; Kuhn, Donald M.; Mateika, Jason H.

    2016-01-01

    We examined the role that serotonin has in the modulation of sleep and wakefulness across a 12-h:12-h light-dark cycle and determined whether temperature and motor activity are directly responsible for potential disruptions to arousal state. Telemetry transmitters were implanted in 24 wild-type mice (Tph2+/+) and 24 mice with a null mutation for tryptophan hydroxylase 2 (Tph2−/−). After surgery, electroencephalography, core body temperature, and motor activity were recorded for 24 h. Temperature for a given arousal state (quiet and active wake, non-rapid eye movement, and paradoxical sleep) was similar in the Tph2+/+ and Tph2−/− mice across the light-dark cycle. The percentage of time spent in active wakefulness, along with motor activity, was decreased in the Tph2+/+ compared with the Tph2−/− mice at the start and end of the dark cycle. This difference persisted into the light cycle. In contrast, the time spent in a given arousal state was similar at the remaining time points. Despite this similarity, periods of non-rapid-eye-movement sleep and wakefulness were less consolidated in the Tph2+/+ compared with the Tph2−/− mice throughout the light-dark cycle. We conclude that the depletion of serotonin does not disrupt the diurnal variation in the sleep-wake cycle, motor activity, and temperature. However, serotonin may suppress photic and nonphotic inputs that manifest at light-dark transitions and serve to shorten the ultraradian duration of wakefulness and non-rapid-eye-movement sleep. Finally, alterations in the sleep-wake cycle following depletion of serotonin are unrelated to disruptions in the modulation of temperature. PMID:25394829

  8. The sleep-wake cycle and motor activity, but not temperature, are disrupted over the light-dark cycle in mice genetically depleted of serotonin.

    PubMed

    Solarewicz, Julia Z; Angoa-Perez, Mariana; Kuhn, Donald M; Mateika, Jason H

    2015-01-01

    We examined the role that serotonin has in the modulation of sleep and wakefulness across a 12-h:12-h light-dark cycle and determined whether temperature and motor activity are directly responsible for potential disruptions to arousal state. Telemetry transmitters were implanted in 24 wild-type mice (Tph2(+/+)) and 24 mice with a null mutation for tryptophan hydroxylase 2 (Tph2(-/-)). After surgery, electroencephalography, core body temperature, and motor activity were recorded for 24 h. Temperature for a given arousal state (quiet and active wake, non-rapid eye movement, and paradoxical sleep) was similar in the Tph2(+/+) and Tph2(-/-) mice across the light-dark cycle. The percentage of time spent in active wakefulness, along with motor activity, was decreased in the Tph2(+/+) compared with the Tph2(-/-) mice at the start and end of the dark cycle. This difference persisted into the light cycle. In contrast, the time spent in a given arousal state was similar at the remaining time points. Despite this similarity, periods of non-rapid-eye-movement sleep and wakefulness were less consolidated in the Tph2(+/+) compared with the Tph2(-/-) mice throughout the light-dark cycle. We conclude that the depletion of serotonin does not disrupt the diurnal variation in the sleep-wake cycle, motor activity, and temperature. However, serotonin may suppress photic and nonphotic inputs that manifest at light-dark transitions and serve to shorten the ultraradian duration of wakefulness and non-rapid-eye-movement sleep. Finally, alterations in the sleep-wake cycle following depletion of serotonin are unrelated to disruptions in the modulation of temperature. PMID:25394829

  9. Significantly enhancing supercapacitive performance of nitrogen-doped graphene nanosheet electrodes by phosphoric acid activation.

    PubMed

    Wang, Ping; He, Haili; Xu, Xiaolong; Jin, Yongdong

    2014-02-12

    In this work, we present a new method to synthesize the phosphorus, nitrogen contained graphene nanosheets, which uses dicyandiamide to prevent the aggregation of graphene oxide and act as the nitrogen precursor, and phosphoric acid (H3PO4) as the activation reagent. We have found that through the H3PO4 activation, the samples exhibit the remarkably enhanced supercapacitive performance, and depending on the amount of H3PO4 introduced, the specific capacitance of the samples is gradually increased from 7.6 to 244.6 F g(-1). Meanwhile, the samples also exhibit the good rate capability and excellent stability (up to 10 000 cycles). Through the transmission electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Brunauer-Emmett-Teller analyses, H3PO4 treatment induced large pore volume and phosphorus related function groups in the product are assumed to response for the enhancement. PMID:24456232

  10. Screening of anaerobic activities in sediments of an acidic environment: Tinto River.

    PubMed

    Sánchez-Andrea, Irene; Rojas-Ojeda, Patricia; Amils, Ricardo; Sanz, José Luis

    2012-11-01

    The Tinto River (Huelva, Spain) is a natural acidic rock drainage environment produced by the bio-oxidation of metallic sulfides from the Iberian Pyritic Belt. A geomicrobiological model of the different microbial cycles operating in the sediments was recently developed through molecular biological methods, suggesting the presence of iron reducers, methanogens, nitrate reducers and hydrogen producers. In this study, we used a combination of molecular biological methods and targeted enrichment incubations to validate this model and prove the existence of those potential anaerobic activities in the acidic sediments of Tinto River. Methanogenic, sulfate-reducing, denitrifying and hydrogen-producing enrichments were all positive at pH between 5 and 7. Methanogenic enrichments revealed the presence of methanogenic archaea belonging to the genera Methanosarcina and Methanobrevibacter. Enrichments for sulfate-reducing microorganisms were dominated by Desulfotomaculum spp. Denitrifying enrichments showed a broad diversity of bacteria belonging to the genera Paenibacillus, Bacillus, Sedimentibacter, Lysinibacillus, Delftia, Alcaligenes, Clostridium and Desulfitobacterium. Hydrogen-producing enrichments were dominated by Clostridium spp. These enrichments confirm the presence of anaerobic activities in the acidic sediments of the Tinto River that are normally assumed to take place exclusively at neutral pH. PMID:22956355

  11. Carglumic acid: a second look. Confirmed progress in a rare urea cycle disorder.

    PubMed

    2008-04-01

    (1) N-acetylglutamate synthase deficiency is a rare congenital disorder that causes hyperammonaemic comas, resulting in severe neurological morbidity and usually leading to death during childhood. (2) Carglumic acid is the first drug to be used for replacement therapy. Data available in 2003 showed beneficial effects on growth and psychomotor development. (3) In 2007, about 20 patients treated with carglumic acid for N-acetyglutamate synthase deficiency, for at least 5 years in half of cases, were all still alive. Their development was normal when treatment was initiated before complications occurred. (4) No serious adverse effects have been observed. (5) In practice, although this treatment has to continue for life, carglumic acid represents a major advance for patients with N-acetylglutamate synthase deficiency. PMID:18516804

  12. Postnatal telomere dysfunction induces cardiomyocyte cell-cycle arrest through p21 activation.

    PubMed

    Aix, Esther; Gutiérrez-Gutiérrez, Óscar; Sánchez-Ferrer, Carlota; Aguado, Tania; Flores, Ignacio

    2016-06-01

    The molecular mechanisms that drive mammalian cardiomyocytes out of the cell cycle soon after birth remain largely unknown. Here, we identify telomere dysfunction as a critical physiological signal for cardiomyocyte cell-cycle arrest. We show that telomerase activity and cardiomyocyte telomere length decrease sharply in wild-type mouse hearts after birth, resulting in cardiomyocytes with dysfunctional telomeres and anaphase bridges and positive for the cell-cycle arrest protein p21. We further show that premature telomere dysfunction pushes cardiomyocytes out of the cell cycle. Cardiomyocytes from telomerase-deficient mice with dysfunctional telomeres (G3 Terc(-/-)) show precocious development of anaphase-bridge formation, p21 up-regulation, and binucleation. In line with these findings, the cardiomyocyte proliferative response after cardiac injury was lost in G3 Terc(-/-) newborns but rescued in G3 Terc(-/-)/p21(-/-) mice. These results reveal telomere dysfunction as a crucial signal for cardiomyocyte cell-cycle arrest after birth and suggest interventions to augment the regeneration capacity of mammalian hearts. PMID:27241915

  13. Activating frataxin expression by repeat-targeted nucleic acids

    PubMed Central

    Li, Liande; Matsui, Masayuki; Corey, David R.

    2016-01-01

    Friedreich's ataxia is an incurable genetic disorder caused by a mutant expansion of the trinucleotide GAA within an intronic FXN RNA. This expansion leads to reduced expression of frataxin (FXN) protein and evidence suggests that transcriptional repression is caused by an R-loop that forms between the expanded repeat RNA and complementary genomic DNA. Synthetic agents that increase levels of FXN protein might alleviate the disease. We demonstrate that introducing anti-GAA duplex RNAs or single-stranded locked nucleic acids into patient-derived cells increases FXN protein expression to levels similar to analogous wild-type cells. Our data are significant because synthetic nucleic acids that target GAA repeats can be lead compounds for restoring curative FXN levels. More broadly, our results demonstrate that interfering with R-loop formation can trigger gene activation and reveal a new strategy for upregulating gene expression. PMID:26842135

  14. Fatty acid composition of plasma lipids and erythrocyte membranes during simulated extravehicular activity

    NASA Astrophysics Data System (ADS)

    Skedina, M. A.; Katuntsev, V. P.; Buravkova, L. B.; Naidina, V. P.

    Ten subjects (from 27 to 41 years) have been participated in 32 experiments. They were decompressed from ground level to 40-35 kPa in altitude chamber when breathed 100% oxygen by mask and performed repeated cycles of exercises (3.0 Kcal/min). The intervals between decompressions were 3-5 days. Plasma lipid and erythrocyte membrane fatty acid composition was evaluated in the fasting venous blood before and immediately after hypobaric exposure. There were 7 cases decompression sickness (DCS). Venous gas bubbles (GB) were detected in 27 cases (84.4%). Any significant changes in the fatty acid composition of erythrocyte membranes and plasma didn't practically induce after the first decompression. However, by the beginning of the second decompression the total lipid level in erythrocyte membranes decreased from 54.6 mg% to 40.4 mg% in group with DCS symptoms and from 51.2 mg% to 35.2 mg% (p < 0.05) without DCS symptoms. In group with DCS symptoms a tendency to increased level of saturated fatty acids in erythrocyte membranes (16:0, 18:0), the level of the polyunsaturated linoleic fatty acid (18:2) and arachidonic acid (20:4) tended to be decreased by the beginning of the second decompression. Insignificant changes in blood plasma fatty acid composition was observed in both groups. The obtained biochemical data that indicated the simulated extravehicular activity (EVA) condition is accompanied by the certain changes in the blood lipid metabolism, structural and functional state of erythrocyte membranes, which are reversible. The most pronounced changes are found in subjects with DCS symptoms.

  15. Effectiveness and Student Perceptions of an Active Learning Activity Using a Headline News Story to Enhance In-Class Learning of Cell Cycle Regulation

    ERIC Educational Resources Information Center

    Dirks-Naylor, Amie J.

    2016-01-01

    An active learning activity was used to engage students and enhance in-class learning of cell cycle regulation in a PharmD level integrated biological sciences course. The aim of the present study was to determine the effectiveness and perception of the in-class activity. After completion of a lecture on the topic of cell cycle regulation,…

  16. During hormone depletion or tamoxifen treatment of breast cancer cells the estrogen receptor apoprotein supports cell cycling through the retinoic acid receptor α1 apoprotein

    PubMed Central

    2011-01-01

    Introduction Current hormonal adjuvant therapies for breast cancer including tamoxifen treatment and estrogen depletion are overall tumoristatic and are severely limited by the frequent recurrence of the tumors. Regardless of the resistance mechanism, development and progression of the resistant tumors requires the persistence of a basal level of cycling cells during the treatment for which the underlying causes are unclear. Methods In estrogen-sensitive breast cancer cells the effects of hormone depletion and treatment with estrogen, tamoxifen, all-trans retinoic acid (ATRA), fulvestrant, estrogen receptor α (ER) siRNA or retinoic acid receptor α (RARα) siRNA were studied by examining cell growth and cycling, apoptosis, various mRNA and protein expression levels, mRNA profiles and known chromatin associations of RAR. RARα subtype expression was also examined in breast cancer cell lines and tumors by competitive PCR. Results Basal proliferation persisted in estrogen-sensitive breast cancer cells grown in hormone depleted conditioned media without or with 4-hydroxytamoxifen (OH-Tam). Downregulating ER using either siRNA or fulvestrant inhibited basal proliferation by promoting cell cycle arrest, without enrichment for ErbB2/3+ overexpressing cells. The basal expression of RARα1, the only RARα isoform that was expressed in breast cancer cell lines and in most breast tumors, was supported by apo-ER but was unaffected by OH-Tam; RAR-β and -γ were not regulated by apo-ER. Depleting basal RARα1 reproduced the antiproliferative effect of depleting ER whereas its restoration in the ER depleted cells partially rescued the basal cycling. The overlapping tamoxifen-insensitive gene regulation by apo-ER and apo-RARα1 comprised activation of mainly genes promoting cell cycle and mitosis and suppression of genes involved in growth inhibition; these target genes were generally insensitive to ATRA but were enriched in RAR binding sites in associated chromatin regions

  17. Antimicrobial Activity of Oleanolic and Ursolic Acids: An Update

    PubMed Central

    Jesus, Jéssica A.; Lago, João Henrique G.; Laurenti, Márcia D.; Yamamoto, Eduardo S.; Passero, Luiz Felipe D.

    2015-01-01

    Triterpenoids are the most representative group of phytochemicals, as they comprise more than 20,000 recognized molecules. These compounds are biosynthesized in plants via squalene cyclization, a C30 hydrocarbon that is considered to be the precursor of all steroids. Due to their low hydrophilicity, triterpenes were considered to be inactive for a long period of time; however, evidence regarding their wide range of pharmacological activities is emerging, and elegant studies have highlighted these activities. Several triterpenic skeletons have been described, including some that have presented with pentacyclic features, such as oleanolic and ursolic acids. These compounds have displayed incontestable biological activity, such as antibacterial, antiviral, and antiprotozoal effects, which were not included in a single review until now. Thus, the present review investigates the potential use of these triterpenes against human pathogens, including their mechanisms of action, via in vivo studies, and the future perspectives about the use of compounds for human or even animal health are also discussed. PMID:25793002

  18. Study of the possible mechanisms involved in the mucosal immune system activation by lactic acid bacteria.

    PubMed

    Perdigón, G; Vintiñi, E; Alvarez, S; Medina, M; Medici, M

    1999-06-01

    The induction of a mucosal immune response is not easy due to the development of oral tolerance, but under some conditions, bacteria can activate this immune system. Antigens administered orally can interact with M cells of Peyer's patches or bind to the epithelial cells. We have demonstrated that certain lactic acid bacteria are able to induce specific secretory immunity, and others will enhance the gut inflammatory immune response. The aim of this work was to establish the reason for these different behaviors and to define possible mechanisms involved in the interaction of lactic acid bacteria at the intestinal level. We studied IgA+ and IgM+ B cells comparatively in bronchus and intestine and CD4+ T cells and IgA anti-lactic acid bacteria antibodies in the intestinal fluid, induced by oral administration of Lactobacillus casei, Lb. delbrueckii ssp. bulgaricus, Lb. acidophilus, Lb. plantarum, Lb. rhamnosus, Lactococcus lactis, and Streptococcus salivarius ssp. thermophilus. The increase in the IgA+ B cells in the bronchus means that these lactic acid bacteria were able to induce the IgA cycle by interaction with M cells from Peyer's patches or intestinal epithelial cells. The IgM+ cells increased when the stimulus did not induce the switch from IgM+ to IgA+. The increase in the CD4+ cells suggests interaction of Peyer's patches and enhancement of the B- and T-cell migration. The anti-lactic acid bacteria antibody is related to the processing and presentation of the microorganisms to the immune cells. We demonstrated that Lb. casei and Lb. plantarum were able to interact with Peyer's patch cells and showed an increase in IgA-, CD4+ cells, and antibodies specific for the stimulating strain. Lactobacillus acidophilus induced gut mucosal activation by interaction with the epithelial cells without increase in the immune cells associated with the bronchus. Although Lb. rhamnosus and Strep. salivarius ssp. thermophilus interact with epithelial cells, they also induced

  19. Polarity Reversal of the Solar Photospheric Magnetic Field During Activity Cycle 24

    NASA Astrophysics Data System (ADS)

    Sun, Xudong; Hoeksema, Jon Todd; Liu, Yang; Zhao, Junwei

    2014-06-01

    The large-scale solar magnetic field reverses its polarity during the maximum phase of each activity cycle. As observed on the photosphere, active region (AR) magnetic flux migrates poleward in narrow, sheared streams resulted from large-scale flows and diffusion. A small net flux of the trailing sunspot polarity eventually aggregates at high latitudes, manifesting the poloidal field of the next cycle. We characterize this process for the ongoing cycle 24 based on four years' line-of-sight magnetograms from the Helioseismic and Magnetic Imager (HMI). The axial dipole component reversed sign in early 2012, but the poleward flux migration was grossly out of phase in the two hemispheres. As a proxy, the northern polar field (taken as mean above 70 degrees latitude) switched from negative to positive in late 2012, whereas the southern remained positive as of March 2014. Three factors that are in line with the surface flux transport model may have contributed. First, AR emergence started and peaked earlier in the north. Second, several ARs with small or inverse tilt angles (w.r.t. the Joy's law) emerged in the south in late 2010. Third, meridional flow speed inferred from helioseismology varied greatly prior to 2013; slower streams (compared to a three-year mean at the same latitude) appeared earlier in the north. We correlate HMI with the long-running Wilcox Solar Observatory (WSO) dataset, and compare the current cycle with the previous three.

  20. Effect of seat positions on discomfort, muscle activation, pressure distribution and pedal force during cycling.

    PubMed

    Verma, Rachita; Hansen, Ernst A; de Zee, Mark; Madeleine, Pascal

    2016-04-01

    The aim of this study was to measure and analyse discomfort and biomechanics of cycling, i.e., muscle activation, centre of pressure of seat pressure profiles and pedal forces as a function of seat position. Twenty-one recreationally active individuals cycled for 10min at 100W on an ergometer cycle using five different seat positions. The neutral position was considered as basic seat position and was compared with upward, downward, forward and backward seat positions. The initial bout was repeated at the end of the recording session. Discomfort increased for upward and backward condition compared with neutral (P<0.05). Normalized surface electromyography from gastrocnemius decreased in the downward and forward position but increased in the upward and backward position. The minimum force became less negative for forward position compared with neutral seat position (P<0.05). The degree of variability of centre of pressure increased in the upward and backward position and the entropy of the centre of pressure of sitting posture for backward position decreased compared with neutral seat position (P<0.05). The present study revealed that consecutive changes of seat position over time lead to increase in discomfort as well as alterations of the biomechanics of cycling. PMID:26938676

  1. RACK1 inhibits colonic cell growth by regulating Src activity at cell cycle checkpoints.

    PubMed

    Mamidipudi, V; Dhillon, N K; Parman, T; Miller, L D; Lee, K C; Cartwright, C A

    2007-05-01

    Previously, we showed that Src t